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ABSTRACT 

 

Today, data plays an important role in people‟s daily activities. With the help of 

some database applications such as decision support systems and customer 

relationship management systems (CRM), useful information or knowledge could be 

derived from large quantities of data. However, investigations show that many such 

applications fail to work successfully. There are many reasons to cause the failure, 

such as poor system infrastructure design or query performance. But nothing is more 

certain to yield failure than lack of concern for the issue of data quality. High quality 

of data is a key to today‟s business success. The quality of any large real world data 

set depends on a number of factors among which the source of the data is often the 

crucial factor. It has now been recognized that an inordinate proportion of data in 

most data sources is dirty. Obviously, a database application with a high proportion 

of dirty data is not reliable for the purpose of data mining or deriving business 

intelligence and the quality of decisions made on the basis of such business 

intelligence is also unreliable. In order to ensure high quality of data, enterprises 

need to have a process, methodologies and resources to monitor and analyze the 

quality of data, methodologies for preventing and/or detecting and repairing dirty 

data. This thesis is focusing on the improvement of data quality in database 

applications with the help of current data cleaning methods. It provides a systematic 

and comparative description of the research issues related to the improvement of the 

quality of data, and has addressed a number of research issues related to data 

cleaning. 

 

In the first part of the thesis, related literature of data cleaning and data quality are 

reviewed and discussed. Building on this research, a rule-based taxonomy of dirty 

data is proposed in the second part of the thesis. The proposed taxonomy not only 

summarizes the most dirty data types but is the basis on which the proposed method 

for solving the Dirty Data Selection (DDS) problem during the data cleaning process 
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was developed. This helps us to design the DDS process in the proposed data 

cleaning framework described in the third part of the thesis. This framework retains 

the most appealing characteristics of existing data cleaning approaches, and 

improves the efficiency and effectiveness of data cleaning as well as the degree of 

automation during the data cleaning process. 

 

Finally, a set of approximate string matching algorithms are studied and 

experimental work has been undertaken. Approximate string matching is an 

important part in many data cleaning approaches which has been well studied for 

many years. The experimental work in the thesis confirmed the statement that there 

is no clear best technique. It shows that the characteristics of data such as the size of 

a dataset, the error rate in a dataset, the type of strings in a dataset and even the type 

of typo in a string will have significant effect on the performance of the selected 

techniques. In addition, the characteristics of data also have effect on the selection of 

suitable threshold values for the selected matching algorithms. The achievements 

based on these experimental results provide the fundamental improvement in the 

design of „algorithm selection mechanism‟ in the data cleaning framework, which 

enhances the performance of data cleaning system in database applications. 
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CHAPTER 1  INTRODUCTION 

 

Today, data plays an important role in people‟s daily activities. With the help of 

database applications such as decision support systems and customer relationship 

management systems (CRM), useful information or knowledge can be derived from 

large quantities of data. However, investigations show that many such applications 

fail to work successfully. There are many reasons to cause the failure, such as poor 

system infrastructure design or query performance, but nothing is more certain to 

yield failure than lack of concern for the issue of data quality [1].  

 

For example, from Price Waterhouse Coopers‟ survey in New York in 2001, 75% of 

599 companies had economic losses because of data quality problems. Because their 

businesses are all dependent on data-driven systems such as customer relationship 

management and supply chain management systems, the issue remains that only 37% 

of the companies were "very confident" in the quality of their own data, and only 15% 

were "very confident" in the quality of the data of their trading partners [2].  

 

There is a growing awareness that high quality of data is key to today‟s business 

success. The quality of any large real world data set depends on a number of factors 

[3-5], among which the source of the data is often the crucial factor. It has now been 

recognized that an inordinate proportion of data in most data sources is dirty [6]. For 

example, some investigations show that errors in a large data set are common and 

are typically around 5% unless extreme measures have been taken [7, 8]. Due to the 

„garbage in, garbage out‟ principle, dirty data will distort information obtained from 

it [9]. Obviously, a database application such as a data warehouse with a high 

proportion of dirty data is not reliable for the purpose of data mining or deriving 

business intelligence and the quality of decisions made on the basis of such business 

intelligence is also not reliable.  
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Therefore, before using such databases, dirty data from them should be cleaned. 

That is, to ensure high quality of data, enterprises need to have a process, 

methodologies and resources to monitor and analyze the quality of data, and 

methodologies for preventing or detecting and subsequently repairing dirty data.  

 

This thesis provides a systematic and comparative description of the research related 

to the improvement of the quality of data, and has addressed a number of research 

issues related to data cleaning. In the following sections, we briefly introduce 

fundamental concepts and research issues related to data cleaning and data quality. 

 

1.1  Data Quality 

 

Investigations into the problems related to data quality can be traced back to as early 

as late 1960s when a mathematical theory for considering the duplicate problem in 

statistical data sets was proposed by Fellegi and Sunter [10]. However, it is only in 

the 1990s that the data quality problem has been considered in computer science 

with the data stored in databases and data warehouse systems. More and more 

people have become aware that poor data quality is one of the main reasons for the 

failure of a database project. Though a variety of definitions for data quality have 

been given [3，8，11], studies show that still no formal definition for data quality 

exists [8]. From the literature, data quality can be defined as “fitness for use”, i.e., 

the ability of data to meet the user's requirement. The nature of this definition 

directly implies that the concept of data quality is relative. Orr states “the problem of 

data quality is fundamentally intertwined in how our system fits into the real world; 

in other words, with how users actually use the data in the system” [8]. This has two 

interpretations: one is that if a data set is available and is as good as it can be, there 

are no other options than to use it. The other one is that what is considered as quality 

data in one case may not be sufficient in other cases. For example, an analysis of the 

financial position of a company may require data in units of thousands of pounds 
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while an auditor requires precision to the pence, i.e. in real life, it is the business 

policy or business rules that determine whether or not the data is of quality.  

 

Generally speaking, data quality can be measured or assessed with a set of 

characteristics or quality properties called data quality dimensions [4]. Some 

commonly used data quality dimensions include accuracy, completeness, timeliness, 

and consistency, which can be refined as: 

 

 Accuracy – conformity of the recorded value with the actual value; 

 Timeliness – the recorded value is not out of date; 

 Completeness – all values for a certain variable are recorded; 

 Consistency – the representation of data is uniform in all cases. 

 

Therefore, data quality can be considered as a multi-dimensional concept. These 

data quality dimensions measure data quality from different angles. Within each of 

these dimensions, a set of data quality rules generated by real business polices can 

be used to make an assessment of the data quality reflected by each dimension [12]. 

For example, a data quality rule defined as „the value of date must follow the pattern 

of DD/MM/YYYY‟ can be used for the consistency dimension. These data quality 

dimensions as well as data quality rules will be reviewed in detail in Chapter 2 and 

Chapter 3 respectively. 

 

1.2  Data Cleaning 

 

There is no commonly agreed formal definition of data cleaning. Depending on the 

particular area in which data cleaning has been applied, various definitions have 

been given. The major areas that include data cleaning as part of their defining 

processes are data warehousing, knowledge discovery in databases (KDD) and total 

data/information quality management (TDQM).  
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Within the data warehousing field, data cleaning is typically employed when several 

databases are merged. Records referring to the same entity are often represented in 

different formats in different data sets. Thus, duplicate records will appear in the 

merged database. The issue is to identify and eliminate these duplicates. The 

problem is known as the merge/purge problem [13]. Other instances of this problem 

are also referred to as record linkage, semantic integration, instance identification or 

the object identify problem in the literature [14]. There are a variety of methods 

proposed to address this issue: knowledge bases [9], regular expression matches and 

user-defined constraints [15], filtering [16], and others [17-19].  

 

In the KDD process, data cleaning is regarded as a first step or a pre-processing step. 

However, no precise definition and perspective over the data cleaning process is 

given and data cleaning activities are performed in a very domain specific fashion. 

For example, Simoudis et al [20] defined data cleaning as the process that 

implements computerized methods of examining databases, detecting missing and 

incorrect data, and correcting errors. In data mining, data cleaning is emphasized 

with respect to the garbage in garbage out principle and its own techniques such as 

outlier detection where the goal is to find exceptions For example, the problem of 

outlier detection where the goal is to find exceptions [21, 22] can be used in data 

cleaning.  

 

Total data quality management is an area of interest both within the research and 

business communities. From the literature, the data quality issue and its integration 

in the business process are tackled from various points of views [4, 7, 8, 23-26]. It is 

also referred to as the enterprise data quality management problem. However, none 

of the literature refers to the data cleaning problem explicitly. Most of this work 

deals with the process management issues from the data quality perspective, others 

with the definition of data quality. Of particular interest in this area, the definition of 
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data quality can help to define the data cleaning process to some extent. For example, 

within the model of data life cycles proposed by Levitin and Redman [24], data 

acquisition and data usage cycles contain the following series of activities: 

assessment, analysis, adjustment, and discarding of data. This series of activities 

proposed in Levitin and Redman‟s model define the data cleaning process from the 

perspective of data quality. Fox et al [23] proposed four data quality dimensions of 

the data, i.e., accuracy, currentness, completeness and consistency. The correctness 

of data is defined in terms of these dimensions. Thus, the data cleaning process 

within Fox et al‟s data quality framework can be defined as the process that assesses 

the correctness of data and improves its quality.  

 

With the above in mind and related literature [27, 28], data cleaning must be viewed 

as a process which is tied directly to data acquisition and definition or is applied to 

improving data quality in an existing system. For example, in Müller and Freytag‟s 

work, comprehensive data cleaning is defined as the entirety of operations 

performed on existing data to remove anomalies and receive a data collection being 

an accurate and unique representation of the mini-world [27]. According to Müller 

and Freytag‟s work, the three major steps within the data cleaning process are (i) 

define and determine error types, (ii) search and identify error instances, and (iii) 

correct the uncovered errors. Müller and Freytag include four major steps within the 

process of data cleaning: (i) auditing data to identify the types of anomalies reducing 

the data quality, (ii) choosing appropriate methods to automatically detect and 

remove them (specification of data cleaning), (iii) applying the methods to the tuples 

in the data collection (execution of data cleaning), and (iv) the post-processing or 

control step where the results are checked and the exception handling for tuples not 

corrected within the actual processing are handled.  

 

The following figure (Fig.1.1) demonstrates these four major steps in the data 

cleaning process. 
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Fig.1.1 A data cleaning process 

 

Each of these phases constitutes a set of complex problems, and a wide variety of 

specialized methods and technologies can be associated and applied during each 

phase. In this thesis, the main focus here is on the first two aspects, i.e., define and 

determine error types, search and identify error instances. The later aspects are very 

difficult to automate outside of a strict and well defined domain [21]. 

 

(i) Define and determine error types 

 

Research shows that many enterprises do not pay adequate attention to the existence 

of dirty data and have not applied useful methodologies to ensure high quality data 

for their applications. One of the reasons is a lack of appreciation of the types and 

extent of dirty data [29]. Therefore, in order to improve data quality, it is necessary 

to understand the wide variety of dirty data that may exist within the data source as 

well as how to deal with them. This step is trying to discover the possible dirty data 

types that may exist among different data sources. From the literature, some work 

has been undertaken exclusively to identify problems (dirty data types) that affect 

Define and determine error types 

Search and identify error instances 

Correct the uncovered errors 

 

Post-processing and controlling 
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data quality and has resulted in different taxonomies of dirty data [6, 27, 28, 30]. 

These works are reviewed in detail in Chapter 2.  

 

Data cleaning is a labour-intensive, time-consuming and expensive process. In 

practice, cleaning all dirty data types introduced by Oliveira et al or Kim et al is 

unrealistic and simply not cost-effective when taking into account the specific needs 

of a business enterprise [6, 30]. Although some research has proposed a large 

collection of dirty data types, such as a collection of 35 dirty data types by Oliveira 

et al, by only looking at these dirty data types it is difficult to tell which group of 

dirty data should be considered when facing a special requirement from a business 

enterprise and it would be very expensive for the system to run all algorithms for all 

the possible dirty data candidates. This problem is defined as the Dirty Data 

Selection (DDS) problem in this thesis.  

 

In this thesis, a novel rule-based taxonomy of dirty data is proposed. Compared with 

existing work [6, 30], this taxonomy provides a larger collection of dirty data types 

than any of existing taxonomies. With the help of the proposed taxonomy, a new 

classification of dirty data based on data quality dimensions is proposed. It can be 

used by business enterprises to solve the DDS problem by prioritizing the expensive 

process of data cleaning, therefore maximally benefitting their organizations. This 

rule-based taxonomy of dirty data will be introduced in Chapter 3. 

 

(ii) Search and identify error instances 

 

Before the execution of this step, information regarding the dirty data types 

identified within the data sources should be available, since performing data 

cleaning in very large databases is costly and time consuming. For each of these 

dirty data types, searching and identifying dirty data instances are performed with 

the help of an appropriate data cleaning method or algorithm which not only can 
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help with reducing the data cleaning time but also maximizing the degree of 

automation.  

 

Choosing a proper data cleaning method is proved to be a difficult task [31]. 

Especially when making selection of a data cleaning method out of many 

alternatives. It depends on several factors such as the problem domain and, the 

nature of errors. Additionally, organizing the multiple data cleaning methods 

involved during the data cleaning process is also a difficult task [32]. The challenge 

here is how to improve the efficiency/effectiveness when performing data cleaning 

tasks (i.e., reduce the data cleaning time and improve the accuracy of the cleaning 

results) and how to improve the degree of automation during the data cleaning 

process.  

 

From the literature, many data cleaning approaches or frameworks are developed to 

facilitate data cleaning. However, studying these approaches reveals that they are 

designed mainly for solving specific data cleaning activities such as data 

transformations or duplicate record detection exclusively. A general data cleaning 

approach that can deal with the dirty data types proposed in those existing dirty data 

taxonomies do not exist. Additionally, regarding the selection of a suitable data 

cleaning technique to deal with a specific dirty data type, either a user is required to 

specialize a method or a fixed method is applied to all situations in those data 

cleaning approaches. This, as will be shown later, not only increases the data 

cleaning time but also affect the effectiveness of data cleaning. These data cleaning 

approaches will be firstly comparatively reviewed in chapter 2 and a novel data 

cleaning framework will be proposed in chapter 4 with two exclusive mechanisms 

addressed in the proposed framework to improve the efficiency and effectiveness 

during the data cleaning process. 
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1.3  Objectives of the research 

 

The objectives of the research are as follows: 

 

(1) To develop a taxonomy of dirty data.  

 

Due to the lack of appreciation of the types and extent of dirty data, the existence of 

dirty data within database applications may not be paid adequate attention by many 

enterprises. This will finally become one of the important factors to cause poor data 

quality in these database applications. In order to improve the data quality, it is 

necessary to understand the wide variety of dirty data that may exist in the data 

sources as well as how to deal with them. Although from the literature, some work 

has been done exclusively for the purpose of generating the taxonomies of dirty data 

[6, 30], in practice cleaning all dirty data types introduced by these taxonomies is 

unrealistic and not cost-effective when taking into account the needs of a business 

enterprise. For example, according to the taxonomy of data quality problems 

proposed by Oliveira et al [30], 35 dirty data types are presented which is 

considered as the most comprehensive taxonomy so far from the literature. In this 

case, by only showing these 35 dirty data types, it is difficult to tell which possible 

dirty data types should be selected to deal with for different datasets when special 

business needs are involved. Thus one motivation of this research is to develop a 

taxonomy that not only addresses as many dirty data types as possible but can also 

help with solving the DDS problem. 

 

(2) To develop a novel data cleaning framework  

 

In order to ensure the data from an organization is of high quality, cleaning dirty 

data existing in the different data sources in a proper way is necessary. A process 

which can monitor, analyze and maintain the quality of data is highly recommended. 

From the literature, many data cleaning approaches exist to facilitate a data cleaning 
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process and they are crucial to make those data cleaning techniques and 

methodologies involved during the data cleaning process effective. However, 

research studies reveal they are designed to exclusively focus on the cleaning of 

some specific dirty data types such as duplicate record detection or data value 

transformation. According to the knowledge of the author, there is no such a data 

cleaning tool developed with the purpose of dealing with all dirty data types 

mentioned in those existing dirty data taxonomies.  

 

The ability of the selection of different groups of dirty data types to deal with under 

the different specific needs of a business is thus highly expected for a data cleaning 

approach. Besides, in those current data cleaning approaches, organizing multiple 

cleaning tasks in a proper cleaning sequence and selecting a suitable technique for a 

special data cleaning task totally depends on a user‟s preference in most cases. 

Regarding the organization of the multiple cleaning tasks, ideally, the process of 

detecting and correcting the dirty data should be performed automatically. However, 

it is known that fully automatically performing data cleaning is nearly impossible in 

most of cases especially when an exception happens during the cleaning process and 

an expert is required to make a judgement. Therefore, a semi-automatic data 

cleaning approach with the power of automatically organizing and ordering the 

associated data cleaning tasks is a challenge [27].  

 

Regarding the selection of a proper technique for a specific data cleaning task, it is 

necessary that a tool should include various appropriate data cleaning methods or 

algorithms to deal with a specific dirty data type to cope with different problem 

domains. Choosing a data cleaning method or algorithm from a set of alternatives 

has proved to be a difficult task. It depends on several factors, such as the problem 

domain and the nature of errors. Currently, in the existing data cleaning approaches, 

algorithm selection as well as its parameter‟s setting depends on a user‟s preference 

in most cases. For users who have not enough knowledge and experience, an 
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inappropriate selection of algorithms will generate a bad cleaning result. Therefore, 

another challenge for a data cleaning approach is that it should not only include 

enough techniques for a user to choose for different problem domains but also can 

intelligently help the user with making a choice when it is necessary. 

 

(3) To evaluate a set of data cleaning algorithms 

 

As mentioned above, the selection of a suitable data cleaning method is a difficult 

task especially when many alternative methods are available to choose from. How to 

make a selection to maximize the effectiveness/efficiency of data cleaning is a 

challenge. Many factors are required to consider during the selection of a proper 

data cleaning method such as the problem domains and the nature of errors. For 

example, matching names is one of the important steps during the data cleaning 

process to deal with duplicate record detection problem. There are a number of name 

matching techniques available. Unfortunately, there is no existing name matching 

technique that performs the best in all situations. Different techniques perform 

differently in different situations. Therefore, a problem that every researcher or a 

practitioner has to face is how to select an appropriate technique for a given dataset. 

This problem is also mentioned in the design of the proposed data cleaning 

framework in Chapter 4 as how to select the appropriate algorithm for a dirty data 

type during the data cleaning process. An objective of this research is thus to analyze 

and evaluate a set of name matching algorithms and present some suggestions based 

on the experimental results, which can be used as guidance for researchers and 

practitioners to select an appropriate name matching technique in a given dataset. 

 

1.4  Contributions to knowledge 

 

The contributions to knowledge presented in this thesis arise from the following 

achievements. 
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(1) A rule based taxonomy of dirty data 

 

In this thesis, a rule-based taxonomy of dirty data is proposed. A taxonomy of dirty 

data not only provides a framework for understanding the origins of a complete 

spectrum of dirty data and the impact of dirty data on database applications but also 

sheds light on techniques for dealing with dirty data and define a metric for 

measuring data quality and will provide a valuable guideline for further research and 

enhancement of commercial products [6].  

 

Compared with existing work, the proposed taxonomy provides a larger collection 

of dirty data types (38 dirty data types) than any of the existing taxonomies. 

Particularly, with the help of the taxonomy, a novel data cleaning method is also 

proposed which can be used by business enterprises to solve the proposed DDS 

problem, by prioritizing the expensive process of data cleaning. 

 

(2) A novel data cleaning framework 

 

Data cleaning is a labour-intensive, time-consuming, and expensive process, 

especially when huge volumes of data are involved during the data cleaning process. 

In this thesis, a novel data cleaning framework has been proposed, which aims to 

challenge the following issues: (i) minimising the data cleaning time and improving 

the degree of automation in data cleaning and (ii) improving the effectiveness of 

data cleaning. The improvement in the efficiency/effectiveness of data cleaning and 

the degree of automation is realized by introducing the two unique mechanisms 

namely „algorithm ordering mechanism‟ and „algorithm selection mechanism‟ during 

the data cleaning process. In addition, the DDS process exclusively addressed in the 

proposed framework can help a business to take into account the special needs 

according to different businesses priority policies. This framework retains the most 
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appealing characteristics of existing data cleaning approaches, and enjoys being able 

to improve the efficiency of data cleaning in data warehouse applications. 

 

(3) A set of recommendations for the selection of a suitable name matching 

algorithm 

 

The research work includes a comprehensive comparison of five popular name 

matching techniques based on a series of carefully designed experimental work on 

different last name datasets and first name datasets. The comparison results 

confirmed the statement that there is no clear best technique. The size of datasets, 

the error rate in datasets, the type of strings in a dataset and the type of typo in a 

string all will have significant effects on performance of the selected techniques. The 

timing cost of these techniques on different datasets has also been analyzed and 

compared. Based on the experimental results achieved, it is suggested that the 

selection of a technique should depend on the nature of the datasets. A set of 

recommendations as well as all related experimental results are presented in this 

thesis to help with the selection of a suitable name matching algorithm for a specific 

dataset.  

 

1.5  The structure of the thesis 

 

Chapter 1 introduces the research and the problem statement, the aim and objectives 

of the research are then discussed, and the contributions to knowledge are 

introduced. 

 

The literature review is presented in chapter 2. Research exclusively related to dirty 

data type classification/taxonomy from the literature are firstly reviewed and 

discussed. Data cleaning methods and approaches are studied and compared in detail 

secondly. Finally, the literature regarding data quality and data quality dimensions 
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are reviewed and compared. 

 

Chapter 3 presents 38 dirty data types based on a set of business rules. A rule-based 

taxonomy of dirty data is given with these 38 dirty data types. The proposed 

taxonomy of dirty data is critically analysed and compared with existing research 

from the literature. 

 

Chapter 4 presents a novel data cleaning framework. The components of the 

framework are detailed in this chapter and it is shown that the proposed framework 

retains the most appealing characteristics of the existing data cleaning approaches 

and enjoys being able to improve the efficiency/effectiveness of data cleaning in 

database applications. 

 

Chapter 5 analyzed and evaluated a set of popular name matching algorithms on a 

set of carefully designed personal name datasets. The experimental results confirm 

the statement that there is no clear best technique. Suggestions regarding the 

selection of an appropriate name matching algorithm are presented, which can be 

used as guidance for researchers and practitioners to select an appropriate name 

matching algorithm for a given dataset. 

 

Chapter 6 concludes the research and discusses the future work. 
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CHAPTER 2  LITERATURE REVIEW AND RELATED WORK 

 

This chapter conducts a broad survey of many techniques that have been found 

useful during the data cleaning process as well as the improvement of data quality in 

database applications. For example, existing taxonomies of dirty data types from the 

literature will be reviewed to present the multiple dirty data types observed in 

different data sources. Data cleaning methods and approaches will also be reviewed 

in this chapter. They provide the foundation of the development of the proposed data 

cleaning framework. Data quality, data quality dimensions are reviewed in the final 

part of this chapter.   

 

2.1  Dirty data 

 

In Chapter 1, it is pointed out that many enterprises do not pay adequate attention to 

the existence of dirty data and have not applied useful methodologies to ensure high 

quality data for their applications. One of the reasons is a lack of appreciation of the 

types and extent of dirty data [6]. Therefore, in order to improve the data quality, it 

is necessary to understand the wide variety of dirty data that may exist within the 

data source as well as how to deal with them. In this section, current classifications 

or taxonomies of dirty data are reviewed first. 

 

2.1.1  Müller and Freytag’s Data Anomalies 

 

In this work, the authors state that the definition of what is dirty data and what is not 

is highly application specific and have firstly presented the following definitions: 

 

 Data: are symbolic representations of information, i.e., facts or entities from 

the world, depicted by symbolic values. They are collected to form a 

representation of a certain part of the world called the miniworld (M). 
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 Anomaly: is a property of data values that renders them a wrong 

representation of the miniworld. 

 

With the above two definitions, the authors define „Data containing anomalies is 

dirty data‟. According to the constraints specified in Müller and Freytag‟s 

pre-defined data model, data from a data collection that does not conform to the 

constraints of the data model is considered as data anomaly. They roughly classify 

data anomalies into three different sets, each of which contains different dirty data 

types. The three different sets are called syntactical anomalies, semantic anomalies 

and coverage anomalies respectively [27]. 

 

Syntactical anomalies consider dirty data from data‟s representation angle. There are 

three dirty data types, namely lexical errors, domain format errors and irregularities. 

Lexical errors show the difference between the structure of the data items and the 

specified format. Domain format errors specify that the given value for an attribute 

does not conform to the anticipated domain format. Irregularities deal with the 

problem of non-uniform use of values, units and abbreviations. Semantic anomalies 

mainly concern two types of dirty data: data that violates the integrity constraints 

and duplicate data. Integrity constraints are used to specify the rules for representing 

knowledge about the domain and the values allowed for representing certain facts. 

Duplicate data here stands for two or more tuples that represent the same entity. 

Finally, coverage anomalies describe the dirty data due to missing values or missing 

tuples. Apart from these 7 data anomalies, the authors also mentioned another data 

anomaly called invalid tuple, where data from the data collection conform to all the 

constraints of the data model but are still invalid entities from the mini-world. For 

example, a student‟s age is 25 years old, but the value of age is entered as 26. 

Clearly, it is practically impossible for any software even a person to detect such an 

error [6]. Table 2.1 shows the dirty data types classified in this work. 
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No. Dirty data type 

MF.1 Lexical error 

MF.2 Domain format error 

MF.3 Irregularities error 

MF.4 Integrity constraint 

violations error 

MF.5 Duplicate records 

MF.6 Missing values  

(null value not allowed) 

MF.7 Missing tuple 

MF.8 Invalid tuple 

Table 2.1 Data anomalies from Müller and Freytag. 

 

2.1.2  Rahm and Do’s classification of data quality problems 

 

Rahm and Do replace the term „dirty data‟ by „data quality problem‟. According to 

the authors, database systems enforce restrictions of a specific data model as well as 

application specific integrity constraints. They distinguish the observed data quality 

problems into two sets namely single-source problems and multi-source problems. 

Within each set, data quality problems again have been classified into schema-level 

problems and instance-level problems respectively.  

 

Within single-source problems, data quality problems occur due to the lack of 

appropriate model-specific or application-specific integrity constraints are defined as 

schema-level data quality problems. Data quality problems related to errors and 

inconsistencies that can‟t be prevented at the schema-level are defined as 

instance-level data quality problems [28]. 

 

Within multi-source problems, as different data sources are designed and maintained 
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independently, when these data sources are to be integrated, data quality problems 

become more complicated. The main problems at the schema-level are naming 

conflicts and structural conflicts. For example, one data source uses „Cid‟ as the 

attribute name to represent customer identification number while in another data 

source, it may use „Cno.‟ to represent the customer identification number, i.e., 

different names for the same attribute. As an example of structure conflicts, in one 

data source, attribute „name‟ requires the name values to be written following the 

pattern as <given name last name>. Therefore, a person whose first name is „John‟ 

and last name is „Smith‟ will be written as “John Smith” in this data source 

according to the pre-defined pattern. However in another data source, name values 

may be required to be written in different attributes, e.g. „First Name‟, „Last Name‟ 

respectively. At the instance-level, problems may occur due to data conflicts such as 

different value representations or different interpretations of the same value . 

Furthermore, the authors also mentioned the existence of overlapping data that 

causes the problem of duplicate records within the multi data sources as well as 

contradicting records among multiple data sources. The dirty data types they 

introduced are shown in table 2.2. 
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No. Dirty data type 

RD.1 Illegal values due to invalid domain range 

RD.2 Violated attribute dependences at schema level 

RD.3 Uniqueness violation 

RD.4 Referential integrity violation 

RD.5 Missing values (null allowed) 

RD.6 Cryptic values, Abbreviations 

RD.7 Misspellings 

RD.8 Embedded values 

RD.9 Misfielded values 

RD.10 Violated attribute dependences at instance level 

RD.11 Word transpositions 

RD.12 Duplicated records in single data source 

RD.13 Contradicting records in single data source 

RD.14 Wrong references 

RD.15 Naming conflicts 

RD.16 Structural conflicts 

RD.17 Data conflicts in multiple data sources 

RD.18 Duplicate records in multiple data sources 

RD.19 Contradicting records in multiple data sources 

Table 2.2 Dirty data types from Rahm and Do. 

 

2.1.3  Kim et al’s taxonomy of dirty data 

 

In this work, according to the authors, dirty data is defined roughly as either missing 

data or wrong data or non-standard representations of the same data [6]. Kim et al 

present a hierarchically structured taxonomy of dirty data. According to the different 

ways of dirty data manifestation, all dirty data that could be captured from different 

data sources can only be classified into the following three categories [6]: 
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 Missing data; 

 Not missing but wrong data; 

 Not missing, not wrong but unusable data; 

 

These three categories of dirty data formed the main body of the taxonomy work. 

For the rest of the taxonomy work, the authors applied a hierarchical decomposition 

method to the three categories of dirty data and produced the taxonomy with 33 

different types of dirty data. 

 

Missing data is data that is missing in a field when it should not be missing. Two 

dirty data types are considered in this category: “missing data null value allowed” 

and “missing data null value is not allowed”.  

 

Not missing but wrong data is the data that is different from the “true value” of the 

data when it is accessed. In this category, dirty data is initially classified into two 

sets according to whether or not automatic enforcement of integrity constraints is 

available. For dirty data that can be prevented by automatic enforcement of integrity 

constraints, they can be classified based on whether these integrity constraints are 

supported by current relational database systems or these integrity constraints 

require extensions to current systems. For dirty data that can‟t be prevented by 

automatic enforcement of integrity constraints, the authors consider dirty data that 

arise in single-source and multi-source respectively. Together, there are 17 dirty data 

types within this category. 

 

Not missing, not wrong, but unusable data is the data that is in some sense not 

wrong, but can lead to wrong results in a query or analysis. Dirty data that falls in 

this category is considered whether it arises in single-source or multi-sources 

respectively. In single-source, these data become dirty due to either the value of the 

data being ambiguous or the value of the data not conforming to standards. In 
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multi-source, it is due to the same entity having different values across multiple 

databases. Within this category, 14 dirty data types have been introduced. Table 2.3 

shows the list of all 33 dirty data types from Kim et al. 

 

Category No. Dirty data type 

Missing 

data 

K.1 
Missing data  

(null value allowed) 

K.2 
Missing data  

(null value not allowed) 

Not 

missing, 

but wrong 

data 

K.3 Use of wrong data type including value range 

K.4 Dangling data  

K.5 Violation of uniqueness constraint data 

K.6 Mutually inconsistent data  

K.7~K.10 
Dirty data due to failure of transaction 

management facility  

K.11 Wrong categorical data 

K.12 Outdated temporal data  

K.13 Inconsistent spatial data 

K.14 Erroneous entry  

K.15 Misspelling  

K.16 Extraneous data  

K.17 Entry into wrong fields 

K.18 Wrong derived-field data from stored data  

K.19 
Inconsistency across multiple tables/files due to 

integration constraint problem 

Not 

missing, 

not wrong 

but 

K.20 
Different data for the same entity across multiple 

databases 

K.21 Ambiguous data due to use of abbreviation 

K.22 Ambiguous data due to incomplete context 
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unusable 

data K.23 

Different representation for non-compound data 

due to use of abbreviation 

(algorithms transformation is not possible)  

K.24 

Different representation for non-compound data 

due to use of Alias/ nickname  

(algorithms transformation is not possible) 

K.25 

Different representation for non-compound data 

due to encoding format 

(algorithms transformation is possible) 

K.26 

Different representation for non-compound data 

due to different representations  

(algorithms transformation is possible) 

K.27 

Different representation for non-compound data 

due to measurement units 

(algorithms transformation is possible) 

K.28 
Different representation for compound data due 

to abbreviation 

K.29 
Different representation for compound data due 

to use of special characters 

K.30 
Different representation for compound data due 

to different ordering 

K.31 
Different representation for hierarchical data due 

to abbreviation 

K.32 
Different representation for hierarchical data due 

to use of special characters 

K.33 
Different representation for hierarchical data due 

to different ordering 

Table 2.3 Dirty data types from Kim et al. 
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2.1.4  Oliveira et al’s taxonomy of data quality problems 

 

Oliveira et al also use the term „data quality problem‟ to replace the term „dirty data‟. 

All problems that affect data quality are defined as data quality problems and the 

work aims at identifying all the data quality problems and organizes them according 

to a taxonomy. The taxonomy by Oliveira et al was formed by collecting the 

different data quality problems from the previous work [6, 27, 28]. These problems 

are structured under 6 different levels ranging from the lowest level problems (in a 

single attribute value of a single tuple) to the highest level problems (multi-source 

problems) [30].The six different levels are: 

 

 L.1: Problems related with an attribute value of a single tuple. (In single 

table of a single data source) 

 L.2: Problems related with values of a single attribute. (In single table of 

a single data source) 

 L.3: Problems related with multiple attribute values. (In single table of a 

single data source) 

 L.4: Problems related with attribute values of several tuples. (In single 

table of a single data source) 

 L.5: Problems related with relationships among multiple tables. (In 

multiple tables of a single data source) 

 L.6: Problems related with multiple data sources.  

 

Compared with the earlier work, Oliveira et al present a rather complete taxonomy 

of data quality problems with 35 dirty data types presented. Table 2.4 shows the list 

of 35 data quality problems identified by Oliveira et al. 
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Level Number Dirty data type 

L.1 

O.1 Missing value 

O.2 
Syntax violation for an attribute value of a 

single tuple in single data source 

O.3 Outdated value 

O.4 Interval violation 

O.5 Set violation 

O.6 Misspelled error 

O.7 Inadequate value to the attribute context 

O.8 Value items beyond the attribute context 

O.9 Meaningless value 

O10 Value with imprecise or doubtful meaning 

O.11 

Domain constraint violation  for an 

attribute value of a single tuple in single data 

source 

L.2 

O.12 Uniqueness value violation 

O.13 Synonyms existence 

O.14 
Domain constraint violation for the values of 

a single attribute in single data source 

L.3 

O.15 Semi-empty tuple 

O.16 Inconsistency among attribute values 

O.17 
Domain constraint violation for attribute 

values of a single tuple in single data source 

L.4 

O.18 
Redundancy about an entity in single data 

source 

O.19 
Inconsistency about an entity in single data 

source 

O.20 
Domain constraint violation for attribute 

values of several tuple in single data source 
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L.5 

O.21 Referential integrity violation 

O.22 Outdated reference 

O.23 Syntax inconsistency in single data source 

O.24 Inconsistency among related attribute values 

O.25 
Circularity among tuples in a 

self-relationship 

O.26 

Domain constraint violation for relationships 

among multiple relations in single data 

source 

L.6 

O.27 Syntax inconsistency in multi data sources 

O.28 Different measure units in multi data sources 

O.29 
Representation inconsistency in multi data 

sources 

O.30 
Different aggregation levels  in multi data 

sources 

O.31 Synonyms existence in multi data sources 

O.32 Homonyms existence 

O.33 
Redundancy about an entity in multi data 

sources 

O.34 
Inconsistency about an entity in multi data 

sources 

O.35 
Domain constraint violation in multi data 

sources 

Table 2.4 Oliveira et al’s dirty data set. 

 

A brief comparison among these four works mentioned above is given below: 

Müller and Freytag [27] identify a set of errors (anomalies) that will affect data 

quality. The set includes lexical error, domain format error, irregularities, constraint 
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violation, missing value, missing tuple, duplicates and invalid tuple. Müller and 

Freytag‟s classification of anomalies does not present as many dirty data types as the 

other three works. This is because Müller and Freytag do not consider problems 

from multi-data sources. Their work limited the data quality problems to single data 

source. Rahm and Do [28] classify data quality problems into two groups: 

single-source and multi-source problems. However, at single-source, they do not 

divide the problems into those that occur in a single relation and those that occur in 

multi relations as Oliveira et al have done [30]. Kim et al‟s work [6] presents a 

comprehensive taxonomy of dirty data, which is hierarchically structured. According 

to the different ways in which dirty data manifest, all dirty data that can be captured 

from different data sources are classified into the following three categories which 

form the main body of the taxonomy work. For the rest of the taxonomy work, the 

authors apply a hierarchical decomposition method to the three categories of dirty 

data and produce a taxonomy with 33 distinct dirty data types. Oliveira et al produce 

a very complete taxonomy [30]. They adopted a bottom-up approach, from the 

lowest level where data quality problems may exist (the ones that occur in a single 

attribute value of a single tuple) to the highest level (those that involve multi-source 

problems). At the single source level, problems are further divided into two 

sub-groups: those that occur in a single relation and those that result from existing 

relationships among relations. At the multi-source level, the data quality problems 

are decomposed into 9 problems. The work also proposed some dirty data types that 

Kim et al have not mentioned, e.g. DT.7, DT.13, DT.16, and DT.18. Although 

Oliveira et al provide the most comprehensive taxonomy compared with others, it 

still lacks of some dirty data types from them. For example, some dirty data types 

mentioned by Kim et al (DT.1, DT.19, DT.25, DT.34) are not included by Oliveira et 

al. 

 

In this thesis, a rule-based taxonomy of dirty data is proposed. The dirty data is 

defined as „the data flaws that break the data quality rules‟, which can be used to 
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measure the occurrence of data flaws. In Chapter 3, data quality rules will be 

discussed in detail and the proposed rule-based taxonomy of dirty data will be 

presented. A comparison between the proposed taxonomy with these research works 

described above will be given. It will be shown later that the proposed taxonomy of 

dirty data not only provides a solution to deal with the DDS problem but also 

includes more dirty data types than any of the existing taxonomies. 

 

2.2  Methods used for Data cleaning 

 

In this section, general existing methods or techniques that could be used for data 

cleaning tasks are reviewed. They are developed to deal with some popular data 

cleaning activities exclusively and have been implemented into some of the existing 

commercial data cleaning tools.  

 

(1) Parsing 

 

Parsing in data cleaning is performed for the purpose of detecting syntax errors. 

Parsing decides for a given string whether it is an element of the language defined 

by the correct grammar. For example, the framework of Potter‟s Wheel provides two 

mechanisms for the parsing task namely „Type-based Discrepancy Detector (TDD)‟ 

and „User-specified Discrepancy Detector (UDD)‟ [33]. A TDD is an algorithm 

which detects discrepancies in values of a particular type. A UDD is a discrepancy 

detection algorithm that the user asks the system to apply on a specific set of fields 

[33]. As an example of using the two types of parser, suppose the schema of the 

table containing student records of a university in the U.K. is represented with: 

Student={StudentName, DepartmentName, StudentID, DateofBirth}, and suppose 

the user has registered a Number TDD that maintains as internal state the mean and 

standard deviation of values seen so far, and flags any value that is more than 10 

standard deviations from the mean as dirty data. The user has also registered a String 
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TDD that matches strings of alphabets and the user has specified a UDD on the 

DepartmentName column to check validity of department name. Suppose a student 

record with values {John, Computing, 001, 01/01/1988} is chosen to extract 

structures (parsers). The result of the inferred parsers will be:  

 

Name:String,  

DepartmentName:String,  

StudentID:Number,  

DateofBirth:Number/Number/Number.  

 

In this case, the following records will be detected as the ones containing dirty data: 

 

Record 1: {Sally, HelloWorld, 002, 05/06/1988} 

               Record 2: {Jack, Math, 004, March, 4, 1986} 

Record 3: {Tom, Computing, 005, 09/10/19827} 

 

In Record 1, according to the DepartmentName UDD, the value „HelloWorld‟ will 

be detected as an anomaly since the value violates the valid department names 

defined in the DepartmentName UDD. In Record 2, the value of DateofBirth „March, 

4, 1986‟ will be detected as an anomaly since its structure is extracted as „String, 

Number, Number‟ and violates to the registered TDD for the DateofBirth field. 

Finally, in Record 3, the Number TDD will be invoked on the sub-components of 

DateofBirth field and will detect the value of year „19827‟ as an anomaly because it 

is too many deviations away from the mean value of the year sub-component. 

 

(2) Data transformation 

 

Data transformation is one of the major subtasks in data preparation. It transforms 

the data on a structural level as well as an instance level, meeting the requirements 
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of the analysis tools. Although there are many commercial tools available for the 

transformation problems such as Microsoft Data Transformation Service or Oracle 

Data Warehouse Builder, they perform transformation in a batch-like manner not 

supporting an explorative and interactive approach. The solution of using a 

multi-database query language (FRAQL) helps with improve this shortcoming, as it 

is possible to check various strategies for integration and cleaning with reduced 

effort [34].  

 

According to Sattler and Schallehn, FRAQL provides good solutions for data 

transformation problems on both the schema and instance level. On the schema-level, 

two operations namely “TRANSPOSE TO ROWS” and “TRANSPOSE TO 

COLUMNS” are provided by FRAQL, which help with converting rows to columns 

and vice-versa. On the instance-level, FRAQL can help with simple value 

conversions as well as attribute value normalizations. The simple value conversions 

can be realized with the built-in functions such as „string manipulation functions‟ or 

„general purpose conversion functions‟. Attribute value normalizations can be 

realized with the user-defined functions (UDF), which help to normalize the 

attribute values to lie in a fixed interval given by the minimum and maximum values 

[34]. 

 

(3) Integrity constraint enforcement techniques  

 

Database integrity refers to the validity and consistency of stored data. Integrity is 

usually expressed in terms of constraints, which are consistency rules that the 

database is not permitted to violate. Techniques for integrity constraint enforcement 

can help with eliminating integrity constraint violation problems. In general, 

integrity constraint enforcement ensures the satisfaction of integrity constraints after 

transactions modifying a data collection by inserting, deleting, or updating tuples 

have been performed. There are two approaches, namely integrity constraint 
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checking and integrity constraint maintenance respectively. The former will help to 

prevent the occurrence of integrity constraints during a transaction. The latter will 

help to correct integrity constraint violation after the transactions in order to 

guarantee that the resulting data collection be free of integrity constraint violations. 

According to Maletic and Marcus, integrity analysis can be used to locate data errors 

[21]. Given a dataset that adheres to the relational model, the data integrity analysis 

can be used as a simple data cleaning operation. Relational data integrity, including 

entity, referential, and column integrity can be accomplished using relational 

database queries such as SQL [21]. However, limitations exist in applying these 

integrity constraint enforcement techniques, e.g., the control of the data cleaning 

process must remain with the user all the time and it can only uncover a number of 

possible errors in a data set but not some more complex problem such as outlier 

detection.  

 

(4) Duplicate detection techniques 

 

Duplicate detection or record matching is an important process in data cleaning. It 

involves identifying whether two or more tuples are duplicate representations of the 

same entity. Duplicate records do not share a common key and contain erroneous 

data that make record matching a difficult task. There are two main approaches for 

duplicate record detection, categorized into two approaches: approaches that rely on 

training data, e.g., probabilistic models [10] or supervised/semi-supervised learning 

techniques [35-39] and approaches such as rule-based [13, 40, 41] and 

distance-based techniques [42-44] that rely on domain knowledge or distance 

metrics to match records. 

 

With respect to the former approach, the limitation exists that training data may not 

always be available all the time. Although the unsupervised „Expectation 

Maximization‟ (EM) algorithm is available to supply the maximum likelihood 
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estimate, there are some conditions required in order to use the EM algorithm. For 

example, the rate of typographical error should be low and there should be more 

than 5% duplicates within the dataset. On the other hand, the rule-based approach 

does not require the training data. However, an expert is needed for devising the 

matching rules set in order to obtain high accuracy of matching result. Therefore, a 

limitation of this approach exists in that an expert may not always be available all 

the time and the rules set may be domain specific. In addition, distance-based 

algorithms are needed to be applied for the rule-based approach. For example, an 

approximate string matching algorithm such as the Jaro algorithm or Levenshtein 

algorithm may be applied on the name strings values between two records to 

determine the degree of similarity between the two records with the help of a 

pre-defined threshold value. A poor selection of the threshold value will generate a 

poor matching result. Therefore, the choice of a proper distance-based algorithm and 

a selection of a suitable threshold value play an important role in the rule-based 

approach. Some popular character-level string matching algorithms will be analyzed 

in chapter 5 as well as the threshold value selection problem. 

 

(5) Statistical methods 

 

Some statistical methods can be used for auditing data as well as correcting 

erroneous data. For example, Marcus shows that statistical methods can help with 

identifying outlier problems using the values of mean, standard deviation, range 

based on Chebyshev‟s theorem, considering the confidence intervals for each field 

[21]. In this work, outlier values for particular fields are identified based on 

automatically computed statistics. For each field, the average and the standard 

deviation are utilized and based on Chebyshev‟s theorem. Those records that have 

values in a given field outside a number of standard deviations from the mean are 

identified. The number of standard deviations to be considered is customizable. 

Confidence intervals are taken into consideration for each field.  
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2.3  Existing approaches for Data cleaning 

 

In chapter 1, the data cleaning process is described as a complex process with 

massive human resource involvement. Section 2.2 discussed general techniques and 

methods that can be used to automate activities in data cleaning applications as far 

as possible. In this section, five selected data cleaning approaches from the literature 

are reviewed. 

 

(1) Potter‟s Wheel 

 

Potter‟s Wheel is an interactive framework for data cleaning and transformation. 

According to the authors, data often has inconsistencies in schema, formats, and 

adherence to constraints. This may be due to many factors such as data entry errors 

or data integration from multiple data sources. Therefore, data that do not conform 

to the required formats either on the instances level or schema level must be detected 

and transformed into a uniform format before using it.  

 

Although many data cleaning tools exist when Potter‟s Wheel was developed, 

according to Raman and Hellerstein, those tools had serious drawbacks in usability. 

The main drawbacks include (1) these tools use a combination of analysis tools and 

transformation tools together to deal with the discrepancy detection and the data 

transformation respectively, with little interactivity, (2) the detection of discrepancy 

and data transformation are typically performed within a batch process, operating on 

a table or the whole database, without any feedback. Users have to face long 

frustrating delays and they will have no idea if a transform is effective and (3) some 

„nested discrepancies‟ are hard to detect in only one pass. Therefore, more iterations 

are required between discrepancy detection and data transformations since users 

have to wait for a transformation to finish before they can check if it has fixed all 

anomalies. 
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Potter‟s Wheel was developed to address these drawbacks. According to the authors, 

any data cleaning solution must support transformation and discrepancy detection in 

an integrated fashion. Regarding the transformation, it must be general and powerful 

enough to do most tasks without explicit programming. However, some commercial 

extract, transform and load (ETL) tools typically only support some restricted 

transforms between a small set of formats via a graphical user interface (GUI). 

Regarding discrepancy detection, it must support the variety of discrepancy 

detection algorithms applicable in different domains. However, the techniques 

applied in some data auditing tools for the purpose of discrepancy detection are 

domain specific, which is unsuitable for detecting the data composite structures of 

values from different domains. Users have to either write a custom program for each 

such structure or design transforms to parse data values into atomic components for 

anomaly detection. Finally, transformation and discrepancy detection should be 

realized through simple specification interfaces and within minimal delays. Potter‟s 

Wheel is just such an interactive data cleaning system that integrates transformation 

and discrepancy detection in a single interface. The following figure shows Potter‟s 

Wheel‟s architecture [33]: 

 

Fig.2.1 Potter‟s Wheel Architecture 

The main components of Potter‟s Wheel (Fig.2.1) are „Online Reorderer‟, 

„Transformation Engine‟, and „Discrepancy Detector‟. The „Online Reorderer‟ is a 

Discrepancy Detector 

Transformation Engine 

Optimized Program 

Input data source 

Online Reorderer 

Display 
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feature exclusively designed for Potter‟s Wheel. It fetches tuples from the „Input 

data source‟ continually and divides them into buckets, spooling them to disk if 

needed. The „Online Reorderer‟ picks a sample of tuples from the bucket 

corresponding to the scrollbar position and displays them on screen. This allows 

users to interactively resort on any column and scroll in a representative sample of 

the data, even on large datasets. The „Transformation Engine‟ deals with the 

different transforms such as schema level data transforms which can help with 

splitting one data field into several fields or combining different fields into one 

single data field, or instance level data conflicts associated with the discrepancy 

detection task. Traditionally, some common transformations can be realized without 

explicit programming, they have been used in some commercial ETL tools. However, 

some transforms require parsing and splitting values into atomic components, which 

are quite complex and require users to write custom programs. In Potter‟s Wheel, a 

„structure extraction technique‟ is developed exclusively to automatically infer 

patterns in terms of different domains. This enables users to specify the desired 

results on the example values and automatically infers a suitable transform. The 

„Discrepancy Detector‟ runs in the background when a transform is specified and 

data is explored. Appropriate algorithms specified for different domains will be 

applied to detect data anomalies. In Potter‟s Wheel, the transforms are specified 

graphically and their effects are shown immediately on records visible on screen. If 

their effects are undesirable, undone can be performed easily. At the same time, 

discrepancy detection is done automatically in the background based on the latest 

transformed view of the data. The detected anomaly will be flagged. In this way, 

users can gradually develop and refine transforms as the discrepancies are found. 

After constructing a satisfactory sequence of transforms, the user can ask the system 

to generate an optimized program to run on the dataset as a batch, unsupervised 

process.  

 

Although the ability of user interactivity is improved with the help of the „Online 
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Reorderer‟ exclusively developed in Potter‟s Wheel, the degree of automation of 

Potter‟s Wheel is low as the detection of the data that requires data transforms is 

totally depending on the manual perception. This is a limitation regarding the 

efficiency of performing data cleaning tasks. Besides, since Potter‟s Wheel is mainly 

focused on solving the data transformation problems either on the instance-level or 

scheme-level, problems such as duplicate record detection is not supported well in 

Potter‟s Wheel and users need to seek other tools to deal with duplicate record 

detection problem. 

 

(2) AJAX 

 

The main goal of AJAX is to facilitate the specification and execution of data 

cleaning programs either for a single data source to help with dealing with duplicate 

record detection problem, or for integrating multiple data sources into a single new 

data source [41].  

 

Although some existing ETL tools provide platforms to implement some data 

transformations, the drawback according to the authors, is that they lack a clear 

separation between the logical specification of data transformations and their 

physical implementations. The solution for some tools only consists of a specific 

optimized algorithm which is already parameterized with some user provided 

criteria. This can‟t fit all situations. Besides, the user interaction facilities in these 

tools are poor. Sometimes, an expert consultation is required during a data cleaning 

process. For example, when two different publication date values for the same 

published work are detected, the one to keep requires a judgement from the user. 

However, in existing tools, there is no specific support for user consultation except 

to write the data to a specific file to be analyzed by the user later.  
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AJAX was developed as a data cleaning framework which attempts to separate the 

data cleaning program into two levels namely the logical level and the physical level. 

The logical level supports the design of the data flow graph that specifies the data 

transformations needed to clean the data. These data transformations are specified 

with four main logical operators namely, mapping, matching, clustering, and 

merging. The mapping operator standardizes data formats when necessary. For 

example, it can convert the name string values into lower case. It can also help with 

producing records with a more suitable format by applying operations such as 

column splitting and merging. For example, values in an „address‟ field can be split 

into separated address components such as „city‟, „street‟, „number‟. The matching 

operator finds pairs of records that most probably refer to the same real object. The 

clustering operator groups together the matching pairs with high similarity values 

with the help of a given grouping criteria, e.g., transitive closure. The merging 

operator is applied to each individual cluster returned by the clustering operator to 

eliminate duplicate records or produce new records. The design of these operators is 

based on the semantics of SQL primitives which are extended to support a larger 

range of data cleaning transformations. For example, Fig.2.2 and Fig.2.3 show the 

use of the mapping and matching operators respectively. 

 

 

Fig.2.2 Mapping operator from AJAX 

In Fig.2.2, the mapping operator converts names into lower case and the address 

field is split into separate components. An exception is raised if the name field is 

null and a human expert is called later. In SQL, an exception will immediately stop 

CREATE MAPPING MP 

SELECT s.key, lowerName, city, street, number 

FROM SUBSCRIBERS s 

LET IF (s.name==null) throw NullException(s.key) 

            lowerName=lowerCase(s.name) 

            [city, street, number]=extractAddressComponents(s.address) 
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the execution of a query. The semantics provided in AJAX enables computing the 

entire set of tuples regardless of the exceptions. 

 

 

Fig.2.3 Matching operator from AJAX 

 

In Fig.2.3, the matching operator is used for finding duplicate records within a data 

source called GSM-CLIENT. In this example, an approximate string matching 

algorithm, i.e., nameSIMF() is applied to compute the similarity between the two 

name values and a threshold value 0.5 is used to classify the matching results. There 

are many approximate string matching algorithms available for different types of 

strings concerning the different domains involved. They will be further discussed in 

chapter 5.  

 

In the logic level, the main constituent of a data cleaning program is the 

specification of a data flow graph where nodes are the logical operators. Each 

operator can make use of externally defined functions or algorithms that implement 

domain specific treatments such as extracting substrings from a string, computing 

the distance between two string values, etc. A feature exclusively designed for these 

operators is the automatic generation of a variety of exceptions for each operator. 

For each exception thrown, the corresponding information of the data item is then 

stored with a textual description of the exception. A data lineage mechanism enables 

users to inspect exceptions, analyze their provenance in the data flow graph and 

CREATE MATCHING M1 

FROM GSM-CLIENT g1, GSM-CLIENT g2 

LET similarity=nameSIMF(g1.name, g2.name) 

WHERE g1.gsmID<g2.gsmID 

AND similarity>0.5 

{SELECT g1.gsmID AS gsmID1, g2.gsmID AS gsmID2, similarity AS 

similarity 

KEY gsmID1, gsmID2} 
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interactively correct the data items that contributed to its generation. The corrected 

data can then be re-integrated into the data flow graph. In this way,  user interaction 

is enforced. 

 

The physical level supports the implementation of the data transformations and their 

optimizations. The focus here is the design of performance heuristics that can 

improve the execution speed of data transformations without sacrificing accuracy. 

Although the physical level can help with selecting an efficient algorithm to 

implement a logical operation among a set of alternatives, it is the users who control 

the proper usage of optimization algorithms in the logical level. For example, 

suppose a matching task to deal with duplicate record detection problem is required 

during the data cleaning process. Users have to specify the information such as 

operators involved the properties of the matching algorithms, the required 

parameters for optimization in the logical level. In the physical level, the system 

then will consume the information obtained from the logical level and then specific 

optimized algorithms can be selected to implement the transformations. This, 

however is a limitation regarding the effectiveness during the data cleaning process. 

As will be discussed later, a poor setting of the required parameters for the selected 

technique will generate poor matching results. For example, when an approximate 

string matching technique is selected for the matching of records, how to set the 

threshold value is still unclear. Usually, a universal value will be chosen for all 

situations in AJAX. As will be seen later in chapter 5, many factors are needed to be 

considered when setting the threshold value for the selected matching algorithm in 

order to achieve a better matching result. However, in AJAX, the proper usage of the 

optimization algorithm in the logical level entirely depends on its users without 

considering any different factors such as problem domains. 
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(3) ARKTOS 

 

According to the developers of ARKTOS, in the context of a data warehouse, both 

schema and instance levels should be considered during the integration of data [45]. 

Although there are some tools such as some commercial ETL tools as well as data 

cleaning tools existing to help with data integration, they are responsible for parts of 

tasks such as the extraction of data from several sources, or for cleaning a specific 

dirty data type exclusively. This makes the use of these tools complex and pricy. 

Therefore, ARKTOS was developed as a data cleaning tool with the following goals: 

(1) the data warehouse transformations and the data cleaning tasks can be defined 

with graphical and declarative facilities, (2) the quality of data can be measured with 

specific quality factors, and (3) the complex sequence of transformation and 

cleaning tasks could be optimized.  

 

In ARKTOS, for each dirty data type, the detection of dirty data is performed by an 

„activity‟. An activity is an atomic unit of work and a discrete step in the chain of 

data processing. The work performed by each activity is specified by an SQL 

statement, which gives the logical, declarative description of the work. Each activity 

is accompanied by an error type and a policy. An error type of an activity identifies 

the problem the process is concerned with such as „Primary key violation‟, „NULL 

value existence‟, etc. A policy signifies the way the data should be treated such as 

„deleting the tuples‟, „reporting the tuple to a file or table‟. When multiple activities 

are involved in ARKTOS, the users can tailor the set of activities to be executed all 

together with the help of a „scenario‟ (a set of processes to be executed all together) 

defined in ARKTOS.  

 

In ARKTOS, the error types the system can deal with include (i) primary key 

violation, (ii) reference violation, (iii) null value existence, (iv) uniqueness violation, 

(v) domain mismatch, and (vi) field format transformation. Two methods are 
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proposed in ARKTOS to specify each activity either graphically or declaratively. 

These two methods overcome the issues of user-friendliness and complexity of the 

exiting ETL tools mentioned in the beginning. Regarding the graphical method, a 

palette with all the possible activities provided by ARKTOS is available for user to 

compose a scenario from these activities and link them in a serial list to execute. 

Regarding the declarative method, two declarative definition languages are proposed 

by ARKTOS namely „XML-based Activity Definition Language‟ (XADL) and 

„Simple Activity Definition Language‟ (SADL) respectively.  

 

XADL is an XML language for data warehouse processes, on the basis of a 

well-defined DTD, writing of SADL is verbose and complex but is more 

comprehensible. SADL is a declarative definition language motivated from the SQL 

paradigm, it is more compact and resembles SQL and is suitable mostly for the 

trained users. Fig.2.4 and Fig.2.5 show an example proposed by the authors how the 

two languages used for a specification of a scenario in ARKTOS [45]. The scenario 

in this example tries to solve the following activities ordered as follows: (1) Push 

data from table LINEITEM of source database S to table LINEITEM of the DW 

database. (2) Perform a referential integrity violation checking for the foreign key of 

table LINEITEM in database DW, which is referencing table ORDER. Delete 

violating rows. (3) Perform a primary key violation check to the table LINEITEM 

and report violating rows to a file.  

 

Similar to Potter‟s Wheel, the dirty data types mainly addressed in ARKTOS are 

schema-level and instance-level data transformations as well as some integrity 

constraints enforcement. ARKTOS can‟t deal with duplicate record detection 

problem as AJAX.  

 

Although ARKTOS allows specifying a set of data cleaning tasks to be performed as 

a „scenario‟, the „scenario‟ is composed by its users without providing any detailed 
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information as how such a scenario should be composed when considering the 

multiple factors involved during the data cleaning process such as the different 

problem domains, algorithms involved etc. The developers of ARKTOS do not give 

any further investigations on the „ordering‟ problem when multiple cleaning tasks 

are associated during the data cleaning process. 

 

 

Fig.2.4 XADL definition of a scenario, as exported by ARKTOS 

 

1. <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?> 

... 

67. <transformtype> 

68.    <input_table table_name="lineitem" database_url="jdbc:informix-sqli: 

             //kythira.dbnet.ece.ntua.gr:1500/dbs3:informixserver=ol_milos_tcp"> 

69.    <column> l_orderkey </column> 

70.    <column> l_partkey </column> 

... 

85.    </input_table> 

86.    <errortype> 

87.       <reference_violation> 

88.          <target_column_name> l_orderkey </target_column_name> 

89.          <referenced_table_name> Informix.tpcd.tpcd.tpcd.order </referenced_table_name> 

90.          <referenced_column_name> o_orderkey </referenced_column_name> 

91.       </reference_violation> 

92.   </errortype> 

93.   <policy> <delete/> </policy> 

94.   <quality_factor qf_name=No_of_reference_violations qf_report_file="H:\path\scenario3.txt"> 

95.       <sql_query> select l_orderkey from lineitem t1 where not exists 

                      (select o_orderkey from order t2 where t1.l_orderkey = t2.o_orderkey) 

          </sql_query> 

96.   </quality_factor> 

97. </transformtype> 

... 

140.</scenario> 
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Fig.2.5 SADL definition of a scenario, as exported by ARKTOS 

 

(4) IntelliClean 

 

IntelliClean is a knowledge-based framework for intelligent data cleaning which 

mainly deals with duplicate records elimination [9]. According to the authors, 

although domain knowledge plays an important part in data cleaning, little on 

knowledge management issues has been undertaken such as the representation of the 

domain knowledge used for data cleaning. Besides, traditional data cleaning 

methods used for duplicate detection depend on the basis of computing the degree of 

similarity between the nearby records in a sorted database. In this case, a 

recall-precision dilemma exists that high precision is achieved at the cost of lower 

recall. In order to address these problems, IntelliClean was developed as a 

framework which provides a systematic approach for representation standardization, 

duplicate elimination, anomaly detection and removal in dirty databases. Three 

1. CREATE SCENARIO Scenario3 WITH 

2. CONNECTIONS S3,DW 

3. ACTIVITIES Push_lnitem, Fk_lnitem, Pk_lnitem 

4. ... 

5. CREATE CONNECTION DW WITH 

6. DATABASE "jdbc:informix-sqli://kythira.dbnet.ece.ntua.gr:1500/ 

             dbdw:informixserver=ol_milos_tcp" ALIAS DBDW 

7. DRIVER "com.informix.jdbc.IfxDriver" 

8. ... 

9. CREATE ACTIVITY Fk_lnitem WITH 

10. TYPE REFERENCE VIOLATION 

11. POLICY DELETE 

12. SEMANTICS "select l_orderkey from lineitem@DBDW t1 where not exists 

              (select o_orderkey from order@DBDW t2 where t1.l_orderkey=t2.o_orderkey)" 

13. ... 

14. CREATE QUALITY FACTOR "# of reference violations" WITH 

15. ACTIVITY fk_lnitem 

16. REPORT TO "H:\path\scenario3.txt" 

17. SEMANTICS "select l_orderkey from lineitem@DBDW t1 where not exists 

              (select o_orderkey from order@DBDW t2 where t1.l_orderkey = t2.o_orderkey)" 
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stages are included in this framework: (1) pre-processing stage, (2) processing stage, 

and (3) validation and verification stage. 

 

In pre-processing stage, data anomalies such as domain constraint violations, 

misspelling and, inconsistent use of abbreviations, are firstly detected and cleaned. 

For example, date values such as „2/3/2011‟, „March, 2, 2011‟ can be standardized 

into one format. The values like „1‟, ‟A‟, ‟M‟ in the gender field will all be replaced 

by the value of „Male‟. This can be realized with the help of some reference 

functions and look-up tables. These conditioned data records then will be input to 

the processing stage.  

 

In the processing stage, the conditioned records are fed into an expert system engine 

together with a set of rules which are designed to help with detecting the duplicate 

records. Particularly, a new method to compute the transitive closure is proposed in 

IntelliClean to increase the recall. In IntelliClean, the „knowledge-base‟ is formed by 

different rules generally written as the following form: 

IF <condition> THEN <action> 

These rules are derived naturally from the business domain. When the condition part 

of the rule is satisfied, the action part of the rule will be activated. The business 

analyst with subject matter knowledge is expected to fully understand the governing 

business logic and can develop the appropriate conditions and actions.  

 

In IntelliClean, rules are fed into an expert system engine, making use of an efficient 

method for comparing a large collection of rules to a large collection of objects. 

According to the authors, simple rules may be generated automatically when 

supplied with necessary parameters. However, hand-coding might be required when 

more complex rules are needed.  
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All rules from IntelliClean can be categorized into four types namely „duplicate 

identification rules‟, „merge/purge rules‟, „update rules‟ and „alert rules‟ respectively. 

More specifically, duplicate identification rule specifies the conditions for two 

records to be classified as duplicates. For example, Fig.2.6 shows an example of the 

duplicate identification rule in IntelliClean. This example shows the duplicate 

records are searched in a restaurant relation, with attributes ID, Address, and 

Telephone.  

 

In order to activate the rule specialized in Fig.2.6, the corresponding conditions must 

be satisfied: the telephone numbers must be matched, and one of the identifiers must 

be a substring of the other. In addition, the address values of the two records must be 

very similar with a similarity higher than 0.7 according to the selected function 

(FieldSimilarity). Records classified as duplicates with this rule will have a certainty 

factor of 70%. A certainty factor (CF) represents expert confidence in the rule 

effectiveness in duplicate record detection, where 0<CF<1. A higher CF value can 

be assigned to a rule if it is sure that the rule will identify true duplicates.  

 

The merge/purge rules specify how duplicate records are to be handled. For example, 

a simple rule might be like „only the tuple with the least number of empty fields is to 

be kept in a group for further analysis and delete the rest of the tuples.‟ Update rules 

specify the way data is to be updated in a particular situation. For example, it can 

specify when value in a field of a tuple is missing, what value will be filled. Finally, 

an alert rule helps with raising an alert when certain events occur such as integrity 

constraint violations. 
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Fig.2.6 An example of the duplicate identification rule in IntelliClean 

 

In the validation and verification stage, human intervention is required to manipulate 

the duplicate records which are not dealt with due to the lack of merge/purge rules. It 

also helps with the validation of the rule base. Any rule that generates a wrong result 

will be taken out or have its parameters changed. According to the authors, 

well-developed rules are effective in identifying true duplicate records but are strict 

enough to keep out similar records which are not duplicates. In this way, higher 

recall is achieved with more rules. As concluded by the authors, the recall increases 

with the number of rules, and more complex rules identified more true duplicate 

records. This helps with resolving the recall-precision dilemma problem mentioned 

in the beginning. For example, in IntelliClean, the sorted neighbourhood method 

(SNM) is used for the detection of duplicate records. After the running of this 

algorithm, transitive closure is computed to group the duplicate records. This 

procedure can raise the false positive error as incorrect pairs are merged and the 

precision of the result will be lowered.  

 

IntelliClean tries to reduce the number of wrongly merged duplicate groups by 

applying a certainty factor (CF) to each duplicate identification rule. Fig.2.6 shows 

an example that a CF=0.7 is added for the pairs of tuples R1 and R2. During the 

computation of the transitive closure, the value of CF is compared to the 

user-defined threshold value. Any merges that result in a CF value less than the 

Define rule Restaurant_Rule 

Input tuples: R1, R2 

IF (R1.telephone=R2.telephone) 

AND (ANY_SUBSTRING (R1.ID, R2.ID)=TRUE) 

AND (FIELDSIMILARITY(R1.ADDRESS,R2.ADDRESS)>0.7) 

THEN DUPLICATES(R1, R2) CERTAINTY=0.7 
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threshold value will not be executed. In this way, the false positive error is lowered. 

One limitation for IntelliClean is that, according to the developers, only the method 

of SNM is supported in this tool to detect duplicate records. SNM is a good method 

to deal with duplicate record detection in large datasets. However, when small 

datasets are involved, clearly a pair wise comparison is the best way to improve the 

effectiveness.  

 

(5) Febrl 

 

Matching records that refer to the same entity across databases is becoming an 

increasingly important part of the process of data cleaning. Data from multiple 

sources needs to be matched in order to enrich data or improve its quality. Although 

significant advances in record linkage techniques have been made in recent years, 

according to the authors, the vast majority of them are a „black box‟ commercial 

software because the details of the technology implemented within the linkage 

engine of these tools are normally not accessible. This makes it difficult for both 

researchers and practitioners to experiment with new record linkage techniques, and 

to compare existing techniques with new ones. Additionally, many of these tools are 

developed exclusively for a certain domain such as dealing with business data or 

dealing with customer mailing lists. For many applications, the record linkage may 

often involve dealing with data from heterogeneous sources from different domains. 

In this case, the record linkage task is often limited by the functionality provided by 

these tools. In order to address these drawbacks, a freely extensible biomedical 

record linkage system (Febrl) was developed, which contains many recently 

developed techniques for data cleaning, de-duplication and record linkage, and 

encapsulates them into a GUI [46].  

 

For users who have limited programming experience, this tool helps with facilitating 

the use of record linkage techniques without the need of any programming skills. 
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Particularly, it is suitable for the rapid development, implementation, and testing of 

novel data cleaning, record linkage and de-duplication techniques due to the 

availability of its source code and it allows researchers to compare various existing 

record linkage techniques with their own ones, enabling the record linkage research 

community to conduct their work more efficiently. 

 

According to the authors, Febrl is an open source data cleaning toolkit and the only 

freely available data cleaning, de-duplication and record linkage system with a 

graphical user interface (GUI) [47]. The Febrl system has been developed with a 

focus on the cleaning and linking of health related data. However, the techniques 

developed and implemented in Febrl are general enough to be applicable to data 

from a variety of other domains. Since it was first published in the early September 

2002, the Febrl system has been hosted on the Sourceforge.Net open source software 

repository and is available from: 

 

https://sourceforge.net/projects/febrl/ 

 

The latest version of the Febrl system is Febrl-0.4.2 released on December, 14, 2011. 

Febrl system mainly supports three types of projects namely „Standardization‟, 

„Deduplication‟ and „Linkage‟ respectively. Fig.2.7 shows a screen-shot of the main 

Febrl GUI after start-up.  

 

https://sourceforge.net/projects/febrl/
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Fig.2.7 Initial Febrl user interface 

 

In the middle top part of the Febrl GUI, the user can select the type of project he or 

she wants to conduct. The running of these three projects helps with finishing the 

record linkage process, which are detailed briefly as follows: 

 

(a) Data cleaning and standardisation 

 

In order to have a successful record linkage result, pre-processing of the input data is 

required. Regarding the input data, currently Febrl supports three types of text file 

formats: comma separated values (CSV), tabulator separated values (TAB), and 

column oriented values with fixed-width fields (COL). Access to a database is not 

supported in Febrl at the moment. The linkage process is usually based on the 

available record fields (attributes) such as personal names, address values, date of 

birth, etc. Values in such fields however often contain noisy, incomplete and 

incorrectly formatted information. Cleaning and standardization of these data 

therefore are an important first step for a successful record linkage.  

 

The objective of this step is to convert the raw input data into the well-defined, 

consistent formats and resolve the inconsistencies in the raw input data. A running of 
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the „Standardisation‟ project helps with this step. In this project, users can 

standardize the data from a selected file and then save the standardized data into a 

new file for the purpose of running a „Linkage‟ or a „Deduplication‟ project. In 

„Standardisation‟ project, users can define one or more component standardisers. 

Currently, Febrl contains standardisers for names, addresses, dates, and telephone 

numbers. For each standardiser, a user needs to select one or several input fields 

from the input dataset and the user is required to supply the expected formats for its 

output fields. Additionally, all parameters for each standardiser are required to be set 

by the user. 

 

(b) Matching and classification 

 

During the matching process, potentially, each record in one dataset needs to be 

compared with all records in another dataset if a „Linkage‟ project is selected or with 

the other records in the same dataset if a „Deduplication‟ project is selected. This 

comparison process is therefore of quadratic complexity. In order to improve the 

scalability of the matching process, the potentially very large number of record pairs 

that are to be compared has to be reduced. This can be realized by some indexing 

techniques which split the databases into blocks. Only records that are in the same 

block are compared with each other with the help of the selected comparison 

functions such as Jaro, Levenshtein, Q-Gram, etc to the contents of the record fields 

(attributes). Several indexing techniques are provided in both „Deduplication‟ and 

„Linkage‟ such as the „FullIndex‟ technique, the „BlockingIndex‟ technique, and 

„SortingIndex‟ technique. Once an indexing technique is selected, the actual index 

keys and their parameters have to be defined and provided by the user.  

 

Regarding the comparison functions, Febrl provides 26 similarity functions for users 

to choose from. For each of these functions, users need to select two fields for 

comparison. Broadly, these functions can be categorized into two groups: functions 
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used for approximate string comparisons and functions used to compare fields 

containing numerical values such as age, date, and postcode. Finally, the compared 

records are classified into different groups such as match, non-match, and 

possible-matches groups. This is realized by applying different decision models 

against on the weight vectors obtained from the matching process.  

 

However, unlike the function provided by IntelliClean, the merging of those linked 

records is not supported in Febrl and users have to merge the detected records 

manually. 

 

Still, some limitations are observed in Febrl. Regarding the dirty data types 

addressed in Febrl, both data standardization and duplicate record detection are 

supported in Febrl. However, unlike other tools such as AJAX or IntelliClean, data 

standardization and duplicate record detection can not be specified within the same 

data cleaning process. Each data cleaning task should be specified and executed 

respectively. With respect to the data standardization, currently, Febrl only supports 

some limited instance-level data transformations. Unlike Potter‟s Wheel, further 

dirty data detection such as outlier detection against on the transformed data values 

is not supported in Febrl. Although Febrl supports a variety of techniques to deal 

with duplicate record detection, choosing a suitable technique as well as setting the 

corresponding parameters for the selected techniques entirely depends on its users. 

Febrl does not supply any recommendations or helps during the selection. For users 

who do not have any knowledge about these techniques, the use of Febrl is difficult. 

As will be seen later, even for users who are familiar with these techniques, a poor 

setting of the required parameters for the selected technique will generate poor 

matching results. Additionally, Febrl does not support a flexible merging towards the 

linked records after the detection of duplicate records, which make it harder to 

analyze the results. At the moment, Febrl only supports three types of text file 

formats as the input data: CSV, TAB, and COL. Loading input data from a database 

and write the linked output data back into a database is not supported in Febrl. 
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Finally, the installation of Febrl is quite complex which requires the manually 

installation of various Python modules. The execution of its techniques is slow. For 

large datasets, Febrl requires large amounts of memory which will result in a poor 

scalability. 

 

(6) Summary 

 

To sum up these five approaches, table 2.5 is provided. The names of the data 

cleaning approaches, the main activities addressed by these data cleaning approaches, 

and the special features associated with the five approaches are detailed in this table. 

 

Name Activities Special features 

Potter‟s 

Wheel 

Schema-level data transformation 

Instance-level data transformation 

Domain constraint resolution 

Tightly integrates transformations 

and dirty data detection 

Structure extraction technique 

AJAX 

Schema-level data transformation 

Instance-level data transformation 

Duplicate record detection 

A separation of logical and 

physical plan for data cleaning 

 

ARKTOS 

Schema-level data transformation 

Instance-level data transformation 

Integrity constraints enforcement 

A graphical method for user to 

specify a set of cleaning tasks 

IntelliClean 

Instance-level data transformation 

Domain constraint resolution 

Duplicate record detection 

A recall-precision dilemma 

resolution 

Ferbl 

Instance-level data transformation 

Duplicate record detection 

 

Open source software 

A graphical method for user to 

deal with data standardization and 

duplicate record detection. 

Table 2.5 Summary of the five approaches  

 



52 
 

In detail: The main focus of Potter‟s Wheel is to stress user friendliness and 

interactivity in various data transforms and conflict resolution, resulting in tight 

integration of transformation and discrepancy detection.  

 

The exclusive „Online Reorderer‟ helps with realizing the ability of user interactivity. 

The „Online Reorderer‟ continually fetches tuples from the data source and divides 

them into buckets. Each time, the „Online Reorderer‟ only picks a sample of tuples 

from the bucket corresponding to the scrollbar position and displays them on the 

screen. Since the number of rows that can be displayed on screen at a time is small, 

users therefore can perceive any data transformations needed either on the 

schema-level or instance-level instantaneously. In this way, the user can perform the 

data transforms as they explore the data with the help of the „Online Reorderer‟.  

 

While the user is specifying transforms and exploring the data, the discrepancy 

detector runs in the background and applies appropriate algorithms to detect errors 

in the transformed data fetched directly from the „Online Reorderer‟. Regarding the 

function provided for data transformation, Potter‟s Wheel allows users to specify the 

desired results on example values and automatically infers a suitable transform using 

the „structure extraction technique‟ exclusively developed for Potter‟s Wheel. It 

allows users to define custom domains and have corresponding algorithms to 

enforce the domain constraints. Compared with other tools such as „AJAX‟, 

„IntelliClean‟ which only support some predefined domain specific transformations 

for the fields such as „date of birth‟, „telephone number‟, this is an advance. 

However, since the detection of the required data transformations in Potter‟s Wheel 

totally depends on the manual perception, the efficiency and the degree of 

automation is very low in this way compared with other tools.  

 

The design of AJAX are twofold: (1) a declarative language for expressing data 

cleaning tasks on tables and (2) a separation of the logical plan for decision of the 
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cleaning tasks and a physical plan for optimizing the choice of the techniques. The 

advantage of AJAX compared with other tools is that the separation of the logical 

and physical levels of data cleaning process enables specifying a series data cleaning 

tasks using a declarative language and specific optimized algorithms can be selected 

to implement these data cleaning tasks at the physical levels. For example, 

considering the matching task for different fields of a database table, the matching of 

„personal names‟ and the matching of „company names‟ may be associated with 

different techniques according to the different physical plans rather than applying a 

single non exhaustive matching algorithm.  

 

The main contribution of ARKTOS is the presentation of a uniform model covering 

all the aspects of a data warehouse ETL process. Regarding the types of dirty data 

that could be dealt with in ARKTOS, data transformations either on schema level or 

instance level are supported in ARKTOS. Additionally, some integrity constraints 

enforcement is provided in ARKTOS to prevent primary key violation, reference 

violation, null value existence and uniqueness violation. Similar to AJAX, these data 

cleaning tasks can also be specialized with declarative definition languages. Two 

declarative definition languages are developed in ARKTOS. However, ARKTOS 

supports a graphical method for a user to specify these cleaning tasks. Compared 

with AJAX, this is an advance, where a user can compose a scenario with these 

cleaning tasks and link them in an execution list graphically. Although the authors of 

AJAX and ARKTOS mentioned the organization of multiple data cleaning tasks in a 

program, users are required to organise the multiple tasks. In these tools, it is the 

users who tailor the set of different data cleaning task to be executed according to 

their individual preferences. Developers of these tools have not undertaken any 

further investigations on the „ordering‟ problem when multiple cleaning tasks are 

required.  

 

IntelliClean is a knowledge-based framework mainly deals with the problem of 
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object identification. The detection of duplicate records is totally depends on the 

rules derived naturally from the business domain. The drawback is that for some 

complex rules, hand coding is required which decreases the degree of automation. 

Although the function of merging detected duplicate records is also supported in 

AJAX, the exclusively developed method to compute the transitive closure during 

the merging of records increases the recall in IntelliClean. However, compared with 

Febrl, the algorithms provided in IntelliClean are limited. For example, regarding 

the algorithms used for the duplicate record detection, only „SortedIndex‟ is 

available in IntelliClean. SortedIndex is a good method to deal with duplicate record 

detection in large datasets. However when small datasets are involved, the 

„FullIndex‟ clearly is a good solution to improve the effectiveness of the detection. 

This is a drawback for IntelliClean compared to AJAX or Febrl, in which all these 

solutions are supported to cope with different situations.  

 

Febrl is an open source data cleaning and record linkage system which includes a 

variety of techniques for data standardization and duplicate record detection. An 

advantage of Febrl is the provision of a graphical user interface to its user. 

Compared with the tools such as AJAX, ARKTOS, IntelliClean, this is especially 

helpful for users who do not have any programming skills.  

 

Regarding the dirty data types addressed in Febrl, only data standardization and 

duplicate record detection are supported in Febrl. Additionally, data standardization 

only supports some domain specific instance-level data transformation. Compared 

with Potter‟s Wheel, AJAX, ARKTOS, schema-level data transformation is not 

supported in Febrl. Besides, Febrl does not support any solution to detect anomalies 

based on the transformed data as Potter‟s Wheel does. In Potter‟s Wheel, as soon as 

a date value like „March 1, 20111‟ is transformed to the expected format 

„01/03/20111‟, the sub-component of „20111‟ in this date value will also be flagged 

as an outlier with the help of an appropriate algorithm. However, in Febrl, such a 
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further detection on the transformed data values is not supported. In Febrl, the tasks 

of data standardization and duplicate record detection have to be specified and 

executed respectively and can not be performed in a single data cleaning process and 

this brings in a low efficiency compared with AJAX, IntelliClean which can handle 

with the multiple data cleaning tasks in a single data cleaning process.  

 

Additionally, unlike AJAX and IntelliClean, Febrl does not support a flexible 

merging of the linked records into a linked output dataset. In AJAX and IntelliClean, 

transitive closure calculation and a merging of the linked records are all supported. 

Without a proper merging function towards the detection results, it is difficult for 

users to analyze the quality of the detection.  

 

Besides, currently, Febrl only supports three types of text file formats as the input 

data: CSV, TAB, and COL. Unlike the other tools, loading input data from a 

database and writing the output data back into a database are not supported in Febrl. 

 

2.4  Data quality, data quality dimensions and other related 

concepts 

 

A large quantity of data can be created, stored and processed by companies with 

recent advances in technology. As data increasingly used to support organizational 

activities such as data warehousing applications, poor quality data may negatively 

affect organizational effectiveness and efficiency. In this section, data quality, data 

quality dimensions, the cost and impact of poor data quality as well as data quality 

assessment are reviewed. 
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2.4.1  Data Quality 

 

Quality plays an important role as one of the powerful competitive advantages for 

those companies that run businesses in the information industries. Data quality is 

regarded as the basis of an information system [8, 25, 48-54].  

 

From the literature, the term „data quality‟ is complex and still no widely accepted 

definition exists. For example, from the standpoint of feedback-control systems, data 

quality is defined as the measure of the agreement between the data views presented 

by an information system and that same data in the real world [55]. A system‟s data 

quality rating of 100% would indicate, for example, that the data views are in perfect 

agreement with the real world, whereas a data quality rating of 0% would indicate 

no agreement at all. Since no serious information system has data quality rating of 

100%, the real concern with data quality is to ensure that the data quality system is 

accurate enough, timely enough, and consistent enough for the organization to 

survive and make reasonable decisions.  

 

Another approach to define the term „quality‟, which is widely adopted in most of 

the quality literature, is focused on the consumer and the product‟s fitness for use 

[56]. The concept of „fitness for use‟ emphasizes the importance of taking a 

consumer‟s view point of quality because ultimately it is the consumer who will 

judge whether or not a product is fit for use. However, in order to fully understand 

the concept, researchers have traditionally identified a number of specific quality 

dimensions. A dimension or characteristic captures a specific facet of quality. Wang 

et al proposed a framework regarding data quality research. In this work, the authors 

identified dozens of related research publications with respect to data quality [3]. 

They found that different combinations of dimensions, as well as a variety of 

approaches are applied within previous research. The most commonly used 

dimensions according to their observations are accuracy, timeliness, completeness, 

and consistency. Some dimensions occurring less frequently are traceability and 
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credibility. Wang et al argue that previous research has mainly focused on the 

accuracy requirements and since data quality is a multi-facetted concept which 

includes not only accuracy, more research on other dimensions is needed. Therefore, 

Wang et al drew the analogy between the manufacture of products and the 

processing of data, i.e., information systems were considered analogous to 

manufacturing systems, with the difference being that data are used as the raw 

material, and processed data sometimes referred to as information, are the output.  

 

Adopting a customer perspective similar to the one advocated by Juran [57], Wang 

et al noted that the “use of the term „data product‟ emphasizes the fact that the data 

output has value that is transferred to customers, whether internal or external to the 

organization”. This has become one of the driving forces behind the work by Wang 

and Strong [4]. Wang and Strong focus on developing a framework that captures the 

aspects of data quality, which are important to data consumers. In this work, the 

authors argue that although firms are improving data quality with practical 

approaches and tools, their efforts tend to focus narrowly on accuracy. A two-stage 

survey is undertaken in this work. Based on the survey in the first stage, a set of 

nearly 200 data quality attributes are applied and finally, the authors use factor 

analysis to narrow the entire set to obtain a much more parsimonious set of 20 

dimensions. In the survey of the second stage, the authors reduced this set even 

further to obtain 15 dimensions. The 15 dimensions are then grouped into four 

different categories: intrinsic, contextual, representational, and access. The four 

categories are introduced by the authors as follows: “Intrinsic quality denotes that 

data have quality in their own right. Contextual quality highlights the requirement 

that data must be considered within the context of the task at hand. Representational 

quality and accessibility quality emphasize the importance of the role of systems. 

These findings are consistent with our understanding that high-quality data should 

be intrinsically good, contextually appropriate for the task, clearly represented, and 

accessible to the data consumer.” [4]. 
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It is pointed out that the choice of these dimensions is primarily based on intuitive 

understanding [58], industrial experience [59], or literature review [60]. However, 

according to Wang et al‟s work, there is no general agreement on data quality 

dimensions [3]. Consider the „accuracy dimension‟, a dimension which most work 

has included. Although the term has an intuitive appeal, there is no commonly 

accepted definition of what exactly „accuracy‟ means. For example, Kriebel [60] 

characterizes accuracy as “the correctness of the output information.” Ballou & 

Pazer [58] describe accuracy as “the recorded value is in conformity with the actual 

value.” Thus, it appears that the term is viewed as equivalent to correctness. 

However, using one term to define another does not serve the purpose of clearly 

defining either. In short, despite the frequent use of certain terms to indicate data 

quality, a rigorously defined set of data quality dimensions does not exist. 

 

Clearly, the notion of data quality depends on the actual use of data. What may be 

considered good data in one case (for a specific application or user) may not be 

sufficient in another case. For example, analysis of the financial position of a firm 

may require data in units of thousands of dollars, whereas auditing requires 

precision to the cent. This relativity of quality presents a problem. The quality of the 

data generated by an information system depends on the design of the system. Yet, 

the actual use of the data is outside of designer‟s control. Thus, it is important to 

provide a design-oriented definition of data quality that will reflect the intended use 

of the information.  

 

2.4.2  Data quality dimensions 

 

From the literature, data quality can be defined as “fitness for use”, i.e., the ability of 

data to meet the user‟s requirement. The nature of this definition directly implies that 

the concept of data quality is relative. Some commonly used data quality dimensions 

include accuracy, completeness, timeliness, and consistency. A dimension captures a 
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specific facet of quality. Therefore, data quality can be considered as a 

multi-dimensional concept. These data quality dimensions measure data quality 

from different angles. To illustrate the multi-dimensional nature of data quality, an 

example is given below. The following table shows an example of four student 

records of a university in the UK. 

 

No. Name Sex Supervisor R.D G.D  

001 Mark Levison M John Smith 2000-10-1 2003-9-1  

002 Elizbeth Fraser F H.Winston 2001-10-5 NULL  

003 Jack Daniel F Alex Smith 2002-3-4 2006-9-1  

004 Catherine Yang F Thomas Lee 2005-4-2 2009-9-21  

Table 2.6 An example of four student records of a university in the UK. 

 

In table 2.6, when the “Name” column is checked, a misspelling of a student name is 

detected, i.e. „Elizbeth‟ rather than „Elizabeth‟. With respect to data quality, this 

problem causes an accuracy problem. Further checking the table, a null value for 

“G.D” (Graduation Date) is found for Elizabeth. The null value here may have two 

indications: one is that Elizabeth is still studying in the university and such a 

graduation date is still unknown. In this case, data quality will not be affected by a 

null value. Another indication is that Elizabeth has already graduated from the 

university, but her graduation date has not been stored in the database, in this case, 

the null value causes a completeness problem as the value of her graduation date is 

supposed to be there. In the column “Supervisor”, suppose it is required that the 

domain format for the name of the supervisor should follow the pattern of “First 

Name Last Name”. Since “H.Winston” does not conform to this requirement, it will 

cause an inconsistency problem. This example clearly shows that data quality is a 

multi-dimensional concept. Wang et al discussed how to construct specific data 

quality dimensions. His group firstly gathered 179 data quality attributes, from the 

data quality literature, from researchers and from consumers. They used factor 
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analysis to collapse their list of attributes into fifteen data quality dimensions which 

is shown in the table below with a brief description for each of data quality 

dimensions [61]. 

 

Data quality dimensions Description 

Access Security Access to data must be restricted, and hence, kept secure. 

Accessibility Data must be available or easily and quickly retrievable. 

Accuracy Data must be correct, reliable, and certified free of error. 

Appropriate Amount of Data The quantity or volume of available data must be appropriate. 

Believability Data must be accepted or regarded as true, real, and credible. 

Completeness 

Data must be of sufficient breadth, depth, and scope for the task at 

hand. 

Concise Representation Data must be compactly represented without being overwhelming. 

Ease of Understanding Data must be clear, without ambiguity, and easily comprehended. 

Interpretability 

Data must be in appropriate language and units, and the data 

definitions must be clear. 

Objectivity Data must be unbiased (unprejudiced) and impartial. 

Relevancy Data must be applicable and helpful for the task at hand. 

Representational 

Consistency 

Data must always be presented in the same format and compatible 

with previous data. 

Reputation 

Data must be trusted or highly regarded in terms of their source or 

content. 

Timeliness The age of the data must be appropriate for the task at hand. 

Value-Added Data must be beneficial and provide advantages from their use. 

Table 2.7 Data quality dimensions  

 

From the literature, different researchers have proposed different sets of data quality 

dimensions. However, due to the contextual nature of quality, there are discrepancies 

on what constitutes a set of „good‟ data quality dimensions. Research shows that a 
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general set of data quality dimensions that can be used to measure the data quality 

do not exist [4, 62-65].  

 

For example, according to Wang et al, the authors argue that “there is no general 

agreement on data quality dimensions” and three primary types of research (i.e., data 

quality, information system, accounting and auditing) have attempted to identify 

appropriate DQ dimensions [66]. The six most important sets of data quality 

dimensions are presented by Wand and Wang [62], Wang and Strong [4], Redman 

[63], Jarke [67], Bovee [64], and Naumann [65]. In these six works, six data quality 

dimensions are considered by the majority of authors: accuracy, completeness, 

consistency, timeliness, interpretability, and accessibility [68].  

 

With respect to the definitions of each dimension, there is no general agreement on 

what an appropriate definition is for each data quality dimension. These data quality 

dimensions are not defined in a measureable and formal way. They have been 

defined by means of descriptive sentences in which the semantics are consequently 

disputable. For example, regarding time-related dimensions, Wand and Wang present 

a „timeliness‟ dimension which is defined as “the delay between a change of a real 

world state and the resulting modification of the information system state” [62]. In 

Redman‟s work, a „currentness‟ dimension is defined as “the degree to which a 

datum is up-to-date. A datum value is up-to-date if it is correct in spite of possible 

discrepancies caused by time related changes to the correct value” [63]. The 

meanings of these two definitions are quite similar but the names of the two 

dimensions are different. In Wang and Strong‟s work, a „timeliness‟ dimension is 

defined as “The extent to which age of the data is appropriate for the task at hand.” 

[4]. A similar definition can be found in Liu‟s „timeliness‟ dimension as “the extent 

to which data are sufficiently up-to-date for a task.” [69]. However, Naumann 

defines the „timeliness‟ dimension as “the average age of the data in a source”, 

which is totally different from Wang and Strong and Liu [65]. Bovee defines the 
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„timeliness‟ dimension with two levels: „currency‟ and „volatility‟ [64]. The currency 

level of timeliness is defined as “A measure of how old the information is, based on 

how long ago it was recorded.”, which has the same meaning as the „timeliness‟ 

dimension defined by Wang and Strong. The volatility level of timeliness from 

Bovee is defined as “a measure of information instability-the frequency of change of 

the value for an entity attribute.”, which corresponds to the „volatility‟ dimension 

defined by Jarke [70]. Jarke defines the „volatility‟ dimension as “the time period for 

which information is valid in the real world”. This example clearly shows that there 

is no agreement on the semantics of specific dimensions, i.e., different meanings 

may be provided by different authors. Besides, there is even no agreement on the 

names to use for dimensions.  

 

Broadly, the works related with the classification of data quality dimensions can be 

categorized into two groups: (i) academics‟ view of data quality dimensions, and (ii) 

practitioners‟ view of data quality dimensions [71]. Table 2.8 and Table 2.9 present a 

collection of works under the two groups respectively. In both tables, all dimensions 

mentioned have been grouped into the four data quality categories proposed by 

Wang and Strong, namely intrinsic, contextual, representational, and accessibility [4]. 

Intrinsic quality denotes that data have quality in their own right. Contextual quality 

highlights the requirement that data must be considered within the context of the 

task at hand. Representational and accessibility quality emphasize the importance of 

the role of systems that store and provide access to data. 
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Category Dimension Wang 

and 

Strong 

[4] 

Zmud 

[69] 

Jarke and 

Vassiliou 

[70] 

DeLone 

and 

McLean 

[71] 

Goodhue 

[72] 

Ballou 

and 

Pazer 

[55] 

Wand 

and 

Wang 

[59] 

Intrinsic Accuracy x x x x x x  

 Believability x  x     

 Completeness   x     

 Consistency   x   x  

 Correctness       x 

 Credibility   x     

 Factual  x      

 Freedom from 

Bias 

   x    

 Objectivity x       

 Precision    x    

 Reliability    x x   

 Reputation x       

 Unambiguous       x 

Contextual Appropriate 

Amount 

x       

 Completeness x   x  x x 

 Content    x    

 Currency    x x   

 Importance    x    

 Informativeness    x    

 Level of Detail     x   

 Non-volatility   x     

 Quantity  x      

 Relevance x  x x    
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 Reliable/Timely  x      

 Source currency   x     

 Sufficiency    x    

 Timeliness x  x x  x  

 Usage   x     

 Usefulness    x    

 Value-Added x       

Representational Aliases   x     

 Appearance    x    

 Arrangement  x      

 Clarity    x    

 Comparability    x    

 Compatibility     x   

 Conciseness x   x    

 Consistent x       

 Format    x    

 Interpretability x  x     

 Lack of Confusion     x   

 Meaningfulness     x  x 

 Origin   x     

 Presentation     x   

 Readability  x  x    

 Reasonable  x      

 Semantics   x     

 Syntax   x     

 Understandability x   x    

 Uniqueness    x    

 Version control   x     

Accessibility Accessibility x  x x x   
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 Assistance     x   

 Ease of Use x    x   

 Locatability     x   

 Privileges   x     

 Quantitativeness    x    

 Security x       

 System 

availability 

  x     

 Transaction 

availability 

  x     

 Usableness    x    

Table 2.8 Data quality dimensions from academics’ view [71] 

 

Category Dimension DOD 

[73] 

IRI 

[74] 

Unitech 

[75] 

Diamond 

Technology 

Partners 

[76] 

HSBC 

Asset 

Management 

[77] 

AT&T 

and 

Redman 

 [78] 

Vality 

[79] 

Intrinsic Accuracy x x x x  x  

 Completeness x       

 Consistency x  x   x  

 Correctness     x   

 Reliability   x     

 Validity x       

Contextual Attribute granularity      x  

 Completeness   x  x x  

 Comprehensiveness      x  

 Currency     x x  

 Essentialness      x  

 Relevance      x  
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 Timeliness x x x     

Representational Ability to  

represent null values 

     x  

 Appropriate 

representation 

     x  

 Clarity of definition      x  

 Consistency     x   

 Efficient  

use of storage 

     x  

 Format flexibility      x  

 Format precision      x  

 Homogeneity      x  

 Identifiability      x  

 Interpretability      x  

 Metadata 

characteristics 

      x 

 Minimum 

unnecessary 

redundancy 

     x  

 Naturalness      x  

 Portability      x  

 Precision of domains      x  

 Representation 

consistency 

     x  

 Semantic consistency      x  

 Structural consistency      x  

 Uniqueness x       

Accessibility Accessibility    x x   

 Flexibility      x  
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 Obtainability      x  

 Privacy   x     

 Reliability  

(of delivery) 

 x      

 Robustness      x  

 Security   x     

Table 2.9 Data quality dimensions from practitioners’ view[71] 

 

Works from table 2.8 can be further categorized into three groups. The first group is 

based on an empirical, market research approach of collecting data from information 

consumers to determine the dimensions of importance to them. Both Wang and 

Strong [4] and Zmud [72] fall into this group. The second group develops 

dimensions from the literature. Work by Delaone and Mclean [73], Goodhue [74], 

and Jarke and Vassilion [75] belongs to this group. They try to cover all possible 

aspects of data quality by grouping all measures from existing literature. Finally, the 

third group focus on a few dimensions that could be measured objectively without 

considering the dimensions importance to data consumers [58, 62]. Table 2.9 

presents a collection of work from the practitioners‟ view. Unlike the academic 

views, a practitioner‟s view does not try to focus on covering all possible data 

quality dimensions but only focus on some specific organizational problems. These 

practitioners include specialists from organizations, consultants and vendors of 

products. According to the different contexts involved, different dimensions are 

defined. Contexts from table 2.9 include: data warehouse development [76, 77], 

environment with multiple incompatible databases [78], environment in which 

timely delivery of information is critical [79], and tools for improving the input data 

quality to databases [80]. 

 

A further study with respect to data definition shows that the definition of data is not 

only a collection of triples <e,a,v> where e stands for an entity, a stands for an 
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attribute of the entity and v is a value selected from the domain of the attribute a, but 

also includes the definition of data representation and data recording [81]. This 

definition brings the quality of data into three sets of quality issues: the quality of 

the model or view, the quality of data values themselves, and the quality of data 

representation and recording [23]. According to David Loshin, “the dimensions 

associated with data values and data presentation in many cases lend themselves 

handily to system automation and are the best ones suited for defining rules used for 

continuous data quality monitoring” [12]. In this research, only data quality 

dimensions associated with data values are considered. This helps us with generating 

the proposed rule based taxonomy of dirty data, which will be discussed in detail in 

chapter 3. Fox et al have defined and discussed four dimensions of data most 

pertinent to the quality of values. The four data quality dimensions are accuracy 

dimension, completeness dimension, currentness dimension and consistency 

dimension [23]. These four dimensions are briefly discussed below and they will be 

used in the proposed dirty data taxonomy in chapter 3. 

 

(i) Accuracy dimension 

 

Suppose a datum is defined as a triple < e,a,v> where e stands for an entity, a stands 

for an attribute of the entity and v is a value selected from the domain of the attribute 

a. The accuracy of the datum refers to the degree of closeness of its value v to some 

value v’ in the attribute domain considered correct for the entity e and attribute a. If 

the datum‟s value v is the same as a correct value v’, the datum is said to be accurate 

or correct. As an example, the value v of the attribute “Name” of entity “Student” in 

table 2.6 (identified by No. 002) is “Elizbeth Fraser” rather than “Elizabeth Fraser”. 

The datum is not said to be correct and causes an accuracy problem. Accuracy 

problems could be classified as syntactic accuracy problems and semantic accuracy 

problems respectively. The example of the misspelt name value of “Elizbeth Fraser” 

belongs to the syntactic accuracy problem. Semantic accuracy problems describe the 
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case that a data value v is itself syntactically correct, but presents a different 

meaning from v’. As an example of semantic accuracy problem, consider a record 

from table 2.6 again. Suppose in the record with No. 003, if student name “Jack 

Daniel” is entered in the “Supervisor” field, and “Alex Smith” is entered in the field 

“Name”, then this will cause a semantic accuracy problem, though both name values 

are syntactically accurate. 

 

(ii) Completeness dimension 

 

Fox et al state that completeness is the degree to which a data collection has values 

for all attributes of all entities that are supposed to have values. The degree of 

completeness could be measured based on three levels namely tuple, attribute and 

relation. Tuple completeness measures the percentage of the available values of a 

record and the total number of attributes of the record. For example, in table 2.6, 

records with student No. 001, 003 and 004 all have values for each attribute. The 

tuple completeness for this kind of record is 6/6=1. The record with student No. 002 

in this case is 5/6=83.33% since its graduation date is missing. Attribute 

completeness measures the percentage of non-missing values in a column and the 

total number of values in such column. As an example of attribute completeness, in 

Table 2.6, graduation date completeness is 3/4=75%. Tuple completeness measures 

the percentage of all the non-missing values in the whole table and all the total 

number of values in such a table. The tuple completeness in table 2.6 is 

23/24=95.83%. 

 

(iii) Currentness dimension 

 

Some data in a database are always static. For example, normally a person‟s birthday, 

country of birth, skin colour will not change during the whole life of this person. By 

contrast, some data such as age, address, weight of a person may change as time 
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goes by. In order to evaluate such temporal data, the currentness dimension is 

introduced. According to Fox et al, a datum is said to be current or up to date at time 

t if it is correct at time t. A datum is out of date at time t if it is incorrect at t but was 

correct at some moment preceding t. As an example of the currentness problem, 

suppose John Smith had been living in London, UK till the end of 2008. In 2009, he 

moved to Edinburgh, UK. The residence address for John Smith should also be 

changed, i.e., in 2009, the time when he moved to Edinburgh, UK, the value of John 

Smith‟s residence address should be changed to his address in Edinburgh in the 

database. If so, the data is said to be current. Due to the late-update of data, 

currentness problems are observed to cost a fortune. For example, a survey shows 

that the average annual cost of returned mail is more than $9,000 per company [82]. 

 

(iv) Consistency dimension 

 

Data is said to be consistent with respect to a set of data model constraints if it 

satisfies all the constraints in the set. For example, a database may be designed and 

maintained independently to serve specific needs. Therefore, the value v of the same 

attribute a for the same entity e in different databases may be presented in different 

formats and measured in different units. But when these databases come to be 

integrated together, inconsistency problems may occur. 

 

2.4.3  Impacts and costs of Data quality 

 

There is strong evidence that data quality problems have become increasingly 

prevalent in practice with most organizations facing data quality problems [7, 62, 

83]. The quality of data is critical to an organization‟s success. However, not many 

organizations have taken enough action to deal with data quality problems.  

 

Low quality data brings several negative effects to business users through the loss of 

customer satisfaction, high running costs, inefficient decision making processes, and 
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performance [50, 52, 54, 84]. For example, information research has demonstrated 

that inaccurate and incomplete data may adversely affect the competitive success of 

an organization [78]. These shortcomings of low quality data affect not only 

corporate competitiveness but also have negative effects on the organizational 

culture, such as a demoralization of employees and a trend of mutual distrust within 

an organization. In a broad spectrum of organizations, a number of business 

initiatives have been delayed or even cancelled citing poor data quality as the main 

reason.  

 

Data quality problems can bring significant social and business impacts [25]. For 

example, because of outdated information in government databases, tax bills 

continue to be sent to citizens long after their death. Business and industry often 

have similar data quality problems which are pervasive, costly and disastrous 

[85-87]. For example, a financial institution is embarrassed due to a wrong data 

entry of an execution order of 500 million dollars [85]. The explosion of the space 

shuttle Columbia which broke apart during re-entry [88], and the U.S. Navy Cruiser 

USS Vincennes which shot down an Iranian commercial passenger jet with all 290 

people killed are all due to the data quality problems [86].  

 

Although more and more references to poor data quality and its impact have 

appeared in the media, general-readership publications, and technical literature, the 

necessary awareness of poor data quality, while growing, has not yet been achieved 

in many enterprises [50].  

 

There are many reasons for the inadequate attention from an organization to data 

quality, for example, lack of appreciation of the types and extent of dirty data that 

permeate data warehouses. As practitioners know, creating awareness of a problem 

and its impact is a critical first step toward resolution of the problem [50]. In this 

section, the impacts of poor data quality on an organization as well as the costs 
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associated with data quality problems are reviewed and analyzed. 

 

2.4.3.1  The impact 

 

Poor data quality impacts an organization in many ways, which can be categorized 

to three different levels [7]: 

 

 Impacts at the operational level: There are three main impacts associated with 

the operational level namely customer dissatisfaction, increased cost, and 

lowered employee job satisfaction. With respect to the customers, for example, 

customers from a telephone company expect their personal information such as 

their names, postal addresses are correctly stored in the company so that their 

monthly billing letter or promotion letter will arrive timely. However, problems 

sometimes happen where customer‟s information is not correctly addressed 

either due to a wrongly spelt name or address. Customers sometimes receive 

their billing letter at a later time or they never receive it and are forced to spend 

time straightening out their billing errors. Many online shopping customers 

simply expect the details associated with their order to be correct and they are 

especially unforgiving of data errors, for example, wrong price tag, wrong status 

of goods availability. Regarding the cost from the operational level, research 

shows that cost incurred by customer service organizations to correct customer 

addresses, orders, and bills will be quite high [89]. 

 

 Impact at the tactical level: At the tactical level, an organization‟s decision 

making will be compromised due to poor data quality. Since any decision of 

consequence depends on thousands of pieces of data, defective data will lead to 

poor decision-making. For example, poor data will make the implementation of 

data warehouses whose purpose is to help an organization make better decisions, 

more difficult. The slightest suspicion of poor data quality often hinders 

managers from reaching any decision. It is clear that decisions based on the 
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most relevant, complete, accurate and timely data have a better chance of 

advancing the organizations‟ goals. At the tactical level, poor data quality will 

also make it more difficult to reengineer and poor data quality increases the 

mistrust among the internal organizations. 

 

 Impact at the strategic level: Selecting, developing and evolving a strategy is 

itself a decision making process. It is clear that strategy making will be 

adversely affected by poor data quality. It will be a hindrance to develop good 

strategy without relevant, complete, accurate, and timely data about an 

organization‟s customer, competitors, technologies as well as other relevant data. 

Since strategy has much longer-term consequences to an organization, the 

impact on this level will be at least as great. When a strategy is rolled out, 

specific plans are deployed and results are obtained. If the reported results are in 

some way of poor quality, execution of the strategy will be much more difficult. 

 

2.4.3.2  The cost 

 

From the literature, the costs due to the lack of data quality are substantial in many 

companies [48, 63, 83, 90]. However, few studies have been done for identifying, 

categorizing, and measuring the costs associated with low data quality. Most 

organizations do not have adequate processes and tools to maintain high quality 

operational data and one of the reasons is due to the lack of appreciation of the 

knowledge of such costs.  

 

The lack of insight regarding the monetary effect of low quality data, however, is not 

only an open research problem but also a pressing practitioner issue. For an 

organization, there are many reasons for the lack of enough attention to data quality 

problems, for example, lack of knowledge of dirty data. It has been pointed out that 

calculating the current costs caused by low quality data is difficult because many of 

these costs are indirect costs which do not have an immediate link between the 
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inadequate data quality and the negative monetary effects [87].  

 

The term cost in the context of data quality can be defined as a resource sacrificed or 

forgone to achieve a specific objective or as the monetary effects of certain actions 

or a lack thereof [87]. From the literature, the cost due to poor data quality for an 

organization can be broadly categorized into two groups: the cost with low quality 

data [48, 64, 91-97] and the cost of assuring high quality data [48, 91, 97].  

 

With respect to the cost of low quality data, for example, when customers or citizens‟ 

account information are incorrect such as license fees or taxes citizens owe the 

government, organizations will lose money. When checking customers‟ information 

in a database, sometimes it can be found that misspelled customers‟ names, 

incomplete postal addresses or outdated address exist. If incorrect customers‟ postal 

addresses are used by organizations, clearly, money is wasted when organizations 

are trying post the marketing materials to their customers.  

 

Furthermore, if such incorrect information is used by organizations for the purpose 

of analyzing customers‟ shopping behaviour or customer segmentations, the result 

obtained will also be incorrect which will result in making an inaccurate strategic 

and tactical decision and this will further lead to an opportunity loss.  

 

For customers, if an organization repeatedly makes mistakes due to persistent low 

quality data, customers will feel disappointed and frustrated. They possibly will 

switch to another competitor for goods and services and the image of the 

organization will be tarnished.  

 

Incorrect or outdated control data will lead to an invasion of privacy, for example, 

when database administrators do not properly manage the access control list by not 

updating it timely. It happens that when some employees have been made redundant, 
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they can also access or log into the system and obtain some private resources.  

 

Although it rarely happens, low quality data will cause personal injury or even death. 

For example, wrong instructions due to wrong or outdated data for operating some 

types of machines such as hazardous equipment will cause accidents and even 

disasters. Finally, invasion of privacy, personal injury and death as well as 

significant revenue losses will likely cause lawsuits to organizations. Regarding the 

cost of assuring data quality, during the process of preventing, detecting, and 

repairing low quality data, human resources as well as licensing of some software 

tools are required and will cost organizations. Particularly, manual involvement is 

typically costly. Table 2.10 and table 2.11 present two cost lists: the cost resulting 

from low quality data and the cost of assuring data quality. 

 

Costs resulting from low quality data 

Higher maintenance costs 

Excess labor costs 

Higher search costs 

Assessment costs 

Data re-input costs 

Time costs of viewing irrelevant information 

Loss of revenue 

Cost of losing current customer 

Cost of losing potential new customer 

„Loss of orders‟ costs 

Higher retrieval costs 

Higher data administration costs 

General waste of money 

Costs in terms of lost opportunity 

Costs due to tarnished image (or loss of goodwill) 
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Costs related to invasion of privacy and civil liberties 

Costs in terms of personal injury and death of people 

Costs because of lawsuits 

Process failure costs 

Information scrap and rework costs 

Lost and missed opportunity costs 

Costs due to increased time of delivery 

Costs of acceptance testing 

Table 2.10 Cost from low quality data 

 

Costs of assuring data quality 

Information quality assessment or inspection costs 

Information quality process improvement and defect prevention costs 

Preventing low quality data 

Detecting low quality data 

Repairing low quality data 

Costs of improving data format 

Investment costs of improving data infrastructures 

Investment costs of improving data processes 

Training costs of improving data quality know-how 

Management and administrative costs associated with ensuring data quality 

Table 2.11 Cost of assuring data quality 

 

It provides many benefits for an organization to have knowledge of the different 

costs associated with poor data quality. For example, before investing in a data 

quality project or initiative, a company may want to examine the potential risks 

associated with low quality data in order to better position the issue within its 

corporate context. Instead of an undirected, heuristic search for possible past 
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experiences or events, direct and indirect data quality costs can be examined in 

terms of their likelihood and effect, thus contributing to an overall risk assessment of 

low data quality in an organization. 

 

2.4.4  Data quality assessment 

 

Many research activities have been undertaken and have contributed to improving an 

organizations‟ data quality [4, 25, 58, 83, 98-104]. From the literature, the data 

quality problem has been treated as an important concern in data warehousing 

projects [8, 59, 105, 106]. However, the ability for an organization to assess its data 

quality is still weak. Without the ability to assess the quality of their data, 

organizations cannot assess the status of their organizational data quality and 

monitor its improvement. For any data quality project, it is important to develop an 

overall model with an accompanying assessment instrument for measuring data 

quality. Furthermore, techniques developed to compare the assessment results 

against benchmarks are necessary for prioritizing the organizations‟ data quality 

improvement efforts.  

 

It is well accepted that quality of a product cannot be assessed independent of 

consumers who choose and use products [107]. Similarly, data quality cannot be 

assessed independent of the people who use data, i.e., data consumers. Data 

consumers evaluate data quality relative to their tasks. Data consumers perform 

many different tasks and the data requirements for these tasks change. It is possible 

that the same data used by different tasks may require different quality 

characteristics. For example, it is possible for an incorrect character in a text string 

to be tolerable in one circumstance but not in another. Therefore, providing high 

quality data along the dimensions of value and usefulness relative to data consumers‟ 

task contexts places a premium on designing flexible systems with data that can be 

easily aggregated and manipulated [25]. From the literature, data quality is a 

multi-dimensional concept [4, 58, 62, 63, 83, 100]. In order to have data quality 
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assessed, both subjective and objective data quality metrics are needed to be 

considered [50, 108].  

 

Subjective data quality assessment evaluates data quality from views of data 

collectors, custodians, and data consumers [50] and could adopt a comprehensive set 

of data quality dimensions which are defined from the perspective of data consumers 

[4]. The assessment is focussed on the management perspective and concentrates on 

whether the data is fit for use. During this process, questionnaires, interviews, and 

surveys can be developed and used to assess these dimensions.  

 

According to Wang et al, objective assessments can be task-independent or 

task-dependent [50]. Task-independent metrics reflect states of the data without the 

contextual knowledge of the application, and can be applied to any data set, 

regardless of the tasks at hand. Task dependent metrics, which include the 

organization‟s business rules, company and government regulations, and constraints 

provided by the database administrator, are developed in specific application 

contexts [50]. During this process, software can be applied to automatically measure 

data quality according to a set of data quality rules. Dimensions developed from a 

database perspective can be used for objective assessment [109]. 

 

From the literature, information systems have been compared to production systems 

and an analogy has been proposed between quality issues in a manufacturing 

environment and those in an information systems environment. In this analogy, data 

is considered as the raw materials and data products are considered as the output 

[110, 111]. Table 2.12 shows an analogy between physical products and data 

products. 
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Analogy Input Process Output 

Product 

manufacturing  

Raw 

materials 

Materials 

processing 

Physical 

products 

Data  

manufacturing 

Raw  

data 

Data 

processing 

Data products 

Table 2.12 An analogy between physical products and data products 

 

From table 2.12, three types of data are associated with this analogy. Raw data is 

considered as raw materials for information manufacturing which are expected to be 

well structured and stored in the database. Raw data is then composed and 

transmitted through different business manufacturing processes. Finally, data 

products are delivered to data consumers for intended use. Therefore, data quality 

assessment can be carried out with assessment associated with these three types of 

data, i.e., raw data, component data, and information product.  

 

According to Ge and Helfert [108], objective assessment mainly deals with raw data 

as well as component data. Subjective assessment deals with the final information 

products. Within these two types of assessments, data quality dimensions from Wang 

and Strong are used for the purpose of evaluation [4]. These dimensions are 

categorized into two different groups, each of which deals with different types of 

assessment. Figure 2.8 shows the model for the assessment work.  
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Fig.2.8 A data quality assessment model [108] 

In table 2.13, the differences between objective and subjective assessments are listed 

according to five different aspects: tool, measuring object, criteria, process, 

assessing results, and data storage. 

 

Feature Objective assessment Subjective assessment  

Tool Software  Survey 

Measuring object Data Information product 

Criteria Rules, Patterns Fitness for use 

Process Automated User involved 

Assessing result Single Multiple 

Data storage Databases Business context 

Table 2.13 Comparison between objective and subjective assessment [4] 

 

Since subjective criteria and expectations vary from person to person, it is possible 

that different data consumers will generate different subjective assessment results. 

Based on the different consumers, subjective assessment results can be positive or 

negative depending on user requirements [113]. Besides, discrepancies may exist 

Raw data 

Component 

data 

Information  

product 

Objective 

assessment 

Subjective 

assessment 

Accuracy, Completeness, 

Consistency, Timeliness 

Accessibility, Security, 

Relevancy, Value-added, 

Interpretability, Objectivity, 

Representation, Believability, 

Reputation, Appropriate, 

Amount, Ease of Understanding 
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between the subjective and objective assessments. Based on both assessments‟ 

results, we can tell whether the quality of data is high or low. For low quality data, 

organizations should investigate the root causes and take corrective actions. 

Regarding the root causes of poor data quality, for a specific context, both data and 

its environment should be diagnosed carefully. Data environment includes not only 

database systems but also the related task process mechanisms, rules, methods, 

actions, policies, and culture that together typify and impact an organization‟s data 

quality. From the literature, a group of conditions which will cause poor data quality 

are identified and analyzed. According to Lee et al, these conditions are the 

commonly ones which are distilled from detailed embedded case studies and content 

analysis of data quality projects in leading organizations [113]. Table 2.14 lists these 

conditions. 

 

Condition 

Multiple data sources 

Subjective judgment in data production 

Limited computing resources 

Security/accessibility trade-off 

Coded data across disciplines 

Complex data representations 

Volume of data 

Input rules too restrictive or bypassed 

Changing data needs 

Distributed heterogeneous systems 

Table 2.14 Root causes of poor data quality 
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These conditions are summarized in detail below: 

 

 Multiple data sources: Due to the difficulties of ensuring consistent updating of 

multiple copies of data, inconsistent data values are obtained in multiple data 

sources for the same information even though they were accurate at a given 

point of time. Inconsistent data values may also happen due to the different use 

of measurements, e.g. the different level of units applied in different data 

sources. However, when a consistent value is required under some special 

context, the data quality becomes defective. In an organization, this problem 

happens frequently. There may be multiple systems designed for an organization 

for different purposes such as financial use, billing use or human resource 

management use. It may happen that procedures for collecting the same input 

information vary by different systems in multiple data sources and 

inconsistencies are observed from multiple sources. This may cause serious 

problems, e.g., consumers may stop using the information because 

inconsistencies lead them to question its believability. 

 

 Subjective judgment in data production: Subjective judgment may be involved 

with information collection and data quality problems may arise due to the 

biased information produced by subjective judgment. These problems are often 

hidden from data consumers because the extent to which judgment is involved 

in creating it is unknown to them. However, it is not proposed that human 

judgment should be eliminated from information production as some 

information can only be produced subjectively. Rather, better extended training 

for data collectors, improvement of the data collectors‟ knowledge of the 

business domain, and clear statement and communication about how specific 

subjective judgments are to be made is encouraged as a solution.  
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 Limited computing resources: Information may be inaccessible due to the 

limited computing resources, which may lead to inaccurate and incomplete 

information. Tasks accomplished without the complete information will lead to 

poor decision making.  

 

 Security/Accessibility trade-off: Easy access to information may conflict with 

requirements for security, privacy, and confidentiality. For data consumers, 

high-quality information must be easily accessible. However, ensuring privacy, 

confidentiality, and security of information requires barriers to access. Therefore, 

with respect to high quality data, conflict exits between the accessibility and 

security dimensions. For example, patients‟ medical records contain confidential 

information, yet analysts need access to these records for research studies and 

management decision making.  

 

  Coded data across disciplines: With technological advances, it is possible to 

collect and store many types of information, including text and images. 

Representing this information for easy entry and easy access is an important 

issue. However, coded data from different professional areas are difficult to 

decipher and understand. For example, in some hospitals, detailed patients care 

notes still remain in paper form due to the cost of converting them to electronic 

form. Deciphering the notes and typing them is time consuming. Some 

information has to be dictated by the doctor manually. 

 

 Complex data representation: Although advanced algorithms are available for 

automated dealing with numeric values, they are not available when facing 

instances of text and image information. With respect to these non-numeric 

values, data consumers require more than access to them. Functions such as 

aggregation, manipulation and trend identification are required by consumers 

for analytical work. This problem is manifested as information that is 
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technically available to information consumers but is difficult or impossible to 

analyze. 

 

 Volume of data: Large volumes of stored information make it difficult to access 

required information in a reasonable time. When dealing with large volumes of 

data, problems may happen to those responsible for storing and maintaining 

data as well as those responsible for searching for useful data. For example, 

customers may expect their telephone company will have an immediate access 

to their individual billing records in order to resolve their billing questions. 

However, telephone companies may find it difficult to offer their customers 

such an immediate service when they have to face large volumes of billing 

transactions hourly. As another example, when dealing with the duplicate record 

detection task, in order to achieve a high degree of accuracy, a one-to-one 

comparison among two records is needed. This will generate a quadratic cost 

and is not acceptable when the data volume involved is large. 

 

 Input rules too restrictive or bypassed: Input rules are used for imposing 

necessary controls on data input in order to achieve a high level degree of 

accuracy. However, as has been pointed out, improving data quality requires 

attention to more than just accuracy. Other considerations such as usability, 

usefulness  also need to be included. When input rules are too restrictive, data 

may get lost and produce missing information because they may be unable to fit 

the field, or erroneous data may be entered into a field due to arbitrarily 

changing a value to fit such input rules by the data entry clerk. In this case, both 

accuracy and completeness problems are introduced. 

 

 Changing data needs: Data is only of high quality when they satisfy the needs of 

data consumers. However, with multiple consumers‟ special needs, it is difficult 

to provide high quality data to satisfy all consumers‟ needs. Besides, when these 
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needs change over time, the quality of data will also deteriorate even though 

initially they are good. 

 

 Distributed heterogeneous systems: The most common problem associated with 

distributed systems is inconsistent data, that is, data with different values or 

representations across systems. Data with different values may be generated 

from multiple sources or created by inconsistent updating of multiple copies. 

Data with different representations becomes a problem when integrating across 

autonomously designed systems. 

 

As stated by an old aphorism: „„an ounce of prevention is worth a pound of cure.‟‟ 

Organizations must not only develop tools and techniques to rectify data deficiencies 

but also institutionalize processes that would identify and prevent root causes of 

poor data quality. Awareness will require that organizations quantitatively assess 

both subjective and objective metrics of data quality. 

 

2.5  Conclusion 

 

High quality of data is a key to today‟s business success. Among the many factors 

caused poor data quality, dirty data existing within data sources is a main reason. In 

this chapter, four existing research works from the literature associated with 

identifying dirty data that affect data quality were reviewed, which provides an 

appreciation of the types and extent of dirty data within data sources. In order to 

ensure high quality data in an organization, cleaning these dirty data existing in data 

sources in a proper way is necessary and a data cleaning process which can monitor, 

analyze and maintain the quality of data is highly recommended. From the literature, 

many data cleaning techniques and approaches exist to facilitate a data cleaning 

process. A group of selected data cleaning techniques and approaches are reviewed 

and analyzed in this chapter. Especially, the critical analyses regarding the 
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advantages and disadvantages of these approaches provide valuable information 

regarding the design of the proposed data cleaning framework in Chapter 4. Data 

cleaning tools and frameworks are crucial for making the data cleaning techniques 

and methodologies effective. To summarise, there are still some challenges 

regarding the design of a data cleaning approach. To address these challenges, the 

following considerations are presented: 

 

(i) An analysis among the five data cleaning approaches shows that, the two 

frequently addressed cleaning tasks are (1) instance-level data standardization and 

transformation and (2) duplicate records elimination. Some approach only focus on 

dealing with one of these two tasks exclusively. Although from the literature, some 

work has been done for the purpose of generating a taxonomy of dirty data [6, 30], 

according to the knowledge of the author, there is no such a data cleaning tool that 

can deal with all the dirty data types mentioned from these works. In practice, 

cleaning all dirty data types introduced by the two taxonomies mentioned above is 

unrealistic and simply not cost-effective when taking into account the needs of a 

business enterprise. This problem in this thesis is defined as DDS problem. Thus, the 

power of a selection of different dirty data types to deal with under different 

situations is expected for a data cleaning approach.  

 

(ii) According to Galhardas et al, the more dirty data involved, the more difficult to 

automate their cleaning within a fix set of transformations [18]. Currently, in 

existing data cleaning tools, organizing the multiple cleaning tasks in a proper 

cleaning sequence is not supported and is totally depends on a user‟s preference.  

 

This brings two drawbacks: the first drawback is that the human involvement during 

a data cleaning process may bring down the degree of automation when performing 

data cleaning tasks. Ideally, the process of detecting and correcting the dirty data 

should be performed automatically. However, it is known that fully automatically 
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performing data cleaning is nearly impossible in most of cases especially when 

exceptions happen during the cleaning process and an expert is required to make a 

judgement. Therefore, declarative, semi-automatic approaches are feasible and 

acceptable for developing a data cleaning approach.  

 

Considering the semi-automatic approach, the idea of dividing the data cleaning 

process into several sub-processes which separate the sub-processes that can be 

executed fully automatically from others is a good solution [32]. But still, the 

executions of these sub-processes are needed to be specified in an order. So the 

second drawback is that, for users who have no knowledge in data cleaning, 

ordering these sub-processes is difficult and a poor ordering sequence will bring side 

effects to the final cleaning result as is shown later. Therefore, a semi-automatic data 

cleaning approach with the power of automatically ordering the associating the 

related data cleaning tasks is a challenge.   

 

(iii) To develop an effective data cleaning tool, it is necessary that a tool should 

include various appropriate methods or techniques to deal with a specific data 

quality problem when different domains are involved. A specific optimized 

algorithm which is already parameterized is not able to cope with all situations. 

Choosing a method or an algorithm from a set of alternative algorithms has proven 

to be a difficult task. It depends on several factors, such as the problem domain and 

the nature of the errors. Therefore, data cleaning methods/algorithms should be 

critically analyzed and evaluated based on carefully designed experiments.  

 

According to the studies of the five data cleaning approaches in section 2.2, 

algorithm selection and algorithm parameter setting depends on user‟s preference. 

This leaves the data cleaning process with two drawbacks: the first is with degree of 

automation for a data cleaning approach. For example, in Febrl, 26 different 

algorithms are provided to its users. In order to perform a matching task with Febrl, 
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the user has to choose one particular algorithm out of these 26 algorithms and the 

corresponding parameters must also be specified by the user. According to the 

author‟s experience of using Febrl, nearly 20% of the total data cleaning time is 

spent on algorithm selection and parameter setting.  

 

The second drawback is associated with the effectiveness of the data cleaning task. 

As is mentioned, several factors such as the problem domain and the nature of errors 

are involved with the selection of a suitable algorithm. As will be shown later, the 

experimental results in Chapter 5 confirm that the effectiveness and efficiency of a 

data cleaning task may vary with selection of a different algorithm. For users who 

have not enough knowledge and experience, an inappropriate selection of algorithms 

will generate poor cleaning results. Therefore, another challenge for a data cleaning 

approach is that not only should it include enough techniques for user to choose but 

it can intelligently help its users to make a choice out of many alternatives when 

necessary. These considerations will be included during the design of the proposed 

data cleaning framework.  

 

Finally, the review work regarding data quality and data quality dimensions in 

section 2.4 provides a solid foundation in designing the proposed rule based 

taxonomy of dirty data, which is presented in the next chapter. 
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CHAPTER 3  A RULE-BASED TAXONOMY OF DIRTY DATA 

 

In Chapter 2, literature concerning dirty data type classifications or taxonomies was 

reviewed. Regarding the dirty data type classifications, some work has been 

undertaken exclusively to identify problems (dirty data types) that affect data quality 

and has resulted in taxonomies of dirty data. For example, Kim et al [6] and Oliveira 

et al [30] have proposed two different taxonomies of dirty data and have presented 

33 and 35 dirty data types respectively.  

 

Some work, although not undertaken exclusively for the purpose of generating a 

taxonomy of dirty data, has highlighted the problems arising due to poor data quality 

and groups of dirty data types have been proposed. For example, according to the 

constraints of Müller and Freytag‟s pre-defined data model [27], data from data 

collection that does not conform to the constraints of the data model are considered 

to be data anomalies. Müller and Freytag roughly classify data anomalies into three 

different sets, namely syntactical anomalies, semantic anomalies and coverage 

anomalies and together 8 dirty data types are identified. Rahm and Do [28] 

distinguish the observed data quality problems into two sets, namely single-source 

problems and multi-source problems. Within each set, data quality problems have 

been classified into schema-level problems and instance-level problems respectively. 

These problems reflect the different dirty data types that could be captured 

according to different levels and 19 problems have been introduced in their work.  

 

Compared with Müller and Freytag‟s and Rahm and Do‟s work, the two taxonomies 

of dirty data provide many more types of dirty data. Data cleaning is a 

labour-intensive, time-consuming and an expensive process. In practice, cleaning all 

dirty data types introduced by the two taxonomies mentioned above is unrealistic 

and simply not cost-effective when taking into account the needs of a business 

enterprise. For example, a company might only be able to afford to clean a specific 
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group of types of dirty data to satisfy some specific needs. The problem then 

becomes how the business can make a selection according to their different business 

needs. This problem, mentioned in Chapter 1 is referred to as the Dirty Data 

Selection (DDS) problem.  

 

Although there are several taxonomies of dirty data existing in the literature, none of 

them are designed for this purpose. For example, in Oliveira et al‟s taxonomy of 

data quality problems, 35 dirty data types have been introduced, which is considered 

as the most comprehensive taxonomy so far in the literature.  

 

In this case, by only showing these 35 dirty data types, it is difficult to tell which 

possible dirty data types should be selected to deal with for different data sets. In 

this chapter, a rule-based taxonomy of dirty data is presented. As is mentioned in 

chapter 2, dirty data is defined as the data flaws that break any of the pre-defined 

data quality rules. The taxonomy presents a clear mapping between the data quality 

rules and dirty data types, which not only covers a larger range of dirty data types 

than any of the existing taxonomies but can also help dealing with the DDS problem 

when specific business needs are considered.  

 

3.1  Data quality rules 

 

According to Chanana and Koronios, most data quality problems are not simple 

violations of declared database integrity constraints, but a large number of real-life 

data problems are caused by data violating complex underlying business rules or 

data quality rules often leading to poor data quality [114].  

 

In the proposed context, data quality rules define the business logic of an enterprise 

and are therefore an underlying reality in an enterprise [115]. Data quality rules are 

used as descriptive means for encapsulating operational business flows, govern and 
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guide the way in which an enterprise conducts itself and comply with legal and other 

regulations. They are defined and owned by business professionals, not IT 

professionals [116] and they do not contain any control flow statements, which are 

independent of any implementation techniques.  

 

In the past, data quality rules have been embedded in the system code rather than 

formalized and articulated separately in simple natural language. With advances in 

the scale of business, changing business environment, operations at different 

locations and increased interaction with stakeholders, the business process is now 

more complex and it becomes difficult and unmanageable to operate the business 

effectively and efficiently without formalizing these quality rules. As business 

practices and/or policies change frequently, it becomes very difficult to reflect these 

changes in the applications implementing them. Rules that are buried in information 

systems are neither flexible nor easy to modify or change and as a result do not 

render the business with complete control over its environment [114].  

 

According to David Loshin [12], by relating business impacts to data quality rules, 

an organization can employ the data quality rules for measuring the business 

expectations and the improvement of data quality can be viewed as a function of 

conformance to business expectations. By integrating control processes based on 

data quality rules, business users are able to determine how best the data can be used 

to meet their own business needs. Thus, data quality rules play an important role in 

the improvement of data quality for a business.  

 

In this thesis, dirty data is defined as the data flaws that break any of the pre-defined 

data quality rules when data quality rules are obtained. Data can be assessed as 

whether or not the data is dirty according to the description of these rules. This 

provides agility in responding to the ever changing demands of the business 

environment. Since the validity of a data value is defined within the context in 
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which data values appear, one must specifically describe what defines a valid value 

in order to improve data quality. This is performed by measuring if the values 

conform to the matching data quality rules.  

 

The approach of cleaning dirty data according to the different data quality rules 

helps with the separation of business logic from implementation logic and thus 

provides a solution to respond to the different demands in different business 

environments. Additionally, the DDS problem introduced in Chapter 1 can be solved 

well, since it is reasonable for a business enterprise to deal with a few of the most 

important groups of data quality rules rather than all of the rules, according to its 

own business priorities. Only dealing with the dirty data reflected in the selected 

data quality rules helps an organization with reducing the cost associated with the 

expensive data cleaning tasks, especially when available resources for an 

organization to perform data cleaning is limited.  

 

From the literature, Chanana and Koronios proposed a set of data quality rules and 

categorized them into five groups. Table 3.1 shows the data quality rules from 

Chanana and Koronios‟ work. 
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Rule Class Rule types Description 

C.1 

Definitions 

of 

reference 

data 

C.1.1 Null values rules 

Allows traditional null values 

like system null, blank, empty 

fields 

Non-null specifies which null 

values are not allowed 

C.1.2  Domain membership rules 

Enumerated defines a list of 

valid values 

Descriptive domain uses syntax 

to establish domain membership 

C.2  

Mappings 

between 

domains 

rule 

C.2.1 Functional domain mapping 

rules 

List of functions describing 

mapping 

C.2.2 Domain mapping 

enumeration rules 

Specifies those value pairs that 

belong to the mapping 

C.2.3 Mapping membership rules 
Two attribute values must 

confirm to the mapping 

C.3  

Value 

constraints 

C.3.1 Value constraints rules 
Specifies set of valid values that 

can be assigned 

C.3.2 Attribute value restriction 

rules 
Data type like integer or string 

C.4  

Relation 

rules 

C.4.1 Consistency rules 

Maintains relationship between 

two attributes based on actual 

values of attributes 

C.4.2 Completeness rules 
Specifies attribute values on 

satisfying some condition 

C.4.3 Exemption rules 
On meeting a condition, some 

attributes can have null values 

C.5 

Cross-table 

rules 

C.5.1 Primary key assertion rules 
Attribute belonging to primary 

key can‟t have null values 

C.5.2 Foreign key assertion rule 
Specifies consistency 

relationship between tables 

C.5.3 Functional dependency rules 
Specify inter-record constraints 

on records 

Table 3.1 Data quality rules 

 

Adelman et al also propose a set of data quality rules which, according to the 

authors, have been categorized into four groups namely: business entity rules; 

business attribute rules; data dependency rules; and data validity rules. Business 

entity rules specify rules about business objects or business entities. Business 

attribute rules are rules about data elements or business attributes. Data dependency 
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rules specify different types of dependencies between business entities or business 

attributes. Data validity rules govern the quality of data values [89]. Table 3.2 lists 

the entire data quality rules based on the four different categories proposed by 

Adelman et al. All tables from the appendix B (B.1~B.4) show all further classified 

distinct sub rules in detail and each sub rule has been associated with a rule number. 

 

Rule Category Data Quality Rule 

1.Business entity rules 

R1.1 Entity uniqueness rules 

R1.2 Entity cardinality rules 

R1.3 Entity optionality rules 

2.Business attribute rules 
R2.1 Data inheritance rules 

R2.2 Data domains rules 

3.Data dependency rules 
R3.1 Entity-relationship rules 

R3.2 Attribute dependency rules 

4.Data validity rules 

R4.1 Data completeness rules 

R4.2 Data correctness rules 

R4.3 Data accuracy rules 

R4.4 Data precision rules 

R4.5 Data uniqueness rules 

R4.6 Data consistency rules 

Table 3.2 Data quality rules from Adelman et al’s work 

 

All data quality rules from Chanana and Koronios and Adelman et al are compared 

and the result is shown in Table 3.3. 
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Chanana and Koronio’s work Adelman et al’s work 

C.1.1 Null values rules R 4.1.4 

C.1.2  Domain membership rules R2.2.1, R2.2.5 

C.2.1 Functional domain mapping 

rules 
R3.2.2 

C.2.2 Domain mapping enumeration 

rules 
R2.2.1 

C.2.3 Mapping membership rules R3.2.3 

C.3.1 Value constraints rules R2.2.1 

C.3.2 Attribute value restriction rules R2.2.3 

C.4.1 Consistency rules R4.6.1 

C.4.2 Completeness rules R4.1.4 

C.4.3 Exemption rules R4.1.4 

C.5.1 Primary key assertion rules R1.1.2 

C.5.2 Foreign key assertion rule R4.1.2 

C.5.3 Functional dependency rules R3.1.1 

Table 3.3 A comparison 

 

The comparison result between the two works shows that Adelman et al provide an 

even larger comprehensive collection of data quality rules. All data quality rules 

mentioned by Chanana and Koronios‟s work can also be found in Adelman et al‟s 

work. Therefore, Adelman et al‟s collections of data quality rules are used in the 

proposed research work. We use these four groups of data quality rules from 

Adelman et al to classify dirty data types into four different categories. According to 

Adelman et al, the four groups of data quality rules are further divided into a list of 

sub-rules from which a tree structure classification of data quality rules is obtained. 

By analyzing data quality rules on the leaf nodes, we have identified the dirty data 

types in each category.  
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3.2  Dirty data types 

 

Four groups of dirty data types are obtained according to the four different rule 

categories from table 3.2. Each group of dirty data types is detailed below.  

 

(i) Business entity rules related dirty data types:  

 

Business entity rules specify rules about business entities which are subject to three 

data quality rules namely entity uniqueness rules, entity cardinality rules and entity 

optionality rules. Within this group, the following dirty data types are identified: 

 

 Cardinality relationship problem: Cardinality refers to the degree of a 

relationship, i.e., the number of times one business entity can be related to 

another. As an example of this problem, the number of employees by counting 

the number of tuples from the Employee table, is not the same as the number 

of employees by summing the number of employees in each department in the 

Department table. 

 Recursive relationship problem: A recursive relationship corresponds to cycle 

situations among two or more related tuples in a self or reflexive relationship. 

As an example of this problem, suppose in a department of a university, one 

person may supervise many other persons and each supervised person may 

have many supervisors at the same time. Such information is recorded in the 

table people (ID*, name, supervise). Suppose the information „Jack is 

supervising Rose and Rose is supervising Jack‟ is found in the table. Clearly, 

this is not going to happen in the real world. 

 Optionality relationship problem: the entity optionality rule identifies the 

minimum number of times two business entities can be related. For example, 

an online store requires that when a customer has purchased a product on line, 
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the customer‟s delivery information must be in the delivery table. Otherwise, a 

missing tuple from the delivery table will cause a problem such as an 

undelivered item. 

 Reference defined but not found: When a relationship is instantiated through a 

foreign key, the referenced instance of the entity must exist in the related table. 

 

(ii) Business attribute rules related dirty data types: 

 

Business attribute rules specify rules about business attributes or data elements, 

which are subject to two data quality rules namely data inheritance rules and data 

domain rules. As data inheritance rules are object oriented related rules, we do not 

consider this rule in our work because we consider only database applications. 

Therefore, in this group, the following dirty data types are identified: 

 

 Set violation: For an enumerated data type, its value should be within the 

allowable value set. For example, suppose the allowable data value set for 

“city” attribute is (London, Edinburgh, Manchester, Birmingham), then the 

value of “New York” is not allowable. 

 Data value out of value range: As an example of this problem, suppose the age 

of human being in a database is defined as “18<=age<30”. It is not allowed 

that an age value of „10‟ or „35‟ is entered in the table. 

 Data value constraint violation: When some constraints are used to regulate 

data values, the data value should conform to those constraints. A constraint 

may be used to regulate a single piece of data or multiple data values. For 

example, a medical experiment requires the age of the people who participate 

should be below 30 (inclusive). Then the constraint for “age” attribute is 

“age<=30”. If data has been found that its age value is “35”, then such data is 

not expected in the table. 
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 Use of wrong data type: When the value of an attribute such as “Name” is set 

to be a string data type, it is not expected that a numeric value be found for the 

“Name” attribute. 

 Syntax violation: Syntax violation happens when data value does not conform 

to the defined pattern or format for its attribute. For example, when the format 

of “Date” attribute is defined as the pattern of “DD/MM/YYYY”, then the 

value of “2010-03-05” is not expected. The correct value should be 

“05/03/2010”. 

 

(iii) Data dependency rules related dirty data types: 

 

Data dependency rules apply to data relationships between two or more business 

entities or business attributes. The dirty data types identified in this group are: 

 

 Data relationship constraint violation: As an example of this problem, an 

employee who has been assigned a project is not allowed to enroll in a training 

program, i.e., this employee‟s data is not supposed to be found in the training 

table. 

 Contradiction data: The existence of an attribute value is determined or 

constrained by the value of another attribute. For example, suppose it is 

defined that when the status of a loan is “funded”, then the value of loan 

amount must be greater than zero. 

 Wrong derived field data: This problem occurs when a data value is derived 

from two or more other attribute values. For example, a miscalculation of an 

employee‟s income by miscomputing the tax will result in a wrong derived 

field data. 

 Wrong data among related attributes: This problem occurs when the value of 

one attribute is constrained by the value of one or more attributes in the same 
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business entity or in a different but related business entity. For example, the 

value of annual expenses in a department is constrained by the sum of all 

distinct expenses in that department. 

 

(iv) Data validity rules related dirty data types:  

 

Data validity rules govern the quality of data values, there are six data validity rules 

(Rule 4.1~ Rule 4.6, see table 3.6). The dirty data types identified by the six validity 

rules are: 

 

 Missing tuple: Entity completeness requires that all instances exist for all 

business entities, i.e., all records are present in the table. 

 Missing value: It is required that all attributes for a business entity contains all 

allowable values. It should be clear that Null value is different from missing 

value. When a constraint of “null-value allowed” is enforced on the data set, 

null value indicates “value unknown or nonexistent”. A missing value simply 

indicates whether a value should exist for the attribute or not. 

 Meaningless data value. The data value for an attribute must be correct and 

reflect the attribute‟s intended meaning. When the data value is beyond the 

context of the attribute, the data value is a meaningless data value. For 

example, the value for the attribute “address” is defined as a set of allowable 

characters which reflect a person‟s address in the real world. If “£$%S134” is 

entered, it does not make any sense as valid address data. 

 Extraneous data entry: An example of extraneous data entry is the entry of 

address and name in a name field. 

 Lack of data elements: An example of this problem is when a part of post code 

is missing from attribute “PostCode” , i.e., “5DT” missing from “EH10 5DT” . 
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 Erroneous entry: An example of erroneous entry is when a student‟s age is 

entered as “26” rather than the student‟s real age “27”. 

 Entry into wrong field: This problem occurs for example when the value of a 

person‟s name is entered into its address field. 

 Identity rule violation: As an example of this problem, suppose in table 

employee (Emp_No., Name, Emp_NIN,  DoB), Emp_No. is defined as the 

primary key. According to the values of Emp_No. from employee table, the 

uniqueness of Emp_No. is guaranteed. But it does not mean that each 

employee is properly identified in the data. For example, a person may have 

two records with two distinct Emp_No. but identical values for national 

insurance number (NIN). Suppose it is required that each person can only has 

one unique Emp_No in the table. Obviously, they are duplicate records 

referring to the same person. 

 Wrong reference: This is the case when a reference is defined but its value is 

wrong which breaks the attribute‟s dependency rules. 

 Outdated value: It is required that the data value must be accurate in terms of 

its state in the real world. If not, its value is said to be an outdated value 

because it does not represent its real state in the real world. 

 Imprecision: It is required that all data values for a business attribute must be 

as precise as required by the attribute‟s business requirements. As an example 

of imprecision data, suppose an analysis of the financial position of an auditor 

requires the value of the data has precision to the pence, if the value is based 

on the unit of pounds, then the data is imprecise. 

 Ambiguous data: The use of abbreviation of data for instance, sometimes may 

cause an ambiguous meaning which is not as precise as required by the 

attribute‟s intended meaning. For example, when an abbreviation word “MS” 

is used to represent a company‟s name, it is difficult to tell whether it stands 

for “Morgan Stanley” (a global financial services firm) or “Microsoft” (a 
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global software company) when both of the companies have been recorded in 

the same data source. 

 Misspelling: A misspelling problem, for example, when “John Smith” is 

entered as “Jonh Smyth”. 

 Duplicate record in single/multi data source: Rule 4.5 specifies that each 

business entity instance must be unique. Duplicate records may happen for 

example, when a person‟s name and address are represented in different ways, 

the same entity may be represented more than once in the same or different 

data sources. 

 Inconsistent record in single/multi data source: Rule 4.6 specifies the data 

value should be consistent. Inconsistent data can be found in both single and 

multi-sources. For example, in different data sources, the data value of the 

same person‟s address may be recorded differently. Suppose this person has 

only one valid address, these records are inconsistent records. 

 Different representations for the same data: in addition to inconsistent record, 

data conflicts may arise when multiple data sources are integrated. Usually, 

different data sources are typically developed and maintained independently to 

serve specific needs. When these data sources are integrated, due to the 

different representations for the same data, problems are observed. 

Specifically, these differences may be due to the different use of abbreviations, 

special characters, word sequence, measurement unit, encoding format, 

aggregation levels and alias names. 

 

According to the descriptions of the data validity rules, some schema-level problems 

can also be identified. For example, one of the data completeness rules requires that 

all business attributes for each business entity exist. In this case for example, if an 

employee‟s address is represented in a different number of fields in different data 

sources and they are each correct in their own data source, when they come to be 
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integrated, problems will occur.  In data uniqueness rules, two of them are related 

with the definition of attributes (homonyms and synonyms) which are also related to 

schema-level problems. As we do not consider schema-level problems in our 

research, dirty data related with the schema-level will not be considered in the 

proposed taxonomy. With the above dirty data types analyzed based on data quality 

rules, table 3.4 lists these dirty data types, each of which has been assigned a type 

number (DT.1 ~ DT.38). 

 

No. Dirty Data Type 

DT.1 Cardinality relationship problem  

DT.2 Recursive relationship problem 

DT.3 Optionality relationship problem 

DT.4  Reference defined but not found 

DT.5 Set violation 

DT.6 Data value out of value range 

DT.7 Data value constraint violation 

DT.8 Use of wrong data type 

DT.9 Syntax violation 

DT.10 Data relationship constraint violation 

DT.11 Contradiction data 

DT.12 Wrong derived field data 

DT.13 Wrong data among the related attribute 

DT.14 Missing tuple 

DT.15 Missing value 

DT.16 Meaningless data value 

DT.17 Extraneous data entry 

DT.18 Lack of data elements 

DT.19 Erroneous entry 
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No. Dirty Data Type 

DT.20 Entry into wrong field 

DT.21 Identity rule violation 

DT.22 Wrong reference 

DT.23 Outdated value 

DT.24 Outdated reference 

DT.25 Imprecision  

DT.26 Ambiguous data  

DT.27 Misspelling 

DT.28 Duplicate record in single data source 

DT.29 Duplicate record in multi data source 

DT.30 Inconsistent record in single data source 

DT.31 Inconsistent record in multi data source 

DT.32 Different representations due to abbreviation 

DT.33 Different representations due to special characters 

DT.34 Different representations due to word sequence 

DT.35 Different representations due to measurement unit 

DT.36 Different representations due to encoding format 

DT.37 Different representations due to aggregation level 

DT.38 Different representations due to use of alia name 

Table 3.4 Dirty data types 

 

3.3  The taxonomy 

 

In Table 3.2, data quality rules have been organized in a tree structure. The proposed 

taxonomy follows the same structure and classifies the dirty data according to the 

four different categories of data quality rules. As the 38 dirty data types are obtained 

based on analyzing the rules on the leaf nodes, the four categories of dirty data have 
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been further classified into distinct dirty data types according to the corresponding 

rules on the leaf nodes. Table 3.5 shows the proposed taxonomy.  

 

 

Dirty Data Category Data Quality Rules Dirty Data Type 

Business entity rules 

related dirty data 

R1.2 Entity cardinality 

rules 
DT.1, DT.2 

R1.3 Entity optionality 

rules 
DT.3, DT.4 

Business attribute rules 

related dirty data 
R2.2 Data domain rules DT.5~DT.9 

Data dependency rules 

related dirty data 

R3.1 Entity relationship 

dependency rules 
DT.10 

R3.2 Attribute dependency 

rules 
DT.11~DT.13 

Data validity rules 

related dirty data 

R4.1 Data completeness 

rules 
DT.14, DT.15 

R4.2 Data correctness 

rules 
DT.16~DT.20 

R4.3 Data accuracy rules DT.21~DT.24 

R4.4 Data precision rules DT.25~DT.27 

R4.5 Data uniqueness 

rules 
DT.28, DT.29 

R4.6 Data consistency 

rules 
DT.30~DT.38 

Table 3.5 Rule-based taxonomy of dirty data 
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In this taxonomy, 38 different dirty data types have been identified under different 

data quality rules, which forms an even larger collection of dirty data compared with 

any of the existing taxonomies or classifications [6, 27, 28, 30]. In the category of 

business attribute rules, 5 dirty data types are identified. There are 4 dirty data types 

identified with each of the categories of business entity rules and data dependency 

rules. The majority of dirty data types are related to the category of data validity 

rules, which has 25 dirty data types. This is because the data value related problems 

are much more common than others. In total, there are 38 distinct dirty data types 

identified. The proposed taxonomy has considered dirty data types not only 

appearing within both a single data source and multiple data sources, but also from 

the angles of both a single relation and multiple relations. Compared with the four 

existing works [6, 27, 28, 30], it is clear that the proposed taxonomy is most 

complete. For example, D26, D38, D12, D24, D13, D10 are the dirty data types that 

are not mentioned by Müller and Freytag [27] and Rahm and Do [28]. Compared 

with the two formal taxonomies by Kim et al [6] and Oliveira et al [30], the 

proposed taxonomy not only covers all instance level dirty data types from these two 

taxonomies but also includes a new dirty data type (D.18, lack of data element). 

However, due to the research scope, schema-level related problems are not 

considered in the proposed taxonomy. For example, naming conflicts and structure 

conflicts are two schema level heterogeneities mentioned by Rahm and Do [28]. 

Similarly, two schema-level problems are also identified by Oliveira et al [30] (i.e., 

Syntax inconsistency both in multiple relations in a single data source and among 

multiple data sources). This consideration agrees with the suggestion made by Kim 

et al [6]. A systematic classification of schema related problems has been proposed 

by Kim and Seo [117], which covers all the schema-related problems mentioned in 

the two existing works [27, 28]. Although it is believed that this taxonomy is very 

comprehensive, still, this does not ensure that it covers all possible dirty data types 

that may exist. However it is believed that most usual or unusual dirty data types are 

covered in the proposed taxonomy.  
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As mentioned in Chapter 1, in practice, cleaning all dirty data types introduced by 

any of existing taxonomies is unrealistic and not cost-effective when taking into 

account the needs of a business enterprise. The proposed rule-based taxonomy 

presents a special structure to organize the different types of dirty data according to 

the different quality rules. This structure will help with providing a solution to 

respond to the different demands in different business environment. Only dealing 

with the dirty data reflected in the selected data quality rules helps with reducing the 

cost associated with the expensive data cleaning tasks and solves the proposed DDS 

problem. A method to deal with the proposed DDS problem will be further detailed 

in the next Chapter.  

 

3.4  Conclusion 

 

In this chapter, the proposed rule-based taxonomy of dirty data is presented. 

Compared with existing works, this taxonomy includes 38 distinct dirty data types 

and provides a larger collection of dirty data types than any of existing taxonomies.  

 

Associating dirty data with data quality rules will provide several benefits. For 

example, it provides agility in responding to the different demands from different 

business environments. This enables the separation of business logic from logic 

implementation and people who try to evaluate and improve the data quality of an 

organization will only focus on the data quality rules without considering the actual 

techniques regarding dirty data cleaning. On the other hand, developers who try to 

develop techniques to cope with different dirty data types will not be distracted by 

the changing of different business environments. Additionally, since it is reasonable 

for a business enterprise to pick up a few of the most important groups of data 

quality rules rather than focusing on all rules according to its own business priorities, 
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dirty data associated with the selected data quality rules will be firstly dealt with. In 

this way, the proposed DDS problem is solved by only dealing with the dirty data 

reflected in these selected data quality rules.  

 

Although some existing work has also proposed a large collection of dirty data types 

such as the collection of 35 dirty data types by Oliveira et al, by only looking at 

these dirty data types, it is difficult to tell which group of dirty data should be firstly 

considered and it would be very expensive for the system to run all algorithms for 

all the possible dirty data candidates which is exactly the DDS problem. With the 

help of the proposed rule based taxonomy of dirty data, a method to deal with the 

DDS problem could be developed exclusively to be used by business enterprises to 

solve the DDS problem, by prioritizing the expensive process of data cleaning, 

therefore maximally benefitting their organizations. In next chapter, this method will 

be detailed in the proposed data cleaning framework.  
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CHAPTER 4  A DATA CLEANING FRAMEWORK 

 

4.1  Introduction 

 

High quality data plays an important role in the success of data base applications. 

Data cleaning is a way to maintain high quality data and is one of the crucial tasks to 

improve the efficiency of building up the database applications such as a data 

warehouse (DW). Research shows that nearly half the time of dealing with back-end 

issues such as readying the data and transporting the data to a DW can be attributed 

to the activities associated with data cleaning [32]. Regarding the data cleaning 

process, two considerations need to be addressed: (i) how to reduce the time cost 

during the data cleaning process, i.e., the improvement of the efficiency of data 

cleaning process, (ii) how to improve the degree of automation during the data 

cleaning process.  

 

Recall the data cleaning process presented in Fig.1.1, ideally, the detection and 

correction of error instances are expected to be performed automatically. However, 

from the literature, a fully automatic data cleaning tool does not exist. In most cases, 

it is impossible to have the data cleaning process executed fully automatically with 

current existing data cleaning approaches. There are many factors which need to be 

considered during the data cleaning process such as the problem domain, the various 

dirty data types involved, and sometimes, human involvement is required during the 

data cleaning process. For example, according to Müller and Freytag, “the process of 

data cleaning cannot be performed without the involvement of a domain expert, 

because the detection and correction of anomalies requires detailed domain 

knowledge” [27].  

 

However, due to the large amount of data that are usually involved, data cleaning 
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should be as automatic as possible [27]. Therefore, declarative, semi-automatic 

approaches are feasible and acceptable for developing data cleaning tools [32]. In 

Chapter 2, data cleaning approaches from the literature were reviewed. There are 

two main data cleaning activities addressed in these tools: (1) data standardization 

and transformation and (2) duplicate record elimination. Regarding the 38 dirty data 

types from the proposed taxonomy of dirty data, the existing data cleaning 

approaches have only addressed a small number of these 38 dirty data types. For 

other dirty data types that can not be cleaned with existing data cleaning approaches, 

users have to seek other solutions to deal with them exclusively. This however 

requires much user effort during the data cleaning process. Therefore, an ideal data 

cleaning approach should be able to provide as many solutions for the various types 

of dirty data as possible.  

 

Regarding the degree of automation during a data cleaning process, frequent human 

involvement is not encouraged though it is unavoidable. During the data cleaning 

process, human involvements should be reduced as much as possible and leave most 

of the data cleaning activities to be handled by the tool. In the data cleaning 

approaches studied, human involvement is required during the data cleaning process. 

This is especially required in the following three cases: (1) select a suitable 

algorithm and set the necessary parameters of the selected algorithm, (2) organize a 

sequence to perform the multiple data cleaning activities involved in the data 

cleaning process, and (3) deal with exceptions.  

 

With respect to the first case, for each type of dirty data involved during the data 

cleaning process, an appropriate method must be firstly selected and then applied. 

Choosing such a method has proven to be a difficult task as it depends on several 

factors such as the problem domain and the nature of dirty data types [31]. Currently, 

existing data cleaning approaches either adopt one fixed method to clean dirty data 

without considering the different problem domains or they require users to select a 
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method from a list of alternatives. For example, Febrl provides multiple solutions to 

deal with the problem of duplicate record detection and users have to choose one 

solution out of the many alternatives in order to have the duplicate records detected. 

As mentioned in Chapter 2, Febrl does not supply any recommendations or help 

with selecting an appropriate method to cope with different problem domains. AJAX, 

on the contrary, will provide an optimal solution in its physical level according to the 

information provided by the user on the logical level. This is an advance compared 

to Febrl regarding the degree of automation. However, AJAX does not support as 

many techniques as Febrl does. This is a drawback regarding the ability to cope with 

different problem domains.  

 

With respect to the second case, when multiple data cleaning activities are involved, 

the organization of a sequence to execute those associated algorithms is usually 

determined by a user rather than the system. For example, in ARKTOS, the user can 

customize multiple cleaning tasks either graphically or declaratively. Users of 

ARKTOS are responsible for specifying the correct order to execute these tasks. In 

Febrl, a data cleaning task is performed individually. For example, data 

standardization and duplicate record detection need to be executed separately. 

 

In order to develop an effective and efficient data cleaning approach, it is necessary 

to allow users to select an appropriate method for different problem domains and it 

should provide a mechanism for users to organize an appropriate order regarding the 

multiple data cleaning activities. Regarding the organization of the multiple cleaning 

activities during the data cleaning process, Müller and Freytag proposed a sequence 

associated with different data cleaning activities as: format adaptation for tuples and 

values  integrity constraint enforcement  derivation of missing values from 

existing ones  removing contradictions within or between tuples  merging and 

eliminating duplicates  detection of outliers [27]. However, there is no mention in 

their work whether there is any particular reason to perform these operations in this 
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order. As will be seen later, ordering the multiple activities in a data cleaning process 

is a complex task where multiple factors such as the problem domain, the nature of 

the selected algorithm must be considered. A different order may result in different 

data cleaning performance during the data cleaning process.  

 

In this chapter, a data cleaning framework is proposed which aims to challenge the 

following issues: (1) minimising the data cleaning time and improving the degree of 

automation during the data cleaning process, (2) improving the effectiveness of data 

cleaning. This framework retains the most appealing characteristics of existing data 

cleaning approaches reviewed in Chapter 2, and improves the efficiency and 

effectiveness of data cleaning in a database application by introducing two 

mechanisms: „algorithm ordering mechanism‟ (AOM) and „algorithm selection 

mechanism‟(ASM). In the following sections, the proposed data cleaning framework 

will be detailed as well as the two mechanisms. 

 

4.2  Data cleaning framework 

 

In this section, the proposed data cleaning framework is introduced, starting with 

some basic ideas. 

 

4.2.1  Basic ideas 

 

Data cleaning is a labour-intensive, time-consuming, and expensive process, 

especially when multiple data cleaning activities are involved with huge volumes of 

data from different data sources during the data cleaning process. Reducing the data 

cleaning time becomes a motivation in the proposed data cleaning framework. 

 

According to Peng, a data cleaning framework has been proposed which both 

reduces the cleaning time and maximisesthe degree of automation during the data 

cleaning process [32]. In Peng‟s framework, the whole data cleaning process is 
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firstly broken into two stages to deal with data quality problems associated with a 

single-source and multi-source respectively. In this way, the time required to deal 

with multi-source data quality problems is reduced. For example, during the 

execution of duplicate record detection, comparing each tuple with other tuples will 

cost lots of time. Reducing the comparison times will save significant time during 

the process of duplicate record detection. This is achieved by removing the number 

of tuples to be compared within each single data source.  

 

Further, in each stage, the process is again divided into two sub-processes according 

to whether or not human involvement is needed to deal with the data quality 

problem. This helps with minimizing human involvement during the cleaning 

process and thus, the degree of automation is maximized.  

 

In each sub-process, a strategy is applied to organize the multiple algorithms 

involved, i.e., algorithms dealing with non-computational-costly errors are put at the 

front in order [32]. An error of this type requires relative less cleaning time than a 

computational-costly error. Although this strategy aims to minimize the processing 

time, the effectiveness associated with these algorithms is not considered. As will be 

seen later, when effectiveness is considered, a pre-defined order might need to be 

adjusted with a different algorithm selected. Based on the strategy proposed by Peng, 

improvements have been made in the proposed framework by introducing two 

mechanisms (AOM and ASM), where both the effectiveness and efficiency during 

the data cleaning process are addressed.  

 

Apart from the organization of the multiple algorithms involved during the cleaning 

process, the selection of a suitable algorithm is also a difficult task [31]. For 

example, it has been mentioned by Peng that during the data cleaning process, an 

experienced expert with sufficient business domain knowledge might be required to 

guide the selection of an algorithm for a particular domain [32]. Since human 



113 
 

involvements during the data cleaning process will minimize the degree of 

automation, a solution that can automatically select a suitable algorithm according to 

some rules or strategies is highly expected for a data cleaning approach. In the 

proposed framework, the selection of an appropriate algorithm is addressed by 

introducing an „algorithm selection mechanism‟.  

 

Although it is impossible for us to have a thorough test on all existing available 

algorithms associated with all dirty data types introduced from the proposed 

taxonomy, a set of approximate string matching algorithms have been analyzed and 

evaluated based on different carefully designed databases in chapter 5. With these 

experimental results, it has shown the possibilities for the proposed „algorithm 

selection mechanism‟ to automatically select a suitable algorithm according to the 

different domain specific pre-defined rules during the data cleaning process. Thus, 

both effectiveness and degree of automation will be improved.  

 

Finally, the proposed framework has also addressed the DDS problem proposed in 

chapter 1 by introducing a „DDS process‟. From the literature, it has indicated that in 

some cases, cleaning all dirty data types is unrealistic and simply not cost-effective 

when taking into account the needs of a business enterprise [29]. In the proposed 

framework, the „DDS process‟ will help enterprises make a selection of dirty data 

types by prioritizing the expensive process of data cleaning, therefore maximally 

benefiting their organizations. 

 

4.2.2  Some definitions 

 

Before the proposed data cleaning framework is detailed, the following definitions 

are needed regarding the dirty data types and the proposed two mechanisms (AOM 

and ASM). They will be used during the detailing of the proposed data cleaning 

framework. 
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 Single-source error type: An error of this type is present in a single source 

dataset. For example, missing values, misspelled values, syntax violation, 

outdated values are all of this type of error. These errors should be cleaned 

within each single data source before data are integrated from multiple data 

sources, so that the overall cleaning time will therefore be reduced from 

cleaning data in multiple data sources. For example, detecting duplicate 

records from multiple data sources takes time and if a significant number of 

records can be removed within single sources, the number of comparisons 

that are necessary for detecting duplicates will be significantly reduced. 

 

 Multi-source error type: An error of multi-source error type is present when 

data from more than one data source are integrated. For example, the 

different representation of the values for the same attribute is just a problem 

of multi-source error type. In one data source, the values „F‟, „M‟ are used to 

represent the attribute „Gender‟, while in another data source, the values „1‟ 

and „0‟ are used instead. As another example, duplicate records may occur 

when data are integrated from multiple data sources as the same entity may 

be represented by an equivalent representation in more than one tuple from 

different data sources. 

 

 Automatic-removable error type: An error of this type can be detected then 

corrected without any human involvement. Cleaning this type of error is 

entirely depending on the selected algorithms. For example, the problem of 

different representations of „Gender‟ attribute values in multiple data sources 

could be detected and corrected with the help of some algorithms 

automatically without any human interruption. 

 

 Non-automatic-removable error type: A non-automatic-removable error can 

not be fully detected and then corrected by the algorithms without any 
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human interruption. For example, during the detection of duplicate records 

from a single data source or multiple data sources, human involvements 

sometimes are needed to deal with exceptions such as the missing value in 

the matching fields. Although some algorithms are available during the 

detection of duplicate records, an expert sometimes is still required for the 

final merging task towards the linked records. For example, an expert may 

need to decide which record should be kept out of the many duplicates and 

then update the values of the record that is kept and delete the others. 

 

 Computational-costly error type: An error of this type will cost significant 

time relatively when it is cleaned by an algorithm. Computational-costly is a 

relative measure. It varies between different types of errors and different 

algorithms involved. For example, both methods of „SortingIndex‟ and 

„FullIndex‟ proposed in Febrl can be applied to detect duplicate records in a 

dataset. Relatively, „SortingIndex‟ algorithm requires less timing cost than 

the „FullIndex‟ algorithm. 

 

 Non-computational-costly error type: An error of this type is an opposite of 

the computational-costly error. An error of this type can be detected and 

cleaned without requiring much cleaning time compared with the 

computational-costly errors. 

 

 Algorithm ordering mechanism (AOM): An algorithm ordering mechanism 

(AOM) tries to organize the associated dirty data types to be cleaned in a 

specified order in order to maximize the efficiency and effectiveness during 

the data cleaning process. This mechanism will be applied to both groups of 

„automatic-removable error type‟ and „non-automatic-removable error type‟. 

With the help of this mechanism, all dirty data types from each group will be 

firstly ordered according to the different computational cost associated with 
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the algorithm selected for each dirty data type. Relatively, non-computational 

costly errors are put in the front of the order. Later, the entire order will be 

adjusted according to a further analysis based on the involved algorithms 

regarding the effectiveness. If an algorithm (A1) has to deal with the values 

from multiple fields, then any other algorithms existed to improve the quality 

of the values from these fields are needed to be executed ahead of A1. This 

mechanism will be further detailed in the case studied later. 

 

 Algorithm selection mechanism (ASM): Algorithm selection mechanism 

(ASM) helps with selecting a proper algorithm to deal with a specific dirty 

data type according to different considerations involved during the data 

cleaning process such as problem domain, error types, error rates, etc. These 

considerations are presented as the form of pre-defined rules in the system. 

With the help of ASM, dirty data types will be grouped under two sub-groups 

namely „automatic-removable errors‟ and „non-automatic-removable errors‟ 

respectively according to the algorithms selected for each dirty data type.  

 

4.2.3  The framework 

 

Briefly, the framework is trying to break the data cleaning process into three stages. 

Firstly, all dirty data from various data sources are classified into two different 

groups namely „single-source error type‟ group and „multi-source error type‟ group 

respectively. The first stage and the second stage in the data cleaning process are 

designed to deal with these two groups of error types exclusively.  

 

In the first stage, dirty data belonging to the group of „single-source error type‟ is 

detected and cleaned. Dirty data in this group refers to the dirty data presented in a 

single data source, e.g., misspelling, and domain constraint violation. In the second 

stage, dirty data belonging to the group of „multi-source error type‟ is detected and 

cleaned. Dirty data in this group refers to the dirty data present when data are 
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integrated from multiple data sources, e.g., duplicate records. The proposed two 

mechanisms (AOM and ASM) are then applied to each group during the data 

cleaning process. In order to improve the degree of automation, dirty data from the 

two groups are again grouped into two sub-groups namely „automatic-removable 

error types‟ and „non-automatic-removable error types‟ according to whether the 

dirty data can be fully cleaned without any human involvement.  

 

In the group of „automatic-removable error types‟, all dirty data should be detected 

and cleaned by the selected algorithms without any human involvement during the 

data cleaning process, while in the group of „non-automatic-removable error types‟, 

human involvements are required during the cleaning process. In each sub-group, 

the AOM helps with organizing those associated algorithms selected by the ASM.  

 

In the third stage, the tasks associated with data transformations are performed. 

Those data cleaned from the first and second stages are ready for the tasks such as 

instance-level or schema-level format standardizations, data integration, and data 

aggregation. Finally, data are ready for loading to any database application.  

 

Additionally, before entering into the first stage, a process called „DDS process‟ can 

be specified on the dirty data from the various data sources. According to the 

different needs of an organization, this process helps an organization to select only 

the most important dirty data to deal with rather than running all algorithms for all 

possible dirty data candidates in order to minimize the expensive cost associated 

with the data cleaning process. A general process of the proposed framework is 

given in Fig.4.1.  
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Fig.4.1 A data cleaning framework  

 

All major components and their embedded tasks from the first two stages in Fig.4.1 

are detailed below:  

 

(i) The DDS Process  

 

The DDS Process is trying to identify a selection of possible dirty data types rather 

than focusing on all dirty data types from the different data sources. By only 

focusing on the selected dirty data types, it is expected that the expensive process of 

data cleaning can be prioritized and therefore will maximally benefit the 

organization. Regarding the DDS problem introduced in Chapter 1, when specific 

needs of a business enterprise have to be taken into account, it is usually not realistic 

and not cost-effective to clean all the dirty data types encountered from different 

data sources. Since business rules can be used as guidelines for the validation of 

information quality, with the help of the proposed rule-based taxonomy, it is 

reasonable for a business enterprise to pick up a few of the most important groups of 

business rules rather than all of rules to deal with according to its own business 

priorities. According to David Loshin, „integrating control processes based on data 

quality rules communicates knowledge about the value of the data in use, and 
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empowers the business users with the ability to determine how best the data can be 

used to meet their own business needs‟. It also recommended that „organizing data 

quality rules within defined data quality dimensions can enable the governance of 

data quality management and data stewards can use data quality tools for 

determining minimum thresholds for meeting business expectations, monitoring 

whether measured levels of quality meet or exceed those business expectations‟ [12]. 

The proposed taxonomy of dirty data is a data quality rule based taxonomy which 

forms relationships between dirty data types and data quality rules. When these data 

quality rules are organized under the defined data quality dimensions, a relationship 

between data quality dimensions and dirty data types can also be formed, which will 

be used to develop a method to deal with data quality problems.  

 

In detail, in order to generate a better DDS process result, an assessment of data 

quality is first required. According to the review in chapter 2, data quality cannot be 

assessed independently of the people who use the data, i.e., data consumers. It is 

possible that the same data used in different tasks may require different quality 

characteristics. Therefore, both subjective and objective data quality metrics are 

required during the DDS process.  

 

Firstly, objective assessment is performed. According to the specific business 

priority policy, data quality dimensions are obtained together with different business 

rules associated within each dimension. The following five data quality dimensions: 

accuracy, completeness, consistency, currentness and uniqueness have been used as 

the dimensions to measure data quality involving data values. Brief introductions of 

these five dimensions are given below: 

 

 Accuracy dimension: The accuracy of the datum refers to the degree of 

closeness of its value v to some value v’ in the attribute domain considered 

correct for the entity e and attribute a. If the datum‟s value v is the same as a 
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correct value v’, the datum is said to be accurate or correct.  

 Completeness dimension: Completeness is the degree to which a data 

collection has values for all attributes of all entities that are supposed to have 

values. 

 Currentness dimension: A datum is said to be current or up to date at time t if 

it is correct at time t. A datum is out of date at time t if it is incorrect at t but 

was correct at some moment preceding t. 

 Consistency dimension: Data is said to be consistent with respect to a set of 

data model constraints if it satisfies all the constraints in the set. 

 Uniqueness dimension: Uniqueness of the entities within a data set implies 

that no entity exists more than once within the data set. 

 

These data quality dimensions are ordered based on the business priority policy. 

With the help of the proposed rule-based taxonomy of dirty data, a collection of 

dirty data types are selected and associated within each data quality dimension. Then, 

according to different individual needs from different business organizations, the 

most wanted dimensions are selected and algorithms/methods for dealing with the 

dirty data types within the selected dimensions are collected.  

 

Meanwhile, a subjective assessment is conducted by different data consumers. 

Subjective data quality assessment evaluates data quality from views of data 

collectors, custodians, and data consumers [50] and could adopt a comprehensive set 

of data quality dimensions which are defined from the perspective of data consumers 

[4]. The assessment is focussed on the management perspective and concentrates on 

whether the data is fitness for use. During this process, questionnaires, interviews, 

and surveys can be developed and used to assess these dimensions. From the 

literature, subjective assessment results may corroborate with objective assessment 

results. In this case, the results from objective assessment will be used for the next 

step. However, when discrepancies exist between the subjective and objective 
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assessments, organizations should investigate the root causes and consider the 

corrective actions. For example, whether the dimensions from subjective assessment 

should be included for the final result or whether the discrepancies can be 

disregarded for the final result. Finally, with these selected dirty data types along 

with the available algorithms, a classification is made. These dirty data types 

together with their algorithms are grouped into the „single-source error type‟ group 

and the „multi-source error type‟ group. The general process of solving the DDS 

problem is shown in Fig.4.2.  

 

As is shown in Fig.4.2, tasks from the DDS process include: 

 

a) Create an order of the five dimensions according to the business priority 

policy. 

b) Identify data quality problems with the help of the proposed taxonomy of 

dirty data.  

c) Map the dirty data types identified in b) into the dimensions against the 

classification table. 

d) Comparatively analyze on both objective and subjective assessments’ results. 

e) Decide dimensions to be selected based on the budget.  

f) Select available algorithms, which can be used to detect dirty data types 

associated with dimensions identified in e). 

g) Group the selected dirty data types into ‘single-source error type’ group and 

‘multi-source error type’ group with the help of domain and technical knowledge so 

that they can be dealt with in the next two stages respectively.  
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Fig.4.2 The DDS Process 

 

(ii) The single-source process 

 

The purpose of decoupling the process of data cleaning into the two stages of single 

source process and multi-source process is for the minimization of the data cleaning 

time. For example, duplicate record is a common dirty data type which occurs when 

data from multiple sources are integrated together. The most reliable way to detect 

duplicate records is to compare every record with every other record and is involved 

with the quadratic cost. It will become even impossible to be accepted when larger 

sizes of datasets are involved considering the time used for data cleaning. However, 

if a significant number of tuples can be removed within single sources, the number 

of comparisons that are necessary for detecting the integrated records will be 

significantly reduced and the time required will be minimized.  
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DB(i), the „algorithm selection mechanism‟ is firstly applied to associate an 

appropriate algorithm to each error type according to the different rules defined by 

the users.  

 

Then, these single-source error types from each single source DB are again 

decoupled into two groups namely automatic-removable errors and 

non-automatic-removable errors. The „algorithm selection mechanism‟ can help with 

the decoupling work. For each dirty data type addressed in the proposed framework, 

the meta data of its related algorithms such as „computational cost‟, „whether a 

human involvement is needed during the execution‟ are kept in the proposed 

framework. Once a data quality problem is classified in the group of single-source 

error types and a suitable algorithm is selected by the „algorithm selection 

mechanism‟, the corresponding meta data of this algorithm will be extracted and 

analyzed by the „algorithm selection mechanism‟.  

 

According to the different meta data supplied for the algorithms involved in the 

group of „single-source error types‟, it is easy to decouple these single-source error 

types into the two sub-groups of „automatic-removable errors‟ and 

„non-automatic-removable errors‟ respectively. For each sub-group, the „algorithm 

ordering mechanism‟ is applied to organize the execution of algorithms in each 

sub-group.  

 

As mentioned, the ordering generated by this mechanism will address both 

efficiency and effectiveness of data cleaning. Firstly, the meta data of computational 

cost of each algorithm is extracted and analyzed by the „algorithm ordering 

mechanism‟. Algorithms dealing with non-computational cost errors are put at the 

front in order. Then, the effectiveness associated with each algorithm is further 

analyzed and re-ordering carried out by this mechanism. Once the ordering work is 

done, the algorithms are ready to be executed.  
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The cleaning for the group of „automatic-removable errors‟ is firstly performed, then 

followed by the group of „non-automatic-removable errors‟. As mentioned in section 

4.1, algorithm selection and algorithm ordering are two important factors to 

influence the performance and accuracy of the data cleaning result. Users of existing 

data cleaning approaches such as Febrl or ARKTOS have to specify the algorithm 

selection as well as its ordering by themselves, which not only minimize the degree 

of automation during the data cleaning process but also is likely to result in poor 

cleaning results as discussed before. The proposed framework provides a solution by 

introducing two mechanisms (ASM and AOM) to cope with the algorithm selection 

problem as well as the algorithm ordering problem, which improves the degree of 

automation during the data cleaning process as well as the efficiency/effectiveness 

of data cleaning. The general process of dealing with the single-source process is 

presented in Fig.4.3. As shown in Fig.4.3, in single-source process: 

 

 (1) Tasks associated with applying the algorithm selection mechanism include: 

a) For all dirty data types from the group of ‘single-source error types’, selecting 

an appropriate algorithm for each dirty data type involved. 

b) Grouping all dirty data types from the group of ‘single-source error types’ based 

on the selected algorithms into two sub-groups either the sub-group of 

‘automatic-removable errors’ or the sub-group of ‘non-automatic-removable 

errors’. 

 

(2) Tasks associated with applying the algorithm ordering mechanism include: 

a) Ordering all algorithms from each sub-group of either ‘automatic-removable 

errors’ sub-group or the ‘non-automatic-removable errors’ sub-group according 

to the computational cost associated with each selected algorithm. Algorithms 

dealing with non-computational cost errors are put at the front in the order. 

b) Adjusting the order obtained from a) to maximize the effectiveness of each 
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involved algorithm in the sub-group. 

 

(3) Tasks in the single-source process include: 

a) Dealing with dirty data from the sub-group of ‘automatic-removable errors’ 

with the help of the selected algorithms by ASM, based on the order generated 

by AOM. 

b) Dealing with dirty data from the sub-group of ‘non-automatic-removable errors’ 

with the help of the selected algorithms by ASM, based on the order generated 

by AOM. 

 

Fig.4.3 The single-source process 
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(iii) The multi-source process 

 

Multi-source process deals with multi-sources errors. Firstly, with all the 

multi-source errors identified, ASM is applied to select an appropriate algorithm for 

each associated dirty data type. Similar to the single-source process, these 

multi-source errors are then further grouped into two sub-groups: 

automatic-removable errors and non-automatic-removable errors with the help of 

ASM.  

 

Dirty data belongs to the sub-group of „automatic-removable errors‟ are firstly dealt 

with followed by the dirty data from the sub-group of „non-automatic-removable 

errors‟. The AOM is applied to generate an appropriate order to execute the multiple 

algorithms involved in each sub-group. The general process of dealing with 

multi-source process is given in Fig.4.4.  

 

 

Fig.4.4 The multi-source process 
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b) Grouping all dirty data types from the group of ‘multi-source error types’ based 

on the selected algorithms into two sub-groups either the sub-group of 

‘automatic-removable errors’ or the sub-group of ‘non-automatic-removable 

errors’. 

 

(2) Tasks associated with applying the algorithm ordering mechanism include: 

a) Ordering all algorithms from each sub-group of either ‘automatic-removable 

errors’ sub-group or the ‘non-automatic-removable errors’ sub-group according 

to the computational cost associated with each selected algorithm. Algorithms 

dealing with non-computational cost errors are put at the front in the order. 

b) Adjusting the order obtained from a) to maximize the effectiveness of each 

involved algorithm in the sub-group. 

 

(3) Tasks in the multi-source process include: 

a) Dealing with dirty data from the sub-group of ‘automatic-removable errors’ 

with the help of the selected algorithms by ASM, based on the order generated 

by AOM. 

b) Dealing with dirty data from the sub-group of ‘non-automatic-removable errors’ 

with the help of the selected algorithms by ASM, based on the order generated 

by AOM. 

 

Compared with current data cleaning approaches reviewed in Chapter 2, the 

proposed framework has several features which those existing data cleaning 

approaches have not considered: 

 

(1) The use of the proposed rule based taxonomy of dirty data during the data 

cleaning process. 

 

(2) The DDS process, which can help a business take into account the special needs 

according to the different business priority policy. This will be especially helpful 
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when the given budget of a business for data cleaning is limited.  

 

(3) The application of an algorithm selection mechanism during the cleaning process. 

Current data cleaning approaches do not supply any knowledge about the selection 

of an appropriate algorithm as well as providing a guideline for ordering the selected 

algorithms. In some approaches, this task is left to its users to make a decision and in 

others, only a fixed solution for all situations is provided without considering the 

domain problem or the nature of dirty data. This not only affects the quality of the 

cleaning result but also increases the cleaning time. From the literature, the selection 

of a suitable algorithm for dealing with a specific dirty data type has proven to be a 

difficult task with many aspects need to be considered. Due to the research scope, it 

is impossible for us to test all algorithms/methods associated with all the dirty data 

types from the proposed taxonomy. However, in chapter 5, a group of selected 

approximate string matching algorithms have been used for such a test. As is 

presented later, a technique that can cope with all situations does not exist. 

 

(4) The application of an „algorithm ordering mechanism‟ during the cleaning 

process. Current data cleaning approaches do not provide guidelines for ordering the 

multiple data cleaning activities involved during the data cleaning process. Similar 

to the selection of an algorithm, in some approaches such as ARKTOS, this task is 

left to its users to make a decision. In others such as Febrl, multiple data cleaning 

activities have to be done separately rather than in a single data cleaning process. 

This not only affects the effectiveness of data cleaning results but also minimizes the 

degree of automation. With the help of the proposed algorithm ordering mechanism, 

multiple data cleaning activities are organized into a specific order with both degree 

of automation and effectiveness considered. Thus, the efficiency and effectiveness 

regarding the whole data cleaning process could be improved. 
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(5) Decoupling the whole data cleaning process into two sub-processes 

(single-source process and multi-source process) and dealing with single-source 

process first followed by the multi-source process. By doing so, the time required 

for cleaning the dirty data from the group of „multi-source error types‟ is greatly 

reduced and the efficiency of data cleaning should be improved [32].  

 

4.3  A case study 

 

To illustrate the basic framework, a data cleaning tool based on the proposed data 

cleaning framework has been prototyped. A case study is presented in this section to 

show the efficiency and effectiveness of the proposed data cleaning framework by 

applying it to some purposely designed databases. 

 

In the U.K., National Health Service (NHS) is a nationwide organization, which 

provides health services to all residents. By gathering all information of all residents 

to a data warehouse (DW), the level of NHS services could be improved. Suppose 

every city in the U.K. has a single local database which contains the information of 

residents in the local city. The DW needs to bring altogether the information from 

each local database in each city. The problem remains that duplicate information 

may exist either in a single data source or when multiple data sources are integrated. 

Duplicate information occurs due to many reasons. For example, consider university 

students who move to another city after graduation. Students from city-A may 

register their doctors in city-A where their universities are located. These students 

may again register other doctors in city-B when they move there for their further 

studies or their new jobs after their graduation. In this case, information on these 

students may be stored in both cities‟ local databases which duplicate the 

information.  
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The following tables (table 4.1 and table 4.2) show the samples of data entered in 

the two cities‟ NHS local databases respectively, where VST stands for valid start 

time, and VET for valid end time. 

 

No. Last Name First Name Age City Post VST VET 

1 Colae Liam 22 Edinburgh Student 22-09-2005 Now 

2 Gerrard John 23 Student Edinburgh 02-10-2004 Now 

3 Higgins Alan 21 Edinburgh Student 05-10-2004 20-06-2004 

4 Kent Alex 36 Edinbugh Engineer 18-09-2003 Now 

5 Owen Mark 18 Edinburgh Student 06-10-2004 Now 

6 Small Helen 23 Edinburgh Student 12-09-2002 Now 

7 William,Smith  24 Edinburgh Student 08-10-2004 Now 

8 Smith Mary 34 Edinburgh Engineer 12-10-2005 10-09-2005 

9 Snow Jamie 22 Edi Student 10-10-2005 Now 

10 Cole Lieam 22 Edinburgh Student 22-09-2005 Now 

Table 4.1 Records in city-A 

 

No. Last Name First Name Age City Post VST VET 

1 Cole Liam 26 London Engineer 20-08-2009 Now 

2 Gerrad John 27 London Engineer 18-09-2004 Now 

3 Higgins Alan 21 London Engineer 30-08-2008 Now 

4 Kent John 34 London Engineer 18-09-2007 Now 

5 Owen Mary 22 London Student 10-10-2008 Now 

6 Small Helen 23 Lndon Student 10-09-2003 Now 

7 Smith William 24 London S 08-10-2008 Now 

8 Kirsty Smith 38 London Engineer 10-10-2009 Now 

9 Snow John 22 London Student 08-08-2006 Now 

Table 4.2 Records in city-B 

 

By observing the two tables, some dirty data can be easily identified. For example, 

in some records, the value of „Edinburgh‟ has been misspelt as „Edinbugh‟ in the 

„City‟ field. NHS has also noticed that some suspicious duplicate personal 
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information exists in the tables. They decide to detect the duplicate information and 

eliminate it to make sure the personal information is only kept in the local city‟s 

database where the person is currently living. The proposed data cleaning 

framework has been applied for helping NHS with cleaning such dirty data. The 

actual cleaning process is detailed below with a DDS process specified firstly before 

entering into the first stage to deal with dirty data in each single data source. 

 

(1) The DDS process 

 

Data from the two databases has been fully analyzed. Based on the data provided by 

table 4.1 and table 4.2, the following 9 dirty data types are identified according to 

table 3.8:  

 

 DT.15: in table 4.1, a missing value is observed in the field of ‘First Name’ 

where ‘No.’=7. 

 DT.17: in table 4.1, in the record where ‘No.’=7, the value of its field ‘First 

Name’ has entered into the field of ‘Last name’ followed by the correct last 

name value, which causes a problem of ‘Extraneous data entry’. 

 DT.20: in table 4.1, in the record where ‘No.’=2, the problem of ‘entry into 

wrong field’ is noticed. The value of its field ‘City’ has entered into the field 

‘Post’ and vice versa. Similarly, in table 4.2, in the record where ‘No.’=7, the 

value of field ‘First Name’ has entered into its field ‘Last Name’ and vice 

versa. 

 DT.23: in table 4.2, suppose it is known that ‘Alan Higgins’ in table 4.2 is 

exactly the same person in table 4.1, then an outdated value is observed in 

the field of ‘age’ in the record where ‘No.’=3.  

 DT.27: in table 4.1, misspelling errors are seen in records where ‘No.’ =1, 4, 

and 10 in the fields of ‘Last Name’, ‘City’, and ‘First Name’ respectively. In 

table 4.2, misspelling errors are seen in records where ‘No.’ =6 and 8 in the 



132 
 

fields of ‘City’ and ‘Last Name’ respectively.  

 DT.32: in table 4.1, in the record where ‘No.’=9, the value in the field ‘City’ 

is abbreviated as ‘Edi’ rather than ‘Edinburgh’. 

 DT.33: in table 4.2, in the record where ‘No.’=7, the value in the field ‘Post’ 

is represented with a special character ‘S’ rather than ‘Student’. 

 DT.28: in table 4.1, suspicious duplicates are observed. For example, 

records where ‘No.’=1 and 10. 

 DT.29: when data are viewed from both tables, many suspicious duplicate 

records are noticed. For example, records where ‘No.’=1, 2, 3, and 7 from 

table 4.1 are all suspicious candidates. 

 

In order to build a high quality DW, the data in the databases should be cleaned as 

much as possible. Thus, NHS plans to execute the following data cleaning activities 

(DCA) to improve its data quality: 

 

No. Data Cleaning Activity 

DCA.1 Detect/fill missing values from the fields of „Last Name‟ and „First Name‟  

DCA.2 Standardize values from the fields of „Last Name‟ and „First Name‟. 

DCA.3 
Correct the values from entering into wrong fields based on the fields of 

„City‟, „Post‟, „First Name‟, and „Last Name‟. 

DCA.4 Update values from the field of „Age‟. 

DCA.5 Correct the misspelt values in „Last Name‟, „First Name‟ and „City‟ fields. 

DCA.6 Detect/standardize the abbreviated values from the field of „City‟. 

DCA.7 
Detect the use of special character values from the field of „Post‟ and 

correct them to the standardized values. 

DCA.8 Clean the duplicate records from each single dataset. 

DCA.9 Clean the duplicate records from the integrated datasets. 

Table 4.3 Data cleaning activities 
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Suppose due to the limited available resources within the NHS, performing all the 9 

data cleaning activities is unrealistic. Therefore, before entering into the first stage to 

deal with the dirty data from different single data sources, the DDS process is 

performed to help NHS with selecting some of most important dirty data to clean. 

The DDS process for NHS begins with a mapping between business rules from NHS 

and data quality dimensions. 

 

(i)  Mapping between Data Quality Rules and Data Quality Dimensions 

 

With the five data quality dimensions introduced in section 4.2.2, a new 

classification of the dirty data types is introduced beginning with a mapping of data 

quality rules with data quality dimensions. Table 4.4 shows the result of the 

mapping: 

 

Data Quality Dimension Data Quality Rules 

Accuracy dimension R2.2, R3.2, R4.2, R4.4 

Completeness dimension R1.3, R4.1 

Currentness dimension R4.3 

Consistency dimension R1.2, R3.1, R4.6 

Uniqueness dimension R4.5 

Table 4.4 Data quality dimension and data quality rules 

 

(ii) A Classification 

 

The result of Table 4.4 provides an immediate help for the proposed classification of 

dirty data within the new taxonomy. Combining the result from table 3.9 and table 

4.4, a classification of dirty data types based on data quality dimensions is achieved 

as shown in table 4.5. 
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Data Quality Dimension Dirty Data Type 

Accuracy dimension 

DT.5~DT.9, 

DT.11~DT.13, DT.16~DT.20,  

DT.25~DT.27 

Completeness dimension DT.3, DT.4, DT.14, DT.15 

Currentness dimension DT.21~DT.24 

Consistency dimension DT.1, DT.2, DT.10, DT.30~DT.38 

Uniqueness dimension DT.28, DT.29 

Table 4.5 Data quality dimensions and dirty data types 

 

Therefore, data cleaning activities for NHS can be considered as cleaning dirty data 

by different data quality dimensions. The DDS problem described in Chapter 1 can 

therefore be solved by forming a relationship between the defined data quality 

dimensions and dirty data types with the help of the rule-based taxonomy of dirty 

data. 

 

(iii) The Method and the Result 

 

With the help of the classification from part (ii), the method described in section 

4.2.2 is prototyped during the DDS process below: 

 

a) Create an order of the five dimensions according to the business priority policy.  

 

According to NHS‟s priority policy, the uniqueness of information recorded in DW 

is often very stringent for NHS data following with the accuracy. The order of the 

five data quality dimensions for NHS is therefore: Uniqueness  Accuracy  

Consistency  Completeness  Currentness, descending in priority.  

 

 



135 
 

b) Identify data quality problems.  

 

With the help of the rule-based taxonomy of dirty data, the following 9 dirty data 

types are identified: DT.17, DT.20, DT.27, DT.32, DT.33, DT.15, DT.23, DT.28, 

DT.29. 

 

c) Map the data types identified in b) onto the dimensions against the 

classification table. 

 

With the help of table 4.5, the mapping is achieved as given in table 4.6. It is clear 

that all identified data quality problems have been organized under all the five data 

quality dimensions. Suppose it is impossible for NHS to address all data quality 

problems associated with the five data quality dimensions. Therefore, the problem 

that NHS is facing is how to select a group of dirty data types to deal with, the DDS 

problem. 

 

Data Quality Dimension Dirty Data Type 

Uniqueness dimension DT.28, DT.29 

Accuracy dimension DT.17, DT.20, DT.27,  

Consistency dimension DT.32, DT.33,  

Completeness dimension DT.15 

Currentness dimension DT.23 

Table 4.6 An example of data quality dimensions and dirty data types 

 

d) Decide dimensions to be selected based on the budget.  

 

According to the priority policy, NHS chooses to deal with the data quality problems 

related with uniqueness dimension and accuracy dimension firstly since the 

uniqueness dimension and the accuracy dimension are much more urgent than other 
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dimensions. Thus, dirty data types: DT.17, DT.20, DT.27, DT.28, and DT.29 are 

chosen firstly to be cleaned. 

 

e) Select the available algorithms, which can be used to detect dirty data types 

associated with dimensions identified in d). 

f) Group the selected dirty data types into single-source errors group and 

multi-source errors group with the help of domain and technical knowledge so 

that they can be dealt with in the next two stages respectively. 

 

Finally, the DDS process provides the following data cleaning activities, the related 

dirty data types and the available techniques for NHS to choose (see table 4.7).   

 

Group DCA DDT Techniques 

Single-source 

error types 

DCA.3 DT.20 
Look-up tables; 

reference functions 

DCA.5 DT.27 Spell checker 

DCA.2 DT.17 Pattern learning technique 

DCA.8 DT.28 
Deduplication techniques; 

Approximate string matching algorithms 

Multi-source 

error types 
DCA.9 DT.29 

Recode Linkage techniques; 

Approximate string matching algorithms 

Table 4.7 The grouping results 

 

(2)  Dealing with the single-source process 

 

According to table 4.7, four data cleaning activities are involved in the single-source 

process and four dirty data types: DT.20, DT.27, DT.17 and DT.28 belong to the 

group of „single-source error types‟. For each dirty data type, available algorithms 

are provided. The proposed data cleaning approach will firstly deal with these data 
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cleaning activities. For each dirty data type involved in this group, the „algorithm 

selection mechanism‟ is applied to associate an appropriate algorithm out of the 

other alternatives. Then, this mechanism further decouples these dirty data types into 

two sub-groups according to the metadata provided by each algorithm, i.e., 

„automatic-removable errors‟ and „non-automatic-removable errors‟ (see table 4.8). 

For example, in this case study, a duplicate detection method „FullIndex‟ has been 

associated with dirty data type DT.28 to detect duplicate records in each single data 

source. However, since duplicate detection based on this method some times 

requires an expert‟s involvement to determine the matching result, DT.28 is grouped 

into the „non-automatic-removable errors‟.  

 

Group Sub-group DDT Techniques 

Single-source 

error types 

Auto 
DT.20 Reference function 

DT.27 Spell checker 

Non-auto 

DT.17 standardization 

DT.28 
FullIndex, 

String Matching Algorithm 

Table 4.8 An example of the two sub-groups 

 

With the two sub-groups, the „algorithm ordering mechanism” is applied to 

automatically specify a sequence of the execution order regarding the multiple 

algorithms involved. This function tries to manage the ordering of the multiple 

algorithms based on two considerations.  

 

The first consideration is related to the efficiency of data cleaning. From this point 

of view, an order is arranged aiming to reduce the processing time. According to the 

„algorithm ordering mechanism‟, dirty data types from the group of 

„automatic-removable errors‟ are firstly cleaned with the supplied algorithms. In this 

example, DT.20 and DT.27 belongs to the group of „automatic-removable errors‟ 



138 
 

since the techniques provided by the system can automatically detect these errors 

and correct them to the expected values. Dirty data types from the group of 

„non-automatic-removable errors‟ are dealt with secondly. Dealing with these dirty 

data sometimes requires  involvement from an expert. For example, during a 

duplicate elimination process, an expert has to be involved to make a decision for 

the merging or purging tasks. In this example, DT.17 and DT.28 belongs the group 

of „non-automatic-removable errors‟. In each sub-group, the „algorithm ordering 

mechanism‟ is further applied to organize the selected algorithms. Algorithms 

dealing with non-computational cost errors are put at the front in the order according 

to the strategy proposed in the „algorithm ordering mechanism‟. This strategy aims 

to minimise the processing time and also ensures that when it‟s time to perform 

computational costly errors, such as duplicates, the data volume should be 

significantly reduced. Hence, the processing time needed is reduced [32]. With this 

first consideration, the order of the execution of data cleaning regarding the involved 

dirty data types in the group of „single-source error types‟ will be: 

DT.20DT.27DT.17DT.28.  

 

The second consideration for the „algorithm ordering mechanism‟ is related to the 

effectiveness of the data cleaning. From this point of view, the nature of the selected 

algorithm as well as the associated data cleaning rules are involved to arrange an 

order. In this example, four data cleaning activities are associated within the 

single-source process. For each data cleaning activity of DCA.2, DCA.3, and DCA.5, 

executing the associated algorithm will only affect the field values where the 

corresponding dirty data reside. With respect to the effectiveness of data cleaning for 

the three dirty data types, the order based on the first consideration will not cause 

any side-effect. However, suppose the Jaro algorithm for DCA.8 is applied on the 

fields of „Last Name‟ and „First Name‟ to calculate the similarities of the name 

values and the rule for duplicate detection is defined as “if the names of the two 

records are similar and the value of the field „Post‟ is „Student‟, then the two records 
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are duplicate records”. Clearly, according to this rule as well as the application of the 

Jaro algorithm, data values of the three fields „Last Name‟, „First Name‟ and „Post‟ 

are all involved.  

 

Obviously, poor data quality of the three fields will result in a low effectiveness of 

the duplicate detection in this case. From table 4.3 and table 4.5, it is known that the 

existence of dirty data types: DT.15, DT.17, DT.20, DT.27 and DT.33 will influence 

the data quality in the three fields. Therefore, in order to improve the effectiveness 

regarding the cleaning of DT.28, the two extra dirty data types DT.15 and DT.33 

should be considered before DT.28.  

 

In this case, the „algorithm selection mechanism‟ is again applied to find a suitable 

algorithm for the two dirty data types and grouped them into the two sub-groups 

again. The order generated by the „algorithm ordering mechanism‟ for the 

single-source process is: DT.15DT.33DT.20DT.27DT.17DT.28 based on 

the two considerations. 

 

However, suppose due to the large dataset involved in the single-source process, the 

„SortingIndex‟ method is selected by the „algorithm selection mechanism‟ to deal 

with DT.28 rather than the „FullIndex‟ method. By applying the „SortingIndex‟ 

algorithm, the cost is reduced by compromising the accuracy. During the execution 

of the „SortingIndex‟ algorithm, the creation of the sorting key is an important step. 

Table 4.9 shows an example of how the sorting key is created. 
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First 

Name 

Last 

Name 
Address ID SortingKey 

John Smith 456 Merchiston Crescent 45678987 SmiJoh456Mer456 

John Smyth 456 Merchiston Crescent 45688987 SmyJoh456Mer456 

Smith, John 456 Merchiston Crescent 45688987 JohSmi456Mer456 

Table 4.9 An example of sorting key 

 

The „SortingIndex‟ algorithm is proposed by Hernandez et al which sorts the records 

based on the sorting key values [13]. The sorting key value for each record is 

computed by extracting relevant attributes or portions of the attributes‟ values. 

Relevant attributes should have sufficient discriminating power in identifying 

records that are likely to be duplicates. Table 4.9 shows an example of how sorting 

key values might look. The sorting key values are a combination of sub-string values 

of attributes in the order of last namefirst nameaddressID. Since the records 

are sorted using the sorting key values generated, the attribute that first appears in 

the sorting key selection has the most discriminating power, followed by the 

attributes that appear subsequently with decreasing discriminating power. Therefore, 

it is important that the value of the first selected attribute should be as clean as 

possible.  

 

In table 4.9, all three records are supposed to be the duplicate records. However, 

because the first name value and the last name value of the third person have been 

transposed (DT.34), the third record might not end up in the same sliding window as 

the first and second records. Records not in the same window will not be considered 

as candidate duplicate record pairs and the final cleaning result will be defective. 

Therefore, in the case that a „SortingIndex‟ method is applied to detect duplicate 

records, it is necessary to make sure the attributes‟ values that are used for creating 

the soring key values should be as clean as possible.  

 



141 
 

In the case proposed by table 4.9, suppose a method of dealing with inconsistency 

problem (DT.34) for personal names is firstly applied before applying the 

„SortingIndex‟ algorithm, the sorting key value of the third record will be corrected 

as „SmiJoh456Mer456‟ which is exactly the same as the first record‟s sorting key 

value. All three records in table 4.9 in this case will fall into the same window and 

will compare to each other. With the selected name matching algorithm applied later, 

the tree records might be detected as the duplicate records as expected.  

 

In the NHS case, suppose in order to deal with DT.28, the sorting key values for the 

„SortingIndex‟ method are a combination of sub-string values of attributes in the 

order of CityLast Name. The Jaro algorithm is still selected by the „algorithm 

selection mechanism‟ to calculate the similarities of the values from the fields of 

„Last Name‟ and „First Name‟. The cleaning rule for DT.28 is changed to “if the 

names of the two records are similar and the value of the field „City‟ is the same, 

then the two records are duplicate records”.  

 

In this case, the data quality of the values from the field „City‟ is much more 

important than the field of „Post‟. Therefore, the order this time is changed to 

„DT.15DT.32DT.20DT.27DT.17DT.28‟ 

 

(3)  Dealing with the multi-source process 

 

In the group of „multi-source error types‟, the cleaning process is similar to the 

group of „single-source error types‟. When multiple dirty data types are involved, 

the „algorithm ordering mechanism‟ is firstly applied to find a suitable algorithm for 

each dirty data type and then further groups these dirty data types into the two 

sub-groups of „automatic-removable errors‟ and „non-automatic-removable errors‟. 

In each sub-group, the „algorithm ordering mechanism‟ is used for guiding the 

sequence of the multiple algorithms involved. In this example, only DT.29 is 
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involved in the multi-source process. According to the „algorithm selection 

mechanism‟, the method of „FullIndex‟ is selected to detect the duplicate records 

from the multiple data sources with the help of the Jaro algorithm to calculate the 

similarities of both name values. For any pair of detected duplicate records, a 

confirmation rule is defined as „for each pair of records detected, if the value of the 

field „Post‟ is Student in one record, and the difference of the values in the field of 

„VST‟ is 4 or more years, then the two records are confirmed as duplicates‟. In this 

case, regarding the effectiveness of the involved algorithm, the following order is 

made against on the following dirty data types: 

DT.15DT.33DT.20DT.17DT.29. When all cleaning activities are finished, 

the data of NHS are ready for the final stage of „transformation process‟ where data 

are transformed into the expected formats according to the different requirements 

from the DW.  

 

The case study in this section clearly shows the complexities regarding the 

organization of the multiple data cleaning activities during a data cleaning process. It 

shows that many factors are needed to be considered for specifying an order towards 

the multiple cleaning activities involved such as the nature of the selected algorithm, 

the cleaning rules, the computational cost.  

 

A good order of data cleaning activities not only will improve the efficiency of the 

data cleaning but also will improve the effectiveness. Unfortunately, according to the 

author‟s knowledge, none of the existing data cleaning approaches reviewed in 

chapter 2 has addressed this problem intentionally. Only one approach (ARKTOS) 

has mentioned organizing of the multiple cleaning activities before the cleaning 

process. However, organizing the multiple cleaning activities in ARKTOS totally 

depends on the user‟s individual preference without specifying the many factors as 

the proposed framework does. For users who are not familiar with the different 

problem domains as well as the cleaning techniques involved, a poor order of the 
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multiple cleaning activities might be made. This will result in a low efficiency and 

low effectiveness data cleaning result during the data cleaning process.  

 

Existing approaches such as AJAX and IntelliClean provide only a fixed cleaning 

process from „data standardization‟ to „duplicate elimination‟ without giving any 

further details in each step. Additionally, IntelliClean offers only one fixed solution 

to deal with a cleaning activity. For example, only SNM algorithm is provided in 

IntelliClean to detect duplicate records. The „algorithm selection mechanism‟ from 

the proposed framework is similar to the mechanism used in the physical level in 

AJAX. However, compared with AJAX, the proposed framework addresses more 

concerns regarding the selection of a suitable algorithm. In AJAX, in order to 

compare two records, users are required for some specifications such as specifying 

the required algorithms manually such as specifying an approximate string matching 

algorithm and setting the related parameters manually.  

 

However, as is shown later in chapter 5, users who are not familiar with the selection 

of a suitable algorithm will usually make a wrong choice among the many 

alternatives, which will result in a low timing performance and low accuracy 

performance with respect to the final cleaning results. In the proposed framework, 

both timing performance and accuracy performance are considered by addressing 

the two proposed mechanisms during the data cleaning process. 

 

4.4  Conclusion 

 

In this chapter, a novel data cleaning framework has been proposed, which aims to 

challenge the following issues: (i) minimising the data cleaning time and improving 

the degree of automation in data cleaning, (ii) improving the effectiveness of data 

cleaning. Additionally, the proposed framework provides a function (The DDS 

process) to address the special case when individual business requirements are 
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involved. This function can help a business to take into account special needs 

according to different businesses priority policies.  

 

The proposed framework retains the most appealing characteristics of existing data 

cleaning approaches, and improves the efficiency and effectiveness during the data 

cleaning process. Compared with existing data cleaning approaches mentioned in 

chapter 2, the proposed framework provides several exclusive features which have 

not been addressed in those approaches.  

 

Firstly, regarding the ability for a data cleaning approach to deal with the various 

dirty data types, the proposed framework tries to address as many dirty data types as 

possible according to the proposed taxonomy of dirty data. Existing approaches only 

focus on solving two kinds of data cleaning activities, i.e., data standardization and 

duplicate records elimination. Some tools such as ARKTOS only focus on solving 

one activity. Obviously, none of the existing tools in section 2.2 can help with 

providing an all-in-one solution to the problem proposed in the case study in section 

4.3.  

 

Secondly, the proposed framework addresses the order of the various cleaning 

activities exclusively and provides an automatic solution to organize the sequence of 

these activities, i.e., „algorithm ordering mechanism‟. None of the existing data 

cleaning approaches from chapter 2 has addressed this problem. In section 4.1, an 

order regarding six data cleaning activities is proposed by Müller and Freytag. 

However, in the proposed case study, both orders generated by the „algorithm 

ordering mechanism‟ are different from the one given by by Müller and Freytag. For 

example, according to the order given by Müller and Freytag, dealing with missing 

values is after the format adaptation. In the proposed case study, dealing with 

missing values is performed before the format adaptation due to the consideration of 

computational cost and effectiveness associated with the involved algorithms. To 
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some extent, the order given by Müller and Freytag is a general order to maximize 

the effectiveness of the data cleaning without considering the efficiency during the 

data cleaning process. The order proposed by the „algorithm ordering mechanism‟ 

addresses both effectiveness and efficiency during the data cleaning process.  

 

Finally, the proposed framework supplies a function of „algorithm selection 

mechanism‟ which provides an optimized algorithm regarding the different factors 

involved such as problem domain, error rate and computational cost. It selects an 

optimized algorithm to deal with different problems with various factors involved. 

In this way, both effectiveness and degree of automation are improved.  

 

In the next chapter, experiments are designed regarding the selection of a suitable 

approximate string matching algorithm. With the achieved experimental results, the 

importance regarding the selection of a suitable algorithm during the data cleaning 

process is highlighted.  

 

 

 

 

 

 

 

 

 

 

 

 

 



146 
 

CHAPTER 5  EXPERIMENT AND EVALUATION 

 

In chapter 4, the proposed data cleaning framework was presented. The special 

feature exclusively designed for the proposed framework is the introduction of two 

mechanisms during the data cleaning process. Regarding the selection of a suitable 

algorithm for each data cleaning activity, currently a user is required to manually 

select an algorithm for a specific cleaning task in existing data cleaning approaches. 

For example, Fig.5.1 shows a list of available approximate string matching 

algorithms provided by Febrl for the user to choose during the process of duplicate 

record detection. 

 

 

Fig.5.1 Approximate string matching algorithms from Febrl 

 

Compared with other existing tools which only adopt one fixed method to deal with 

a cleaning task without considering the different problem domains, Febrl is an 
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advance by providing multiple solutions for a cleaning task to each of the problem 

domains. Still, according to the review work in chapter 2, the disadvantage is clear 

that for users who do not have enough knowledge about these techniques, making a 

selection out of multiple alternatives is a difficult task. Even when an algorithm such 

as an approximate string matching algorithm is selected for a special task, how to set 

its related parameters is still unclear in existing approaches. For example, 

approximate string matching is an important step during the duplicate record 

elimination process and setting a threshold value for the selected approximate string 

matching algorithm is an important part for the matching task.  

 

Traditionally, in existing approaches such as AJAX, a universal threshold value is 

used for the selected approximate string matching algorithm without concern for the 

different problem domains, characteristics associated with the dataset such as error 

rate or size of dataset. As discussed, threshold value is one of the many factors to 

affect the effectiveness of the matching result and many factors should be considered 

when setting its value. In order to improve the degree of automation as well as the 

effectiveness of data cleaning, the „algorithm selection mechanism‟ is provided in 

the proposed data cleaning framework to facilitate the user in selecting a suitable 

algorithm for a specific cleaning task.  

 

Although it is impossible for us to have a thorough test on all existing available 

algorithms associated with the various dirty data types introduced in the proposed 

taxonomy, a set of approximate string matching algorithms have been analyzed and 

evaluated based on different carefully designed databases. Experimental results 

confirm the statement that there is no clear best technique for all situations. 

Suggestions have been made, which can be used as guidelines for researchers and 

practitioners to select an appropriate matching technique for a given dataset. Thus, 

both effectiveness and degree of automation will be improved during the data 

cleaning process. 
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5.1  Introduction 

 

String data is by nature more prone to contain errors such as misspelling, different 

representations due to abbreviations, different word sequence, and use of alias name 

values. Therefore, expressions denoting a single entity may be different from word 

sequence, spelling, spacing, punctuation and use of abbreviations. For example, the 

same person‟s name can be referred as „John Smith‟, „Smith, John‟, „J.Smith‟. 

Records that describe the same entity might differ syntactically due to containing 

such expressions. They can be found in a single dataset or when they are integrated 

from multiple data sources, which are termed as „Duplicate record in single data 

source‟ (DT.28) or „Duplicate record in multi data source‟ (DT.29) according to the 

proposed taxonomy of dirty data.  

 

The problem of identifying such duplicate records in databases is an essential and 

challenging step for data cleaning and data integration. This problem has become a 

crucial problem as more and more data stored in database systems needs to be 

integrated for the purpose of supplying decision support with the help of database 

applications. In data cleaning, the task of dealing with duplicate records is addressed 

by record matching techniques, also known as merge-purge, data de-duplication and 

instance identification. Generally, record matching can be defined as the process of 

identifying records in the same or different databases that refer to the same 

real-world entity. From the literature, there are two types of record matching: 

structural heterogeneity related and lexical heterogeneity related.  

 

Structural heterogeneity belongs to the schema-level problem, which refers to the 

problem of matching two databases with different domain structures. For example, 

the value of a customer‟s home address might be stored in a single attribute „address‟ 

in one database but might be presented in another database with more attributes such 

as „street‟, „city‟, and „postcode‟ respectively. Lexical heterogeneity belongs to the 



149 
 

instance-level problem which refers to databases with similar structure but different 

representation of data. For example, consider a personal name value. A name value 

of a person may be represented as “John Smith” in a record from one data source 

and as “John Smtih” in a record from another data source containing a misspelling. 

When data are integrated from different data sources, the two records are treated as 

two different persons and a duplicate record problem occurs. In this research, the 

lexical heterogeneity problem is foremost and it is assumed that the schema-level 

structural heterogeneity has been resolved as a priori. As shown in this lexical 

heterogeneity example, if these two names are not treated as the same person then it 

might introduce a duplicate error when integrating the data from these two sources.  

 

Names are important pieces of information when databases are de-duplicated. From 

the literature, name matching can be defined as the process of determining whether 

two name strings are instances of the same name. As mentioned in the beginning of 

this section, many reasons can cause name variations such as typos during data entry, 

use of different name formats, use of abbreviations. Thus, exact name comparison is 

not able to generate a good matching result. Rather, an approximate measure of how 

similar two names are is expected.  

 

Name matching in databases has been a persistent and well-known problem for 

years [118]. From the literature, several techniques are available to deal with this 

problem [14, 119-123]. However, still, there is no clear best technique for all 

situations [124]. A problem still exists for researchers and practitioners as how to 

select a technique for a given dataset [125]. In the past decade, several researchers 

have challenged this problem [124, 126-128]. However, none of them have 

undertaken a comprehensive analysis and comparison that considers the effect on the 

performance of accuracy and timing caused by the following factors: error rates, 

type of strings, type of typos, and the size of datasets. An overview of this work is 

given below in section 5.2. 
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5.2  Related work 

 

Bilenko et al evaluated and compared a few effective and widely used approximate 

string matching algorithms for matching strings' similarity [126]. Broadly, these 

algorithms can be classified into two categories namely „character-level algorithms‟ 

and „token-level algorithms‟.  

 

Character-level algorithms are designed to handle typographical errors. However, it 

is often the case that typographical conventions lead to the rearrangement of words, 

e.g., “John Smith” vs. “Smith, John”. In such cases, character-level algorithms fail to 

capture the similarity of the entities. Token-level algorithms are designed to 

compensate for this problem. Therefore, character-level algorithms are good for the 

single word problem, while token-level algorithms for the matching with more than 

one word.  

 

In Bilenko et al‟s work, five character-level algorithms and three token-level 

algorithms are used for the experimental works. 11 different datasets were used and 

the sizes of the 11 datasets ranged from 38 records to 5709 records. For each dataset, 

a single string formed with different sub-strings concatenated from multiple fields is 

used to evaluate the matching effectiveness of the selected algorithm. Based on the 

experimental results, the authors claim that Monge-Elkan algorithm performs best 

on average and SoftTF-IDF performs best overall. However, as pointed out by the 

authors, individual algorithm‟s performance varies significantly when different 

datasets are considered. For example, in the „Census dataset‟, the simple 

„Levenshtein‟ algorithm performs the best while it is the worst on average. Even 

methods that have been tuned and tested on many previous matching problems can 

perform poorly on new and different matching problems.  

 

A further examination of the problem reveals that an estimate of similarity between 
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strings can vary significantly depending on the domain for each field under 

consideration. During the experiment, each record is treated as a single, long-string 

field and the measurement of the similarity is just calculated based on the alignment 

strings from the different fields. Although the authors have also confirmed the 

reason associated with the different domains involved in the different fields, further 

examinations are not achieved in this work. The authors confirm that the limitation 

of the selected algorithm is the absence of special knowledge of the specific problem 

at hand and the solution is that some knowledge of the problem should be introduced 

to the algorithm used. However, this confirmation is not further expanded in detail in 

their work. Besides, regarding the threshold value used for the evaluation of an 

algorithm, only a suitable threshold value is chosen for the test as mentioned in the 

work. The work does not mention what a suitable threshold value should be for each 

algorithm and whether or not the value is universal for all the eight selected 

algorithms.  

 

Christen [124] tested more algorithms and provided a comprehensive analysis and 

comparison among these algorithms specifically to personal names. Christen 

discussed the characteristics of personal names as well as the potential sources of 

variations of personal names in detail. A number of algorithms that can be used to 

match personal names are reviewed. The author evaluated both accuracy and timing 

performance of the selected algorithms, considering given names, surnames and full 

names respectively. Based on the experimental results, the author claims that no 

single algorithm performs better than all others and nine useful recommendations 

regarding the algorithm selection during the matching of personal names are 

proposed in this work. Table 5.1 presents these 9 recommendations from Christen‟s 

work. 
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No. Recommendations 

1 

It is important to know the type of names to be matched, and if these names 

have been properly parsed and standardized, or if the name data potentially 

contains several words with various separators. 

2 

If it is known that the name data at hand contains a large proportion of 

nicknames and similar name variations, a dictionary based name standardization 

should be applied before performing the matching. 

3 
Phonetic encoding followed by exact comparison of the phonetic codes should 

not be used. Pattern matching techniques result in much better matching quality. 

4 
For names parsed into separate fields, the Jaro and Winkler techniques seem to 

perform well for both given and surnames, as do uni- and bigrams. 

5 
The longest common sub-string technique is suitable for unparsed names that 

might contain swapped words. 

6 

Calculating a similarity measure with respect to the length of the shorter string 

(Overlap coefficient) seems to achieve better matching results (compared to 

using the Dice coefficient or Jaccard similarity). 

7 
The Winkler modification (increase similarity when name beginnings are the 

same) can be used with all techniques to improve matching quality. 

8 

A major issue is the selection of a threshold that results in optimal matching 

quality. Even small changes of the threshold can result in dramatic drops in 

matching quality. Without labelled training data, it is hard to find an optimal 

threshold value. Optimal threshold values will also vary between data sets. 

9 

If speed is important, it is imperative to use techniques with time complexity 

linear in the string length (like q-grams, Jaro, or Winkler), as otherwise name 

pairs made of long strings (especially unparsed full names) will slow down 

matching. Alternatively, filtering using bag distance followed by a more 

complex edit distance based approach can be used. 

Table 5.1 Recommendations by Peter Christen 
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According to the author, regarding name matching, there is no single best algorithm 

available. Particularly, the author pointed out the importance of choosing a suitable 

threshold value (see recommendation 8). It is argued that the selection of a proper 

threshold value is a difficult task, even small changes of the threshold value could 

result in dramatic drops in matching quality. Although it is believed by the author 

that characteristics of both name data to be matched as well as the algorithms are 

needed to be considered when selecting an algorithm, more detailed analysis into 

these characteristics are not further studied but left as future work.  

 

Hassanzadeh et al [128] presented an overview of eight approximate string matching 

algorithms and evaluated their effectiveness on several carefully designed datasets. 

Regarding the algorithms studied in this work, only one algorithm belongs to the 

character-level algorithm, i.e., Levenshtein algorithm. The other seven algorithms all 

belong to the token-level algorithms. As is pointed by the author, the effectiveness of 

the algorithm highly depends on the characteristics of the data, which is also 

mentioned by Christen.  

 

Hassanzadeh et al designed a set of datasets for the experimental work and data 

from each dataset are associated with an exclusive specific characteristic such as the 

error rate (the amount of errors) or the type of errors. The problem regarding the 

threshold value selection proposed by Christen is studied in this work. According to 

the experimental results, the authors claim that the higher the error rate, the lower 

the threshold value should be set. Regarding the evaluation of the relative 

effectiveness of the algorithms, characteristics such as data error rate and data error 

type are involved in the evaluation work. According to the authors, both data error 

rate and error type will influence the effectiveness of the selected algorithm. For 

example, according to the experimental result, when the error rate of a given dataset 

is high, the HMM algorithm is among the most effective algorithm and could be 

selected to perform the matching task. However, when the error rate is low, the 
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effectiveness of HMM algorithm becomes low and should not be selected for the 

matching task.  

 

Compared with the previous work, Hassanzadeh et al mainly focus on the 

token-level algorithms. Besides, regarding the characteristics of data involved in the 

experimental work, only two characteristics are considered, i.e., data error rate and 

error type. The sizes of all the datasets used for the experiment are all the same. 

Compared to other work, at least two questions are still unclear: if the conclusion 

regarding the effectiveness of algorithms proposed by the authors based on the 

experimental results can also apply to the character-level algorithms and if different 

sizes of datasets will influence the effectiveness of the selected algorithms. 

 

In this chapter, five approximate string matching algorithms are reviewed in section 

5.3 and their performances are evaluated against the following characteristics: the 

error rate in a dataset, the different threshold value chosen, the selected type of 

strings in a dataset, the type of typo in the selected strings and the size of a dataset. 

The experiments are performed based on a set of carefully designed datasets. 

Compared to Hassanzadeh et al, the five algorithms used in this research are all 

character-level algorithms in order to answer whether the conclusion made by 

Hassanzadeh et al will also apply to the character-level algorithms. The 

experimental results provide an opportunity to help with selecting a suitable 

algorithm for a name matching task, which can improve the efficiency and 

effectiveness during the process of duplicate record detection.  

 

5.3  Matching techniques 

 

Name matching can be defined as “the process of determining whether two name 

strings are instances of the same name” [129]. In this research, the proposed 

experiments are focused on single name values and five popular character-level 
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algorithms namely „Levenstein‟, „Smith-Waterman‟, „Jaro‟, „Jaro-Winkler‟ and 

„Q-Gram‟ are selected for the experiments. 

 

(i)  Levenshtein 

 

The Levenshtein distance [121] is defined to be the minimum number of edit 

operations required to transform string s1 into s2. Edit operations are: 

 

 Delete a character from string s1. 

 Insert a character in string s2 that does not appear in s1. 

 Substitute one character in s2 for another character in s1. 

 Copy one character from s1 to s2. 

 

The distance (number of edits) between two strings s1 and s2 can be calculated based 

on an efficient scheme for computing the lowest-cost edit sequence for these 

operations. This can be realized using dynamic programming techniques. The 

Levenshtein similarity measure can be calculated by: 

                       
           

               
 

where dist(s1, s2) refers to the actual Levenshtein distance function which returns a 

value of 0 if the strings are the same or a positive number of edits if they are 

different. The value of such a measure is between 0.0 and 1.0 where the bigger the 

value, the more similar the two strings. 

 

(ii)  Smith-Waterman 

 

This algorithm was originally developed to find optimal alignment between 

biological sequences, like DNA or proteins. It is based on a dynamic programming 
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approach similar to Levenshtein distance, but allows gaps as well as character 

specific match scores [119]. Let t be the final best score obtained based on the 

dynamic programming matrix and g be the match score value. Here, 

Smith-Waterman similarity measure between two strings s1 and s2 is calculated by: 

                      
 

                 
 

 

(iii)  Jaro 

 

Jaro [120] introduced a string comparator that accounts for insertions, deletions and 

transpositions, which was mainly used for comparison of first and last names [13]. 

The basic Jaro algorithm is for two strings s1, s2: 

 

1) compute the string lengths. 

2) find the number of common characters in the two strings. 

3) find the number of transpositions. 

 

Given strings s = s1…sk and t = t1 … tl, define a character si in s to be common with t 

iff there is a tj = si in t such that i-H ≤ j ≤ i+H, where H = min(|s|, |t|)/2. Let 

s
’
=s

’
1…s

’
k be the characters in s which are common with t (in the same order they 

appear in s) and let t
’ 
= t1

’…
tl

’ 
be the same in t. A transposition for s

’
, t

’
 is a position i  

such that si
’
≠ t

’
i. Let        be half the number of transpositions for s

’ 
and t

’
. Jaro 

similarity measure for strings s and t is calculated by: 

          
 

 
  
    

   
  

    

   
  

           

    
  

 

(iv) Jaro-Winkler 

 

William Winkler proposed a variant of the Jaro metric based on empirical studies 

that fewer errors typically occur at the beginning of names [123]. Jaro-Winkler 

similarity measure between two string s1 and s2 is calculated by: 
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where p is the maximum number of the longest common prefix of two strings (s1 and 

s2 ) and is up to a maximum of 4 characters. 

 

(v)  Q-Gram 

 

The Q-Gram metric is based on the intuition that two strings are similar if they share 

a large number of common q-grams. Q-grams are sub-strings of length q [122]. 

Commonly used q-grams are unigrams (q = 1), bigrams (q = 2) and trigrams (q = 3). 

For example, the bigrams for ‟John‟ contains „Jo‟, „oh‟ and „hn‟. In this thesis, a 

q-gram similarity measure between two strings is calculated by counting the number 

of q-grams in common (i.e. q-grams contained in both strings) and divided by the 

maximum the number of q-grams in the two strings. Let Gq(s) denote all the q-grams 

of a string s obtained by sliding a window of length q over the characters of s. The 

Q-Gram similarity measure between strings s1 and s2 is calculated by: 

              
               

                       
 

 

5.4  Experiment and Experimental Results 

 

Hassanzadeh et al [128] have undertaken a thorough comparison of token-level 

algorithms and claim that their accuracy highly depends on the characteristics of the 

data such as the amount and type of the errors and the length of strings. In our 

experiments, we also consider similar characteristics of the data but choose 

character-level algorithms for the test.  

 

In this section, the experimental results on the performance of the selected five name 

matching techniques are presented. Especially, some recommendations proposed in 

table 5.1 are evaluated during the experiment. For example, the first 

recommendation from table 5.1 highlights the importance of different types of name 
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strings regarding the matching performance. Based on the experimental results, it 

has been noticed that the performance of a selected algorithms varies for different 

types of name strings (given name, surname, and full name). In our experiment, two 

types of strings are considered respectively, i.e., last name strings and first name 

strings.  

 

Regarding the experiment on the last name strings, eight groups of datasets with 

different data sizes ranging from 200 records to 9454 records are carefully designed 

for the purpose of the experiments. In the experiment, the error rate of a dataset is 

defined as the ratio of erroneous records and the whole number of records in the 

dataset. There are three error rates considered for each group of datasets, i.e., low, 

medium and high with values of 20%, 50% and 70% respectively. For each size, 

three datasets with different error rates are used. For example, in the group of 9454 

records of last name dataset, three datasets were designed: 

 

a) Low error rate 9454 records of last name dataset. 

b) Medium error rate 9454 records of last name dataset. 

c) High error rate 9454 records of last name dataset. 

 

With respect to the experiments for last name string, the following factors are 

considered: 

 

 Effects of error rates on the selection of threshold values for different 

techniques 

 Effects of error rates on the performance of different techniques 

 Effects of sizes of datasets on the performance of different techniques 

 Effects of error rates on the timing performance of different techniques 

 

The recommendations proposed in table 5.1 will be evaluated based on the 
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experimental results. For example, in the fourth recommendation from table 5.1, the 

author proposes that Jaro and Winkler perform well for both given name strings and 

surname strings. However, since Christen‟s experimental work does not consider the 

different characteristics of a dataset as Hassanzadeh et al, it is unclear if this 

recommendation still holds considering the various characteristics of a dataset. 

Therefore, the fourth recommendation will be re-evaluated based on the experiments 

with different error rates and sizes of datasets. In addition, the issue of selecting a 

threshold value for an optimal matching quality proposed in the eighth 

recommendation in table 5.1 will be analyzed in detail. 

 

Regarding the experiment on first name strings, it is expected that the experiments 

can help to answer following questions: 

 

a) Whether the types of typos will result in a different accuracy performance of the 

selected algorithms. Three types of typos are considered in the proposed 

experiment: (i) a typo occurs in the front part of a given string (marked as TFP), 

(ii) a typo occurs in the latter part of a given string (marked as TLP), (iii) a typo 

occurs in any part of a given string randomly (marked as TR).  

 

b) Whether the types of strings will result in a different performance of the selected 

algorithms. According to Christen, three types of name strings are used in the 

experimental work. It is noticed that the accuracy performance of the same 

algorithm will vary for the different types of name string values. This has been 

addressed in the first recommendation from table 5.1 exclusively. In the 

proposed experiments, regarding the types of strings, two types are considered 

for the five character-level algorithms (i.e., first name strings and last name 

strings). Experiments will be designed exclusively to compare the relative 

performance of each algorithm when different error rates of a dataset are 

concerned with the two types of name strings respectively.  
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In addition, the effects of error rate on the threshold values selection and the effects 

of error rates on the accuracy performance of the selected five algorithms are also 

considered in the experiments for first name datasets. There‟s only one size of 2300 

records dataset for first name datasets. Similar to the experiments for the last name 

string values, the three error rates associated with the first name datasets are 20%, 50% 

and 70% respectively. It is expected that based on the experimental results, a 

recommendation will be made as to which technique should be selected in order to 

achieve the best matching quality when different name strings are considered under 

the different characteristics of a dataset.  

 

5.4.1  Datasets preparation 

 

In the absence of common datasets for data cleaning, we prepared our data for 

experiments as follows. With respect to the last name strings, the datasets are based 

on a historical set of real Electoral Roll data. First, a one million record dataset was 

extracted, from which a personal last name list was created. This list contains 9454 

clean, non-duplicate personal last names. Then, a last name dataset was generated, 

which contains these 9454 last name records, with an ID number associated to each 

of the records. Erroneous records were created by doing the following four 

operations manually to the name field of records in the dataset: inserting, deleting, 

substituting and replacing characters. There were in total twenty-four datasets 

generated and the number of records for these last name datasets ranges from 200 

records to 9454 records. Any last name dataset contained with the same records will 

have a different error rate associated with. Table 5.2 shows these datasets used for 

the last name experiments 
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Dataset Error Rate 

9454 Records Low Medium High 

7154 Records Low Medium High 

5000 Records Low Medium High 

3600 Records Low Medium High 

2300 Records Low Medium High 

1000 Records Low Medium High 

500 Records Low Medium High 

200 Records Low Medium High 

Table 5.2 Datasets for last name experiments 

 

With respect to the first name strings, 9 first name datasets were carefully designed, 

each of which contains 2300 records. These datasets are also based on a historical 

set of real Electoral Roll data. First, a one million record dataset was extracted, from 

which a personal first name list was created. This list contains 2300 clean, 

non-duplicate personal first names. Then, a first name dataset was generated, which 

contains these 2300 first name records, with an ID number associated to each of the 

records. Erroneous records were created applying the following four operations 

manually to the name field of records in the dataset: inserting, deleting, substituting 

and replacing characters. There are three different types of typos contained within 

the three groups of first name datasets, i.e., TFP, TLP, and TR. Any first name 

dataset contained with the same type of typo will have a different error rate 

associated with. Table 5.3 shows these first name datasets. 
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Dataset Error Rate Type of typo 

2300 first name records Low TFP 

2300 first name records Low TLP 

2300 first name records Low TR 

2300 first name records Medium TFP 

2300 first name records Medium TLP 

2300 first name records Medium TR 

2300 first name records High TFP 

2300 first name records High TLP 

2300 first name records High TR 

Table 5.3 First name datasets with different types of typos 

 

For the purpose of comparing with the last name string values, 9 similar last name 

datasets are also designed. Any last name dataset containing the same type of typo 

will have a different error rate associated. Table 5.4 shows these last name datasets. 

 

Dataset Error Rate Type of typo 

2300 last name records Low TFP 

2300 last name records Low TLP 

2300 last name records Low TR 

2300 last name records Medium TFP 

2300 last name records Medium TLP 

2300 last name records Medium TR 

2300 last name records High TFP 

2300 last name records High TLP 

2300 last name records High TR 

Table 5.4 Last name datasets with different types of typos 
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5.4.2  Measures 

 

A target string is a positive if it is returned by a technique; otherwise it is a negative. 

A positive is a true positive if the match does in fact denote the same entity; 

otherwise it is a false positive. A negative is a false negative if the un-match does in 

fact denote the same entity; otherwise it is a true negative. The matching quality is 

evaluated using the F-measure (F) that is based on precision and recall: 

 

  
     

   
 

 

with P (precision) and R (recall) defined as: 

 

  
                

                                    
 

 

  
                

                                    
 

 

The most desirable algorithm is one that makes recall as high as possible without 

sacrificing precision. F-measure is a way of combining the recall and precision into 

a single measure of overall performance [130]. In the proposed experiments, 

precision, recall and F-measure are measured against different values of similarity 

threshold (i.e., θ). For the comparison of different techniques, the maximum 

F-measure scores across different threshold values are used. 

 

5.4.3  Experimental results 

 

5.4.3.1  Experimental results for Last name strings 

 

(1) Effectiveness performance results 

 

Regarding the effectiveness performance, the values of the maximum F-scores for 
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different algorithms on different last name datasets are presented in Appendix A 

(Table A.1). Figures Fig.5.2~Fig.5.9 present the corresponding results. For all graphs, 

the horizontal axis of the graph represents the techniques involved. The vertical axis 

of the graph represents the values of the maximum F-scores for different algorithms. 

Explanation for each figure is detailed below: 

 

Fig.5.2 shows the maximum F-scores achieved by the five name matching 

algorithms on the 9454 last name datasets under three different error rates. It is clear 

to see in Fig.5.2 that the lower the error rate, the higher the maximum F-scores can 

be achieved for all the five name matching algorithms. When the error rate of a 

dataset is low, the effectiveness of Levenshtein, Jaro, and Q-Gram algorithms are 

equally the same followed by the Jaro-Winkler algorithm. The Smith-Waterman is 

the worst among the five algorithms. When error rate changes to medium, the Jaro 

algorithm becomes the best followed by the Jaro-Winkler algorithm. However when 

error rate is high, the Jaro-Winkler algorithm performs better than the Jaro algorithm. 

The Jaro-Winkler algorithm is the best among the five algorithms when the error 

rate of a dataset is high, followed by the the Levenshtein algorithm. The following 

table (table 5.5) shows the relative orders among the five algorithms regarding their 

maximum F-scores in the three different error rate datasets respectively. 

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

Medium Jaro>Jaro-Winkler>Levenshtein>Q-Gram>Smith-Waterman 

High Jaro-Winkler>Levenshtein>Jaro>Q-Gram>Smith-Waterman 

Table 5.5 Algorithms’ order for 9454 last name dataset 
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Fig.5.2 Effectiveness results for 9454 last name dataset 

 

Fig.5.3 and Fig. 5.4 present the performances of these five name matching 

algorithms on the 7154 last name datasets and 5000 last name datasets respectively. 

The performances of these algorithms are exactly the same on both sizes datasets. 

Similarly to the performance on 9454 datasets, the lower the error rate, the higher 

the maximum F-scores are achieved for all the five name matching algorithms. 

When error rate is low, the relative performance of all five algorithms is exactly the 

same as they‟ve performed on the 9454 last name dataset. When error rate of a 

dataset is changing to medium and high, the Jaro-Winkler algorithm becomes the 

best followed by the Jaro algorithm. The following table (table 5.6) shows the 

relative orders among the five algorithms regarding their maximum F-scores in the 

three different error rate datasets respectively. 

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

Medium Jaro-Winkler>Jaro>Levenshtein>Q-Gram>Smith-Waterman 

High Jaro-Winkler>Jaro>Levenshtein>Q-Gram>Smith-Waterman 

Table 5.6 Algorithms’ order for 7154/5000 last name dataset 
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Fig.5.3 Effectiveness results for 7154 last name dataset 

 

 

Fig.5.4 Effectiveness results for 5000 last name dataset 

 

Fig.5.5 shows the performances of the five name matching algorithms on the 3600 

last name datasets. Compared with their performances on the 7154 and 5000 last 

name datasets, the only differences are observed on the medium and high error rate 

datasets that the performance of the Jaro algorithm is the best instead of the 

Jaro-Winkler algorithm. The following table (table 5.7) shows the relative orders 

among the five algorithms regarding their relative maximum F-scores in the three 

different error rate datasets respectively.  
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Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

Medium Jaro>Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman 

High Jaro>Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman 

Table 5.7 Algorithms’ order for 3600 last name dataset 

 

 

Fig.5.5 Effectiveness results for 3600 last name dataset  

Fig.5.6 shows the performances of the five name matching algorithms on the 2300 

last name datasets. These algorithms perform exactly the same as they have done on 

the 3600 last name datasets when error rate is low. When error rate changes to 

medium, the Jaro algorithm becomes the best followed by the Levenshtein algorithm. 

When error rate is high, the effectiveness performance of the Jaro-Winkler algorithm 

becomes the best among the five algorithms. The following table (table 5.8) shows 

the relative orders among the five algorithms regarding their maximum F-scores in 

the three different error rate datasets respectively.   
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Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

Medium Jaro> Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman 

High Jaro-Winkler> Jaro> Levenshtein>Q-Gram>Smith-Waterman 

Table 5.8 Algorithms’ order for 2300 last name dataset 

 

 

Fig.5.6 Effectiveness results for 2300 last name dataset  

Fig.5.7 shows the performances of the five name matching algorithms on the 1000 

last name datasets. Compared with 2300 last name datasets, their performances are 

exactly the same except that in high error rate dataset, the Levenshtein algorithm 

performs better than the Jaro algorithm. Table 5.9 shows the relative orders among 

the five algorithms regarding the maximum F scores achieved in the three different 

error rate datasets respectively.   

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein=Jaro=Q-Gram=Jaro-Winkler>Smith-Waterman 

Medium Jaro> Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman 

High Jaro-Winkler> Levenshtein>Jaro> Q-Gram>Smith-Waterman 

Table 5.9 Algorithms’ order for 1000 last name dataset 
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Fig.5.7 Effectiveness results for 1000 last name dataset 

Fig.5.8 shows the performances of the five name matching algorithms on the 500 

last name datasets. When error rate of a dataset is low, both the Levenshtein and the 

Jaro-Winkler algorithms are equally the best among the five algorithms, followed by 

the Jaro and the Q-Gram algorithms which perform equally the same. When the 

error rate is changing to medium, the Jaro-Winkler algorithm becomes the best 

followed by the Levenshtein algorithm. However, in high error rate dataset, the Jaro 

algorithm becomes the best among the five algorithms. The following table (table 

5.10) shows the relative orders among the five algorithms regarding their maximum 

F-scores in the three different error rate datasets respectively.    

 

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein=Jaro-Winkler >Jaro=Q-Gram >Smith-Waterman 

Medium Jaro-Winkler> Levenshtein> Jaro> Q-Gram>Smith-Waterman 

High Jaro> Jaro-Winkler> Levenshtein> Q-Gram>Smith-Waterman 

Table 5.10 Algorithms’ order for 500 last name dataset 
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Fig.5.8 Effectiveness results for 500 last name dataset  

Fig.5.9 shows the performances of the five name matching algorithms on the 200 

last name datasets. It is clear to see in Fig.5.9 that apart from the Levenshtein 

algorithm, the lower the error rate, the higher the maximum F-scores can be 

achieved for the other four name matching algorithms. The maximum F-score for 

the Levenshtein algorithm in the low error rate dataset is the highest followed by its 

maximum F-score in the high error rate dataset rather than its maximum F-score in 

the medium error rate dataset. When error rate is low, the performances of 

Levenshtein, Jaro, Jaro-Winkler and Q-Gram algorithms are all equally the same. 

The Smith-Waterman‟s performance is the worst among the five algorithms. When 

the error rate is changing to medium or high, the Levenshtein algorithm becomes the 

best among the five algorithms. The following table (table 5.11) shows the relative 

orders among the five algorithms regarding their maximum F-scores in the three 

different error rate datasets respectively.    

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein=Jaro-Winkler =Jaro=Q-Gram >Smith-Waterman 

Medium Levenshtein> Q-Gram> Jaro> Jaro-Winkler>Smith-Waterman 

High Levenshtein> Q-Gram>Jaro> Jaro-Winkler> Smith-Waterman 

Table 5.11 Algorithms’ order for 200 last name dataset 

 

0

0.2

0.4

0.6

0.8

1
Low

Medium

High



171 
 

 

Fig.5.9 Effectiveness results for 200 last name dataset 

Based on these experimental results regarding the effectiveness of the five name 

matching algorithms on different last name datasets, it can be concluded that 

generally these algorithms perform better in lower error rate datasets. In all last 

name datasets with low error rate, the Levenshtein algorithm remains one of the best 

effective algorithms among the five ones. In those medium or high error rate 

datasets, except for those datasets with 200 records, the Jaro or Jaro-Winkler 

algorithm remains the best choices. The Smith-Waterman algorithm however 

performs the worst among the five algorithms. Regarding the selection of a 

threshold value for each algorithm, values of thresholds of each algorithm obtaining 

the maximum F-scores in different last name datasets are shown in Appendix A 

(Table A.2). As shown in table A.2, generally, the higher the error rate of the dataset, 

the lower the threshold value should be chosen for an algorithm. For example, the 

three threshold values selected for the Levenshtein algorithm are 0.99, 0.85, 0.8 for 

low, medium, and high error rate dataset respectively when the size of a dataset is 

over 500 records. These experimental results achieved will be further analyzed later 

in section 5.5. 

 

(2) Timing performance results 

 

In general, the Jaro-Winkler algorithm requires the least running time among the 

five algorithms while the Smith-Waterman algorithm costs the most time. The time 
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requried by Jaro algorithm is slightly more than the time required by Jaro-Winkler 

algorithm. Regarding the timing performance, the Jaro algorithm and Jaro-Winkler 

algorithm are much better than the other three algorithms. The experimental results 

agree with that, the smaller size of a dataset, the lesser running time of an algorithm 

is required. According to the experimental results, the effect of error rate of a dataset 

on the timing performance for each algorithm is not significant. In Appendix A, 

table A.3 shows the average timing cost required by the five algorithms on the 

different sizes of datasets (9454, 7154, 5000, and 3600). The corresponding figures 

are shown in Fig.5.10, Fig.5.11, Fig.5.12, and Fig.5.13. For all graphs, the horizontal 

axis of the graph represents the algorithms involved. The vertical axis of the graph 

represents the timing cost in milliseconds. From these experimental results, it can be 

seen that for all datasets involved, the same order (i.e. Jaro-Winkler < Jaro < 

Levenshtein < Q-Gram < Smith-Waterman ) from the least timing cost to the highest 

timing cost among the five algorithms is observed. Individually, in Fig.5.10, the 

higher the error rate of a dataset, the higher the timing cost is associated with an 

algorithm. This phenomenon is only observed for the Levenshtein and Q-Gram 

algorithms in Fig.5.11.  

 

 

Fig.5.10 Timing performance in 9454 last name dataset  
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As shown in Fig.5.11, the least timing cost for the Jaro algorithm and Jaro-Winkler 

algorithm are observed for the medium error rate 7154 datasets, followed by the low 

error rate datasets. For the Smith-Waterman algorithm, the least timing cost is 

observed in the medium error rate 7154 dataset, followed by the high error rate 

dataset. 

 

 

Fig.5.11 Timing performance in 7154 last name dataset  

In Fig.5.12, except for the Levenshtein algorithm, the higher the error rate of a 

dataset, the higher the timing cost is required by the other four algorithms. The 

Levenshtein algorithm requires its most timing cost in medium error rate dataset. 

 

 

Fig.5.12 Timing performance in 5000 last name dataset  
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In Fig.5.13, except for the Smith-Waterman algorithm, the higher the error rate of a 

dataset, the higher the timing cost is required for the other four algorithms. The 

Smith-Waterman requires its most timing cost in medium error rate dataset 

 

 

Fig.5.13 Timing performance in 3600 last name dataset 

 

5.4.3.2  Experimental results for 2300 First name/ Last name strings 

 

(1) Effectiveness performance results 

 

The values of the maximum F-scores achieved by the five algorithms on different 

first name datasets with TFP, TLP, and TR typos are shown in Appendix A (Table 

A.4). The related graphs are generated and presented in Fig. 5.14~Fig.5.16. For all 

graphs, the horizontal axis of the graph represents the algorithms involved. The 

vertical axis of the graph represents the values of the maximum F-scores achieved 

by different algorithms. 

 

In detail: Fig.5.14 shows the performances of the five name matching algorithms in 

the 2300 first name datasets with TFP typos under the three different error rates. It is 

clear to see in Fig.5.14 that in low error rate dataset, all algorithms performs better 

than the medium and high error rate datasets. The relative orders among the five 

algorithms regarding their maximum F-scores in the three different error rate 
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datasets are given in table 5.12. From table 5.12, it can be seen that the Levenshtein 

algorithm performs the best among the five algorithms in the datasets with TFP 

typos followed by Jaro algorithm. The Smith-Waterman algorithm is the worst 

among the five algorithms.  

 

 

Fig.5.14 Effectiveness results for 2300 first name datasets with TFP typo 

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein>Jaro>Q-Gram >Jaro-Winkler>Smith-Waterman 

Medium Levenshtein>Jaro>Jaro-Winkler>Q-Gram>Smith-Waterman 

High Levenshtein>Jaro>Jaro-Winkler>Q-Gram>Smith-Waterman 

Table 5.12 Algorithm’s order for 2300 first name datasets with TFP typo 

 

Fig.5.15 shows the performances of the five name matching algorithms in the 2300 

first name datasets with TLP typos under the three different error rates. Their relative 

orders among the five algorithms regarding their maximum F-scores in the three 

different error rate datasets are given in table 5.13. It can be seen that unlike the first 

name datasets with TFP typos, the Levenshtein algorithm‟s performance is not the 

best among the five algorithms. The Jaro and Jaro-Winkler algorithms are the best 

choices in the three different error rate datasets. 
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Fig.5.15 Effectiveness results for 2300 first name datasets with TLP typo 

 

Error rate Relative effectiveness order among the five algorithms 

Low Jaro-Winkler> Jaro> Levenshtein> Q-Gram >Smith-Waterman 

Medium Jaro>Jaro-Winkler>Levenshtein>Q-Gram>Smith-Waterman 

High Jaro-Winkler>Levenshtein>Q-Gram>Jaro>Smith-Waterman 

Table 5.13 Algorithm’s order for 2300 first name datasets with TLP typo 

 

Fig.5.16 the performances of the five name matching algorithms in the 2300 first 

name datasets with TR typos under the three different error rates. In low error rate 

dataset, the Levenshtein algorithm performs the best among the five algorithms. In 

medium and high error rate datasets, the Jaro-Winkler and Jaro algorithms are the 

best choices respectively. Table 5.14 shows their relative orders regarding their 

maximum F-scores in the three different error rate datasets. 

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein>Jaro=Q-Gram >Jaro-Winkler>Smith-Waterman 

Medium Jaro-Winkler> Jaro>Levenshtein>Q-Gram>Smith-Waterman 

High Jaro>Jaro-Winkler>Levenshtein>Q-Gram> Smith-Waterman 

Table 5.14 Algorithm’s order for 2300 first name datasets with TR typo 
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Fig.5.16 Accuracy results for 2300 first name datasets with TR typo 

 

For the purpose of comparing with the 2300 last name datasets, these algorithms 

have been applied on 2300 last name datasets with the three different types of typos. 

The experimental results are achieved in Appendix A (Table A.5). Fig.5.17~Fig.5.19 

are presenting the corresponding graphs. For all graphs, the horizontal axis of the 

graph represents the algorithms involved. The vertical axis of the graph represents 

the value of the maximum F-scores achieved by the five algorithms.  

 

In detail: Fig.5.17 shows the performance of the five name matching algorithms in 

the 2300 last name datasets with TFP typos under three different error rates. All 

algorithms perform the best in low error rate datasets. Table 5.15 shows their relative 

orders regarding their maximum F-scores in the three different error rate datasets. 

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein>Jaro=Q-Gram >Jaro-Winkler>Smith-Waterman 

Medium Jaro> Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman 

High Levenshtein>Jaro-Winkler Jaro> Q-Gram> Smith-Waterman 

Table 5.15 Algorithm’s order for 2300 last name datasets with TFP typo 

 

 

0
0.2
0.4
0.6
0.8

1
Low

Medium

High



178 
 

Compared with the experimental results for the matching 2300 first name datasets, 

in the medium error rate dataset, the Jaro algorithm is the best choice rather than the 

Levenshtein algorithm. 

 

 

Fig.5.17 Accuracy results for 2300 last name datasets with TFP typo  

 

Fig.5.18 shows the performances of the five name matching algorithms in the 2300 

last name datasets with TLP typos. Compared with the matching 2300 first name 

datasets with TLP typos, performances of these algorithms are exactly the same in 

the medium and high error rate datasets (see table 5.16). 

 

Error rate Relative effectiveness order among the five algorithms 

Low Jaro-Winkler>Levenshtein>Jaro=Q-Gram >Smith-Waterman 

Medium Jaro>Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman 

High Jaro-Winkler>Levenshtein>Jaro>Q-Gram>Smith-Waterman 

Table 5.16 Algorithm’s order for 2300 last name datasets with TLP typo 
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Fig.5.18 Accuracy results for 2300 last name datasets with TLP typo  

 

Fig.5.19 shows the performance of the five name matching algorithms in the 2300 

last name datasets with TR typos. According to their relative orders regarding their 

maximum F-scores in the three different error rate datasets (table 5.17), the best 

choices among the five algorithms compared with the matching 2300 first name 

datasets are totally different. For example, in medium error rate dataset, the Jaro 

algorithm is observed to perform the best while in first name datasets, the 

Jaro-Winkler algorithm is the best choice.  

 

Error rate Relative effectiveness order among the five algorithms 

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

Medium Jaro>Levenshtein>Jaro-Winkler>Q-Gram>Smith-Waterman 

High Jaro-Winkler>Jaro>Levenshtein>Q-Gram>Smith-Waterman 

Table 5.17 Algorithm’s order for 2300 last name datasets with TR typo 
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Fig.5.19 Accuracy results for 2300 last name datasets with TR typo 

 

Table 5.18~Table 5.20 show the different threshold values selected for each 

algorithm to obtain the maximum F-scores in the different 2300 first/last name 

datasets with TFP, TLP, and TR typos respectively. 

 

String Type Algorithm Low  Medium High  Data Size Error Typo 

First name Levenshtein 0.9 0.8 0.8 2300 TFP 

First name Jaro 0.95 0.95 0.9 2300 TFP 

First name Jaro-Winkler 0.99 0.95 0.95 2300 TFP 

First name Q-Gram 0.99 0.99 0.75 2300 TFP 

First name Smith-Waterman 0.99 0.99 0.99 2300 TFP 

Last name Levenshtein 0.9 0.85 0.8 2300 TFP 

Last name Jaro 0.99 0.95 0.95 2300 TFP 

Last name Jaro-Winkler 0.99 0.95 0.95 2300 TFP 

Last name Q-Gram 0.99 0.99 0.8 2300 TFP 

Last name Smith-Waterman 0.99 0.99 0.99 2300 TFP 

Table 5.18 Threshold value selection for first/last name dataset with TFP typos 
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String Type Algorithm Low  Medium High  Data Size Error Typo 

First name Levenshtein 0.9 0.8 0.8 2300 TLP 

First name Jaro 0.95 0.95 0.9 2300 TLP 

First name Jaro-Winkler 0.99 0.95 0.95 2300 TLP 

First name Q-Gram 0.99 0.85 0.8 2300 TLP 

First name Smith-Waterman 0.99 0.99 0.99 2300 TLP 

Last name Levenshtein 0.9 0.85 0.8 2300 TLP 

Last name Jaro 0.99 0.95 0.95 2300 TLP 

Last name Jaro-Winkler 0.99 0.95 0.95 2300 TLP 

Last name Q-Gram 0.99 0.99 0.8 2300 TLP 

Last name Smith-Waterman 0.99 0.99 0.99 2300 TLP 

Table 5.19 Threshold value selection for first/last name dataset with TLP typos 

 

String Type Algorithm Low  Medium High  Data Size Error Typo 

First name Levenshtein 0.9 0.8 0.8 2300 TR 

First name Jaro 0.99 0.9 0.9 2300 TR 

First name Jaro-Winkler 0.99 0.95 0.95 2300 TR 

First name Q-Gram 0.99 0.99 0.75 2300 TR 

First name Smith-Waterman 0.9 0.85 0.85 2300 TR 

Last name Levenshtein 0.99 0.85 0.8 2300 TR 

Last name Jaro 0.99 0.95 0.9 2300 TR 

Last name Jaro-Winkler 0.99 0.95 0.95 2300 TR 

Last name Q-Gram 0.99 0.99 0.75 2300 TR 

Last name Smith-Waterman 0.9 0.9 0.9 2300 TR 

Table 5.20 Threshold value selection for first/last name dataset with TR typos 

 

It can be deduced from the experimental data obtained in table 5.18~table 5.20 that 

characteristics such as the types of string, types of typos, error rate may influence 

the selection of a proper threshold value for the selected algorithm to achieve the 

best effectiveness performance. They will be further evaluated in section 5.5 in 

detail . 

 

 

(2) Timing performance results 

 

The timing performance of the five algorithms in these first name datasets are 

exactly the same as they performed in those last name datasets, i.e., the Jaro-Winkler 
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costs least running time among the five algorithms while the Smith-Waterman costs 

the most running time. The running time required by Jaro algorithm is slightly more 

than Jaro-Winkler algorithm. Both algorithms perform better than the other three 

algorithms. Experimental results show that the effect of error rate of a dataset is not 

significant on the timing performance. 

 

5.5  Evaluation 

 

5.5.1  Last name experimental results evaluation 

 

The test results for last name datasets will be evaluated and analyzed based on the 

effectiveness and timing performance of the five selected techniques.  

 

Similar experiments have been done on last name datasets with records ranging from 

200 to 9454 respectively, and the results show that in general, the size of a dataset is 

not sensitive to the effectiveness relative to the threshold values when it is above 

1000 records, except for Smith-Waterman.  

 

When the size of a dataset is smaller than 1000 records, the best F-score is relative to 

the value of thresholds on different datasets with different error rates. The 

corresponding experimental results are given in table A.2 in Appendix A.  

 

Particularly, figures in appendix A (Fig.A.1~Fig.A.5) represent the results of the 

effectiveness relative to the values of threshold on the size of 3600 last name 

datasets with different error rates for the five algorithms. For all graphs, the 

horizontal axis is the values of threshold. According to the experimental results, the 

following results are achieved:  
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1) Effect of Error Rates on Threshold Values:  

 

As shown in table A.2 from Appendix A, generally for all techniques, the higher the 

error rate in the dataset, the lower the threshold value is required in order to achieve 

the best effectiveness performance. For example, the Jaro algorithm performs the 

best in high error rate dataset at threshold value of 0.9, while it performs the best 

over the datasets with medium and low error rate at threshold values of 0.95 and 

0.99 respectively when the size of a dataset is above 1000. It is recommended that 

for algorithms like Levenshtein, Jaro, Jaro-Winkler and Q-Gram, the higher the error 

rate, the lower the threshold value should be selected.  

 

2) Effect of the Sizes of Datasets on Threshold value:  

 

Table A.2 presents the different threshold values selected for each algorithm in the 8 

groups of last name datasets. In general the selected threshold value is not sensitive 

to the size of a dataset except for the Smith-Waterman algorithm. For example, the 

three selected threshold values for the Jaro algorithm in the last name dataset with 

1000 records are 0.99, 0.95 and 0.9 for low error rate, medium error rate and high 

error rate datasets respectively. These three threshold values remain the same with 

increasing the sizes of datasets up to 9454 records. However, for Smith-Waterman 

algorithm, it is noticed that the selection of a threshold value is quite sensitive to the 

size of a dataset. For example, in high error rate datasets, the threshold value 

selected for Smith-Waterman algorithm in dataset with 9454 records is 0.9, while the 

value is changed to 0.99 in dataset with of 7154 records and the threshold value 

changes back to 0.9 again in the dataset with 5000 records.  

 

3) Effect of Error Rates on Effectiveness Performance:  

 

For all eight groups of last name datasets, experimental results show that in general, 
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all five algorithms perform better in low error rate datasets. For example, Fig. 5.20 

shows performance of the five algorithms on datasets with 3600 records under the 

three different error rates. It is observed that the performance of the five algorithms 

is decreasing along with the increasing error rate. Only one exception is noticed in 

the datasets with 200 records where the performance for the Levenshtein algorithm 

in a high error rate dataset is higher than that in the medium error rate dataset. 

Fig.5.21 shows that in the last name dataset with 200 records, the Levenshtein 

algorithm performs the best in low error rate dataset followed by the high error rate 

dataset. 

 

 

Fig.5.20 Maximum F score comparison on last name datasets size 3600 

 

 

Fig.5.21 Maximum F score comparison on last name datasets size 200  
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Looking at the individual algorithm‟s performance, it was observed that the Jaro and 

Jaro-Winkler algorithms do not always perform the best for last name strings as 

suggested by Christen [124]. In the 24 last name datasets prepared for the 

experiments, only 9 datasets are observed that both the Jaro and Jaro-Winkler 

algorithms perform well for last name strings. On the contrary, in most of low error 

rate datasets, the Jaro-Winkler algorithm ranked at the fourth position among the 

five algorithms. Thus it is recommended that when selecting a suitable algorithm for 

the matching of names, the characteristics of a dataset such as the dataset size, data 

error rate should be considered. 

 

4) Effect of the Sizes of Datasets on Effectiveness Performance:  

 

By comparing the relative performance among the five algorithms in table A.1, the 

effectiveness performance of the algorithms are analyzed in last name datasets under 

the three different error rates. The results are listed in the following tables (table 

5.21~table 5.23): 

 

Dataset Relative effectiveness order among the five algorithms 

9454 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

7154 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

5000 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

3600 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

2300 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

1000 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman 

500 Levenshtein=Jaro-Winkler>Jaro=Q-Gram>Smith-Waterman 

200 Levenshtein=Jaro-Winkler=Jaro=Q-Gram>Smith-Waterman 

Table 5.21 Algorithms’ order for low error rate last name datasets  
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Dataset Relative effectiveness order among the five algorithms 

9454 Jaro >Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman 

7154 Jaro-Winkler> Jaro > Levenshtein>Q-Gram>Smith-Waterman 

5000 Jaro-Winkler> Jaro > Levenshtein>Q-Gram>Smith-Waterman 

3600 Jaro >Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman 

2300 Jaro > Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman 

1000 Jaro > Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman 

500 Jaro-Winkler> Levenshtein> Jaro > Q-Gram>Smith-Waterman 

200 Levenshtein> Q-Gram> Jaro > Jaro-Winkler> Smith-Waterman 

Table 5.22 Algorithms’ order for medium error rate last name datasets  

 

 

Dataset Relative effectiveness order among the five algorithms 

9454 Jaro-Winkler> Levenshtein> Jaro > Q-Gram>Smith-Waterman 

7154 Jaro-Winkler> Jaro > Levenshtein> Q-Gram>Smith-Waterman 

5000 Jaro-Winkler> Jaro > Levenshtein> Q-Gram>Smith-Waterman 

3600 Jaro > Jaro-Winkler> Levenshtein> Q-Gram>Smith-Waterman 

2300 Jaro-Winkler> Jaro > Levenshtein> Q-Gram>Smith-Waterman 

1000 Jaro-Winkler> Levenshtein> Jaro > Q-Gram>Smith-Waterman 

500 Jaro > Jaro-Winkler> Levenshtein> Q-Gram>Smith-Waterman 

200 Levenshtein> Q-Gram> Jaro > Jaro-Winkler> Smith-Waterman 

Table 5.23 Algorithms’ order for high error rate last name datasets  

 

Table 5.22 shows that in the low error rate dataset, the algorithm with the best 

performance among the five algorithms are not quite as sensitive to the size of a 

dataset. For low error rate datasets with records over 1000, Levenshtein, Jaro, and 

Q-Gram perform equally well. However, in medium error rate datasets, the best 

choice varies between Jaro algorithm and Jaro-Winkler until the size of the dataset 
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becomes 200. This is also observed in high error rate datasets as presented in table 

5.23. 

 

5.5.2  2300 first/last name experimental result evaluation 

 

In section 5.4.3.2, experimental results on a group of 2300 first name datasets as 

well as a group of 2300 last name datasets are presented. In this section, these 

experimental results will be evaluated and analyzed based on six aspects, which will 

be detailed below: 

 

1) The Effect of Error Rates on Threshold Values: 

 

Experimental results for 2300 first name datasets show that in general, the higher the 

error rate of the dataset, the lower the threshold value should be selected expect for 

the Smith-Waterman algorithm. For example, in high error rate first name dataset 

with TLP typos, the Q-Gram algorithm achieves the best F-score with the selected 

threshold value of 0.8, while it achieves the best F-score with the selected threshold 

values of 0.85 and 0.99 in medium error rate dataset and low error rate dataset 

respectively. Table 5.18~Table 5.20 shows the results of the selected threshold 

values for all five algorithms achieving the maximum F-scores in the different 2300 

first name datasets with TFP, TLP, and TR typos respectively. According to these 

tables, it is clear to see that for all first name datasets containing TFP and TLP typos, 

the threshold values selected for the Smith-Waterman algorithm remains the same 

under the three different error rates.  

 

2) The Effect of Error Rates on Effectiveness Performance: 

 

Experimental results from appendix A.4 show that in general, all five algorithms 

perform best in low error rate first name datasets (see table A.4). Looking at the 

performance of individual algorithm, it is observed that in all 2300 first name 
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datasets with TFP typos, the Levenshtein algorithm appears to be the best effective 

algorithm among the five algorithms no matter what error rate is associated in the 

dataset (see Fig.5.22). For other first name datasets with TLP typos and TR typos, 

the best effective algorithm is sensitive to the error rate of the dataset. Generally, 

either the Jaro or Jaro-Winkler algorithm should be selected in order to achieve the 

best matching quality according to the different error rate. 

 

 

Fig.5.22 Performance comparisons on 2300 first name datasets with TFP typo 

 

3) The Effect of Types of Typos on Threshold Values 

 

With respect to the first name datasets, the Levenshtein and Jaro-Winkler algorithms 

are both not sensitive to the types of typos regarding the selection of the threshold 

values according to the experimental results. The other three algorithms require the 

changing of the threshold values in order to achieve the best F-scores in these first 

name datasets with different types of typos. With respect to the last name datasets, it 

is noticed that only the Jaro-Winkler algorithm is not sensitive to the types of typos 

regarding the selection of the threshold values. The three threshold values selected 

for the low error rate, medium error rate, and high error rate last name datasets are 

0.99, 0.95, and 0.95 respectively no matter what types of typos are involved in the 

datasets. 
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4) The Effect of Types of Strings on Threshold values 

 

For datasets containing the same type of typos, the experimental results are 

evaluated on the first name strings and last name strings respectively. It is 

discovered that for some algorithms, when different type of strings are involved, the 

proper threshold value for different algorithm may be varied. For example, in the 

datasets containing only TFP typos, the threshold value selected for Jaro algorithm 

in low error rate first name dataset is 0.95 and it is required to be increased to 0.99 in 

order to achieve the best effectiveness performance. Only the Jaro-Winkler and 

Smith-Waterman algorithms are not sensitive to the different types of strings 

involved in the datasets containing only TFP typos.  

 

5) The Effect of Types of Strings on Effectiveness Performance 

 

According to the experimental results presented in appendix A.4 and A.5, in general, 

algorithms perform better on first name strings than last name strings. It is estimated 

that the reason might be due to the length of the string varies between the two types 

of strings. Fig.5.23 shows the relative performance between first name strings and 

last name strings under the three different error rates. The types of typos contained 

in these datasets are all TFP typos. It is noticed that the types of strings will 

influence the performance. For example, in medium error rate datasets, the 

Levenshtein algorithm performs the best on first name strings while the Jaro 

algorithm is the best on last name strings. It is estimated that the different 

performance is due to the different length of the selected strings, though further 

experiments regarding the different length of the name strings have not been 

undertaken. 
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Fig.5.23 Performance comparisons between first name datasets and last name datasets 

with TFP typos under three different error rates 

 

5.6  Summary 

 

Based on the evaluation results discussed in section 5.5, the following 

recommendations are made: 

 

(1) Regarding the threshold value selection, the error rate of a dataset, the types of 

strings involved and the types of typos in the string will all influence the selection of 

a suitable threshold value for the selected algorithm in order to achieve the best 

effectiveness performance. However, the selected threshold values are not sensitive 

to the changes of the size of a dataset. It is recommended that the higher the error 

rate, the lower the threshold value should be chosen. With the help of the 

experimental results achieved in this chapter, table A.6 in appendix A.11 presents a 

list of suggestions regarding the selection of a suitable algorithm as well as the 

selection of the required threshold values considering the different characteristics of 
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a dataset. 

 

(2) Regarding the effectiveness performance of a selected algorithm, the error rate, 

the types of strings will all influence the effectiveness performance of the selected 

algorithm. In general, the algorithms perform better in lower error rate datasets. 

Between the first name datasets and last name datasets, an algorithm performs better 

in first name datasets.  

 

(3) For names parsed into separate fields, the Jaro and Jaro-Winkler algorithms are 

not always among the best choices for matching the first name strings or last name 

strings. The best choice regarding the effectiveness of name matching algorithms 

involves concerning the error rate, size, and types of strings associated with a 

dataset. 

 

(4) If speed is important, algorithms such as Jaro, Jaro-Winkler should be selected. 

The Smith-Waterman algorithm should not be selected for the purposed of matching 

name strings parsed into separate fields. 

 

5.7  Conclusion 

 

This chapter has analyzed and evaluated five popular character-based name 

matching techniques. A comprehensive comparison of the five techniques has been 

done based on a series of experiments on different last name and first name datasets. 

The experimental results confirmed the statement that there is no clear best 

technique. The size of dataset, the error rate in a dataset, the types of strings in a 

dataset and the types of typos in a string will all affect on the performance of a 

selected algorithm.  

 

Regarding the threshold value selection, according to the experimental results, the 
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higher the error rate in the dataset, the lower the threshold value required in order to 

achieve the best performance. Timing performance based on the five algorithms on 

different datasets has also been analyzed and compared. Overall, Jaro-Winkler and 

Jaro are significantly faster than others.  

 

With the help of the achieved experimental results in this chapter, recommendations 

on the selection of a suitable algorithm for a particular name matching task are 

proposed in section 5.6. Compared with the existing recommendations addressed in 

the previous research, ours provide a group of much more detailed recommendations 

with the corresponding parameters supplied for the recommended algorithms for 

practical use.  

 

In detail, four recommendations proposed by Christen are further evaluated in this 

chapter. Christen claimed that the type of string should be considered for a selection 

of a suitable algorithm without giving any further suggestions based on the 

algorithms used in his work. In this chapter, two types of strings (last name strings 

and first name strings) are used for the evaluation respectively and proposed a 

detailed selection of algorithms according to the different characteristics associated 

within a dataset (see table A.6). According to Christen, it is claimed that the Jaro and 

Jaro-Winkler algorithms seem to perform well for both first name strings and last 

name strings and are recommended to be selected during the matching task of the 

personal name strings. However, this recommendation does not always hold 

according to the experimental results in this chapter. For example, in high error rate 

last name dataset with 200 records, the Levenshtein algorithm is among the most 

accurate measures followed by the Q-Gram algorithms. In this case, Jaro and 

Jaro-Winkler however are not suitable for the matching task.  

 

Regarding the threshold value selection problem for an algorithm, Christen 

highlighted the difficulty in setting an optimal threshold value and claimed that an 
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optimal threshold value vary between different datasets without giving any further 

evaluation regarding the threshold value selection problem. In the proposed 

experiments, a thorough evaluation regarding the selection of a suitable threshold 

value for different algorithms is made and detailed threshold values are presented 

with different characteristics of data concerned. Based on these data values, a similar 

regular pattern is observed compared with that of Hassanzadeh et al, i.e., a lower 

value of the threshold is needed as the error rate in the dataset increases.  

 

All algorithms selected in this chapter are character-level algorithms rather than the 

token-level algorithms used by Hassanzadeh et al [128]. Hassanzadeh et al focus the 

evaluations regarding the effectiveness of the different token-level algorithms 

mainly on two characteristics: the error rate of a dataset and the type of errors. 

Compared with Hassanzadeh et al, the proposed evaluations in this chapter 

addressed more characteristics: the error rate of a datasets, the type of string, the size 

of dataset, the type of typo. All these characteristics are used during the evaluation 

of the relative effectiveness of the five algorithms as well as the selection of a 

threshold value. However, in the proposed experiments, only one error type is 

considered (misspelling) and while Hassanzadeh et al involve three types of errors 

(misspelling, abbreviation and word swap).  
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CHAPTER 6  CONCLUSION AND FUTURE WORK 

 

The main outcomes of the research undertaken for this thesis are the development of 

a rule-based taxonomy of dirty data, a novel data cleaning framework, and the 

evaluation work towards the performance of five popular approximate string 

matching algorithms. This chapter discusses two aspects of the work that merit 

further examination and discussion. Firstly, the conclusions and contributions are 

discussed and summarized. Secondly, the future directions of the research are 

discussed. 

 

6.1  Novelties and contributions 

 

 A rule-based taxonomy of dirty data 

 

Today, data has become more and more important, with many human activities 

relying on it. As data have kept increasing at an explosive rate, a great number of 

database applications have been developed in order to derive useful information 

from these large quantities of data, such as decision support systems and customer 

relationship management systems (CRM). It has now been recognized that an 

inordinate proportion of data in most data sources is dirty.  

 

Due to the „garbage in, garbage out‟ principle, dirty data will distort information 

obtained from it. Obviously, a database application such as a data warehouse with a 

high proportion of dirty data is not reliable for the purpose of data mining or 

deriving business intelligence and the quality of decisions made on the basis of such 

business intelligence is also not convincing. Therefore, before using these database 

applications, dirty data needs to be cleaned. Due to the lack of appreciation of the 

types and extent of dirty data in many enterprises, inadequate attention is paid to the 
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existence of dirty data in many database applications. Besides, methodologies are 

not applied to ensure high quality data in these applications.  

 

In this thesis, research work regarding the studies of dirty data types is reviewed 

firstly. 38 dirty data types are proposed with the help of the studies of different data 

quality rules. Comparing with the dirty data types mentioned by the previous 

researchers, the proposed 38 dirty data types is the most complete collection of dirty 

data types. Although it is not ensured that all possible dirty data types that may exist 

are covered within the collection of these 38 dirty data types, it is believed that most 

usual or unusual dirty data types are included. Secondly, a rule-based taxonomy of 

dirty data is proposed based on these 38 dirty data types. The rule-based taxonomy 

of dirty data is introduced by associating the proposed 38 dirty data types under 

different data quality rules, which forms an even larger collection of dirty data 

compared with any of the existing taxonomies or classifications. With the help of the 

taxonomy, a method to deal with the DDS problem is developed by prioritizing the 

expensive process of data cleaning. By using the proposed rule based taxonomy 

during the data cleaning process, the business enterprises are maximally benefited. 

 

 A novel data cleaning framework 

 

In this thesis, a novel data cleaning framework has been proposed, which aims to 

challenge the following issues: (i) minimising the data cleaning time and improving 

the degree of automation in data cleaning, (ii) improving the effectiveness of data 

cleaning. Additionally, the proposed framework offers a function (The DDS process) 

to address some special cases when individual business requirements are involved. 

This function can help a business to take into account the special needs according to 

different businesses priority policies.  

 

The proposed framework retains the most appealing characteristics of existing data 



196 
 

cleaning approaches, and improves the efficiency and effectiveness during a data 

cleaning process. Compared with existing data cleaning approaches, the proposed 

framework provides several exclusive features which have not been addressed in 

existing approaches.  

 

Firstly, the proposed framework tries to address as many dirty data types as possible 

according to the proposed taxonomy of dirty data. Existing approaches only focus 

on specific data cleaning tasks such as data standardization or duplicate records 

elimination. Some tool only focuses on solving one activity such as ARKTOS. 

According to the knowledge to the author, none of the existing tools can help with 

providing an all-in-one solution to the problems mentioned in the proposed dirty 

data taxonomy.  

 

Secondly, the proposed framework addresses the order of various cleaning activities 

exclusively and provides an automatic solution to organize the sequence of these 

activities, i.e., „algorithm ordering mechanism‟. None of any existing data cleaning 

approaches reviewed in chapter 2 has addressed this problem specifically. The order 

proposed by the „algorithm ordering mechanism‟ addresses both effectiveness and 

efficiency during the data cleaning process.  

 

Finally, the proposed framework supplies a function of „algorithm selection 

mechanism‟ which can provide an optimized algorithm regarding the different 

factors involved such as problem domain, error rate, computational cost. Compared 

with existing approaches such as IntelliClean which offer only a fixed solution to 

cope with all situations or some approach that require its users to make a choice out 

of multiple algorithms, this is an improvement. For example, Febrl supports a 

variety of techniques to deal with duplicate record detection. Choosing a suitable 

technique and setting the corresponding parameters for the selected technique all 

depend on its user‟s preference. Febrl does not supply any recommendations or 
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guidance during the selection. For users who do not have enough knowledge about 

these techniques, this is a hard job. The proposed „algorithm selection mechanism‟ 

aims to fill this gap by supplying an optimized algorithm to deal with different 

problems with various factors involved. In this way, both effectiveness and 

automation degree are improved.  

 

 An evaluation of approximate string matching algorithms 

 

Approximate string matching is an important part in many data cleaning approaches 

which has been well studied for many years, and a variety of approximate string 

matching techniques have been proposed for string data for the purpose of matching 

tuples. There is a growing awareness that the high quality of string matching is a key 

to a variety of applications, such as data integration, text and web mining, 

information retrieval and search engines. In such applications, matching names is 

one of the popular tasks. There are a number of name matching techniques available. 

Unfortunately, there is no existing name matching technique that performs best in all 

situations. Different techniques perform differently in different situations. An 

estimate of similarity between strings can vary significantly depending on the 

domain and specific field under consideration, traditional similarity measures may 

fail to estimate string similarity correctly. In the past decade, this problem has been 

challenged by several researchers. However, none of them have undertaken such a 

comprehensive analysis and comparison that considers the effect on the performance 

of accuracy and timing caused by the following factors: error rates, type of strings, 

type of typos, and the size of datasets.  

 

In this thesis, a comprehensive comparison of the five techniques has been carried 

out based on a series of experiments on different last name and first name datasets. 

The experimental results confirmed the statement that there is no clear best 

technique. The size of dataset, the error rate in a dataset, the types of strings in a 
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dataset and the types of typos in a string will all affect the performance of a selected 

algorithm.  

 

Regarding the threshold value selection, according to the experimental results, the 

higher the error rate in the dataset, the lower the threshold value required in order to 

achieve the best performance. Timing performance based on the five algorithms on 

different datasets has also been analyzed and compared. Overall, Jaro-Winkler and 

Jaro are significantly faster than others.  

 

With the help of the experimental results in chapter 5, recommendations on the 

selection of a suitable algorithm for a particular name matching task are proposed. 

Compared with the existing recommendations addressed in the previous research,  

a group of much more detailed recommendations with the corresponding parameters 

supplied for the recommended algorithms for a practical use and provide useful help 

in the development of the „algorithm selection mechanism‟ in the proposed data 

cleaning framework are provided.  

 

6.2  Future work 

 

Based on the discussions in former sections, two possible extensions of the current 

research work are outlined in this section. 

 

The first extension will be focused on the effective database design regarding the 

data input, for example, the design of data entry interfaces in database applications. 

As mentioned in the beginning of this work, the quality of any large real world 

dataset depends on a number of factors, among which the source of data is often the 

crucial factors. Dirty data can creep in at every step of the process from initial data 

acquisition to archival storage. Based on the studies of the different types of dirty 

data, it is discovered that some of them are introduced during the data entry. For 
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example, according to table 3.4, dirty data types such as DT.17~DT.20 and DT.26 

might all be introduced during the data entry process.  

 

On many occasions, it is common that data entry needs to be done by humans 

manually, who typically extract information from speech or by inputting the data 

from written or printed sources. During this process, errors in data can often be 

mitigated through judicious design of data entry interfaces. Traditionally, the 

specification and maintenance of database integrity constraints are used to prevent 

the introduction of the dirty data mentioned above such as data type checks, bounds 

on numeric values, and referential integrity. The most common reason for this 

behaviour is the enforcement of integrity constraints on the data (rules that ensure 

completeness and consistency of data entered into the system). These integrity 

constraints were invented precisely to keep data as clean as possible.  

 

However, the limitation remains that integrity constraints do not prevent bad data 

and in some cases, constraint enforcement leads to user frustration. For example, the 

requirement that a field be non-empty is not sufficient to ensure that a user provides 

meaningful contents. Therefore, an alternative approach is to provide the data entry 

user with convenient affordances to understand, override and explain constraint 

violations, thus discouraging the silent injection of bad data, and encouraging 

annotation of surprising or incomplete source data [131]. According to Hellerstein, 

several guiding principles for the design of data entry interfaces are proposed [131]. 

Based on the theoretical analysis, it is shown that a good data entry interfaces will 

help with preventing the errors from entering into the database. As stated by the old 

aphorism that an ounce of prevention is worth a pound of cure. Therefore, it is 

worthwhile extending the research work on the effective database design with 

respect to the data input. 

 

The second extension of the future research will be focused on the development of a 
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comprehensive data cleaning tool for database applications based on the framework 

proposed in this thesis.  

 

The challenge remains the realization of the two mechanisms (AOM and ASM) 

introduced in the proposed data cleaning framework. Regarding the algorithm 

ordering mechanism, theoretical analyses are given with ordering the multiple data 

cleaning tasks during the data cleaning process. It shows how the order of the 

cleaning of multiple identified dirty data will vary according to the different 

selection of an algorithm. However, experimental results are not achieved and will 

be considered as a part of the future work.  

 

Regarding the algorithm selection mechanism, only five selected approximate string 

matching algorithms are involved for the experiments in this thesis. These five 

algorithms are the most popular character-level algorithms frequently referenced in 

most literature. They can be used for dealing with the matching of personal names 

parsed into single fields such as last name or first name. Although recommendations 

and a list of figures/numerical values regarding the selection of threshold values for 

each of these five algorithms are presented. In order to benefit from using these data 

such as the threshold value suggested in the experimental results, it is assumed that 

the error rate of a pre-defined dataset should be known. This is a difficult task in 

practice as users have no idea about the error rate with respect to the data in advance. 

It is expected that a reasonable method will be available in the future to help with 

estimating the error rate of a given dataset.  

 

Besides, although relative comparison of accuracy performance among different 

token-level algorithms exists in the literature [128], the characteristics of the data 

addressed are not as many as in the presented experiments. The future work will 

include having these token-level algorithms tested with similar data characteristics 

addressed in chapter 5. Apart from the five character-level algorithms, other 
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character-level algorithms mentioned in the Febrl system should also be considered 

in the future for further experimental works.  

 

Finally, in this thesis, the dirty data type involved in the experimental work is 

„misspelling‟. More dirty data types will be involved in the future work for the 

testing of both character-level algorithms and token-level algorithms such as 

abbreviation and word swap. The successful outcome of the future work would 

certainly improve the development of the algorithm selection mechanism and thus, 

enhance the performance of data cleaning system in database applications. 
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APPENDIX A 

A.1: Data of the maximum F score for different techniques on the 

different last name datasets 

Algorithm F score 

(Low ER) 

F score 

(Medium ER) 

F score 

(High ER) 

Dataset  

Levenshtein 0.8872 0.7209 0.6808 9454 

Jaro 0.8872 0.7401 0.6773 9454 

Jaro-Winkler 0.8848 0.7275 0.7053 9454 

Q-gram 0.8872 0.6622 0.5813 9454 

Smith-Waterman 0.2164 0.2095 0.2032 9454 

 

Levenshtein 0.8813 0.7293 0.679 7154 

Jaro 0.8813 0.7541 0.7242 7154 

Jaro-Winkler 0.8806 0.7666 0.7375 7154 

Q-gram 0.8813 0.6735 0.6322 7154 

Smith-Waterman 0.3166 0.3078 0.2999 7154 

 

Levenshtein 0.8868 0.7258 0.6836 5000 

Jaro 0.8868 0.7461 0.7278 5000 

Jaro-Winkler 0.8854 0.7548 0.7394 5000 

Q-gram 0.8868 0.6644 0.6122 5000 

Smith-Waterman 0.2951 0.2813 0.28 5000 

 

Levenshtein 0.8895 0.715 0.6516 3600 

Jaro 0.8895 0.7349 0.7163 3600 

Jaro-Winkler 0.8878 0.7337 0.706 3600 

Q-gram 0.8895 0.665 0.5757 3600 
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Smith-Waterman 0.2949 0.2822 0.2718 3600 

 

Levenshtein 0.8862 0.7265 0.6722 2300 

Jaro 0.8862 0.7383 0.7012 2300 

Jaro-Winkler 0.8852 0.7252 0.706 2300 

Q-gram 0.8862 0.6626 0.5425 2300 

Smith-Waterman 0.3118 0.2833 0.2802 2300 

 

Levenshtein 0.887 0.7072 0.6328 1000 

Jaro 0.887 0.7161 0.6315 1000 

Jaro-Winkler 0.8877 0.6857 0.6344 1000 

Q-gram 0.887 0.6609 0.5181 1000 

Smith-Waterman 0.312 0.258 0.2359 1000 

 

Levenshtein 0.8874 0.7254 0.6768 500 

Jaro 0.8862 0.7199 0.7022 500 

Jaro-Winkler 0.8874 0.7411 0.682 500 

Q-gram 0.8862 0.6623 0.5617 500 

Smith-Waterman 0.3748 0.3443 0.3266 500 

 

Levenshtein 0.892 0.7833 0.8089 200 

Jaro 0.892 0.7482 0.7368 200 

Jaro-Winkler 0.892 0.7325 0.7045 200 

Q-gram 0.892 0.7653 0.7406 200 

Smith-Waterman 0.5949 0.5177 0.5077 200 

Table A.1 Accuracy results for last name datasets 
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A.2: Data of threshold value selection for each technique to obtain 

the maximum F score in different last name datasets 

 

Algorithm Low  

Error Rate 

Medium 

Error Rate 

High  

Error Rate 

Data Size 

Levenshtein 0.99 0.85 0.8 9454 

Levenshtein 0.99 0.85 0.8 7154 

Levenshtein 0.99 0.85 0.8 5000 

Levenshtein 0.99 0.85 0.8 3600 

Levenshtein 0.99 0.85 0.8 2300 

Levenshtein 0.99 0.85 0.8 1000 

Levenshtein 0.9 0.85 0.8 500 

Levenshtein 0.99 0.8 0.75 200 

 

Jaro  0.99 0.95 0.9 9454 

Jaro 0.99 0.95 0.9 7154 

Jaro 0.99 0.95 0.9 5000 

Jaro 0.99 0.95 0.9 3600 

Jaro 0.99 0.95 0.9 2300 

Jaro 0.99 0.95 0.9 1000 

Jaro 0.99 0.9 0.9 500 

Jaro 0.99 0.9 0.9 200 

 

Jaro-Winkler 0.99 0.95 0.95 9454 

Jaro-Winkler 0.99 0.95 0.95 7154 

Jaro-Winkler 0.99 0.95 0.95 5000 

Jaro-Winkler 0.99 0.95 0.95 3600 

Jaro-Winkler 0.99 0.95 0.95 2300 

Jaro-Winkler 0.99 0.95 0.95 1000 

Jaro-Winkler 0.99 0.95 0.95 500 

Jaro-Winkler 0.99 0.95 0.9 200 

 

Q-gram 0.99 0.99 0.8 9454 

Q-gram 0.99 0.99 0.8 7154 

Q-gram 0.99 0.99 0.8 5000 

Q-gram 0.99 0.99 0.8 3600 

Q-gram 0.99 0.99 0.8 2300 

Q-gram 0.99 0.99 0.8 1000 

Q-gram 0.99 0.99 0.8 500 

Q-gram 0.99 0.8 0.75 200 
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Smith-Waterman 0.9 0.9 0.85 9454 

Smith-Waterman 0.99 0.9 0.9 7154 

Smith-Waterman 0.9 0.9 0.9 5000 

Smith-Waterman 0.9 0.9 0.85 3600 

Smith-Waterman 0.9 0.9 0.9 2300 

Smith-Waterman 0.9 0.85 0.85 1000 

Smith-Waterman 0.9 0.85 0.85 500 

Smith-Waterman 0.99 0.85 0.85 200 

Table A.2 Threshold value selection for last name datasets 
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A.3: Data of average time cost for the five techniques on four 

different sizes of datasets (9454, 7154, 5000, and 3600) 

 

Algorithm Time cost 

Low ER 

Time cost 

Medium ER 

Time cost 

High ER 

Dataset 

Levenshtein 128.945 130.82 143.751 9454 

Jaro 57.573 57.977 61.123 9454 

Jaro-Winkler 42.299 42.418 46.998 9454 

Q-gram 162.773 166.503 174.301 9454 

Smith-Waterman 220.535 225.116 227.98 9454 

Levenshtein 78.745 79.665 82.609 7154 

Jaro 35.264 34.584 37.648 7154 

Jaro-Winkler 26.829 26.062 28.315 7154 

Q-gram 98.102 98.906 101.235 7154 

Smith-Waterman 147.848 134.764 145.340 7154 

Levenshtein 37.023 
41.007 

40.255 5000 

Jaro 
16.514 

17.664 17.736 5000 

Jaro-Winkler 12.612 13.031 
13.166 5000 

Q-gram 47.13 48.85 50.507 5000 

Smith-Waterman 65.767 69.181 70.237 5000 

Levenshtein 19.9782 21.7713 22.63736 3600 

Jaro 9.160714 9.777714 10.067 3600 

Jaro-Winkler 6.887571 7.565857 7.578571 3600 

Q-gram 24.538 26.62 27.89082 3600 

Smith-Waterman 34.06429 39.15488 38.58414 3600 

Table A.3 Time cost in last name datasets 
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A.4: Data of the maximum F score for the 2300 first name datasets 

with the three different types of typos 

 

Algorithm F score 

(Low ER) 

F score 

(Medium ER) 

F score 

(High ER) 

Type of typo 

Levenshtein 0.8999 0.8177 0.8394 TFP 

Jaro 0.8912 0.7868 0.7936 TFP 

Jaro-Winkler 0.8865 0.7763 0.7705 TFP 

Q-gram 0.8887 0.6667 0.6978 TFP 

Smith-Waterman 0.3661 0.3437 0.359 TFP 

 

Levenshtein 0.8961 0.7884 0.7902 TLP 

Jaro 0.9032 0.8195 0.7848 TLP 

Jaro-Winkler 0.9062 0.8148 0.82 TLP 

Q-gram 0.8863 0.7662 0.7861 TLP 

Smith-Waterman 0.3552 0.3305 0.3371 TLP 

 

Levenshtein 0.8909 0.7259 0.6961 TR 

Jaro 0.8867 0.7708 0.7947 TR 

Jaro-Winkler 0.8846 0.7844 0.7722 TR 

Q-gram 0.8867 0.6645 0.5849 TR 

Smith-Waterman 0.3434 0.3327 0.3414 TR 

Table A.4 Accuracy results for 2300 first name datasets with different typos 
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A.5: Data of the maximum F score for the 2300 last name datasets 

with the three different types of typos 

 

Algorithm F score 

(Low ER) 

F score 

(Medium ER) 

F score 

(High ER) 

Type of typo 

Levenshtein 0.89 0.7346 0.734 TFP 

Jaro 0.8889 0.7524 0.6918 TFP 

Jaro-Winkler 0.8876 0.7124 0.7057 TFP 

Q-gram 0.8889 0.6663 0.5807 TFP 

Smith-Waterman 0.3533 0.3225 0.3317 TFP 

 

Levenshtein 0.8896 0.7365 0.7422 TLP 

Jaro 0.8885 0.7674 0.7405 TLP 

Jaro-Winkler 0.8989 0.7409 0.7668 TLP 

Q-gram 0.8885 0.6663 0.7162 TLP 

Smith-Waterman 0.3537 0.3633 0.39 TLP 

 

Levenshtein 0.8862 0.7265 0.6722 TR 

Jaro 0.8862 0.7383 0.7012 TR 

Jaro-Winkler 0.8852 0.7252 0.706 TR 

Q-gram 0.8862 0.6626 0.5425 TR 

Smith-Waterman 0.3118 0.2833 0.2802 TR 

Table A.5 Accuracy results for 2300 last name datasets with different typos 
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A.6: Accuracy relative to the value of threshold on different last 

name datasets with different error rates for levenshtein algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.A.1 Accuracy relative to threshold value for Levenshtein algorithm 

 

Levenshtein 

 

(a) Low Error Dataset 

 

 
(b) Medium Error Dataset 

 

 
(c) High Error Dataset 
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A.7: Accuracy relative to the value of threshold on different last 

name datasets with different error rates for Jaro algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.A.2 Accuracy relative to threshold value for Jaro algorithm 

 

Jaro 

 

(a) Low Error Dataset 

 

 

(b) Medium Error Dataset 

 

 

(c) High Error Dataset 
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A.8: Accuracy relative to the value of threshold on different last 

name datasets with different error rates for Jaro-Winkler algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.A.3 Accuracy relative to threshold value for Jaro-Winkler algorithm 

 

Jaro-Winkler 

 

(a) Low Error Dataset 

 

 

(b) Medium Error Dataset 

 

 

(c) High Error Dataset 
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A.9: Accuracy relative to the value of threshold on different last 

name datasets with different error rates for Q-Gram algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.A.4 Accuracy relative to threshold value for Q-Gram algorithm 

 

 

Q-Gram 

 

(a) Low Error Dataset 

 

 

(b) Medium Error Dataset 

 

 

(c) High Error Dataset 

 

 



224 
 

A.10: Accuracy relative to the value of threshold on different last 

name datasets with different error rates for Smith-Waterman 

algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.A.5 Accuracy relative to threshold value for Smith-Waterman algorithm 

 

 

 

Smith-Waterman 

 
(a) Low Error Dataset 

 

 

(b) Medium Error Dataset 

 

 
(c) High Error Dataset 
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A.11: Algorithm selection for last name and first name datasets 

 

Size of dataset Error rate Algorithm Threshold value Type of string 

9454 Low Jaro 0.99 Last name 

9454 Medium Jaro 0.95 Last name 

9454 High Jaro-Winkler 0.95 Last name 

7154 Low Jaro 0.99 Last name 

7154 Medium Jaro-Winkler 0.95 Last name 

7154 High Jaro-Winkler 0.95 Last name 

5000 Low Jaro 0.99 Last name 

5000 Medium Jaro-Winkler 0.95 Last name 

5000 High Jaro-Winkler 0.95 Last name 

3600 Low Jaro 0.99 Last name 

3600 Medium Jaro 0.95 Last name 

3600 High Jaro 0.9 Last name 

2300 Low Jaro 0.9 Last name 

2300 Medium Jaro 0.95 Last name 

2300 High Jaro-Winkler 0.95 Last name 

1000 Low Jaro-Winkler 0.99 Last name 

1000 Medium Jaro 0.95 Last name 

1000 High Jaro-Winkler 0.95 Last name 

500 Low Jaro-Winkler 0.99 Last name 

500 Medium Jaro-Winkler 0.95 Last name 

500 High Jaro 0.9 Last name 

200 Low Jaro-Winkler 0.99 Last name 

200 Medium Levenshtein 0.8 Last name 

200 High Levenshtein 0.75 Last name 

2300 Low Jaro-Winkler 0.99 First name (TLP) 
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2300 Medium Jaro 0.95 First name (TLP) 

2300 High Jaro-Winkler 0.95 First name (TLP) 

2300 Low Levenshtein 0.9 First name (TFP) 

2300 Medium Levenshtein 0.8 First name (TFP) 

2300 High Levenshtein 0.8 First name (TFP) 

2300 Low Levenshtein 0.9 First name (TR) 

2300 Medium Jaro-Winkler 0.95 First name (TR) 

2300 High Jaro 0.9 First name (TR) 

Table A.6 Algorithm selection and Threshold values for last name datasets and 

first name datasets 
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APPENDIX B 

B.1: Business entity rules 

 

Business Entity Rules Sub rules 

R1.1  

Entity uniqueness rules 

R1.1.1 Primary key rule: every instance of a business 

entity has its own unique identifier. 

R1.1.2 Primary key can never be NULL. 

R1.1.3 A composite key must be minimal 

R1.1.4 A composite primary key can contain one or 

more foreign keys 

R1.2  

Entity cardinality rules 

R1.2.1 One-to-one cardinality rule 

R1.2.2 One-to-many (or many-to-one) cardinality rule 

R1.2.3 Many-to-many cardinality rule 

R1.3 

Entity optionality rules 

R1.3.1 One-to-one optionality rule 

R1.3.2 One-to-zero (or zero-to-one) optionality rule 

R1.3.3 Zero-to-zero optionality rule 

R1.3.4 Every instance of an entity that is being 

referenced by another entity in the relationship must 

exist. 

R1.3.5 The reference attribute does not have to be 

known when an optional relationship is not 

instantiated, i.e., the foreign key can be NULL on an 

optional relationship. 

Table B.1 Business entity rules 
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B.2: Business attribute rules 

 

Business attribute rules Sub rules 

R2.1 Data inheritance rules  

 

R2.1.1 All generalized business attributes of the 

supertype are inherited by all subtypes. 

R2.1.2 The unique identifier of the supertype is the 

same unique identifier of its subtypes. 

R2.1.3 All business attributes of a subtype must be 

unique to that subtype only. 

R2.2 Data domains rules 

R2.2.1 Data values should belong to the given list of 

values. 

R2.2.2 Data values should be within the given range 

of values. 

R2.2.3 Data values should conforms to the given 

constrains. 

R2.2.4 Data values contains only a set of allowable 

characters. 

R2.2.5 Data values should follows the given patterns. 

Table B.2 Business attribute rules 
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B.3: Data dependency rules 

 

Data dependency rules Sub rules 

R3.1  

Entity-relationship rules 

R3.1.1 The existence of a data relationship depends 

on the state (condition) of another entity that 

participates in the relationship. 

R3.1.2 The existence of one data relationship 

mandates that another data relationship also exists. 

R3.1.3 The existence of one data relationship 

prohibits the existence of another data relationship. 

R3.2 

Attribute dependency rules 

R3.2.1 The value of one business attribute depends on 

the state (condition) of the entity in which the 

attributes exist. 

R3.2.2 The correct value of one attribute depends on, 

or is derived from, the values of two or more other 

attributes. 

R3.2.3 The allowable value of one attribute is 

constrained by the value of one or more other 

attributes in the same business entity or in a different 

but related business entity. 

R3.2.4 The existence of one attribute value prohibits 

the existence of another attribute value in the same 

business entity or in a different but related business 

entity. 

Table B.3 Data dependency rules 
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B.4: Data validity rules 

 

Data validity rules Sub rules 

R4.1 Data 

completeness rules 

R4.1.1 All instances exist for all business entities, i.e., all 

records or rows are present. 

R4.1.2 Referential integrity exists among all referenced 

business entities. 

R4.1.3 All business attributes for each business entity exist, 

i.e., all columns are present. 

R4.1.4 All business attributes contain allowable values 

including NULL when it is allowed. 

R4.2 Data correctness 

rules 

R4.2.1 All data values for a business attribute must be 

correct and representative of the attribute‟s definition. 

R4.2.2 All data values for a business attribute must be 

correct and representative of the attribute‟s specific 

individual domains. 

R4.2.3 All data values for a business attribute must be 

correct and representative of the attribute‟s applicable 

business rules. 

R4.2.4 All data values for a business attribute must be 

correct and representative of the attribute‟s supertype 

inheritance. 

R4.2.5 All data values for a business attribute must be 

correct and representative of the attribute‟s identity rule.  

R4.3 Data accuracy 

rules 

R4.3.1 All data values for a business attribute must be 

accurate in terms of the attribute‟s dependency rules. 

R4.3.2 All data values for a business attribute must be 

accurate in terms of the attribute‟s state in the real world.  
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R4.4 Data precision 

rules 

R4.4.1 All data values for a business attribute must be as 

precise as required by the attribute‟s business requirements. 

R4.4.2 All data values for a business attribute must be as 

precise as required by the attribute‟s business rules.  

R4.4.3 All data values for a business attribute must be as 

precise as required by the attribute‟s intended meaning. 

R4.4.4 All data values for a business attribute must be as 

precise as required by the attribute‟s intended usage.  

R4.4.5 All data values for a business attribute must be as 

precise as required by the attribute‟s precision in the real 

world.  

R4.5 Data uniqueness 

rules 

R4.5.1 Every business entity instance must be unique.  

R4.5.2 Every business entity must have only one unique 

identifier.  

R4.5.3 Every business attribute must have only one unique 

definition. 

R4.5.4 Every business attribute must have only one unique 

name. 

R4.5.5 Every business attribute must have only one unique 

domain.  

R4.6 Data consistency 

rules 

R4.6.1 The data values for a business attribute must be 

consistent when the attribute is duplicated for performance 

reasons or when it is stored redundantly for any other 

reason 

R4.6.2 The duplicated data values of a business attribute 

must be based on the same domain and on the same data 

quality rules. 

Table B.4 Data validity rules 

 


