

Data Quality and Data Cleaning

in

Database Applications

Lin Li

A thesis submitted in partial fulfilment of

the requirements of Edinburgh Napier University

for the award of

Doctor of Philosophy

School of Computing

September 2012

II

ABSTRACT

Today, data plays an important role in people‟s daily activities. With the help of

some database applications such as decision support systems and customer

relationship management systems (CRM), useful information or knowledge could be

derived from large quantities of data. However, investigations show that many such

applications fail to work successfully. There are many reasons to cause the failure,

such as poor system infrastructure design or query performance. But nothing is more

certain to yield failure than lack of concern for the issue of data quality. High quality

of data is a key to today‟s business success. The quality of any large real world data

set depends on a number of factors among which the source of the data is often the

crucial factor. It has now been recognized that an inordinate proportion of data in

most data sources is dirty. Obviously, a database application with a high proportion

of dirty data is not reliable for the purpose of data mining or deriving business

intelligence and the quality of decisions made on the basis of such business

intelligence is also unreliable. In order to ensure high quality of data, enterprises

need to have a process, methodologies and resources to monitor and analyze the

quality of data, methodologies for preventing and/or detecting and repairing dirty

data. This thesis is focusing on the improvement of data quality in database

applications with the help of current data cleaning methods. It provides a systematic

and comparative description of the research issues related to the improvement of the

quality of data, and has addressed a number of research issues related to data

cleaning.

In the first part of the thesis, related literature of data cleaning and data quality are

reviewed and discussed. Building on this research, a rule-based taxonomy of dirty

data is proposed in the second part of the thesis. The proposed taxonomy not only

summarizes the most dirty data types but is the basis on which the proposed method

for solving the Dirty Data Selection (DDS) problem during the data cleaning process

III

was developed. This helps us to design the DDS process in the proposed data

cleaning framework described in the third part of the thesis. This framework retains

the most appealing characteristics of existing data cleaning approaches, and

improves the efficiency and effectiveness of data cleaning as well as the degree of

automation during the data cleaning process.

Finally, a set of approximate string matching algorithms are studied and

experimental work has been undertaken. Approximate string matching is an

important part in many data cleaning approaches which has been well studied for

many years. The experimental work in the thesis confirmed the statement that there

is no clear best technique. It shows that the characteristics of data such as the size of

a dataset, the error rate in a dataset, the type of strings in a dataset and even the type

of typo in a string will have significant effect on the performance of the selected

techniques. In addition, the characteristics of data also have effect on the selection of

suitable threshold values for the selected matching algorithms. The achievements

based on these experimental results provide the fundamental improvement in the

design of „algorithm selection mechanism‟ in the data cleaning framework, which

enhances the performance of data cleaning system in database applications.

IV

ACKNOWLEDGEMENT

I would like to thank my supervisors Dr. Taoxin Peng, Professor Jessie Kennedy, and

my PhD panel chairs for all their help, support, expertise and understanding

throughout my period of PhD study. I would also like to thank all staff at the School

of Computing at Napier University, especially the members at the Centre for

Information and Software Systems group, for providing me valuable feedback and

suggestions during my PhD study.

Finally, great appreciation and thanks to my mum and my dad for their consistent

spiritual support. I am proud of them and appreciate what they contribute to my life.

V

PUBLICATIONS FROM THE PHD WORK

[1] Li, L., Peng, T., & Kennedy, J. (2010). Improving Data Quality in Data

Warehousing Applications. Proceedings of the 12th International Conference

on Enterprise Information Systems, Funchal, Madeira Portugal.

[2] Li, L., Peng, T., & Kennedy, J. (2011). A Rule Based Taxonomy of Dirty

Data. GSTF International Journal on Computing, 1(2), 140-148.

[3] Peng, T., Li, L., & Kennedy, J. (2011). An Evaluation of Name Matching

Techniques. Proceedings of 2nd Annual International Conference on

Business Intelligence and Data Warehousing, Singapore.

[4] Peng, T., Li, L., & Kennedy, J. (2012). A Comparison of Techniques for

Name Matching. International Journal on Computing, 2(1), 55-61.

VI

TABLE OF CONTENTS

Abstract ... II

Acknowledgement.. IV

Publications from the PhD work ... V

Table of Contents ... VI

List of Figures .. IX

List of Tables ... X

Chapter 1 Introduction .. 1

1.1 Data Quality .. 2

1.2 Data Cleaning .. 3

1.3 Objectives of the research ... 9

1.4 Contributions to knowledge .. 11

1.5 The structure of the thesis ... 13

Chapter 2 Literature review and related work ... 15

2.1 Dirty data ... 15

2.1.1 Müller and Freytag‟s Data Anomalies .. 15

2.1.2 Rahm and Do‟s classification of data quality problems 17

2.1.3 Kim et al‟s taxonomy of dirty data ... 19

2.1.4 Oliveira et al‟s taxonomy of data quality problems ... 23

2.2 Methods used for Data cleaning .. 27

2.3 Existing approaches for Data cleaning .. 32

2.4 Data quality, data quality dimensions and other related concepts 55

2.4.1 Data Quality ... 56

2.4.2 Data quality dimensions ... 58

2.4.3 Impacts and costs of Data quality ... 70

2.4.3.1 The impact ... 72

2.4.3.2 The cost ... 73

2.4.4 Data quality assessment.. 77

2.5 Conclusion... 85

Chapter 3 A rule-based taxonomy of dirty data .. 89

3.1 Data quality rules .. 90

3.2 Dirty data types ... 96

3.3 The taxonomy .. 103

3.4 Conclusion... 106

Chapter 4 A Data cleaning framework .. 108

4.1 Introduction ... 108

4.2 Data cleaning framework .. 111

4.2.1 Basic ideas .. 111

4.2.2 Some definitions ... 113

4.2.3 The framework ... 116

4.3 A case study ... 129

4.4 Conclusion... 143

Chapter 5 Experiment and evaluation ... 146

VII

5.1 Introduction ... 148

5.2 Related work ... 150

5.3 Matching techniques ... 154

5.4 Experiment and Experimental Results .. 157

5.4.1 Datasets preparation ... 160

5.4.2 Measures .. 163

5.4.3 Experimental results ... 163

5.4.3.1 Experimental results for Last name strings ... 163

5.4.3.2 Experimental results for 2300 First name/ Last name strings 174

5.5 Evaluation ... 182

5.5.1 Last name experimental results evaluation ... 182

5.5.2 2300 first/last name experimental result evaluation 187

5.6 Summary ... 190

5.7 Conclusion... 191

Chapter 6 Conclusion and future work ... 194

6.1 Novelties and contributions ... 194

6.2 Future work ... 198

REFERENCES ... 202

Appendix A .. 213

A.1: Data of the maximum F score for different techniques on the different last name

datasets ... 213

A.2: Data of threshold value selection for each technique to obtain the maximum F score in

different last name datasets .. 215

A.3: Data of average time cost for the five techniques on four different sizes of datasets

(9454, 7154, 5000, and 3600) .. 217

A.4: Data of the maximum F score for the 2300 first name datasets with the three different

types of typos ... 218

A.5: Data of the maximum F score for the 2300 last name datasets with the three different

types of typos ... 219

A.6: Accuracy relative to the value of threshold on different last name datasets with

different error rates for levenshtein algorithm .. 220

A.7: Accuracy relative to the value of threshold on different last name datasets with

different error rates for Jaro algorithm ... 221

A.8: Accuracy relative to the value of threshold on different last name datasets with

different error rates for Jaro-Winkler algorithm ... 222

A.9: Accuracy relative to the value of threshold on different last name datasets with

different error rates for Q-Gram algorithm .. 223

A.10: Accuracy relative to the value of threshold on different last name datasets with

different error rates for Smith-Waterman algorithm ... 224

A.11: Algorithm selection for last name and first name datasets 225

Appendix B .. 227

B.1: Business entity rules ... 227

B.2: Business attribute rules ... 228

B.3: Data dependency rules .. 229

VIII

B.4: Data validity rules .. 230

IX

LIST OF FIGURES

Fig.1.1 A data cleaning process ... 6

Fig.2.1 Potter‟s Wheel Architecture .. 33

Fig.2.2 Mapping operator from AJAX .. 36

Fig.2.3 Matching operator from AJAX ... 37

Fig.2.4 XADL definition of a scenario, as exported by ARKTOS .. 41

Fig.2.5 SADL definition of a scenario, as exported by ARKTOS .. 42

Fig.2.6 An example of the duplicate identification rule in IntelliClean .. 45

Fig.2.7 Initial Febrl user interface ... 48

Fig.2.8 A data quality assessment model [108] ... 80

Fig.4.1 A data cleaning framework ... 118

Fig.4.2 The DDS Process .. 122

Fig.4.3 The single-source process ... 125

Fig.4.4 The multi-source process .. 126

Fig.5.1 Approximate string matching algorithms from Febrl .. 146

Fig.5.2 Effectiveness results for 9454 last name dataset ... 165

Fig.5.3 Effectiveness results for 7154 last name dataset ... 166

Fig.5.4 Effectiveness results for 5000 last name dataset ... 166

Fig.5.5 Effectiveness results for 3600 last name dataset ... 167

Fig.5.6 Effectiveness results for 2300 last name dataset ... 168

Fig.5.7 Effectiveness results for 1000 last name dataset ... 169

Fig.5.8 Effectiveness results for 500 last name dataset ... 170

Fig.5.9 Effectiveness results for 200 last name dataset ... 171

Fig.5.10 Timing performance in 9454 last name dataset... 172

Fig.5.11 Timing performance in 7154 last name dataset ... 173

Fig.5.12 Timing performance in 5000 last name dataset... 173

Fig.5.13 Timing performance in 3600 last name dataset... 174

Fig.5.14 Effectiveness results for 2300 first name datasets with TFP typo 175

Fig.5.15 Effectiveness results for 2300 first name datasets with TLP typo 176

Fig.5.16 Accuracy results for 2300 first name datasets with TR typo ... 177

Fig.5.17 Accuracy results for 2300 last name datasets with TFP typo .. 178

Fig.5.18 Accuracy results for 2300 last name datasets with TLP typo .. 179

Fig.5.19 Accuracy results for 2300 last name datasets with TR typo.. 180

Fig.5.20 Maximum F score comparison on last name datasets size 3600 184

Fig.5.21 Maximum F score comparison on last name datasets size 200 184

Fig.5.22 Performance comparisons on 2300 first name datasets with TFP typo 188

Fig.5.23 Performance comparisons between first name datasets and last name datasets with TFP

typos under three different error rates ... 190

Fig.A.1 Accuracy relative to threshold value for Levenshtein algorithm 220

Fig.A.2 Accuracy relative to threshold value for Jaro algorithm .. 221

Fig.A.3 Accuracy relative to threshold value for Jaro-Winkler algorithm 222

Fig.A.4 Accuracy relative to threshold value for Q-Gram algorithm .. 223

Fig.A.5 Accuracy relative to threshold value for Smith-Waterman algorithm 224

X

LIST OF TABLES

Table 2.1 Data anomalies from Müller and Freytag. ... 17

Table 2.2 Dirty data types from Rahm and Do. ... 19

Table 2.3 Dirty data types from Kim et al. .. 22

Table 2.4 Oliveira et al‟s dirty data set. ... 25

Table 2.5 Summary of the five approaches ... 51

Table 2.6 An example of four student records of a university in the UK. 59

Table 2.7 Data quality dimensions .. 60

Table 2.8 Data quality dimensions from academics‟ view [71] .. 65

Table 2.9 Data quality dimensions from practitioners‟ view[71] .. 67

Table 2.10 Cost from low quality data .. 76

Table 2.11 Cost of assuring data quality ... 76

Table 2.12 An analogy between physical products and data products .. 79

Table 2.13 Comparison between objective and subjective assessment [4] 80

Table 2.14 Root causes of poor data quality ... 81

Table 3.1 Data quality rules ... 93

Table 3.2 Data quality rules from Adelman et al‟s work ... 94

Table 3.3 A comparison ... 95

Table 3.4 Dirty data types ... 103

Table 3.5 Rule-based taxonomy of dirty data .. 104

Table 4.1 Records in city-A ... 130

Table 4.2 Records in city-B ... 130

Table 4.3 Data cleaning activities ... 132

Table 4.4 Data quality dimension and data quality rules ... 133

Table 4.5 Data quality dimensions and dirty data types .. 134

Table 4.6 An example of data quality dimensions and dirty data types .. 135

Table 4.7 The grouping results .. 136

Table 4.8 An example of the two sub-groups .. 137

Table 4.9 An example of sorting key ... 140

Table 5.1 Recommendations by Peter Christen ... 152

Table 5.2 Datasets for last name experiments ... 161

Table 5.3 First name datasets with different types of typos .. 162

Table 5.4 Last name datasets with different types of typos ... 162

Table 5.5 Algorithms‟ order for 9454 last name dataset .. 164

Table 5.6 Algorithms‟ order for 7154/5000 last name dataset ... 165

Table 5.7 Algorithms‟ order for 3600 last name dataset .. 167

Table 5.8 Algorithms‟ order for 2300 last name dataset .. 168

Table 5.9 Algorithms‟ order for 1000 last name dataset .. 168

Table 5.10 Algorithms‟ order for 500 last name dataset .. 169

Table 5.11 Algorithms‟ order for 200 last name dataset .. 170

Table 5.12 Algorithm‟s order for 2300 first name datasets with TFP typo 175

Table 5.13 Algorithm‟s order for 2300 first name datasets with TLP typo 176

Table 5.14 Algorithm‟s order for 2300 first name datasets with TR typo 176

XI

Table 5.15 Algorithm‟s order for 2300 last name datasets with TFP typo 177

Table 5.16 Algorithm‟s order for 2300 last name datasets with TLP typo 178

Table 5.17 Algorithm‟s order for 2300 last name datasets with TR typo 179

Table 5.18 Threshold value selection for first/last name dataset with TFP typos 180

Table 5.19 Threshold value selection for first/last name dataset with TLP typos 181

Table 5.20 Threshold value selection for first/last name dataset with TR typos 181

Table 5.21 Algorithms‟ order for low error rate last name datasets... 185

Table 5.22 Algorithms‟ order for medium error rate last name datasets 186

Table 5.23 Algorithms‟ order for high error rate last name datasets ... 186

Table A.1 Accuracy results for last name datasets .. 214

Table A.2 Threshold value selection for last name datasets .. 216

Table A.3 Time cost in last name datasets ... 217

Table A.4 Accuracy results for 2300 first name datasets with different typos 218

Table A.5 Accuracy results for 2300 last name datasets with different typos 219

Table A.6 Algorithm selection and Threshold values for last name datasets and first name

datasets .. 226

Table B.1 Business entity rules ... 227

Table B.2 Business attribute rules ... 228

Table B.3 Data dependency rules .. 229

Table B.4 Data validity rules ... 231

1

CHAPTER 1 INTRODUCTION

Today, data plays an important role in people‟s daily activities. With the help of

database applications such as decision support systems and customer relationship

management systems (CRM), useful information or knowledge can be derived from

large quantities of data. However, investigations show that many such applications

fail to work successfully. There are many reasons to cause the failure, such as poor

system infrastructure design or query performance, but nothing is more certain to

yield failure than lack of concern for the issue of data quality [1].

For example, from Price Waterhouse Coopers‟ survey in New York in 2001, 75% of

599 companies had economic losses because of data quality problems. Because their

businesses are all dependent on data-driven systems such as customer relationship

management and supply chain management systems, the issue remains that only 37%

of the companies were "very confident" in the quality of their own data, and only 15%

were "very confident" in the quality of the data of their trading partners [2].

There is a growing awareness that high quality of data is key to today‟s business

success. The quality of any large real world data set depends on a number of factors

[3-5], among which the source of the data is often the crucial factor. It has now been

recognized that an inordinate proportion of data in most data sources is dirty [6]. For

example, some investigations show that errors in a large data set are common and

are typically around 5% unless extreme measures have been taken [7, 8]. Due to the

„garbage in, garbage out‟ principle, dirty data will distort information obtained from

it [9]. Obviously, a database application such as a data warehouse with a high

proportion of dirty data is not reliable for the purpose of data mining or deriving

business intelligence and the quality of decisions made on the basis of such business

intelligence is also not reliable.

2

Therefore, before using such databases, dirty data from them should be cleaned.

That is, to ensure high quality of data, enterprises need to have a process,

methodologies and resources to monitor and analyze the quality of data, and

methodologies for preventing or detecting and subsequently repairing dirty data.

This thesis provides a systematic and comparative description of the research related

to the improvement of the quality of data, and has addressed a number of research

issues related to data cleaning. In the following sections, we briefly introduce

fundamental concepts and research issues related to data cleaning and data quality.

1.1 Data Quality

Investigations into the problems related to data quality can be traced back to as early

as late 1960s when a mathematical theory for considering the duplicate problem in

statistical data sets was proposed by Fellegi and Sunter [10]. However, it is only in

the 1990s that the data quality problem has been considered in computer science

with the data stored in databases and data warehouse systems. More and more

people have become aware that poor data quality is one of the main reasons for the

failure of a database project. Though a variety of definitions for data quality have

been given [3，8，11], studies show that still no formal definition for data quality

exists [8]. From the literature, data quality can be defined as “fitness for use”, i.e.,

the ability of data to meet the user's requirement. The nature of this definition

directly implies that the concept of data quality is relative. Orr states “the problem of

data quality is fundamentally intertwined in how our system fits into the real world;

in other words, with how users actually use the data in the system” [8]. This has two

interpretations: one is that if a data set is available and is as good as it can be, there

are no other options than to use it. The other one is that what is considered as quality

data in one case may not be sufficient in other cases. For example, an analysis of the

financial position of a company may require data in units of thousands of pounds

3

while an auditor requires precision to the pence, i.e. in real life, it is the business

policy or business rules that determine whether or not the data is of quality.

Generally speaking, data quality can be measured or assessed with a set of

characteristics or quality properties called data quality dimensions [4]. Some

commonly used data quality dimensions include accuracy, completeness, timeliness,

and consistency, which can be refined as:

 Accuracy – conformity of the recorded value with the actual value;

 Timeliness – the recorded value is not out of date;

 Completeness – all values for a certain variable are recorded;

 Consistency – the representation of data is uniform in all cases.

Therefore, data quality can be considered as a multi-dimensional concept. These

data quality dimensions measure data quality from different angles. Within each of

these dimensions, a set of data quality rules generated by real business polices can

be used to make an assessment of the data quality reflected by each dimension [12].

For example, a data quality rule defined as „the value of date must follow the pattern

of DD/MM/YYYY‟ can be used for the consistency dimension. These data quality

dimensions as well as data quality rules will be reviewed in detail in Chapter 2 and

Chapter 3 respectively.

1.2 Data Cleaning

There is no commonly agreed formal definition of data cleaning. Depending on the

particular area in which data cleaning has been applied, various definitions have

been given. The major areas that include data cleaning as part of their defining

processes are data warehousing, knowledge discovery in databases (KDD) and total

data/information quality management (TDQM).

4

Within the data warehousing field, data cleaning is typically employed when several

databases are merged. Records referring to the same entity are often represented in

different formats in different data sets. Thus, duplicate records will appear in the

merged database. The issue is to identify and eliminate these duplicates. The

problem is known as the merge/purge problem [13]. Other instances of this problem

are also referred to as record linkage, semantic integration, instance identification or

the object identify problem in the literature [14]. There are a variety of methods

proposed to address this issue: knowledge bases [9], regular expression matches and

user-defined constraints [15], filtering [16], and others [17-19].

In the KDD process, data cleaning is regarded as a first step or a pre-processing step.

However, no precise definition and perspective over the data cleaning process is

given and data cleaning activities are performed in a very domain specific fashion.

For example, Simoudis et al [20] defined data cleaning as the process that

implements computerized methods of examining databases, detecting missing and

incorrect data, and correcting errors. In data mining, data cleaning is emphasized

with respect to the garbage in garbage out principle and its own techniques such as

outlier detection where the goal is to find exceptions For example, the problem of

outlier detection where the goal is to find exceptions [21, 22] can be used in data

cleaning.

Total data quality management is an area of interest both within the research and

business communities. From the literature, the data quality issue and its integration

in the business process are tackled from various points of views [4, 7, 8, 23-26]. It is

also referred to as the enterprise data quality management problem. However, none

of the literature refers to the data cleaning problem explicitly. Most of this work

deals with the process management issues from the data quality perspective, others

with the definition of data quality. Of particular interest in this area, the definition of

5

data quality can help to define the data cleaning process to some extent. For example,

within the model of data life cycles proposed by Levitin and Redman [24], data

acquisition and data usage cycles contain the following series of activities:

assessment, analysis, adjustment, and discarding of data. This series of activities

proposed in Levitin and Redman‟s model define the data cleaning process from the

perspective of data quality. Fox et al [23] proposed four data quality dimensions of

the data, i.e., accuracy, currentness, completeness and consistency. The correctness

of data is defined in terms of these dimensions. Thus, the data cleaning process

within Fox et al‟s data quality framework can be defined as the process that assesses

the correctness of data and improves its quality.

With the above in mind and related literature [27, 28], data cleaning must be viewed

as a process which is tied directly to data acquisition and definition or is applied to

improving data quality in an existing system. For example, in Müller and Freytag‟s

work, comprehensive data cleaning is defined as the entirety of operations

performed on existing data to remove anomalies and receive a data collection being

an accurate and unique representation of the mini-world [27]. According to Müller

and Freytag‟s work, the three major steps within the data cleaning process are (i)

define and determine error types, (ii) search and identify error instances, and (iii)

correct the uncovered errors. Müller and Freytag include four major steps within the

process of data cleaning: (i) auditing data to identify the types of anomalies reducing

the data quality, (ii) choosing appropriate methods to automatically detect and

remove them (specification of data cleaning), (iii) applying the methods to the tuples

in the data collection (execution of data cleaning), and (iv) the post-processing or

control step where the results are checked and the exception handling for tuples not

corrected within the actual processing are handled.

The following figure (Fig.1.1) demonstrates these four major steps in the data

cleaning process.

6

Fig.1.1 A data cleaning process

Each of these phases constitutes a set of complex problems, and a wide variety of

specialized methods and technologies can be associated and applied during each

phase. In this thesis, the main focus here is on the first two aspects, i.e., define and

determine error types, search and identify error instances. The later aspects are very

difficult to automate outside of a strict and well defined domain [21].

(i) Define and determine error types

Research shows that many enterprises do not pay adequate attention to the existence

of dirty data and have not applied useful methodologies to ensure high quality data

for their applications. One of the reasons is a lack of appreciation of the types and

extent of dirty data [29]. Therefore, in order to improve data quality, it is necessary

to understand the wide variety of dirty data that may exist within the data source as

well as how to deal with them. This step is trying to discover the possible dirty data

types that may exist among different data sources. From the literature, some work

has been undertaken exclusively to identify problems (dirty data types) that affect

Define and determine error types

Search and identify error instances

Correct the uncovered errors

Post-processing and controlling

7

data quality and has resulted in different taxonomies of dirty data [6, 27, 28, 30].

These works are reviewed in detail in Chapter 2.

Data cleaning is a labour-intensive, time-consuming and expensive process. In

practice, cleaning all dirty data types introduced by Oliveira et al or Kim et al is

unrealistic and simply not cost-effective when taking into account the specific needs

of a business enterprise [6, 30]. Although some research has proposed a large

collection of dirty data types, such as a collection of 35 dirty data types by Oliveira

et al, by only looking at these dirty data types it is difficult to tell which group of

dirty data should be considered when facing a special requirement from a business

enterprise and it would be very expensive for the system to run all algorithms for all

the possible dirty data candidates. This problem is defined as the Dirty Data

Selection (DDS) problem in this thesis.

In this thesis, a novel rule-based taxonomy of dirty data is proposed. Compared with

existing work [6, 30], this taxonomy provides a larger collection of dirty data types

than any of existing taxonomies. With the help of the proposed taxonomy, a new

classification of dirty data based on data quality dimensions is proposed. It can be

used by business enterprises to solve the DDS problem by prioritizing the expensive

process of data cleaning, therefore maximally benefitting their organizations. This

rule-based taxonomy of dirty data will be introduced in Chapter 3.

(ii) Search and identify error instances

Before the execution of this step, information regarding the dirty data types

identified within the data sources should be available, since performing data

cleaning in very large databases is costly and time consuming. For each of these

dirty data types, searching and identifying dirty data instances are performed with

the help of an appropriate data cleaning method or algorithm which not only can

8

help with reducing the data cleaning time but also maximizing the degree of

automation.

Choosing a proper data cleaning method is proved to be a difficult task [31].

Especially when making selection of a data cleaning method out of many

alternatives. It depends on several factors such as the problem domain and, the

nature of errors. Additionally, organizing the multiple data cleaning methods

involved during the data cleaning process is also a difficult task [32]. The challenge

here is how to improve the efficiency/effectiveness when performing data cleaning

tasks (i.e., reduce the data cleaning time and improve the accuracy of the cleaning

results) and how to improve the degree of automation during the data cleaning

process.

From the literature, many data cleaning approaches or frameworks are developed to

facilitate data cleaning. However, studying these approaches reveals that they are

designed mainly for solving specific data cleaning activities such as data

transformations or duplicate record detection exclusively. A general data cleaning

approach that can deal with the dirty data types proposed in those existing dirty data

taxonomies do not exist. Additionally, regarding the selection of a suitable data

cleaning technique to deal with a specific dirty data type, either a user is required to

specialize a method or a fixed method is applied to all situations in those data

cleaning approaches. This, as will be shown later, not only increases the data

cleaning time but also affect the effectiveness of data cleaning. These data cleaning

approaches will be firstly comparatively reviewed in chapter 2 and a novel data

cleaning framework will be proposed in chapter 4 with two exclusive mechanisms

addressed in the proposed framework to improve the efficiency and effectiveness

during the data cleaning process.

9

1.3 Objectives of the research

The objectives of the research are as follows:

(1) To develop a taxonomy of dirty data.

Due to the lack of appreciation of the types and extent of dirty data, the existence of

dirty data within database applications may not be paid adequate attention by many

enterprises. This will finally become one of the important factors to cause poor data

quality in these database applications. In order to improve the data quality, it is

necessary to understand the wide variety of dirty data that may exist in the data

sources as well as how to deal with them. Although from the literature, some work

has been done exclusively for the purpose of generating the taxonomies of dirty data

[6, 30], in practice cleaning all dirty data types introduced by these taxonomies is

unrealistic and not cost-effective when taking into account the needs of a business

enterprise. For example, according to the taxonomy of data quality problems

proposed by Oliveira et al [30], 35 dirty data types are presented which is

considered as the most comprehensive taxonomy so far from the literature. In this

case, by only showing these 35 dirty data types, it is difficult to tell which possible

dirty data types should be selected to deal with for different datasets when special

business needs are involved. Thus one motivation of this research is to develop a

taxonomy that not only addresses as many dirty data types as possible but can also

help with solving the DDS problem.

(2) To develop a novel data cleaning framework

In order to ensure the data from an organization is of high quality, cleaning dirty

data existing in the different data sources in a proper way is necessary. A process

which can monitor, analyze and maintain the quality of data is highly recommended.

From the literature, many data cleaning approaches exist to facilitate a data cleaning

10

process and they are crucial to make those data cleaning techniques and

methodologies involved during the data cleaning process effective. However,

research studies reveal they are designed to exclusively focus on the cleaning of

some specific dirty data types such as duplicate record detection or data value

transformation. According to the knowledge of the author, there is no such a data

cleaning tool developed with the purpose of dealing with all dirty data types

mentioned in those existing dirty data taxonomies.

The ability of the selection of different groups of dirty data types to deal with under

the different specific needs of a business is thus highly expected for a data cleaning

approach. Besides, in those current data cleaning approaches, organizing multiple

cleaning tasks in a proper cleaning sequence and selecting a suitable technique for a

special data cleaning task totally depends on a user‟s preference in most cases.

Regarding the organization of the multiple cleaning tasks, ideally, the process of

detecting and correcting the dirty data should be performed automatically. However,

it is known that fully automatically performing data cleaning is nearly impossible in

most of cases especially when an exception happens during the cleaning process and

an expert is required to make a judgement. Therefore, a semi-automatic data

cleaning approach with the power of automatically organizing and ordering the

associated data cleaning tasks is a challenge [27].

Regarding the selection of a proper technique for a specific data cleaning task, it is

necessary that a tool should include various appropriate data cleaning methods or

algorithms to deal with a specific dirty data type to cope with different problem

domains. Choosing a data cleaning method or algorithm from a set of alternatives

has proved to be a difficult task. It depends on several factors, such as the problem

domain and the nature of errors. Currently, in the existing data cleaning approaches,

algorithm selection as well as its parameter‟s setting depends on a user‟s preference

in most cases. For users who have not enough knowledge and experience, an

11

inappropriate selection of algorithms will generate a bad cleaning result. Therefore,

another challenge for a data cleaning approach is that it should not only include

enough techniques for a user to choose for different problem domains but also can

intelligently help the user with making a choice when it is necessary.

(3) To evaluate a set of data cleaning algorithms

As mentioned above, the selection of a suitable data cleaning method is a difficult

task especially when many alternative methods are available to choose from. How to

make a selection to maximize the effectiveness/efficiency of data cleaning is a

challenge. Many factors are required to consider during the selection of a proper

data cleaning method such as the problem domains and the nature of errors. For

example, matching names is one of the important steps during the data cleaning

process to deal with duplicate record detection problem. There are a number of name

matching techniques available. Unfortunately, there is no existing name matching

technique that performs the best in all situations. Different techniques perform

differently in different situations. Therefore, a problem that every researcher or a

practitioner has to face is how to select an appropriate technique for a given dataset.

This problem is also mentioned in the design of the proposed data cleaning

framework in Chapter 4 as how to select the appropriate algorithm for a dirty data

type during the data cleaning process. An objective of this research is thus to analyze

and evaluate a set of name matching algorithms and present some suggestions based

on the experimental results, which can be used as guidance for researchers and

practitioners to select an appropriate name matching technique in a given dataset.

1.4 Contributions to knowledge

The contributions to knowledge presented in this thesis arise from the following

achievements.

12

(1) A rule based taxonomy of dirty data

In this thesis, a rule-based taxonomy of dirty data is proposed. A taxonomy of dirty

data not only provides a framework for understanding the origins of a complete

spectrum of dirty data and the impact of dirty data on database applications but also

sheds light on techniques for dealing with dirty data and define a metric for

measuring data quality and will provide a valuable guideline for further research and

enhancement of commercial products [6].

Compared with existing work, the proposed taxonomy provides a larger collection

of dirty data types (38 dirty data types) than any of the existing taxonomies.

Particularly, with the help of the taxonomy, a novel data cleaning method is also

proposed which can be used by business enterprises to solve the proposed DDS

problem, by prioritizing the expensive process of data cleaning.

(2) A novel data cleaning framework

Data cleaning is a labour-intensive, time-consuming, and expensive process,

especially when huge volumes of data are involved during the data cleaning process.

In this thesis, a novel data cleaning framework has been proposed, which aims to

challenge the following issues: (i) minimising the data cleaning time and improving

the degree of automation in data cleaning and (ii) improving the effectiveness of

data cleaning. The improvement in the efficiency/effectiveness of data cleaning and

the degree of automation is realized by introducing the two unique mechanisms

namely „algorithm ordering mechanism‟ and „algorithm selection mechanism‟ during

the data cleaning process. In addition, the DDS process exclusively addressed in the

proposed framework can help a business to take into account the special needs

according to different businesses priority policies. This framework retains the most

13

appealing characteristics of existing data cleaning approaches, and enjoys being able

to improve the efficiency of data cleaning in data warehouse applications.

(3) A set of recommendations for the selection of a suitable name matching

algorithm

The research work includes a comprehensive comparison of five popular name

matching techniques based on a series of carefully designed experimental work on

different last name datasets and first name datasets. The comparison results

confirmed the statement that there is no clear best technique. The size of datasets,

the error rate in datasets, the type of strings in a dataset and the type of typo in a

string all will have significant effects on performance of the selected techniques. The

timing cost of these techniques on different datasets has also been analyzed and

compared. Based on the experimental results achieved, it is suggested that the

selection of a technique should depend on the nature of the datasets. A set of

recommendations as well as all related experimental results are presented in this

thesis to help with the selection of a suitable name matching algorithm for a specific

dataset.

1.5 The structure of the thesis

Chapter 1 introduces the research and the problem statement, the aim and objectives

of the research are then discussed, and the contributions to knowledge are

introduced.

The literature review is presented in chapter 2. Research exclusively related to dirty

data type classification/taxonomy from the literature are firstly reviewed and

discussed. Data cleaning methods and approaches are studied and compared in detail

secondly. Finally, the literature regarding data quality and data quality dimensions

14

are reviewed and compared.

Chapter 3 presents 38 dirty data types based on a set of business rules. A rule-based

taxonomy of dirty data is given with these 38 dirty data types. The proposed

taxonomy of dirty data is critically analysed and compared with existing research

from the literature.

Chapter 4 presents a novel data cleaning framework. The components of the

framework are detailed in this chapter and it is shown that the proposed framework

retains the most appealing characteristics of the existing data cleaning approaches

and enjoys being able to improve the efficiency/effectiveness of data cleaning in

database applications.

Chapter 5 analyzed and evaluated a set of popular name matching algorithms on a

set of carefully designed personal name datasets. The experimental results confirm

the statement that there is no clear best technique. Suggestions regarding the

selection of an appropriate name matching algorithm are presented, which can be

used as guidance for researchers and practitioners to select an appropriate name

matching algorithm for a given dataset.

Chapter 6 concludes the research and discusses the future work.

15

CHAPTER 2 LITERATURE REVIEW AND RELATED WORK

This chapter conducts a broad survey of many techniques that have been found

useful during the data cleaning process as well as the improvement of data quality in

database applications. For example, existing taxonomies of dirty data types from the

literature will be reviewed to present the multiple dirty data types observed in

different data sources. Data cleaning methods and approaches will also be reviewed

in this chapter. They provide the foundation of the development of the proposed data

cleaning framework. Data quality, data quality dimensions are reviewed in the final

part of this chapter.

2.1 Dirty data

In Chapter 1, it is pointed out that many enterprises do not pay adequate attention to

the existence of dirty data and have not applied useful methodologies to ensure high

quality data for their applications. One of the reasons is a lack of appreciation of the

types and extent of dirty data [6]. Therefore, in order to improve the data quality, it

is necessary to understand the wide variety of dirty data that may exist within the

data source as well as how to deal with them. In this section, current classifications

or taxonomies of dirty data are reviewed first.

2.1.1 Müller and Freytag’s Data Anomalies

In this work, the authors state that the definition of what is dirty data and what is not

is highly application specific and have firstly presented the following definitions:

 Data: are symbolic representations of information, i.e., facts or entities from

the world, depicted by symbolic values. They are collected to form a

representation of a certain part of the world called the miniworld (M).

16

 Anomaly: is a property of data values that renders them a wrong

representation of the miniworld.

With the above two definitions, the authors define „Data containing anomalies is

dirty data‟. According to the constraints specified in Müller and Freytag‟s

pre-defined data model, data from a data collection that does not conform to the

constraints of the data model is considered as data anomaly. They roughly classify

data anomalies into three different sets, each of which contains different dirty data

types. The three different sets are called syntactical anomalies, semantic anomalies

and coverage anomalies respectively [27].

Syntactical anomalies consider dirty data from data‟s representation angle. There are

three dirty data types, namely lexical errors, domain format errors and irregularities.

Lexical errors show the difference between the structure of the data items and the

specified format. Domain format errors specify that the given value for an attribute

does not conform to the anticipated domain format. Irregularities deal with the

problem of non-uniform use of values, units and abbreviations. Semantic anomalies

mainly concern two types of dirty data: data that violates the integrity constraints

and duplicate data. Integrity constraints are used to specify the rules for representing

knowledge about the domain and the values allowed for representing certain facts.

Duplicate data here stands for two or more tuples that represent the same entity.

Finally, coverage anomalies describe the dirty data due to missing values or missing

tuples. Apart from these 7 data anomalies, the authors also mentioned another data

anomaly called invalid tuple, where data from the data collection conform to all the

constraints of the data model but are still invalid entities from the mini-world. For

example, a student‟s age is 25 years old, but the value of age is entered as 26.

Clearly, it is practically impossible for any software even a person to detect such an

error [6]. Table 2.1 shows the dirty data types classified in this work.

17

No. Dirty data type

MF.1 Lexical error

MF.2 Domain format error

MF.3 Irregularities error

MF.4 Integrity constraint

violations error

MF.5 Duplicate records

MF.6 Missing values

(null value not allowed)

MF.7 Missing tuple

MF.8 Invalid tuple

Table 2.1 Data anomalies from Müller and Freytag.

2.1.2 Rahm and Do’s classification of data quality problems

Rahm and Do replace the term „dirty data‟ by „data quality problem‟. According to

the authors, database systems enforce restrictions of a specific data model as well as

application specific integrity constraints. They distinguish the observed data quality

problems into two sets namely single-source problems and multi-source problems.

Within each set, data quality problems again have been classified into schema-level

problems and instance-level problems respectively.

Within single-source problems, data quality problems occur due to the lack of

appropriate model-specific or application-specific integrity constraints are defined as

schema-level data quality problems. Data quality problems related to errors and

inconsistencies that can‟t be prevented at the schema-level are defined as

instance-level data quality problems [28].

Within multi-source problems, as different data sources are designed and maintained

18

independently, when these data sources are to be integrated, data quality problems

become more complicated. The main problems at the schema-level are naming

conflicts and structural conflicts. For example, one data source uses „Cid‟ as the

attribute name to represent customer identification number while in another data

source, it may use „Cno.‟ to represent the customer identification number, i.e.,

different names for the same attribute. As an example of structure conflicts, in one

data source, attribute „name‟ requires the name values to be written following the

pattern as <given name last name>. Therefore, a person whose first name is „John‟

and last name is „Smith‟ will be written as “John Smith” in this data source

according to the pre-defined pattern. However in another data source, name values

may be required to be written in different attributes, e.g. „First Name‟, „Last Name‟

respectively. At the instance-level, problems may occur due to data conflicts such as

different value representations or different interpretations of the same value .

Furthermore, the authors also mentioned the existence of overlapping data that

causes the problem of duplicate records within the multi data sources as well as

contradicting records among multiple data sources. The dirty data types they

introduced are shown in table 2.2.

19

No. Dirty data type

RD.1 Illegal values due to invalid domain range

RD.2 Violated attribute dependences at schema level

RD.3 Uniqueness violation

RD.4 Referential integrity violation

RD.5 Missing values (null allowed)

RD.6 Cryptic values, Abbreviations

RD.7 Misspellings

RD.8 Embedded values

RD.9 Misfielded values

RD.10 Violated attribute dependences at instance level

RD.11 Word transpositions

RD.12 Duplicated records in single data source

RD.13 Contradicting records in single data source

RD.14 Wrong references

RD.15 Naming conflicts

RD.16 Structural conflicts

RD.17 Data conflicts in multiple data sources

RD.18 Duplicate records in multiple data sources

RD.19 Contradicting records in multiple data sources

Table 2.2 Dirty data types from Rahm and Do.

2.1.3 Kim et al’s taxonomy of dirty data

In this work, according to the authors, dirty data is defined roughly as either missing

data or wrong data or non-standard representations of the same data [6]. Kim et al

present a hierarchically structured taxonomy of dirty data. According to the different

ways of dirty data manifestation, all dirty data that could be captured from different

data sources can only be classified into the following three categories [6]:

20

 Missing data;

 Not missing but wrong data;

 Not missing, not wrong but unusable data;

These three categories of dirty data formed the main body of the taxonomy work.

For the rest of the taxonomy work, the authors applied a hierarchical decomposition

method to the three categories of dirty data and produced the taxonomy with 33

different types of dirty data.

Missing data is data that is missing in a field when it should not be missing. Two

dirty data types are considered in this category: “missing data null value allowed”

and “missing data null value is not allowed”.

Not missing but wrong data is the data that is different from the “true value” of the

data when it is accessed. In this category, dirty data is initially classified into two

sets according to whether or not automatic enforcement of integrity constraints is

available. For dirty data that can be prevented by automatic enforcement of integrity

constraints, they can be classified based on whether these integrity constraints are

supported by current relational database systems or these integrity constraints

require extensions to current systems. For dirty data that can‟t be prevented by

automatic enforcement of integrity constraints, the authors consider dirty data that

arise in single-source and multi-source respectively. Together, there are 17 dirty data

types within this category.

Not missing, not wrong, but unusable data is the data that is in some sense not

wrong, but can lead to wrong results in a query or analysis. Dirty data that falls in

this category is considered whether it arises in single-source or multi-sources

respectively. In single-source, these data become dirty due to either the value of the

data being ambiguous or the value of the data not conforming to standards. In

21

multi-source, it is due to the same entity having different values across multiple

databases. Within this category, 14 dirty data types have been introduced. Table 2.3

shows the list of all 33 dirty data types from Kim et al.

Category No. Dirty data type

Missing

data

K.1
Missing data

(null value allowed)

K.2
Missing data

(null value not allowed)

Not

missing,

but wrong

data

K.3 Use of wrong data type including value range

K.4 Dangling data

K.5 Violation of uniqueness constraint data

K.6 Mutually inconsistent data

K.7~K.10
Dirty data due to failure of transaction

management facility

K.11 Wrong categorical data

K.12 Outdated temporal data

K.13 Inconsistent spatial data

K.14 Erroneous entry

K.15 Misspelling

K.16 Extraneous data

K.17 Entry into wrong fields

K.18 Wrong derived-field data from stored data

K.19
Inconsistency across multiple tables/files due to

integration constraint problem

Not

missing,

not wrong

but

K.20
Different data for the same entity across multiple

databases

K.21 Ambiguous data due to use of abbreviation

K.22 Ambiguous data due to incomplete context

22

unusable

data K.23

Different representation for non-compound data

due to use of abbreviation

(algorithms transformation is not possible)

K.24

Different representation for non-compound data

due to use of Alias/ nickname

(algorithms transformation is not possible)

K.25

Different representation for non-compound data

due to encoding format

(algorithms transformation is possible)

K.26

Different representation for non-compound data

due to different representations

(algorithms transformation is possible)

K.27

Different representation for non-compound data

due to measurement units

(algorithms transformation is possible)

K.28
Different representation for compound data due

to abbreviation

K.29
Different representation for compound data due

to use of special characters

K.30
Different representation for compound data due

to different ordering

K.31
Different representation for hierarchical data due

to abbreviation

K.32
Different representation for hierarchical data due

to use of special characters

K.33
Different representation for hierarchical data due

to different ordering

Table 2.3 Dirty data types from Kim et al.

23

2.1.4 Oliveira et al’s taxonomy of data quality problems

Oliveira et al also use the term „data quality problem‟ to replace the term „dirty data‟.

All problems that affect data quality are defined as data quality problems and the

work aims at identifying all the data quality problems and organizes them according

to a taxonomy. The taxonomy by Oliveira et al was formed by collecting the

different data quality problems from the previous work [6, 27, 28]. These problems

are structured under 6 different levels ranging from the lowest level problems (in a

single attribute value of a single tuple) to the highest level problems (multi-source

problems) [30].The six different levels are:

 L.1: Problems related with an attribute value of a single tuple. (In single

table of a single data source)

 L.2: Problems related with values of a single attribute. (In single table of

a single data source)

 L.3: Problems related with multiple attribute values. (In single table of a

single data source)

 L.4: Problems related with attribute values of several tuples. (In single

table of a single data source)

 L.5: Problems related with relationships among multiple tables. (In

multiple tables of a single data source)

 L.6: Problems related with multiple data sources.

Compared with the earlier work, Oliveira et al present a rather complete taxonomy

of data quality problems with 35 dirty data types presented. Table 2.4 shows the list

of 35 data quality problems identified by Oliveira et al.

24

Level Number Dirty data type

L.1

O.1 Missing value

O.2
Syntax violation for an attribute value of a

single tuple in single data source

O.3 Outdated value

O.4 Interval violation

O.5 Set violation

O.6 Misspelled error

O.7 Inadequate value to the attribute context

O.8 Value items beyond the attribute context

O.9 Meaningless value

O10 Value with imprecise or doubtful meaning

O.11

Domain constraint violation for an

attribute value of a single tuple in single data

source

L.2

O.12 Uniqueness value violation

O.13 Synonyms existence

O.14
Domain constraint violation for the values of

a single attribute in single data source

L.3

O.15 Semi-empty tuple

O.16 Inconsistency among attribute values

O.17
Domain constraint violation for attribute

values of a single tuple in single data source

L.4

O.18
Redundancy about an entity in single data

source

O.19
Inconsistency about an entity in single data

source

O.20
Domain constraint violation for attribute

values of several tuple in single data source

25

L.5

O.21 Referential integrity violation

O.22 Outdated reference

O.23 Syntax inconsistency in single data source

O.24 Inconsistency among related attribute values

O.25
Circularity among tuples in a

self-relationship

O.26

Domain constraint violation for relationships

among multiple relations in single data

source

L.6

O.27 Syntax inconsistency in multi data sources

O.28 Different measure units in multi data sources

O.29
Representation inconsistency in multi data

sources

O.30
Different aggregation levels in multi data

sources

O.31 Synonyms existence in multi data sources

O.32 Homonyms existence

O.33
Redundancy about an entity in multi data

sources

O.34
Inconsistency about an entity in multi data

sources

O.35
Domain constraint violation in multi data

sources

Table 2.4 Oliveira et al’s dirty data set.

A brief comparison among these four works mentioned above is given below:

Müller and Freytag [27] identify a set of errors (anomalies) that will affect data

quality. The set includes lexical error, domain format error, irregularities, constraint

26

violation, missing value, missing tuple, duplicates and invalid tuple. Müller and

Freytag‟s classification of anomalies does not present as many dirty data types as the

other three works. This is because Müller and Freytag do not consider problems

from multi-data sources. Their work limited the data quality problems to single data

source. Rahm and Do [28] classify data quality problems into two groups:

single-source and multi-source problems. However, at single-source, they do not

divide the problems into those that occur in a single relation and those that occur in

multi relations as Oliveira et al have done [30]. Kim et al‟s work [6] presents a

comprehensive taxonomy of dirty data, which is hierarchically structured. According

to the different ways in which dirty data manifest, all dirty data that can be captured

from different data sources are classified into the following three categories which

form the main body of the taxonomy work. For the rest of the taxonomy work, the

authors apply a hierarchical decomposition method to the three categories of dirty

data and produce a taxonomy with 33 distinct dirty data types. Oliveira et al produce

a very complete taxonomy [30]. They adopted a bottom-up approach, from the

lowest level where data quality problems may exist (the ones that occur in a single

attribute value of a single tuple) to the highest level (those that involve multi-source

problems). At the single source level, problems are further divided into two

sub-groups: those that occur in a single relation and those that result from existing

relationships among relations. At the multi-source level, the data quality problems

are decomposed into 9 problems. The work also proposed some dirty data types that

Kim et al have not mentioned, e.g. DT.7, DT.13, DT.16, and DT.18. Although

Oliveira et al provide the most comprehensive taxonomy compared with others, it

still lacks of some dirty data types from them. For example, some dirty data types

mentioned by Kim et al (DT.1, DT.19, DT.25, DT.34) are not included by Oliveira et

al.

In this thesis, a rule-based taxonomy of dirty data is proposed. The dirty data is

defined as „the data flaws that break the data quality rules‟, which can be used to

27

measure the occurrence of data flaws. In Chapter 3, data quality rules will be

discussed in detail and the proposed rule-based taxonomy of dirty data will be

presented. A comparison between the proposed taxonomy with these research works

described above will be given. It will be shown later that the proposed taxonomy of

dirty data not only provides a solution to deal with the DDS problem but also

includes more dirty data types than any of the existing taxonomies.

2.2 Methods used for Data cleaning

In this section, general existing methods or techniques that could be used for data

cleaning tasks are reviewed. They are developed to deal with some popular data

cleaning activities exclusively and have been implemented into some of the existing

commercial data cleaning tools.

(1) Parsing

Parsing in data cleaning is performed for the purpose of detecting syntax errors.

Parsing decides for a given string whether it is an element of the language defined

by the correct grammar. For example, the framework of Potter‟s Wheel provides two

mechanisms for the parsing task namely „Type-based Discrepancy Detector (TDD)‟

and „User-specified Discrepancy Detector (UDD)‟ [33]. A TDD is an algorithm

which detects discrepancies in values of a particular type. A UDD is a discrepancy

detection algorithm that the user asks the system to apply on a specific set of fields

[33]. As an example of using the two types of parser, suppose the schema of the

table containing student records of a university in the U.K. is represented with:

Student={StudentName, DepartmentName, StudentID, DateofBirth}, and suppose

the user has registered a Number TDD that maintains as internal state the mean and

standard deviation of values seen so far, and flags any value that is more than 10

standard deviations from the mean as dirty data. The user has also registered a String

28

TDD that matches strings of alphabets and the user has specified a UDD on the

DepartmentName column to check validity of department name. Suppose a student

record with values {John, Computing, 001, 01/01/1988} is chosen to extract

structures (parsers). The result of the inferred parsers will be:

Name:String,

DepartmentName:String,

StudentID:Number,

DateofBirth:Number/Number/Number.

In this case, the following records will be detected as the ones containing dirty data:

Record 1: {Sally, HelloWorld, 002, 05/06/1988}

 Record 2: {Jack, Math, 004, March, 4, 1986}

Record 3: {Tom, Computing, 005, 09/10/19827}

In Record 1, according to the DepartmentName UDD, the value „HelloWorld‟ will

be detected as an anomaly since the value violates the valid department names

defined in the DepartmentName UDD. In Record 2, the value of DateofBirth „March,

4, 1986‟ will be detected as an anomaly since its structure is extracted as „String,

Number, Number‟ and violates to the registered TDD for the DateofBirth field.

Finally, in Record 3, the Number TDD will be invoked on the sub-components of

DateofBirth field and will detect the value of year „19827‟ as an anomaly because it

is too many deviations away from the mean value of the year sub-component.

(2) Data transformation

Data transformation is one of the major subtasks in data preparation. It transforms

the data on a structural level as well as an instance level, meeting the requirements

29

of the analysis tools. Although there are many commercial tools available for the

transformation problems such as Microsoft Data Transformation Service or Oracle

Data Warehouse Builder, they perform transformation in a batch-like manner not

supporting an explorative and interactive approach. The solution of using a

multi-database query language (FRAQL) helps with improve this shortcoming, as it

is possible to check various strategies for integration and cleaning with reduced

effort [34].

According to Sattler and Schallehn, FRAQL provides good solutions for data

transformation problems on both the schema and instance level. On the schema-level,

two operations namely “TRANSPOSE TO ROWS” and “TRANSPOSE TO

COLUMNS” are provided by FRAQL, which help with converting rows to columns

and vice-versa. On the instance-level, FRAQL can help with simple value

conversions as well as attribute value normalizations. The simple value conversions

can be realized with the built-in functions such as „string manipulation functions‟ or

„general purpose conversion functions‟. Attribute value normalizations can be

realized with the user-defined functions (UDF), which help to normalize the

attribute values to lie in a fixed interval given by the minimum and maximum values

[34].

(3) Integrity constraint enforcement techniques

Database integrity refers to the validity and consistency of stored data. Integrity is

usually expressed in terms of constraints, which are consistency rules that the

database is not permitted to violate. Techniques for integrity constraint enforcement

can help with eliminating integrity constraint violation problems. In general,

integrity constraint enforcement ensures the satisfaction of integrity constraints after

transactions modifying a data collection by inserting, deleting, or updating tuples

have been performed. There are two approaches, namely integrity constraint

30

checking and integrity constraint maintenance respectively. The former will help to

prevent the occurrence of integrity constraints during a transaction. The latter will

help to correct integrity constraint violation after the transactions in order to

guarantee that the resulting data collection be free of integrity constraint violations.

According to Maletic and Marcus, integrity analysis can be used to locate data errors

[21]. Given a dataset that adheres to the relational model, the data integrity analysis

can be used as a simple data cleaning operation. Relational data integrity, including

entity, referential, and column integrity can be accomplished using relational

database queries such as SQL [21]. However, limitations exist in applying these

integrity constraint enforcement techniques, e.g., the control of the data cleaning

process must remain with the user all the time and it can only uncover a number of

possible errors in a data set but not some more complex problem such as outlier

detection.

(4) Duplicate detection techniques

Duplicate detection or record matching is an important process in data cleaning. It

involves identifying whether two or more tuples are duplicate representations of the

same entity. Duplicate records do not share a common key and contain erroneous

data that make record matching a difficult task. There are two main approaches for

duplicate record detection, categorized into two approaches: approaches that rely on

training data, e.g., probabilistic models [10] or supervised/semi-supervised learning

techniques [35-39] and approaches such as rule-based [13, 40, 41] and

distance-based techniques [42-44] that rely on domain knowledge or distance

metrics to match records.

With respect to the former approach, the limitation exists that training data may not

always be available all the time. Although the unsupervised „Expectation

Maximization‟ (EM) algorithm is available to supply the maximum likelihood

31

estimate, there are some conditions required in order to use the EM algorithm. For

example, the rate of typographical error should be low and there should be more

than 5% duplicates within the dataset. On the other hand, the rule-based approach

does not require the training data. However, an expert is needed for devising the

matching rules set in order to obtain high accuracy of matching result. Therefore, a

limitation of this approach exists in that an expert may not always be available all

the time and the rules set may be domain specific. In addition, distance-based

algorithms are needed to be applied for the rule-based approach. For example, an

approximate string matching algorithm such as the Jaro algorithm or Levenshtein

algorithm may be applied on the name strings values between two records to

determine the degree of similarity between the two records with the help of a

pre-defined threshold value. A poor selection of the threshold value will generate a

poor matching result. Therefore, the choice of a proper distance-based algorithm and

a selection of a suitable threshold value play an important role in the rule-based

approach. Some popular character-level string matching algorithms will be analyzed

in chapter 5 as well as the threshold value selection problem.

(5) Statistical methods

Some statistical methods can be used for auditing data as well as correcting

erroneous data. For example, Marcus shows that statistical methods can help with

identifying outlier problems using the values of mean, standard deviation, range

based on Chebyshev‟s theorem, considering the confidence intervals for each field

[21]. In this work, outlier values for particular fields are identified based on

automatically computed statistics. For each field, the average and the standard

deviation are utilized and based on Chebyshev‟s theorem. Those records that have

values in a given field outside a number of standard deviations from the mean are

identified. The number of standard deviations to be considered is customizable.

Confidence intervals are taken into consideration for each field.

32

2.3 Existing approaches for Data cleaning

In chapter 1, the data cleaning process is described as a complex process with

massive human resource involvement. Section 2.2 discussed general techniques and

methods that can be used to automate activities in data cleaning applications as far

as possible. In this section, five selected data cleaning approaches from the literature

are reviewed.

(1) Potter‟s Wheel

Potter‟s Wheel is an interactive framework for data cleaning and transformation.

According to the authors, data often has inconsistencies in schema, formats, and

adherence to constraints. This may be due to many factors such as data entry errors

or data integration from multiple data sources. Therefore, data that do not conform

to the required formats either on the instances level or schema level must be detected

and transformed into a uniform format before using it.

Although many data cleaning tools exist when Potter‟s Wheel was developed,

according to Raman and Hellerstein, those tools had serious drawbacks in usability.

The main drawbacks include (1) these tools use a combination of analysis tools and

transformation tools together to deal with the discrepancy detection and the data

transformation respectively, with little interactivity, (2) the detection of discrepancy

and data transformation are typically performed within a batch process, operating on

a table or the whole database, without any feedback. Users have to face long

frustrating delays and they will have no idea if a transform is effective and (3) some

„nested discrepancies‟ are hard to detect in only one pass. Therefore, more iterations

are required between discrepancy detection and data transformations since users

have to wait for a transformation to finish before they can check if it has fixed all

anomalies.

33

Potter‟s Wheel was developed to address these drawbacks. According to the authors,

any data cleaning solution must support transformation and discrepancy detection in

an integrated fashion. Regarding the transformation, it must be general and powerful

enough to do most tasks without explicit programming. However, some commercial

extract, transform and load (ETL) tools typically only support some restricted

transforms between a small set of formats via a graphical user interface (GUI).

Regarding discrepancy detection, it must support the variety of discrepancy

detection algorithms applicable in different domains. However, the techniques

applied in some data auditing tools for the purpose of discrepancy detection are

domain specific, which is unsuitable for detecting the data composite structures of

values from different domains. Users have to either write a custom program for each

such structure or design transforms to parse data values into atomic components for

anomaly detection. Finally, transformation and discrepancy detection should be

realized through simple specification interfaces and within minimal delays. Potter‟s

Wheel is just such an interactive data cleaning system that integrates transformation

and discrepancy detection in a single interface. The following figure shows Potter‟s

Wheel‟s architecture [33]:

Fig.2.1 Potter‟s Wheel Architecture

The main components of Potter‟s Wheel (Fig.2.1) are „Online Reorderer‟,

„Transformation Engine‟, and „Discrepancy Detector‟. The „Online Reorderer‟ is a

Discrepancy Detector

Transformation Engine

Optimized Program

Input data source

Online Reorderer

Display

34

feature exclusively designed for Potter‟s Wheel. It fetches tuples from the „Input

data source‟ continually and divides them into buckets, spooling them to disk if

needed. The „Online Reorderer‟ picks a sample of tuples from the bucket

corresponding to the scrollbar position and displays them on screen. This allows

users to interactively resort on any column and scroll in a representative sample of

the data, even on large datasets. The „Transformation Engine‟ deals with the

different transforms such as schema level data transforms which can help with

splitting one data field into several fields or combining different fields into one

single data field, or instance level data conflicts associated with the discrepancy

detection task. Traditionally, some common transformations can be realized without

explicit programming, they have been used in some commercial ETL tools. However,

some transforms require parsing and splitting values into atomic components, which

are quite complex and require users to write custom programs. In Potter‟s Wheel, a

„structure extraction technique‟ is developed exclusively to automatically infer

patterns in terms of different domains. This enables users to specify the desired

results on the example values and automatically infers a suitable transform. The

„Discrepancy Detector‟ runs in the background when a transform is specified and

data is explored. Appropriate algorithms specified for different domains will be

applied to detect data anomalies. In Potter‟s Wheel, the transforms are specified

graphically and their effects are shown immediately on records visible on screen. If

their effects are undesirable, undone can be performed easily. At the same time,

discrepancy detection is done automatically in the background based on the latest

transformed view of the data. The detected anomaly will be flagged. In this way,

users can gradually develop and refine transforms as the discrepancies are found.

After constructing a satisfactory sequence of transforms, the user can ask the system

to generate an optimized program to run on the dataset as a batch, unsupervised

process.

Although the ability of user interactivity is improved with the help of the „Online

35

Reorderer‟ exclusively developed in Potter‟s Wheel, the degree of automation of

Potter‟s Wheel is low as the detection of the data that requires data transforms is

totally depending on the manual perception. This is a limitation regarding the

efficiency of performing data cleaning tasks. Besides, since Potter‟s Wheel is mainly

focused on solving the data transformation problems either on the instance-level or

scheme-level, problems such as duplicate record detection is not supported well in

Potter‟s Wheel and users need to seek other tools to deal with duplicate record

detection problem.

(2) AJAX

The main goal of AJAX is to facilitate the specification and execution of data

cleaning programs either for a single data source to help with dealing with duplicate

record detection problem, or for integrating multiple data sources into a single new

data source [41].

Although some existing ETL tools provide platforms to implement some data

transformations, the drawback according to the authors, is that they lack a clear

separation between the logical specification of data transformations and their

physical implementations. The solution for some tools only consists of a specific

optimized algorithm which is already parameterized with some user provided

criteria. This can‟t fit all situations. Besides, the user interaction facilities in these

tools are poor. Sometimes, an expert consultation is required during a data cleaning

process. For example, when two different publication date values for the same

published work are detected, the one to keep requires a judgement from the user.

However, in existing tools, there is no specific support for user consultation except

to write the data to a specific file to be analyzed by the user later.

36

AJAX was developed as a data cleaning framework which attempts to separate the

data cleaning program into two levels namely the logical level and the physical level.

The logical level supports the design of the data flow graph that specifies the data

transformations needed to clean the data. These data transformations are specified

with four main logical operators namely, mapping, matching, clustering, and

merging. The mapping operator standardizes data formats when necessary. For

example, it can convert the name string values into lower case. It can also help with

producing records with a more suitable format by applying operations such as

column splitting and merging. For example, values in an „address‟ field can be split

into separated address components such as „city‟, „street‟, „number‟. The matching

operator finds pairs of records that most probably refer to the same real object. The

clustering operator groups together the matching pairs with high similarity values

with the help of a given grouping criteria, e.g., transitive closure. The merging

operator is applied to each individual cluster returned by the clustering operator to

eliminate duplicate records or produce new records. The design of these operators is

based on the semantics of SQL primitives which are extended to support a larger

range of data cleaning transformations. For example, Fig.2.2 and Fig.2.3 show the

use of the mapping and matching operators respectively.

Fig.2.2 Mapping operator from AJAX

In Fig.2.2, the mapping operator converts names into lower case and the address

field is split into separate components. An exception is raised if the name field is

null and a human expert is called later. In SQL, an exception will immediately stop

CREATE MAPPING MP

SELECT s.key, lowerName, city, street, number

FROM SUBSCRIBERS s

LET IF (s.name==null) throw NullException(s.key)

 lowerName=lowerCase(s.name)

 [city, street, number]=extractAddressComponents(s.address)

37

the execution of a query. The semantics provided in AJAX enables computing the

entire set of tuples regardless of the exceptions.

Fig.2.3 Matching operator from AJAX

In Fig.2.3, the matching operator is used for finding duplicate records within a data

source called GSM-CLIENT. In this example, an approximate string matching

algorithm, i.e., nameSIMF() is applied to compute the similarity between the two

name values and a threshold value 0.5 is used to classify the matching results. There

are many approximate string matching algorithms available for different types of

strings concerning the different domains involved. They will be further discussed in

chapter 5.

In the logic level, the main constituent of a data cleaning program is the

specification of a data flow graph where nodes are the logical operators. Each

operator can make use of externally defined functions or algorithms that implement

domain specific treatments such as extracting substrings from a string, computing

the distance between two string values, etc. A feature exclusively designed for these

operators is the automatic generation of a variety of exceptions for each operator.

For each exception thrown, the corresponding information of the data item is then

stored with a textual description of the exception. A data lineage mechanism enables

users to inspect exceptions, analyze their provenance in the data flow graph and

CREATE MATCHING M1

FROM GSM-CLIENT g1, GSM-CLIENT g2

LET similarity=nameSIMF(g1.name, g2.name)

WHERE g1.gsmID<g2.gsmID

AND similarity>0.5

{SELECT g1.gsmID AS gsmID1, g2.gsmID AS gsmID2, similarity AS

similarity

KEY gsmID1, gsmID2}

38

interactively correct the data items that contributed to its generation. The corrected

data can then be re-integrated into the data flow graph. In this way, user interaction

is enforced.

The physical level supports the implementation of the data transformations and their

optimizations. The focus here is the design of performance heuristics that can

improve the execution speed of data transformations without sacrificing accuracy.

Although the physical level can help with selecting an efficient algorithm to

implement a logical operation among a set of alternatives, it is the users who control

the proper usage of optimization algorithms in the logical level. For example,

suppose a matching task to deal with duplicate record detection problem is required

during the data cleaning process. Users have to specify the information such as

operators involved the properties of the matching algorithms, the required

parameters for optimization in the logical level. In the physical level, the system

then will consume the information obtained from the logical level and then specific

optimized algorithms can be selected to implement the transformations. This,

however is a limitation regarding the effectiveness during the data cleaning process.

As will be discussed later, a poor setting of the required parameters for the selected

technique will generate poor matching results. For example, when an approximate

string matching technique is selected for the matching of records, how to set the

threshold value is still unclear. Usually, a universal value will be chosen for all

situations in AJAX. As will be seen later in chapter 5, many factors are needed to be

considered when setting the threshold value for the selected matching algorithm in

order to achieve a better matching result. However, in AJAX, the proper usage of the

optimization algorithm in the logical level entirely depends on its users without

considering any different factors such as problem domains.

39

(3) ARKTOS

According to the developers of ARKTOS, in the context of a data warehouse, both

schema and instance levels should be considered during the integration of data [45].

Although there are some tools such as some commercial ETL tools as well as data

cleaning tools existing to help with data integration, they are responsible for parts of

tasks such as the extraction of data from several sources, or for cleaning a specific

dirty data type exclusively. This makes the use of these tools complex and pricy.

Therefore, ARKTOS was developed as a data cleaning tool with the following goals:

(1) the data warehouse transformations and the data cleaning tasks can be defined

with graphical and declarative facilities, (2) the quality of data can be measured with

specific quality factors, and (3) the complex sequence of transformation and

cleaning tasks could be optimized.

In ARKTOS, for each dirty data type, the detection of dirty data is performed by an

„activity‟. An activity is an atomic unit of work and a discrete step in the chain of

data processing. The work performed by each activity is specified by an SQL

statement, which gives the logical, declarative description of the work. Each activity

is accompanied by an error type and a policy. An error type of an activity identifies

the problem the process is concerned with such as „Primary key violation‟, „NULL

value existence‟, etc. A policy signifies the way the data should be treated such as

„deleting the tuples‟, „reporting the tuple to a file or table‟. When multiple activities

are involved in ARKTOS, the users can tailor the set of activities to be executed all

together with the help of a „scenario‟ (a set of processes to be executed all together)

defined in ARKTOS.

In ARKTOS, the error types the system can deal with include (i) primary key

violation, (ii) reference violation, (iii) null value existence, (iv) uniqueness violation,

(v) domain mismatch, and (vi) field format transformation. Two methods are

40

proposed in ARKTOS to specify each activity either graphically or declaratively.

These two methods overcome the issues of user-friendliness and complexity of the

exiting ETL tools mentioned in the beginning. Regarding the graphical method, a

palette with all the possible activities provided by ARKTOS is available for user to

compose a scenario from these activities and link them in a serial list to execute.

Regarding the declarative method, two declarative definition languages are proposed

by ARKTOS namely „XML-based Activity Definition Language‟ (XADL) and

„Simple Activity Definition Language‟ (SADL) respectively.

XADL is an XML language for data warehouse processes, on the basis of a

well-defined DTD, writing of SADL is verbose and complex but is more

comprehensible. SADL is a declarative definition language motivated from the SQL

paradigm, it is more compact and resembles SQL and is suitable mostly for the

trained users. Fig.2.4 and Fig.2.5 show an example proposed by the authors how the

two languages used for a specification of a scenario in ARKTOS [45]. The scenario

in this example tries to solve the following activities ordered as follows: (1) Push

data from table LINEITEM of source database S to table LINEITEM of the DW

database. (2) Perform a referential integrity violation checking for the foreign key of

table LINEITEM in database DW, which is referencing table ORDER. Delete

violating rows. (3) Perform a primary key violation check to the table LINEITEM

and report violating rows to a file.

Similar to Potter‟s Wheel, the dirty data types mainly addressed in ARKTOS are

schema-level and instance-level data transformations as well as some integrity

constraints enforcement. ARKTOS can‟t deal with duplicate record detection

problem as AJAX.

Although ARKTOS allows specifying a set of data cleaning tasks to be performed as

a „scenario‟, the „scenario‟ is composed by its users without providing any detailed

41

information as how such a scenario should be composed when considering the

multiple factors involved during the data cleaning process such as the different

problem domains, algorithms involved etc. The developers of ARKTOS do not give

any further investigations on the „ordering‟ problem when multiple cleaning tasks

are associated during the data cleaning process.

Fig.2.4 XADL definition of a scenario, as exported by ARKTOS

1. <?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

...

67. <transformtype>

68. <input_table table_name="lineitem" database_url="jdbc:informix-sqli:

 //kythira.dbnet.ece.ntua.gr:1500/dbs3:informixserver=ol_milos_tcp">

69. <column> l_orderkey </column>

70. <column> l_partkey </column>

...

85. </input_table>

86. <errortype>

87. <reference_violation>

88. <target_column_name> l_orderkey </target_column_name>

89. <referenced_table_name> Informix.tpcd.tpcd.tpcd.order </referenced_table_name>

90. <referenced_column_name> o_orderkey </referenced_column_name>

91. </reference_violation>

92. </errortype>

93. <policy> <delete/> </policy>

94. <quality_factor qf_name=No_of_reference_violations qf_report_file="H:\path\scenario3.txt">

95. <sql_query> select l_orderkey from lineitem t1 where not exists

 (select o_orderkey from order t2 where t1.l_orderkey = t2.o_orderkey)

 </sql_query>

96. </quality_factor>

97. </transformtype>

...

140.</scenario>

42

Fig.2.5 SADL definition of a scenario, as exported by ARKTOS

(4) IntelliClean

IntelliClean is a knowledge-based framework for intelligent data cleaning which

mainly deals with duplicate records elimination [9]. According to the authors,

although domain knowledge plays an important part in data cleaning, little on

knowledge management issues has been undertaken such as the representation of the

domain knowledge used for data cleaning. Besides, traditional data cleaning

methods used for duplicate detection depend on the basis of computing the degree of

similarity between the nearby records in a sorted database. In this case, a

recall-precision dilemma exists that high precision is achieved at the cost of lower

recall. In order to address these problems, IntelliClean was developed as a

framework which provides a systematic approach for representation standardization,

duplicate elimination, anomaly detection and removal in dirty databases. Three

1. CREATE SCENARIO Scenario3 WITH

2. CONNECTIONS S3,DW

3. ACTIVITIES Push_lnitem, Fk_lnitem, Pk_lnitem

4. ...

5. CREATE CONNECTION DW WITH

6. DATABASE "jdbc:informix-sqli://kythira.dbnet.ece.ntua.gr:1500/

 dbdw:informixserver=ol_milos_tcp" ALIAS DBDW

7. DRIVER "com.informix.jdbc.IfxDriver"

8. ...

9. CREATE ACTIVITY Fk_lnitem WITH

10. TYPE REFERENCE VIOLATION

11. POLICY DELETE

12. SEMANTICS "select l_orderkey from lineitem@DBDW t1 where not exists

 (select o_orderkey from order@DBDW t2 where t1.l_orderkey=t2.o_orderkey)"

13. ...

14. CREATE QUALITY FACTOR "# of reference violations" WITH

15. ACTIVITY fk_lnitem

16. REPORT TO "H:\path\scenario3.txt"

17. SEMANTICS "select l_orderkey from lineitem@DBDW t1 where not exists

 (select o_orderkey from order@DBDW t2 where t1.l_orderkey = t2.o_orderkey)"

43

stages are included in this framework: (1) pre-processing stage, (2) processing stage,

and (3) validation and verification stage.

In pre-processing stage, data anomalies such as domain constraint violations,

misspelling and, inconsistent use of abbreviations, are firstly detected and cleaned.

For example, date values such as „2/3/2011‟, „March, 2, 2011‟ can be standardized

into one format. The values like „1‟, ‟A‟, ‟M‟ in the gender field will all be replaced

by the value of „Male‟. This can be realized with the help of some reference

functions and look-up tables. These conditioned data records then will be input to

the processing stage.

In the processing stage, the conditioned records are fed into an expert system engine

together with a set of rules which are designed to help with detecting the duplicate

records. Particularly, a new method to compute the transitive closure is proposed in

IntelliClean to increase the recall. In IntelliClean, the „knowledge-base‟ is formed by

different rules generally written as the following form:

IF <condition> THEN <action>

These rules are derived naturally from the business domain. When the condition part

of the rule is satisfied, the action part of the rule will be activated. The business

analyst with subject matter knowledge is expected to fully understand the governing

business logic and can develop the appropriate conditions and actions.

In IntelliClean, rules are fed into an expert system engine, making use of an efficient

method for comparing a large collection of rules to a large collection of objects.

According to the authors, simple rules may be generated automatically when

supplied with necessary parameters. However, hand-coding might be required when

more complex rules are needed.

44

All rules from IntelliClean can be categorized into four types namely „duplicate

identification rules‟, „merge/purge rules‟, „update rules‟ and „alert rules‟ respectively.

More specifically, duplicate identification rule specifies the conditions for two

records to be classified as duplicates. For example, Fig.2.6 shows an example of the

duplicate identification rule in IntelliClean. This example shows the duplicate

records are searched in a restaurant relation, with attributes ID, Address, and

Telephone.

In order to activate the rule specialized in Fig.2.6, the corresponding conditions must

be satisfied: the telephone numbers must be matched, and one of the identifiers must

be a substring of the other. In addition, the address values of the two records must be

very similar with a similarity higher than 0.7 according to the selected function

(FieldSimilarity). Records classified as duplicates with this rule will have a certainty

factor of 70%. A certainty factor (CF) represents expert confidence in the rule

effectiveness in duplicate record detection, where 0<CF<1. A higher CF value can

be assigned to a rule if it is sure that the rule will identify true duplicates.

The merge/purge rules specify how duplicate records are to be handled. For example,

a simple rule might be like „only the tuple with the least number of empty fields is to

be kept in a group for further analysis and delete the rest of the tuples.‟ Update rules

specify the way data is to be updated in a particular situation. For example, it can

specify when value in a field of a tuple is missing, what value will be filled. Finally,

an alert rule helps with raising an alert when certain events occur such as integrity

constraint violations.

45

Fig.2.6 An example of the duplicate identification rule in IntelliClean

In the validation and verification stage, human intervention is required to manipulate

the duplicate records which are not dealt with due to the lack of merge/purge rules. It

also helps with the validation of the rule base. Any rule that generates a wrong result

will be taken out or have its parameters changed. According to the authors,

well-developed rules are effective in identifying true duplicate records but are strict

enough to keep out similar records which are not duplicates. In this way, higher

recall is achieved with more rules. As concluded by the authors, the recall increases

with the number of rules, and more complex rules identified more true duplicate

records. This helps with resolving the recall-precision dilemma problem mentioned

in the beginning. For example, in IntelliClean, the sorted neighbourhood method

(SNM) is used for the detection of duplicate records. After the running of this

algorithm, transitive closure is computed to group the duplicate records. This

procedure can raise the false positive error as incorrect pairs are merged and the

precision of the result will be lowered.

IntelliClean tries to reduce the number of wrongly merged duplicate groups by

applying a certainty factor (CF) to each duplicate identification rule. Fig.2.6 shows

an example that a CF=0.7 is added for the pairs of tuples R1 and R2. During the

computation of the transitive closure, the value of CF is compared to the

user-defined threshold value. Any merges that result in a CF value less than the

Define rule Restaurant_Rule

Input tuples: R1, R2

IF (R1.telephone=R2.telephone)

AND (ANY_SUBSTRING (R1.ID, R2.ID)=TRUE)

AND (FIELDSIMILARITY(R1.ADDRESS,R2.ADDRESS)>0.7)

THEN DUPLICATES(R1, R2) CERTAINTY=0.7

46

threshold value will not be executed. In this way, the false positive error is lowered.

One limitation for IntelliClean is that, according to the developers, only the method

of SNM is supported in this tool to detect duplicate records. SNM is a good method

to deal with duplicate record detection in large datasets. However, when small

datasets are involved, clearly a pair wise comparison is the best way to improve the

effectiveness.

(5) Febrl

Matching records that refer to the same entity across databases is becoming an

increasingly important part of the process of data cleaning. Data from multiple

sources needs to be matched in order to enrich data or improve its quality. Although

significant advances in record linkage techniques have been made in recent years,

according to the authors, the vast majority of them are a „black box‟ commercial

software because the details of the technology implemented within the linkage

engine of these tools are normally not accessible. This makes it difficult for both

researchers and practitioners to experiment with new record linkage techniques, and

to compare existing techniques with new ones. Additionally, many of these tools are

developed exclusively for a certain domain such as dealing with business data or

dealing with customer mailing lists. For many applications, the record linkage may

often involve dealing with data from heterogeneous sources from different domains.

In this case, the record linkage task is often limited by the functionality provided by

these tools. In order to address these drawbacks, a freely extensible biomedical

record linkage system (Febrl) was developed, which contains many recently

developed techniques for data cleaning, de-duplication and record linkage, and

encapsulates them into a GUI [46].

For users who have limited programming experience, this tool helps with facilitating

the use of record linkage techniques without the need of any programming skills.

47

Particularly, it is suitable for the rapid development, implementation, and testing of

novel data cleaning, record linkage and de-duplication techniques due to the

availability of its source code and it allows researchers to compare various existing

record linkage techniques with their own ones, enabling the record linkage research

community to conduct their work more efficiently.

According to the authors, Febrl is an open source data cleaning toolkit and the only

freely available data cleaning, de-duplication and record linkage system with a

graphical user interface (GUI) [47]. The Febrl system has been developed with a

focus on the cleaning and linking of health related data. However, the techniques

developed and implemented in Febrl are general enough to be applicable to data

from a variety of other domains. Since it was first published in the early September

2002, the Febrl system has been hosted on the Sourceforge.Net open source software

repository and is available from:

https://sourceforge.net/projects/febrl/

The latest version of the Febrl system is Febrl-0.4.2 released on December, 14, 2011.

Febrl system mainly supports three types of projects namely „Standardization‟,

„Deduplication‟ and „Linkage‟ respectively. Fig.2.7 shows a screen-shot of the main

Febrl GUI after start-up.

https://sourceforge.net/projects/febrl/

48

Fig.2.7 Initial Febrl user interface

In the middle top part of the Febrl GUI, the user can select the type of project he or

she wants to conduct. The running of these three projects helps with finishing the

record linkage process, which are detailed briefly as follows:

(a) Data cleaning and standardisation

In order to have a successful record linkage result, pre-processing of the input data is

required. Regarding the input data, currently Febrl supports three types of text file

formats: comma separated values (CSV), tabulator separated values (TAB), and

column oriented values with fixed-width fields (COL). Access to a database is not

supported in Febrl at the moment. The linkage process is usually based on the

available record fields (attributes) such as personal names, address values, date of

birth, etc. Values in such fields however often contain noisy, incomplete and

incorrectly formatted information. Cleaning and standardization of these data

therefore are an important first step for a successful record linkage.

The objective of this step is to convert the raw input data into the well-defined,

consistent formats and resolve the inconsistencies in the raw input data. A running of

49

the „Standardisation‟ project helps with this step. In this project, users can

standardize the data from a selected file and then save the standardized data into a

new file for the purpose of running a „Linkage‟ or a „Deduplication‟ project. In

„Standardisation‟ project, users can define one or more component standardisers.

Currently, Febrl contains standardisers for names, addresses, dates, and telephone

numbers. For each standardiser, a user needs to select one or several input fields

from the input dataset and the user is required to supply the expected formats for its

output fields. Additionally, all parameters for each standardiser are required to be set

by the user.

(b) Matching and classification

During the matching process, potentially, each record in one dataset needs to be

compared with all records in another dataset if a „Linkage‟ project is selected or with

the other records in the same dataset if a „Deduplication‟ project is selected. This

comparison process is therefore of quadratic complexity. In order to improve the

scalability of the matching process, the potentially very large number of record pairs

that are to be compared has to be reduced. This can be realized by some indexing

techniques which split the databases into blocks. Only records that are in the same

block are compared with each other with the help of the selected comparison

functions such as Jaro, Levenshtein, Q-Gram, etc to the contents of the record fields

(attributes). Several indexing techniques are provided in both „Deduplication‟ and

„Linkage‟ such as the „FullIndex‟ technique, the „BlockingIndex‟ technique, and

„SortingIndex‟ technique. Once an indexing technique is selected, the actual index

keys and their parameters have to be defined and provided by the user.

Regarding the comparison functions, Febrl provides 26 similarity functions for users

to choose from. For each of these functions, users need to select two fields for

comparison. Broadly, these functions can be categorized into two groups: functions

50

used for approximate string comparisons and functions used to compare fields

containing numerical values such as age, date, and postcode. Finally, the compared

records are classified into different groups such as match, non-match, and

possible-matches groups. This is realized by applying different decision models

against on the weight vectors obtained from the matching process.

However, unlike the function provided by IntelliClean, the merging of those linked

records is not supported in Febrl and users have to merge the detected records

manually.

Still, some limitations are observed in Febrl. Regarding the dirty data types

addressed in Febrl, both data standardization and duplicate record detection are

supported in Febrl. However, unlike other tools such as AJAX or IntelliClean, data

standardization and duplicate record detection can not be specified within the same

data cleaning process. Each data cleaning task should be specified and executed

respectively. With respect to the data standardization, currently, Febrl only supports

some limited instance-level data transformations. Unlike Potter‟s Wheel, further

dirty data detection such as outlier detection against on the transformed data values

is not supported in Febrl. Although Febrl supports a variety of techniques to deal

with duplicate record detection, choosing a suitable technique as well as setting the

corresponding parameters for the selected techniques entirely depends on its users.

Febrl does not supply any recommendations or helps during the selection. For users

who do not have any knowledge about these techniques, the use of Febrl is difficult.

As will be seen later, even for users who are familiar with these techniques, a poor

setting of the required parameters for the selected technique will generate poor

matching results. Additionally, Febrl does not support a flexible merging towards the

linked records after the detection of duplicate records, which make it harder to

analyze the results. At the moment, Febrl only supports three types of text file

formats as the input data: CSV, TAB, and COL. Loading input data from a database

and write the linked output data back into a database is not supported in Febrl.

51

Finally, the installation of Febrl is quite complex which requires the manually

installation of various Python modules. The execution of its techniques is slow. For

large datasets, Febrl requires large amounts of memory which will result in a poor

scalability.

(6) Summary

To sum up these five approaches, table 2.5 is provided. The names of the data

cleaning approaches, the main activities addressed by these data cleaning approaches,

and the special features associated with the five approaches are detailed in this table.

Name Activities Special features

Potter‟s

Wheel

Schema-level data transformation

Instance-level data transformation

Domain constraint resolution

Tightly integrates transformations

and dirty data detection

Structure extraction technique

AJAX

Schema-level data transformation

Instance-level data transformation

Duplicate record detection

A separation of logical and

physical plan for data cleaning

ARKTOS

Schema-level data transformation

Instance-level data transformation

Integrity constraints enforcement

A graphical method for user to

specify a set of cleaning tasks

IntelliClean

Instance-level data transformation

Domain constraint resolution

Duplicate record detection

A recall-precision dilemma

resolution

Ferbl

Instance-level data transformation

Duplicate record detection

Open source software

A graphical method for user to

deal with data standardization and

duplicate record detection.

Table 2.5 Summary of the five approaches

52

In detail: The main focus of Potter‟s Wheel is to stress user friendliness and

interactivity in various data transforms and conflict resolution, resulting in tight

integration of transformation and discrepancy detection.

The exclusive „Online Reorderer‟ helps with realizing the ability of user interactivity.

The „Online Reorderer‟ continually fetches tuples from the data source and divides

them into buckets. Each time, the „Online Reorderer‟ only picks a sample of tuples

from the bucket corresponding to the scrollbar position and displays them on the

screen. Since the number of rows that can be displayed on screen at a time is small,

users therefore can perceive any data transformations needed either on the

schema-level or instance-level instantaneously. In this way, the user can perform the

data transforms as they explore the data with the help of the „Online Reorderer‟.

While the user is specifying transforms and exploring the data, the discrepancy

detector runs in the background and applies appropriate algorithms to detect errors

in the transformed data fetched directly from the „Online Reorderer‟. Regarding the

function provided for data transformation, Potter‟s Wheel allows users to specify the

desired results on example values and automatically infers a suitable transform using

the „structure extraction technique‟ exclusively developed for Potter‟s Wheel. It

allows users to define custom domains and have corresponding algorithms to

enforce the domain constraints. Compared with other tools such as „AJAX‟,

„IntelliClean‟ which only support some predefined domain specific transformations

for the fields such as „date of birth‟, „telephone number‟, this is an advance.

However, since the detection of the required data transformations in Potter‟s Wheel

totally depends on the manual perception, the efficiency and the degree of

automation is very low in this way compared with other tools.

The design of AJAX are twofold: (1) a declarative language for expressing data

cleaning tasks on tables and (2) a separation of the logical plan for decision of the

53

cleaning tasks and a physical plan for optimizing the choice of the techniques. The

advantage of AJAX compared with other tools is that the separation of the logical

and physical levels of data cleaning process enables specifying a series data cleaning

tasks using a declarative language and specific optimized algorithms can be selected

to implement these data cleaning tasks at the physical levels. For example,

considering the matching task for different fields of a database table, the matching of

„personal names‟ and the matching of „company names‟ may be associated with

different techniques according to the different physical plans rather than applying a

single non exhaustive matching algorithm.

The main contribution of ARKTOS is the presentation of a uniform model covering

all the aspects of a data warehouse ETL process. Regarding the types of dirty data

that could be dealt with in ARKTOS, data transformations either on schema level or

instance level are supported in ARKTOS. Additionally, some integrity constraints

enforcement is provided in ARKTOS to prevent primary key violation, reference

violation, null value existence and uniqueness violation. Similar to AJAX, these data

cleaning tasks can also be specialized with declarative definition languages. Two

declarative definition languages are developed in ARKTOS. However, ARKTOS

supports a graphical method for a user to specify these cleaning tasks. Compared

with AJAX, this is an advance, where a user can compose a scenario with these

cleaning tasks and link them in an execution list graphically. Although the authors of

AJAX and ARKTOS mentioned the organization of multiple data cleaning tasks in a

program, users are required to organise the multiple tasks. In these tools, it is the

users who tailor the set of different data cleaning task to be executed according to

their individual preferences. Developers of these tools have not undertaken any

further investigations on the „ordering‟ problem when multiple cleaning tasks are

required.

IntelliClean is a knowledge-based framework mainly deals with the problem of

54

object identification. The detection of duplicate records is totally depends on the

rules derived naturally from the business domain. The drawback is that for some

complex rules, hand coding is required which decreases the degree of automation.

Although the function of merging detected duplicate records is also supported in

AJAX, the exclusively developed method to compute the transitive closure during

the merging of records increases the recall in IntelliClean. However, compared with

Febrl, the algorithms provided in IntelliClean are limited. For example, regarding

the algorithms used for the duplicate record detection, only „SortedIndex‟ is

available in IntelliClean. SortedIndex is a good method to deal with duplicate record

detection in large datasets. However when small datasets are involved, the

„FullIndex‟ clearly is a good solution to improve the effectiveness of the detection.

This is a drawback for IntelliClean compared to AJAX or Febrl, in which all these

solutions are supported to cope with different situations.

Febrl is an open source data cleaning and record linkage system which includes a

variety of techniques for data standardization and duplicate record detection. An

advantage of Febrl is the provision of a graphical user interface to its user.

Compared with the tools such as AJAX, ARKTOS, IntelliClean, this is especially

helpful for users who do not have any programming skills.

Regarding the dirty data types addressed in Febrl, only data standardization and

duplicate record detection are supported in Febrl. Additionally, data standardization

only supports some domain specific instance-level data transformation. Compared

with Potter‟s Wheel, AJAX, ARKTOS, schema-level data transformation is not

supported in Febrl. Besides, Febrl does not support any solution to detect anomalies

based on the transformed data as Potter‟s Wheel does. In Potter‟s Wheel, as soon as

a date value like „March 1, 20111‟ is transformed to the expected format

„01/03/20111‟, the sub-component of „20111‟ in this date value will also be flagged

as an outlier with the help of an appropriate algorithm. However, in Febrl, such a

55

further detection on the transformed data values is not supported. In Febrl, the tasks

of data standardization and duplicate record detection have to be specified and

executed respectively and can not be performed in a single data cleaning process and

this brings in a low efficiency compared with AJAX, IntelliClean which can handle

with the multiple data cleaning tasks in a single data cleaning process.

Additionally, unlike AJAX and IntelliClean, Febrl does not support a flexible

merging of the linked records into a linked output dataset. In AJAX and IntelliClean,

transitive closure calculation and a merging of the linked records are all supported.

Without a proper merging function towards the detection results, it is difficult for

users to analyze the quality of the detection.

Besides, currently, Febrl only supports three types of text file formats as the input

data: CSV, TAB, and COL. Unlike the other tools, loading input data from a

database and writing the output data back into a database are not supported in Febrl.

2.4 Data quality, data quality dimensions and other related

concepts

A large quantity of data can be created, stored and processed by companies with

recent advances in technology. As data increasingly used to support organizational

activities such as data warehousing applications, poor quality data may negatively

affect organizational effectiveness and efficiency. In this section, data quality, data

quality dimensions, the cost and impact of poor data quality as well as data quality

assessment are reviewed.

56

2.4.1 Data Quality

Quality plays an important role as one of the powerful competitive advantages for

those companies that run businesses in the information industries. Data quality is

regarded as the basis of an information system [8, 25, 48-54].

From the literature, the term „data quality‟ is complex and still no widely accepted

definition exists. For example, from the standpoint of feedback-control systems, data

quality is defined as the measure of the agreement between the data views presented

by an information system and that same data in the real world [55]. A system‟s data

quality rating of 100% would indicate, for example, that the data views are in perfect

agreement with the real world, whereas a data quality rating of 0% would indicate

no agreement at all. Since no serious information system has data quality rating of

100%, the real concern with data quality is to ensure that the data quality system is

accurate enough, timely enough, and consistent enough for the organization to

survive and make reasonable decisions.

Another approach to define the term „quality‟, which is widely adopted in most of

the quality literature, is focused on the consumer and the product‟s fitness for use

[56]. The concept of „fitness for use‟ emphasizes the importance of taking a

consumer‟s view point of quality because ultimately it is the consumer who will

judge whether or not a product is fit for use. However, in order to fully understand

the concept, researchers have traditionally identified a number of specific quality

dimensions. A dimension or characteristic captures a specific facet of quality. Wang

et al proposed a framework regarding data quality research. In this work, the authors

identified dozens of related research publications with respect to data quality [3].

They found that different combinations of dimensions, as well as a variety of

approaches are applied within previous research. The most commonly used

dimensions according to their observations are accuracy, timeliness, completeness,

and consistency. Some dimensions occurring less frequently are traceability and

57

credibility. Wang et al argue that previous research has mainly focused on the

accuracy requirements and since data quality is a multi-facetted concept which

includes not only accuracy, more research on other dimensions is needed. Therefore,

Wang et al drew the analogy between the manufacture of products and the

processing of data, i.e., information systems were considered analogous to

manufacturing systems, with the difference being that data are used as the raw

material, and processed data sometimes referred to as information, are the output.

Adopting a customer perspective similar to the one advocated by Juran [57], Wang

et al noted that the “use of the term „data product‟ emphasizes the fact that the data

output has value that is transferred to customers, whether internal or external to the

organization”. This has become one of the driving forces behind the work by Wang

and Strong [4]. Wang and Strong focus on developing a framework that captures the

aspects of data quality, which are important to data consumers. In this work, the

authors argue that although firms are improving data quality with practical

approaches and tools, their efforts tend to focus narrowly on accuracy. A two-stage

survey is undertaken in this work. Based on the survey in the first stage, a set of

nearly 200 data quality attributes are applied and finally, the authors use factor

analysis to narrow the entire set to obtain a much more parsimonious set of 20

dimensions. In the survey of the second stage, the authors reduced this set even

further to obtain 15 dimensions. The 15 dimensions are then grouped into four

different categories: intrinsic, contextual, representational, and access. The four

categories are introduced by the authors as follows: “Intrinsic quality denotes that

data have quality in their own right. Contextual quality highlights the requirement

that data must be considered within the context of the task at hand. Representational

quality and accessibility quality emphasize the importance of the role of systems.

These findings are consistent with our understanding that high-quality data should

be intrinsically good, contextually appropriate for the task, clearly represented, and

accessible to the data consumer.” [4].

58

It is pointed out that the choice of these dimensions is primarily based on intuitive

understanding [58], industrial experience [59], or literature review [60]. However,

according to Wang et al‟s work, there is no general agreement on data quality

dimensions [3]. Consider the „accuracy dimension‟, a dimension which most work

has included. Although the term has an intuitive appeal, there is no commonly

accepted definition of what exactly „accuracy‟ means. For example, Kriebel [60]

characterizes accuracy as “the correctness of the output information.” Ballou &

Pazer [58] describe accuracy as “the recorded value is in conformity with the actual

value.” Thus, it appears that the term is viewed as equivalent to correctness.

However, using one term to define another does not serve the purpose of clearly

defining either. In short, despite the frequent use of certain terms to indicate data

quality, a rigorously defined set of data quality dimensions does not exist.

Clearly, the notion of data quality depends on the actual use of data. What may be

considered good data in one case (for a specific application or user) may not be

sufficient in another case. For example, analysis of the financial position of a firm

may require data in units of thousands of dollars, whereas auditing requires

precision to the cent. This relativity of quality presents a problem. The quality of the

data generated by an information system depends on the design of the system. Yet,

the actual use of the data is outside of designer‟s control. Thus, it is important to

provide a design-oriented definition of data quality that will reflect the intended use

of the information.

2.4.2 Data quality dimensions

From the literature, data quality can be defined as “fitness for use”, i.e., the ability of

data to meet the user‟s requirement. The nature of this definition directly implies that

the concept of data quality is relative. Some commonly used data quality dimensions

include accuracy, completeness, timeliness, and consistency. A dimension captures a

59

specific facet of quality. Therefore, data quality can be considered as a

multi-dimensional concept. These data quality dimensions measure data quality

from different angles. To illustrate the multi-dimensional nature of data quality, an

example is given below. The following table shows an example of four student

records of a university in the UK.

No. Name Sex Supervisor R.D G.D

001 Mark Levison M John Smith 2000-10-1 2003-9-1

002 Elizbeth Fraser F H.Winston 2001-10-5 NULL

003 Jack Daniel F Alex Smith 2002-3-4 2006-9-1

004 Catherine Yang F Thomas Lee 2005-4-2 2009-9-21

Table 2.6 An example of four student records of a university in the UK.

In table 2.6, when the “Name” column is checked, a misspelling of a student name is

detected, i.e. „Elizbeth‟ rather than „Elizabeth‟. With respect to data quality, this

problem causes an accuracy problem. Further checking the table, a null value for

“G.D” (Graduation Date) is found for Elizabeth. The null value here may have two

indications: one is that Elizabeth is still studying in the university and such a

graduation date is still unknown. In this case, data quality will not be affected by a

null value. Another indication is that Elizabeth has already graduated from the

university, but her graduation date has not been stored in the database, in this case,

the null value causes a completeness problem as the value of her graduation date is

supposed to be there. In the column “Supervisor”, suppose it is required that the

domain format for the name of the supervisor should follow the pattern of “First

Name Last Name”. Since “H.Winston” does not conform to this requirement, it will

cause an inconsistency problem. This example clearly shows that data quality is a

multi-dimensional concept. Wang et al discussed how to construct specific data

quality dimensions. His group firstly gathered 179 data quality attributes, from the

data quality literature, from researchers and from consumers. They used factor

60

analysis to collapse their list of attributes into fifteen data quality dimensions which

is shown in the table below with a brief description for each of data quality

dimensions [61].

Data quality dimensions Description

Access Security Access to data must be restricted, and hence, kept secure.

Accessibility Data must be available or easily and quickly retrievable.

Accuracy Data must be correct, reliable, and certified free of error.

Appropriate Amount of Data The quantity or volume of available data must be appropriate.

Believability Data must be accepted or regarded as true, real, and credible.

Completeness

Data must be of sufficient breadth, depth, and scope for the task at

hand.

Concise Representation Data must be compactly represented without being overwhelming.

Ease of Understanding Data must be clear, without ambiguity, and easily comprehended.

Interpretability

Data must be in appropriate language and units, and the data

definitions must be clear.

Objectivity Data must be unbiased (unprejudiced) and impartial.

Relevancy Data must be applicable and helpful for the task at hand.

Representational

Consistency

Data must always be presented in the same format and compatible

with previous data.

Reputation

Data must be trusted or highly regarded in terms of their source or

content.

Timeliness The age of the data must be appropriate for the task at hand.

Value-Added Data must be beneficial and provide advantages from their use.

Table 2.7 Data quality dimensions

From the literature, different researchers have proposed different sets of data quality

dimensions. However, due to the contextual nature of quality, there are discrepancies

on what constitutes a set of „good‟ data quality dimensions. Research shows that a

61

general set of data quality dimensions that can be used to measure the data quality

do not exist [4, 62-65].

For example, according to Wang et al, the authors argue that “there is no general

agreement on data quality dimensions” and three primary types of research (i.e., data

quality, information system, accounting and auditing) have attempted to identify

appropriate DQ dimensions [66]. The six most important sets of data quality

dimensions are presented by Wand and Wang [62], Wang and Strong [4], Redman

[63], Jarke [67], Bovee [64], and Naumann [65]. In these six works, six data quality

dimensions are considered by the majority of authors: accuracy, completeness,

consistency, timeliness, interpretability, and accessibility [68].

With respect to the definitions of each dimension, there is no general agreement on

what an appropriate definition is for each data quality dimension. These data quality

dimensions are not defined in a measureable and formal way. They have been

defined by means of descriptive sentences in which the semantics are consequently

disputable. For example, regarding time-related dimensions, Wand and Wang present

a „timeliness‟ dimension which is defined as “the delay between a change of a real

world state and the resulting modification of the information system state” [62]. In

Redman‟s work, a „currentness‟ dimension is defined as “the degree to which a

datum is up-to-date. A datum value is up-to-date if it is correct in spite of possible

discrepancies caused by time related changes to the correct value” [63]. The

meanings of these two definitions are quite similar but the names of the two

dimensions are different. In Wang and Strong‟s work, a „timeliness‟ dimension is

defined as “The extent to which age of the data is appropriate for the task at hand.”

[4]. A similar definition can be found in Liu‟s „timeliness‟ dimension as “the extent

to which data are sufficiently up-to-date for a task.” [69]. However, Naumann

defines the „timeliness‟ dimension as “the average age of the data in a source”,

which is totally different from Wang and Strong and Liu [65]. Bovee defines the

62

„timeliness‟ dimension with two levels: „currency‟ and „volatility‟ [64]. The currency

level of timeliness is defined as “A measure of how old the information is, based on

how long ago it was recorded.”, which has the same meaning as the „timeliness‟

dimension defined by Wang and Strong. The volatility level of timeliness from

Bovee is defined as “a measure of information instability-the frequency of change of

the value for an entity attribute.”, which corresponds to the „volatility‟ dimension

defined by Jarke [70]. Jarke defines the „volatility‟ dimension as “the time period for

which information is valid in the real world”. This example clearly shows that there

is no agreement on the semantics of specific dimensions, i.e., different meanings

may be provided by different authors. Besides, there is even no agreement on the

names to use for dimensions.

Broadly, the works related with the classification of data quality dimensions can be

categorized into two groups: (i) academics‟ view of data quality dimensions, and (ii)

practitioners‟ view of data quality dimensions [71]. Table 2.8 and Table 2.9 present a

collection of works under the two groups respectively. In both tables, all dimensions

mentioned have been grouped into the four data quality categories proposed by

Wang and Strong, namely intrinsic, contextual, representational, and accessibility [4].

Intrinsic quality denotes that data have quality in their own right. Contextual quality

highlights the requirement that data must be considered within the context of the

task at hand. Representational and accessibility quality emphasize the importance of

the role of systems that store and provide access to data.

63

Category Dimension Wang

and

Strong

[4]

Zmud

[69]

Jarke and

Vassiliou

[70]

DeLone

and

McLean

[71]

Goodhue

[72]

Ballou

and

Pazer

[55]

Wand

and

Wang

[59]

Intrinsic Accuracy x x x x x x

 Believability x x

 Completeness x

 Consistency x x

 Correctness x

 Credibility x

 Factual x

 Freedom from

Bias

 x

 Objectivity x

 Precision x

 Reliability x x

 Reputation x

 Unambiguous x

Contextual Appropriate

Amount

x

 Completeness x x x x

 Content x

 Currency x x

 Importance x

 Informativeness x

 Level of Detail x

 Non-volatility x

 Quantity x

 Relevance x x x

64

 Reliable/Timely x

 Source currency x

 Sufficiency x

 Timeliness x x x x

 Usage x

 Usefulness x

 Value-Added x

Representational Aliases x

 Appearance x

 Arrangement x

 Clarity x

 Comparability x

 Compatibility x

 Conciseness x x

 Consistent x

 Format x

 Interpretability x x

 Lack of Confusion x

 Meaningfulness x x

 Origin x

 Presentation x

 Readability x x

 Reasonable x

 Semantics x

 Syntax x

 Understandability x x

 Uniqueness x

 Version control x

Accessibility Accessibility x x x x

65

 Assistance x

 Ease of Use x x

 Locatability x

 Privileges x

 Quantitativeness x

 Security x

 System

availability

 x

 Transaction

availability

 x

 Usableness x

Table 2.8 Data quality dimensions from academics’ view [71]

Category Dimension DOD

[73]

IRI

[74]

Unitech

[75]

Diamond

Technology

Partners

[76]

HSBC

Asset

Management

[77]

AT&T

and

Redman

 [78]

Vality

[79]

Intrinsic Accuracy x x x x x

 Completeness x

 Consistency x x x

 Correctness x

 Reliability x

 Validity x

Contextual Attribute granularity x

 Completeness x x x

 Comprehensiveness x

 Currency x x

 Essentialness x

 Relevance x

66

 Timeliness x x x

Representational Ability to

represent null values

 x

 Appropriate

representation

 x

 Clarity of definition x

 Consistency x

 Efficient

use of storage

 x

 Format flexibility x

 Format precision x

 Homogeneity x

 Identifiability x

 Interpretability x

 Metadata

characteristics

 x

 Minimum

unnecessary

redundancy

 x

 Naturalness x

 Portability x

 Precision of domains x

 Representation

consistency

 x

 Semantic consistency x

 Structural consistency x

 Uniqueness x

Accessibility Accessibility x x

 Flexibility x

67

 Obtainability x

 Privacy x

 Reliability

(of delivery)

 x

 Robustness x

 Security x

Table 2.9 Data quality dimensions from practitioners’ view[71]

Works from table 2.8 can be further categorized into three groups. The first group is

based on an empirical, market research approach of collecting data from information

consumers to determine the dimensions of importance to them. Both Wang and

Strong [4] and Zmud [72] fall into this group. The second group develops

dimensions from the literature. Work by Delaone and Mclean [73], Goodhue [74],

and Jarke and Vassilion [75] belongs to this group. They try to cover all possible

aspects of data quality by grouping all measures from existing literature. Finally, the

third group focus on a few dimensions that could be measured objectively without

considering the dimensions importance to data consumers [58, 62]. Table 2.9

presents a collection of work from the practitioners‟ view. Unlike the academic

views, a practitioner‟s view does not try to focus on covering all possible data

quality dimensions but only focus on some specific organizational problems. These

practitioners include specialists from organizations, consultants and vendors of

products. According to the different contexts involved, different dimensions are

defined. Contexts from table 2.9 include: data warehouse development [76, 77],

environment with multiple incompatible databases [78], environment in which

timely delivery of information is critical [79], and tools for improving the input data

quality to databases [80].

A further study with respect to data definition shows that the definition of data is not

only a collection of triples <e,a,v> where e stands for an entity, a stands for an

68

attribute of the entity and v is a value selected from the domain of the attribute a, but

also includes the definition of data representation and data recording [81]. This

definition brings the quality of data into three sets of quality issues: the quality of

the model or view, the quality of data values themselves, and the quality of data

representation and recording [23]. According to David Loshin, “the dimensions

associated with data values and data presentation in many cases lend themselves

handily to system automation and are the best ones suited for defining rules used for

continuous data quality monitoring” [12]. In this research, only data quality

dimensions associated with data values are considered. This helps us with generating

the proposed rule based taxonomy of dirty data, which will be discussed in detail in

chapter 3. Fox et al have defined and discussed four dimensions of data most

pertinent to the quality of values. The four data quality dimensions are accuracy

dimension, completeness dimension, currentness dimension and consistency

dimension [23]. These four dimensions are briefly discussed below and they will be

used in the proposed dirty data taxonomy in chapter 3.

(i) Accuracy dimension

Suppose a datum is defined as a triple < e,a,v> where e stands for an entity, a stands

for an attribute of the entity and v is a value selected from the domain of the attribute

a. The accuracy of the datum refers to the degree of closeness of its value v to some

value v’ in the attribute domain considered correct for the entity e and attribute a. If

the datum‟s value v is the same as a correct value v’, the datum is said to be accurate

or correct. As an example, the value v of the attribute “Name” of entity “Student” in

table 2.6 (identified by No. 002) is “Elizbeth Fraser” rather than “Elizabeth Fraser”.

The datum is not said to be correct and causes an accuracy problem. Accuracy

problems could be classified as syntactic accuracy problems and semantic accuracy

problems respectively. The example of the misspelt name value of “Elizbeth Fraser”

belongs to the syntactic accuracy problem. Semantic accuracy problems describe the

69

case that a data value v is itself syntactically correct, but presents a different

meaning from v’. As an example of semantic accuracy problem, consider a record

from table 2.6 again. Suppose in the record with No. 003, if student name “Jack

Daniel” is entered in the “Supervisor” field, and “Alex Smith” is entered in the field

“Name”, then this will cause a semantic accuracy problem, though both name values

are syntactically accurate.

(ii) Completeness dimension

Fox et al state that completeness is the degree to which a data collection has values

for all attributes of all entities that are supposed to have values. The degree of

completeness could be measured based on three levels namely tuple, attribute and

relation. Tuple completeness measures the percentage of the available values of a

record and the total number of attributes of the record. For example, in table 2.6,

records with student No. 001, 003 and 004 all have values for each attribute. The

tuple completeness for this kind of record is 6/6=1. The record with student No. 002

in this case is 5/6=83.33% since its graduation date is missing. Attribute

completeness measures the percentage of non-missing values in a column and the

total number of values in such column. As an example of attribute completeness, in

Table 2.6, graduation date completeness is 3/4=75%. Tuple completeness measures

the percentage of all the non-missing values in the whole table and all the total

number of values in such a table. The tuple completeness in table 2.6 is

23/24=95.83%.

(iii) Currentness dimension

Some data in a database are always static. For example, normally a person‟s birthday,

country of birth, skin colour will not change during the whole life of this person. By

contrast, some data such as age, address, weight of a person may change as time

70

goes by. In order to evaluate such temporal data, the currentness dimension is

introduced. According to Fox et al, a datum is said to be current or up to date at time

t if it is correct at time t. A datum is out of date at time t if it is incorrect at t but was

correct at some moment preceding t. As an example of the currentness problem,

suppose John Smith had been living in London, UK till the end of 2008. In 2009, he

moved to Edinburgh, UK. The residence address for John Smith should also be

changed, i.e., in 2009, the time when he moved to Edinburgh, UK, the value of John

Smith‟s residence address should be changed to his address in Edinburgh in the

database. If so, the data is said to be current. Due to the late-update of data,

currentness problems are observed to cost a fortune. For example, a survey shows

that the average annual cost of returned mail is more than $9,000 per company [82].

(iv) Consistency dimension

Data is said to be consistent with respect to a set of data model constraints if it

satisfies all the constraints in the set. For example, a database may be designed and

maintained independently to serve specific needs. Therefore, the value v of the same

attribute a for the same entity e in different databases may be presented in different

formats and measured in different units. But when these databases come to be

integrated together, inconsistency problems may occur.

2.4.3 Impacts and costs of Data quality

There is strong evidence that data quality problems have become increasingly

prevalent in practice with most organizations facing data quality problems [7, 62,

83]. The quality of data is critical to an organization‟s success. However, not many

organizations have taken enough action to deal with data quality problems.

Low quality data brings several negative effects to business users through the loss of

customer satisfaction, high running costs, inefficient decision making processes, and

71

performance [50, 52, 54, 84]. For example, information research has demonstrated

that inaccurate and incomplete data may adversely affect the competitive success of

an organization [78]. These shortcomings of low quality data affect not only

corporate competitiveness but also have negative effects on the organizational

culture, such as a demoralization of employees and a trend of mutual distrust within

an organization. In a broad spectrum of organizations, a number of business

initiatives have been delayed or even cancelled citing poor data quality as the main

reason.

Data quality problems can bring significant social and business impacts [25]. For

example, because of outdated information in government databases, tax bills

continue to be sent to citizens long after their death. Business and industry often

have similar data quality problems which are pervasive, costly and disastrous

[85-87]. For example, a financial institution is embarrassed due to a wrong data

entry of an execution order of 500 million dollars [85]. The explosion of the space

shuttle Columbia which broke apart during re-entry [88], and the U.S. Navy Cruiser

USS Vincennes which shot down an Iranian commercial passenger jet with all 290

people killed are all due to the data quality problems [86].

Although more and more references to poor data quality and its impact have

appeared in the media, general-readership publications, and technical literature, the

necessary awareness of poor data quality, while growing, has not yet been achieved

in many enterprises [50].

There are many reasons for the inadequate attention from an organization to data

quality, for example, lack of appreciation of the types and extent of dirty data that

permeate data warehouses. As practitioners know, creating awareness of a problem

and its impact is a critical first step toward resolution of the problem [50]. In this

section, the impacts of poor data quality on an organization as well as the costs

72

associated with data quality problems are reviewed and analyzed.

2.4.3.1 The impact

Poor data quality impacts an organization in many ways, which can be categorized

to three different levels [7]:

 Impacts at the operational level: There are three main impacts associated with

the operational level namely customer dissatisfaction, increased cost, and

lowered employee job satisfaction. With respect to the customers, for example,

customers from a telephone company expect their personal information such as

their names, postal addresses are correctly stored in the company so that their

monthly billing letter or promotion letter will arrive timely. However, problems

sometimes happen where customer‟s information is not correctly addressed

either due to a wrongly spelt name or address. Customers sometimes receive

their billing letter at a later time or they never receive it and are forced to spend

time straightening out their billing errors. Many online shopping customers

simply expect the details associated with their order to be correct and they are

especially unforgiving of data errors, for example, wrong price tag, wrong status

of goods availability. Regarding the cost from the operational level, research

shows that cost incurred by customer service organizations to correct customer

addresses, orders, and bills will be quite high [89].

 Impact at the tactical level: At the tactical level, an organization‟s decision

making will be compromised due to poor data quality. Since any decision of

consequence depends on thousands of pieces of data, defective data will lead to

poor decision-making. For example, poor data will make the implementation of

data warehouses whose purpose is to help an organization make better decisions,

more difficult. The slightest suspicion of poor data quality often hinders

managers from reaching any decision. It is clear that decisions based on the

73

most relevant, complete, accurate and timely data have a better chance of

advancing the organizations‟ goals. At the tactical level, poor data quality will

also make it more difficult to reengineer and poor data quality increases the

mistrust among the internal organizations.

 Impact at the strategic level: Selecting, developing and evolving a strategy is

itself a decision making process. It is clear that strategy making will be

adversely affected by poor data quality. It will be a hindrance to develop good

strategy without relevant, complete, accurate, and timely data about an

organization‟s customer, competitors, technologies as well as other relevant data.

Since strategy has much longer-term consequences to an organization, the

impact on this level will be at least as great. When a strategy is rolled out,

specific plans are deployed and results are obtained. If the reported results are in

some way of poor quality, execution of the strategy will be much more difficult.

2.4.3.2 The cost

From the literature, the costs due to the lack of data quality are substantial in many

companies [48, 63, 83, 90]. However, few studies have been done for identifying,

categorizing, and measuring the costs associated with low data quality. Most

organizations do not have adequate processes and tools to maintain high quality

operational data and one of the reasons is due to the lack of appreciation of the

knowledge of such costs.

The lack of insight regarding the monetary effect of low quality data, however, is not

only an open research problem but also a pressing practitioner issue. For an

organization, there are many reasons for the lack of enough attention to data quality

problems, for example, lack of knowledge of dirty data. It has been pointed out that

calculating the current costs caused by low quality data is difficult because many of

these costs are indirect costs which do not have an immediate link between the

74

inadequate data quality and the negative monetary effects [87].

The term cost in the context of data quality can be defined as a resource sacrificed or

forgone to achieve a specific objective or as the monetary effects of certain actions

or a lack thereof [87]. From the literature, the cost due to poor data quality for an

organization can be broadly categorized into two groups: the cost with low quality

data [48, 64, 91-97] and the cost of assuring high quality data [48, 91, 97].

With respect to the cost of low quality data, for example, when customers or citizens‟

account information are incorrect such as license fees or taxes citizens owe the

government, organizations will lose money. When checking customers‟ information

in a database, sometimes it can be found that misspelled customers‟ names,

incomplete postal addresses or outdated address exist. If incorrect customers‟ postal

addresses are used by organizations, clearly, money is wasted when organizations

are trying post the marketing materials to their customers.

Furthermore, if such incorrect information is used by organizations for the purpose

of analyzing customers‟ shopping behaviour or customer segmentations, the result

obtained will also be incorrect which will result in making an inaccurate strategic

and tactical decision and this will further lead to an opportunity loss.

For customers, if an organization repeatedly makes mistakes due to persistent low

quality data, customers will feel disappointed and frustrated. They possibly will

switch to another competitor for goods and services and the image of the

organization will be tarnished.

Incorrect or outdated control data will lead to an invasion of privacy, for example,

when database administrators do not properly manage the access control list by not

updating it timely. It happens that when some employees have been made redundant,

75

they can also access or log into the system and obtain some private resources.

Although it rarely happens, low quality data will cause personal injury or even death.

For example, wrong instructions due to wrong or outdated data for operating some

types of machines such as hazardous equipment will cause accidents and even

disasters. Finally, invasion of privacy, personal injury and death as well as

significant revenue losses will likely cause lawsuits to organizations. Regarding the

cost of assuring data quality, during the process of preventing, detecting, and

repairing low quality data, human resources as well as licensing of some software

tools are required and will cost organizations. Particularly, manual involvement is

typically costly. Table 2.10 and table 2.11 present two cost lists: the cost resulting

from low quality data and the cost of assuring data quality.

Costs resulting from low quality data

Higher maintenance costs

Excess labor costs

Higher search costs

Assessment costs

Data re-input costs

Time costs of viewing irrelevant information

Loss of revenue

Cost of losing current customer

Cost of losing potential new customer

„Loss of orders‟ costs

Higher retrieval costs

Higher data administration costs

General waste of money

Costs in terms of lost opportunity

Costs due to tarnished image (or loss of goodwill)

76

Costs related to invasion of privacy and civil liberties

Costs in terms of personal injury and death of people

Costs because of lawsuits

Process failure costs

Information scrap and rework costs

Lost and missed opportunity costs

Costs due to increased time of delivery

Costs of acceptance testing

Table 2.10 Cost from low quality data

Costs of assuring data quality

Information quality assessment or inspection costs

Information quality process improvement and defect prevention costs

Preventing low quality data

Detecting low quality data

Repairing low quality data

Costs of improving data format

Investment costs of improving data infrastructures

Investment costs of improving data processes

Training costs of improving data quality know-how

Management and administrative costs associated with ensuring data quality

Table 2.11 Cost of assuring data quality

It provides many benefits for an organization to have knowledge of the different

costs associated with poor data quality. For example, before investing in a data

quality project or initiative, a company may want to examine the potential risks

associated with low quality data in order to better position the issue within its

corporate context. Instead of an undirected, heuristic search for possible past

77

experiences or events, direct and indirect data quality costs can be examined in

terms of their likelihood and effect, thus contributing to an overall risk assessment of

low data quality in an organization.

2.4.4 Data quality assessment

Many research activities have been undertaken and have contributed to improving an

organizations‟ data quality [4, 25, 58, 83, 98-104]. From the literature, the data

quality problem has been treated as an important concern in data warehousing

projects [8, 59, 105, 106]. However, the ability for an organization to assess its data

quality is still weak. Without the ability to assess the quality of their data,

organizations cannot assess the status of their organizational data quality and

monitor its improvement. For any data quality project, it is important to develop an

overall model with an accompanying assessment instrument for measuring data

quality. Furthermore, techniques developed to compare the assessment results

against benchmarks are necessary for prioritizing the organizations‟ data quality

improvement efforts.

It is well accepted that quality of a product cannot be assessed independent of

consumers who choose and use products [107]. Similarly, data quality cannot be

assessed independent of the people who use data, i.e., data consumers. Data

consumers evaluate data quality relative to their tasks. Data consumers perform

many different tasks and the data requirements for these tasks change. It is possible

that the same data used by different tasks may require different quality

characteristics. For example, it is possible for an incorrect character in a text string

to be tolerable in one circumstance but not in another. Therefore, providing high

quality data along the dimensions of value and usefulness relative to data consumers‟

task contexts places a premium on designing flexible systems with data that can be

easily aggregated and manipulated [25]. From the literature, data quality is a

multi-dimensional concept [4, 58, 62, 63, 83, 100]. In order to have data quality

78

assessed, both subjective and objective data quality metrics are needed to be

considered [50, 108].

Subjective data quality assessment evaluates data quality from views of data

collectors, custodians, and data consumers [50] and could adopt a comprehensive set

of data quality dimensions which are defined from the perspective of data consumers

[4]. The assessment is focussed on the management perspective and concentrates on

whether the data is fit for use. During this process, questionnaires, interviews, and

surveys can be developed and used to assess these dimensions.

According to Wang et al, objective assessments can be task-independent or

task-dependent [50]. Task-independent metrics reflect states of the data without the

contextual knowledge of the application, and can be applied to any data set,

regardless of the tasks at hand. Task dependent metrics, which include the

organization‟s business rules, company and government regulations, and constraints

provided by the database administrator, are developed in specific application

contexts [50]. During this process, software can be applied to automatically measure

data quality according to a set of data quality rules. Dimensions developed from a

database perspective can be used for objective assessment [109].

From the literature, information systems have been compared to production systems

and an analogy has been proposed between quality issues in a manufacturing

environment and those in an information systems environment. In this analogy, data

is considered as the raw materials and data products are considered as the output

[110, 111]. Table 2.12 shows an analogy between physical products and data

products.

79

Analogy Input Process Output

Product

manufacturing

Raw

materials

Materials

processing

Physical

products

Data

manufacturing

Raw

data

Data

processing

Data products

Table 2.12 An analogy between physical products and data products

From table 2.12, three types of data are associated with this analogy. Raw data is

considered as raw materials for information manufacturing which are expected to be

well structured and stored in the database. Raw data is then composed and

transmitted through different business manufacturing processes. Finally, data

products are delivered to data consumers for intended use. Therefore, data quality

assessment can be carried out with assessment associated with these three types of

data, i.e., raw data, component data, and information product.

According to Ge and Helfert [108], objective assessment mainly deals with raw data

as well as component data. Subjective assessment deals with the final information

products. Within these two types of assessments, data quality dimensions from Wang

and Strong are used for the purpose of evaluation [4]. These dimensions are

categorized into two different groups, each of which deals with different types of

assessment. Figure 2.8 shows the model for the assessment work.

80

Fig.2.8 A data quality assessment model [108]

In table 2.13, the differences between objective and subjective assessments are listed

according to five different aspects: tool, measuring object, criteria, process,

assessing results, and data storage.

Feature Objective assessment Subjective assessment

Tool Software Survey

Measuring object Data Information product

Criteria Rules, Patterns Fitness for use

Process Automated User involved

Assessing result Single Multiple

Data storage Databases Business context

Table 2.13 Comparison between objective and subjective assessment [4]

Since subjective criteria and expectations vary from person to person, it is possible

that different data consumers will generate different subjective assessment results.

Based on the different consumers, subjective assessment results can be positive or

negative depending on user requirements [113]. Besides, discrepancies may exist

Raw data

Component

data

Information

product

Objective

assessment

Subjective

assessment

Accuracy, Completeness,

Consistency, Timeliness

Accessibility, Security,

Relevancy, Value-added,

Interpretability, Objectivity,

Representation, Believability,

Reputation, Appropriate,

Amount, Ease of Understanding

81

between the subjective and objective assessments. Based on both assessments‟

results, we can tell whether the quality of data is high or low. For low quality data,

organizations should investigate the root causes and take corrective actions.

Regarding the root causes of poor data quality, for a specific context, both data and

its environment should be diagnosed carefully. Data environment includes not only

database systems but also the related task process mechanisms, rules, methods,

actions, policies, and culture that together typify and impact an organization‟s data

quality. From the literature, a group of conditions which will cause poor data quality

are identified and analyzed. According to Lee et al, these conditions are the

commonly ones which are distilled from detailed embedded case studies and content

analysis of data quality projects in leading organizations [113]. Table 2.14 lists these

conditions.

Condition

Multiple data sources

Subjective judgment in data production

Limited computing resources

Security/accessibility trade-off

Coded data across disciplines

Complex data representations

Volume of data

Input rules too restrictive or bypassed

Changing data needs

Distributed heterogeneous systems

Table 2.14 Root causes of poor data quality

82

These conditions are summarized in detail below:

 Multiple data sources: Due to the difficulties of ensuring consistent updating of

multiple copies of data, inconsistent data values are obtained in multiple data

sources for the same information even though they were accurate at a given

point of time. Inconsistent data values may also happen due to the different use

of measurements, e.g. the different level of units applied in different data

sources. However, when a consistent value is required under some special

context, the data quality becomes defective. In an organization, this problem

happens frequently. There may be multiple systems designed for an organization

for different purposes such as financial use, billing use or human resource

management use. It may happen that procedures for collecting the same input

information vary by different systems in multiple data sources and

inconsistencies are observed from multiple sources. This may cause serious

problems, e.g., consumers may stop using the information because

inconsistencies lead them to question its believability.

 Subjective judgment in data production: Subjective judgment may be involved

with information collection and data quality problems may arise due to the

biased information produced by subjective judgment. These problems are often

hidden from data consumers because the extent to which judgment is involved

in creating it is unknown to them. However, it is not proposed that human

judgment should be eliminated from information production as some

information can only be produced subjectively. Rather, better extended training

for data collectors, improvement of the data collectors‟ knowledge of the

business domain, and clear statement and communication about how specific

subjective judgments are to be made is encouraged as a solution.

83

 Limited computing resources: Information may be inaccessible due to the

limited computing resources, which may lead to inaccurate and incomplete

information. Tasks accomplished without the complete information will lead to

poor decision making.

 Security/Accessibility trade-off: Easy access to information may conflict with

requirements for security, privacy, and confidentiality. For data consumers,

high-quality information must be easily accessible. However, ensuring privacy,

confidentiality, and security of information requires barriers to access. Therefore,

with respect to high quality data, conflict exits between the accessibility and

security dimensions. For example, patients‟ medical records contain confidential

information, yet analysts need access to these records for research studies and

management decision making.

 Coded data across disciplines: With technological advances, it is possible to

collect and store many types of information, including text and images.

Representing this information for easy entry and easy access is an important

issue. However, coded data from different professional areas are difficult to

decipher and understand. For example, in some hospitals, detailed patients care

notes still remain in paper form due to the cost of converting them to electronic

form. Deciphering the notes and typing them is time consuming. Some

information has to be dictated by the doctor manually.

 Complex data representation: Although advanced algorithms are available for

automated dealing with numeric values, they are not available when facing

instances of text and image information. With respect to these non-numeric

values, data consumers require more than access to them. Functions such as

aggregation, manipulation and trend identification are required by consumers

for analytical work. This problem is manifested as information that is

84

technically available to information consumers but is difficult or impossible to

analyze.

 Volume of data: Large volumes of stored information make it difficult to access

required information in a reasonable time. When dealing with large volumes of

data, problems may happen to those responsible for storing and maintaining

data as well as those responsible for searching for useful data. For example,

customers may expect their telephone company will have an immediate access

to their individual billing records in order to resolve their billing questions.

However, telephone companies may find it difficult to offer their customers

such an immediate service when they have to face large volumes of billing

transactions hourly. As another example, when dealing with the duplicate record

detection task, in order to achieve a high degree of accuracy, a one-to-one

comparison among two records is needed. This will generate a quadratic cost

and is not acceptable when the data volume involved is large.

 Input rules too restrictive or bypassed: Input rules are used for imposing

necessary controls on data input in order to achieve a high level degree of

accuracy. However, as has been pointed out, improving data quality requires

attention to more than just accuracy. Other considerations such as usability,

usefulness also need to be included. When input rules are too restrictive, data

may get lost and produce missing information because they may be unable to fit

the field, or erroneous data may be entered into a field due to arbitrarily

changing a value to fit such input rules by the data entry clerk. In this case, both

accuracy and completeness problems are introduced.

 Changing data needs: Data is only of high quality when they satisfy the needs of

data consumers. However, with multiple consumers‟ special needs, it is difficult

to provide high quality data to satisfy all consumers‟ needs. Besides, when these

85

needs change over time, the quality of data will also deteriorate even though

initially they are good.

 Distributed heterogeneous systems: The most common problem associated with

distributed systems is inconsistent data, that is, data with different values or

representations across systems. Data with different values may be generated

from multiple sources or created by inconsistent updating of multiple copies.

Data with different representations becomes a problem when integrating across

autonomously designed systems.

As stated by an old aphorism: „„an ounce of prevention is worth a pound of cure.‟‟

Organizations must not only develop tools and techniques to rectify data deficiencies

but also institutionalize processes that would identify and prevent root causes of

poor data quality. Awareness will require that organizations quantitatively assess

both subjective and objective metrics of data quality.

2.5 Conclusion

High quality of data is a key to today‟s business success. Among the many factors

caused poor data quality, dirty data existing within data sources is a main reason. In

this chapter, four existing research works from the literature associated with

identifying dirty data that affect data quality were reviewed, which provides an

appreciation of the types and extent of dirty data within data sources. In order to

ensure high quality data in an organization, cleaning these dirty data existing in data

sources in a proper way is necessary and a data cleaning process which can monitor,

analyze and maintain the quality of data is highly recommended. From the literature,

many data cleaning techniques and approaches exist to facilitate a data cleaning

process. A group of selected data cleaning techniques and approaches are reviewed

and analyzed in this chapter. Especially, the critical analyses regarding the

86

advantages and disadvantages of these approaches provide valuable information

regarding the design of the proposed data cleaning framework in Chapter 4. Data

cleaning tools and frameworks are crucial for making the data cleaning techniques

and methodologies effective. To summarise, there are still some challenges

regarding the design of a data cleaning approach. To address these challenges, the

following considerations are presented:

(i) An analysis among the five data cleaning approaches shows that, the two

frequently addressed cleaning tasks are (1) instance-level data standardization and

transformation and (2) duplicate records elimination. Some approach only focus on

dealing with one of these two tasks exclusively. Although from the literature, some

work has been done for the purpose of generating a taxonomy of dirty data [6, 30],

according to the knowledge of the author, there is no such a data cleaning tool that

can deal with all the dirty data types mentioned from these works. In practice,

cleaning all dirty data types introduced by the two taxonomies mentioned above is

unrealistic and simply not cost-effective when taking into account the needs of a

business enterprise. This problem in this thesis is defined as DDS problem. Thus, the

power of a selection of different dirty data types to deal with under different

situations is expected for a data cleaning approach.

(ii) According to Galhardas et al, the more dirty data involved, the more difficult to

automate their cleaning within a fix set of transformations [18]. Currently, in

existing data cleaning tools, organizing the multiple cleaning tasks in a proper

cleaning sequence is not supported and is totally depends on a user‟s preference.

This brings two drawbacks: the first drawback is that the human involvement during

a data cleaning process may bring down the degree of automation when performing

data cleaning tasks. Ideally, the process of detecting and correcting the dirty data

should be performed automatically. However, it is known that fully automatically

87

performing data cleaning is nearly impossible in most of cases especially when

exceptions happen during the cleaning process and an expert is required to make a

judgement. Therefore, declarative, semi-automatic approaches are feasible and

acceptable for developing a data cleaning approach.

Considering the semi-automatic approach, the idea of dividing the data cleaning

process into several sub-processes which separate the sub-processes that can be

executed fully automatically from others is a good solution [32]. But still, the

executions of these sub-processes are needed to be specified in an order. So the

second drawback is that, for users who have no knowledge in data cleaning,

ordering these sub-processes is difficult and a poor ordering sequence will bring side

effects to the final cleaning result as is shown later. Therefore, a semi-automatic data

cleaning approach with the power of automatically ordering the associating the

related data cleaning tasks is a challenge.

(iii) To develop an effective data cleaning tool, it is necessary that a tool should

include various appropriate methods or techniques to deal with a specific data

quality problem when different domains are involved. A specific optimized

algorithm which is already parameterized is not able to cope with all situations.

Choosing a method or an algorithm from a set of alternative algorithms has proven

to be a difficult task. It depends on several factors, such as the problem domain and

the nature of the errors. Therefore, data cleaning methods/algorithms should be

critically analyzed and evaluated based on carefully designed experiments.

According to the studies of the five data cleaning approaches in section 2.2,

algorithm selection and algorithm parameter setting depends on user‟s preference.

This leaves the data cleaning process with two drawbacks: the first is with degree of

automation for a data cleaning approach. For example, in Febrl, 26 different

algorithms are provided to its users. In order to perform a matching task with Febrl,

88

the user has to choose one particular algorithm out of these 26 algorithms and the

corresponding parameters must also be specified by the user. According to the

author‟s experience of using Febrl, nearly 20% of the total data cleaning time is

spent on algorithm selection and parameter setting.

The second drawback is associated with the effectiveness of the data cleaning task.

As is mentioned, several factors such as the problem domain and the nature of errors

are involved with the selection of a suitable algorithm. As will be shown later, the

experimental results in Chapter 5 confirm that the effectiveness and efficiency of a

data cleaning task may vary with selection of a different algorithm. For users who

have not enough knowledge and experience, an inappropriate selection of algorithms

will generate poor cleaning results. Therefore, another challenge for a data cleaning

approach is that not only should it include enough techniques for user to choose but

it can intelligently help its users to make a choice out of many alternatives when

necessary. These considerations will be included during the design of the proposed

data cleaning framework.

Finally, the review work regarding data quality and data quality dimensions in

section 2.4 provides a solid foundation in designing the proposed rule based

taxonomy of dirty data, which is presented in the next chapter.

89

CHAPTER 3 A RULE-BASED TAXONOMY OF DIRTY DATA

In Chapter 2, literature concerning dirty data type classifications or taxonomies was

reviewed. Regarding the dirty data type classifications, some work has been

undertaken exclusively to identify problems (dirty data types) that affect data quality

and has resulted in taxonomies of dirty data. For example, Kim et al [6] and Oliveira

et al [30] have proposed two different taxonomies of dirty data and have presented

33 and 35 dirty data types respectively.

Some work, although not undertaken exclusively for the purpose of generating a

taxonomy of dirty data, has highlighted the problems arising due to poor data quality

and groups of dirty data types have been proposed. For example, according to the

constraints of Müller and Freytag‟s pre-defined data model [27], data from data

collection that does not conform to the constraints of the data model are considered

to be data anomalies. Müller and Freytag roughly classify data anomalies into three

different sets, namely syntactical anomalies, semantic anomalies and coverage

anomalies and together 8 dirty data types are identified. Rahm and Do [28]

distinguish the observed data quality problems into two sets, namely single-source

problems and multi-source problems. Within each set, data quality problems have

been classified into schema-level problems and instance-level problems respectively.

These problems reflect the different dirty data types that could be captured

according to different levels and 19 problems have been introduced in their work.

Compared with Müller and Freytag‟s and Rahm and Do‟s work, the two taxonomies

of dirty data provide many more types of dirty data. Data cleaning is a

labour-intensive, time-consuming and an expensive process. In practice, cleaning all

dirty data types introduced by the two taxonomies mentioned above is unrealistic

and simply not cost-effective when taking into account the needs of a business

enterprise. For example, a company might only be able to afford to clean a specific

90

group of types of dirty data to satisfy some specific needs. The problem then

becomes how the business can make a selection according to their different business

needs. This problem, mentioned in Chapter 1 is referred to as the Dirty Data

Selection (DDS) problem.

Although there are several taxonomies of dirty data existing in the literature, none of

them are designed for this purpose. For example, in Oliveira et al‟s taxonomy of

data quality problems, 35 dirty data types have been introduced, which is considered

as the most comprehensive taxonomy so far in the literature.

In this case, by only showing these 35 dirty data types, it is difficult to tell which

possible dirty data types should be selected to deal with for different data sets. In

this chapter, a rule-based taxonomy of dirty data is presented. As is mentioned in

chapter 2, dirty data is defined as the data flaws that break any of the pre-defined

data quality rules. The taxonomy presents a clear mapping between the data quality

rules and dirty data types, which not only covers a larger range of dirty data types

than any of the existing taxonomies but can also help dealing with the DDS problem

when specific business needs are considered.

3.1 Data quality rules

According to Chanana and Koronios, most data quality problems are not simple

violations of declared database integrity constraints, but a large number of real-life

data problems are caused by data violating complex underlying business rules or

data quality rules often leading to poor data quality [114].

In the proposed context, data quality rules define the business logic of an enterprise

and are therefore an underlying reality in an enterprise [115]. Data quality rules are

used as descriptive means for encapsulating operational business flows, govern and

91

guide the way in which an enterprise conducts itself and comply with legal and other

regulations. They are defined and owned by business professionals, not IT

professionals [116] and they do not contain any control flow statements, which are

independent of any implementation techniques.

In the past, data quality rules have been embedded in the system code rather than

formalized and articulated separately in simple natural language. With advances in

the scale of business, changing business environment, operations at different

locations and increased interaction with stakeholders, the business process is now

more complex and it becomes difficult and unmanageable to operate the business

effectively and efficiently without formalizing these quality rules. As business

practices and/or policies change frequently, it becomes very difficult to reflect these

changes in the applications implementing them. Rules that are buried in information

systems are neither flexible nor easy to modify or change and as a result do not

render the business with complete control over its environment [114].

According to David Loshin [12], by relating business impacts to data quality rules,

an organization can employ the data quality rules for measuring the business

expectations and the improvement of data quality can be viewed as a function of

conformance to business expectations. By integrating control processes based on

data quality rules, business users are able to determine how best the data can be used

to meet their own business needs. Thus, data quality rules play an important role in

the improvement of data quality for a business.

In this thesis, dirty data is defined as the data flaws that break any of the pre-defined

data quality rules when data quality rules are obtained. Data can be assessed as

whether or not the data is dirty according to the description of these rules. This

provides agility in responding to the ever changing demands of the business

environment. Since the validity of a data value is defined within the context in

92

which data values appear, one must specifically describe what defines a valid value

in order to improve data quality. This is performed by measuring if the values

conform to the matching data quality rules.

The approach of cleaning dirty data according to the different data quality rules

helps with the separation of business logic from implementation logic and thus

provides a solution to respond to the different demands in different business

environments. Additionally, the DDS problem introduced in Chapter 1 can be solved

well, since it is reasonable for a business enterprise to deal with a few of the most

important groups of data quality rules rather than all of the rules, according to its

own business priorities. Only dealing with the dirty data reflected in the selected

data quality rules helps an organization with reducing the cost associated with the

expensive data cleaning tasks, especially when available resources for an

organization to perform data cleaning is limited.

From the literature, Chanana and Koronios proposed a set of data quality rules and

categorized them into five groups. Table 3.1 shows the data quality rules from

Chanana and Koronios‟ work.

93

Rule Class Rule types Description

C.1

Definitions

of

reference

data

C.1.1 Null values rules

Allows traditional null values

like system null, blank, empty

fields

Non-null specifies which null

values are not allowed

C.1.2 Domain membership rules

Enumerated defines a list of

valid values

Descriptive domain uses syntax

to establish domain membership

C.2

Mappings

between

domains

rule

C.2.1 Functional domain mapping

rules

List of functions describing

mapping

C.2.2 Domain mapping

enumeration rules

Specifies those value pairs that

belong to the mapping

C.2.3 Mapping membership rules
Two attribute values must

confirm to the mapping

C.3

Value

constraints

C.3.1 Value constraints rules
Specifies set of valid values that

can be assigned

C.3.2 Attribute value restriction

rules
Data type like integer or string

C.4

Relation

rules

C.4.1 Consistency rules

Maintains relationship between

two attributes based on actual

values of attributes

C.4.2 Completeness rules
Specifies attribute values on

satisfying some condition

C.4.3 Exemption rules
On meeting a condition, some

attributes can have null values

C.5

Cross-table

rules

C.5.1 Primary key assertion rules
Attribute belonging to primary

key can‟t have null values

C.5.2 Foreign key assertion rule
Specifies consistency

relationship between tables

C.5.3 Functional dependency rules
Specify inter-record constraints

on records

Table 3.1 Data quality rules

Adelman et al also propose a set of data quality rules which, according to the

authors, have been categorized into four groups namely: business entity rules;

business attribute rules; data dependency rules; and data validity rules. Business

entity rules specify rules about business objects or business entities. Business

attribute rules are rules about data elements or business attributes. Data dependency

94

rules specify different types of dependencies between business entities or business

attributes. Data validity rules govern the quality of data values [89]. Table 3.2 lists

the entire data quality rules based on the four different categories proposed by

Adelman et al. All tables from the appendix B (B.1~B.4) show all further classified

distinct sub rules in detail and each sub rule has been associated with a rule number.

Rule Category Data Quality Rule

1.Business entity rules

R1.1 Entity uniqueness rules

R1.2 Entity cardinality rules

R1.3 Entity optionality rules

2.Business attribute rules
R2.1 Data inheritance rules

R2.2 Data domains rules

3.Data dependency rules
R3.1 Entity-relationship rules

R3.2 Attribute dependency rules

4.Data validity rules

R4.1 Data completeness rules

R4.2 Data correctness rules

R4.3 Data accuracy rules

R4.4 Data precision rules

R4.5 Data uniqueness rules

R4.6 Data consistency rules

Table 3.2 Data quality rules from Adelman et al’s work

All data quality rules from Chanana and Koronios and Adelman et al are compared

and the result is shown in Table 3.3.

95

Chanana and Koronio’s work Adelman et al’s work

C.1.1 Null values rules R 4.1.4

C.1.2 Domain membership rules R2.2.1, R2.2.5

C.2.1 Functional domain mapping

rules
R3.2.2

C.2.2 Domain mapping enumeration

rules
R2.2.1

C.2.3 Mapping membership rules R3.2.3

C.3.1 Value constraints rules R2.2.1

C.3.2 Attribute value restriction rules R2.2.3

C.4.1 Consistency rules R4.6.1

C.4.2 Completeness rules R4.1.4

C.4.3 Exemption rules R4.1.4

C.5.1 Primary key assertion rules R1.1.2

C.5.2 Foreign key assertion rule R4.1.2

C.5.3 Functional dependency rules R3.1.1

Table 3.3 A comparison

The comparison result between the two works shows that Adelman et al provide an

even larger comprehensive collection of data quality rules. All data quality rules

mentioned by Chanana and Koronios‟s work can also be found in Adelman et al‟s

work. Therefore, Adelman et al‟s collections of data quality rules are used in the

proposed research work. We use these four groups of data quality rules from

Adelman et al to classify dirty data types into four different categories. According to

Adelman et al, the four groups of data quality rules are further divided into a list of

sub-rules from which a tree structure classification of data quality rules is obtained.

By analyzing data quality rules on the leaf nodes, we have identified the dirty data

types in each category.

96

3.2 Dirty data types

Four groups of dirty data types are obtained according to the four different rule

categories from table 3.2. Each group of dirty data types is detailed below.

(i) Business entity rules related dirty data types:

Business entity rules specify rules about business entities which are subject to three

data quality rules namely entity uniqueness rules, entity cardinality rules and entity

optionality rules. Within this group, the following dirty data types are identified:

 Cardinality relationship problem: Cardinality refers to the degree of a

relationship, i.e., the number of times one business entity can be related to

another. As an example of this problem, the number of employees by counting

the number of tuples from the Employee table, is not the same as the number

of employees by summing the number of employees in each department in the

Department table.

 Recursive relationship problem: A recursive relationship corresponds to cycle

situations among two or more related tuples in a self or reflexive relationship.

As an example of this problem, suppose in a department of a university, one

person may supervise many other persons and each supervised person may

have many supervisors at the same time. Such information is recorded in the

table people (ID*, name, supervise). Suppose the information „Jack is

supervising Rose and Rose is supervising Jack‟ is found in the table. Clearly,

this is not going to happen in the real world.

 Optionality relationship problem: the entity optionality rule identifies the

minimum number of times two business entities can be related. For example,

an online store requires that when a customer has purchased a product on line,

97

the customer‟s delivery information must be in the delivery table. Otherwise, a

missing tuple from the delivery table will cause a problem such as an

undelivered item.

 Reference defined but not found: When a relationship is instantiated through a

foreign key, the referenced instance of the entity must exist in the related table.

(ii) Business attribute rules related dirty data types:

Business attribute rules specify rules about business attributes or data elements,

which are subject to two data quality rules namely data inheritance rules and data

domain rules. As data inheritance rules are object oriented related rules, we do not

consider this rule in our work because we consider only database applications.

Therefore, in this group, the following dirty data types are identified:

 Set violation: For an enumerated data type, its value should be within the

allowable value set. For example, suppose the allowable data value set for

“city” attribute is (London, Edinburgh, Manchester, Birmingham), then the

value of “New York” is not allowable.

 Data value out of value range: As an example of this problem, suppose the age

of human being in a database is defined as “18<=age<30”. It is not allowed

that an age value of „10‟ or „35‟ is entered in the table.

 Data value constraint violation: When some constraints are used to regulate

data values, the data value should conform to those constraints. A constraint

may be used to regulate a single piece of data or multiple data values. For

example, a medical experiment requires the age of the people who participate

should be below 30 (inclusive). Then the constraint for “age” attribute is

“age<=30”. If data has been found that its age value is “35”, then such data is

not expected in the table.

98

 Use of wrong data type: When the value of an attribute such as “Name” is set

to be a string data type, it is not expected that a numeric value be found for the

“Name” attribute.

 Syntax violation: Syntax violation happens when data value does not conform

to the defined pattern or format for its attribute. For example, when the format

of “Date” attribute is defined as the pattern of “DD/MM/YYYY”, then the

value of “2010-03-05” is not expected. The correct value should be

“05/03/2010”.

(iii) Data dependency rules related dirty data types:

Data dependency rules apply to data relationships between two or more business

entities or business attributes. The dirty data types identified in this group are:

 Data relationship constraint violation: As an example of this problem, an

employee who has been assigned a project is not allowed to enroll in a training

program, i.e., this employee‟s data is not supposed to be found in the training

table.

 Contradiction data: The existence of an attribute value is determined or

constrained by the value of another attribute. For example, suppose it is

defined that when the status of a loan is “funded”, then the value of loan

amount must be greater than zero.

 Wrong derived field data: This problem occurs when a data value is derived

from two or more other attribute values. For example, a miscalculation of an

employee‟s income by miscomputing the tax will result in a wrong derived

field data.

 Wrong data among related attributes: This problem occurs when the value of

one attribute is constrained by the value of one or more attributes in the same

99

business entity or in a different but related business entity. For example, the

value of annual expenses in a department is constrained by the sum of all

distinct expenses in that department.

(iv) Data validity rules related dirty data types:

Data validity rules govern the quality of data values, there are six data validity rules

(Rule 4.1~ Rule 4.6, see table 3.6). The dirty data types identified by the six validity

rules are:

 Missing tuple: Entity completeness requires that all instances exist for all

business entities, i.e., all records are present in the table.

 Missing value: It is required that all attributes for a business entity contains all

allowable values. It should be clear that Null value is different from missing

value. When a constraint of “null-value allowed” is enforced on the data set,

null value indicates “value unknown or nonexistent”. A missing value simply

indicates whether a value should exist for the attribute or not.

 Meaningless data value. The data value for an attribute must be correct and

reflect the attribute‟s intended meaning. When the data value is beyond the

context of the attribute, the data value is a meaningless data value. For

example, the value for the attribute “address” is defined as a set of allowable

characters which reflect a person‟s address in the real world. If “£$%S134” is

entered, it does not make any sense as valid address data.

 Extraneous data entry: An example of extraneous data entry is the entry of

address and name in a name field.

 Lack of data elements: An example of this problem is when a part of post code

is missing from attribute “PostCode” , i.e., “5DT” missing from “EH10 5DT” .

100

 Erroneous entry: An example of erroneous entry is when a student‟s age is

entered as “26” rather than the student‟s real age “27”.

 Entry into wrong field: This problem occurs for example when the value of a

person‟s name is entered into its address field.

 Identity rule violation: As an example of this problem, suppose in table

employee (Emp_No., Name, Emp_NIN, DoB), Emp_No. is defined as the

primary key. According to the values of Emp_No. from employee table, the

uniqueness of Emp_No. is guaranteed. But it does not mean that each

employee is properly identified in the data. For example, a person may have

two records with two distinct Emp_No. but identical values for national

insurance number (NIN). Suppose it is required that each person can only has

one unique Emp_No in the table. Obviously, they are duplicate records

referring to the same person.

 Wrong reference: This is the case when a reference is defined but its value is

wrong which breaks the attribute‟s dependency rules.

 Outdated value: It is required that the data value must be accurate in terms of

its state in the real world. If not, its value is said to be an outdated value

because it does not represent its real state in the real world.

 Imprecision: It is required that all data values for a business attribute must be

as precise as required by the attribute‟s business requirements. As an example

of imprecision data, suppose an analysis of the financial position of an auditor

requires the value of the data has precision to the pence, if the value is based

on the unit of pounds, then the data is imprecise.

 Ambiguous data: The use of abbreviation of data for instance, sometimes may

cause an ambiguous meaning which is not as precise as required by the

attribute‟s intended meaning. For example, when an abbreviation word “MS”

is used to represent a company‟s name, it is difficult to tell whether it stands

for “Morgan Stanley” (a global financial services firm) or “Microsoft” (a

101

global software company) when both of the companies have been recorded in

the same data source.

 Misspelling: A misspelling problem, for example, when “John Smith” is

entered as “Jonh Smyth”.

 Duplicate record in single/multi data source: Rule 4.5 specifies that each

business entity instance must be unique. Duplicate records may happen for

example, when a person‟s name and address are represented in different ways,

the same entity may be represented more than once in the same or different

data sources.

 Inconsistent record in single/multi data source: Rule 4.6 specifies the data

value should be consistent. Inconsistent data can be found in both single and

multi-sources. For example, in different data sources, the data value of the

same person‟s address may be recorded differently. Suppose this person has

only one valid address, these records are inconsistent records.

 Different representations for the same data: in addition to inconsistent record,

data conflicts may arise when multiple data sources are integrated. Usually,

different data sources are typically developed and maintained independently to

serve specific needs. When these data sources are integrated, due to the

different representations for the same data, problems are observed.

Specifically, these differences may be due to the different use of abbreviations,

special characters, word sequence, measurement unit, encoding format,

aggregation levels and alias names.

According to the descriptions of the data validity rules, some schema-level problems

can also be identified. For example, one of the data completeness rules requires that

all business attributes for each business entity exist. In this case for example, if an

employee‟s address is represented in a different number of fields in different data

sources and they are each correct in their own data source, when they come to be

102

integrated, problems will occur. In data uniqueness rules, two of them are related

with the definition of attributes (homonyms and synonyms) which are also related to

schema-level problems. As we do not consider schema-level problems in our

research, dirty data related with the schema-level will not be considered in the

proposed taxonomy. With the above dirty data types analyzed based on data quality

rules, table 3.4 lists these dirty data types, each of which has been assigned a type

number (DT.1 ~ DT.38).

No. Dirty Data Type

DT.1 Cardinality relationship problem

DT.2 Recursive relationship problem

DT.3 Optionality relationship problem

DT.4 Reference defined but not found

DT.5 Set violation

DT.6 Data value out of value range

DT.7 Data value constraint violation

DT.8 Use of wrong data type

DT.9 Syntax violation

DT.10 Data relationship constraint violation

DT.11 Contradiction data

DT.12 Wrong derived field data

DT.13 Wrong data among the related attribute

DT.14 Missing tuple

DT.15 Missing value

DT.16 Meaningless data value

DT.17 Extraneous data entry

DT.18 Lack of data elements

DT.19 Erroneous entry

103

No. Dirty Data Type

DT.20 Entry into wrong field

DT.21 Identity rule violation

DT.22 Wrong reference

DT.23 Outdated value

DT.24 Outdated reference

DT.25 Imprecision

DT.26 Ambiguous data

DT.27 Misspelling

DT.28 Duplicate record in single data source

DT.29 Duplicate record in multi data source

DT.30 Inconsistent record in single data source

DT.31 Inconsistent record in multi data source

DT.32 Different representations due to abbreviation

DT.33 Different representations due to special characters

DT.34 Different representations due to word sequence

DT.35 Different representations due to measurement unit

DT.36 Different representations due to encoding format

DT.37 Different representations due to aggregation level

DT.38 Different representations due to use of alia name

Table 3.4 Dirty data types

3.3 The taxonomy

In Table 3.2, data quality rules have been organized in a tree structure. The proposed

taxonomy follows the same structure and classifies the dirty data according to the

four different categories of data quality rules. As the 38 dirty data types are obtained

based on analyzing the rules on the leaf nodes, the four categories of dirty data have

104

been further classified into distinct dirty data types according to the corresponding

rules on the leaf nodes. Table 3.5 shows the proposed taxonomy.

Dirty Data Category Data Quality Rules Dirty Data Type

Business entity rules

related dirty data

R1.2 Entity cardinality

rules
DT.1, DT.2

R1.3 Entity optionality

rules
DT.3, DT.4

Business attribute rules

related dirty data
R2.2 Data domain rules DT.5~DT.9

Data dependency rules

related dirty data

R3.1 Entity relationship

dependency rules
DT.10

R3.2 Attribute dependency

rules
DT.11~DT.13

Data validity rules

related dirty data

R4.1 Data completeness

rules
DT.14, DT.15

R4.2 Data correctness

rules
DT.16~DT.20

R4.3 Data accuracy rules DT.21~DT.24

R4.4 Data precision rules DT.25~DT.27

R4.5 Data uniqueness

rules
DT.28, DT.29

R4.6 Data consistency

rules
DT.30~DT.38

Table 3.5 Rule-based taxonomy of dirty data

105

In this taxonomy, 38 different dirty data types have been identified under different

data quality rules, which forms an even larger collection of dirty data compared with

any of the existing taxonomies or classifications [6, 27, 28, 30]. In the category of

business attribute rules, 5 dirty data types are identified. There are 4 dirty data types

identified with each of the categories of business entity rules and data dependency

rules. The majority of dirty data types are related to the category of data validity

rules, which has 25 dirty data types. This is because the data value related problems

are much more common than others. In total, there are 38 distinct dirty data types

identified. The proposed taxonomy has considered dirty data types not only

appearing within both a single data source and multiple data sources, but also from

the angles of both a single relation and multiple relations. Compared with the four

existing works [6, 27, 28, 30], it is clear that the proposed taxonomy is most

complete. For example, D26, D38, D12, D24, D13, D10 are the dirty data types that

are not mentioned by Müller and Freytag [27] and Rahm and Do [28]. Compared

with the two formal taxonomies by Kim et al [6] and Oliveira et al [30], the

proposed taxonomy not only covers all instance level dirty data types from these two

taxonomies but also includes a new dirty data type (D.18, lack of data element).

However, due to the research scope, schema-level related problems are not

considered in the proposed taxonomy. For example, naming conflicts and structure

conflicts are two schema level heterogeneities mentioned by Rahm and Do [28].

Similarly, two schema-level problems are also identified by Oliveira et al [30] (i.e.,

Syntax inconsistency both in multiple relations in a single data source and among

multiple data sources). This consideration agrees with the suggestion made by Kim

et al [6]. A systematic classification of schema related problems has been proposed

by Kim and Seo [117], which covers all the schema-related problems mentioned in

the two existing works [27, 28]. Although it is believed that this taxonomy is very

comprehensive, still, this does not ensure that it covers all possible dirty data types

that may exist. However it is believed that most usual or unusual dirty data types are

covered in the proposed taxonomy.

106

As mentioned in Chapter 1, in practice, cleaning all dirty data types introduced by

any of existing taxonomies is unrealistic and not cost-effective when taking into

account the needs of a business enterprise. The proposed rule-based taxonomy

presents a special structure to organize the different types of dirty data according to

the different quality rules. This structure will help with providing a solution to

respond to the different demands in different business environment. Only dealing

with the dirty data reflected in the selected data quality rules helps with reducing the

cost associated with the expensive data cleaning tasks and solves the proposed DDS

problem. A method to deal with the proposed DDS problem will be further detailed

in the next Chapter.

3.4 Conclusion

In this chapter, the proposed rule-based taxonomy of dirty data is presented.

Compared with existing works, this taxonomy includes 38 distinct dirty data types

and provides a larger collection of dirty data types than any of existing taxonomies.

Associating dirty data with data quality rules will provide several benefits. For

example, it provides agility in responding to the different demands from different

business environments. This enables the separation of business logic from logic

implementation and people who try to evaluate and improve the data quality of an

organization will only focus on the data quality rules without considering the actual

techniques regarding dirty data cleaning. On the other hand, developers who try to

develop techniques to cope with different dirty data types will not be distracted by

the changing of different business environments. Additionally, since it is reasonable

for a business enterprise to pick up a few of the most important groups of data

quality rules rather than focusing on all rules according to its own business priorities,

107

dirty data associated with the selected data quality rules will be firstly dealt with. In

this way, the proposed DDS problem is solved by only dealing with the dirty data

reflected in these selected data quality rules.

Although some existing work has also proposed a large collection of dirty data types

such as the collection of 35 dirty data types by Oliveira et al, by only looking at

these dirty data types, it is difficult to tell which group of dirty data should be firstly

considered and it would be very expensive for the system to run all algorithms for

all the possible dirty data candidates which is exactly the DDS problem. With the

help of the proposed rule based taxonomy of dirty data, a method to deal with the

DDS problem could be developed exclusively to be used by business enterprises to

solve the DDS problem, by prioritizing the expensive process of data cleaning,

therefore maximally benefitting their organizations. In next chapter, this method will

be detailed in the proposed data cleaning framework.

108

CHAPTER 4 A DATA CLEANING FRAMEWORK

4.1 Introduction

High quality data plays an important role in the success of data base applications.

Data cleaning is a way to maintain high quality data and is one of the crucial tasks to

improve the efficiency of building up the database applications such as a data

warehouse (DW). Research shows that nearly half the time of dealing with back-end

issues such as readying the data and transporting the data to a DW can be attributed

to the activities associated with data cleaning [32]. Regarding the data cleaning

process, two considerations need to be addressed: (i) how to reduce the time cost

during the data cleaning process, i.e., the improvement of the efficiency of data

cleaning process, (ii) how to improve the degree of automation during the data

cleaning process.

Recall the data cleaning process presented in Fig.1.1, ideally, the detection and

correction of error instances are expected to be performed automatically. However,

from the literature, a fully automatic data cleaning tool does not exist. In most cases,

it is impossible to have the data cleaning process executed fully automatically with

current existing data cleaning approaches. There are many factors which need to be

considered during the data cleaning process such as the problem domain, the various

dirty data types involved, and sometimes, human involvement is required during the

data cleaning process. For example, according to Müller and Freytag, “the process of

data cleaning cannot be performed without the involvement of a domain expert,

because the detection and correction of anomalies requires detailed domain

knowledge” [27].

However, due to the large amount of data that are usually involved, data cleaning

109

should be as automatic as possible [27]. Therefore, declarative, semi-automatic

approaches are feasible and acceptable for developing data cleaning tools [32]. In

Chapter 2, data cleaning approaches from the literature were reviewed. There are

two main data cleaning activities addressed in these tools: (1) data standardization

and transformation and (2) duplicate record elimination. Regarding the 38 dirty data

types from the proposed taxonomy of dirty data, the existing data cleaning

approaches have only addressed a small number of these 38 dirty data types. For

other dirty data types that can not be cleaned with existing data cleaning approaches,

users have to seek other solutions to deal with them exclusively. This however

requires much user effort during the data cleaning process. Therefore, an ideal data

cleaning approach should be able to provide as many solutions for the various types

of dirty data as possible.

Regarding the degree of automation during a data cleaning process, frequent human

involvement is not encouraged though it is unavoidable. During the data cleaning

process, human involvements should be reduced as much as possible and leave most

of the data cleaning activities to be handled by the tool. In the data cleaning

approaches studied, human involvement is required during the data cleaning process.

This is especially required in the following three cases: (1) select a suitable

algorithm and set the necessary parameters of the selected algorithm, (2) organize a

sequence to perform the multiple data cleaning activities involved in the data

cleaning process, and (3) deal with exceptions.

With respect to the first case, for each type of dirty data involved during the data

cleaning process, an appropriate method must be firstly selected and then applied.

Choosing such a method has proven to be a difficult task as it depends on several

factors such as the problem domain and the nature of dirty data types [31]. Currently,

existing data cleaning approaches either adopt one fixed method to clean dirty data

without considering the different problem domains or they require users to select a

110

method from a list of alternatives. For example, Febrl provides multiple solutions to

deal with the problem of duplicate record detection and users have to choose one

solution out of the many alternatives in order to have the duplicate records detected.

As mentioned in Chapter 2, Febrl does not supply any recommendations or help

with selecting an appropriate method to cope with different problem domains. AJAX,

on the contrary, will provide an optimal solution in its physical level according to the

information provided by the user on the logical level. This is an advance compared

to Febrl regarding the degree of automation. However, AJAX does not support as

many techniques as Febrl does. This is a drawback regarding the ability to cope with

different problem domains.

With respect to the second case, when multiple data cleaning activities are involved,

the organization of a sequence to execute those associated algorithms is usually

determined by a user rather than the system. For example, in ARKTOS, the user can

customize multiple cleaning tasks either graphically or declaratively. Users of

ARKTOS are responsible for specifying the correct order to execute these tasks. In

Febrl, a data cleaning task is performed individually. For example, data

standardization and duplicate record detection need to be executed separately.

In order to develop an effective and efficient data cleaning approach, it is necessary

to allow users to select an appropriate method for different problem domains and it

should provide a mechanism for users to organize an appropriate order regarding the

multiple data cleaning activities. Regarding the organization of the multiple cleaning

activities during the data cleaning process, Müller and Freytag proposed a sequence

associated with different data cleaning activities as: format adaptation for tuples and

values integrity constraint enforcement derivation of missing values from

existing ones removing contradictions within or between tuples merging and

eliminating duplicates detection of outliers [27]. However, there is no mention in

their work whether there is any particular reason to perform these operations in this

111

order. As will be seen later, ordering the multiple activities in a data cleaning process

is a complex task where multiple factors such as the problem domain, the nature of

the selected algorithm must be considered. A different order may result in different

data cleaning performance during the data cleaning process.

In this chapter, a data cleaning framework is proposed which aims to challenge the

following issues: (1) minimising the data cleaning time and improving the degree of

automation during the data cleaning process, (2) improving the effectiveness of data

cleaning. This framework retains the most appealing characteristics of existing data

cleaning approaches reviewed in Chapter 2, and improves the efficiency and

effectiveness of data cleaning in a database application by introducing two

mechanisms: „algorithm ordering mechanism‟ (AOM) and „algorithm selection

mechanism‟(ASM). In the following sections, the proposed data cleaning framework

will be detailed as well as the two mechanisms.

4.2 Data cleaning framework

In this section, the proposed data cleaning framework is introduced, starting with

some basic ideas.

4.2.1 Basic ideas

Data cleaning is a labour-intensive, time-consuming, and expensive process,

especially when multiple data cleaning activities are involved with huge volumes of

data from different data sources during the data cleaning process. Reducing the data

cleaning time becomes a motivation in the proposed data cleaning framework.

According to Peng, a data cleaning framework has been proposed which both

reduces the cleaning time and maximisesthe degree of automation during the data

cleaning process [32]. In Peng‟s framework, the whole data cleaning process is

112

firstly broken into two stages to deal with data quality problems associated with a

single-source and multi-source respectively. In this way, the time required to deal

with multi-source data quality problems is reduced. For example, during the

execution of duplicate record detection, comparing each tuple with other tuples will

cost lots of time. Reducing the comparison times will save significant time during

the process of duplicate record detection. This is achieved by removing the number

of tuples to be compared within each single data source.

Further, in each stage, the process is again divided into two sub-processes according

to whether or not human involvement is needed to deal with the data quality

problem. This helps with minimizing human involvement during the cleaning

process and thus, the degree of automation is maximized.

In each sub-process, a strategy is applied to organize the multiple algorithms

involved, i.e., algorithms dealing with non-computational-costly errors are put at the

front in order [32]. An error of this type requires relative less cleaning time than a

computational-costly error. Although this strategy aims to minimize the processing

time, the effectiveness associated with these algorithms is not considered. As will be

seen later, when effectiveness is considered, a pre-defined order might need to be

adjusted with a different algorithm selected. Based on the strategy proposed by Peng,

improvements have been made in the proposed framework by introducing two

mechanisms (AOM and ASM), where both the effectiveness and efficiency during

the data cleaning process are addressed.

Apart from the organization of the multiple algorithms involved during the cleaning

process, the selection of a suitable algorithm is also a difficult task [31]. For

example, it has been mentioned by Peng that during the data cleaning process, an

experienced expert with sufficient business domain knowledge might be required to

guide the selection of an algorithm for a particular domain [32]. Since human

113

involvements during the data cleaning process will minimize the degree of

automation, a solution that can automatically select a suitable algorithm according to

some rules or strategies is highly expected for a data cleaning approach. In the

proposed framework, the selection of an appropriate algorithm is addressed by

introducing an „algorithm selection mechanism‟.

Although it is impossible for us to have a thorough test on all existing available

algorithms associated with all dirty data types introduced from the proposed

taxonomy, a set of approximate string matching algorithms have been analyzed and

evaluated based on different carefully designed databases in chapter 5. With these

experimental results, it has shown the possibilities for the proposed „algorithm

selection mechanism‟ to automatically select a suitable algorithm according to the

different domain specific pre-defined rules during the data cleaning process. Thus,

both effectiveness and degree of automation will be improved.

Finally, the proposed framework has also addressed the DDS problem proposed in

chapter 1 by introducing a „DDS process‟. From the literature, it has indicated that in

some cases, cleaning all dirty data types is unrealistic and simply not cost-effective

when taking into account the needs of a business enterprise [29]. In the proposed

framework, the „DDS process‟ will help enterprises make a selection of dirty data

types by prioritizing the expensive process of data cleaning, therefore maximally

benefiting their organizations.

4.2.2 Some definitions

Before the proposed data cleaning framework is detailed, the following definitions

are needed regarding the dirty data types and the proposed two mechanisms (AOM

and ASM). They will be used during the detailing of the proposed data cleaning

framework.

114

 Single-source error type: An error of this type is present in a single source

dataset. For example, missing values, misspelled values, syntax violation,

outdated values are all of this type of error. These errors should be cleaned

within each single data source before data are integrated from multiple data

sources, so that the overall cleaning time will therefore be reduced from

cleaning data in multiple data sources. For example, detecting duplicate

records from multiple data sources takes time and if a significant number of

records can be removed within single sources, the number of comparisons

that are necessary for detecting duplicates will be significantly reduced.

 Multi-source error type: An error of multi-source error type is present when

data from more than one data source are integrated. For example, the

different representation of the values for the same attribute is just a problem

of multi-source error type. In one data source, the values „F‟, „M‟ are used to

represent the attribute „Gender‟, while in another data source, the values „1‟

and „0‟ are used instead. As another example, duplicate records may occur

when data are integrated from multiple data sources as the same entity may

be represented by an equivalent representation in more than one tuple from

different data sources.

 Automatic-removable error type: An error of this type can be detected then

corrected without any human involvement. Cleaning this type of error is

entirely depending on the selected algorithms. For example, the problem of

different representations of „Gender‟ attribute values in multiple data sources

could be detected and corrected with the help of some algorithms

automatically without any human interruption.

 Non-automatic-removable error type: A non-automatic-removable error can

not be fully detected and then corrected by the algorithms without any

115

human interruption. For example, during the detection of duplicate records

from a single data source or multiple data sources, human involvements

sometimes are needed to deal with exceptions such as the missing value in

the matching fields. Although some algorithms are available during the

detection of duplicate records, an expert sometimes is still required for the

final merging task towards the linked records. For example, an expert may

need to decide which record should be kept out of the many duplicates and

then update the values of the record that is kept and delete the others.

 Computational-costly error type: An error of this type will cost significant

time relatively when it is cleaned by an algorithm. Computational-costly is a

relative measure. It varies between different types of errors and different

algorithms involved. For example, both methods of „SortingIndex‟ and

„FullIndex‟ proposed in Febrl can be applied to detect duplicate records in a

dataset. Relatively, „SortingIndex‟ algorithm requires less timing cost than

the „FullIndex‟ algorithm.

 Non-computational-costly error type: An error of this type is an opposite of

the computational-costly error. An error of this type can be detected and

cleaned without requiring much cleaning time compared with the

computational-costly errors.

 Algorithm ordering mechanism (AOM): An algorithm ordering mechanism

(AOM) tries to organize the associated dirty data types to be cleaned in a

specified order in order to maximize the efficiency and effectiveness during

the data cleaning process. This mechanism will be applied to both groups of

„automatic-removable error type‟ and „non-automatic-removable error type‟.

With the help of this mechanism, all dirty data types from each group will be

firstly ordered according to the different computational cost associated with

116

the algorithm selected for each dirty data type. Relatively, non-computational

costly errors are put in the front of the order. Later, the entire order will be

adjusted according to a further analysis based on the involved algorithms

regarding the effectiveness. If an algorithm (A1) has to deal with the values

from multiple fields, then any other algorithms existed to improve the quality

of the values from these fields are needed to be executed ahead of A1. This

mechanism will be further detailed in the case studied later.

 Algorithm selection mechanism (ASM): Algorithm selection mechanism

(ASM) helps with selecting a proper algorithm to deal with a specific dirty

data type according to different considerations involved during the data

cleaning process such as problem domain, error types, error rates, etc. These

considerations are presented as the form of pre-defined rules in the system.

With the help of ASM, dirty data types will be grouped under two sub-groups

namely „automatic-removable errors‟ and „non-automatic-removable errors‟

respectively according to the algorithms selected for each dirty data type.

4.2.3 The framework

Briefly, the framework is trying to break the data cleaning process into three stages.

Firstly, all dirty data from various data sources are classified into two different

groups namely „single-source error type‟ group and „multi-source error type‟ group

respectively. The first stage and the second stage in the data cleaning process are

designed to deal with these two groups of error types exclusively.

In the first stage, dirty data belonging to the group of „single-source error type‟ is

detected and cleaned. Dirty data in this group refers to the dirty data presented in a

single data source, e.g., misspelling, and domain constraint violation. In the second

stage, dirty data belonging to the group of „multi-source error type‟ is detected and

cleaned. Dirty data in this group refers to the dirty data present when data are

117

integrated from multiple data sources, e.g., duplicate records. The proposed two

mechanisms (AOM and ASM) are then applied to each group during the data

cleaning process. In order to improve the degree of automation, dirty data from the

two groups are again grouped into two sub-groups namely „automatic-removable

error types‟ and „non-automatic-removable error types‟ according to whether the

dirty data can be fully cleaned without any human involvement.

In the group of „automatic-removable error types‟, all dirty data should be detected

and cleaned by the selected algorithms without any human involvement during the

data cleaning process, while in the group of „non-automatic-removable error types‟,

human involvements are required during the cleaning process. In each sub-group,

the AOM helps with organizing those associated algorithms selected by the ASM.

In the third stage, the tasks associated with data transformations are performed.

Those data cleaned from the first and second stages are ready for the tasks such as

instance-level or schema-level format standardizations, data integration, and data

aggregation. Finally, data are ready for loading to any database application.

Additionally, before entering into the first stage, a process called „DDS process‟ can

be specified on the dirty data from the various data sources. According to the

different needs of an organization, this process helps an organization to select only

the most important dirty data to deal with rather than running all algorithms for all

possible dirty data candidates in order to minimize the expensive cost associated

with the data cleaning process. A general process of the proposed framework is

given in Fig.4.1.

118

Fig.4.1 A data cleaning framework

All major components and their embedded tasks from the first two stages in Fig.4.1

are detailed below:

(i) The DDS Process

The DDS Process is trying to identify a selection of possible dirty data types rather

than focusing on all dirty data types from the different data sources. By only

focusing on the selected dirty data types, it is expected that the expensive process of

data cleaning can be prioritized and therefore will maximally benefit the

organization. Regarding the DDS problem introduced in Chapter 1, when specific

needs of a business enterprise have to be taken into account, it is usually not realistic

and not cost-effective to clean all the dirty data types encountered from different

data sources. Since business rules can be used as guidelines for the validation of

information quality, with the help of the proposed rule-based taxonomy, it is

reasonable for a business enterprise to pick up a few of the most important groups of

business rules rather than all of rules to deal with according to its own business

priorities. According to David Loshin, „integrating control processes based on data

quality rules communicates knowledge about the value of the data in use, and

SourceDB (1)

…
…

. . . .

Dirty Data

Single

source

Process

Multi

source

Process

Transfor

mation

Database

applications

SourceDB (i) DDS process

SourceDB (2)

119

empowers the business users with the ability to determine how best the data can be

used to meet their own business needs‟. It also recommended that „organizing data

quality rules within defined data quality dimensions can enable the governance of

data quality management and data stewards can use data quality tools for

determining minimum thresholds for meeting business expectations, monitoring

whether measured levels of quality meet or exceed those business expectations‟ [12].

The proposed taxonomy of dirty data is a data quality rule based taxonomy which

forms relationships between dirty data types and data quality rules. When these data

quality rules are organized under the defined data quality dimensions, a relationship

between data quality dimensions and dirty data types can also be formed, which will

be used to develop a method to deal with data quality problems.

In detail, in order to generate a better DDS process result, an assessment of data

quality is first required. According to the review in chapter 2, data quality cannot be

assessed independently of the people who use the data, i.e., data consumers. It is

possible that the same data used in different tasks may require different quality

characteristics. Therefore, both subjective and objective data quality metrics are

required during the DDS process.

Firstly, objective assessment is performed. According to the specific business

priority policy, data quality dimensions are obtained together with different business

rules associated within each dimension. The following five data quality dimensions:

accuracy, completeness, consistency, currentness and uniqueness have been used as

the dimensions to measure data quality involving data values. Brief introductions of

these five dimensions are given below:

 Accuracy dimension: The accuracy of the datum refers to the degree of

closeness of its value v to some value v’ in the attribute domain considered

correct for the entity e and attribute a. If the datum‟s value v is the same as a

120

correct value v’, the datum is said to be accurate or correct.

 Completeness dimension: Completeness is the degree to which a data

collection has values for all attributes of all entities that are supposed to have

values.

 Currentness dimension: A datum is said to be current or up to date at time t if

it is correct at time t. A datum is out of date at time t if it is incorrect at t but

was correct at some moment preceding t.

 Consistency dimension: Data is said to be consistent with respect to a set of

data model constraints if it satisfies all the constraints in the set.

 Uniqueness dimension: Uniqueness of the entities within a data set implies

that no entity exists more than once within the data set.

These data quality dimensions are ordered based on the business priority policy.

With the help of the proposed rule-based taxonomy of dirty data, a collection of

dirty data types are selected and associated within each data quality dimension. Then,

according to different individual needs from different business organizations, the

most wanted dimensions are selected and algorithms/methods for dealing with the

dirty data types within the selected dimensions are collected.

Meanwhile, a subjective assessment is conducted by different data consumers.

Subjective data quality assessment evaluates data quality from views of data

collectors, custodians, and data consumers [50] and could adopt a comprehensive set

of data quality dimensions which are defined from the perspective of data consumers

[4]. The assessment is focussed on the management perspective and concentrates on

whether the data is fitness for use. During this process, questionnaires, interviews,

and surveys can be developed and used to assess these dimensions. From the

literature, subjective assessment results may corroborate with objective assessment

results. In this case, the results from objective assessment will be used for the next

step. However, when discrepancies exist between the subjective and objective

121

assessments, organizations should investigate the root causes and consider the

corrective actions. For example, whether the dimensions from subjective assessment

should be included for the final result or whether the discrepancies can be

disregarded for the final result. Finally, with these selected dirty data types along

with the available algorithms, a classification is made. These dirty data types

together with their algorithms are grouped into the „single-source error type‟ group

and the „multi-source error type‟ group. The general process of solving the DDS

problem is shown in Fig.4.2.

As is shown in Fig.4.2, tasks from the DDS process include:

a) Create an order of the five dimensions according to the business priority

policy.

b) Identify data quality problems with the help of the proposed taxonomy of

dirty data.

c) Map the dirty data types identified in b) into the dimensions against the

classification table.

d) Comparatively analyze on both objective and subjective assessments’ results.

e) Decide dimensions to be selected based on the budget.

f) Select available algorithms, which can be used to detect dirty data types

associated with dimensions identified in e).

g) Group the selected dirty data types into ‘single-source error type’ group and

‘multi-source error type’ group with the help of domain and technical knowledge so

that they can be dealt with in the next two stages respectively.

122

Fig.4.2 The DDS Process

(ii) The single-source process

The purpose of decoupling the process of data cleaning into the two stages of single

source process and multi-source process is for the minimization of the data cleaning

time. For example, duplicate record is a common dirty data type which occurs when

data from multiple sources are integrated together. The most reliable way to detect

duplicate records is to compare every record with every other record and is involved

with the quadratic cost. It will become even impossible to be accepted when larger

sizes of datasets are involved considering the time used for data cleaning. However,

if a significant number of tuples can be removed within single sources, the number

of comparisons that are necessary for detecting the integrated records will be

significantly reduced and the time required will be minimized.

In detail: with all single-source error types identified from source DB(1) to source

Business

priority

policy

Ordered

Data quality

dimensions

Rule-based taxonomy

of dirty data

Selected dirty data

types and data

quality dimensions

Algorithm/method

collections

Grouping

the

DDS

problems

Single-source

error types

Multi-source

error types

Subjective

assessment results

Comparative

analysis

123

DB(i), the „algorithm selection mechanism‟ is firstly applied to associate an

appropriate algorithm to each error type according to the different rules defined by

the users.

Then, these single-source error types from each single source DB are again

decoupled into two groups namely automatic-removable errors and

non-automatic-removable errors. The „algorithm selection mechanism‟ can help with

the decoupling work. For each dirty data type addressed in the proposed framework,

the meta data of its related algorithms such as „computational cost‟, „whether a

human involvement is needed during the execution‟ are kept in the proposed

framework. Once a data quality problem is classified in the group of single-source

error types and a suitable algorithm is selected by the „algorithm selection

mechanism‟, the corresponding meta data of this algorithm will be extracted and

analyzed by the „algorithm selection mechanism‟.

According to the different meta data supplied for the algorithms involved in the

group of „single-source error types‟, it is easy to decouple these single-source error

types into the two sub-groups of „automatic-removable errors‟ and

„non-automatic-removable errors‟ respectively. For each sub-group, the „algorithm

ordering mechanism‟ is applied to organize the execution of algorithms in each

sub-group.

As mentioned, the ordering generated by this mechanism will address both

efficiency and effectiveness of data cleaning. Firstly, the meta data of computational

cost of each algorithm is extracted and analyzed by the „algorithm ordering

mechanism‟. Algorithms dealing with non-computational cost errors are put at the

front in order. Then, the effectiveness associated with each algorithm is further

analyzed and re-ordering carried out by this mechanism. Once the ordering work is

done, the algorithms are ready to be executed.

124

The cleaning for the group of „automatic-removable errors‟ is firstly performed, then

followed by the group of „non-automatic-removable errors‟. As mentioned in section

4.1, algorithm selection and algorithm ordering are two important factors to

influence the performance and accuracy of the data cleaning result. Users of existing

data cleaning approaches such as Febrl or ARKTOS have to specify the algorithm

selection as well as its ordering by themselves, which not only minimize the degree

of automation during the data cleaning process but also is likely to result in poor

cleaning results as discussed before. The proposed framework provides a solution by

introducing two mechanisms (ASM and AOM) to cope with the algorithm selection

problem as well as the algorithm ordering problem, which improves the degree of

automation during the data cleaning process as well as the efficiency/effectiveness

of data cleaning. The general process of dealing with the single-source process is

presented in Fig.4.3. As shown in Fig.4.3, in single-source process:

 (1) Tasks associated with applying the algorithm selection mechanism include:

a) For all dirty data types from the group of ‘single-source error types’, selecting

an appropriate algorithm for each dirty data type involved.

b) Grouping all dirty data types from the group of ‘single-source error types’ based

on the selected algorithms into two sub-groups either the sub-group of

‘automatic-removable errors’ or the sub-group of ‘non-automatic-removable

errors’.

(2) Tasks associated with applying the algorithm ordering mechanism include:

a) Ordering all algorithms from each sub-group of either ‘automatic-removable

errors’ sub-group or the ‘non-automatic-removable errors’ sub-group according

to the computational cost associated with each selected algorithm. Algorithms

dealing with non-computational cost errors are put at the front in the order.

b) Adjusting the order obtained from a) to maximize the effectiveness of each

125

involved algorithm in the sub-group.

(3) Tasks in the single-source process include:

a) Dealing with dirty data from the sub-group of ‘automatic-removable errors’

with the help of the selected algorithms by ASM, based on the order generated

by AOM.

b) Dealing with dirty data from the sub-group of ‘non-automatic-removable errors’

with the help of the selected algorithms by ASM, based on the order generated

by AOM.

Fig.4.3 The single-source process

Clean DB (1)

…
…

. . . .

Single

source

errors

Errors

from

sourceDB(1)

Automatic-removable

Errors cleaning process

Errors

from

sourceDB(i)

Algorithm selection

mechanism

Algorithm ordering

mechanism

Non-automatic-removable

errors cleaning process

Algorithm selection

mechanism

Algorithm ordering

mechanism

…
…

. . . .

Clean DB (i)

Automatic-removable

Errors cleaning process

Algorithm selection

mechanism

Algorithm ordering

mechanism

Non-automatic-removable

errors cleaning process

Algorithm selection

mechanism

Algorithm ordering

mechanism

126

(iii) The multi-source process

Multi-source process deals with multi-sources errors. Firstly, with all the

multi-source errors identified, ASM is applied to select an appropriate algorithm for

each associated dirty data type. Similar to the single-source process, these

multi-source errors are then further grouped into two sub-groups:

automatic-removable errors and non-automatic-removable errors with the help of

ASM.

Dirty data belongs to the sub-group of „automatic-removable errors‟ are firstly dealt

with followed by the dirty data from the sub-group of „non-automatic-removable

errors‟. The AOM is applied to generate an appropriate order to execute the multiple

algorithms involved in each sub-group. The general process of dealing with

multi-source process is given in Fig.4.4.

Fig.4.4 The multi-source process

As is shown in Fig.4.4, in the multi-source process:

(1) Tasks associated with applying the algorithm selection mechanism include:

a) For all dirty data types from the group of ‘multi-source error types’, selecting

an appropriate algorithm for each dirty data type involved.

Clean DB

Multi-source

errors

Automatic-removable

Errors cleaning process

Algorithm selection

mechanism

Algorithm ordering

mechanism

Non-automatic-removable

errors cleaning process

Algorithm selection

mechanism

Algorithm ordering

mechanism

127

b) Grouping all dirty data types from the group of ‘multi-source error types’ based

on the selected algorithms into two sub-groups either the sub-group of

‘automatic-removable errors’ or the sub-group of ‘non-automatic-removable

errors’.

(2) Tasks associated with applying the algorithm ordering mechanism include:

a) Ordering all algorithms from each sub-group of either ‘automatic-removable

errors’ sub-group or the ‘non-automatic-removable errors’ sub-group according

to the computational cost associated with each selected algorithm. Algorithms

dealing with non-computational cost errors are put at the front in the order.

b) Adjusting the order obtained from a) to maximize the effectiveness of each

involved algorithm in the sub-group.

(3) Tasks in the multi-source process include:

a) Dealing with dirty data from the sub-group of ‘automatic-removable errors’

with the help of the selected algorithms by ASM, based on the order generated

by AOM.

b) Dealing with dirty data from the sub-group of ‘non-automatic-removable errors’

with the help of the selected algorithms by ASM, based on the order generated

by AOM.

Compared with current data cleaning approaches reviewed in Chapter 2, the

proposed framework has several features which those existing data cleaning

approaches have not considered:

(1) The use of the proposed rule based taxonomy of dirty data during the data

cleaning process.

(2) The DDS process, which can help a business take into account the special needs

according to the different business priority policy. This will be especially helpful

128

when the given budget of a business for data cleaning is limited.

(3) The application of an algorithm selection mechanism during the cleaning process.

Current data cleaning approaches do not supply any knowledge about the selection

of an appropriate algorithm as well as providing a guideline for ordering the selected

algorithms. In some approaches, this task is left to its users to make a decision and in

others, only a fixed solution for all situations is provided without considering the

domain problem or the nature of dirty data. This not only affects the quality of the

cleaning result but also increases the cleaning time. From the literature, the selection

of a suitable algorithm for dealing with a specific dirty data type has proven to be a

difficult task with many aspects need to be considered. Due to the research scope, it

is impossible for us to test all algorithms/methods associated with all the dirty data

types from the proposed taxonomy. However, in chapter 5, a group of selected

approximate string matching algorithms have been used for such a test. As is

presented later, a technique that can cope with all situations does not exist.

(4) The application of an „algorithm ordering mechanism‟ during the cleaning

process. Current data cleaning approaches do not provide guidelines for ordering the

multiple data cleaning activities involved during the data cleaning process. Similar

to the selection of an algorithm, in some approaches such as ARKTOS, this task is

left to its users to make a decision. In others such as Febrl, multiple data cleaning

activities have to be done separately rather than in a single data cleaning process.

This not only affects the effectiveness of data cleaning results but also minimizes the

degree of automation. With the help of the proposed algorithm ordering mechanism,

multiple data cleaning activities are organized into a specific order with both degree

of automation and effectiveness considered. Thus, the efficiency and effectiveness

regarding the whole data cleaning process could be improved.

129

(5) Decoupling the whole data cleaning process into two sub-processes

(single-source process and multi-source process) and dealing with single-source

process first followed by the multi-source process. By doing so, the time required

for cleaning the dirty data from the group of „multi-source error types‟ is greatly

reduced and the efficiency of data cleaning should be improved [32].

4.3 A case study

To illustrate the basic framework, a data cleaning tool based on the proposed data

cleaning framework has been prototyped. A case study is presented in this section to

show the efficiency and effectiveness of the proposed data cleaning framework by

applying it to some purposely designed databases.

In the U.K., National Health Service (NHS) is a nationwide organization, which

provides health services to all residents. By gathering all information of all residents

to a data warehouse (DW), the level of NHS services could be improved. Suppose

every city in the U.K. has a single local database which contains the information of

residents in the local city. The DW needs to bring altogether the information from

each local database in each city. The problem remains that duplicate information

may exist either in a single data source or when multiple data sources are integrated.

Duplicate information occurs due to many reasons. For example, consider university

students who move to another city after graduation. Students from city-A may

register their doctors in city-A where their universities are located. These students

may again register other doctors in city-B when they move there for their further

studies or their new jobs after their graduation. In this case, information on these

students may be stored in both cities‟ local databases which duplicate the

information.

130

The following tables (table 4.1 and table 4.2) show the samples of data entered in

the two cities‟ NHS local databases respectively, where VST stands for valid start

time, and VET for valid end time.

No. Last Name First Name Age City Post VST VET

1 Colae Liam 22 Edinburgh Student 22-09-2005 Now

2 Gerrard John 23 Student Edinburgh 02-10-2004 Now

3 Higgins Alan 21 Edinburgh Student 05-10-2004 20-06-2004

4 Kent Alex 36 Edinbugh Engineer 18-09-2003 Now

5 Owen Mark 18 Edinburgh Student 06-10-2004 Now

6 Small Helen 23 Edinburgh Student 12-09-2002 Now

7 William,Smith 24 Edinburgh Student 08-10-2004 Now

8 Smith Mary 34 Edinburgh Engineer 12-10-2005 10-09-2005

9 Snow Jamie 22 Edi Student 10-10-2005 Now

10 Cole Lieam 22 Edinburgh Student 22-09-2005 Now

Table 4.1 Records in city-A

No. Last Name First Name Age City Post VST VET

1 Cole Liam 26 London Engineer 20-08-2009 Now

2 Gerrad John 27 London Engineer 18-09-2004 Now

3 Higgins Alan 21 London Engineer 30-08-2008 Now

4 Kent John 34 London Engineer 18-09-2007 Now

5 Owen Mary 22 London Student 10-10-2008 Now

6 Small Helen 23 Lndon Student 10-09-2003 Now

7 Smith William 24 London S 08-10-2008 Now

8 Kirsty Smith 38 London Engineer 10-10-2009 Now

9 Snow John 22 London Student 08-08-2006 Now

Table 4.2 Records in city-B

By observing the two tables, some dirty data can be easily identified. For example,

in some records, the value of „Edinburgh‟ has been misspelt as „Edinbugh‟ in the

„City‟ field. NHS has also noticed that some suspicious duplicate personal

131

information exists in the tables. They decide to detect the duplicate information and

eliminate it to make sure the personal information is only kept in the local city‟s

database where the person is currently living. The proposed data cleaning

framework has been applied for helping NHS with cleaning such dirty data. The

actual cleaning process is detailed below with a DDS process specified firstly before

entering into the first stage to deal with dirty data in each single data source.

(1) The DDS process

Data from the two databases has been fully analyzed. Based on the data provided by

table 4.1 and table 4.2, the following 9 dirty data types are identified according to

table 3.8:

 DT.15: in table 4.1, a missing value is observed in the field of ‘First Name’

where ‘No.’=7.

 DT.17: in table 4.1, in the record where ‘No.’=7, the value of its field ‘First

Name’ has entered into the field of ‘Last name’ followed by the correct last

name value, which causes a problem of ‘Extraneous data entry’.

 DT.20: in table 4.1, in the record where ‘No.’=2, the problem of ‘entry into

wrong field’ is noticed. The value of its field ‘City’ has entered into the field

‘Post’ and vice versa. Similarly, in table 4.2, in the record where ‘No.’=7, the

value of field ‘First Name’ has entered into its field ‘Last Name’ and vice

versa.

 DT.23: in table 4.2, suppose it is known that ‘Alan Higgins’ in table 4.2 is

exactly the same person in table 4.1, then an outdated value is observed in

the field of ‘age’ in the record where ‘No.’=3.

 DT.27: in table 4.1, misspelling errors are seen in records where ‘No.’ =1, 4,

and 10 in the fields of ‘Last Name’, ‘City’, and ‘First Name’ respectively. In

table 4.2, misspelling errors are seen in records where ‘No.’ =6 and 8 in the

132

fields of ‘City’ and ‘Last Name’ respectively.

 DT.32: in table 4.1, in the record where ‘No.’=9, the value in the field ‘City’

is abbreviated as ‘Edi’ rather than ‘Edinburgh’.

 DT.33: in table 4.2, in the record where ‘No.’=7, the value in the field ‘Post’

is represented with a special character ‘S’ rather than ‘Student’.

 DT.28: in table 4.1, suspicious duplicates are observed. For example,

records where ‘No.’=1 and 10.

 DT.29: when data are viewed from both tables, many suspicious duplicate

records are noticed. For example, records where ‘No.’=1, 2, 3, and 7 from

table 4.1 are all suspicious candidates.

In order to build a high quality DW, the data in the databases should be cleaned as

much as possible. Thus, NHS plans to execute the following data cleaning activities

(DCA) to improve its data quality:

No. Data Cleaning Activity

DCA.1 Detect/fill missing values from the fields of „Last Name‟ and „First Name‟

DCA.2 Standardize values from the fields of „Last Name‟ and „First Name‟.

DCA.3
Correct the values from entering into wrong fields based on the fields of

„City‟, „Post‟, „First Name‟, and „Last Name‟.

DCA.4 Update values from the field of „Age‟.

DCA.5 Correct the misspelt values in „Last Name‟, „First Name‟ and „City‟ fields.

DCA.6 Detect/standardize the abbreviated values from the field of „City‟.

DCA.7
Detect the use of special character values from the field of „Post‟ and

correct them to the standardized values.

DCA.8 Clean the duplicate records from each single dataset.

DCA.9 Clean the duplicate records from the integrated datasets.

Table 4.3 Data cleaning activities

133

Suppose due to the limited available resources within the NHS, performing all the 9

data cleaning activities is unrealistic. Therefore, before entering into the first stage to

deal with the dirty data from different single data sources, the DDS process is

performed to help NHS with selecting some of most important dirty data to clean.

The DDS process for NHS begins with a mapping between business rules from NHS

and data quality dimensions.

(i) Mapping between Data Quality Rules and Data Quality Dimensions

With the five data quality dimensions introduced in section 4.2.2, a new

classification of the dirty data types is introduced beginning with a mapping of data

quality rules with data quality dimensions. Table 4.4 shows the result of the

mapping:

Data Quality Dimension Data Quality Rules

Accuracy dimension R2.2, R3.2, R4.2, R4.4

Completeness dimension R1.3, R4.1

Currentness dimension R4.3

Consistency dimension R1.2, R3.1, R4.6

Uniqueness dimension R4.5

Table 4.4 Data quality dimension and data quality rules

(ii) A Classification

The result of Table 4.4 provides an immediate help for the proposed classification of

dirty data within the new taxonomy. Combining the result from table 3.9 and table

4.4, a classification of dirty data types based on data quality dimensions is achieved

as shown in table 4.5.

134

Data Quality Dimension Dirty Data Type

Accuracy dimension

DT.5~DT.9,

DT.11~DT.13, DT.16~DT.20,

DT.25~DT.27

Completeness dimension DT.3, DT.4, DT.14, DT.15

Currentness dimension DT.21~DT.24

Consistency dimension DT.1, DT.2, DT.10, DT.30~DT.38

Uniqueness dimension DT.28, DT.29

Table 4.5 Data quality dimensions and dirty data types

Therefore, data cleaning activities for NHS can be considered as cleaning dirty data

by different data quality dimensions. The DDS problem described in Chapter 1 can

therefore be solved by forming a relationship between the defined data quality

dimensions and dirty data types with the help of the rule-based taxonomy of dirty

data.

(iii) The Method and the Result

With the help of the classification from part (ii), the method described in section

4.2.2 is prototyped during the DDS process below:

a) Create an order of the five dimensions according to the business priority policy.

According to NHS‟s priority policy, the uniqueness of information recorded in DW

is often very stringent for NHS data following with the accuracy. The order of the

five data quality dimensions for NHS is therefore: Uniqueness Accuracy

Consistency Completeness Currentness, descending in priority.

135

b) Identify data quality problems.

With the help of the rule-based taxonomy of dirty data, the following 9 dirty data

types are identified: DT.17, DT.20, DT.27, DT.32, DT.33, DT.15, DT.23, DT.28,

DT.29.

c) Map the data types identified in b) onto the dimensions against the

classification table.

With the help of table 4.5, the mapping is achieved as given in table 4.6. It is clear

that all identified data quality problems have been organized under all the five data

quality dimensions. Suppose it is impossible for NHS to address all data quality

problems associated with the five data quality dimensions. Therefore, the problem

that NHS is facing is how to select a group of dirty data types to deal with, the DDS

problem.

Data Quality Dimension Dirty Data Type

Uniqueness dimension DT.28, DT.29

Accuracy dimension DT.17, DT.20, DT.27,

Consistency dimension DT.32, DT.33,

Completeness dimension DT.15

Currentness dimension DT.23

Table 4.6 An example of data quality dimensions and dirty data types

d) Decide dimensions to be selected based on the budget.

According to the priority policy, NHS chooses to deal with the data quality problems

related with uniqueness dimension and accuracy dimension firstly since the

uniqueness dimension and the accuracy dimension are much more urgent than other

136

dimensions. Thus, dirty data types: DT.17, DT.20, DT.27, DT.28, and DT.29 are

chosen firstly to be cleaned.

e) Select the available algorithms, which can be used to detect dirty data types

associated with dimensions identified in d).

f) Group the selected dirty data types into single-source errors group and

multi-source errors group with the help of domain and technical knowledge so

that they can be dealt with in the next two stages respectively.

Finally, the DDS process provides the following data cleaning activities, the related

dirty data types and the available techniques for NHS to choose (see table 4.7).

Group DCA DDT Techniques

Single-source

error types

DCA.3 DT.20
Look-up tables;

reference functions

DCA.5 DT.27 Spell checker

DCA.2 DT.17 Pattern learning technique

DCA.8 DT.28
Deduplication techniques;

Approximate string matching algorithms

Multi-source

error types
DCA.9 DT.29

Recode Linkage techniques;

Approximate string matching algorithms

Table 4.7 The grouping results

(2) Dealing with the single-source process

According to table 4.7, four data cleaning activities are involved in the single-source

process and four dirty data types: DT.20, DT.27, DT.17 and DT.28 belong to the

group of „single-source error types‟. For each dirty data type, available algorithms

are provided. The proposed data cleaning approach will firstly deal with these data

137

cleaning activities. For each dirty data type involved in this group, the „algorithm

selection mechanism‟ is applied to associate an appropriate algorithm out of the

other alternatives. Then, this mechanism further decouples these dirty data types into

two sub-groups according to the metadata provided by each algorithm, i.e.,

„automatic-removable errors‟ and „non-automatic-removable errors‟ (see table 4.8).

For example, in this case study, a duplicate detection method „FullIndex‟ has been

associated with dirty data type DT.28 to detect duplicate records in each single data

source. However, since duplicate detection based on this method some times

requires an expert‟s involvement to determine the matching result, DT.28 is grouped

into the „non-automatic-removable errors‟.

Group Sub-group DDT Techniques

Single-source

error types

Auto
DT.20 Reference function

DT.27 Spell checker

Non-auto

DT.17 standardization

DT.28
FullIndex,

String Matching Algorithm

Table 4.8 An example of the two sub-groups

With the two sub-groups, the „algorithm ordering mechanism” is applied to

automatically specify a sequence of the execution order regarding the multiple

algorithms involved. This function tries to manage the ordering of the multiple

algorithms based on two considerations.

The first consideration is related to the efficiency of data cleaning. From this point

of view, an order is arranged aiming to reduce the processing time. According to the

„algorithm ordering mechanism‟, dirty data types from the group of

„automatic-removable errors‟ are firstly cleaned with the supplied algorithms. In this

example, DT.20 and DT.27 belongs to the group of „automatic-removable errors‟

138

since the techniques provided by the system can automatically detect these errors

and correct them to the expected values. Dirty data types from the group of

„non-automatic-removable errors‟ are dealt with secondly. Dealing with these dirty

data sometimes requires involvement from an expert. For example, during a

duplicate elimination process, an expert has to be involved to make a decision for

the merging or purging tasks. In this example, DT.17 and DT.28 belongs the group

of „non-automatic-removable errors‟. In each sub-group, the „algorithm ordering

mechanism‟ is further applied to organize the selected algorithms. Algorithms

dealing with non-computational cost errors are put at the front in the order according

to the strategy proposed in the „algorithm ordering mechanism‟. This strategy aims

to minimise the processing time and also ensures that when it‟s time to perform

computational costly errors, such as duplicates, the data volume should be

significantly reduced. Hence, the processing time needed is reduced [32]. With this

first consideration, the order of the execution of data cleaning regarding the involved

dirty data types in the group of „single-source error types‟ will be:

DT.20DT.27DT.17DT.28.

The second consideration for the „algorithm ordering mechanism‟ is related to the

effectiveness of the data cleaning. From this point of view, the nature of the selected

algorithm as well as the associated data cleaning rules are involved to arrange an

order. In this example, four data cleaning activities are associated within the

single-source process. For each data cleaning activity of DCA.2, DCA.3, and DCA.5,

executing the associated algorithm will only affect the field values where the

corresponding dirty data reside. With respect to the effectiveness of data cleaning for

the three dirty data types, the order based on the first consideration will not cause

any side-effect. However, suppose the Jaro algorithm for DCA.8 is applied on the

fields of „Last Name‟ and „First Name‟ to calculate the similarities of the name

values and the rule for duplicate detection is defined as “if the names of the two

records are similar and the value of the field „Post‟ is „Student‟, then the two records

139

are duplicate records”. Clearly, according to this rule as well as the application of the

Jaro algorithm, data values of the three fields „Last Name‟, „First Name‟ and „Post‟

are all involved.

Obviously, poor data quality of the three fields will result in a low effectiveness of

the duplicate detection in this case. From table 4.3 and table 4.5, it is known that the

existence of dirty data types: DT.15, DT.17, DT.20, DT.27 and DT.33 will influence

the data quality in the three fields. Therefore, in order to improve the effectiveness

regarding the cleaning of DT.28, the two extra dirty data types DT.15 and DT.33

should be considered before DT.28.

In this case, the „algorithm selection mechanism‟ is again applied to find a suitable

algorithm for the two dirty data types and grouped them into the two sub-groups

again. The order generated by the „algorithm ordering mechanism‟ for the

single-source process is: DT.15DT.33DT.20DT.27DT.17DT.28 based on

the two considerations.

However, suppose due to the large dataset involved in the single-source process, the

„SortingIndex‟ method is selected by the „algorithm selection mechanism‟ to deal

with DT.28 rather than the „FullIndex‟ method. By applying the „SortingIndex‟

algorithm, the cost is reduced by compromising the accuracy. During the execution

of the „SortingIndex‟ algorithm, the creation of the sorting key is an important step.

Table 4.9 shows an example of how the sorting key is created.

140

First

Name

Last

Name
Address ID SortingKey

John Smith 456 Merchiston Crescent 45678987 SmiJoh456Mer456

John Smyth 456 Merchiston Crescent 45688987 SmyJoh456Mer456

Smith, John 456 Merchiston Crescent 45688987 JohSmi456Mer456

Table 4.9 An example of sorting key

The „SortingIndex‟ algorithm is proposed by Hernandez et al which sorts the records

based on the sorting key values [13]. The sorting key value for each record is

computed by extracting relevant attributes or portions of the attributes‟ values.

Relevant attributes should have sufficient discriminating power in identifying

records that are likely to be duplicates. Table 4.9 shows an example of how sorting

key values might look. The sorting key values are a combination of sub-string values

of attributes in the order of last namefirst nameaddressID. Since the records

are sorted using the sorting key values generated, the attribute that first appears in

the sorting key selection has the most discriminating power, followed by the

attributes that appear subsequently with decreasing discriminating power. Therefore,

it is important that the value of the first selected attribute should be as clean as

possible.

In table 4.9, all three records are supposed to be the duplicate records. However,

because the first name value and the last name value of the third person have been

transposed (DT.34), the third record might not end up in the same sliding window as

the first and second records. Records not in the same window will not be considered

as candidate duplicate record pairs and the final cleaning result will be defective.

Therefore, in the case that a „SortingIndex‟ method is applied to detect duplicate

records, it is necessary to make sure the attributes‟ values that are used for creating

the soring key values should be as clean as possible.

141

In the case proposed by table 4.9, suppose a method of dealing with inconsistency

problem (DT.34) for personal names is firstly applied before applying the

„SortingIndex‟ algorithm, the sorting key value of the third record will be corrected

as „SmiJoh456Mer456‟ which is exactly the same as the first record‟s sorting key

value. All three records in table 4.9 in this case will fall into the same window and

will compare to each other. With the selected name matching algorithm applied later,

the tree records might be detected as the duplicate records as expected.

In the NHS case, suppose in order to deal with DT.28, the sorting key values for the

„SortingIndex‟ method are a combination of sub-string values of attributes in the

order of CityLast Name. The Jaro algorithm is still selected by the „algorithm

selection mechanism‟ to calculate the similarities of the values from the fields of

„Last Name‟ and „First Name‟. The cleaning rule for DT.28 is changed to “if the

names of the two records are similar and the value of the field „City‟ is the same,

then the two records are duplicate records”.

In this case, the data quality of the values from the field „City‟ is much more

important than the field of „Post‟. Therefore, the order this time is changed to

„DT.15DT.32DT.20DT.27DT.17DT.28‟

(3) Dealing with the multi-source process

In the group of „multi-source error types‟, the cleaning process is similar to the

group of „single-source error types‟. When multiple dirty data types are involved,

the „algorithm ordering mechanism‟ is firstly applied to find a suitable algorithm for

each dirty data type and then further groups these dirty data types into the two

sub-groups of „automatic-removable errors‟ and „non-automatic-removable errors‟.

In each sub-group, the „algorithm ordering mechanism‟ is used for guiding the

sequence of the multiple algorithms involved. In this example, only DT.29 is

142

involved in the multi-source process. According to the „algorithm selection

mechanism‟, the method of „FullIndex‟ is selected to detect the duplicate records

from the multiple data sources with the help of the Jaro algorithm to calculate the

similarities of both name values. For any pair of detected duplicate records, a

confirmation rule is defined as „for each pair of records detected, if the value of the

field „Post‟ is Student in one record, and the difference of the values in the field of

„VST‟ is 4 or more years, then the two records are confirmed as duplicates‟. In this

case, regarding the effectiveness of the involved algorithm, the following order is

made against on the following dirty data types:

DT.15DT.33DT.20DT.17DT.29. When all cleaning activities are finished,

the data of NHS are ready for the final stage of „transformation process‟ where data

are transformed into the expected formats according to the different requirements

from the DW.

The case study in this section clearly shows the complexities regarding the

organization of the multiple data cleaning activities during a data cleaning process. It

shows that many factors are needed to be considered for specifying an order towards

the multiple cleaning activities involved such as the nature of the selected algorithm,

the cleaning rules, the computational cost.

A good order of data cleaning activities not only will improve the efficiency of the

data cleaning but also will improve the effectiveness. Unfortunately, according to the

author‟s knowledge, none of the existing data cleaning approaches reviewed in

chapter 2 has addressed this problem intentionally. Only one approach (ARKTOS)

has mentioned organizing of the multiple cleaning activities before the cleaning

process. However, organizing the multiple cleaning activities in ARKTOS totally

depends on the user‟s individual preference without specifying the many factors as

the proposed framework does. For users who are not familiar with the different

problem domains as well as the cleaning techniques involved, a poor order of the

143

multiple cleaning activities might be made. This will result in a low efficiency and

low effectiveness data cleaning result during the data cleaning process.

Existing approaches such as AJAX and IntelliClean provide only a fixed cleaning

process from „data standardization‟ to „duplicate elimination‟ without giving any

further details in each step. Additionally, IntelliClean offers only one fixed solution

to deal with a cleaning activity. For example, only SNM algorithm is provided in

IntelliClean to detect duplicate records. The „algorithm selection mechanism‟ from

the proposed framework is similar to the mechanism used in the physical level in

AJAX. However, compared with AJAX, the proposed framework addresses more

concerns regarding the selection of a suitable algorithm. In AJAX, in order to

compare two records, users are required for some specifications such as specifying

the required algorithms manually such as specifying an approximate string matching

algorithm and setting the related parameters manually.

However, as is shown later in chapter 5, users who are not familiar with the selection

of a suitable algorithm will usually make a wrong choice among the many

alternatives, which will result in a low timing performance and low accuracy

performance with respect to the final cleaning results. In the proposed framework,

both timing performance and accuracy performance are considered by addressing

the two proposed mechanisms during the data cleaning process.

4.4 Conclusion

In this chapter, a novel data cleaning framework has been proposed, which aims to

challenge the following issues: (i) minimising the data cleaning time and improving

the degree of automation in data cleaning, (ii) improving the effectiveness of data

cleaning. Additionally, the proposed framework provides a function (The DDS

process) to address the special case when individual business requirements are

144

involved. This function can help a business to take into account special needs

according to different businesses priority policies.

The proposed framework retains the most appealing characteristics of existing data

cleaning approaches, and improves the efficiency and effectiveness during the data

cleaning process. Compared with existing data cleaning approaches mentioned in

chapter 2, the proposed framework provides several exclusive features which have

not been addressed in those approaches.

Firstly, regarding the ability for a data cleaning approach to deal with the various

dirty data types, the proposed framework tries to address as many dirty data types as

possible according to the proposed taxonomy of dirty data. Existing approaches only

focus on solving two kinds of data cleaning activities, i.e., data standardization and

duplicate records elimination. Some tools such as ARKTOS only focus on solving

one activity. Obviously, none of the existing tools in section 2.2 can help with

providing an all-in-one solution to the problem proposed in the case study in section

4.3.

Secondly, the proposed framework addresses the order of the various cleaning

activities exclusively and provides an automatic solution to organize the sequence of

these activities, i.e., „algorithm ordering mechanism‟. None of the existing data

cleaning approaches from chapter 2 has addressed this problem. In section 4.1, an

order regarding six data cleaning activities is proposed by Müller and Freytag.

However, in the proposed case study, both orders generated by the „algorithm

ordering mechanism‟ are different from the one given by by Müller and Freytag. For

example, according to the order given by Müller and Freytag, dealing with missing

values is after the format adaptation. In the proposed case study, dealing with

missing values is performed before the format adaptation due to the consideration of

computational cost and effectiveness associated with the involved algorithms. To

145

some extent, the order given by Müller and Freytag is a general order to maximize

the effectiveness of the data cleaning without considering the efficiency during the

data cleaning process. The order proposed by the „algorithm ordering mechanism‟

addresses both effectiveness and efficiency during the data cleaning process.

Finally, the proposed framework supplies a function of „algorithm selection

mechanism‟ which provides an optimized algorithm regarding the different factors

involved such as problem domain, error rate and computational cost. It selects an

optimized algorithm to deal with different problems with various factors involved.

In this way, both effectiveness and degree of automation are improved.

In the next chapter, experiments are designed regarding the selection of a suitable

approximate string matching algorithm. With the achieved experimental results, the

importance regarding the selection of a suitable algorithm during the data cleaning

process is highlighted.

146

CHAPTER 5 EXPERIMENT AND EVALUATION

In chapter 4, the proposed data cleaning framework was presented. The special

feature exclusively designed for the proposed framework is the introduction of two

mechanisms during the data cleaning process. Regarding the selection of a suitable

algorithm for each data cleaning activity, currently a user is required to manually

select an algorithm for a specific cleaning task in existing data cleaning approaches.

For example, Fig.5.1 shows a list of available approximate string matching

algorithms provided by Febrl for the user to choose during the process of duplicate

record detection.

Fig.5.1 Approximate string matching algorithms from Febrl

Compared with other existing tools which only adopt one fixed method to deal with

a cleaning task without considering the different problem domains, Febrl is an

147

advance by providing multiple solutions for a cleaning task to each of the problem

domains. Still, according to the review work in chapter 2, the disadvantage is clear

that for users who do not have enough knowledge about these techniques, making a

selection out of multiple alternatives is a difficult task. Even when an algorithm such

as an approximate string matching algorithm is selected for a special task, how to set

its related parameters is still unclear in existing approaches. For example,

approximate string matching is an important step during the duplicate record

elimination process and setting a threshold value for the selected approximate string

matching algorithm is an important part for the matching task.

Traditionally, in existing approaches such as AJAX, a universal threshold value is

used for the selected approximate string matching algorithm without concern for the

different problem domains, characteristics associated with the dataset such as error

rate or size of dataset. As discussed, threshold value is one of the many factors to

affect the effectiveness of the matching result and many factors should be considered

when setting its value. In order to improve the degree of automation as well as the

effectiveness of data cleaning, the „algorithm selection mechanism‟ is provided in

the proposed data cleaning framework to facilitate the user in selecting a suitable

algorithm for a specific cleaning task.

Although it is impossible for us to have a thorough test on all existing available

algorithms associated with the various dirty data types introduced in the proposed

taxonomy, a set of approximate string matching algorithms have been analyzed and

evaluated based on different carefully designed databases. Experimental results

confirm the statement that there is no clear best technique for all situations.

Suggestions have been made, which can be used as guidelines for researchers and

practitioners to select an appropriate matching technique for a given dataset. Thus,

both effectiveness and degree of automation will be improved during the data

cleaning process.

148

5.1 Introduction

String data is by nature more prone to contain errors such as misspelling, different

representations due to abbreviations, different word sequence, and use of alias name

values. Therefore, expressions denoting a single entity may be different from word

sequence, spelling, spacing, punctuation and use of abbreviations. For example, the

same person‟s name can be referred as „John Smith‟, „Smith, John‟, „J.Smith‟.

Records that describe the same entity might differ syntactically due to containing

such expressions. They can be found in a single dataset or when they are integrated

from multiple data sources, which are termed as „Duplicate record in single data

source‟ (DT.28) or „Duplicate record in multi data source‟ (DT.29) according to the

proposed taxonomy of dirty data.

The problem of identifying such duplicate records in databases is an essential and

challenging step for data cleaning and data integration. This problem has become a

crucial problem as more and more data stored in database systems needs to be

integrated for the purpose of supplying decision support with the help of database

applications. In data cleaning, the task of dealing with duplicate records is addressed

by record matching techniques, also known as merge-purge, data de-duplication and

instance identification. Generally, record matching can be defined as the process of

identifying records in the same or different databases that refer to the same

real-world entity. From the literature, there are two types of record matching:

structural heterogeneity related and lexical heterogeneity related.

Structural heterogeneity belongs to the schema-level problem, which refers to the

problem of matching two databases with different domain structures. For example,

the value of a customer‟s home address might be stored in a single attribute „address‟

in one database but might be presented in another database with more attributes such

as „street‟, „city‟, and „postcode‟ respectively. Lexical heterogeneity belongs to the

149

instance-level problem which refers to databases with similar structure but different

representation of data. For example, consider a personal name value. A name value

of a person may be represented as “John Smith” in a record from one data source

and as “John Smtih” in a record from another data source containing a misspelling.

When data are integrated from different data sources, the two records are treated as

two different persons and a duplicate record problem occurs. In this research, the

lexical heterogeneity problem is foremost and it is assumed that the schema-level

structural heterogeneity has been resolved as a priori. As shown in this lexical

heterogeneity example, if these two names are not treated as the same person then it

might introduce a duplicate error when integrating the data from these two sources.

Names are important pieces of information when databases are de-duplicated. From

the literature, name matching can be defined as the process of determining whether

two name strings are instances of the same name. As mentioned in the beginning of

this section, many reasons can cause name variations such as typos during data entry,

use of different name formats, use of abbreviations. Thus, exact name comparison is

not able to generate a good matching result. Rather, an approximate measure of how

similar two names are is expected.

Name matching in databases has been a persistent and well-known problem for

years [118]. From the literature, several techniques are available to deal with this

problem [14, 119-123]. However, still, there is no clear best technique for all

situations [124]. A problem still exists for researchers and practitioners as how to

select a technique for a given dataset [125]. In the past decade, several researchers

have challenged this problem [124, 126-128]. However, none of them have

undertaken a comprehensive analysis and comparison that considers the effect on the

performance of accuracy and timing caused by the following factors: error rates,

type of strings, type of typos, and the size of datasets. An overview of this work is

given below in section 5.2.

150

5.2 Related work

Bilenko et al evaluated and compared a few effective and widely used approximate

string matching algorithms for matching strings' similarity [126]. Broadly, these

algorithms can be classified into two categories namely „character-level algorithms‟

and „token-level algorithms‟.

Character-level algorithms are designed to handle typographical errors. However, it

is often the case that typographical conventions lead to the rearrangement of words,

e.g., “John Smith” vs. “Smith, John”. In such cases, character-level algorithms fail to

capture the similarity of the entities. Token-level algorithms are designed to

compensate for this problem. Therefore, character-level algorithms are good for the

single word problem, while token-level algorithms for the matching with more than

one word.

In Bilenko et al‟s work, five character-level algorithms and three token-level

algorithms are used for the experimental works. 11 different datasets were used and

the sizes of the 11 datasets ranged from 38 records to 5709 records. For each dataset,

a single string formed with different sub-strings concatenated from multiple fields is

used to evaluate the matching effectiveness of the selected algorithm. Based on the

experimental results, the authors claim that Monge-Elkan algorithm performs best

on average and SoftTF-IDF performs best overall. However, as pointed out by the

authors, individual algorithm‟s performance varies significantly when different

datasets are considered. For example, in the „Census dataset‟, the simple

„Levenshtein‟ algorithm performs the best while it is the worst on average. Even

methods that have been tuned and tested on many previous matching problems can

perform poorly on new and different matching problems.

A further examination of the problem reveals that an estimate of similarity between

151

strings can vary significantly depending on the domain for each field under

consideration. During the experiment, each record is treated as a single, long-string

field and the measurement of the similarity is just calculated based on the alignment

strings from the different fields. Although the authors have also confirmed the

reason associated with the different domains involved in the different fields, further

examinations are not achieved in this work. The authors confirm that the limitation

of the selected algorithm is the absence of special knowledge of the specific problem

at hand and the solution is that some knowledge of the problem should be introduced

to the algorithm used. However, this confirmation is not further expanded in detail in

their work. Besides, regarding the threshold value used for the evaluation of an

algorithm, only a suitable threshold value is chosen for the test as mentioned in the

work. The work does not mention what a suitable threshold value should be for each

algorithm and whether or not the value is universal for all the eight selected

algorithms.

Christen [124] tested more algorithms and provided a comprehensive analysis and

comparison among these algorithms specifically to personal names. Christen

discussed the characteristics of personal names as well as the potential sources of

variations of personal names in detail. A number of algorithms that can be used to

match personal names are reviewed. The author evaluated both accuracy and timing

performance of the selected algorithms, considering given names, surnames and full

names respectively. Based on the experimental results, the author claims that no

single algorithm performs better than all others and nine useful recommendations

regarding the algorithm selection during the matching of personal names are

proposed in this work. Table 5.1 presents these 9 recommendations from Christen‟s

work.

152

No. Recommendations

1

It is important to know the type of names to be matched, and if these names

have been properly parsed and standardized, or if the name data potentially

contains several words with various separators.

2

If it is known that the name data at hand contains a large proportion of

nicknames and similar name variations, a dictionary based name standardization

should be applied before performing the matching.

3
Phonetic encoding followed by exact comparison of the phonetic codes should

not be used. Pattern matching techniques result in much better matching quality.

4
For names parsed into separate fields, the Jaro and Winkler techniques seem to

perform well for both given and surnames, as do uni- and bigrams.

5
The longest common sub-string technique is suitable for unparsed names that

might contain swapped words.

6

Calculating a similarity measure with respect to the length of the shorter string

(Overlap coefficient) seems to achieve better matching results (compared to

using the Dice coefficient or Jaccard similarity).

7
The Winkler modification (increase similarity when name beginnings are the

same) can be used with all techniques to improve matching quality.

8

A major issue is the selection of a threshold that results in optimal matching

quality. Even small changes of the threshold can result in dramatic drops in

matching quality. Without labelled training data, it is hard to find an optimal

threshold value. Optimal threshold values will also vary between data sets.

9

If speed is important, it is imperative to use techniques with time complexity

linear in the string length (like q-grams, Jaro, or Winkler), as otherwise name

pairs made of long strings (especially unparsed full names) will slow down

matching. Alternatively, filtering using bag distance followed by a more

complex edit distance based approach can be used.

Table 5.1 Recommendations by Peter Christen

153

According to the author, regarding name matching, there is no single best algorithm

available. Particularly, the author pointed out the importance of choosing a suitable

threshold value (see recommendation 8). It is argued that the selection of a proper

threshold value is a difficult task, even small changes of the threshold value could

result in dramatic drops in matching quality. Although it is believed by the author

that characteristics of both name data to be matched as well as the algorithms are

needed to be considered when selecting an algorithm, more detailed analysis into

these characteristics are not further studied but left as future work.

Hassanzadeh et al [128] presented an overview of eight approximate string matching

algorithms and evaluated their effectiveness on several carefully designed datasets.

Regarding the algorithms studied in this work, only one algorithm belongs to the

character-level algorithm, i.e., Levenshtein algorithm. The other seven algorithms all

belong to the token-level algorithms. As is pointed by the author, the effectiveness of

the algorithm highly depends on the characteristics of the data, which is also

mentioned by Christen.

Hassanzadeh et al designed a set of datasets for the experimental work and data

from each dataset are associated with an exclusive specific characteristic such as the

error rate (the amount of errors) or the type of errors. The problem regarding the

threshold value selection proposed by Christen is studied in this work. According to

the experimental results, the authors claim that the higher the error rate, the lower

the threshold value should be set. Regarding the evaluation of the relative

effectiveness of the algorithms, characteristics such as data error rate and data error

type are involved in the evaluation work. According to the authors, both data error

rate and error type will influence the effectiveness of the selected algorithm. For

example, according to the experimental result, when the error rate of a given dataset

is high, the HMM algorithm is among the most effective algorithm and could be

selected to perform the matching task. However, when the error rate is low, the

154

effectiveness of HMM algorithm becomes low and should not be selected for the

matching task.

Compared with the previous work, Hassanzadeh et al mainly focus on the

token-level algorithms. Besides, regarding the characteristics of data involved in the

experimental work, only two characteristics are considered, i.e., data error rate and

error type. The sizes of all the datasets used for the experiment are all the same.

Compared to other work, at least two questions are still unclear: if the conclusion

regarding the effectiveness of algorithms proposed by the authors based on the

experimental results can also apply to the character-level algorithms and if different

sizes of datasets will influence the effectiveness of the selected algorithms.

In this chapter, five approximate string matching algorithms are reviewed in section

5.3 and their performances are evaluated against the following characteristics: the

error rate in a dataset, the different threshold value chosen, the selected type of

strings in a dataset, the type of typo in the selected strings and the size of a dataset.

The experiments are performed based on a set of carefully designed datasets.

Compared to Hassanzadeh et al, the five algorithms used in this research are all

character-level algorithms in order to answer whether the conclusion made by

Hassanzadeh et al will also apply to the character-level algorithms. The

experimental results provide an opportunity to help with selecting a suitable

algorithm for a name matching task, which can improve the efficiency and

effectiveness during the process of duplicate record detection.

5.3 Matching techniques

Name matching can be defined as “the process of determining whether two name

strings are instances of the same name” [129]. In this research, the proposed

experiments are focused on single name values and five popular character-level

155

algorithms namely „Levenstein‟, „Smith-Waterman‟, „Jaro‟, „Jaro-Winkler‟ and

„Q-Gram‟ are selected for the experiments.

(i) Levenshtein

The Levenshtein distance [121] is defined to be the minimum number of edit

operations required to transform string s1 into s2. Edit operations are:

 Delete a character from string s1.

 Insert a character in string s2 that does not appear in s1.

 Substitute one character in s2 for another character in s1.

 Copy one character from s1 to s2.

The distance (number of edits) between two strings s1 and s2 can be calculated based

on an efficient scheme for computing the lowest-cost edit sequence for these

operations. This can be realized using dynamic programming techniques. The

Levenshtein similarity measure can be calculated by:

where dist(s1, s2) refers to the actual Levenshtein distance function which returns a

value of 0 if the strings are the same or a positive number of edits if they are

different. The value of such a measure is between 0.0 and 1.0 where the bigger the

value, the more similar the two strings.

(ii) Smith-Waterman

This algorithm was originally developed to find optimal alignment between

biological sequences, like DNA or proteins. It is based on a dynamic programming

156

approach similar to Levenshtein distance, but allows gaps as well as character

specific match scores [119]. Let t be the final best score obtained based on the

dynamic programming matrix and g be the match score value. Here,

Smith-Waterman similarity measure between two strings s1 and s2 is calculated by:

(iii) Jaro

Jaro [120] introduced a string comparator that accounts for insertions, deletions and

transpositions, which was mainly used for comparison of first and last names [13].

The basic Jaro algorithm is for two strings s1, s2:

1) compute the string lengths.

2) find the number of common characters in the two strings.

3) find the number of transpositions.

Given strings s = s1…sk and t = t1 … tl, define a character si in s to be common with t

iff there is a tj = si in t such that i-H ≤ j ≤ i+H, where H = min(|s|, |t|)/2. Let

s
’
=s

’
1…s

’
k be the characters in s which are common with t (in the same order they

appear in s) and let t
’
= t1

’…
tl

’
be the same in t. A transposition for s

’
, t

’
 is a position i

such that si
’
≠ t

’
i. Let be half the number of transpositions for s

’
and t

’
. Jaro

similarity measure for strings s and t is calculated by:

(iv) Jaro-Winkler

William Winkler proposed a variant of the Jaro metric based on empirical studies

that fewer errors typically occur at the beginning of names [123]. Jaro-Winkler

similarity measure between two string s1 and s2 is calculated by:

157

where p is the maximum number of the longest common prefix of two strings (s1 and

s2) and is up to a maximum of 4 characters.

(v) Q-Gram

The Q-Gram metric is based on the intuition that two strings are similar if they share

a large number of common q-grams. Q-grams are sub-strings of length q [122].

Commonly used q-grams are unigrams (q = 1), bigrams (q = 2) and trigrams (q = 3).

For example, the bigrams for ‟John‟ contains „Jo‟, „oh‟ and „hn‟. In this thesis, a

q-gram similarity measure between two strings is calculated by counting the number

of q-grams in common (i.e. q-grams contained in both strings) and divided by the

maximum the number of q-grams in the two strings. Let Gq(s) denote all the q-grams

of a string s obtained by sliding a window of length q over the characters of s. The

Q-Gram similarity measure between strings s1 and s2 is calculated by:

5.4 Experiment and Experimental Results

Hassanzadeh et al [128] have undertaken a thorough comparison of token-level

algorithms and claim that their accuracy highly depends on the characteristics of the

data such as the amount and type of the errors and the length of strings. In our

experiments, we also consider similar characteristics of the data but choose

character-level algorithms for the test.

In this section, the experimental results on the performance of the selected five name

matching techniques are presented. Especially, some recommendations proposed in

table 5.1 are evaluated during the experiment. For example, the first

recommendation from table 5.1 highlights the importance of different types of name

158

strings regarding the matching performance. Based on the experimental results, it

has been noticed that the performance of a selected algorithms varies for different

types of name strings (given name, surname, and full name). In our experiment, two

types of strings are considered respectively, i.e., last name strings and first name

strings.

Regarding the experiment on the last name strings, eight groups of datasets with

different data sizes ranging from 200 records to 9454 records are carefully designed

for the purpose of the experiments. In the experiment, the error rate of a dataset is

defined as the ratio of erroneous records and the whole number of records in the

dataset. There are three error rates considered for each group of datasets, i.e., low,

medium and high with values of 20%, 50% and 70% respectively. For each size,

three datasets with different error rates are used. For example, in the group of 9454

records of last name dataset, three datasets were designed:

a) Low error rate 9454 records of last name dataset.

b) Medium error rate 9454 records of last name dataset.

c) High error rate 9454 records of last name dataset.

With respect to the experiments for last name string, the following factors are

considered:

 Effects of error rates on the selection of threshold values for different

techniques

 Effects of error rates on the performance of different techniques

 Effects of sizes of datasets on the performance of different techniques

 Effects of error rates on the timing performance of different techniques

The recommendations proposed in table 5.1 will be evaluated based on the

159

experimental results. For example, in the fourth recommendation from table 5.1, the

author proposes that Jaro and Winkler perform well for both given name strings and

surname strings. However, since Christen‟s experimental work does not consider the

different characteristics of a dataset as Hassanzadeh et al, it is unclear if this

recommendation still holds considering the various characteristics of a dataset.

Therefore, the fourth recommendation will be re-evaluated based on the experiments

with different error rates and sizes of datasets. In addition, the issue of selecting a

threshold value for an optimal matching quality proposed in the eighth

recommendation in table 5.1 will be analyzed in detail.

Regarding the experiment on first name strings, it is expected that the experiments

can help to answer following questions:

a) Whether the types of typos will result in a different accuracy performance of the

selected algorithms. Three types of typos are considered in the proposed

experiment: (i) a typo occurs in the front part of a given string (marked as TFP),

(ii) a typo occurs in the latter part of a given string (marked as TLP), (iii) a typo

occurs in any part of a given string randomly (marked as TR).

b) Whether the types of strings will result in a different performance of the selected

algorithms. According to Christen, three types of name strings are used in the

experimental work. It is noticed that the accuracy performance of the same

algorithm will vary for the different types of name string values. This has been

addressed in the first recommendation from table 5.1 exclusively. In the

proposed experiments, regarding the types of strings, two types are considered

for the five character-level algorithms (i.e., first name strings and last name

strings). Experiments will be designed exclusively to compare the relative

performance of each algorithm when different error rates of a dataset are

concerned with the two types of name strings respectively.

160

In addition, the effects of error rate on the threshold values selection and the effects

of error rates on the accuracy performance of the selected five algorithms are also

considered in the experiments for first name datasets. There‟s only one size of 2300

records dataset for first name datasets. Similar to the experiments for the last name

string values, the three error rates associated with the first name datasets are 20%, 50%

and 70% respectively. It is expected that based on the experimental results, a

recommendation will be made as to which technique should be selected in order to

achieve the best matching quality when different name strings are considered under

the different characteristics of a dataset.

5.4.1 Datasets preparation

In the absence of common datasets for data cleaning, we prepared our data for

experiments as follows. With respect to the last name strings, the datasets are based

on a historical set of real Electoral Roll data. First, a one million record dataset was

extracted, from which a personal last name list was created. This list contains 9454

clean, non-duplicate personal last names. Then, a last name dataset was generated,

which contains these 9454 last name records, with an ID number associated to each

of the records. Erroneous records were created by doing the following four

operations manually to the name field of records in the dataset: inserting, deleting,

substituting and replacing characters. There were in total twenty-four datasets

generated and the number of records for these last name datasets ranges from 200

records to 9454 records. Any last name dataset contained with the same records will

have a different error rate associated with. Table 5.2 shows these datasets used for

the last name experiments

161

Dataset Error Rate

9454 Records Low Medium High

7154 Records Low Medium High

5000 Records Low Medium High

3600 Records Low Medium High

2300 Records Low Medium High

1000 Records Low Medium High

500 Records Low Medium High

200 Records Low Medium High

Table 5.2 Datasets for last name experiments

With respect to the first name strings, 9 first name datasets were carefully designed,

each of which contains 2300 records. These datasets are also based on a historical

set of real Electoral Roll data. First, a one million record dataset was extracted, from

which a personal first name list was created. This list contains 2300 clean,

non-duplicate personal first names. Then, a first name dataset was generated, which

contains these 2300 first name records, with an ID number associated to each of the

records. Erroneous records were created applying the following four operations

manually to the name field of records in the dataset: inserting, deleting, substituting

and replacing characters. There are three different types of typos contained within

the three groups of first name datasets, i.e., TFP, TLP, and TR. Any first name

dataset contained with the same type of typo will have a different error rate

associated with. Table 5.3 shows these first name datasets.

162

Dataset Error Rate Type of typo

2300 first name records Low TFP

2300 first name records Low TLP

2300 first name records Low TR

2300 first name records Medium TFP

2300 first name records Medium TLP

2300 first name records Medium TR

2300 first name records High TFP

2300 first name records High TLP

2300 first name records High TR

Table 5.3 First name datasets with different types of typos

For the purpose of comparing with the last name string values, 9 similar last name

datasets are also designed. Any last name dataset containing the same type of typo

will have a different error rate associated. Table 5.4 shows these last name datasets.

Dataset Error Rate Type of typo

2300 last name records Low TFP

2300 last name records Low TLP

2300 last name records Low TR

2300 last name records Medium TFP

2300 last name records Medium TLP

2300 last name records Medium TR

2300 last name records High TFP

2300 last name records High TLP

2300 last name records High TR

Table 5.4 Last name datasets with different types of typos

163

5.4.2 Measures

A target string is a positive if it is returned by a technique; otherwise it is a negative.

A positive is a true positive if the match does in fact denote the same entity;

otherwise it is a false positive. A negative is a false negative if the un-match does in

fact denote the same entity; otherwise it is a true negative. The matching quality is

evaluated using the F-measure (F) that is based on precision and recall:

with P (precision) and R (recall) defined as:

The most desirable algorithm is one that makes recall as high as possible without

sacrificing precision. F-measure is a way of combining the recall and precision into

a single measure of overall performance [130]. In the proposed experiments,

precision, recall and F-measure are measured against different values of similarity

threshold (i.e., θ). For the comparison of different techniques, the maximum

F-measure scores across different threshold values are used.

5.4.3 Experimental results

5.4.3.1 Experimental results for Last name strings

(1) Effectiveness performance results

Regarding the effectiveness performance, the values of the maximum F-scores for

164

different algorithms on different last name datasets are presented in Appendix A

(Table A.1). Figures Fig.5.2~Fig.5.9 present the corresponding results. For all graphs,

the horizontal axis of the graph represents the techniques involved. The vertical axis

of the graph represents the values of the maximum F-scores for different algorithms.

Explanation for each figure is detailed below:

Fig.5.2 shows the maximum F-scores achieved by the five name matching

algorithms on the 9454 last name datasets under three different error rates. It is clear

to see in Fig.5.2 that the lower the error rate, the higher the maximum F-scores can

be achieved for all the five name matching algorithms. When the error rate of a

dataset is low, the effectiveness of Levenshtein, Jaro, and Q-Gram algorithms are

equally the same followed by the Jaro-Winkler algorithm. The Smith-Waterman is

the worst among the five algorithms. When error rate changes to medium, the Jaro

algorithm becomes the best followed by the Jaro-Winkler algorithm. However when

error rate is high, the Jaro-Winkler algorithm performs better than the Jaro algorithm.

The Jaro-Winkler algorithm is the best among the five algorithms when the error

rate of a dataset is high, followed by the the Levenshtein algorithm. The following

table (table 5.5) shows the relative orders among the five algorithms regarding their

maximum F-scores in the three different error rate datasets respectively.

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

Medium Jaro>Jaro-Winkler>Levenshtein>Q-Gram>Smith-Waterman

High Jaro-Winkler>Levenshtein>Jaro>Q-Gram>Smith-Waterman

Table 5.5 Algorithms’ order for 9454 last name dataset

165

Fig.5.2 Effectiveness results for 9454 last name dataset

Fig.5.3 and Fig. 5.4 present the performances of these five name matching

algorithms on the 7154 last name datasets and 5000 last name datasets respectively.

The performances of these algorithms are exactly the same on both sizes datasets.

Similarly to the performance on 9454 datasets, the lower the error rate, the higher

the maximum F-scores are achieved for all the five name matching algorithms.

When error rate is low, the relative performance of all five algorithms is exactly the

same as they‟ve performed on the 9454 last name dataset. When error rate of a

dataset is changing to medium and high, the Jaro-Winkler algorithm becomes the

best followed by the Jaro algorithm. The following table (table 5.6) shows the

relative orders among the five algorithms regarding their maximum F-scores in the

three different error rate datasets respectively.

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

Medium Jaro-Winkler>Jaro>Levenshtein>Q-Gram>Smith-Waterman

High Jaro-Winkler>Jaro>Levenshtein>Q-Gram>Smith-Waterman

Table 5.6 Algorithms’ order for 7154/5000 last name dataset

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Low

Medium

High

166

Fig.5.3 Effectiveness results for 7154 last name dataset

Fig.5.4 Effectiveness results for 5000 last name dataset

Fig.5.5 shows the performances of the five name matching algorithms on the 3600

last name datasets. Compared with their performances on the 7154 and 5000 last

name datasets, the only differences are observed on the medium and high error rate

datasets that the performance of the Jaro algorithm is the best instead of the

Jaro-Winkler algorithm. The following table (table 5.7) shows the relative orders

among the five algorithms regarding their relative maximum F-scores in the three

different error rate datasets respectively.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Low

Medium

High

0

0.2

0.4

0.6

0.8

1
Low

Medium

High

167

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

Medium Jaro>Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman

High Jaro>Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman

Table 5.7 Algorithms’ order for 3600 last name dataset

Fig.5.5 Effectiveness results for 3600 last name dataset

Fig.5.6 shows the performances of the five name matching algorithms on the 2300

last name datasets. These algorithms perform exactly the same as they have done on

the 3600 last name datasets when error rate is low. When error rate changes to

medium, the Jaro algorithm becomes the best followed by the Levenshtein algorithm.

When error rate is high, the effectiveness performance of the Jaro-Winkler algorithm

becomes the best among the five algorithms. The following table (table 5.8) shows

the relative orders among the five algorithms regarding their maximum F-scores in

the three different error rate datasets respectively.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Low

Medium

High

168

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

Medium Jaro> Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman

High Jaro-Winkler> Jaro> Levenshtein>Q-Gram>Smith-Waterman

Table 5.8 Algorithms’ order for 2300 last name dataset

Fig.5.6 Effectiveness results for 2300 last name dataset

Fig.5.7 shows the performances of the five name matching algorithms on the 1000

last name datasets. Compared with 2300 last name datasets, their performances are

exactly the same except that in high error rate dataset, the Levenshtein algorithm

performs better than the Jaro algorithm. Table 5.9 shows the relative orders among

the five algorithms regarding the maximum F scores achieved in the three different

error rate datasets respectively.

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein=Jaro=Q-Gram=Jaro-Winkler>Smith-Waterman

Medium Jaro> Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman

High Jaro-Winkler> Levenshtein>Jaro> Q-Gram>Smith-Waterman

Table 5.9 Algorithms’ order for 1000 last name dataset

0

0.2

0.4

0.6

0.8

1
Low

Medium

High

169

Fig.5.7 Effectiveness results for 1000 last name dataset

Fig.5.8 shows the performances of the five name matching algorithms on the 500

last name datasets. When error rate of a dataset is low, both the Levenshtein and the

Jaro-Winkler algorithms are equally the best among the five algorithms, followed by

the Jaro and the Q-Gram algorithms which perform equally the same. When the

error rate is changing to medium, the Jaro-Winkler algorithm becomes the best

followed by the Levenshtein algorithm. However, in high error rate dataset, the Jaro

algorithm becomes the best among the five algorithms. The following table (table

5.10) shows the relative orders among the five algorithms regarding their maximum

F-scores in the three different error rate datasets respectively.

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein=Jaro-Winkler >Jaro=Q-Gram >Smith-Waterman

Medium Jaro-Winkler> Levenshtein> Jaro> Q-Gram>Smith-Waterman

High Jaro> Jaro-Winkler> Levenshtein> Q-Gram>Smith-Waterman

Table 5.10 Algorithms’ order for 500 last name dataset

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Low

Medium

High

170

Fig.5.8 Effectiveness results for 500 last name dataset

Fig.5.9 shows the performances of the five name matching algorithms on the 200

last name datasets. It is clear to see in Fig.5.9 that apart from the Levenshtein

algorithm, the lower the error rate, the higher the maximum F-scores can be

achieved for the other four name matching algorithms. The maximum F-score for

the Levenshtein algorithm in the low error rate dataset is the highest followed by its

maximum F-score in the high error rate dataset rather than its maximum F-score in

the medium error rate dataset. When error rate is low, the performances of

Levenshtein, Jaro, Jaro-Winkler and Q-Gram algorithms are all equally the same.

The Smith-Waterman‟s performance is the worst among the five algorithms. When

the error rate is changing to medium or high, the Levenshtein algorithm becomes the

best among the five algorithms. The following table (table 5.11) shows the relative

orders among the five algorithms regarding their maximum F-scores in the three

different error rate datasets respectively.

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein=Jaro-Winkler =Jaro=Q-Gram >Smith-Waterman

Medium Levenshtein> Q-Gram> Jaro> Jaro-Winkler>Smith-Waterman

High Levenshtein> Q-Gram>Jaro> Jaro-Winkler> Smith-Waterman

Table 5.11 Algorithms’ order for 200 last name dataset

0

0.2

0.4

0.6

0.8

1
Low

Medium

High

171

Fig.5.9 Effectiveness results for 200 last name dataset

Based on these experimental results regarding the effectiveness of the five name

matching algorithms on different last name datasets, it can be concluded that

generally these algorithms perform better in lower error rate datasets. In all last

name datasets with low error rate, the Levenshtein algorithm remains one of the best

effective algorithms among the five ones. In those medium or high error rate

datasets, except for those datasets with 200 records, the Jaro or Jaro-Winkler

algorithm remains the best choices. The Smith-Waterman algorithm however

performs the worst among the five algorithms. Regarding the selection of a

threshold value for each algorithm, values of thresholds of each algorithm obtaining

the maximum F-scores in different last name datasets are shown in Appendix A

(Table A.2). As shown in table A.2, generally, the higher the error rate of the dataset,

the lower the threshold value should be chosen for an algorithm. For example, the

three threshold values selected for the Levenshtein algorithm are 0.99, 0.85, 0.8 for

low, medium, and high error rate dataset respectively when the size of a dataset is

over 500 records. These experimental results achieved will be further analyzed later

in section 5.5.

(2) Timing performance results

In general, the Jaro-Winkler algorithm requires the least running time among the

five algorithms while the Smith-Waterman algorithm costs the most time. The time

0

0.2

0.4

0.6

0.8

1
Low

Medium

High

172

requried by Jaro algorithm is slightly more than the time required by Jaro-Winkler

algorithm. Regarding the timing performance, the Jaro algorithm and Jaro-Winkler

algorithm are much better than the other three algorithms. The experimental results

agree with that, the smaller size of a dataset, the lesser running time of an algorithm

is required. According to the experimental results, the effect of error rate of a dataset

on the timing performance for each algorithm is not significant. In Appendix A,

table A.3 shows the average timing cost required by the five algorithms on the

different sizes of datasets (9454, 7154, 5000, and 3600). The corresponding figures

are shown in Fig.5.10, Fig.5.11, Fig.5.12, and Fig.5.13. For all graphs, the horizontal

axis of the graph represents the algorithms involved. The vertical axis of the graph

represents the timing cost in milliseconds. From these experimental results, it can be

seen that for all datasets involved, the same order (i.e. Jaro-Winkler < Jaro <

Levenshtein < Q-Gram < Smith-Waterman) from the least timing cost to the highest

timing cost among the five algorithms is observed. Individually, in Fig.5.10, the

higher the error rate of a dataset, the higher the timing cost is associated with an

algorithm. This phenomenon is only observed for the Levenshtein and Q-Gram

algorithms in Fig.5.11.

Fig.5.10 Timing performance in 9454 last name dataset

0

50

100

150

200

250
Low

Medium

High

173

As shown in Fig.5.11, the least timing cost for the Jaro algorithm and Jaro-Winkler

algorithm are observed for the medium error rate 7154 datasets, followed by the low

error rate datasets. For the Smith-Waterman algorithm, the least timing cost is

observed in the medium error rate 7154 dataset, followed by the high error rate

dataset.

Fig.5.11 Timing performance in 7154 last name dataset

In Fig.5.12, except for the Levenshtein algorithm, the higher the error rate of a

dataset, the higher the timing cost is required by the other four algorithms. The

Levenshtein algorithm requires its most timing cost in medium error rate dataset.

Fig.5.12 Timing performance in 5000 last name dataset

0
20
40
60
80

100
120
140
160

Low

Medium

High

0
10
20
30
40
50
60
70
80

Low

Medium

High

174

In Fig.5.13, except for the Smith-Waterman algorithm, the higher the error rate of a

dataset, the higher the timing cost is required for the other four algorithms. The

Smith-Waterman requires its most timing cost in medium error rate dataset

Fig.5.13 Timing performance in 3600 last name dataset

5.4.3.2 Experimental results for 2300 First name/ Last name strings

(1) Effectiveness performance results

The values of the maximum F-scores achieved by the five algorithms on different

first name datasets with TFP, TLP, and TR typos are shown in Appendix A (Table

A.4). The related graphs are generated and presented in Fig. 5.14~Fig.5.16. For all

graphs, the horizontal axis of the graph represents the algorithms involved. The

vertical axis of the graph represents the values of the maximum F-scores achieved

by different algorithms.

In detail: Fig.5.14 shows the performances of the five name matching algorithms in

the 2300 first name datasets with TFP typos under the three different error rates. It is

clear to see in Fig.5.14 that in low error rate dataset, all algorithms performs better

than the medium and high error rate datasets. The relative orders among the five

algorithms regarding their maximum F-scores in the three different error rate

0
10
20
30
40
50

Low

Medium

High

175

datasets are given in table 5.12. From table 5.12, it can be seen that the Levenshtein

algorithm performs the best among the five algorithms in the datasets with TFP

typos followed by Jaro algorithm. The Smith-Waterman algorithm is the worst

among the five algorithms.

Fig.5.14 Effectiveness results for 2300 first name datasets with TFP typo

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein>Jaro>Q-Gram >Jaro-Winkler>Smith-Waterman

Medium Levenshtein>Jaro>Jaro-Winkler>Q-Gram>Smith-Waterman

High Levenshtein>Jaro>Jaro-Winkler>Q-Gram>Smith-Waterman

Table 5.12 Algorithm’s order for 2300 first name datasets with TFP typo

Fig.5.15 shows the performances of the five name matching algorithms in the 2300

first name datasets with TLP typos under the three different error rates. Their relative

orders among the five algorithms regarding their maximum F-scores in the three

different error rate datasets are given in table 5.13. It can be seen that unlike the first

name datasets with TFP typos, the Levenshtein algorithm‟s performance is not the

best among the five algorithms. The Jaro and Jaro-Winkler algorithms are the best

choices in the three different error rate datasets.

0
0.2
0.4
0.6
0.8

1
Low

Medium

High

176

Fig.5.15 Effectiveness results for 2300 first name datasets with TLP typo

Error rate Relative effectiveness order among the five algorithms

Low Jaro-Winkler> Jaro> Levenshtein> Q-Gram >Smith-Waterman

Medium Jaro>Jaro-Winkler>Levenshtein>Q-Gram>Smith-Waterman

High Jaro-Winkler>Levenshtein>Q-Gram>Jaro>Smith-Waterman

Table 5.13 Algorithm’s order for 2300 first name datasets with TLP typo

Fig.5.16 the performances of the five name matching algorithms in the 2300 first

name datasets with TR typos under the three different error rates. In low error rate

dataset, the Levenshtein algorithm performs the best among the five algorithms. In

medium and high error rate datasets, the Jaro-Winkler and Jaro algorithms are the

best choices respectively. Table 5.14 shows their relative orders regarding their

maximum F-scores in the three different error rate datasets.

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein>Jaro=Q-Gram >Jaro-Winkler>Smith-Waterman

Medium Jaro-Winkler> Jaro>Levenshtein>Q-Gram>Smith-Waterman

High Jaro>Jaro-Winkler>Levenshtein>Q-Gram> Smith-Waterman

Table 5.14 Algorithm’s order for 2300 first name datasets with TR typo

0

0.2

0.4

0.6

0.8

1
Low

Medium

High

177

Fig.5.16 Accuracy results for 2300 first name datasets with TR typo

For the purpose of comparing with the 2300 last name datasets, these algorithms

have been applied on 2300 last name datasets with the three different types of typos.

The experimental results are achieved in Appendix A (Table A.5). Fig.5.17~Fig.5.19

are presenting the corresponding graphs. For all graphs, the horizontal axis of the

graph represents the algorithms involved. The vertical axis of the graph represents

the value of the maximum F-scores achieved by the five algorithms.

In detail: Fig.5.17 shows the performance of the five name matching algorithms in

the 2300 last name datasets with TFP typos under three different error rates. All

algorithms perform the best in low error rate datasets. Table 5.15 shows their relative

orders regarding their maximum F-scores in the three different error rate datasets.

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein>Jaro=Q-Gram >Jaro-Winkler>Smith-Waterman

Medium Jaro> Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman

High Levenshtein>Jaro-Winkler Jaro> Q-Gram> Smith-Waterman

Table 5.15 Algorithm’s order for 2300 last name datasets with TFP typo

0
0.2
0.4
0.6
0.8

1
Low

Medium

High

178

Compared with the experimental results for the matching 2300 first name datasets,

in the medium error rate dataset, the Jaro algorithm is the best choice rather than the

Levenshtein algorithm.

Fig.5.17 Accuracy results for 2300 last name datasets with TFP typo

Fig.5.18 shows the performances of the five name matching algorithms in the 2300

last name datasets with TLP typos. Compared with the matching 2300 first name

datasets with TLP typos, performances of these algorithms are exactly the same in

the medium and high error rate datasets (see table 5.16).

Error rate Relative effectiveness order among the five algorithms

Low Jaro-Winkler>Levenshtein>Jaro=Q-Gram >Smith-Waterman

Medium Jaro>Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman

High Jaro-Winkler>Levenshtein>Jaro>Q-Gram>Smith-Waterman

Table 5.16 Algorithm’s order for 2300 last name datasets with TLP typo

0

0.2

0.4

0.6

0.8

1

Low

Medium

High

179

Fig.5.18 Accuracy results for 2300 last name datasets with TLP typo

Fig.5.19 shows the performance of the five name matching algorithms in the 2300

last name datasets with TR typos. According to their relative orders regarding their

maximum F-scores in the three different error rate datasets (table 5.17), the best

choices among the five algorithms compared with the matching 2300 first name

datasets are totally different. For example, in medium error rate dataset, the Jaro

algorithm is observed to perform the best while in first name datasets, the

Jaro-Winkler algorithm is the best choice.

Error rate Relative effectiveness order among the five algorithms

Low Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

Medium Jaro>Levenshtein>Jaro-Winkler>Q-Gram>Smith-Waterman

High Jaro-Winkler>Jaro>Levenshtein>Q-Gram>Smith-Waterman

Table 5.17 Algorithm’s order for 2300 last name datasets with TR typo

0

0.2

0.4

0.6

0.8

1
Low

Medium

High

180

Fig.5.19 Accuracy results for 2300 last name datasets with TR typo

Table 5.18~Table 5.20 show the different threshold values selected for each

algorithm to obtain the maximum F-scores in the different 2300 first/last name

datasets with TFP, TLP, and TR typos respectively.

String Type Algorithm Low Medium High Data Size Error Typo

First name Levenshtein 0.9 0.8 0.8 2300 TFP

First name Jaro 0.95 0.95 0.9 2300 TFP

First name Jaro-Winkler 0.99 0.95 0.95 2300 TFP

First name Q-Gram 0.99 0.99 0.75 2300 TFP

First name Smith-Waterman 0.99 0.99 0.99 2300 TFP

Last name Levenshtein 0.9 0.85 0.8 2300 TFP

Last name Jaro 0.99 0.95 0.95 2300 TFP

Last name Jaro-Winkler 0.99 0.95 0.95 2300 TFP

Last name Q-Gram 0.99 0.99 0.8 2300 TFP

Last name Smith-Waterman 0.99 0.99 0.99 2300 TFP

Table 5.18 Threshold value selection for first/last name dataset with TFP typos

0

0.2

0.4

0.6

0.8

1
Low

Medium

High

181

String Type Algorithm Low Medium High Data Size Error Typo

First name Levenshtein 0.9 0.8 0.8 2300 TLP

First name Jaro 0.95 0.95 0.9 2300 TLP

First name Jaro-Winkler 0.99 0.95 0.95 2300 TLP

First name Q-Gram 0.99 0.85 0.8 2300 TLP

First name Smith-Waterman 0.99 0.99 0.99 2300 TLP

Last name Levenshtein 0.9 0.85 0.8 2300 TLP

Last name Jaro 0.99 0.95 0.95 2300 TLP

Last name Jaro-Winkler 0.99 0.95 0.95 2300 TLP

Last name Q-Gram 0.99 0.99 0.8 2300 TLP

Last name Smith-Waterman 0.99 0.99 0.99 2300 TLP

Table 5.19 Threshold value selection for first/last name dataset with TLP typos

String Type Algorithm Low Medium High Data Size Error Typo

First name Levenshtein 0.9 0.8 0.8 2300 TR

First name Jaro 0.99 0.9 0.9 2300 TR

First name Jaro-Winkler 0.99 0.95 0.95 2300 TR

First name Q-Gram 0.99 0.99 0.75 2300 TR

First name Smith-Waterman 0.9 0.85 0.85 2300 TR

Last name Levenshtein 0.99 0.85 0.8 2300 TR

Last name Jaro 0.99 0.95 0.9 2300 TR

Last name Jaro-Winkler 0.99 0.95 0.95 2300 TR

Last name Q-Gram 0.99 0.99 0.75 2300 TR

Last name Smith-Waterman 0.9 0.9 0.9 2300 TR

Table 5.20 Threshold value selection for first/last name dataset with TR typos

It can be deduced from the experimental data obtained in table 5.18~table 5.20 that

characteristics such as the types of string, types of typos, error rate may influence

the selection of a proper threshold value for the selected algorithm to achieve the

best effectiveness performance. They will be further evaluated in section 5.5 in

detail .

(2) Timing performance results

The timing performance of the five algorithms in these first name datasets are

exactly the same as they performed in those last name datasets, i.e., the Jaro-Winkler

182

costs least running time among the five algorithms while the Smith-Waterman costs

the most running time. The running time required by Jaro algorithm is slightly more

than Jaro-Winkler algorithm. Both algorithms perform better than the other three

algorithms. Experimental results show that the effect of error rate of a dataset is not

significant on the timing performance.

5.5 Evaluation

5.5.1 Last name experimental results evaluation

The test results for last name datasets will be evaluated and analyzed based on the

effectiveness and timing performance of the five selected techniques.

Similar experiments have been done on last name datasets with records ranging from

200 to 9454 respectively, and the results show that in general, the size of a dataset is

not sensitive to the effectiveness relative to the threshold values when it is above

1000 records, except for Smith-Waterman.

When the size of a dataset is smaller than 1000 records, the best F-score is relative to

the value of thresholds on different datasets with different error rates. The

corresponding experimental results are given in table A.2 in Appendix A.

Particularly, figures in appendix A (Fig.A.1~Fig.A.5) represent the results of the

effectiveness relative to the values of threshold on the size of 3600 last name

datasets with different error rates for the five algorithms. For all graphs, the

horizontal axis is the values of threshold. According to the experimental results, the

following results are achieved:

183

1) Effect of Error Rates on Threshold Values:

As shown in table A.2 from Appendix A, generally for all techniques, the higher the

error rate in the dataset, the lower the threshold value is required in order to achieve

the best effectiveness performance. For example, the Jaro algorithm performs the

best in high error rate dataset at threshold value of 0.9, while it performs the best

over the datasets with medium and low error rate at threshold values of 0.95 and

0.99 respectively when the size of a dataset is above 1000. It is recommended that

for algorithms like Levenshtein, Jaro, Jaro-Winkler and Q-Gram, the higher the error

rate, the lower the threshold value should be selected.

2) Effect of the Sizes of Datasets on Threshold value:

Table A.2 presents the different threshold values selected for each algorithm in the 8

groups of last name datasets. In general the selected threshold value is not sensitive

to the size of a dataset except for the Smith-Waterman algorithm. For example, the

three selected threshold values for the Jaro algorithm in the last name dataset with

1000 records are 0.99, 0.95 and 0.9 for low error rate, medium error rate and high

error rate datasets respectively. These three threshold values remain the same with

increasing the sizes of datasets up to 9454 records. However, for Smith-Waterman

algorithm, it is noticed that the selection of a threshold value is quite sensitive to the

size of a dataset. For example, in high error rate datasets, the threshold value

selected for Smith-Waterman algorithm in dataset with 9454 records is 0.9, while the

value is changed to 0.99 in dataset with of 7154 records and the threshold value

changes back to 0.9 again in the dataset with 5000 records.

3) Effect of Error Rates on Effectiveness Performance:

For all eight groups of last name datasets, experimental results show that in general,

184

all five algorithms perform better in low error rate datasets. For example, Fig. 5.20

shows performance of the five algorithms on datasets with 3600 records under the

three different error rates. It is observed that the performance of the five algorithms

is decreasing along with the increasing error rate. Only one exception is noticed in

the datasets with 200 records where the performance for the Levenshtein algorithm

in a high error rate dataset is higher than that in the medium error rate dataset.

Fig.5.21 shows that in the last name dataset with 200 records, the Levenshtein

algorithm performs the best in low error rate dataset followed by the high error rate

dataset.

Fig.5.20 Maximum F score comparison on last name datasets size 3600

Fig.5.21 Maximum F score comparison on last name datasets size 200

185

Looking at the individual algorithm‟s performance, it was observed that the Jaro and

Jaro-Winkler algorithms do not always perform the best for last name strings as

suggested by Christen [124]. In the 24 last name datasets prepared for the

experiments, only 9 datasets are observed that both the Jaro and Jaro-Winkler

algorithms perform well for last name strings. On the contrary, in most of low error

rate datasets, the Jaro-Winkler algorithm ranked at the fourth position among the

five algorithms. Thus it is recommended that when selecting a suitable algorithm for

the matching of names, the characteristics of a dataset such as the dataset size, data

error rate should be considered.

4) Effect of the Sizes of Datasets on Effectiveness Performance:

By comparing the relative performance among the five algorithms in table A.1, the

effectiveness performance of the algorithms are analyzed in last name datasets under

the three different error rates. The results are listed in the following tables (table

5.21~table 5.23):

Dataset Relative effectiveness order among the five algorithms

9454 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

7154 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

5000 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

3600 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

2300 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

1000 Levenshtein=Jaro=Q-Gram>Jaro-Winkler>Smith-Waterman

500 Levenshtein=Jaro-Winkler>Jaro=Q-Gram>Smith-Waterman

200 Levenshtein=Jaro-Winkler=Jaro=Q-Gram>Smith-Waterman

Table 5.21 Algorithms’ order for low error rate last name datasets

186

Dataset Relative effectiveness order among the five algorithms

9454 Jaro >Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman

7154 Jaro-Winkler> Jaro > Levenshtein>Q-Gram>Smith-Waterman

5000 Jaro-Winkler> Jaro > Levenshtein>Q-Gram>Smith-Waterman

3600 Jaro >Jaro-Winkler> Levenshtein>Q-Gram>Smith-Waterman

2300 Jaro > Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman

1000 Jaro > Levenshtein>Jaro-Winkler> Q-Gram>Smith-Waterman

500 Jaro-Winkler> Levenshtein> Jaro > Q-Gram>Smith-Waterman

200 Levenshtein> Q-Gram> Jaro > Jaro-Winkler> Smith-Waterman

Table 5.22 Algorithms’ order for medium error rate last name datasets

Dataset Relative effectiveness order among the five algorithms

9454 Jaro-Winkler> Levenshtein> Jaro > Q-Gram>Smith-Waterman

7154 Jaro-Winkler> Jaro > Levenshtein> Q-Gram>Smith-Waterman

5000 Jaro-Winkler> Jaro > Levenshtein> Q-Gram>Smith-Waterman

3600 Jaro > Jaro-Winkler> Levenshtein> Q-Gram>Smith-Waterman

2300 Jaro-Winkler> Jaro > Levenshtein> Q-Gram>Smith-Waterman

1000 Jaro-Winkler> Levenshtein> Jaro > Q-Gram>Smith-Waterman

500 Jaro > Jaro-Winkler> Levenshtein> Q-Gram>Smith-Waterman

200 Levenshtein> Q-Gram> Jaro > Jaro-Winkler> Smith-Waterman

Table 5.23 Algorithms’ order for high error rate last name datasets

Table 5.22 shows that in the low error rate dataset, the algorithm with the best

performance among the five algorithms are not quite as sensitive to the size of a

dataset. For low error rate datasets with records over 1000, Levenshtein, Jaro, and

Q-Gram perform equally well. However, in medium error rate datasets, the best

choice varies between Jaro algorithm and Jaro-Winkler until the size of the dataset

187

becomes 200. This is also observed in high error rate datasets as presented in table

5.23.

5.5.2 2300 first/last name experimental result evaluation

In section 5.4.3.2, experimental results on a group of 2300 first name datasets as

well as a group of 2300 last name datasets are presented. In this section, these

experimental results will be evaluated and analyzed based on six aspects, which will

be detailed below:

1) The Effect of Error Rates on Threshold Values:

Experimental results for 2300 first name datasets show that in general, the higher the

error rate of the dataset, the lower the threshold value should be selected expect for

the Smith-Waterman algorithm. For example, in high error rate first name dataset

with TLP typos, the Q-Gram algorithm achieves the best F-score with the selected

threshold value of 0.8, while it achieves the best F-score with the selected threshold

values of 0.85 and 0.99 in medium error rate dataset and low error rate dataset

respectively. Table 5.18~Table 5.20 shows the results of the selected threshold

values for all five algorithms achieving the maximum F-scores in the different 2300

first name datasets with TFP, TLP, and TR typos respectively. According to these

tables, it is clear to see that for all first name datasets containing TFP and TLP typos,

the threshold values selected for the Smith-Waterman algorithm remains the same

under the three different error rates.

2) The Effect of Error Rates on Effectiveness Performance:

Experimental results from appendix A.4 show that in general, all five algorithms

perform best in low error rate first name datasets (see table A.4). Looking at the

performance of individual algorithm, it is observed that in all 2300 first name

188

datasets with TFP typos, the Levenshtein algorithm appears to be the best effective

algorithm among the five algorithms no matter what error rate is associated in the

dataset (see Fig.5.22). For other first name datasets with TLP typos and TR typos,

the best effective algorithm is sensitive to the error rate of the dataset. Generally,

either the Jaro or Jaro-Winkler algorithm should be selected in order to achieve the

best matching quality according to the different error rate.

Fig.5.22 Performance comparisons on 2300 first name datasets with TFP typo

3) The Effect of Types of Typos on Threshold Values

With respect to the first name datasets, the Levenshtein and Jaro-Winkler algorithms

are both not sensitive to the types of typos regarding the selection of the threshold

values according to the experimental results. The other three algorithms require the

changing of the threshold values in order to achieve the best F-scores in these first

name datasets with different types of typos. With respect to the last name datasets, it

is noticed that only the Jaro-Winkler algorithm is not sensitive to the types of typos

regarding the selection of the threshold values. The three threshold values selected

for the low error rate, medium error rate, and high error rate last name datasets are

0.99, 0.95, and 0.95 respectively no matter what types of typos are involved in the

datasets.

0

0.2

0.4

0.6

0.8

1

low medium high

Levenshtein

Jaro

Jaro-Winkler

Q-gram

Smith-Waterman

189

4) The Effect of Types of Strings on Threshold values

For datasets containing the same type of typos, the experimental results are

evaluated on the first name strings and last name strings respectively. It is

discovered that for some algorithms, when different type of strings are involved, the

proper threshold value for different algorithm may be varied. For example, in the

datasets containing only TFP typos, the threshold value selected for Jaro algorithm

in low error rate first name dataset is 0.95 and it is required to be increased to 0.99 in

order to achieve the best effectiveness performance. Only the Jaro-Winkler and

Smith-Waterman algorithms are not sensitive to the different types of strings

involved in the datasets containing only TFP typos.

5) The Effect of Types of Strings on Effectiveness Performance

According to the experimental results presented in appendix A.4 and A.5, in general,

algorithms perform better on first name strings than last name strings. It is estimated

that the reason might be due to the length of the string varies between the two types

of strings. Fig.5.23 shows the relative performance between first name strings and

last name strings under the three different error rates. The types of typos contained

in these datasets are all TFP typos. It is noticed that the types of strings will

influence the performance. For example, in medium error rate datasets, the

Levenshtein algorithm performs the best on first name strings while the Jaro

algorithm is the best on last name strings. It is estimated that the different

performance is due to the different length of the selected strings, though further

experiments regarding the different length of the name strings have not been

undertaken.

190

Fig.5.23 Performance comparisons between first name datasets and last name datasets

with TFP typos under three different error rates

5.6 Summary

Based on the evaluation results discussed in section 5.5, the following

recommendations are made:

(1) Regarding the threshold value selection, the error rate of a dataset, the types of

strings involved and the types of typos in the string will all influence the selection of

a suitable threshold value for the selected algorithm in order to achieve the best

effectiveness performance. However, the selected threshold values are not sensitive

to the changes of the size of a dataset. It is recommended that the higher the error

rate, the lower the threshold value should be chosen. With the help of the

experimental results achieved in this chapter, table A.6 in appendix A.11 presents a

list of suggestions regarding the selection of a suitable algorithm as well as the

selection of the required threshold values considering the different characteristics of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

low medium high

LE_First name

LE_Last name

J_First name

J_Last name

JW_First name

JW_Last name

Q_First name

Q_Last name

SW_First name

SW_Last name

191

a dataset.

(2) Regarding the effectiveness performance of a selected algorithm, the error rate,

the types of strings will all influence the effectiveness performance of the selected

algorithm. In general, the algorithms perform better in lower error rate datasets.

Between the first name datasets and last name datasets, an algorithm performs better

in first name datasets.

(3) For names parsed into separate fields, the Jaro and Jaro-Winkler algorithms are

not always among the best choices for matching the first name strings or last name

strings. The best choice regarding the effectiveness of name matching algorithms

involves concerning the error rate, size, and types of strings associated with a

dataset.

(4) If speed is important, algorithms such as Jaro, Jaro-Winkler should be selected.

The Smith-Waterman algorithm should not be selected for the purposed of matching

name strings parsed into separate fields.

5.7 Conclusion

This chapter has analyzed and evaluated five popular character-based name

matching techniques. A comprehensive comparison of the five techniques has been

done based on a series of experiments on different last name and first name datasets.

The experimental results confirmed the statement that there is no clear best

technique. The size of dataset, the error rate in a dataset, the types of strings in a

dataset and the types of typos in a string will all affect on the performance of a

selected algorithm.

Regarding the threshold value selection, according to the experimental results, the

192

higher the error rate in the dataset, the lower the threshold value required in order to

achieve the best performance. Timing performance based on the five algorithms on

different datasets has also been analyzed and compared. Overall, Jaro-Winkler and

Jaro are significantly faster than others.

With the help of the achieved experimental results in this chapter, recommendations

on the selection of a suitable algorithm for a particular name matching task are

proposed in section 5.6. Compared with the existing recommendations addressed in

the previous research, ours provide a group of much more detailed recommendations

with the corresponding parameters supplied for the recommended algorithms for

practical use.

In detail, four recommendations proposed by Christen are further evaluated in this

chapter. Christen claimed that the type of string should be considered for a selection

of a suitable algorithm without giving any further suggestions based on the

algorithms used in his work. In this chapter, two types of strings (last name strings

and first name strings) are used for the evaluation respectively and proposed a

detailed selection of algorithms according to the different characteristics associated

within a dataset (see table A.6). According to Christen, it is claimed that the Jaro and

Jaro-Winkler algorithms seem to perform well for both first name strings and last

name strings and are recommended to be selected during the matching task of the

personal name strings. However, this recommendation does not always hold

according to the experimental results in this chapter. For example, in high error rate

last name dataset with 200 records, the Levenshtein algorithm is among the most

accurate measures followed by the Q-Gram algorithms. In this case, Jaro and

Jaro-Winkler however are not suitable for the matching task.

Regarding the threshold value selection problem for an algorithm, Christen

highlighted the difficulty in setting an optimal threshold value and claimed that an

193

optimal threshold value vary between different datasets without giving any further

evaluation regarding the threshold value selection problem. In the proposed

experiments, a thorough evaluation regarding the selection of a suitable threshold

value for different algorithms is made and detailed threshold values are presented

with different characteristics of data concerned. Based on these data values, a similar

regular pattern is observed compared with that of Hassanzadeh et al, i.e., a lower

value of the threshold is needed as the error rate in the dataset increases.

All algorithms selected in this chapter are character-level algorithms rather than the

token-level algorithms used by Hassanzadeh et al [128]. Hassanzadeh et al focus the

evaluations regarding the effectiveness of the different token-level algorithms

mainly on two characteristics: the error rate of a dataset and the type of errors.

Compared with Hassanzadeh et al, the proposed evaluations in this chapter

addressed more characteristics: the error rate of a datasets, the type of string, the size

of dataset, the type of typo. All these characteristics are used during the evaluation

of the relative effectiveness of the five algorithms as well as the selection of a

threshold value. However, in the proposed experiments, only one error type is

considered (misspelling) and while Hassanzadeh et al involve three types of errors

(misspelling, abbreviation and word swap).

194

CHAPTER 6 CONCLUSION AND FUTURE WORK

The main outcomes of the research undertaken for this thesis are the development of

a rule-based taxonomy of dirty data, a novel data cleaning framework, and the

evaluation work towards the performance of five popular approximate string

matching algorithms. This chapter discusses two aspects of the work that merit

further examination and discussion. Firstly, the conclusions and contributions are

discussed and summarized. Secondly, the future directions of the research are

discussed.

6.1 Novelties and contributions

 A rule-based taxonomy of dirty data

Today, data has become more and more important, with many human activities

relying on it. As data have kept increasing at an explosive rate, a great number of

database applications have been developed in order to derive useful information

from these large quantities of data, such as decision support systems and customer

relationship management systems (CRM). It has now been recognized that an

inordinate proportion of data in most data sources is dirty.

Due to the „garbage in, garbage out‟ principle, dirty data will distort information

obtained from it. Obviously, a database application such as a data warehouse with a

high proportion of dirty data is not reliable for the purpose of data mining or

deriving business intelligence and the quality of decisions made on the basis of such

business intelligence is also not convincing. Therefore, before using these database

applications, dirty data needs to be cleaned. Due to the lack of appreciation of the

types and extent of dirty data in many enterprises, inadequate attention is paid to the

195

existence of dirty data in many database applications. Besides, methodologies are

not applied to ensure high quality data in these applications.

In this thesis, research work regarding the studies of dirty data types is reviewed

firstly. 38 dirty data types are proposed with the help of the studies of different data

quality rules. Comparing with the dirty data types mentioned by the previous

researchers, the proposed 38 dirty data types is the most complete collection of dirty

data types. Although it is not ensured that all possible dirty data types that may exist

are covered within the collection of these 38 dirty data types, it is believed that most

usual or unusual dirty data types are included. Secondly, a rule-based taxonomy of

dirty data is proposed based on these 38 dirty data types. The rule-based taxonomy

of dirty data is introduced by associating the proposed 38 dirty data types under

different data quality rules, which forms an even larger collection of dirty data

compared with any of the existing taxonomies or classifications. With the help of the

taxonomy, a method to deal with the DDS problem is developed by prioritizing the

expensive process of data cleaning. By using the proposed rule based taxonomy

during the data cleaning process, the business enterprises are maximally benefited.

 A novel data cleaning framework

In this thesis, a novel data cleaning framework has been proposed, which aims to

challenge the following issues: (i) minimising the data cleaning time and improving

the degree of automation in data cleaning, (ii) improving the effectiveness of data

cleaning. Additionally, the proposed framework offers a function (The DDS process)

to address some special cases when individual business requirements are involved.

This function can help a business to take into account the special needs according to

different businesses priority policies.

The proposed framework retains the most appealing characteristics of existing data

196

cleaning approaches, and improves the efficiency and effectiveness during a data

cleaning process. Compared with existing data cleaning approaches, the proposed

framework provides several exclusive features which have not been addressed in

existing approaches.

Firstly, the proposed framework tries to address as many dirty data types as possible

according to the proposed taxonomy of dirty data. Existing approaches only focus

on specific data cleaning tasks such as data standardization or duplicate records

elimination. Some tool only focuses on solving one activity such as ARKTOS.

According to the knowledge to the author, none of the existing tools can help with

providing an all-in-one solution to the problems mentioned in the proposed dirty

data taxonomy.

Secondly, the proposed framework addresses the order of various cleaning activities

exclusively and provides an automatic solution to organize the sequence of these

activities, i.e., „algorithm ordering mechanism‟. None of any existing data cleaning

approaches reviewed in chapter 2 has addressed this problem specifically. The order

proposed by the „algorithm ordering mechanism‟ addresses both effectiveness and

efficiency during the data cleaning process.

Finally, the proposed framework supplies a function of „algorithm selection

mechanism‟ which can provide an optimized algorithm regarding the different

factors involved such as problem domain, error rate, computational cost. Compared

with existing approaches such as IntelliClean which offer only a fixed solution to

cope with all situations or some approach that require its users to make a choice out

of multiple algorithms, this is an improvement. For example, Febrl supports a

variety of techniques to deal with duplicate record detection. Choosing a suitable

technique and setting the corresponding parameters for the selected technique all

depend on its user‟s preference. Febrl does not supply any recommendations or

197

guidance during the selection. For users who do not have enough knowledge about

these techniques, this is a hard job. The proposed „algorithm selection mechanism‟

aims to fill this gap by supplying an optimized algorithm to deal with different

problems with various factors involved. In this way, both effectiveness and

automation degree are improved.

 An evaluation of approximate string matching algorithms

Approximate string matching is an important part in many data cleaning approaches

which has been well studied for many years, and a variety of approximate string

matching techniques have been proposed for string data for the purpose of matching

tuples. There is a growing awareness that the high quality of string matching is a key

to a variety of applications, such as data integration, text and web mining,

information retrieval and search engines. In such applications, matching names is

one of the popular tasks. There are a number of name matching techniques available.

Unfortunately, there is no existing name matching technique that performs best in all

situations. Different techniques perform differently in different situations. An

estimate of similarity between strings can vary significantly depending on the

domain and specific field under consideration, traditional similarity measures may

fail to estimate string similarity correctly. In the past decade, this problem has been

challenged by several researchers. However, none of them have undertaken such a

comprehensive analysis and comparison that considers the effect on the performance

of accuracy and timing caused by the following factors: error rates, type of strings,

type of typos, and the size of datasets.

In this thesis, a comprehensive comparison of the five techniques has been carried

out based on a series of experiments on different last name and first name datasets.

The experimental results confirmed the statement that there is no clear best

technique. The size of dataset, the error rate in a dataset, the types of strings in a

198

dataset and the types of typos in a string will all affect the performance of a selected

algorithm.

Regarding the threshold value selection, according to the experimental results, the

higher the error rate in the dataset, the lower the threshold value required in order to

achieve the best performance. Timing performance based on the five algorithms on

different datasets has also been analyzed and compared. Overall, Jaro-Winkler and

Jaro are significantly faster than others.

With the help of the experimental results in chapter 5, recommendations on the

selection of a suitable algorithm for a particular name matching task are proposed.

Compared with the existing recommendations addressed in the previous research,

a group of much more detailed recommendations with the corresponding parameters

supplied for the recommended algorithms for a practical use and provide useful help

in the development of the „algorithm selection mechanism‟ in the proposed data

cleaning framework are provided.

6.2 Future work

Based on the discussions in former sections, two possible extensions of the current

research work are outlined in this section.

The first extension will be focused on the effective database design regarding the

data input, for example, the design of data entry interfaces in database applications.

As mentioned in the beginning of this work, the quality of any large real world

dataset depends on a number of factors, among which the source of data is often the

crucial factors. Dirty data can creep in at every step of the process from initial data

acquisition to archival storage. Based on the studies of the different types of dirty

data, it is discovered that some of them are introduced during the data entry. For

199

example, according to table 3.4, dirty data types such as DT.17~DT.20 and DT.26

might all be introduced during the data entry process.

On many occasions, it is common that data entry needs to be done by humans

manually, who typically extract information from speech or by inputting the data

from written or printed sources. During this process, errors in data can often be

mitigated through judicious design of data entry interfaces. Traditionally, the

specification and maintenance of database integrity constraints are used to prevent

the introduction of the dirty data mentioned above such as data type checks, bounds

on numeric values, and referential integrity. The most common reason for this

behaviour is the enforcement of integrity constraints on the data (rules that ensure

completeness and consistency of data entered into the system). These integrity

constraints were invented precisely to keep data as clean as possible.

However, the limitation remains that integrity constraints do not prevent bad data

and in some cases, constraint enforcement leads to user frustration. For example, the

requirement that a field be non-empty is not sufficient to ensure that a user provides

meaningful contents. Therefore, an alternative approach is to provide the data entry

user with convenient affordances to understand, override and explain constraint

violations, thus discouraging the silent injection of bad data, and encouraging

annotation of surprising or incomplete source data [131]. According to Hellerstein,

several guiding principles for the design of data entry interfaces are proposed [131].

Based on the theoretical analysis, it is shown that a good data entry interfaces will

help with preventing the errors from entering into the database. As stated by the old

aphorism that an ounce of prevention is worth a pound of cure. Therefore, it is

worthwhile extending the research work on the effective database design with

respect to the data input.

The second extension of the future research will be focused on the development of a

200

comprehensive data cleaning tool for database applications based on the framework

proposed in this thesis.

The challenge remains the realization of the two mechanisms (AOM and ASM)

introduced in the proposed data cleaning framework. Regarding the algorithm

ordering mechanism, theoretical analyses are given with ordering the multiple data

cleaning tasks during the data cleaning process. It shows how the order of the

cleaning of multiple identified dirty data will vary according to the different

selection of an algorithm. However, experimental results are not achieved and will

be considered as a part of the future work.

Regarding the algorithm selection mechanism, only five selected approximate string

matching algorithms are involved for the experiments in this thesis. These five

algorithms are the most popular character-level algorithms frequently referenced in

most literature. They can be used for dealing with the matching of personal names

parsed into single fields such as last name or first name. Although recommendations

and a list of figures/numerical values regarding the selection of threshold values for

each of these five algorithms are presented. In order to benefit from using these data

such as the threshold value suggested in the experimental results, it is assumed that

the error rate of a pre-defined dataset should be known. This is a difficult task in

practice as users have no idea about the error rate with respect to the data in advance.

It is expected that a reasonable method will be available in the future to help with

estimating the error rate of a given dataset.

Besides, although relative comparison of accuracy performance among different

token-level algorithms exists in the literature [128], the characteristics of the data

addressed are not as many as in the presented experiments. The future work will

include having these token-level algorithms tested with similar data characteristics

addressed in chapter 5. Apart from the five character-level algorithms, other

201

character-level algorithms mentioned in the Febrl system should also be considered

in the future for further experimental works.

Finally, in this thesis, the dirty data type involved in the experimental work is

„misspelling‟. More dirty data types will be involved in the future work for the

testing of both character-level algorithms and token-level algorithms such as

abbreviation and word swap. The successful outcome of the future work would

certainly improve the development of the algorithm selection mechanism and thus,

enhance the performance of data cleaning system in database applications.

202

REFERENCES

[1] Chu, Y.C., Yang, S.S., & Yang, C.C. (2001). Enhancing data quality through

attribute-based metadata and cost evaluation in data warehouse environments.

Journal of the Chinese Institute of Engineers,24(4), 497-507.

[2] Pierce, E.M. (2003). A Progress Report from the MIT Information Quality

Conference, Retrieved March 1, 2012 from

http://www.tdan.com/view-articles/5143/

[3] Wang, R.Y., Storey, V.C., & Firth, C.P. (1995). A framework for analysis of

data quality research. IEEE Transactions on Knowledge and Data

Engineering, 7(4), 623-640.

[4] Wang, R.Y., & Strong, D.M. (1996). Beyond Accuracy: What Data Quality

Means to Data Consumers. Journal of Management Information Systems,

1(12), 5-34.

[5] English, L. (2000). Plain English on Data Quality. Retrieved March 1, 2012

from

http://www.information-management.com/issues/20000901/2642-1.html.

[6] Kim, W., Choi, B., Hong, E.Y., Kim, S.Y., & Lee, D. (2003). A Taxonomy of

Dirty Data. Data Mining and Knowledge Discovery, 7, 81-99.

[7] Redman, T. (1998). The Impact of Poor Data Quality on the Typical

Enterprise. Communications of the ACM, 41, 79-82.

[8] Orr, K. (1998). Data Quality and Systems Theory. Communications of the

ACM, 41, 66-71.

[9] Lee, M. L., Ling, T.W., & Low, W.L. (2000). IntelliClean: a

knowledge-based intelligent data cleaner. Sixth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Boston, MA, USA

290-294, 20-23.

[10] Fellegi, I.P., & Sunter, A.B. (1969). A Theory for Record Linkage. Journal of

the American Statistical Association,64.

[11] Hipp, J., Güntzer, U., & Grimmer, U. (2001). Data Quality Mining - Making

a Virtue of Necessity. Proceedings of the 6th ACM SIGMOD Workshop on

Research Issues in Data Mining and Knowledge Discovery, Santa Barbara,

California, 52-57.

203

[12] Loshin, D. (2009). Monitoring Data Quality Performance Using Data

Quality Metrics. Retrieved March 1, 2012 from

http://www.it.ojp.gov/documents/Informatica_Whitepaper_Monitoring_DQ_

Using_Metrics.pdf

[13] Hernandez, M, & Stolfo, S. (1998). Real-world Data is Dirty: Data Cleansing

and The merge/purge Problem. Data Mining and Knowledge Discovery, 2,

9-37.

[14] Elmagarmid, A.K., Ipeirotis, P.G., & Verykios, V.S. (2007). Duplicate record

detection: A survey. IEEE Transactions on Knowledge and Data Engineering,

19, 1-16.

[15] Cadot, M., & Martino, J. (2003). A data cleaning solution by Perl scripts for

the KDD Cup 2003 task 2. ACM SIGKDD Explorations Newsletter, 5,

158-159.

[16] Sung, S. Y., Li, Z., & Peng, S. (2002). A fast filtering scheme for large

database cleansing. Proceedings of Eleventh ACM International Conference

on Information and Knowledge Management, 76-83.

[17] Feekin, A., & Chen, Z. (2000). Duplicate detection using k-way sorting

method. Proceedings of ACM Symposium on Applied Computing, Como,

Italy, 323-327.

[18] Galhardas, H. (2001). Data Cleaning: Model, Language and Algorithms.

Ph.D, University of Versailles, Saint-Quentin-En-Yvelines.

[19] Zhao, L., Yuan, S.S., Peng, S., & Wang, L.T. (2002). A new efficient data

cleansing method. Proceedings of 13th International Conference on

Database and Expert Systems Applications, 484-493.

[20] Simoudis, E., Livezey, B., & Kerber, R. (1995). Using Recon for Data

Cleaning. Advances in Knowledge Discovery and Data Mining.

[21] Maletic, J., & Marcus, A. (2000). Data Cleansing: Beynod Integrity Analysis.

Proceedings of The Conference on Information Quality (IQ2000),

Massachusetts Institute of Technology, 200-209.

[22] Maletic, J., Marcus, A., & Lin, K.L. (2001). Ordinal Association Rules for

Error Identification in Data Sets. Proceedings of Tenth International

Conference on Information and Knowledge Management (CIKM 2001).

http://www.it.ojp.gov/documents/Informatica_Whitepaper_Monitoring_DQ_Using_Metrics.pdf
http://www.it.ojp.gov/documents/Informatica_Whitepaper_Monitoring_DQ_Using_Metrics.pdf

204

[23] Fox, C., Levitin, A., & Redman, T. (1994). The Notion of Data and Its

Quality Dimensions. Information Processing and Management, 30, 9-19.

[24] Levitin, A., & Redman, T. (1995). A Model of the Data (Life) Cycles with

Application to Quality," Information and Software Technology, 35, 217-223.

[25] Strong, D.M., Wang, R.Y., & Lee, Y.W. (1997). Data Quality in Context

Communications of the ACM,40(5), 103-110.

[26] Svanks, M.I. (1988). Integrity Analysis: Methods for Automating Data

Quality Assurance. Information and Software Technology,30(10).

[27] Müller, H., & Freytag, J.C. (2003). Problems, Methods, and Challenges in

Comprehensive Data Cleansing. Tech. Rep, HUB-1B-164.

[28] Rahm, E., & Do, H. (2000). Data Cleaning: Problems and Current

Approaches. IEEE Bulletin of the Technical Committee on Data

Engineering,23(4), 3-13.

[29] Kim, W. (2002). On three major holes in Data Warehousing Today. Journal

of Object Technology, 1, 2002.

[30] Oliveira, P., Rodrigues, F.T., Henriques, P., & Galhardas, H. (2005). A

Taxonomy of Data Quality Problems. Second International Workshop on

Data and Information Quality (in conjunction with CAISE'05), Porto,

Portugal.

[31] Luebbers, D., Grimmer, U., & Jarke, M. (2003). Systematic Development of

Data Mining-Based Data Quality Tools. The 29th International Conference

on Very Large Databases, Berlin, Germany.

[32] Peng, T. (2008). A Framework for Data Cleaning in Data Warehouses.

Proceeding of ICEIS 2008, Spain, 473-478.

[33] Hellerstein, J.M., & Raman, V. (2001). Potter's Wheel: An Interactive

Framework for Data Transformation and Cleaning. Proceedings of the 27th

VLDB Conference, Roma, Italy.

[34] Schallehn, E., & Sattler, K.U. (2001). A Data Preparation Framework based

on a Multidatabase Language. International Database Engineering

Applications Symposium (IDEAS), Grenoble, France.

[35] Joachims, T. (1999). Making large-scale svm learning practical: MIT Press.

205

[36] Cohen, W.W., & Richman, J. (2002). Learning to match and cluster large

high-dimensional data sets for data integration. Proceeding of Eighth ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD '02).

[37] McCallum, A., & Wellner, B. (2004). Conditional models of identity

uncertainty with application to noun coreference. The Advances in Neural

Information Processing Systems (NIPS'04).

[38] Domingos, P. (2004). Multi-relational record linkage. KDD-2004 Workshop

Multi-Relational Data Mining.

[39] Pasula, H., Milch, B., Marthi, B., Russell, S., & Shpitser, I. (2002). Identity

uncertainty and citation matching. The Advances in Neural Information

Processing Systems (NIPS'02).

[40] Lim, E., Srivastava, J., Prabhakar, S., & Richardson. (1993). Entity

identification in database integration. Ninth IEEE Int’l Conf. Data Eng.

(ICDE ’93), 294-301.

[41] Galhardas, H., Shasha, D., & Florescu, D. (2001). Declarative data cleaning:

Language, model, and algorithms. 27th Int’l Conf. Very Large Databases

(VLDB ’01).

[42] Guha, S., Koudas, N., Marathe, A., & Srivastava, D. (2004). Merging the

results of approximate match operations, 30th Int’l Conf. Very Large

Databases (VLDB ’04).

[43] Ananthakrishna, R., Chaudhuri, S., & V.Ganti. (2002). Eliminating fuzzy

duplicates in data warehouses. 28th Int’l Conf. Very Large Databases

(VLDB ’02).

[44] Chaudhuri, S., Ganti, V., & Motwani, R. (2005). Robust identification of

fuzzy duplicates. 21st IEEE Int’l Conf. Data Eng. (ICDE ’05).

[45] Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, N., & T. Sellis.

(2001). ARKTOS: towards the modeling, design, control and execution of

ETL Processes. Information Systems,26, 537-561.

[46] Christen, P. (2008). Febrl:an open source data cleaning, deduplication and

record linkage system with a graphical user interface. Proceeding of the 14th

ACM SIGKDD international conference on Knowledge discovery and data

mining.

206

[47] Christen, P. (2009). Development and user experiences of an open source

data cleaning, deduplication and record linkage system, SIGKDD

Explorations Newsletter, 11(1), 2009.

[48] English, L. (1999). Improving Data Warehouse and Business Information

Quality: methods for reducing costs and increasing profits, John Wiley &

Sons, Inc.

[49] Parssian, A., Sarkar, S., & Jacob, V.S. (1999). Assessing Data Quality For

Information Products. Proceeding ICIS '99 Proceedings of the 20th

international conference on Information Systems.

[50] Pipino, L.L., Lee, Y.W., & Wang, R.W. (2002). Data Quality Assessment.

Communications of the ACM,45, 211-218.

[51] Madnick, S.E., Wang, R.Y., Lee, Y.W. & Zhu, H. (2009). Overview and

Framework for Data and Information QUality Research. Journal of Data and

Information Quality (JDIQ), 1(1).

[52] Blake, R. & Mangiameli, P. (2011). The Effects and Interactions of Data

Quality and Problem Complexity on Classification. Journal of Data and

Information Quality, 2(2), 2011.

[53] Tayi, G., & Ballou, D.P. (1998). Examining Data Quality, Communications

of the ACM, 41, 54-57.

[54] Kahn, B.K., Strong, D.M., & Wang, R.W. (2002). Information Quality

Benchmark: Product and service performance. Communications of the ACM,

45, 184-192.

[55] Drucker, P.F. (1985). Playing in the Information-Based „Orchestra‟. The Wall

Street Journal.

[56] Juran, J.M. (1988). Juran on planning for quality. New York: The Free Press.

[57] Juran, J.M. (1999). How to think about Quality. In J.M.Juran & A.B.Godfrey

(Eds) Juran’s quality handbook (pp.2.1-2.18), New York: McGraw-Hill.

[58] Ballou, D.P., & Pazer, H. (1985). Modeling data and process quality in

multi-input, multi-output information systems, Manage. Sci. 31,150-162.

[59] Wang, R., & Firth, C.P. (1996). Data Quality Systems: Evaluation and

Implementation. London: Cambridge Market Intelligence Ltd.

207

[60] Kriebel, C.H. (1979). Evaluating the quality of information systems. In

N.Szysperski and E.Grochla (eds.), Design and Implementation of Computer

Based Information Systems. Germantown, PA: Sijthtoff and Noordhoff.

[61] Wang, R, Strong, D, & Guarascio, L. (1994). An empirical investigation of

data quality dimensions: A data consumer's perspective. MIT TDQM

Research Program E53-320 TDQM-94-01.

[62] Wand, Y., & Wang, R.Y. (1996). Anchoring data quality dimensions in

ontological foundations. Communication of the ACM, 39, 86-95.

[63] Redman, T.C. (1997). Data Quality for the Information Age: Artech House.

[64] Bovee, M., Srivastava, R.P., & Mak, B. (2001). A Conceptual Framework

and Belief-Function Approach to Assessing Overall Information Quality.

Proceedings of the Sixth International Conference on Information Quality,

Boston, MA.

[65] Naumann, F. (2002). Quality-Driven Query Answering for Integrated

Information Systems. Springer-Verlag, Berlinm Heidelberg.

[66] Wang, K.Q., Tong, S.R., Roucoules, L., & Eynard, B. (2008). Analysis of

Data Quality and Information Quality Problems in Digital Manufacturing.

Proceedings of the 2008 IEEE ICMIT.

[67] Jarke, M., Jeusfeld, M., Quix, C., & Vassiliadis, P. (1999). Architecture and

Quality in Data Warehouses: an Extended repository Approach. Information

Systems, 24.

[68] Scannapieco, M., & Catarci, T. (2002). Data Quality under a Computer

Science Perspective. Italian: Archivi & Computer.

[69] Liu, L. (2002). Evolutionary Data Quality. 7th International Conference on

Information Quality (IQ 2002).

[70] Jarke, M., Lenzerini, M., Vassiliou, Y., & Vassiliadis, P. (2001).

Fundamentals of Data Warehouses. 2
nd

 Edition. Springer-Verlag Berlin and

Heidelberg GmbH & Co.K.

[71] Lee, Y.W., Strong, D.M., Kahn, B.K., & Wang, R.Y. (2002). AIMQ: A

Methodology for Information Quality Assessment. Information and

Management,40, 133-46.

[72] Zmud, R. (1978). Concepts, Theories and Techniques: An Empirical

208

Investigation of the Dimensionality of the Concept of Information. Decision

Sciences, 9, 187-195.

[73] Delone, W., & McLean, E. (1992). Information Systems Success: The Quest

for the Dependent Variable. Information Systems Research,3, 60-95.

[74] Goodhue, D.L., (1995). Understanding User Evaluations of Information

Systems Management Science. INFORMS,41(12), 1827-1844.

[75] Jarke, M., & Vassiliou, Y. (1997). Data Warehouse Quality: A Review of the

DWQ Project. Proceedings of the 1997 Conference on Information Quality,

Cambridge, MA, 299-313.

[76] Matsumura, A., & Shouraboura, N. (1996). Competing with Quality

Information. Proceedings of the 1996 Conference on Information Quality,

Cambridge, MA, 72-86.

[77] Gardyn, E. (1997). A Data Quality Handbook for a Data Warehouse.

Proceedings of the 1997 Conference on Information Quality, Cambridge,

MA, 267-290.

[78] Redman, T.C. (1992). Data Quality: Management and Technology. New

York, NY: Bantam Books.

[79] Kovac, R., Lee., Y & Pipino, L (1997). Total Data Quality Management: The

Case of IRI. Proceedings of the 1997 Conference on Information Quality,

Cambridge, MA, 63-79.

[80] Meyen, D & Willshire, M. (1997). A Data Quality Engineering Framework.

Proceedings of the 1997 Conference on Information Quality, Cambridge,

MA, 95-116.

[81] Tsichritzis, D & Lochovsky, F. (1982). Data models: Englewood Cliffs,

NJ:Prentice-Hall.

[82] Melissadata (2012). Why Dirty Data May Cost You $180,000. Retrieved

March 1, 2012 from http://www.melissadata.com/enews/articles/1206/1.htm.

[83] Huang, K., Lee, Y.W. & Wang, R.Y (1999). Quality information and

knowledge,: Prentice Hall.

[84] Missier, P., Lalk, G., Verykios, V., Grillo, F., Lorusso, T., & Angeletti, P.

(2003). Improving Data Quality in Practice: A Case Study in the Italian

Public Administration. Journal of Distributed and Parallel Databases, 13(2).

209

[85] Wang, R.Y., Lee, Y.W. & Ziad, M. (2001). Data Quality. Heidelberg

Springer.

[86] Fisher, C.W., Kingma, B.R. (2001). Criticality of Data Quality as

Exemplified in Two Disasters. Information & Management,39, 109-116.

[87] Eppler, M., & Helfert, M. (2004). A Classification and Analysis of Data

Quality Costs. The Ninth International Conference on Information Quality,

MIT.

[88] C. A. I. Board, (2003). "Columbia Accident Investigation Board report,"

Washington, DC: U.S.

[89] Adelman, L. M. S., & Abai, M. (2005). Data Strategy: Addison-Wesley

Professional.

[90] Cappiello, C., & Francalanci, C. (2002). DL4B Considerations about Costs

Deriving from a Poor Data Quality, Retrieved March 1, 2012 from

http://www.dis.uniroma1.it/~dq/docs/Deliverables/DL4B.pdf.

[91] Eppler, M. (2003). Managing Information Quality. Springer.

[92] Kahn, B., Katz-Haas, R., & Strong, D.M. (2000). How to get an Information

Quality Program Started: The Ingenix Approach. Proceedings of the 2000

Conference on Information Quality, 28-35.

[93] Naumann, F., & Rolker, C. (2000). Assessment Methods for Information

Quality Criteria.

[94] Segev, A & Wang, R (2001). Data Quality Challenges in Enabling eBusiness

Transformation. Proceedings of the Sixth International Conference on

Information Quality, 83-91.

[95] Strong, D.M., Lee, Y.W., & Wang, R.Y (1997). 10 Potholes in the Road to

Information Quality. Computer IEEE, 30, 38-46.

[96] Verykios, V.S., Elfeky, M.G., Elmagarmid, A.K., Cochinwala, M., & Dalal, S.

(2000). On the Accuracy and Completeness of the Record Matching Process.

Proceedings of the 2000 Conference on Information Quality.

[97] Kim, W., & Choi, B (2003). Towards Quantifying Data Quality Costs.

Journal of Object Technology, 2 , 69-76.

http://www.dis.uniroma1.it/~dq/docs/Deliverables/DL4B.pdf

210

[98] Ballou, D., & Pazer, H. (1995). Designing information systems to optimize

the accuracy-timeliness trade off. Information Systems Research, 6, 51-72.

[99] Ballou, D.P., & Tayi, G.K. (1989). Methodology for allocating resources for

data quality enhancement, Communications of the ACM, 32, 320-329.

[100] Ballou, D., Wang, R., Pazer, H., & Tayi, G. (1998). Modeling information

manufacturing systems to determine information product quality.

Management Science, 44, 462-484.

[101] Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2009).

Methodologies for data quality assessment and improvement. ACM

Computing SUrveys (CSUR).

[102] Even, A., & Shankaranarayanan, G. (2009). Dual Assessment of Data

Quality in Customer Databases, Journal of Data and Information Quality,

1(3).

[103] Strong, D.M. (1997). IT process designs for improving information quality

and reducing exception handling: a simulation experiment. Information and

Management, 31, 251-263.

[104] Strong, D.M. (1997). Total Data Quality Management Program, Proceedings

of the Conference on Information Quality, Cambridge, MA, 372.

[105] Brown, S.M. (1997). Preparing Data for the Data Warehouse.," in

Proceedings of the 1997 Conference on Information Quality, Cambridge,

MA, 1997, pp. 291-298.

[106] Schusell, G. (1997). Data quality the top problem, DW for Data Warehousing

Management, Digital Consulting Institute.

[107] Deming, E.W. (1986). Out of the Crisis. Cambridge, Mass: MIT Center for

Advanced Engineering Study.

[108] Ge, M., & Helfert, M. (2008). Data and Information Quality Assessment in

Information Manufacturing Systems. The 11th International Conference on

Business Information Systems (BIS2008), 380-389.

[109] Cappiello, C., & Francalanci, C., & Pernici, B. (2003). Time-Related Factors

of Data Quality in Multichannel Information Systems Journal of

Management Information Systems, 20,71-91.

[110] Cooper, R.B. (1983). Decision production: A step toward a theory of

211

managerial information requirements. Proceeding Fourth Int’l Conf on

Information Systems, Houston, 215-268.

[111] Emery, J.C. (1969). Organizational planning and control systems: Theory

and technology: New York: Macmillan.

[112] Francalanci, C. & Pernici, B. (2004). Data quality assessment from the user‟s

perspective. Proceedings of the 2004 international workshop on Information

quality in information systems.

[113] Lee, Y.W., Pipino, L.L., Funk, J.D., & Wang, R.W. (2009). Journey to Data

Quality, The MIT Press.

[114] Chanana, V., & Koronios, A. (2007). Data Quality through Business Rules,

International Conference on Information & Communication Technology

ICICT 2007, 262-265.

[115] Morgan, T. (2002). Business Rules and Information Systems: Aligning IT

with Business Goals. Addison-Wesley Longman Publishing Co., Inc. Boston,

MA, USA.

[116] Halle, B.V. & Ross, R.G. (2001). Business Rule Applied: Building Better

Systems Using Business Rules Approach, John Wiley & Sons, Inc. New

York, NY, USA.

[117] Kim, W., & Seo, J. (1991). On classifying schematic and data heterogenety

in multidatabase systems. IEEE Computer,24(12), 12-18.

[118] Hermansen, J. (1985). Automatic Name Searching in Large Databases of

International Names, Georgetown University Dissertation, Washington, DC.

[119] Smith, T.F., & Waterman, M.S. (1981). Identification of Common Molecular

Subsequences, J. Mol. Biol, 147, 195-197.

[120] Jaro, M. (1989). Advances in Record-Linkage Methodology as Applied to

Matching the 1985 Census of Tampa,Florida. Journal of the American

Statistical Associations, 89, 414-420.

[121] Navarro, G. (2001). A guided tour to approximate string matching, ACM

Computing Surveys, 33, 31-88.

[122] Ukkonen, E. (1992). Approximate string matching with q-grams and

maximal matches. Theoretical Computer Science,92, 191-211.

212

[123] Winkler, W. (1990). String Comparator Metrics and Enhanced Decision

Rules in the Fellegi-Sunter Model of Record Linkage. Proceedings of the

Section on Survey Research Methods, 354-359.

[124] Christen, P. (2006). A Comparison of Personal Name Matching: Techniques

and Practical Issues," in Proceedings of the Sixth IEEE International

Conference on Data Mining - Workshops (ICDMW '06), Washington, DC,

USA, 2006, pp. 290-294.

[125] Li, L., Peng, T., & Kennedy, J. (2011). A Rule Based Taxonomy of Dirty

Data, GSTF International Journal on Computing, 1.

[126] Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., & Fienberg, S. (2003)

Adaptive Name Matching in Information Integration. IEEE Intelligent

Systems,18, 16-23.

[127] Cohen, W., & Fienberg, S. (2003) A comparison of string distance metrics for

name-matching tasks. Proceedings of the IJCAI-2003 Workshop on

Information Integration on the Web, 73-78.

[128] Hassanzadeh, O., Sadoghi, M., & Miller, R. (2007). Accuracy of

Approximate String Joins Using Grams. Proceedings of QDB'2007, 11-18.

[129] Patman, F., & Thompson, P. (2003). Names: A New Frontier in text mining,

ISI-2003, Springer LNC 2665, 27-38.

[130] Rijsbergen, C. (1979) Information Retrieval, 2
nd

 ed., London Butterworths.

[131] Hellerstein, J. M. (2008). Quantitative data cleaning for large databases.

Report for United Nations Economic Commission for Europe: EECS

Computer Science Division.

213

APPENDIX A

A.1: Data of the maximum F score for different techniques on the

different last name datasets

Algorithm F score

(Low ER)

F score

(Medium ER)

F score

(High ER)

Dataset

Levenshtein 0.8872 0.7209 0.6808 9454

Jaro 0.8872 0.7401 0.6773 9454

Jaro-Winkler 0.8848 0.7275 0.7053 9454

Q-gram 0.8872 0.6622 0.5813 9454

Smith-Waterman 0.2164 0.2095 0.2032 9454

Levenshtein 0.8813 0.7293 0.679 7154

Jaro 0.8813 0.7541 0.7242 7154

Jaro-Winkler 0.8806 0.7666 0.7375 7154

Q-gram 0.8813 0.6735 0.6322 7154

Smith-Waterman 0.3166 0.3078 0.2999 7154

Levenshtein 0.8868 0.7258 0.6836 5000

Jaro 0.8868 0.7461 0.7278 5000

Jaro-Winkler 0.8854 0.7548 0.7394 5000

Q-gram 0.8868 0.6644 0.6122 5000

Smith-Waterman 0.2951 0.2813 0.28 5000

Levenshtein 0.8895 0.715 0.6516 3600

Jaro 0.8895 0.7349 0.7163 3600

Jaro-Winkler 0.8878 0.7337 0.706 3600

Q-gram 0.8895 0.665 0.5757 3600

214

Smith-Waterman 0.2949 0.2822 0.2718 3600

Levenshtein 0.8862 0.7265 0.6722 2300

Jaro 0.8862 0.7383 0.7012 2300

Jaro-Winkler 0.8852 0.7252 0.706 2300

Q-gram 0.8862 0.6626 0.5425 2300

Smith-Waterman 0.3118 0.2833 0.2802 2300

Levenshtein 0.887 0.7072 0.6328 1000

Jaro 0.887 0.7161 0.6315 1000

Jaro-Winkler 0.8877 0.6857 0.6344 1000

Q-gram 0.887 0.6609 0.5181 1000

Smith-Waterman 0.312 0.258 0.2359 1000

Levenshtein 0.8874 0.7254 0.6768 500

Jaro 0.8862 0.7199 0.7022 500

Jaro-Winkler 0.8874 0.7411 0.682 500

Q-gram 0.8862 0.6623 0.5617 500

Smith-Waterman 0.3748 0.3443 0.3266 500

Levenshtein 0.892 0.7833 0.8089 200

Jaro 0.892 0.7482 0.7368 200

Jaro-Winkler 0.892 0.7325 0.7045 200

Q-gram 0.892 0.7653 0.7406 200

Smith-Waterman 0.5949 0.5177 0.5077 200

Table A.1 Accuracy results for last name datasets

215

A.2: Data of threshold value selection for each technique to obtain

the maximum F score in different last name datasets

Algorithm Low

Error Rate

Medium

Error Rate

High

Error Rate

Data Size

Levenshtein 0.99 0.85 0.8 9454

Levenshtein 0.99 0.85 0.8 7154

Levenshtein 0.99 0.85 0.8 5000

Levenshtein 0.99 0.85 0.8 3600

Levenshtein 0.99 0.85 0.8 2300

Levenshtein 0.99 0.85 0.8 1000

Levenshtein 0.9 0.85 0.8 500

Levenshtein 0.99 0.8 0.75 200

Jaro 0.99 0.95 0.9 9454

Jaro 0.99 0.95 0.9 7154

Jaro 0.99 0.95 0.9 5000

Jaro 0.99 0.95 0.9 3600

Jaro 0.99 0.95 0.9 2300

Jaro 0.99 0.95 0.9 1000

Jaro 0.99 0.9 0.9 500

Jaro 0.99 0.9 0.9 200

Jaro-Winkler 0.99 0.95 0.95 9454

Jaro-Winkler 0.99 0.95 0.95 7154

Jaro-Winkler 0.99 0.95 0.95 5000

Jaro-Winkler 0.99 0.95 0.95 3600

Jaro-Winkler 0.99 0.95 0.95 2300

Jaro-Winkler 0.99 0.95 0.95 1000

Jaro-Winkler 0.99 0.95 0.95 500

Jaro-Winkler 0.99 0.95 0.9 200

Q-gram 0.99 0.99 0.8 9454

Q-gram 0.99 0.99 0.8 7154

Q-gram 0.99 0.99 0.8 5000

Q-gram 0.99 0.99 0.8 3600

Q-gram 0.99 0.99 0.8 2300

Q-gram 0.99 0.99 0.8 1000

Q-gram 0.99 0.99 0.8 500

Q-gram 0.99 0.8 0.75 200

216

Smith-Waterman 0.9 0.9 0.85 9454

Smith-Waterman 0.99 0.9 0.9 7154

Smith-Waterman 0.9 0.9 0.9 5000

Smith-Waterman 0.9 0.9 0.85 3600

Smith-Waterman 0.9 0.9 0.9 2300

Smith-Waterman 0.9 0.85 0.85 1000

Smith-Waterman 0.9 0.85 0.85 500

Smith-Waterman 0.99 0.85 0.85 200

Table A.2 Threshold value selection for last name datasets

217

A.3: Data of average time cost for the five techniques on four

different sizes of datasets (9454, 7154, 5000, and 3600)

Algorithm Time cost

Low ER

Time cost

Medium ER

Time cost

High ER

Dataset

Levenshtein 128.945 130.82 143.751 9454

Jaro 57.573 57.977 61.123 9454

Jaro-Winkler 42.299 42.418 46.998 9454

Q-gram 162.773 166.503 174.301 9454

Smith-Waterman 220.535 225.116 227.98 9454

Levenshtein 78.745 79.665 82.609 7154

Jaro 35.264 34.584 37.648 7154

Jaro-Winkler 26.829 26.062 28.315 7154

Q-gram 98.102 98.906 101.235 7154

Smith-Waterman 147.848 134.764 145.340 7154

Levenshtein 37.023
41.007

40.255 5000

Jaro
16.514

17.664 17.736 5000

Jaro-Winkler 12.612 13.031
13.166 5000

Q-gram 47.13 48.85 50.507 5000

Smith-Waterman 65.767 69.181 70.237 5000

Levenshtein 19.9782 21.7713 22.63736 3600

Jaro 9.160714 9.777714 10.067 3600

Jaro-Winkler 6.887571 7.565857 7.578571 3600

Q-gram 24.538 26.62 27.89082 3600

Smith-Waterman 34.06429 39.15488 38.58414 3600

Table A.3 Time cost in last name datasets

218

A.4: Data of the maximum F score for the 2300 first name datasets

with the three different types of typos

Algorithm F score

(Low ER)

F score

(Medium ER)

F score

(High ER)

Type of typo

Levenshtein 0.8999 0.8177 0.8394 TFP

Jaro 0.8912 0.7868 0.7936 TFP

Jaro-Winkler 0.8865 0.7763 0.7705 TFP

Q-gram 0.8887 0.6667 0.6978 TFP

Smith-Waterman 0.3661 0.3437 0.359 TFP

Levenshtein 0.8961 0.7884 0.7902 TLP

Jaro 0.9032 0.8195 0.7848 TLP

Jaro-Winkler 0.9062 0.8148 0.82 TLP

Q-gram 0.8863 0.7662 0.7861 TLP

Smith-Waterman 0.3552 0.3305 0.3371 TLP

Levenshtein 0.8909 0.7259 0.6961 TR

Jaro 0.8867 0.7708 0.7947 TR

Jaro-Winkler 0.8846 0.7844 0.7722 TR

Q-gram 0.8867 0.6645 0.5849 TR

Smith-Waterman 0.3434 0.3327 0.3414 TR

Table A.4 Accuracy results for 2300 first name datasets with different typos

219

A.5: Data of the maximum F score for the 2300 last name datasets

with the three different types of typos

Algorithm F score

(Low ER)

F score

(Medium ER)

F score

(High ER)

Type of typo

Levenshtein 0.89 0.7346 0.734 TFP

Jaro 0.8889 0.7524 0.6918 TFP

Jaro-Winkler 0.8876 0.7124 0.7057 TFP

Q-gram 0.8889 0.6663 0.5807 TFP

Smith-Waterman 0.3533 0.3225 0.3317 TFP

Levenshtein 0.8896 0.7365 0.7422 TLP

Jaro 0.8885 0.7674 0.7405 TLP

Jaro-Winkler 0.8989 0.7409 0.7668 TLP

Q-gram 0.8885 0.6663 0.7162 TLP

Smith-Waterman 0.3537 0.3633 0.39 TLP

Levenshtein 0.8862 0.7265 0.6722 TR

Jaro 0.8862 0.7383 0.7012 TR

Jaro-Winkler 0.8852 0.7252 0.706 TR

Q-gram 0.8862 0.6626 0.5425 TR

Smith-Waterman 0.3118 0.2833 0.2802 TR

Table A.5 Accuracy results for 2300 last name datasets with different typos

220

A.6: Accuracy relative to the value of threshold on different last

name datasets with different error rates for levenshtein algorithm

Fig.A.1 Accuracy relative to threshold value for Levenshtein algorithm

Levenshtein

(a) Low Error Dataset

(b) Medium Error Dataset

(c) High Error Dataset

221

A.7: Accuracy relative to the value of threshold on different last

name datasets with different error rates for Jaro algorithm

Fig.A.2 Accuracy relative to threshold value for Jaro algorithm

Jaro

(a) Low Error Dataset

(b) Medium Error Dataset

(c) High Error Dataset

222

A.8: Accuracy relative to the value of threshold on different last

name datasets with different error rates for Jaro-Winkler algorithm

Fig.A.3 Accuracy relative to threshold value for Jaro-Winkler algorithm

Jaro-Winkler

(a) Low Error Dataset

(b) Medium Error Dataset

(c) High Error Dataset

223

A.9: Accuracy relative to the value of threshold on different last

name datasets with different error rates for Q-Gram algorithm

Fig.A.4 Accuracy relative to threshold value for Q-Gram algorithm

Q-Gram

(a) Low Error Dataset

(b) Medium Error Dataset

(c) High Error Dataset

224

A.10: Accuracy relative to the value of threshold on different last

name datasets with different error rates for Smith-Waterman

algorithm

Fig.A.5 Accuracy relative to threshold value for Smith-Waterman algorithm

Smith-Waterman

(a) Low Error Dataset

(b) Medium Error Dataset

(c) High Error Dataset

225

A.11: Algorithm selection for last name and first name datasets

Size of dataset Error rate Algorithm Threshold value Type of string

9454 Low Jaro 0.99 Last name

9454 Medium Jaro 0.95 Last name

9454 High Jaro-Winkler 0.95 Last name

7154 Low Jaro 0.99 Last name

7154 Medium Jaro-Winkler 0.95 Last name

7154 High Jaro-Winkler 0.95 Last name

5000 Low Jaro 0.99 Last name

5000 Medium Jaro-Winkler 0.95 Last name

5000 High Jaro-Winkler 0.95 Last name

3600 Low Jaro 0.99 Last name

3600 Medium Jaro 0.95 Last name

3600 High Jaro 0.9 Last name

2300 Low Jaro 0.9 Last name

2300 Medium Jaro 0.95 Last name

2300 High Jaro-Winkler 0.95 Last name

1000 Low Jaro-Winkler 0.99 Last name

1000 Medium Jaro 0.95 Last name

1000 High Jaro-Winkler 0.95 Last name

500 Low Jaro-Winkler 0.99 Last name

500 Medium Jaro-Winkler 0.95 Last name

500 High Jaro 0.9 Last name

200 Low Jaro-Winkler 0.99 Last name

200 Medium Levenshtein 0.8 Last name

200 High Levenshtein 0.75 Last name

2300 Low Jaro-Winkler 0.99 First name (TLP)

226

2300 Medium Jaro 0.95 First name (TLP)

2300 High Jaro-Winkler 0.95 First name (TLP)

2300 Low Levenshtein 0.9 First name (TFP)

2300 Medium Levenshtein 0.8 First name (TFP)

2300 High Levenshtein 0.8 First name (TFP)

2300 Low Levenshtein 0.9 First name (TR)

2300 Medium Jaro-Winkler 0.95 First name (TR)

2300 High Jaro 0.9 First name (TR)

Table A.6 Algorithm selection and Threshold values for last name datasets and

first name datasets

227

APPENDIX B

B.1: Business entity rules

Business Entity Rules Sub rules

R1.1

Entity uniqueness rules

R1.1.1 Primary key rule: every instance of a business

entity has its own unique identifier.

R1.1.2 Primary key can never be NULL.

R1.1.3 A composite key must be minimal

R1.1.4 A composite primary key can contain one or

more foreign keys

R1.2

Entity cardinality rules

R1.2.1 One-to-one cardinality rule

R1.2.2 One-to-many (or many-to-one) cardinality rule

R1.2.3 Many-to-many cardinality rule

R1.3

Entity optionality rules

R1.3.1 One-to-one optionality rule

R1.3.2 One-to-zero (or zero-to-one) optionality rule

R1.3.3 Zero-to-zero optionality rule

R1.3.4 Every instance of an entity that is being

referenced by another entity in the relationship must

exist.

R1.3.5 The reference attribute does not have to be

known when an optional relationship is not

instantiated, i.e., the foreign key can be NULL on an

optional relationship.

Table B.1 Business entity rules

228

B.2: Business attribute rules

Business attribute rules Sub rules

R2.1 Data inheritance rules

R2.1.1 All generalized business attributes of the

supertype are inherited by all subtypes.

R2.1.2 The unique identifier of the supertype is the

same unique identifier of its subtypes.

R2.1.3 All business attributes of a subtype must be

unique to that subtype only.

R2.2 Data domains rules

R2.2.1 Data values should belong to the given list of

values.

R2.2.2 Data values should be within the given range

of values.

R2.2.3 Data values should conforms to the given

constrains.

R2.2.4 Data values contains only a set of allowable

characters.

R2.2.5 Data values should follows the given patterns.

Table B.2 Business attribute rules

229

B.3: Data dependency rules

Data dependency rules Sub rules

R3.1

Entity-relationship rules

R3.1.1 The existence of a data relationship depends

on the state (condition) of another entity that

participates in the relationship.

R3.1.2 The existence of one data relationship

mandates that another data relationship also exists.

R3.1.3 The existence of one data relationship

prohibits the existence of another data relationship.

R3.2

Attribute dependency rules

R3.2.1 The value of one business attribute depends on

the state (condition) of the entity in which the

attributes exist.

R3.2.2 The correct value of one attribute depends on,

or is derived from, the values of two or more other

attributes.

R3.2.3 The allowable value of one attribute is

constrained by the value of one or more other

attributes in the same business entity or in a different

but related business entity.

R3.2.4 The existence of one attribute value prohibits

the existence of another attribute value in the same

business entity or in a different but related business

entity.

Table B.3 Data dependency rules

230

B.4: Data validity rules

Data validity rules Sub rules

R4.1 Data

completeness rules

R4.1.1 All instances exist for all business entities, i.e., all

records or rows are present.

R4.1.2 Referential integrity exists among all referenced

business entities.

R4.1.3 All business attributes for each business entity exist,

i.e., all columns are present.

R4.1.4 All business attributes contain allowable values

including NULL when it is allowed.

R4.2 Data correctness

rules

R4.2.1 All data values for a business attribute must be

correct and representative of the attribute‟s definition.

R4.2.2 All data values for a business attribute must be

correct and representative of the attribute‟s specific

individual domains.

R4.2.3 All data values for a business attribute must be

correct and representative of the attribute‟s applicable

business rules.

R4.2.4 All data values for a business attribute must be

correct and representative of the attribute‟s supertype

inheritance.

R4.2.5 All data values for a business attribute must be

correct and representative of the attribute‟s identity rule.

R4.3 Data accuracy

rules

R4.3.1 All data values for a business attribute must be

accurate in terms of the attribute‟s dependency rules.

R4.3.2 All data values for a business attribute must be

accurate in terms of the attribute‟s state in the real world.

231

R4.4 Data precision

rules

R4.4.1 All data values for a business attribute must be as

precise as required by the attribute‟s business requirements.

R4.4.2 All data values for a business attribute must be as

precise as required by the attribute‟s business rules.

R4.4.3 All data values for a business attribute must be as

precise as required by the attribute‟s intended meaning.

R4.4.4 All data values for a business attribute must be as

precise as required by the attribute‟s intended usage.

R4.4.5 All data values for a business attribute must be as

precise as required by the attribute‟s precision in the real

world.

R4.5 Data uniqueness

rules

R4.5.1 Every business entity instance must be unique.

R4.5.2 Every business entity must have only one unique

identifier.

R4.5.3 Every business attribute must have only one unique

definition.

R4.5.4 Every business attribute must have only one unique

name.

R4.5.5 Every business attribute must have only one unique

domain.

R4.6 Data consistency

rules

R4.6.1 The data values for a business attribute must be

consistent when the attribute is duplicated for performance

reasons or when it is stored redundantly for any other

reason

R4.6.2 The duplicated data values of a business attribute

must be based on the same domain and on the same data

quality rules.

Table B.4 Data validity rules

