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Abstract 
Can the brain register the emotional valence of brief exposures of 

complex natural stimuli under conditions of forward and backward 

masking, and under conditions of attentional competition between foveal 

and peripheral stimuli?  To address this question, three experiments were 

conducted.  The first, a behavioural experiment, measured subjective 

valence of response (pleasant vs unpleasant) to test the perception of the 

valence of natural images in brief, masked exposures in a forward and 

backward masking paradigm. Images were chosen from the International 

Affective Picture System (IAPS) series. After correction for response bias, 

responses to the majority of target stimuli were concordant with the IAPS 

ratings at better than chance, even when the presence of the target was 

undetected.  Using functional magnetic resonance imaging (fMRI), the 

effects of IAPS valence and stimulus category were objectively measured 

on nine regions of interest (ROIs) using the same strict temporal 

restrictions in a similar masking design.  Evidence of affective processing 

close to or below conscious threshold was apparent in some of the ROIs.  

To further this line of enquiry, a second fMRI experiment mapping the 

same ROIs and using the same stimuli were presented in a foveal 

(‘attended’) peripheral (‘to-be-ignored’) paradigm (small image 

superimposed in the centre of a large image of the same category, but 

opposite valence) to investigate spatial parameters and limitations of 

attention.  Results are interpreted as showing both valence and category 

specific effects of ‘to-be-ignored’ images in the periphery.  These results 

are discussed in light of theories of the limitations of attentional capacity 

and the speed in which we process natural images, providing new 

evidence of the breadth of variety in the types of affective visual stimuli 

we are able to process close to the threshold of conscious perception.    

 

Keywords:  Amygdala; Anterior Cingulate Cortex; medial Prefrontal Cortex; 

Dorsolateral Prefrontal Cortex; Orbitofrontal Cortex; Parahippocampus; 

Fusiform Gyrus; Insula; Superior Temporal Gyrus; consciousness; attention; 

masking; fMRI.     



 
 

 ii

Acknowledgements 

 

Would I have started a PhD programme if I had known how many avenues I 

needed to travel: those that end with a brick wall, those that go around in a 

circle, those that entice me into ‘interesting’ directions only to discover I am 

miles away from where I need to be?  The answer is yes.  I have experienced 

extreme frustration, bewilderment, uncertainty and doubt in my ability when 

presenting at conferences to audiences whose combined academic experience 

probably adds up to 1000s of years compared to my meagre few.  Had I not 

experienced all of this, I would not have met so many inspiring people nor 

would I have learnt so much. 

 Those people include several members of Brunel’s academic staff who 

acted as mentors, sometimes without realising it.  My principal supervisor 

Professor Michael Wright taught me to be both cautious and methodical, with 

patience and a deliciously sardonic sense of humour.  Dr Justin O’Brien, my 

second supervisor, taught me a range of skills to successfully carry out 

neuroimaging research, even to the point of rewriting computer programmes, 

much to my amazement.  Equally, Professor Taeko Wydell was an inspiring, 

elegant role model. 

 Many members of Brunel staff nurtured me along the way.  One who 

showed enormous kindness was Liz Ackroyd who very generously read my 

thesis, leading to constructive criticism and encouraging words. 

 It was always a delight to see Ari Lingeswaran, the fMRI technician at 

CUBIC, Royal Holloway University, each Friday when collecting data.  His 

interest and utter reliability made for a secure environment, for which I am 

extremely grateful.  I am also eternally grateful to all whose curiosity in my 

experiments led to their participation. 

 I was incredibly fortunate to secure a 3+1 PhD grant from the 

Economic and Social Research Council (ESRC), the financial support made 

this project possible. 

 In the days when my self-belief was low my Mother would, without 

fail, nudge me along and help me believe in myself again.  The love invested 



 
 

 iii

in me by my parents is limitless and I know that if my Father were alive today 

he would be so proud of my achievements. 

 My husband David – what can I say – listener, reader, supporter, 

counsellor, adviser, friend.  He is all of those things and more. 

 My greatest teachers are my children, Francesca and Michael.  They 

constantly stretch my understanding on all levels, helping to keep my thesis in 

perspective.  In fact they are quite bemused why anyone would do this to 

themselves.  On days when I was particularly fraught, they would quietly 

clear the decks of the usual things ‘Mum goes off on one about’.  Francesca’s 

incredibly pragmatic views on life would pull me up and I would knuckle 

down after a swift talking to from her wise-beyond-her-years approach.  

Whilst Michael would ask “how many words have you done today Mum?” – 

as a young lad his 300 word essay sounded a lot.  They may not realise it, but 

their support was stunning. 

 Sometimes being a research student can be a lonely existence, but 

fellow students Dr Dan Bishop, Liory Fern-Pollak, Nicola Start and Dr Sena 

Quaye were always there supporting me from a place of complete 

understanding, this was very comforting. 

 Last, but not least, is our friend Les Owen who was always available 

to encourage and enthuse having written several dissertations himself.  And to 

all my friends who are still there even though I have neglected them so much. 

 I have learnt an incredible amount about the fascinating world of the 

brain and loved every minute.  I have especially learnt a lot about myself.  I 

am proud that I have had the tenacity to complete this project through the 

bumpy road of life and, although I am pleased it is finished, I will miss it very 

much.   

  

 

 

 



 
 

 iv

Contents 
Abstract        i 
Acknowledgements  ii 
List of Tables    vii 
List of Figures  viii 
Glossary of Working Definitions    x 
Chapter 1  Introduction 1 

1:1  Backgound 1 
1:2  Historical Context 3 

1:2:1  Consciousness 3 
1:2:2  Emotion and the Brain 7 
1:2:3  Relationship between Consciousness and Emotion 12 

1:3  Cognition and Emotion 14 
1:4  Attention, Awareness and Perception 16 

1:4:1  Attention 19 
1:5  Vision and Natural Images 25 
1:6  fMRI Regions of Interest 28 
1:7  Processing of Complex Affective Visual Images 38 

1:7:1  Introduction 38 
1:7:2  Natural Images 39 
1:7:3  Affect and Natural Images including IAPS 43 
1:7:4  fMRI 47 
1:7:5  Natural Stimuli and Category Membership 53 
1:7:6  Summary 53 

1:8  Present Research Programme 55 
1:8:1  Key Points of this Research Programme 55 

1:9  Hypotheses 56 
Chapter 2  Stimuli and fMRI Methodology 58 

2:1  fMRI Experiments 58 
2:1:1  MNI Coordinates 58 
2:1:2  fMRI Data Acquisition 59 
2:1:3  fMRI Design 60 
2:1:4  fMRI Analysis 61 

2:2  Stimuli - International Affective Picture System (IAPS) 62 
2:2:1  Images Used - Behavioural Experiment 64 
2:2:2  Images Used - Masked fMRI Experiment 66 
2:2:3  Images Used – Dual Image Experiment 68 

2:3  Ethical Considerations 70 
2:4  Notes on Participants 71 

Chapter 3  Behavioural Experiment 72 
3:1  Abstract 72 
3:2  Introduction 72 
3:3  Method 75 

3:3:1  Participants 76 
3:3:2  Design 76 
3:3:3  Procedure 77 

3:4  Statistical Analysis 78 
3:5  Results 79 

3:5:1  Discrimination of Valence 79 



 
 

 v

3:5:2  Discrimination of Target Trials from Control Trials 80 
3:5:3  Discrimination of Valence in Individual Images 80 
3:5:4  Independent Ratings Evaluation 85 
3:5:5  Confidence Ratings: Analysis for Individual Slides 87 
3:5:6  Conclusions from ANOVA of Individual Slides 89 

3:6  Analysis of Response to Stimuli Grouped by Category and Valence 89 
3:6:1  Detectability of Stimuli 89 
3:6:2  Effects of Stimulus Detectability 91 
3:6:3  Effects of Stimulus Valence and Category on Seen Confidence 92 
3:6:4  Effects of Stimulus Valence and Category on Overall   
          Impression of Valence 93 
3:6:5  Effects of Stimulus Valence and Category on Confidence in  
           the Overall Impression of Valence 94 
3:6:6  Conclusions from the Analysis of Response to Stimuli Grouped  
           by Category and Valence 94 

3:7  Discussion 95 
3:8  Conclusion and Summary 100 

Chapter 4  fMRI Masked Experiment 102 
4:1  Abstract 102 
4:2  Introduction 102 
4:3  Method 103 

4:3:1  Participants 103 
4:3:2  Design 104 
4:3:3  Procedure 109 
4:3:4  fMRI Data Acquisition 110 
4:3:5  Data Analysis 110 

4:4  Results 110 
4:4:1  First Level Analysis 110 
4:4:2  Second Level Analysis 114 
4:4:3  Summary 137 

4:5  Discussion 137 
4:5:1  Regions of Interest 138 
4:5:2  General Discussion 146 

4:6  Conclusion 152 
Chapter 5  fMRI Dual-Image Experiment 153 

5:1  Abstract 153 
5:2  Introduction 154 
5:3  Method 159 

5:3:1  Participants 159 
5:3:2  Design 159 
5:3:3  Procedure 162 
5:3:4  fMRI Data Acquisition 163 
5:3:5  Data Analysis 163 

5:4  Results 166 
5:4:1  Subjective Reports 166 
5:4:2  First Level Analysis 167 
5:4:3  Second Level Analysis 169 
5:4:4  Summary 189 

5:5  Discussion 189 
5:5:1  Valence and Category Effects 190 



 
 

 vi

5:5:2  Hemisphere Specificity 191 
5:5:3  General Discussion 193 

5:6  Conclusion 196 
Chapter 6  General Discussion 197 

6:1  Overview and Summary 197 
6:2  Conclusions 203 
6:3  Limitations 205 
6:4  Related Ideas and Future Research 206 
6:5  Abstract Publication and Presentations Arising from this Thesis 211 

6:5:1  Abstract Publication 211 
6:5:2  Oral Presentations 211 
6:5:3  Poster Presentations 211 

 

References    212 
Appendices                 244  
I Rules of Operation of the Combined University’s  
 Brain Imaging Centre (CUBIC)                       245 
II Self-report Questionnaire                267 
III Informed Consent Form                282 
IV Ratings Questionnaire                 284 
V Debrief Form                  294 
VI Conclusions from ANOVA of Individual Slides.  
 Summary of Results                  296 
VII Initial Screening Form                310 
VIII Information Form                 312 
IX Second Screening Form                315 
X Consent Form                  317 
XI Subjective Report Form                319 
   



 
 

 vii

List of Tables 

 

1.1  Summary of visual impairment 19 
2.1  Second level MNI coordinates 58 
2.2  Ratings of IAPS stimuli – behavioural experiment 66 
2.3  Ratings of IAPS stimuli – masked experiment 68 
2.4  Ratings of IAPS stimuli – dual image experiment 70 
3.1  Frequency of valence responses with % concordance 82 
3.2  Frequency of valence responses relative to control 83 
3.3  Scores of average ratings post experiment 86 
4.1  A presentation order of blocks 105 
4.2  First level analysis of normally viewed after subtracting controls 111 
4.3  First level analysis comparison of brief masked condition with  
        normally viewed condition 112 
4.4  First level analysis valence effects 113 
4.5  Mean contrast values for effect sizes in ROIs – masked experiment 116 
4.6  Summary of significant effects 137 
5.1  Descriptive statistics for small field and large field 167 
5.2  First level activations across all nine ROIs 168 
5.3  Mean contrast values for effect sizes in ROIs – dual image experiment 170 
5.4  Summary of results for the dual image experiment 189 
 

 



 
 

 viii

List of Figures 

   
1.1  Selected brain regions – DLPFC; Insula; mPFC; OFC; and STG 37 
1.2  Selected brain regions – ACC and Amygdala 37 
1.3  Selected brain regions – Fusiform gyrus and Parahippocampus 38 
3.1  Experimental set of slides 76 
3.2  Control set of slides 77 
3.3  Mean probability of target detection by category and valence 90 
3.4  Mean confidence ratings for seen and impression confidence 91 
3.5  Mean confidence rating for the number of stimuli seen 92 
3.6  Mean overall impression of valence 93 
3.7  Mean confidence rating for the overall impression of valence 94 
4.1  Actual image sequence for a brief masked block HVf 105 
4.2  Stimulus sequence for a brief masked block 106 
4.3  Stimulus sequence for a normally viewed (p) block 107 
4.4  Stimulus sequence for the second normally viewed (P) block 107 
4.5  Stimulus sequence for a control block 108 
4.6  Significant cluster of activation in ACC from individual data 117 
4.7  ACC estimated marginal means comparing low and high valence 118 
4.8  Significant cluster of activation in mPFC from individual data 119 
4.9  mPFC estimated marginal means comparing conditions 120 
4.10  Significant cluster of activation in Parahippocampus from 
         individual data 121 
4.11  Parahippocampus estimated marginal means comparing category x 
         condition 122 
4.12  Parahippocampus estimated marginal means comparing low and  
          high valence x categories 122 
4.13  Significant cluster of activation in the amygdala from individual data 123 
4.14  Amygdala estimated marginal means comparing category x  
         condition 124 
4.15  Significant cluster of activation in STG from individual data 125 
4.16  STG estimated marginal means comparing low and high valence x 
         categories 126 
4.17  Significant cluster of activation in the Insula from individual data 127 
4.18  Insula estimated marginal means comparing low valence x  
         hemisphere x condition 128 
4.19  Insula estimated marginal means comparing high valence x  
         hemisphere x condition 128 
4.20  Insula estimated marginal means comparing valence x category 129 
4.21  Significant cluster of activation in the Fusiform gyrus from  
         individual data 130 
4.22  Fusiform gyrus estimated marginal means conditions x category 131 
4.23  Significant cluster of activation in DLPFC from individual data 132 
4.24  DLPFC estimated marginal means for condition x hemisphere 133 
4.25  DLPFC estimated marginal means for condition x category 134 
4.26  DLPFC estimated marginal means for category x valence 134 
4.27  Significant cluster of activation in OFC from individual data 135 
4.28  OFC estimated marginal means for high and low valence 136 
5.1  Block time sequence 160 



 
 

 ix

5.2  Large-field control condition one.  LV inanimate slide number 9301 161 
5.3  Small-field control condition two.  HV face slide number 2071 161 
5.4  Dual image consisting of LV foveal (voluntary attended) with HV 
       peripheral (to-be-ignored) 162 
5.5  Example of the ‘to-be-ignored’ estimate 165 
5.6  Example of the ‘attended’ estimate 165 
5.7  ACC effect sizes 171 
5.8  Images of the ACC displaying the significant effect of condition 171 
5.9  mPFC effect sizes 172 
5.10  Images of the mPFC displaying significant effect of valence for  
         ‘to-be-ignored’ condition 173 
5.11  Parahippocampal gyrus effect sizes 174 
5.12  Images of the Parahippocampal gyrus displaying the significant  
         effect of condition in the LH 174 
5.13  Images of the Parahippocampal gyrus displaying the significant  
         effect of valence in the LH for ‘attended’ condition 175 
5.14  Images of the Parahippocampal gyrus displaying the significant  
         effect of valence in the LH for ‘to-be-ignored’ condition 175 
5.15  Amygdala effect sizes 176 
5.16  Images of the Amygdala displaying the significant effect of valence  
         in the LH 177 
5.17  Images of the Amygdala displaying the significant effect of category  
         in the LH for ‘to-be-ignored’ condition 177 
5.18  STG effect sizes 179 
5.19  Images of the STG displaying the significant effect of condition in  
         the LH 179 
5.20  Insula effect sizes 180 
5.21  Images of the Insula displaying the significant effect of condition  
         when viewing LV animals 181 
5.22  Fusiform gyrus effect sizes 182 
5.23  Images of the Fusiform gyrus displaying the significant effect of 
         category for the ‘attended’ condition 182 
5.24  Images of the Fusiform gyrus displaying the significant effect of  
         valence for ‘to-be-ignored’ condition 183 
5.25  Fusiform gyrus estimated marginal means comparing valence x 
         hemisphere for ‘attended’ condition 184 
5.26  Fusiform gyrus estimated marginal means comparing valence x 
         hemisphere for ‘to-be-ignored’ condition 185 
5.27  DLPFC effect sizes 185 
5.28  Images of the DLPFC displaying the significant bilateral effect of 
         valence for ‘to-be-ignored’ condition DLPFC 186 
5.29  OFC effect sizes 187 
5.30  Images of the OFC displaying the significant effect of condition 187 
 



 
 

 x

Glossary of Working Definitions 

 

Attended condition – instructed to voluntarily attend to a small image 

presented in the fovea superimposed on a large image of the same category, 

but opposite valence (Section 5:2). 

Awareness – perception allowing identification of content, and accompanied 

by a distinctive sensory impression.  

Backward masking – method to reduce detectability of a target stimulus by 

presenting a second stimulus (mask) immediately after the target. 

Concordant – participant’s impression of the stimuli in agreement with IAPS 

ratings. 

Coni – abbr. valence impression confidence.  In chapter 3 participants rated 

how confident they were in their overall judgement of valence for each trial as 

a whole. 

Cons – abbr. seen confidence.  In chapter 3 the participants recorded how 

confident they were in their answer to how many pictures they saw.  This 

measure is termed ‘seen confidence’. 

Consciousness – in this thesis, the term consciousness is used in the sense of 

Damasio’s ‘core consciousness’ to refer  to perception with awareness in the 

awake state (Damasio, 1999).  

Detection threshold – operationally defined as identical to the subjective 

threshold. 

Discordant – participant’s impression of the stimuli not in agreement with 

IAPS ratings. 

Discrimination threshold – operationally defined as identical with the 

objective threshold. 

Dual image – compound image consisting of the attended condition 

superimposed on the ‘to-be-ignored’ condition of opposite valence (Section 

5:1). 

Explicit perception – perception with awareness allowing self-report and 

further cognitive operations including discrimination naming and description 

of stimuli. 



 
 

 xi

Feelings – subjective private mental portrait, composite perceptions of the 

physiological reactions of emotions. 

Forward masking – detectability of target stimulus is reduced when 

following a longer duration stimulus (mask). 

Gist – a very sparse, coarse impression. 

Implicit perception – perception without awareness: input influences 

cognitive operations but is not available to self-report. 

Perception of emotion – objective response, chemically and neurologically 

produced by the brain when presented with the appropriate stimuli. 

Subliminal processing – defined in the behavioural experiment as below 

detection threshold, but above discrimination threshold.   

Supraliminal – above the threshold of conscious awareness. 

To-be-ignored condition – instructed to ignore large image, surrounding 

foveal image of the same category, but opposite valence (Section 5:1). 

Unconsciousness perception – perception without awareness. 



 
 

 1

Chapter 1  Introduction 

 
1:1  Backgound  

 
It has been argued that our perception of natural images is not limited by the 

capacity of visual attention as severely as is the perception of artificial, simpler 

visual stimuli.  Li and colleagues used natural images of animals and vehicles 

and concluded that “some visual tasks associated with ‘high-level’ cortical 

areas may proceed in the near absence of attention” (Li et al., 2002, p 9596), 

challenging previous theories of visual limitations of attention (Li et al., 2002).  

 The use of artificial stimuli such as simple geometric shapes or actors’ 

faces has formed the bulk of the evidential basis for theories of visual 

processing below conscious threshold.  This has happened for a good reason, as 

valid experiments need to be controlled for all possible variables, so controlling 

for colour, orientation, luminance and salience enable quantification of those 

visual properties that determine detection and discrimination.  However, these 

stimuli are not ecologically valid.  Employing natural images moves some way 

towards ecological validity, but it is more difficult to achieve tight 

experimental control of all the variables in such complex stimuli.  

 With this in mind, however, there are noteworthy contributors 

investigating the brain mechanisms behind the rapid visual processing of 

everyday images, demonstrating that certain natural objects can be detected 

within natural scenes remarkably quickly (Rousselet et al., 2002, Thorpe et al., 

2001b, Thorpe et al., 2006) .  Thorpe and colleagues, for instance, continue to 

consider rapid categorisation/detections tasks using response timings (RTs) and 

event-related potentials (ERPs) and have concluded that animal and face 

detection in everyday images happen in as little as 150ms (Fabre-Thorpe et al., 

2001, Thorpe et al., 1996).  Note that these detections are not ‘perception 

without awareness’ since conscious categorisation of the images is possible.  

 In contrast with these demonstrations of the ability to categorise visual 

stimuli from brief presentations, evidence from change blindness and 

inattentional blindness studies demonstrates the poverty of information that can 

be recovered from visual stimuli in the absence of conscious perception and 
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attention.  These compelling phenomena show that (provided the local motion 

signals that cue image changes are masked), large changes in an image or the 

presence of unexpected stimuli are rendered invisible, because the gist of the 

picture is unchanged (Beck et al., 2001, Mack and Rock, 1998). 

 This raises the question of how we process the emotional content of 

scenes and pictures. Is emotional valence a simple category (like ‘animal’, 

‘face’ or ‘building’) that we can immediately categorise in a brief visual 

presentation, or does it depend (in complex scenes) upon conscious processing 

– ‘beyond the gist’? Or is there, indeed, a special mechanism for identifying 

emotional content that does not require conscious awareness? 

 It has been argued that responses to visual emotional stimuli are 

automatic and can be processed without conscious awareness.  The 

functionality of affective significance is one of survival in the detection of 

threat, or opportunity for procreation and sustenance, and early automatic 

processing is arguably of an evolutionary advantage.  Research on emotional 

processing has supported this theoretical premise.  Detection of threat-related 

faces, in one experiment, was faster than those of neutral expressions (Öhman 

et al., 2001b), as was the detection of animals compared with neutral images 

(Öhman et al., 2001a).  Emotional scenes have also shown more rapid 

discrimination than neutral scenes (Cuthbert et al., 2000). 

 Rapid emotional processing has been demonstrated using skin 

conductance response (SCR) (Lane and Nadel, 2000), and 

electroencephalogram (EEG) (Schupp et al., 2000).  Moreover, brain imaging 

research has revealed more detailed information on the brain structures 

mediating early processing. For instance, positron emission technology (PET) 

directly identifies activity in neurotransmitter systems by introducing positron-

emitting radiolabelled tracers injected into healthy participants (Huettal et al., 

2004).  Some researchers favour the chemical specificity of PET when 

investigating emotional expressions and experience (e.g. Damasio et al., 2000), 

whilst others prefer the more accurate spatial resolution and better temporal 

resolution of functional magnetic resonance imaging (fMRI).  These include 

experiments investigating conscious awareness of affect, with either natural 

images presented supraliminally, as in an expectancy and perception 

experiment reflecting dissociable emotion and cognitive networks (Bermpohl 
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et al., 2006), or subliminally presented images that are less complex such as 

pictures of faces  (Etkin et al., 2004, Pessoa et al., 2005a).  However, to date 

relatively few experiments have systematically used fMRI to analyse cortical 

activity in relation to a wide range of natural everyday images whilst presented 

below the level of conscious awareness.   

 

1:2  Historical Context 

 

1:2:1  Consciousness 

 

Consciousness is a seductive conundrum.  It has tantalised and perplexed some 

of the greatest minds in history.  

 For instance, “cogito ergo sum”, famously translated as “I think 

therefore I am” (Je pense, donc je suis) is the best-known aphorism from the 

influential 17th Century philosopher Rene Descartes, illustrating the primacy of 

our own mental states as the foundation for what we can know (Descartes, 

1637/1909).  But how do our mental states relate to the matter of which we, 

and the rest of the universe, are composed?  In a further attempt to understand 

the res extensa (extended substance, matter) and the res cogitans (thinking 

substance), constituting his dualistic theory of two separate substances, 

Descartes subsequently conceded that they were closely connected and indeed 

intertwined (Damasio, 1994).  Whilst not producing definitive answers, the 

clarity of his analysis has challenged and stimulated many critics and thus 

shaped our entire thinking about consciousness and its relation to the body.   

 In 1890, William James published what is considered to be the most 

influential summary of nineteenth century psychology, The Principles of 

Psychology (James, 1890/1950).  Exploring the biological function and 

physical basis of consciousness, which he called the scientific study of mind, 

this work covered aspects of psychology that included brain function, the self, 

attention, memory, perception and the ‘stream of consciousness’, which he 

believed was ‘thought’ that continuously changes and is never exactly 

repeated.  ‘Thought’ involves attention in that it attends to certain objects 

whilst omitting others, which also involves short term memory (James, 

1890/1950).  His prolific contributions remain relevant and influential today as 
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evidenced by his ideas on fringe consciousness, “to designate the influence of a 

faint brain process upon our thought, as it makes it aware of relations and 

objects but dimly perceived”  (James, 1890/1950, p 258).  This has more 

recently been described as gist perception, a representation of a scene that may 

be outside of focal attention or without awareness of detail (Koch, 2004).  

James also deliberated upon the works of Dr Mosso, who discovered that 

changes in cerebral blood flow accompanied cerebral activation (James, 

1890/1950).  This work constituted the starting point for haemodynamics of 

brain imaging techniques such as MRI and PET (Baars and Gage, 2007).   

 Beginning his medical career in neurology, Freud anticipated the 

hypothesis that a neural network generates conscious experience by 

introducing the concept of three classes of neurons.  According to Freud, φ 

neurons are responsible for perception, ψ neurons mediate memory expediated 

by contact barriers (Freud, 1895/2001), which were not discovered until 2 

years later by Sherrington, whereby he adopted the name synapse which is 

Greek for clasp (Sherrington, 1897).  Thirdly, ω neurons mediate 

consciousness including the subjective aspect of qualia (Freud, 1895/2001).  

This work was far ahead of neuroscience at that time and it is for this reason 

that it is speculated that Freud abandoned neurology and turned to developing 

psychoanalytic theories, although this supposition is challenged  (Pribram, 

1998, Solms, 1998).   

 As the turn of the 20th century began, consciousness studies started to 

lose momentum, partly because of the scientific impracticality of its 

indeterminate subjective nature, and partly because of the difficulty in 

validating experiments by repetition based on the experience of others. 

Therefore, psychology moved away from mental study and towards 

experiments that measured behaviour using stimulus and response techniques.  

Enter the behaviourist movement, and consciousness took a back seat in the 

scientific world and remained with religious scholars and philosophers (Crick, 

1994). 

 In the late 1950s and 1960s, however, the behaviourist movement was 

running out of steam because many psychologists began to realise that the 

study of behaviour had become oversimplified.  Computer science was gaining 
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momentum and human cognitive processes were soon looked upon in the light 

of computer programming and so the emergence of cognitive psychology once 

again legitimised the study of mental processes such as attention, perception, 

emotion, memory and language (Crick, 1994). 

 In fact, Crick (1994), in his book ‘The Astonishing Hypothesis’ gave a 

rallying-cry for a new science of consciousness, building on what we might 

call the standard history of consciousness studies (outlined above).  According 

to Crick, in order to study consciousness we should only study the relationships 

between brain and behaviour scientifically through the application of 

neuroscience with one clear-cut question in mind – what are the neural 

correlates of consciousness (NCCs)?  In collaboration with Koch, they chose to 

study the difference between conscious and nonconscious visual experiences, 

as research had already progressed extensively our knowledge of the visual 

system.  They believed that aiming to understand NCCs by comparing 

conscious and non-conscious processing would lead the way to causal 

explanations.  An example of the evidence they have offered so far is of an 

alliance of neurons responsible for perception which compete for awareness via 

saliency or selective attention through feedback mechanisms from the higher 

cortex (Koch, 2004). 

 Although this scientific programme has been criticised for extreme 

reductionism (Blackmore, 2003), it has contributed to enticing scientists to 

consider subjective experience as part of the experimental scientific 

mainstream.  However, this whole new environment for consciousness studies 

has not been without its problems, for even defining consciousness is a 

challenge.  Consciousness can exist in different states, as in dreaming 

compared with the waking state. Consciousness may be held to refer 

specifically to attention and perception, to self-consciousness, to the qualitative 

content of experience or most generally, to the possession of any mental state. 

‘Unconsciousness’ can refer to inattention, implicit processing, repression, 

sleep, anaesthesia or death, but also may be due to brain damage.  A useful 

distinction has been made by Damasio (1999) between core consciousness 

(immediate awareness) and extended consciousness (the integrated structure of 

knowledge of the external world and the self). Specific knowledge, including 

the capacity for language, is thus part of extended consciousness (Damasio, 
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1999).  For the purposes of this thesis, however, the definition of consciousness 

is close to Damasio’s concept of core consciousness: consciousness is being 

aware whilst in the awake state. 

 In an attempt to understand consciousness, vision studies have proven 

invaluable.  There are several reasons for this.  Firstly, one can study several 

brain structures that are dedicated to visual processing, underlining the 

importance of seeing; there is a wealth of information in images and it is 

possible to easily manipulate various aspects of stimuli using various computer 

graphics packages.  Equally, visual illusions are abundant in variety and 

ambiguity (Koch, 2004), such as the Ames distorted room, whereby one corner 

of the rear wall is further away from the viewpoint than the other, and by 

applying learnt knowledge of a three dimensional figure, the two dimensional 

figure is misinterpreted (Eysenck and Keane, 2005).  Lastly, animal studies 

using visual perception have contributed enormously to our knowledge of 

vision and attention (Koch, 2004).  To add to the diversity of the efficacy of 

using visual stimuli, lesion studies have provided a wealth of information for 

consciousness studies, especially those that impair visual awareness.  Cortical 

blindness, or blindsight, is a case in point whereby patients deny any visual 

sensation of a stimulus, but are able to point to it or guess basic visual 

properties such as orientation or colour (Baars and Gage, 2007). 

 All of these advantages render visual percepts ideal for measuring 

neuronal representations of conscious and unconscious visual processing.  This 

leads to the question as to what is the difference between conscious and 

unconscious representations in the brain?  Perhaps there is a difference 

between the two different processes?  Or perhaps there is an additional quality 

to the same representation that renders a percept conscious?  Quantity as in size 

or strength may determine if a representation becomes conscious or not.  Or 

maybe the ‘forty-hertz’ hypothesis is correct, whereby cortical cells fire in 

synchrony at a 40 times per second oscillation for a visual conscious 

experience, which suggests that conscious experience arises from temporal 

rather than spatial aspects of neural processing (Gray and Singer, 1989).  

Equally, conscious processing may be a matter of degree rather than a sharp 

contrast of conscious processing occurring completely or not at all (Rose, 

2006).  These ideas will be further expanded upon as this discourse unfolds.   
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 Working with one modality (vision) to measure unconscious processing 

enables further insight into a second aspect of unconscious processing, which is 

that of emotion, which will now be addressed.   

  

1:2:2  Emotion and the Brain 

 

Since the late nineteenth century, the role of biology and the brain in emotion 

has been contemplated.  In The Expression of Emotions in Man and Animals 

(1872/1999) Charles Darwin argued that the existence of complex behaviours, 

including the expression of emotion, depends on natural selection (animal or 

human).  Emotionally expressive behaviours develop from responses to stimuli 

and acquire additional survival value through their communicative functions. 

For example, an expression of emotion becomes habitual if it is serviceable, 

and develops out of associated reflexive responses (e.g. the action of 

withdrawing rapidly from danger due to the warning of pain), or voluntary 

behaviours.  Other expressions of emotion have evolved from pre-emptive 

behaviour patterns, such as a low growl a dog makes as a warning which can 

be equated to a human voice lowering in tone and becoming a deliberate 

threatening signal.  Darwin’s ideas were supported by the observational notes 

he made on his children.  He noted that from the moment they were born, their 

emotional outbursts and expressions were fully recognisable; therefore because 

they were evident so early in life, they could not have been learnt so must be 

innate.  As such, according to Darwin, evolution has determined our emotional 

expressions and behaviour (Darwin, 1872/1999).   

 Consistent with this, in 1884 William James and Carl Lange proposed 

related ideas on the theory of emotion (James, 1884, Lange, 1885).  The James-

Lange theory, as it later became known, postulates that emotion is a response 

to perceived physiological changes, (e.g. one sees a spider and starts to 

tremble).  The emotion or interpretation of the physical manifestation 

(trembling) takes place in the cerebral cortex, which is fed back to infer that if 

one is trembling then one must be afraid. However, the implication here may 

be that in the absence of awareness of physiological signs, one will not feel 

emotion.  Nevertheless, there is a correlation between strong emotions and 
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certain physiological manifestations, but a causal relationship is not obvious 

(Cannon, 1927, Cannon, 1931). 

 When Walter Cannon and Philip Bard studied animals and humans after 

trans-section of the spinal cord, it was noted that even though body sensations 

were eliminated below the cut, signs of emotions were still exhibited and felt, 

thus the elimination of sensation in the body did not eliminate emotions, as the 

James-Lange theory predicted.  The Cannon-Bard theory asserts that the 

experience of emotion is simultaneously influenced by a) physiological 

changes and b) processing of information in the cerebral cortex, (e.g. the 

sensory input is received by the cerebral cortex, which activates the skeletal 

muscles and autonomic nervous system and results in physiological changes in 

the body).  When a particular pattern of signals reaches the thalamus, the type 

of emotion is determined resulting in physiological change (e.g. sweating for 

fear) (Bard, 1934, Cannon, 1927, Cannon, 1931).   

 One of the earliest contributors to propose a model of cerebral anatomic 

connections with the emotional system was Paul Broca (Broca, 1878), whose 

extensive work on the structure of the brain led him to rename the visceral 

brain the limbic system.  Limbic means edge, which Broca used to describe the 

rim of the medial cortex.  In 1937 Papez advanced a circuitry pathway (the 

Papez Circuit Theory, as it later became known) mediating the flow of 

emotional information involving the hypothalamus, the medial cortex – 

anterior thalamus, amygdala cortex and hippocampus – and back to the 

hypothalamus (Papez, 1937).   

 Considerable research into the architecture of the emotional system 

continued and in 1970 MacLean proposed the Triune Brain.  Adding the 

structure of Broca’s limbic system with Papez circuit theory, this functional 

model proposed three evolutionary hierarchical layered brains in one: the 

reptilian brain (brain stem and cerebellum); the paleomammalian or limbic 

brain; and the neomammalian or neocortex.  Each phylogenetic area, according 

to MacLean, was autonomous but because of their high connectivity, one could 

dominate the other, (e.g. the limbic system underlying the emotion system can 

overrule the higher cognitive functions of the neocortex).  His limbic system 

theory included regions such as the amygdala, prefrontal cortex (PFC) and 

septum (MacLean, 1970).   



 
 

 9

 The evolutionary concept of the Triune Brain is still popular.  However, 

Maclean’s single unified limbic system theory, responsible for all our 

emotions, has been strongly challenged.  In fact, it is now believed that there 

may be many different smaller emotional systems subserving different 

emotions, but this does not mean that certain areas in Maclean’s model are not 

considered relevant to emotional processing (LeDoux, 1998). 

 LeDoux (1998), for instance, famously associates the amygdala and 

neocortex with fear conditioning (LeDoux, 1998).  His quest in the 

neurobiology of emotions and animal experimentation has led him to assert 

that there are two sensory input pathways for processing strong emotions.  The 

first is a subcortical short route (‘low road’) that rapidly sends sensory 

information from the thalamus directly to the amygdala: this facilitates an 

automatic emotional response, which is based on a rough coding of the stimuli.  

The second is a cortical route (‘high road’) which is longer and slower, 

whereby information is sent from the thalamus to the cortex and hippocampus 

and then projected onto the amygdala, thus involving cognitive evaluation.  

LeDoux used the analogy of a slender shape on a pathway that could be a 

snake. The information is sent to the thalamus and the amygdala via the 

subcortical route immediately alerting us into appropriate avoidance.  

Meanwhile, the cortex calculates that the shape is a curved stick and corrects 

one’s behaviour (LeDoux, 2002). 

 Another major researcher in the study of the emotional brain is 

neurologist Antonio Damasio.  Part of his work has involved studying patients 

with frontal lobe damage.  Patient Elliot was one such study, who had a tumour 

removed, causing prefrontal lesions. The result was that Elliot lacked normal 

emotional responses and was unable to make decisions, especially those that 

were in the personal and social domain.  It was evident that emotion disrupts 

reasoning, which was later confirmed by further studies by Damasio.  

However, different areas of cortical lesions also led to similar failures in 

judgement, which correlated with impairment in the same processes of 

reasoning, decision making, feelings and emotion which Damasio took as a 

further indication of an interaction between these systems (Damasio, 1994). 

 It is important to make the distinction between the neural correlates of 

sensory perception of emotional stimuli, and affective states  (Damasio et al., 
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2000, LeDoux, 2000).  For instance, Damasio’s interpretation of this 

distinction is that emotion is a response chemically and neurologically 

produced by the brain when presented with the appropriate stimuli, whilst 

feelings are the private mental portrait, the composite perceptions of the 

physiological reactions of emotions (Damasio, 2001).  The distinction between 

cognition and feelings needs to be made clear, for this current research 

concentrates on perception of valence advanced by the invaluable availability 

of fMRI and not affective feelings.   

 Emotion and brain organisation has also been considered in terms of 

cerebral asymmetry.  Lesion studies and patient studies with psychiatric 

disorders have been interpreted by some investigators as supporting a theory 

that the right hemisphere (RH) mediates all basic emotions (Tucker, 1981).  A 

contrary hypothesis states that the brain is organised in terms of valence, and 

postulates that the RH mediates negative emotions and the left hemisphere 

(LH) positive emotions.  This idea was developed from reports of patients with 

pathological emotion disorders, including gelastic epilepsy (a form of epilepsy 

where laughter is part of the seizure pattern) and from 19 patients following a 

hemispherectomy (Sackheim et al., 1982).   

Using EEG recordings and observations of facial behaviour, a third 

model of hemispheric specialisation has been advanced.  In the context of 

approach emotions (happy) and motor responses, activity was lateralised in the 

LH in the anterior temporal area, and in the case of withdrawal emotions 

(disgust), activity was lateralised in the RH in the frontal and anterior temporal 

regions  (Davidson et al., 1990).  The latter model discusses affective states in 

terms of their associated approach and withdrawal responses.  These are the 

basic features of two motivational systems of emotional organisation: 

appetitive (reproduction, pleasure) and defensive (survival, unpleasant) (Lang, 

2000).  These systems are part of our evolutionary inheritance, and are 

associated with specific deep cortical and subcortical mechanisms; as 

evidenced by the association of the amygdala with our defensive motivational 

system, and of subcortical and deep cortical structures with appetitive 

motivation (i.e. limbic-striatal-pallidal circuitry) (Lang, 2000).  These systems 

will be further discussed in context with the findings of the present research. 
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 It should be noted at this point that it is now widely accepted that 

people can reliably discriminate between six different classes of facial 

expression: happy, sad, angry, surprised, afraid and disgusted.  This ability is 

said to transcend cultural or linguistic barriers, therefore these facial 

expressions are not culturally specific, even when taking into account the 

differing social norms of emotional responses (Ekman, 1993).  This supports 

the idea of the intrinsic phylogenetic, biological importance of facial 

expressions in human beings.  The inherent ability in recognising and 

distinguishing different emotional expressions is necessary to read the 

emotional states of others and for effective social interaction (Darwin, 

1872/1999).  It has also been suggested that there may be an innate response in 

many species, including humans, to the typical visual forms, sounds and smells 

of certain biological hazards (e.g. predators, poisonous animals).  Panksepp 

(1998) for instance, describes a basic ‘hard-wired’ network in the brain that has 

evolved in all mammals to facilitate primal situations.  The labels Panksepp 

uses to correspond with innate emotional responses are: seeking – appetitive 

goals such as food, shelter and water; rage – a vigorous reaction arising from 

anger or frustration; fear – avoidance of threat or destruction through fight or 

flight; panic – reaction to separation from caregiver; lust – pursuit of sex; play 

– the need for social interaction through joy; and nurturance – the urge to care 

for infants (Panksepp, 1998, p 50).  According to Panksepp, these behavioural 

measures would typically respond to motivational stimuli such as appetitive 

resources (sustenance, reproduction) or avoidance (odours, sounds, sightings of 

predators or aggressors) and each emotional response would map onto a neural 

system (e.g. a “fear circuit that courses between the central amygdala and the 

periaqueductal gray of the midbrain”) (Panksepp, 1998, p 206).  Although 

Panksepp’s work is based on solid evidence from extensive animal research, 

there are nevertheless contenders to these ideas.  One such criticism is that 

attributing affective states onto animal behaviours is inconclusive, as overt 

behavioural changes in animals may not correspond to apparent associated 

feelings (Posner et al., 2005).  An alternative approach is the circumplex model 

of affect.  This model proposes a two dimensional method with two orthogonal 

axes; the vertical axis arousal and the horizontal axis valence.  Points around 

the circle illustrate a varying synthesis of valence and arousal.  Therefore, 
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rather than considering discrete and independent neural circuits of affect, the 

circumplex model asserts that all affective states can be considered in terms of 

two (valence and arousal) neurophysiological systems (Russell, 1980).   

 In contrast to responses to human and animal faces and bodies, an 

emotional response to scenes or inanimate objects is not likely to be universal 

throughout our evolutionary history, and those reactions are likely to have been 

learned through experience or social teachings (Darwin, 1872/1999).   

 Two outcomes have derived from these ideas to inform the design of 

experiments described in this thesis.  The first is that because of the 

uncontrollable complexities of natural images, investigating several distinct 

categories of emotion would have introduced too many variables to be tenable.  

Therefore, following the circumplex model, the stimuli used were IAPS 

pictures (International Affective Picture System) (Center for the Study of 

Emotion and Attention [CSEA-NIMH], 2001), which are calibrated 

dimensionally for high and low valence and for intensity (arousal).  Secondly, 

the evolutionary significance of facial expressions and the apparent weaker 

significance of learnt emotional stimuli such as scenes were relevant when 

choosing the four a priori categories of stimuli for the present experiments – 

animals, faces, scenes and inanimate objects.  Several authors have used 

subsets of visual emotional stimuli before (e.g.Gorno-Tempini and Price, 2001, 

Hariri et al., 2003, Kreiman et al., 2000, VanRullen and Thorpe, 2001a) and 

will be discussed further in sections 1:7:4 and 1:7:5.  

 

1:2:3  Relationship between Consciousness and Emotion 

 

How has the study of emotion contributed to the study of consciousness?  

According to neurological theorist Damasio “consciousness buys an enlarged 

protection policy” (Damasio, 1994, p 133).  To illustrate, if a person knows 

that something causes fear, there are two ways of behaving.  The first is a 

reaction that is out of our conscious control, it is innate.  The innate feeling, 

Damasio argues, is a reactive primary emotion that depends on prime systems 

such as the amygdala and anterior cingulate cortex (ACC).  As evidence, he 

cites a patient with bilateral damage to the amygdala (a major component of 

the limbic system) who became personally and socially inadequate, displaying 
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inappropriate emotions.  The second way is to avoid the situation based on past 

experience.  These reflective secondary emotions respond to thoughts 

controlled by the frontal cortices, which signals the limbic system to generate 

an emotional response, thus secondary emotions utilise the mechanisms of 

primary emotion.  (Damasio, 1994).  

 In his view, the experience of emotion begins with conscious 

considerations that a person holds about someone or something.  A cognitive 

evaluation takes place involving various sensory cortices.  For secondary 

emotions and at a conscious level, automatic responses are activated from the 

retrieval of previously acquired representations (not innate), which involves 

areas in the PFC.  This is then signalled to the amygdala, beginning the 

coordination of appropriate psychophysiological reactions. (Damasio, 1994). 

 Therefore, emotional processing in patients with prefrontal lesions is of 

the secondary type, as they cannot generate emotions or ‘feelings’ relative to 

images of a situation or stimuli.  However, they can have primary emotion.   

 In the context of these observations, Damasio proffered the somatic 

marker hypothesis.  Whether consciously or unconsciously, somatic markers 

are thought to be stored in the PFC and act as links between cognitive 

evaluation based on past experience and a ‘feeling’ based on emotional signals 

from the visceral regions, (e.g. amygdala and bodily states) which leads to 

appropriate decision making (Damasio, 1994).  Damasio’s work demonstrates 

how studies of emotion may be closely identified with studies of 

consciousness. 

 Consciousness and emotion are considered to be closely connected by 

many other contributors.  There has been a profusion of evidence, for instance, 

demonstrating that emotional priming is preconscious (Kern et al., 2005) and 

mediates attention, as evidenced by rapidly presented emotionally arousing 

stimuli being detected more efficiently than less emotionally arousing stimuli 

(Phelps et al., 2006).   

 Bias of processing affective stimuli is said to be adaptive, reflecting the 

motivational significance of such stimuli.   In this context, it is proposed that 

the evaluation of affective significance is automatic, preattentive and without 

awareness, to facilitate a rapid response and adaptive function.  Studies briefly 

presenting visual affective images have supported theories of emotional stimuli 
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being processed quicker than neutral stimuli at a preconscious threshold 

(Cuthbert et al., 2000, Lang et al., 1997, Schupp et al., 2000, Vuilleumier et al., 

2003a).   

 However, other researchers believe that effective emotional processing 

does need sufficient resources of attention and argue that any unconscious 

processing of affect is limited (Pessoa, 2005, Pessoa et al., 2002a).  This debate 

will be further addressed later in this discourse.   

 Emotion is indeed central to human life and intimately connected to the 

experience of consciousness.  After all, most of our experiences have an 

affective content.  Is there any evidence that all of our experiences have an 

affective content?  If asked to fill in a PANAS1 self report, people report all 

sorts of moods and emotions, and even if they are doing nothing they are either 

contented, complacent, bored or slightly anxious.  If none of Panksepp’s 

motivational systems (Panksepp, 1998) are active, then it follows that people 

are either deeply unconscious or dead.   The study of the neural correlates of 

emotion, therefore, affords important insights into the neural correlates of 

consciousness.   

 This project will follow the tenet that emotions are mental states with 

distinct neural correlates and further evaluate the relationship between 

consciousness and emotional response.   

 

1:3  Cognition and Emotion   

 

Animal and human studies have demonstrated interactions between neural 

circuits underlying cognition and emotion, and studies of these interactions are 

continually advancing our understanding of mental representations and human 

behaviour (Phelps, 2006).  

 Brain regions identified with emotional processing, such as the 

amygdala, show extensive connections with areas identified with cognition, 

(e.g. the PFC).  The widely-researched amygdala was the focus of  a recent 

review by Phelps (2006) in which different domains were highlighted as 

                                                 
1  The Positive and Negative Affect Schedule is a self report measuring positive and negative 
affect.  Twenty items, 10 positive and 10 negative are scored in a range of 1very slightly to 5 
extremely.  Developed by Watson, Clark and Tellegen (Watson et al., 1988).  
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examples of the interaction between cognition and emotion: emotional learning 

and memory; emotional effect on memory; the influence of emotion on 

perception and attention; and emotional processing in the context of social 

behaviour and emotional adjustment (Phelps, 2006). In context of the review 

by Phelps and in accord with the subject of the present thesis, emotional 

influence on perception and attention will now be addressed briefly. 

 By limiting attentional resources, studies show that emotion-laden 

stimuli will reach conscious awareness more effectively than neutral stimuli 

(Vuilleumier, 2002).  In order to examine the effects of voluntary attention on 

auditory stimuli, Sander et al. (2005) conducted an fMRI dichotic listening task 

using meaningless words and an angry voice.  They found significant amygdala 

response to anger regardless of whether the instruction was ‘to-be-attended’ or 

‘to-be-ignored’ (Sander et al., 2005).  Equally, Anderson and Phelps (2001) 

considered the role of the amygdala on the verbal perception of affect.  Gaining 

evidence from a patient with bilateral damage to the amygdala revealed that, 

when presented with verbal aversive stimuli, there was a distinct absence of 

enhanced perception even though the patient understood the meaning of the 

words (Anderson and Phelps, 2001).  These two examples serve to demonstrate 

the relationship of cognition with emotion and the pivotal role of the amygdala. 

 It is also hypothesised that the amygdala determines the significance of 

emotional input.  This is achieved either automatically during direct encoding 

of input or in influencing the PFC which in turn modulates response by 

temporary inhibitory feedback (Baars and Gage, 2007).   

 Other workers have analysed the many afferent and efferent 

associations and the direct and indirect pathways involving projections from 

the early stages in sensory processing to the prefrontal cortices, suggesting 

feedforward and feedback mechanisms linking cognitive and emotional 

processes (Barbas, 2000).  

 The reciprocal effects of cognition and emotion discussed thus far, 

might seem to imply that different brain regions are associated with one or the 

other.  However, there is a strong argument that these systems in terms of 

function cannot be separated as there is a dynamic integration of cognition and 

emotion that ultimately shapes behaviour.  One example given by Pessoa 

(2008), is that the orbitofrontal cortex (OFC) is now associated with emotion 
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but once it was not, thus highlighting the difficulties in defining the emotional 

brain.  Equally, as previously mentioned, the amygdala appears to determine 

what stimuli should be attended to, dependent upon significance.  This role is 

juxtaposed with the role of the visual cortex in attentional effects (Pessoa, 

2008). 

 One other aspect of the cognitive-emotion relationship needs to be 

addressed.  The results from an fMRI experiment by Hariri et al. (2003) using 

natural and artificial fear-inducing visual stimuli, found that by introducing a 

cognitive evaluation task they witnessed attenuation of amygdala activations 

whilst at the same time there was an increase in activations in the right PFC 

(Hariri et al., 2003).  Reciprocal modulation supports the hypothesis of a 

functional neural network between cognitive and emotional processing.  

Similar findings were also found by Taylor and colleagues (2003).  Again 

using IAPS stimuli they found that when comparing passive viewing with 

active viewing employing a simple ratings task, there were correlated 

reductions as well as increases in activations, (e.g. less activation in the insula 

and right amygdala during the cognitive task correlated with greater activations 

in the dorsolateral prefrontal cortex (DLPFC) and ACC) (Taylor et al., 2003).  

This again is consistent with another study reporting an inhibitory effect on 

amygdala response when activations increase in the DLPFC and OFC (Öhman, 

2005).   

 Considering all of this, one cannot deny that there are strong 

interactions between cognition and emotion.   

  

1:4  Attention, Awareness and Perception 

 

We are brought up to believe that it is common sense to ‘pay attention’ to 

something for it to ‘enter’ our conscious experience, as James famously said  

 “My experience is what I agree to attend to” (James, 1890/1950, p 402). 

This follows the assumption that attention causes (or selects) a conscious 

experience.  However, it can also be argued that attention is the effect of a 

conscious experience, for instance, an unexpected loud noise (unattended) 

makes us turn to see where it came from (conscious perception) (Koch, 2004).   
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 It is hypothesised that there are two aspects of attention that can 

influence awareness.  The first is location or salience of an object, the second is 

one of direction, we either voluntarily decide to attend to an object or our 

attention is involuntarily directed from an unexpected source (Kentridge et al., 

1999). 

  Knowledge of object location, for instance, arises from attending to a 

spatial location, but this process does not necessarily entail awareness. The 

spatial characteristics of attention correlate with topographic activation in the 

visual and parietal cortex.  Attention for the purposes of object identification, 

on the other hand, leads to awareness and perception of an object, which 

involves the primary visual cortex and inferior temporal cortex (Milner and 

Goodale, 2006).   

 A relationship between awareness (or lack of awareness) and attention 

is evidenced from lesion studies.  For instance, hemineglect is a spatial disorder 

defined as a lack of awareness for stimuli located contralateral to the site of 

cerebral damage, which is invariably associated with the RH (Bisiach and 

Luzzatti, 1978).  A related phenomenon is extinction, whereby isolated objects 

in the affected visual field can be seen, but when objects are presented 

simultaneously in both visual fields, only the stimulus in the opposite 

unaffected hemifield can be seen.  The problem is not due to visual field 

defects, but to higher order attentional difficulty (Posner, 1994).  A case in 

point was patient GK with right posterior inferior parietal damage.  Using 

fearful or neutral faces and houses presented in either the left or right visual 

field or bilaterally, it was evident that emotional stimuli activated the amygdala 

and OFC regardless of neglect or extinction, indicating processing without 

conscious awareness  (Vuilleumier et al., 2002). 

 Influential studies by Libet and colleagues have investigated the 

temporal distinction between conscious and unconscious processing.  Libet et 

al. (1983) ran an EEG experiment recording activation in the primary motor 

cortex.  The participants were asked to push a button ‘whenever they felt the 

urge to’, the timing of which was recorded from an electrical signal from the 

button press action, and to report when they wished to move.  At around 350ms 

before the participants reported ‘an urge’, EEG activity (readiness potential) 

started, which was 550ms before their actual response.  This led to the 
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supposition that an unconscious commitment for a voluntary action was made 

before intention became conscious (Libet et al., 1983). The controversy 

surrounding the interpretation of these experiments has been reviewed by 

Dennett (1991) who claims that Libet is confusing the time that a 

representation occurs (i.e. when a conscious or unconscious event happens), 

and the representation in consciousness of the timing of an event. Dennett’s 

view is that there is no “fact of the matter about exactly when (in absolute time, 

as Libet would put it) a conscious experience happens” (Dennett, 1991, p 162) 

– there is simply a draft or narrative we construct about the sequence of events.  

Contrariwise, Libet’s explanation, however paradoxical it seems, does make 

sense if we expect there to be a causal connection between neural events and 

behavioural or subjective correlates of those events.  

 Later, using electrodes implanted for treatment of pain, Libet and 

colleagues (1991) induced stimulation at various intervals to participants via 

the thalamus.  The instruction to the participants was to indicate when the 

stimulus occurred via one of two button presses. The result suggested a linear 

progression from unconscious to conscious neuronal functions by 

demonstrating that detection occurred in the absence of awareness, and to reach 

a vague impression of awareness, a longer duration was needed.  Thus by 

increasing duration (‘time-on’) of the same inputs, unconscious functions 

become conscious. Therefore, according to Libet et al., adequate neuronal 

activation is needed for unconscious processing to reach conscious processing, 

intimating that once a ‘noise’ happens, there is unconscious processing before 

the ‘noise’ becomes conscious (Libet et al., 1991). 

 Is there a difference between perception without attention and 

perception without awareness?  Several investigators have made operational 

distinctions between these concepts.  

 One definition of studies of perception without awareness, involves 

stimuli that were unnoticed (i.e. not seen) and could not be identified, because 

the content was degraded, whereas perception without attention is perception 

of stimuli that are unnoticed because they are presented outside attention, (e.g. 

through masking or priming) (Merikle and Joordens, 1997).  Both paradigms 

test implicit (also referred to as unconscious) perception.  Blindsight is an 

excellent example of perception without ‘seeing’, (i.e. without visual 
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awareness).  For instance, patient DB could perform visual tasks accurately 

although he could not ‘see’ (Weiskrantz et al., 1974).  Table 1.1 briefly 

attempts to classify perceptual and behavioural aspects of visual awareness in 

various clinical (or experimental) conditions.   

 

 Can stimulus be 

seen?  (i.e. is the 

person aware that 

there is a stimulus 

present?) 

Can stimulus be 

perceived? (e.g. 

identified)  

Can stimulus 

control 

behaviour? 

Blindsight 

(Weiskrantz et 

al., 1974) 

No To some extent Yes 

Neglect 

(Driver, 1996) 

If no extinction No To some extent 

Visual object 

agnosia 

(Milner and 

Goodale, 2006) 

Yes No Yes 

Optic ataxia 

(Milner and 

Goodale, 2006) 

Yes Yes No 

Subliminal 

perception 

(Enns, 2004) 

No To some extent To some extent 

Table 1.1  Summary of visual impairment  

 It is clear that there are careful distinctions to be made between 

attention, awareness and perception, and to discuss attention thoroughly and in 

context of this thesis, a separate section is now dedicated. 

 

1:4:1  Attention 

 

There is a profusion of stimuli competing for attentional resources at any one 

time and the selective processing of the emotional significance of stimuli is 
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said to have an evolutionary advantage (Pessoa et al., 2002a), in that positive 

and negative affect modulates appetitive and defensive behaviour, ultimately 

leading to reproduction and survival.  As such, only a fleeting glimpse of an 

emotionally relevant cue is sufficient to reach awareness and perception  (Lang 

et al., 1997).  In addition, when the attentional resources directed to a stimulus 

are severely limited over time, as in experiments that render neutral target 

stimuli invisible by using visual masking paradigms, emotional stimuli are still 

detected, especially fear-related stimuli (Dolan, 2002).  Therefore, perception 

of emotion can take place automatically in the absence of attention 

(Vuilleumier et al., 2001).  This view is supported from studies investigating 

the rapid responses of the amygdala for fast detection of emotional stimuli 

without attention or reported conscious awareness.  For example, during an 

emotional learning task two angry faces were presented either as a pair or one 

face paired with an unconditioned stimulus.  The faces were then re-presented 

in a backward masked or unmasked paradigm whereby participants indicated 

the presence of an angry face by means of a button press.  Using PET, it was 

found that a lateralised amygdala response was dependent upon level of 

awareness, in that the unmasked stimuli enhanced the left amygdala and the 

masked stimuli enhanced the right amygdala  (Morris et al., 1998b).  Another 

masking experiment using fMRI demonstrated greater activation in the 

amygdala in response to nonconscious processing of fearful faces as compared 

to happy faces (Whalen et al., 1998b).  

 However, Pessoa et al. (2002b) has argued that even emotion-laden 

faces need some level of attention.  Using fearful, happy and neutral faces in an 

fMRI experiment, it was made evident that processing of emotional stimuli in 

the amygdala, fusiform gyrus, insula, ACC, superior temporal sulcus (STS) and 

prefrontal cortices would only occur when sufficient attentional resources were 

available.  Examination of these results led Pessoa and colleagues to argue that 

previous experiments claiming unconscious processing of emotion did not fully 

engage attention by a competing task.  As an example, Pessoa discusses an 

experiment conducted by Vuilleumier et al. (Vuilleumier et al., 2001), and 

argues that any indication of automatic processing of affect was evident 

because a less attentionally taxing paradigm was employed whilst measuring 

attention and valence.  Therefore, Pessoa et al. concluded that emotion-laden 
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facial expressions are not automatically processed, but are under top-down 

control (Pessoa et al., 2002b).   

 In light of these divergent points of view concerning the role of 

attention in processing emotional stimuli, some main theories of attention will 

now be reviewed. 

 To prevent information overload from the immeasurable onslaught of 

sensory information, our brain has limited capacity to attend to every detail.  In 

fact, if only two tasks that require attention are carried out simultaneously, one 

will interfere with the other (Koch, 2004).  Change blindness (Grimes, 1996, 

Simons and Levin, 1997) is a powerful demonstration of the failure to detect 

what can sometimes be an enormous change between two previously 

indistinguishable scenes because attention was not on the specific point of 

detection, or the saliency of the target was not strong enough to draw attention 

to it (Beck et al., 2001, Wright, 2005).  Correspondingly, by fixating on a cross 

and deciding which arm was longer, participants failed to detect an 

unannounced introduction of a small coloured geometric shape.  This 

phenomenon is known as inattentional blindness (Mack and Rock, 1998), and 

is another example of needing attention to see (Noe and O'Regan, 2000).   

 The main purpose of attentional processing therefore, is to choose 

selected information for further processing and in so doing ignore other 

information.  This has led to theories of competition between neuronal 

representations such as the biased competition model, that favours a bias 

towards relevant information for behaviour and motor responses (Desimone 

and Duncan, 1995).   

 To explain the selection process of attention, the majority of historically 

important theories have followed the ‘pipeline’ model.  The original proposal 

for a pipeline model (Broadbent, 1958), and a revised version (Zeman, 2001) 

both state that preconscious sensory filters act as an ‘attentional bottleneck’ as 

if, metaphorically, on guard duty as to what may pass ‘into’ conscious 

processing (Broadbent, 1958, Zeman, 2001).   

 The Filter Theory originally proposed by Broadbent (1958) was based 

on experiments on selective listening, as inspired by the ‘cocktail party 

problem’ (Cherry, 1953) whereby many conversations are being conducted in 

parallel, but individuals are able to listen and understand only one. 



 
 

 22

Distinctiveness in the physical features of the different speech streams makes 

them easier to separate. In an early selection model two stages of processing 

occur.  First, all incoming information would be filtered for physical properties 

(e.g. loudness, pitch of voice, ear of origin) and second, higher level 

psychological data would be processed (e.g. meaning).  The cognitive 

processes involved in this higher level analysis would have limited capacity 

due to the possible multiple meanings available.  Hence, the emergence of the 

hypothesis of a selective filter guarding against overload, meaning that 

unattended  information would not filter through a ‘bottle neck’ (Broadbent, 

1958).   

 As in the early selection model, late selection theory also proposes two 

levels of perceptual processing.  The first unconscious level identifies and 

rejects non target stimuli in parallel.  Non target stimuli, however, are 

identified and rejected on the basis of meaning, whereas the early selection 

model extracts simple characteristics only, such as colour.  In order to preserve 

the most relevant information, the output passes into a limited capacity system 

into awareness. (Deutsch and Deutsch, 1963, Norman, 1969)   

 Research investigating visual attention has often used a visual search 

task whereby a target, such as a letter T, is detected amongst a number of 

distractors, such as a letter L.  The success of detection is facilitated by the 

level of difference between the target and distractors in terms of colour, form, 

location and size of movement.  According to feature integration theory, 

several object features such as orientation and colour are coded with separate 

feature maps.  These are then integrated in parallel into a saliency map.  If the 

target does not share the same features as the distractors, it ‘pops-out’.  A 

feature search for simple targets that are defined by elementary features is 

performed rapidly and pre-attentively, whereas a conjunction search combining 

these elementary features takes attentional resources that are needed to evaluate 

and bind the object features correctly.  This takes longer when the numbers of 

targets increase in an array of distractors, because the ‘search light’ has to 

attend to each object in turn.  The main premise of feature integration theory, 

therefore, is that attention binds primitive features into objects (Treisman and 

Gelade, 1980).  One of the criticisms of feature integration theory is that it 
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requires that primitive features are processed preattentively, as in an early 

selection model. 

 The early vs late selection debate is still argued, but one contributor has 

tried to resolve this issue.  Whilst reviewing previous research, Lavie found a 

basic inconsistency in comparative methodologies.  Experiments espousing late 

selection typically based their findings on low perceptual load, whereas 

supporters of early selection favoured paradigms employing higher perceptual 

load (Lavie and Tsal, 1994).  Consistent with perceptual capacity limitations of 

early selection and assumed automatic late perception, the load theory of 

attention asserts that if task-relevant (targets) of high perceptual load (e.g. 

multiple stimuli) ‘take up’ full capacity there is no capacity left to process task-

irrelevant (distractors) stimuli.  However, in situations where the target is of 

low perceptual load (e.g. one target, one distractor), capacity is not taken up 

and what is left will process the distractors (Lavie, 2005).   

 Another major contributor to limited capacity theories of visual 

attention is Posner.  Posner et al. (1980) conducted an experiment whereby a 

cued and non-cued light was randomly flashed up on a screen in one of four 

locations.  Participants were instructed to push a button immediately they saw 

the light.  Reaction times were faster for the cued stimuli than the non-cued, 

thus suggesting that detection is more efficient when highlighted by a location 

in space, hence the spotlight metaphor used to describe focal attention (Posner 

et al., 1980). However, the spotlight metaphor has been criticised for its 

incomplete analogy.  For instance, a spotlight scans localities, whereas 

attention disengages and relocates (Cave and Bichot, 1999).  A more 

comprehensive metaphor was introduced to illustrate the on/off analogy, that of 

a stage light which illuminates various actors/stimuli in turn (Sperling and 

Weichselgartner, 1995).   

 Focal attention (spatial search), feature-based attention (feature search) 

and selected attention (look for one feature in a whole object and receive 

further object information) are all examples of top-down, goal-directed 

processing which is generated from outside the visual cortex; and evidence 

from many studies points to the involvement of a fronto-parietal network, 

reviewed by Corbetta (Corbetta, 1998).  A criterion not yet discussed that is 

relevant for visual attention is saliency, i.e. a stimulus that is conspicuous 
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relative to its surroundings.  Independent of focal attention, a salient object is 

stimulus driven, faster, more potent and is relevant for selection purposes and 

automatically attracts bottom-up attention.  Saliency makes feature selection 

easy and conjunction selection more difficult.  A flying insect on a still summer 

afternoon or a lone bluebell in a field of sunflowers are blatantly obvious in 

relation to their surroundings (Koch, 2004).  This conspicuous selection is 

managed by the neurons in a saliency map, thought to be in the visual cortex 

(Treue, 2003), that are encoded for prominence.  The most prominent input 

will have the maximum neuronal firing rate to secure attention via a gating 

procedure.  Neurons excite and suppress one another and a ‘winner takes all’ 

mechanism continues in a searchlight manner for a short time and inhibition of 

return automatically causes a move onto the next salient location (Koch and 

Ullman, 1985).   

 According to an influential theory (Koch, 2004), visual attention is 

gained within a hierarchy of visual areas processing competitive interactions 

from signals from visual input.  Higher areas send bias signals modulating 

bottom-up saliency which focused attention responds to (Braun, 2003).  Hence, 

awareness occurs with the combination of both bottom-up and top-down 

feedback, combining an interactive model of entry and reentry connections 

(Koch, 2004). 

 Theories of attention and capacity limitations have considered both 

bottom-up and top-down processing hypothesising a serial visual search.  This 

principle, however, has been challenged with the work of Li et al. (2002) who 

used categorisation tasks within briefly flashed natural images and found that 

this rapid and fairly complicated visual search connected with high level 

cortical regions.  Their participants were able to identify animals and vehicles 

within natural scenes, which represent a level of processing beyond the 

extraction of simple features.  Moreover they were able to do this in peripheral 

vision while carrying out an attentionally demanding letter discrimination task 

at the fovea.  These findings challenged previous theories of attention by 

contesting preceding notions of capacity limitations (Li et al., 2002) (see also 

section 1:7:2).  

 To elaborate further, studies investigating attention with natural 

everyday images will now be discussed.  



 
 

 25

1:5  Vision and Natural Images 

 

The visual cortex has been described as a highly evolved connectionist system 

organised as feedforward networks in parallel processing layers (Thorpe and 

Imbert, 1989).  Thorpe and Imbert (1989) have shown on the basis of timing 

arguments that only a single forward pass is enough for a significant amount of 

visual analysis.  In a tight linear fashion, as each unit emits one spiking 

discharge, the next unit in a subsequent layer has to respond.  These electrical 

firing rates in themselves are not enough for efficient coding, but the addition 

of spikes (or action potentials) from different sources, (e.g. the enormous 

parallel processing indicative to visual system), enables precise coding of 

analog information.  Thorpe and Imbert (1989) also discuss the presence of 

feedback pathways, but postulate that normal visual processing does not have 

the time to take advantage of these except for taking into account other 

perspectives such as imagery, attention, context etc.  Equally, the advantages of 

extensive parallelism almost eradicate the need for iterative loops (Thorpe and 

Imbert, 1989).   

 Specific information is communicated rapidly between neurons (Koch, 

2004) and at only one spike per neuron at each processing stage, the most 

strongly activated neuron fires first with others firing at different times, and 

this firing order of units is called Rank Order Coding  (VanRullen et al., 1998).  

This is just one example of coding that considers the pattern of spikes and the 

order in which neurons fire.  Other coding schemes of the same ilk include: 

Count Code whereby the number of neurons are counted that have spiked; 

Binary Code which is a more efficient way of counting neurons that have 

spiked, but does lose its validity over relatively longer periods of time; and 

Codes using Synchrony to group neurons into possible phases in a small period 

of time.  The computational implications of different combinations of neurons 

afford far greater insight into the mechanisms to rapid visual processing of 

complex stimuli (Thorpe et al., 2001a).   

 This is by no means an exhaustive list, but these models do illustrate the 

possible efficacy and flexibility of different coding schemes that consider 

spiking neurons. 
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 These hypotheses run counter to traditional coding models, whereby a 

firing rate code is calculated by the mean of a continuous value of a sequence 

of spikes which transmit information carried by each neuron.  The advent of 

research into the visual processing of natural images has brought into question 

the efficiency of this conventional view, as it does not accommodate rapid 

visual processing of complex tasks such as animal detection in everyday 

images.  Such Ultra Rapid Visual Categorisation (URVC) was previously 

thought to be privy to certain categories only (e.g. faces) (Thorpe et al., 2001a). 

 To discuss the apparent features of URVC, a brief explanation is 

necessary.  From the retina, projections are sent to the thalamic relay station 

called the lateral geniculate nucleus (LGN), which in turn sends signals to the 

primary visual cortex (V1).  Contained in the LGN are two major classes of 

neurons.  The magnocellular neurons do not show differential wavelength 

responses from inputs from red, green and blue cones and are therefore 

considered colour blind (Livingstone and Hubel, 1987).  They are also transient 

with large receptive fields affording excellent contrast sensitivity and temporal 

resolution.  It has been proposed that they mediate information regarding 

motion and depth.  The parvocellular cells respond to colour and form, their 

receptive fields are smaller, and they prefer slower sustained input. It has been 

proposed that they mediate fine grained processing for high-acuity vision 

(Koch, 2004). 

 It has been argued that URVC relies on the faster magnocellular 

pathway as monochromatic images are processed more effectively than colour 

images (Delorme et al., 2000).  In an experiment presenting photographs for 

30ms in a categorisation task with animals or food as targets, it was found that 

coarse achromatic information was rapidly processed, indicative of the 

magnocellular pathway (Delorme et al., 1999).  A subsequent go/no-go study 

supported this view, suggesting that magnocellular (achromatic) information 

reaches V1 approximately 20ms before parvocellular (chromatic) (Nowak et 

al., 1995) information and as such may be enough for object recognition 

associated with the ventral stream (Mace et al., 2005).  However, functional 

interpretations of differences between the magnocellular and parvocellular 

systems are controversial.  The anatomical differences that indicate a 

distinction between colour sensitivities is not in question.  Other functional 
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differences, however, are difficult to evaluate as beyond the retina, the two 

magnocellular layers and four parvocellular layers in the LGN unite into the 

primary visual cortex (V1) pathway, which complicates investigation.  Critics 

also argue that ascribed functional differences derive from averaged data and 

reflect marginal differences in receptive field properties (Skottun and Skoyles, 

2006).   

 As already mentioned, URVC does not appear to be category specific.  

URVC for animals, food, novelty, as well as vehicles demonstrates that 

biological significance is not relevant (VanRullen and Thorpe, 2001c).  

Furthermore, animal detection in natural images with a brief exposure duration 

of 28ms flashed at unpredictable locations, provided evidence of highly 

efficient processing in peripheral vision (Thorpe et al., 2001b).  That said, 

recently it was found that ultra rapid face detection in natural images was even 

more efficient than animal detection.  Using a saccade task, accurate response 

to the face stimuli was less than 120ms.  With only time for a feedforward pass 

and one spike per neuron it was hypothesised that the familiarity of faces and 

their very frequent presentations ‘trains’ neurons to fire sooner at each 

exposure.  Thorpe explains that when visual input is unfamiliar, the afferents 

will not have sufficient strength in connections to initiate quick response for a 

neuron, therefore many afferents are necessary.  With repeated stimulation, 

however, some afferents are strengthened until a relatively small number are 

sufficient to spark the neuron more and more quickly.  Therefore, just a few 

combinations of visual features would be enough to process faces very rapidly 

indeed (Thorpe et al., 2006).  

 This premiss, however, contradicts an earlier categorisation study.  

Using novel images it was found that, even after a three week training period, 

speed of processing did not improve.  The inferences made were that complex 

novel stimuli were processed as efficiently as familiar stimuli, suggesting that 

context is not necessary and the speed of visual categorisation is a highly 

automatic feedforward procedure (Fabre-Thorpe et al., 2001).  

 There is no doubt that the evidence for the remarkable speed of visual 

processing of complex images will lead to some fascinating insights, new 

experiments, and much conjecture. Fast feedforward, one spike per neuron 

mechanisms have plausibly shown how complex natural images can be 
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processed rapidly, with neuroimaging and innovative paradigms proving to be 

efficient tools in this line of enquiry.  

 

1:6  fMRI Regions of Interest   

 

The cortical areas reviewed in this section have been functionally charted in 

previous fMRI research as having particular importance in affective or 

cognitive/affective processing.  The nine regions of interest (ROIs) discussed 

in this section are: amygdala, anterior cingulate cortex (ACC), medial 

prefrontal cortex (mPFC), orbitofrontal cortex (OFC), dorsolateral prefrontal 

cortex (DLPFC), parahippocampal gyrus, fusiform gyrus, insula, and superior 

temporal gyrus (STG).  A brief summary of each will now be discussed in 

relation to the variables of interest in this thesis.  It is prudent at this point to 

signpost the fact that neuroimaging studies have progressed at a fast pace and 

investigations have moved beyond functional localisation to analysis of 

distributed networks, most recently identifying remote but interconnected 

networks that are mutually influential in terms of affect (Vuilleumier and 

Driver, 2007).  As this is an investigation using a wide range of complex 

affective stimuli, however, it is wise to consider functional localisation for 

comparison purposes with previous findings using simpler affective stimuli 

relative to the nine selected ROIs.   

 

1. Amygdala   

 

A cluster of nuclei, the amygdala (from Greek ‘almond’) is an almond like 

shape situated in the medial temporal lobe at the tip of each hippocampus and 

is the core of one of the major limbic circuits (Figure 1.2, p 37).  As such, it is 

highly complex in its emotional functions and its projections to subcortical and 

cortical regions (Sah et al., 2003).  However, for the purposes of this discourse, 

the amygdala will be referred to and discussed as a single unit involved in 

various functions with emotional processing. 

 There is an abundance of literature associating the amygdala with fear-

related processing and fear-conditioning (Adolphs et al., 1995, LeDoux, 2003, 

Morris et al., 1998a, Whalen et al., 1998a).  However, there is also growing 



 
 

 29

evidence of the diversity of its functions.  For instance, the amygdala has been 

found to interact with systems associated with cognition and awareness.  This 

has supported the notion that there is an interaction between emotion and 

cognition.  Take, for instance, emotional regulation, which refers to cognitive 

reappraisal of a situation to ‘defuse’ an emotional response.  A study by 

Ochsner et al. (2002) found more activation in the amygdala when attending to 

images of emotional scenes than when reappraising the same category of 

images (Ochsner et al., 2002).  There is also evidence that the amygdala is 

involved in the enhancement of attentional processing, perhaps by altering 

perceptual processing.  As the amygdala is highly interconnected with 

reciprocal connections to the sensory cortex, it is able to provide a constant 

vigilance and reappraisal of emotional stimuli.  This monitoring of the 

significance of input is mediated by two pathways through which the amygdala 

receives information.  One is via a subcortical route that transmits fast, coarse 

visual information bypassing cortical processing, and the other is a slower, 

more complete sensory processing from the cortical sensory regions (LeDoux, 

1998).  Amygdala activation via this subcortical route (e.g. for fear perception) 

(Vuilleumier et al., 2003b) affords a response to stimuli presented below the 

threshold of conscious perception (e.g. a response to a fearful face even in the 

absence of awareness of the face) (Morris et al., 1998b, Whalen et al., 1998b).  

The amygdala response to significant but unattended stimuli appears to 

temporarily engage the cortical areas in conscious adaptive behaviours (Baars 

and Gage, 2007).   

 There is also evidence to suggest that the amygdala has a more 

generalised role in emotional processing, which includes the detection of 

stimulus salience (Liberzon et al., 2003) and the recognition of social emotions 

through facial expressions such as happiness (Adolphs et al., 2002, Breiter et 

al., 1996), sadness (Blair et al., 1999) and anger (Whalen et al., 2001).  It is 

apparent that the amygdala responds to valence in facial expressions, but it has 

also been found that the amygdala rapidly habituates to these stimuli (Breiter et 

al., 1996).   

 A recent synopsis collating evidence from animal and human studies 

summarised the functions of the amygdala as a set of cognition-emotion 

interactions: “implicit emotional learning and memory, emotional modulation 
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of memory, emotional influences on attention and perception, emotion and 

social behaviour, emotion inhibition and regulation” (Phelps and LeDoux, 

2005, p 175).   

 It is also interesting to note that the modulation of levels of affective 

arousal is associated with the amygdala.  For instance, a patient who underwent 

a right temporal lobectomy which included ablation of the right amygdala, was 

asked to rate a series of affective visual stimuli.  Measures of valence were 

concordant with the calibration of the stimuli, however, arousal scores differed 

significantly, with pleasant images rated high in arousal and unpleasant images 

low in arousal, equivalent with the arousal scores of neutral images (Morris et 

al., 1991).   

 

2. Anterior Cingulate Cortex (ACC)   

 

The ACC is a ‘collar’ partially surrounding the corpus callosum and situated in 

the mPFC and forming the uppermost part of the limbic lobe (Figure 1.2, p 37).  

Therefore it is anatomically linked to the PFC, and traditionally its function has 

been linked to emotion.  It has afferent and efferent connections with the 

hippocampus via cortical circuits, and it has numerous connections with other 

areas in the limbic system (Nolte, 2002). Recent studies have identified its role 

in monitoring the autonomic nervous system (ANS), such as heart rate and 

blood pressure (Matthews et al., 2004, Xiao and Barbas, 2004).   The 

importance of the ANS is in organising the bodily response to motivational and 

emotional states, and the perception of these states in signalling bodily states of 

arousal is integral to emotional and cognitive awareness and appraisal 

(Critchley et al., 2002).  The orbitofrontal and insular cortices are two areas 

anatomically and functionally connected to the ACC and which have also been 

linked with ANS stimulation (Oppenheimer et al., 1992).   

 The diversity of the functions ascribed to the ACC suggests that it is 

significant in emotional and cognitive processing and the monitoring of 

complex behaviours.  These functions include associations with working 

memory, attention and emotion (Bush et al., 2000, Damasio, 1994), emotional 

processing (Vuilleumier et al., 2001), the mediation and interaction of 

cognitive and emotional tasks (Reiman et al., 1997, Whalen et al., 1998a, Bush 
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et al., 2000), voluntary attention and divided attention as evidenced by 

conflictual tasks (Bush et al., 2000), reward (Breiter et al., 1997), anticipation 

of affective stimuli (Bermpohl et al., 2006) and pain and empathy (Becerra et 

al., 2001, Singer et al., 2004).  In fact, it has been suggested that the ACC may 

be the start point for urgent signals, such as pain, and redirects the information 

for further neural processing (Rose, 2006).  There is also evidence that the 

ACC responds to angry facial expressions (Blair et al., 1999) and that this 

region identifies emotional significance, then responds and regulates a reactive 

affective state (Phillips et al., 2003).   

 A connection between emotions, the amygdala and the ACC is long-

established in previous literature  (Papez, 1937, McLean, 1949).  The selection 

of the amygdala and ACC as ROIs for the present study was based on the work 

of Damasio (1994), who asserts that if a person knows that something causes 

fear there are two ways of behaving.  The first is a reaction out of our 

conscious control, it is innate.  The second way is to avoid the situation, based 

on past experience.  The innate feeling, Damasio argues, is a primary emotion 

that depends on prime systems such as the amygdala and ACC (Damasio, 

1994).  Further evidence of an interaction between these two regions comes 

from data mapping signals of valence responses from the amygdala to the 

ACC, which is activated when a cognitive task is required to process  

emotional stimuli (e.g. as in rating emotional stimuli) (Phan et al., 2002).   

 

3. Medial Prefrontal Cortex (mPFC).  

 

The PFC is associated with emotional and social behaviour and inhibitory 

control over emotion and consciousness (Solms and Turnbull, 2002).  The 

earliest and most famous case study of damage to the PFC was that of Phineas 

Gage who, whilst working with dynamite, became victim of a freak accident 

whereby a tamping rod was propelled through his cheek bone through the 

frontal lobe and out through his skull, the speed of which cauterised the wound 

and he survived without even losing consciousness (Harlow, 1848).  The 

selective damage included the mPFC and OFC (Damasio, 1994).  The 

consequences were a distinct change in personality, partly characterised by an 

inability to plan for the future and a complete disregard for social norms that he 
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previously adhered to, thus rendering his behaviour socially unacceptable 

(Harlow, 1868).  

  The mPFC (Figure 1.1, p 37) has also been associated with the OFC for 

emotional self-regulation and suppression of sadness in children (Levesque et 

al., 2004) and, as in the OFC, the ventromedial prefrontal cortex has been 

associated with reward and punishment (Bechara et al., 1999).   

 Experiments using film clips to elicit emotion, and studies employing 

the personal recall of happy and sad experiences, or the generation of disgust,  

have also reported activation in the mPFC (Lane et al., 1997b, Reiman et al., 

1997).   

 mPFC activations are evident both with and without cognitive demand, 

such as the rating of emotional stimuli (Phan et al., 2002).  Responsiveness to 

cognitive load would be expected from the proposal that the PFC is a top down 

modulator, (e.g. if an automatic task suddenly needs conscious control, the 

PFC is activated) (Dehaene and Naccache, 2001).  However, studies 

investigating the ventral mPFC (vMPFC) have shown significant activations 

when processing emotional tasks without associative cognitive processing 

(Grimm et al., 2006, Phan et al., 2002). 

 The connectivity of the vMPFC affords cross-modal involvement as it 

is afferent from all five sensory modalities (Barbas, 2000). 

 A study investigating the emotion surprise highlighted that the mPFC, 

which is known to be reciprocally connected to the amygdala, was activated 

during presentations of surprised facial expressions and not to fear-related 

stimuli (Kim et al., 2003).  

 It is hypothesised that the mPFC holds an attentional role in order to 

differentiate between conflicting inputs from other brain regions (Simpson et 

al., 2001a, Simpson et al., 2001b).  A study investigating anticipation of stimuli 

in terms of spatial location found significant activations in the mPFC for 

expected motivational affect, indicating a role for attention and motivation 

(Small et al., 2003).   
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4. Orbitofrontal Cortex (OFC)  

 

The OFC sits above the orbits of the eyes in the ventral prefrontal lobe (Figure 

1.1, p 37) and in part receives information from the inferior temporal visual 

cortex relaying information regarding the representation of objects.  Receiving 

afferents from the amygdala and projections to and from the ACC (to name but 

a few of its limbic connections), the OFC, once damaged, results in emotional 

changes such as irresponsibility, impulsiveness and immaturity (Rolls, 2005).   

 A recent fMRI study demonstrated activations in the lateral part of the 

OFC with punishment and the medial OFC for monetary rewards (O’Doherty 

et al., 2001).  Activation in the ventromedial prefrontal cortex has also been 

identified with reward and punishment (Bechara et al., 1999).  The right OFC 

has also been associated with voluntary suppression of sadness (Levesque et 

al., 2003).   There is also evidence that the OFC responds to facial expressions 

such as anger (Blair et al., 1999).   

 The medial OFC has been related to emotional processing whereas the 

lateral OFC is said to specialise in emotion-cognition synthesis (Drevets and 

Raichle, 1998).   

 

5. Dorsolateral Prefrontal Cortex (DLPFC) 

 

DLPFC (Figure 1.1, p 37) is connected to the orbitofrontal cortex and is 

associated with working memory and executive functions. It has recently been 

of interest to those seeking neural correlates of consciousness (Lau and 

Passingham, 2006).  Again, a variety of functions has been ascribed to it.  

 This area is associated with processing spatial information to facilitate 

the ability to learn sequences of actions via cortical and subcortical regions 

(Robertson et al., 2001).   

 A recent study using IAPS stimuli comparing emotional perception and 

expectancy observed activations in the DLPFC for emotional perception 

(Bermpohl et al., 2006).  The DLPFC is also associated with emotional self-

regulation with the RH as part of a neural circuit in voluntary suppression of 

sadness (Levesque et al., 2003).   
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 Evidence suggests that the DLPFC continues developing until late 

adolescence.  It is not until this stage that cognitive control abilities are fully 

matured, as demonstrated in a go/no-go task investigating voluntary 

suppression and inhibition of response (Durston et al., 2002).   

 Recent studies are highlighting hemispheric lateralisation in the PFC, 

with the left DLPFC cited for the possible integration of emotion and memory, 

and encoding nonverbal material lateralised more to the right (Sergerie et al., 

2005).   

 The DLPFC has been shown to be involved in emotional evaluation and 

regulation, thus suggesting a more generalised role in emotional processing 

(Phan et al., 2002).  Lesion studies support this premise, for instance patients 

with damage to this region are said to be devoid of personality with a general 

indifference and flattening effect (Baars and Gage, 2007).   

 It is also hypothesised that the site of the selective control of attention 

location is in the DLPFC as part of the PFC (LaBerge et al., 2000).   

 

6. Parahippocampal Gyrus.   

 

Adjacent to the hippocampus (the core of another limbic circuit), the 

parahippocampal gyrus (Figure 1.3, p 38) receives afferent projections from 

multiple areas and is efferent to the hippocampus (Gupta, 1999, Nolte, 2002).   

 Within the parahippocampal gyrus is an area known as the 

parahippocampus place region (PPR) because it responds to scenes, landmarks 

and houses (Epstein and Kanwisher, 1998, Epstein et al., 1999, O'Craven and 

Kanwisher, 2000). 

 This region has also been associated with surprise and novelty detection 

(Schroeder et al., 2004), with weak responses found when processing bodies, 

faces and inanimate objects (Baars and Gage, 2007).   

 

7. Fusiform Gyrus  

 

The fusiform gyrus is a long gyrus that runs along the inferior surface of the 

cortex from the temporal lobe to the occipital lobe (Figure 1.3, p 38), hence it 
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is also known as the occipitotemporal gyrus.  It is also bound medially by the 

parahippocampal gyrus (Nolte, 2002).   

 Part of the fusiform gyrus has been especially identified for processing 

faces, this area is known as the fusiform face area (FFA) (O'Craven and 

Kanwisher, 2000, Schultz et al., 2003).  Damage to this area can result in 

prosopagnosia, an inability to recognise faces (Wada and Yamamoto, 2001).  

The FFA has also been associated with the processing of emotional facial 

expressions.  Ganel and colleagues (2005) found that the FFA showed higher 

activations when making judgements of facial expressions than when making 

judgements of facial identity (Ganel et al., 2005).   

 The FFA does not process faces exclusively as it is also activated when 

visually processing objects.  One theory is that, as there is evidence for both 

face and object processing by the FFA, this area may be specialised in the 

expertise of object recognition, the idea being that whilst people are all experts 

at face recognition if visually able, testing subject-matter-experts with 

representations of their expertise may also reveal activation of the FFA.  Car 

and bird experts were presented with faces, familiar objects, cars and birds.  

The results confirmed the ‘expertise hypothesis’ in that the RH did respond 

more favourably to the target stimuli for each group (Gauthier et al., 2000).   

 Although the FFA is very small, it is found that in the healthy, the FFA 

is larger in the RH than the LH (Koch, 2004). 

  

8. Insula.   

 

Situated at the floor of the lateral sulcus, the insula (its appearance is that of a 

separate island of cortex) is a large area of cortex which is concealed by the 

temporal, frontal and parietal lobes (Figure 1.1, p 37) and as a consequence of 

its hidden location is little understood (Solms and Turnbull, 2002).  However, 

it is known to receive afferents from autonomic regions, sending efferents to 

brain regions such as the amygdala, which play a critical role in the regulation 

of autonomic response (Davidson and Irwin, 1999).   

 The insula is well documented for processing the emotion disgust 

(Calder et al., 2001, Phillips et al., 1997, Phillips et al., 2004).  This may be 

because it is situated in an area known for gustatory processing, which is 
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associated with distaste (e.g. disliked food) and it is thought that distaste has 

evolved with increasing cognitive involvement into the emotion disgust (e.g. in 

avoidance of contaminated food) (Rozin et al., 1994).  This account runs in 

parallel with the notion of a role of the insula in interoception, (e.g. gut 

feelings, feelings of inner organs) (Baars and Gage, 2007).  The primary 

function of the insula could be interpreted as assimilating bodily information 

into cognitive and emotional systems. In fact, asymmetry of the insula is 

evident for control of autonomic activity, (e.g. LH yields parasympathetic 

effects and RH sympathetic effects) (Craig, 2005).   

 Others have argued that the insula has more of a generalised role in 

emotional processing (Critchley et al., 2002) such as identifying emotional 

significance and automatically responding with an appropriate affect (Phillips 

et al., 2003).   

 

9. Superior Temporal Gyrus (STG).   

 

Close to the lateral sulcus, the STG sits at the top of the temporal lobe (Figure 

1.1, p 37).  The size and configuration is different in each hemisphere, with the 

left generally being the larger (Nolte, 2002).  Wernicke’s area, responsible for 

speech perception and production, is adjacent to the auditory cortex in the 

Sylvian fissure and STG (Baars and Gage, 2007).  The right STG has been 

linked to the processing of emotional vocalisations (Fecteau et al., 2007) and 

humour (Mobbs et al., 2005), but its functions are not limited to auditory and 

linguistic stimuli.   

 There is evidence that the STG responds to selective attention to 

emotional perceptions of faces (Narumoto et al., 2001).  Others using fMRI 

with picture and film stimuli found activation in the STG when viewing 

joy/amusement and sadness (Britton et al., 2006a), and another study 

presenting visual stimuli evoking sexual arousal also noted significant activity 

in the STG (Yang, 2004).   
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Figure 1.1 Lateral view of the brain showing selected brain regions – DLPFC; Insula; mPFC; 
OFC; and STG 
Modified from: 
http://basis.typepad.com/photos/uncategorized/2007/06/12/ashes2_21.jpg and 
http://www.medicine.uiowa.edu/CDD/Images/brainSM.jpg  
 

 
Figure 1.2  Medial view of the brain showing selected brain regions – ACC and Amygdala 
Modified from: 
http://thesituationist.files.wordpress.com/2007/06/amygdala.jpg  
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Figure 1.3  Medial view of the brain showing selected brain regions – Fusiform gyrus and 
Parahippocampus 
Modified from: 
http://www.psypress.com/zaidel/images/figures/figure3_3.jpg 
 
 All these regions continue to be the subject of lively debate as to their 

functions, and all nine target areas attract fervent research in both conscious 

and unconscious studies of emotion and are the framework for this discourse.   

 

1:7  Processing of Complex Affective Visual Images.  

 

1:7:1  Introduction   

 

An enormous amount of data has derived from lesion studies, animal studies, 

behavioural and neuroimaging studies using simple visual stimuli.  However, 

the volume of previous research using complex, natural, affective images is 

much more limited. The following section will therefore review studies that 

have used natural images to investigate early visual processing, studies using 

affective natural images including IAPS stimuli (focusing particularly on the 

issue of automatic emotional processing), and fMRI studies relevant to 

emotional valence discrimination in terms of the different levels of spatial scale 

available in natural images. This will highlight what is known, what has been 

tried, what has worked, what has been disputed, and what still needs to be 

Parahippocampus Fusiform gyrus  
(medial temporo-occipital gyrus) 

Frontal 
lobe 
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investigated.  The review will therefore point towards and provide a rationale 

for the main research questions to be addressed in this thesis.  

 

1:7:2  Natural Images 

 

Using natural images, the effect of rapid serial visual presentation (RSVP) has 

been studied for nearly forty years.  Potter and Levy (1969), for instance, were 

concerned with understanding how perception of rapidly presented images was 

processed in a recognition memory study using 16 static colour photographs of 

various complex pictures presented in rapid succession.  The results of the 

subsequent recognition task led the authors to conclude that visual stimuli 

presented rapidly are not held in short-term memory, but are processed 

individually, dependent on viewing time (Potter and Levy, 1969).  Potter 

continued using this paradigm in further detection studies whereby 

identification of the presence of a target, (e.g. a car), or recognition of a correct 

picture sequence, revealed that it takes as little as 100ms to understand a 

picture and therefore be immune to visual masking (Potter, 1976).   

 A very extensive literature from Thorpe and colleagues has continued 

this line of enquiry, demonstrating, for example, ultra rapid processing of 

complex natural images (20ms exposure) using ERPs (Thorpe et al., 1996).  

Investigating how fast the human visual system can process naturalistic 

images, they employed a go/no-go categorisation task.  Their results indicated 

that less than 150ms of visual processing is needed to decide if an image 

contained an animal or not.  Their findings provided evidence that a minimum 

of coarse information was enough to correctly decide the presence or absence 

of an animal in a natural scene.  This level of rapid processing was previously 

thought to be associated with face processing only.  On the basis of the many 

known neural stages of processing in the visual pathways, and the rapidity of 

visual processing in behavioural experiments, the involvement of a 

feedforward mechanism was speculated (Thorpe et al., 1996).   

 Thorpe et al. (2001b) noted that very little data was available on visual 

perception of natural images presented in the periphery.  To investigate further, 

the same go/no go categorisation task was used with stimuli presented in the 

retinal periphery, in which unmasked natural images randomly appeared in one 
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of nine locations for 28ms.  This challenging method of presentation meant that 

attention needed to be widely distributed across the visual field without time 

for saccades.  Even under these conditions, a significant level of correct scores 

was recorded in the periphery.  This experiment demonstrated that high-level 

analysis on coarse visual information is possible, regardless of the orientation 

of spatial attention in a fusion of characteristics such as colour, shape and size 

(Thorpe et al., 2001b).   

 Contemporaries of Thorpe have reported similar results.  These include 

experiments using novel, compared to familiar, natural scenes in a go/no-go 

animal detection task (Fabre-Thorpe et al., 2001), faces compared to animals 

(Rousselet et al., 2003, Rousselet et al., 2004b), presenting one, two or four 

natural scenes in a peripheral paradigm (Rousselet et al., 2004c) and comparing 

‘natural’ animals with ‘artificial’ means of transport (VanRullen and Thorpe, 

2001a).   

 Together these findings support the concept of an automatic 

feedforward mechanism (i.e. bottom-up ascending wave of action potentials, 

non-iterative) and parallel processing, in that the processing of complex images 

does not necessarily need sequential focal attention, but can be rapidly 

accessed in parallel (Rousselet et al., 2002).   

 Thorpe and colleagues explain that if stimuli are presented for 10ms or 

less, there is only time for neurons to generate just one spike and the neuron to 

fire first is the most strongly activated one.  Thus, the order of this rapid 

feedforward influence can be observed and inferences can be made about the 

stimuli (Thorpe et al., 2006).    

 Since Thorpe first set the temporal parameters for single-fixation visual 

processing at 150ms (Thorpe et al., 1996), others have since shown that the 

minimum saccadic reaction time was as little as 120ms.  Using a forced-choice 

animal detection task, two complex images were flashed left and right of 

fixation.  A simple decision of left or right was made with the mean reaction 

times at 228ms and a mean accuracy of 90% (Kirchner and Thorpe, 2006).  As 

a result Kirchner and Thorpe reasoned that if saccades are made as quickly as 

110ms with a 20ms initiation time lapse, this is further evidence of only a 

feedforward pass.  To verify this explanation, Thorpe et al. (2006) carried out a 

version of Kirchner and Thorpe’s saccade-choice task.  Two images were 
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displayed for 400ms to the left and right of fixation; one contained a natural 

image of a human face and the other a natural scene.  An electrooculogram 

(EOG) recorded the direction of the initial saccade, classifying eye movements 

towards the face stimuli as correct and the scene images as incorrect.  The 

mean RT was 147ms with a mean accuracy of 94.4%, the highest level of 

accuracy was for the fastest RTs of 100-109ms stimulus onset asynchronies 

(SOAs) (Thorpe et al., 2006).  The ultra-rapid success of face detection was 

seen as support for feedforward processing on two counts.  Firstly, the work of 

VanRullen and Thorpe has shown that relatively large objects can be identified 

in complex images when <1% of ganglion cells in the retina have fired only 

one spike (VanRullen and Thorpe, 2001b).  Secondly, (as briefly mentioned in 

section 1:5) studies have shown that by repeating stimuli presentations, a 

neuron will fire faster and faster, some synapses are strengthened and then 

depressed.  If this process continues, the synapses become so strong that fewer 

are necessary to fire the neuron (Guyonneau et al., 2004).  Thorpe raises the 

question that, if training has such an effect, then perhaps the fact that human 

beings process faces so often throughout their lives may mean that selective 

face detection is possible on very little information, which would explain the 

incredible speed of the face detection results (Thorpe et al., 2006) (see also 

section 1.5). 

 It should be noted at this point that much of the work by Thorpe and 

colleagues uses response times (RTs).  RTs have the inherent disadvantage of 

including not only the time interval to process visual input, but also the time 

interval to initiate a motor response.  Considering this, however, these 

experiments do demonstrate the incredible speed of visual processing, but this 

does not necessarily indicate the timing of the onset of a visual conscious 

percept.  In fact, critics note that animal detection is achieved with virtually the 

same exposure duration with or without masking, even when participants have 

hardly consciously seen anything at all (Koch, 2004).       

 Equally, it is widely acknowledged that a single feedforward pass will 

not extract all necessary information about a complex image, therefore an 

animal detection task may also involve top-down influences (Fize et al., 2005), 

perhaps due to the involvement of the PFC for categorisation purposes even 

under ultra-rapid presentations (Masquelier and Thorpe, 2007).  Others have 
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proposed that the visual system needs both feedback and feedforward loops in 

multiple computational arrangements to process complex natural images (Lee 

et al., 1998).  For instance, Codispoti et al. (2006b), interested in the neural 

sources of selective attention, conducted a study using a forced-choice 

paradigm of whether an animal was present or not in a natural scene.  They 

found that early ERP activity (150ms) indicated top-down influences  

facilitating the rapid categorisation task (Codispoti et al., 2006b).  Hochstein 

and Ahissar (2002) also suggest that feed-forward processing can only extract a 

generalised interpretation of an image which they describe as “vision at a 

glance”, whereas top-down processes are needed for more detailed conscious 

visual perception, in their words “vision with scrutiny” (Hochstein and Ahissar, 

2002, p 791).   

 As mentioned in the introduction, other contributors, Li et al. (2002) 

compared simple visual stimuli – Ts and Ls – with natural scenes in 

attentionally demanding tasks.  They found that, when challenging attention 

capacity with rapid peripheral categorisation of a single or dual task, the 

natural images were far more robust in speed of processing than the simple 

geometric shapes (Li et al., 2002).  Even though Potter, Thorpe and 

contemporaries have continued to scrutinise the speed of visual processing of 

natural images, Li et al.’s experiment was considered pivotal because it 

demonstrated that observers could process the gist of a natural image outside 

the focus of attention more efficiently than simple shapes, thus challenging 

previous notions that only elementary features of an image such as orientation 

and brightness can be processed in the near absence of attention.  As such, this 

counteracts the erroneous belief that capacity limitations can be generalised 

from traditional geometric shapes to natural images (Braun, 2003).   

 These papers try to explain how complex natural images can be 

processed rapidly and, of course, this debate is still being developed.  By 

employing categorisation/detection tasks measuring RTs and/or ERP 

recordings, these contributions challenge traditional views of the necessity of 

serial focal attention for high level visual processing and elucidate the value 

and importance of using natural images.  However, the question posed in this 

thesis is whether or not the affective content of natural images can be extracted 

in rapid, parallel fashion as is employed in the detection of animals, faces, or 
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means of transport.  To continue this review, studies using affective natural 

images will now be discussed.  This relevant but separate literature examines 

what happens when rapidly processed emotional stimuli are introduced, 

whereby affective evaluation takes place automatically, below conscious 

threshold for everyday images.   

 

1:7:3 Affect and Natural Images including IAPS  

 

Appetitive and aversive images evoke strong motivational, affective responses 

that rapidly modulate attention (Lang et al., 1997).  Emotionally evocative 

images are used to induce positive (high valence) and negative (low valence) 

emotions with moderate to high levels of arousal, the highest levels of arousal 

being induced by erotica and threat, which are of primary biological relevance 

(Bradley et al., 2001a).  Subjective reports, physiological events such as SCRs 

and bioelectric events have been used as measures of the temporal 

characteristics of emotional response (Lane and Nadel, 2000).   

 Using an oddball paradigm with mostly high arousal IAPS stimuli 

interspersed with unpleasant symbols and words, Schupp and colleagues 

(2000) showed that emotional pictures enhance late positive potentials (LPPs).  

A stimulus was displayed for 1.5s, followed by a categorisation task that took 

between 1.5s - 3s.  The participants initiated each sequence. EEG and EOG 

readings firstly demonstrated that the LPPs did not change with intermittent 

symbolic stimuli and secondly, that the LPPs were similar for pleasant and 

unpleasant stimuli, which were both greater than those to neutral pictures.  The 

authors concluded that affective stimuli sustain LPPs and LPP amplitudes 

increase with higher arousal and the motivational relevance of emotion-

inducing stimuli modulates late ERPs (Schupp et al., 2000).  Continued 

investigations support this conclusion.  By using briefly presented stimuli at 

120ms, it was found that LPP amplitudes during ERP studies were larger in 

response to late selective processing over centro-parietal areas and a greater 

negative shift in ERPs over temporo-occipital sensors indicated early selective 

processing at around 150ms (Schupp et al., 2003, Schupp et al., 2004).  High 

arousal showed greater sensitivity, however Schupp et al. (2003a) noted erotic 

images elicited greater response than all other stimuli.  They noted a problem 
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with the gender ratio in their sample (14 women and 2 men) and reflected upon 

gender differences being a consideration (Schupp et al., 2004).   

 These LPP findings were supported in an EEG experiment by Cuthbert 

et al. (2000) who were interested in assessing the brain’s motivational systems 

when presenting affective images.  Using pleasant and unpleasant IAPS 

pictures of high arousal and neutral stimuli, a positive voltage change began at 

200-300ms, reaching maximum amplitude at 1s and sustained for 6s.  In 

addition, they also found that the duration of the positive slow waves was 

maintained for 5s, suggesting continued affective perceptual processing.  This 

suggests that the processes giving rise to the LPP begin relatively early and that 

consequently the emotional content is at least partially identified by this stage. 

Together, these results were interpreted to mean that affective stimuli reflect 

activity in motivational organisation in the brain and greater allocation of 

attentional resources due to the intrinsic biological nature of the stimuli 

(Cuthbert et al., 2000).   

 Consistent with these results, LPPs were greater when viewing 

emotionally arousing stimuli than neutral stimuli in the absence of external 

cues, judgement tasks or responses.  Neither valence nor arousal affected the 

outcome, but Anokhin et al. (2006) recorded early content-specific ERPs by 

erotic stimuli as opposed to non-erotic stimuli at 185ms in the fronto-central 

region.  The distinct rapid automatic discrimination when passively viewing 

erotica compared to all the other positive, negative, and neutral stimuli, led 

them to speculate a specific neural network for processing biologically and 

evolutionary relevant stimuli.  However, the content of some of the other 

pictures was also biologically significant, (e.g. threat related scenes), from 

which they further hypothesised that the apparent content dissociation may be 

specific to social meaning as opposed to biological significance.  The study 

was limited in as far as the sample group were all female and only a small 

number of EEG electrodes (19) were used, which casts a doubt over the 

accuracy of localisation of electrical activity.  The results of content specificity 

associated with fronto-central regions are unusual in ERP studies, whereby 

more general measurements of neuroelectrical responses relating to affect are 

the norm (Anokhin et al., 2006).   
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 Hajcak et al. (2007) were interested to know if a difficult concurrent 

task would modulate electrocortical response to everyday images of emotional 

content.  Using a mathematical competing task they presented positive, 

negative and neutral IAPS stimuli for 2000ms in an EEG study.  In line with 

previous passive viewing paradigms, LPP modulation was greater for positive 

and negative stimuli than neutral stimuli and the concurrent competing task had 

no impact on affect, although the mathematical performance was not measured 

in terms of influencing emotional processing (Hajcak et al., 2007).   

 Investigating affective anticipation in an EEG study, Takeuchi et al. 

(2005) set out to refine previous findings on the effect of emotional content on 

stimulus-preceding negativity.  By manipulating negative, positive and neutral 

IAPS stimuli they found that the negative pictures elicited higher arousal 

during the anticipatory period (Takeuchi et al., 2005).  In support of these 

results, a recent study investigating a bias in attention towards negative IAPS 

stimuli presented for 1200ms, observed greater amplitude in P2 in response to 

negative affective stimuli than positive, indicating very early negativity bias. 

There was also a greater amplitude in late positive components (LPC) to 

negative stimuli, demonstrating later evaluative processing, and a shorter 

lateralised readiness potential (LRP), meaning a negative shift preceding motor 

processes, signifying a faster response to negative affective stimuli, thus 

demonstrating a negative valence bias (Huang and Luo, 2006).   

 Equally, ERPs were able to detect differences between early and late 

processing of targets, however due to spatial resolution constraints, 

interpretation of ERP activity was restricted, both in terms of inferences about 

the brain structures giving rise to the waveforms studied, and inferences about 

their related functions (Huang and Luo, 2006).   

 So far, it has been demonstrated that pleasant and unpleasant images 

evoke larger LPP responses than neutral images and that ERP responses are 

sensitive to motivational biological relevance (Bradley et al., 2003).  On the 

whole, emotional arousal was reflected in the ERPs, but to a lesser extent so 

was valence in that greater ERP positivity was found for unpleasant images 

than pleasant or neutral images (Cuthbert et al., 2000).   

 Additionally, SCR has been widely used to investigate rapid affective 

processing.  Investigating hemispheric differences to IAPS emotional visual 
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stimuli in a masked paradigm, Kimura and colleagues (2000) presented target 

stimuli in the left or right visual field for 30ms with EOG and no saccadic eye 

movements were indicated.  They found right hemisphere dominance (RHD) in 

SCR response to negative stimuli without awareness (Kimura et al., 2004).  

However, only negative and neutral stimuli were used and the sample group 

were purely male, therefore, valence bias and a biased sample render it difficult 

to generalise.  All the same, a previous study recorded RHD for briefly 

presented stimuli with greater effect for negative stimuli than positive 

(Hartikainen et al., 2000).   

 Pleasant IAPS pictures were employed by Ribeiro, et al. (2007), to 

investigate physiological responses to arousal.  Measuring facial 

electromyographic (EMG) activity, heart rate, SCRs and peripheral 

temperature, eight highly pleasant arousing, eight highly pleasant relaxing, 

eight neutral and eight highly unpleasant arousing IAPS pictures were used.  

The rationale was that sets of pleasant photographs may contain mixed arousal 

levels because they included ‘arousing’ and ‘relaxing’ pictures (Ribeiro et al., 

2007).  This logic seems flawed.  First, if all the pleasant and unpleasant 

stimuli were rated equally for arousal there would be no need for two subsets in 

the pleasant category.  Secondly, the valence bias could distort the results.  

However, the overall findings were that physiological responses varied 

depending upon valence and arousal.   

 Prior to this experiment, in order to examine the organisation of 

emotional perception in terms of motivational systems such as pleasure and 

arousal, Lang and colleagues (1993) presented IAPS stimuli for 6s, 

implemented ratings, personality and cognitive attributes questionnaires and 

then re-presented the stimuli measuring corresponding feelings.  Regardless of 

personality factors and gender differences, a significant relationship was found 

between facial EMG, output valence judgements and SCRs with arousal 

(excited/calm) (Lang et al., 1993).   

 Other contributors have found larger electrodermal responses such as 

SCRs for high arousing stimuli such as threat and erotica (Bradley et al., 

2001a, Bradley et al., 2001b) and a correlation between valence and facial 

EMGs (Davis et al., 1995).   
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 By using physiological methods such as EMG and SCRs and adding 

affective information to RSVP, autonomic and somatic responses indicate 

emotional processing of rapidly presented affective stimuli.  This was 

evidenced in a rapid picture viewing paradigm whereby physiological 

responses were heightened when viewing unpleasant IAPS stimuli as opposed 

to pleasant and neutral pictures (Smith et al., 2006). 

 It is clear by the evidence presented here that natural images are 

successfully used to investigate affect when using the temporal advantages of 

electrodermal responses measured by SCR and neuroimaging techniques such 

as EEG.  Equally neural activity measures such as ERP are highly sensitive to 

synchronised firing of neurons but have indeterminate spatial resolution.  One 

of the advantages of using fMRI is that it provides excellent spatial resolution 

without depending on fine temporal scales.  Therefore, fMRI and affect will 

now be discussed in detail, examining studies of both conscious and 

unconscious affective processing.   

 

1:7:4  fMRI 

 

Measuring the Blood Oxygenation Level Dependent (BOLD) response to 

regional blood flow changes affords more accurate spatial data with regard to 

brain circuitry and functions.  This has led to a miscellany of affective fMRI 

research projects being explored in recent years.  Topics ranging from gender 

differences (LaBar et al., 1998, Levesque et al., 2004, Wrase et al., 2003), 

schizophrenia (Fahim et al., 2004), suppression (Beck, 2002), expectancy 

(Beck, 2002), supraliminal and subliminal exposure duration (Williams et al., 

2006), and comparative stimuli studies such as fearful and angry faces versus 

other types of fearful and angry images (Hariri et al., 2002), have rapidly 

enlightened our understanding of emotion and the neural correlates.   

 Studies investigating gender differences in brain activations during 

emotional processing, for instance, have found some disparity in neuronal 

structures, enough to suggest that gender should be taken into account when 

interpreting results.  One such study by Wrase et al. (2003) presented IAPS 

stimuli for 750ms.  Their findings demonstrated that men showed greater 

activations in the left amygdala and frontal lobe than women when viewing 
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positive stimuli, whilst viewing negative stimuli, women showed greater 

activations in the anterior and medial cingulate gyrus (Wrase et al., 2003).  

However, LaBar et al. (1998) conducted another gender analysis using fMRI 

and IAPS images and found RHD in the amygdala in female subjects compared 

to male, but in both, the amygdala showed greater activation when evaluating 

negatively arousing scenes (LaBar et al., 1998).  In addition, Levesque et al. 

(2004) observed greater BOLD activations in the PFC in female children in a 

suppression of sadness paradigm as compared to adult females using the same 

method.  These findings were related to the immaturity of the PFC (Levesque 

et al., 2004).   

 In order to pinpoint brain regions that correlate with previous ERP 

studies, a replication of Thorpe’s ERP paradigm of an animal go/no-go 

categorisation task briefly presented for 33ms was carried out (Thorpe et al., 

1996).  Using fMRI, similar robust results were found, highlighting regions 

that correlate with previously reported early selective processing (Fize et al., 

2000).   

 Whilst making the point that diligence needs to be practised when 

discussing the distinction between perception of emotional valence and elicited 

emotional experience, Beck (2002) made plain the differences in the neural 

correlates activated by the two conditions: perception of positive and negative 

stimuli was associated with parieto-occipital cortex; and experience or 

‘feelings’ involved the mPFC.  In the same paper, she investigated the 

conscious inhibition of sadness and amusement. Whilst watching the same 

emotional film clips as the previous experiment and following the instruction 

of suppressing any emotional feelings, they found that in both conditions 

activations in the inferior frontal gyrus and insula were evident.  The 

experience of amusement, however, witnessed greater activations in the STG, 

putamen, parahippocampus, medial temporal lobe and the thalamus, and the 

suppression of sadness was associated with the visual cortex, thus indicating 

that the regulation of emotion is subserved by discrete neural correlates (Beck, 

2002).   

 Beck’s study investigated conscious inhibition of affect, but fMRI does 

not have the temporal parameters to pick up true affective change (Panksepp, 

1998).  As previously mentioned, PET is far better suited for the necessary 
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time course, as evidenced by other investigators.  Damasio, for example, used 

PET to compare recalled and re-experienced personal emotional episodes 

inducing the feelings of sadness, happiness, anger and fear.  By monitoring the 

specific neurochemical system afforded by PET technique, neural patterns 

were observed in direct relation to the immediacy of the associated feeling 

(Damasio et al., 2000).  Whereas fMRI measures blood oxygenation related to 

local changes and therefore, does not measure neuronal responses directly, 

moreover the fMRI time-course of the haemodynamic response does not 

necessarily reflect the time course of the underlying neural activity (Jezzard et 

al., 2001).   

 Although Beck quite rightly emphasised the distinction between 

affective feelings and perception, her study did not take this into account on a 

pragmatic level.  This is a pivotal point.  Therefore, as the central premise of 

the present discourse is to investigate specific ROIs in relation to neural 

correlates of conscious and unconscious processing of emotion, for which 

fMRI is best suited, it is pertinent to focus on the cognitive perception of 

affective stimuli only (Panksepp, 1998).   

 Comparing cued emotional and neutral IAPS stimuli to elicit 

expectancy with uncued emotional and neutral pictures to gauge perception, 

Bermpohl and colleagues found that the two conditions recruited discrete 

neuronal networks.  The resultant dissociation led them to deduce that 

expectancy and perception are two different components of affective 

processing (Bermpohl et al., 2006).  However, they stated that the IAPS 

pictures are matched for colour, complexity, semantic content and luminance, 

relating to valence, but IAPS make no such claim; in fact it is difficult, to 

balance all these criteria in this selection of natural images.  Equally, their 

experiment was not valence-specific.  Therefore, it was difficult to know 

exactly what stimuli they used and how criterion was established.   

 Many studies use IAPS stimuli in supraliminal presentations.  One such 

study implemented by Bradley et al. (2003) investigated the motivational view 

of emotional organisation, in that appetitive and defensive motives direct 

attention.  Presenting IAPS stimuli with Japanese and Caucasian faces, which 

were rated for arousal and valence following the IAPS scale, for 12s each, they 

found that greater cortical activations were in direct relation to stimuli with 
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high ratings of arousal, such as erotica and evidence of threat, (e.g. body 

mutilation), regardless of colour/greyscale presentation.  Therefore, greater 

functional activity was observed for survival-related stimuli providing evidence 

of  motivational attention (Bradley et al., 2003).  This was an all male study 

and it was not clear who rated the non-IAPS stimuli, therefore values and effect 

of arousal may have been biased by gender considerations.   

 Effects of IAPS ratings of arousal levels were also investigated in 

another gender biased study with nine females profiled as fearful and nine 

profiled as non-fearful, where activity in the amygdala and inferotemporal 

visual cortex was examined.  Presented with threatening and non-threatening 

categories of stimuli for 6s, it was demonstrated that the amplitude of 

activation in the two ROIs is directly correlated with ratings of arousal levels 

and is sensitive to individual disposition (Sabatinelli et al., 2005).   

 In an effort to match the properties of the content of a selection of IAPS 

stimuli (e.g. colour), Northoff and colleagues (2000) presented various 

categories of stimuli rated for positive and negative affect for 6s.  Using a 

combination of fMRI and magnetoencephalography (MEG), the investigators 

were able to present evidence of early, strong activation in the medial OFC  

when processing negative emotion, and later, weaker lateral OFC and lateral 

PFC when viewing positive emotion.  These results demonstrated that the 

medial and lateral OFC subserve different affective functions (Northoff et al., 

2000).  Although the authors state, however, that the images only differed in 

valence and not in arousal, they also explain the picture selection by giving the 

example of a ‘mutilated face’ for a negative image and a ‘smiling baby’ for a 

positive image.  These two examples are quite clearly different arousal ratings, 

so it is not clear what was actually being measured.  

 Grimm, et al. (2006), who supports the view that regions in the PFC 

process distinct emotional functions, conducted a very neat study.  Using IAPS 

stimuli of human faces and human figures, they compared affective judgement 

with affective viewing whilst watching each image for 4s.  They reported 

involvement of the vMPFC with valence processing; the right ventrolateral 

PFC controlling arousal judgement; the DLPFC with valence evaluation; the 

dorsomedial PFC with an interaction with attention and judgement of affective 

arousal; and the perigenual ACC with recognition of response (Grimm et al., 
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2006).  The stimuli chosen were emotionally evocative human images only.  It 

would have been interesting to test for the effect of non-human affective 

images (e.g. inanimate objects), to clarify if the results were purely an 

indication of the comparison between judgement and viewing conditions or 

indicative of the chosen stimuli.   

 Research using fMRI and IAPS stimuli investigating conscious 

processing of emotion are harvesting both interesting and excellent results.  

Some of these use facial expressions with IAPS stimuli as in enquiries if the 

amygdala demonstrates stronger activations for faces relative to stimuli of less 

social significance with regards to fear and threat (Hariri et al., 2002), or ROI 

analysis examining the effect of happy, sad, angry and fearful conditions 

revealing distinct and overlapping neural correlates of faces and IAPS stimuli 

(Britton et al., 2006b), or a design using IAPS images with additional 

photographs from various photographic sources calibrated by independent 

raters (Mourao-Miranda et al., 2003).  Equally, there are those studies that use 

IAPS only and divide them into categorical subsets.  For instance, Hariri et al. 

(2003) chose two subsets of IAPS stimuli depicting threat, one set was of 

natural images such as snakes and sharks and the second set of artificial 

images (e.g. guns and air crashes).  There were three experimental conditions, 

one was a matching task, selecting which 2 out of 3 images matched, the 

second condition showed a target image and two linguistic labels, ‘natural’ and 

‘artificial’, and the participants were asked to label the picture accordingly, the 

third was a control condition.  The purpose of the study was to investigate the 

dynamics between the limbic system (engaged by the matching condition) and 

the neocortical regions (stimulated by the higher cognitive demands from the 

labelling condition).  It was found that perceptual processing in the matching 

task activated the amygdala bilaterally, but amygdala response was attenuated 

when cognitive evaluation took place, which correlated with greater activation 

in the right PFC and ACC.  Thus highlighting the importance of the role of the 

PFC and ACC in modulating amygdala response through conscious appraisal 

and evaluation (Hariri et al., 2003).   

 What of fMRI studies looking at emotional processing below the 

threshold of conscious awareness? 
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 Most of the fMRI studies investigating unconscious affective 

processing report findings from stimuli of facial expressions.  These include 

studies on healthy participants examining the effects on the amygdala when 

presented with unattended fearful faces (Etkin et al., 2004, Pessoa et al., 2005b, 

Reinders et al., 2006, Zipern, 2004), with masked (Whalen et al., 1998b) and 

selectively attended fearful and happy faces (Williams et al., 2005), as well as 

an emotional learning study using masked angry faces demonstrating amygdala 

lateralisation; RH for masked presentations and LH for unmasked presentations 

(Morris et al., 1998b).   

 Amygdala activations have been investigated along with other brain 

regions in a study using sad and happy faces in a backward masking 

experiment (Killgore and Yurgelun-Todd, 2004).  The target stimuli were 

presented for 20ms followed immediately by a neutral face for 100ms.  

Bilateral activations were evident in both the amygdala and ACC for happy 

faces, but sad faces generated only ACC activations in the LH.   Equally, when 

comparing faces mediating fear and disgust, the amygdala responded to covert 

fear and the insula to covert disgust (Phillips et al., 2004).  Both these studies 

are examples indicating that different regions are components of distinct neural 

networks for affective face processing below the threshold of conscious 

awareness.   

 Patient studies contribute enormously to our understanding of implicit 

affective visual processing.  For instance, blindsight is a result of damage to the 

striate cortex (V1), the result of which is blindness in the contralateral visual 

field.  However, some patients are able to accurately ‘guess’ the presence of 

stimuli in their blindfield, even when they are not consciously aware of stimuli 

presentation (Weiskrantz et al., 1974).  These include emotional facial 

expressions, as evidenced when patient GY was presented with greyscale 

fearful and happy faces during an fMRI experiment.  Results indicated that fear 

related stimuli can be processed without visual awareness in the amygdala as 

part of an extrageniculostriate neural pathway (Morris et al., 2001).  Another 

blindsight patient study found that angry, happy and fearful faces involved the 

right amygdala in unconscious processing of all three emotions (Pegna et al., 

2005).   
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 There is a corpus of literature investigating implicit visual affective 

processing with fMRI, but few to date have used a wide range of complex 

natural images.   

 

 1:7:5  Natural Stimuli and Category Membership 

 

Finally, it is necessary to briefly address authors who divide natural stimuli 

into categorical subsets to use as separate conditions.  Already discussed are 

VanRullen and Thorpe’s experiment comparing IAPS natural animals with 

artificial means of transport (see section 1:7:2) (VanRullen and Thorpe, 2001a) 

and Hariri et al. employing IAPS natural and artificial images of threat (see 

section 1:7:4) (Hariri et al., 2003).   

 Others examining category specificity have used a diverse set of 

images.  Kreiman et al. (2000) using electrodes, were particularly interested in 

the medial temporal lobe and noted selective responses to faces of emotional 

expressions, household objects, animals, cars, photographs of famous people, 

drawings of people and cartoon characters (Kreiman et al., 2000), whilst 

Gorno-Tempini and Price (2001) identified fusiform activation when presented 

with famous faces and parahippocampal/lingual areas responded preferentially 

to buildings (Gorno-Tempini and Price, 2001).   

 For clarity the key points of this review will now be summarised.   

 

1:7:6  Summary 

 

The key points to this review are as follows: 

 

• We know from recent evidence from ERPs, EOGs and RTs that 

complex images are processed rapidly in categorisation tasks.   

• Using affective images, physiological responses demonstrate distinct 

effects of valence and arousal. 

• ERP studies report both early and late processing of affect. 

• Arousal and valence of affective visual stimuli are reliably rated when 

presented supraliminally. 
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• fMRI experiments have afforded a wealth of data implicating ROIs and 

neural networks activated by implicit and explicit processing of 

affective faces in both healthy and brain damaged participants. 

• Little or no previous research has been conducted on the unconscious 

processing of emotional valence using a wide range of complex natural 

images (with the exception of faces), using fMRI.  

 

 It is argued here that abstract visual stimuli such as dots and gratings do 

not capture certain essential properties of visual processing and, as such, are 

neither ecologically valid nor is there an obvious evolutionary rationale for 

predicting responses to such stimuli, therefore more experiments on natural 

images are needed to advance our understanding.  

 On the basis of the literature reviewed here, there is a lack of 

information on the neural mechanisms that allow us to identify affective 

properties (such as emotional valence and intensity) in complex images. 

Furthermore, there is a lack of information on whether the affective properties 

of such stimuli can be identified when they are presented subliminally, that is, 

below the threshold of detection.   

 I believe this line of enquiry is fruitful.  Work on subliminal perception 

suggests that the affective content of certain stimuli can be detected at very 

brief exposures, even when the observer is unaware of having seen the 

stimulus.  fMRI studies of facial emotion suggest that there is a direct and rapid 

subcortical route to the amygdala that mediates unconscious perception.  

Threats and opportunities that are important in evolutionary terms do not 

present themselves in the form of standardised visual stimuli in an uncluttered 

scene.  It is likely, as the works of Thorpe and collaborators show, that the 

brain has evolved to extract categorical information very rapidly from complex 

scenes (Fabre-Thorpe et al., 2001, Rousselet et al., 2002, Rousselet et al., 2003, 

Rousselet et al., 2004b, Rousselet et al., 2004c, Thorpe et al., 1996, Thorpe et 

al., 2001b, VanRullen and Thorpe, 2001a).  It is hypothesised here that one of 

the important items to be extracted is affect, and the experiments conducted in 

this thesis will test this idea.   
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1:8  Present Research Programme 

 

The purpose of the present study is to further the theory of automatic emotional 

processing, but in the context of natural everyday vision, by comparing 

response to emotional valence using complex natural images.  Differences in 

the responses to complex stimuli, differing in emotional valence, will be 

studied both in a behavioural paradigm and in relation to BOLD response of 

the nine selected ROIs – Amygdala, ACC, mPFC, OFC, DLPFC, Fusiform 

Gyrus, Parahippocampus, Insula and STG.   

 

 1:8:1  Key Points of this Research Programme 

• Aims: 

(1) To determine whether the emotional valence of complex visual 

stimuli can be detected subliminally in brief, masked presentations. 

(2) To determine whether the emotional valence of complex visual 

stimuli can be determined on trials when the observer is unaware there 

is a target stimulus present. 

(3) To identify neural correlates of positively and negatively valenced 

emotional stimuli in brief, masked presentations, as well as in free 

viewing, using fMRI.  

(3a) To determine whether masked emotion-inducing stimuli 

activate brain areas (ROIs) known to be associated with the 

conscious awareness of visual stimuli.  

(3b) To address the question of whether positive and negative 

emotions involve ROIs that are distinct in the two hemispheres.  

4) To identify possible category-specific effects of complex visual 

stimuli using behavioural and fMRI methods. 
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• Procedures: 

A forward and backward masking paradigm is developed in a 

behavioural experiment and the first fMRI experiment.  This is 

followed by a dual image compound stimulus design in the second 

fMRI experiment. 

• Working definitions: 

See Glossary page x.   

• Originality: 

This thesis will provide new evidence of the breadth of variety in the 

types of affective visual stimuli we are able to perceptually process 

close to the threshold of conscious perception, and identify brain 

regions that are differentially activated by the affective valence of such 

stimuli.  

 

1:9  Hypotheses 

 

The aims of this thesis are to try to add to our understanding of the attentional 

and perceptual requirements needed for affective complex image processing.  

By increasing the difficulty of complex image categorisation of affect with 

challenging tasks, it is hypothesised that:  

H¹ The valence of complex images can be identified both 

above and below the threshold for detecting the presence 

of the image in a forward – backward masking 

experiment.  

H² There are valence-specific effects of complex images on 

fMRI activations in some or all of the nine ROIs identified 

from the literature as responding to affective stimuli.  

H³ In brief, masked images there are valence-specific effects 

of complex images (presented close to the threshold for 

conscious detection) on fMRI activations in some or all of 

the nine ROIs.  
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H4 In dual image presentations, there are valence-specific 

effects of complex images on fMRI activations in some or 

all of the nine ROIs responding to affective stimuli, both 

for ‘attended’ and for ‘to-be-ignored’ images.  

 

 To summarise, the next chapter (Chapter 2) will detail with the 

methodology used for all three experiments.  Hypothesis One will then be 

investigated with a behavioural experiment (Chapter 3) seeking to determine 

the efficacy of the stimuli using a forward and backward masking paradigm.  

By measuring detection of stimuli and discrimination of valence response, 

perception of natural images below the threshold of conscious awareness is 

reported and validity of the stimuli established.   

 The effects of the same stimuli are then objectively measured in a very 

similar paradigm using fMRI (H2) (Chapter 4).  To test temporal parameters, 

the target presentation of just 10ms (see section 2:1:2) provided evidence of a 

limited, but significant level of emotional processing near or below the level of 

conscious perception in some of the nine ROIs (H3).   

 To further the overall line of enquiry into the breadth and experimental 

viability of natural images, a second fMRI experiment (Chapter 5) was 

designed to divide attention between highly visible images in a dual image 

presentation (H4), using a small image superimposed on a large image of 

opposite valence with the instruction to ignore the surrounding stimulus.  The 

implications of this will be discussed in Chapter 6. 
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Chapter 2  Stimuli and fMRI Methodology 

 

2:1  fMRI Experiments 

 

To ensure clarity and avoid repetition, the first section of this chapter discusses 

details that are relevant to both fMRI experiments.  In the second section, a list 

of stimuli for all experiments is presented. 

 

2:1:1  MNI Coordinates 

The averaged Montreal Neurological Institute (MNI) (Friston et al., 1995) 

coordinates (Table 2.1) were selected as the centres of 10mm and 8mm radius 

spherical ROIs for second level fMRI analyses.  They were taken from 

published literature of previous research and validated using PickAtlas 

(Maldjian et al., 2003).   

Anatomical location of cluster x y Z 

  

Amygdala ±24 -3 -19 

ACC ±12 28 20 

mPFC ±16 52 0 

OFC ±48 30 -6 

DLPFC ±46 38 -10 

Parahippocampus ±20 -36 -11 

Fusiform Gyrus ±34 -48 -20 

Insula ±36 12 8 

STG ±58 4 -4 
  Table 2.1  Second level MNI coordinates 

 

 This analysis was first conducted using a sphere of 10mm radius, but 

there was a concern that this radius was quite large and may include areas that 

are not relevant, which means that the average effect size might be quite small, 
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(i.e. a 10mm radius gives a sphere of 155 voxels using a voxel size of 

3x3x3mm), therefore a second analysis was performed using an 8mm radius 

giving a sphere of 79 voxels, which is a fair balance between sensitivity and 

accuracy.   

 

2:1:2  fMRI Data Acquisition 

 

Brain images were acquired using a 3 Tesla Siemens Trio MRI scanner with an 

8 channel array head coil.  This scanner is located at Royal Holloway 

University of London2.    

 In order to present stimuli and obtain responses with some precision the 

Cogent 2000 toolbox was used3 (LON Cogent 2000 team and Romaya, 2000) 

(http://www.vislab.ucl.ac.uk/Cogent) and was added to the MATLAB toolbox 

(MATLAB Inc, 2002) (http://www.mathworks.com/products/matlab).  The 

Cogent output in the form of a log file was obtained from every participant and 

each was carefully checked to verify the actual block and scan timings.  Where 

a log file identified errors in presentation or scans these participant data were 

eliminated.  This would have included occasions when images were not 

displayed for the correct period of time.   

 The stimulus display was controlled from a Sony Vaio laptop computer 

connected to the scanner, from which synchronised pulses effected stimulus 

changes.  It needs to be noted that with the screen resolution used, the refresh 

rate of the laptop was 60Hz, which may have provided an actual image display 

time of 16.6˙ms where the design required a target display time of 10ms.  This 

is still considered to be near or below conscious awareness.  However, every 

precaution was taken to increase accuracy of image display timings.  First, the 

laptop displayed directly onto the projector with no intervening software.  To 

obtain the highest possible frame rate on the scanner projector, the laptop 

display was set to the external projector only, so that the laptop monitor was 

                                                 
2 Royal Holloway are part of the CUBIC (Combined Universities Brain Imaging Centre) 
consortium and have the largest share at 40%, whilst Brunel, Reading and Surrey universities 
own 20% each.  This research facility was largely funded from a Science Research Investment 
Fund (SRIF) grant.   
3 “This experiment was realised using Cogent 2000 developed by the Cogent 2000 team at the 
FIL and the ICN and Cogent Graphics developed by John Romaya at the LON at the Welcome 
Department of Imaging Neuroscience”  

http://www.vislab.ucl.ac.uk/Cogent�
http://www.mathworks.com/products/matlab�
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blank.  In addition, the windows task manager was used to update speed in 

Matlab to the highest priority. 

 The scanner employs an LCD projection system (Sanyo projector: 

Model: PLC-XP40L) that transmits the stimulus onto a screen located behind 

the participant’s head, reflected by a mirror mounted in the participants visual 

field with a viewing distance of 88cm. 

 In order to minimise excessive head movement, and to aid comfort, the 

participants, whilst lying supine in the scanner, were supported with foam 

wedges in the lateral space between the coil and their head. 

 An intercom system is installed to facilitate communication between 

the participant and control room.  In case of an emergency or breakdown in 

communication, an alarm button was available to the participant in the scanner 

at all times.  

    

 2:1:3  fMRI Design 

 

The dual image and masked experiments were block designs, whereby each 

unit or trial was presented to compare neural responses in a discrete epoch of 

time.  A series of trials were presented in blocks where a discrete emotional 

stimulus condition was maintained.  This paradigm accommodates many trials 

in a row and the signal acquired in each block is compared to signals from 

other blocks where different emotional stimuli are involved.  In addition to 

these ‘target’ blocks, as ‘baseline’ a rest condition of no stimulus was 

introduced.  This means that the block design alternates periods of activation 

(e.g. negative emotion stimuli A) and periods of rest (task B).  This method 

used with fMRI gives maximum BOLD signal and maximal signal-to-noise 

ratio, which refers to a signal of interest, (e.g. activation from stimulation), 

compared with ‘noise’ which is inescapable arbitrary differences in image 

intensity even when no stimulation is presented (Jezzard et al., 2001).   

 The decision to run these experiments as an explicit emotional 

categorisation task was to try to ensure as far as possible that the participants 

continuously attended to the pictures without distraction.   
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 2:1:4  fMRI Analysis 

 

Prior to functional image acquisition, high-resolution anatomical images for 

each participant were recorded in the same orientation as the functional data 

(see sections 4:3:4 and 5:3:4) to enable accurate location of individual brain 

activity.  In both the fMRI experiments in this study, anatomical images were 

acquired using an MP-RAGE three dimensional T1-weighted, gradient echo 

sequence (Mugler and Brookeman, 1990) (TR=1830ms; TE=4.43s; FoV 

256x256 mm) in which 176 1mm sagittal slices were obtained. 

 Statistical parametric mapping software SPM2 (Friston and Wellcome 

Department of Imaging Neuroscience, 2003) (http://www.fil.ion.ucl.ac.uk/spm) 

was used for the statistical processing, which was implemented in MATLAB.   

Prior to the statistical analysis, the data files or time series (a series of images 

in time) were converted from Digital Imaging and Communications in 

Medicine (DICOM) format, realigned to ensure spatial alignment in case of 

slight participant movement.  Where translation was greater than 2mm and/or 

more than 2° rotation during acquisition, the participants’ data sets were 

discarded.  All functional images were then coregistered with the anatomical 

images for accurate individual neuroanatomical alignment.  These were then 

normalised (once only for each participant) into an averaged anatomical space 

to facilitate comparison and deduction (by warping functional and anatomical 

images to fit a standard brain template).  These data were not spatially 

smoothed as this would introduce blurring which would defeat the constructs 

of the chosen ROIs in these experiments (Huettal et al., 2004).  

 After pre-processing, using SPM2, the experimental design was 

convolved with a haemodynamic response function (hrf) to model the 

haemodynamic lag in the BOLD response. 

 The basic statistical assumption used was the cognitive subtraction 

method, whereby the activations in blood oxygenation related to local changes 

in neural activity associated with task A (emotional response) were subtracted 

from those in task B (control).  This, in theory, identifies cortical regions 

involved in task A.   

 However, the subtraction method has been criticised in that conditions 

employed may elicit several different signal changes (Jezzard et al., 2001).  To 

http://www.fil.ion.ucl.ac.uk/spm�
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take account of this possible disadvantage, every effort was made to make the 

conditions identical in every aspect apart from the point of interest.   

 For the sake of comparison, the same ROIs and MNI coordinates were 

investigated for both fMRI experiments.  An exploratory first level analysis 

was performed across nine ROIs utilising PickAtlas (Maldjian et al., 2003) 

with a significance level of p<0.05 using value adjustments family-wise error 

(FWE) to estimate the fixed effects of the experimental conditions on each 

participant.  This was followed by second level analysis using MarsBar toolbox 

for SPM2 (Brett et al., 2002) (http://marsbar.sourceforge.net).  Using the 

general linear model, a group random effects analysis was carried out 

measuring the level of activations in the sphere of 8mm radius centred around 

the averaged ROI symmetrical coordinates as defined by MNI, which were 

chosen from previous research (see section 2:1:1).   

 The statistic table for the output from MarsBar provides (for each ROI) 

a contrast value, a t-statistic, an uncorrected one-tailed p-value for this t-

statistic, and a corrected p-value (corrected for the number of ROIs in the 

analysis).  The data used as input for the second level analysis is the contrast 

value.   

 “For a t-statistic, contrast value is an effect size…. A t-

statistic consists of an effect size divided by the standard 

deviation of this effect……. (the contrast values are the same as 

the value of the parameters in the visual event).  The value of 

these parameters will be the best-fitting slope of the line relating 

the height of the hrf regressor to the fmri signal.  This effect size 

measure is the number that SPM stores for each voxel in the 

con_0001.img, con_0002.img…series, and these are the values 

that are used for standard second level / random effect analyses”.  

MarsBaR-development tutorial http://marsbar.sourceforge.net   

 

2:2  Stimuli - International Affective Picture System (IAPS) 

 

Neuroimaging studies have shown variable neuronal activations when studying 

visual emotion-laden stimuli.  This may be due to the diverse selection of 

uncalibrated stimuli employed to evoke an emotional response.  In the present 

http://marsbar.sourceforge.net/�
http://marsbar.sourceforge.net/�
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study, the content of stimuli is balanced with regard to emotional meaning, 

using two determining factors: valence (negative value of things to be avoided 

or positive value of things that are appealing); and arousal (level of sensory 

excitability) content.  This was achieved by using a calibrated, standardised set 

of pictures of various emotion inducing animals, faces, scenes and inanimate 

objects from the IAPS collection (Center for the Study of Emotion and 

Attention [CSEA-NIMH], 2001).  The valence and arousal IAPS ratings are set 

at 9 for positive valence or high arousal and 1 for negative valence or low 

arousal.  An experiment using the complete range of valence scores found a 

linear correlation with BOLD signal continuum in the PFC and insula, thus 

supporting the IAPS sliding rating system of positive and negative stimuli 

(Heinzel et al., 2005).   

 The IAPS series has been used as an emotionally evocative inducer for 

a wide range of behavioural and neuroimaging studies, results of which 

correlate with physiological measures such as SCR (Lang et al., 1993), and 

enjoys the reputation of reliability and ecological validity by facilitating the 

comparison of results, replication between studies and tighter experimental 

control when selecting real photographic visual stimuli.   

 The pictures varied in magnification, colour, viewing angle, luminance 

and spatial frequency in accordance with everyday vision.  These variations are 

consistent with a previous study using high-speed presentations of emotional 

visual stimuli, which found that affective discrimination was unconnected with 

the image properties listed above as well as complexity (Junghofer et al., 

2001).  Equally, the presentation of each set of stimuli in the present study was 

not influenced by prior familiarity as the participants had not been exposed to 

the pictures before (NB different IAPS pictures were used in the pre-

experimental briefing).   

 It has been argued that there are two main dimensions to emotional 

experience – valence and arousal (Watson and Tellegen, 1985).  Equally, it is 

postulated that these primary dimensions may be controlled by different neural 

systems (Heller, 1993).  As this is a study researching valence effect, only 

levels of valence were manipulated.  Therefore, levels of arousal were 

equalised between high and low valence stimuli and remained consistent in the 
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three studies described (see Table 2.2).  The neutral images used as controls 

were low in arousal and intermediate in valence.     

 The level of arousal for the target stimuli were set moderately high 

(5.00 – 7.21), which is not the highest rating.  This was because images 

calibrated for very high arousal were of erotica (positive) and body mutilations 

(negative), and as the participants were drawn from a cross section of society 

(e.g. various ages and religious backgrounds), ethically it was decided not to 

use those that may cause discomfort or offence.  Therefore, moderately high 

arousal images were used.  

  

2:2:1  Images Used - Behavioural Experiment 

 

The stimuli consisted of 24 pictures.  The two conditions were twelve images 

of high valence (> 6) and high arousal (5.00-7.21) plus twelve low valence (< 

4) and high arousal (5.00-7.21).  In addition 24 neutral pictures were chosen 

with valence (v) of (4 < v < 6) and low arousal (< 5) (Table 2.2) (Lang et al., 

2001).   

 All emotional stimuli were presented at short exposure (10 ms) and 

were masked before and after each presentation (mask duration 150 ms).  The 

pre-mask and post-mask stimuli were different neutral pictures, paired at 

random.  They were used as a pair twice, once masking a pleasant picture and 

once masking an unpleasant.  This counterbalancing was to avert the possibility 

of the emotional response to specific neutral pictures influencing the 

pleasant/unpleasant decision overall.  Therefore, 24 neutral pictures (12 pairs) 

were used twice to mask the 24 emotional targets.   

 Twelve different neutral pictures (6 pairs) were used in the control 

condition.  The control condition consisted of a pair of masking stimuli without 

the intervening emotional target (control duration 150 ms each). These neutral 

pictures were also randomised and repeated twice to ensure that the 

participants did not identify that the control condition was different from the 

experimental condition (Table 2.2).  For further explanation of this 

experimental design see section 3:3:2.     
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Description Slide 

Number 

Valence 

Mean  

Valence 

SD 

Arousal 

Mean 

Arousal 

SD 

Category and 

Valence 

Puppies   1710 8.34 1.12 5.41 2.34 Animal (HVa) 

Jaguar    1650 6.65 2.25 6.23 1.99 HVa  

Monkeys    1811 7.62 1.59 5.12 2.25 HVa 

Att Female  4250 6.79 2.05 5.16 2.76 Face (HVf) 

Baby 2071 7.86 1.32 5.00 2.34 HVf  

Athletes 8380 7.56 1.55 5.74 2.32 HVf 

Skier 8190 8.10 1.39 6.28 2.57 Scenes (HVs) 

Skydivers  5621 7.57 1.42 6.99 1.95 HVs  

Waterfall  5260 7.34 1.74 5.71 2.53 HVs 

Money   8501 7.91 1.66 6.44 2.29 Inanimate (HVi) 

Icecream 7270 7.53 1.73 5.76 2.21 HVi  

Fireworks 5480 7.53 1.63 5.48 2.35 HVi 

Shark 1932 3.85 2.11 6.47 2.20 Animal (LVa) 

Attack Dog 1525 3.09 1.72 6.51 2.25 LVa 

Snake 1050 3.46 2.15 6.87 1.68 LVa 

Baby Tumour 3170 1.46 1.01 7.21 1.99 Face (LVf) 

Angry Face 2120 3.34 1.91 5.18 2.52 LVf 

Batt Female 3180 1.92 1.13 5.77 2.21 LVf 

Bomb 9630 2.96 1.72 6.06 2.22 Scenes (LVs) 

Air Crash   9611 2.71 1.95 5.75 2.44 LVs 

Car Crash 9911 2.30 1.37 5.76 2.10 LVs 

Toilet 9301 2.26 1.56 5.28 2.46 Inanimate (LVi) 

Elect Chair    6020 3.41 1.98 5.58 2.01 LVi 

Flies on Pie 7360 3.59 1.95 5.11 2.25 LVi 

Lamp               7175 4.87 1.00 1.72 1.26 Neutral/Mask 

Chair              7235 4.96 1.18 2.83 2.00 Neutral/Mask 

Bowl               7006 4.88 0.99 2.33 1.67 Neutral/Mask 

Tissue         7950 4.94 1.21 2.28 1.81 Neutral/Mask 

Book 7090 5.19 1.46 2.61 2.03 Neutral/Mask 

Clothes Rack 7217 4.82 0.99 2.43 1.64 Neutral/Mask 

Abstract Art 7185 4.97 0.87 2.64 2.04 Neutral/Mask 

Trash Can 7060 4.43 1.16 2.55 1.77 Neutral/Mask 

Towel 7002 4.97 0.97 3.16 2.00 Neutral/Mask 

Clock 7190 5.55 1.34 3.84 2.06 Neutral/Mask 

Mug 7035 4.98 0.96 2.66 1.82 Neutral/Mask 

Stool 7025 4.63 1.17 2.71 2.20 Neutral/Mask 

Baskets 7041 4.99 1.12 2.60 1.78 Neutral/Mask 
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Beads 7207 5.15 1.46 3.57 2.25 Neutral/Mask 

Cabinet 7705 4.77 1.02 2.65 1.88 Neutral/Mask 

Abstract Art 7184 4.84 1.02 3.66 1.89 Neutral/Mask 

Mushroom 5510 5.15 1.43 2.82 2.18 Neutral/Mask 

Mug 7009 4.93 1.00 3.01 1.97 Neutral/Mask 

Hair Dryer 7050 4.93 0.81 2.75 1.80 Neutral/Mask 

Shoes 7038 4.82 1.20 3.01 1.96 Neutral/Mask 

Mushrooms 5533 5.31 1.17 3.12 1.92 Neutral/Mask 

Fork 7080 5.27 1.09 2.32 1.84 Neutral/Mask 

Fire Hydrant 7100 5.24 1.20 2.89 1.70 Neutral/Mask 

Abstract Art 7187 5.07 1.02 2.30 1.75 Neutral/Mask 

Shadow 2880 5.18 1.44 2.96 1.94 Neutral/Control  

Umbrella   7150 4.72 1.00 2.61 1.76 Neutral/Control  

Basket             7010 4.94 1.07 1.76 1.48 Neutral/Control  

Clock 7211 4.81 1.78 4.20 2.40 Neutral/Control  

Rolling Pin 7000 5.00 0.84 2.42 1.79 Neutral/Control  

Light Bulb 7236 5.64 1.31 3.79 2.24 Neutral/Control  

Shoes 7031 4.52 1.11 2.03 1.51 Neutral/Control  

Light Bulb 7170 5.14 1.28 3.21 2.05 Neutral/Control  

Still Life 5535 4.81 1.52 4.11 2.31 Neutral/Control  

Rug 7179 5.06 1.05 2.88 1.97 Neutral/Control 

Pole 7161 4.98 1.02 2.98 1.99 Neutral/Control  

Agate 7830 5.26 1.38 4.08 2.11 Neutral/Control  

Table 2.2  Ratings of IAPS stimuli – behavioural experiment.  Valence and arousal measures of 
IAPS pictures used for the behavioural experiment. (Lang et al., 2001). 
Key:  HV = High Valence; LV = Low Valence; Att = Attractive; Batt = Battered; Elect = 
Electric.   
 

 2:2:2  Images Used - Masked fMRI Experiment 

 

To ensure consistency, the same IAPS pictures (Lang et al., 2001) were used as 

emotional targets as those in the behavioural experiment, and categorised as 

animals, faces, scenes and inanimate objects.  In masked stimulus blocks, each 

target was presented for 10ms (see section 2:1:2) and was masked by 2 neutral 

stimuli presented for 1s each.  Three repetitions of this target picture 

combination occurred within a block, each separated by 2s blanks, with 

different targets having the same valence type.  However, additional IAPS 

pictures were needed for the second normal viewing condition, in which the 
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presentation time of the emotional stimuli was 1.01s (forward masked by 

neutral stimuli for 1s), but the same block structure, categories, valence and 

arousal measures were maintained (Table 2.3) (Lang et al., 2001).  The masked 

blocks were followed by two randomised normal viewing blocks, each 

separated by a 3s blank to ensure return to baseline level.  For more detail of 

this experimental design see section 4:3:2. 

 
Description Slide 

Number 

Valence 

Mean  

Valence 

SD 

Arousal 

Mean 

Arousal 

SD 

Category and 

Valence 

Coyote   1640 6.16 1.88 5.18 1.93 Animal (HVa) 

Lion        1720 6.79 1.56 5.32 1.82 HVa  

Jaguars   1722 7.04 2.02 5.22 2.49 HVa 

Baby 2058 7.91 1.26 5.09 2.48 Face (HVf) 

Romance 4601 6.82 1.22 5.08 2.01 HVf  

Tennis Player 8350 7.18 1.56 5.18 2.28 HVf 

Mountains 5660 7.27 1.59 5.07 2.62 Scene (HVs) 

Mountains 5600 7.57 1.48 5.19 2.70 HVs  

Liftoff 5450 7.01 1.60 5.84 2.40 HVs 

Sports Car 8531 7.03 1.50 5.41 2.15 Inanimate (HVi) 

Money 8502 7.51 1.72 5.78 2.49 HVi 

French Fries 7460 6.81 2.08 5.12 2.49 HVi 

Spider 1200 3.95 2.22 6.03 2.38 Animal (LVa) 

Roaches 1274 3.17 1.53 5.39 2.39 LVa 

Snake 1120 3.79 1.93 6.93 1.68 LVa 

Toddler 2095 1.79 1.18 5.25 2.34 Face (LVf) 

Eye Disease 3160 2.63 1.23 5.35 1.79 LVf 

Batt Female 3181 2.30 1.43 5.06 2.11 LVf 

Ship 9600 2.48 1.62 6.46 2.31 Scene (LVs) 

Fire 9495 3.34 1.75 5.57 2.00 LVs 

Ruins 9470 3.05 1.51 5.05 1.98 LVs 

Aimed Gun 6260 2.44 1.54 6.93 1.93 Inanimate (LVi) 

Dirty 9300 2.26 1.76 6.00 2.41 LVi 

Bomb 2692 3.36 1.61 5.35 2.19 LVi 

Checkerboard  7182 5.16 1.31 4.02 2.12 Neutral 

Shadow 2880 5.18 1.44 2.96 1.94 Neutral 

Mug 7009 4.93 1.00 3.01 1.97 Neutral 

Hair Dryer 7050 4.93 0.81 2.75 1.80 Neutral 

Baskets 7041 4.99 1.12 2.60 1.78 Neutral 
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Shoes 7038 4.82 1.20 3.01 1.96 Neutral 

Fire Hydrant 7100 5.24 1.20 2.89 1.70 Neutral 

Pole 7161 4.98 1.02 2.98 1.99 Neutral 

Light Bulb 7170 5.14 1.28 3.21 2.05 Neutral 

Clock 7190 5.45 1.34 3.84 2.06 Neutral 

Rug 7179 5.06 1.05 2.88 1.97 Neutral 

Scarves 7205 5.56 1.39 2.93 2.16 Neutral 

Light Bulb 7236 5.64 1.31 3.79 2.24 Neutral 

Clothes Rack 7217 4.82 0.99 2.43 1.64 Neutral 

Checkerboard 7183 5.58 1.39 3.78 2.19 Neutral 

Stool 7025 4.63 1.17 2.71 2.20 Neutral 

Fan 7020 4.97 1.04 2.17 1.71 Neutral 

Table 2.3  Ratings of IAPS stimuli – masked experiment.  Valence and arousal measures of  
additional IAPS pictures used for the fMRI masked experiment. (Lang et al., 2001) 
Key:  HV = High Valence; LV = Low Valence; Att = Attractive; Batt = Battered; Elect = 
Electric.   
 

 2:2:3  Images Used – Dual Image Experiment 

 

To ensure a direct comparison with the behavioural and first fMRI experiment, 

exactly the same target IAPS images were used for the dual image experiment 

(Table 2.4).  Therefore all three experiments used the same target images, apart 

from the additional normal viewing images used in the masked experiment 

(Table 2.3).   

 A block consisted of three neutral images (1s duration each) separated 

by a 1s blank, this was followed by a 2s blank and three target images of the 

same valence and arousal (again 1s duration each).  Each block was 

randomised and presented three times as different conditions – control 

condition one - large-field, control condition two - small-field and the 

experimental condition: - dual image.  For greater detail of this experimental 

design see section 5:3:2.   

 
Description Slide 

Number 

Valence 

Mean  

Valence 

SD 

Arousal 

Mean 

Arousal 

SD 

Category and 

Valence 

Puppies  1710 8.34 1.12 5.41 2.34 Animal (HVa) 

Jaguar    1650 6.65 2.25 6.23 1.99 HVa  

Monkeys  1811 7.62 1.59 5.12 2.25 HVa 
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Att Female 4250 6.79 2.05 5.16 2.76 Face (HVf) 

Baby 2071 7.86 1.32 5.00 2.34 HVf  

Athletes 8380 7.56 1.55 5.74 2.32 HVf 

Skier 8190 8.10 1.39 6.28 2.57 Scenes (HVs) 

Skydivers  5621 7.57 1.42 6.99 1.95 HVs  

Waterfall  5260 7.34 1.74 5.71 2.53 HVs 

Money     8501 7.91 1.66 6.44 2.29 Inanimate (HVi) 

Icecream 7270 7.53 1.73 5.76 2.21 HVi  

Fireworks 5480 7.53 1.63 5.48 2.35 HVi 

Shark 1932 3.85 2.11 6.47 2.20 Animal (LVa) 

Attack Dog 1525 3.09 1.72 6.51 2.25 LVa 

Snake 1050 3.46 2.15 6.87 1.68 LVa 

Baby Tumour 3170 1.46 1.01 7.21 1.99 Face (LVf) 

Angry Face 2120 3.34 1.91 5.18 2.52 LVf 

Batt Female 3180 1.92 1.13 5.77 2.21 LVf 

Bomb 9630 2.96 1.72 6.06 2.22 Scenes (LVs) 

Air Crash   9611 2.71 1.95 5.75 2.44 LVs 

Car Crash 9911 2.30 1.37 5.76 2.10 LVs 

Toilet 9301 2.26 1.56 5.28 2.46 Inanimate (LVi) 

Elec Chair  6020 3.41 1.98 5.58 2.01 LVi 

Flies on Pie 7360 3.59 1.95 5.11 2.25 LVi 

Umbrella   7150 4.72 1.00 2.61 1.76 Neutral 

Lamp   7175 4.87 1.00 1.72 1.26 Neutral 

Cabinet    7705 4.77 1.02 2.65 1.88 Neutral 

Plate  7233 5.09 1.46 2.77 1.92 Neutral 

Chair  7235 4.96 1.18 2.83 2.00 Neutral 

Dustpan  7040 4.69 1.09 2.69 1.93 Neutral 

Spoon     7004 5.04 0.60 2.00 1.66 Neutral 

Bowl      7006 4.88 0.99 2.33 1.67 Neutral 

Basket   7010 4.94 1.07 1.76 1.48 Neutral 

Tissue   7950 4.94 1.21 2.28 1.81 Neutral 

Clock 7211 4.81 1.78 4.20 2.40 Neutral 

Ironing Board 7234 4.23 1.58 2.96 1.90 Neutral 

Book 7090 5.19 1.46 2.61 2.03 Neutral 

Clothes Rack 7217 4.82 0.99 2.43 1.64 Neutral 

Rolling Pin 7000 5.00 0.84 2.42 1.79 Neutral 

Light Bulb 7236 5.64 1.31 3.79 2.24 Neutral 

Abstract Art 7185 4.97 0.87 2.64 2.04 Neutral 

Trash Can 7060 4.43 1.16 2.55 1.77 Neutral 
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Towel 7002 4.97 0.97 3.16 2.00 Neutral 

Shoes 7031 4.52 1.11 2.03 1.51 Neutral 

Abstract Art 7186 4.63 1.60 3.60 2.36 Neutral 

Clock 7190 5.55 1.34 3.84 2.06 Neutral 

Iron 7030 4.69 1.04 2.99 2.09 Neutral 

Mug 7035 4.98 0.96 2.66 1.82 Neutral 

Table 2.4  Ratings of IAPS stimuli – dual image experiment.  Valence and arousal measures of 
IAPS pictures used for the fMRI dual image experiment.  (Lang et al., 2001).   
Key:  HV = High Valence; LV = Low Valence; Att = Attractive; Batt = Battered; Elect = 
Electric.   
  

2:3  Ethical Considerations 

 

The research was carried out in accordance with Brunel University’s ethical 

guidelines and procedures for research involving human participants: 

http://intranet.brunel.ac.uk/registry/minutes/researchethics/ethicsguidelinesv2.p

df and was given ethical approval by the Research Ethics Committee of the 

Brunel University School of Social Sciences. 

 Additionally, the conduct of fMRI experiments was in accordance with 

the Rules of Operation of the Combined University’s Brain Imaging Centre 

(Rules of Operation is an internal document dated 2002 which was also 

approved by the Brunel Ethics Committee) (Appendix I).  It was also made 

clear to the participants that the fMRI experiment was for research purposes 

only and should not be substituted for medical opinion.   

 The nature of the experiments was thoroughly explained and informed 

consent obtained.  During the briefings, participants were informed of the non-

invasive nature of fMRI.  It was emphasised that some of the images may be 

unpleasant and the participants could withdraw at any time.  The very high 

arousal images for both pleasant (erotica) and unpleasant (bodily mutilations) 

categories were also removed so as not to cause offence.   

 These experiments were conducted in accordance with all the principles 

outlined in the British Psychological Society Code of Conduct (BPS, 2000).   

 

 

 

 

http://intranet.brunel.ac.uk/registry/minutes/researchethics/ethicsguidelinesv2.pdf�
http://intranet.brunel.ac.uk/registry/minutes/researchethics/ethicsguidelinesv2.pdf�
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2:4  Notes on Participants 

 

All the participants were healthy adults from a wide range of backgrounds with 

ages ranging from 16 years to 75 years with normal or corrected to normal 

vision.   
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Chapter 3  Behavioural Experiment: 

Valence discrimination of complex affective stimuli,  

with and without conscious awareness of detection 
 

3:1  Abstract 

 

The response valence to 24 different images of complex visual stimuli was 

measured in a backward and forward masking paradigm by asking participants 

to classify the overall impression as pleasant or unpleasant.  Employing 

previously calibrated IAPS stimuli, the IAPS stimulus valence rating predicted 

the identification of pleasant versus unpleasant overall impression, but a 

response bias in favour of pleasant responses was found.  However, the 

findings also confirmed that even when the presence of the target was not 

consciously detected (subliminal processing), valence discrimination was 

significant for the majority of stimuli.  In addition, confidence ratings were 

acquired, but it was found that confidence in impression was not strongly 

correlated with accuracy in processing valence.  Although responses differed 

from the IAPS prediction for some of the images, it was concluded that this 

present paradigm was robust and suitable to be used in a follow-up fMRI study.   

 

3:2  Introduction 

 

A forward and backward masking experiment was carried out to establish if it 

is possible to detect the presence of the target picture, and discriminate its 

valence using a wide range of 24 natural images.   

 Stimuli compete for processing resources when common characteristics 

put demands on the same brain regions.  For instance, when two stimuli are 

rapidly presented sequentially in the same spatial proximity, the processing of 

one interferes with the other.  As a consequence, this phenomenon has been 

exploited in visual masking paradigms.  The most popular of these paradigms 

is that of backward masking, where the second stimulus, the mask, reduces or 

totally ‘masks’ the conscious perception of the first stimulus, the target.   

(Breitmeyer and Ogmen, 2000, VanRullen and Koch, 2003b).  However, 



 
 

 73

although detection of the target stimuli may have been prevented, it can still be 

subliminally processed at a significant level (Koch, 2004).   

 Backward masking was employed in the present study, but to achieve 

even greater temporal restraints, a forward masking image was also introduced 

as a contaminating factor in the preliminary processing of the target image.  

The hypothesis is that information processing proceeds in microgenetic stages, 

where the initial presentation of a stimulus to the cognitive percept of the said 

stimulus is made up of ‘bottom-up’ processing stages that are not conscious 

(Flavell and Draguns, 1957).  Thus, the mask image (presented first) modifies 

the microgenesis of the target image (presented second), by interfering in the 

integration period of processing the target (Bachmann et al., 2004).  Efron 

(1973) demonstrated the concept of an integration period in an experiment, 

presenting a red disk for 10ms rapidly followed by a green disk also for 10ms.  

Participants reported seeing a single yellow disk instead of two separate disks 

of different colours.  Thus the temporal parameters of Efron’s experiment 

blended two stimuli into a unitary yellow image, implying an integration period 

(Efron, 1973).  Moreover, there is a great deal of evidence to support automatic 

feedforward processing in the visual system (Delorme and Thorpe, 2001, 

Thorpe et al., 1996).    

 The temporal parameters for the presentations of the overt (masks and 

controls) and covert (target) stimuli were established from previous studies.  

VanRullen and Koch used a backward masking paradigm to determine that 

selective motor responses can be achieved with stimuli presented for only 

26ms (VanRullen and Koch, 2003b).  In addition, Phillips and colleagues 

established a discrimination threshold (the point at which an emotion could be 

discriminated) of 30ms and a detection threshold (the point at which a target 

could be detected) of 10ms using backward masking, exploring facial 

expressions of fear and disgust (Phillips et al., 2004).  Thus, in order to ensure 

strict temporal restraints, a critical time period was set at target presentation 

time of 10ms (see section 2:1:2) with both forward and backward masks of 

150ms each.  Therefore, the combination of very short target stimulus duration 

and heavy masking was to weaken the strength of the target stimulus to below 

the threshold of conscious perception.   
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 A concurrent detection task determined whether one, two or three 

images were seen and this was recorded with self-report questionnaires 

(Appendix II) to ascertain if the participants were aware of a target image.  The 

answer ‘two’ was taken as indication that a target was successfully presented 

below conscious threshold and the answer ‘three’ meant that the stimulus was 

‘seen’ and therefore above conscious threshold.  However, each participant 

could have used a different criterion to report perception with or without 

awareness, for example they may have approached this experiment cautiously 

and reported that they were unaware of a stimulus unless they were completely 

aware, conversely they may report awareness when they were only partially 

aware or ‘felt’ there was a third stimulus (Cheesman and Merikle, 1986).  In 

order to assess these graded levels of awareness, a confidence rating was 

employed to measure how confident they were of having seen (or not seen) a 

third image.  To assess the perception of valence, a single-interval forced-

choice discrimination task was introduced, asking whether the images were 

pleasant or unpleasant.  Higher than chance levels of concordant identification 

of valence, in the absence of reported detection of the third (target) stimulus, 

was taken as the operational definition of perception without awareness.   

 Response bias, however, is still an issue in forced-choice single-interval 

designs, as the participants could have a pleasant or unpleasant disposition. For 

this reason, control stimuli were included in which the target was absent but the 

neutral masks were present.  Control trials on which the participant saw only 

two images (correct rejections) could be compared with target-present trials on 

which the participant saw only two IAPS-neutral mask images (misses).  The 

response bias could then be assessed by the proportion of pleasant and 

unpleasant responses to the correct control trials.   

 Additionally, subjective confidence ratings for each task were used to 

provide further analytical information on a) the level of conscious detection of 

the target and b) confidence in the overall impression of valence, the rationale 

being that the participants would not be fully confident of valence or number of 

images seen unless they are aware or partially aware of this information.  

Therefore, confidence ratings relate to degrees of certainty in accuracy, with a 

low score (i.e. 1) indicating that they were guessing their detection or 

discrimination response and a high score (i.e. 9) reflecting complete certainty 
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of response.  Conversely, if the confidence ratings varied randomly to 

concordant and discordant scores, there would be no evidence of awareness of 

the information and confidence would be unrelated to accuracy (Kunimoto et 

al., 2001).   

 Another potential problem with using IAPS ratings to determine 

whether a response is concordant or discordant is that emotional responses to 

pictures can be very individual. For instance, one participant described a low 

valence image of a rat as ‘cute’.  The data presented will be group data, so that 

individual variation will be addressed by standard statistical arguments, but to 

ensure that the participants’ responses to IAPS stimuli were comparable with 

published norms, post-hoc ratings of the stimuli were obtained.  

 The purpose of this first experiment is a) to evaluate if it is possible to 

measure subliminal processing using natural images; b) to test for any 

significant differences in valence; c) to assess if concordance is or is not an 

indication of perception below conscious threshold; and d) to enquire if 

confidence is a measure of subliminal perception.  The main hypotheses are as 

follows:   

H¹ Participants can discriminate between positive and 

negative valence masked stimuli, on trials when there is no 

detection of the presence of the target stimulus (subliminal 

trials).  

H² There is a difference in perception of positive and negative 

valence between subliminal and supraliminal visual 

stimuli.   

H³ Confidence ratings for detection of the target, and 

confidence ratings of target valence are both correlated 

with detection of the target.  

 

3:3  Method 

 

The details regarding stimuli used for this experiment are described in sections 

2:2 and 2:2:1. 
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 3:3:1  Participants 

 

217 participants completed this experiment: 39 male and 178 female, age range 

16 to 75 years (mean age 25.29 years) from a cross section of society.   

 

 3:3:2  Design 

 

The emotional targets were presented with an exposure time of 10ms (see 

section 2:1:2).  These were ‘sandwiched’ between a pre-mask and post-mask 

stimulus, each with an exposure time of 150ms (Figure 3.1).  The control 

condition consisted of 2 neutral stimuli each of which were presented for 

150ms (Figure 3.2).  The frame size for each picture was 485 x 349 pixels and 

designed in Jasc Paint Shop Pro 7 (Animation Shop 3.00, 2000) software 

(http://www.jasc.com).   

 The order of the presentation of stimuli were randomised and 

counterbalanced for valence (see 2:2:1).  It was also counterbalanced across the 

participants with 117 participants completing the first sequence and 100 

participants completing the same sequence, but in reverse order.  

 

 

 

 

 

 

 

 

 

 
Figure 3.1  Experimental set of slides 
Key: ms = milliseconds 
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http://www.jasc.com/�


 
 

 77

 

 

 

 

 

 

 

 

 
Figure 3.2  Control set of slides. 
Key: ms = milliseconds 
 

 3:3:3  Procedure 

 

The experiment was thoroughly explained, with time for questions and 

answers, after which the participants were invited to leave if they felt unhappy 

with the procedure.  Consent forms (Appendix III) were then distributed, 

signed and collected before the experiment began.   

 The experiment was displayed either on a laptop computer or via a 

projector and each participant had a clear visual perspective of the stimuli. The 

experimenter had control of the timing of each trial, so that the participants had 

time to answer each question in the correct order.   

 In the first questionnaire (Appendix II) there were four questions for 

each image.  The first question asked “What was your overall impression - 

pleasant or unpleasant?”  The forced-choice design required the marking of one 

of two boxes - pleasant or unpleasant was then ticked.  A Likert scale of 1-9 

followed, measuring how confident they were with their answer.  The third 

question asked “How many images did you see?”  One of three boxes was then 

ticked - one, two or three.  Again a Likert scale of 1-9 for their confidence 

rating regarding this answer was presented.   There were two practice images 

before the experiment began, at which point there was an opportunity to ask 

more questions if unsure of the procedure.  The experiment then continued for 

36 trials (24 experimental trials and 12 control trials).   

Neutral 
Control

Neutral 
Control 

150ms

150ms
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 Once the experiment was completed, the individual slides were 

displayed on a Power Point presentation, so that each participant could rate the 

pictures themselves.  They were given a ‘ratings’ questionnaire (Appendix IV) 

that had three questions for each slide.  The first was “On a scale of 1-9, how 

pleasant or unpleasant did you find this image?  Please tick one of the 

following, 1 = very unpleasant, 9 = very pleasant”.  The same format was 

applied asking how arousing they found this image.  Thirdly, they were asked 

“Do you remember seeing this picture in the experiment? Yes / No / Not Sure”.  

Again, there were two practice trials to clarify understanding.  Thirty one 

images were then displayed individually, which included all of the target 

images and a sample of the neutral images.   

 Following the experimental procedure, a debriefing form (V) was 

distributed with more information on the nature of this research project, with 

an accompanying reading list.  An unrestricted question time was made 

available.   

 

3:4  Statistical Analysis 

 

For each target slide, the frequency (across participants) of pleasant and 

unpleasant responses was determined, both for those participants who saw two 

slides (target missed) and those who saw three slides (target seen).  Both sets of 

frequencies were then compared with expected values, which were the 

proportions (across participants and slides) of pleasant and unpleasant 

responses to the neutral-mask control slides (correct rejections).  One-sample 

Komolgorov-Smirnov tests were used for discrimination of valence and 

discrimination of target trials from control trials.   

 Since the data were categorical, Chi-square was calculated for each 

target slide in both two-seen and three-seen conditions using an online 

calculator (http://www.graphpad.com/quickcalcs/chisquared1.cfm).  The 

expected values used were the mean frequencies of valence response (pleasant 

and unpleasant) to the control stimulus set, across all participants, when two 

stimuli were seen.  This made it possible to ascertain if there was any 

discrimination of valence for each individual slide.  

http://www.graphpad.com/quickcalcs/chisquared1.cfm�
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 Examination of valence response found some stimuli responses differed 

from the IAPS prediction.  As a result, and in order to test detectability of 

elements within the IAPS stimli, the saliency toolbox (Walther and Koch, 

2006) was employed using Matlab compatable software 

(http://www.saliencytoolbox..net).    

 To examine the relationship between the IAPS rating norms and the 

current participant sample’s ratings of the stimuli, Pearson correlation 

coefficient was used.   

 To analyse the confidence ratings, Univariate General Linear Model 

Analysis (UNIANOVA) was employed using SPSS (SPSS Inc, 2005-8) 

(https://www.spss.com).  In addition, Wilcoxon was used to test the mean 

detectability of the images and to calculate the response of individual slides 

ANOVA was used.  

  

3:5  Results 

 

The operational definition of subliminal perception adopted in this chapter was 

the perception of stimulus valence in the absence of detection of the stimulus.  

This was tested by examining the valence of the response (discrimination task) 

on those trials where three pictures were presented, but the participant reported 

seeing only two (detection task).  It was predicted that the valence of response 

on these trials will be influenced by the valence of the short-exposure stimulus.  

The null hypothesis (no subliminal perception) would predict that the 

proportion of negative and positive valence responses is the same whether the 

target is positive or negative in valence.   

 The small number of trials where participants report seeing one image 

were eliminated as it is likely that this was due to reporting errors.   

 

 3:5:1  Discrimination of Valence 

 

The overall impression of a trial (valence response) was coded as +1 for a 

‘pleasant’ response, and -1 for an ‘unpleasant’ response.  There was no neutral 

category of response.  Valence of response was averaged separately across all 

IAPS high valence target trials (IH) (Mean = 0.633), and all IAPS low valence 

http://www.saliencytoolbox..net/�
https://www.spss.com/�
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target trials (IL) (Mean = 0.141), whether or not the presence of the target was 

detected between the two neutral masks.  The mean valence of response was 

also measured for neutral mask control trials (CN) (Mean = 0.591), in which no 

target was present.  It was found, in one-sample Komolgorov-Smirnov tests, 

that the distributions of response valence deviated significantly from normal 

for all three trial types (IH: Z=2.8, p<0.00005; IL: Z=1.53, p<0.05; CN: 

Z=2.56, p<0.000005).   

 

 3:5:2  Discrimination of Target Trials from Control Trials 

 

The next question to be considered was whether the presence of the brief target 

slide on target trials could be discriminated reliably from its absence on control 

trials.  This was tested by asking participants to judge how many pictures were 

presented in a trial, thus the correct answer for target trials would be three, and 

for control trials two.  Misses would be indicated by the response two on a 

target trial, and false positives by the response three on a control trial.  This 

was averaged across all IAPS high valence target (IH) trials (Mean = 2.659), 

all IAPS low valence target (IL) trials (Mean = 2.601) and all neutral control 

nontarget (CN) trials (Mean = 2.060).  It is clear that the discriminability of 

target and nontarget trials is good.  The false positive rate is low (6%) and 

although more than 60% of target trials are detected, the level of missed targets 

is relatively high (34.1% IH, 39.9% IL).  Again, a one-sample Komolgorov-

Smirnov test showed significant departures from normality for all three 

variables (IH: Z=1.806, p<0.005; IL: Z=2.096, p<0.0001; CN: Z=4.73, 

p<0.0001).   

 

 3:5:3  Discrimination of Valence in Individual Images. 

 

For every individual observer, the response to a trial will fall into one of four 

categories: pleasant two pictures seen; pleasant three pictures seen; unpleasant 

two pictures seen; unpleasant three pictures seen.  As shown in Table 3.1, the 

frequency of responses concordant with the IAPS valence rating varies widely 

from slide to slide. It is not possible with this information alone to determine 

whether, for an individual slide, the obtained frequency of pleasant and 
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unpleasant responses reflects discrimination of stimulus valence, or whether it 

reflects response bias.   

 The control stimuli, however, provide an independent estimate of 

response bias, and this estimate can be used to provide expected values for the 

proportion of positive and negative valence responses.  It is reasonable to argue 

that control stimuli in which two stimuli are reported (i.e. excluding false 

positives) would be identical with target stimuli in which two stimuli are 

reported, unless the target is having a subliminal effect.  The control stimuli 

showed a surprisingly large bias towards pleasant responses.  For all control 

trials on which two stimuli were reported, the proportion of pleasant and 

unpleasant responses was measured.  The percentage of pleasant impressions, 

across all control slides and all participants, was 80.43% and the percentage of 

unpleasant impressions was 19.57%.   

 This allows us to estimate whether the observed frequencies of positive 

and negative valence responses to individual slides are significantly different 

from the expected (control) values, using a chi-square test with one degree of 

freedom.  In the supraliminal case, it is conceivable that the mere detection of 

the presence of a third slide (without detection of its contents), in itself affects 

the valence of response, but this factor should have equal effects, if any, on all 

slides.  Results for the target slide set are shown in Table 3.1, for both 

supraliminal (3 seen) and subliminal (2 seen) trials.   

 16/24 slides provide concordant discrimination of valence in the 

supraliminal condition, and 15/24 slides provide concordant discrimination of 

valence in the subliminal condition (Table 3.1 - yellow highlights indicate 

discordant responses).  This represents a greater than chance discrimination of 

response valence for stimuli on which the target is undetected (Table 3.1).   
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Frequency of pleasant and unpleasant impression responses 
with % concordance. 
Supraliminal (3 seen) Subliminal (2 seen) 

Slide Un-pl Pl % C Un-pl Pl % C 
6 HVA jaguar 13 121 90.3 8 73 90.1 
24 HVA puppies 6 177 96.7 4 29 87.9 
31 HVA monkeys 71 63 47.0 39 43 52.4 
10 LVA attack dog 57 29 66.3 67 61 52.3 
15 LVA  shark 16 102 13.6 10 87 10.3 
33 LVA snake 92 36 71.8 62 27 69.7 
18 HVF baby 13 163 92.6 7 34 82.9 
20 HVF athletes 11 175 94.1 2 28 93.3 
30 HVF att fem 31 148 82.7 11 26 70.3 
7 LVF batt female 106 74 58.9 21 14 60.0 
21 LVF angry man 161 28 85.2 17 11 60.7 
35 LVF baby tumour 96 55 63.6 7 55 11.3 
1 HVS skydivers 9 98 91.6 8 97 92.4 
19 HVS skier 54 48 47.1 63 50 44.2 
23 HVS waterfall 23 71 75.5 36 86 70.5 
2 LVS air crash 3 60 4.8 15 136 9.9 
8 LVS bomb 49 59 45.4 47 61 43.5 
25 LVS car crash 23 113 16.9 8 73 9.9 
4 HVI fireworks 6 142 95.9 7 59 89.4 
13 HVI money 8 106 93.0 14 89 86.4 
22 HVI ice cream 26 127 83.0 3 60 95.2 
11 LVI flies on pie 39 123 24.1 3 52 3.6 
26 LVI elec chair 40 71 36.0 44 62 41.5 
36 LVI toilet 91 34 72.8 40 49 44.9 

Table 3.1  Frequency of valence responses with % concordance. 
Key:   C = Concordant; Un-pl = Unpleasant; Pl = Pleasant; att = attractive; batt = battered; elec 
= electric. 
 

A significant chi-square indicates that the frequency of high valence and low 

valence responses differs from the expected value (mean frequency of high and 

low valence responses to control slides), and thus indicates that the trial’s 

valence can be distinguished from control.  The direction of the deviation from 

expected value indicates whether the discrimination is in the expected direction 

(concordant with IAPS rating) or in the opposite direction (Table 3.2).   
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Frequency of pleasant and unpleasant impression responses, relative to 
control (expected frequencies).  
ex = significant effect in expected direction (concordant with IAPS)  
op = significant effect in opposite direction (discordant with IAPS) 

 Supraliminal (3 seen) Subliminal (2 seen) 
 

Slide 
Chi- 

square p
 Chi- 

square p  
6 HVA jaguar 8.288 <0.005 ex 4.834 <0.05 ex 
24 HVA puppies 30.853 <0.0001 ex 1.163 n.s.  
31 HVA monkeys 95.073 <0.0001 op 40.825 <0.0001 op 
10 LVA attack dog 119.221 <0.0001 ex 87.363 <0.0001 ex 
15 LVA  shark 2.707 <0.1 op 5.283 <0.05 op 
33 LVA snake 222.508 <0.0001 ex 141.904 <0.0001 ex 
18 HVF baby 16.594 <0.0001 ex 0.162 n.s.  
20 HVF athletes 22.033 <0.0001 ex 3.173 <0.1 ex 
30 HVF att fem 0.576 n.s.  2.427 n.s.  
7 LVF batt female 176.821 <0.0001 ex 36.352 <0.0001 ex 
21 LVF angry man 517.028 <0.0001 ex 30.119 <0.0001 ex 
35 LVF baby tumour 185.806 <0.0001 ex 2.699 n.s.  
1 HVS skydivers 8.463 <0.005 ex 9.525 <0.005 ex 
19 HVS skier 72.179 <0.0001 op 94.001 <0.0001 op 
23 HVS waterfall 1.434 n.s.  7.659 <0.01 ex 
2 LVS air crash 6.514 <0.05 op 8.905 <0.005 op 
8 LVS bomb 45.683 <0.0001 ex 39.361 <0.0001 ex 
5 LVS car crash 0.610 n.s.  4.834 <0.05 op 
4 HVI fireworks 22.633 <0.0001 ex 3.368 <0.1 ex 
13 HVI money 11.409 <0.001 ex 2.337 n.s.  
22 HVI ice cream 0.644 n.s.  8.775 <0.005 ex 
11 LVI flies on pie 2.090 n.s.  6.961 <0.01 op 
26 LVI elec chair 19.126 <0.0001 ex 32.422 <0.0001 ex 
36 LVI toilet 225.046 <0.0001 ex 36.412 <0.0001 ex 

Table 3.2  Frequency of valence responses relative to control (expected frequencies). 
Key:  n.s. = not significant; ex = significant effect in expected direction (concordant with 
IAPS); op = significant effect in opposite direction (discordant with IAPS); p = significance 
level; att = attractive; batt = battered; elec = electric. 
 
Overall, 18/24 of the slides on supraliminal trials, and 17/24 of the slides on 

subliminal trials show significant valence discrimination at p<0.05, compared 

with controls.  However, on supraliminal trials, 4/24 slides (highlighted) are 

discriminated significantly from control trials but in the opposite direction to 

that predicted from IAPS valence.  On subliminal trials 6/24 slides 

(highlighted) are discriminated significantly from control, but in the opposite 

direction to that predicted from IAPS valence (Table 3.2).  A significant 

concordant effect in the expected direction for subliminal discrimination was 

observed for the following slides: (one tailed) HVA (jaguar); LVA (attack dog, 

snake); HVF (athletes); LVF (battered female, angry man); HVS (skydivers, 

waterfall); LVS (bomb); HVI (fireworks, ice cream); LVI (electric chair, toilet) 
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(Table 3.2).  The majority of these instances would survive a full Bonferroni 

correction for multiple comparisons (P<0.0021 two-tailed).  However, 

significant discrimination in the direction opposite to that predicted was found 

in a minority of slides: HVA (monkeys); LVA (shark); HVS (skier); LVS (air 

crash, car crash) and LVI (flies on pie) (Table 3.2).  It is possible to make a 

case (with hindsight) that each of these slides changes its visual characteristics 

at short exposure.  In the case of flies on pie and skier, the pie and snow (low 

spatial frequency) is more visible than the flies and skier (high spatial 

frequency) at brief exposures.  Equally, the image of the shark is in an unusual 

view, and out of its normal context as its head is exposed out of water in a 

‘pyramid’ shape.  In the case of monkeys, they are exposing teeth, and this may 

be a salient threat stimulus at brief exposure.  The air crash and car crash are 

scrambled stimuli – containing scattered parts – and may require scrutiny for 

recognition to occur.  However, these are all post hoc explanations.   

 It would seem, without any special pleading, that these anomalous 

images can be explained by two main types of explanation: either a failure to 

detect relevant features or misrepresentation.   However, we need some way of 

testing these ideas.  In order to test detectability of features or elements within 

these images, the saliency toolbox (Walther and Koch, 2006) was used to 

predict where automatic visual attention goes. This toolbox allows an 

implementation of a basic version of Itti & Koch’s (2001) model of visual 

attention (Itti and Koch, 2001) (see section 3:3).  The model starts by detecting 

low-level image features (colour, intensity and orientation) then passes these in 

parallel through opponent (centre-surround, normalising) operators that detect 

discontinuities in each feature type. These parallel streams are then linearly 

combined to produce a saliency map. To generate predictions of the scan path 

(sequence of fixations) the most salient location is selected (winner takes all). 

The next feature is selected by inhibition of return, and so on. The scan path is 

ultimately circular, returning to the first fixation when inhibition is decayed. 

The model predicts several aspects of human psychophysical and oculomotor 

performance (Itti and Koch, 2001). 

   It was hypothesised that emotive features were not detected in early 

fixations in the anomalous pictures.  However, the results revealed that in all 

six instances the relevant features were detected (by the model) at early 
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fixation (e.g. flies on pie – first fixation was a fly, skier – first fixation was a 

skier).  Rather than failing to detect emotive features, therefore, it is probable 

that the images were not identifiable under rapid presentations and as such 

were misrepresented. 

 In summary, concordant valence response was evident during target 

trials when only two images were reported, thus suggesting subliminal 

processing.  However, there were a minority of anomalies that were discordant 

in valence response.   

 

 3:5:4  Independent Ratings Evaluation 

 

Accuracy of concordant results could be influenced by each individual’s 

perception of the image, dependent on the said individual’s own cognitive 

schema. There may also be overall differences between the sample used in this 

study and the normative IAPS sample.  Therefore, to investigate group 

differences in emotion perception, the published IAPS ratings for each slide 

was compared to those of this experimental group.  The average ratings in the 

post experiment questionnaire (Appendix IV) were calculated and marginal 

differences were found with a number of images (Table 3.3).  However, it is 

worth re-iterating here that the images chosen for the experiment were rated in 

IAPS as high valence >6, high arousal >5; low valence, <4 high arousal >5; 

neutral valence >4 <6, low arousal <5 and the sample group complies with 

these criteria for valence, but with six images scoring slightly less than 5 for 

arousal.  Notwithstanding this, it has to be acknowledged that the post-

experiment scoring had the advantage of extended exposure time and does not 

indicate a ‘concordant or discordant’ response under subliminal conditions.  

 

 

 

 

 

 

 

  



 
 

 86

 Valence Arousal 
Images in Experiment Sample IAPS Sample IAPS 
Skydivers 6.99 7.57 5.11 6.99 
Air Crash 2.35 2.71 5.73 5.75 
Fireworks 7.41 7.53 5.46 5.48 
Jaguar 7.06 6.65 5.49 6.23 
Battered Female 2.03 1.92 5.64 5.77 
Bomb 2.90 2.96 5.18 6.06 
Attack Dog 2.41 3.09 6.08 6.51 
Flies On Pie 2.69 3.59 4.90 5.11 
Money 7.51 7.91 6.05 6.44 
Shark 2.95 3.85 5.62 6.47 
Baby 8.19 7.86 6.47 5.00 
Skier 7.27 8.1 5.55 6.28 
Athletes 6.81 7.56 4.84 5.74 
Angry Face 2.59 3.34 4.61 5.18 
Ice Cream 6.42 7.53 4.93 5.76 
Waterfall 7.38 7.34 5.97 5.71 
Puppies 7.82 8.34 6.20 5.41 
Car Crash 1.84 2.3 5.55 5.76 
Electric Chair 2.13 3.41 5.44 5.58 
Attractive Female 6.29 6.79 4.29 5.16 
Monkeys 6.06 7.62 4.76 5.12 
Snake 3.32 3.46 5.43 6.87 
Baby Tumour 1.42 1.46 6.72 7.21 
Toilet 1.33 2.26 6.08 5.28 
Neutral chair 5.27 4.96 2.22 2.83 
Neutral basket 5.38 4.94 2.31 1.76 
Neutral stool 4.77 4.63 2.33 2.71 
Neutral iron 4.42 4.69 2.47 2.99 
Neutral fork 4.83 5.27 2.39 2.32 
Neutral book 5.06 5.19 3.05 2.61 
Neutral hairdryer 4.96 4.93 2.70 2.75 

Table 3.3  Scores of average ratings post experiment. 
Key:     Sample Valence = Sample average valence score; Sample Arousal = Sample average 
arousal scores. 
 
The relationship between the sample ratings and IAPS ratings were further 

investigated using Pearson correlation coefficient.  There was a strong positive 

correlation between sample valence and IAPS valence (r= .97, n=31, 

p<0.0005) plus a strong positive correlation between sample arousal and IAPS 

arousal (r= .90, n=31, p<0.001).   

 Establishing that the experimental group ratings of the stimuli fall 

within the same ranges as those of the IAPS ratings, allows us to eliminate this 

as a possible explanation for any disparity in impression of the stimuli.    

However, it is possible that concordance is not the only measure of subliminal 
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processing.  Perhaps confidence in one’s answers is also an indication of 

subliminal perception.   

 

 3:5:5  Confidence Ratings: Analysis for Individual Slides 

 

Another way of looking at subliminal perception is to assume that there is no 

distinct ‘subliminal process’, but rather, there is a graded ability to process 

stimuli, and no fixed threshold.  It is possible to use confidence ratings to 

investigate this hypothesis.  If a subliminal stimulus is simply a weakly 

detected stimulus, for example, the observer’s confidence in the overall 

pleasant or unpleasant impression given by a trial should be higher when the 

target is detected.  Moreover, confidence in the overall pleasant or unpleasant 

impression given by a trial should be higher for ‘correct’ (concordant with 

IAPS rating) than ‘incorrect’ (discordant with IAPS rating) trials.   

 Participants were asked to rate how confident they were in their overall 

judgement of valence for the trial as a whole.  This measure is the valence 

‘impression confidence’ (coni).  A univariate analysis of variance was 

conducted for each individual slide.  The dependent variable was the 

confidence in the impression of valence (coni) and the independent variables 

were the response concordance (i.e. whether the response was concordant or 

discordant with the IAPS valence rating) and the number of pictures seen 

(2=subliminal, 3=supraliminal).  Significant main effects of response 

concordance on valence impression confidence were found in 11/24 slides, and 

significant main effects of number of pictures seen on valence impression 

confidence were found in 5/24 slides (confirming H²).  Significant interactions 

(response concordance x number of pictures seen) were found in 3/24 slides.  It 

was expected that valence impression confidence would be higher for 

concordant responses and seen targets, but there were exceptions to this.  For 

some low valence slides, confidence was higher for discordant responses 

(shark, air crash, car crash and electric chair).  This is because not only is there 

a response bias towards pleasant responses, there is also a confidence bias: 

other things being equal, confidence ratings are higher for pleasant responses 

(mean = 7.23) than unpleasant (mean = 6.66).  This may be an indication that 

more sensory information is required to feel confident in ones answer coupled 
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with a natural reluctance to report an unpleasant response; this is addressed in 

greater detail in the discussion.  Where subliminal and supraliminal trials differ 

in valence impression confidence, this is in the expected direction, with 

confidence being higher for seen trials.  However it is notable that valence 

impression confidence for the majority of trials does not seem to depend 

strongly on whether the target is seen.  Where there is an interaction, a strong 

relationship of valence impression confidence with concordance for 

supraliminal trials is matched with a weaker relationship in the opposite 

direction for subliminal trials (for summary see Appendix VI column 5).   

 Participants were also asked to rate how confident they were in their 

response to the question “how many pictures did you see?”  This measure is the 

‘seen confidence’ (cons).  A second UNIANOVA was carried out on 

confidence in how many seen (DV), with the same IVs.     

 Significant main effects of correct number seen on confidence in how 

many images seen (cons) and was found for 8 out of 24 images: athletes 

F(1,212) = 5.38, p<0.05; icecream F(1,212) = 5.62, p<0.05; puppies F(1,212) = 

12.26, p<0.001; car crash F(1,213) = 25.68, p<0.001; attractive female 

F(1,212) = 12.16, p<0.001; monkeys F(1,212) = 24.23, p<0.0005; snake 

F(1,213) = 11.68, p<0.001; and toilet F(1,210) = 7.60, p<0.01).   

  There were four images with a significant main effect concordant 

response on confidence in how many images seen: attack dog F(1,210) = 8.68, 

p<0.005; car crash F(1,213) = 5.30, p<0.05); electric chair F(1,213) = 4.84, 

p<0.05; toilet F(1,210) = 5.68, p<0.05.   

 Lastly, nine significant interactions were recorded for number seen x 

concordance on confidence in how many images seen: battered female 

F(1,211) = 11.19, p<0.001; bomb F(1,212) = 5.06, p<0.05; attack dog F(1,210) 

= 5.15, p<0.05; flies on pie F(1,213) = 6.79, p<0.01; baby F(1,213) = 5.40, 

p<0.05; angry man F(1,213) = 25.56, p<0.001; car crash F(1,213) = 11.13; 

p<0.005; attractive female F(1,212) = 5.33, p<0.05; toilet F(1,210) = 6.98; 

p<0.01.   

 Although coni and cons were moderately positively correlated with 

each other (mean spearman rho = 0.4 – 0.6), cons was less frequently predicted 

by concordant response (5/24) than was coni (11/24).  Conversely, the number 
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of images where cons was predicted by number of images seen (8/24) was 

slightly higher than for coni.   

 

 3:5:6  Conclusions from ANOVA of Individual Slides. 

 

As shown in section 3:5:3, the analysis of responses to individual slides 

(Appendix VI) shows that for particular slides there is clear evidence of 

valence discrimination, even when the presence of the slide is undetected.  In  

section 3:5:5 it is shown that for a substantial number of slides, the confidence 

in the overall impression of valence is increased for concordant relative to 

discordant responses.  However there are a number of exceptions or anomalies 

revealed by this analysis.  For certain slides, there is discrimination of valence, 

but in the opposite direction to that predicted by IAPS ratings (Section 3:5:3).  

Likewise for certain slides, the confidence in valence impression is higher for 

discordant relative to concordant responses (Section 3:5:5).  Three possible 

explanations for anomalies have been considered.  The first is that there is a 

response bias towards high valence responses, as is evident from the response 

to control trials.  The second is that the spatiotemporal properties of the visual 

system are such that the relative salience of different components or features of 

an image is changed by the brief presentation: most obviously there is a loss of 

high relative to low spatial frequency information.  The third explanation, 

however, using the saliency toolbox, identified misrepresentation as a possible 

reason for the anomalous results.   

 In the next section we consider whether (despite these anomalous 

responses to certain images) it is possible to draw general conclusions about 

the influence of valence and stimulus category on detection, discrimination of 

valence, and confidence ratings.   

 

3:6  Analysis of Response to Stimuli Grouped by Category and Valence.  

 

 3:6:1  Detectability of Stimuli (nseen).  

 

To determine the detectability of each stimulus, it is assumed that if two stimuli 

were seen (i.e. the two masks) the target was not detected.  If three stimuli were 
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seen, the target was detected.  Therefore the detectability of a stimulus is the 

‘number seen’ minus two.  This was averaged over categories and over 

participants to give the mean probability of detection (henceforth 

‘detectability’).  Of the a priori category differences in detectability Wilcoxon 

showed significant differences in detectability with faces seen more than 

animals (z = 8.225, N – Ties 56, p<0.0005),  faces seen more than scenes (z = 

10.507, N – Ties 41, p<0.001), faces seen more than inanimate objects (z = 

8.474, N – Ties 65, p<0.0005), animals seen more than scenes (z = 7.281, N – 

Ties 47, p<0.0005), and inanimate objects more than scenes (z = 7.927, N – 

Ties 55, p<0.0005).  Of the four categories, faces were substantially the most 

detectable, whilst scenes were the least (Figure 3.3).   

 However, it was only for the category of animals that there was a 

significant difference in the mean positive and negative detectability of valence 

(z = 7.954, N – Ties 90, p<0.0005).  There was no significant difference in the 

detectability of valence in the other three categories.  Therefore it is concluded 

that positive and negative valence stimuli in these categories may be 

considered matched in their average valence detectability (Figure 3.3).   
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Figure 3.3  Mean probability of target detection by category and valence.  
 

In Figure 3.3 the mean probability of detecting the target stimulus is shown on 

the Y axis.  It is assumed that if the number of stimuli seen (including the 

masks) is three, then the target has been detected (probability = 1), and if the 

number of stimuli seen (including the masks) is two, then the target has not 
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been detected (probability = 0). Probabilities are averaged across instances 

(slides) and participants for four categories of stimuli (X axis).  The two data 

series represent the high valence and low valence slides within each category.   

 

 3:6:2  Effects of Stimulus Detectability (nseen) on Seen Confidence 

(cons) and Valence Impression Confidence (coni). 

 

It will be expected that seen confidence will be high for trials on which the 

target is clearly detected, and low for trials on which the target is not clearly 

detected.  Thus there should be a positive correlation between detectability 

(nseen-2) and seen confidence. But what about valence impression confidence?  

If overall impression of valence depends on detecting the target, then there 

should be a positive correlation also between detectability and valence 

impression confidence.  The means (across all participants) and the standard 

errors of seen confidence and valence impression confidence were determined 

for every target slide and are shown in Figure 3.4.  There was a positive 

correlation in each case, but the association between detectability and seen 

confidence (r2 = 0.85) was much stronger than that between detectability and 

valence impression confidence (r2 = 0.4).   
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Figure 3.4  Mean confidence ratings for seen confidence and valence impression confidence.  
 

In Figure 3.4 the mean confidence ratings for stimulus detection (seen 

confidence) and for judgments of overall impression of valence (impression 
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confidence) are plotted as a function of the mean detectability (nseen – 2) of 

the target for the 24 target slides. Error bars = 1 S.E.M. 

 

 3:6:3  Effects of Stimulus Valence and Category on Seen 

Confidence (cons).  

 

To find out how seen confidence varied as a function of stimulus valence and 

stimulus category, seen confidence ratings differed for high and low valence 

stimuli for animals (Wilcoxon z = 7.366, N – Ties 30, p<0.005) and faces 

(Wilcoxon z = 2.232, N – Ties 76, p<0.05).  Scenes and inanimate objects 

showed no significant difference in seen confidence for high and low valence 

stimuli.  Therefore we can consider that high and low valence versions of these 

categories of stimuli are balanced with respect to the confidence ratings for 

detection.  As expected, the marginal means showed a similar pattern (Figure 

3.5) to that shown for detectability (Figure 3.3). 
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Figure 3.5  Mean confidence rating for the number of stimuli seen (including the masks) (Y 
axis).  Ratings are averaged across instances (slides) and participants for four categories of 
stimuli (X axis).  The two data series represent the high valence and low valence slides within 
each category.  
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 3:6:4  Effects of Stimulus Valence and Category on Overall 

Impression of Valence (imp). 

 

The overall impression of valence of a stimulus trial (consisting of a target plus 

masks) was analysed as a function of the IAPS valences and categories of the 

target slides.  The overall impression of valence (imp) was scored +1 for 

‘pleasant impression’ and -1 for ‘unpleasant impression’.  Means were then 

calculated across the three exemplar slides of each type (valence x category) 

for each participant, generating a four-point scale (+1, +0.33, -0.33, -1).  Data 

was averaged across both supraliminal (3 seen) and subliminal (2 seen) trials. 

The means are shown in Figure 3.6. Note that the difference in means is 

smaller (and in the opposite direction) for scenes.  Note also that there is an 

overall bias in favour of pleasant responses, as already discussed above.  
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Figure 3.6  Mean overall impression of valence (Y axis).  Valence responses are averaged 
across instances (slides) and participants for four categories of stimuli (X axis).  The two data 
series represent the high valence and low valence slides within each category. 
 
To test for differences in response to high and low valence Wilcoxon was used.  

Significant differences were found for animals (z = 9.294, N – Ties 65, 

p<0.0005), faces (z = 10.824, N – Ties 25, p<0.0005), scenes (z = 3.751, N – 

Ties 95, p<0.0000005) and inanimate objects (z = 9.707, N – Ties 64, 

p<0.0005).   
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 3:6:5  Effects of Stimulus Valence and Category on Confidence in 

the Overall Impression of Valence (coni). 

 

Finally, Wilcoxon tests were carried out to determine how confidence in the 

overall impression of valence (coni) differed for high and low valence stimuli, 

for each category of the stimulus.  Again, a similar overall pattern emerged, 

with significant effects for high and low valence for animals (z = 4.511, N – 

Ties 35, p<0.001), faces (z = 3.195, N – Ties 52, p<0.005) and inanimate 

objects (z = 3.276, N – Ties 37, p<0.005).   

 Mean confidence ratings for valence impression are shown in Figure 

3.7 and the overall greater impression confidence for high valence stimuli and 

faces may be seen.   

 

6.5

7

7.5

8

8.5

animals faces scenes inanimate
category

co
nf

id
en

ce

high valence
low valence

 
Figure 3.7  Mean confidence rating for the overall impression of valence (Y axis).  Ratings are 
averaged across instances (slides) and participants for four categories of stimuli (X axis).  The 
two data series represent the high valence and low valence slides within each category. Error 
bars ±1 SEM.  This is consistent with the response bias for pleasant responses already 
discussed.  
 
 3:6:6  Conclusions from the Analysis of Response to Stimuli 

Grouped by Category and Valence.  

 

• The detectability of high and low valence stimuli is not significantly 

different for faces, scenes and inanimate objects.   

• The detectability of high valence animals is higher than that of low 

valence animals.   
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• Categories differ in detectability. Faces are the most detectable, scenes 

the least.   

• The confidence in detectability (number seen) is strongly correlated 

with detectability.   

• Confidence in impression of the stimulus valence is less strongly 

correlated with detectability.   

• The overall impression of valence is higher for high valence stimuli 

than low valence stimuli for animals, faces and inanimate objects.  

Scenes are anomalous in that there is a significant difference in the 

opposite direction to that predicted by IAPS.   

• Confidence in the impression of valence was significantly different for 

high and low valence with animals, faces and inanimate objects.  There 

is no significant difference for scenes.   

 

3:7  Discussion 

 

The rationale of the design was to measure affective discrimination when 

participants deny awareness of target stimuli, thus suggesting unconscious 

emotional perception (Merikle et al., 2001).  Stimulus discrimination was 

measured (‘overall impression pleasant vs unpleasant’) and harvested strong 

support for discrimination of valence in brief, masked presentations of IAPS 

stimuli.  If such stimuli can be discriminated, they must necessarily be capable 

of producing differential effects in the brain.  There is thus strong justification 

for predicting that brief, masked IAPS stimuli will generate detectable valence-

related differences in fMRI activations.     

 Choosing a forced-choice pleasant versus unpleasant discrimination 

task has the obvious advantage of preventing irresolute submission (‘don’t 

know’), which reaps little reward in data collection.  The problem with this is 

that single-interval forced choice methods are still susceptible to response bias.  

An accepted technique to measure sensitivity that is independent of response 

bias is signal detection theory (SDT).  However, a preliminary analysis of the 

data in this chapter showed that a SDT approach was not tractable.  Instead, a 

method using nonparametric chi-square was adopted, which meant that 
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categorical data, response bias and any missing data were accounted for in 

valence analysis of individual images.  Evidence for subliminal processing had 

to be sought at the level of responses to individual slides, because the design of 

the experiment required each trial to be classified as ‘target detected (nseen = 

3)’ or ‘target not detected (nseen=2)’.  This means that nseen is necessarily a 

between-participants variable, and furthermore the assignment of each 

participant’s response to the ‘target detected’ or ‘target undetected’ group 

varies for each slide.  Therefore, responses to detected and undetected trials 

cannot be averaged across slides.  Examining each picture one at a time 

rendered it possible to recognise evidence for subliminal perception and also to 

detect the small number of anomalies that were indicated by significant valence 

discrimination in the wrong direction.   

 The main point to consider is valence discrimination in subliminal (seen 

2) responses.  Taking into account only those trials on which the target was 

undetected, 17 out of 24 slides (Table 3.2) showed significant differences in 

‘overall impression of valence’ compared with control (target absent) slides.  

Relying on the operational definition of subliminal perception, this would 

indicate that the valence was detected without conscious awareness.  However 

in 6 out of those 17 slides (Table 3.2), the predominance of valence 

impressions was opposite to the expected direction, even after taking into 

account the response bias revealed by the control stimuli.  This is confirmation 

that some IAPS stimuli are effectively processed below the level of conscious 

awareness.   

  It was found that despite the low detectability of the stimuli, 

participants were able to reliably assign a level of confidence to the overall 

pleasant or unpleasant impression given by a stimulus trial.  Concordance or 

discordance with the IAPS rating produced a significant effect on confidence in 

the stimulus valence impression in 11 out of 24 stimuli (Appendix VI, column 

4).  In 7 of those stimuli, confidence was significantly higher for the 

concordant response, and in four, confidence was higher for the discordant 

response (Appendix VI, column 5).  All of the latter were low valence stimuli, 

suggesting that participants are more confident in giving a positive than a 

negative valence response.  All of the remaining HV stimuli showed a trend in 

the expected direction (confidence higher for concordant responses) but for LV 
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stimuli the results were much more variable.  The conclusion that confidence 

was generally higher for HV responses was confirmed in the overall analysis 

(regardless of detection or non-detection of targets) for animals, faces and 

inanimate objects.   

 A possible explanation for the strong positive bias for valence response 

and confidence ratings is that more sensory evidence is required to report a 

negative than a positive valence stimulus.  This is indicative of a response 

process such as response suppression in perceptual defence.  Rather than 

response suppression signifying a defensive blocking of conscious perception, 

it is well documented that perceptual defence is explained by response 

inhibition.  Using a set of neutral and taboo words, it was found that a 

recognition task reflected how the participants responded, not what they 

perceived (Zajonc, 1962).  In other words, response to unpleasant stimuli is 

inhibited for various internal events, such as personal values and attitudes, as 

well as expectancies of the situation (Erdelyi, 1974).  It is also plausible that, 

due to discomfort, participants have a natural reluctance to label a stimulus as 

unpleasant until certain of the content, therefore needing extra time for 

discrimination (Kline et al., 1998).  This view would explain why the briefly 

presented unpleasant stimuli were sometimes discordant in response.   

 It was found that confidence scores in how many seen were strongly 

correlated with the detectability of the stimulus.  Confidence in the overall 

valence impression was less strongly dependent on the detection of the target, 

lending support in this present study, to the notion that perception of valence 

was occurring below conscious detection threshold (VanRullen and Koch, 

2003b).  If participants were concordant in their valence response and reported 

seeing only 2 slides, but were not confident with their answer then this can be 

argued as a case for graded conscious perception.  This is because it is likely 

that participants would not be highly confident if their valence response was 

based on a simple ‘feeling’ that a trial was pleasant or unpleasant.    

 This supports the mounting evidence for graded conscious perception in 

that the distinction between conscious and unconscious visual perception is not 

as dichotomous as previously assumed.  The ‘all-or-nothing’ idea would appear 

unlikely, as in this instance it is evident that some information from 

unconsciously perceived visual stimuli reaches beyond the early stages of the 
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visual system to higher cortical or subcortical levels which are selectively 

activated to valence (Li et al., 2002).  

 Previous studies investigating subliminal perception using confidence 

ratings have produced conflicting results.  For instance, a study replicating 

blindsight in normal participants presented two displays of visual texture 

stimuli, one visible and the other not.  They found no correlation between 

confidence levels and detection or localisation of target (Kolb and Braun, 

1995).  By attempting to replicate Kolb and Braun’s study, Morgan, et al., 

(1997) found that confidence ratings correlated highly with accuracy in 

performance.  To explain the discrepancy in results, the authors criticised Kolb 

and Braun for instructing the participants to use the full range in the confidence 

scale regardless of the level of certainty (Morgan et al., 1997).  More recently, 

Kolb and Braun’s study was duplicated by Robichaud and Stelmach (2003) in 

terms of methodology but added a pointing response as an extra condition.  The 

results were the complete opposite to those of Kolb and Braun (1995), and 

supported those of Morgan, et al. (1997) in that confidence ratings and 

accuracy were correlated well (Robichaud and Stelmach, 2003).  Scharli, et al. 

(2003) supported these findings in another simulation of blindsight.  Detection 

and localisation performance was measured on visual stimuli presented below 

level of awareness.  It was concluded that correct detection and localisation did 

correlate with confidence regarding accuracy, which they interpreted as an 

impoverished level of conscious awareness (Scharli et al., 2003).   

 In the present study, there was a strong positive correlation between 

confidence in how many seen and detectability (number of stimuli seen).  Lack 

of confidence implies ‘guessing’, suggesting that participants are unaware of 

any information that leads to their detection and discrimination response.  This 

premise is supported by Kunimoto and colleagues, who assert that the 

association between confidence and accurate response is a measurable criterion 

for awareness and participants are only aware of stimuli when confidence is 

related to concordance (Kunimoto et al., 2001).  The strong correlation 

between confidence in the number seen and probability of detection meets the 

criterion of Kunimoto et al. (2001).  There is a significant positive relationship 

between concordance and valence impression confidence for some slides, a 

negative relationship for others, and for further slides there is no relationship, 
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therefore on this criterion, conscious awareness of valence is somewhat weak 

and variable across the sample of stimuli.   

 Therefore, this experiment succeeded in presenting stimuli both above 

and below conscious awareness.  Equally, when taking incorrect detection of 

target stimuli as no awareness (i.e. subliminal - seen 2 images when 3 

presented) and taking into account response bias when calculating valence 

response on undetected stimuli, there is also evidence of subliminal processing.   

 This investigation now requires further analysis.  Repeating the 

behavioural study using fMRI eliminates concerns over response processes and 

potentially can reveal evidence for neural processes underlying valence 

discrimination across diverse categories of stimuli.  The behavioural study, 

however, revealed some anomalous valence responses to certain images.  The 

most likely explanation for this was the probability that these images were not 

identifiable under rapid presentations and therefore misrepresented.  This 

necessitates a further procedure for the next fMRI experiment and so, the 

decision was made to choose another full set of stimuli as a second condition.  

These were matched as closely as possible for valence, arousal and category 

with the first target set.  The only difference was that they were a completely 

different set of images, so that their physical properties were necessarily 

different.  The two sets were thus matched for the variables of interest (valence 

and category), but not for image features.  It is also worth reiterating that 

Wilcoxon tests in the behavioural experiment did show that high and low 

valence stimuli were matched for detectability, for the faces, scenes and 

inanimate objects.  Therefore, any effects of valence for these categories were 

not confounds with detectability.   

 Finally, when re-examining these data by averaging responses across 

categories, there was some evidence of category effects over and above the 

variation in individual slides.  The faces were the most detectable category, and 

they also showed the clearest discrimination between high and low valence 

stimuli.  The animals and inanimate objects were also relatively well detected 

and showed differential valence responses to IAPS high and low valence 

stimuli.  The scenes showed the most anomalous valence responses and the 

lowest detectability.  Equally, when considering the neuroimaging literature it 

is clear that stimuli are frequently defined in terms of a priori categories, e.g. 
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animals (Bacon-Macé et al., 2005, Delorme et al., 1999, Delorme et al., 2004, 

Fize et al., 2000, Fize et al., 2005, Kirchner and Thorpe, 2006, Li et al., 2002, 

Rousselet et al., 2004b, Thorpe et al., 1996, Thorpe et al., 2001b, VanRullen, 

2007); faces (Delorme and Thorpe, 2001, Rousselet et al., 2004b, Rousselet et 

al., 2004a, VanRullen et al., 1998, VanRullen et al., 2005); scenes (Delorme et 

al., 1999, Delorme et al., 2004, Fabre-Thorpe et al., 2001, Mace et al., 2005, 

Rousselet et al., 2005, Thorpe, 2002); objects (Thorpe et al., 1996, Thorpe et 

al., 2004, VanRullen and Koch, 2003a, VanRullen and Koch, 2003b); vehicles 

(Li et al., 2002, VanRullen, 2007, VanRullen and Thorpe, 2001c); and food 

(Delorme et al., 2000).   

 Therefore, to facilitate critical assessment of the fMRI findings with 

previous research and to investigate any apparent category variation in the 

fMRI activations to the images, the stimulus blocks in the following fMRI 

study in Chapter 4 will now be defined in terms of category membership as 

well as valence.  

 

3:8  Conclusion and Summary 

 

Concordant responses and confidence ratings were taken as a measure of 

subliminal processing of affect.  It was shown that it is possible to rapidly 

evaluate valence discrimination in complex natural images when presented 

below the threshold of conscious awareness (confirming H¹).   

 Hypothesis two was partially confirmed, as there was a significant 

difference in valence perception between subliminal and supraliminal 

presentations for 6 out of 24 slides.  However, for most slides, the subliminal 

effect was similar to the supraliminal one but slightly weaker. 

Hypothesis three was confirmed, in that there was a positive correlation 

between confidence in seeing the target and target detection. There was also a 

positive but much weaker correlation between confidence in the impression of 

valence and target detection. This can be taken as indicating a partial 

independence between valence discrimination and target detection.  

 There is strong evidence that the chosen natural images are effective 

stimuli for emotional valence even when presented in brief, masked exposures. 

There was partial validation of the division of stimuli into four a priori 
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categories, in that category effects showed some consistency, but this was 

complicated by the large variation in detection and valence discrimination 

responses to individual images. In order to objectively re-examine the 

effectiveness of the complex pictures, they will now be presented as categories 

to map the neural correlates of affective processing.  Therefore, the next step is 

to conduct this experiment using fMRI.   
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Chapter 4  fMRI Masked Experiment: 

fMRI activations in different brain regions (ROIs)  

to complex affective stimuli. 

Effects of brief, masked presentations, 

stimulus category and valence 

 

4:1  Abstract 

 

The previous behavioural experiment has confirmed valence discrimination 

without conscious awareness for a proportion of selected complex natural 

stimuli of affect.  In order to support and complement these findings, the same 

stimuli in a similar forward and backward masking paradigm were re-examined 

using fMRI.  This provided objective description of neural activations 

associated with stimuli category variation and valence effect.  The results 

strengthened the initial evidence that natural images presented in normal and 

brief viewing conditions are effectively discriminated for valence and category 

in nine selected ROIs and demonstrated some hemispheric differences.   

 

4:2  Introduction 

 

Having established significant subliminal valence response employing natural 

images in a behavioural study, the next step is to examine targeted areas in the 

brain where valence processing of brief, masked images may occur.  Therefore, 

using fMRI, the effect of brief, masked presentations of the same images in 

relation to activations in nine relevant ROIs (see section 1.6) were investigated 

for further objective evidence of rapid processing of valence in diverse images.   

 As discussed in Chapter 3, conscious visual processing does not occur 

without sufficient strength of visual input.  This visual input can be reduced by 

suppressing feedforward activity by forward masking.  The now weakened 

input can then be further suppressed by interfering with late reentrant level 

backward masking.  A reentrant theory of perception asserts that lower level 

processing of sensory input cannot be analysed if it is not confirmed by higher 

level processing (e.g. confirmation of identification by testing initial sensory 
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input with previously available sensory evidence).  If confirmation is 

interrupted, as in the case of backward masking, then the percept will decay 

and conscious perception will not occur (Koch, 2004).  In order to present 

stimuli below, or close to the threshold of conscious awareness, without 

suppressing unconsciously perceived emotion (Dolan, 2002), as in the 

behavioural experiment, a forward and backward masking (by neutral images) 

paradigm was used.   

 The main purpose of the present study is to investigate processing 

complex affective stimuli below, or close to, the conscious threshold.  Using 

fMRI, exploration of this phenomenon will now be considered in relation to 

nine ROIs in terms of high and low valence, and four different categories.  

Therefore, this chapter will address the following hypotheses concerning 

activations to contrasts between emotional and neutral IAPS stimuli within 

each of the nine ROIs:   

H¹ There are significant effects involving valence for 

normally viewed stimuli.  

H² There are significant effects involving valence for brief, 

masked stimuli. 

H³ Valence effect is different between normally viewed and 

brief, masked presentations (interaction between valence 

and experimental condition). 

H4 There are significant effects involving category. 

H5 There are hemispheric differences between activations in 

paired ROIs. 

H6 There are significant effects involving category for brief, 

masked presentations.   

 
4:3  Method 

 

 4:3:1  Participants 

 

Thirteen healthy participants took part in this experiment, seven males and six 

females (age range 19 – 45 years, mean age 29.3).  None of the thirteen had a 

history of brain injury or psychiatric illness and they were not taking any 
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regular medication.  The nature of the experiment was thoroughly explained 

and informed consent obtained.  During the briefing, it was emphasised that 

some of the pictures may be of an unpleasant nature and some of the stimuli 

are associated with phobic reactions, (e.g. spiders, snakes etc).  Armed with 

this information, participants could choose to continue with the experiment or 

not and were informed that they could stop the procedure at any time.   

 For those who travelled independently to the scanner, travel expenses 

were reimbursed.  This was the only payment made.   

 

 4:3:2  Design 

 

This was a block design fMRI study with three conditions.  In the brief, 

masked condition, the target (T) pictures were presented for 10ms (see section 

2:1:2), ‘sandwiched’ between two neutral (N) masking pictures with an 

exposure time of 1s each (Figure 4.1).  This was followed by a 2s blank and the 

sequence was repeated three times in each block, ending with a 3s blank to 

ensure return to baseline level (Figure 4.2).  The baseline (3s blanks) was 

modelled implicitly, therefore was not specified as a separate condition.  The 

brief, masked blocks were randomised for categories.  The brief, masked 

blocks were followed by two different normally viewed blocks 1 and 2 

composed of target stimuli of the same category, valence and arousal.  The 

target stimuli within each of the normally viewed blocks were presented for 

1.01s, preceded by a neutral picture of 1s exposure (Figures 4.3 and 4.4).  One 

of the normally viewed presentations (p) was of the same images as the 

preceding brief, masked condition and the images within these blocks were 

counterbalanced.  The other normally viewed presentation (P) was a different 

image of the same category, but calibrated for the same valence and arousal.  

The order of the two normally viewed blocks was randomised.  The 3 different 

target pictures in each block were of the same category (e.g. face) and valence 

(e.g. HV) (Figures 4.1 and 4.2).  The purpose of using two different normally 

viewed stimuli sets was to establish the reliability of responses to valence and 

category using stimuli with diverse structure and content.   
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 Four control blocks were introduced randomly, consisting of a neutral 

picture (10ms duration) ‘sandwiched’ between two neutral images of 1s 

duration.    

 Table 4.1 shows an example of a presentation order of blocks, (please 

read each row from left to right).   

c b p P b P p b p P c b p P 

b P p b P p c b p P c b P P 
Table 4.1  A presentation order of blocks 
Key: c = control; b = brief masked; p = same image as brief masked presented under normal 
viewing; P = different image presented under normal viewing. 
 

  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.1  Actual image sequence for a brief masked block HVf.    (Lang et al., 2001) 
Key:  S = Slide number; N = Neutral; T = Target; B = Blank; s = seconds; ms = milliseconds.  
 

 

S 4250 T 
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Figure 4.2  Stimulus sequence for a brief masked block 
Key: N = neutral; T = target; s = seconds; ms = milliseconds. 
 
Figure 4.2 demonstrates the brief, masked condition whereby the target stimuli 

(e.g. HV face 1 – Attractive Female, 2 - Baby and 3 - Athletes) of 10ms (see 

section 2:1:2) exposure are ‘sandwiched’ between two neutral stimuli of 1s 

exposure.  The grey squares represent the blank screen between each target set.   
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Figure 4.3  Stimulus sequence for a normally viewed (p) block         
Key: N = neutral; T = target; s = seconds. 
 
Figure 4.3.  The same target stimuli were used for one of the presentations of 

the normally viewed condition with exposure time of neutrals 1s and target 

1.01s.  Again, three targets were presented in each block of the same category 

and valence.   

         
Figure 4.4  Stimulus sequence for the second normally viewed (P) block 
Key: N = neutral; T = target; s = seconds. 
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For comparison purposes, a second normally viewed condition (P) was 

presented in a randomised order to the first presentation (p).  Here different 

target pictures were used, but maintained the same paradigm as the first 

normally viewed condition.  The purpose of the second normally viewed block 

was to establish the reliability of the constructs ‘category’ and ‘valence’ across 

variations in individual images (Figure 4.4).   

 

       
Figure 4.5  Stimulus sequence for a control block 
Key: N = neutral; s = seconds; ms = milliseconds.  
 

Figure 4.5 illustrates a control block of neutral images (10ms) sandwiched 

between two neutral images (1s each).   

 Each block ran for 13.03s, with eight brief, masked, eight normally 

viewed (same image as brief, masked), eight normally viewed (different 

images) and four controls.  Thus 28 blocks were presented for a total time of 

6.08 minutes.   
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 4:3:3  Procedure 

 

The well-being of the participants is a priority and, even though fMRI is 

reported to be safe by the International Society for Magnetic Resonance in 

Medicine (www.ismrm.org/public/index.htm), each participant was still 

required to complete an initial screening form (Appendix VII) to establish if 

they were at risk (e.g. suffering from claustrophobia, had any metal implants 

etc.) and if so, they would have been eliminated from the experiment without 

the need to go to the MRI unit.  At the same time, each participant was given 

an information sheet with basic explanations concerning fMRI, procedures for 

scanning and safety requirements (Appendix VIII).  This initial process was 

completed at least one week before scanning to allow time for an informed 

opinion on participation.  On the day of scanning, a second screening form 

(Appendix IX) was filled in to ensure that all safety measures were in place, at 

which point a consent form was signed (Appendix X).   

 Whilst briefing the participants in the control room, a trial run was 

displayed on a laptop computer for familiarisation.  This showed a group of 

typical pictures, not used in the experiment.  This enabled the participants to 

ask any questions or choose to withdraw from the experiment.   

 The contents of an instruction slide used in the experiment were as 

follows:   

• Each picture will appear quickly. 

• Please indicate whether the images are pleasant or unpleasant. 

• Press the left button for pleasant and the right button for unpleasant. 

• GET READY. 

 The button box used in the experiment was a dummy, simply used to 

ensure greater attention and central fixation.  The ‘pleasant or unpleasant’ 

decision via button press was required for control stimuli as well as emotional 

stimuli.   

  

 

 

http://www.ismrm.org/public/index.htm�
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 4:3:4  fMRI Data Acquisition 

 

Data were acquired using procedures as outlined in section 2:1:2 and 2:1:4.  

Functional images were recorded using a 3T MRI scanner.  Using a T2*-

weighted gradient echoplanar imaging (EPI) data were attained over 6.08 

minutes acquiring 35 slices per TR.  The parameters set were TR 2s, TE 30ms, 

FoV = 192x192mm, flip angle = 90°, voxel size 3x3x3, number of 

measurements = 184 volumes.     

 

 4:3:5  Data Analysis 

 

SPM2 (Friston and Wellcome Department of Imaging Neuroscience, 2003) 

(http://www.fil.ion.ucl.ac.uk/spm) was used for statistical processing, which 

was implemented in MATLAB (MATLAB Inc, 2002) 

(http://www.mathworks.com/products/matlab).  Pre-processing was carried out 

as outlined in section 2:1:4.   

 As described in section 2:1:4, a preliminary first-level fixed effects 

analysis was implemented across the nine ROIs.  Following on, a more 

comprehensive second level analysis of nine ROIs was performed using 

MarsBar toolbox for SPM2 (Brett et al., 2002) (http://marsbar.sourceforge.net) 

(again see section 2:1;4).   

 

4:4  Results 

 

 4:4:1  First Level Analysis 

 

Using a mean group contrast image a fixed effects analysis on the nine ROIs 

was carried out in order to advance initial inferences about this measured data.  

Activations, when presented with control stimulus, were subtracted from 

activations when presented with each of the experimental conditions (e.g. HV 

animals supraliminal > controls or HV animals subliminal > controls) with a p 

value of 0.05 using value adjustments family-wise error (FWE).  The results of 

these contrasts are displayed in Table 4.2 and Table 4.3. 

http://www.fil.ion.ucl.ac.uk/spm�
http://www.mathworks.com/products/matlab�
http://marsbar.sourceforge.net/�
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 Having demonstrated how the normally viewed stimuli were 

randomised, the point of interest now is to examine if there were any 

differences between the two presentations.  To facilitate this, the normally 

viewed presentations will be labelled in this section as presentation 1 (P1) and 

presentation 2 (P2) to identify any presentation order effect. 

 Table 4.2 shows significant activations to each presentation of the 

normally viewed stimuli (P1, P2).  By displaying the significant results from 

the contrasts, one can see a striking similarity in activations between the first 

and second presentation of the normally viewed stimuli, regardless of 

presentation order.  This firstly confirms the reliability of the categorisation of 

stimuli, and secondly suggests that presentation order of the normally viewed 

images does not have an effect.  Thirdly, at first glance there appears no 

obvious habituation.  It is also interesting to note that at this preliminary stage, 

there are differences evident in ROI activations according to the category and 

valence of stimuli.   

 
  ACC mPFC Para Amy STG Ins Fusi DLPFC OFC 

P 1 L   R L   R L  L   R L   R L L L LVA P 2 L   R L   R L   R  L   R L   R L L L 
P 1      L L   R   LVF P 2       L   R   
P 1             R        LVS P 2   L   R    L   R   
P 1 L   R L   R L   R       R L   R L   R L L   R L   R LVI P 2 L   R L   R L   R  L   R L   R L   R L   R L   R 
P 1   L   R          R   HVA P 2  L   R     L   R   
P 1 L L L   R L   R      R  L   R  L HVF P 2 L   R L L   R      R L   R  L   
P 1      R       R         R   HVS P 2  L        
P 1  L   R L   R     L   R   HVI P 2 L   R L   R     L   R   

Table 4.2  First level analysis of normally viewed conditions after subtracting controls  
Key:  Pink = exactly the same image as brief masked image; Black = different image but same 
valence and category; P 1 =  normally viewed first presentation; P 2 =  normally viewed second 
presentation; L = left; R = right; ACC = Anterior Cingulate Cortex; mPFC = medial Prefrontal 
Cortex; Para = Parahippocampus; Amy = Amygdala; STG = Superior Temporal Gyrus; Ins = 
Insula; Fusi = Fusiform Gyrus; DLPFC = Dorsolateral Prefrontal Cortex; OFC = Orbital 
Frontal Cortex; LVA = LV Animals; LVF = LV Faces; LVS = LV Scenes; LVI = LV 
Inanimate objects; HVA = HV Animals; HVF = HV Faces; HVS = HV Scenes; HVI = HV 
Inanimate objects.   
 
To ascertain if there are any differences between normally viewed and brief, 

masked presentations, the results of first level analysis are displayed in Table 

4.3 (brief, masked results are in turquoise).   
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  ACC mPFC Para Amy STG Ins Fusi DLPFC OFC 
B L   R L   R   L   R L   R  L L 
P1 L   R L   R L  L   R L   R L L L LVA 
P 2 L   R L   R L   R  L   R L   R L L L 
B  L   R L   R   L   R L    
P 1      L L   R   LVF 
P 2       L   R   
B           L  L   R   
P 1             R        LVS 
P 2   L   R    L   R   
B      R L   R   L   R L L   R   
P 1 L   R L   R L   R       R L   R L   R L L   R L   R LVI 
P 2 L   R L   R L   R  L   R L   R L   R L   R L   R 
B L   R L   R L    R  L   R L   R L L   R L   R 
P 1   L   R          R   HVA 
P 2  L   R     L   R   
B          R          R 
P 1 L L L   R L   R      R  L   R  L HVF 
P 2 L   R L L   R      R L   R  L   
B L   R  L    R  L   R L   R L   R  L 
P 1      R       R         R   HVS 
P 2  L        
B L   R L   R        
P 1  L   R L   R     L   R   HVI 
P 2 L   R L   R     L   R   

Table 4.3  First level analysis comparison of brief masked condition with normally viewed 
condition  
Key: Turquoise = brief masked presentations; Black = both normally viewed presentations. 
P 1 =  normally viewed first presentation; P 2 = normally viewed second presentation; L =  left; 
R = right; ACC = Anterior Cingulate Cortex; mPFC = medial Prefrontal Cortex; Para = 
Parahippocampus; Amy = Amygdala; STG = Superior Temporal Gyrus; Ins = Insula; Fusi = 
Fusiform Gyrus; DLPFC = Dorsolateral Prefrontal Cortex; OFC = Orbital Frontal Cortex;  
LVA = LV Animals; LVF = LV Faces; LVS = LV Scenes; LVI = LV Inanimate objects; HVA 
= HV Animals; HVF = HV Faces; HVS = HV Scenes; HVI = HV Inanimate objects.   
 

Surprisingly, Table 4.3 shows that significant activations in the amygdala were 

absent, even for fear-related stimuli (e.g. LV faces) in both brief, masked and 

normally viewed presentations.  There was also an unexpected absence of 

activations in the fusiform gyrus when viewing both HV and LV faces in the 

brief, masked condition.   

  It is equally apparent that both similarities (e.g. LVF) and differences 

(e.g. HVI) occur in different ROIs when comparing brief, masked and normally 

viewed activations.  It would also appear that some regions are activated 

similarly by brief, masked and normally viewed presentations of the same 

stimuli.   

 Valence effects were found in the first level analysis within each 

category.  This was demonstrated using the contrast masking facility of SPM2. 

Control activations were subtracted from target activations and were 

exclusively masked by the opposite valence (e.g. HVA > control masked by 

LVA > control FWE p = 0.05).  This was then reversed in order to ascertain 

which ROIs were activated in the HV condition and not in the LV condition, 
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and vice versa.  Some regions, (e.g. ACC), showed both HV and LV patterns 

of activation within a particular category.  Thus, globally, the ACC shows no 

specific effect of valence, though it appears that it contains both HV and LV 

specific subregions.  Equally, when looking at the black letters L and R it is 

clear that over all conditions (with the exception of the second normally viewed 

presentation of HVS) there is a scattering of valence effects in all nine ROIs.   

It is interesting to note that in the insula, the valence effect is exactly the same 

in the brief, masked and the first presentation normally viewed conditions and 

remains similar in the second presentation normally viewed.  Strong 

similarities of valence effect are also seen in the STG and mPFC across all 

three conditions (Table 4.4).   
1 2 ACC mPFC Para Amy STG Ins Fusi DLPFC OFC 

 
BRIEF MASKED 

     
 

     

LVA>c HVA>c L     R L     R   L     R L     R  L      R L 
HVA>c LVA>c L     R L     R      L      R  
LVF>c HVF>c        R L     R   L L          R L L 
HVF>c LVF>c                 R         R 
LVS>c HVS>c       L      R          R  
HVS>c LVS>c  L      L  
LVI>c HVI>c L     R L     R L      R L L     R L     R L L      R L      R 

HVI>c LVI>c        R  L     R        
NORMALLY 
VIEWED 
Presentation 1 

         

LVA>c HVA>c L     R L      R L  L      R L     R L L       R L      R 
HVA>c LVA>c  L             R   
LVF>c HVF>c      L L      R  L 
HVF>c LVF>c L L      R L      R L      R         R  L      R   
LVS>c HVS>c  L      R                R  
HVS>c LVS>c         R L         R            R L  
LVI>c HVI>c L     R L      R L      R          R L     R L     R L L        R L      R 

HVI>c LVI>c L     R L      R     L      R   
NORMALLY 
VIEWED 
Presentation 2 

         

LVA>c HVA>c L     R L     R L      R  L     R L     R L L      R L     R 
HVA>c LVA>c  L     R     L     R   
LVF>c HVF>c       L     R   
HVF>c LVF>c L     R L     R L     R        R L     R     
LVS>c HVS>c   L     R    L     R   
HVS>c LVS>c          
LVI>c HVI>c L     R L     R L     R L L     R L     R L     R           R L     R 

HVI>c LVI>c       L   
Table 4.4  First level analysis valence effects   
Key: 1,2 = column 1 masked exclusively by column 2;  
LVA>c = low valence animal > control; LVF>c = low valence face > control;  
LVS>c = low valence scene > control; LVI>c = low valence inanimate > control;  
HVA>c = high valence animal > control; HVF>c = high valence face > control;  
HVS>c = high valence scene > control; HVI>c = high valence inanimate > control;  
ACC = Anterior Cingulate Cortex; mPFC = medial Prefrontal Cortex; Para = 
Parahippocampus; Amy = Amygdala; STG = Superior Temporal Gyrus; Ins = Insula; Fusi = 
Fusiform Gyrus; DLPFC = Dorsolateral Prefrontal Cortex; OFC = Orbital Frontal Cortex; 
Purple = animals L and R no effect of valence; green = faces L and R no effect of valence; blue 
= scenes L and R no effect of valence; red = inanimate objects L and R no effect of valence; 
black L and R = an effect of valence in any category. 
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 4:4:2  Second Level Analysis 

 

The first level analysis identified the brain regions that were activated on 

average across participants and confirmed that the quality of the data was 

worthy of further investigation.  Unexpectedly, results from first level analysis 

revealed only small and variable activations in the amygdala for all categories 

and in the fusiform gyrus when presented with brief, masked faces.  The insula, 

OFC and DLPFC were mainly activated by LV stimuli only and there was a 

difference between normally viewed activations and brief, masked activations.  

To be able to generalise such findings to a wider population, it is necessary to 

take into account the variation between participants, therefore a group random 

effects analysis was employed.   

 This was achieved by examining each ROI (same coordinates as first 

level analysis with an 8mm radius) and calculating the means of the contrast 

values for all voxels within each ROI, for each of the 24 contrasts (Table 4.5).  

These contrast values were the t-contrasts obtained in SPM when comparing 

activations in control conditions with the three experimental conditions (e.g. 

low valence animal brief, masked>controls) for each combination of factors 

(valence and category).  The resulting contrast values were entered into an 

analysis of variance (ANOVA).  Four within-participants factors were entered 

(hemisphere: 2 levels, condition: 3 levels, valence: 2 levels and categories: 4 

levels) for each ROI with a p(crit) = 0.0167 using a Bonferroni adjustment for 

multiple comparison (three levels of condition, since the three conditions were 

regarded as replications).  These means are graphically displayed for each ROI 

(see sections a to i below).   

 A Priori hypotheses held that there were a) main effects of valence 

(high and low) and b) category effects (animals, faces, scenes and inanimate 

objects) specifically for brief, masked stimuli.  To test for significant effect, an 

ANOVA was partitioned to propagate the different stimulus conditions: brief, 

masked (b), normally viewed (P) and normally viewed (p) using p(crit) = 0.05.   

  ANOVA computed estimated marginal means for the contrast values, 

which were plotted to aid the interpretation of additive and interactive effects 

among factors.  This procedure produced line graphs highlighting significant 
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values for the four IVs, category, hemisphere, valence and condition to guide 

the interpretation of the significant effects in the ANOVAs in the discussion.   

 To correct for a type I error, a test of the assumption of homogeneity of 

covariance (sphericity) Mauchly’s test of sphericity was applied.  Where the 

assumption of homogeneity of covariance was violated, the degrees of freedom 

of the F test were modified to make it more conservative.   

In addition, to err on the side of caution and as this was a multifactor 

design, partial eta squared was used as a measure of the strength of association 

between one independent variable and one dependent variable (Tabachnick and 

Fidell, 2001).   

 The data were entered into an SPSS (SPSS Inc, 2005-8) 

(https://www.spss.com) spreadsheet. 

https://www.spss.com/�


 
 

 

Masked Experiment 
 Mean Contrast Values for Effect Sizes in ROIs  

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
LVAb > c 0.33 0.35 -0.05 -0.04 0.05 -0.06 -0.21 0.08 0.11 0.48 0.46 -0.20 -0.10 0.33 0.24 -0.50 0.14 0.15 
LVAp > c 0.27 0.46 -0.06 -0.02 0.15 -0.14 0.03 0.23 0.17 0.61 0.42 -0.23 -0.06 0.13 0.29 -0.46 0.09 0.26 
LVAP > c 0.31 0.43 -0.02 0.03 0.38 -0.24 -0.10 0.24 0.10 0.67 0.51 -0.11 0.05 0.61 0.38 -0.51 0.06 0.20 
LVFb > c -0.05 -0.08 -0.18 -0.34 -0.24 -0.35 0.02 -0.43 -0.09 0.16 -0.15 -0.36 -0.26 0.07 -0.24 0.22 -0.35 -0.54 
LVFP > c  -0.05 -0.13 -0.08 -0.03 -0.08 -0.36 0.01 -0.45 -0.06 0.10 -0.22 -0.24 0.04 0.04 0.01 0.39 -0.54 -0.52 
LVFp > c -0.04 -0.09 -0.21 -0.04 -0.14 -0.28 0.15 -0.46 -0.29 0.02 -0.13 -0.27 0.07 0.06 -0.09 0.45 -0.45 -0.40 
LVSb > c -0.02 -0.17 -0.09 -0.15 -0.03 -0.11 0.06 -0.38 -0.28 0.12 -0.18 -0.12 -0.16 0.02 0.02 0.24 -0.34 -0.52 
LVSp > c 0.07 -0.05 0.03 -0.15 -0.15 -0.11 0.04 -0.37 -0.16 0.16 -0.04 -0.10 -0.19 -0.02 0.08 0.27 -0.40 -0.33 
LVSP > c -0.04 -0.06 0.26 -0.17 0.01 -0.18 0.05 -0.16 -0.13 0.01 -0.15 0.17 -0.23 -0.09 -0.05 0.32 -0.29 -0.46 
LVIb > c 0.23 0.41 0.18 0.21 0.70 0.02 0.20 0.75 0.31 0.46 0.46 0.27 0.07 0.56 0.48 -0.34 0.34 0.62 
LVIp > c 0.32 0.45 0.30 0.44 0.82 0.09 0.31 0.87 0.61 0.50 0.43 0.41 0.43 0.57 0.61 -0.22 0.47 0.72 
LVIP > c 0.32 0.44 0.43 0.45 0.89 0.19 0.57 0.85 0.50 0.50 0.42 0.69 0.54 0.59 0.89 -0.01 0.39 0.65 
HVAb > c  -0.01 0.36 -0.08 -0.18 0.08 -0.07 -0.13 0.15 -0.17 0.04 0.08 -0.25 -0.05 0.09 -0.58 0.12 0.21 -0.03 
HVAP > c -0.01 0.25 -0.07 -0.13 0.22 -0.06 -0.09 0.13 -0.25 -0.02 0.04 -0.11 0.02 0.04 -0.44 0.34 0.01 -0.14 
HVAp > c  -0.10 0.18 -0.14 -0.18 0.13 -0.15 0.08 0.06 -0.06 -0.08 0.01 -0.22 -0.07 -0.12 -0.60 0.37 0.05 -0.06 
HVFb > c -0.07 0.06 -0.07 0.16 0.10 0.00 0.01 0.06 0.17 0.00 0.05 -0.04 0.09 0.14 0.02 -0.01 0.20 0.26 
HVFP > c -0.12 0.02 -0.01 0.31 -0.09 0.01 0.33 -0.01 0.32 -0.14 -0.07 -0.02 0.41 -0.06 -0.03 0.42 -0.04 0.14 
HVFp > c -0.04 0.17 0.06 0.28 -0.17 0.01 0.17 -0.11 0.07 -0.02 0.00 -0.01 0.39 -0.16 0.03 0.18 -0.08 -0.07 
HVSb > c -0.15 -0.08 -0.11 -0.07 -0.01 -0.01 0.00 0.02 -0.04 -0.09 -0.09 -0.12 -0.03 -0.01 -0.16 -0.10 0.05 0.06 
HVSp > c -0.14 -0.01 0.06 0.00 -0.06 -0.08 0.17 -0.13 -0.12 -0.08 -0.01 0.11 0.00 -0.05 -0.14 0.28 -0.13 -0.03 
HVSP > c 0.03 0.11 0.04 -0.04 -0.36 -0.06 0.18 -0.15 -0.46 0.10 0.18 0.00 0.06 -0.26 0.07 0.01 -0.15 -0.14 
HVIb > c -0.03 0.34 -0.03 -0.19 0.09 0.00 0.01 -0.15 -0.22 0.15 0.15 -0.03 -0.12 0.07 -0.23 0.12 0.07 -0.11 
HVIP > c 0.03 0.20 0.12 0.01 -0.04 -0.01 0.40 -0.02 -0.08 0.19 0.17 -0.08 0.15 -0.17 -0.25 0.34 0.03 -0.17 
HVIp > c 0.05 0.05 0.24 0.13 -0.03 -0.10 0.23 -0.15 -0.28 0.17 0.16 0.05 0.17 -0.14 -0.15 0.42 -0.09 -0.26 

Table 4.5  Mean contrast values for effect sizes in ROIs – masked experiment 
Key:  1=L ACC 2=L mPFC 3=L Parahippocampus 4=L Amygdala 5=L STG 6=L Insula 7=L Fusiform gyrus 8=L DLPFC 9=L OFC  

                            10=R ACC 11=R mPFC 12=R Parahippocampus 13=R Amygdala 14=R STG 15=R Insula 16=R Fusiform gyrus 17=R DLPFC 18=R OFC; c =  controls
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a) Anterior Cingulate Cortex   

 
Figure 4.6  Significant cluster of activation in ACC from an individual’s data.  The 
colorimeter scale displays the percentage intensity of voxels activated.  The cross-hairs show 
activation in the ACC right hemisphere for the significant effect of LV animals > control in 
the normally viewed condition 
 

ANOVAs confirmed a significant main effect of valence (F(1,12) = 9.1; 

p<0.0167); with an effect size (partial eta squared) of 0.432.  Although the 

ACC has not previously been reported as category specific, a main effect of 

category was found (F (3,36) = 7.9; p<0.0000005; partial eta squared = 

0.398).   

 Partitioning the ANOVA matrix confirmed a significant effect of 

valence across all three conditions: in brief, masked (F(1,12) = 6.9; p<0.05; 

partial eta squared = 0.366); normally viewed (P) (F(1,12) = 6.8; p<0.05; 

partial eta squared = 0.362); and normally viewed (p) (F(1,12) = 12.2; 

p<0.005; partial eta squared = 0.503).  A significant effect of category was 

also found, in each of the brief, masked (F(3,36) = 4.4; p<0.01; partial eta 

squared = 0.207); normally viewed condition (P) (F(3,36) = 7.2; p<0.001; 

partial eta squared = 0.374); and normally viewed condition (p) (Mauchly 

(W=.35, p<0.05)), (F(1,12) = 6.2; p<0.05; partial eta squared = 0.341).   

 There was no significant difference between the presentation 

conditions, therefore, there is no difference in ACC response to brief and 

longer presentations.   
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Figure 4.7  ACC estimated marginal means comparing low and high valence  
 

The estimated marginal means in the line graphs represent the outputs of the 

ANOVAs.  These were calculated from the effect sizes which are a measure 

of response magnitude (see Table 4.5).  

 Visual interpretation of the estimated marginal means line graph for 

valence x category (Figure 4.6 and 4.7) shows that low valence animals and 

inanimate objects tend to produce greater activation than control stimuli, 

whereas all high valence stimuli, plus low valence faces and scenes, produce 

activations similar to or smaller than control stimuli.   

 To conclude, the ACC was sensitive to the valence of stimuli, 

responding more strongly to low valence than to control or high valence 

stimuli (see Figure 4.7).  The moderate effect sizes indicate that valence 

differences in overall activations for category depend on the particular 

category.  This effect was found for both normally viewed presentations and 

brief, masked stimuli.   
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b) Medial Prefrontal Cortex 
 

 
 
Figure 4.8  Significant cluster of activation in mPFC from an individual’s data.  The 
colorimeter scale displays the percentage intensity of voxels activated.  The cross-hairs show 
activation in the mPFC right hemisphere for the significant effect of LV inanimate objects > 
control in the brief masked condition 
 

A significant main effect of category was found but did not survive 

Bonferroni correction (F(1,12) = 8.5; p=0.013; partial eta squared = 0.414).  

 Partitioning the ANOVA matrix confirmed a main effect of category: 

in the brief, masked condition (Mauchly (W=.223, p<.01)), (F(1,12) = 9.1; 

p<0.05; partial eta squared = 0.431) (see Figure 4.8); in normally viewed 

condition (P) (Mauchly (W=.097, p<0.0000005)), (F(1,12) = 7.0; p<0.05; 

partial eta squared = 0.368); and in normally viewed condition (p) (Mauchly 

(W=.196, p<0.005)), (F(1,12) = 6.3; p<0.05; partial eta squared = 0.345).   

 There were no significant main effects of presentation condition, 

hemisphere, or valence.   
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Figure 4.9  mPFC estimated marginal means comparing conditions  
Key: b = brief masked; p = same image as brief masked presented under normal viewing; P = 
different image presented under normal viewing. 
 

It can be seen from the plot of estimated marginal means for category x 

condition (Figure 4.9) that the strength of activations in the mPFC was greater 

for animals and inanimate objects (both low and high valence) than for 

controls.  For faces and scenes these were lower than or similar to controls 

(both low and high valence).   

 To conclude, mPFC was sensitive to the category of stimuli for all 

three conditions.   
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c) Parahippocampus 
 

 
Figure 4.10  Significant cluster of activation in Parahippocampus from an individual’s data.   
The colorimeter scale displays the percentage intensity of voxels activated. The cross-hairs 
show activation in the Parahippocampus right hemisphere for the significant effect of LV 
inanimate objects > control in the normally viewed condition 
 

ANOVAs demonstrated significant main effect of presentation condition 

(F(2,24) = 10.4; p<0.005; partial eta squared = 0.465).   

 Partitioning the ANOVA showed that in normally viewed (P) there 

was a significant effect of category (F(3,36) = 4.5; p<0.01; partial eta squared 

= 0.274) (see Figure 4.10).  There was no significant main effect of valence, 

and no hemispheric differences were found.   
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Figure 4.11  Parahippocampus estimated marginal means comparing category x condition, 
Key: b = brief masked; p = same image as brief masked presented under normal viewing; P = 
different image presented under normal viewing.  
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Figure 4.12  Parahippocampus estimated marginal means comparing low and high valence x 
categories (valence x category). 
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The greatest estimated marginal means in Figures 4.11 and 4.12 are evident 

when viewing LV inanimate objects in all three conditions with a marginal 

positive value for LV scenes under normal viewing.   

 Results support the view that the parahippocampal region is concerned 

with visual processing of high level properties, and indicates that this region is 

associated not only with ‘places’ (Epstein and Kanwisher, 1998, Epstein et al., 

1999, O'Craven and Kanwisher, 2000), but also with inanimate objects.  

Activation is greater for normally viewed than brief, masked stimuli.  It is not 

possible to say whether responsiveness to inanimate objects overlaps the 

parahippocampal place area (PPA).  Greater mean activations were found 

when processing inanimate objects than animals or faces (Figure 4.11 and 

Figure 4.12).  The inanimate stimuli could be defined as either arousing, 

surprising or novel, (e.g. dirty toilet, electric chair or fireworks) and, as such, 

would also support previous findings of the PPA being associated with 

surprise or novelty detection (Schroeder et al., 2004).   

 

d) Amygdala 

 
Figure 4.13  Significant cluster of activation in the amygdala from an individual’s data.  The 
colorimeter scale displays the percentage intensity of voxels activated.  The cross-hairs show 
activation in the amygdala right hemisphere for the significant effect of LV inanimate objects 
> control in the normally viewed condition 
 
A significant main effect of condition was found, (Mauchly (W=.481; p<.05)), 

(F(1,12) = 5.1; p<0.05; partial eta squared = 0.300). 
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Figure 4.14  Amygdala estimated marginal means comparing category x condition. 
Key: b = brief masked; p = same image as brief masked presented under normal viewing; P = 
different image presented under normal viewing.  
 

Estimated marginal means for category x condition show means with positive 

values are evident only for inanimate objects and faces in the two normally 

viewed conditions (Figure 4.14).  This is also evident in Figure 4.13 showing 

a significant effect of LV inanimate objects.   

 These results are surprising as the amygdala is associated with fast 

processing of fearful stimuli in particular and no evidence was found of either 

valence effects or brief, masked processing.   
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e) Superior Temporal Gyrus 
 

 
Figure 4.15  Significant cluster of activation in STG from an individual’s data.  The 
colorimeter scale displays the percentage intensity of voxels activated.  The cross-hairs show 
activation in the STG left hemisphere for the significant effect of LV inanimate objects > 
control in the normally viewed condition 
 
There was a significant main effect of valence (F(1,12) = 19.3; p<0.001; 

partial eta squared = 0.616).  There was also a significant main effect of 

category (F(3,36) = 7.7; p<0.0005; partial eta squared = 0.392).   

 Partitioning showed a significant effect of category in all three 

conditions: brief, masked (F(3,36) = 4.2; p<0.05; partial eta squared = 0.261); 

normally viewed (P) (F(3,36) = 5.6; p<0.005; partial eta squared = 0.319); and 

normally viewed (p) (Mauchly (W=.299; p<.05)), (F(1,12) = 5.1; p<0.05; 

partial eta squared = 0.300).  However, valence was not significant in the 

brief, masked condition, but was significant in normally viewed (P) (F(1,12) = 

23.2; p<0.0000005; partial eta squared = 0.659) and normally viewed (p) 

(F(1,12) = 19.1; p<0.001; partial eta squared = 0.614).   
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Figure 4.16  STG estimated marginal means comparing low and high valence x categories . 
 

The valence effect displays some category specificity (Figure 4.16), showing 

positive values only with low valence animal and inanimate stimuli (see 

Figure 4.15).  This was supported statistically when partitioning with a 

significant interaction between valence x category for normally viewed (P) 

(F(3,36) = 3.8; p<0.05; partial eta squared = 0.241) and normally viewed (p) 

(F(3,36) = 4.0; p<0.05; partial eta squared = 0.252).   

 A role for STG in the processing of emotional valence is indicated, 

with greater activations during the processing of LV animals and inanimate 

objects under normal viewing.   
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f) Insula 
 

 
 

Figure 4.17  Significant cluster of activation in the Insula from an individual’s data.  The 
colorimeter scale displays the percentage intensity of voxels activated.  The cross-hairs show 
activation in the insula right hemisphere for the significant effect of LV inanimate objects > 
control in the normally viewed condition 

Significant interactions were found.  Hemisphere x valence (F(1,12) = 9.7; 

p<0.01; partial eta squared = 0.446) and valence x category (Mauchly 

(W=.341; p<0.05)), (F(3,36) = 7.8; p<0.0000005; partial eta squared = 0.393). 

 Partitioning supported these findings across all three conditions: 

hemisphere x valence brief, masked (F(1,12) = 8.0; p<0.05; partial eta squared 

= 0.401); normally viewed (P) (F(1,12) = 11.0; p<0.01; partial eta squared = 

0.478); and normally viewed (p) (F(1,12) = 5.7; p<0.05; partial eta squared = 

0.323).  Valence x category: in the brief, masked condition (Mauchly 

(W=.260; p<.05)), (F(1,12) = 5.8; p<0.05; partial eta squared = 0.325); in 

normally viewed condition (P) (Mauchly (W=.310; p<.05)), (F(1,12) = 6.7; 

p<0.05; partial eta squared = 0.359); and in normally viewed condition (p) 

(F(3,36) = 6.2; p<0.005; partial eta squared = 0.340).   
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Figure 4.18  Insula estimated marginal means for low valence x hemisphere x condition. 
Key: b = brief masked; p = same image as brief masked presented under normal viewing; P = 
different image presented under normal viewing. 
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Figure 4.19  Insula estimated marginal means for high valence x hemisphere x condition. 
Key: b = brief masked; p = same image as brief masked presented under normal viewing; P = 
different image presented under normal viewing. 
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Figure 4.20  Insula: estimated marginal means for valence x category.  
 
The line graphs Figures 4.18 and 4.19 show estimated marginal means for an 

interaction between hemisphere x valence with positive values found only for 

the RH whilst viewing LV stimuli.  Figure 4.20 shows estimated marginal 

means for category x valence, where LV animals and LV inanimate objects 

display positive values.  To conclude, the insula responded to stimuli of 

negative valence with the right insula specifically activated by low valence 

stimuli (in particular inanimate objects) (Figure 4.17).   
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g) Fusiform Gyrus 

 
Figure 4.21  Significant cluster of activation in the Fusiform gyrus from an individual’s data.  
The colorimeter scale displays the percentage intensity of voxels activated.  The cross-hairs 
show activation in the Fusiform Gyrus right hemisphere for the significant effect of HV faces 
> control in the normally viewed condition 
  

ANOVA showed main effect of presentation conditions (F(2,24) = 14.2; 

p<0.001; partial eta squared = 0.542).  There was also a main effect of 

category (F(3,36) = 3.9; p<0.0167; partial eta squared = 0.244).   

 An effect of category was absent in the brief, masked condition when 

partitioning, but remained significant in one normally viewed presentation (P) 

(F(3,36) = 4.7; p<0.01; partial eta squared = 0.282).   
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Figure 4.22  Fusiform gyrus estimated marginal means for condition x category. 
Key: b = brief masked; p = same image as brief masked presented under normal viewing; P = 
different image presented under normal viewing.  
 

Figure 4.22 shows estimated marginal means for category x condition. Values 

were positive for faces, scenes and inanimate objects in both normally viewed 

conditions.   

 A significant effect of category under normal viewing was not 

surprising in view of the literature that links the fusiform cortex with faces 

(see Figure 4.21), but there was also evidence of responsiveness to scenes and 

inanimate objects.   
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h) Dorsolateral Prefrontal Cortex 
 

 
 

Figure 4.23  Significant cluster of activation in DLPFC from an individual’s data.  The 
colorimeter scale displays the percentage intensity of voxels activated.  The cross-hairs show 
activation in the DLPFC left hemisphere for the significant effect of LV inanimate objects  > 
control in the normally viewed condition 

For the overall ANOVA, there was only a marginal significant main effect 

with an interaction between hemisphere and condition (F(2,24) = 3.4; p = 

0.05).  The other main effects did not survive Bonferroni corrections.  

Therefore caution must be applied to interpreting the subdivided ANOVA.   

 When partitioning, categories were significant with all three 

conditions: in the brief, masked condition (Mauchly (W=.227; p<.01)), 

(F(1,12) = 5.3; p<0.05; partial eta squared = 0.308); normally viewed (P) 

(Mauchly (W=.274; p<.05)), (F(1,12) = 7.8; p<0.05; partial eta squared = 

0.394); and normally viewed (p) (Mauchly (W=.188; p<.005)), (F(1,12) = 5.5; 

p<0.05; partial eta squared = 0.313).   

 Equally, an interaction between valence x category was significant for 

the brief, masked condition (Mauchly (W=.342; p<.05)), (F(1,12) = 5.1; 

p<0.05; partial eta squared = 0.298) and one normally viewed presentation (p) 

(F(3,36) = 7.2; p<0.001; partial eta squared = 0.376) (Figure 4.23).   



 
 

 133

RightLeft

Hemisphere

0.06

0.04

0.02

0.00

-0.02

-0.04

-0.06

-0.08

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns
b
p
P

Conditon

DLPFC

 
Figure 4.24  DLPFC estimated marginal means for condition x hemispheres  
Key: b = brief masked; p = same image as brief masked presented under normal viewing; P = 
different image presented under normal viewing.  
 
The estimated marginal means in Figure 4.24 show a significant interaction 

with hemisphere x condition.  It would appear that the RH responds more 

strongly to brief, masked affective stimuli and the LH to normally viewed 

stimuli, but note the negative value for normally viewed stimuli in the RH 

(stronger response to control stimuli).  Equally, the scale shows that these 

differences are very small.   
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Figure 4.25  DLPFC estimated marginal means for condition x categories  
Key: b = brief masked; p = same image as brief masked presented under normal viewing; P = 
different image presented under normal viewing.  
 
Figure 4.25 shows estimated marginal means for category x condition. In all 

three conditions, the DLPFC responds more strongly to animals and inanimate 

objects.  
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Figure 4.26  DLPFC estimated marginal means for category x valence. 
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Figure 4.26 shows estimated marginal means for category x valence. LV 

inanimate objects show a greater difference relative to stimuli in other 

categories or valence which are displayed in the DLPFC line graph and can be 

seen in the cluster of activation in Figure 4.23.   

 To conclude, the observations from ANOVA indicate that the DLPFC 

is more sensitive to LV inanimate objects in all three conditions.  In addition, 

there was a marginal indication that the RH is dominant for processing brief, 

masked emotional stimuli, and the LH for normally viewed emotional stimuli.   

 

i) Orbitofrontal Cortex 

 
Figure 4.27  Significant cluster of activation in OFC from an individual’s data.  The 
colorimeter scale displays the percentage intensity of voxels activated.  The cross-hairs show 
activation in the OFC right hemisphere for the significant effect of LV animals > control in 
the normally viewed condition 
 

An interaction of valence x category was significant, (Mauchly (W=.227, 

p<0.01)), (F(1,12) = 12.0; p<0.005; partial eta squared = 0.499).   

 When partitioning the ANOVA, category effects were significant in 

one normally viewed condition (P) (F(3,36) = 5.4, p<0.005; partial eta squared 

= 0.309).  Also a significant interaction between valence and category 

remained for: brief, masked (Mauchly (W=.304, p<.05)), (F(1,12) = 7.2, 

p<0.05; partial eta squared = 0.376); normally viewed (P) (F(3,36) = 8.1, 

p<0.0000005; partial eta squared = 0.404); and normally viewed (p) (F(3,36) 

= 12.2; p<0.0005; partial eta squared = 0.504) (Figure 4.27).   

 



 
 

 136

Inanimate
Objects

ScenesFacesAnimals

Category

0.6

0.4

0.2

0.0

-0.2

-0.4

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns
High
Low

Valence

OFC

 

Figure 4.28  OFC estimated marginal means for high and low valence . 
 

Figure 4.28 shows estimated marginal means for category x valence. OFC 

demonstrates positive values for LV inanimate objects with a clear similarity 

to the line graph for the DLPFC (Figure 4.26).   

 Based on the statistical evidence and values shown in the line graph, 

greater activations were evident in the OFC when viewing LV inanimate 

objects as in the DLPFC.  However, there was no evidence of hemisphere 

specificity as there was in the DLPFC.   
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 4:4:3  Summary 

 

Significant effects from the fMRI experiment are summarised in table 4.6.  

 
ROI Significant 

effects of 
valence or 
category on 
response to 
brief masked 
presentations 

Significant 
differences 
between responses 
to brief masked and 
normally viewed 
presentations  

Significant effects 
of valence or 
category on 
response to 
normally viewed 
presentations 

Other significant 
effects before 
partitioning 

ACC Val* 
Cat** 

n.s. P val:* 
p val:** 
P cat:** 
p cat:* 

Main eff val:* 
Main eff cat:**** 

mPFC Cat* Con x cat* P cat:* 
p cat:* 

Main eff cat* 

Para n.s. Main eff con:** P cat:** n.s. 
Amy n.s. Main eff con:* n.s. n.s. 
STG Cat* n.s. P val:* 

p val:** 
P cat:** 
P cat:* 
P val x cat:* 
p val x cat* 

Main eff val:** 
Main eff cat:**** 

Ins Hem x Val* 
Val x Cat* 

Hem x con* 
 

P Hem x Val:** 
P Val x Cat:* 
p Hem x Val:* 
p Val x Cat:* 

Hem x Val:** 
Val x Cat:* 

Fusi n.s. Main eff con:*** P cat:** Main eff cat:* 
DLPFC Cat* 

Val x Cat* 
n.s. P cat:* 

p cat:* 
p Val x Cat:** 

Main eff cat* 
Val x Cat:* 
 

OFC Val x Cat* n.s. P cat:** 
P Val x Cat**** 
p Val x Cat*** 

Main eff cat:* 
Val x Cat:** 

Table 4.6  Summary of significant effects 
Key: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001; n.s. = not significant;  eff = effect; 
Val = Valence; Hem = Hemisphere; Con = condition; Cat = Category;  P and p = Normally 
viewed; Para = Parahippocampal gyrus; Amy = Amygdala; Ins = Insula; Fusi = Fusiform 
gyrus.   
 

4:5  Discussion   

 

Participants were presented with complex visual pictures of animals, faces, 

scenes and inanimate objects employing a forward and backward masking 

paradigm.   

 The effects of valence, categories and experimental conditions varied 

between the selected nine ROIs.  There was evidence of processing of briefly 

masked stimuli, especially for low valence presentations of animals and 
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inanimate objects.  In order to discuss these issues coherently, each ROI is 

addressed in turn and in context with previous research.  Some of the present 

findings are in agreement with previous research, other findings differ.  It is 

important to bear in mind that a ROI as defined in this study is not a 

functional unit.  A spherical ROI may include anatomically diverse structures 

of a smaller scale.  It is also difficult to establish anatomical correspondences 

between different studies in the literature, or indeed, in different individual 

brains in the same study, because of the inherent variations of anatomy, and 

this may in large part account for differences in functional findings reported 

by different investigators.  Thus the “typical” co-ordinates given for each ROI 

are only a statistical approximation to the location of a given structure.  

 

 4:5:1  Regions of Interest   

 

a) Anterior Cingulate Cortex 

 

The data show that the ACC was modulated by emotional valence both with 

brief, masked presentations and under normal viewing, thus supporting 

previous findings of the correlation between valence and ACC activations 

(Berthoz et al., 2002, Cunningham et al., 2004). 

 This may reflect the novelty (Downar et al., 2002) and complexity of 

IAPS pictures (Winston et al., 2003) depicting the premise of cognitive and 

emotion interactions. Equally, this experiment incorporated a valence 

categorisation task in which cognitive demands may have elicited greater 

neural activity in the ACC, as it is shown in previous studies that the ACC 

processes both cognitive and emotional tasks  (Bush et al., 2000, Reiman et 

al., 1997, Whalen et al., 1998a).  In emotional picture experiments, previous 

research found greater activations in the ACC during trials requiring 

subjective emotional responses (Hariri et al., 2003, Lane et al., 1997a).  In 

addition, the valence categorisation tasks required greater attentional demands 

than experimental paradigms of passive viewing.  The role of the ACC and 

attentional processing is well documented and is evidenced by an experiment 

comparing one condition that required emotional responses, (e.g. 

pleasant/unpleasant), and the other asking for contextual responses, (e.g. is 
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this scene indoors or outdoors) (Lane et al., 1997a).  The former showed 

greater activation in the ACC when attentional resources were engaged in 

subjective emotional responses.  The evidence from the present experiment 

supports this premise as modulation of the ACC due to valence categorisation 

was greater for the emotional experimental conditions than the non-emotional 

control condition.  

 Statistically significant differences were also found when processing 

stimuli of different categories in all three conditions, with greater activations 

for low valence animals and inanimate objects.  Hitherto there is little 

evidence of ACC response to different categories in terms of emotional 

processing in the literature.  Therefore, category specificity will be discussed 

at greater length in the general discussion below.   

 

b) Medial Prefrontal Cortex 

 

When examining the data, it was apparent that the mPFC was sensitive to 

processing of categories both with brief, masked presentations and under 

normal viewing.  It has been hypothesised that the mPFC is involved in 

maintaining attention in order to assess and process information from other 

brain regions.  However, it is also reported that activations in the mPFC 

decrease (as opposed to increase in the ACC and DLPFC) during an 

attentionally demanding cognitive task, thus suggesting that within this region 

there is an active relationship between cognition and emotion (Bush et al., 

2000, Simpson et al., 2001a, Simpson et al., 2001b).  As previously stated, 

this experiment did employ a valence categorisation task, which may have 

modulated emotional processing.   

 Equally, the role of the mPFC in emotional self awareness (Lane et al., 

1997b) and the recurring feelings of emotional memories (Damasio, 1999), 

may explain mPFC activations based on associated personal experience.  For 

instance, Phan et al. (2004) noted that activations in the vMPFC reflect the 

modulation of self association more than the value of emotional valence (Phan 

et al., 2004).   

 There was no evidence to suggest any significant difference in positive 

or negative valence processing.  This complements previous findings in two 
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meta-analyses in that the mPFC is not valence specific, but has a more general 

role in emotion processing (Lane et al., 1997c, Murphy et al., 2003, Phan et 

al., 2002).  This is also supported by a study using IAPS stimuli (Lane et al., 

1997c) and lesion studies whereby damage to the mPFC resulted in changes in 

both positive and negative emotional experience (Damasio, 1994).   

 

c) Parahippocampus 

 

These findings support previous research that the parahippocampus is 

category specific (Epstein and Kanwisher, 1998, Epstein et al., 1999, 

Nakamura et al., 2000, O'Craven and Kanwisher, 2000).  Response was 

greater when viewing inanimate objects as compared to scenes, faces and 

animals.  In part, this is consistent with previous findings comparing objects 

relative to faces (Kanwisher et al., 1996).  There were no effects of valence.   

 It was also evident that the parahippocampus was activated for 

normally viewed presentations only.  There is no evidence to suggest that this 

region is activated below or close to the threshold of conscious awareness.   

 

d) Amygdala 

 

Previous data demonstrate a rapid response in the amygdala to the emotional 

content of stimuli (LeDoux, 2002), which is implicitly processed (Whalen et 

al., 1998b).  Equally, the amygdala is known for rapid habituation of 

responses to affective faces (Breiter et al., 1996, Whalen et al., 1998b).  

According to these published views, positive activations to emotional stimuli 

(relative to control stimuli) were expected to be found with brief, masked 

presentations as well as under normal viewing, but this was not the case.  

Lateralisation of amygdala responses has been previously reported in 

neuroimaging studies.  One such experiment used a backward masking 

paradigm with visual images of faces, and noted more neural activation in the 

RH for masked presentations and greater activations in the LH for unmasked 

presentations.  They concluded that lateralisation varies in relation to 

conscious awareness of the target stimuli (Morris et al., 1998b).  Again, the 

present study found no evidence of this.   
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 Another unexpected negative finding is that there was no significant 

effect of valence - as the amygdala is well documented to be fear-related, one 

would have expected a difference in responses to high and low valence 

stimuli.  Two possible explanations seem plausible.  First, the content of many 

of the low valence IAPS face stimuli could be associated with disgust or 

sadness rather than fear, for instance a tumour on a baby’s face, eye disease 

and battered female.  The stimuli that could be associated with fear were 

mainly inanimate objects, (e.g. aimed gun), or animals, (e.g. attack dog).  It is 

interesting, therefore, to note that the greatest value in the estimated marginal 

means was found with low valence inanimate objects.  In support of this 

interpretation, Killgore and Yurgelun-Todd (2004) found zero activation in 

the amygdala when viewing nonconscious masked sad faces, hypothesising 

that sadness is not of immediate survival value whereas fear is (Killgore and 

Yurgelun-Todd, 2004).  On the other hand, the amygdala has been reported to 

have a more generalised role in emotional processing than previously thought, 

(e.g. processing happy facial expressions) (Adolphs, 2002, Breiter et al., 1996, 

Britton et al., 2006b), sadness (Blair et al., 1999), and anger (Whalen et al., 

2001).  Therefore, an effect of valence would not necessarily be apparent 

using a positive and negative dissociation.   

 In addition, the authors listed above all reported affective results from 

face stimuli which are partly comparable to this experiment, in that faces 

incurred the second greatest value in the estimated marginal means in the 

amygdala.  As an example of the varying results using different stimuli, 

Britton et al. (2006b) compared face stimuli with IAPS pictures of scenes and 

noted activation in the amygdala whilst viewing happy facial expressions, but 

not for positive IAPS scenes (Britton et al., 2006b).  A similar study found 

greater amygdala response to fearful facial expressions than IAPS images of 

scenes evoking a fearful response (Hariri et al., 2002).  These findings, in part, 

run counter to those studies using IAPS pictures demonstrating that positive 

and negative affect are both processed by the amygdala, thus concluding a 

more general role in emotional processing (Amaral et al., 2003, Liberzon et 

al., 2003).  One point of view suggests that because the amygdala is part of 

the ‘primitive’ limbic brain, it is thought to be recruited for primary aversive 

detection, (e.g. danger).  However, Liberzon argues that appetitive detection is 
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also of primary importance, as highlighted by ‘positive’ survival functions, 

(i.e. sustenance and reproduction) (Liberzon et al., 2003).   

 Secondly, the arousal ratings of the stimuli used were not of the 

highest score available in the IAPS set.  As previously discussed, for ethical 

reasons it was decided not to use pictures of mutilated bodies (negative 

valence, very high arousal) or erotica (positive valence, very high arousal).  

Therefore, the small amygdala activations from this experiment may be due to 

the relative subtlety of the stimuli.  The involvement of the amygdala in the 

evaluation of arousal dimension of affect has been previously documented 

(LaBar et al., 1998) and in particular the left amygdala is associated with the 

intensity of emotion (Cunningham et al., 2004).  Others have reported that 

amygdala activations are correlated with arousal and not with valence 

(Heinzel et al., 2005).   

 Equally, this experiment employed a valence categorisation task and 

Pessoa et al. (2005b) found a reduction in amygdala activity to unattended 

affective stimuli during cognitive tasks, which suggested active suppression of 

the amygdala.  This cognitive modulation hypothesis (Pessoa et al., 2005b) 

was drawn from evidence of reciprocal functional exchanges between 

cognitive and emotional systems (Mayberg et al., 1999).  Cognitive evaluation 

attenuating amygdala activations suggesting involvement in emotional 

regulation is documented elsewhere (Hariri et al., 2003).   

 Moreover, although this experiment did not investigate functional 

interactions between ROIs, it is interesting to note that the absence of 

significant activations in the amygdala with regard to brief, masked and 

normally viewed conditions coexists with significant activations in the mPFC 

and DLPFC, which would be consistent with amygdala suppression from 

PFC.  Prefrontal Cortices and amygdala interactions have been investigated 

with reference to emotional processing and cognitive evaluation (Keightley et 

al., 2003, Lange et al., 2003).  One hypothesis is that a modulative integration 

serves to facilitate conscious evaluation to monitor primitive emotions (Hariri 

et al., 2003).    

 There is a third potential explanation for a negative finding regarding 

valence response.  The amygdala is a small structure and an anatomical error 

is a possibility.  This risk was minimised by following the preprocessing 
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procedure (section 2:1:4) and checking the activation patterns with 

coordinates for each participant.  Equally an 8mm radius sphere centred on the 

coordinates for the amygdala in both hemispheres was a fair balance between 

sensitivity and accuracy.  It should be noted that using the same procedures, 

significant activations in the amygdala were recorded in the next fMRI 

experiment. 

  

e) Superior Temporal Gyrus  

 

Using fMRI, Phillips et al. (1998) found significant activation in the STG for 

both facial images and vocal expressions of fear and disgust.  They 

hypothesised that the STG responds to the emotional content of faces and 

vocal sounds suggesting a general role for the perception of emotional stimuli 

(Phillips et al., 1998).  Other studies investigating the neural response of the 

STG with facial stimuli include an experiment conducted by Britton et al. 

(2006b), who compared low rated valence and arousal images of facial 

expressions with higher rated valence and arousal IAPS pictures.  They found 

greater activations for face processing (Britton et al., 2006b).  Greater 

response to faces than IAPS pictures can be partly explained by the hypothesis 

that the STG is involved in processing dynamic facial components, (e.g. 

mouth expression in relation to lip-reading).  This is quite logical as the STG 

is a large structure that contains several functional units that are responsible 

for sound (e.g. primary auditory cortex and Wernicke’s area) (Haxby et al., 

2000).   

 On close inspection of the IAPS stimuli in the Britton experiment 

(Britton et al., 2006b), however, it would appear that the set of pictures used 

included faces, (e.g. babies), and that they were balanced in relation to target 

emotions and not to specific categories.  Therefore, one could surmise that the 

imbalance of the percentage of face stimuli could bias the comparative result.   

 In the current study categories were evenly balanced in terms of 

category membership, valence and intensity, but activations for face stimuli 

were no greater than activations for other categories.  It is interesting, 

however, that the greater significance of LV inanimate objects in the present 

experiment suggests category-related activity for negative stimuli, which 
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supports the significance of low valence images in the Britton et al. (2006b) 

experiment.  Previous studies have drawn attention to greater STG activity 

when presented with LV stimuli such as fear and disgust (Phillips et al., 1998) 

and mutilations from the IAPS series (Kuniecki et al., 2003).  Equally, a study 

using animals, faces, houses and tools found the STG to be category related, 

hypothesising a non-biological object motion association (Chao et al., 1999) 

based on topographical evidence that the temporal gyrus is in the proximity of 

the motion perception areas (V5) (Zeki et al., 1991).  By the same token, 

damage to the occipital-temporal-parietal junction (V5) is reported to impair 

knowledge retrieval about tools (Tranel et al., 1997).  However, to the best of 

my knowledge, no other study than this current research has examined a 

category x valence interaction in the STG and, as such, this is a topic for 

further research.   

 

f) Insula 

 

It was clearly evident that hemispheric specialisation was apparent in the 

insula.  All significant activations were in the RH for LV stimuli across all 

conditions.  These results concur with the valence lateralisation hypothesis, 

which postulates that negative emotions are lateralised towards the RH (Canli 

et al., 1998, Davidson and Irwin, 1999).   

 In addition, RH specialisation in the insula was reported in an explicit 

evaluation task of affective facial expressions (Britton et al., 2006b) and a 

correlation between the RH and valence has also been documented 

(Cunningham et al., 2004).   

 Moreover, the significance of LV stimuli supports previous research, 

in that the insula is associated with the emotion disgust (Calder et al., 2001, 

Phillips et al., 1997, Phillips et al., 2004).  It is interesting to note that in the 

behavioural experiment in the present study the image of the dirty toilet 

evoked the greatest subjective reaction of disgust and in the present fMRI 

experiment LV inanimate objects showed the greatest activations.  

Furthermore, a meta-analysis on 65 studies investigating emotion using 

neuroimaging confirmed insula activations for negative stimuli (Wager et al., 
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2003).  Equally, recalling sadness whilst watching silent film clips 

demonstrated increased activations in the anterior insula (Lane et al., 1997b).   

 

g) Fusiform Gyrus 

 

In keeping with previous research, the fusiform gyrus did show a main effect 

of category.  Looking at the estimated marginal means, it appears that 

inanimate objects showed marginally greater activations than the other 

categories, including faces.  However, positive values were also apparent for 

low and high valence faces under normal viewing, which is consistent with 

previous reports implicating the fusiform gyrus in emotional processing of 

faces (Adolphs et al., 1996, Nakamura et al., 2000), and specifically, fearful 

faces (Vuilleumier et al., 2001).  Nakamura and colleagues however 

demonstrated posterior fusiform gyrus activation non-selectively in both faces 

and scenes and concluded that, in complex images, this region is involved in 

extracting physical features (Nakamura et al., 2000).   

 Previous findings have shown that fusiform activations are modulated 

by valence (Paradiso et al., 1999, Vuilleumier et al., 2001), but present results 

did not reveal any significance of valence.   

 

h) Dorsolateral Prefrontal Cortex 

 

Hemispheric specialisation was marginally evident in the DLPFC, with 

significant activations in the LH with normally viewed stimuli and RH 

dominance when presented with brief, masked stimuli, although these effect 

sizes were small.  It has been hypothesised that both hemispheres complement 

each other in terms of emotional processing.  This theory suggests that the 

role of the RH is to subserve the subcortical limbic centres and the LH is 

involved in the control capacity of higher cortical structures (Gainotti et al., 

1993).   

 Valence modulation was evident when viewing LV inanimate objects 

both in the brief, masked condition and under normal viewing.  These findings 

demonstrate a) neural activity in the DLPFC close to or below the level of 
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conscious perception and b) that DLPFC shows greater activity for processing 

negative emotion than positive.   

 Previous studies have shown that the DLPFC is modulated by valence 

(Grimm et al., 2006) and in particular aversive stimuli, although the RH is 

implicated (Nitschke et al., 2006).   

 

i) Orbitofrontal Cortex 

 

There was no main effect of valence and this result is consistent with lesion 

studies noting that patients with damage to the OFC suffer from changes in 

both positive and negative emotion (Hornak et al., 1996, Hornak et al., 2003), 

thus suggesting a more general role in emotional processing (Drevets and 

Raichle, 1998, Murphy et al., 2003) and for processing of emotionally salient 

stimuli (Adolphs, 2002).   

 However, the present experiment found greater activation for LV 

inanimate objects, which may have been particularly noticeable (e.g. dirty 

toilet).  This idea was reinforced by a significant main effect of category and 

significant interaction between valence x category.   

 The anatomical connections into autonomic centres in the limbic and 

paralimbic regions (Öngür et al., 1998), and the reported heavy connections 

with the intraprefrontal regions (e.g. DLPFC) (Cavada et al., 2000) support 

the hypothesis of the OFC’s involvement in cognitive-emotion coalescence 

and top-down processing.  However, significant activations were evident in 

the present experiments not only in normal viewing, but also for brief, masked 

stimuli close to and below conscious threshold.   

 

 4:5:2  General Discussion   

 

The purpose of the present study was to examine the effect of valence both in 

normal viewing, and close to or below the threshold of conscious perception, 

whilst viewing four categories of natural images.  Having discussed the results 

of each ROI separately, these findings in relation to the significance of 

valence, unconscious processing and category effects in general will now be 

considered.   
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Valence 

 

There was evidence of significant overall effects of stimulus valence, 

bilaterally in the STG and ACC and in the right insula.  This, in part, supports 

the hemispheric lateralisation valence hypothesis in that the RH is more likely 

to process emotion.  This premise was originally based on behavioural and 

clinical studies (Ross, 1984, Sackheim et al., 1982), but remains controversial.  

Nevertheless, there is some indication in these results to support the 

hypothesis and, as such, there is evidence that right hemisphere dominance 

(RHD) in both near-threshold and suprathreshold emotional processing is 

extended to categories other than faces and scenes.   

 In support of this, LV stimuli elicited greater activations than HV in 

the RH for the insula, and bilaterally in general across most of the remaining 

ROIs.   

 It is clear that unpleasant stimuli activated both phylogenetically older 

(e.g. insula) and newer (e.g. DLPFC) systems.  One would expect the former, 

as unpleasant pictures may elicit disgust derived from distaste associated with 

the danger of contaminated food (Rozin et al., 1994), but the latter is not so 

obvious as prefrontal cortices are associated with employing attentional 

systems to verify emotional content, which are obviously not exclusively 

unpleasant, and can be either pleasant or unpleasant (Berthoz et al., 2002).  

However, studies researching damage to the left DLPFC have highlighted 

that, as a result, patients suffer from depressive symptoms and have therefore 

reasoned that this region is associated with positive affect (Mineka et al., 

1998); although other research has challenged this theory (Gainotti et al., 

1997, House et al., 1990).  Present results, however, show greater processing 

of unpleasant stimuli in areas associated with both cognition and affect.   

 Greater activations for normally viewed images than for brief, masked 

exposures were found in the parahippocampus, STG, amygdala and fusiform 

gyrus.   

 In the ACC, STG, insula, DLPFC and OFC the valence of stimuli was 

processed both in the brief, masked condition and under normal viewing this 

indicates that the level of conscious processing of the stimuli was not an 

overriding factor.  It also tells us that the said regions are activated close to or 
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below the threshold of consciousness and suggests that the activations to such 

brief presentations must be relatively sustained in order to be detected reliably 

in a block-design fMRI experiment.  Hemispheric differences were evident 

between normal viewing and brief, masked conditions in the DLPFC, which 

has been expanded upon above when discussing the DLPFC separately.   

 

Categories 

 

Some concerns were raised as a result of the behavioural experiment of 

Chapter 3 that the a priori stimulus categories (animals, faces, scenes and 

inanimate objects) might have low reliability due to variation between 

individual slides and the small number of slides per category.  This issue was 

addressed in the current experiment by introducing a second set of stimuli, 

thus doubling the number of examples, and allowing a replication of category-

specific effects.  The results of the present fMRI study showed that the 

category-specific effects were indeed replicated, and that the two sets of 

normally-viewed stimuli gave similar results.  Furthermore, the category-

dependent effects seen in the present fMRI study did not follow the pattern 

expected, if they were due to a confounding variable such as detectability (see 

Chapter 3).  There is thus some justification for interpreting the present results 

in terms of category-specificity.   

 Previous research examining the effect of categories has highlighted 

two different classifications of stimuli: ‘natural objects’ such as animals and 

fruit; and ‘man-made objects’ such as vehicles and tools (Moore and Price, 

1999).  These ‘living’ and ‘non-living’ dissociations are based on impairments 

in identification of stimuli from brain lesion studies (Warrington and Shallice, 

1984).  Two theories attempt to explain this tenet.  First, man-made objects 

are identified by their functional attributes, (e.g. sports car is for driving); 

whereas identification of natural objects relies on perceptual features, (e.g. a 

lion has a mane, tail etc.) (Farah and McClelland, 1991, Warrington and 

Shallice, 1984).  The second theory supports the differentiation between 

natural objects and man-made objects not because of their functional and 

perceptual features, but because identifying natural images places different 

neural demands due to their complexities and similarities, compared to the 
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more distinct man-made objects.  Thus the differentiation is one of different 

demands due to levels of distinctiveness on shared neural systems (Durrant-

Peatfield et al., 1997, Gelman, 1988). 

 It is not the remit of this thesis to further elucidate category 

membership, but it serves to illustrate category specificity in context of the 

present findings.  As such, and in accordance with these classifications, the 

categories used in this thesis can be organised thus: animals – natural/living; 

faces – natural/living; inanimate objects – man-made/non-living; scenes – 

both natural/living, (e.g. skydiver, waterfall) and man-made/non-living, (e.g. 

car crash, atomic bomb).  The relative ambiguity of scenes, that were also 

anomalous in the behavioural experiment, may account for the lack of 

significant valence effects compared to the other categories.  In fact, the 

parahippocampus recorded the greatest activations when viewing scenes, 

albeit not significantly so, which is in keeping with previous research 

reporting this region’s specialisation in processing places (Epstein and 

Kanwisher, 1998, Epstein et al., 1999, O'Craven and Kanwisher, 2000).  By 

the same token, face processing in complex images was of marginally greater 

significance in the fusiform gyrus (RH) for both low and high valence, which 

again supports previous research in this region’s recorded specialisation of 

processing faces (O'Craven and Kanwisher, 2000, Schultz et al., 2003).  Even 

though this account, in part, concurs with those of previous authors, it is 

necessary to challenge why affective face stimuli were not of greater 

significance in general.   

 There has been considerable interest in comparing facial expressions 

with IAPS pictures as emotional probes, which has highlighted differential 

and common cortical areas in both conscious and unconscious processing 

(Britton et al., 2006b, de Gelder et al., 2002, Hariri et al., 2002).  An 

experiment employing this comparison found greater amygdala activation for 

negative faces than negative IAPS scenes (Hariri et al., 2002).  Most 

experiments investigating this comparison appear to have used simple face 

stimuli and not pictures of faces from the IAPS series.  However, an 

interesting paper by Keightley et al. (2003) compared emotional faces with 

general emotional pictures, whereby all the images contained one or more 

people, including some (although it is not clear how many) with clear facial 
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expressions,.  They found that affective faces were automatically processed in 

the limbic regions whereas the affective general pictures were effective only 

when attention was directed to emotional content (Keightley et al., 2003).  

The face stimuli in the current experiment were similar to at least some of the 

general pictures in Keightley’s experiment, with a categorisation task 

specifically drawing attention to the emotional content of the images, but the 

results did not concur.  To date there is little data on the effect of face stimuli 

when presented in the complex and variable context of everyday images, 

therefore the same facial expression stimuli need to be presented with 

different pictorial contexts to investigate the possible valence modulation of 

complex presentations.   

 Let us speculate at this point and suggest that the images of animals 

and inanimate objects were more prototypical stimuli (likely to have been 

seen before, e.g. dogs, toilets) whereas the scenes and faces were less 

prototypical (less likely to have been seen before, e.g. air crash, baby tumour).  

Of course, individual perceptual history will vary, but prototypicality effects 

are known to be robust.  The concept of a prototypical category member is 

important in cognitive psychology as it can explain performance in 

categorisation tasks.  The prototypical image is built up from cognitive and 

perceptual information rather than a memory or accurate picture (Rosch, 1975, 

Rosch and Mervis, 1975).  This idea may explain why animals and inanimate 

objects showed greater neural activity than other categories in the majority of 

ROIs.   

 

The Negative Estimated Marginal Means 

 

A further aspect of these findings needs to be considered.  Several of the brain 

regions showed negative estimated marginal means for varying stimuli which 

implies, in these instances, that there were greater activations for the control 

condition than experimental conditions.  One possible explanation is that 

trying to categorise the emotional valence of a control stimulus is less 

straightforward than categorising the pleasant/unpleasant stimuli, in which 

case greater attentional demands would be required (as there is no obvious 

positive or negative answer).  This idea is consistent with visual search 
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experiments whereby targets are processed in shorter reaction times than non-

targets, as more time is needed for analysis (Treisman and Gelade, 1980).   

  

Summary of results.  

 

To summarise, these results show that when presenting affective complex 

stimuli, there are significant effects involving stimulus valence under normal 

viewing conditions, in ACC, STG, insula, DLPFC and OFC (H1).  When 

presented in brief, masked exposures, significant effects involving stimulus 

valence are found in ACC, insula, DLPFC and OFC (H2).  There are some 

differences between brief, masked and normally viewed presentations in 

mPFC, parahippocampus, amygdala, insula and fusiform gyrus (confirming 

H3).  The cause of these differences is uncertain. It is possible that the kinds of 

anomalous effects reported in Ch3 (i.e. reversal of apparent valence due to 

brief, masked exposure) contribute, but if these anomalies are effects of 

individual pictures, they are more likely to appear in higher order interaction 

terms of ANOVA (where cell size is small), and the only plausible confound 

of this kind is the condition x category interaction in mPFC (which should 

therefore be treated with caution).  There are significant effects involving 

category (H4) in ACC, mPFC, parahippocampus, STG, insula, fusiform gyrus, 

DLPFC and OFC.  There is a marginal effect of valence in relation to 

hemispheric specificity in insula (H5); and there are significant effects 

involving category under brief, masked conditions in ACC, mPFC, STG, 

insula, DLPFC and OFC (H6).   

 If brief, masked presentations induced significant activations where 

normally viewed presentations did not, this would suggest that the chosen 

ROIs were activated for brief exposures only.  This was not the case.   

 If normally viewed presentations were significant and brief, masked 

were not, this would suggest that particular region was not significantly 

activated close to or below conscious threshold.  This pattern was evident in 

the fusiform gyrus, parahippocampus and OFC, where there was a category 

effect under normal viewing only, and in the STG for valence and valence x 

category.   
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 However, without exception, we only witnessed significant activations 

to brief, masked stimuli when they were also significant for normally viewed 

presentations.  This could suggest a graded process within a single 

mechanism/pathway, rather than a different mechanism/pathway.   

 

4:6  Conclusion   

 

Forward and backward masked stimuli presented for just 10 ms (see section 

2:1:2) were shown (in Chapter 3) to allow discrimination of valence that was 

significantly different from control stimuli.  These are stringent temporal 

parameters, and might be expected to generate little cortical activity.  

However it is shown in the present chapter that even under these conditions 

significant effects of stimulus valence and / or category were found for a high 

proportion of brief, masked presentations.  Recent research has highlighted 

the rapid and efficient processing of complex natural images (Thorpe et al., 

1996, Thorpe et al., 2001b, VanRullen and Thorpe, 2001c), and the present 

study supports, at least in part, the idea of apparent automatic processing that 

traditionally implies ‘independence from top-down factors’, (e.g. processing 

of coarse information) allowing categorisation in terms of valence and 

arousal.   

 The results of the present study have shown that a limited but 

significant level of processing of complex affective stimuli takes place in the 

near absence of conscious perception.  Two avenues of interest arise.  One is 

to revisit the view that perception without focal attention is severely limited 

and the other is to investigate the extent to which ‘gist’ information is 

processed in unattended images.  To investigate further, an experiment was 

designed to present the same stimuli in conditions of attentional conflict 

between small stimuli presented at fixation, and larger, surrounding stimuli 

extending into the periphery of the visual field.  Although there were no exact 

replications in procedures, a dual stimulus design (selective attention) was 

chosen in comparison with the masked experiment (non-selective attention) in 

order to discuss gist perception and capacity limitations in the next chapter. 
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Chapter 5  fMRI Dual-Image Experiment: 

An fMRI study comparing responses to large-field,  

small-field and dual affective stimuli 
 

5:1  Abstract 

 

One of the difficulties with using brief, masked stimuli for fMRI studies is 

that the stimuli are by definition weak.  This in itself may reduce the 

likelihood of obtaining strong patterns of activation in the ROIs.  The purpose 

of the present study is to determine whether similar patterns of sensitivity to 

IAPS stimulus valence and category can be obtained with a different 

paradigm.  Rather than reducing the visibility of the target stimulus by brief 

presentation and masking, the intention here is to reduce conscious processing 

of a highly visible suprathreshold stimulus by providing a second competing 

image.  This was achieved by introducing a ‘dual image paradigm’4, for a 

relatively long duration, using a small (foveal) image superimposed on a large 

(peripheral) image of opposite valence, thus exploiting the poverty of 

peripheral vision in order to explore demands on selective attention. The main 

question is whether ‘to-be-ignored’5 peripheral stimuli result in similar 

activations in the chosen ROIs to brief, masked stimuli, even though there is a 

difference in attentional demands.   

 The variables of interest were the same as those in the previous 

experiment: valence (low and high); category (animals, faces, scenes and 

inanimate objects) and hemispheric specificity.  These findings are discussed 

in light of the results from the masked experiment in context of gist 

information and attentional capacity.   

 

 

 

 

                                                 
4 Dual image – compound image consisting of the attended condition superimposed on the 
‘to-be-ignored’ condition of opposite valence. 
5 To-be-ignored condition – instructed to ignore large image, surrounding foveal image of 
the same category, but opposite valence. 
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5:2  Introduction  

 

The density of cone receptor cells for processing photopic visual information 

is greatest in the fovea of the retina.  The cone bipolar neurons and the 

ganglion cells that receive their signals, whose axons form the optic nerve, 

decrease in density moving away from the fovea.  The LGN and primary 

visual cortex both have a strong magnification factor favouring the foveal 

input.  All this means that visual acuity is keenest in the fovea and quickly 

declining in resolution, thus decaying, towards the periphery (Enns, 2004),  

hence the need for saccadic eye movements to bring a stimulus back into 

foveal vision for finer analysis (Liversedge and Findlay, 2000).  

 The technique to be adopted in the present experiment is a selective 

attention approach.  Independent reports completed outside the scanner were 

able to confirm that the more peripheral stimulus in a dual array had a limited 

impact on valence judgments (see Section 5:4:1).  The visual system has 

limited processing capacity and multiple objects in the visual field compete 

for neural representation.  This competition can be biased by selective 

attention, which can adjust neural activity in the visual cortex (Desimone and 

Duncan, 1995).  Existing data (Lavie, 1995, Pashler, 1998) suggest that the 

neural substrate of perception may be suppressed or even eliminated if 

attentional resources are diverted by contending tasks.  Lavie’s theory is that 

the importance of attention is to filter relevant and irrelevant information from 

‘noisy’ visual scenes (Lavie and Tsal, 1994).  For instance, when participants 

were engaged in a linguistic task, they were instructed to ignore a 

simultaneously competing visual task of moving stimuli; as a result motion-

related fMRI activations in area MT were reduced (Rees et al., 1997).  A 

possible exception to this selective mechanism is the processing of emotional 

stimuli, which as previously stated, is said to be automatic, therefore not 

needing attention.  Calvo et al. (2007) briefly presented stimuli in the 

peripheral visual field and found greater selective orientation and preferential 

processing for emotional scenes than for neutral stimuli (Calvo et al., 2007).   

 To reiterate, it is further postulated that visual processing of facial 

expressions is not only automatic, but can also be processed without 

conscious awareness (Dimberg et al., 2000).  This claim is supported only in 



 
 

 155

part by Vuilleumier et al (2001).  Using a matching task of images of faces 

and houses presented at various locations in the visual field, they 

demonstrated that attention modulates fusiform activity especially for fearful 

faces, whereas amygdala response to fearful faces was consistent regardless of 

attentional demands (Vuilleumier et al., 2001).  On the other hand, a study 

(Pessoa et al., 2002a) examining the neural correlates of faces with emotional 

content, including the amygdala, found that processing was not automatic and 

needed sufficient attentional mechanisms in order to process faces, and 

therefore under top-down control.  In addition, it is argued that emotional 

(especially negative) stimuli can bias the competition for processing 

resources.  Again, this means that emotionally valenced stimuli have a 

competitive advantage over neutral stimuli.   

 Developing on from this, it is possible to detect differences in 

‘attended’6 (foveal) and ‘to-be-ignored’ (peripheral) perception of emotion of 

visual stimuli.  For instance, previous studies have demonstrated that the 

advanced visual processing of foveal information suggests that it is easier to 

ignore stimuli presented in the low resolution periphery, where acuity of 

object recognition is too poor to be accurate (Beck and Lavie, 2005, Thorpe et 

al., 2001b).  In order to bring objects into foveal vision, studies have 

demonstrated that both saccadic eye movements and selective attention are 

necessary (e.g. Liversedge and Findlay, 2000).   

 Although stimuli presented in the visual periphery are normally 

outside the focus of overt attention, a recognition study conducted by Calvo et 

al. (2005) presented complex images of affective scenes in the parafoveal 

visual field, and found the perception of emotional scenes had the advantage 

over neutral scenes.  Interpretation of these results concluded that analysis by 

the cognitive system (i.e. recovery of semantic information) of affective 

scenes began covertly in parafoveal vision in advance of overt attention at 

foveal fixation, thus suggesting that the attentional field for emotional stimuli 

is broader than just the foveal spatial field (Calvo and Lang, 2005).   

 On the other hand, attention does not search out information by 

sweeping the visual field as the searchlight metaphor implies (Cave and 
                                                 
6 Attended condition – instructed to voluntarily attend to a small image presented in the 
fovea superimposed on a large image of the same category, but opposite valence. 
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Bichot, 1999).  Rather, Sperling and Weichselgartner argue a stage light 

analogy being more accurate in that it focuses on different actors in turn 

(Sperling and Weichselgartner, 1995).  However, this implies a fast sequential 

process of which there is little evidence (Findlay and Gilchrist, 2003).  In fact, 

the pursuit of understanding the selection of the next fixation attracts lively 

interpretation. 

 Studies have shown that it is also possible to covertly attend to items, 

(i.e. that attention can shift away from fixation without saccadic eye 

movements) (Thorpe et al., 2001b).  Investigating spatial cueing, it was found 

that faster reaction times were achieved when the location of a target was cued 

even without eye movements (Posner, 1980, Posner et al., 1980).  Later it was 

argued that covert perceptual attention precedes a saccade in order to facilitate 

saccades and improve identification of target (Kowler et al., 1995).  On the 

other hand, the advantages of passive covert attention have mystified others 

when one considers the immediate advantages of active overt attention by 

means of a saccade bringing an item into fine detailed foveal vision (Findlay 

and Gilchrist, 2003).   

 Equally, there is evidence that attention can be directed to more than 

one item at once.  Studies asking participants to identify peripheral targets 

whilst fixating on the fovea have shown convincing support of our ability to 

be visually aware outside the focus of attention if the target is salient enough 

(Braun, 1994, Braun and Sagi, 1990).   

 Research continues to explore the relationship between foveal and 

peripheral visual perception, with an increase in the use of natural images as 

stimuli.  These include Li et al. (2002) who used natural images of scenes in 

an animal/vehicle categorisation go/no-go experiment, whereby images were 

randomly flashed in the periphery at around 6.1º eccentricity for, in effect, 

80ms followed by a mask.  They concluded that participants are highly 

efficient at categorising the ‘gist’ of natural scenes (Li et al., 2002).   

 Similar findings using an animal go/no-go task were found when two 

images were presented at the same time in the two hemifields with 

eccentricity of 3.6º left or right of fixation (Rousselet et al., 2002) and a study 

using one full image presented between two partial images, unmasked 

(Thorpe et al., 2001b), as well as presentations in the far periphery (Thorpe et 
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al., 1999).  Equally, a study using a face-gender discrimination task presented 

stimuli at random locations of 8º x 10º of visual angle with SOA for faces at 

133-160ms (Reddy et al., 2004).  These studies, using a foveal peripheral 

paradigm, suggest that complex stimuli are processed rapidly in the near 

absence of attention.   

 Others have concluded that face processing depends on voluntary 

attention, as found in a matching task in peripherally presented faces and 

houses (Wojciulik et al., 1998), and that both pleasant and unpleasant images 

capture overt visual attention (Nummenmaa et al., 2006).  These findings 

were supported in that affective perception occurs in the periphery at the cost 

of needing covert attentional resources (Calvo and Nummenmaa, 2007), and 

although coarse information may be extracted in the peripheral visual field, 

unless this advances selective attention, false alarms are likely (Calvo et al., 

2008).   

 To further this line of enquiry, different methods were employed in the 

present experiment.  For instance, Li and Reddy used extensive training 

procedures in order to coordinate motor demands (Li et al., 2002, Reddy et al., 

2004), which could have affected the outcome.  Motor responses were not part 

of the design for this experiment, so it was not necessary to include training 

procedures.  Equally, Rousselet presented stimuli in the two hemifields 

(Rousselet et al., 2002), whereas this experiment employed a small image 

presented at fixation superimposed on a big image, thus presented in the 

periphery.   

 To take into account the duration of a saccade, with the intervals 

between saccades, it is estimated that 2 to 3 saccadic eye movements are made 

per second (Irwin and Brockmole, 2000, Koch, 2004).  Therefore, in order to 

limit the effect of possible eye movements from one location to another, it is 

not uncommon for researchers to restrict the duration exposure of visual 

stimuli to <250ms (Li et al., 2002, Reddy et al., 2004, Rousselet et al., 2002). 

An example of this was a study by Prado and colleagues (2005) investigating 

cortical systems for reaching towards targets in fovea and peripheral vision, 

using three conditions.  In the first, the target duration was 7s and therefore 

captured by the fovea.  In the second, the target disappeared after 150ms thus 

interfering with fovea capture and therefore processed in the periphery; and in 
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the third the participants were ‘not allowed’ (Prado et al., 2005, p 850) to 

make a saccade during a 7s presentation.  They concluded that reaching in the 

peripheral visual field activates more cortical regions than when reaching in 

central vision (Prado et al., 2005).   

 These parameters were considered when designing the present 

experiment.  However, in order to address the possibility that the brief 

exposure duration of the stimuli in Chapter 4 did not allow for a time to peak 

for the BOLD signal, it was decided to display the stimuli for 1s.  This is the 

minimum for time to peak for short stimuli (Jezzard et al., 2001).  In light of 

this, three measures were undertaken to discourage saccades: a) the 

participants were instructed to attend to the foveal stimulus only - a separate 

behavioural study investigated the efficacy of this instruction; b) by 

continually positioning the foveal image centrally facilitating attention 

directed by expectation (Holm et al., 2008); and c) a categorisation task was 

employed to ensure fixation to target and to challenge attentional 

capacity/resource limitations, thus to reduce peripheral interference.   

 Nevertheless, these stimuli are not presented at or below the detection 

threshold, as in chapter 3 and 4, since it is obvious that the large-field 

surround is always present in the combined stimulus.  The data will be 

examined to determine whether it can support findings from the masked 

experiment, and allow for comparisons of patterns of activations in the nine 

ROIs.   

 In sum, foveal stimuli were used as the voluntarily ‘attended’ target in 

order to measure the voluntarily ‘to-be-ignored’ peripheral stimuli, thus 

investigating the interaction between selective attention and emotional 

evaluation.  

 It was hypothesised that: 

H¹ There are significant effects involving valence for 

‘attended’ conditions.  

H² There are significant effects involving valence for ‘to-be-

ignored’ conditions. 

H³ Valence effect is different between ‘attended’ and ‘to be 

ignored’ conditions.   
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H4 There are significant effects involving category for 

‘attended’ condition. 

H5 There are significant effects involving category for ‘to-

be-ignored’ stimuli 

H6 There are hemispheric differences between activations in 

paired (left and right) ROIs  

 

5:3  Method   
 

 5:3:1  Participants 

 

Eleven females and five males (age range 19 – 37 years, mean age 27.7) 

participated in the experiment.  The same screening process and ethical 

considerations took place as in the masked experiment (see section 2:4:1).   

 Again, the only payment made to the participants was to those who 

travelled to the scanner independently where travel expenses were reimbursed.   

 

 5:3:2  Design  

 

Each image (I) was shown for 1s within a block consisting of three images of 

the same emotional category (e.g. LV faces) and same condition (e.g. large-

field), and three neutral (N) pictures in the same condition (e.g. large-field) to 

ensure that the participant’s emotional response returned to baseline level.  

The baseline (neutral visual stimuli) was modelled implicitly, therefore 

modelling the neutral (baseline) condition as a separate regressor was not 

necessary.   

 Between each image there was a blank (B) screen lasting 1s with a 2s 

blank between each category, therefore each block lasted fourteen seconds 

(Figure 5.1).   
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Figure 5.1  Block time sequence . 
Key: N1-N3 = neutral images.  B = blank.  I1 - I3 = target images. 
 
As the images were not masked, the neutral images and blank screens were of 

extra value in order to reduce any iconic representation after the target images 

disappeared.   

 The same stimuli were presented in three different ways.  The first was 

control stimulus condition 1, a no-conflict condition whereby single large 

versions of the pictures were shown in the central and near-peripheral visual 

field.  This ‘large-field’ single picture occupied a rectangle 16x10 deg (Figure 

5.2).  The second, control condition 2, consisted of small pictures presented at 

the fovea.  The ‘small-field’ condition showed single pictures (3.75x2.5 deg) 

(Figure 5.3).  The third stimulus type (condition 3), combined ‘attended’ 

(foveal) and ‘to-be-ignored’ (peripheral) pictures of opposite valence.  This 

dual image consisted of small-field pictures superimposed centrally on large-

field pictures of opposite valence and equivalent category (Figure 5.4).  There 

were 24 blocks with the presentation order randomised for valence and 

category.   

 

   

  

 

N 1 B B B B B B B B N 2 N 3   I 1 
 

  I 2 
 

  I 3 
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Figure 5.2  Large-field control condition one.  LV inanimate slide number 9301 
 
 

 

 

 

 

 

                                             
Figure 5.3  Small-field control condition two.  HV face slide number 2071 
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Figure 5.4  Dual image consisting of LV foveal (voluntarily ‘attended’) animal slide number 
1525; with HV peripheral (‘to-be-ignored’) animal slide number 1650. 
 

 5:3:3  Procedure 

 

In keeping with the procedure of the first fMRI experiment, the participants 

carried out the same screening process (see section 4:2:4) and were 

thoroughly briefed in the control room, where they viewed a trial run on a 

laptop computer using different images to those in the actual experiment.   

 

The instruction slide read as follows: 

• Each picture will appear quickly. 

• Please indicate whether the images are pleasant, unpleasant or neutral.  

• Press the left button for pleasant, the right button for unpleasant and 

the middle button for neither. 

• Some of the pictures are big. Some are small.  Some are big with a 

small picture in the centre – when these appear please attend to the 

small central picture only.   

• GET READY 

Once again the button box was a dummy used for greater attention.   



Attended
Foveal 
HV  

HV 

LV 

 
 

                    Fig 5.5                                                  Fig 5.6 
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 5:3:4  fMRI Data Acquisition 

 

Data were acquired using procedures as outlined in section 2:1:2 and 2:1:4.  

Functional images were acquired using a T2-weighted gradient EPI sequence 

over 5.60 minutes (TR = 2000 ms, TE = 30 ms, FoV = 192 x 192mm, flip 

angle = 90°).  33 transversal (axial) planes were recorded with a thickness of 

3mm.  Voxel size 3 x 3 x 3, number of measurements = 168 volumes.   

 

 5:3:5  Data Analysis 

 

a) Analysis of fMRI data 

 

Again SPM2 (Friston and Wellcome Department of Imaging Neuroscience, 

2003) (http://www.fil.ion.ac.uk/spm) was used for statistical processing which 

was implemented in MATLAB (MATLAB Inc, 2002) 

(http://www.mathworks.com/products/matlab).  The same pre-processing was 

carried out prior to statistical analysis (see section 2:1:4).   

 As in the previous fMRI experiment a first level analysis was carried 

out as a preliminary investigation.  In the second level analysis, taking into 

account the variability between participants, a significance level for 

differences in activations between experimental conditions of p<0.05 was 

applied.  Using MarsBar toolbox for SPM2 (Brett et al., 2002) 

http://marsbar.sourceforge.net  to analyse the processing of category and 

valence within each ROI, the means of the contrast values (effect sizes) were 

calculated for each of the 16 contrasts and entered into a data matrix (Table 

5.3).  These means are graphically displayed in Figures 5.7 - 5.28 for each 

ROI.  The data analysis procedure was identical to that of the masked 

experiment (see section 2:1:4).   

 The overall purpose of this experiment was to ascertain if emotional 

processing occurs whilst viewing complex affective pictures presented in the 

‘to-be-ignored’ periphery when selective attention is focused on an affective 

http://www.fil.ion.ac.uk/spm�
http://www.mathworks.com/products/matlab�
http://marsbar.sourceforge.net/�
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picture of opposite valence presented in the fovea.  This was achieved by 

measuring the effect of valence and categories on specific contrasts between 

experimental conditions.  Contrasts of high and low valence combined 

condition were compared with high and low valence small-field condition 

(this estimates the contribution of the ‘to-be-ignored’ large-field stimulus in 

the combined display: Figure 5.5).  In addition, contrasts were computed 

between the combined display, and the single large-field stimulus (valence 

matched to the surround of the combined display).  This estimates the effect 

of the ‘attended’, opposite-valence small-field stimulus in the combined 

display (Figure 5.6).  In the first contrast (dual > small field), the valence of 

the fixated stimulus is the same. In the second contrast (dual > large field), the 

valence of the fixated stimulus is opposite.  If the surround has no effect, the 

activations produced by these two stimuli should be zero for dual > small 

field.  If the surround has an inhibitory effect on the centre, the activations 

should be negative for dual > small field.  If the surround has an excitatory 

effect, activations should be positive for dual > small field.  Activations 

should be non-zero (depending on a differential response to positive and 

negative valence) for dual > large field.  The dual > large field contrast 

specifically assesses the effect of the small, central field in the dual stimulus.  

The two contrasts (dual > small field) and (dual > large field) will also be 

referred to as ‘to-be-ignored’ and ‘attended’ for the sake of brevity, because in 

the (dual > small field) ‘to-be-ignored’ contrast (Figure 5.5), the ‘attended’ 

part of the dual stimulus is physically approximated by the control stimulus.  

In the ‘attended’ contrast, the (dual > large field) (Figure 5.6), the ‘to-be-

ignored’ part of the dual stimulus is physically approximated by the control 

stimulus.  When referring to the valence of a contrast condition, this will be 

taken to indicate the valence of the (‘to-be-ignored’) large field part of the 

dual stimulus in the ‘to-be-ignored’ contrast, and of the (‘attended’) small 

field part of the dual stimulus in the ‘attended’ contrast.   
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Figure 5.5  Example of the ‘to-be-ignored’ estimate (the combined animal condition minus 
the small-field control HV animal condition which shows the effect of ‘to-be-ignored’ LV 
animals). 
 

     
Figure 5.6  Example of the ‘attended’ estimate (the combined animal condition minus the 
large-field LV animal control condition which shows the effect of ‘attended’ HV animal 
 

Versions of figures 5.5 and 5.6 have been copied into the footer of each page 

of this section whenever a reference is made to this paradigm.  This is to 

ensure the reader can visualise the ‘to-be-ignored’ and ‘attended’ estimates 

while reading this chapter.   

 

b) Analysis of Behavioural Data 

 

Independent raters were engaged to complete subjective reports to further 

ascertain if the participants ever ‘attended’ the ‘to-be-ignored’ stimuli.  A 

paired-samples t-test was carried out on these subjective reports monitoring 

correct responses (see section 5:4:1).   
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5:4  Results 

 

The important contrasts for testing the experimental hypotheses are those that 

show the activation produced by the combined condition (3) versus condition 

(2) small field as a control condition.  By matching the valence and category 

of the small-field stimulus in (3) and (2), the effect of the ‘to-be-ignored’ 

(peripheral) surround stimulus is shown by subtraction.   

 Initial subjective reports were analysed to determine concordance with 

IAPS ratings of the stimuli used in this experiment.   

 

 5:4:1  Subjective Reports 

 

Subjective reports were completed under experimental conditions, similar to 

those of the fMRI study, and these reports monitored the concordance of 

pleasant/unpleasant responses to the stimuli of the MRI study with the 

published IAPS ratings of the component pictures.  The questionnaires 

(Appendix XI) were completed by independent raters rather than the 

participants in the MRI study, because habituation might alter the valence and 

intensity of responses to a second viewing of these emotional stimuli (Breiter 

et al., 1996, Fischer et al., 2003).  Whereas it cannot be proven that 

participants never attended to the ‘to-be-ignored’ peripheral stimuli, analysis 

of the responses of the independent raters did reveal a strong attentional bias 

for central stimuli.   

 A paired-samples t-test showed that the number of concordant 

responses was not significantly different for the ‘large-field’ single pictures 

and the dual task stimuli (t=0.257, df 23, p=0.799, two tailed); and there were 

no significant differences between the ‘small-field’ single pictures and the 

dual task images (t=0.182, df 23, p=0.857, two tailed) (Table 5.1).  The means 

in Table 5.1 are the means of total concordant responses out of 48 (24 target 

images and 24 neutral images).   
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 Descriptive Statistics 

  Mean N 
Std. 

Deviation 
Std. Error 

Mean 

Pair 
1 

 
Large-field 

 
Attended foveal in 

dual image 

44.38

44.25

24

24

1.345

1.894

.275 
 

.387 

Pair 
2 

 
Small-field 

 
Attended foveal in 

dual image 

44.33

44.25

24

24

2.014

1.894

.411 
 

.387 

Table 5.1  Descriptive statistics for small field and large field  
Key: Mean = mean of concordant responses.  
 
 5:4:2  First Level Analysis  

 

a) fMRI DATA 

 

An initial first level group analysis was carried out in order to ascertain the 

quality of the data.  In this analysis, the contrast of interest is the subtraction 

of the small-field (foveal ‘attended’) control stimulus from the dual (foveal 

‘attended’ and peripheral ‘to-be-ignored’) stimulus.  This contrast reflects the 

effect of the peripheral ‘to-be-ignored’ stimulus.   

 

b) Effects of valence  

 

Significant activation was found in the left amygdala when viewing ‘to-be-

ignored’ LV stimuli across all four categories and the exact opposite occurred 

when presented with ‘to-be-ignored’ HV stimuli.  This is a significant 

indication that the left and right amygdala subserve different functions in 

emotional processing.  Bilateral activations in the ACC were evident for all 

four categories for ‘to-be-ignored’ peripheral HV, but the left ACC was only 

activated when processing ‘to-be-ignored’ peripheral LV scenes.   
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c) Effects of stimulus category  

 

The fusiform gyrus, parahippocampus and insula were bilaterally activated by 

a ‘to-be-ignored’ peripheral HV and LV surround, and some of these effects 

were category specific.  The fusiform gyrus did not respond only to ‘to-be-

ignored’ peripheral faces, nor did the parahippocampus only react to to-be-

ignored peripheral scenes, suggesting that these areas have only a broad 

categorical response to ‘to-be-ignored’ peripheral stimuli.  STG was activated 

for all ‘to-be-ignored’ peripheral categories regardless of valence. (Table 5.2)   

 
To-Be-
Ignored  
Stimuli 

Amy  ACC mPFC OFC DLPFC Para Fusi Ins STG 

LVA R    L        L      R L      R R L      R 

LVF R    L R L      R R L      R 

LVS R L    R L      R L     R L      R 

LVI R     R      R  R L      R 

HVA L L     R  R L         R L      R L      R L L      R 

HVF L L     R R L      R L         R L       R L    L     R L      R 

HVS L L     R R L    L         R L      R R   L     R L      R 

HVI L L     R L      R L      R L         R L      R L      R R L      R 

Table 5.2  First level activations across all nine ROIs    
Key: Amy = Amygdala;  ACC = Anterior Cingulate Cortex;  mPFC = medial Prefrontal 
Cortex; OFC = Orbital Prefrontal Cortex; DLPFC = Dorsolateral Prefrontal Cortex; Para = 
Parahippocampus;  Fusi = Fusiform Gyrus; Ins = Insula; STG = Superior Temporal Gyrus.  
 
 
d) Hemispheric differences.  

 

The RH was dominant in the insula for both ‘to-be-ignored’ (dual > small 

field) LV and HV stimuli, providing evidence that this area is not specific to 

‘to-be-ignored’ peripheral negative emotions.  The RH was dominant across 

all conditions in the fusiform gyrus, parahippocampus and insula.  The left 

ACC saw greater activations than the right, whilst the amygdala was activated 

on both left and right hemispheres equally according to valence.  Overall, 

RHD for ‘to-be-ignored’ (dual > small field) emotional stimuli was recorded.   
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 This first level analysis has shown that the quality of the data did yield 

interesting patterns of brain activation therefore justifying further 

investigation using second level analysis.   

 

 5:4:3  Second Level Analysis 

 

For each pair of ROIs (left and right hemisphere), General Linear Model 

Repeated Measures ANOVA with four factors were entered (hemisphere: 2 

levels, contrast condition: 2 levels, valence: 2 levels and categories: 4 levels).  

These data were entered into an SPSS spreadsheet (SPSS Inc, 2005-8) 

(https://www.spss.com).  This analysis was conducted using a significance 

level for activations of p(crit) = 0.025.  To establish the effect of emotional 

processing, a priori hypotheses maintained that there were significant main 

effects of valence and category.  This was tested by partitioning of the 

ANOVA for dual > small field (Figure. 5.5) and dual > large field (Figure. 

5.6) conditions with a p(crit) of p<0.05.  Mauchly’s test of sphericity was used 

and, where it was significant, degrees of freedom were adjusted according to 

Lower-Bound adjustment.  Where required, further analysis was conducted by 

partitioning the ANOVAs.   

 It is clear from Table 5.3 that each ROI presents a distinctive pattern 

of responses across the nine ROIs and two hemispheric locations.   

 The nine bar charts that follow show the mean contrast values (effect 

sizes) of each ROI for all experimental conditions.   

 However, as the bar charts show, a negative contrast value means a 

greater response to the control stimuli than the target in the combined 

condition.  A preference for ‘attended’, control small-field stimuli may 

account for this pattern.   

 

https://www.spss.com/�


 
 

 

2nd Level Random Effects Group Analysis Mean Contrast Values 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
LVA Att -0.09 -0.16 -0.30 -0.25 0.19 -0.11 -0.19 0.12 0.02 -0.17 -0.01 -0.41 0.20 0.16 -0.06 0.19 0.06 0.22 
LVF Att -0.02 -0.11 -0.12 -0.24 0.25 0.03 -0.01 -0.04 -0.03 0.03 0.00 -0.31 0.39 0.21 0.44 0.37 -0.05 0.04 
LVS Att -0.03 0.04 -0.07 -0.07 0.31 0.06 0.03 -0.38 -0.13 0.06 -0.02 -0.35 0.54 0.12 0.29 0.71 0.25 0.12 
LVI Att 0.03 -0.08 -0.35 -0.09 0.27 -0.16 -0.02 -0.18 0.02 0.10 -0.03 -0.28 0.48 0.23 0.16 0.66 0.08 0.13 
HVA Att 0.21 0.35 1.19 0.18 -0.47 0.31 0.99 0.71 0.20 0.48 -0.01 1.37 0.09 0.55 0.30 -0.54 0.60 0.30 
HVF Att -0.16 0.12 0.90 0.38 -0.25 0.15 1.26 0.55 0.19 0.03 -0.13 1.16 -0.12 0.20 -0.10 -0.34 0.79 0.64 
HVS Att -0.04 0.16 0.73 0.51 -0.63 0.04 0.90 0.48 -0.11 0.04 -0.01 0.98 -0.20 -0.18 -0.09 -0.58 0.42 0.11 
HVI Att 0.01 0.06 0.78 0.58 -0.85 0.04 0.79 0.52 -0.01 0.04 -0.04 1.16 -0.22 -0.37 -0.35 -0.28 0.53 0.08 
LVA TBI -0.18 -0.27 -0.45 -0.49 0.55 -0.10 -0.10 -0.16 -0.04 -0.20 -0.19 -0.39 0.14 0.23 0.09 0.55 -0.39 -0.08 
LVF TBI -0.15 -0.19 -0.36 -0.31 0.40 -0.06 0.05 -0.04 0.03 -0.24 -0.18 -0.40 0.43 0.43 0.19 0.73 -0.15 0.00 
LVS TBI -0.21 -0.14 -0.48 -0.14 0.48 -0.09 0.08 -0.45 -0.17 -0.31 -0.34 -0.31 0.54 0.39 0.17 1.09 -0.12 0.03 
LVI TBI -0.15 -0.11 -0.46 -0.18 0.38 -0.25 -0.09 -0.27 -0.09 -0.12 -0.20 0.07 0.89 0.30 0.13 0.99 -0.11 -0.04 
HVA TBI -0.40 -0.38 0.67 0.19 -1.01 -0.20 0.84 0.20 -0.33 -0.33 -0.36 1.10 -0.85 -0.68 -0.66 -0.07 0.13 -0.15 
HVF TBI -0.17 -0.15 0.69 0.33 -1.00 -0.17 0.70 0.33 -0.22 -0.05 -0.07 0.96 -0.86 -0.76 -0.71 0.02 0.33 -0.06 
HVS TBI -0.15 -0.05 0.79 0.38 -1.21 -0.26 0.55 0.55 -0.10 0.00 -0.04 0.91 -0.59 -0.79 -0.69 -0.11 0.59 0.11 
HVI TBI -0.05 0.12 0.60 0.36 -0.92 -0.22 0.53 0.46 -0.04 0.14 0.18 0.43 -0.63 -0.77 -0.56 -0.38 0.57 0.11 

 
Table 5.3  Mean contrast values for effect sizes in ROIs – dual image experiment 
Key:   Att = ‘attended’ (dual > large field). TBI = ‘to-be-ignored’ (dual > small field). ROIs 1 – Left Anterior Cingulate Cortex; 2 – Left medial Prefrontal Cortex;  
 3 – Left Parahippocampus; 4 – Left Amygdala; 5 – Left Superior Temporal Gyrus; 6 – Left Insula; 7 – Left Fusiform Gyrus; 8 – Left Dorsolateral Prefrontal Cortex; 
 9 – Left Orbitofrontal Cortex; 10 – Right Anterior Cingulate Cortex; 11 – Right medial Prefrontal Cortex; 12 Right Parahippocampus; 13 – Right Amygdala;   
 14 – Right Superior Temporal Gyrus;15 – Right Insula; 16 – Right Fusiform Gyrus; 17 – Right Dorsolateral Prefrontal Cortex; 18 – Right Orbitofrontal Cortex. 

  Nn = +ve means 
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a) Anterior Cingulate Cortex 

 
Figure 5.7  ACC effect sizes. 
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects 
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
 
 

 
 
Figure 5.8  Images of the ACC displaying the significant effect of condition, contrasting 
‘attended’ and ‘to-be-ignored’ .  
Key: Green = ‘Attended’ images; Red = ‘To-be-ignored’ images; C = Coronal; S = Sagittal; 
         T = Transverse. 
 

Figure 5.7 shows that there is a difference in activations between ‘attended’ 

(dual > large field) (Figure 5.6) and ‘to-be-ignored’ (dual > small field) 

(Figure 5.5) stimuli in the ACC, with ‘attended’ (dual > large field) (Figure 

5.6) HV animals having the greatest effect size in the RH.  This is 
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demonstrated in Figure 5.8 showing greater activation in the RH with very 

little activation for the ‘to-be-ignored’ (dual > small field) (Figure 5.5) 

condition.   

 ANOVAs confirmed a significant main effect of contrast condition 

(F(1,15) = 12.7; p<0.005), which suggests that the ACC responded differently 

to the stimulus conditions (Figures 5.5 and 5.6).   

 When partitioning the ANOVA matrix, a significant effect of category 

was found in the ‘to-be-ignored’ condition (dual > small field) (F(3,45) = 6.4; 

p<0.005) and a significant interaction between valence x category in the 

‘attended’ condition (dual > large field) (F(3,45) = 5.6; p<0.005).   

 To conclude, these results support previous findings in the masked 

experiment (Chapter 4) in that the ACC is category specific across both 

conditions, but this specificity is dependent upon valence in the ‘attended’ 

condition (dual > large field).  Valence modulation in the ACC has been 

highlighted in previous research (Berthoz et al., 2002, Cunningham et al., 

2004) and visually it is evident that response is greatest for HV animals in the 

‘attended’ condition (dual > large field).   

 

b) Medial Prefrontal Cortex 

 
Figure 5.9  mPFC effect sizes. 
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects  
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
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Figure 5.10 Images of the mPFC displaying the significant effect of valence (HVI>LVI) for 
‘to-be-ignored’ condition. 
Key: Red = HVI; Green = LVI; C = Coronal; S = Sagittal; T = Transverse. 
 

In Figure 5.9 there is a distinction between ‘attended’ (dual > large field) 

(Figure 5.6) and ‘to-be-ignored’ (dual > small field) (Figure 5.5) stimuli with 

positive activations whilst processing HV stimuli in the LH in the ‘attended’ 

condition (dual > large field); with very little activation in the ‘to-be-ignored’ 

condition (dual > small field) with the exception of HV inanimate objects as 

evidenced in Figure 5.10.   

 A significant main effect of condition was found (F(1,15) = 5.2; 

p<0.05 and a significant interaction between condition x category (F(3,45) = 

7.0; p<0.001.  The trend seems similar to that found in ACC, with negative 

contrast values for the dual > small field contrast.   

 Partitioning showed a significant main effect of category in the ‘to-be-

ignored’ condition (dual > small field) (F(3,45) = 4.5; p<0.01).   

 There was no evidence to suggest an effect of valence, thus supporting 

the supposition that valence modulation is not associated with the mPFC as 

evidenced in the masked experiment and relevant literature (Damasio, 1994, 

Lane et al., 1997c, Murphy et al., 2003, Phan et al., 2002).  
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c) Parahippocampal Gyrus 

 
Figure 5.11  Parahippocampal gyrus effect sizes. 
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects 
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
 

 
Figure 5.12  Images of the Parahippocampal gyrus displaying the significant effect of 
condition in the LH, contrasting ‘attended’ and ‘to-be-ignored’.   
Key: Red = Attended; Green = To-be-ignored; C = Coronal; S = Sagittal; T = Transverse. 
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Figure 5.13  Images of the Parahippocampal gyrus displaying the significant effect of valence 
in the LH for ‘attended’ condition. 
Key: Red = LVS; Green = HVS; C = Coronal; S = Sagittal; T = Transverse. 
 

 
Figure 5.14  Images of the Parahippocampal gyrus displaying the significant effect of valence 
in the LH for ‘to-be-ignored’ condition . 
Key: Red = LVS; Green = HVS; C = Coronal; S = Sagittal; T = Transverse. 
 

In Figure 5.11 the obvious pattern in the parahippocampus is a clear indication 

of a valence effect which is the same in both conditions.   

 Again, a variation in response to the ‘attended’ (dual > large field) 

(Figure 5.6) and ‘to-be-ignored’ (dual > small field) (Figure 5.5) conditions 

was found as ANOVA revealed a main effect of condition (F(1,15) = 7.6; 
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p<0.025) (e.g. Figure 5.12, sagittal view).  A main effect of valence (F(1,15) = 

9.4); p<0.01) and valence x category (F(3,45) = 2.9; p<0.05) was also evident.   

 Partitioning the ANOVAs showed that valence was significant across 

both conditions ‘attended’ (dual > large field) (F(1,15) = 10.1; p<0.01) 

(Figure 5.13), and ‘to-be-ignored’ (dual > small field) (F(1,15) = 8.2; p<0.05) 

(Figure 5.14).  In the ‘to-be-ignored’ condition (dual > small field), there was 

a significant interaction between valence and category (Mauchly (W=.289; 

p<.01)), (F(1,15) = 4.8; p<0.05).   

 To summarise, when examining the statistics and graph it is evident 

that the parahippocampus responds to HV stimuli more than LV stimuli in 

both the ‘attended’ (dual > large field) and ‘to-be-ignored’ (dual > small field) 

conditions.  There was some evidence of category specificity in the ‘to-be-

ignored’ condition (dual > small field).   

 

d) Amygdala 

 
Figure 5.15  Amygdala effect sizes. 
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects 
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
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Figure 5.16  Images of the Amygdala displaying the significant effect of valence in the LH . 
Key: Red = LVI; Green = HVI; C = Coronal; S = Sagittal; T = Transverse. 
 

 
Figure 5.17  Images of the Amygdala displaying the significant effect of category in the LH 
for ‘to-be-ignored’ condition . 
Key: Red = Inanimate; Green = Animals; C = Coronal; S = Sagittal; T = Transverse. 
 

In the bar chart (Figure 5.15), there is a very distinctive pattern which 

indicates that the amygdala can apparently respond differentially to stimuli 

according to valence across both ‘attended’ (dual > large field) (Figure 5.6) 

and ‘to-be-ignored’ (dual > small field) (Figure 5.5) conditions.  Greater effect 

sizes are found for LV stimuli in the RH and greater effect sizes for HV 

stimuli in the LH in both conditions.  This pattern concurs with the valence 
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lateralisation hypothesis (Canli et al., 1998, Davidson and Irwin, 1999).  It is 

necessary first to consider whether these differences are statistically 

significant.   

 In part, this observation was supported statistically as ANOVAs 

showed a significant interaction between hemisphere and valence (F(1,15) = 

6.9; p<0.025) (Figure 5.16).   

 Partitioning the ANOVAs revealed a significant main effect of 

category in the ‘to-be-ignored’ condition (dual > small field) (F(3,45) = 6.7; 

p<0.005) (Figure 5.17) and a significant interaction between hemisphere x 

valence (F(1,15) = 8.7; p<0.05).  There were no significant activations in the 

‘attended’ condition (dual > large field).   

 The involvement of the amygdala in rapid processing (LeDoux, 2002, 

Whalen et al., 1998b) is supported with these findings as the only significant 

activations were found in the ‘to-be-ignored’ condition (dual > small field).  

However, there was no main effect of condition.  This will be addressed in the 

general discussion.   

 To summarise, these results support the view that the left and right 

amygdala subserve different functions (Morris et al., 1998b): category effects 

and valence effects are dependent upon hemisphere.  These results bear little 

resemblance to those of the masked experiment.  The validity of comparing 

the two fMRI experimental designs will be discussed in Chapter 6.   
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e) Superior Temporal Gyrus 

 
Figure 5.18  STG effect sizes. 
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects 
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
 

 
Figure 5.19  Images of the STG displaying the significant effect of condition in the LH . 
Key: Red = To-be-ignored HV; Green = Attended HV; C = Coronal; S = Sagittal;  
         T = Transverse. 
 

In the STG Figure 5.18 displays differences in ‘attended’ (dual > large field) 

(Figure 5.6) and ‘to-be-ignored’ (dual > small field) (Figure 5.5), with 

unilateral effect in HV faces and animals in the attended condition (dual > 

large field), and bilateral effect in all LV ‘attended’ (dual > large field) and 

‘to-be-ignored’ (dual > small field).   
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 ANOVAs revealed a significant main effect of condition (F(1,15) = 

10.7; p<0.01); a significant main effect of valence (F(1,15) = 10.3; p<0.01); 

plus a significant interaction between condition x valence (F(1,15) = 33.6; 

p<0.001) (Figure 5.19); and condition x category (F(3,45) = 3.4; p<0.05).   

 In the ‘to-be-ignored’ condition (dual > small field), partitioning 

showed a significant main effect of valence (F(1,15) = 19.7; p<0.0000005), 

and in the ‘attended’ condition (dual > large field) there was a significant 

main effect of category, (Mauchly (W=.389; p<.05)), (F(1,15) = 4.6; p<0.05).  

There was also a significant interaction between valence x category in the 

‘attended’ condition (dual > large field) (F(3,45) = 5.5; p<0.005).   

 As the results indicated in the masked experiment, the role of the STG 

in processing emotional valence is again evident with greater emphasis in the 

‘to-be-ignored’ condition (dual > small field), although the bar chart shows 

consistent positive activations when viewing LV stimuli as opposed to HV 

stimuli in both conditions.  There was also a category effect in the ‘attended’ 

condition (dual > large field).   

 

f) Insula 

 
Figure 5.20  Insula effect sizes. 
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects 
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
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Figure 5.21  Images of the Insula displaying the significant effect of condition when viewing 
LV animals. 
Key: Red = Attended; Green = To-be-ignored; C = Coronal; S = Sagittal; T = Transverse. 
 
In Figure 5.20 the insula shows a valence effect when viewing to-be ignored 

(dual > small field) (Figure 5.5) stimuli, particularly for low valence in the 

RH.  This is also evident in Figure 5.21.  However, this was not supported 

statistically.   

 ANOVAs revealed a significant main effect of condition (F(1,15) = 

17.4; p<0.005) and significant interactions between condition x valence 

(F(1,15) = 7.3; p<0.05) and valence x category (F(3,45) = 2.9; p<o.05.   

 Only an interaction between valence x category remained significant 

in the ‘attended’ condition (dual > large field) (Figure 5.6) after partitioning 

(F(3,45) = 5.2; p<0.005).  ANOVA revealed no significant results in the ‘to-

be-ignored’ condition.   

 The involvement of the insula in processing LV stimuli is well 

documented and these findings support this hypothesis, particularly in the RH 

in the ‘attended’ condition (dual > large field) for certain categories.  These 

results are in accordance with the masked experiment and also confirm the 

lateralisation hypothesis in that the RH responds more to LV stimuli (Canli et 

al., 1998, Davidson and Irwin, 1999).   
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g) Fusiform Gyrus 

 
Figure 5.22  Fusiform gyrus effect sizes.  
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects 
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
 

 
Figure 5.23  Images of the Fusiform gyrus displaying the significant effect of category for the 
‘attended’ condition.  
Key: Red = LVF; Green = LVI; C = Coronal; S = Sagittal; T = Transverse. 
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Figure 5.24  Images of the Fusiform gyrus displaying the significant effect of valence for ‘to-
be-ignored’ condition. 
Key: Red = HVF; Green = LVF; C = Coronal; S = Sagittal; T = Transverse. 
 
Visually, in Figure 5.22, there is a valence and hemisphere interaction, with 

the RH processing LV and the LH processing HV in both experimental 

conditions, although this was not supported statistically.  In Figures 5.23 and 

5.24 differences can be seen in category and valence processing.   

 There were no main effects when examining the ANOVAs, but there 

were significant interactions between hemisphere x category (F(3,45) = 3.4; 

p<0.05)  and valence x category (F(3,45) = 3.3; p<0.05).   

 After partitioning, a significant valence x category interaction was 

found in the ‘to-be-ignored’ condition (F(3,45) = 4.0; p<0.05).   

 In this instance, the valence effect was modulated by effect of category 

in the fusiform gyrus which has been previously documented associating 

fearful faces with the RH (Paradiso et al., 1999, Vuilleumier et al., 2001).  

These results also confirmed category modulation of fusiform gyrus activity, 

although processing faces specifically more than other stimuli was not evident 

in the present study.  An effect of valence has also been found bilaterally in 

the fusiform gyrus when presented with LV stimuli (Paradiso et al., 1999).  

 Evidence presented in the bar chart supports the valence lateralisation 

hypothesis with an obvious valence x hemisphere interaction, but in the 
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ANOVA only a category x hemisphere interaction was evident.  While the 

ANOVA did not reveal a statistically significant valence x hemisphere 

interaction, the plots (Figures 5.25 and 5.26) thereof support the bar chart.   
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Figure 5.25  Fusiform gyrus estimated marginal means comparing valence x hemisphere for 
‘attended’ condition.   
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Figure 5.26  Fusiform gyrus estimated marginal means comparing valence x hemisphere for 
‘to-be-ignored’ condition. 
 

h) Dorsolateral Prefrontal Cortex 

 
Figure 5.27 DLPFC effect sizes. 
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects 
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
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Figure 5.28  Images of the DLPFC displaying the significant bilateral effect of valence for 
‘to-be-ignored’ condition . 
Key: Red = HVS; Green = LVS; C = Coronal; S = Sagittal; T = Transverse. 
 

In the DLPFC, Figure 5.27 shows a difference in valence effect for both 

‘attended’ (dual > large field) (Figure 5.6) and ‘to-be-ignored’ (dual > small 

field) stimuli (Figure 5.5) with bilateral activations for HV stimuli (Figure 

5.28).   

 A significant main effect of condition was found using ANOVA 

(F(1,15) = 6.5; p<0.05) and main effect of valence (F(1,15) = 4.6; p<0.05).  

Plus a significant interaction between condition x category, (Mauchly 

(W=.338; p<.05)), (F(1,15) = 6.1; p<0.05).   

 After partitioning, it was only in the ‘to-be-ignored’ condition (dual > 

small field) that significant effects of valence (F(1,15) = 5.0; p<0.05) and 

category (F(3,45) = 3.0; p<0.05) were found.   

 Statistically, valence effect and category effect were significant, as 

they were in the masked experiment, the difference being that in this 

experiment, significant effects were only found in the ‘to-be-ignored’ (dual > 

small field) condition.  Previous research has argued that the DLPFC is 

modulated by valence (Grimm et al., 2006).   
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i) Orbitofrontal Cortex 

 
Figure 5.29  OFC effect sizes. 
Key: 1 LV animals 2 LV faces 3 LV scenes 4 LV inanimate objects 
 5 HV animals 6 HV faces 7 HV scenes 8 HV inanimate objects 
 

 
Figure 5.30  Images of the OFC displaying the significant effect of condition contrasting HV 
faces in the ‘attended’ and ‘to-be-ignored’ conditions. 
Key: Red = HVF ‘attended’; Green = HVF ‘to-be-ignored’; C = Coronal; S = Sagittal;  
         T = Transverse. 
 

Figure 5.29 shows little disparity in activations for ‘to-be-ignored’ (dual > 

small field) (Figure 5.5) stimuli, but greater activations for the ‘attended’ 

condition (dual > large field) (Figure 5.6).  Figure 5.30 compares ‘attended’ 

(dual > large field) HVF and ‘to-be-ignored’ (dual > small field) HVF.  There 

appears to be an overall difference in valence and category.   
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 A significant main effect of condition (F(1,15) = 4.9; p<0.05) and 

significant interaction between condition x category (F(3,45) = 3.5; p<0.05) 

were evident.   

 There were no significant effects or interactions when partitioning the 

ANOVA matrix.   

 Looking at the bar chart alone, it would appear that there is a 

distinction between categories, dependent on experimental conditions, with 

greater activity evident when processing HV animals and faces, whereas the 

emphasis in the masked experiment was on LV inanimate objects, but this was 

not supported statistically.  There was no evidence, therefore, of valence 

modulation, thus supporting a more general role in emotional processing 

(Drevets and Raichle, 1998, Murphy et al., 2003), which was also found in the 

masked experiment.   
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5:4:4  Summary  

 
ROI Significant 

effects of 
valence or 
category on 
response to to-
be-ignored 
presentations 

Significant 
differences 
between responses 
to to-be-ignored 
and attended 
presentations  

Sig effects of 
valence or 
category on 
response to 
attended 
presentations 

Other significant 
effects before 
partitioning 

ACC Cat** Main eff con**  Att Val x cat** n.s. 
mPFC Cat** Main eff con* 

Con x cat*** 
n.s. n.s. 

Para Val* 
Val x cat* 

Main eff con* Att val** Main eff val** 
Val x cat* 

Amy Cat** 
Hem x val** 

n.s. n.s. Hem x val* 

STG Val**** Main eff con** 
Con x val*** 
Con x cat* 

Att cat* 
Att Val x Cat**  

Main eff val** 

Ins n.s. Main eff con** 
Con x val* 

Att Val x cat** Val x cat* 

Fusi Val x cat* n.s. n.s. Hem x cat* 
Val x cat* 

DLPFC Val* 
Cat* 

Main eff con* 
Con x cat* 

n.s. Main eff val* 

OFC n.s. Main eff con* 
Con x cat* 

n.s. n.s. 

Table 5.4  Summary of results for the dual image experiment  
Key: * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001; n.s. = not significant; eff = effect; 
Val = Valence; Hem = Hemisphere; con = condition; Cat = Category; Att = ‘Attended’ (dual 
> large field); Para = Parahippocampal gyrus; Amy = Amygdala; Ins = Insula; Fusi = 
Fusiform gyrus. 
 
Table 5.4 summarises the results for the dual-image experiment. 
 

5:5  Discussion  

 

The main focus of this experiment was to ascertain if there was a difference in 

activations when processing in the ‘attended’ (dual > large field) condition 

compared with the ‘to-be-ignored’ (dual > small field) condition.  Indeed, a 

main effect of condition was found in the ACC, mPFC, parahippocampus, 

STG, insula, DLPFC and OFC.  To further elucidate, effects will now be 

addressed in terms of valence, category effect and hemispheric asymmetry.   
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 5:5:1  Valence and Category Effects  
 

Valence and category effects in relation to each of the 9 ROIs have been 

discussed at length in chapter 4, and as such, will not be repeated in this 

section.  There are interesting highlights to re-emphasise, however, and will 

now be addressed when summarising the present results in this discussion.    

 Significant effects involving valence for ‘attended’ conditions (H¹) 

were found for ACC, parahippocampus, STG and insula (Table 5.4, column 

4).  In the ‘to-be-ignored’ condition (H²) significant effects for valence were 

found for parahippocampus, amygdala, STG, fusiform gyrus and DLPFC 

(Table 5.4, column 2).  The valence effect was significantly different between 

‘attended’ and ‘to be ignored’ conditions (H³) for STG and insula (Table 5.4, 

column 3).  This means that all areas except mPFC and OFC showed some 

differential response to valence.  A point of interest is that it has been 

consistently shown that the mPFC is not modulated by valence in both the 

current fMRI experiments and previous research, commented upon in section 

4:5:1 (b) (Damasio, 1994, Lane et al., 1997c, Murphy et al., 2003, Phan et al., 

2002).   

 Significant effects involving category were found for the ‘attended’ 

condition (H4) in ACC, STG and insula (Table 5.4, column 4).  There were 

significant effects involving category for ‘to-be-ignored’ stimuli (H5) in ACC, 

mPFC, parahippocampus, amygdala, fusiform gyrus and DLPFC (Table 5.4, 

column 2).  Although there is little evidence that there is a category effect on 

the ACC, the results from both the fMRI experiments in this document do 

suggest that the ACC is modulated by category and is therefore a topic for 

further investigation.   

 The use of dual stimuli has revealed several distinctive qualitative 

differences in the responses of ROIs to differences in stimulus valence and 

category.  The parahippocampal gyrus gave positive activations when the 

‘attended’ part of the dual stimulus was high in valence (dual > large field) 

but also when the ‘to-be-ignored’ part of the dual stimulus was high in 
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valence (dual > small field).  Low valence produced negative activations in 

the two instances.  Valence was also a main effect and significant in the ‘to-

be-ignored’ (dual > small field) condition (Figure 5.5) in the STG (in 

particular for low valence) and DLPFC for high valence.  Stronger activations 

in the STG were also found for low valence stimuli in the masked experiment 

in the present study and this finding is consistent with the work of Britton et al 

(2006) reported in chapter 4 (Britton et al., 2006b).   

 Equally, in the ‘to-be-ignored’ (dual > small field) condition (Figure 

5.5) there was a valence and category interaction in the parahippocampus and 

fusiform gyrus.  Both these ROIs are said to be category specific, but evidence 

here suggests that category activations are modulated by valence.  One of the 

predictions for this chapter was that there was a difference in HV and LV for 

‘to-be-ignored’ (dual > small field) stimuli (H²).  This was partly confirmed 

when valence effect was category dependent.  In the ‘attended’ (dual > large 

field) condition (Figure 5.6), a valence and category interaction was also 

found in the fusiform gyrus, ACC, STG and insula.  Again, although I found 

no evidence of category x valence interation in the STG when reviewing 

previous studies, the two current fMRI experiments in this study found 

significant evidence of this and is therefore worth revisiting in future work.  

 An interesting question arises when interpreting these results.  Why 

should some ROIs show valence effects only in one condition whereas others 

show valence effects in both conditions?  This will be addressed in the general 

discussion.   

 

 5:5:2  Hemisphere Specificity 

 

Significant hemispheric differences were found only in fusiform gyrus and 

amygdala (H6).   

 A significant interaction was found between hemisphere and category 

in the fusiform gyrus, indicating that the different hemispheres are modulated 

by category membership.  Category specificity particularly in the RH has been 
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previously reported (Rees et al., 2000).  Although the graphs indicated an 

interaction between hemisphere and valence, statistically this was not 

substantiated with ANOVAs.   

 In the ‘to-be-ignored’ (dual > small field) condition (Figure 5.5) an 

interaction between hemisphere and valence was found in the amygdala.  

Visual evidence in the graph indicated that the RH was dominant when 

processing LV stimuli and the LH dominant when processing HV stimuli, 

which means that in this instance hemispheric specialisation was modulated 

by valence in the amygdala.  Several authors have discussed the asymmetry of 

amygdala functions.  Some support the traditional model of lateralisation of 

emotion hypothesis (Adolphs et al., 2001, Canli et al., 1998), others have 

suggested that amygdala lateralisation involves the RH in memory modulation 

of emotion (Kilpatrick and Cahill, 2003) whilst others claim that the LH 

shows greater activations for conscious awareness of target and the RH 

greater for unconscious awareness of stimuli (Morris et al., 1998b).  The 

present results are quite clear in their support of the valence lateralisation 

hypothesis in relation to the amygdala.   

 Statistical and visual evidence of effect sizes in the graphs indicate 

evidence of RHD in the fusiform gyrus and insula when processing negative 

emotional content.  Previous research has indicated RHD in the fusiform 

gyrus when processing fearful facial expressions (Sprengelmeyer et al., 1998) 

along with other supporters of the preferential role of the RH (Adolphs et al., 

1996, Adolphs et al., 2001, Kimura et al., 2004, Smith and Bulman-Fleming, 

2004), however a meta-analysis by Murphy et al. (2003) found no evidence of 

RHD for emotional processing.  Looking at 106 studies using PET and fMRI, 

Murphy and colleagues (2003) reported greater LH activations for appetitive 

stimuli, but symmetrical activations for withdrawal stimuli (Murphy et al., 

2003).  However, their research encompassed studies using a wide variety of 

stimuli in the five sensory modalities and, as such, it is difficult to assess the 

validity of the comparisons.  For instance, RH dominance may be specific to 

certain stimuli and/or particular modality(ies) (Calvo and Nummenmaa, 
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2007).  The present results confirm H³ for some of the ROIs with a clear 

indication of hemispheric specificity dependent upon valence.   

 

 5:5:3  General Discussion 

 

A significant main effect of condition in seven out of nine ROIs demonstrates 

a difference in activations between the ‘to-be-ignored’ and ‘attended’ 

conditions.  Equally, the valence effects (Section 5:5:1) and hemispheric 

differences (Section 5:5:2) are highly noteworthy, and of particular interest is 

why some ROIs reveal valence and hemispheric differences in both or one 

condition, whereas others do not.  Why should the ROIs respond so 

differently in terms of valence to the presentation conditions?   

 An obvious answer is that these results do suggest that the foveal and 

peripheral images were processed differently by the majority of ROIs, but 

what does this actually mean?   

 The first point to make is that the large-field stimulus when presented 

on its own as a control condition, was just as ‘attended’ as the small-field 

stimulus.  Therefore, when subtracting a control condition from the combined 

condition, the ‘attended’ contrast is actually measuring the difference between 

the large-field homogeneous ‘attended’ stimuli with the combined, centrally 

‘attended’ small-field stimuli i.e. the difference between homogenous and 

combined stimuli, irrespective of attention.  After subtraction two types of 

‘residue’ remained.  One was labelled ‘to-be-ignored’ and the other 

‘attended’.   

 Regardless of the chosen label, highly distinct patterns were evident in 

some of the ROIs when looking at bar charts in the results section.  The most 

interesting to note are those where, regardless of orientation of target valence 

(e.g. HV ‘attended’ or LV ‘attended’), the same valence still modulates certain 

ROIs.  In both the ‘attended’ and ‘to-be-ignored’ conditions, valence 

modulation was found in the amygdala (Figure 5.15) and fusiform gyrus 

(Figure 5.22) – the RH was activated for LV and the LH activated for HV; 
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parahippocampus (Figure 5.11) – bilateral activations were evident for HV but 

no significant activation for LV; STG (Figure 5.18) – bilateral activations for 

LV; and DLPFC (Figure 5.27) – bilateral activations for HV.  Therefore, the 

effect of valence was strongly evident after taking into account the difference 

between the homogeneous and combined stimuli, regardless of which 

condition was subtracted.   

 To discuss this further, attentional modulation will now be addressed.  

It is hypothesised that ‘to-be-ignored’ images (dual > small field), may be 

actively inhibited.  However, the 1s stimulus duration period meant that the 

participants had time to fixate on both the ‘attended’ (dual > large field) 

(Figure 5.6) and ‘to-be-ignored’ (dual > small field) (Figure 5.5) stimuli.  

After all, a normal fixation pause is 250ms (Liversedge and Findlay, 2000, 

Reddy et al., 2004), a saccadic eye movement 30-70ms (Koch, 2004) and 

spatial cuing studies have shown that spatial attentional shifts can happen 

even without saccades (Posner, 1980).  By the same token, automatic saccades 

can happen regardless of the efforts of the participants to focus solely on the 

‘attended’ (dual > large field) (Figure 5.6) presentations.  This was 

demonstrated in a study by Calvo and Lange (2004), presenting one emotional 

stimulus and one neutral stimulus at the same time in the periphery.  Part of 

Calvo and Lange’s experiment was to instruct the participants to look only at 

the neutral stimulus.  As processing is biased towards emotional stimuli 

(Calvo and Lang, 2004), not only was the emotional stimulus fixated upon 

first, but it has been found that it takes participants 460 - 490ms to comply 

with instructions and take control over fixation (Nummenmaa et al., 2006).  

Of course, the current study presented two emotional stimuli at the same time, 

so emotional versus neutral competition was not an issue, however it follows 

that late selective orienting would have at least ensured fixation foveally as 

instructed.   

 One of the goals of this experimental design was to tax attentional load 

with a categorisation task in order to suppress the processing of ‘to-be-

ignored’ peripheral stimuli.  Requesting specific semantic information (i.e. 
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pleasant or unpleasant) would have required overt attention to the foveal 

component of the dual image.  It is probable, therefore, that 1s presentation 

time may have still led to degraded processing in the periphery, that was 

limited to coarse or gist information.  It is argued that the amygdala processes 

gist information fast and globally (LeDoux, 1998, Zald, 2003).  In the present 

study, the only significant activations in the amygdala were found for the ‘to-

be-ignored’ (dual > small field) (Figure 5.5) condition, suggesting that coarse 

processing did occur in the periphery, although as already highlighted, the 

effect sizes showed strong patterns of activation for both conditions.   

 Supporting evidence comes from studies of change blindness and 

inattentional blindness which have highlighted gist perception or processing 

global information of an image without being aware of the detail.  It is 

concluded that focal attention is not a requirement for gist perception and 

coarse information, such as category or spatial structure, can be processed 

without awareness (Mack and Rock, 1998, Rousselet et al., 2005).  As 

emotion-laden stimuli are also said to be processed automatically 

(Vuilleumier et al., 2001), it is quite probable that the recovery of the gist of 

the peripheral part of the dual image is sufficient to allow the affective content 

to have been processed.   

 There is a large body of evidence that demonstrates our ability to be 

aware of visual stimuli outside focal attention.  For instance, Braun has 

conducted many dual-task experiments demonstrating the effectiveness of 

salient distractors in the periphery, even when performing demanding tasks at 

fixation (Braun, 1994, Braun and Sagi, 1990).  According to Braun, if a 

stimuli is salient enough and attention is focussed on fixation, some attention 

may still be involuntarily allocated by the simple act of presenting a stimulus 

in the peripheral visual field, thus ‘capturing’ attention (Braun, 2003).    

Traditionally, this research is based on artificial stimuli such as the letters T 

and L.  However, more recent experiments using natural images have 

demonstrated that focal attention is needed even less than previously thought 

(Li et al., 2002, Li et al., 2005, Rousselet et al., 2002).  The possibilities of 
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peripheral processing have been discussed, but it is not possible to accurately 

assess by what degree the peripheral information modulated the ROIs.  That 

said, there are, three relevant outcomes from these results:   

a) There was strong evidence of significant activations that differed 

in response to ‘attended’ (dual > large field) (Figure 5.6) and ‘to-

be-ignored’ (dual > small field) (Figure 5.5) contrasts.  These 

differences were supported statistically in the ACC, mPFC, 

parahippocampus, STG, insula, DLPFC and OFC (main effect of 

condition Table 5.4, column 3).   

b) The bar charts of effect sizes demonstrate strong patterns of 

valence modulation regardless of experimental condition, which 

supports the premise that the processing of affect is extremely 

robust, the most obvious being the parahippocampus, amygdala, 

STG, fusiform gyrus and DLPFC.   

c) ANOVAs showed significant differences in experimental 

conditions for valence in the STG and insula.   

 

5:6  Conclusion 

 

In order to modulate conscious registration of the target stimuli presented in 

the fovea and periphery, a selective attention paradigm was employed (Mack 

and Rock, 1998).  Significant results were obtained supporting the efficacy of 

the ‘attended’ (dual > large field) and ‘to-be-ignored’ (dual > small field) 

contrasts in isolating differential effects of conscious registration of emotional 

stimuli as well as patterns of effect sizes reflecting the automatic nature of 

affective processing.   

 To attempt a coherent overall perspective of these findings, Chapter 6 

will draw together the results of all three experiments in context of the 

rewards and challenges of employing complex everyday visual stimuli.   
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Chapter 6  General Discussion 

 

6:1  Overview and Summary 

 

The behavioural experiment in Chapter 3 determined that the valence of certain 

natural images can be perceived below the level of conscious awareness, 

concordantly with valence ratings.  Using forced-choice discrimination tasks for 

detection of the target and discrimination of its valence, together with ratings of 

the confidence in detection and confidence in valence impression, levels of 

consciously perceived valence response were indexed.  Valence discrimination 

frequencies were compensated for response bias, which was assessed by the 

valence response to control stimuli (neutral masks only, target absent).  It was 

demonstrated that a large proportion of IAPS stimuli can be successfully 

discriminated for affect even whilst the presence of those images is undetected.  

However, six anomalous stimuli (giving significant discrimination in the opposite 

direction to that predicted by the IAPS valence rating) were identified and possible 

explanations were offered for these exceptions.     

 The stimuli were then grouped by category membership to investigate the 

neural correlates of affect in natural images presented below or close to the 

threshold of conscious awareness.  It was clear that valence discrimination in brief, 

masked stimuli was not limited to stimuli of a certain category (i.e. faces) but 

could occur with animals, scenes and inanimate objects as well.  An fMRI 

experiment was conducted in order to identify differential responses to stimulus 

valence in brief exposures and natural images.  To increase the reliability of the 

stimulus set as a measure of key variables (valence and category), a second set of 

images was chosen to present under normal viewing conditions in addition to the 

original stimulus set.  The second set of images was matched with the first set in 

valence and category, providing a basis for replication of fMRI results.  Both the 

normally-viewed sets of stimuli revealed very similar activations.  This therefore 

provided a standard for the assessment of valence and category effects.   
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 The critical finding in this experiment was that if a given experimental 

factor (such as valence, category or cerebral hemisphere) yielded significant 

differences in activations of a ROI in the brief, masked condition, they were also 

significant in the normal viewing conditions.  In the normal viewing condition 

only, different categories produced significantly different activations in the 

parahippocampus and fusiform gyrus, which supports the importance of these two 

regions for previously reported category specificity (Epstein and Kanwisher, 1998, 

Epstein et al., 1999, O'Craven and Kanwisher, 2000, Schultz et al., 2003).  High 

and low valence produced significantly different activations in the STG (Ochsner 

et al., 2004a, Ochsner et al., 2004b).  

 On the basis that processing of brief, masked stimuli only took place when 

the same stimuli were processed under normal viewing, it was argued that there 

was no qualitative difference in conscious and unconscious processing.  This is 

validation of a threshold-based account of unconscious processing and signifies a 

one-way dissociation between conscious and unconscious processing.  This tenet 

is derived from the assumption that if unconscious processing is sensitive to the 

same information as that which is consciously processed, perception without 

awareness is indicated.  By the same token, if unconscious processing takes place 

without conscious processing of the same stimuli, this would imply insensitivity to 

the stimuli at above the level of conscious awareness (Reingold, 1992, Reingold 

and Merikle, 1990), but this was not the case.   

 In order to distinguish between neural responses to conscious events under 

instruction to-be-ignored the dual image experiment was carried out.  Using the 

same stimuli, the difference in activations in ROIs comparing affective ‘attended’ 

(dual > large field) processing and ‘to-be-ignored’ stimuli (dual > small field) 

were examined.  Even though there were differences in attentional demands 

between the masked experiment and the dual image experiment, some of the key 

results were the same and are supported by previous research.  These were the 

significant main effects of valence and categories in the STG , ACC (Berthoz et 

al., 2002, Killgore and Yurgelun-Todd, 2004) and DLPFC (Grimm et al., 2006).   
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 One possible unifying proposal that would tie together the findings of the 

three experimental chapters of this thesis is the concept of a tripartite taxonomy.  

Dehaene and colleagues (2006) argue a distinction between subliminal, 

preconscious and conscious processing.  They hypothesise that early, bottom-up 

activation is necessary, but not adequate enough for conscious processing.  Top-

down amplification is also required (e.g. prefrontal, parietal cortices), to achieve 

conscious access.  However, these joint processes may still not be sufficient for 

conscious processing, as highlighted in studies investigating inattentional 

blindness.  Subliminal processing is defined as weak activation that dies out before 

achieving activation in a global neuronal network (bottom-up), whilst 

preconscious processing is described as activation being accessible, but not 

accessed (i.e. not consciously reported as stimuli are not seen due to inattention) 

due to insufficient or interrupted top-down attentional amplification (Dehaene et 

al., 2006).  Therefore, the differences in the (dual > large field) and (dual > small 

field) conditions in the dual-image experiment could possibly be explained in 

terms of preconscious (having the potential to be consciously reported, but not 

consciously accessed due to top-down attention being temporarily diverted) and 

conscious processing, whereas the differences in the behavioural study and the 

masked fMRI study could be explained in terms of a continuum (not a single, 

abrupt discontinuity) between subliminal and conscious processing. Thus, visual 

processing becomes more conscious with increasing viewing time, because a 

stronger feedback signal propagates through more synapses. Also, persisting 

neural activity at all stages of the visual pathway signals continuity (and therefore 

importance, compared to fleeting impressions and background noise) of the new 

stimulus. For the eye-movement control system, early fixations of a novel stimulus 

are necessarily driven by bottom up salience: the second and subsequent fixations 

can be influenced by information gathered and analysed from the first fixation, 

thus feedback and top-down influences strengthen the conscious percept.  

 The tripartite model concurs with the view that conscious perception 

cannot materialise without attention.  Others also argue that some attention 

resources are needed for processing natural images and are, therefore, not 
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processed as automatically as recently reported.  For instance, the ultra-rapid 

categorisation (URC) experiments previously referred to in this thesis (e.g. Li et 

al., 2002, Thorpe et al., 2001b, VanRullen and Thorpe, 2001a) have been criticised 

by Walker et al. (2008) as not taxing enough, in terms of simplicity of task and 

simple saliency of stimuli, to truly test for attention dependency.  Even though a 

URC experiment simultaneously presented four scenes, and demonstrated capacity 

limitations for multiple categorisation (Rousselet et al., 2004c), criticism for lack 

of clarity regarding the results strengthened the resolve of Walker and colleagues 

(2008) to challenge the claims of ultra-rapid processing of complex images.  Using 

a categorisation task of four objects within a scene in a dual-task paradigm, it was 

found that even at presentations of 500ms, only relatively primary visual 

properties can be processed under such conditions.  These findings support 

conventional visual studies in that some attentional resources are needed for the 

processing of both traditional and natural images and as such Walker et al’s 

criticisms can be applied to all claims for non-attentive processing (Walker et al., 

2008).     

 It has been discussed that even in the amygdala, attention resources are still 

needed to process affective faces compared to nonfaces, although Pessoa et al. 

(2002b) did acknowledge that humans can respond to aversive stimuli outside 

focal attention (Pessoa et al., 2002b).  Others, on the other hand, have 

demonstrated automatic processing of emotion both involuntarily and without 

attention, where activity in the amygdala depended upon valence rather than 

selective attention (Öhman, 2002, Vuilleumier et al., 2001).   

 In order to reconcile these opposing views, we can argue that voluntary 

attention is not necessary for a stimulus to have an effect on the brain, through 

feedforward mechanisms. It could be argued that there is never a complete absence 

of attention in masking experiments; the observer must be looking in the general 

direction of the stimulus in order to get a retinal image. A conscious impression 

seems to require both a certain stimulus strength (so that the stimulus can be 

distinguished from noise) and a certain amount or resource level of attention.  
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 The issue of stimulus strength is thus important to the discussion. 

Detectability of a visual stimulus is one measure of strength, and presumably 

depends on low level visual properties (spatial and temporal luminance contrast, 

etc.).  However, there is another measure of stimulus strength that was used in the 

present study, and that is IAPS arousal rating, which in this instance estimates the 

strength of an emotional stimulus as defined in the circumplex model.  Arousal can 

indicate importance and, as such, guide attention in addition to the influence of 

valence (Barrett et al., 2005).  It is hypothesised that in the real world, unpleasant 

influences prompt relevant motor responses for protection and survival.  If an 

aversive event is not arousing enough, the effect is minimised.  Correspondingly, 

low arousal appetitive stimuli can induce pleasure, such as a meadow (Bradley and 

Lang, 1999).  Thus the effect of arousal may not be equivalent for high and low 

valence stimuli. To equate valence ratings with aversive pictures of both low and 

high arousal is unrealistic in the natural world (Bradley and Lang, 1999).  In the 

present study, this problem (which may indicate a failing of the circumplex model) 

was avoided by using stimuli with moderately high arousal ratings.  

 Having provided operational definitions, it is possible to ask how 

conscious and unconscious processing differs.  Are there qualitative differences?  

It has been established that this may be the case in the two fMRI experiments, but 

no overall valence bias appeared in the MRI data that seemed to explain the 

pleasantness bias observed in the behavioural study.   

 In the IAPS series, variations in physical properties such as spatial 

frequency in terms of size and luminance have been highlighted as a potential 

problem.  A recent study examining the whole IAPS series, found that differences 

in the energy of spatial frequencies was not of particular significance; however, 

when inspecting physical properties of selected subsets potential confounds were 

evident (Delplanque et al., 2007).  This is of a particular concern for studies 

investigating emotional processing for it is hypothesised that the parvocellular 

pathway conveys high spatial frequency information to the visual cortices with 

slow responses and the magnocellular pathway transmits coarse low spatial 

frequency information rapidly to the subcortical areas such as the amygdala 



 
 

 202

(Vuilleumier et al., 2003b).  However, the magno/parvocellular interaction (see 

Section 1:5) has recently been attacked partly because the grating contrast-

sensitivity measurements are too narrow for the range of overlapping stimuli that 

activate both these pathways.  Skottun and Skoyles (2006) have argued that magno 

and parvocellular pathways are not as dichotomous as previously suggested 

because there is a large overlap in spatiotemporal properties.  Therefore, the 

difference between the information the amygdala receives and that of the fusiform 

gyrus for instance, is probably more of a graded difference.  Hence, discussions 

about the functions of these pathways are inconclusive (Skottun and Skoyles, 

2006).   

 Despite possible spatial frequency effects on detection and discrimination, 

ANOVA (Section 3:5:6) did confirm that high and low valence stimuli for the 

chosen categories in the present study were matched for detectability, and as such, 

valence and category were not confounds with detectability.  Equally, in the 

masked fMRI experiment (Chapter 4) a replication of the normal viewing 

condition with different slides was included and differences in valence effects 

were negligible.   

 It is very difficult to control for local properties systematically using 

natural images.  A huge majority of previous studies examining affect in fast 

detection and discrimination paradigms have used highly homogeneous stimuli 

often centrally presented and of the same size.  This makes it difficult to compare 

those results with the results from real life images used in this thesis (Rousselet et 

al., 2004b).  However, even when considering these difficulties, some of the 

results presented here support previous findings.   

 The effect of apparent size on salience of images has been explained in 

terms of an evolutionary benefit, in that retinal size may determine relevance for 

survival and correlate with distance of the point of interest (Codispoti et al., 

2006a).  Equally, as an object moves further away, fine details in terms of high 

spatial frequency are progressively lost (Loftus and Harley, 2005).  Based on this 

fact, it was hypothesised that ERP correlates of early stages of perceptual analysis 

would be modulated by size, in contrast with the LPP which is a long-latency ERP 
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implicated in recognition processes.  Indeed it was found that physical properties 

such as size did modulate early ERP components, whereas the LPP was not 

modulated by physical properties.  These results led to the hypothesis that at the 

LPP stage, stimulus interpretation has been achieved regardless of size (Codispoti 

et al., 2006a).   Top-down influences are evident in visual tasks where the difficulty 

of the task requires the integration of visual information over time.  

 The evidence presented here, however, demonstrates that modulation of the 

neural response to IAPS stimuli by brief, masked presentation (Chapter 4) or by a 

dual stimulus paradigm (Chapter 5) does not eliminate valence or category specific 

responses.  On the other hand, the magnitude of these responses may be altered.  In 

Chapter 4, any modulation of neural activity in the masked condition is most likely 

due to bottom-up processes, since there is a drastic reduction in the spatiotemporal 

energy in the stimulus due to brief, masked presentation.  The preservation of 

responses suggests that higher levels in the processing hierarchy (represented by 

the ROIs) must be receiving some information from the stimulus and may to some 

extent be compensating for the impoverished input.  These findings support the 

work of Codispoti et al explained above (Codispoti et al., 2006a).  Likewise, in the 

behavioural experiment (Chapter 3), discrimination of valence was achieved in the 

absence of detection, thus suggesting a degree of automatic, unconscious 

processing of affect.  Contrariwise, in Chapter 5, differences in response to the ‘to-

be-ignored’ and the ‘attended’ contrast are likely to be due to top-down 

modulation of activities by attention circuits.   

 In summary, together the present results indicate that affective natural 

images of a wide range of categories are effective tools in measuring valence using 

behavioural and fMRI designs.  

  

6:2  Conclusions 

 

The following conclusions can be drawn: 
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1) Do people give consistent valence responses to complex stimuli?  Clearly 

they do because IAPS has been rated.  What is the minimum visual 

information they need in order to do this? Very little – below the detection 

threshold in some cases. 

2) If people can do this, then their brain must be able to register differences in 

valence even when we provide only these minimal, brief, masked 

presentations.  fMRI shows us that the responses are very small for brief, 

masked exposures.  Nevertheless, in certain ROIs there were significant 

main effects of valence or interactions including valence for the masked 

stimuli. 

3) Brief, masked exposures are one way of limiting visual information pickup.  

Another method is to direct attention away from stimuli.  Using dual 

pictures, valence-specific effects were found in an fMRI experiment.  In 

some ROIs, the valence effect was modulated by whether the stimulus was 

‘attended’ or ‘to-be-ignored’. 

4) In all these experiments, there were strong effects of ‘category’.  However, 

‘category’ is an a priori way of classifying the stimuli.  Variation within 

category may be as large as variation between categories because of 

variation in image properties between members of a category, so it is 

unwise to conclude that a significant effect of ‘category’ within an ROI 

indicates that the ROI is category-specific. 

5) It has been suggested that faces are special stimuli.  We might therefore 

expect that if subliminal effects or effects of to-be-ignored stimuli occur, it 

will be for faces.  The results suggest otherwise.  In fact, in some cases the 

valence responses are stronger for other categories of stimuli. 

6) Valence specific effects were found to be widespread across the nine ROIs 

sampled, suggesting that the analysis of emotional valence is carried out by 

a large cortical and subcortical network.  

7) There was some evidence of hemisphere modulation which supported 

previous findings. 
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Even taking into account the methodological differences between the studies in 

this thesis, these results demonstrate a marked consistency of ROI activation near 

or below conscious awareness when presented with many of the images.   

 It is evident that several regions respond to affect, categories and 

experimental conditions.  Other regions are activated for one or two of these 

factors.  Further investigation is needed to expand, validate and explore these 

results using natural everyday images.  The principle contribution of this thesis is 

to demonstrate new evidence that it is possible to employ a wide range of natural 

images to study affect close to the threshold of conscious perception using fMRI. 

  

6:3  Limitations 

 

A criticism of the behavioural experiment and response bias is that the control 

condition consisted of neutral stimuli and it can be argued that a forced choice of 

pleasant or unpleasant did not allow for accuracy, as a picture of an iron, cup or 

plate etc were not at all unpleasant, and as such would have been scored as 

pleasant.  This effect, however, was negated with the neuroimaging studies.  On 

the other hand, the neutral images could be described as boring, which is negative 

valence with low arousal (Posner et al., 2005).  Potentially, this may have distorted 

the fMRI results using the subtraction method.   

 Equally, the behavioural experiment was displayed on either a laptop or 

projector screen.  This introduces an inconsistency in the sizes that the images 

were viewed. 

 As stated in section 2:1:2 although the presentations of the images were 

10ms in the masked experiments, the technical demands of the equipment used 

meant that the actual display time may have been as long as 16.6ms.  However, 

16.6ms is still considered to be near or below conscious awareness and as such 

fulfilled the experimental objectives.   

 Another concern over design was in the dual-image experiment.  The 

small-field image was superimposed on the large-field image and as such would 

sometimes mask out a proportion of relevant information in the large-field image.  
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When displaying the large-field control image, a better design may have been to 

‘blank out’ the area that the small-field image masked in the combined condition.  

Thus the to-be-ignored image and the large-field control image would have 

supplied the same comparative information.  Although this may be considered to 

be a flaw in the design of this experiment, it should be noted that some of the 

results were highly significant, but what was actually measured is a subject of 

debate.  Therefore, this experiment asked more questions than it answered and will 

be pursued to peer review publication.  

 Another note to be made is that when participants became aware of the 

nature and design of an experiment, deliberate and strategic responses may have 

contaminated the results.  Although it has been argued that expectation can 

facilitate fixation  (Holm et al., 2008). 

 One of the criticisms of fMRI is that it is not a direct measure of 

physiological correlates of rapid synaptic and spiking events, but a secondary 

measure of blood flow and blood oxygenation correlating with local changes in 

neural activity which has a slower time course (see section 1:7:4).    Equally, an 

fMRI signal is a fractional measure of local neuronal activity that has been 

averaged over time and space, which is also a limiting factor. These two 

limitations are acknowledged here, but using fMRI is still a tenable, objective tool 

to approximate what is going on in regions of the brain.  In addition, fMRI takes 

static images of the brain, which does not facilitate investigations into neuronal 

networks or distribution of the workings of the brain.  This, however, was not an 

issue in the present experiments as these were ROI analyses.  

 

6:4  Related Ideas and Future Research 

 

Finally, this last section projects ideas for future research and gives consideration 

to two related theories. 

 The cognitive neuroscientific approach is to empirically examine the 

function of brain regions and the interaction of neural networks and how they give 

rise to psychological functioning.  The use of methodological reductionism allows 
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for bite sized questions and answers to build foundations for the bigger questions 

and the biggest question of all is, of course, how the mind and body relate.  

Therefore, to gain a broader perspective of the neuronal and behavioural data 

presented in this thesis, we will now consider two recent developments in 

functionalism: homuncular functionalism and teleological functionalism.   

 Traditionally known as a ‘little man in the head’, the fallacy of the 

homunculus is an illusion of the conscious self in the mind that observes and 

initiates all operations (Solms and Turnbull, 2002).  The idea of the “mind” as the 

perceiving, thinking and feeling entity inside a person, was dismissed by Ryle 

(1949) as a redundant metaphor that simply transfers tasks to a smaller self, which 

in turn moves to another even smaller self inside the initial observer ad infinitum.  

This infinite regression, he argued, proves that the Cartesian idea of mind as a 

thinking entity is illogical as it does not explain anything (Ryle, 1949).   

 The idea, however, that the brain contains anatomical modules 

interconnected to form functional systems, each with a particular cognitive or 

behavioural function, is deeply embedded in neuropsychological thinking. This 

‘homuncular functionalism’ (Attneave, 1961, Dennett, 1978, Lycan, 1981) with 

many little semi-knowledgeable homunculi which are both autonomous and 

interact as an organised group create a whole system giving rise to sophisticated 

emergent properties.  The little homunculi can be broken down into smaller and 

smaller subunits until each component is responsible for the simplest task.  This 

hierarchy becomes less intelligent at lower and lower levels in terms of function 

and physical composition; until it is possible to explain how subjective mental 

properties (subunits) can be transmitted via material action potentials, thus 

explaining how the mind and body relate without becoming trapped in an infinite 

regress (Rose, 2006).   

 This model not only facilitates the study of one subunit at a time, but also 

accommodates research into multiple levels of brain function further up the 

hierarchy (e.g. perception of valence and the amygdala, perception of valence and 

the limbic system, perception of valence and the PFC).  Homuncular functionalism 

is therefore an ideal model to discuss cerebral mechanisms (Rose, 2006).   
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 Of course there are criticisms of homuncular functionalism. It does not 

explain qualia, for instance, and it also assumes a rather neat hierarchy with each 

module defined in terms of function, but this top-down method, runs counter to 

scientific enquiry as traditionally understood, where often a system is investigated 

which generates hypotheses as to the functions of those systems (bottom-up).  

Equally, modules may be flexible and serve different functions; therefore 

attributing functional specificity is not possible (Rose, 2006).  In fact, a problem 

with homuncular functionalism is that homunculi are identified as components of 

neuroanatomical structures, independent of functional deliberation, which is not 

ideal from a neuroscientific point of view (Mundale and Bechtel, 1996).  It is also 

argued that the number of modules is limited and does not account for the infinite 

capacity of the mind (Fodor, 2000).  The difficulty in accepting homuncular 

functionalism as a complete account of conscious experience is that it does not 

answer the “why” question. What is this intricate hierarchy for? What is it about 

the system that makes its owner conscious, and why does he/she need to be 

conscious? Nor does it altogether answer the “how” question. How does the 

system generate conscious experience? Is the degree of consciousness a correlate 

of the internal connectivity state of the system (which could perhaps be defined 

mathematically), thus of any hypothetical system that has this kind of 

connectivity? Is it correct to think of consciousness as somehow residing in the 

system, or does it reside in the relationship or connectivity between the system and 

the world? 

  For the purposes of this thesis, although there are unsolved problems with 

the theory of homuncular functionalism, it is still a useful analogy to understand 

multilevel systems in the brain and how they relate to mental states.  In fact, it has 

been suggested that this potent metaphor may turn out to be an indication in how 

the brain is organised in general (Crick and Koch, 2004).   

 Both homuncular and teleological functionalism are compatible in terms of 

multi-level functions and modularity.  The difference between the two theories is 

that teleological functionalism postulates phenomenal experience as the same as 

biological functions.  Just as the biological function of the heart is to pump blood 
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and thus subserve the whole body, the biological function of the brain is to 

“subserve consciousness, or just to be conscious” (Rose, 2006, p 123).  This tenet 

eliminates the brain/mind distinction and provides a very good template to explain 

its origins and purposes.  As such, it provides an answer to a shortfall in 

homuncular functionalism in that brain mapping is bound in functional 

considerations and is therefore teleological (Mundale and Bechtel, 1996), which 

goes some way to explain how and why conscious experience has evolved.  It 

makes the reasonable assumption that consciousness must have a biological 

function.  

 Following evolutionary principles, a functional role or goal is adaptive to 

the environment for survival of the organism.  Historically, human evolution has 

undergone constant, if random, fluctuations in genetic recombinations.  Hence, 

systems can be inefficient due to forced premature abandoned development or 

rendered redundant (Millikan, 1993). Thus the visual system has been shaped by 

mutation and natural selection.  Accordingly, we should not be surprised that our 

visual systems are subject to visual illusions, since illusions are representative of 

individual visual mechanisms that have been adapted and ‘usually work’.  To take 

an example from the present study, when the input signal is weak in a masked 

presentation, we might expect the visual system to use context and expectancies to 

generate a plausible percept, leading to the misrepresentation of some of the IAPS 

stimuli (e.g. the negative image of flies on pie interpreted as positive valence 

because it looked like currants on a pie).  

 Both theories are useful for the neuroscientist.  Lots of little homunculi in a 

hierarchical modulatory series of increasingly more stupid levels the lower down 

the hierarchy one goes, which also generates new emergent properties as a whole, 

is a useful analogy in the pursuit of understanding the mechanisms of the brain.  

Teleological functionalism accommodates a frame of reference to integrate 

neuroscience, psychology and evolutionary biology, thus bringing into account the 

origins and purposes of cerebral mechanisms. 

 It is beyond the scope of this thesis to further elucidate on these two 

functionalist theories, but this does highlight the valuable relationship between 
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cognitive neuroscience and philosophy of mind.  These two disciplines are 

traditionally juxtaposed, but to integrate their ideas can be extremely beneficial 

and inspiring for future research.  

 In the present study a category effect on the ACC was evident in both the 

fMRI experiments.  Equally, a category x valence interaction was found in the 

STG, again in both exeriments.  Neither of these findings are supported in the 

literature, but as they are evident in two different fMRI paradigms, it warrants 

further investigation in future research.     

 Future studies should also further investigate natural images by using finer 

grain analysis such as a multi-modal neuroimaging technique where EEG and 

fMRI data are recorded simultaneously.  The advantages of the high spatial 

resolution of fMRI and the added benefits of the high temporal resolution of EEG 

are an excellent combination for studies investigating brain responses to rapidly 

presented natural images.  This simultaneous data acquisition enables a more 

comprehensive examination of when and where appetitive and defensive systems 

modulate cortical activity.   

 For greater ecological validity, future work could investigate cross 

modalities such as auditory stimuli corresponding with natural visual images, as 

we normally use more than one source of sensory input to evaluate perception of 

valence in our natural environment.  Multimodal perception is achieved 

simultaneously to external events.  Take for instance the image of fireworks used 

in this experiment.  Here we investigated only visual perception, but under normal 

circumstances, we would be exposed not only to the visual stimulation from light, 

but also olfactory stimulation from the smell of gunpowder and auditory 

stimulation from the whistling and repeated explosive sounds.  Research is already 

expanding in crossmodal integration by investigating several modalities and 

correlating neural mechanisms both in conscious and non-conscious processing 

(e.g. de Gelder and Bertelson, 2003).   
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6:5  Abstract Publication and Presentations Arising from this Thesis 

 
 6:5:1  Abstract Publication 
 
Shaw, L. J., Wright, M. J. and O’Brien J. (2006) Unconscious processing of high 
and low valence visual stimuli: an fMRI analysis.  Toward a Science of 
Consciousness VII, Tucson.  Journal of Consciousness Studies: Consciousness 
Research Abstracts 102 (2006). 
 
 6:5:2  Oral Presentations 
 
Presented at the First Annual Psychology Conference Brunel University: 
Shaw, L. J., Wright, M. J. and O’Brien, J. (2008), Can we research subliminal 
emotional processing using natural images? 
 
Presented at the Graduate Interdisciplinary Conference on Perceptual Experience, 
University of Glasgow: 
Shaw, L. J., Wright, M. J. and O’Brien, J. (2005), Attention effect of high and low 
valence visual stimuli: an fMRI analysis. 
 
 6:5:3  Poster Presentations 
 
Presented at the Applied Vision Association, Active and Passive Visions 
Conference, Bradford University: 
Shaw, L. J. and Wright, M. J., (2007), Identification of positive and negative 
emotional valence in four categories of pictures in a forward-backward masking 
paradigm. 
 
Presented at Royal Holloway University: 
Shaw, L. J., Wright, M. J. and O’Brien, J (2006) Unconscious processing of high 
and low valence visual stimuli: an fMRI analysis.   
 
Presented for the fMRI Experience Conference, Aston University, Birmingham: 
Shaw, L. J., Wright, M. J. and O’Brien, J. (2005), Attention effect of high and low 
valence visual stimuli: an fMRI analysis. 
 
Presented at the BPS Cognitive Psychology Section Annual Conference, Leeds 
University: 
Shaw, L. J. and Wright, M. J. (2005), Identification of positive and negative 
emotional valence in the absence of conscious perception.   
 
Winner of the Brunel University poster competition 2005: 
Shaw, L. J., (2005), Unconscious and conscious processing of emotion: a 
behavioural and fMRI study. 
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1. INTRODUCTION 
 
This document governs the use of the magnetic resonance (MR) scanner installed on the 
campus of Royal Holloway, University of London and jointly owned by Royal Holloway, the 
University of Reading, the University of Surrey and Brunel University. 
 
Although there are no known adverse effects to humans from the static or time-varying 
electromagnetic fields used in MR scanning, there is a need for caution for a number of 
reasons:  

� The static field can cause pacemakers or other implanted devices to 
malfunction and cause other metal implants or shards to move. 
� The static magnetic field can cause loose ferro-magnetic articles to become 
projectile causing injury or death to persons near or in the magnet bore. 
� The static field can cause damage to personal possessions such as analogue 
watches and credit cards. 
� The gradient field can cause peripheral nerve stimulation. 
� Radiofrequency (RF) exposure can heat tissue, particularly if any metallic 
implants or objects are present. 

 
The MRI scanner therefore can pose a dangerous environment unless operated according 
to strict safety protocols. 
 
This document outlines the rules that MR scanner users MUST adhere to, in order to 
ensure the safety of themselves, colleagues and participants. It has been drawn up by the 
Management Committee and approved by the Policy Committee as constituted by the 
Memorandum of Agreement among the four universities dated October 2002. ALL users 
of the scanner, whatever their affiliations, MUST adhere strictly to its provisions. 
 
This document is compiled from all the currently available safety literature, the main 
reference source being the GUIDELINES FOR MAGNETIC RESONANCE DIAGNOSTIC 
EQUIPMENT IN CLINICAL USE, WITH PARTICULAR REFERENCE TO SAFETY 
(MEDICAL DEVICES AGENCY).  
 
PERSONNEL AND RESPONSIBILITIES 
 
As with all Health and Safety directives, all personnel have a responsibility to behave 
sensibly and ensure the well-being of themselves, their colleagues, participants in MRI 
examinations and any other visitors. Some personnel (THE AUTHORISED PERSONNEL) 
have additional responsibilities; these people are identified in Appendix 2. 
 
2. DESIGNATION OF THE CONTROLLED AREA 
 
2.1 A plan of the MRI unit is shown in Appendix 1. Within the unit there exists a 
Controlled Area which totally encloses the 0.5 mT (5 Gauss) magnetic field contour. The 
extent of the controlled area is shown in Appendix 1. 
2.2 Access to the controlled area is through the Preparation Room, which is entered via a 
door with a security-coded lock to prevent unauthorised access. 
2.3 All unauthorised personnel including unauthorised staff and visitors must be screened 
and must be supervised by an authorised person at all times whilst within the controlled 
area (see Sections 3 and 4). All objects and equipment must similarly be screened. 
 
3. WORKING PROCEDURES: GENERAL RULES 
 
3.1 No person or object must enter the controlled area without screening by an authorised 
person to ensure that entry is safe. 
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3.2 These rules are in addition to and can be seen as an extension of the Health and 
Safety at Work Act. This clearly lays down the mandatory responsibilities and statutory 
requirements of the employer, employees and visitors who have access to the place of 
work. All the terms of the Act must be adhered to, including that persons must behave in a 
responsible and considerate manner in order not to endanger themselves or others and to 
maintain a good working atmosphere. 
3.3 Equipment must only be used by trained and competent personnel. 
3.4 Equipment must be properly used, serviced and maintained in a good state of repair. If 
faults occur that prevent normal safe operation of the equipment, the equipment must be 
taken out of service until repaired and passed fit for use. ALL faults must be reported and 
a record kept.  The procedure for the reporting and documentation of faults must be 
followed (see Section 6). 
3.5 Working areas and exits should be kept clean, tidy and free from obstruction. 
3.6 Should the use of equipment produce an accident, near miss or hazardous situation, 
operation must cease immediately until the cause is investigated and the hazard is 
removed. 
3.7 An Accident/Incident Report Form must be completed without delay following any 
accident or hazardous situation. Copies of this form are kept in the Control Room. The 
incident should also be reported immediately to the MRI Safety Officer (see Appendix 2). 
3.8 In the event of an emergency such as fire, local procedures must be followed (see 
Section 5 and Appendix 6). All personnel should know the location of fire alarms and 
escape routes. 
 
4. WORKING PROCEDURES: MRI-SPECIFIC RULES 
 
4.1 Control of access 
4.1.1 Authorised Personnel (defined in Appendix 2), and other persons with the authority 
of the MRI Safety Officer (see Appendix 2), have free access to parts of the MRI Unit that 
are NOT WITHIN THE CONTROLLED AREA. Screening is not necessary in order to 
enter the outer rooms of the Unit. 
4.1.2 No person may enter the controlled area unless at least TWO able-bodied adults, 
both of whom have been screened in the previous 12 months and have removed all metal 
items from their clothing, and at least one of whom is an Authorised Person, are present in 
the MRI Unit. No person may be placed inside the scanner unless at least TWO 
AUTHORISED PERSONS, at least one of whom is an employee of one of the four 
universities and at least one of whom has full (as opposed to probationary; see Appendix 
2) status, are present in the MRI Unit. The boundaries of the MRI Unit are defined on the 
plan in Appendix 1. NO person, whatever their status, may enter the controlled area when 
alone in the MRI Unit.  
4.1.3 Authorised Personnel must be trained in MR safety to a level prescribed by the MRI 
Safety Officer. They must be screened at least on a yearly basis, with records of 
screening kept securely in the MRI unit. Any person who is not an Authorised Person but 
who assists an Authorised Person in order to permit entry to the Controlled Area (see 
4.1.2) must first receive basic training in safety as prescribed by the MRI Safety Officer. 
4.1.4 Unauthorised Personnel and objects DO NOT have free access to the controlled 
area. This includes domestic services; responsibility for cleaning the controlled 
area resides with the authorised personnel. 
4.1.5 All people and objects must be “screened” (see Section 4.2) by authorised 
personnel before access to the controlled area is permitted. Screening people requires the 
written questionnaires shown in Appendix 3 to be completed and to show no contra-
indications for access.  
4.1.6 The outer door to the MRI unit must be kept closed at all times – even when the 
area is being supervised by an authorised person. Admission is by security code only. 
Only authorised persons will have access to this code. The code must not be divulged to 
others and any inadvertent disclosure must be reported to the MRI Safety Officer, who will 
then change the code. 
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4.1.7 When the MRI unit is not in use, the following doors must be kept locked: 
Unit outer door  
Examination room door 
Preparation Room door 
Equipment room door 

These doors are identified in Appendix 1. 
 
4.2 Screening 
4.2.1 Only Authorised Personnel are permitted to “screen” participants and other visitors. 
The person must understand, complete and sign two written questionnaires (see 
Appendix 3). The authorised person must then decide if access is safe for the participant, 
using the rules and guidelines in Appendix 3. 
4.2.2 ALL persons must undergo primary screening before access to the controlled area is 
permitted. Primary screening must exclude the presence of the following from the 
controlled area: 
 
Any person fitted with a cardiac pacemaker. 
 
4.2.3 All persons and objects must undergo secondary screening before access to the 
controlled area is permitted. Secondary screening must exclude the following from the 
controlled area: 

Aneurysm clips of any type 
Occlusive clips or pins 
Heart valve replacements and cochlear implants 
Mechanical/Electrical/Magnetically operated devices 
People with metallic splinters in the eye or other remaining metal from injury 
Catheters and intra-venous devices 
Persons under 18 years of age 
Pregnant women 
Mechanical watches, credit cards, magnetic tapes, other magnetic recording 
media. 
All loose ferro-magnetic objects about a person such as dentures, hair grips, 
 hearing aids, jewellery (except wedding ring), keys, money, pens, 
 scissors, spectacles and tools 
All other ferro-magnetic objects including gas cylinders, trolleys and computer 
 equipment, but with the exception of certain small items of equipment 
 (e.g. photometers and other optical equipment) which may be taken into 
 the controlled area for specific purposes provided that express permission 
 is granted by the MRI Safety Officer, that the MRI Safety Officer is 
 present in the controlled area and that no persons other than authorised 
 personnel are present in the controlled area at the time 

 
4.2.4 Persons to be given an MRI examination must undergo additional screening, to 
identify the following: 
 
 People suffering from epilepsy, thermoregulatory problems or diabetes 
 People with intra-uterine contraceptive devices in place 
 People with implants or prostheses that are known to be made of non-ferro-
 magnetic materials and are not specifically excluded in 4.2.3 above 
 
Such people are not excluded from entering the controlled area without being scanned. 
They may only be scanned after appropriate medical consultation and approval. Any 
medical recommendations for supervision during scanning must be implemented if the 
scan proceeds. 
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4.3 MRI Examination 
4.3.1 Only participants who have been approved by an authorised person are permitted to 
be scanned. 
4.3.2 Only Authorised Personnel who are trained are permitted to operate the equipment. 
4.3.3 The person operating the equipment on any given occasion is personally 
responsible for ensuring that the participant has been properly screened, even if the 
examination has been arranged and approved by another authorised person. 
4.3.4 All participants must be fully consenting adults and must have given written informed 
consent, using the approved form (Appendix 4). The person operating the scanner is 
personally responsible for ensuring that this has been done. The participant must be free 
to withdraw such consent and to withdraw from the experiment at any time. 
4.3.5 The purpose and nature of the examination should be explained to the participant,  
who must be given the opportunity to ask questions. 
4.3.6 Contrast agents must not be administered and no other invasive procedure may be 
performed. 
4.3.7 A record must be maintained of all persons who are scanned (see Section 7). 
4.3.8 A record must be maintained of the screening forms for all persons entering the 
controlled area. These must be treated as confidential and held in a locked cabinet in the 
MRI Unit. 
4.3.9 An alarm buzzer must be available to participants during their examination. The 
operation of the alarm must be explained to participants before scanning commences and 
the alarm should be tested regularly. 
4.3.10 The Operator must check every few minutes (normally via the intercom) that the 
participant is comfortable. 
4.3.11 If a participant experiences undue discomfort or distress during scanning, the 
examination must stop. 
4.3.12 Suitable earplugs or sound-attenuating earphones must be provided to all 
participants. Where participants refuse to wear the hearing protection provided, they must 
not be scanned. Earplugs must be of disposable type and discarded after a single use. 
Where earphones are used these should be adequately maintained and inspected on a 
regular basis, and cleaned after each use. If fitted with disposable ear inserts, these must 
be discarded after a single use. Any damage to the earphones should be reported 
immediately to the MRI Safety Officer. 
4.3.13 Persons must not be examined during servicing or be in position in the scanner 
during switch on/off of the magnet (except in emergency). 
4.3.14 Only equipment that is safe and designed for the purpose may be connected to the 
MR scanner or used within the controlled area (see also Appendix 3). 
4.3.15 If a participant who is unable to position him/herself on the bed unaided is to be 
scanned, assistance should be given but only by prior arrangement with the MRI Safety 
Officer and only by staff who are trained in such procedures. 
 
4.4 Result of examination 
4.4.1 Scanning of human participants should be performed for research purposes only, 
using volunteers who are either healthy or have a known, previously documented 
neurological abnormality which does not present a contraindication for MRI. 
4.4.2 In the event that a scan reveals a suspected abnormality that was unknown to the 
authorised person in charge of the scan and which they suspect might require treatment, 
the following procedure must be adopted. 
 

(i) So as to avoid distress to participants arising from false alarms, staff must not 
disclose their concerns to the participant. 
(ii) The authorised person involved must, without delay, report his/her concerns to 
the MRI Safety Officer and supply a high-quality print displaying the suspected 
abnormality. 
(iii) The MRI Safety Officer should, as a matter of urgency, write to the 
participant’s General Practitioner (whose name must be supplied by the 
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participant prior to scanning; see Section 7 and Appendix 3), enclosing the print 
and describing the cause for concern. The letter should state whether or not the 
person expressing concern is medically qualified. It should also state that the 
participant concerned has not been informed and that the decision as to whether 
the participant should be informed, and the task of informing, are referred to the 
GP. 
(iv) In the interests of participant confidentiality, the authorised person concerned 
should not discuss the situation with colleagues or other participants. 

 
4.4.3 Assuming that there is no suspicion of abnormality, staff are encouraged, but not 
required, to offer to provide the participant with a sample image obtained during the 
examination, either electronically or in printed form as the participant prefers. 
 
4.5 Exposure limits 
4.5.1 The time spent in the magnet by any one person must not exceed 90 minutes in any 
24-hour period. Other than this, there is no restriction on the frequency with which a 
screened person may be scanned. 
4.5.2 The exposure of any one person to the static magnetic field must not exceed an 
average of 0.2 Tesla, averaged over any 24-hour period. In practice, this means that 
operators and others may work within the MR Unit but outside the controlled area for 
unlimited periods, provided that they enter the controlled area only occasionally and for 
short periods, to supervise volunteers. An operator standing by the bore opening will 
experience a field of the order of 0.5T. 
 
5. EMERGENCY PROCEDURES 
 
Current emergency procedures are described in Appendix 5 and Appendix 6. 
 
5.1 Should any part of the system fail that may endanger participants, staff or equipment, 
the examination must stop and the participant must be removed from the scanner. If there 
is a risk of damage to the equipment, an authorised person must then electrically isolate 
the equipment by pressing one of the red ‘stop’ buttons in the Control Room and 
Examination Room. No further scanning is permitted to take place until the fault has been 
corrected.  
5.2 Emergency shutdown of the magnet (quenching) must only be undertaken by 
authorised personnel, only after due consideration of the relative risks and only in one of 
the following circumstances (see also Appendix 5): 
 
(i) if a participant or other person is in a life-threatening situation resulting directly from the 
magnetic field. If the endangered person is in the scanner, the magnet should be 
quenched before the person is removed from the scanner. 
(ii) if the emergency services, e.g. fire service, require access to the controlled area with 
ferromagnetic equipment. In this event, the participant must be removed from the scanner 
before the magnet is quenched. 
 
NOTE: The magnet MUST be quenched before the emergency services may have access 
to the controlled area. 
 
5.3 In the event of a medical emergency occurring in the controlled area, medical help 
must be summoned immediately (see Appendix 5). If possible, the affected person should 
be removed from the controlled area before treatment commences. If this is difficult or 
unsafe, first aid may be administered within the controlled area, but only by a person who 
is qualified in first aid, has been screened within the past 12 months and has removed any 
loose metal objects from their person. If treatment by medical or paramedical staff who 
have not been screened is necessary, the affected person must be removed from the 
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controlled area before such treatment commences. An MR-safe patient trolley is kept in 
the examination room at all times. If the affected person is unable to walk, even with 
assistance, he/she should be moved onto the trolley and wheeled out of the controlled 
area. This must be done by authorised persons, all of whom have been trained in this 
procedure. 
5.4 In the event of a fire, the fire procedure (see Appendix 6) must be followed. If 
evacuation is required, all participants and visitors must be removed from the scanner 
area, taking due care of the magnetic field. All doors must be secured on leaving 
especially those that govern access to the controlled area. Note that the fire alarm does 
not automatically unlock doors to the controlled area. 
 
6 REPORTING OF FAULTS 
 
6.1 ALL faults must be (i) reported to the MRI Safety Officer (see Appendix 2) at the 
earliest opportunity and (ii) documented in the Faults Book, which is kept in the Control 
Room. 
6.2 If faults occur that prevent normal safe operation of the equipment, it must be taken 
out of service until repaired and passed fit for use. 
6.3 Should the use of equipment produce an accident, near miss or hazardous situation, 
operation must cease immediately until the cause is investigated and the hazard is 
removed. 
6.4 To minimize inconvenience, faults should also be reported to all other authorised 
users who may be intending to use the equipment in the following 48 hours. 
6.5 In the event of a fault that prevents normal safe operation: 

� The MRI Safety Officer must be informed 
� The fault must be recorded in the Incident Book 
� The room must be signed out of use 
� A “Do not use” sign must be fixed to the equipment 
� The equipment must be signed over to the engineer and then signed back by 
the engineer once repaired and tested. Only then may it be signed back into use 
for scanning. 

 
7. RECORD KEEPING 
 
For each person scanned the following information must be recorded and retained for 10 
years: 

� Name, sex and age 
� Date of scan 
� The name and address of the person’s general practitioner (GP) 
� Region of body scanned and type of coil used 
� Approximate time spent in the magnet 
� Scan data including sequence type, TR, TE, number and size of slices scanned. 
� SAR 

 
The two screening forms and the consent form must also be retained for 10 years. 
 
All information should initially be held in a locked filing cabinet in the control room. It may 
be removed after not less that one year for safe keeping elsewhere at the discretion of the 
MRI Safety Officer. 
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APPENDIX 1 – PLAN OF MRI UNIT INDICATING CONTROLLED AREA 
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APPENDIX 2 – PERSONNEL AND RESPONSIBILITIES 
 
MRI SAFETY OFFICER 
This person is responsible for ensuring that the rules and procedures set out in this 
document are adhered to at all times. He/she also carries responsibility for keeping 
abreast of any new legislation or external guidelines that may be relevant to internal 
procedures. 
 
The MRI Safety Officer is the Departmental Superintendent, Department of Psychology, 
Royal Holloway. In times of absence, he/she may appoint a deputy who must previously 
have been approved by the Management Committee. 
 
AUTHORISED PERSONNEL 
These are essential staff who are conversant with, and are able to put into practice all the 
rules and emergency practices outlined in this document. These personnel have access to 
the Controlled Area (subject to the rules in section 4.1). They are responsible for 
screening participants and other visitors to ensure that it is safe for them to enter the 
controlled area, and they must supervise all non-authorised people at all times when in 
the controlled area. Records of screening are kept by the MRI Safety Officer and held in 
the Control Room. 
 
Authorised person status is granted by the Management Committee. This Committee will 
maintain a list of current authorised users at all times and will immediately inform the MRI 
Safety Officer of any alterations to it. Before Authorised Person status can be conferred, a 
person must undergo the following training and testing: 

(i) Training in the operation of the scanner 
(ii) Training in First Aid (to the level of ‘appointed persons’) 
(iii) Basic fire training (internal programme; content to be determined by the Royal 
Holloway Safety Officer) 
(iv) Training in removing an unconscious participant from the controlled area 
(v) Viewing the current Siemens safety video 
(vi) Attendance at a safety lecture given by a suitably qualified person approved 
by the Management Committee (or viewing a video recording of such a lecture) 
(vii) Reading the Guidelines for Magnetic Resonance Equipment in Clinical Use 
(2nd edn. 2002) published by the Medical Devices Agency 
(viii) Studying all relevant risk assessment forms (provided by the MRI Safety 
Officer) 
(ix) Thoroughly reading the local Rules of Operation and successfully completing 
a written test, to be administered by the MRI Safety Officer, covering the rules and 
procedures covered in this document, 

 
These requirements apply to all persons, including members of the Management 
Committee. 
 
Persons who satisfy all the above requirements but have little or no practical experience 
will initially be given Probationary Authorised Person Status. Such persons will 
automatically become full Authorised Persons when they have been present at 10 scans 
and have operated the scanner on at least 5 of those occasions. 
 
Authorised persons must be screened at least yearly. They must also be trained in the 
use of any new equipment, software or procedures that may be introduced from time to 
time. 
 
The current list of authorised personnel, together with their qualifications, training and 
experience, will be made available on request to all relevant university ethics committees. 
 



 
 

 256

EQUIPMENT MANUFACTURERS 
Trained service personnel or representatives of the equipment manufacturers can operate 
the equipment for quality control testing, servicing and demonstration purposes. Such 
people may be admitted to the controlled area by authorised personnel on production of 
identification (and normally by arrangement with the MRI Safety Officer). 
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APPENDIX 3 – SCREENING FORMS AND THEIR INTERPRETATION 
 
There are two screening forms and an information form. The purpose of the initial 
screening form is to identify and eliminate at-risk individuals without the need for them to 
go to the MR unit. The purpose of the second screening form is to ensure that scanning is 
safe at the time of the scan. The purpose of the information form is to provide volunteers 
with information about the procedure. 
 
The information form must be given to the participant at the time of, or prior to, initial 
screening. The participant should be encouraged to read it before deciding to participate 
or completing the initial screening form. Authorised persons carrying out screening may 
add project-specific information to the information form but must not remove any 
information. They may also add additional project-specific questions to the initial 
screening form, but may not remove any items. 
 
The initial screening form can be completed at any time prior to the scan, at any 
convenient location. Wherever possible it should be completed in the presence of an 
authorised person as defined in Appendix 2, who should ensure that the questions are 
fully understood and that considered answers are given, and should witness the 
participant's signature. Where it is not convenient to complete the form in the presence 
of an authorised person, the participant 's signature should be witnessed by another adult 
who should countersign and add his/her name and address. In this case an authorised 
person should subsequently establish by conversation with the participant that adequate 
attention to the questions has been paid. He/she should verbally go over the questions in 
the initial screening form taking particular care to check that the participant has no 
pacemaker, artificial heart valve, cochlear implant or any other ferromagnetic metal 
implant. 
 
The second screening form must be completed in the MR Unit immediately prior to 
scanning. The participant's completed initial screening form must be available for 
inspection by the participant when completing the second screening form. The authorised 
person who will operate the scanner must then certify, by signing the second screening 
form, that all necessary checks have been made. 
 
In addition, a consent form must be signed by all participants before scanning (see 
Appendix 4). This can be signed at any time after the initial screening has been 
completed. The signature must be witnessed by another adult, who should be either 
Authorised Person, or a scientific colleague informed about the details of the particular 
study, and should add his/her address if not an authorised person. As well as witnessing 
the signature, this person is responsible for ensuring that the participant fully understands 
the consent form and has had adequate opportunity to ask questions. 
 
All three forms must be lodged in the MR unit before scanning takes place. 
Exceptions: 
(i) If the person to be scanned is an authorised person who has been scanned on a 
previous occasion, the second screening form need not be completed. 
(ii) For persons who will enter the controlled area but will not be placed inside the magnet, 
the initial screening form must be completed in accordance with the rules; however the 
second screening form and consent form need not be completed. 
 
For participants who are scanned more than once, the answers to the questions on the 
two screening forms must be confirmed on each occasion, either be countersigning the 
original screening forms or by completing fresh forms. The consent form must be 
completed in relation to each scan. 
 
Copies of the information form and the two screening forms follow. 
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ROYAL HOLLOWAY, UNIVERSITY OF LONDON - MAGNETIC RESONANCE IMAGING 
UNIT 

 
INFORMATION FORM 

 
These notes give some information about an fMRI study in which you are invited to take 
part. FMRI is a method for producing images of the activity in the brain as people carry out 
various mental tasks. It involves placing the participant inside a large, powerful magnet 
which forms part of the brain scanner. When particular regions of the brain are active, they 
require more oxygen, which comes from red corpuscles in the blood. As a result, the flow 
of blood increases. This can be detected as changes in the echoes from brief pulses of 
radio waves. These changes can then be converted by a computer into 3D images. This 
enables us to determine which parts of the brain are active during different tasks. 
 
As far as we know, this procedure poses no direct health risks. However, the Department 
of Health advises that certain people should NOT be scanned. Because the scanner 
magnet is very powerful, it can interfere with heart pacemakers and clips or other metal 
items which have been implanted into the body by a surgeon, or with body-piercing items. 
If you have had surgery which may have involved the use of metal items you should NOT 
take part. Note that only ferromagnetic materials (e.g. steel) are likely to cause significant 
problems. Thus normal dental amalgam fillings do not prohibit you from being scanned, 
though a dental plate which contained metal would do so, and you would be asked to 
remove it. You will be asked to remove metal from your pockets (coins, keys), remove 
articles of clothing which have metal fasteners (belts, bras, etc), as well as most jewellery. 
Alternative clothing will be provided as necessary. Watches and credit cards should not be 
taken into the scanner since it can interfere with their operation. You will be asked to 
complete a questionnaire (the Initial Screening Form) which asks about these and other 
matters to determine whether it is safe for you to be scanned. In addition, you are asked 
to give the name and address of your Family Doctor. This is because there is a very small 
chance that the scan could reveal something which required investigation by a doctor. If 
that happened, we would contact your doctor directly. By signing the consent form, you 
authorise us to do this. You will also be asked to complete a second, shorter, screening 
form immediately before the scan. 
 
To be scanned, you would lie on your back on a narrow bed on runners, on which you 
would be moved until your head was inside the magnet. This is rather like having your 
head put inside the drum of a very large front-loading washing machine. The scanning 
process itself creates intermittent loud noises, and you would wear ear-plugs or sound-
attenuating headphones. We would be able to talk to you while you are in the scanner 
through an intercom. If you are likely to become very uneasy in this relatively confined 
space (suffer from claustrophobia), you should NOT take part in the study. If you do take 
part and this happens, you will be able to alert the experimenters by activating an alarm 
and will then be removed from the scanner quickly. It is important that you keep your head 
as still as possible during the scan, and to help you with this, your head will be partially 
restrained with padded headrests. We shall ask you to relax your head and keep it still for 
a period that depends on the experiment but may be more than one hour, which may 
require some effort on your part. If this becomes unacceptably difficult or uncomfortable, 
you may demand to be removed from the scanner. 
 
You may be asked to look at a screen through a small mirror (or other optical device) 
placed just above your eyes and/or be asked to listen to sounds through headphones. 
You may be asked to make judgements about what you see or asked to perform some 
other kind of mental task. Details of the specific experiment in which you are invited to 
participate will either be appended to this sheet or else given to you verbally by the 
experimenter. Detailed instructions will be given just before the scan, and from time to 
time during it. 
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The whole procedure will typically take about 1 hour, plus another 15 minutes to discuss 
with you the purposes of the study and answer any questions about it which you may 
raise. You will be able to say that you wish to stop the testing and leave at any time, 
without giving a reason. This would not affect your relationship with the experimenters in 
any way. The study will not benefit you directly, and does not form part of any medical 
diagnosis or treatment. If you agree to participate you will be asked to sign the initial 
screening form that accompanies this information sheet, in the presence of the 
experimenter (or other witness, who should countersign the form giving their name and 
address, if this is not practical). It is perfectly in order for you to take time to consider 
whether to participate, or discuss the study with other people, before signing. After 
signing, you will still have the right to withdraw at any time before or during the 
experiment, without giving a reason. 
 
The images of your brain will be held securely and you will not be identified by name in 
any publications that might arise from the study. The information in the two screening 
forms will also be treated as strictly confidential and the forms will be held securely until 
eventually destroyed.  
 
Further information about the specific study in which you are invited to participate may 
have been appended overleaf, if the experimenter has felt that this would be helpful. 
Otherwise, he/she will already have told you about the study and will give full instructions 
prior to the scan. Please feel free to ask any questions about any aspect of the study or 
the scanning procedure before completing the initial screening form.
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ROYAL HOLLOWAY, UNIVERSITY OF LONDON - MAGNETIC RESONANCE IMAGING 
UNIT 

 
INITIAL SCREENING FORM 

 
NAME OF PARTICIPANT ………………………………………………… Sex: M / F 
Date of birth……………………… Approximate weight in kg…………. (one stone is about 
6.3 kg) 
 
Please read the following questions CAREFULLY and provide answers. For a 
very small number of individuals, being scanned can endanger comfort, health or 
even life. The purpose of these questions is to make sure that you are not such a 
person.  
 
You have the right to withdraw from the screening and subsequent scanning if 
you find the questions unacceptably intrusive. The information you provide will be 
treated as strictly confidential and will be held in secure conditions. 
 

Delete as appropriate 
1. Have you been fitted with a pacemaker or artificial heart valve?  YES/NO 
2. Have you any aneurysm clips, shunts or stents in your body or a cochlear implant?  
         YES/NO 
3. Have you ever had any metal fragments in your eyes?   YES/NO 
4. Have you ever had any metal fragments, e.g. shrapnel in any other part of your body?  
         YES/NO 
5. Have you any surgically implanted metal in any part of your body, other than dental 
fillings and crowns (e.g. joint replacement or bone reconstruction)  YES/NO 
6. Have you ever had any surgery that might have involved metal implants of which you 
are not aware?         YES/NO 
7. Do you wear a denture plate or brace with metal in it?    YES/NO 
8. Do you wear a hearing aid?       YES/NO 
9. Have you ever suffered from any of: epilepsy, diabetes or thermoregulatory problems?  
         YES/NO 
10. Have you ever suffered from any heart disease?    YES/NO 
11. Is there any possibility that you might be pregnant?    YES/NO 
12. Have you been sterilised using clips?     YES/NO 
13. Do you have a contraceptive coil (IUD) installed?    YES/NO 
14. Are you currently breast-feeding an infant?     YES/NO 
 
 
I have read and understood the questions above and have answered them correctly. 
 
SIGNED…………………………………      DATE………………………… 
 
In the presence of ………………………… (name) ………………………..(signature) 
 
Address of witness, if not the experimenter: 
 
 
Please enter below the name and address of your doctor (general practitioner). 
(Not required for persons entering the controlled area but not being scanned.) 
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ROYAL HOLLOWAY, UNIVERSITY OF LONDON - MAGNETIC RESONANCE IMAGING 
UNIT 

 
SECOND SCREENING FORM 

 
This form should be completed and signed immediately before your scan, after removal of 
any jewellery or other metal objects and (if required by the operator) changing your 
clothes. 
 
NAME OF PARTICIPANT ………………………………………………… 
 
Date of birth………………………………. Sex: M / F 
 
Please read the following questions CAREFULLY and provide answers. For a 
very small number of individuals, being scanned can endanger comfort, health or 
even life. The purpose of these questions is to make sure that you are not such a 
person. 
 
You have the right to withdraw from the screening and subsequent scanning if 
you find the questions unacceptably intrusive. The information you provide will be 
treated as strictly confidential and will he held in secure conditions. 
 
BEFORE YOU ARE TAKEN THROUGH FOR YOUR SCAN IT IS ESSENTIAL 
THAT YOU REMOVE ALL METAL OBJECTS INCLUDING:-WATCHES, PENS, 
LOOSE CHANGE, KEYS, HAIR CLIPS, ALL JEWELLERY, BRASSIERES WITH 
METAL FASTNERS, METALLIC COSMETICS, CHEQUE/CASH POINT CARDS. 
 

Delete as appropriate 
1. Are you wearing or carrying any metal items such as those listed above?  YES/NO 
2. Have your answers to any of the questions in the initial screening form changed? 
(The initial screening form must be shown to you before you answer this question.)  
          YES/NO 
Specifically, please confirm: 
3. Have you been fitted with a pacemaker, artificial heart valve or cochlear implant?  
          YES/NO 
4. Is there any possibility that you might be pregnant?     YES/NO 
 
I have read and understood the questions above and have answered them correctly. 
 
SIGNATURE………………………………… DATE………………………… 
 
FOR STAFF USE: 
I certify that the initial screening form and the consent form have been completed by the 
person named above and I have attached them to this form. The volunteer has been given 
the standard information sheet about MRI experiments, together with any necessary 
study-specific information, and has been given an opportunity to ask questions. I am 
satisfied that the volunteer is adequately informed and understands the content of the 
consent form. I have taken adequate steps to ensure that the volunteer has no ferro-
magnetic metal in or on his/her person and I am satisfied that the scan can proceed. 
 
SIGNATURE………………………………… NAME (print) ………………………………….. 
 
 



 
 

 262

APPENDIX 3 continued 
 
RULES FOR ADMINISTRATION OF SCREENING FORMS 
 
GENERAL 
 
1. All participants must complete both the initial and second screening forms before 
entering the controlled area. 
2. Completion of the screening forms must be supervised by an authorised person (see 
Appendix 2) who must be satisfied that the participant has read the questions carefully 
and understands their importance. 
3. The second screening form must be countersigned by an authorised person before the 
participant enters the controlled area. The form should only be signed if all questions have 
been answered satisfactorily (see below), the participant’s GP details have been added 
and the participant has signed both screening forms and the consent form. 
4. If the participant answers “no” to all questions on both screening forms and the 
authorised person is satisfied that the participant has given the questions due 
consideration, the participant may be permitted to enter the controlled area. 
 
INITIAL SCREENING FORM 
 
5. If the participant answers ‘yes’ to any of questions 1, 2, 3, 4, 8, 10, 11, 12 and 14 then 
the participant MUST NOT be allowed into the controlled area. The person supervising the 
screening should explain the situation clearly, making clear that there is no cause for 
alarm, and cancel any MRI examination that has been arranged. They should also point 
out that rejection as a research participant does not necessarily mean that a future MR 
scan for medical purposes would be unsafe and that they should be guided by the 
medical personnel concerned if such a need should arise. 
6. If the participant answers ‘yes’ to any of questions 5, 6, 7, 9 and 13, the person must 
not be scanned unless medical advice is first taken and any medical supervision that may 
be recommended is implemented. In such cases, explicit permission to proceed must be 
obtained from the MR Safety Officer before scanning. The following specific rules apply in 
such cases: 
(Q.6) A person who has had surgery that clearly did not involve implantation of metal (e.g. 
tonsillectomy) may be scanned. Persons who have had any surgery where the use of 
metal implants cannot be ruled out must not enter the controlled area unless it is first 
established that the implant contains no ferromagnetic material. They must not be 
scanned unless medical advice has been taken and any medical supervision that has 
been recommended is provided. Scanning may proceed only if the answer to question 6 
has become “no” and the initial screening form has been re-administered and the answers 
reflect this. 

(Q.7) A person wearing a dental plate or brace may enter the controlled area but 
must remove the device before being scanned. If it is not readily removable, the 
person should not be asked to remove it and scanning must not proceed. 
(Q.9) A person suffering from thermo-regulatory problems, diabetes or epilepsy 
may enter the controlled area but must not be scanned without medical 
supervision. 
(Q.13) A woman with an intra-uterine contraceptive device may enter the 
controlled area but must not be scanned. 

 
If there is ANY DOUBT as to whether it is safe to proceed, the participant MUST NOT be 
allowed to enter the controlled area. 
 
7. If a participant has answered ‘yes’ to a question but is subsequently permitted to enter 
the controlled area, the facts and the basis of the decision must be documented and 
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attached to the filed screening forms. Any material statements made by the participant 
should be made in writing on the screening form. 
 
SECOND SCREENING FORM 
 
8. If the participant answers ‘yes’ to question 1 then he/should should be asked to remove 
the item(s) in question, if that is practical, and then amend the answer and initial the 
change, or complete a fresh second screening form. 
9. If the participant answers ‘yes’ to question 2, the initial screening form must be 
completed afresh and any affirmative answers acted upon in accordance with the rules 
above. 
10. If the participant answers 'yes' to question 3, they must not be allowed into the 
controlled area. 
11. A person answering ‘yes’ to question 4 must not be scanned, but may be allowed into 
the controlled area for other purposes (e.g. a pregnant authorised person may enter to 
supervise volunteers, but has the right to refuse to do so). 
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APPENDIX 4 – CONSENT FORM 
ROYAL HOLLOWAY, UNIVERSITY OF LONDON - MAGNETIC RESONANCE IMAGING 

UNIT 
CONSENT FORM 

 
NAME OF PARTICIPANT………………………………………………… 
 

Please read the following statement carefully and then add your signature. 
If you have any questions, please ask the person who gave you this form. 
You are under no pressure to give your consent and you are free to 
withdraw from the MRI examination at any time. 

 
I agree to participate in an MRI examination conducted for research 
purposes by …………………………………………..(name of operator) on 
………………………………………………………….(name of project). 
 
I understand that the examination is not part of any medical treatment. I 
have completed two screening forms and I have been given an opportunity 
to discuss any issues arising from them. The nature of the examination has 
been explained to me and I have had an opportunity to ask questions 
about it. I consent to my general practitioner being contacted in the unlikely 
event that the scan reveals any suspected abnormality. 
 
Signature ……………………………………… Date………………………… 
 
WITNESS: 
 

Statement by a witness, who must be either an authorised person or a 
scientific collaborator who is familiar with the experimental procedure and 
is able to answer questions about it. 

 
I certify that the above participant signed this form in my presence. I am 
satisfied that the participant fully understands the statement made and I 
certify that he/she had adequate opportunity to ask questions about the 
procedure before signing. 
 
Signature………………………………………. Date………………………… 
 
Name ……………………………….. 
 
Address of witness (if not an Authorised Person): 
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APPENDIX 5 – EMERGENCY PROCEDURES AND QUENCH 
 
QUENCHING refers to the loss of absolute zero in the magnet coils. If the 
temperature rises, the coils cease to be superconducting and become resistive. 
Heat is then generated, resulting in boil-off of helium, and the field strength falls 
sharply. Quenching can be manually instigated in an emergency. Re-establishing 
the static field after quenching is an expensive, specialist procedure. In addition, 
the magnet may be permanently damaged. 
 
 
Procedure in the event of a person being in a life-threatening 
situation due to the magnetic field 
 
1. Manually quench the magnet by pressing one of the emergency buttons 
located in the control room and the examination room. The DOOR to the 
examination room should be OPEN during quenching. Manually quenching may 
be performed only by an Authorised Person who must first have given due 
consideration to the relative risks (see Note below). 
 
2. Dial 444 and call for an ambulance. 
 
3. Do not attempt to remove the participant from the scanner. 
 
 
Procedure in the event of a person being in a life-threatening 
situation that does not involve the magnetic field 
 
1. Dial 444 and call for an ambulance 
 
2. Unless there is an injury that requires the person to be kept still, remove the 
person from the Controlled Area 
 
 
NOTE: Quenching the magnet carries its own risks. Quenching involves the 
release of large amounts of energy, which can cause a significant rise in 
temperature in the magnet. Cryogens are vented to the outside air but there is a 
risk of release into the scanner room, which can cause changes in air pressure or 
even asphyxiation. A careful balancing of risks must be made as to whether 
quenching is appropriate. Quenching should only be performed if the situation is 
judged to be life-threatening AND it is judged that the presence of the magnetic 
field poses a bigger risk than the quenching procedure itself. Such situations are 
extremely rare and quenching should be regarded as a last resort. 
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APPENDIX 6 – FIRE PROCEDURES 
 
Procedures in the event of a fire involving the MRI unit 
If you discover a fire: 
 
1 Immediately operate the nearest fire alarm. This is located just inside the main 
entrance door to the MRI unit 
 
2 Implement the evacuation procedure (see below). 
 
DO NOT tackle the fire, unless you have received fire training to a level 
commensurate with the severity of the incident. 
 
DO NOT take fire-fighting equipment into the Controlled Area unless it is known to 
be MR-safe. 
 
 
Evacuation procedure: 
 
1. Stop all scanning. 
 
2 Remove participant from the scanner. 
 
3 Electrically isolate the scanner by pressing either of the two unprotected red 
buttons located on the walls of the control room and the examination room. DO 
NOT QUENCH the magnet. 
 
4 Do not stop to collect personal belongings. 
 
5 Leave the Unit and building by the nearest convenient exit. 
 
6 Secure all doors after leaving. 
 
7 Do not re-enter the building until instructed by the Fire Brigade or a responsible 
officer of the College. 
 
8 Proceed to the designated Assembly point (Car Park 5). 
 
9 The MRI Safety Officer or an Authorised Person must be available to liase with the Fire 
Brigade and College Safety Officer. They should jointly assess whether it is necessary to 
enter the Controlled Area with fire-fighting equipment. If this is deemed necessary, the 
magnet must first be quenched by the MRI Safety Officer or an Authorised Person. 
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Appendix II 
 
 

Self-report Questionnaire  
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Behavioural Experiment HA only - Questionnaire 
 

Name…………………………………………………………………………… 
 
Today’s date…………………………………………………………….……… 
 
DOB……………………………………Age…………………………………... 
 
Gender.    Male       Female 
  
 
Are you left or right handed. Left       Right    
 
PLEASE MAKE SURE YOU CAN SEE THE SCREEN CLEARLY 
 
 
PRACTICE TRIAL  
 
  
TRIAL IMAGE 1 
 
Was your overall impression pleasant or unpleasant?  Please tick one of the 
following: 
          Pleasant              Unpleasant   
                  
 
On a scale of 1-9 how confident do you feel about your answer?  Please tick one of 
the following: 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
How many images did you see? 
   One   Two   Three 
                
 
On a scale of 1-9 how confident do you feel about your answer?  Please tick one of 
the following: 
Not at all   `      Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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TRIAL IMAGE 2 
Was your overall impression pleasant or unpleasant?  Please tick one of the 
following: 
          Pleasant              Unpleasant   
                  
 
On a scale of 1-9 how confident do you feel about your answer?  Please tick one of 
the following: 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
How many images did you see? 
   One   Two   Three 
                
 
On a scale of 1-9 how confident do you feel about your answer?  Please tick one of the 
following: 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
__________________________________________________________________ 
Now the experiment will begin.  Please make sure that you answer all four 
questions for EACH image – even if you need to ‘guess’. 
IMAGE 1 
Was your overall impression pleasant or unpleasant?  Please tick one of the following: 
          Pleasant              Unpleasant   
                  
 
On a scale of 1-9 how confident do you feel about your answer?  Please tick one of the 
following: 
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
How many images did you see? 
   One   Two   Three 
                
 
On a scale of 1-9 how confident do you feel about your answer?  Please tick one of the 
following: 
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 2 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 3 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 4 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 5 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 6 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 7 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 8 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 9 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 10 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 11 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 12 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 13 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 14 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 15 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 16 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 17 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 18 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 19 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 20 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 21 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 22 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 23 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 24 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 25 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 26 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 27 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 28 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 29 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 30 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 31 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 32 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 33 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 34 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
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IMAGE 35 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
IMAGE 36 
Impression?         Pleasant              Unpleasant   
                  
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
   One   Two   Three 
How Many?               
 
Not at all         Very 
Confident        Confident 
          
   1   2    3   4   5   6   7   8   9 
 
 
 
THANK YOU 
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Appendix III 
 
 

Informed Consent Form  
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INFORMED CONSENT SHEET: 
 CONSCIOUS AND UNCONSCIOUS PROCESSING OF EMOTIONAL 

VISUAL STIMULI   
 
 The Department of Human Sciences at Brunel University requires that all 
persons who participate in psychology studies give their written consent to do so.  
Please read the following and sign it if you agree with what it says. 
 I freely and voluntarily consent to be a participant in the research project 
entitled “Conscious and Unconscious Processing of Emotional Visual Stimuli” to 
be conducted at Brunel University, with Lynda Shaw as principal investigator.  
The broad goal of this research program is to explore the neuropsychology of 
emotion and the relationship between conscious and unconscious processing of 
emotion.  Specifically, I have been told that I will be asked to look at a series of 
images on a screen, which will involve both subliminal (below threshold) and 
normal (above threshold) presentations of pictures with strong emotional content 
(both pleasant and unpleasant).   The session should take no longer than thirty 
minutes to complete. 
 I have been told that my responses will be kept strictly confidential.  I also 
understand that if at any time during the session I feel unable or unwilling to 
continue, I am free to leave without negative consequences.  That is, my 
participation in this study is completely voluntary, and I may withdraw from this 
study at any time.  My withdrawal would not result in any penalty, academic or 
otherwise.  My name and my student identification number will not be linked with 
the research materials, as the researchers are interested in contributing to the 
investigations and implications on how emotions affect conscious processing in 
general -- not any particular individual's subjective experience of processing 
emotional visual stimuli.   
 I have been given the opportunity to ask questions regarding the procedure, 
and my questions have been answered to my satisfaction.  I have been informed 
that if I have any questions about this project, I should feel free to contact Lynda 
Shaw at lyndashaw22@hotmail.com.  If I have any comments or concerns about 
the study or the informed consent procedures, I can contact Prof. Michael Wright 
at Michael.Wright@brunel.ac.uk. 
 I have read and understand the above and consent to participate in this 
study.  My signature is not a waiver of any legal rights.  Furthermore, I understand 
that I will be able to keep a copy of the informed consent form for my records. 
           ____________________________________________________________ 
Participant’s Signature                                        Date  
 
-------------------------------------------------------------------------------------------------- 
I have explained and defined in detail the research procedure in which the student 
has consented to participate.  Furthermore, I will retain one copy of the informed 
consent form for my records. 
__________________________________________________________________ 
Principal Investigator Signature                                    Date 
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Appendix IV 
 
 

Ratings Questionnaire 
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Ratings HA only - questionnaire  
 

“Street” Name…………………………………………………………………… 
 
Today’s date…………………………………………………………….……… 
 
DOB……………………………………Age…………………………………... 
 
Gender.    Male       Female 
  
 
Are you left or right handed.  Left       Right  
  
 
PLEASE MAKE SURE YOU CAN SEE THE SCREEN CLEARLY 
 
Please make sure that you answer all three questions for EACH image.  
 
TRIAL IMAGE 1  Umbrella    7150 
On a scale of 1-9 how pleasant or unpleasant did you find this image?  Please tick one of 
the following: 
 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
On a scale of 1-9 how arousing did you find this image?  Please tick one of the following: 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
TRIAL IMAGE 2   Native Boy  2730 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
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IMAGE 1   Skydivers  5621 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 2   AirCrash  9611 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 3   Chair   7235 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
 
 
IMAGE 4   Fireworks  5480 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
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IMAGE 5   Basket   7010 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 6   Jaguar  1650 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 7   BatteredFem  3180 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
 
 
IMAGE 8   Bomb   9630 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
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IMAGE 9   AttackDog  1525 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 10   FliesOnPie  7360 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 11   Money   8501 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
 
 
IMAGE 12   Stool   7025 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
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IMAGE 13   Shark   1932 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 14   Baby   2071 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 15   Iron   7030 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
 
 
IMAGE 16   Skier   8190 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
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IMAGE 17   Fork   7080 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 18   Athletes  8380 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 19   AngryFace  2120 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
 
 
IMAGE 20   Book   7090 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
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IMAGE 21   IceCream  7270 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 22   Waterfall  5260 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 23   Puppies  1710 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
 
 
IMAGE 24   CarCrash  9911 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
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IMAGE 25   ElectricChair  6020 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 26   AttractiveFem 4250 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 27   Monkies  1811 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
 
 
IMAGE 28   HairDyer  7050 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
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IMAGE 29   Snake   1050 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 30   BabyTumour  3170 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
IMAGE 31   Toilet   9301 
Very Unpleasant      Very Pleasant   
          
   1   2    3   4   5   6   7   8   9 
 
Not Arousing        Very Arousing 
          
   1   2    3   4   5   6   7   8   9 
Do you remember seeing this picture in the experiment? 
   Yes   No   Not sure 
                
 
 
THANK YOU 
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Appendix V 
 
 

Debrief Form
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DEBRIEFING FORM: 

CONSCIOUS AND UNCONSCIOUS PROCESSING OF EMOTIONAL 
VISUAL STIMULI 

 
 The question of whether there can be unconscious processing of emotional 
stimuli has been an important theme in psychology for more than a century.  Some 
of the strongest claims for this position come from lesion studies.  We intend to 
expand on the knowledge gained so far by using behavioural studies, such as the 
one you have just completed, and fMRI (Functional Magnetic Resonance Imaging) 
experiments.       
 The type of questions we will be investigating include: there is a difference 
between valence visual stimuli for conscious and unconscious processing; there is 
a difference in processing faces, scenes, animals and inaanimate objects. 
 

The following studies might be of interest to you: 
 Dalgleish, T., Power, M.  (1999), Handbook of Cognition and Emotion.  
New York: John Wiley & Sons Ltd. 
  Damasio, A.  (1999), The Feeling of What Happens: Body, Emotion 
and the Making of Consciousness.  London: Vintage. 
  Heilman, K.M.,  Satz, P (ed).  (1983), Neuropsychology of Human 
Emotion.  New York and London: The Guildford Press 
  Once again, we thank you for taking part in the present study.  Please feel 
free to contact Lynda Shaw if you have any questions or comments regarding this 
study.       
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Appendix VI 
 
 

Conclusions from ANOVA  
 

of Individual Slides. 
 

Summary of Results
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Appendix  VI Summary of results. 

 
 

Legend:  
Col 1: image/ trial number.  
Col 2: Overall impression: actual frequency of unpleasant (left cluster) 
and pleasant (right cluster) responses given to this trial. Blue = 2 
images seen (subliminal) green = 3 images seen (supraliminal). 
Col 3: Classifier: whether this trial is more frequently judged as high 
or low valence relative to control trials. 
Col 4: Significant between-subjects effects in UNIANOVA, e.g.  a 
significant effect of concordance (concordant vs discordant response) 
on valence impression confidence;  a significant effect of number of 
pictures seen (2=subliminal, 3=supraliminal) on valence impression 
confidence. 
Col 5: Marginal means for valence impression confidence (y axis) vs 
discordant (left) and concordant (right). Blue=2seen, green =3seen.
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Image Overall Valence Impression Classifier Unianova Confidence 

6 

High 

Valence 

Animal 

Jaguar 

pleasantunpleasant

125

100

75

50

25

0

Co
un

t 3
2

how
many
seen

 

valence overall impression 

Higher 

valence 

than 

control 

trials 

Concordant 

discordant 

response / 

impression 

confidence 

F = 8.6 

df = 1, 211 

p < 0.005 
concordantdiscordant

concordance overall impression

7.8

7.5

7.2

6.9

6.6

6.3

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

3
2

how many seen

Estimated Marginal Means of impression confidence

1 not con - 9 very con

 
24 

High 

Valence 

Animal 

Puppies 

pleasantunpleasant

200

150

100

50

0

Co
un

t 3
2

how
many
seen

 

valence overall impression 

Higher 

valence 

than 

control 

trials 

Number of 

pictures seen  

/ impression 

confidence 

F = 2.5 

df = 1, 212 

p < 0.05 

concordantdiscordant

concordance overall impression

8.2

8

7.8

7.6

7.4

7.2

7

6.8

6.6

6.4

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

3
2

how many seen

Estimated Marginal Means of impression confidence
1 not con - 9 very con

 



 
 

 

299 

Image Overall Valence Impression Classifier Unianova Confidence 
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Image Overall Valence Impression Classifier Unianova Confidence 
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Image Overall Valence Impression Classifier Unianova Confidence 
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Image Overall Valence Impression Classifier Unianova Confidence 
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Image Overall Valence Impression Classifier Unianova Confidence 
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Image Overall Valence Impression Classifier Unianova Confidence 
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Image Overall Valence Impression Classifier Unianova Confidence 
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Appendix VII 
 
 

Initial Screening Form 
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Appendix VIII 
 
 

Information Form 
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 ROYAL HOLLOWAY, UNIVERSITY OF LONDON - MAGNETIC RESONANCE 
IMAGING UNIT 

 
INFORMATION FORM 

 
These notes give some information about an fMRI study in which you are invited to take 
part. FMRI is a method for producing images of the activity in the brain as people carry out 
various mental tasks. It involves placing the participant inside a large, powerful magnet 
which forms part of the brain scanner. When particular regions of the brain are active, they 
require more oxygen, which comes from red corpuscles in the blood. As a result, the flow 
of blood increases. This can be detected as changes in the echoes from brief pulses of 
radio waves. These changes can then be converted by a computer into 3D images. This 
enables us to determine which parts of the brain are active during different tasks. 
 
As far as we know, this procedure poses no direct health risks. However, the Department 
of Health advises that certain people should NOT be scanned. Because the scanner 
magnet is very powerful, it can interfere with heart pacemakers and clips or other metal 
items which have been implanted into the body by a surgeon, or with body-piercing items. 
If you have had surgery which may have involved the use of metal items you should NOT 
take part. Note that only ferromagnetic materials (e.g. steel) are likely to cause significant 
problems. Thus normal dental amalgam fillings do not prohibit you from being scanned, 
though a dental plate which contained metal would do so, and you would be asked to 
remove it. You will be asked to remove metal from your pockets (coins, keys), remove 
articles of clothing which have metal fasteners (belts, bras, etc), as well as most jewellery. 
Alternative clothing will be provided as necessary. Watches and credit cards should not be 
taken into the scanner since it can interfere with their operation. You will be asked to 
complete a questionnaire (the Initial Screening Form) which asks about these and other 
matters to determine whether it is safe for you to be scanned. In addition, you are asked 
to give the name and address of your Family Doctor. This is because there is a very small 
chance that the scan could reveal something which required investigation by a doctor. If 
that happened, we would contact your doctor directly. By signing the consent form, you 
authorise us to do this. You will also be asked to complete a second, shorter, screening 
form immediately before the scan. 
 
To be scanned, you would lie on your back on a narrow bed on runners, on which you 
would be moved until your head was inside the magnet. This is rather like having your 
head put inside the drum of a very large front-loading washing machine. The scanning 
process itself creates intermittent loud noises, and you would wear ear-plugs or sound-
attenuating headphones. We would be able to talk to you while you are in the scanner 
through an intercom. If you are likely to become very uneasy in this relatively confined 
space (suffer from claustrophobia), you should NOT take part in the study. If you do take 
part and this happens, you will be able to alert the experimenters by activating an alarm 
and will then be removed from the scanner quickly. It is important that you keep your head 
as still as possible during the scan, and to help you with this, your head will be partially 
restrained with padded headrests. We shall ask you to relax your head and keep it still for 
a period that depends on the experiment but may be more than one hour, which may 
require some effort on your part. If this becomes unacceptably difficult or uncomfortable, 
you may demand to be removed from the scanner. 
 
You may be asked to look at a screen through a small mirror (or other optical device) 
placed just above your eyes and/or be asked to listen to sounds through headphones. 
You may be asked to make judgements about what you see or asked to perform some 
other kind of mental task. Details of the specific experiment in which you are invited to 
participate will either be appended to this sheet or else given to you verbally by the 
experimenter. Detailed instructions will be given just before the scan, and from time to 
time during it. 
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The whole procedure will typically take about 1 hour, plus another 15 minutes to discuss 
with you the purposes of the study and answer any questions about it which you may 
raise. You will be able to say that you wish to stop the testing and leave at any time, 
without giving a reason. This would not affect your relationship with the experimenters in 
any way. The study will not benefit you directly, and does not form part of any medical 
diagnosis or treatment. If you agree to participate you will be asked to sign the initial 
screening form that accompanies this information sheet, in the presence of the 
experimenter (or other witness, who should countersign the form giving their name and 
address, if this is not practical). It is perfectly in order for you to take time to consider 
whether to participate, or discuss the study with other people, before signing. After 
signing, you will still have the right to withdraw at any time before or during the 
experiment, without giving a reason. 
 
The images of your brain will be held securely and you will not be identified by name in 
any publications that might arise from the study. The information in the two screening 
forms will also be treated as strictly confidential and the forms will be held securely until 
eventually destroyed.  
 
Further information about the specific study in which you are invited to participate may 
have been appended overleaf, if the experimenter has felt that this would be helpful. 
Otherwise, he/she will already have told you about the study and will give full instructions 
prior to the scan. Please feel free to ask any questions about any aspect of the study or 
the scanning procedure before completing the initial screening form.
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Appendix IX 
 
 

Second Screening Form 
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Appendix X 
 
 

Consent Form
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Appendix XI 
 
 

Subjective Report Form 
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Appendix XI  Subjective Report Form 
 
 

Legend: 
 
HV = high valence 
LV = low valence 
B = big 
L = little 
F = foveal/peripheral dual image 
a= animal 
f = face 
s = scene 
i = inanimate object  
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Experiment fMRI foveal/peripheral – Subjective Report 
 
 
Name……………………………………………………………………………… 
 
Today’s date…………………………………………………………………………. 
 
DOB…………………………………………Age………………………………….. 
 
Gender……………………………………………………………………………… 
 
Are you left or right handed……………………………………………………….. 
 
 
I SAY – “PLEASE MAKE SURE YOU CAN SEE THE SCREEN CLEARLY” 
 
I THEN SAY – “Each picture will appear quickly.  Please tell me whether the images 
are pleasant, unpleasant or neutral.  Some of the pictures are big.  Some are small.  
Some are big with a small picture in the centre – when these appear please attend to 
the small central picture only.” 
 
I fill in the questionnaire because the experiment goes so quickly. 
 
PRACTICE TRIAL 
    PLEASANT UNPLEASANT NEUTRAL 
TRIAL 1 Big neutral        
 
TRIAL 2 HVLf         
 
TRIAL 3 HVFa         
____________________________________________________________________
_ 
IMAGE 1 Big Neutral        
 
IMAGE 2 Big Neutral        
 
IMAGE 3 Big Neutral        
 
IMAGE 4 HVBa         
 
IMAGE 5 HVBa         
 
IMAGE 6 HVBa         
 
IMAGE 7 Big Neutral        
 
IMAGE 8 Big Neutral        
 
IMAGE 9 Big Neutral        
 
IMAGE 10 HVBf         
 
IMAGE 11 HVBf         
 
IMAGE 12 HVBf         
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PLEASANT UNPLEASANT NEUTRAL 
 
IMAGE 13 Big Neutral        
 
IMAGE 14 Big Neutral        
 
IMAGE 15 Big Neutral        
 
IMAGE 16 HVBs         
 
IMAGE 17 HVBs         
 
IMAGE 18 HVBs         
 
IMAGE 19 Big Neutral        
 
IMAGE 20 Big Neutral        
 
IMAGE 21 Big Neutral        
 
IMAGE 22 HVBi         
 
IMAGE 23 HVBi         
 
IMAGE 24 HVBi         
 
IMAGE 25 Little Neutral        
 
IMAGE 26 Little Neutral        
 
IMAGE 27 Little Neutral        
 
IMAGE 28 LVLa         
 
IMAGE 29 LVLa         
 
IMAGE 30 LVLa         
 
IMAGE 31 Little Neutral        
 
IMAGE 32 Little Neutral        
 
IMAGE 33 Little Neutral        
 
IMAGE 34 LVLf         
 
IMAGE 35 LVLf         
 
IMAGE 36 LVLf         
 
IMAGE 37 Little Neutral        
 
IMAGE 38 Little Neutral        
 
IMAGE 39 Little Neutral        
 
IMAGE 40 LVLs         
 
IMAGE 41 LVLs         
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PLEASANT UNPLEASANT NEUTRAL 
 
IMAGE 42 LVLs         
 
IMAGE 43 Little Neutral        
 
IMAGE 44 Little Neutral        
 
IMAGE 44 Little Neutral        
 
IMAGE 45 LVLi         
 
IMAGE 46 LVLi         
 
IMAGE 47 LVLi         
 
IMAGE 48 Foveal Neutral        
 
IMAGE 49 Foveal Neutral        
 
IMAGE 50 Foveal Neutral        
 
IMAGE 51 HVFa         
 
IMAGE 52 HVFa         
 
IMAGE 53 HVFa         
 
IMAGE 54 Foveal Neutral        
 
IMAGE 55 Foveal Neutral        
 
IMAGE 56 Foveal Neutral        
 
IMAGE 57 HVFf         
 
IMAGE 58 HVFf         
 
IMAGE 59 HVFf         
 
IMAGE 60 Foveal Neutral        
 
IMAGE 61 Foveal Neutral        
 
IMAGE 62 Foveal Neutral        
 
IMAGE 63 HVFs         
 
IMAGE 64 HVFs         
 
IMAGE 65 HVFs         
 
IMAGE 66 Foveal Neutral        
 
IMAGE 67 Foveal Neutral        
 
IMAGE 68 Foveal Neutral        
 
IMAGE 69 HVFi         
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PLEASANT UNPLEASANT NEUTRAL 
 
IMAGE 70 HVFi         
 
IMAGE 71 HVFi         
 
IMAGE 72 Big Neutral        
 
IMAGE 73 Big Neutral        
 
IMAGE 74 Big Neutral        
 
IMAGE 75 LVBa         
 
IMAGE 76 LVBa         
 
IMAGE 77 LVBa         
 
IMAGE 78 Big Neutral        
 
IMAGE 79 Big Neutral        
 
IMAGE 80 Big Neutral        
 
IMAGE 81 LVBf         
 
IMAGE 82 LVBf         
 
IMAGE 83 LVBf         
 
IMAGE 84 Big Neutral        

  
IMAGE 85 Big Neutral        
 
IMAGE 86 Big Neutral        
 
IMAGE 87 LVBs         
 
IMAGE 88 LVBs         
 
IMAGE 89 LVBs         
 
IMAGE 90 Big Neutral        
 
IMAGE 91 Big Neutral        
 
IMAGE 92 Big Neutral        
 
IMAGE 93 LVBi         
 
IMAGE 94 LVBi         
 
IMAGE 95 LVBi         
 
IMAGE 96 Little Neutral        
 
IMAGE 97 Little Neutral        
 
IMAGE 98 Little Neutral        
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PLEASANT UNPLEASANT NEUTRAL 
 
IMAGE 99 HVLa         
 
IMAGE 100 HVLa         
 
IMAGE 101 HVLa         
 
IMAGE 102 Little Neutral        
 
IMAGE 103 Little Neutral        
 
IMAGE 104 Little Neutral        
 
IMAGE 105 HVLf         
 
IMAGE 106 HVLf         
 
IMAGE 107 HVLf         
 
IMAGE 108 Little Neutral        
 
IMAGE 109 Little Neutral        
 
IMAGE 110 Little Neutral        
 
IMAGE 111 HVLs         
 
IMAGE 112 HVLs         
 
IMAGE 113 HVLs         
 
IMAGE 114 Little Neutral        
 
IMAGE 115 Little Neutral        
 
IMAGE 116 Little Neutral        
 
IMAGE 117 HVLi         
 
IMAGE 118 HVLi         
 
IMAGE 119 HVLi         
 
IMAGE 120 Foveal Neutral        
 
IMAGE 121 Foveal Neutral        
 
IMAGE 122 Foveal Neutral        
 
IMAGE 123 LVFa         
 
IMAGE 124 LVFa         
 
IMAGE 125 LVFa         
 
IMAGE 126 Foveal Neutral        
 
IMAGE 127 Foveal Neutral        
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PLEASANT UNPLEASANT NEUTRAL 
 
IMAGE 128 Foveal Neutral        
 
IMAGE 129 LVFf         
 
IMAGE 130 LVFf         
 
IMAGE 131 LVFf         
 
IMAGE 132 Foveal Neutral        
 
IMAGE 133 Foveal Neutral        
 
IMAGE 134 Foveal Neutral        
 
IMAGE 135 LVFs         
 
IMAGE 136 LVFs         
 
IMAGE 137 LVFs         
 
IMAGE 138 Foveal Neutral        
 
IMAGE 139 Foveal Neutral        
 
IMAGE 140 Foveal Neutral        
 
IMAGE 141 LVFi         
 
IMAGE 142 LVFi         
 
IMAGE 143 LVFi         
 
 
 

 

 

 
 


