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Abstract

The problem of estimating latent or unobserved states of a dynamical system from observed data is

studied in this thesis. Approximate filtering methods for discrete time series for a class of nonlinear

systems are considered, which, in turn, require sampling from a partially specified discrete distribu-

tion. A new algorithm is proposed to sample from partially specified discrete distribution, where the

specification is in terms of the first few moments of the distribution. This algorithm generates deter-

ministic sigma points and corresponding probability weights, which match exactly a specified mean

vector, a specified covariance matrix, the average of specified marginal skewness and the average of

specified marginal kurtosis. Both the deterministic particles and the probability weights are given in

closed form and no numerical optimization is required. This algorithm is then used in approximate

Bayesian filtering for generation of particles and the associated probability weights which propagate

higher order moment information about latent states. This method is extended to generate random

sigma points (or particles) and corresponding probability weights that match the same moments. The

algorithm is also shown to be useful in scenario generation for financial optimization. For a variety of

important distributions, the proposed moment-matching algorithm for generating particles is shown

to lead to approximation which is very close to maximum entropy approximation.

In a separate, but related contribution to the field of nonlinear state estimation, a closed-form linear

minimum variance filter is derived for the systems with stochastic parameter uncertainties. The ex-

pressions for eigenvalues of the perturbed filter are derived for comparison with eigenvalues of the

unperturbed Kalman filter. Moment-matching approximation is proposed for the nonlinear systems

with multiplicative stochastic noise.
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Acronyms

AvMRAE Average mean relative absolute error

AvRMSE Average root mean square error

CEV Constant elasticity of variance model

CIR Cox Ingersoll Ross interest rate model

CVaR Conditional value at risk

HOSPoF Higher order sigma point filter

PF-HOSPoF Particle filter with higher order sigma point filter proposal

PF-UKF Particle filter with unscented Kalman filter proposal

VaR Value at risk
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Chapter 1

Introduction

1.1 Introduction

In this introductory chapter a motivation for studying the problem of latent state estimation is pre-

sented and the main contributions of the thesis are described in general terms. A short introduction

for the chapters to follow is also given.

1.2 The problem of latent state estimation

The problem of estimating latent or unobserved states of a dynamical system from observed data

often arises in many branches of science, such as engineering, econometrics, weather sciences and fi-

nance. The technique used to deal with this problem is called filtering. Filtering refers to any method

for obtaining such state estimates, recursively in time, by combining model predictions with noisy

observations. This technique can be applied to the problem of estimating current and future weather

patterns from observed atmospheric data in weather forecasting. In mathematical finance, filtering

can be used for pricing more complex financial instruments, like derivatives, when it is necessary

to be able to estimate the “unseen” variables, such as the underlying interest rates implied by the

observed bond prices or the underlying volatility implied by the stock prices etc, with a reasonable

accuracy. In filtering, the state of the system may be estimated as an entire distribution (conditional

on measurements up to that time) or its mean and variance conditional on current measurements
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CHAPTER 1. INTRODUCTION

may only be estimated. For systems with linear dependence on the present state, a linear recursive

estimator, called the Kalman filter after its inventor, is used. This filter is a popular state estimator,

which is optimal in mean square sense, and it is simple to implement. For more complex nonlinear

systems, filtering still remains a difficult problem. An exact nonlinear filter, with properties similar to

that of Kalman filter in the linear case, is often unknown or impossible to implement. Many different

approximate Bayesian filtering methods exist to deal with state estimation in nonlinear systems, such

as extended Kalman filter (EKF), sigma point filter, ensemble filter and particle filter (PF). These

would be examined in more detail in the next chapter.

Despite the increasing use of nonlinear filters in practice, some theoretical and computational prob-

lems remain unsolved. Two challenges considered in this thesis are:

1. Many different filtering methods exist with varying degrees of accuracy and computational

complexity. Some nonlinear filters propagate only the information about the first two moments

of the latent state; these include sigma point filters and ensemble filters. At the other extreme

of the compromise between computation required and statistical information propagated, there

are particle filters which are computationally a lot more intensive but can propagate full distri-

butional information. The interest is in developing something which fits between these two in

terms of the information propagated and still has the same computational effort as the sigma

point filters.

2. Parameters of a nonlinear model are often estimated from data and are not known exactly. A

small perturbation in the model parameters can lead to large estimation errors, which may grow

over time in a recursive estimation procedure. Stability of the Kalman filter, where parame-

ter perturbation is represented by a deterministic (unknown-but-bounded) multiplicative noise

(e.g. multiplied by the state vector), has been extensively studied. The case is of particular in-

terest when this multiplicative noise is a stochastic uncertainty and the covariance of transition

noise is an affine function of the state vector, as is the case with a class of the financial time

series models (Cox-Ingersoll-Ross type models described later in chapter 3).

2



CHAPTER 1. INTRODUCTION

A brief introduction to the rest of the thesis now follows.

Chapter 2 reviews the literature on latent state estimation problem from various disciplines including

mathematical finance, weather sciences and engineering. The brief overview of time series analysis

methods is also provided. The linear Gaussian filter (i.e. Kalman filter) is explored in some detail

and also some of the other nonlinear filters are outlined which are used for comparison of the perfor-

mance of the new filters later in the thesis. One of the nonlinear filters reviewed is unscented Kalman

filter (UKF), whose advantages and disadvantages are discussed. Chapter 3 tackles the first challenge

mentioned above and presents a new method for deterministic sigma point generation that aims to

address some of the disadvantages of the traditional UKF. In particular, this new algorithm generates

a set of deterministic sigma points and corresponding probability weights that match the given mean

vector, the covariance matrix, the average marginal third and fourth moments exactly, without opti-

mization. This allows the propagation of the higher order moment information without significant

extra computation as compared to the traditional unscented Kalman filter. The filtering algorithm

based on this new method is provided and it forms the new filter, called higher order sigma point

filter (HOSPoF). Theoretical accuracy of the new sigma point generation method is also considered

for conditional mean and covariance estimation. The performance of HOSPoF is compared to some

of the existing nonlinear filters, described in chapter 2.

Even though HOSPoF, introduced in chapter 3, outperforms two other filters used for comparison

in the numerical experiments, the number of sigma points generated still depends on the dimension

of the state vector, as is the case with the traditional UKF. This makes the new method somewhat

restricted as a larger number of sigma points could give a better representation of the posterior den-

sity. Chapter 4 addresses this issue and proposes a new method for generating random sigma points

and corresponding probabilities that match the given mean vector, the covariance matrix, the average

marginal third and fourth moments exactly, without the use of optimization. This method is signifi-

cantly different from the one discussed in chapter 3, as not only it allows generation of any number

of particles, but also almost all of the corresponding probabilities are generated randomly. The new

filter, based on the moment matching proposal distribution, is called particle filter with higher order

sigma point filter proposal (PF-HOSPoF). Its performance is compared with the particle filter with

proposal generated by the traditional unscented Kalman filter (PF-UKF). Results show a significant
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CHAPTER 1. INTRODUCTION

improvement achieved by PF-HOSPoF over PF-UKF in terms of errors and computational times.

So far, nonlinear fitlering methods for discrete time series have been considered, which involved

sampling from partially specified discrete distribution, where specification is in terms of the first few

moments of the distribution. The problem of determining the discrete probabilities of a set of events,

conditioned upon the moment constraints, is quite common in probability and statistics. One of the

methods to solve this problem is maximum entropy approach. In chapter 5, the new moment match-

ing method, proposed in chapter 4, is compared to the method of entropy maximization. It is shown

that the new method for random sigma point generation is a good alternative as it does not require

optimization and yields a relative entropy which is remarkably close to the best approximation.

An application of the sigma point generation, introduced in chapter 4, in financial portfolio opti-

mization is presented in chapter 6. One of the traditional approaches for decision making under

uncertainty and risk is stochastic programming. This involves optimization problems in which some

parameters are not certain, but are described by statistical distributions. In order for the stochastic

programs to be numerically solvable, the distributions involved are approximated by discrete distri-

butions with a finite number of scenarios (sigma points). The algorithm for sigma point generation

from chapter 4 is used here for mean conditional value at risk (mean-CVaR) portfolio optimization

model and is tested on financial market data. It is illustrated that desirable properties for a scenario

generator are satisfied, including in-sample and out-of-sample stability. It is also shown that optimal

solutions vary only marginally with increasing number of scenarios; thus, good solutions can be ob-

tained with a relatively small number of scenarios.

Chapter 7 returns to the laten state estimation problem, discussed in chapters 2-4, and tackles the sec-

ond challenge of nonlinear filtering. Unlike deterministic parameters used in models in the previous

chapters, discrete time series filtering here is considered under random parameter perturbations of

the state space model. The new closed-form minimum variance filter is derived for discrete systems

with stochastic uncertainties in state parameters. Analysis of the sensitivity of the new filter to the

size of the parameter perturbation is presented. Approximate moment-matching algorithm, inspired

by the exact method introduced here, is also proposed for univariate time series that appears to work

well for a wider case of nonlinear systems.

Finally, chapter 8 summarizes the main contributions of the thesis and suggests ideas for future work.
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CHAPTER 1. INTRODUCTION

1.3 Notation

In this thesis upper case letters A,B,C,D,Q and R represent constant matrices. However, in

chapter 7 a perturbation matrix ∆A is introduced, where each element represents a noise source.

X and Y represent state and measurement vectors respectively in chapters 2-4 and 7. Lower case,

boldface letters represent vector valued functions (e.g. f, h in chapter 2), vector valued random

variables (e.g. w, v) or constant vectors (e.g. d). In chapters 2-4 and 7, w and v are uncorrelated

Gaussian variables. Functions f and h are deterministic and can be linear or nonlinear, which is

specified in the chapters. The definition of other symbols would be given in the chapter where they

first appear.

1.4 Summary

In conclusion, it can be said that the thesis should be of interest to those working in both filtering

theory and mathematical finance. New methods have been introduced for deterministic and random

sigma point generation, a closed-form minimum variance filter has been derived for discrete time

systems with parameter perturbations and a new scenario generation method has been introduced

for portfolio optimization. Improved accuracy in nonlinear filtering and model calibration can help

reduce pricing errors, improve risk measurement and help with stock investing strategy. Although the

focus of this research has been on financial systems, the methods developed will be useful in other

fields where filtering is applied, such as engineering, econometrics and weather sciences.
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Chapter 2

Preliminaries

2.1 The discrete time filtering problem

Time series data occur naturally in many application areas, such as econometrics and finance, envi-

ronmental and industrial processes. Time series analysis refers to problems in which observations are

collected at regular time intervals and there are correlations among successive observations. These

series can be decomposed into four distinct components, such as trend, seasonal effects, cycles and

residuals. There are two main goals of time series analysis. First one is identifying the nature of the

phenomenon represented by the sequence of observations. Second goal is forecasting or predicting

future values of the time series variable. Both of these goals require that the pattern of observed

time series data is identified and formally described. Once the pattern is established, it is possible

to integrate it with other data and extrapolate the identified pattern to predict future events. The

autoregressive moving average (ARIMA) methodology developed by Box & Jenkins [1976] allows

user to uncover the hidden patterns in the data and also generate the forecasts. It is one of the main

analytical systems currently in use for time series analysis and research practice confirms its power

and flexibility. Please see Hoff [1983], Pankratz [1983] and Vandaele [1983] for more details. A

different approach is to put individual component models into a single model, called a state space

model, which provides the basis for analysis. The techniques that emerge from this approach are very

flexible and are capable of handling a much wider range of problems than the Box-Jenkins ARIMA

system, see Durbin & Koopman [2001]. From this point onwards, state space approach is employed

6



CHAPTER 2. PRELIMINARIES

in the thesis. Also the scope of this thesis is limited to only discrete time series. For discussion and

more detail on the continuous case, please see Kallianpur [1990].

Consider the following discrete state space form:

X (k + 1) = f(X (k)) + Q(X (k))w(k + 1), (2.1a)

Y(k) = h(X (k)) + R v(k), (2.1b)

where X (k) and Y(k) are the respective state vector and measurement vector at time tk; f, h

are given vector-valued deterministic functions; Q is a matrix valued deterministic function; R

is a deterministic matrix and v(k), w(k) are vector-valued random variables. The time increment

t(k) − t(k − 1) is assumed constant for all k. The latent state estimation problem is the problem

of constructing an estimate of the random vector X (k), k ≥ 1, based on the noisy time series data

Y(1), Y(2), ...,Y(k). The filtering problem is the problem of finding the conditional distribution of

E(X (k + 1)|X (k), Y(k)), or finding the samples of conditional moments of this random variable

corresponding to the observed values of Y(k) and estimated X (k).

In the special case when f, h are affine in X (k), Q and R are identity matrices and v(k), w(k)

are Gaussian, the optimal recursive solution to the state estimation problem is given by the linear

Kalman filter, as first outlined in Kalman [1960]. The Kalman filter and its generalizations have

been the main tools for estimating the unobserved variables from the observed ones in econometrics

and in engineering for several decades and their use is now becoming common in finance. The

Kalman filter is a conditional moment estimator for linear Gaussian systems. It is used in calibration

of time series models, forecasting of variables and also in data smoothing applications. In the next

subsection a linear Kalman filter is described for a special case of a state space model in (2.1)

before discussing the nonlinear filtering in section 2.2. The Kalman filter’s application to maximum

likelihood calibration of time series models is described in section 2.3.
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CHAPTER 2. PRELIMINARIES

2.1.1 The linear Kalman filter

Consider a discrete time, linear state space system:

X (k + 1) = AX (k) + b + Qw(k + 1), (2.2a)

Y(k) = CX (k) + d + Rv(k), (2.2b)

where, w(k),v(k) zero mean, unit variance, Gaussian and uncorrelated random variables at each

time t(k). A,b, C, d, Q > 0 and R > 0 are constants or are known functions of time. Only the

real valued variable Y(k) is measured or is observable; the variable X (k) is of interest and needs

to be estimated. Equations (2.2a)- (2.2b) are a special case of system (2.1) with linear functions

f(X (k)) = AX (k) + b and h(X (k)) = CX (k) + d.

The estimate of X (k) based on information up to time t(k − i) is denoted as X̂ (k|k − i) for i ≥ 0

and it is assumed that the initial estimate X̂ (0|0) is known. The conditional variance of the estimate

is denoted by Pxx(k|k − i) and Pxx(0|0) > 0 is assumed to be known. With this notation, the

following set of recursive equations is conventionally referred to as the Kalman filter:

z(k) = Y(k)− (CX̂ (k|k − 1) + d), (2.3a)

S(k) = CPxx(k|k − 1)CT + RRT , (2.3b)

K(k) = Pxx(k|k − 1)CTS(k)−1, (2.3c)

X̂ (k|k) = X̂ (k|k − 1) + K(k)z(k), (2.3d)

Pxx(k|k) = Pxx(k|k − 1)−K(k)CPxx(k|k − 1), (2.3e)

X̂ (k + 1|k) = AX̂ (k|k) + b, (2.3f)

Pxx(k + 1|k) = APxx(k|k)AT + QQT . (2.3g)

Here, z(k) in (2.3a) represent information which could not have been derived from data up to time

t(k−1) and are called innovations. S(k) represents the covariance matrix of innovations. X̂ (k+1|k)
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is in fact the sample of conditional expectation of X (k + 1) based on information up to time t(k),

determined by the realized value of Y(k). This set of equations can be derived from the follow-

ing relationship between conditional moments of jointly Gaussian variables (see, e.g. Grimmett &

Stirzaker [2004]): if x, y are jointly Gaussian,

E(x|y) = E(x) + ΣxyΣ−1
yy (y − E(y)), (2.4)

E(x− E(x|y))(x− E(x|y))T = Σxx −ΣxyΣ−1
yy Σyx, (2.5)

where Σxy etc. are variance terms. This has to be interpreted with care since X̂ (k|k − 1) is not

unconditional mean; the reader is referred to specialist textbooks such as Durbin & Koopman [2001]

for more details. Given Y(k), X̂ (k +1|k) and (CX̂ (k +1|k)+d) serve as one-step ahead forecasts

of X (k + 1) and Y(k + 1) respectively.

2.2 Approximate nonlinear filtering

Now return to the system of equations (2.1) with nonlinear functions f and h and consider the

filtering problem for nonlinear systems. Unlike system (2.2a)- (2.2b), the optimal recursive solution

to the state estimation problem in nonlinear systems is usually not available in closed form. Current

approaches to address the nonlinear filtering problems fall under one of the approximate Bayesian

filtering methods. In the next subsections these methods are briefly described.

2.2.1 Extended Kalman filter

The first approach is extended Kalman filter. For scalar version of (2.1), one can expand the dynamics

in Taylor series about X̂ (k|k − 1) as

f(X (k)) ≈ f(X̂ (k|k − 1)) +
(

∂f
∂X

)
(X (k)− X̂ (k|k − 1)), (2.6a)

h(X (k)) ≈ h(X̂ (k|k − 1)) +
(

∂h
∂X

)
(X (k)− X̂ (k|k − 1)), (2.6b)

Q(X (k)) ≈ Q(X̂ (k|k − 1)), (2.6c)

where the partial derivatives are evaluated at X̂ (k|k − 1). Equation (2.6) gives a linear approxima-

tion to the original nonlinear state space system, which, in turn allows to use the techniques from

9
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sections 2.1.1 and 2.3 for model calibration and forecasting. This method works reasonably well

in systems with smooth nonlinearities, however such an assumption is often not easy to validate.

Standard textbooks such as Anderson & Moore [1979] carry an extensive discussion of its theo-

retical underpinnings and implementation; also see Jazwinski [1970] and Sorenson [1985]. This

filter is referred to as a local linearization filter in Jimenez & Ozaki [2003] and a similar formulation

has been used in parameter estimation for forward rate models in Chiarella et al. [2009]. Another

problem with implementing the EKF is that it requires the calculation of the Jacobian matrix. The

derivation of the Jacobian matrices is nontrivial in most applications and often can lead to significant

implementation difficulties. More efficient alternatives to this method are introduced next.

2.2.2 Derivative free methods

Truncated Taylor series, used in EKF, provide an insufficiently accurate representation in many cases

and significant bias or problems with convergence can arise due to the overly crude approximation.

Methods that do not require computation of derivatives of function are particularly suitable for prob-

lems which the derivatives are not available or are extremely expensive to compute. Filters that re-

semble extended Kalman filter, but where estimators are based on the polynomial approximations of

the nonlinear transformations using Stirling’s interpolation formula instead of Taylor’s linearization,

have been proposed in Norgaard et al [2000]. These filters are simple to implement as no deriva-

tives are needed, yet they provide excellent accuracy. Developed independently from Norgaard et al

[2000], a similar approach, called a central difference filter, was introduced in Ito & Xiong [2000].

More recently a new derivative free approach was proposed in Arasaratnam & Haykin [2009]. In this

paper a more accurate nonlinear filter was derived that could be applied to solve high-dimensional

nonlinear filtering problems with minimal computational effort. The Bayesian filter solution in the

Gaussian domain reduces to the problem of how to compute multi-dimensional integrals and cuba-

ture rule is used to solve this problem.

A different method, that also only uses functional evaluations instead of analytical Taylor series

linearization, was proposed in Julier & et al [1995] and is described in more detail next.

10
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2.2.3 Sigma point filters

An increasing popular alternative to EKF for signal processing in real time is using unscented or

sigma point filters. Methods of this type have been developed independently in engineering (see,

e.g. Julier & et al [1995], Julier & Uhlmann [1997] and references therein for examples) and in

weather sciences, where they are referred to as ensemble Kalman filters (see, e.g. Evensen [1994]

and Mitchell & Hotekamer [1998] for examples). In contrast with the extended Kalman filters de-

scribed earlier, sigma point filters do not involve computation of derivatives. Augmentation method

(see, e.g. Wu & Hu [2005]) incorporates noise into the augmented random state vector and from here

onwards it will be assumed f and h to be augmented functions. The unscented filtering algorithm

can be briefly described as follows.

Suppose that at time tk, the mean X̂ (k|k) and the covariance Pxx(k|k) are available for the system

in equation (2.1). Then 2n + 1 symmetric sigma points are chosen in the following way:

X (0)(k|k) = X̂ (k|k),

X (i)(k|k) = X̂ (k|k)± (
√

(n + κ)Pxx)i, (2.7)

where i = 1, 2, ..., n, n is a dimension of the state vector, κ is a scaling parameter and (
√

Pxx)i is

the ith column of the matrix square root of Pxx. The probability weights Wi associated with the ith

sigma point X (i)(k|k) are defined as:

W0 =
κ

n + κ
, Wi =

1
2(n + κ)

, i = 1, 2, ..., 2n. (2.8)

Usually κ + n = 3 is chosen for Gaussian systems. The predicted mean of X (k + 1|k) is computed

using

X (i)(k + 1|k) = f(X (i)(k|k)), (2.9)

X̂ (k + 1|k) =
2n∑

i=0

WiX (i)(k + 1|k), (2.10)

11
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where Wi are defined in (2.8). Covariance matrices Pxy(k + 1|k) and Pyy(k + 1|k) are calculated

as

Pxy(k + 1|k) =
2n∑

i=0

Wi(X (i)(k + 1|k)− X̂ (k + 1|k))v(i)(k)T ,

Pyy(k + 1|k) =
2n∑

i=0

Wiv(i)(k)v(i)(k)T ,

where

v(i)(k) = Y(i)(k + 1)− Ŷ(k + 1),

Y(i)(k + 1) = h(X (i)(k + 1|k))

and

Ŷ(k + 1) =
2n∑

i=0

WiY(i)(k + 1).

Pxx(k + 1|k) is computed similarly, using (2.5). Once the true measurement Yk+1 becomes avail-

able, the mean estimate can be updated in (2.10) as

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + K(k + 1)(Yk+1 − Ŷ(k + 1)),

where K(k+1) = Pxy(k+1|k)P−1
yy (k+1|k). More details on this algorithm can be found in Julier

& et al [1995]. More modifications of this algorithm have been proposed in Julier [1998] and Julier

[2002].

It can be seen that the methods are based on constructing covariance matrices from the samples of

distribution with correct first two moments, and then using the closed-form formulae (2.4)-(2.5) for

the state and covariance update. The number of samples used tends to be significantly smaller than in

particle filters, introduced in the next section. Ensemble filters use sampling from a Gaussian distri-

bution and match sample mean and sample covariance, while sigma point filters use a deterministic

algorithm to generate a discrete distribution (support points as well as possibly unequal probability

weights) matching the specified two moments. Several applications of the unscented Kalman filter in

communication, tracking and navigation are discussed in Farina et al [2002] and Julier & Uhlmann

[2004]. UKF has been successfully used as an alternative to EKF in many applications; see Crassidis

& Markley [2003], Evensen [1994], Merwe et al [2000], Wu & Hu [2005] and references therein.
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Besides being used as a stand-alone filtering algorithm, it has also been used to produce a proposal

distribution for the particle filter, see Merwe et al [2000]. The relations between EKF and UKF have

been recently summarized in Gustafsson & Hendelby [2012].

Unless skewed approach to filtering is used as in Julier [1998], traditional UKF only propagates

the mean vector and the covariance matrix, but not higher order moments. These could provide a

better idea of the shape of the distribution and its departure from Gaussianity. This issue is addressed

in chapter 3, where a new method for generating sigma points is proposed that allows higher order

moment matching in closed-form and without the use of optimization.

2.2.4 Particle filters

Another group of approximate solutions are particle filters, which can be effectively applied to gen-

eral nonlinear, non-Gaussian problems. One way to estimate the posterior distribution p(X (k)|Y(k))

of the unobserved state X (k) is by using particles drawn from it. Often posterior density is not known

or it might not be easy to sample from it. One may instead choose to draw samples X (i)(k) from a

known, easy-to-sample, proposal distribution q(X (k)|Y(k)). Please see Gordon & et al [1993] and

Isard & Blake [1996] for more details. Given samples X (i)(k), drawn from q(X (k)|X (k−1), Y(k)),

choosing the corresponding probability weights Wi(k) such that

Wi(k) ∝ p(X (i)(k)|Y(k))
q(X (i)(k)|Y(k))

, (2.11)

ensures that limM→∞
∑M

i=1 Wi(k)h(X (i)(k)) = E(h(X (k))), holds for any measurable func-

tion h for which E(h(X )) exists, where E(·) is expectation with respect to probability measure

p(X (k)|Y(k)). The discrete distribution in particle filter is represented by a set of random particles

and associated probability weights. The particles and weights are updated recursively as new mea-

surements become available. In order to derive the recursive expression for updating the probability

weights the following factorization is assumed:

q(X (k + 1)|Y(k + 1)) = q(X (k + 1)|X (k), Y(k + 1))q(X (k)|Y(k)). (2.12)
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Remembering that state dynamics is a Markov process and observations are conditionally indepen-

dent given states

p(X (k + 1)|Y(k + 1)) ∝ p(Y(k + 1)|X (k + 1))p(X (k + 1)|X (k))p(X (k)|Y(k)),

when substituted together with (2.12) into (2.11) provides the recursive estimates for the probability

weights

Wi(k + 1) = Wi(k)
p(Y(k + 1)|X (i)(k + 1))p(X (i)(k + 1)|X (i)(k))

q(X (i)(k + 1)|X (i)(k),Y(k + 1))
. (2.13)

Here p(Y(k + 1)|X (i)(k + 1)) and p(X (i)(k + 1)|X (i)(k)) denote the observation density and the

state transition density respectively. Given X (i)(k), i = 1, 2, ..., M , X (i)(k + 1) and Wi(k + 1) are

obtained as follows:

(a) Sample particles X (i)(k + 1) from the proposal density q(X (k + 1)|X (k), Y(k + 1)).

(b) Compute the importance weights using (2.13).

(c) Normalize the importance weights to obtain the new probability weights

W̃i(k + 1) =
Wi(k + 1)∑M
i=1 Wi(k + 1)

.

(d) Resample whenever a significant degeneracy is observed. Suitable criteria and algorithms for

resampling could be found in Doucet et al [2001].

Various heuristics to improve performance of the particle filter (such as re-sampling) have been de-

scribed in Doucet et al [2001] and more recently in Fu & Jia [2010].

Methods of this type have been used in a variety of areas including speech recognition, image

processing, target tracking and financial modelling; see Doucet et al. [2001] for a review of appli-

cations while Arulampalam et al. [2002], Daum [2005], Kitagawa [1996] and Ristic et al [2004]

provide comprehensive tutorials on various types of particle filters. One expects that the posterior

density of the particle filter converges to the optimal conditional density as the number of particles

becomes large. Crisan & Doucet [2002] bring together different asymptotic convergence results re-

lated to particle filters. In case the model contains a linear substructure, subject to Gaussian noise,

marginalized particle filter (MPF) can be used. MPF is a combination of the standard particle filter

and the Kalman filter. It has been shown that in some cases this filter provides better results than
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the standard PF, see Doucet et al [2001], Gustafsson & et al [2002] and Karlsson et al [2005] for

more details on complexity of MPF. Applications of particle filters in financial time series have been

reported in Fearnhead [2005] and Pitt & Shepherd [1999], among others. These filters are difficult to

calibrate due to the computation involved in computing the likelihood, since a closed-form expres-

sion is rarely available. Choosing the right proposal distribution is very important for a successful

particle filter. Using the transition prior density p(X (i)(k + 1)|X (i)(k)) as the proposal distribution

offers easy implementation due to (2.13), but does not incorporate most recent observations. Usually,

a more efficient choice is Gaussian posterior density generated by the extended Kalman filter for the

same system, i.e. q(X (k)|Y(k)) = N(X (k|k),Pxx(k|k)). Implementing posterior density obtained

by unscented Kalman filter, described in 2.2.3, as the proposal distribution has been considered in

Merwe et al [2000], which seems to outperform EKF-based proposal in terms of estimation accuracy.

However, posterior densities obtained by either EKF or UKF only use the first two moments and not

higher order moments for generating particles. This problem is further addressed in chapter 4, where

a new moment-matching proposal is introduced.

2.2.5 Optimization based filters

Kalman filter and related methodologies are based on the premise that the optimal estimate is a

conditional mean of the unobserved variable, given the measurements. Different heuristic methods

for nonlinear filtering represent different ways of approximating this conditional mean. An entirely

different approach is followed in Cortazar & Schwartz [2003]. To put the approach in Cortazar &

Schwartz [2003] in a slightly general setting, consider a set of discretized equations

X (k + 1) = f(X (k)) + Q(X (k))w(k + 1),

Y(k) = h(X (k)) + Rv(k), (2.14)

where Q is a deterministic matrix valued function and R is a deterministic matrix. Given Y(k),

X (k) is found as a solution to the optimization problem of the following form:

min
X

J (Y(k)− h(X )) , (2.15)
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where J(·) is a suitable non-negative cost function which is zero only at the origin. If X̂ (k) is the

argument minimising J in (2.15), the prediction X̂ (k + 1) is found using

X̂ (k + 1) = f(X̂ (k)).

This does away entirely with the need for knowing the statistical properties of the ‘noise’ terms

Q(X (k))w(k) and Rv(k) and can work well whenever the noise variances are not too large relative

to the magnitude of the hidden states. A somewhat similar approach is followed in the partially lin-

earized sigma point filter proposed in Date et al. [2010], where a set of linear programming problems

are solved at each t(k) to generate sigma points for a linearized measurement equation.

However, analysis of accuracy and convergence properties of optimization-based filters is some-

what more difficult and needs to be explored further. The unknown-but-bounded noise framework

used in system identification may be useful for this purpose; see, e.g. Bravo et al [2006] and refer-

ences therein.

2.2.6 Exact nonlinear filters

The Fokker-Planck equation is partial differential equation (PDE) that describes the evolution of

the probability density of the state vector conditioned on the measurements. The main idea behind

the exact nonlinear filters is to transform this PDE into a system of ordinary differential equations

exactly, since these can be routinely solved in real time. For example, the Kalman filter is an exact

filter for linear systems with Gaussian noise. Benes has derived an exact finite-dimensional filter for a

special class of nonlinear problems in Benes [1981]. Unfortunately this particular filter didn’t solve

all the linear problems that Kalman filter solved exactly. Later Daum has extended Benes’ theory to

deal with a much wider class of nonlinear problems in Daum [1986a] and Daum [1988], covering

all Kalman filter problems as well. More details about exact filters and the four progressively more

general exact nonlinear filters derived since then can be found in Daum [2001] and Daum [1986b].

It is also worth noting that unlike Kalman filter that is based on Gaussian probability density, most

general exact filters use the exponential family of multivariate probability densities. A method of

approximating exact nonlinear filters with finite dimensional filters in case of exponential families is

given in Brigo et al. [1998], where the differential geometric approach to statistics is utilized.
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2.3 Time series calibration using maximum likelihood

Given (possibly vector-valued) measurements Y(1), Y(2), . . . ,Y(N), one may use Kalman filter to

calibrate a time series model with latent variables such as (2.2a)-(2.2b) as follows. Let F(k) denote

all the measurements available until and including time t(k). The probability density p(Y(k +

1)|F(k)) is Gaussian with

E(Y(k + 1)|F(k)) = CX̂ (k + 1|k) + d and

V ar(Y(k + 1)|F(k)) = S(k + 1).

The likelihood function (i.e., the joint probability function) can be written for the set of observations

Y = {Y(1), Y(2), . . . ,Y(N)} as

L(Y) = p(Y(1))
N∏

i=2

p(Y(i)|F(i− 1)).

It is usually simpler to work with the logarithm of likelihood, which is given by

log L(Y) =
N∑

i=1

log p(Y(i)|F(i− 1)) = −1
2

N∑

i=1

(
log |S(i)|+ z(i)

T
S(i)−1z(i)

)
,

when the constant terms are ignored. Given time series data Y(1), Y(2), . . . , Y(N), the quantities

z(i) and S(i) are found through Kalman filter recursions outlined in the section 2.1.1. The above

function can then be maximized to find the parameter vectors b,d and matrices A,C,Q and R

using an off-the-shelf nonlinear solver such as fminsearch in MATLAB. The initial state X̂ (0|0)

and its covariance Pxx(0|0) may be independently parameterized or it can be expressed in terms of

other parameters. Harvey [1989] and Durbin & Koopman [2001] provide more details on maximum

likelihood-based calibration, including parameter initialization issues in Kalman filtering framework.

This method would be used for data calibration in numerical examples of chapters 3 and 4.

2.4 Summary

In this chapter the optimal recursive linear estimator for Gaussian systems, the Kalman filter, has

been introduced together with the filtering algorithm. Unfortunately there are many nonlinear and
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non-Gaussian models used in various industries. Also closed-form solution to latent state estimation

problem is not available for nonlinear systems. Hence a number of suboptimal approximations have

been proposed. Some of the approaches that address the nonlinear filtering problem and presented in

this chapter are extended Kalman filter, unscented Kalman filter and particle filters. Extended Kalman

filter approach has been popular in engineering for over three decades and works well if the system is

approximately linear. However it can demonstrate flawed approximation and lead to filter divergence.

Also derivation of Jacobian matrices can cause computational problems. Derivative free methods

offer a more accurate alternative to EKF, with UKF being one of the proposed filters. Unscented

transformation builds on the principle that it is easier to approximate a probability distribution than

it is to approximate an arbitrary nonlinear function, as in EKF. This approach employs a small set

of deterministic sigma points and probability weights and is easy to implement. However UKF

assumes conditional Gaussianity throughout filter recursions and can give misleading results if true

density parts too far from assumed Gaussian density. Also this method propagates only the first two

moments and this is the issue to be addressed in chapter 3. A different approach is particle filtering,

where required conditional density of the state vector given measurements is also represented by a

set of particles and associated probability weights. This set tends to be much larger than the one used

in UKF. The success of PF depends on the proposal density used. The posterior density generated

by EKF or UKF are considered to be an efficient choice. However these densities use only the

information about the first two moments in generating the particles for PF. Propagating information

about higher order moments might give a better representation of the posterior density and is the

problem investigated in chapter 4. Finally, maximum likelihood method has been presented, which

provides a powerful tool for data calibration.
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Chapter 3

Higher order sigma point filter

3.1 Introduction

This chapter is concerned with the problem of the latent state estimation for nonlinear time series in

discrete time. The material presented in this chapter has been published in Ponomareva et al [2010],

Date & Ponomareva [2011] and submitted for publication in Ponomareva & Date [2012].

The following state space form for nonlinear time series is considered, first mentioned in the previous

chapter:

X (k + 1) = f(X (k)) + Qw(k + 1),

Y(k) = h(X (k)) + R v(k).

In chapter 2, the algorithm for the unscented Kalman filter has been described. At time tk, given the

mean X̂ (k|k) and the covariance Pxx(k|k) are available for the system in equation (2.1), one can

generate sigma points, X (i), and corresponding probability weights, Wi, using closed-form formulas

in (2.7) and (2.8). The following result can then be verified by straightforward algebraic manipula-

tion (see, e.g. Julier & Uhlmann [2004]):

Proposition 3.1

Sigma points and corresponding probability weights defined in (2.7) and (2.8) match the mean

X̂ (k|k) and the covariance Pxx(k|k) exactly.

The UKF suffers from one major disadvantage, especially for systems with significant noise terms
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in the transition equation (2.1). Even if the density of X (k|k) at time t(k) is Gaussian, a nonlin-

ear function f will lead to a prediction X (k + 1|k) whose density is non-Gaussian in general. The

unscented filter assumes conditional Gaussianity throughout the filter recursions and may lead to

misleading results in case the density departs too far from the assumed Gaussian density.

Also, it is worth noting that while matching the first and the second moment accurately, traditional

UKF does not propagate any information about higher order moments. This information may pro-

vide a better idea of the shape of the distribution and its departure from Gaussianity. More details

on a modified algorithm for generating sigma points and probability weights that allows to match the

first four moments of Gaussian distribution can be found in Julier & Uhlmann [1997] and Julier &

Uhlmann [2004]. In Julier [2002] scaled unscented transformation preserves the first two moments

of the sigma points, but allows third and higher order moments to be scaled by an arbitrary amount.

Whereas Julier [1998] introduces a method for matching the first three moments of an arbitrary dis-

tribution. In this paper, expressions for sigma points and weights are given in closed form. However,

there was very little improvement in the results of the new skewed filter with added third moment

when compared to the traditional unscented transformation filter. One of the main reasons for that

was the fact that the estimated skew was much smaller than the “true” skew and also that the linear

state update does not incorporate any skew information. Other suggested algorithms, which try to

match higher moments, either require optimization, as in Ledermann & Alexander [2011], or rely

heavily on analytical solver, as in Tenne & Singh [2003]. In the next section a new modification of

generation of sigma points and probability weights is proposed to partially address this issue.

3.2 A new algorithm for unscented Kalman filtering

3.2.1 Sigma point generation with higher order moment matching

In Date et al. [2008], a method was proposed to match the mean vector, the covariance matrix and

the average marginal kurtosis of a multivariate distribution exactly, when the marginal densities are

symmetric. In Ponomareva et al [2010], this algorithm was extended to asymmetric distributions, as

outlined below. Additional parameters α and β are introduced in order to capture the 3rd and the 4th

moments of X (k+1|k+1) using augmented UKF. Here, an augmented method is considered, which
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has been shown in Wu & Hu [2005] to give more accurate results compared to non-augmented UKF

in the presence of significant noise terms. In this method a new state vector is used that incorporates

the noise terms from measurement and transition equations,

X a(k) =




X (k)

w(k)

v(k)


 .

The augmented functions fa and ha act as follows

fa(X a(k)) = f(X (k)) + w(k)

and

ha(X a(k)) = h(X (k)) + v(k).

From here on it is assumed that the state vector and functions f and h are augmented and the index
a will be dropped. Suppose that X is a random n-vector with mean X̂ and covariance Pxx, and

uncorrelated Gaussian noises w and v, with respective dimensions m1×1 and m2×1, as in equation

(2.1). n 6= m is allowed for generality, where m = m1 + m2. Matrix P > 0 is such that Pxx=PPT ,

where PT is the transpose of P and Pi is the ith column of the matrix P. The argument (k) will

be dropped in the ensuing discussion in this section for notational simplicity. It is possible to create

2(n+m)+1 sigma points, X (i), and associated probability weights, Wi, for the augmented state vector

as follows:

X (0) =


 X̂

0m×1


 = X̄ , W0 = 1−

2N∑

i=1

Wi,

X (i) =


X̂ + α

√
NPi

0m×1


 ,Wi =

1
α(α + β)N

, i = 1, 2, ..., n,

X (i) =


X̂ − β

√
NPi

0m×1


 , Wi =

1
β(α + β)N

, i = n + 1, ..., 2n,
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X (i) =


 X̂
√

NQi−2n


 , Wi =

(
1

2N

)
, i = 2n + 1, ..., 2n + m1,

X (i) =


 X̂
−√NQi−2n−m1


 , Wi =

(
1

2N

)
, i = 2n + m1 + 1, ..., 2n + 2m1,

X (i) =


 X̂
√

NRi−2n−2m1


 , Wi =

(
1

2N

)
, i = 2n + 2m1 + 1, ..., 2n + 2m1 + m2,

X (i) =


 X̂
−√NRi−2n−2m1−m2


 , Wi =

(
1

2N

)
, i = 2n + 2m1 + m2 + 1, ..., 2n + 2m,

(3.1)

where N = n + m, the jth element of a sigma point X (i) will be denoted as X (i)
j . As there are

only two degrees of freedom (viz α and β), it has been chosen to match the average third and fourth

marginal moments of the state vector alone (i.e. ignoring the moments of noise terms). Note that it is

possible to match average marginal moments of the augmented state vector, although this approach

yields poor results when the state is non-Gaussian and the noise is Gaussian and hence is not followed

here. Expressions for α and β are given next:

Definition 3.1

α =
1
2
φ1 ± 1

2

√
4φ2 − 3φ2

1,

β = −1
2
φ1 ± 1

2

√
4φ2 − 3φ2

1, (3.2)

where values of the same sign are taken,

φ1 =

∑n
j=1 ωj√

N
∑n

l=1

∑n
k=1 P3

lk

and

φ2 =

∑n
j=1 ψj

N
∑n

l=1

∑n
k=1 P4

lk

.

Here ωj =
∑2N

i=0 Wi(X (i)
j − X̄ j)3 and ψj =

∑2N
i=0 Wi(X (i)

j − X̄ j)4 are the marginal 3rd and 4th

central moments respectively. Pij is entry in the ith row and the jth column of matrix P, so that φ1
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and φ2 are known from the data.

With the above choices of α, β, one can match the mean, covariance, the average central third and

fourth marginal moments as it is stated in the next proposition:

Proposition 3.2

With X (i),Wi, α, β chosen as in (3.1)- (3.2), the following properties hold:

2N∑

i=0

Wi = 1, (3.3)

2N∑

i=0

WiX (i) =




X̂
0m1×1

0m2×1


 , (3.4)

2N∑

i=0

Wi(X (i) − X̄ )(X (i) − X̄ )T =




Pxx 0n×m1 0n×m2

0m1×n QQT 0m1×m2

0m2×n 0m2×m1 RRT


 , (3.5)

1
n

n∑

j=1

2N∑

i=0

Wi(X (i)
j − X̄ j)3 =

1
n

n∑

j=1

ωj , (3.6)

1
n

n∑

j=1

2N∑

i=0

Wi(X (i)
j − X̄ j)4 =

1
n

n∑

j=1

ψj . (3.7)

Proof: Equations (3.3)- (3.5) follow by straightforward algebraic manipulation. For the two last

equations, substituting the expression for X (i) and Wi from (3.1) into the left-hand side of equations

(3.6)- (3.7) one gets:

α− β =

∑n
j=1 ωj√

N
∑n

l=1

∑n
k=1 P3

lk

,

α2 − αβ + β2 =

∑n
j=1 ψj

N
∑n

l=1

∑n
k=1 P4

lk

. (3.8)

Using definitions of α and β from (3.2) in the equations (3.8) provides the required result.

Note that Wi ≥ 0 and
∑2N

i=0 Wi = 1 mean the set of probability weights and corresponding sigma

points {Wi,X (i)} forms a valid probability distribution. This is not always the case in the unscented

Kalman filter, since κ in (2.8) is not restricted to be positive. Provided φ2 ≥ 3
4φ2

1, (which is trivially
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true for symmetric distributions), α and β allow to capture and propagate the marginal skewness and

marginal kurtosis. Note also that the unscented filter presented in section 2 employs the same weights

Wi for all sigma points X (i) for i > 0. In comparison, different expressions for probability weights

depending on i are given in (3.1). A similar approach is taken in Tenne & Singh [2003]. However,

the authors propose a method in Tenne & Singh [2003] where a set of nonlinear algebraic equations

is solved to find support points and probability weights to match a given set of moments. Further, the

probability weights found are held constant throughout the recursion and a closed form analytic so-

lution is given only for the Gaussian case (in particular, with zero skewness). A different method that

induces Pearson correlations among random vectors has been introduced in Ilich [2009]. This algo-

rithm rearranges randomly generated variables with any statistical distribution functions, such that a

desired product moment correlation matrix is achieved. More recently, a linear algebraic approach

is taken in Ledermann & Alexander [2011], where the mean, covariance matrix, scalar multivariate

skewness and scalar multivariate kurtosis are determined by a deterministic L-matrix. This matrix is

then multiplied by arbitrary random orthogonal matrices to generate random samples with the same

exact first four moments. However, in order to match the required skewness and kurtosis, numeri-

cal optimization must be applied to calibrate the parameters of the L-matrix, i.e. the solution is not

available in the closed form. In contrast, new algorithm presented here provides matching of average

higher order moments in roughly the same amount of numerical effort as the UKF with augmented

states, and further allows to track changes in these higher order moments.

It is worth noting that while the aim is to improve the accuracy of the filter by matching higher

moments, there may still be some uncertainty regarding the reliability and credibility of the approxi-

mations associated with using this method. In particular, Hochreiter& Pflug [2007] provides exam-

ples of four radically different distributions with the same first four moments. Nevertheless, matching

moments is a simple and tractable way of generating approximate conditional distributions. It may

also be seen as especially relevant in a filtering set-up, as the propagation of conditional moments

(rather than the entire conditional distribution) is often of importance.

3.2.2 Filtering algorithm using higher order moments

The filtering algorithm for higher order sigma point filter (HOSPoF) can be described as follows.
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1. Given X (i)(k|k), Pxx(k|k) and newly measured Yk+1, propagate sigma points using (2.9)

and update state estimates in the following way:

X (i)(k + 1|k + 1) = X (i)(k + 1|k) + PxyP−1
yy (Yk+1 − h(X (i)(k + 1|k))),

X̂ (k + 1|k + 1) =
2N∑

i=0

WiX (i)(k + 1|k + 1),

where X (i)(k + 1|k) = f(X (i)), Wi are the weights as defined in (3.1) and the covariance

matrices Pxy(k + 1|k) and Pyy(k + 1|k) are calculated as described in section 2.

2. Calculating the average marginal skewness and the average marginal kurtosis of X (i)(k +

1|k + 1) provides with the updated values for α and β via (3.2). Now these values are used to

generate a new set of sigma points and the corresponding weights at time t(k + 1).

The utility of this algorithm was illustrated with an example in Ponomareva et al [2010].

3.3 Numerical examples

In this section the performance of the new filter is tested on two examples.

3.3.1 Univariate non-stationary growth model

To test the accuracy of the new algorithm a univariate non-stationary growth model is considered,

where this model is given by

X (k + 1) = aX (k) + b
X (k)

1 + X 2(k)
+ d cos(1.2k) + σww(k + 1),

Y(k) = X 2(k)/20 + σvv(k),

where v(k) and w(k) are i.i.d. N(0, 1) random variables. This model is very popular in econometrics

and has been previously used in Date et al. [2008], Wu & Hu [2005], see also references there in.

Parameters used in this numerical example are shown in Table 3.1.
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Table 3.1. Parameter values

a 0.5

b 25

d 8

σw 0.1

σv 0.1

The performance of traditional unscented Kalman filter and HOSPoF are compared. In order to

evaluate the efficiency of these filters the average of root mean squared error (AvRMSE) is evaluated

in one step ahead prediction, where root mean squared error for sample path i is computed for F

time-steps as

RMSE(i) =

√√√√ 1
F

F∑

k=1

(X i(k)− X̂ i
(k|k))2.

The average of sample mean of the relative absolute error (AvMRAE) is also considered, with

MRAE defined as

MRAEi =
1
F

F∑

k=1

|X
i(k)− X̂ i

(k|k)
X i(k)

|.

This was computed over the relevant set of F observations. In this example F = 100 and average

errors are based on 100 sample paths. Seven sigma points were used for traditional unscented Kalman

filter and HOSPoF, proposed in this chapter. Tables 3.2-3.3 present both type of errors for both filters

and extended Kalman filter.

Table 3.2. Average RMSE in 1 step ahead prediction

EKF UKF HOSPoF

3.97521 2.06909 1.75721

Table 3.3. Average MRAE of 1-step ahead prediction

EKF UKF HOSPoF

0.33848 0.20524 0.17793
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It can be observed that HOSPoF outperforms both EKF and UKF for both types of errors, with

average improvement over UKF of 14% for both types of error. This improvement has been achieved

with very little extra computational effort.

3.3.2 Multi-factor CIR model

For the empirical, ‘real-life’ example, discretisation of a two-factor Cox-Ingersoll-Ross (CIR) model

with a nonlinear measurement equation is considered. This is a multivariable extension of the model

first proposed in Cox et al. [1985]; see Geyer & Pichler [1999] for more details on the use of this

model in a filtering context. The state evolution is

X j(k + 1) = κjεjθj + (1− κjεj)X j(k) + Qj(k + 1)wj(k + 1),

for j = 1, 2, where wj(k) are zero mean, unit variance and uncorrelated Gaussian random variables.

The standard deviation Q is given by

Qj(k + 1) = σj

√
εj(

1
2
θjκjεj + (1− κjεj)X j(k)),

where κj , σj and θj are constants and

εj =
( 1− e(−κj∆))

κj
,

with ∆ = t(k + 1)− t(k). The observable variables are exponential in the latent states and are given

by

Y i(k) = Π2
j=1


Ai,j exp(−

2∑

j=1

(Bi,jX j(k)))


 + zi(k),

where

Ai,j =
(

2γj exp((κj + γj + λj)Ti/2)
2γj + (κj + λj + γj)(exp(Tiγj)− 1)

) 2κjθj

σ2
j ,

Bi,j =
2(exp(Tiγj)− 1)

2γj + (κj + λj + γj)(exp(Tiγj)− 1)
,

γj =
√

(κj + λj)2 + 2σ2
j .

zi(k) is observational noise with zero mean and is assumed to have a constant variance h2 for each i

and λi are constants. In practice, Ti represents the time to maturity and Y i(k) represents the price of
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a zero coupon bond with a maturity Ti + t(k), at time t(k). Here, three maturities are used, T1 = 1,

T2 = 2 and T3 = 4.

For numerical experiments, weekly data from February 2001 to July 2005 for 3 different UK

government bonds is used. Here 180 observations were used for calibration and 52 were used for

out-of-sample validation. A 2-factor model was calibrated using the extended Kalman filter and the

quasi-maximum likelihood method. In-built optimization routines from MATLAB were used for

calibration. Table 3.4 presents the parameter values obtained as a result of calibration.

Table 3.4. Parameter values

θ1 θ2 σ1 σ2 κ1 κ2 λ1 λ2 h

0.0254 0.0175 0.0710 0.1870 0.0978 0.8035 −0.0350 −0.0490 0.001

After calibration, the sigma point generation method, described in the previous section, is used to

generate sigma points at each t(k), with initial values for mean θj and diagonal elements of co-

variance as
θjσ2

j

2κj
. Eleven sigma points are generated at each t(k). Bearing in mind the nonnegativity

restriction on state variables X j ≥ 0 any negative element of state estimate X j(k|k−1) are replaced

with zero. This is a commonly used heuristic in nonlinear models with non-negative states, see, e.g.

Geyer & Pichler [1999]. These points are then used to construct X̂ j(k|k), j = 1, 2 and Pxx(k|k),

which are employed in order to obtain predictions of Y i(k), i = 1, 2, 3. MRSE and MRAE errors in

this example are computed as

RMSE(i) =

√√√√ 1
F

F∑

j=1

(Y i(j)− Ŷ i(j))2,

MRAE(i) =
1
F

F∑

j=1

|Y i(j)− Ŷi(j)|
Y i(j)

,

where the subscript i denotes the ith time to maturity. Tables 3.5-3.8 list the errors computed for

one step ahead prediction of yields for different types of filters for in-sample and out-of-sample data,

where results are averaged over 100 runs. These filters are the EKF, traditional UKF and HOSPoF.

It can be seen from these tables that HOSPoF outperforms both EKF and UKF for in-sample and

out-of-sample data and for all times to maturity. In particular, the improvement for out-of-sample

28



CHAPTER 3. HIGHER ORDER SIGMA POINT FILTER

predictions achieved with HOSPoF is over 10% for all the times to maturity, as compared to UKF.

Prices of zero-coupon bonds are very important as they are used for calculations of the prices of

interest rate derivatives. A 1% error in the price of the underlying bond may lead to a 25% error

in an option price and this is justifiably unacceptable to many traders. Hence, it is essential to get

the price as accurate as possible and HOSPoF enables user to obtain that extra degree of accuracy

when compared to UKF. This improvement is obtained with very little extra computational effort,

viz. computing the marginal 3rd and 4th moments and hence computing α, β using the closed-form

expression in (3.2).

Table 3.5. Average RMSE for 1 step ahead in-sample prediction

τk EKF UKF HOSPoF

1Y 0.00264 0.00114 0.00110

2Y 0.00432 0.00231 0.00224

4Y 0.00621 0.00375 0.00362

Table 3.6. Average MRAE for 1 step ahead in-sample prediction

τk EKF UKF HOSPoF

1Y 0.00237 0.00079 0.00075

2Y 0.00388 0.00198 0.00190

4Y 0.00606 0.00365 0.00349

Table 3.7. Average RMSE for 1-step ahead out-of-sample prediction

τk EKF UKF HOSPoF

1Y 0.007417 0.00087 0.00083

2Y 0.012736 0.00147 0.00140

4Y 0.022402 0.00283 0.00266
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Table 3.8. Average MRAE for 1-step ahead out-of-sample prediction

τk EKF UKF HOSPoF

1Y 0.004114 0.00075 0.00066

2Y 0.006832 0.00144 0.00125

4Y 0.011320 0.00300 0.00268

3.4 Theoretical accuracy of higher order moment matching filter

In this section, the theoretical accuracy of the sigma point generation algorithm used in HOSPoF is

considered in the scalar case with smooth nonlinearities, in terms of estimating the conditional mean

and the conditional variance.

3.4.1 Mean estimation

The univariate case is considered and as in section 3.2 one starts with a random variable X with

mean X̄ and variance Pxx. Suppose that the second random variable Z is related to X through the

nonlinear transformation Z = f(X ). Then the expected value of Z is:

Z̄ = f(X̄ ) +
1
2!

f′′Pxx +
1
3!

f′′′E(X − X̄ )3 +
1
4!

f′′′′E(X − X̄ )4 + · · · . (3.9)

Now using the new sigma points, X (i), and the corresponding probability weights, Wi introduced in

section 3.2, the accuracy in estimating the mean Ẑ =
∑2N

i=0 Wif(X (i)) is analyzed.

Proposition 3.3

If the function f is at least five times differentiable, then

Ẑ = f(X̄ ) +
1
2!

f′′Pxx +
1
3!

f′′′ω +
1
4!

f′′′′ψ + · · · , (3.10)

where, as per section 3.2, ω and ψ are the marginal 3rd and 4th central moments respectively, the

derivatives f ′′ etc are computed at X = X̄ .

Proof: Expanding the expression for Ẑ for the minimum possible number of sigma points (= 2N +

1 = 3), one gets

Ẑ =
2N∑

i=0

Wif(X (i)) = W0f(X̄ ) + W1f(X̄ + α
√

NPxx) + W2f(X̄ − β
√

NPxx).
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Further expanding f around the mean X̄ ,

Ẑ = W0f(X̄ )

+ W1

(
f(X̄ ) + f′α

√
Pxx +

1
2!

f′′(α
√

Pxx)2 +
1
3!

f′′′(α
√

Pxx)3 +
1
4!

f′′′′(α
√

Pxx)4 + · · ·
)

+ W2

(
f(X̄ )− f′β

√
Pxx +

1
2!

f′′(β
√

Pxx)2 − 1
3!

f′′′(β
√

Pxx)3 +
1
4!

f′′′′(β
√

Pxx)4 + · · ·
)

.

Collecting similar powers of Pxx together gives

Ẑ = f′
√

Pxx[W1α−W2β] +
1
2!

f′′Pxx[W1α
2 + W2β

2]

+
1
3!

f′′′
√

Pxx
3[W1α

3 −W2β
3] +

1
4!

f′′′′Pxx
2[W1α

4 + W2β
4] + f(X̄ ),

and using (3.1) simplifies Ẑ to

Ẑ = f(X̄ ) +
1
2!

f′′Pxx +
1
3!

f′′′
√

Pxx
3[α− β] +

1
4!

f′′′′Pxx
2[α2 − αβ + β2] + ... .

Expression (3.2) helps to eliminate α and β and obtain the required result.

Comparing (3.9) with (3.10), it is concluded that the mean Ẑ is calculated accurate to the 4th order

using the new method for generating sigma points. This is a great improvement compared with the

2nd order accuracy achieved in Julier & Uhlmann [2004].

This 4th order accuracy, achieved in (3.10), is preserved in the univariate augmented case as well.

This holds since with n = 1 and m = 2, there will be 2N + 1 = 7 sigma points

X̄ , X̄ + α
√

N




P

0

0


 , X̄ − β

√
N




P

0

0


 , X̄ ±

√
N




0

Q

0


 , X̄ ±

√
N




0

0

R


 ,

where X̄ =




X̂
0

0


. The corresponding probability weights are W̃0, W1, W2, W̃ , where W̃ = 1

2N

and W̃0 = 1 − W1 − W2 − 4W . Then expanding
∑2N

i=0 Wif(X (i)) and using the definition of an
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augmented function f one obtains

Ẑ =
2N∑

i=0

Wif(X (i))

= (W̃0 + 4W̃ )f(X̂ ) + W1f(X̂ + α
√

NP ) + W2f(X̂ − β
√

NP )

+ W̃ (0 +
√

NQ) + W̃ (0−
√

NQ)

= W0f(X̂ ) + W1f(X̂ + α
√

NP ) + W2f(X̂ − β
√

NP ),

which is exactly the same as a starting point in the proof of Proposition 3.3.

3.4.2 Variance estimation

For accuracy in variance estimation for Z first consider:

Pzz = (f′)2Pxx − 1
4
(f′′)2Pxx

2 + f′f′′E(X − X̄ )3 + (
1
3

f′f′′′ +
1
4

f′′2)E(X − X̄ )4 + ... . (3.11)

Using the new sigma points and probability weights as in (3.1) one can write covariance Pzz as

Proposition 3.4

Pzz = (f′)2Pxx − 1
4
(f′′)2P2

xx + f′f′′ω + (
1
4
(f′′)2 +

1
3

f′f′′′)ψ + ... . (3.12)

Proof: Start with

Pzz =
2N∑

i=0

Wi(Z(i) − Z̄)2

= W0(f(X̄ ))2 + W1(f(X̄ + α
√

NPxx))2 + W2(f(X̄ − β
√

NPxx))2 − Z̄2
.

Applying (3.10) for Z̄ and after simplifying one obtains

Pzz = −1
4
(f′′)2Pxx

2 + (f′)2Pxx[W1α
2 + W2β

2] + f′f′′
√

Pxx
3[W1α

3 −W2β
3]

− f′f′′
√

Pxx
3[W1α−W2β] + (

1
4
(f′′)2 +

1
3

f′f′′′)P2
xx[W1α

4 + W2β
4] + ... .

Getting rid off α and β through (3.2) will yield the required result.

Comparing (3.12) with (3.11) it is concluded that the new sigma point filter estimates the variance

correct up to the 4th order for the univariate case. This is an improvement not only over accuracy to

the 2nd order of the traditional unscented transformation method in Julier & Uhlmann [2004], but

also over the 2nd order accuracy in the scaled unscented transformation in Julier [2002].
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3.5 Summary

It is believed that propagating information about the higher order moments might give a better idea

about the shape of the distribution and its departure from Gaussianity. This problem arises since

the nonlinear function in the transition equation will often lead to a conditional density that is not

Gaussian in general. Traditional UKF or scaled UKF only match the mean vector and the covariance

matrix, while skewed approach matches the third moment, skew, as well. However, current methods

that match higher order moments require optimization or heavily rely on the analytical solver. This

questions suitability of these methods for online applications. In this chapter, a new filtering algo-

rithm has been proposed, in which the sigma points and the corresponding probability weights are

modified at each step to match exactly the predicted values of the average marginal skewness and the

average marginal kurtosis, besides matching the mean vector and covariance matrix. The expressions

for the new sigma points and the corresponding probability weights are given in closed form and do

not require optimization. Since there are only two degrees of freedom, i.e. α and β, the average

marginal skewness and the average marginal kurtosis of the state vector are chosen to be matched. It

is understood, that this higher order moment matching might not add value when averages are taken

over a very large state dimension. However, the class of applications where the dimension is five or

less is still very large; in fact, it is unusual to find time series models with more than four latent states

in econometrics and finance.

It has been shown that in the univariate case the HOSPoF predicts mean and variance up to fourth

order of accuracy, which is a significant improvement on a similar result for the traditional UKF.

Two numerical examples, one simulation and one based on the real financial market data illustrate

the utility of the proposed algorithm. At the very least, HOSPoF is a worthy competitor to UKF and

EKF as a filter of choice in many practical applications involving nonlinear filtering.

The dependence of the number of sigma points on the state dimension of the system in the HOSPoF

has been mentioned previously. Also, introducing more randomness in sigma point generation might

provide more flexibility in posterior density representation. This idea is explored further in the next

chapter.
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Chapter 4

A new method for generating random

sigma points

4.1 Introduction

Chapter 3 dealt exclusively with a deterministic, approximate filter for the nonlinear system. Such

filters are numerically inexpensive; however, re-constructing a conditional distribution using a par-

ticle filter can improve the accuracy significantly at the expense of increased computations. In this

chapter, a modified version of HOSPoF, outlined in the previous section, is used as a proposal dis-

tribution for a particle type filter and will compare it with UKF and prior distribution as proposals.

It is also of interest to use the information about higher order moments and not just the mean and

the covariance (as in UKF or EKF-based proposals) for generating particles for the PF. Continuing

with Wi and X i(k + 1|k + 1), computed in HOSPoF, will limit the user to a proposal with 2n + 1

deterministic points or particles. Since PF type filters work best for a large number of randomly

generated particles, the aim is to find a non-Gaussian proposal which matches the given mean, co-

variance matrix, average marginal skewness and average marginal kurtosis. Further, the aim is to

obtain the particles and the probability weights which achieve this moment matching in closed form,

e.g. without needing an analytic solver or optimizer. A method to achieve this is described next and

is a further modification of HOSPoF outlined in the previous chapter. The material presented in this
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chapter forms the basis of Ponomareva & Date [2012].

4.2 A moment-matching proposal distribution

Start by using the results from Date et al. [2008], where the authors defined a multivariate discrete

distribution over 2ns + 1 points and associated probability weights as follows:

Definition 4.1

X (k) = X̂ ± 1√
2spi

Lj , Wk = pi, (4.1)

X (0) = X̂ , W0 = ps+1, (4.2)

where i = 1, 2, ..., s, j = 1, 2, ..., n, k = 1, 2, ..., 2ns, n is the dimension of the state vector X as

before, 2n
∑s

i=1 pi + ps+1 = 1 and Lj denotes the jth column of a matrix L.

By choosing the value of the parameter s the size of the set of probability weights is determined, pi.

If L is a symmetric positive definite matrix such that LLT = Pxx, then sigma point filter, based on

(4.1)- (4.2), matches the mean vector, the covariance matrix and zero third marginal moment exactly,

see Date et al. [2008] for the proofs. Extending this method to non-symmetric distributions, (4.2)

is changed to introduce 2 new sigma points that would carry the information about average marginal

third and fourth moments:

Definition 4.2

X (k) = X̂ ± 1√
2spi

Lj , Wk = pi,

X (0) = X̂ , W0 = ps+1W̃0,

X (2ns+1) = X̂ +
α̃√
ps+1

Z, W2ns+1 = ps+1W̃1,

X (2ns+2) = X̂ − β̃√
ps+1

Z, W2ns+2 = ps+1W̃2. (4.3)

Here i, j, k are as in definition 4.1 and pi satisfy 2n
∑s

i=1 pi + ps+1 = 1 , Z is an arbitrary non-

zero deterministic vector. However Z can also be randomly generated as long as it is non-zero and

Pxx − ZZT > 0. The matrix L is such that LLT + ZZT = Pxx and W̃i satisfy
∑2

i=0 W̃i = 1 and
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are given by

W̃1 =
1

α̃(α̃ + β̃)
, W̃2 =

1

β̃(α̃ + β̃)
, W̃0 = 1− 1

α̃β̃
,

where the parameterization of W̃i follows the structure used in (3.1).

Aim is to match the average marginal third and fourth moments, 1
n

∑n
j=1 ω̃j and 1

n

∑n
j=1 ψ̃j respec-

tively, which are defined in the same way as chapter 3. The closed-form expression for α̃ and β̃ are:

Definition 4.3

α̃ =
1
2
φ̃1 ± 1

2

√
4φ̃2 − 3φ̃2

1,

β̃ = −1
2
φ̃1 ± 1

2

√
4φ̃2 − 3φ̃2

1, (4.4)

where the values of the same sign are taken and

φ̃1 =

∑n
j=1 ω̃j

√
ps+1∑n

k=1 Z3
k

,

φ̃2 = ps+1

∑n
j=1 ψ̃j − 1

2s2

∑n
l=1

∑n
k=1 L4

lk(
∑s

i=1
1
pi

)∑n
k=1 Z4

k

.

2ns + 3 randomly generated sigma points and corresponding probability weights defined in (4.3)

match exactly the given mean, the covariance matrix, the average marginal third and fourth moments,

irrespective of the precise choice of pi, as is stated in the next proposition.

Proposition 4.1

With X (i),Wi, α̃, β̃ chosen as in (4.3)- (4.4), the following properties hold:
2ns+2∑

i=0

Wi = 1, (4.5)

2ns+2∑

i=0

WiX (i) = X̂ , (4.6)

2ns+2∑

i=0

Wi(X (i) − X̂ )(X (i) − X̂ )T = Pxx, (4.7)

1
n

n∑

j=1

2ns+2∑

i=0

Wi(X (i)
j − X̂ j)3 =

1
n

n∑

j=1

ω̃j , (4.8)

1
n

n∑

j=1

2ns+2∑

i=0

Wi(X (i)
j − X̂ j)4 =

1
n

n∑

j=1

ψ̃j , (4.9)
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Proof: Equations (4.5)- (4.7) can be verified by straightforward algebraic manipulation. Substituting

expressions for X (i) and Wi from (4.3) into the left-hand side of equations (4.8)-(4.9)

α̃− β̃ =

∑n
j=1 ω̃j

√
ps+1∑n

k=1 Z3
k

,

α̃2 − α̃β̃ + β̃2 = ps+1

∑n
j=1 ψ̃j − 1

2s2

∑n
l=1

∑n
k=1 L4

lk(
∑s

i=1
1
pi

)∑n
k=1 Z4

k

.

By using the definitions for α̃ and β̃ from (4.4), the required result is obtained.

By imposing a constraint φ̃2 ≥ 3
4 φ̃1

2
, an upper limit for

∑s
i=1

1
pi

is obtained, namely ζ. The follow-

ing proposition gives an expression for ζ.

Proposition 4.2

ζ = 2s2

∑n
j=1 ψ̃j − 3

4

∑n
k=1 Z4

k(
∑n

j=1 ω̃j∑n
k=1 Z3

k
)2

∑n
l=1

∑n
k=1 L4

lk

(4.10)

Proof: The proof is easy to verify by a straightforward algebraic manipulation.

4.3 Algorithm for generating sigma points

4.3.1 Basic algorithm

Once ζ is determined using (4.10), the algorithm for generating 2ns + 3 sigma points, matching

the given mean, the covariance matrix and the average marginal third and fourth moments exactly, is

provided below.

1. Generate pi > 0 for i=1,2,..., s such that
∑s

i=1
1
pi

< ζ, ps+1 = 1−2n
∑s

i=1 pi. Note that pi can

be generated using a random number generator, and s is an arbitrary positive integer. Hence

the number of particles is independent of the state dimension. Note also that the distribution of

pi is of no consequence since the moment-matching is independent of how pi are generated.

2. Calculate φ̃1 and φ̃2 for an arbitrary vector Z using definition 4.2.

3. Closed form solution for α̃ and β̃ are given by (4.4).
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4. Construct the 2ns + 3 support points using (4.3).

It is worth outlining the differences between the traditional particle filter and the approach proposed

here. First, while re-sampling is possible after moment matching scenario generation, the moments

will no longer be matched after re-sampling. This limitation is not specific to the method and is

shared by all particle filters which use moment matching to generate a proposal. The defects of

several resampling algorithms are discussed in Fu & Jia [2010]. Secondly, the generated samples are

not i.i.d but are “almost independent”, with some dependence introduced through the constraints on

pi. For a large s, this dependence is minimal, and it may be preferable than generating a fixed number

of points using a deterministic generator, as in the case of the UKF. This intuition is supported by the

numerical experiments in the next section. This new method of using moment-matching proposal is

denoted as PF-HOSPoF.

4.3.2 Stratified sampling

One simple way of ensuring that pi form a valid measure is to choose pi between 0 and 1
2n . The

problem that can arise using this method is that all pi values are too small. This means that the scaling

factors 1√
pi

, used in the calculation of sigma points, become very large. As a result, samples can be

non-uniformly spread, gathered in clusters far away from the mean value. An alternative around this

is to use stratified sampling. For example, it is possible to generate s
3 values of pi randomly between

I1 and I2, I2 and I3, I3 and I4, where 0 < I1 < I2 < I3 < I4 < 1. Using the constraints on pi the

appropriate interval bounds Ij can be selected for j = 1, ..., 4. Since for total 2ns random particles

it is required that I4 ≤ 1
2ns and also I4 > I3 > I2 holds, one can pick I4 = 1

2ns .

The probability weights pi have to satisfy the following two inequalities:

0 <

s∑

i=1

pi <
1
2n

, (4.11)

0 <
s∑

i=1

1
pi

< ζ. (4.12)

If ζ > 4
3ns2, then the suggested algorithm for stratified sampling is as follows:

1. Set I4 = 1
2ns .
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2. Choose x and y such that y > x > 2 and x + y < 3ζ
ns2 . Set I3 = 1

xns and I2 = 1
yns .

3. Choose I1 such that 0 < 1
I1

< 1
3ζ
s
−(x+y)ns

.

4. Generate s
3 values of pi randomly between I1 and I2, I2 and I3, I3 and I4 respectively.

Proposition 4.2

The probabilities pi, generated using the above algorithm, would satisfy the required inequalities

(4.11) and (4.12).

Proof: Rewriting (4.11) and (4.12) in terms of intervals Ij , the following inequalities that Ij have

to satisfy can be obtained:

I4 + I3 + I2 <
3

2ns
, (4.13)

1
I3

+
1
I2

+
1
I1

<
3ζ

s
. (4.14)

Substituting expression for I4, I3 = 1
xns and I2 = 1

yns , where y > x > 2, into (4.13) and (4.14):

x + y

xyns
<

1
ns

,

1
I1

<
3ζ

s
− (x + y)ns.

The first inequality holds for y > x > 2, that is already satisfied by the choice of I3 and I2. In the

second inequality it is required that I1 > 0, so 4 < x + y < 3ζ
ns2 must hold. Solutions x and y, that

satisfy inequalities above, exist when 3ζ
ns2 > 4, i.e. ζ > 4

3ns2.

4.4 Numerical examples

It is of interest to test the performance of the new filter PF-HOSPoF on one numerical and one

financial market data examples.
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4.4.1 CEV type time series model

This numerical example has the following state and measurement equations:

X (k + 1) = aX (k) + b + σw{(X (k))2}γ/2w(k + 1),

Y(k) = cX (k) + d + σvv(k),

where noise terms w(k) and v(k) are zero mean, unit variance and uncorrelated Gaussian random

variables. a, b, c, σw > 0 and σv > 0 are constants. This type of time series includes the constant

elasticity of variance (CEV) model described in Cox [1996] and exponential affine term structure

models including the Cox, Ingersoll and Ross model Cox et al. [1985]. Table 4.1 provides the

parameter values for the model. Three different values for γ have been used: 0.125, 0.25 and 0.375.

Table 4.1. Parameter values

a 0.9

b 0.1

c 1.0

d 0.1

σw 0.01

σv 0.01

In order to evaluate the efficiency of these filters the average of the root mean squared error

(AvRMSE) is calculated in one step ahead prediction, where the root mean squared error for sample

path i is computed for F time-steps as

RMSE(i) =

√√√√ 1
F

F∑

k=1

(X (i)(k)− X̂ (i)
(k|k))2.

The average of the sample mean of the relative absolute error (AvMRAE) is also considered, with

MRAE defined as

MRAEi =
1
F

F∑

k=1

|X
(i)(k)− X̂ (i)

(k|k)
X (i)(k)

|.

This was computed over the relevant set of F observations. In this example F = 100 and the average

errors are based on 100 sample paths. 1000 particles were used for the particle filter in all cases.
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Tables 4.2-4.3 summarize results for these filters with four different choices of proposal densities, a

particle filter with approximate transition density as proposal (PF-T), a particle filter with Gaussian

proposal generated by the unscented Kalman filter (PF-UKF), a particle filter with proposal generated

by the extended Kalman filter (PF-EKF) and finally a particle filter with a possibly non-Gaussian

proposal using the new moment matching heuristic proposed here (PF-HOSPoF).

Table 4.2. Average root mean squared error in 1 step ahead prediction

γ PF-T PF-EKF PF-UKF PF-HOSPoF

0.125 0.022173 0.021121 0.010929 0.009559

0.250 0.022345 0.021273 0.011220 0.009635

0.375 0.022781 0.022055 0.011267 0.009733

Table 4.3. Average relative absolute error of 1-step ahead prediction

γ PF-T PF-EKF PF-UKF PF-HOSPoF

0.125 0.000701 0.000609 0.000214 0.000149

0.250 0.000712 0.000616 0.000218 0.000171

0.375 0.000739 0.000632 0.000239 0.000172

It can be observed from the tables that the PF-HOSPoF produces the smallest errors for three different

values of γ when compared to the PF-UKF, PF-EKF and PF-T. It is also worth noting, that only 103

sigma points were used in PF-HOSPoF compared to three other particle filters. Due to unequal

probability weights employed in PF-HOSPoF, it is possible to approximate the ‘shape’ of the density

function by using a smaller number of points.The results are also illustrated in figures 4.1-4.2 for

easy visual comparison of all four methods used in this simulation example.

4.4.2 Multi-factor CIR model

For the example with empirical data the multi-factor CIR model is implemented with data and pa-

rameters used in the previous chapter. Tables 4.4-4.7 list the errors computed for one step ahead

prediction of zero coupon bond prices for different types of filters, where results are average over

100 runs. These filters are: a particle filter with approximate transition density as proposal (PF-T), a
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Figure 4.1: AvRMSE for CEV model

Figure 4.2: AvMRAE for CEV model

particle filter with Gaussian proposal generated by the unscented Kalman filter (PF-UKF), a particle

filter with proposal generated by the extended Kalman filter (PF-EKF) and finally a particle filter

with a possibly non-Gaussian proposal using the new moment matching heuristic proposed here (PF-

HOSPoF). Note that, for PF-T, the mean and the variance of the transition density is known for this

model structure; please see Cox et al. [1985] for an exact expression of density in terms of model

parameters in the scalar case. Table 4.8 includes a summary of average (over 100 runs) computational

times taken for one run of PF-UKF and PF-HOSPoF, and the average improvement for both types of

errors achieved by PF-HOSPoF over PF-UKF.

Table 4.4. Average RMSE in 1 step ahead in-sample prediction

τk PF-T PF-EKF PF-UKF PF-HOSPoF

1Y 0.013416 0.001603 0.000179 0.000139

2Y 0.019821 0.001946 0.000238 0.000193

4Y 0.025710 0.002382 0.000271 0.000223
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Table 4.5. Average MRAE of 1-step ahead in-sample prediction

τk PF-T PF-EKF PF-UKF PF-HOSPoF

1Y 0.012056 0.001449 0.000150 0.000117

2Y 0.018275 0.001629 0.000204 0.000159

4Y 0.025667 0.002277 0.000259 0.000208

Table 4.6. Average RMSE in 1 step ahead out-of-sample prediction

τk PF-T PF-EKF PF-UKF PF-HOSPoF

1Y 0.006950 0.000902 0.000162 0.000126

2Y 0.010574 0.001218 0.000220 0.000142

4Y 0.016215 0.002224 0.000257 0.000209

Table 4.7. Average MRAE of 1-step ahead out-of-sample prediction

τk PF-T PF-EKF PF-UKF PF-HOSPoF

1Y 0.006789 0.000863 0.000141 0.000105

2Y 0.010422 0.001158 0.000191 0.000126

4Y 0.017335 0.002237 0.000244 0.000195

Table 4.8. Comparison of accuracy and computational time for PF-UKF and PF-HOSPoF

Time taken on average Time improvement Accuracy improvement of

Data Type for one run, s of PF-HOSPoF PF-HOSPoF over PF-UKF

PF-UKF PF-HOSPoF over PF-UKF AvRMSE AvMRAE

In-sample 101.0 53.7 46.8% 19.7% 21.2%

Out-of-sample 29.1 5.7 80.4% 25.5% 26.5%

From the tables, it can be seen that the PF-HOSPoF outperforms the PF-T, PF-EKF and PF-UKF for

all the three times to maturity for out-of-sample data. The average improvement achieved with PF-

HOSPoF is about 23% for all the maturities, as compared to PF-UKF. This improvement is obtained

with very little extra computational effort, viz. computing the marginal 3rd and 4th moments and

hence computing α, β using the closed-form expression in (4.4). The average computational times

for PF-HOSPoF are also significantly smaller, than those required for PF-UKF. This is due to only
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203 sigma points being used in PF-HOSPoF and 1000 particles in PF-UKF. Using unequal random

probability weights allows better capturing of the shape of the distribution and offers computational

advantage. Compared to numerical results for HOSPoF and UKF for the same model from chapter

3, the results in this chapter demonstrate a much better improvement of PF-HOSPoF over PF-UKF.

It can be explained that a larger set of randomly generated sigma points and the corresponding prob-

ability weights, employed by PF-HOSPoF, allow an improved representation of the posterior density

of the state vector. The results are also represented in figures 4.3-4.6 for easy visual comparison,

with the difference between PF-UKF and PF-HOSPoF magnified in separate plots. All the numerical

experiments were performed using Matlab 7.2 on a desktop with a dual core Pentium IV processor,

2.40GHz and 3.24Gb RAM.

4.5 Summary

In this chapter the heuristic, proposed in chapter 3, has been further extended to non-deterministic,

moment matching sampling from the approximate posterior distribution in a particle like filter. The

new method based on the random sigma point generation is called PF-HOSPoF.

This method is significantly different from the one discussed in chapter 3, as not only any number

of particles can be generated, but also almost all of the corresponding probabilities are generated

randomly. These sigma points and the probability weights match the given mean vector, the covari-

ance matrix, the average marginal third and fourth moments exactly, without the use of optimization.

This matching of higher order moments allows better representation of the posterior density and

propagates more information about the shape of the distribution, than is achieved by the proposals

generated by EKF and UKF. This intuition has been demonstrated by two numerical examples, one

simulation and the other one based on real financial market data, where both illustrate the utility of

the proposed algorithm. In the latter example, a much more significant improvement of PF-HOSPoF

over PF-UKF has been achieved, compared to improvement of HOSPoF over UKF in chapter 3. This

is due to introduction of randomness into the set of the new sigma points employed in PF-HOSPoF.

The stratified sampling algorithm has also been introduced for random weights generation.
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Figure 4.3: AvRMSE for in-sample data for CIR model
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Figure 4.4: AvMRAE for in-sample data for CIR model
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Figure 4.5: AvRMSE for out-of-sample data for CIR model
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Figure 4.6: AvMRAE for out-of-sample data for CIR model
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Chapter 5

Comparison with maximum entropy

distributions

5.1 Introduction

In chapter 4 a method has been proposed for generation of random number of sigma points and cor-

responding probability weights that would match the mean vector, the covariance matrix, the average

marginal third and fourth moments, without the use of optimization. In this chapter a comparison of

the random moment matching method with entropy maximization is presented.

5.2 Maximum entropy distributions

The problem of determining the discrete probabilities of a set of events (or the continuous probability

density function over an interval), conditioned upon the moment constraints, is quite common in

probability and statistics. It might be possible to easily and accurately compute the first few moments

from the data, but not know the probability distribution itself. There are several methods that solve

this problem and in this section the maximum-entropy approach is considered. The focus is only on

the discrete random variables, for continuous case please see Shannon [1948] and Smith [1993].

Consider discrete random variables X (i) with corresponding probabilities pi, where i = 1, ..., n. The
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information about this probabilistic system is available in the form of constraint of probabilities

n∑

i=1

pi = 1, pi ≥ 0, i = 1, 2, ..., n, (5.1)

and the moment constraints

n∑

i=1

gj(X (i))pi = aj , j = 1, 2, ...,m, (5.2)

where gj(X (i)) and aj are known constants.

The uncertainty measure of probability distribution, called entropy, was introduced in Shannon

[1948] and is given by:

H(p) = −
n∑

i=1

pi ln pi. (5.3)

The use of the entropy measure in statistical problems was first proposed in Jaynes [1957]. In

particular problem of determining pi conditioned on (5.1) and (5.2), can be solved by maximizing

the Shannon entropy in (5.3). The maximum entropy probability distribution is the most unbiased

probability distribution conditioned upon the available information.

5.3 Computational issues

The problem of maximizing entropy subject to moment constraints is a convex optimization problem.

The Lagrangian multiplier method in Fletcher [1991] can be used to determine pi subject to (5.1)

and (5.2) as:

pi = exp
(
−λ0 − λ1g1(X (i))− λ2g2(X (i))− ...− λjgj(X (i))

)
, i = 1, 2, ..., n, (5.4)

where λ0, λ1, ..., λm are the Lagrange multipliers corresponding to the m+1 constraints. Substituting

(5.4) into (5.1) and (5.2) gives:

λ0 = ln




n∑

i=1

exp(−
m∑

j=1

λjgj(X (i)))


 , (5.5)

ak =

∑n
i=1 gk(X (i))exp(−∑m

j=1 λjgj(X (i)))∑n
i=1 exp(−∑m

j=1 λjgj(X (i)))
, (5.6)
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where k = 1, 2, ..., m. Equations (5.6) represent m nonlinear equations with m unknowns. Rewrit-

ing these equations in the form of residuals makes them more convenient to find the numerical solu-

tion:

R̃k = 1−
∑n

i=1 gk(X (i))exp(−∑m
j=1 λjgj(X (i)))

ak
∑n

i=1 exp(−∑m
j=1 λjgj(X (i)))

, (5.7)

for k = 1, 2, ..., m. The least-squares method (see, e.g. Fletcher [1991]) is used to find the La-

grangian multipliers by minimizing the sum of the squares of the residuals:

R =
m∑

k=1

R̃2
k. (5.8)

5.4 Methodology

It is desirable to compare probability weights, Wi, obtained by the new random sigma point gener-

ation method in chapter 4, section 4.2, with the pi, obtained using the maximum entropy method.

It is of interest to test these two methods on n = 9 univariate points, X (i), given m = 4 moment

constrains and with gj(X (i)) defined as:

g1(X (i)) = X (i),

g2(X (i)) = (X (i) − a1)2,

g3(X (i)) = (X (i) − a1)3,

g4(X (i)) = (X (i) − a1)4, (5.9)

where i = 1, 2, ..., n and a1 =
∑n

i=1 g1(X (i))pi. Here a1 is the mean, a2 is the covariance, a3 and

a4 are respectively the average marginal third and fourth moments. Two sets of probabilities will be

calculated for samples generated from four known probability distributions. The idea is to use the

moments of the sampled values to generate two sets of probability weights, using the new method

and maximum entropy one.

For comparison the relative entropy or Kullback Leibler distance, see Cover & Thomas [1991] for

more details, is used to determine which set of probabilities is closest to the original distribution.

Relative entropy for two discrete distributions P and Q, D(P ||Q), is defined as:

D(P ||Q) =
n∑

i=1

Pi ln
Pi

Qi
, (5.10)
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where i = 1, 2, ..., n. Here P is considered a “true” distribution and Q is an approximation of it. The

relative entropy is a measure of the distance between two distributions, although it is not a metric. In

this particular example, it is possible to interpret it as the set of probabilities with the smallest D that

gives an accurate approximation of the “true” distribution.

For the discrete approximation P to each of the four distributions that are to be tested method in

Hochreiter& Pflug [2007] will be used. It states that among all one-dimensional probability distri-

butions G̃ which sit on the mass points X (1),X (2), ...,X (n), the one closest to G in the Wasserstein

distance has the following probability weights:

Pi = G(
X (i) + X (i+1)

2
)−G(

X (i) + X (i−1)

2
), (5.11)

where X (0) = −∞ and X (n+1) = +∞. Here G is a cumulative density function.

Finally, the algorithm for the comparison test for probability weights Wi and pi would be as follows:

1. Draw samples from a known probability distribution, calculate the first four moments of these

variables to determine aj , j = 1, ..., 4.

2. Using these first four moments in the random sigma point generation method, obtain 9 sigma

points, X (i), and corresponding probability weights, Wi, i = 1, ..., 9.

3. Calculate values of gj(X (i)) required to determine pi in maximum-entropy method.

4. Determine pi by constructing and minimizing R in (5.8).

5. Using X (i), calculate the Pi in (5.11).

6. Find DW and Dp using (5.10) with Wi and pi respectively instead of Qi, i = 1, 2, ..., n.

5.5 Examples

The test will be carried out for samples generated from four known probability distributions. These

distributions are standard normal(Gaussian), Student’s t-distribution, Laplace and Gumbel probabil-

ity distributions. Matlab is used to generate random samples from these distributions and in-built

optimization solver in Excel to find the minimum of R from (5.8). Figures 5.1-5.4 represent the
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simulated densities along with two approximations, one with Wi generated by the random point

generation method and the other with pi obtained through entropy maximization.

5.5.1 Normal distribution

Standard norma distribution is well known probability distribution. 1000 samples are drawn from

this distribution with zero mean and unit standard deviation. Then the mean(a1), covariance(a2),

average marginal third(a3) and fourth (a4) moments are calculated from the data. These are shown

in the table below.

Table 5.1. Values of aj

a1 a2 a3 a4

0.0179 0.9563 0.0517 2.8874

The new random sigma point generation method gives X (i), Wi and then probability weights pi are

obtained using the maximum-entropy method. These are shown in the table 5.2. Table 5.3 presents

the minimized sum of residuals value, R, relative entropy for Wi and pi.

Table 5.2. Values of sigma points and probability weights

X −2.5525 −1.2436 −1.1457 −0.9109 0.0179 0.9467 1.1815 1.2794 2.7687

W 0.021 0.0701 0.0824 0.1293 0.3957 0.1293 0.0824 0.0701 0.0196

p 0.0211 0.0662 0.0824 0.1361 0.3896 0.1378 0.082 0.0652 0.0197

Table 5.3. Relative Entropy values

R D(P ||W ) D(P ||p) Improvement of p over W

5.83 ∗ 10−7 0.02785 0.02723 2.22%

5.5.2 Students’ t-distribution

For this distribution a smaller sample of 100 points is generated and the first four moments are

calculated as before. These values are given in table 5.4, whereas table 5.5 shows the two sets of

probability weights and finally table 5.6 presents the relative entropy values.
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Table 5.4. Values of aj

a1 a2 a3 a4

0.0516 1.1129 0.2308 4.6196

This distribution has heavier tails than normal distribution, which is reflected in higher average

marginal third and fourth moments.

Table 5.5. Values of sigma points and probability weights

X −3.0991 −1.3555 −1.3095 −0.9641 0.0516 1.0673 1.4127 1.4588 4.2393

W 0.0096 0.0749 0.0801 0.1438 0.3854 0.1438 0.0801 0.0749 0.0072

p 0.0093 0.076 0.0828 0.1504 0.3644 0.1554 0.081 0.0735 0.0072

Table 5.6. Relative Entropy values

R D(P ||W ) D(P ||p) Improvement of p over W

3.57 ∗ 10−4 0.02599 0.02595 0.13%

5.5.3 Gumbel distribution

Here the standard Gumbel distribution is used that has zero location parameter, µ, and unit scale

parameter, β. In this case, the cumulative distribution is G(x) = exp(−exp(−x)). 1000 samples

are generated with x = − ln(− ln(U)), where U is drawn from a uniform distribution in the interval

[0, 1]. The first four moments are generated from the data and are shown these in table 5.7. Table 5.8

shows the two sets of probability weights and finally table 5.9 presents the relative entropy values.

Table 5.7. Values of aj

a1 a2 a3 a4

0.5708 1.6239 2.2432 14.4907

Table 5.8. Values of sigma points and probability weights

X −1.4591 −0.9745 −0.5362 −0.46 0.5708 1.6779 2.1162 2.6008 5.5484

W 0.0427 0.0737 0.1435 0.0918 0.3694 0.1435 0.0737 0.0427 0.019

p 0.0016 0.0422 0.1913 0.2232 0.2655 0.0939 0.0793 0.0868 0.0161
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Table 5.9. Relative Entropy values

R D(P ||W ) D(P ||p) Improvement of p over W

2.56 ∗ 10−2 0.0593 0.0574 3.22%

5.5.4 Laplace distribution

Here the Laplace distribution is used with zero location parameter, µ, and unit scale parameter,

β. 1000 samples are generated, x = −sgn(U) ln(1 − 2|U |), where U is drawn from the uniform

distribution in the interval (−1
2 , 1

2 ]. The sgn(x) function is a sign function equal to −1 if x is

negative, +1 if it is positive and 0 if x = 0. The cumulative distribution function is G(x) = 1
2(1 +

sgn(x)(1 − exp(−|x|))). The first four moments of the data are shown in table 5.10 below. Table

5.11 shows the two sets of probability weights and finally table 5.12 presents the relative entropy

values.

Table 5.10. Values of aj

a1 a2 a3 a4

−0.0101 2.0644 0.0954 33.3645

Table 5.11. Values of sigma points and probability weights

X −4.7713 −1.4577 −1.3742 −0.9856 −0.0101 0.9655 1.3541 1.4376 4.8192

W 0.0307 0.0525 0.0592 0.1157 0.4842 0.1157 0.0592 0.0525 0.0303

p 0.0290 0.0648 0.0770 0.1559 0.3469 0.1562 0.0769 0.06457 0.0287

Table 5.12. Relative Entropy values

R D(P ||W ) D(P ||p) Improvement of p over W

5.61 ∗ 10−3 0.01587 0.01500 5.45%

In Cover & Thomas [1991] it is shown that maximum entropy distribution based on the first few

moments might not be always achievable. This is reflected in the non-zero values of R obtained.

Even though the pi are not always optimal, Wi, calculated using the new moment matching method

in chapter 4, are very close to them. Any problem that requires optimization, has to consider two

points: the existence of the solution and the amount of computational effort/time required to obtain
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the solution. The computational effort can only grow as the number of variables, X (i), increases.

This is why the new method, proposed in chapter 4, is a suitable alternative in this case, since it

does not require optimization and it yields a relative entropy which is remarkably close to the best

approximation.

5.6 Summary

The problem of determining the discrete probabilities of a set of events, conditioned upon the mo-

ment constraints, is quite common in probability and statistics. One of the methods to solve this

problem is to use maximum-entropy approach. This method requires the maximization of the Shan-

non’s entropy, given the natural set of probability constraints and the set of the moment constraints.

The probability density obtained this way is considered to be the most unbiased density conditioned

on the given information. However, this maximum entropy distribution might not always be achiev-

able and the discrete probability weights generated this way might match the given moments only

approximately. In comparison, the random sigma point generation method, proposed in chapter 4,

allows exact matching of the given mean, covariance, average marginal third and fourth moments.

This matching of moments is in closed-form and does not require any optimization. These two

methods have been tested on four well known probability densities: normal distribution, Students’ t-

distribution, Gumbel and Laplace distributions. The relative entropy or Kullback Leibler distance has

been used to determine which set of probabilities is the closest to the original distribution. Note, that

only the moments, obtained from the data sample, are given and no other information or knowledge

of the original probability distribution is available. From the tables of the results and the figures, it can

be concluded that the probability weights, generated using method from chapter 4, are remarkably

close to the best approximation in many probability densities of practical interest. These probability

weights also have an advantage of matching moments exactly and not requiring any optimization in

the calculations.

Chapter 4
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Figure 5.1: Simulated normal density and approximations

Figure 5.2: Simulated Students’ t-density and approximations
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Figure 5.3: Simulated Gumbel density and approximations

Figure 5.4: Simulated Laplace density and approximations
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Chapter 6

Sigma point generation in financial

portfolio optimization

6.1 Introduction

In chapter 4 the new random sigma point generation method was used in the context of nonlinear

filtering. In this chapter this moment-matching sigma point generation algorithm will be used in the

context of financial optimization. Recall that the proposed method for generating samples allows

to match the given mean vector, the covariance matrix, the average marginal skewness as well as

average marginal kurtosis (thus catering for asymmetric marginals), without needing an optimization

procedure. In this chapter sigma points, proposed in (4.3)- (4.4) in chapter 4, would be referred to

as scenarios in the context of financial optimization. The material presented in this chapter forms

the basis of Ponomareva & et al [2012]. In the next section some motivation for moment-matching

methods in the optimization problems is given.

6.2 Background

One of the traditional approaches for decision-making under uncertainty and risk is stochastic pro-

gramming. It has wide ranging applications such as financial planning, energy systems management,

supply chain logistics, agricultural planning. An extensive discussion of these methods can be found
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in Wallace& Ziemba [2005].

Stochastic programming aims at solving optimization problems in which (some of) the param-

eters are not certain, but described by statistical distributions. In order for the stochastic programs

to be numerically solved, the distributions involved are approximated by discrete distributions with

a finite number of outcomes (scenarios). The approximation process, called “scenario generation”,

is important for the quality of the solution obtained: using “poor” scenarios could only result in

obtaining a “poor” approximation of the true optimal solution.

One way to obtain scenarios is by sampling from an assumed distribution (or, simply, from his-

torical data). As an example, future prices of financial assets may be assumed to follow a Geometric

Brownian Motion, or a GARCH process (Bollerslev [1986]). Sampling methods have clear ad-

vantages. However, it may be argued that such distributional assumptions are too strong, or only

applicable to one domain, viz. finance.

Other approaches to scenario generation with specific emphasis on operations research applica-

tions include principal component analysis-based simulation Topaloglou et al [2002] and stochastic

approximation based on transportation metrics (Pflug [2001], Hochreiter& Pflug [2007]). A detailed

survey of different scenario generation methods appears in Kaut & Wallace [2007].

Another class of scenario generation methods is based on matching a small set of statistical

properties, e.g. moments (e.g., see Høyland & Wallace [2001]). These methods can be broadly

divided into two groups.

Under the first approach, the statistical properties of the joint distribution are specified in terms

of moments, usually including the covariance matrix. In Høyland et al [2003], cubic transformation

of univariate, standard normal random variables and Cholesky factorization of covariance matrix are

used to produce a multivariate distribution which approximately matches a given set of marginal

central moments and the covariance matrix. Similar moment matching approach is employed to gen-

erate probability weights and support points using non-convex optimization in Gulpinar et al [2004].

In Smith [1993], the entropy maximization method is used to generate a discrete approximation to a

given continuous distribution.

In the second group, specified (parametric) marginal distributions are sampled independently

and the samples are then used along with Cholesky factorization of the covariance matrix to generate
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the necessary multivariate distribution. An iterative procedure of this type in described in Lurie &

Goldbers [1998], where specified marginal distributions and correlation matrix are used to produce

the correlated vectors of random numbers.

The moment-matching scenario generation methods have been successful in the practical appli-

cations of stochastic optimization. They have several advantages: they are not specific to a particular

field, they do not assume a specific parameterized family of distributions and allow for very different

shapes of the marginals. It is only the moments that have to be specified - using historical data, pre-

dictions, specialist knowledge or a combination of these.

However, the moment matching approaches described in the above papers have certain limitations.

Firstly, they use non-convex optimization to generate scenarios which match a specified set of

statistical properties, in addition to a needed factorization of the covariance matrix. Given a uni-

variate random variable with known first 12 central moments, the approach used in Høyland et al

[2003] and Høyland & Wallace [2001] finds a cubic polynomial function of this random variable

which has the required four central moments. This requires a non-convex optimization in terms of

the coefficients of the polynomial. The procedure has to be repeated iteratively for each marginal

distribution. Similarly, the algorithm in Lurie & Goldbers [1998] requires a non-convex optimization

over the space of lower triangular matrices.

Secondly, the achieved moments of the generated samples match the target moments only ap-

proximately. There are two sources of error in these moment matching methods: one is due to the

fact that only local optima are found for the non-convex optimization problem and the other is the

inexact starting moments of samples of univariate random variables. Since these procedures employ

samples from a known, “simple” univariate distribution, the achieved moments usually depend on

the sample moments of univariate random variables used.

6.3 Algorithm for scenario generation

In Date et al. [2008], a method was developed which uses convex optimization to match the given

mean vector, covariance matrix exactly, and to minimize the mismatch between the marginal kurtosis

across all variables. In chapter 4, this method has been extended to match the given mean vector, the
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covariance matrix, the average marginal skewness as well as average marginal kurtosis, without the

use of optimization. This new moment-matching algorithm may be used as a scenario generator on

its own or its scalar version may be adopted to produce an initial guess for the optimization routines

proposed by other authors. Being able to match a small set of statistical properties exactly, possibly

with a very small set of scenarios, may be preferable to generating a very large number of scenarios

to model the entire distribution. This is especially true when the scenarios are to be used in stochastic

optimization procedures.

Specifically, the proposed moment-matching scenario generation algorithm has two major ad-

vantages over the existing methods:

1. It is computationally inexpensive - generating scenarios does not involve optimization. This is

in contrast with all the other existing methods for moment matching which cater for moments

higher than order two.

2. It generates scenarios (i.e. support points of the multivariate distribution) together with corre-

sponding probability weights. This represents a big advantage not only because it eliminates

the need to attach user-defined probabilities, but also because the computational difficulty and

time for solving the stochastic program can be much decreased - a relatively modest number

of distinct scenarios is needed to capture the spacial properties of multivariate density surface,

such as marginal tail weights and asymmetry.

The significant reduction in computational complexity comes at the cost of matching only the av-

erage of third marginal moments and the average of fourth marginal moments exactly (instead of

matching all third and fourth marginal moments approximately, as in Høyland et al [2003]). How-

ever, the computational simplicity as well as stability of results demonstrated in this paper arguably

outweigh this shortcoming. If better moment-matching is needed for higher order marginals, the

proposed method can provide an inexpensive initial guess for an algorithm such as the one proposed

in Høyland et al [2003].

The quality of scenario generator, proposed in (4.3)- (4.4) in chapter 4, is tested in a financial

portfolio optimization problem. Scenarios are generated for the future asset returns and use them as

parameters in an optimization problem in which the portfolio’s CVaR (Conditional Value-at-Risk)is
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minimized (Rockafellar & Uryasev [2002]). In the next section, the performance of this scenario

generator is evaluated for a real financial portfolio.

6.4 The mean-CVaR model for portfolio optimization

In the numerical experiments, scenarios are generated for a one-period portfolio optimization prob-

lem: given a set of n assets in which one may invest, how to divide now an amount of money W

between these assets, such that, after a specified period of time T , to obtain a return on investment as

high as possible?

The future returns of the assets are random variables; denote them by R1, . . . Rn. Let xj be the

proportion of capital invested in asset j (xj = Wj/W where Wj is the capital invested in asset j), and

let x = (x1, . . . , xn) represent the portfolio resulting from this choice. This portfolio’s return is the

random variable: R̃ = x1R1 + · · ·+ xnRn; its distribution depends on the choice x = (x1, . . . , xn)

and on the distribution of R1, . . . Rn.

With the popular “mean - risk” theory, a portfolio’s return distribution is described by two statis-

tics: the expected value and a “risk” value (desired to be kept low). The portfolio chosen for imple-

mentation should be ”efficient”, meaning, it should have the lowest risk value for a given expected

return. An efficient portfolio is found by solving an optimization problem in which, for example, the

risk of the portfolio is minimized, while a constraint on the expected return is imposed.

In most cases, there are no closed form solutions for these optimization problems. They have

to be solved numerically, by approximating the distributions of the future asset returns with discrete

ones with finite number of realizations; that is, by generating scenarios for the future asset returns.

Traditionally, risk is measured by variance (Markowitz [1952]). In the mean-variance optimiza-

tion problem, there is no need scenarios for the future asset returns, but only their expected values

and the covariance matrix. However, it has been pointed out that risk may be better quantified and

several alternatives risk measures have been proposed.

More recently, portfolio optimization problems include more sophisticated risk measures, most

notably those concerned with left tails of distributions. Risk measures in this category include Con-

ditional Value-at-Risk (CVaR), which has good theoretical and computational properties and has
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gained wide acceptance among academics and practitioners (Rockafellar & Uryasev [2002], Pflug

[2000]).

In the numerical experiments, scenarios are generated for future asset returns in a mean-CVaR

optimization model, which, unlike the mean-variance model, requires the full set of scenario returns.

The scenarios and the corresponding probability weights are generated using equations (4.3)- (4.4)

in chapter 4.

The definition of CVaR and with the model formulation, are presented below. Let R̃ be a random

variable representing the return of a portfolio x over a given holding period and A% = α ∈ (0, 1) a

percentage which represents a sample of ”worst cases” for the outcomes of R̃ (usually, α = 0.01 =

1%, α = 0.05 = 5% or α = 0.10 = 10%).

The definition of CVaR at the specified level α is the mathematical transcription of the concept

“average of losses in the worst A% of cases”.

More formally, the CVaR at level α of R̃ is defined as minus the mean of the α-tail distribution of

R̃, where the α-tail distribution is obtained by taking the lower A% part of the distribution of R̃ (cor-

responding to extreme unfavourable outcomes) and rescaling it to span [0,1]. The α-tail distribution

of R̃ considers only losses above Value-at-Risk; for a detailed definition of CVaR, see Rockafellar &

Uryasev [2002].

An important result is that CVaR can be computed and optimized by solving convex optimization

problems. In Rockafellar & Uryasev [2002], an auxiliary function is used, F : X × R→ R, where

X is the set of feasible portfolios.

Fα(x, v) =
1
α
E[−R̃ + v]+ − v,

where [u]+ = u if u ≥ 0 and 0 otherwise, E[] is the expected value operator. It was proved that

minimizing CVaR over X can be done by minimizing Fα over X × R.

When the random asset returns are represented as discrete random variables (via scenarios), the

CVaR optimization problem can be formulated as a linear program (LP). The algebraic formulation
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of the mean-CVaR model is given below:

min −v +
1
α

S∑

i=1

pi · yi (M-CVaR)

Subject to:

v −
n∑

j=1

rijxj ≤ yi, ∀i ∈ {1 . . . S}

yi ≥ 0, ∀i ∈ {1 . . . S}
n∑

j=1

µjxj ≥ d; x ∈ X.

where the parameters of the model are:

• S = the number of scenarios

• n = the number of assets

• pi = the probability of scenario i occuring, i = 1 . . . S

• rij = return of asset j under scenario i, i = 1 . . . S, j = 1 . . . n

• µj = the expected return of asset j, j = 1 . . . n (µj = 1
S

∑S
i=1 rij)

• d = the desired expected return of the portfolio

pi and rij are obtained from scenario generation or sampling of historical data. µj are estimated prior

to optmization (possibly from historical data). d is decided by the investor. By not imposing the last

constraint on portfolio’s expected return, the (absolute) minimum CVaR portfolio is obtained.

The decision variables of the model are:

• xj = the fraction of portfolio wealth invested in asset j, j = 1 . . . n

• v = an α-quantile of the portfolio return distribution
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• yi = the magnitude of the negative deviations of the portfolio return from the α-quantile, for

every scenario i ∈ {1 . . . S} (they are 0 if the portfolio return
∑n

j=1 rijxj is higher than the

α-quantile)

6.5 Numerical experiments

6.5.1 Scope and computational set-up

The behaviour of the proposed scenario generator is investigated, as used in conjunction with a mean-

CVaR optimization problem (M-CVaR). The following are of interest:

(a) the stability of the scenario generator, both in-sample and out-of-sample;

(b) how the number of scenarios considered affects the optimal solution and the optimum;

(c) quality of the solution as compared to the solution obtained using historical data as scenarios.

A dataset drawn from FTSE 100 is used, with n=20 stocks and prices monitored weekly over the

period of over 14 years from July 1997 until November 2011 (747 time periods of historical data).

These 20 stocks were chosen in such a way that their combined market capitalization was roughly

over 60% of FTSE 100.

The corresponding historical returns are computed and the moments for these series are calculat-

edf; they are displayed in Tables 6.1 - 6.3.

Table 6.1. Means for weekly returns of 20 assets, 10−4

1 2 3 4 5 6 7 8 9 10

Mean 6.27 25.51 8.9 13.79 7.06 38.6 37.67 36.97 13.08 19.25

11 12 13 14 15 16 17 18 19 20

Mean 4.43 16.6 46.45 17.22 29.19 18.98 16.33 21.79 20.65 17.72

66



CHAPTER 6. SIGMA POINT GENERATION IN FINANCIAL PORTFOLIO OPTIMIZATION

Table 6.2. Marginal 3rd and 4th moments for weekly returns of 20 assets, 10−6

1 2 3 4 5 6 7 8 9 10

Marginal 3rd moment −8.36 25.34 1.74 5.29 9.27 74.39 86.66 26.93 −3.76 −3.81

Marginal 4th moment 26.5 24.22 11.6 14.93 10.32 44.83 133.18 23.55 15.04 7.93

11 12 13 14 15 16 17 18 19 20

Marginal 3rd moment −29.87 −63.57 191.96 −13.48 7.29 −8.86 3.33 285.29 157.21 42.79

Marginal 4th moment 21.5 29.4 121.67 12.31 31.28 9.97 6.96 459.01 87.35 23.84

The scenarios are generated for the future weekly returns of these stocks using the proposed

moment-matching method, with the first four moments as above. Various number of scenarios are

considered: S = 123, S = 243, S = 363, S = 603, S = 723, S = 1083 and S = 5043. (M-CVaR)

is solved using the generated pi and rij . d is fixed to 0.3%. CVaR is condsidered at confidence level

α = 10%.

It is common practice to use for comparison a “benchmark” scenario generator with the same

optimization model. In this study, the historical returns are used as “benchmark” scenarios. Thus,

(M-CVaR) is also solved using pi and rij as given by historical data, i.e. pi = 1/747 , rij =historical

return of stock j at time period i.

The optimization problems are formulated in AMPL (Fourer et al [1989]) and solved with the

FortMP solver (Ellison et al [2008]).
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Table 6.3. Covariance matrix for weekly returns of 20 assets, 10−4

1 2 3 4 5 6 7 8 9 10

1 18.58 6.18 7.14 7.03 4.48 3.47 10.37 5.21 4.22 4.42

2 6.18 22.69 3.03 3.07 5.01 2.89 5.13 3.44 5.09 1.28

3 7.14 3.03 15.15 11.67 4.17 3.59 10.65 7.79 3.79 3.04

4 7.03 3.07 11.67 16.58 4.77 4.04 11.87 7.94 4.33 3.64

5 4.48 5.01 4.17 4.77 13.25 3.36 2.94 3.18 8.54 3.52

6 3.47 2.89 3.59 4.04 3.36 17.6 4.54 3.37 3.07 4.43

7 10.37 5.13 10.65 11.87 2.94 4.54 37.81 12.57 2.56 3.66

8 5.21 3.44 7.79 7.94 3.18 3.37 12.57 18.32 3.62 3.64

9 4.22 5.09 3.79 4.33 8.54 3.07 2.56 3.62 16.04 3.92

10 4.42 1.28 3.04 3.64 3.52 4.43 3.66 3.64 3.92 11.43

11 7.11 3.4 4.96 4.93 2.51 2.99 6.96 6.31 2.68 3.89

12 4.58 2.37 3.16 3.42 3.05 3.09 4.44 3.5 3.5 3.24

13 10.55 4.94 10.99 12.93 2.14 4.06 25.27 11.52 2.17 3.64

14 4.92 2.26 3.95 5.64 4.44 5.42 4.36 3.26 4.18 4.03

15 5.76 4.72 3.8 3.92 3.2 1.54 5.75 4.06 2.92 4.46

16 2.95 5.43 2.89 3.13 4.03 3.75 2.65 3.71 4.47 2.85

17 4.52 2.33 3.37 4.28 4.19 5.24 4.3 3.73 3.61 3.44

18 16.51 7.71 9.31 8.47 7.36 4.24 13.66 8.99 6.91 5.48

19 6.73 8.89 4.07 4.42 3.02 1.13 4.87 4.16 3.74 1.89

20 6.16 8.01 4.45 4.49 3.27 2.49 6.55 3.66 4.17 2.7

11 12 13 14 15 16 17 18 19 20

1 7.11 4.58 10.55 4.93 5.76 2.95 4.52 16.51 6.73 6.16

2 3.4 2.37 4.94 2.26 4.72 5.43 2.33 7.71 8.89 8.01

3 4.96 3.16 10.99 3.95 3.8 2.89 3.37 9.31 4.08 4.45

4 4.93 3.42 12.93 5.64 3.92 3.13 4.28 8.47 4.42 4.49

5 2.51 3.05 2.14 4.44 3.2 4.03 4.19 7.36 3.02 3.27

6 2.99 3.09 4.06 5.42 1.54 3.75 5.24 4.24 1.13 2.49

7 6.96 4.44 25.27 4.36 5.75 2.65 4.3 13.66 4.87 6.55

8 6.31 3.5 11.52 3.26 4.06 3.71 3.73 8.99 4.16 3.66

9 2.68 3.5 2.17 4.18 2.92 4.47 3.61 6.91 3.74 4.17

10 3.89 3.24 3.64 4.03 4.46 2.85 3.44 5.48 1.89 2.7

11 14.97 4.24 7.4 3.05 6.09 3.41 2.28 11.38 4.54 4

12 4.24 19.85 4.71 4.98 4.02 2.5 4.36 7.32 0.96 2.4

13 7.4 4.71 34.81 4.25 5.79 2.19 4.51 13.44 6.9 5.63

14 3.05 4.98 4.25 14.12 4.34 2.46 6.24 6.3 2.29 2.49

15 6.09 4.02 5.79 4.34 22.62 2.84 3.28 9.1 5.02 4.01

16 3.41 2.5 2.19 2.46 2.84 10.65 3 5.11 4.23 3.79

17 2.28 4.36 4.51 6.24 3.28 3 11.76 6.9 1.36 1.77

18 11.38 7.32 13.44 6.3 9.1 5.11 6.9 46.21 10.27 8.75

19 4.54 0.96 6.9 2.29 5.02 4.23 1.36 10.27 28.29 12.14

20 4 2.4 5.63 2.49 4.01 3.79 1.77 8.75 12.14 19.22
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6.5.2 Stability of the scenario generator

Stability is a basic and very important requirement. Since any scenario generator has an element of

randomness, the final outcome depends on the values drawn from the corresponding distributions.

Stability guarantees that the optimal solution of the optimization problem of interest does not vary

(but, possibly, only to a small extent) with the specific scenario set chosen.

A scenario generator is said to manifest in-sample stability if, when generating several scenario sets

of the same size and solving the optimization problem on each of these scenario sets, the optimal

objectives are similar (see for example Kaut & Wallace [2007]).

A scenario generator is said to manifest out-of-sample stability, if, when generating several scenario

sets of the same size and solving the optimization model on each of these scenario sets, the optimal

solutions obtained yield similar “true” objective function values (i.e., the solutions obtained are eval-

uated on the “true” distribution of the random variables involved).

In Kaut & Wallace [2007] it is emphasized that, while it is straightforward to test in-sample stability

(the scenario-based optimization problems are only solved), it is difficult to test the out-of-sample

stability - that would mean knowing the “true” distribution of the random vector involved. What is

usually done in practice is to use a “benchmark” scenario tree: a large scenario set obtained exoge-

nously, that is known to be stable; this scenario set will stand for the “true” distribution.

In-sample stability does not imply the out-of sample one or vice versa. It is possible to have in-

sample instability (of the objectives) but stability of the solutions - in this case, it is likely to have

out-of-sample stability, since, in this case, all the solutions are tested on the same scenario set, repre-

senting the “true” distribution.

The in-sample stability of the new scenario generator is tested in the following way. For each number

of scenarios S considered, 20 sets of scenarios are generated and used as an input in the mean-CVaR

optimization problem (M-CVaR).

For each scenario size, a set of 20 optimal objective values is obtained; their statistics are displayed

in Table 6.4 below.
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Table 6.4. In-sample stability: Statistics of the sets of optimums for various scenario sizes

S Mean StDev Min Max Range

123 0.032736 0.000336 0.032209 0.033004 0.000795

363 0.033326 0.000300 0.033053 0.033699 0.000646

723 0.036456 0.000276 0.036120 0.036751 0.000630

1083 0.036835 0.000234 0.036581 0.037163 0.000581

5043 0.037465 0.000128 0.037277 0.037702 0.000425

The in-sample stability is obvious; even for relatively small number of scenarios, the optimum CVaRs

obtained have similar values, ranging over very small intervals. As expected, stability is further

increased with increasing number of scenarios.

Also expected is the increase in the optimum values obtained with increasing number of scenarios.

When considering 123 scenarios, the optimal CVaRs obtained range between 3.22% and 3.3%, while

for 5043 scenarios, the optimums range between 3.73% and 3.77%. This is because when more

scenarios are taken into account, the optimal CVaR can only get worse - and closer to the ”true”

optimal CVaR. However, this difference is small: for 123 scenarios, the average of the set of 20

optimal CVaRs is 3.27% while for 5043 scenarios, the average optimum is 3.75%.

For testing the out-of-sample stability, the historical data is used as a benchmark scenario set. Each

of the optimal solutions obtained before are evaluated on the historical data, i.e. the portfolio weights

previously obtained (using the new scenario generator) are used and the corresponding CVaRs are

computed using historical scenarios. Thus, 20 “true” optimums (“historical CVaRs”) are obtained

for each scenario size. Their statistics are displayed in Table 6.5.

Table 6.5. Out-of-sample stability: Statistics of the sets of “true” optimum CVaRs -

S Mean StDev Min Max Range

123 0.040995 0.000613 0.040315 0.041675 0.001360

363 0.040461 0.000554 0.039921 0.041088 0.001167

723 0.040277 0.000506 0.039700 0.040855 0.001155

1083 0.040221 0.000342 0.039397 0.040514 0.001117

5043 0.039621 0.000283 0.039211 0.040264 0.001053

The out-of-sample stability is also obvious, even for small scenario sets; for example, in the case of

123 scenarios, the “true” CVaRs range between 4.03% and 4.16%. As expected, better solutions are
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obtained with increasing number of (in-sample) scenarios: not only even more stable, but also result-

ing in a better (i.e. smaller) out-of-sample CVaRs. Again notice that, when increasing the number of

(in-sample) scenarios, the difference between the out-of-sample CVaRs is small: an average “true”

CVaR of 4.01% is obtained for 123 in-sample scenarios; the average true CVaR for 5043 in-sample

scenarios is 3.96%.

Also note that, for 5043 in-sample scenarios, the in-sample CVaRs (obtained using scenarios gen-

erated with the proposed method) and out-of-sample CVaRs (the same optimal solutions but the

objective function evaluated on historical data) have very close values: 3.75% and 3.96%, respec-

tively.

6.5.3 Optimal solutions

Note that the proposed scenario generator is not only stable in-sample and out-of-sample (with re-

spect to the optimum CVaR), but also manifests “stability of optimal solutions”. With a specified

number of in-sample scenarios, the optimal portfolio weights obtained are very similar under differ-

ent runs. This is valid even in the case of smallest scenario sets (123 scenarios). Table 5.6 below

displays the optimal portfolio weights obtained in each of the 20 runs, when the scenario size is 5043.

Moreover, with increasing number of scenarios, the optimal portfolio weights change only

marginally, i.e. the portfolio weights obtained by using 123 scenarios are similar to the portfolio

weights obtained by using 5043 scenarios (please see Table 6.7).

This supports the idea that stable solutions can be obtained with relatively small number of sce-

narios and increasing the number of scenarios leads only to a marginal change in the optimal solution.

A natural question to ask is: how do these solutions compare with the portfolio solution obtained by

using the historical data as in-sample scenarios?

Table 6.7 displays a summary of optimal solutions obtained by using in-sample: (a) the proposed

scenario generator with various scenario set sizes and (b) historical data. For a given scenario set

size, the weights displayed are obtained by averaging the (very similar) optimal weights obtained for

the 20 different runs. “HD” signifies the portfolio weights obtained using historical data as in-sample

scenarios (747 scenarios equally probable scenarios).
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Table 6.6. Optimal portfolio weights for S= 5043 scenarios

CVaR W2 W6 W7 W8 W9 W10 W12 W13 W14 W15 W16 W17 W19 W20

0.040264 4.63% 36.00% 0.82% 9.76% 5.16% 5.06% 5.18% 5.47% 2.21% 7.80% 6.09% 2.59% 4.95% 4.28%

0.039535 5.07% 32.67% 0.81% 9.37% 4.62% 6.16% 5.25% 5.76% 2.87% 7.89% 7.13% 3.22% 4.90% 4.27%

0.039442 5.11% 32.10% 0.90% 9.58% 4.70% 6.24% 5.27% 5.79% 2.98% 7.68% 7.08% 3.35% 4.85% 4.38%

0.039774 5.09% 33.65% 0.70% 9.54% 4.46% 5.99% 5.06% 6.00% 2.63% 7.84% 7.16% 2.99% 4.86% 4.02%

0.039512 5.02% 32.36% 0.95% 9.09% 4.88% 6.14% 5.31% 5.90% 2.95% 7.78% 7.08% 3.27% 4.87% 4.39%

0.039266 5.10% 30.83% 0.89% 9.68% 4.57% 6.34% 5.26% 6.24% 3.13% 7.84% 7.44% 3.45% 4.84% 4.40%

0.039261 5.14% 30.87% 0.99% 9.60% 4.67% 6.31% 5.23% 6.07% 3.14% 7.96% 7.24% 3.54% 4.91% 4.33%

0.040007 4.81% 34.80% 0.59% 9.40% 4.89% 5.59% 5.17% 5.99% 2.64% 7.65% 6.52% 2.83% 4.87% 4.27%

0.039491 5.08% 32.08% 0.95% 9.75% 4.39% 6.20% 5.25% 5.81% 2.96% 7.85% 7.01% 3.41% 4.91% 4.34%

0.039575 4.95% 32.53% 0.74% 9.98% 4.53% 5.94% 5.28% 5.94% 2.89% 7.73% 6.77% 3.35% 4.95% 4.41%

0.039644 5.18% 33.00% 0.76% 9.40% 4.79% 6.20% 5.01% 6.15% 2.95% 7.89% 7.06% 2.84% 4.72% 4.06%

0.039828 4.88% 33.83% 0.96% 9.24% 4.62% 5.82% 5.29% 5.64% 2.68% 7.88% 6.67% 3.15% 4.95% 4.39%

0.039679 5.07% 33.16% 0.98% 9.29% 4.53% 6.04% 5.24% 5.67% 2.89% 7.84% 6.93% 3.15% 4.91% 4.29%

0.039211 5.28% 30.75% 0.92% 9.63% 4.79% 6.58% 5.06% 6.16% 3.13% 7.92% 7.41% 3.40% 4.83% 4.14%

0.039463 5.10% 32.34% 0.97% 9.20% 4.80% 6.23% 5.17% 5.64% 2.95% 8.02% 7.10% 3.30% 4.90% 4.28%

0.039384 5.10% 31.40% 0.83% 9.82% 4.63% 6.28% 5.13% 6.33% 2.93% 8.03% 7.37% 3.18% 4.72% 4.26%

0.039395 5.20% 31.85% 0.84% 9.68% 4.74% 6.39% 4.99% 6.05% 2.99% 7.90% 7.54% 3.02% 4.70% 4.11%

0.040039 4.75% 35.02% 0.97% 9.04% 4.72% 5.52% 5.22% 5.41% 2.71% 7.73% 6.76% 2.91% 4.98% 4.27%

0.039810 4.77% 33.74% 1.10% 8.87% 4.74% 5.70% 5.35% 5.52% 2.85% 7.78% 6.74% 3.31% 5.07% 4.46%

0.039845 4.73% 33.94% 0.73% 9.39% 4.68% 5.61% 5.19% 5.96% 2.75% 7.72% 7.04% 3.03% 4.91% 4.33%

Another encouraging result is that the ”true” CVaR of the portfolio obtained using historical data in-

sample (that is, the optimization and evaluation of CVaR is done on historical data) is 3.87%. Thus,

as measured on the benchmark scenario generator, a solution obtained using the scenario generator

in-sample gives a “true” CVaR of 3.96%, while the solution obtained using historical data in-sample

gives a value only 0.09% lower.
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Table 6.7. Optimal portfolio weights obtained using (a) the proposed method with various

number of scenarios and (b) historical data(HD) as scenarios

S CVaR(in) CVaR(out) W2 W6 W7 W8 W9 W10

HD 0.038712 13.83% 24.50% 0.00% 16.37% 3.55% 8.33%

123 0.032736 0.040995 4.20% 37.92% 0.92% 7.99% 5.66% 4.62%

243 0.032828 0.040559 4.28% 36.24% 0.51% 8.58% 5.48% 4.76%

363 0.033326 0.040461 3.70% 34.92% 0.36% 9.21% 5.82% 3.97%

603 0.033704 0.040449 4.38% 35.27% 1.18% 8.90% 2.88% 6.00%

723 0.036456 0.040277 4.41% 35.62% 0.61% 9.66% 5.09% 4.72%

1083 0.036835 0.040221 4.62% 35.87% 0.65% 9.45% 5.05% 5.27%

5043 0.037465 0.039621 5.00% 32.85% 0.87% 9.46% 4.69% 6.02%

W12 W13 W14 W15 W16 W17 W18 W19 W20

5.69% 6.50% 0.60% 9.35% 9.64% 1.64% 0.00% 0.00% 0.00%

5.37% 5.40% 2.26% 7.09% 5.38% 2.74% 0.84% 5.11% 4.50%

5.18% 5.71% 2.11% 8.95% 5.63% 2.61% 0.79% 4.85% 4.30%

5.23% 6.33% 2.40% 9.75% 4.97% 2.98% 0.86% 4.93% 4.57%

5.90% 5.24% 3.39% 8.12% 6.72% 1.64% 0.31% 5.34% 4.72%

5.32% 6.05% 2.62% 7.24% 6.18% 2.92% 0.00% 5.07% 4.49%

5.11% 5.67% 2.39% 7.77% 6.16% 2.72% 0.00% 5.02% 4.24%

5.20% 5.87% 2.86% 7.84% 7.01% 3.17% 0.00% 4.88% 4.28%

6.6 Summary

The random sigma point generation method, proposed in chapter 4, has been used in the context

of financial optimization. The method presents several advantages over the existing approaches for

scenario generation in financial portfolio optimization. First, it is computationally cheap; there is no

optimization involved in generating scenarios. Secondly, due to the unequal generated probabilities

of the scenarios, this method may perform well even with a relatively small number of scenarios. In

contrast, methods that would assume by default equal probabilities would need a larger number of

scenarios.

These assertions are supported by the numerical results. The quality of the proposed scenario

generator has been tested in a mean-CVaR portfolio optimization model. Several observations were

made. First, the method is remarkably stable, both in-sample and out-of-sample. It also manifests
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stability of optimal solutions, i.e. not only the optimums are similar, but also the optimal port-

folio weights, representing the solution to implement. Secondly, the optimal solutions vary only

marginally with increasing number of scenarios. That means, by using only a small number of sce-

narios, a reasonably good solution is obtained.

In the numerical case presented here, direct comparison with solutions obtained via using histor-

ical data could be made. The proposed scenario generation method is applicable to cases where there

is no (or not enough) historical data available, but only expert opinion on the statistical properties

involved.

This method has also a big advantage when used with a computationally difficult optimization

model, requiring only a limited number of scenarios. Stable and good quality solutions can be ob-

tained with a relatively small number of scenarios, which presents a great computational advantage.

Intuitively, this may be attributed to the fact that unequal and random probability weights are gen-

erated along with the support points. The creation of non-equally weighted scenarios is especially

important, as this approach ensures that extreme events are considered even if the size of the approx-

imated set is small.

The numerical results are very encouraging. This scenario generation method may work well

for multi-stage stochastic optimization, where generally only a limited number of scenarios can be

considered and there are scale-up issues.

Mean-CVaR optimization is used widely in financial industry to maximize the portfolio return

and minimize the average losses. The new scenario generation method, based on random sigma point

generation of chapter 4, would be a very useful tool for improving risk management and can help

with stock investing strategy.
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Chapter 7

Time series filtering under parameter

perturbations

7.1 Introduction

In this chapter, the problems in filtering context and once again discrete state space systems, men-

tioned in chapters 3 and 4, are considered. In these two chapters, the state parameters were consid-

ered constant, either known or calibrated from data. Here, however, the case when these parameters

are under random perturbation is investigated. An exact, closed-form minimum variance filter is

designed for a class of perturbed discrete time systems which allows for both multiplicative and

additive noise sources. The multiplicative noise model includes a popular class of models (Cox-

Ingersoll-Ross type models) in econometrics. The parameters of the system under consideration

which describe the state transition are assumed to be subject to stochastic uncertainties. The problem

addressed is the design of a filter that minimizes the trace of the estimation error variance. Sensitivity

of the new filter to the size of parameter uncertainty, in terms of the variance of parameter perturba-

tions, is also considered. The new filter is referred to as the ‘perturbed Kalman filter’ since it reduces

to the traditional (or unperturbed) Kalman filter as the size of stochastic perturbation approaches

zero. A related approximate filtering heuristic for univariate time series is also considered and the

filter based on this heuristic is referred to as approximate perturbed Kalman filter. The performance

75



CHAPTER 7. TIME SERIES FILTERING UNDER PARAMETER PERTURBATIONS

of the new filters is tested on three simulated numerical examples and the results are compared with

the unperturbed Kalman filter that ignores the uncertainty in the transition equation. The material

presented in this chapter forms the basis of Ponomareva & Date [2012].

7.2 Background

The estimation of the state variables given the noisy measurements is one of the fundamental prob-

lems in control and signal processing, as mentioned in chapter 1. It is well known that the Kalman

filter requires an accurate model with a Gaussian noise. See, for example, Anderson & Moore

[1979]. However, precise modeling of systems is usually difficult or impossible and system parame-

ters may vary with time or be affected by disturbances. This has motivated studies on robust Kalman

filter design that will guarantee an upper bound on the filtering error covariance for any parameter

uncertainty. Filtering with guaranteed error for uncertain systems was first considered in Jain [1975].

In recent years, several results have been derived on the design of robust estimators that give an upper

bound on the error variance for any allowed modeling uncertainty, see Jain [1975], Shaked & de

Souza [1995] and references therein. The idea of seeking the upper bound on the error variance has

been recently applied to discrete-time Markovian jump systems with parameter and noise uncertainty

in Zhu et al [2007].

A Riccati equation based approach was adopted in Jain [1975], Zhu et al [2002], Xie & Soh

[1994], Shaked & de Souza [1995] and Yang et al [2002] to deal with parameter uncertainty of

norm-bounded type. More recently, in Suoto et al [2009], this method has been extended to un-

certain discrete-time nonlinear systems where nonlinear functions are assumed to be unknown but

within a conic region, characterized as a Lipschitz condition on the system state and control signal

residuals. The Riccati equation approach involves searching for a scaling parameter that insures that

the associated Riccati equation has a solution and the guaranteed error is minimized. The parame-

terized Riccati differential equation is used for the finite horizon case (H2) and an algebraic Riccati

equation is for the infinite horizon (H∞).

Note that the coefficient matrices in the algebraic Riccati equation, both in continuous (CARE) and

discrete time (DARE), can themselves be affected by perturbations. These perturbations arise due to
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the various errors in the formulation of the problems or in the computer solutions. It is interesting

to know how the Hermitian positive semidefinite solution to algebraic Riccati equation is affected

in this case. Many perturbation results can be found in the literature. See Byers [1985] for the

first-order perturbation bounds for the solution to CARE, whereas global perturbation bounds for the

solution were derived in Chen [1988] and Konstantinov & et al [1990]. More details on the compu-

tational methods involved can be found in Petkov & et al [1991]. As a continuation of these results,

new perturbation bounds for the Hermitian positive semidefinite solution to the CARE and DARE

were derived in a uniform manner in Sun [1998]. More recently the improved perturbation bounds

for a specific matrix expression have been derived. This specific matrix expression arises in DARE

problems. The new bounds application to the sensitivity analysis and the solution of fractional-affine

matrix equations have been considered in Konstantinov & et al [2009].

An alternative approach to modeling uncertainty is based on the linear matrix inequality (LMI)

method and involves interior point algorithm for convex optimization. This interior-point method

for convex optimization has also been used to recursively compute the minimal confidence ellipsoid

for the state in Ghaoui & Calafiore [2001]. The LMI approach has been applied to solve the robust

H2 and H∞ filtering for systems with norm-bounded uncertainty, integral quadratic constraints and

polytopic uncertainty, see Barbosa et al [2002], Geromel [1999], de Souza et al [2008] and Xie

et al [2003]. When the model under study is nonlinear, the uncertainty set to be characterized may

be nonconvex and may even consist of several disconnected components. The nonlinear parameter

and state estimation can be formulated in a bounded-error context as problems of characterization

of sets. Then obtaining approximations of these sets is possible with the tools provided by interval

analysis, that first appeared in Moore [1959] to assess the numerical errors resulting form the use

of a finite-precision arithmetic. Kieffer & Walter [2005] provides more details on the application

of the interval analysis nonlinear parameter and state estimation. A problem with both determinis-

tic (unknown-but-bounded) and stochastic uncertainties has been considered in Yang et al [2002],

Petersen & James [1996], Gershon et al [2001], Ghaoui [1995] and more recently in Wang et al

[2006]. In these papers this stochastic uncertainty is expressed as a multiplicative noise. Unlike the

case of the additive noise, the second order statistics of the multiplicative noise is usually unknown,

as it depends on the real state of the system.
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The approach taken in this chapter differs from the contributions mentioned above in several cru-

cial aspects. First, discrete time-varying uncertain systems are considered with both multiplicative

and additive noise sources. The system under consideration is assumed to be subject to stochastic

uncertainties in the parameters of the transition equation. This class of systems includes square-root

affine systems, i.e. Cox-Ingersoll-Ross type models, first introduced in Cox et al. [1985], which

are frequently used in econometrics and finance literature, and also models that arise in the area of

stochastically sampled digital control systems, see de Koning [1980] for more details. Secondly, the

problem addressed is the design of a filter that minimizes the estimation error variance. The optimal

linear one-stage predictors for the discrete-time systems with different types of multiplicative noises

were derived by Nahi [1969], Rajasekaran et al [1971], while conditions for uniform asymptotic

stability of the optimal linear filter was considered in Tugnait [1981]. In de Koning [1984], an opti-

mal linear estimator for linear discrete-time systems with stochastic parameters that are statistically

independent in time was derived. In this chapter an independent derivation of the results in de Kon-

ing [1984]is provided for a class of perturbed systems. In contrast with the optimization based worst

case approaches, an exact, closed form expression for this variance minimizing filter is derived here.

For univariate time series, some results on the deviation of eigenvalues of the state transition matrix

of the new filter from those of the state transition matrix of Kalman estimator for the same system,

when the uncertainty is ignored, are presented. This analysis of eigenvalues of the perturbed system

complements the results on asymptotic stability in de Koning [1984]. It is shown that the new per-

turbed filter is a well-behaved function of the model parameters, in the sense that it converges to the

traditional Kalman filter as the variance of stochastic uncertainty tends to zero. Approximate filtering

heuristic is considered for univariate time series, inspired by the exact method proposed here, which

appears to work well for a wider case of nonlinear systems. It is also demonstrated through extensive

numerical experiments that the new filters perform better than the unperturbed Kalman filter even

when the size of uncertainty is poorly identified.
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7.3 Derivation of the new filter

Consider the following discrete-time state-space system:

X (k + 1) = AX (k) + ∆A(k)X γ(k) + Bw(k + 1), (7.1)

Y(k) = CX (k) + Dv(k), (7.2)

where γ ∈ {0, 0.5, 1}. X (k) and Y(k) are the respective state vector and measurement vector at

time t(k); A,B,C and D are given deterministic matrices; and v(k), w(k) are uncorrelated zero

mean Gaussian random variables with identity covariance matrix. X γ(k) indicates a vector whose

each element is the corresponding element of X (k) raised to the power γ and a positive value is

chosen when γ = 0.5. The time increment t(k)− t(k−1) is assumed constant for all k. Matrix A in

transition equation is perturbed by a random n× n matrix ∆A(k), where the elements ∆Aij(k) are

uncorrelated stochastic variables with zero mean and variance P∆Aij . This allows for a potentially

large number of uncorrelated noise sources, potentially O(n2), instead of O(n) if the noise is purely

additive. Obviously, some of the entries in ∆A(k) can be identically zero. ∆A(k) and the noise

sources w(k), v(k) are assumed to be uncorrelated for all k.

Instead of applying the standard linear estimation theory to the new systems of equations and

writing the optimal estimator using Anderson & Moore [1979], as in de Koning [1984], the aim

is to derive the equations for a recursive linear minimum variance filter for state X (k) given the

measurements Y(k), Y(k− 1), · · · , Y(0), which will reduce to Kalman filter if P∆A is 0. As in the

case of any recursive estimation algorithm, start by assuming that X̂ (k|k) is known. The predicted

mean, i.e. X̂ (k + 1|k), and the updated mean, X̂ (k + 1|k + 1), are written in the same form as the

Kalman filter. Then the covariance at the time step t(k + 1) is worked out using equation (7.1). The

standard prediction and update equations for a linear filter and the system described by (7.1) are

X̂ (k + 1|k) = AX̂ (k|k), (7.3)

X̂ (k + 1|k + 1) = X̂ (k + 1|k) + K̄(k + 1)(Y(k + 1)−CX̂ (k + 1|k)). (7.4)

The aim is to find a filter gain K̄(k + 1) that would minimize the state covariance, which will be

denoted by P̄(k + 1|k + 1). The equations (7.3) and (7.4) are combined and the fact that ∆A(k)
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and X (k) are uncorrelated due to the former being a sequence of uncorrelated stochastic variables is

used. Then the expression for the covariance can be easily shown to be

P̄(k + 1|k + 1) = K̄(k + 1)DDT K̄(k + 1)+

(I− K̄(k + 1)C)P̄(k + 1|k)(I− K̄(k + 1)C)T , (7.5)

where

P̄(k + 1|k) = AP̄(k|k)AT + BBT + P̃(k|k) (7.6)

and P̃(k|k) is a diagonal n× n matrix that is different for each value of γ ∈ {0, 0.5, 1}:

P̃ii(k|k) =
n∑

j=1

P∆Aij

(
P̄jj(k|k) + (X̂ j(k|k))2

)
if γ = 1,

=
n∑

j=1

P∆Aij X̂ j(k|k) if γ = 0.5,

=
n∑

j=1

P∆Aij if γ = 0. (7.7)

Here X̂ j(k|k) is the jth element of vector X̂ (k|k). It is necessary to find K̄(k + 1) that would

minimize trace of the covariance, i.e. tr P̄(k + 1|k + 1). Now, the partial derivative of trace with

respect to the filter gain matrix is

∂ tr P̄(k + 1|k + 1)
∂K̄(k + 1)

= −2P̄(k + 1|k)CT + 2K̄(k + 1)(CP̄(k + 1|k)CT + DDT ). (7.8)

Setting this partial derivative to zero leads to the following expression for K̄(k + 1):

K̄(k + 1) = P̄(k + 1|k)CT [CP̄(k + 1|k)CT + DDT ]−1. (7.9)

It can be verified that this is indeed a minimum by examining the Hessian of the tr P̄(k + 1|k +

1), please see Gelb [1986] for details of differentiation of a scalar function of a matrix. Given

X̂ (k|k), P̄(k|k) are specified, the sequence of operations specified by equations (7.7), (7.6), (7.9),

(7.5), (7.3) and (7.4) (in this order) completely define the recursive filter, with equation (7.7)

determining a γ−dependent term.

Comparing this equation to that of the unperturbed Kalman filter, note that there is an extra term,

namely P̃(k|k), in the expression for P̄(k+1|k) and this is due to the random parameter perturbation
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in equation (7.1). If ∆A(k) was zero for all k, the expression for the predicted covariance P̄(k+1|k)

would be the same as one in the original Kalman filter equations for an unperturbed state space system

(with ∆A(k) = 0 in (7.1)). The same would happen to the equations for the updated covariance

P̄(k + 1|k + 1) and the filter gain K̄(k + 1). Equation (7.7) indicates why three specific values of

γ are used, since any other values of γ would mean having to compute other moments of X (k|k)

recursively. In section 7.5, an approximate filtering heuristic will be considered, that is inspired by

the exact method for the three values of γ proposed here, which appears to work well for certain

other values of γ. The model structure employed here is still quite flexible and includes traditional

linear state space systems (γ = 0), Cox-Ingersoll-Ross type models used in econometrics Cox et

al. [1985] (γ = 0.5) and multiplicative noise models (γ = 1) that are sometimes useful in digital

control systems.

7.4 Stability and sensitivity

Start by rewriting the equation (7.4) in terms of X̂ (k|k) for the unperturbed case:

X̂ (k + 1|k + 1) = (I−K(k + 1)C)AX̂ (k|k) + K(k + 1)Y(k + 1). (7.10)

It is known that the above system is stable in the case of unperturbed Kalman filter ( (7.10), as

mentioned before), i.e. all the eigenvalues of (I−K(k + 1)C)A are inside the unit circle if the pair

(C, A) is observable, see Simon [2006] and references therein. As seen in the previous section, the

filter gain of the perturbed Kalman filter differs from the unperturbed Kalman filter by an additive

factor which depends on the variance of perturbations. It is of interest to see what happens to the

stability of this matrix, which maps X̂ (k|k) to X̂ (k + 1|k + 1), under parameter perturbations.

In this section, the eigenvalues of the matrix (I−K(k+1)C)A are considered, with K(k+1) from the

traditional (or unperturbed) Kalman filter and compare it with the eigenvalues of (I−K̄(k+1)C)A,

with K̄(k + 1) from the perturbed Kalman filter, introduced above. The scalar measurement case is

presented first and a more general result is given in the further subsection.
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7.4.1 Scalar measurement case

A case when the measurement equation (7.1) is scalar is considered, i.e. C is a 1×n matrix and D is

a scalar, whereas A is n×n matrix. To start with, write down the equations for the Kalman gain and

the predicted covariance for the unperturbed Kalman filter for the system in (7.1) with ∆A(k) = 0

for all k:

K(k + 1) = P(k + 1|k)CT [CP(k + 1|k)CT + DDT ]−1,

P(k + 1|k) = AP(k|k)AT + BBT ,

and similar expressions for the perturbed Kalman filter from the previous section are repeated for

convenience:

K̄(k + 1) = P̄(k + 1|k)CT [CP̄(k + 1|k)CT + DDT ]−1, (7.11)

P̄(k + 1|k) = AP̄(k|k)AT + BBT + ¯̃P(k|k). (7.12)

Suppose that both filters start with the same initial mean and covariance, X̂ (0|0) and P(0|0). The

idea is to keep track of the differences between P̄(k + 1|k) and P(k + 1|k), so that at each time

step t(k) it is possible to express eigenvalues of the perturbed KF in terms of the ones from the

unperturbed KF.

Defining

S(k + 1) = CP(k + 1|k)CT + DDT , (7.13)

in case of the unperturbed Kalman filter

(I−K(k + 1)C)A = (I−P(k + 1|k)CTS(k + 1)−1C)A. (7.14)

The following result gives an exact expression for P̄(k|k) in terms of P(k|k), which proves to be

useful in establishing the necessary relationship in perturbed and unperturbed eigenvalues:

Proposition 7.1:

P̄(k|k) = P(k|k) + ∆P̄(k|k), (7.15)
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where the recursion for ∆P̄(k|k) is as follows:

∆P̄(0|0) = 0,

∆P̄(k|k) = ∆P̄(k|k − 1) + P(k|k − 1)CTS(k)−1CP(k|k − 1)

− (
P(k|k − 1) + ∆P̄(k|k − 1)

)
φ(k)C

(
P(k|k − 1) + ∆P̄(k|k − 1)

)
,

and where

P̄(k|k − 1) = P(k|k − 1) + ∆P̄(k|k − 1), (7.16)

∆P̄(k|k − 1) = ˜P̄(k − 1|k − 1) + A∆P̄(k − 1|k − 1)AT .

Finally, φ(k) = CTS(k)−1[I + C∆P̄(k|k − 1)CTS(k)−1]−1.

Proof: This proposition will be proved using a simple mathematical induction argument. Suppose

that both filters have the same initial covariance P(0|0) = P̄(0|0). Also let ∆P̄(0|0) = 0, so that

the proposition holds for k = 0. Assume that (7.15) holds for some k = m with m ≥ 0, i.e.

P̄(m|m) = P(m|m) + ∆P̄(m|m),

where ∆P̄(m|m) = ∆P̄(m|m−1)+P(m|m−1)CTS(m)−1−(P(m|m−1)+∆P̄(m|m−1))φ(m).

Considering the expression for P̄(m + 1|m) first

P̄(m + 1|m) = AP̄(m|m)AT + BBT + ˜P̄(m|m)

= AP(m|m)AT + BBT + A∆P̄(m|m)AT + ˜P̄(m|m)

= P(m + 1|m) + ∆P̄(m + 1|m).

Then the expression for P̄(m + 1|m + 1) becomes

P̄(m + 1|m + 1) = P̄(m + 1|m)− P̄(m + 1|m)C′[CP̄(m + 1|m)C′ + DD′)−1CP̄(m + 1|m)

= P(m + 1|m) + ∆P̄(m + 1|m)− (P(m + 1|m) + ∆P̄(m + 1|m))CTS(m + 1)−1

∗ [I + C∆P̄(m + 1|m)CTS(m + 1)−1]−1C(P(m + 1|m) + ∆P̄(m + 1|m))

= P(m + 1|m) + ∆P̄(m + 1|m)− (P(m + 1|m) + ∆P̄(m + 1|m))φ(m + 1)

∗C(P(m + 1|m) + ∆P̄(m + 1|m))
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Rearranging the terms as before, the following expression is obtained

P̄(m + 1|m + 1) = P(m + 1|m)−P(m + 1|m)CTS(m + 1)−1CP(m + 1|m)

+ ∆P̄(m + 1|m) + P(m + 1|m)CTS(m + 1)−1CP(m + 1|m)

− (P(m + 1|m) + ∆P̄(m + 1|m))φ(m + 1)C(P(m + 1|m) + ∆P̄(m + 1|m))

= P(m + 1|m + 1) + ∆P̄(m + 1|m + 1),

where

∆P̄(m + 1|m + 1) = ∆P̄(m + 1|m) + P(m + 1|m)CTS(m + 1)−1CP(m + 1|m)

−(P(m + 1|m) + ∆P̄(m + 1|m))φ(m + 1)C(P(m + 1|m) + ∆P̄(m + 1|m))

as required.

Hence by induction Proposition 7.1 has been proven to hold for all k ≥ 0.

Define

α(k + 1) = C∆P̄(k + 1|k)CTS(k + 1)−1. (7.17)

Given the dimensions of C, S(k+1) is a positive scalar and hence α(k+1) is a scalar as well. As the

covariance of the perturbation matrix ∆A, i.e. P∆A → 0 and α(k +1) → 0, ∆P̄(k|k− 1) → 0 and

∆P̄(k|k) → 0. Hence P̄(k + 1|k) → P(k + 1|k). Using this relationship, the following expression

is obtained for the perturbed case for small enough perturbation, i.e. for 0 < α(k + 1) < 1.

Proposition 7.2:

(I− K̄(k + 1)C)A =
(
I− (P(k + 1|k) + ∆P̄(k + 1|k))

(1 + α(k + 1))
CTS(k + 1)−1C

)
A. (7.18)

Proof: From equation (7.16) the following relationship between P̄(k + 1|k) and P(k + 1|k) exists:

P̄(k + 1|k) = P(k + 1|k) + ∆P̄(k + 1|k).

Here ∆P̄(k+1|k) = ¯̃P(k|k)+A∆P̄(k|k)AT and the recursion for P̄(k|k) is as in Proposition 7.1.
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Rewriting equation (7.11) and using definition of S(k + 1) from (7.13),

K̄(k + 1) = (P(k + 1|k) + ∆P̄(k + 1|k)) ∗CT (S(k + 1) + C∆P̄(k + 1|k)CT )−1

= (P(k + 1|k) + ∆P̄(k + 1|k))φ(k + 1)

=
(P(k + 1|k) + ∆P̄(k + 1|k))CTS(k + 1)−1

1 + α(k + 1)
.

For small enough perturbation, i.e. 0 < α(k + 1) < 1, one can expand (1 + α(k + 1))−1 as a power

series and then write:

K̄(k + 1) = P(k + 1|k)CTS(k + 1)−1

(
1− α(k + 1)

1 + α(k + 1)

)
+ ∆P̄(k + 1|k)φ(k + 1)

= P(k + 1|k)CTS(k + 1)−1 + ∆P̄(k + 1|k)φ(k + 1)− α(k + 1)P(k + 1|k)φ(k + 1)

= K(k + 1) + ∆K̄(k + 1),

where the perturbation in the Kalman gain, to account for the random perturbation in the model

parameters, is given by

∆K̄(k + 1) =
∆P̄(k + 1|k)CTS(k + 1)−1

1 + α(k + 1)
− α(k + 1)

P(k + 1|k)CTS(k + 1)−1

1 + α(k + 1)
.

Rearranging one can get the desired result:

(I− K̄(k + 1)C)A = (I− (K(k + 1) + ∆K̄(k + 1))C)A

=
(
I− (P(k + 1|k) + ∆P̄(k + 1|k))

(1 + α(k + 1))
CTS(k + 1)−1C

)
A.

It is of interest to compare the eigenvalues of the perturbed KF and the eigenvalues of the tra-

ditional KF. It is also desirable to try to express the size of the eigenvalue perturbation as a func-

tion of the size of parameter perturbation. Suppose that matrix A has eigenvalues µ1, µ2, ..., µn;

λ1(k +1), λ2(k +1), ..., λn(k +1) and λ̄1(k +1), λ̄2(k +1), ..., λ̄n(k +1) are eigenvalues of (7.14)

and (7.18) respectively.

Consider relationship between λi(k + 1) and µi first. It is known that det (A) =
∏n

i=1 µi and
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tr (A) =
∑n

i=1 µi. Considering the determinant and the trace of (7.14) gives the following:

n∏

i=1

λi(k + 1) = det
(
I−P(k + 1|k)CTS(k + 1)−1C

) n∏

i=1

µi , (7.19)

= DDTS(k + 1)−1
n∏

i=1

µi if n = 2,

n∑

i=1

λi(k + 1) = tr (A)− tr
(
P(k + 1|k)CTS(k + 1)−1CA

)
. (7.20)

Considering the determinant and the trace of (7.18), one can obtain the main result for the eigenvalues

of the perturbed filter.

Proposition 7.3:

(a)
n∏

i=1

λ̄i(k + 1) = det
(
I− (P(k + 1|k) + ∆P̄ (k + 1|k))ψ(k + 1)

) n∏

i=1

µi, (7.21)

=
DDTS(k + 1)−1

(1 + α(k + 1))

n∏

i=1

µi if n = 2,

(b)
n∑

i=1

λ̄i(k + 1) = tr (A)− tr
(
(P(k + 1|k) + ∆P̄ (k + 1|k))ψ(k + 1)A

)
, (7.22)

where ψ(k + 1) = CT S(k+1)−1C
1+α(k+1) and α(k + 1) is as in (7.17).

Proof: To prove equation (a), start with the determinant of (7.18)

det (I− K̄(k + 1)C)A = det (A) det (I− (P(k + 1|k) + ∆P̄(k + 1|k))
(1 + α(k + 1))

CTS(k + 1)−1C).

When n = 2, one can use the fact that for any matrix B, det(I−B) = 1−tr(B)+det(B). Remember

that α(k +1) = C∆P̄(k +1|k)CTS(k +1)−1. Also note that det (CTS(k +1)−1C) = 0 and from

the definition of S(k+1) in (7.13)one has tr (P(k+1|k)CTS(k+1)−1C) = 1−DDTS(k+1)−1.
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This leads to

det (I− K̄(k + 1)C)A = det (A)
(

1− tr
(

(P(k + 1|k) + ∆P̄(k + 1|k))
(1 + α(k + 1))

CTS(k + 1)−1C
))

,

= det (A)
(

1− tr (P(k + 1|k)CTS(k + 1)−1C)
1 + α(k + 1)

)

− det (A)
(

tr (C∆P̄(k + 1|k)CTS(k + 1)−1)
1 + α(k + 1)

)
,

= det (A)
(

1− 1−DDTS(k + 1)−1

1 + α(k + 1)
− α(k + 1)

1 + α(k + 1)

)
,

= det (A)
DDTS(k + 1)−1

(1 + α(k + 1))
.

To prove equation (b), the trace of (7.18) is taken

tr
(
(I− K̄(k + 1)C)A

)
= tr(A)− tr

(
I− (P(k + 1|k) + ∆P̄(k + 1|k))

(1 + α(k + 1))
CTS(k + 1)−1C

)
,

which leads to the required result.

Note that (7.21) and (7.22) are equalities and not upper nor lower bounds. Consider (7.19) and

(7.21):

n∏

i=1

λi(k + 1) = det
(
I−P(k + 1|k)CTS(k + 1)−1C

) n∏

i=1

µi,

n∏

i=1

λ̄i(k + 1) = det
(
I− P(k + 1|k) + ∆P̄ (k + 1|k)

1 + α(k + 1)
CTS(k + 1)−1C

) n∏

i=1

µi.

Defining P̃(k + 1|k) = (P(k+1|k)+∆P̄(k+1|k))
(1+α(k+1)) for simplicity, note as ∆P̄(k + 1|k) → 0, one has

α(k + 1) → 0, P̃(k + 1|k) → P(k + 1|k) and tr (P̃(k + 1|k)) → tr (P(k + 1|k)). Hence
∏n

i=1 λ̄i(k + 1) is bounded in the same way as
∏n

i=1 λi(k + 1). Now consider (7.20) and (7.22):

n∑

i=1

λi(k + 1) = tr (A)− tr
(
P(k + 1|k)CTS(k + 1)−1CA

)
,

n∑

i=1

λ̄i(k + 1) = tr (A)− tr
(

P(k + 1|k) + ∆P̄(k + 1|k)
(1 + α(k + 1))

CTS(k + 1)−1CA
)

.

Observe also that covariances P(k + 1|k) and P̃(k + 1|k) are both symmetric and positive semidef-
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inite. Hence

γmin tr (P(k + 1|k)) ≤ tr (P(k + 1|k)CTS(k + 1)−1CA) ≤ γmax tr (P(k + 1|k)),

γmin tr (P̃(k + 1|k)) ≤ tr (P̃(k + 1|k)CTS(k + 1)−1CA) ≤ γmax tr (P̃(k + 1|k)),

where γmin and γmax are respectively the smallest and the largest eigenvalues of the matrix 1
2(CTS(k+

1)−1CA + (CTS(k + 1)−1CA)T ), see Mori [1988] for more details. Thus
∑n

i=1 λ̄i(k + 1) is

bounded in the same way as
∑n

i=1 λi(k + 1). For the case n = 2, λ̄i are fully defined by their sum

and product because of the characteristic equation λ̄2 − (λ̄1 + λ̄2)λ̄ + λ̄1λ̄2 = 0. Therefore, it is

possible to conclude that for a small enough perturbation, λ̄i will not differ by too much from λi.

Hence it is clear that the perturbed Kalman filter will have a transient behaviour very similar to an

unperturbed Kalman filter provided the random perturbations are small. Even though this equality

result is only for scalar systems with two (or less) eigenvalues, it gives a useful qualitative insight

into the impact of perturbations on the transient behaviour of the filter.

7.4.2 Multivariate measurement case

Note that Proposition 7.2 and Proposition 7.3 can be both extended to cover the case when C is a

n×n matrix and D is a n× 1 vector. In this case α(k +1) given in (7.17) is a matrix. Provided that

|||α(k + 1)||| < 1, where ||| ∗ ||| is a matrix norm, from Horn & Johnson [1985]:

(I + α(k + 1))−1 =
∞∑

l=0

(−α(k + 1))l.

In this case Proposition 7.2 becomes:

Proposition 7.4:

(I− K̄(k + 1)C)A =
(
I−P(k + 1|k)CTS(k + 1)−1C−∆K̄(k + 1)C

)
A, (7.23)

where

∆K̄(k + 1) = P(k + 1|k)CTS(k + 1)−1
∞∑

l=1

(−α(k + 1))l + ∆P̄(k + 1|k)φ(k + 1)
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and φ(k + 1) is as in Proposition 7.1.

Proof: Using power series for α(k + 1) it is possible to rewrite K̄(k + 1) as:

K̄(k + 1) = (P(k + 1|k) + ∆P̄(k + 1|k))φ(k + 1)

= P(k + 1|k)CTS(k + 1)−1

(
I +

∞∑

l=1

(−α(k + 1))l

)
+ ∆P̄(k + 1|k)φ(k + 1)

= K(k + 1) + ∆K̄(k + 1),

where

K(k + 1) = P(k + 1|k)CTS(k + 1)−1

and

∆K̄(k + 1) = P(k + 1|k)CTS(k + 1)−1
∞∑

l=1

(−α(k + 1))l + ∆P̄(k + 1|k)φ(k + 1). (7.24)

Then using ∆K̄(k + 1) it is possible to obtain

(I− K̄(k + 1)C)A =
(
I− (K(k + 1) + ∆K̄(k + 1))C

)
A,

=
(
I−P(k + 1|k)CTS(k + 1)−1C−∆K̄(k + 1)C

)
A,

as required.

Taking the trace and determinant of (7.23) will provide with the sum and product of eigenvalues λ̄i

for the general case.

Proposition 7.5:

(a)
n∏

i=1

λ̄i(k + 1) = det
(
I−P(k + 1|k)CTS(k + 1)−1C−∆K̄(k + 1)C

) n∏

i=1

µi, (7.25)

(b)
n∑

i=1

λ̄i(k + 1) = tr (A)− tr
(
(P(k + 1|k)CTS(k + 1)−1C + ∆K̄(k + 1)C)A

)
. (7.26)
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Proof: In order to proof (a) one can start by taking the determinant of (7.23) and use expression in

Proposition 7.4:

n∏

i=1

λ̄i(k + 1) = det
(
(I− K̄(k + 1)C)A

)

= det
(
I−P(k + 1|k)CTS(k + 1)−1C−∆K̄(k + 1)C

)
det (A)

= det
(
I−P(k + 1|k)CTS(k + 1)−1C−∆K̄(k + 1)C

) n∏

i=1

µi.

For the proof of (b) one can take the trace of (7.23) to obtain the required result:

n∑

i=1

λ̄i(k + 1) = tr
(
(I− K̄(k + 1)C)A

)

= tr (A)− tr
(
(P(k + 1|k)CTS(k + 1)−1C + ∆K̄(k + 1)C)A

)
.

Note as ∆P̄(k + 1|k) → 0, one has α(k + 1) → 0 and hence ∆K̄(k + 1) → 0. Comparing

(7.25) with (7.19) and (7.26) with (7.20), it can be observed that
∏n

i=1 λ̄i(k + 1) is bounded in the

same way as
∏n

i=1 λi(k + 1) and
∑n

i=1 λ̄i(k + 1) is bounded in the same way as
∑n

i=1 λi(k + 1).

Therefore, one can conclude that for a small enough perturbation, λ̄i won’t differ by too much from

λi in general case as well.

7.5 Approximate filtering for γ ≥ 1.5

In this section a univariate state-space system in considered as in (7.1) with γ = l
2 with l = 3, 4, ....

These values of γ come up in CEV type models, see Cox [1996] for more details. In this particular

case, ˜P(k − 1|k − 1) = P∆AE(X 2γ(k − 1)), where positive values of X are chosen whenever

there are two roots. Hence in order to find the covariance P̄(k|k − 1), optimal gain K̄(k) and

the updated state X̂ (k|k) at time step t(k), it is necessary to know E(X 2γ(k − 1)) from t(k − 1).

In general there is no closed form solution for this for l ≥ 3 as only the first two moments of

X are propagated throughout the filter recursions. However one can carry out moment matching

approximation of ∆A(k − 1)X γ(k − 1) by rewriting it as a noise term with the same first two

moments as F(k − 1)u(k − 1). Here u(k − 1) is a Gaussian random variable, uncorrelated with the
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state and noise terms w(k) and v(k), and F(k−1)2 = P∆AE
(X 2γ(k − 1)

)
. This way it is possible

to match the first two moments of term ∆A(k − 1)X γ(k − 1) exactly, and higher order moments

would be proportional to those of u(k − 1), in particular, the odd moments would be zero.

Using (7.1) it is possible to rewrite X (k) − X̂ (k|k) as an expression depending on the state, ∆s,

and an expression consisting solely of noise terms, ∆n :

Proposition 7.6

X (k)− X̂ (k|k) = ∆s + ∆n,

where ∆s =
(
I− K̄(k)C

)
A

(
X (k − 1)− X̂ (k − 1|k − 1)

)
and

∆n =
(
I− K̄(k)C

)
(Bw(k) + F(k − 1)u(k − 1))− K̄(k)Dv(k).

Proof: In order to prove Proposition 7.6 start by using (7.1) while rewriting ∆A(k − 1)X γ(k − 1)

as F(k − 1)u(k − 1). On expanding of X̂ (k|k) using (7.10) and rearranging the terms:

X (k)− X̂ (k|k) = AX (k − 1) + F(k − 1)u(k − 1) + Bw(k)

−
(
AX̂ (k − 1|k − 1) + K̄(k)(Y(k)−CAX̂ (k − 1|k − 1))

)

=
(
I− K̄(k)C

)
A

(
X (k − 1)− X̂ (k − 1|k − 1)

)

+
(
I− K̄(k)C

)
(Bw(k) + F(k − 1)u(k − 1))− K̄(k)Dv(k). (7.27)

Since u(k),w(k) and v(k) are zero mean uncorrelated Gaussian random variables, E(wj(k)) =

E(vj(k)) = E(uj(k)) = 0 hold for any odd integer j, thus E(∆n)j = 0. In the case of l = 3 and

γ = 1.5, one can raise equation (7.27) to the power 3, and take expectations of both sides. This

would allow to find the expression for E(X (k))3:

Proposition 7.7

E(X 3(k)) = 3P(k|k)X̂ (k|k) + X̂ 3
(k|k) + (I− K̄(k)C)3A3∗

∗
(
E(X 3(k − 1))− 3P(k − 1|k − 1)X̂ (k − 1|k − 1)− X̂ 3

(k − 1|k − 1)
)

.
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Proof: Taking expectations of both sides of (7.27) raised to the power 3:

E
(
X (k)− X̂ (k|k)

)3
= E(∆s + ∆n)3

= E(∆3
s) + 3E(∆2

s∆n) + 3E(∆s∆2
n) + E(∆3

n)

= E(∆3
s)

= E
(
(I− K̄(k)C)A

(
X (k − 1)− X̂ (k − 1|k − 1)

))3

= (I− K̄(k)C)3A3E
(
X (k − 1)− X̂ (k − 1|k − 1)

)3
. (7.28)

On expanding both sides of (7.28)

E
(
X 3(k)− 3X 2(k)X̂ (k|k) + 3X (k)X̂ 2

(k|k)− X̂ 3
(k|k)

)

= E
(
X 3(k − 1)− 3X 2(k − 1)X̂ (k − 1|k − 1) + 3X (k − 1)X̂ 2

(k − 1|k − 1)− X̂ 3
(k − 1|k − 1)

)
∗

∗ (I− K̄(k)C)3A3. (7.29)

Rearranging equation (7.29) the required result is obtained for E(X (k))3.

In general

E
(
X (k)− X̂ (k|k)

)q
= E(∆s + ∆n)q, (7.30)

for some integer power q. Provided at time step t(k) E(X (k − 1))i are known for i = 1, 2, ..., 2γ,

one can recursively find E(X (k))j for j = 3, ..., 2γ using the following proposition.

Proposition 7.8

q∑

i=0


q

i


E(X (k))i(X̂ (k|k))q−i =

∑

j=0,2,...,q


q

j


E(∆n)jE(∆s)q−j if q is even,

=
∑

j=0,2,...,q−3


q

j


E(∆n)jE(∆s)q−j if q is odd, (7.31)

for q = 3, ..., 2γ.

Proof: Left hand side of equation (7.30) simplifies to

E
(
X (k)− X̂ (k|k)

)q
=

q∑

i=0


q

i


E(X (k))i(X̂ (k|k))q−i. (7.32)

92



CHAPTER 7. TIME SERIES FILTERING UNDER PARAMETER PERTURBATIONS

When i ∈ {0, 1, 2}, expectations E(X (k))i in (7.32) are given by filter update equations in sec-

tion 7.3. However the problem arises for i ≥ 3. It has been shown in Proposition 7.7 how to

find the expectation for i = 3. Similarly to find these expectations for i ≥ 3, one needs to raise

E
(
X (k)− X̂ (k|k)

)
to the power q, where q = 3, 4, ..., 2γ. Right hand side of equation (7.30) can

be expressed as

E(∆s + ∆n)q =
q∑

j=0


q

j


E(∆n)jE(∆s)q−j . (7.33)

It is known that for odd values of j E(∆n)j = 0. Also E(∆s) = 0 from the definition. Hence

equation (7.33) reduces to

E(∆s + ∆n)q =
∑

j=0,2,...,q


q

j


E(∆n)jE(∆s)q−j if q is even,

=
∑

j=0,2,...,q−3


q

j


E(∆n)jE(∆s)q−j if q is odd. (7.34)

Putting equations (7.32) and (7.34) together will give the required result.

Note that minimum variance derivation of the equations for K̄(k) in (7.9) still holds for these values

of γ as well. This filter is denoted as approximate perturbed Kalman filter (APKF) as it is a linear

filter providing a solution by approximating the perturbation term by a noise term.

7.6 Numerical examples

Consider two different cases for two allowable values of γ to illustrate and contrast the performance

of the exact minimum variance filter, PKF, with that of the Kalman filter. Also included here is one

example for the approximate perturbed filter for the discrete univariate system with γ = 1.5.

7.6.1 Case when γ = 1

In this section a numerical example is considered with the following state-space equations.

X (k + 1) = AX (k) + ∆A(k)X γ(k) + Bw(k + 1),

Y(k) = CX (k) + Dv(k),
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where γ = 1,

A =


0 −0.5

1 1


 , B =


−6

1


 ,C =

(
−100 10

)

and D = 1. v(k), w(k) are uncorrelated Gaussian random variables. Perturbation matrix ∆A(k) has

zero mean, the matrix elements have the following covariance matrix

P∆A =


0.12 0.02

0.15 0.1


 .

Initial conditions are X (0) =
(
1 0

)T

, X̂ (0|0) =
(
0 0

)T

and

P(0|0) =


1 0

0 1


 .

In order to compare the performance of both the perturbed and the unperturbed Kalman filters , the

average root mean square error (AvRMSE) for the state is considered, where RMSE for a sample

path l is given by

RMSEl =

√√√√ 1
2F

F∑

j=1

((X 1(j)− X̂ 1(j))2 + (X 2(j)− X̂ 2(j))2),

and AvRMSE over a given number of sample paths L is defined by 1
L

∑L
l=1 RMSEI . Here F = 100

and L = 100 are used. Comparison of the variance of RMSE (VAR) for both filters is also shown in

tables 7.1-7.3 and is calculated as 1
L

∑L
l=1

(
RMSEl −AvRMSE)2 . Three cases are investigated:

when the real covariance of perturbation matrix ∆A is known exactly and when two different cases

where it is incorrectly estimated. If the model is calibrated from data, it is likely that the parameters

are imperfectly known and even the size of uncertainty (in terms of its covariance matrix) is not

known exactly. It is of interest to see whether the filter performs well if this is indeed the case.

P̃∆A1 =


 0.2 0.1

0.05 0.15


 and P̃∆A2 =


0.25 0.15

0.05 0.2


 are used, but P∆A is kept in the equations

of PKF (i.e. P∆A is the incorrect covariance matrix used when the correct covariances are P̃∆A1,

P̃∆A2). These results are presented in tables 7.2 and 7.3 respectively. A comparison of a simulated

path with the paths generated by PKF and KF for X (1), with P̃∆A1 as the real covariance of the

perturbation matrix ∆A, is shown in Fig. 7.1.
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Table 7.1. Comparison of AvRMSE when P∆A is estimated correctly

KF PKF Improvement

AvRMSE 14.750 5.927 59.8%

VAR 54.061 2.285 95.8%

Table 7.2. Comparison of AvRMSE when P∆A1 is not estimated correctly

KF PKF Improvement

AvRMSE 18.775 8.102 56.9%

VAR 472.414 22.214 95.3%

Table 7.3. Comparison of AvRMSE when P∆A2 is not estimated correctly

KF PKF Improvement

AvRMSE 37.557 16.088 57.1%

VAR 1465.857 158.557 89.2%

It can be seen from all the three tables that PKF provides more accurate state estimates in terms

of both the measures of error when compared to unperturbed Kalman filter, in both the cases when

P∆A is estimated correctly and when it is not. Note that acknowledging that the model is not precise

and accounting for the random parameter uncertainties, makes the filter more robust even to poor

estimates of the parameter uncertainty (in terms of variance of ∆A). This observation is in line

with the intuition that unperturbed filter is highly tuned to the system parameters and the addition of

¯̃P(k|k) provides a de-tuning effect, thereby making the filter more robust.

7.6.2 Case when γ = 0.5

As another example, consider a nonlinear system

X (k + 1) = AX (k) + ∆A(k)X γ(k) + Bw(k + 1),

Y(k) = CX (k) + Dv(k),
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with γ = 0.5, A = 0.9, B = 0.1,C = 1 and D = 0.01. v(k), w(k) are uncorrelated Gaussian

random variables. Initial conditions are assumed to be X (0) = 0.1, X̂ (0|0) = 0 and P(0|0) = 1.

The performance of the new perturbed Kalman filter will be compared with unperturbed Kalman

filter. Average root mean square error is calculated for both filters as follows:

RMSE =

√√√√ 1
F

F∑

j=1

((X (j)− X̂ (j))2),

F = 100 and AvRMSE is calculated over 100 paths, as before. As in the previous example, these

errors are also calculated for the case when covariance P∆A is not estimated correctly. Results are

summarized in tables 7.4-7.5.

Table 7.4. Comparison of AvRMSE when P∆A is estimated correctly

P∆A KF PKF Improvement

0.2 0.009418 0.009131 3.1%

0.3 0.009422 0.008954 5.0%

0.4 0.009661 0.008921 10.1%

Table 7.5. Comparison of AvRMSE when P∆A is not estimated correctly

True P∆A Assumed P∆A KF PKF Improvement

0.4 0.2 0.009965 0.009219 7.5%

0.3 0.2 0.009491 0.009052 4.6%

0.2 0.3 0.009355 0.009078 3.0%

0.2 0.4 0.009418 0.009129 2.8%

It can be seen from these tables that perturbed Kalman filter provides better accuracy when compared

to unperturbed Kalman filter for different values of the perturbation matrix variance. The improve-

ment is more pronounced when the variance of the uncertainty is larger, as can be expected.
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7.6.3 Case when γ = 1.5

As an example for the APKF, consider a nonlinear system

X (k + 1) = AX (k) + ∆A(k)X γ(k) + Bw(k + 1),

Y(k) = CX (k) + Dv(k),

with γ = 1.5, A = 0.9, B = 0.1,C = 1 and D = 0.01. v(k), w(k) are uncorrelated Gaussian

random variables. Initial conditions are assumed to be X (0) = 0.1, X̂ (0|0) = 0 and P(0|0) = 1, as

per example in the previous subsection.

The performance of the new approximate perturbed Kalman filter will be compared with unperturbed

Kalman filter. Average root mean square error is calculated for both filters as in the previous subsec-

tion. As in the previous example, these errors are also calculated for the case when covariance P∆A

is not estimated correctly. Results are summarized in tables 7.6-7.7.

Table 7.6. Comparison of AvRMSE when P∆A is estimated correctly

P∆A KF APKF Improvement

0.2 0.009542 0.009204 3.5%

0.3 0.010312 0.009219 10.6%

0.4 0.012105 0.009235 23.7%

Table 7.7. Comparison of AvRMSE when P∆A is not estimated correctly

True P∆A Assumed P∆A KF APKF Improvement

0.4 0.2 0.012087 0.009232 23.6%

0.3 0.2 0.011253 0.009329 17.1%

0.2 0.3 0.009527 0.009214 3.2%

0.2 0.4 0.009583 0.009297 3.0%

It can be observed from these tables that approximate perturbed Kalman filter provides better ac-

curacy when compared to unperturbed Kalman filter for different values of the perturbation matrix

variance. The improvement is more pronounced when the variance of the uncertainty is larger, as can

be expected.
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7.7 Summary

In this chapter a class of systems with parameters of the transition equation under stochastic perturba-

tion is considered. These perturbed discrete time systems allow for both multiplicative and additive

noise sources. The class of these systems includes square-root affine systems, i.e. Cox-Ingersoll-

Ross type models, first introduced in Cox et al. [1985], which are frequently used in econometrics

and finance literature, and also models that arise in the area of stochastically sampled digital control

systems, see de Koning [1980] for more details.

The problem addressed is the design of a filter that minimizes the estimation error variance and

reduces to the Kalman filter if the covariance of the perturbation matrix is zero. The recursive filtering

equations for this new perturbed Kalman filter have been derived for this class of systems. Comparing

these equations to those of the traditional unperturbed Kalman filter, it is observed that there is an

extra term in the expression for the filter covariance. This is a diagonal matrix that takes different

values depending on γ in the transition equation and is due to the random parameter perturbation.

It is of interest to see what happens to the stability of the matrix, which maps X̂ (k|k) to X̂ (k +

1|k + 1), under parameter perturbations. The eigenvalues of the matrix (I − K(k + 1)C)A are

considered, with K(k + 1) from the traditional (or unperturbed) Kalman filter and compare it with

the eigenvalues of (I−K̄(k+1)C)A, with K̄(k+1) from the perturbed Kalman filter. The sensitivity

of the new filter to the size of the parameter perturbation has also been analyzed in the case of a scalar

measurement equation and have provided results for the product and sum of the eigenvalues of the

new perturbed filter in terms of the perturbation parameter. It has been deduced that the perturbed

Kalman filter will have a transient behaviour very similar to an unperturbed Kalman filter, provided

the random perturbations are small. These results have been extended to the multivariate case as

well.

An approximate perturbed Kalman filter has also been considered for the special univariate case

of γ = l
2 for any positive integer l ≥ 3. These particular values of γ come up in CEV type models,

described in Cox [1996], and frequently used in economics and finance. The need for this approxi-

mate moment matching approach arises since only the first two moments of the state are propagated

throughout the linear filter recursion. The approximate perturbed Kalman filter was inspired by the
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exact method, proposed earlier in this chapter, and appears to work well for a wider case of nonlinear

systems.

Three numerical examples illustrate the improved accuracy achieved by the new filters when

compared to the traditional (or unperturbed) Kalman filter. Two types of cases are investigated,

when the real covariance of perturbation matrix ∆A is known exactly and when it is incorrectly

estimated. The improvement is more pronounced when the variance of the uncertainty is larger,

as can be expected. Crucially, the examples indicate that the perturbed filter and the approximate

perturbed filter perform better than the unperturbed Kalman filter even when the size of uncertainty

is poorly identified. This has important implications in cases where the model is calibrated from data.

99



CHAPTER 7. TIME SERIES FILTERING UNDER PARAMETER PERTURBATIONS

Figure 7.1: Simulated paths
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Chapter 8

Conclusions and Summary of

Contributions

In this chapter the main contributions of the thesis are summarized with some suggestions for further

research.

In chapter 3 a new method has been proposed for generating deterministic sigma points and corre-

sponding probabilities that match the given mean vector, the covariance, the average marginal third

and fourth moments exactly, without the use of optimization. The information about higher order

moments can give a better idea of the shape of the posterior distribution of the latent state and in par-

ticular its partition from assumed Gaussianity in the traditional UKF. The new algorithm for sigma

point generation is used as a part of the new filter, HOSPoF. The structure of the deterministic sigma

points and corresponding probability weights allows HOSPoF to propagate information about the

higher order moments (not just mean and covariance as with the traditional unscented KF) through-

out the filter recursions. The utility of the new algorithm has been tested on two examples, one

simulation and one based on the empirical financial market data. It has also been shown that the new

method improves on predictions of mean and covariance of the state, when compared to the tradi-

tional and scaled unscented transformations used in unscented Kalman filters. This improvement is

achieved with very little extra computational help, as compared to the traditional UKF.

However, the deterministic generation of sigma points and dependence of the number of points on the
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state dimension, inherited from UKF, can be considered too restrictive in a filter. It is believed that

adding some randomness to the process of sigma point generation can improve the representation

of the required posterior density. This idea has been investigated in chapter 4. A new method for

generating random sigma points and corresponding probabilities that match the given mean vector,

the covariance, the average marginal third and fourth moments exactly, without the use of optimiza-

tion, has been introduced. This allows generation of a moment-matching proposal distribution with

any number of particles and almost all of the corresponding probabilities are generated randomly.

Together with HOSPoF this new algorithm is used as a part of the new filter inspired by the particle

filter and is called here PF-HOSPoF. For a particle filter the right choice of a proposal distribution is

very important. Two numerical examples, one simulation and the other one based on real financial

market data, illustrate the utility of the proposed algorithm in comparison with particle filter with

proposals generated by EKF and UKF. PF-HOSPoF has shown to outperform the particle filter with

proposal distribution generated by UKF (and EKF) in average improvement for both types of errors

and computational times. This can be explained as using unequal random probability weights allows

better capturing of the shape of the distribution and offers computational advantage.

The new algorithm for generating random sigma points and corresponding probability weights has

been compared with the maximum entropy method in chapter 5. Entropy maximization allows de-

termining of the probability weights that satisfy the set of the moment constraints, which are usually

given or can be obtained from a data sample. This method makes use of convex optimization and the

probability density achieved is considered to be the most unbiased conditioned upon the available

information. Comparison is carried out using relative entropy for four well known probability distri-

butions. The results show that the probability weights generated using the new method, introduced in

chapter 4, are very close to the optimal ones in accuracy and have an advantage of not requiring any

optimization in the calculations. The other advantage is that sigma points generated using the new

method match the mean vector, covariance matrix, the average marginal third and fourth moments

exactly. This is often not the case with the points and probability weights achieved using maximum

entropy method.

In chapter 6, the new random sigma point generation method, proposed in chapter 4, is considered

in the context of financial optimization. The method presents several advantages over the existing
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approaches for scenario generation in financial portfolio optimization. First, it is computationally

cheap; there is no optimization involved in generating scenarios. Secondly, due the (unequal) gen-

erated probabilities of the scenarios, this method may perform well even with a relatively small

number of scenarios. In contrast, methods that would assume by default equal probabilities would

need a larger number of scenarios. The quality of the proposed scenario generator has been tested

in a mean-CVaR portfolio optimization model. Several observations were made.First, the method is

remarkably stable, both in-sample and out-of-sample. It also manifests stability of optimal solutions,

i.e. not only the optimums are similar, but also the optimal portfolio weights, representing the solu-

tion to implement. Secondly, the optimal solutions vary only marginally with increasing number of

scenarios. That means, by using only a small number of scenarios, it is possible to obtain a reason-

ably good solution. In the numerical case presented here, direct comparison with solutions obtained

via using historical data could be made. It has been noted that the proposed scenario generation

method is applicable to cases where there is no (or not enough) historical data available, but only

expert opinion on the statistical properties involved. This method may also present a big advantage

when used with a computationally difficult optimization model, requiring only a limited number of

scenarios; stable and good quality solutions can be obtained with a relatively small number of sce-

narios.

An independent derivation of a closed-form minimum variance filter for discrete systems with stochas-

tic uncertainties in state parameters has been provided in chapter 7. If the model is calibrated from

data, it is likely that the parameters are imperfectly known and even the size of uncertainty (in terms

of its covariance matrix) is not known exactly. Analysis of the sensitivity of the new filter to the size

of the parameter perturbation (in terms of its covariance matrix) in the case of a scalar measurement

equation has been presented and results for the product and sum of the eigenvalues of the new per-

turbed filter in terms of the perturbation parameter have been provided. These results have also been

extended to a general case for any dimension of the measurement vector. A new way of approximate

moment matching in the univariate case for γ = l
2 for any integer l ≥ 3 has also been introduced

in this chapter. This approach has been expired by the exact method and the need for it arises from

parameter perturbations occurring in the CEV models. Filter, based on the approximate moment

matching method, is called the approximate perturbed Kalman filter. The performance of the new
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perturbed Kalman filter and the approximate perturbed Kalman filter has been tested on three numer-

ical examples. Results illustrate the improved accuracy achieved by the new filters when compared

to traditional(or unperturbed) Kalman filter. Importantly, the examples indicate that the perturbed

filter and the approximate filter perform better than the unperturbed Kalman filter even when the size

of uncertainty is poorly identified. Note that acknowledging that the model is not precise and ac-

counting for the random parameter uncertainties, makes the filter more robust even to poor estimates

of the parameter uncertainty (in terms of variance of ∆A). This has important implications in cases

where the model is calibrated from data.

Ideas for future research

Besides a good choice of proposal, another important issue for a successful particle filter is main-

taining the diversity of the particles and avoiding the sample impoverishment. The recent trend is to

use particles with high enough importance weight to generate the new particles, instead of copying.

The new method for generating random sigma points and corresponding probabilities, proposed in

chapter 4, can be used in the resampling step in order to enrich the representation of the posterior

distribution. In chapter 5, the comparison was done for the univariate data between the maximum

entropy approach and the new method, introduced in chapter 4. It might be of interest to extend the

comparison of these two methods to the multivariate case and increase the number of sigma points in-

volved. It might also be of interest to use the new method for generating univariate random variables

with specified moments matched exactly. These can be used in a cubic transformation or similar and

a matrix transformation can then be applied to transform a multivariate distribution to obtain a given

correlation matrix, as, for example, is done in Høyland et al [2003].

In chapter 7, the parameters in the transition equation of a discrete time state space form have been

affected by the stochastic perturbation. It is of interest to extend the perturbations to the parameters

in the measurement equations as well. The linear minimum variance filter has been derived in chapter

7 and the question is whether this method for dealing with parameter stochastic perturbations can be

extended to the EKF and to the correlated perturbations.

Summary

To conclude, a suite of approximate filtering methods has been developed and has been tested on

several numerical examples. At the moment, there is no single best approximation to the nonlin-
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ear filtering problem, which works well in all cases. It is felt that the methods proposed here are a

valuable addition to the tool-kit to address nonlinear or non-Gaussian filtering problems in various

branches of science. The utility of the new algorithm for generating samples from a partially speci-

fied distribution has been demonstrated in a completely different application domain, viz., financial

portfolio optimization.
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