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Thesis Summary 

Foaming during fermentation reduces the efficiency of the process leading to increased 
costs and reduced productivity. Foaming can be overcome by the use of chemical 
antifoaming agents, however their influence upon the growth of organisms and protein 
yield is poorly understood. The objective of this work was to evaluate the effects of 
different antifoams on recombinant protein production. Antifoam A, Antifoam C, J673A, 
P2000 and SB2121 were tested at different concentrations for their effect on the growth 
characteristics of Pichia pastoris producing GFP, EPO and A2aR and the yield of protein in 
shake flasks over 48 h. All antifoams tested increased the total GFP in the shake flasks 
compared to controls, at higher concentrations than would normally be used for defoaming 
purposes. The highest yield was achieved by adding 1 % P2000 which nearly doubled the 
total yield followed by 1 % SB2121, 1 % J673A, 0.6 % Antifoam A and lastly 0.8 % 
Antifoam C. The antifoams had a detrimental effect upon the production of EPO and A2aR 
in shake flasks, suggesting that their effects may be protein specific. The mechanisms of 
action of the antifoams was investigated and suggested that although the volumetric mass 
oxygen transfer coefficient (kLa) was influenced by the agents, their effect upon the 
concentration of dissolved oxygen did not contribute to the changes in growth or 
recombinant protein yield. Findings in small scale also suggested that antifoams of different 
compositions such as silicone polymers and alcoxylated fatty acid esters may influence 
growth characteristics of host organisms and the ability of the cells to secrete recombinant 
protein, indirectly affecting the protein yield. Upon scale-up, the concentration effects of 
the antifoams upon GFP yield in bioreactors was reversed, with lower concentrations 
producing a higher yield. These data suggest that antifoam can affect cells in a 
multifactorial manner and highlights the importance of screening for optimum antifoam 
types and concentrations for each bioprocesses. 
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1. INTRODUCTION 

 

 

1.1 Overview 

This project is concerned with the optimization of recombinant protein production in yeast. 

Research was specifically conducted into areas of process optimization which have 

previously received little attention and could become important in obtaining higher yields 

of recombinant proteins. The work described here focuses on the influence of additives, 

known as antifoams, on the yield of a range of protein targets in the yeast Pichia pastoris. 

Investigation into the mechanisms of action of antifoams, which were found to have an 

effect upon yield of protein and growth of the organism, were carried out. The data 

generated should lead to a more informed approach when choosing antifoams for 

fermentation processes.  

 

 

1.2 P.  pastoris as a host for recombinant protein production                           

The production of recombinant proteins is essential for the development of drugs as well as 

the engineering of antibodies[1], the identification of functions and interactions of 

proteins[2] and also in the production of enzymes[3]. Valuable proteins such as insulin[4] 

and human growth hormone[5] have been produced recombinantly on an industrial scale 

and have enabled treatment and understanding of many diseases.  

 

Recombinant protein production involves the amplification of a DNA sequence encoding 

the target protein[6] followed by insertion into a vector and transfer to the host cell which 

will produce the protein[7]. The combination of the DNA encoding the gene of interest, 

usually from another organism, and the vector DNA results in recombinant DNA; the 

protein produced by the cells containing this DNA is known as recombinant protein[7].  

 

The vector into which the target DNA is inserted can be replicated inside a host cell to 

produce clones[8]. The choice of vector depends upon the host organism and the protein to 

be produced. Vectors typically contain a promoter which can affect the level of gene 
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expression, and antibiotic resistance or nutrient selection genes to aid selection of the 

organisms containing the target DNA[8] and expressing the recombinant protein of 

interest[9]. This work uses the methylotrophic yeast Pichia pastoris as an expression 

system for recombinant protein production. 

 

 

1.2.1 P. pastoris general properties                                                                    

P. pastoris is an ascomycetous budding yeast of the family Saccharomycetaceae[10]. It is 

Crabtree-negative[11] and methylotrophic, and has been isolated from tree sap, including 

sap from algarrobo trees[12]. It is strictly aerobic and had its genome sequenced in 

2009[13]. A thin-section electron microscopy image of a P. pastoris cell is shown in Fig. 

1.1. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Thin-section electron microscopy image of a P. pastoris cell                                                                     

G, Golgi stack; N, nucleus; ER, peripheral ER membranes; M, mitochondrion; V, vacuole. Taken from 

Rossanese et al 1999[14]. 
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P. pastoris is usually in a vegetative haploid state, and mating occurs when nitrogen is 

limited to form diploid cells. It is a homothallic yeast and cells of the same strain mate 

easily. It is thought that P. pastoris may have more than one mating type which switches at 

high frequency, and that mating occurs only between haploid cells of the opposite mating 

type. This has been shown with the related yeast, Pichia methanolica[15]. The diploid cells 

are able to remain in this state or can proceed to meiosis, where they produce asci 

containing four haploid spores. P. pastoris is most stable in the vegetative haploid state, 

unlike S. cerevisiae where haploid cells are unstable and mate to form diploid cells[15]. 

Sugars are utilized by all yeasts through a common glycolytic pathway. These metabolic 

pathways of non-conventional yeasts such as P. pastoris were assumed to be identical to 

those of S. cerevisiae, however slight variations exist[16]. As well as glucose, glycerol can 

be utilized by P. pastoris as a carbon source under aerobic conditions[16, 17]. This 

involves glycerol phosphorylation by a cytosolic glycerol kinase to 3-phosphoglycerol, 

which is then oxidized by a mitochondrial FAD-dependent glycerol phosphate ubiquitone 

oxidoreductase to produce dihydroxyacetone phosphate which is used in pyruvate synthesis 

and gluconeogenesis[18]. P. pastoris has a high glycerol uptake rate and 4 genes have been 

discovered that encode H+/glycerol symporters[19]. This makes glycerol an effective 

substrate to accumulate biomass whilst repressing the  alcohol oxidase 1 (AOX1) promoter 

before induction to produce recombinant protein[20].  

 

Koichi Ogata found that methanol could be used as a sole carbon source by some species of 

yeast such as Candida, Hansenula, Pichia and Torulopsis in 1969[21-23]. In the 1970’s 

due to the low cost of acquiring methanol from methane these species were appealing for 

the production of single cell protein for animal feed[22, 23]. Phillips Petroleum Company 

developed the methods and media in order for P. pastoris to grow to high cell densities on 

methanol.  However the price of methane rose due to the oil crisis and another source of 

animal feed protein, soy beans, became cheaper. Consequently interest was lost in the 

species until the 1980’s when a new use was found. Phillips together with The Salk 

Institute of Biotechnology used P. pastoris as an expression system for heterologous 

protein production, utilizing the AOX1 gene and promoter[24].  
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A large proportion of methanol transport into P. pastoris is thought to occur by passive 

diffusion[25, 26]. Methanol is then metabolized by P. pastoris as the sole carbon source 

beginning with oxidation of methanol to formaldehyde catalysed by the alcohol oxidase 

(AOX) enzyme also producing hydrogen peroxide. This occurs within the peroxisome 

which prevents damage to the cell by sequestering the toxic hydrogen peroxide[22] 

illustrated in Fig. 1.2. The AOX1 and AOX2 genes code for AOX, but AOX1 is responsible 

for around 90% of the enzyme in the cell[22, 27]. Methanol strongly induces the AOX1 

promoter and can therefore be utilized to initiate the expression of the desired protein 

whether or not it is toxic. Higher expression levels can be obtained by using the AOX1 

promoter rather than AOX2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Methanol metabolism in methylotrophic yeasts                                                                               

Adapted from Gellissen, G (2002)[28](1) alcohol oxidase, (2) catalase, (3) glutathione-dependent 

formaldehyde dehydrogenase, (4) S-formylglutathione hydrolase, (5) formate dehydrogenase, (6) 

dehydroxyacetone synthase, (7) Pmp20. Abbreviations: S-HMG, S-hydroxymethyl glutathione; S-FG, S-

formylglutathione; GSH, reduced glutathione; GSSG; oxidized glutathione; Pmp20, peroxisome membrane 

protein with glutathione peroxidase activity; Xu5P, xylulose-5-phosphate; GAP, glyceraldehyde-3-phosphate; 

DHAP, dehydroxyacetone phosphate. 
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Initial growth on glucose or glycerol prevents transcription and can be used to increase 

biomass before switching to methanol[22, 27, 29-31]. Growth on glycerol is preferred to 

glucose, however, as even in the presence of methanol, glucose represses transcription of 

the of AOX1 promoter[9].  

 

Three strains are available: (i) the wild type methanol utilization plus phenotype (Mut+) as 

well as strains with either (ii) deletion in the AOX1 gene (methanol utilization slow, Muts) 

which instead utilizes AOX2 resulting in slower methanol metabolism and growth which 

may in some cases be desired over more rapid growth, or (iii) deletion in both genes 

(methanol utilization minus, Mut-) which prevents growth upon methanol[27, 29]. However 

the disadvantages of the AOX1 promoter are that two carbon sources are needed for 

adequate protein yield, large volumes of methanol must be stored which can be a fire 

hazard, and some products intended for use in foods may not be suitable for expression 

with methanol. Some reports have suggested methanol-free expression of recombinant 

proteins with AOX1 promoter control[32]. Other promoters present in P. pastoris such as 

glyceraldehyde 3-phosphate dehydrogenase (GAP), formaldehyde dehydrogenase (FLD1) 

and isocitrae lysate (ICL1) are less widely used to drive protein expression[29]. Protease 

deficient strains are also available[33].  

 

Hundreds of proteins have now been expressed using P. pastoris[22, 27]. Some examples 

of human proteins expressed are shown in Table 1.1.  
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1.2.2 Comparison of P. pastoris with other host systems for recombinant 

protein production                                                                                           

Bacterial hosts such as Escherichia coli were the first to be employed for the purposes of 

recombinant protein production[38] and a wide range of host expression systems can now 

be used to achieve sufficient yields of protein.  Mammalian cells such as Chinese hamster 

ovary (CHO) cells, baby hamster kidney (BHK) cells, Madin-Darby canine kidney 

epithelial (MDCK) cells, mouse myeloma (NS0) and human embryonic kidney (HEK) 

cells[39, 40] are commonly used for protein expression.  Insect cell lines used are ovarian 

cells from Spodoptera frugiperda (Sf) and eggs from Trichoplusia ni known as high-five 

cells[41]. Whilst in principle these higher eukaryotic host cells provide the most authentic 

environment for the production of human recombinant proteins, they are relatively 

expensive and slow to culture. Microbial eukaryotes in the form of yeast therefore provide 

an attractive compromise since they have a well established history in biotechnology, 

especially in the brewing and baking industries. Their growth characteristics are well 

known and have also been exploited as effective expression systems for recombinant 

proteins. Saccharomyces cerevisiae in particular is well studied and frequently utilized, 

although more recently other species such as Kluyveromyces lactis, Hansenula 

polymorpha, Yarrowia lipolytica and P. pastoris have been successfully used[39].  

P. pastoris is easy to culture to high cell densities and capable of producing high yields of 

proteins such as 12 g/L of tetanus toxin fragment C and 2.5 g/L of invertase[23, 42]. 

Advantages of P. pastoris over other expression systems such as prokaryotic E. coli are that 

post translational modifications are carried out such as disulfide bond formation, 

proteolytic processing, glycosylation and folding[22, 23, 42]. Proteins that may be inactive 

or end up in inclusion bodies in bacteria are biologically active when produced by P. 

pastoris[22]. Furthermore, proteins expressed by P. pastoris are not contaminated with 

endotoxins, as is sometimes the case with those produced by bacteria. Secretion of proteins 

into the culture medium means more efficient purification and as much as 30% of the total 

protein in the medium can be the target protein. The secretory pathway of P. pastoris is 

also similar to that of mammalian cells but with the advantage of quicker production of 

protein and reduced equipment and media costs compared to that required by mammalian 
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and insect cells[23, 42].  A summary of the characteristics of each system is shown in Table 

1.2. 

   

Table 1.2: Comparison of protein expression systems. Adapted from GenWay Biotech Inc (2009)[43] 

 

 

 

1.2.3 Comparison of P. pastoris with S. cerevisiae 

Saccharomyces cerevisiae is a budding yeast and a member of the family 

Saccharomycetaceae[44]. It is Crabtree-positive[45] and its genome was the first of the 

eukaryotes to be fully sequenced and annotated[46]. It is able to utilize glucose and is 

capable of both aerobic and anaerobic respiration. One of the notable features of S. 

cerevisiae is that it is able to control the switch from fermentation to respiration by 

changing to a mixed respiro-fermentative metabolism once the external glucose 

concentration is greater than 0.8 mM, leading to the production of ethanol. Therefore, high 

glucose levels lead to ethanol production whereas low levels do not[47].  

 

S. cerevisiae is a popular tool for recombinant protein production with a well-understood 

biochemistry and a range of promoters available[48]. However, P. pastoris has advantages 

over other species of yeast including S. cerevisiae, summarized in Table 1.3. Due to similar 

Characteristics E. coli Yeast Insect Cells Mammalian Cells 

Cell doubling time 30 min 90 min 18-24 h 18-24 h 
Extracellular 
expression 

Secretion to 
periplasm Secretion to medium Secretion to medium Secretion to medium 

Yield (mg L -1 

culture) 50-500 10-200 10-200 0.1-100 

Protein folding 
 

Usually needed 
 

Often folded; 
refolding may be 
needed 

Properly folded 
 

Properly folded 
 

N-linked 
glycosylation No High mannose Simple, no sialic acid Complex 
O-linked 
glycosylation No Yes Yes Yes 

Phosphorylation No Yes Yes Yes 

Acetylation No Yes Yes Yes 

Acylation No Yes Yes Yes 

Cost Low Low  Moderate High 
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growth requirements to S. cerevisiae, new protocols for growth were not needed for P. 

pastoris, and benefits such as the ability to reach higher cell densities and the presence of 

the AOX1 gene make the species more popular for protein production[23]. In addition, less 

hyperglycosylation is observed in P. pastoris than in S. cerevisiae[49]which can lead to 

improper folding and hyperantigenicity which therefore interferes with therapeutic use. An 

absence of mannose residues in 1,3-terminal linkages in glycoproteins secreted by P. 

pastoris make them better suited for possible therapeutic use than those secreted by S. 

cerevisiae where there are many of these linkages[42, 50]. 

 

 

Table 1.3: Comparison of advantages and disadvantages of Pichia pastoris and Saccharomyces cerevisiae 

 

Properties P. pastoris  S. cerevisiae  

Strongly inducible 
promoter  

 
╪ 

Grows to high cell 
densities  

 
╪╪ 

High product yield  

 

 

Longer high mannose 
chains  

 

 

Shorter high mannose 
chains  

 

 

Frequent 
hyperglycosylation  

 

 

Common 
hyperantigenicity  

 

 

Stable plasmids 
  

 

 

Secretion of proteins 
into media  

 

 

Annotated genome  
  

 

 
 

╪ A range of promoters of varying strengths are avaliable 

╪╪ Due to its respiro-fermentative metabolism, biomass yields are typically lower than P. pastoris 
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Strains of P. pastoris have been developed where the glycosylation pathway has been 

engineered to produce recombinant antibodies with human N-glycosylation patterns[49] as 

well as strains able to secrete human glycoproteins, such as erythropoietin, with fully 

complex terminally sialylated N-glycans[51]. The construction plasmids of P. pastoris have 

also been found to be more stable than those of S. cerevisiae making the strains more 

reliable[52].  Overall P. pastoris is a very attractive host for protein production that is now 

being widely exploited[22, 23, 27, 29, 34]. During the last 15 years, 80% of all recombinant 

genes reported in the literature were expressed by either E. coli or P. pastoris[53].  

 

 

1.3 Protein production formats 

Recombinant proteins can be produced in P. pastoris in a variety of formats. Small systems 

include microtiter plates for culturing small volumes, deep well plates which can culture 

several milliliters and shake flasks which can be used to grow a few mililitres up to litres of 

culture. Larger scale production is performed in bioreactors which can range in volume 

from 250 mL up to thousands of litres of culture. 

 

 

1.3.1 Small scale protein production 

Colony screening and optimization tests are frequently performed in deep well plate or 

shake flask formats[54] as shown in Fig. 1.3. The manageable size allows a range of 

conditions or colonies to be tested simultaneously. Technology such as the PreSens shake 

flask and plate readers allow online monitoring of dissolved oxygen (DO) and pH in these 

systems, providing additional information enabling the precise control of the culture. 
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Figure 1.3: Small scale protein production formats                                                                                              

Shake flask cultures (left) and a deep well plate with 24 wells (right) containing cultures of P. pastoris in a 

shaking incubator. Photographed at Aston University. 

 

The Microbioreactor 24 (Pall Corporation) allows growth of cultures in 24 ‘mini 

bioreactors’ with control over the shaker speed, temperature, DO and pH and provides 

online monitoring. It has been successfully used to develop a DoE model[36] and is also 

well-suited to screening colonies and is shown in Fig.1.4.  
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Figure 1.4: Micro-24 micro-bioreactor                                                                                                                   

Equipment details are given in Chapter 2. Image taken from Wolf Labs website: 

http://www.wolflabs.co.uk/Applikon_Micro_24_Bioreactor.htm 

 

 

1.3.2 Large scale protein production 

Deep well plates and shake flasks are useful in screening for high-yielding clones and for 

maintaining basic cultivation parameters such as temperature. However, high yields of 

protein are often not achieved. Despite recent developments allowing pH and DO 

monitoring in shake flasks and plates, there remain restrictions in volume, particularly in 

plates as evaporation is a common problem[54], and even more importantly oxygen transfer 

rates are limited. The inability to adequately control pH and DO in these formats is a 

substantial limitation. In contrast, scale-up to bioreactors provides tight control and allows 

online monitoring of culture conditions, thereby facilitating the development of effective 

feeding strategies and further optimization of a given bioprocess to produce much greater 

quantities of protein [29]. An example of the set-up in the laboratory at Aston University is 

shown in Fig. 1.5. 
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Figure 1.5: 3 L bioreactor set up                                                                                                                                                              

3 L stirred tank bioreactor (Applikon Biotechnology) set up and photographed at Aston University. 

Equipment details are given in Chapter 2. 

 

In order to grow, aerobic yeast such as P. pastoris require a sufficient concentration of 

dissolved oxygen in the medium. One of the major differences from scaling from deepwell 

plates or shake flasks to bioreactors is the difference in oxygen transfer rate. This can be 

controlled much more effectively in a bioreactor with the stirrer speed and introduction of 

gases. The rate of oxygen transfer depends upon the kLa, or volumetric mass oxygen 

transfer coefficient, and upon Cl,∞ - Cl, where Cl is the dissolved oxygen concentration and 

Cl,∞ is the oxygen saturation concentration in the liquid phase at the gas-liquid 

interface[55]. The kLa is a measure of how much oxygen is transferred into the medium 
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over a certain amount of time[56]. The kLa of a system can be influenced by several factors 

such as properties of the medium like viscosity, the presence of organisms and their by-

products. Additions to the medium such as antifoams also have an effect[56, 57]. It has 

been observed that low concentrations of antifoam can reduce the kLa but at higher 

concentrations the kLa may rise[58, 59]. To ensure optimum oxygen transfer within a 

system, the effect of differing concentrations of the antifoam to be used should be assessed, 

although this is not typically done. 

 

 

1.3.3 Bioprocess optimization in recombinant protein production 

The consistent attainment of high yields of recombinant proteins in host expression systems 

including P. pastoris is often an obstacle to furthering research. For this reason, 

considerable effort has been directed into process optimization either through varying one 

factor at a time[36, 60, 61] or by using ‘design of experiments’ (DoE) approaches which 

enable analysis of several factors simultaneously[36, 62].  

 

Many optimization and scale-up methods are still based upon the inefficient and time-

consuming approach of varying one parameter at a time while maintaining the others. This 

is particularly undesirable when a range of conditions need to be investigated, such as the 

temperature, pH, DO, medium composition and presence of additives. However, studies 

have successfully identified key process parameters using this approach[63]. A more 

systematic approach such as the DoE model is becoming more widely used. DoE allows the 

investigation of numerous parameters while reducing the number of experiments to build a 

predictive model and generate an equation linking the parameters to yield[36]. This has 

recently been demonstrated effectively by Holmes et al who successfully increased the 

specific yield of P. pastoris producing green fluorescent protein in the induction phase[36]. 

 

Recombinant protein production experiments in P. pastoris and S. cerevisiae are most 

commonly optimized in bioreactors by varying feeding and induction strategies[64-66]. For 

P. pastoris, induction with various methanol concentrations[67] and mixed feeds of 

glycerol and methanol, or methanol and sorbitol have been investigated[36, 68-70], often 
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with the aim of optimizing the specific growth rate, µ[67, 70]. It has also been 

demonstrated that strict maintenance of the culture pH[71] and varying the temperature 

during the induction step are important factors in increasing protein yields[72], both of 

which are simple to accomplish using a bioreactor. The optimum pH, temperature and DO 

required can vary with each strain and the protein being produced. For example, Jamshad 

and colleagues found that the growth temperature for the production of the human 

tetraspanin, CD81, in P. pastoris was 30 °C[73] whilst in another study Dragosits and 

colleagues demonstrated that decreasing temperature from 30 °C to 20 °C was optimal for 

the production of the antibody fragment, Fab 3H6[74]. A careful analysis of how the 

culture responds to the growth conditions is vital in achieving high yields of protein.  

 

Investigation into the effects of various additives upon fermentation cultures of yeast has 

helped to optimize some processes. It has been discovered that addition of DMSO and 

histidine improved the yields of recombinant proteins[63, 75]. It was also found that 

addition of GPCR-specific ligands enhanced the yield of the receptors[63, 76-78]. The 

addition of tween-80 and oleic acid was found by Tang et al to improve yields of 

recombinant protein[79]. In contrast, the addition of antifoam components to bioprocesses 

is not typically optimized[80, 81].  

 

 

1.4 Foaming 

Recombinant proteins are often produced on a large scale in bioreactors for therapeutic use 

or research purposes after small scale screening for optimum conditions. Foaming is a 

problem that is particularly acute in bioreactors due to gassing used to maintain appropriate 

DO concentrations. It can lead to reduced process productivity since bursting bubbles can 

damage proteins[82], result in loss of sterility if the foam escapes the bioreactor[83] or 

more catastrophically, can lead to over-pressure if a foam-out blocks an exit filter. 

Examples of undesired foam formation can be seen in fermentation processes used for 

paper, food, beverage and drug production such as the synthesis of antibiotics[84]. 

Unwanted foaming can also occur during water purification, blood transfusions, and in the 

dyeing of fabrics[84, 85].  
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Foam is made up of liquid lamellas which are full of gas. Foams with high liquid content 

are unstable, while dry polyhedric foams are more stable and usually formed due to 

mechanical stresses[86]. To prevent the formation of foam, mechanical foam breakers, 

ultrasound or, most often, the addition of chemical antifoaming agents (or “antifoams”)[83] 

are routinely employed in bioreactors and large shake flasks. There is a well-established 

literature on antifoams, highlighting their importance in bioprocesses[83]. Antifoams can 

be classified as either hydrophobic solids dispersed in carrier oil, aqueous 

suspensions/emulsions, liquid single components or solids[87-89]. Many antifoams are 

commercially-available, with 19 being sold by Sigma-Aldrich alone. While little 

information is routinely given about their composition, their specific antifoam properties 

have been thoroughly investigated. These include their effects on foam height with time, 

their influence on the volumetric oxygen mass transfer coefficient (kLa) of the system, their 

gas hold-up characteristics and their globule size and distribution in relation to their action 

upon foams. 

 

In bioreactors, foam probes can be used to administer antifoams, where a current is 

produced when foam touches the probe and is detected by a controller. The controller then 

causes antifoam to be added to the vessel. However, if the volume of the culture increases 

during the fermentation, this could cause constant stimulation of the probe leading to 

excessive amounts of antifoam being added to the vessel when it is not required and also 

damaging the equipment[86]. Consequently, antifoams are often added manually to 

processes on a laboratory scale. 

 

Some simple methods of determining the ability of antifoams to reduce foam are the 

Bartsch shaking test[90] and the Ross-Miles pouring test[91]. Several mechanisms of 

action for these agents have been suggested which include bridging-dewetting, spreading 

fluid entrainment and bridging-stretching[92]. For oil-based antifoams, bridging-dewetting 

and bridging-stretching mechanisms are known to occur and are illustrated in Fig. 1.6. 

Bridging-dewetting (Fig 1.6A) occurs if the contact angle, θaw, of an oil drop with the 

surface of the foam film is > 90° and the bridging coefficient, B, is > 0; the drop shape 

alters and becomes a bi-convex lens (Fig 1.6 A (c)). The film is then ruptured (Fig 1.6A 
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(d)). However, if B < 0 there is no shape change and a stable bridge is formed. With 

bridging stretching (Fig 1.6B), the oil particle bridges the foam film surface (Fig 1.6B (a) 

and (b)). This leads to the formation of an oil bridge which stretches over time, becoming 

an unstable film. When the film ruptures, the entire foam structure is destroyed (Fig 1.6B 

(c) and (d))[84].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Bridging-dewetting and bridging-stretching antifoam mechanisms                                                                                

(A) Bridging-dewetting, where the contact angle of an oil drop causes it to become a bi-convex lens, 

rupturing the film, and (B)bridging-stretching where the oil particle bridges the foam film surface forming an 

oil bridge, which stretches forming an unstable film, eventually rupturing the foam. Adapted from Denkov and 

Marinova 2006[84]  

 

 

Much of the literature available on antifoams in fermentation processes documents their 

effects upon the dissolved oxygen and the kLa in a system, as these factors are well known 

to be affected by these agents[56-59, 93-97]. 
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1.5 Antifoams in bioprocesses 

Both positive and negative effects have been observed, for example Al-Masry[93] 

suggested that a silicon-based antifoam negatively affected the mass transfer coefficient, 

gas hold up and gas velocity within the media and Joshi suggested that antifoams could 

damage the equipment. However it was found by Koch et al[96] that antifoams without 

silicon oil did not greatly affect the oxygen transfer rate.  Such studies have been performed 

in various growth media in both the absence and presence of cultures of prokaryotic and 

eukaryotic microbes[83, 88, 92, 93, 95, 96, 98]. In contrast, literature on the biological 

effects of antifoams on recombinant protein production by microbial host cells is more 

limited.  

 

 

1.5.1 A review of the antifoam literature 

Table 1.4 shows an analysis of representative examples of this body of work. This 

illustrates that antifoams may exert a variety of effect upon fermentation processes, 

depending upon the type of antifoam, medium, and process conditions within the bioreactor 

and the concentrations of antifoam used.   

 

Varley et al[83] tested an unspecified antifoam at unspecified concentrations, which is of 

little use when deciding upon the most suitable antifoam for a process, and only provides 

useful information to those looking to alter the process to avoid the use of antifoam. The 

article highlights the fact that even with alterations to the process conditions, headspace 

would still be required in the vessel reducing the volume of culture, and therefore a system 

without antifoam is still not operating at optimum conditions.  
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Research conducted by Koch et al[96] was thorough and investigated several possible 

effects of four antifoams from different groups on recombinant E. coli cultures. As well as 

evaluating influence upon gas hold up, bubble velocity and kLa as carried out in several 

other studies, it also investigated the biological effects of the antifoams, observing cell 

growth and recombinant protein yield. It illustrates the fact that different antifoam types 

have different effects upon factors in fermentation cultures, and therefore the importance of 

understanding these influences when choosing a suitable antifoam. For these reasons, Koch 

concluded that more research needs to be carried out into this area, including upon other 

principal organisms commonly used in fermentations such as species of yeast. 

 

Many studies were concerned mainly with the effects of the antifoams on the mechanical 

aspects of fermentations, such as foam height over time. Other variables such as the kLa, 

and gas hold up, were investigated by Al-Masry[93], Varley et al[83], Koch et al[96] and 

Çalik et al[95]. The study by Denkov et al[92] provided valuable insight into the 

mechanisms of antifoam action by evaluating the properties of antifoams. However, few 

studies monitored the biological effects of the antifoams, suggesting that this area is not 

always considered. The question of toxicity effects of the antifoams was not raised in any 

of the articles reviewed and would be useful for those using fermentation for drug 

production. 

 

Holmes et al[82] conducted research into the effects of four antifoams of different types on 

the recombinant protein yield and growth of P. pastoris and S. cerevisiae in YPD and SD-

URA media, respectively. Various concentrations of antifoams were tested up to 8%. The 

findings varied among the differing types of antifoam. Growth of the organisms was 

increased by the addition of an alcoxylated fatty acid ester on vegetable base, and protein 

yields at concentrations of antifoam greater than 1% was decreased, although growth 

increased with certain antifoams[82]. 

 

Table 1.4 includes a small part of the wide range of antifoams and compositions available 

just from the studies reviewed.  New antifoams are being developed, demonstrated by Çalik 

et al[95], and without understanding their effects it becomes more and more difficult to 
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select an appropriate antifoam to achieve optimum conditions during fermentation. Table 

1.4 also shows that antifoams were evaluated with several different types of media. 

Comparison between different media was only investigated by Holmes et al[82], Etoc et 

al[98] and Çalik et al[95], and more thorough investigation of their influence would be 

useful in optimization. 

 

Another key factor that was not thoroughly evaluated was the effect of differing 

concentration of antifoams upon the process being investigated. Only two studies reviewed 

attempted to discern the effects of concentration. It is possible that results obtained from the 

other studies could be very different under alternative concentrations, and an optimum for 

each of the variables could have been determined. It has been shown by Holmes et al[82] 

that concentration of antifoam has a definite influence upon the growth of organisms and 

recombinant protein yield during fermentation, and therefore concentrations are significant 

factors to consider and should be included in future research. Increased knowledge of the 

optimum concentration and type of antifoam to be added to a process is important, and will 

allow any possible beneficial effects upon growth and product yield to be exploited.   

 

Overall, there have been few studies on the effects of antifoams in fermentation processes, 

and because of the numerous possible effects they may exert, information covering each 

area is brief and not always complete. Holmes et al[82] and Etoc et al[98] demonstrated 

that antifoams can adversely and positively influence these parameters, but further research 

into this area is required to verify the findings and to encompass the wide range of antifoam 

types and concentrations that may be used. Furthermore, more concise data is essential for 

each group of antifoams and for the most commonly used antifoams in fermentation 

processes to allow an informed decision to be made in order to achieve the optimum set up 

for the run. This will help to reduce costs and allow the user to select an antifoam that has 

an appropriate effect upon their process, whether that be destroying foams alone, changing 

the kLa, reducing damage to equipment, altering the growth of organisms or influencing 

product yield. Adequate information about antifoam action upon the protein yield and the 

growth of the cells during fermentation is not available in the literature suggested by the 

review of published antifoam data.  For these reasons, an evaluation of the effects of 
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several antifoams on different protein targets was undertaken in the project presented in this 

thesis. 

 

 

1.6 Target proteins 

A range of soluble and membrane proteins have been expressed using P. pastoris for use as 

therapeutics, or targets in the development of drugs as well as for functional studies[29, 

34]. Several targets were considered for optimization studies in this project. 

 

 

1.6.1 Green fluorescent protein 

Green fluorescent protein (GFP) is used as a fluorescent marker and was first isolated from 

the coelenterate, Aequoria Victoria or Pacific jellyfish, and can also be isolated from 

Renilla reinformis, the sea pansy[102]. Its natural function in these organisms is currently 

not well understood[103]. The Nobel Prize for Chemistry 2008 was awarded to Osamu 

Shimomura, Martin Chalfie and Roger Tsien for their discoveries leading to its many 

uses[104]. In the jellyfish Aequoria Victoria, the two proteins aequorin and GFP interact to 

produce green light. Aequorin is a photoprotein composed of 196 amino acids (21 kDa) and 

consists of molecular oxygen, apoaequorin which is a chromophoric unit, and a covalently 

bound prosthetic group, coelenterazine[105, 106]. When Ca2+ interacts with three high-

affinity binding sites[105], colenterazine is oxidized to an excited coelenteramide[106]. 

When coelenteramide returns to its ground state, blue light at 460 nm is emitted as well as 

CO2[105-107]. GFP absorbs the light and re-emits green light at 509 nm[105, 107].  

 

Aequoria Victoria GFP (avGFP) is composed of 238 amino acids and is 24 kDa with a β-

barrel structure formed by 11 β-sheets surrounding a chromophore[108, 109]. The wild-

type structure of GFP was determined in 1996 by Yang et al[110] and is shown in Fig. 1.7, 

but previously the structures of  mutants had been reported[111]. The chromophore is 

formed by post-translational modification of three amino acids of the internal helix at 

positions 65-67 (numbering according to Aequoria Victoria)[108, 109].  
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The side chain of the first residue at position 65 can vary between natural GFP-like 

proteins, but the Tyr66 and Gly67 are conserved[108, 109]. The β-barrel protects the 

chromophore from the surrounding environment[108, 109] and prevents non-radiative 

deactivation[108]. The barrel is stabilized by numerous non covalent interactions giving the 

protein resistance to thermal and chemical denaturation as well as proteolysis[109]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: The structure of GFP                                                                                                                                 

A, the β-barrel with semitransparent surface shown from the side; B, the β-barrel shown from above; C and 

D, the chromophore and nearby residues with carbon atoms coloured grey, nitrogen atoms coloured blue and 

oxygen atoms coloured red. Taken from Chudakov et al 2010[109]. 

 

 

The chromophore of GFP is a p-hydroxybenzylideneimidazolinone[112] synthesized 

without cofactors or enzymes as modifications are made to the internal amino acids by the 

β-barrel, only requiring molecular oxygen[108, 109]. This feature allows functional 

expression of the protein in a range of systems[108]. The first stage involves folding of 

GFP into a semi-native conformation[112] followed by cyclization of the protein backbone 



 45 

at positions 65-67 (Ser-Tyr-Gly in avGFP)[109] to an α-enolate form[108]. Then follows 

oxidation to cyclic imine[108] and finally dehydration of Cα-Cβ bond of Tyr66 with 

molecular oxygen[108, 109]. These reactions are illustrated in Fig. 1.8. A two-ring 

structure is formed which is able to absorb and emit light[109].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Mechanism for chromophore formation of GFP                                                                                      

A-B, cyclization of the tripeptide to an α-enolate form; B-C, oxidation to cyclic imine; C-D-E, dehydration of 

the Cα-Cβ bond of Tyr66 forming a chromophore able to emit green light in a deprotonated state.  Adapted 

from Stepanenko 2011[108].  

 

Wild type GFP has a major excitation peak at 395 nm and an emission peak at 509 

nm[102]. Fluorescence of GFP is stable. It can be detected under UV light [113], and 

imaging and quantification are simple. It can be detected in living cells[114], and can be 

fused to the amino or caboxy terminus of proteins for example aquaporins, to study their 

functions within cells, as well as levels of expression[113]. For these reasons, GFP is one 

of the most utilized fluorescent proteins as a marker[102, 113, 115, 116], and due to the 

fluorophore being gene encoded, GFP cDNA has been cloned[113] and several variants 

have been produced with differing spectra, optimized expression and pH sensitivity, which 

convey advantages for use under a wider range of conditions[117].   
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GFP has been recombinantly expressed in E. coli[107], Caenorhabditis elegans, 

Drosophila melanogaster, mammalian cells such as HeLa[118] as well as yeasts such as P. 

pastoris[36] and S.cerevisiae[119]. Fluorimetry and confocal microscopy are the most 

common methods of assaying GFP[36, 107, 111, 118]. 

 

 

1.6.2 Erythropoietin  

Erythropoeitin (EPO) is a glycoprotein hormone which is involved in the regulation of red 

blood cell production. It induces the proliferation, differentiation and maturation of bone 

marrow erythroid precursors into erythrocytes during instances of low blood oxygen[120, 

121]. It is also involved in the neurosystem as a neuroprotective and is able to protect other 

organs[120]. EPO is composed of 161 amino acids with a weight of 30 kDa in its mature 

form[122]. It is a member of the cytokine family that includes interleukins 2-7, growth 

hormone and leptin[121]. EPO binds to the EPO receptor on the surface of erythroid 

progenitor cells with high affinity[120, 121]. Binding triggers signal transduction by ligand 

mediated receptor dimerization on the cell surface[121]. The crystal structure of EPO 

bound to the extracellular binding domains of the EPO receptor was determined at 1.9 Ǻ by 

Syed et al in 1998[123] and is shown in Figure 1.9. 
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Figure 1.9: The structure of EPO                                                                                                                                   

Heterotrimeric assembly of EPO (green) with 2 molecules of EPO receptor (blue and pink). Reproduced from 

the Protein Data Bank entry1eer, accession number P01588 [124] . 

 

Normally, EPO is expressed in low levels by the kidney or liver of adults therefore many 

human donors are required to provide enough material for treatment. The use of 

recombinant human EPO has been approved by the FDA[122], and is used to treat blood 

disorders and anaemia associated with renal failure, cancer, HIV infection and chronic 

inflammatory disease[120, 122]. CHO cells are currently used to provide larger quantities 

of EPO[120, 122], however protein production using mammalian cells is often costly and 

inefficient. E. coli has been used to produce EPO, but prokaryotes cannot glycosylate 

proteins and the glycosylation of EPO is important in the prolongation of its biological 

half-life[122]. S. cerevisiae has also been used to produce EPO but hyperglycosylates 

proteins. P. pastoris is a more attractive host and has been used to produce EPO with the 

benefit of performing post-translational modifications without hyperglycosylation and at 

higher cell densities[121, 122]. The native polypeptide form of human EPO (18 kDa) was 
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produced in P. pastoris for the first time by Celik et al in 2007[122]. Commonly used 

assays for EPO quantification are ELISAs[125] and Western blots[120]. 

 

 

1.6.3 G protein-coupled receptors and accessory proteins 

G protein- coupled receptors (GPCRs) are important membrane proteins and are involved 

in most physiological processes in the body[63]. They are targeted by over 30% of all drugs 

[68]. The superfamily consists of more than 800 human proteins making it one of the 

largest with many ligands such as hormones, lipids, neurotransmitters, ions and 

photons[64]. Other compounds may also bind to GPCRs; agonists, which are ligands that 

bind to a receptor and alter the receptor state which causes a biological response; 

antagonists, which reduce the action of agonists and may act at the same receptor 

macromolecule as the agonist; inverse agonists, which bind to receptors and reduce the 

fraction of them in an active conformation[126].  

 

Agonists activate a heterotrimeric guanosine triphosphate-binding protein, or G-protein 

consisting of an α, β and γ subunit. [127]. The binding of an agonist to a GPCR leads to a 

conformational change which activates the associated G-protein. GTP is exchanged for 

GDP on the α-subunit causing the G-protein to dissociate from the receptor and also the 

dissociation of the α-subunit from the βγ-complex. These subunits, the α-GTP and the βγ, 

are then able to interact with other protein targets such as enzymes or ion channels and a 

vast range of intracellular signals are activated to cause a physiological response[127-129] 

illustrated by Figure 1.10. The Nobel Prize in Physiology or Medicine was awarded to 

Alfred. G. Gilman and Martin Rodbell in 1994 for their work on G-proteins[130]. 
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Figure 1.10: GPCR signalling pathways                                                                                                                       

A variety of ligands bind to the numerous GPCRs leading to G protein activation which in turn causes a 

range of physiological responses. Reproduced from http://www.ibibiobase.com/projects/db-

drd4/G_protein.htm[131] 

 

There are numerous classification systems for GPCRs, the most commonly used being the 

A-F system[71, 74] and the GRAFS system[72]. The A-F system describes GPCRs found 

in both vertebrates and invertebrates whereas the GRAFS system classifies human GPCRs. 

The A-F system splits the receptors into families according to sequence similarity. Family 

A is the rhodopsin-like receptors and is the largest group. It includes rhodopsin and 

adrenergic receptors as well as many olfactory receptors[71, 131]. Family B is the secretin 

receptor family and includes gastric inhibitory peptide, calcitonin, calcitonin receptor like 

and glucagon receptors[132]. Family C is the metabolic glutamate family, including the 

GABA receptor. Family D is the fungal mating pheromone receptors, E the cyclic AMP 

receptors and F the frizzled/smoothened receptors[71, 131]. In the GRAFS system there are 

five main families based upon evolutionary similarities; glutamate, rhodopsin, adhesion, 

frizzled/taste2 and secretin families. The largest of these is the rhodopsin family consisting 
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of 701 receptors[72]. Rhodopsin from natural sources was the first GPCR to have its 

structure solved in 2000 by Palczewski et al[133]. 

 

GPCRs contain 7 transmembrane domains (7TM bundle) which are α-helical[72] with 3 

extracellular (ECL1-3) and 3 intracellular (ICL1-3) loops. The amino terminus (N-

terminus) is extracellular and has the potential to bind ligands in some GPCRs, while the 

carboxy terminus (C-terminus) is intracellular and interacts with G-proteins and 

arrestins[64]. These structures are illustrated in Fig 1.11. Recently, breakthroughs have 

been made in determining the crystal structures of GPCRs[134]. However, only relatively 

few structures have been solved so far despite their importance. Bottle necks include 

difficulty in expressing great enough quantities for further studies and production of stable 

conformations[135]. In order to maintain their structure and function, GPCRs must remain 

in a lipid or hydrophobic environment which can interfere with NMR and crystallography. 

This also makes purification challenging as a poor choice of detergents can destroy the 

surrounding lipid membrane. Some of the structures that have been determined have been 

achieved by causing mutations in order to make the GPCRs more thermostable and increase 

expression levels. Intracellular loops have been replaced with T4 lysozyme and antibodies 

and nanobodies have been employed to stabilize the proteins[68]. Current GPCR crystal 

structures elucidated by X-ray crystallography include: β1-adrenergic, β2-adrenergic, 

adenosine 2a, dopamine D3, CXCR4, histamine H1 rhodopsin and opsin[68, 136]. The 

histamine H1 receptor is the first recombinant GPCR to have been produced using yeast, P. 

pastoris, and have its crystal structure resolved[137]. 

 

 

 

 

 

 

 

 

 



 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: A generic Family A GPCR within the plasma membrane localized to a lipid raft                          

Protein features are described in the panels. Taken from commons.wikimedia.org by Repapetilto. 

 

 

1.6.3.1 Human Adenosine 2a receptor 

The human adenosine 2a receptor (hA2aR) is one of four GPCRs which are activated by 

adenosine; A1, A2a, A2b and A3. When activated, hA2aR causes the levels of intracellular 

cAMP to increase[73]. In humans, adenosine is involved in the nervous and cardiovascular 

systems[138]. It also has a role in reducing inflammatory damage and inhibiting activated 
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immune cells. These anti-inflammatory effects therefore make this GPCR an attractive 

target for therapeutics, which could potentially aid in the treatment of heart disease and 

cancer[76, 139, 140]. Antagonists to hA2aR include ZM241385, theophylline[76] and 

caffeine[73]. It has been observed that the interaction of caffeine with the A2aR can lead to 

a reduced risk of Parkinson’s disease in coffee drinkers and suggests that therapeutics could 

be developed targeting adenosine receptors to treat neurological disorders such as 

Huntington’s disease, Parkinson’s disease, asthma, seizures and pain[73, 140].  

 

A2aR is a 47 kDa protein in the rhodopsin-like or family A group of GPCRs. A truncated 

form of hA2aR was produced in E. coli and a glycosylation deficient form produced in P. 

pastoris in milligram quantities[76] as well as in S. cerevisiae[139]. However, the crystal 

structure of hA2aR bound to the antagonist ZM241385 determined by Jaakola et al in 2008 

was produced by insect cells[73] (Figure 1.12). One of the main challenges of GPCR 

crystallization is the instability of the protein upon purification. GPCRs can adopt several 

conformations, some of which are more thermally stable than others. Certain domains 

within the GPCRs are also more flexible than others, and as a result, Jaakola et al replaced 

the majority of the third cytoplasmic loop with lysozyme from T4 bacteriophage and the C-

terminal tail was removed to improve the chance of crystallization. Sodium chloride and 

cholesteryl hemisuccinate were also used during purification as well as a saturating 

concentration of antagonist to further aid stability[73]. 

 

Jaakola et al found that hA2aR’s structure is different from other crystallized GPCRs such 

as β1-adrenergic, β2-adrenergic and rhodopsin as the ECL2 does not have the α-helix and β-

sheet structures. Instead there is a random coil with three disulphide linkages with ECL1, 

two of these being unique to hA2aR. A fourth disulphide bond in ECL3 helps to maintain a 

rigid structure opening the ligand binding cavity. They also found that ZM241385 is bound 

in a different position to other crystallized GPCRs, nearly perpendicular to the membrane 

plane[73]. 
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Figure 1.12 Crystal structure of hA2aR bound to the antagonist ZM241385                                                              

Viewed perpendicular to the plasma membrane. A shows the transmembrane part colored brown with 

ZM241385 in light blue and the four lipid molecules bound to the receptor in red. The four disulfide bonds 

are yellow. The extracellular loops (ECL) are green and the intracellular loops (ICL) are blue. B. The 

structure is rotated 180° around the x-axis. Image reproduced from Jaakola et al 2008[73]. 

 

 

1.6.3.2 β1-adrenergic receptor 

The β1-adrenergic receptor (β1-AR) is part of a group of at least four subtypes of adrenergic 

receptor; α1, α2, β1 and β2[141]. β1-AR and β2-AR are biochemically and functionally 

similar[142], and couple to the same effector protein; they both mediate the catecholamine-

induced activation of adenylyl cyclase through the GTP binding protein Gs[142]. Similarity 

between them is greatest in the membrane spanning domains which are thought to be 
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involved in forming a pocket to bind ligands[141]. They mediate the physiological 

responses to the hormone adrenaline and the neurotransmitter noradrenaline. β1-AR binds 

with high affinity to both adrenaline and noradrenaline whereas  β2-AR only binds with 

high affinity to adrenaline[143]. β1-AR is expressed at high levels in the heart[143] and is 

known to influence heart rate[144]. Stimulation in the human atrium and ventricle leads to 

an increase in the force of the contraction and also shortens the length of the contractile 

cycle as well as increasing cAMP and activation of cAMP-dependent protein kinase 

A[145]. It is also expressed at high levels in the brain and noradrenergic stimulation of β1-

AR is known to regulate memory function[143]. It is expressed elsewhere in the body such 

as the cochlear and vestibular labyrinth[144]. 

 

 

1.6.3.3 Receptor component protein 

It is thought that GPCRs act as monomers interacting with G proteins leading to signal 

transduction, however recent research suggests that other proteins are required for the 

function of numerous GPCRs. These proteins can be other receptors that form dimers, or 

accessory proteins that function as chaperones[146]. It has been found that in order to be 

functional, the calcitonin gene-related peptide (CGRP) receptor must consist of at least 

three proteins; CLR, RAMP1 and RCP[146-148].  

 

CLR is a family B (secretin-like) GPCR named the calcitonin-receptor-like receptor, 

RAMP1 is the receptor activity modifying protein and is required for trafficking of CLR to 

the cell surface and ligand specificity, and RCP, the receptor component protein, which has 

been identified as an interaction partner for the CGRP receptor[146-148] illustrated in Fig 

1.13. CGRP is a 37 amino acid neuropeptide secreted by the nerves of the central and 

peripheral neurosystem[147, 148]. It is important in heart function and is a vasodilator that 

affects the rate and force of heart beats and can quickly lower blood pressure. In addition, it 

is involved in neurogenic vasodilation and inflammation, as well as migranes[146-148]. 

CGRP binds to its receptor, and this binding stimulates cAMP production[146]. 
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Figure 1.13: The proposed CGRP receptor complex consisting of CLR, RAMP1 and RCP                            

Binding of CGRP to the CGRP receptor consisting of RAMP1, CLR and RCP leads to cAMP production.  

Adapted from Prado 2002[147]. 

 

RCP consists of 148 amino acids and is a hydrophilic protein. It is found in the heart and 

colocalizes with CGRP in the cerebellum, spinal cord and cochlea[148]. RCP couples the 

receptor to the cellular signal transduction pathway and its expression correlates with 

CGRP potency in vivo[146]. Little is currently known about RCP therefore overexpression 

and purification of this protein are vital in allowing structural and functional studies and the 

elucidation of a three-dimensional structure. At present, E.coli has been used to produce 

RCP[148]. 

 

 

1.6.3.4 Ligand binding assays 

In order to determine whether a GPCR is correctly folded after expression, a common 

method is to perform a ligand binding assay with a radiolabelled ligand[76, 139]. This can 
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be performed using membrane suspensions[149]. Ligand binding assays are usually based 

upon the law of mass action[150, 151]:  

                                                                         kon 

                                                           A + R               AR 

                                                                         koff 

 

where A is the ligand and R is the receptor. When the ligand and receptor collide in the 

required orientation to bind, the number of binding events per unit of time is the kon which 

is the association rate constant. The ligand and receptor remain bound for an amount of 

time dependent upon the affinity of the ligand and receptor for each other. This is the 

dissociation rate constant, koff. An equilibrium is reached when the rate at which ligand-

receptor complexes form is equal to the rate at which ligand-receptor complexes dissociate. 

This ratio of association and dissociation indicates the affinity of the ligand for the receptor 

which is the equilibrium dissociation constant, Kd. Kd is the concentration of ligand that is 

required to bind half of the receptors. The smaller the Kd, the higher the affinity the 

receptor has for the ligand, while a high Kd means a low affinity[150]. At equilibrium the 

total receptor density [RT], the ligand concentration [A] and the equilibrium dissociation 

constant determine the concentration of receptor-ligand complexes: 

 

                                                      [AR] = [RT] x [A] 

                                                                    [A] + Kd 

 

 

where RT = [R] + [AR] and Kd = koff/kon. This equation is the Hill-Langmuir binding 

isotherm. In equilibrium, when a single ligand species binds to a single uniform population 

of receptors under the law of mass action, a hyperbolic curve describes binding as a 

function of the molar ligand concentration[149, 151], an example of which is shown in Fig 

1.14. The Bmax is the maximum binding capacity, or the total number of receptors. 
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Figure 1.14: Saturation binding curveof a radioligand to a receptor                                                                                                                    

Saturation binding curve showing specific binding of a radioligand for human muscarinic M3 receptor. The 

Kd is estimated to be 0.05nm and the Bmax 1.4 pmol/mg protein. Reproduced from Hulme and Trevethick 

2010[149] 

 

Three types of binding experiments may be conducted: 

1. Kinetic binding experiments, where the binding of one or more concentrations of 

radioligand is measured at increasing time points to estimate the association rate 

constant, kon and the dissociation rate constant koff; 

2. Saturation binding experiments where the binding of an increasing concentration of 

radioligand is measured at equilibrium. The dissociation constant, Kd and the 

concentration of specific binding sites for the radioligand, RT, usually termed Bmax 

can be determined from these experiments; 

3. Competition binding experiments where the binding of one or more set 

concentrations of a radioligand is measured at equilibrium in the presence of 

increasing concentrations of an unlabelled ligand. The data determine the binding 

constant of a compound for the unliganded receptor and the co-operativity between 

the compound and the radioligand for binding to the receptor. The inhibitor constant 

Ki can be calculated: 

 

                                           Ki = IC50/(1 + [L]/Kd) 
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This is the Cheng-Prusoff equation where IC50 is the half maximal inhibitory 

concentration, L is the concentration of free radioligand and Kd is the dissociation 

constant of the radioligand for the receptor[149]. 

 

For membrane preparations of A2aR produced using P. pastoris by Fraser[76], the Bmax was 

8.5 ± 0.1 pmol/mg membrane protein and the Kd varied slightly for three different 

preparations; Kd = 0.35 ± 0.02; 0.79 ± 0.06; 1.39 ± 0.12 nM. After purification of the 

receptor, the Bmax was 18.1 ± 0.5 nmol/mg protein. The theoretical Bmax for pure protein is 

21.3 nmol/mg protein.  The Kd for the purified protein was 2.2 ± 0.19 nM[76]. 

 

 

1.6.4 Human growth hormone 

Human growth hormone (HGH), also known as somatotropin[152], is synthesized by the 

acidophil cells of the anterior pituitary as a prehormone[153]. It has a hydrophobic leader 

peptide of 20 amino acids which is removed by the pituitary during secretion[153], leaving 

an anionic non-glycosylated HGH consisting of 191 amino acids and a molecular weight of 

22 kDa[5, 152]. HGH is an antagonist and binds to one human growth hormone 

receptor[154]. It is involved in protein synthesis, cell proliferation, metabolism, lipolysis 

and hypoglycemia[153, 155]. The structure of HGH bound to one human growth hormone 

receptor is shown in Fig 1.15. 
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Figure 1.15: Human growth hormone bound to one receptor                                                                                    

Human growth hormone (red) bound to one human growth hormone receptor (green). Image reproduced 

from Protein Data Bank entry 1a22, accession number P01241[154]. 

 

HGH has many therapeutic uses, particularly the treatment of hypopituitary dwarfism, 

children with growth hormone deficiency, girls with Turner’s syndrome and adults with 

growth hormone deficiency or HIV infection[5, 152, 153, 155, 156]. It has also been used 

to treat bone fractures, bleeding ulcers and burns[152]. Its use in other applications such as 

children with short stature and maintaining health in older adults and the critically ill is also 

being investigated[5]. Originally, the only sources of HGH to treat hypopituitary dwarfism 

were human cadavers until production of recombinant HGH begain using E. coli by 

Goeddel in 1979 and later S. cerevisiae by Tokunaga in 1985[153]. It has been produced 

mainly in E. coli[5, 157], but has also been produced by Bacillus subtillis, Pseudomonas 

species, S. cerevisiae and P. pastoris[5, 152, 153, 155, 156]. Assays for HGH include 

polyclonal radioimmunoassays (RIA) which have limited sensitivity, and monoclonal 

antibody nonisotopic assays which are more sensitive[158]. ELISAs and Western blots may 

also be performed in order to quantify the protein[37]. 
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1.6.5 Chlorophyll synthase, CHLG 

CHLG is an enzyme involved in the last stages of chlorophyll synthesis and catalyses the 

esterification of chlorophyllide a which is required for amassing chlorophyll-protein 

complexes[159]. It is a membrane protein of approximately 30 kDa naturally produced in 

plants and cyanobacteria[160]. It has not previously been expressed in P. pastoris, but has 

been expressed in E. coli[159]. The photoautotrophic growth of phototrophs is dependent 

upon chlorophyll formation. Chlorophyll is involved in the absorbance of light and energy 

transfer resulting in photosynthetic electron transfer to NADP+ and the synthesis of 

ATP[161]. In order for plants to synthesize chlorophyll, over 16 enzymatic steps are carried 

out. The final steps involve reduction of divinyl protochlorophllide at the C8 vinyl group to 

form monovinyl protochlorophyllide and then between C17 and C18 to form chlorophyllide 

a. Chlorophyllide a is converted to chlorophyllide b by chlorophyllide a oxygenase. 

Chlorophyll synthase, encoded in the CHLG gene, finally esterifies chlorophyllide a and b 

with geranyl-geranyl pyrophosphate or phytyl pyrophosphate. The hydrophobic carbon 

hydride side-chains formed allow the assembly of stable chlorophyll[161]. A schematic of 

the process is shown in Fig.1.16. CHLG is thought to be involved in the co-regulation of 

the steps to synthesize chlorophyll[161] and therefore production of large quantities of this 

protein could allow photosynthesis to be better understood. 
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Figure 1.16: Cholorphyll biosynthesis pathway                                                                                                    

Details each reaction step and enzyme involved. Adapted from Plant Physiology, Institute of Biology, 

Humboldt University, Berlin[162].  
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1.6.6 Aquaporins 

Aquaporins are small pore-forming membrane proteins of around 24-30 kDa and are part of 

the major intrinsic protein (MIP) family[163] (See Figure 1.17). So far 13 are known to be 

expressed in humans and are also found in each kingdom, especially in plants[163-165].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17: Aquaporin conformation                                                                                                                  

Diagram of aquaorin conformation in the cell membrane to form an hourglass structure including 

extracellular loops (A, C, E), transmembrane domains(1-6) and intracellular loops (B, D). Taken from Agre. 

P et al (2002[166]) 
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In 2003 Peter Agre received the Nobel Prize in Chemistry for his discovery of aquaporin 1 

in 1992.  The protein was serendipitously found during research into red cell Rh group 

antigens, when an unknown 28 kDa polypeptide was noticed during polypeptide 

purification. Before this discovery, water was thought to diffuse across the lipid bilayer.  

Now it is known that water transport can occur both by osmosis and via water 

channels[166, 167]. Aquaporins are highly selective and even protons are not transported.  

Those that are permeable to water only are termed aquaporins, and those that are permeable 

to both water and glycerol, such as human aquaporins 3, 7, 9 and 10 are named 

aquaglyceroporins[163, 164, 166]. See Table 1.5. While certain members such as AQP2 are 

relatively well understood[168-170], many others have yet to be expressed in sufficient 

quantities for further biochemical study.  
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Table 1.5: Summary of known aquaporin characteristics. Adapted from Offermanns and Rosenthal 

(2008[165]
 
and Bowen (2005)[171] 

 
Name Gene Alias Site of Expression Possible functions 
Aquaporin 0 AQP0 MIP Eye lens fiber cells Fluid balance within the lens 
Aquaporin 1 AQP1 Aquaporin-CHIP Brain choriod plexus 

Red blood cells 
Kidney proximal tube 
Eye cilliary epithelium 
Alveolar epithelial cells 

Production of cerebrospinal fluid 
Osmotic protection 
Concentration of urine 
Production of aqueous humor 
Alveolar hydration state 

Aquaporin 2 AQP2 WCH-CD, 
aquaporin-CD 

Kidney collecting duct 
Inner ear 

Controls antidiuretic hormone 
activity 
 

Aquaporin 3 AQP3  Kidney collecting duct 
Trachea epithelial cells 
Eye 
Urinary bladder 
Skin 
Gastrointestinal tract 

Reabsorbtion of water into blood 
Secretion of water into the 
trachea 
 

Aquaporin 4 AQP4 MIWC Kidney collecting duct 
Brain ependymal cells 
Brain hypothalamus 
Lung bronchial epithelium 
Retina 
Inner ear 
Skeletal muscle 

Reabsorbtion of water 
CSF fluid balance 
Osmosensing function 
Bronchial fluid secretion 
 

Aquaporin 5 AQP5  Salivary glands 
Lacrimal glands 
Respiratory tract 

Saliva production 
Tear production 
 

Aquaporin 6 AQP6 AQP2L Kidney Low water permeability 
Aquaporin 7 AQP7 AQP7L, AQPap, 

AQP9 
Adipose tissue 
Testis and sperm 

Transports glycerol from 
adipocytes 

Aquaporin 8 AQP8  Testis 
Pancreas 
Liver 
Colon 

 

Aquaporin 9 AQP9  Leukocytes 
Liver 
Brain 
Reproductive system 
Skin 
Gastrointestinal tract 

 

Aquaporin 10 AQP10  Gastrointestinal tract  
Aquaporin 11 AQP11  Testis 

Liver 
Kidney 

 

Aquaporin 12 AQP12  Pancreas  
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1.2 Objectives 

Membrane proteins implicated in disease such as the aquaporins and A2aR are often poorly 

expressed, and sufficient quantities are essential to allow further studies. Soluble 

therapeutic proteins including erythropoietin and human growth hormone are also required 

in large quantities. Methods of optimizing the production of these relevant proteins will 

therefore be useful in order to achieve the high yields required. GFP is an effective tool as 

it is easy to assay and is ideal for testing optimal conditions. Small scale screening was 

therefore considered in the presence of antifoams with these proteins, within the following 

objectives: 

1. To analyze the effect of antifoams on recombinant protein cultures in a shake flask 

format (Chapter 3). 

2. To understand the mechanisms underlying any observed effects observed in shake 

flasks (Chapter 4).  

3. To analyze the effect of antifoams on recombinant protein cultures in a bioreactor 

format and to understand the mechanisms underlying any observed effects       

(Chapter 5). 
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2. MATERIALS AND METHODS 

 

2.1 Materials 

2.1.1 Equipment 

Key pieces of laboratory equipment used for this study are detailed below. 

 

2.1.1.1 Bioreactor equipment 

The parts listed were used with 3 L stirred tank autoclavable bioreactors (Applikon) using 

an ADI 1010 controller and BioXpert version 2 software. 

 

1. Jacketed 3 L glass vessel (Applikon). 

2. Head plate to fit a 3 L vessel (Applikon). 

3. BioXpert software (Applikon) installed onto a PC. 

4. Thermo Circulator ADI 1018. 

5. Tandem off-gas analyser. 

6. Gas supply unit ADI 1026 (Applikon). 

7. 60%:40% oxygen: nitrogen gas cylinder (BOC).  

8. Dissolved oxygen (DO) probe (Applikon). 

9. DO probe electrolyte and membranes (Applikon).  

10. pH probe (Applikon). 

11. pH 4 and pH 7 buffers (Fisher). 

12. Optek probe (optical density). 

13. Optek controller. 

14. 250 mL glass sample bottle (Fisher). 

15. Air compressor (Bambi, 75/150). 

16. Recirculating chiller (Grant, LTL1). 

17. Peristaltic pump (×2) for acid and base addition (Easyload Masterflex). 

18. Peristaltic pump for feeds (Masterflex, C/L). 

19. Filters (Sartorius, midistart 2000 0.2 m PTFE). 

20. Silicon tubing (Fisher). 
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21. Tubing connectors and Y connectors (Fisher). 

22. Clamps (Fisher). 

23. Needles (Fisher). 

24. Plastic syringes (Fisher, 5 mL, 20 mL and 50 mL). 

25. 0.5 L glass liquid addition bottles (×3; Applikon). 

26. 1 L glass liquid addition bottle (Applikon). 

27. Tin foil (Fisher). 

28. 20 mL sample tubes (Fisher). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: 3 L stirred tank bioreactor (Applikon Biotechnology)                                                                                              

Set up and photographed at Aston University with associated equipment as indicated in the figure. 
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2.1.1.2 Microbioreactor 24 

The Microbioreactor24 (Pall Corporation) was used for screening experiments and is 

effectively 24 ‘mini bioreactors’. The pH, DO, and temperature can be controlled for each 

of the 24 wells. The single-use cassettes contain 24 wells with a working volume of 3-7 

mL. Sensor spots on the base of the wells allow DO and pH to be monitored. A port in the 

base allows gases to be sparged into the wells to control the pH and DO. Control is 

regulated by Microbioreactor 24 software on a laptop and the individual settings for each 

well can be applied and each well monitored throughout the run. CO2 and O2 supplied by 

gas cylinders connected to the control unit allows two-way DO control, while N2 gas 

passing through a pressurized bubbler containing 15% v/v ammonium hydroxide produces 

vapour to control the pH. A shaking platform upon which the cassette is clamped by a 

vacuum provides agitation from 500-800 rpm. The equipment is shown in Fig 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Micro-24 micro-bioreactor                                                                                                                                      

Set up with associated equipment as indicated on the figure. Photographed at Aston University. 

O2, CO2 and N2 cylinders

Compressor set
to 6 Bar

Ammonia bubbler connected 
to N2 cylinder
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settings and logging data
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Micro-24
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2.1.1.3 Thermal activity monitor (TAM) 

The thermal activity monitor (2277 TAM, TA Instruments) is a differential 

calorimeter[172] and can be used to detect heat changes between samples. Before use, the 

equipment required calibration to the experimental conditions. The investigations were 

conducted at 30°C, therefore the TAM’s water bath was set to 30°C. An electrical 

calibration was performed using Digitam software in the medium to be used at 30°C to set 

a baseline for the readings. The zero reading on the TAM was adjusted to match that of the 

software reading. The electrical calibration was begun and the maximum reading also 

adjusted in the TAM to match that of the electrical signal being applied by the software. 

The electrical signal was turned off and allowed to drop back to zero. The reading was 

adjusted a final time on the TAM to ensure the baseline was correctly set before beginning 

the experiment. A graphical display of the electrical calibration is shown in Fig.2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Electrical calibration of a thermal activity monitor (TAM) using Digitam software                                  

The zero setting is adjusted on the TAM before the software applies 997µW. The reading on the TAM is 

adjusted to this value and allowed to drop back to zero before a final adjustment to set the baseline for 

experiments to be conducted at 30°C. 
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2.1.1.4 Centrifuges 

Centrifuges used for these investigations were a Beckman Coulter Optima TLX 

Ultracentrifuge, a Beckman Coulter Allegra 25 R Centrifuge, a Sigma 1-13 benchtop 

centrifuge and Beckman Coulter Avanti J-20 XP floor centrifuge. 

 

2.1.2 Media 

Various media were used for the culture of P. pastoris, S. cerevisiae and E. coli and are 

detailed below.  

 

2.1.2.1 P. pastoris 

2.1.2.1.1 BMGY (Buffered glycerol-complex medium)  

Composed of 1% yeast extract, 2% peptone, 100 mM potassium phosphate pH 6.0, 1.34% 

YNB, 4 x 10-5 % biotin, 1% glycerol. 10 g of yeast extract and 20 g peptone were dissolved 

in water to a total volume of 700 mL. The solution was autoclaved at 121°C for 20 min 

then cooled to room temperature.  The following was then added; 100 mL 1 M potassium 

phosphate buffer pH 6.0, 100 mL 10 х YNB, 2 mL 500 х biotin, 100 mL 10 х glycerol. 

BMGY was stored at 4°C. 

 

2.1.2.1.2 BMMY (Buffered methanol-complex medium)  

Composed of 1% yeast extract, 2% peptone, 100mM potassium phosphate pH 6.0, 1.34% 

YNB, 4 x 10-5 % biotin, 0.5% methanol. 10 g of yeast extract and 20 g peptone were 

dissolved in water to a total volume of 700 mL. The solution was autoclaved at 121°C for 

20 min then cooled to room temperature. The following was then added; 100 mL 1 M 

potassium phosphate buffer pH 6.0, 100 mL 10 х YNB, 2 mL 500 х biotin, 100 mL 10 х 

methanol and stored at 4°C.  

 

2.1.2.1.3 YPD (Yeast peptone dextrose) 

Composed of 1% yeast extract, 2% peptone, 2% dextrose, 2% agar.  20 g peptone, and 10 g 

yeast extract were dissolved in water to a total volume of 900 mL. For plates 20 g agar was 
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also added.  The solution was autoclaved at 121°C for 20 min then cooled to room 

temperature before adding 100 mL 10 х glucose and stored at 4°C. 

 

2.1.2.1.4 Stock solutions 

2.1.2.1.4.1 10 хYNB (13.4% Yeast nitrogen base with ammonium sulphate 

without amino acids) 

134 g of yeast nitrogen base was dissolved in water to a total volume of 1 L and filter 

sterilized. The medium was stored at 4°C. 

 

2.1.2.1.4.2 500 х biotin (0.02%) 

20 mg biotin was dissolved in water to a total of 100 mL and filter sterilized. It was then 

stored at 4°C. 

 

2.1.2.1.4.3 10 х glucose (20%) 

200 g glucose was dissolved in water to a total of 1 L water and autoclaved at 121°C for 20 

min then cooled to room temperature. The solution was stored at 4°C. 

 

2.1.2.1.4.4 10 х methanol (5%) 

5 mL methanol was mixed with 95 mL water and filter sterilized. The solution was then 

stored at 4°C. 

 

2.1.2.1.4.5 10 х glycerol (10%) 

100 mL of glycerol was mixed with 900 mL of water. It was filter sterilized and stored at 

room temperature. 

 

2.1.2.1.4.6 1 M potassium phosphate buffer pH 6.0 

A 1 M solution of K2HPO4 was made by dissolving 174.18 g in water to a total volume of 1 

L. A 1 M solution of KH2PO4 was made by dissolving 136.06 g in water to a total volume 

of 1 L. Next 132 mL of 1M K2HPO4 was mixed with 868 mL KH2PO4 and the pH set to 6.0 
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using a pH meter and phosphoric acid. The solution was autoclaved and stored at room 

temperature. 

 

2.1.2.2 E. coli 

2.1.2.2.1 LB (Luria-Bertani)  

20 g LB powder was dissolved in water to a total volume of 1 L. For plates 20 g agar was 

added and the solution autoclaved at 121°C for 20 min then cooled to room temperature 

and stored at 4°C. 

 

2.1.2.3 S.cerevisiae 

2.1.2.3.1 CSM  

1.7 g YNB without amino acids, 5 g ammonium sulphate and 20 g agar was made up to 1 L 

with deionized water and autoclaved at 121°C for 20 min then cooled to room temperature. 

100 mL 10 х Drop Out (DO) solution –URA and 50 mL glucose was added. 

 

2.1.2.3.2 10 х DO solution (-URA)  

L-Adenine hemisulphate salt         200 mg 

L-Arginine HCl                             200 mg 

L-Histidine HCl monohydrate       200 mg 

L-Isoleucine                                   300 mg 

L-Leucine                                      1,000 mg 

L-Lysine HCl                                 300 mg 

L-Methionine                                 200 mg 

L-Phenylalanine                             500 mg 

L-Threonine                                   2,000 mg 

L-Tryptophan                                 200 mg 

L-Tyrosine                                     300 mg 

L-Valine                                         1500 mg 

Made up to 1 L with deionized water. 
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2.1.2.3.3 2 х CBS  

10 g ammonium sulphate, 6g potassium phosphate, 1 g magnesium sulphate and 10 g 

glucose were dissolved in deionized water up to 998 mL and autoclaved at 121°C for 20 

min then cooled to room temperature. 1 mL trace elements and 1 mL vitamin solution were 

then added. 

 

2.1.2.3.4 Trace elements 

EDTA (di-sodium)                                15.0 g 

Zinc sulphate heptahydrate                    4.5 g 

Manganese chloride tetrahydrate          1.0 g 

Cobalt (II)-chloride hextahydrate          0.3 g 

Copper (II)-sulphate penthydrate          0.3 g 

Di-sodium molybdenum dihydrate        0.4 g 

Calcium chloride dihydrate                   4.5 g 

Iron sulphate-heptahydrate                    3.0 g 

Boric acid                                               1.0 g 

Potassium iodide                                    0.1 g 

Made up to 1 L with deionized water and filter sterilized.  

 

 

2.1.2.3.5 Vitamin solution  

D-biotin                                                  0.005 g 

Ca D(+) panthothenate                           1.0 g 

Nicotinic acid                                          1.0 g 

Myo-inisitol                                            25.0 g 

Thiamine hydrochloride                          1.0 g 

Pyridoxol hydrochloride                          1.0 g 

p-amino benzoic acid                               1.0 g 

Made up to 1 L with deionized water and filter sterilized. 
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2.1.2.4 Fermentation media 

2.1.2.4.1 Basal salts medium 

1 L basal salts medium (BSM)[173] was prepared by dissolving 26.7 mL 85% phosphoric 

acid, 0.93 g calcium sulphate, 18.2 g potassium sulphate, 14.9 g magnesium sulphate 

heptahydrate, 4.13 g potassium hydroxide and 40.0 g glycerol in water to a total of 1 L. The 

solution was autoclaved after being added to the bioreactor. 

 

2.1.2.4.2 PTM1 trace salts 

 1 L PTM1 trace salts was prepared by dissolving 6.0 g cupric sulphate pentahydrate, 0.08 g 

sodium iodide, 3.0 g manganese sulphate monohydrate, 0.2 g sodium molybdate dihydrate, 

0.02 g boric acid, 0.5 g cobalt chloride, 20.0 g zinc chloride, 65.0 g ferrous sulphate 

heptahydrate, 0.2 g biotin and 5.0 mL sulphuric acid in water to a total of 1 L. The solution 

was filter sterilized and stored at room temperature. 

 

2.1.2.5 Antibiotics 

Antibiotics were added to media to provide selection pressure for growth of correctly 

transformed cells which would contain the gene for resistance to the antibiotic.   

 

2.1.2.5.1 Ampicillin 

500 mg ampicillin was dissolved in 10 mL sterile distilled water to give 50 mg/mL and 

stored at -20°C 

 

2.1.2.5.2 Kanamycin 

500 mg kanamycin was dissolved in 10 mL sterile distilled water to give 50 mg/mL and 

stored at -20°C. 

 

2.1.2.5.3 Zeocin 

250 mg zeocin was dissolved in 10 mL sterile distilled water to give 25 mg/mL. It was 

wrapped in foil due to light sensitivity and stored at -20°C.  
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2.1.2.6 Reagents 

2.1.2.6.1 BEDS solution 

BEDS solution was prepared continaing 10 mM bicine-NaOH pH 8.3, 5% v/v dimethyl 

sulphoxide (DMSO), 3% v/v ethylene glycol, and 1M sorbitol and made up to 1 L with 

deionized water. 

 

2.1.2.6.2 Breaking buffer pH 7.4 

Breaking buffer was prepared containing 5.5% w/v glycerol, 2 mM EDTA 0.5 M pH 7.4, 

100 mM NaCl, 50 mM NaH2PO4 1 M, 50 mM Na2HPO4 and made up to 1 L with deionized 

water. 

 

2.1.2.6.3 Buffer A pH 7 

Buffer A was prepared containing 20 mM HEPES, 50 mM NaCl, 10% w/v glycerol and 

made up to 1 L with deionized water. 

 

2.1.2.6.4 Lysis buffer pH 8 

Lysis buffer was prepared containing 50 mM NaH2PO4, 300 mM NaCl and 10 mM 

imidozole and made up to 1 L with deionized water. 

 

2.1.2.6.5 Wash buffer pH 8 

Wash buffer was prepared containing 50 mM NaH2PO4, 300 mM NaCl and 20 mM 

imidozole and made up to 1 L with deionized water. 

 

2.1.2.6.6 Elution buffer pH 8 

Elution buffer was prepared containing 50 mM NaH2PO4, 300 mM NaCl and 300 mM 

imidozole and made up to 1 L with deionized water. 
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2.1.2.6.7 SDS gels 

The compositions of 12% SDS separating gels and 4% stacking gels are given in Tables 2.1 

and 2.2. 

 

Table 2.1: Composition of 12% SDS separation gel 

12% SDS separating gel Volume per gel 
Polyacrylamide 30% 2.25 mL 
Tris-HCl 1.5 M pH 8.8 1.5 mL 
SDS 10% 60 µl 
Ammonium persulphate 20% 20 µL 
TEMED 2.25 µl 
Water 1.8 mL 

 
 

Table 2.2: Composition of 4% SDS stacking gel 

 
 
 
 

 

 

 

 

2.1.2.6.8 Laemmli sample buffer 

4 x Laemmli sample buffer[174] was made by mixing 2.4 mL 1M Tris pH 6.8, 0.8 g SDS 

stock,  0.01% bromophenol blue, 1ml β-mercaptoethanol, 4 mL 100% glycerol and 2.8 mL 

deionized water. 

 

2.1.2.6.9 Binding buffer 

Binding buffer was prepared containing 50 mM sodium phosphate, 0.5 mM EDTA, pH 7.4 

and made up to 1 L with deionized water. 

 

 

4% SDS stacking gel Volume per gel 

Polyacrylamide 30% 0.35 mL 
Tris-HCl 1.5 M pH 6.8 1.5 mL 
SDS 10% 25 µl 
Ammonium persulphate 20% 10 µL 
TEMED 2.5 µl 
Water 1.55 mL 
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2.1.2.7 Molecular biology reagents 

2.1.2.7.1 RCP primers 

Forward primer: 

5′ ATTAACAAGAATTCTTATGGAAGTGAAGGATGCCAATTCTGCG 3′ 

 

Reverse primer: 

5′ AACTGATTGGCCGGCTGGGCCGCTGCTGGGTCCTCTTCGTC 3′ 

 

2.1.2.7.2 GFP primers 

Forward primer: 

5′ ATTAACAAGCGGCCGCTTATGAGTAAAGGAGAAGAACTTTTCACTGG 3′ 

 

Reverse primer: 

5′ AACTGATTTCTAGAATTTTGTAGAGCTCATCCATGCCATGTGT 3′ 

 

2.1.2.7.3 TEV primers 

Forward primer: 

5′ CTCGAAAATCTTTATTTTCAAGGTCCGC 3′ 

 

Reverse primer: 

5′ GGACCTTGAAAATAAAGATTTTCGAGGTAC 3′ 
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2.1.2.7.4 HGH primers 

Forward 1: 

5′ CACCATATTGAAGGGAGATTCCCAACTATACCACTATC 3′ 

 

Forward 2: 

5′ GGAATTCCACCATCACCATCACCATATTGAAGGGAG 3′ 

 

Reverse 1: 

5′ GCTCTAGAATCTAGAAGCCACAGCTGCCCTCCAC 3′  

 

2.1.2.7.5 AOX1 sequencing primers 

Forward primer 

5′ GACTGGTTCCAATTGACAAGC 3′ 

 

Reverse primer 

5′ GCAAATGGCATTCTGACATCC 3′ 

 

2.1.2.7.6 Vectors 

pPICZαA and pPICZαB expression vectors were used for P. pastoris cloning work. The 

vector components for pPICZαA, B and C are shown in Fig. 2.4. 
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Figure 2.4: pPICZαA,B,C expression vector                                                                                                               

Contains α-factor, restriction enzymes present in the multiple cloning site and carboxy-terminal tags. Taken 

from Invitrogen’s Pichia pPICZαA,B,C expression manual[175].  

 

2.1.2.7.7 Restriction enzymes 

Several restriction enzymes were used for digestion of DNA and were obtained from New 

England BioLabs Inc. Enzyme details and reaction conditions were taken from the New 

England BioLabs Inc. website (http://www.neb.com/nebecomm/enzymefinder.asp). 

 

2.1.2.7.7.1 EcoRI-HF 

Source is an E. coli strain that carries the cloned EcoRI gene from E. coli RY13. Reaction 

temperature 37°C. A high fidelity enzyme was used to reduce star activity. 

 

2.1.2.7.7.2 XbaI 

Source is an E. coli strain that carries the XbaI gene from Xanthomonas badrii. Reaction 

temperature 37 °C. 
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2.1.2.7.7.3 SfiI 

Source is an E. coli strain that carries the SfiI gene from Streptomyces fimbriatus. Reaction 

temperature 50°C. 

 

2.1.2.7.7.4 NotI 

Source is an E. coli strain that carries the cloned and modified (K150A) NotI gene from 

Nocardia otitidis-caviarum. Reaction temperature 37°C. A high fidelity enzyme was used 

to reduce star activity. 

 

2.1.2.7.7.5 KpnI 

Source is an E. coli strain that carries the KpnI gene from Klebsiella pneumoniae OK8. 

Reaction temperature 37°C. 

 

2.1.2.7.7.6 SacII 

Source is a Streptomyces lividans strain that carries the SacII gene from Streptomyces 

achromogenes. Reaction temperature 37°C. 

 

2.1.2.8 Antifoams 

Five antifoams were evaluated in this work; Antifoam A (Sigma) a 30% emulsion of 

silicone polymer; Antifoam C (Sigma) a 30% emulsion of silicone polymer; J673A 

(Struktol) an alkoxylated fatty acid ester on a vegetable base; P2000 (Fluka) a 

polypropylene glycol; SB2121 (Struktol) a polyalkylene glycol. Antifoams were added to 

medium at concentrations between 0.001% v/v up to 10% v/v. 

 

2.1.3 Strains and culture conditions 

Yeast, and E.coli cells were used for different procedures. Yeast was used for recombinant 

protein production, E. coli for producing plasmid DNA.  
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2.1.3.1 Escherichia coli 

E.coli was used to amplify plasmid DNA for transformation into P. pastoris cells. LB 

media and incubation temperatures of 37°C provided optimum growth conditions. 

 

2.1.3.1.1 DH5α 

Competent cells for high efficiency transformation of plasmids were obtained from 

laboratory stocks at Aston University. Genome information: F- endA1 glnV44 thi-1 recA1 

relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK
- mK

+
), λ–. An 

Hoffman-Berling 1100 strain derivative (Meselson68) and nalidixic acid resistant[176-

179]. 

 

2.1.3.1.2 XL10 Gold 

Competent cells were obtained from Stratagene for high efficiency transformation of large 

plasmids. Genome information: endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte 

Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 tetR F'[proAB lacIq
ZΔM15 Tn10(TetR Amy 

CmR)]. Tetracycline, chloramphenicol and nalidixic acid resisitant[179].  

 

2.1.3.2 Pichia pastoris 

Two strains of P. pastoris were used in this study; X33 and SMD1163. 

 

2.1.3.2.1 X33 

Pichia pastoris X33 is the wild type strain with no deletions to the AOX1 gene and can be 

selected for by zeocin. The X33 strain used was from laboratory stocks at Aston University, 

and is also available from Invitrogen. Growth conditions were chosen from those 

recommended by Invitrogen; medium buffered to pH 6.0, 30°C and 220 rpm[173]. BMGY 

medium was used for the initial biomass accumulation stage before transferring to BMMY 

where methanol induces protein expression. Large-scale fermentations were carried out in 

basal salts medium. 
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2.1.3.2.2 SMD1163 

SMD1163 is a protease deficient strain. Genome information: his4 pep4 prb1. The PEP4 

gene encodes proteinase A, which is a vacuolar aspartyl protease needed for the activation 

of other vacuolar proteases such as carboxypeptidase Y and proteinase B. The PRB1 gene 

encodes proteinase B[22].  

 

2.1.3.3 Saccharomyces cerevisiae 

Two strains of S. cerevisiae were used in this study; WT and TM6*. 

 

2.1.3.3.1 Wild type 

The wild type BY4741 strain was used and hA2aR in the pYX212 vector obtained from Dr 

N. Fraser was transformed into these cells by Dr. R. Darby. Uracil selection was used to 

identify expressing colonies.   

 

2.1.3.3.2 TM6* 

The strain used was KOY-TM6* containing the gene encoding a chimeric hexose 

transporter, TM6*[180]. hA2aR in the pYX212 vector obtained from Dr N. Fraser was 

transformed into these cells by Dr. R. Darby. Uracil selection was used to identify 

expressing colonies.   

 

 

2.2 Methods 

2.2.1 Molecular Biology Techniques 

2.2.1.1 Primer design 

ExPasy was used to search for target DNA sequences and the information provided used in 

order to design primers which ranged from 24 to 42 bases long. Primers were ordered from 

Invitrogen.   
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2.2.1.2 DNA amplification - PCR 

DNA was amplified by PCR, the reactions set up on ice with: 

1μL forward primer (100 pM) 

1μL reverse primer (100 pM) 

1μL PFU polymerase (Stratagene) 

5μL PFU polymerase buffer (Stratagene) 

1μL dNTPs (10 mmol) 

1μL template (100 ng)  

Made up to 50 µl with sterile deionized water 

 

PCR reactions were carried out at: 

95°C 2 min (denaturation)  

30 cycles of the following steps were then carried out: 

95°C for 30 s 

55°C for 30 s (annealing)              

72°C for 1 min (extension)  

Lastly a final extension step was carried out at 72°C for 10 min. 

 

Negative controls were performed by setting up reactions without template. 

 

2.2.1.3 Restriction digests 

Where possible, double digests were carried out using the most appropriate buffer and 

conditions. Standard conditions are detailed below and all steps carried out on ice. 

 

2 µg DNA  

0.5 µL (10 units) restriction enzyme (New England BioLabs) 

0.5 µL 100 x BSA (100 µg/mL) (New England BioLabs) 

6 µL NE buffer (New England BioLabs) 

Deionized water to 50 µL 
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The reaction mixture was incubated at the optimum temperature for the restriction enzyme 

for 1 h. For insert DNA, 1 µL antarctic phosphatase (New England BioLabs) (to catalyze 

the removal of 5′ phosphate groups from the DNA to prevent self-ligation) and 5 µL 

antarctic buffer was added. The reaction was left for 30 min at 37°C. All reactions were 

then heat inactivated by incubating at 65°C for 20 min. 

 

2.2.1.4 Ligations 

Standard ligation reactions were carried out on ice with the following reagents: 

100 ng vector DNA 

Insert DNA (3:1 molar excess with respect to vector DNA)  

1 µL T4 ligase (New England BioLabs) 

2 µL T4 ligase reaction buffer (New England BioLabs) 

Deionized water to 20 µL 

The reaction mixture was incubated at 21°C for 3 h. Alternatively, the mixture was left on 

the bench overnight. 

 

2.2.1.5 Agarose gel electrophoresis 

1% agarose gels were run to verify the presence of the required DNA after amplification. 1 

х TAE buffer was made by measuring 20 mL 50 х TAE buffer and mixing with 980mL 

water. 1.5g agarose was added to 150 mL 1 х TAE buffer and heated in a microwave until 

dissolved.  Once cooled, 3 μL ethidium bromide was added and after mixing the gel was 

poured. Combs were inserted and the gel left to set for around 30 min.  Once completely 

set, the combs were removed and the gel transferred to a tank with the remaining 1 х TAE 

buffer added. Samples were set up by adding 1 μL 10 х BlueJuice loading buffer 

(Invitrogen) to 5 μL samples before dispensing into the wells of the gel. A well was also set 

up with 2 μL DNA ladder (Hyperladder IV, Bioline). The gel tank was connected to a 

power source and 100V was applied for approximately 30 min. Once run, the gel was 

stained with 4 μL ethidium bromide and visualized under a UV light box. 
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2.2.1.6  Transformation 

DNA was transformed into two different strains of competent cells, E.coli DH5α cells and 

XL10 Gold cells. Different protocols were used for the different strains.  

 

2.2.1.6.1 E.coli DH5α transformation 

The DH5α cells stored at -80°C were defrosted on ice and using cold cut off tips, 50μL 

dispensed into cold eppendorf tubes. To each tube 1 μL DNA was added and kept on ice for 

20 min. The cells were then heat shocked at 37°C for exactly 1 min 15 s and kept on ice for 

a further 5 min. Then 900 μL cold LB without antibiotic was added to the tubes which were 

then incubated at 37°C for 50 min to allow growth and time for antibiotic resistance genes 

to be expressed. The tubes were then centrifuged at 14,000 rpm for 5 min and 800 μL 

supernatant discarded. The pellets were resuspended in the remaining supernatant and this 

was spread onto agar plates with appropriate antibiotic added. The plates were allowed to 

dry before incubating at 37°C overnight. 

 

2.2.1.6.2 E.coli XL10 Gold transformation 

XL10 Gold cells stored at -80°C were defrosted on ice and 4 μL β mercaptoethanol added 

per 200 μL cells to allow more efficient uptake of DNA. Using cold cut off tips, 50 μL 

were dispensed into cold eppendorf tubes. To each tube 1 μL DNA was added and kept on 

ice for 20 min. The cells were then heat shocked at 42° C for exactly 30 s then kept on ice 

for 5 min. Then 900 μL cold LB without antibiotics was added to the tubes which were 

incubated at 37°C for 1 h. The tubes were then centrifuged at 14,000 rpm for 5 min and 800 

μL supernatant discarded. The pellets were resuspended in the remaining supernatant and 

this was spread onto agar with appropriate antibiotic added. The plates were allowed to dry 

before incubating at 37°C overnight. 

 

2.2.1.7 Minipreps 

Minipreps were set up using reagents from a GenElute plasmid miniprep kit (Sigma-

Aldrich) and the recommended protocol followed[181]. The transformed E.coli cultures 

were used to recover the plasmid DNA and allow sequencing.  One colony was taken from 
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the appropriate transformed E.coli plate and used to inoculate 5 mL LB with the desired 

antibiotic. The culture was allowed to grow overnight at 37°C and centrifuged the next day 

at 5,000 rpm for 4 min. The supernatant was discarded and the pellet resuspended in 200 

μL cell resuspension solution by vortexing and then transferred to eppendorf tubes.  

Following resuspension 200 μL cell lysis solution was dispensed into each tube and 10 μL 

alkaline protease solution also added. The tubes were immediately mixed by inverting 4 

times and before 5 min the reaction was stopped to prevent nicking of the plasmid DNA by 

alkaline protease. The reaction was stopped by adding 350 μL neutralizing solution and 

mixed by inverting 4 times. The tubes were centrifuged at 14,000 rpm for 10 min and the 

cleared cell lysate decanted into spin columns inserted into collection tubes, avoiding the 

white precipitate. The columns were centrifuged at 14,000 rpm for 1 min and the flow 

though in the collection tubes discarded.  Column wash solution was diluted with 95% 

ethanol and 750 μL added to each tube before centrifuging at 14,000 rpm for 1 min. The 

wash was repeated with 250 μL column wash solution and a further centrifugation step at 

14,000 rpm for 2 min. The spin columns were transferred to new collection tubes and 

plasmid DNA was eluted by adding 100 μL nuclease-free water and centrifuging at 14,000 

rpm for 1 min. The plasmid DNA was stored at -20°C.  

 

2.2.1.8 DNA quantification 

The concentration of DNA purified from minipreps was determined by using a Nanodrop 

1000 spectrophotometer (Thermo Scientific). ND2000 software was used and 2μL water 

loaded into the Nanodrop to blank it.  Once the software had blanked against it, the 

nanodrop was blanked again with 2 μL water as a medium blank.  Next 2 μL of DNA was 

loaded and the software calculated the absorbance corresponding to the concentration of 

DNA present in the sample. An example of the software reading a DNA sample is shown in 

Fig. 2.5. 
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Figure 2.5: Nanodrop DNA quantification                                                                                                               

Screenshot of Nanodrop software reading for a DNA sample with a peak at 260 nm. 

 

2.2.1.9 DNA sequencing 

DNA samples were prepared for sequencing at Birmingham University’s genomics 

laboratory by mixing 4.5 μL miniprep DNA and 1.5 μL primer with 9 μL deionized water.  

10 µL of this mixture was sequenced at Birmingham University. The data were analyzed 

using Chromas Lite version 2.01 and the sequences were aligned using Biology Workbench 

version 3.2 or T-Coffee software version 8.99. 

 

2.2.1.10 Maxipreps 

Once the DNA had been validated by sequencing, maxipreps were carried out to obtain 

larger and purer quantities of plasmid DNA. Reagents from a PowerPrep HP plasmid 

maxiprep kit (OriGene) were used, and the recommended protocol followed[182]. A colony 

was taken from the transformed E.coli plates and used to inoculate 5 mL LB medium with 

the appropriate antibiotic and cultured at 37°C overnight. From these cultures, 0.5 mL was 

used to inoculate 200 mL LB medium with antibiotic and the flasks incubated at 37°C 220 

rpm overnight. Next 50 mL from each flask was dispensed into tubes and centrifuged at 
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40,000 rpm for 5 min. The supernatant was discarded and another 50 mL poured in, 

repeating the process until all the culture was pelleted.   

 

Columns were set up for each pellet with a beaker beneath to catch flow through. 30 mL 

equilibration buffer was added to each column and left to drain by gravity. The pellets were 

resuspended in 10 mL cell suspension buffer using a 1 mL pipette. Then 10 mL cell lysis 

solution was added and the tubes inverted 5 times before centrifuging at 4,600 rpm for 10 

min. The supernatant was decanted into the empty columns avoiding the white precipitate. 

Once the columns had drained, 60 mL wash buffer was added and again left to drain. 15 

mL elution buffer was dispensed into each tube, and the flow through caught in tubes to 

which 10 mL isopropanol was added. These samples were spun at 15,000g for 30 min and 

the supernatant discarded before adding 4 mL 70% ethanol to dissolve the pellet. A further 

1 mL 70% ethanol was added and the sides of the tubes scraped to remove all pellet. The 

tubes were centrifuged at 5,000 rpm for 7 min and the supernatant discarded. The pellets 

were resuspended in 500 μL sterile deionized water and transferred to eppendorf tubes and 

stored at -20°C. 

 

2.2.1.11 Linearization of DNA 

DNA to be transformed into yeast was linearized by mixing 5-10 µg DNA, 1.5 µL PmeI 

(New England Biolabs), 0.5 µL 100 x BSA, 5 µL NEbuffer 4 and up to 50 µL with 

deionized water. The reaction mixture was heated to 37°C for 2 h, then 65°C for 20 min.  

 

2.2.1.12 Preparation of electrocompetent P. pastoris cells 

5 mL of YPD was inoculated with P. pastoris X33 or SMD1163 cells at 30°C 220 rpm 

overnight. The culture was diluted with YPD to an OD595 of 0.15-0.2 in 50 mL medium. 

The culture was incubated at 30°C, 200 rpm until the OD595 reached 0.8-1. The culture was 

centrifuged at 5,000 rpm for 5 min at room temperature. The supernatant was discarded and 

the pellet resuspended in 9 mL ice-cold BEDS solution with 1 mL 1M dithiothreitol (DTT). 

The mixture was incubated for 5 min at 100 rpm in a 30°C incubator on a low shake speed. 

The culture was then centrifuged at 5,000 rpm for 5 min at room temperature and the pellet 
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resuspended in 250 µl of BEDS without DTT. 40 µL volumes were aliquoted and stored at 

-80°C for up to 6 months. 

 

2.2.1.13 Electroporation of P. pastoris cells 

P. pastoris competent cells and the DNA to be transformed were defrosted on ice. 1M 

sorbitol and YPD were put on ice with 1.5 mL eppendorf tubes and electroporation 

cuvettes. 40 µL cells were transferred into the cold cuvette and 4 µg DNA added. The 

cuvette was incubated on ice for 2 min. The cuvettes were placed into the electroporation 

equipment and electroporated at 1,800 V with 15 ms pulse length. The cells were 

immediately suspended in 0.5 mL 1 M sorbitol and 0.5 mL YPD. The cells were transferred 

into the eppendorfs and incubated at 30°C on the lowest shaking speed for 1 h 30 min. The 

culture was then plated onto agar with increasing concentrations of antibiotic to select for 

colonies containing the plasmid DNA and incubated at 30°C for up to 8 days. 

 

2.2.1.14 Transformation of S. cerevisiae cells - lithium acetate 

S. cerevisiae cultures were incubated in 5 mL 2 х CBS At 30°C overnight. 1 mL of culture 

was centrifuged at 14,000 rpm to obtain a pellet. The supernatant was discarded. 15 µL 100 

mM lithium acetate was added to the pellet and vortexed before centrifugation at 14,000 

rpm. The supernatant was removed and a further 15 µL 100 mM lithium acetate was and 

again vortexed before centrifugation at 14,000 rpm. Single stranded salmon testes carrier 

DNA was heated to 100°C for 5 min then put on ice for 2 min. 240 µL polyethylene glycol 

(50% PEG 3350), 36 µL 1 M lithium acetate and 25 µL salmon DNA was added followed 

by 0.5 µg plasmid DNA. The mixture was incubated for 30 min at 30°C. The cells were 

then heat shocked for 20 min at 42°C and centrifuged at 6,000 rpm for 1 min. The 

supernatant was removed with a pipette and 500 µL sterile deionized water added. The cells 

were gently resuspended and 20 µL dispensed onto CSM –URA agar plates. The plates 

were incubated at 30°C until colonies began to form. 
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2.2.2 Yeast cultures and analysis 

2.2.2.1 Small scale formats 

Precultures were set up using 250 mL baffled shake flasks containing 50 mL BMGY 

medium inoculated with 1 colony from the desired YPD agar plate. The flask was 

incubated at 220 rpm overnight. The required volume of log phase cells taken from this 

culture in order to inoculate the experimental cultures to an OD595 of 1 was centrifuged at 

5,000 rpm for 10 min and the pellet resuspened in the required volume of BMMY medium. 

6 mL deepwell plates, 200 µL multiwell plates and a range of shake flasks were used. 

Antifoam investigations were conducted in 100 mL non-baffled shake flasks and 2 L non-

baffled shake flasks. 

 

2.2.2.2 Bioreactors 

A commonly-used bioreactor for recombinant protein production is the stirred-tank reactor 

with agitation provided by impellors[183]. 3 L stirred-tank bioreactors (Applikon) were 

used for all large-scale bioreactor experiments. 

 

2.2.2.2.1 Preparation of the bioreactor 

1 L BSM was made and poured into the glass vessel. The head plate was attached and 

secured with bolts. Silicon tubes were attached to each of the ports on top of the head plate 

and clamped and the ends wrapped in foil.  The pH probe was added after calibrating using 

pH 4 and pH 7 buffers. The DO probe was also added as well as the Optek probe for 

biomass readings. A 0.2 µm PTFE gas filter was added to the inlet gas sparger and left 

unclamped to allow pressure equalization and avoid vessel damage during autoclaving. A 

250 mL glass sample bottle was attached to the sample port and a length of silicon tubing 

with a filter attached to the fork. The bioreactor was then autoclaved and sterilized at 121°C 

for 20 min with a slow cool cycle. A 0.5 L glass liquid addition bottle containing 50% (v/v) 

phosphoric acid and a 0.5 L glass liquid addition bottle of 28 % ammonium hydroxide were 

prepared for pH control. PharMed tubing was used and filters attached to the caps.  
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2.2.2.2.2 Connecting the bioreactor to the control unit 

The bioreactor was removed from the autoclave and placed next to the control unit. The DO 

probe was connected to the ADI 1010 controller and allow to polarize for a minimum of 6 

h. The pH probe was also connected to the ADI 1010 controller and the Optek probe 

connected to the Optek controller. 5 mL 50% (w/v) glycerol was added to the port for the 

temperature probe (the thermowell tube) and the temperature probe inserted. The chiller 

was turned on and connected by silicone tubing to the condenser. The silicone tubing 

attached to the condenser was connected to the off-gas analyser. The compressor and the 

60%: 40% oxygen: nitrogen cylinder were connected to the gas supply ADI 1026 unit. The 

gas supply was attached to the sparger line on the bioreactor with a length of silicon tubing 

from the ADI 1026  unit with a filter also added. The stirrer motor was attached to the head 

plate and acid and base bottles set up with the pumps connected to the controller 

equipment. The foil was removed from the acid and base lines on the bioreactor and 

sprayed with 70% ethanol before connecting to the lines on the acid and base bottles. The 

water jacket lines were connected to the thermo circulator ADI 1018 unit. The feed bottles 

were also connected to the bioreactor by inserting the tubing from the bottles into a 

peristaltic pump and connecting the tubing to the feed line tubing on the bioreactor, 

spraying the line ends with 70% ethanol.  

 

2.2.2.2.3 Culture conditions 

Recombinant protein production experiments in this work using bioreactors were with P. 

pastoris. The settings used for GFP and EPO experiments were pH 5, 30 °C, 30% DO and a 

minimum stirrer speed of 700 rpm. For A2aR experiments, the temperature was reduced 

from 30°C to 22°C during induction. The DO set point was set to 30% and the stirrer was 

put into a cascade of 700-1,250 rpm to maintain the 30% setpoint. Once the stirrer was no 

longer able to maintain the setpoint, the mass flow controller (MFC) increased the 

proportion of air drawn from the 40%: 60% nitrogen: oxygen cylinder. The air flow into the 

bioreactor was set to 2 L/min and the cylinder pressure was set to 2.5 bar. The flow rate of 

exit gas to the Tandem off-gas analyzer was set to approximately 0.4 L min-1 by adjusting 

the clamp on the open end of the forked tubing. 5 mL PTM1 trace salts was added using 

syringe and needle in an sterile manner through the septum and into the vessel. The pH was 
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then adjusted to pH 5 by entering this setpoint into the ADI1010 controller, causing the 

pumps to add the required volume of acid or base. The bioreactor was left running at these 

settings for approximately 1 h before inoculating. 

 

2.2.2.2.4 Starting a bioreactor run 

A seed culture was prepared by inoculating 50 mL BMGY medium with one colony of the 

desired P. pastoris strain from an agar plate. The culture was incubated at 30°C, 220 rpm 

overnight. The next day, the volume of seed culture required to inoculate 1 L basla salts 

medium to the desired OD. Immediately before adding the required volume of culture to 

the bioreactor, BioXpert software was set up and the run details entered. Antifoam was 

added to the required volume in a sterile manner through the septum, then the bioreactor 

was inoculated with the culture. The run was immediately started on the BioXpert software 

and DO control turned on. The various run parameters were graphically displayed 

throughout the run by the software. 

 

2.2.2.2.5 Glycerol batch and fed batch phase 

The fermentation cultures initially began growing on the 40 g/L glycerol already present in 

the BSM. Once this had been consumed, usually around 20 h and indicated by a DO 

spike[184], a fed batch phase was begun. 50% w/v glycerol with 12 mL PTM1 trace salts/L 

was fed into the vessel at a flow rate of 12 mL/h for 4 h to increase biomass prior to 

induction. After 4 h, the fed was stopped and the culture starved for 1 h to ensure all 

glycerol in the medium was consumed before inducing. 

 

2.2.2.2.6 Induction phase 

Induction was begun after starvation using 20% v/v methanol with 12 mL PTM1 trace 

salts/L. It was initially fed in at 4 mL/h for a minimum of 3 h, then increased to 8 mL/h 

overnight. Early the next morning the feed was increased to 12 mL/h and remained at this 

flow rate for the remainder of the fermentations which were approximately 100 h in total. 
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2.2.2.3 Optical density measurement 

Optical densities of yeast cultures were measured using a spectrophotometer set to a 

wavelength of 595 nm, using х 100 dilution with water.   

 

2.2.2.4 Dry cell weights 

Dry cell weight measurements were carried out by drying 1.5 mL eppendorfs (Fisher) in an 

oven at 100°C for 24 h followed by drying in a dessicator for 48 h. The tube weight was 

determined using a microbalance (Denver Intruments). 1 mL of culture was dispensed into 

the tubes and spun at 14,000 rpm for 10 min. The supernatant was removed and the tubes 

dried in an oven at 100°C for 48 h followed by a dessicator for 48 h. The tubes were again 

weighed. 

  

2.2.3 Protein analysis 

2.2.3.1 Membrane preparations 

Membrane preparations were made from P. pastoris cells. 20 mL culture samples were 

centrifuged at 14,000 rpm and the supernatant discarded. 500 µL pH 7.4 breaking buffer 

was added. The mixture was transferred to breaking tubes and 1.5 mL glass acid washed 

beads were added. Protease inhibitor cocktail IV (Calbiochem) was added at 1:2,000 to 

each tube and immediately put on ice. A cell lyser (TissueLyser LT, Quiagen) was used to 

disrupt the cells at 50 Hz for 15 min. The tubes were pierced and the solution collected after 

centrifugation at 5,000 rpm for 5 min. The pellets were resuspended in the supernatant and 

transferred to fresh 1.5 mL eppendorfs. The tubes were spun at 15,000 rpm for 15 min and 

the supernatant centrifuged again at 66,000 rpm for 1 h. The supernatant was removed and 

the membrane pellets resuspended overnight at 4°C in pH 7 buffer A. Membrane 

preparations were stored at -80°C. 

 

2.2.3.2 BCA Assay 

The total protein content of culture supernatants (2 μl) at 48 h post-induction was analyzed 

by bicinchoninic acid (BCA) assay. 4.9 mL of BCA solution (B9643, Sigma) was mixed 

with 100 μL 4% mM copper (II) sulfate solution (C2284, Sigma). 198 μL of this solution 
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was used to assay each independent supernatant sample in duplicate using a plate reader 

(BioTek Instruments) at 570 nm. To determine the concentration of protein in the samples, 

a bovine serum albumin standard (Sigma) was used to plot a standard curve (Fig 2.6). The 

data were analyzed using a one-way ANOVA (P < 0.0001) and a Dunnett's multiple 

comparison test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: BCA standard                                                                                                                                           

Example BCA standard with increasing concentrations of BSA measured at 570 nm. 

 

2.2.3.3 Fluorescence measurements  

Culture supernatants (100 μL) were assayed at 24 h and 48 h post-induction for GFP 

fluorescence in black 96 well plates using a Spectramax Gemini XS plate reader with an 

excitation wavelength (λexe) of 397 nm, and emission wavelength (λem) of 506 nm. 

Triplicate determinations were performed for each independent sample including blanks 

with BMMY or BSM. All samples and blanks were buffered to pH >7.0 using 50 μL 1 M 

potassium phosphate pH 7.5. Data were collected at 25 °C. To determine the concentration 

of GFP in each of the samples, a recombinant GFP standard (Vector Laboratories Ltd) was 

used to construct a standard curve relating RFU to protein concentration (Fig. 2.7), as 

described previously[36]. All data were analyzed using a one-way ANOVA to test for a 
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significant difference between any of the means. In all cases P < 0.001 indicated a high 

degree of significance. A Dunnett's multiple comparison test was then performed to 

compare each treatment mean (e.g. addition of various antifoam concentrations) and the 

control mean (e.g. 0% antifoam). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: GFP standard                                                                                                                                          

Increasing concentration of recombinant GFP standard measured at excitation wavelength (λexe) of 397 nm, 

and emission wavelength (λem) of 506 nm by Spectramax Gemini XS fluorescence plate reader 

 

2.2.3.4 ELISA  

A GFP ELISA kit (RandD Systems) was used to detect GFP present in sample 

supernatants.  Sample supernatant was diluted 1:5,000 using Assay Diluent and 100 μL 

added to the wells of the Anti-GFP antibody coated plate. A dilution series of recombinant 

GFP standard was performed and 100 μL was added to wells. All samples were assayed in 

duplicate. The plate was incubated at 37°C for 2 h. The wells were then washed with 250 

μL 1 x wash buffer three times. Excess wash buffer was removed by tapping the plate on 

paper towel. Then 100 μL of anti-GFP antibody previously diluted to 1:1,000 using Assay 

Diluent was added to each well, and the plate incubated at room temperature for 2 h on an 

orbital shaker. The wells were washed 3 times as previously. 100 μL of secondary antibody 

previously diluted to 1:1,000 using Assay Diluent was added to each well and the plate was 

incubated for 1 h on an orbital shaker. The wells were washed 3 times as previously, then 
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100 μL Substrate Solution warmed to room temperature was added to the wells. The plate 

was incubated at room temperature until a colour change occurred, varying from 2-30 min. 

The enzyme reaction was stopped by adding 100 μL Stop Solution to each well. The results 

were read using a spectrophotometer at 450 nm. A GFP standard curve was plotted to 

determine the concentration of GFP in the samples. 

 

2.2.3.5 Flow cytometry 

Shake flask cultures of P. pastoris, as described above, were used to generate samples for 

flow cytometry analysis. The antifoams used were Antifoam A at 0.6%, Antifoam C at 

0.6%, J673A at 0.8%, P2000 at 0.6% and SB2121 at 0.6% (v/v). Triplicate flasks were used 

for each antifoam. 48 h samples were diluted 1:1,000 in phosphate buffered saline to a final 

concentration of 106-107 cells/mL, as determined using a haemocytometer. Fluorescent 

measurements were made using a Beckman Coulter (High Wycombe, UK) flow cytometer 

with λexe = 488 nm from an argon-ion laser at 15 mW. Diluted samples were additionally 

stained with 10 μL propidium iodide (PI; 1 mg/mL in water). All solutions were passed 

through a 0.2 μm filter, immediately prior to use, to remove particulate contamination. The 

optical filters were set up so that PI fluorescence was measured at 630 nm and GFP 

fluorescence was measured at 525 nm. The data were analyzed using a one-way ANOVA 

(P < 0.0001) and a Dunnett's multiple comparison test. 

 

2.2.3.6 GFP purification 

GFP was purified using its His6 tag with Ni-NTA agarose resin and columns (Qiagen). 5 

mL pH 8.0 lysis buffer and 1 mL 50% of Ni-NTA was added to 15 mL supernatant in the 

lysis buffer in duplicate for each sample to be purified and incubated at 4°C for 1 h. The 

mixture was then loaded into a capped column before removing the cap and collecting the 

flow through. The column was washed twice with 4 mL pH 8.0 wash buffer and the wash 

fractions were collected. The protein was then eluted 4 times with pH 8.0 elution buffer and 

the fractions combined and stored at 4°C before analysis by Western blot. 
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2.2.3.7 SDS-PAGE  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to separate the 

proteins in sample supernatant and membrane preparations. 12% SDS separating gels were 

made with 4% SDS stacking gel. Ammonium persulphate was made up fresh and TEMED 

added last. Isopropanol was added to the top of the separating gel while it set to level it and 

was washed away with deionized water before adding the stacking gel. 5 μl of 4 х Laemmli 

buffer was added to 15 μl of protein sample and heated to 70°C for 10 min. Samples were 

loaded into the gel with a prestained protein ladder (Fermentas) and 1 х SDS running buffer 

was added. 150 V was applied for 1 h. 

 

2.2.3.8 Western Blots 

Western blots were performed on the SDS-PAGE gels. Protein was transferred onto 

nitrocellulose membranes which were then blocked with PBS and 5% milk powder 

(Marvel) for 1 h at room temperature with agitation. The membranes were then washed 

with phosphate buffered saline with 0.2% Tween 20 (PBST). PBS with 5% milk powder 

was again added with a 1:5,000 mouse anti-His6 monoclonal antibody (Serotec). The 

membranes were incubated for 1 h before washing with PBST. PBS with 5% milk powder 

and 1:5,000 secondary rabbit antibody were added and the gels incubated for 1 h. The gels 

were washed and EZ-ECL chemiluminescence solution (Biological Industries) was added. 

The gels were exposed to white light for 15 min and viewed with a Chemidoc system 

(UVItech). In order to compare between Western blots, ImageJ software was used.    

 

2.2.3.9 Silver stain 

Silver stains were performed on SDS page gels using reagents from a SilverQuest kit 

(Invitrogen). The gel was rinsed in ultrapure water and fixed in 100 mL fixative (40% v/v 

ethanol, 10% v/v acetic acid) overnight at 4°C. The fixative was decanted and the gel 

washed in 30% v/v ethanol for 10 min. The ethanol was decanted and the gel washed in 

100 mL sensitizing solution for 10 min. This was decanted and the gel washed in 30% v/v 

ethanol for 10 min. The gel was then washed in 100 mL ultrapure water for 10 min. The 

water was decanted and 100 mL staining solution was added for 15 min. This was decanted 

and the gel washed in ultrapure water for 20 – 60 s and the water decanted. The gel was 
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incubated in100 mL developing solution for 4 – 8 min until bands appeared. Once the 

desired band intensity had been reached, 10 mL stopper solution was added. The gel was 

agitated gently for 10 min then washed in ultrapure water for a further 10 min.  

 

2.2.4 Radioligand binding 

100 µg of membrane protein was used in all radioligand binding reactions. Tubes were set 

up for total and non-specific binding for each sample. Total binding determination 

comprised 50 nM ZM241385 labelled with tritium ([3H]ZM241385), 1 µL adenosine 

deaminase (0.1u), 100 µg membrane protein and binding buffer  up to 275 µL. Non specific 

determination were set up comprising 50 nM [3H]ZM241385, 10 nM unlabeled ZM241385, 

1 µL adenosine deaminase, 100 µg membrane protein and binding buffer up to 275 µL. 

Binding curves were performed with 100 µg of membrane protein with increasing 

concentrations of radiolabeled ligand. The concentrations of ligand are shown in Table 2.3.  

 

Table 2.3: [
3
H]ZM241285 concentrations used to produce a binding curve for A2aR in the presence of 

antifoams 

Concentration of 
[3H]ZM241285 

Volume of 
[3H]ZM241285 (µl) 

Volume of  10 nM 
ZM241385 (µl) 

Membrane 
protein (µg) 

Binding 
Buffer 

0.5 nM 1 µl of 50 nM stock 10 100 Up to 100 µl 

1 nM 2 µl of 50 nM stock 10 100 Up to 100 µl 

2.5 nM 6 µl of 50 nM stock 10 100 Up to 100 µl 

5 nM 10 µl of 50 nM stock 10 100 Up to 100 µl 

10 nM 0.5 µl of 1 µM stock 10 100 Up to 100 µl 

20 nM 1 µl of 1 µM stock 10 100 Up to 100 µl 
 

The tubes were then incubated at room temperature for 1 h 30 min then centrifuged at 

14,000 rpm for 5 min. The pellets were rinsed with 500 µL water twice then 100 µL 

soluene added in a fume cupboard. The tubes were incubated at room temperature 

overnight. 1 mL scintillation fluid was dispensed into the tubes and they were mixed by 

vortexing. Each tube was placed into a counting vial and loaded onto the radioactivity 

counter. Non specific counts were subtracted from the total counts to obtain the counts for 

each sample. 
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2.2.5 Bartsch Test 

The Bartsch test was conducted following a protocol adapted from that outlined by Denkov 

et al[185]. A 500 mL graduated glass cylinder was filled with 166 mL BMMY medium and 

in all cases except for the control, the appropriate antifoam was added to 0.001% v/v and 

1% v/v. The cylinder was sealed using parafilm and shaken up and down ten times. The 

height of the foam was recorded every 30 s for 15 min and repeated 5 times for each 

antifoam. The activity of the antifoam agent was determined by measuring the total volume 

of the whole system and subtracting the volume of media. 

 

2.2.6 Mass spectrometry 

2.2.6.1 Lipid extraction 

Lipid was extracted from P. pastoris cells using the method outlined by Spicket et al 

2001[186]. Cultures were centrifuged at 14,000 rpm and the supernatant discarded. The cell 

pellets weighed approximately 40 mg. 0.5 mL methanol at 50°C was added to the pellets 

and the cells incubated in a sonicating water bath for 15 min. 0.5 mL chloroform was then 

added and the cells sonicated for a further 15 min. 0.5 mL of 0.88% KCl was added and the 

mixture was vortexed. The cells were centrifuged at 14,000 rpm for 2 min to separate the 

organic and aqueous layers. The organic layer at the bottom of the tube was transferred to a 

fresh tube and dried under a stream of nitrogen gas. The lipid extracts were stored at -80°C 

until analysis.   

 

2.2.6.2 Electrospray mass spectrometry 

An AB Sciex QTrap 5500 mass spectrometer was used to analyze yeast lipid samples with 

Analyst software. 500 µL 100% methanol was added to each dried lipid sample and a 

1:1,000 dilution performed with methanol. Settings were a 5 µL/min flow rate of sample 

with a syringe diameter of 3.26 mm. An ion spray voltage of 5,500 V was used for samples 

read in positive scanning modes and -4,500 V for samples read in negative scanning modes. 

Precursor ion and neutral loss scanning modes were used. 
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3. THE EFFECT OF ANTIFOAMS UPON SMALL SCALE 

RECOMBINANT PROTEIN PRODUCTION BY P. PASTORIS 

IN SHAKE FLASKS 

 

Antifoams are commonly added to cultures in both shake flasks and bioreactors without 

first investigating the effects they could exert upon the cells and the proteins being 

produced. There has never been a systematic study of these effects upon cells producing 

recombinant protein, especially at concentrations above 0.1%. In order to establish whether 

antifoams affect recombinant protein yield in P. pastoris X33 cultures, and if so to 

investigate the underlying mechanisms, a small scale experimental system was chosen to 

evaluate the effects of the antifoam. Recombinant protein production was carried out in P. 

pastoris under the control of the methanol-inducible AOX1 promoter. The 20 mL BMMY 

cultures were grown in 100 mL non-baffled flasks in the presence of five different 

antifoams at concentrations of 0% - 1%. Experiments were carried out at 30°C in triplicate 

for each of the conditions examined.  

 

 

3.1 Target protein selection 

Several protein targets were considered for small scale investigation of the effects of 

antifoams in shake flasks, some of these being pre-existing strains (green fluorescent 

protein, adenosine 2a receptor, erythropoietin, CHLG, β1-AR and the aquaporins) and 

others being strains generated in this project (human growth hormone, receptor component 

protein). 
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3.1.1 Green fluorescent protein 

Green fluorescent protein (GFP) is an ideal protein for investigation as it is simple to assay 

and is stable at a range of temperatures and pH. The construct created by Dr William 

Holmes[36] was used for all antifoam experiments and is shown in Fig 3.1.  

 

 

 

Figure 3.1: Schematic for X33-GFP construct                                                                                                              

pPICZαA-GFPuv construct with AOX1 promoter(not shown) upstream of the α-factor, GFPuv and c-myc and 

His6 tags[36]. 

 

The construct was created using the pPICZαA vector with the GFPuv sequence inserted 

into the multiple cloning site (EcoRI and XbaI). An α-factor is on the amino-terminus (N-

terminus). On the carboxy-terminus (C-terminus) is a c-myc tag and a His6 tag. The vector 

was transformed into P. pastoris X33 cells[36] to create strain X33-GFP. 

 

 

3.1.2 Erythropoetin 

The erythropoeitin (EPO) construct was created by Dr Nagamani Bora, Aston University. 

The DNA was transformed into P. pastoris X33 cells[187] and denoted X33-EPO. A 

schematic illustrating the construct is shown in Fig 3.2. 

 

 

 

Figure 3.2: Schematic for X33-EPO construct                                                                                                                         

EPO construct designed by Dr. Nagamani Bora with an α-factor upstream of the EPO coding sequence. 

 

 

 

 

 

α-factor GFPuv c-myc His65′ 3′

α-factor                 EPO5′ 3′



 102 

3.1.3 β1-AR 

The β1-AR construct was designed by Dr. Antoine Gautier (Laboratory of Molecular 

Biology, Cambridge) and was created in the pPIC9K expression vector and was 

transformed into SMD1163 cells and denoted SMD- β1-AR. A schematic illustrating the 

construct is shown in Fig 3.3. 

 

 

 

Figure 3.3: Schematic for SMD-β1-AR construct                                                                                                                  

Design of the β1-AR construct created by Dr. Antoine Gautier. An α-factor is upstream of the β1-AR coding 

sequence with a His6 tag downstream of the sequence. 

 

 

3.1.4 Adenosine 2a receptor 

The adenosine 2a receptor (A2aR) construct used was designed by Fraser[76] and is a 

glycosylation deficient version of the protein with the N-linked glycosylation site at 

Asn154 mutated to a Gln. The A2aR protein is tagged with a FLAG tag and His10 tag on the 

amino-terminus. It was transformed into P. pastoris SMD1163 cells to create strain SMD- 

A2aR. The design is shown in Fig 3.4. 

 

 

Figure 3.4: Schematic for SMD-A2aR construct                                                                                                          

Glycosylation-deficient A2aR sequence designed by Fraser. Consists of an α-factor, FLAG and His10 tag. The 

cassette was cloned into the multiple cloning site of the pPICZαA construct. Image adapted from Fraser 

2006[76]. 

 

 

 

 

 

 

 

 

α-factor β1-AR               His65′ 3′

5′ α-factor     His10                dG hA2aR 3′
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3.1.5 Aquaporins 

The aquaporin 7 construct was designed by Dr. Kristina Hedfalk, Göteborg University. It 

was created in the pPICZαB expression vector and transformed into P. pastoris X33 cells 

to create strain X33-AQP7. The design is shown in Fig. 3.5. 

 

 

 

Figure 3.5: Schematic for X33-AQP7 construct                                                                                                                 

X33-AQP7 sequence designed by Dr. Kristina Hedfalk. An α-factor is upstream of the AQP sequence and His6 

and c-myc tags downstream of the sequence. 

 

3.1.6 CHLG 

The CHLG construct was designed by Dr. Mohammed Jamshad, Aston University, and the 

CHLG sequence was transformed into the pPICZB vector (KpnI and NotI) and denoted 

X33-CHLG. It consists of a Kozak sequence upstream of the CHLG sequence and a His6 

tag and a stop codon downstream as shown in Fig. 3.6. 

 

 

 

 Figure 3.6: Schematic for X33-CHLG construct                                                                                                  

Construct design of CHLG in pPICZB. Consists of a Kozak sequence upstream of the CHLG sequence and 

His6 tag and stop codon downstream. 

 

The maxiprep DNA obtained from Dr. Mohammed Jamshad was transformed into P. 

pastoris X33 electrocompetant cells to create strain X33-CHLG. Western blots with anti-

His antibodies carried out upon membrane preparations from shake flask samples induced 

for 48 h in BMMY. Faint bands were observed between 25 and 35 kDa suggesting the 

presence of the 30 kDa CHLG.  

 

 

 

α-factor AQP7              c-myc His65′ 3′

Kozak CHLG                His6 Stop5′ 3′
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3.1.7 Receptor component protein construct 

A construct containing the receptor component protein, RCP, tagged with GFP for ease of 

detection with a TEV recognition site to allow cleavage of the RCP from the tags was 

designed in collaboration with Dr James Barwell, Aston University. The full sequence is 

given below for the multiple cloning site showing the positions of AOX1, RCP-TEV-GFP, 

c-myc tag and His6 tag in Fig. 3.7. The expression vector pPICZαB was used and the RCP 

sequence inserted into the multiple cloning site. 
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A)  
 
 
 
 
B)  
 
Coding sequence for pPICZαB-RCP-TEV-GFP:  
 
ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAG
ATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCAT
TTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTC
TCGAGAAAAGAGAGGCTGAAGCTGCAGGAATTCTTATGGAAGTGAAGGATGCCAATTCTGCGCTTCTCAGTAACTACGAG
GTATTTCAGTTACTAACTGATCTGAAAGAGCAGCGTAAAGAAAGTGGAAAGAATAAACACAGCTCTGGGCAACAGAACTT
GAACACTATCACCTATGAAACGTTAAAATACATATCAAAAACACCATGCAGGCACCAGAGTCCTGAAATTGTCAGAGAAT
TTCTCACAGCATTGAAAAGCCACAAGTTGACCAAAGCTGAGAAGCTCCAGCTGCTGAACCACCGGCCTGTGACTGCTGTG
GAGATCCAGCTGATGGTGGAAGAGAGTGAAGAGCGGCTCACGGAGGAGCAGATTGAAGCTCTTCTCCACACCGTCACCA
GCATTCTGCCTGCAGAGCCAGAGGCTGAGCAGAAGAAGAATACAAACAGCAATGTGGCAATGGACGAAGAGGACCCAGC
AGCGGCCCAGCCGGCCGTCTCGGATCGGTACCTCGAAAATCTTTATTTTCAAGGTCCGCGGCGGCCGCTTATGAGTAAAGG
AGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGG
AGAGGGTGAAGGTGATGCAACATACGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCC
AACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCATATGAAACGGCATGACTTTTTCAAG
AGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATCTTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGT
CAAGTTTGAAGGTGATACCCTTGTTAATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACA
CAAACTCGAGTACAACTATAACTCACACAATGTATACATCACGGCAGACAAACAAAAGAATGGAATCAAAGCTAACTTCA
AAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATACTCCAATTGGCGATGGCCCT
GTCCTTTTACCAGACAACCATTACCTGTCGACACAATCTGCCCTTTCGAAAGATCCCAACGAAAAGCGTGACCACATGGTC
CTTCTTGAGTTTGTAACTGCTGCTGGGATTACACATGGCATGGATGAGCTCTACAAAATTCTAGAACAAAAACTCATCTCA
GAAGAGGATCTGAATAGCGCCGTCGACCATCATCATCATCATCAT 
 
AOX1 RCP TEV GFP c-myc 6x His  

 
 
Translated: 
M R F P S I F T A V L F A A S S A L A A P V N T T T E D E T A Q I P A E A V I G Y S D L E G D F D V A V L P F S N S T N N G 
L L F I N T T I A S I A A K E E G V S L E K R E A E A A G I L M E V K D A N S A L L S N Y E V F Q L L T D L K E Q R K E S G 
K N K H S S G Q Q N L N T I T Y E T L K Y I S K T P C R H Q S P E I V R E F L T A L K S H K L T K A E K L Q L L N H R P V T 
A V E I Q L M V E E S E E R L T E E Q I E A L L H T V T S I L P A E P E A E Q K K N T N S N V A M D E E D P A A A Q P A V 
S D R Y L E N L Y F Q G P R R P L M S K G E E L F T G V V P I L V E L D G D V N G H K F S V S G E G E G D A T Y G K L T L 
K F I C T T G K L P V P W P T L V T T F S Y G V Q C F S R Y P D H M K R H D F F K S A M P E G Y V Q E R T I S F K D D G N 
Y K T R A E V K F E G D T L V N R I E L K G I D F K E D G N I L G H K L E Y N Y N S H N V Y I T A D K Q K N G I K A N F K 
I R H N I E D G S V Q L A D H Y Q Q N T P I G D G P V L L P D N H Y L S T Q S A L S K D P N E K R D H M V L L E F V T A A 
G I T H G M D E L Y K I L E Q K L I S E E D L N S A V D H H H H H H 

 

 

Figure 3.7: pPICZαB-RCP-TEV-GFP construct design                                                                                                 

A) Schematic illustrating position of the α-factor, RCP, TEV, GFP, c-myc and His6 tags. B) Sequence for the 

coding region cloned into the SfiI and EcoRI sites of the pPICZ B vector.  

 

 

 

 

 

5′ α-factor                RCP                 TEV            GFPuv c-myc His6 3′
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A schematic illustrating the cloning strategy for pPICZαB-RCP-TEV-GFP is show in Fig. 

3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Schematic outlining the cloning strategy for the creation of pPICZαB-RCP-TEV-GFP                             

PCR was used to amplify RCP and GFPuv sequences with restriction sites. The sequences were ligated into 

the pPICZαB vector. TEV primers were fused and the sequence was ligated into the pPICZαB-RCP-GFP 

construct to create pPICZαB-RCP-TEV-GFP. 

 

The RCP sequence was initially amplified using PCR with the forward and reverse RCP 

primers (Chapter 2), with EcoRI and SfiI restriction sites. An agarose gel, illustrated in Fig 

3.9A, showed a band at just below 500 bp. As the PCR product was expected to be 450 bp 

this suggested that the RCP sequence had been successfully amplified and restriction 

digests followed by ligation reactions were performed on the insert and vector to introduce 

RCP into pPICZαB. The vector was then re-digested with SfiI and EcoRI to determine 

whether the insert had been ligated into the vector. The agarose gel shown in Fig 3.9B 

shows the insert at just under 500 bp, suggesting that the insert had been successfully 

ligated. 

5′ α-factor                RCP                 TEV            GFPuv c-myc His6 3′

EcoRI site      RCP          SfiI site NotI site       GFPuv XbaI site

KpnI site         TEV         SacII site

α-factor          RCP       c-myc His6

α-factor          RCP         GFPuv c-myc His6

PCR                                                                     PCR

Ligation into 
pPICZαB-RCP-GFP

Fusion

Ligation into 
pPICZαB-RCP

Ligation into 
pPICZαB

pPICZαB-RCP-TEV-GFP
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(A)                                              (B) 

 

 

 

 

 

 

 

 

Figure 3.9: Agarose gels showing the amplified RCP sequence at approximately 450 bp                                            

(A) and the insert shown after re-digestion of the vector to check for successful ligation in three independent 

samples(B) Molecular mass markers are indicated in bp. 

 

The GFPuv sequence was amplified by using PCR using primers with Not I and Xba I 

restriction sites. The agarose gel for the reaction is shown in Fig. 3.10 and shows the 

expected GFP sequence at 700 bp. The GFPuv sequence was inserted by digestion of the 

insert and pPICZαB-RCP vector with NotI and XbaI, followed by ligation. The vector was 

then re-digested with Not I and Xba I to determine whether the insert had been ligated into 

the vector. 
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Figure 3.10: Agarose gels showing PCR amplication of GFP                                                                         

Amplification of GFPuv at 700 bp. Molecular markers are shown in the first wells and indicate the size of the 

fragment in bp. 

 

A TEV recognition site to allow cleavage of the RCP from the GFP and His6 tags following 

purification was created by fusing two primers with KpnI and SacII restriction sites. The 

fused TEV primers were inserted by digestion of the pPICZαB-RCP-GFP vector and insert 

followed by ligation.   

 

This DNA was then transformed into XL10 Gold competent E. coli cells by heat shock to 

amplify the material. The cells were grown on LB agar with increasing concentrations of 

zeocin and colonies picked from the plates and grown in LB medium overnight. The DNA 

was extracted and sequenced using Birmingham University’s Functional Genomics and 

Proteomics Unit’s DNA sequencing service. The sequence alignment can be found in 

Appendix 8.1. Once the desired sequence had been verified, the DNA was transformed first 

into electrocompetant P. pastoris X33 cells, however due to poor colony growth, the DNA 

was then transformed into electrocompetant SMD 1163 P. pastoris cells to create strain 

SMD-RCP-TEV-GFP. Colony screening was performed using the Microbioreactor 24. 
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3.1.8 Human growth hormone 

A construct containing human growth hormone (HGH) was created based on the construct 

and procedure designed by Calik et al 2008[152]. The construct consists of a His6 tag on 

the amino-terminus, Factor Xa, HGH, followed by a stop codon shown below. The Factor 

Xa allows cleavage of the tags for the isolation of pure HGH. The design is shown in Fig 

3.11. 

 

The HGH sequence was amplified from vector pHGH1 (patent 4,342,832)  purchased from 

the American Tissue Culture Collection (ATCC) by performing a two-step PCR reaction. 

The first reaction (Fig 3.13A) introduced His2 and Factor Xa onto the 5′ end followed by 

HGH, a stop codon and an XbaI site. The second PCR reaction added an EcoRI recognition 

site and His4. The HGH forward and reverse primers were used (Chapter 2).  
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A) 
 
 
 
 
B) 
 
Coding sequence for pPICZαA-HGH: 
 
ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAG
ATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCAT
TTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTC
TCGAGAAAAGAGAGGCTGAAGCTGAATTCCACCATCACCATCACCATATTGAAGGGAGATTCCCAACTATACCACTATCT
CGTCTATTCGATAACGCTATGCTTCGTGCTCATCGTCTTCATCAGCTGGCCTTTGACACCTACCAGGAGTTTGAAGAAGCCT
ATATCCCAAAGGAACAGAAGTATTCATTCCTGCAGAACCCCCAGACCTCCCTCTGTTTCTCAGAGTCTATTCCGACACCCT
CCAACAGGGAGGAAACACAACAGAAATCCAACCTAGAGCTGCTCCGCATCTCCCTGCTGCTCATCCAGTCGTGGCTGGAG
CCCGTGCAGTTCCTCAGGAGTGTCTTCGCCAACAGCCTAGTGTACGGCGCCTCTGACAGCAACGTCTATGACCTCCTAAAG
GACCTAGAGGAAGGCATCCAAACGCTGATGGGGAGGCTGGAAGATGGCAGCCCCCGGACTGGGCAGATCTTCAAGCAGA
CCTACAGCAAGTTCGACACAAACTCACACAACGATGACGCACTACTCAAGAACTACGGGCTGCTCTACTGCTTCAGGAAG
GACATGGACAAGGTCGAGACATTCCTGCGCATCGTGCAGTGCCGCTCTGTGGAGGGCAGCTGTGGCTTCTAGATTCTAGA
ACAAAAACTCATCTCAGAAGAGGATCTGAATAGCGCCGTCGACCATCATCATCATCATCAT 
 
AOX1  6xHis  Factor Xa  HGH  Stop  c-myc     

 
 
Translated: 
 
M R F P S I F T A V L F A A S S A L A A P V N T T T E D E T A Q I P A E A V I G Y S D L E G D F D V A V L P F S N S T N N G 
L L F I N T T I A S I A A K E E G V S L E K R E A E A E F H H H H H H I E G R F P T I P L S R L F D N A M L R A H R L H Q L 
A F D T Y Q E F E E A Y I P K E Q K Y S F L Q N P Q T S L C F S E S I P T P S N R E E T Q Q K S N L E L L R I S L L L I Q S W 
L E P V Q F L R S V F A N S L V Y G A S D S N V Y D L L K D L E E G I Q T L M G R L E D G S P R T G Q I F K Q T Y S K F D 
T N S H N D D A L L K N Y G L L Y C F R K D M D K V E T F L R I V Q C R S V E G S C G F Stop I L E Q K L I S E E D L N S A 
V D H H H H H H 

 
 

 

Figure 3.11:pPICZαA-HGH construct design                                                                                                               

A) Schematic illustrating position of the α-factor, Factor Xa, HGH and stop codon. B) Sequence for the 

multiple cloning site of pPICZ A vector containing HGH.  

 

 

 

 

 

 

 

 

 

α-factor          His6     Factor Xa HGH             Stop5′ 3′
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As the PCR product was expected to be approximately 613 bp and bands were seen 

between 600 and 700 bp on both agarose gels, this suggested that the HGH sequence had 

been successfully amplified in both reactions and restriction digests followed by ligation 

reactions were performed on the insert and vector to introduce HGH into pPICZαB. The 

DNA gels for the PCR reactions are shown in Fig. 3.12B and C. 

 

            (A) 

 

 

 

 

 

 

 

 

 

 

(B)                                                                              (C) 

 

 

 

 

 

 

 

 

 

Figure 3.12: PCR strategy for HGH amplification and agarose gels                                                                          

(A) Two-step PCR reactions to amplify HGH. The first reaction added His2 and a Factor Xa site to the 5′ end 

and a stop codon and XbaI site to the 3′ end. The second reaction added an EcoRI site and His4 to the 5′ end.  

Adapted from Calik et al 2008[152]. Agarose gels showing the PCR reactions for (B) the first step and (C) 

the second step amplifying the HGH sequence and adding a His6 tag and Factor Xa site with EcoRI and XbaI 

restriction sites. Molecular markers are indicated.  

His2 Factor Xa HGH              Stop     XbaI site

EcoRI site    His6 Factor Xa HGH              Stop     XbaI site

PCR reaction 1

PCR reaction 2
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The vector was then re-digested with EcoRI and XbaI to determine whether the insert had 

been ligated into the vector. The agarose gel shown in Fig 3.13 shows the insert at 600 bp, 

suggesting that the insert had been correctly ligated. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Agarose gel showing PCR amplification of HGH                                                                                                         

The HGH insert shown at approximately 600 bp after re-digestion of the vector to check for successful 

ligation. A molecular marker in the left hand well indicates the size of the fragment. 

 

This DNA was then transformed into XL10 Gold competent E. coli cells by heat shock to 

amplify the material. The cells were grown on LB agar with increasing concentrations of 

zeocin and colonies picked from the plates and grown in LB medium. The DNA was 

sequenced at Birmingham University. The sequence alignment can be found in Appendix 

8.2. Once the desired sequence had been verified, the DNA was transformed into 

electrocompetant SMD1163 P. pastoris cells to create strain SMD-HGH.  

 

 

3.2 Target protein implementation 

The GFP, EPO and A2aR constructs were taken forward for antifoam investigations. Each 

of these proteins have reliable quantification methods and are measured in a different 

manner. GFP is simple to assay by fluorimetry, and EPO can be detected by ELISA or 

immunoblotting techniques. Differences in the concentration of A2aR can be measured by 

radio ligand binding, and the effect of the antifoams upon activity of this protein can also 

be determined. GFP and EPO are soluble proteins, while tests upon A2aR allow analysis of 

1013

600
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the effects of antifoams upon a membrane protein. In contrast it was concluded that the 

aquaporins are difficult to assay and a Western blot would be relied upon for quantification. 

The same is true for HGH. The RCP-GFP construct is large as it contains a fusion protein. 

Therefore, on the basis of a stable strain, good assay and ease of growth, the GFP, EPO and 

A2aR constructs were taken forward for antifoam evaluations. In the first instance, GFP was 

used to establish all experimental procedures. 

 

 

3.2.1 Growth characteristics of P. pastoris strain X33-GFP in BMGY 

medium 

In order to ensure cells were actively growing in log phase prior to any experimental 

determination, three separate colonies were analyzed. P. pastoris X33-GFP from two 

different plates and a glycerol stock was streaked onto fresh YPD plates denoted a, b and c, 

respectively.  Colonies from each were used to inoculate BMGY and growth curves were 

monitored over 44 h to determine the growth profiles of each colony as shown in Fig. 3.14. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Growth curve for P.  pastoris in BMGY medium                                                                                                     

Growth curves for colonies a, b and c monitored  over 44h. The natural log of the OD at 595 nm was plotted 

against time. 

 

Log phase optimum
harvest time-point
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As suggested by Fig. 3.14, the optimum time point for transfer of the colonies to BMMY is 

between 5 and 10 h while they are in log phase and this information was taken into account 

when cultures for the following investigations were set up. 

 

 

3.3 Antifoams 

Five antifoams were selected for evaluation based on their widespread use and range of 

characteristics. They are usually added to fermentation processes in minimal 

quantities[188, 189], therefore concentrations above 0.1% were examined in this study. 

Information about each of the antifoams evaluated is given in Table 3.1 The precise 

contents of each of the agents is known only by the manufacturers, and attempts to use 

mass spectrometry to gain more information were unsuccessful due to their chemical 

characteristics. Samples of J673A were sent to Alta Bioscience based at Birmingham 

University, however a peak was not obtained with the MALDI-TOF equipment. 

 

Table 3.1: Compositions of antifoams for evaluation  

Antifoam Composition Manufacturer 
Antifoam A 30% emulsion of silicone polymer Sigma 
Antifoam C 30% emulsion of silicone polymer Sigma 
J673A Alkoxylated fatty acid ester on a vegetable base Struktol 
P2000 Polypropylene glycol Fluka 
SB2121 Polyalkylene glycol Struktol 

 

Antifoams A and C contain silicone polymers, which consist of repeating units of dimethyl 

silicone[190]. They are both 30% emulsions of the same antifoam concentrate with slight 

differences in components. P2000 is a polypropylene glycol, which is a polymer of 

propylene units.  An example of these structures are shown in Fig. 3.15. 
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            A) 

 

 

 

 

 

           B) 

 

  

 

 

 

Figure. 3.15 Silicone polymer and polypropylene glycol structures                                                                                    

A) The structure of silicone polymers consisting of repeating dimethyl silicone units. Image reproduced from 

chemwiki.ucdavis.edu[190]. B) The structure of polypropylene glycol. Image taken from 

http://commons.wikimedia.org/wiki/File:Polypropylen.svg. The repeating units are containined within 

brackets, where n represents the number of repeats. 

 

The antifoams were initially characterized for to their ability to destroy foam, as well as any 

possible influence upon the viability of the cells at the concentrations used in this study. 

 

 

3.3.1 The effect of antifoams upon foam destruction  

In order to compile a picture of the properties of each antifoam, the original purpose of the 

agents, foam destruction, was evaluated. Simple methods of determining the ability of 

antifoams to reduce foam are the Bartsch shaking test[90] and the Ross-Miles pouring 

test[91]. The Bartsch test involves filling a graduated measuring cylinder with the medium 

used for the process and adding the antifoam to be investigated. The cylinder is sealed and 

shaken a set number of times. The foam height is then measured over time and provides a 

quick and simple method of determining the efficiency of the antifoam agent of destroying 

the foam. A Bartsch shaking test was conducted with each of the antifoams at 0.001% v/v, 

which is a low concentration that is often added to bioreactor cultures to reduce foam. The 
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test was repeated 5 times for each antifoam and the foam height was monitored over 15 

min. The data are shown in Fig. 3.16. The test demonstrated that in the absence of an 

antifoaming agent, initial foam destruction was quick until a stable foam was formed. Foam 

height reduced slowly and in the 15 min testing time did not reach zero, demonstrated by 

Fig. 3.16A. The most effective agent for foam reduction was J673A, where less foam was 

formed after initial shaking, and destruction was rapid. Antifoam A had the least activity of 

the agents tested, and its related antifoam, Antifoam C, also required several minutes to 

completely destroy all of the foam present. All antifoams were effective at foam destruction 

and most foam was destroyed within one minute (Fig. 3.16B). The findings are summarized 

in Table 3.2. 
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A) 

 

 

 

 

 

 

 

 

 

 

 

 

B)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Antifoam Bartsch test                                                                                                                                  

The antifoams were tested for their foam destruction capacity. Foam volume (mL) was recorded for 0% v/v 

antifoam (A) and 0.001% of each antifoam (B) in BMMY medium over a 15 min time course (n = 5). 
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Table 3.2.: Summary of Bartsch test findings 

Agent Time for foam 
destruction < 15 min 

Stable foam 
formed 

Description 

Control 
(0% antifoam) 

No Yes Quick initial reduction but stable 
foam reduced very slowly 

Antifoam A Yes No Rapid foam destruction but least 
effective agent 
 

Antifoam C Yes No Rapid foam destruction  

J673A Yes No Rapid foam destruction, most 
effective agent with lowest initial 
foam height 

P2000 Yes No Rapid foam destruction 
 

SB2121 Yes No Rapid foam destruction 
 

 

A Bartsch test was also conducted with antifoams at 1% v/v and all foam was destroyed 

within 10 seconds. This investigation demonstrates the effectiveness of each of the agents 

for their principal use, and differences are apparent in the foam destruction capacity of each 

type of antifoam. If their mechanisms of action upon foam differ, it is likely that they also 

exert different effects upon the cultures they are added to.  

 

 

3.3.2 The effect of antifoams upon cell viability 

The effects of antifoams upon the viability of the cells themselves is not widely reported. 

As the concentrations of antifoams added to the cultures in these investigations are much 

higher than would normally be used, the influence of these agents upon the viability of the 

P. pastoris cells was evaluated.  

 

 

3.3.2.1 Capacitance 

The effect of antifoams upon capacitance was monitored in shake flasks as a method for 

assessing the viability of the cells. A Foagale capacitance probe loaned by Applikon 

Biotechnology Ltd. was used in shake flask cultures. The probe pulses a known charge into 
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the flask, and if cells are intact, the charge is maintained around their surface and is 

detected by the probe. If the cells are dead and the surface is disrupted, a difference in 

charge is detected. In the shake flask set up, the signal was found to be noisy making 

comparison between conditions difficult. It is likely that the confines of the flask and low 

levels of media caused interruption of the signals sent to and from the probe and no 

meaningful data was able to be gathered from this system. Future experiments could be 

carried out in a bioreactor where the signal might be more stable. An example of some of 

the data is shown in Fig. 3.17. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Biomass of P. pastoris with 0.8% Antifoam C monitored by capacitance probe                                                                                

Biomass of  P. pastoris X33 GFP in BMMY in the presence of 0.8% Antifoam C in a 250 mL shake flask 

measured by a Fogale capacitance probe over 24 h. 

  

 

3.3.2.2 Propidium iodide staining 

An alternative method of assessing cell viability was conducted by performing propidium 

iodide exclusion and flow cytometry. In this assay, dead cells are stained red[191] and 

appear in population C (Fig. 3.18) while live cells fluoresce green due to GFP production 

and appear in population B. The P. pastoris cells producing GFP were cultured in the 100 

mL non-baffled shake flasks to be used for the protein production investigation (section 

3.4) in triplicate for each antifoam condition. Samples were taken after 48 h and following 

a haemocytometer count, were diluted with PBS to be in the region of 106-107 cells/mL. 2 
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mL of the diluted samples were taken and 10µl propidium iodide added. The data shown in 

Figure 3.18A, generated using WinMDI software, suggest that there are no dead cells 

present in cultures containing 0 % antifoam. Fig. 3.18B shows that the same result was 

obtained in the presence of 0.6 % Antifoam A. This result was seen for all antifoams tested. 

 

 

A)                                                                                           B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Viability of cells determined by propidium iodide staining                                                                                                            

Viable cells without antifoam (A) and with 0.6% Antifoam A (as a representative example; B) are shown. 

Population A, which is not cellular, comprises events that are related to electronic and particulate noise. 

Population B comprises cells with enhanced green fluorescence due to the expression of GFP. Population C 

is where any dead cells (stained red with propidium iodide) would be observed. 

 

 

3.4 The effect of antifoams upon GFP production 

The effect of the antifoams upon GFP production by P. pastoris was investigated as it is 

simple to assay and is a robust protein, stable at a range of temperatures and pH. The agents 

were added at concentrations from 0–1 % v/v for GFP shake flask experiments. These 

concentrations are higher than the 0.1 % routinely used for de-foaming purposes and it has 
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been reported previously that antifoams at these concentrations can influence the yield of 

protein[82]. The total amount of GFP in these 20 mL cultures (the total yield) was 

measured by fluorimetry 48 h post-induction. Measurements were read in triplicate for 

three biologically independent experiments (n = 9) and compared to readings for a 

recombinant GFP standard at known concentrations to calculate the yield of protein. The 

data were analyzed by a one-way ANOVA (P < 0.0001) and a Dunnett's multiple 

comparison test where * = P ≤ 0.05 and ** = P ≤ 0.01. 

 

 

3.4.1 Antifoams do not induce changes in GFP fluorescence                              

In order to determine whether any of the antifoams themselves affected the fluorescence of 

GFP, 1 % antifoam was incubated in BMMY for 48 h to mimic the experimental set-up. 

This was then spiked with 200 g, a similar concentration of recombinant GFP standard to 

that obtained in test cultures. There was no significant difference between the fluorescence 

of GFP in the presence or absence of any of the antifoams suggesting that they did not 

influence the sample readings, as shown by Fig. 3.19. The fluorescence values of the 

antifoams themselves were also measured at 1 % after 48 h and found to be minimal, 

similar to the buffer control readings. 

 

 

 

 

 

 

 

 

Figure 3.19: Effect of antifoams upon recombinant GFP fluorescence                                                                                                       

Effect of antifoams added at 1% v/v upon the fluorescence of 200 µg recombinant GFP standard in BMMY 

medium after 48 h in triplicate shake flasks. GFP readings were measured using fluorimetery and samples 

were measured in triplicate  for each sample. Error bars represent the standard errors. 
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3.4.2 Antifoam addition affects total GFP yield in shake flasks 

The shake flask data show that all of the antifoams tested increased the total yield of GFP 

in the 20 mL shake flasks after 48 h above concentrations of 0.6%. The total yield of GFP 

as a function of Antifoam A addition rose significantly at concentrations of 0.6 % and 

above (Fig. 3.20A) with no further increases above 1 % (data not shown). A similar but 

more pronounced trend was observed for Antifoam C (Fig. 3.20B), which is unsurprising 

since Antifoam C is a 30 % emulsion of the same antifoam concentrate as Antifoam A, but 

with different non-ionic emulsifiers[192]. Fig. 3.20C shows that addition of 1 % J673A 

increased the total yield of GFP compared to the control without antifoam from 246 g to 

394 g, representing one of the largest effects of the antifoams evaluated. At concentrations 

above 1 %, the total yield of GFP decreased (data not shown). Addition of P2000 (Fig. 

3.20D) also resulted in a significant increase in total yield at or above 0.6 %, while addition 

of SB2121 (Fig. 3.20E) increased total yield at concentrations above 0.4 %. In both cases 

the largest improvement was obtained on addition of 1 % of the antifoam, again almost 

doubling the yield. Overall, all five antifoams tested increased the total yield of GFP at 

concentrations in the range of 0.4–1 % v/v. The highest yield was achieved by adding 1 % 

P2000 (422 g GFP) followed by 1 % SB2121 (396 g GFP), 1 % J673A (394 g GFP), 

0.6 % Antifoam A (373 g GFP) and 0.8 % Antifoam C (348 g GFP). All five yields were 

significantly higher than the corresponding yields from the 0 % control, as shown in Fig. 

3.20. 

 

The cultures at the optimum concentrations of antifoam were imaged using a fluorescence 

microscope (Fig 3.21). There are clear differences in the intensity of GFP present in the 

cultures compared to the control, especially in the case of 1% J673A, 1% P2000 and 1% 

SB2121. These cultures appear to demonstrate that there is also a greater amount of 

intracellular GFP present when compared to the control and Antifoam A and C cultures.   
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                      A) 0% Antifoam                                                  B) 0.6% Antifoam A 
                                                    

 
 
 
 
 
 
 
                   
 
 
 
 
                   C) 0.8% Antifoam C                                                    D) 1% J673A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         E) 1% P2000                                                           F) 1% SB2121 
 

Figure 3.21: Fluorescence microscopy images of P. pastoris producing GFP                                                                                                           

P. pastoris producing GFP in the presence of antifoams viewed under a fluorescence microscope at 100 х 

magnification. Both intracellular and extracellular GFP is observed. A Leica Microsystems DMI4000B 

microscope with a Leica CCD camera and Leica application suite AF software were used. 
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3.4.3 The effects of antifoam addition are due to changes in culture 

density for P2000 and SB2121 

To account for any changes in the growth characteristics of the cells on addition of the 

antifoams, the total yield was normalized to the optical density of the cultures to obtain the 

specific yield ( g OD595
-1) by dividing the total GFP yield data by the optical density data 

shown in Table 3.3.  

 

Table 3.3: Effect of antifoams upon optical density of P. pastoris cultures. Increasing concentrations of 

antifoam were added to shake flask cultures and the optical density was measured at 595 nm after 48 h in 

BMMY medium 

  0% 0.2% 0.4% 0.6% 0.8% 1% 

Antifoam A 24 h 15.6 16.4 14.5 16.4 14 19.3 

Antifoam A 48 h 24.1 21.2 25.3 23.9 22.2 27.3 

Antifoam C 24 h 15.3 18 8.8 15.2 13.8 20.3 

Antifoam C 48 h 23.8 23.3 14.7 22.9 20.6 22.1 

J673A 24 h 12.5 14.7 17.2 22.8 15.9 20 

J673A 48 h 24.4 19.9 24.5 25.8 22 24 

P2000 24 h 12.9 14.3 16.4 14 8.3 12.4 

P2000 48 h 20.4 25.2 30.1 23.9 29.4 31.9 

SB2121 24 h 11.1 17.9 20.1 27.7 22 19.5 

SB2121 48 h 20.6 28.5 28.5 32.6 31.4 25.8 
 

 

OD595 was demonstrated to be a reliable measure of cell density in these experiments by 

comparing the number of cells counted using a haemocytometer at a given OD595 in the 

absence and presence of a range of concentrations of the different antifoams used in the 

study: there was no statistically significant difference in cell number between cells 

harvested at a given OD595 in the absence or presence of all antifoam concentrations tested 

at 48 h. Typical values were 8.8 107 cells/mL at an OD595 of 24.8 in the absence and 

presence of 0.5 % SB2121. However, it was clear that both OD and haemocytometer 

measurements are associated with some variability. The data are shown in Fig 3.22. 
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Figure 3.22: Haemocytometer counts for P. pastoris cultures                                                                             

Comparison of the number of P. pastoris X33 GFP cells at 48 h in the presence of antifoams counted by 

haemocytometer. Error bars represent standard error and n =3. 

 

For Antifoam A, Antifoam C and J673A, the specific yield data were similar in trend to the 

total yield data (Fig. 3.23A–C): addition of these antifoams in the range 0.2–1 % v/v caused 

a significant increase in specific yield compared to the control cultures with no antifoam. 

For cultures containing P2000 or SB2121, however, there was no statistically significant 

difference in the specific yield at each antifoam concentration compared with the control 

except for 1% P2000 where P < 0.05 (Fig. 3.23D–E). This suggested that the enhancements 

in total yield due to P2000 or SB2121 addition might be attributable to changed growth 

characteristics of the cells. An increase in OD595 (at 48 h, see Table 3.3) was observed with 

increasing antifoam concentration for both antifoams (Fig.3.23D–E; 48 h data), which was 

less pronounced for Antifoam A, Antifoam C and J673A (Fig.3.23A–C), The cell counts 

shown in Fig 3.22 also showed that for SB2121 more cells were present in the cultures at 

both 0.5% and 1%, however these increases were not significant when compared to the 

control. These data suggest more than one mechanism of antifoam action: one possibly due 

to changed culture density (P2000, SB2121) and a second due to increased cellular 

production levels of recombinant GFP (Antifoam A, Antifoam C, J673A). 
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3.4.4 The effect of antifoams upon the growth rates of log phase P. 

pastoris X33-GFP cells 

As there appeared to be differences in the growth of the cells in the presence of antifoams 

P2000 and SB2121, growth curves were plotted for the log phase of the P. pastoris cultures 

in the presence in the optimum concentrations of antifoams from the previous shake flask 

experiments. Flasks were set up as before with 20 mL BMMY culture and incubated at 

30°C for 24 h. The cultures were set up in triplicate and the OD read every 2 h. The natural 

log of the OD data was taken and plotted over time to allow the specific growth rate, µ, to 

be calculated. The data are shown in Table 3.4. 

 

Table 3.4: Growth rates calculated from the log phase of P. pastoris X33-GFP in the presence of optimum 

concentrations of antifoam where n = 2. 

 

 

 

 

 

 

The growth rates for the log phase cells show that the control culture with 0% antifoam had 

a µ of 0.13 h-1. 0.8% Antifoam C had a lower µ of 0.09 h-1, suggesting that cultures in the 

presence of this antifoam grew more slowly than those without antifoam. 0.6% Antifoam A 

had a similar µ to the control of 0.12 h-1 whereas 1% P2000 and 1% SB2121 were slightly 

higher, with µ = 0.15 h-1 and µ = 0.14 h-1, respectively. The highest growth rate was 

achieved with 1% J673A where µ = 0.19 h-1. A similar trend can be seen with the growth 

rates of the antifoam cultures to the total yields of GFP produced. The best yielding 

antifoams for GFP production, J673A, P2000 and SB2121 also had higher growth rates 

than the control. Higher growth rates could suggest that nutrients are taken up from the 

medium more rapidly, enabling the cell to grow more quickly and produce more 

recombinant protein. Infact, the antifoams may also affect the lipid composition of the yeast 

Antifoam μ (h
-1) 

0% Antifoam 0.13 
0.6% Antifoam A 0.12 
0.8% Antifoam C 0.09 
1% J673A 0.19 
1% P2000 0.15 
1% SB2121 0.14 
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cell membrane[193, 194], possibly allowing more efficient diffusion of methanol into the 

cell resulting in faster growth and a greater level of recombinant GFP production[66].  

 

Overall, all of the antifoams tested increased the total recombinant protein yield, and this 

was achieved at higher concentrations than would normally be used for defoaming 

purposes. The best effect was observed when 1% P2000 was added to the culture after 48 h, 

and the total yield of GFP in 20 mL was increased from 244 µg to 422 µg. When the GFP 

yield was normalized by dividing by the OD to obtain the yield of GFP per unit OD at 48 h, 

it was found that the effects of antifoam addition were not due to changes in the growth of 

the cultures, except for P2000 and SB2121, suggesting at least two mechanisms of action of 

the antifoams for improving the yield of GFP.  During the log phase of growth of the cells, 

the highest growth rates were seen with cultures containing 1% J673A, 1% P2000 and 1% 

SB2121. For P2000 and SB2121, these increases in growth rate could contribute to 

improved cell densities, agreeing with the normalized yields findings. For J673A, as the 

normalized yield data suggested that the improvements in total yield were not due to 

changes in growth, the high growth rate could indicate that the properties of the membrane 

lipids in this culture were altered by the antifoam, allowing nutrients to be taken up more 

rapidly which were utilized for recombinant protein production rather than to increase 

biomass. 

 

 

3.5 Effect of antifoams in scale up into 2 L shake flasks 

Antifoams are more commonly used in larger scale systems such as bioreactors. Before 

scaling up into a bioreactor, the antifoams were evaluated in 500 L BMMY medium in 2 L 

non-baffled shake flasks to determine whether their effects could be observed on a larger 

scale.  The lowest yielding antifoam concentration that had a significant effect upon GFP 

production in the smaller shake flasks (0.8% Antifoam C) and one of the best yielding 

antifoams (0.8% J673A) were evaluated in this system. The results were determined by 

measuring the samples in triplicate using a fluorimeter, therefore n = 3 for each data set. 

The data are shown in Fig. 3.24. 
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Figure 3.24: GFP production in 2 L flasks in the presence of antifoam                                                                       

Effect of antifoams upon GFP production by P. pastoris after 48 h in 2 L shake flasks containing 500 mL 

BMMY medium where n = 3. 

 

Fig 3.24 demonstrates that the effects of the antifoams can be applied to larger scale shake 

flasks with the same trend of effects as previously observed. Antifoam C at 0.6% produced 

a lower yield of GFP in 100 mL shake flasks than 0.8% J673A, but still produced a higher 

total yield than the control. J673A at 0.8% produced a much higher total yield of GFP than 

the control which was again almost double, and also the 0.6% Antifoam C cultures in both 

the small scale and large scale shake flasks. These data suggest that the effects of the 

antifoams are not specific to small shake flasks, and could be replicated in larger cultures to 

boost recombinant protein yields.  

 

 

 

3.6 Effect of polyethylene glycol and ethylene glycol upon GFP yield 

Some of the antifoams that increased the yield of GFP in shake flasks contain components 

that have similar compositions to other agents such as ethylene glycols and polyethylene 

glycols. P2000 is a polypropylene glycol and SB2121 is a polyalkylene glycol.  An 

experiment was conducted to see if other similar agents not designed for defoaming
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purposes could have the same effects as their antifoam counterparts. A polyethylene glycol 

(PEG) and an ethylene glycol (EG) were added at 0.5% and 1% to 20 mL BMMY in 100 

mL non-baffled shake flask cultures of P. pastoris producing GFP and incubated for 48 h. 

The results are illustrated in Fig. 3.25. 
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Fig. 3.25: The effect of PEG and EG upon GFP yield                                                                                               

The effect of A) polyethylene glycol and B) the effect of ethylene glycol upon GFP production after 48 h by P. 

Pastoris in 20 mL BMMY in 100 mL shake flasks. In all cases n = 9. 
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The two other agents tested do not appear to have the same effects upon GFP yield as the 

antifoams at the concentrations tested, and in all cases except for 0.5% polyethylene glycol, 

decreased the yield. These findings imply that there could be a relationship between the 

ability of an agent to destroy foam, hence its use as an antifoaming agent, and the ability to 

affect recombinant protein production. It is possible that a there is a common component or 

mechanism of action of the antifoaming agents, which as well as destroying foam, can at 

certain concentrations lead to an improvement in total recombinant protein yield. 

 

 

3.7 Effect of antifoams upon GFP purification 

There is a general concern that addition of high concentrations of antifoam can interfere 

with down stream processes and purification of the proteins. As all of the antifoams 

increased the yields of GFP at higher concentrations than would normally be added, an 

investigation was conducted to determine whether they inhibited the purification of GFP. 

Shake flask cultures were set up in duplicate in 100 mL non-baffled shake flasks with 20 

mL P. pastoris culture producing GFP in the presence of the optimum concentration of 

antifoam from the shake flask experiments. After 48 h, 15 mL of each culture was purified 

using a one-step Ni-NTA nickel affinity column. A silver stain was performed on some of 

the samples before and after purification (Fig 3.26A). The GFP present in the supernatant 

before purification, in the wash and in the elution was measured by fluorimetry. The data 

were converted to percentages of the total GFP content to allow comparison, shown in Fig. 

3.26B.  

 

Compared to the control, a greater percentage of GFP was present in the elution of the 

samples containing 1% J673A and 1% SB2121. The other antifoam samples contained a 

similar percentage of GFP compared to the control, suggesting that antifoams, at these 

concentrations and for this method of purification, do not inhibit purification of GFP. The 

presence of 1% J673A and SB2121 also appeared to improve the final percentage of GFP 

obtained in the elution. 
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Figure 3.26: The effect of antifoams upon the purification of GFP using nickel affinity columns                                

A) Silver stain with crude and eluted samples; B) Comparison between the percentage of GFP present in each 

stage of the purification process. A represents Antifoam A, J represents J673A and P represents P2000. In all 

cases n = 6. 
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3.8 Effect of antifoams upon human erythropoietin production 

In order to determine if the effects of the antifoam were specific to GFP, or whether they 

could be applied to another soluble protein, their effects upon the production of 

erythropoietin (EPO) were evaluated. The same system was used and antifoams at 0.6% 

and 1% were added to the 100 mL non-baffled shake flasks with 20 mL BMMY media 

containing P. pastoris producing secreted EPO. These concentrations were chosen as 

previously with GFP, at 0.6% all of the antifoams significantly increased the total protein 

yield, and at 1% some of the highest yields were obtained. Flasks were again set up in 

triplicate for each condition. Samples were collected at 48 h and measurements were 

attempted by performing an ELISA, however there was found to be unacceptable 

variability between samples read on different plates. This method was therefore deemed to 

be unreliable, and hence Western blots were performed on the samples. Western blots are 

not an ideal method to compare the quantity of protein produced under different conditions, 

therefore future experiments would also include a standard of known quantity on each to 

more accurately compare between blots. Nonetheless, the band intensity was measured 

using Image J software. The data were then averaged as illustrated in Fig. 3.27. 

 

Fig 3.27 suggests the best condition for the production of EPO in shake flasks was without 

any antifoam addition and that the antifoams at these concentrations did not improve the 

yield of protein in comparison. The highest yield in the presence of the antifoams was 

observed with 1% J673A which was not significantly lower than the control, followed by 

0.6% J673A. The most detrimental effect upon EPO production was seen when 0.6% 

Antifoam C was added to the flasks. Except for J673A, the other antifoam conditions tested 

had a pronounced detrimental effect upon the protein yield, emphasizing the importance of 

optimizing the antifoam and concentration to be used during the protein production process.
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Figure 3.27: The effect of antifoams upon EPO production in shake flasks                                                                  

The Western blots from four SDS-page gels are shown in A) to D). E) shows a bar chart representing the 

relative amount of EPO produced. The black bar shows the relative amount of EPO in cultures without any 

antifoam present and the white bars show the effects of antifoam addition at 0.6% and 1% of the panel of 

antifoams. In each case n = 3.
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3.9 Effect of antifoams upon adenosine 2a receptor production 

A2aR, a membrane-bound protein, was produced in the same set up as previously described 

with 0.5% and 1% of each antifoam added to 20 mL BMMY cultures. Single point radio-

ligand binding assays with A2aR antagonist [3H]ZM241385 were performed on 100 µg of 

membrane protein for each of the samples in duplicate (n= 6). The results are shown in Fig. 

3.28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28: The effect of antifoams upon A2aR production in shake flasks                                                                  

Af A represents Antifoam A and Af C represents Antifoam C. The black bar represents the yield of A2aR 

produced per mg of membrane protein in the 20 mL shake flask cultures, and the white bars show the yields 

for the cultures containing antifoams at 0.5% v/v and 1% v/v. For each data set, n =6. 

 

 

The data suggest that overall, adding antifoams at these concentrations is detrimental to the 

production of A2aR in shake flasks. There are also large variations in results for some of the 

antifoam-containing cultures. However, 0.5% J673A has the least limiting effect upon the 

yield of the protein of the antifoams tested. The lowest yield was achieved in the presence 

of 1% P2000. 
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3.10 Summary 

 The Bartsch test demonstrated that each antifoam has a different effectiveness upon the 

destruction of foam which may be influenced by their different compositions and therefore 

different mechanisms of foam destruction. These antifoams when incubated with P. 

pastoris cells, did not reduce the viability of the cells, even at high concentrations. All of 

the antifoams tested in shake flasks increased the total yield of GFP at concentrations 

higher than would usually be used in bioreactor cultures for defoaming purposes. The best 

effects were observed with 1% P2000 which increased the total GFP yield from 244 µg to 

422 µg. The least effective antifoam was Antifoam C, but this antifoam still significantly 

increased the total GFP yield compared to the control.  When the total yield data was 

normalized to obtain the yield of GFP per unit OD, antifoams P2000 and SB2121 appeared 

to have caused the increases in protein yield due to changes in the growth of the cells. 

Although there was no statistical correlation between foam destruction capacity and either 

total or specific yield, J673A and SB2121 were the most effective at foam destruction and 

among the best at increasing GFP yield, whilst Antifoam A was the least effective and 

produced lower yields than J673A and P2000. 

 

When the growth rates of P. pastoris cells in the log phase were measured in the presence 

of the concentration of antifoam that produced the highest yield of GFP, Antifoam C grew 

more slowly than the control without antifoam, Antifoam A grew at the same rate, P2000 

and SB2121 had slightly higher growth rates, and J673A had a higher growth rate, 0.19 h-1 

compared to 0.12 h-1 for the 0% antifoam culture.   

  

Investigation into the effects of other similar agents to the antifoams, PEG and EG, showed 

that they appeared to have a detrimental effect overall upon the total yields of GFP. This 

implies that there is something specific to antifoams which produces the effects upon the 

growth or recombinant protein yields of P. pastoris cells producing GFP. The effects of 

antifoam J673A and Antifoam C were investigated in 2 L shake flasks, and it was found 

that their effects had the same trend as in 100 mL shake flasks, suggesting that the effects 

of the antifoams can be scaled up. The effect of the antifoams at their optimum 

concentration for GFP production on the purification of the protein was investigated, as 
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these concentrations are high and are thought to inhibit purification. It was found that the 

presence of antifoams was not detrimental to the purification of GFP using nickel affinity 

column purification, and in addition, 1% J673A and 1% SB2121 appeared to improve the 

concentration of GFP present in the elution.  

 

When the antifoams were tested on the production of EPO in shake flasks at the 

concentrations that yielded more GFP than the controls, it was found that the highest total 

yield was achieved without antifoam present. The least detrimental antifoam was 1% 

J673A. When the same investigation was conducted with A2aR, again the cultures without 

antifoam appear to produce the highest yields. Again the least detrimental antifoam was 

J673A but this time at 0.5%. Due to the large variation in counts obtained for the samples 

containing 0.5% J673A, it is unclear whether this condition was more effective at 

increasing the yield of A2aR than the control and this data set would need to be repeated. It 

is possible that too few antifoam concentrations were tested, and that the optimal 

concentration of antifoam is dependent upon the protein. Lower concentrations may have 

increased the yields compared to the control, and could be examined in future work. The 

variations observed could also be attributed to pipetting error leading to variations in the 

concentrations of ligand present in each of the tubes. To reduce this problem the number of 

replicates should be increased to ensure the data obtained from this sensitive technique is 

more robust. Alternatively, larger volumes and amounts of membrane protein could be used 

if available, such as 500 µg rather than 100 µg.  

 

The investigations in this Chapter have shown that antifoams can affect the production of 

recombinant protein and the growth of P. pastoris cells in shake flasks. For the production 

of recombinant GFP, the effects were beneficial at high concentrations and in some cases 

almost doubled the total yield of GFP obtained. They appear to have at least two 

mechanisms of action; one that improves the production or secretion of GFP and another 

that influences the growth of the cells. For other proteins, a detrimental effect was 

observed. This highlights the importance of screening for optimal antifoams and 

concentrations in bioprocesses, as the addition of antifoams has the capacity to enhance the 

yield of protein, or become detrimental.  
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4. MECHANISMS OF ANTIFOAM ACTION 

 

The antifoams tested in Chapter 3 had a range of effects in the shake flask evaluations 

depending upon the type and concentration as well as on the protein being produced. It was 

noted that the antifoams appeared to have at least two mechanisms of action leading to 

increases in yield of GFP; one that suggested the improvements were due to a change in the 

growth of the cells, and the other an improvement in the production level and/or secretion 

of the protein. These possible mechanisms were further investigated in shake flask format, 

by examining the effects of the antifoams upon secretion and retention of GFP, membrane 

composition and changes in the growth characteristics of the cells as measured by the 

effects of the antifoams upon dissolved oxygen (DO) and the volumetric mass oxygen 

transfer coefficient (kLa) 

 

 

4.1 The effect of antifoams upon GFP secretion 

GFP was chosen as the target protein for secretion and retention investigations as many of 

the observations of Chapter 3 were made using this protein. GFP is also easy to detect due 

to its fluorescent properties, making it the ideal choice for flow cytometry experiments. 

 

4.1.1 Effect of antifoams on the total yield of GFP determined by flow 

cytomety and fluorometry                                                                                     

An investigation into whether antifoam addition might have a physical influence on the 

cells was conducted. The amount of GFP retained in the cell was measured (by flow 

cytometry) and that secreted into the culture medium (by fluorimetry). The P. pastoris cells 

were cultured in the same shake flask system used for the protein production investigation 

discussed in Chapter 3. Antifoam concentrations of 0.6% were chosen as these were the 

lowest concentrations to increase the total yields of GFP in the shake flask experiments, 

except for J673A where 0.8% increased the total yield compared to the control. Samples 
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were taken after 48 h and following a haemocytometer count, were diluted with PBS to be 

in the region of 106-107 cells/mL. 2mL of the diluted samples were analyzed using the flow 

cytometer. These data represent the GFP retained in the cells, while the GFP secreted in the 

shake flask experiments was measured by fluorimetry. In order to compare these two 

different data sets, each was normalized to its respective 0% antifoam control, which was 

consequently set to 1. The values shown in Fig. 4.1 are for determinations at 48 h (n = 3). 

The significance of the changes in retained and/or secreted GFP compared to the respective 

0% antifoam control was analyzed by a one-way ANOVA (P < 0.0001) and a Dunnett's 

multiple comparison test where * = P ≤ 0.05 and ** = P ≤ 0.01.  

 

Fig. 4.1 shows that addition of Antifoam A, Antifoam C, J673A and P2000 caused a 

statistically significant increase (P < 0.01) in the amount of GFP secreted into the medium 

compared with the 0 % antifoam control. The amount of protein retained in the cells was 

also greater suggesting that antifoam addition enhanced the ability of the cells to produce 

recombinant GFP. For P2000 however, more GFP was retained inside the cells compared 

with the 0 % antifoam control. This is consistent with the growth of the cells being affected 

by P2000 addition rather than resulting in improved secretion efficiency, and also suggests 

that there has been some metabolic change to the cells compared to the control. Data for 

SB2121 was similar to that for P2000. These data also correlate with the fluorescence 

microscopy pictures in Fig 3.22 of Chapter 3, where GFP can be clearly seen retained 

inside the cells of cultures containing P2000 and SB2121.
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Figure 4.1: The effect of antifoams upon GFP secretion and retention                                                                   

The amount of GFP retained in the cell analyzed by flow cytometry (white bars), and that secreted into the 

culture medium analyzed by fluorimetry (black bars). For the retained dataset n = 3 and secreted dataset n = 

9. 

 

It is possible that the antifoams were not only increasing the recombinant proteins being 

produced by P. pastoris, but could have an effect upon total protein secretion. A 

bicinchoninic acid (BCA) assay is a commonly used method to determine total protein. 

This assay was performed on cultures incubated with 0%, 0.5% and 1% antifoams for 48 h 

to allow investigation of the range of concentrations. Samples were measured in triplicate 

and analyzed by a one-way ANOVA (P < 0.0001) and a Dunnett's multiple comparison test 

where * = P ≤ 0.05 and ** = P ≤ 0.01 and *** = P ≤ 0.001). The data are illustrated in Fig 

4.2. 

 

The antifoams did not cause any change in the total concentration of all proteins in the 

supernatant measured by BCA assay for cultures containing antifoams at representative 

concentrations of 0 %, 0.5 % and 1 %, except for 0.5 % Antifoam C (P < 0.05) and 1 % 

SB2121 ( P < 0.01). In the presence of these two antifoam concentrations, a decrease of 13–

14 % was observed in the total protein concentration of the supernatant compared to 0 % 

antifoam-containing control cultures. At time point T0, as expected before induction, there 

was significantly less protein in these samples compared to the control (P < 0.001). These 

data suggest that as the antifoams did not increase the total protein being produced by P. 
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pastoris, the antifoam effects might be specific to the recombinant protein production 

pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Effect of antifoams upon total protein secretion                                                                                    

The effect of antifoams at 0.5% and 1% v/v upon total protein secretion by P. pastoris producing GFP after 

48 h measured by BCA assay. A represents Antifoam A, C represents Antifoam C, J represents J673A, P 

represents P2000 and S represents SB2121 and T0 represents time zero. In each case n = 6. 

 

AOX1 expression in the presence of methanol can account for up to 30% of the total soluble 

protein[22], however this did not appear to be the case when the yields of GFP produced 

under the control of this promoter in the shake flask investigations of Chapter 3 were 

compared with the total yields of protein produced. 20 mL cultures without antifoam 

produced 250 μg of GFP, however the total yield of all protein was in the region of 100 mg. 

This suggests that the soluble GFP accounts for only 0.25 % of all protein in the medium. 

This implies that in the shake flask experiments the methanol induction was not optimal, or 

the methanol became limiting during the investigation. Induction in shake flasks therefore 

could be optimized in future work.  
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4.1.2 Effect of antifoams upon lipid composition of P. pastoris membranes 

Further to the observations that antifoams may influence the ability of the P. pastoris cells 

to secrete recombinant GFP, the lipid composition of the cells incubated in the presence of 

optimum concentrations of the antifoams for 48 h was compared using electrospray mass 

spectrometry. Preliminary data analysis suggests that there was a relative change in the 

phosphatidylcholine composition of the lipids of membrane samples of 48 h P. pastoris 

cells incubated with 1% P2000 compared to control membrane lipids. The data also suggest 

a relative change in the phosphatidylinositol composition of membrane lipids from each of 

the antifoam-containing cultures compared to those without antifoam. Further analysis is 

required to determine the precise effects of the antifoams upon the lipid composition of P. 

pastoris cultures incubated with antifoam.  

 

 

4.2 Effect of antifoams on the growth characteristics of cells producing 

GFP 

The precise effects of antifoams upon cells is not well documented. Several growth 

characteristics of P. pastoris were therefore investigated in the presence of the panel of 

antifoams. 

 

 

4.2.1 The effects of antifoams upon cell metabolism 

The shake flask results from Chapter 3 showed that P. pastoris producing GFP in the 

presence of some of the antifoams produced differing amounts of protein and grew 

differently to the control. This implies that there may have been changes to the metabolism 

of the cells, which can be detected as changes in the heat output rate by microcalorimetry.  

 

The thermal activity monitor (TAM) is a sensitive differential calorimeter developed in 

order to study biological systems[172] and is shown in Fig. 4.3. Calorimetry involves the 

measurement of heat. Differential calorimeters are able to measure the difference in heat 

between the sample and a reference[195]. In P. pastoris cultures, the temperature difference 
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between cultures containing 0% antifoam and the optimum antifoam concentration was 

measured by incubating the cells at 30°C  and setting the reference temperature of the TAM 

to 30°C, maintained by a water bath. A constant flow of sample from the shake flask 

cultures through the TAM allowed differences in the heat between the reference and the 

samples to be detected and displayed graphically by DigiTam software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Thermal activity monitor (TAM)                                                                                                                  

A TAM set up and photographed at Aston University. A water bath maintains the reference temperature while 

lines draw culture through the calorimeter and allow differences in heat to be monitored. 

 

The antifoams were added at their optimum concentration to BMMY shake flask cultures 

of P. pastoris producing GFP in a setup identical to that of Chapter 3. The flasks were 

incubated at 30°C, 220 rpm with the lines from the TAM drawing the culture into the 

calorimeter using a pump set to a flow rate of 30 rpm for all experiments. The TAM water 

bath was set to 30°C and the baseline calibrated. The data were recorded over 20 h, as P. 

pastoris cells began to block the lines once the optical density increased after this time 

point.  
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Two control shake flasks were set up from the same culture with cells in the exponential 

phase without antifoam and run simultaneously to illustrate the fact that there was no 

difference in heat output between the two channels and cultures set up using the same 

initial culture. Antifoams were also added to BMMY without culture to demonstrate that 

the antifoams themselves did not produce any additional heat output. Data were logged 

using Digitam software. Control data are shown are Fig 4.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Heat output rate produced by control cultures                                                                                                               

TAM heat output rate data for cultures of P. pastoris in BMMY without antifoam, represented by 0% Antifoam 

1 and 2, and data for BMMY with two antifoams, 1% J673A and 1% SB2121 without culture. 

 

The control data show that for the two cultures containing no antifoam, 0% Antifoam 1 and 

0% Antifoam 2, there is minimal difference in the heat output data. This shows that cultures 

set up at the same time and from the same preculture produce a reproducible heat output 

trace. For BMMY medium containing the optimum concentration of antifoams, there was 

no heat output, demonstrated in Fig 4.4 by 1% J673A and 1% SB2121, illustrating the fact 

that any differences in heat output profiles for cultures with antifoams is not due to heat 

output of the antifoams themselves. 
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Test cultures containing antifoams were then set up and two flasks containing cultures from 

the same culture were monitored simultaneously; one culture without antifoam and the 

other with the optimum concentration of antifoam. The data for each antifoam are shown in 

Figures 4.5 and 4.6. The TAM data for Antifoam A run 1 (Fig 4.5A) show that as the cells 

grew, more heat was given out when compared to the control culture, suggesting a 

difference in the metabolism of the cells. However, run 2 (Fig. 4.5B) shows a different 

trace; less heat was given out by both cultures compared to the first run, and the control 

culture produced slightly more heat than the culture containing Antifoam A. The traces for 

run 2 again suggest that there was a difference in metabolism between the cultures, which 

is again different from the first run. These differences between runs may be due to the 

different cultures being used for each run which would contain a different population of 

cells in different phases of growth, therefore heat output would not be identical between 

cultures. 

 

0.8% Antifoam C run 1 (Fig. 4.5C) showed a greater heat output for the culture without 

antifoam, again suggesting a difference in metabolism. Run 2 (Fig4.5D) shows an almost 

identical heat output trace for cultures with and without Antifoam C, implying that during 

this run, the metabolism of the cells was not affected by the antifoam.  

 

For J673A cultures, both run 1 and 2 (Fig 4.5E and F) showed a greater heat output for 

cultures containing 1% J673A. This strongly suggests that the metabolism between the 

different cultures had been affected by the presence of this antifoam. The P2000 culture 

shown in run 1 (Fig.4.6A) produced more heat than the control, however in the second run 

(Fig.4.6B), the traces were similar. The SB2121 run 1 culture (Fig.4.6C) produced more 

heat, but produced less heat than the control in the second run (4.6D). It also grew much 

more slowly than the cultures in the first run, suggesting that most of the cells were in late 

log phase or stationary phase.
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         A: Antifoam A run 1                                                B: Antifoam A run 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
        C: Antifoam C run 1                                                 D: Antifoam C run 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
       E: J673A run 1                                                            F: J673A run 2 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.5: Heat output rate produced by antifoam containing cultures                                                                                          

Heat output rate of shake flask cultures of P. pastoris producing GFP with and without optimum antifoam 

concentrations measured by on-line flow microcalorimetry. A: Antifoam A run1; B: Antifoam A run 2; C: 

Antifoam C run 1; D: Antifoam C run 2; E: J673A run 1; F: J673A run 2
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         A: P2000 run 1                                                                  B: P2000 run 2 
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Figure 4.6: Heat output rate produced by antifoam containing cultures                                                                                         

Heat output rate of shake flask cultures of P. pastoris producing GFP with and without optimum antifoam 

concentrations measured by on-line flow microcalorimetry. A: P2000 run1; B: P2000 run 2; C: SB2121 run 1; D: 

SB2121 run 2.
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Overall, the data suggest that although there was variability between runs, when 

comparisons were made between runs with cultures set up from the same initial culture, the 

antifoams in most cases did affect the metabolism of the cells. This suggests that the cells 

are growing differently which could be linked to the increases in yield of GFP for these 

cultures. The antifoams appeared to cause the cells to produce more heat in several cases, 

seen most clearly with J673A. Less heat was observed with some SB2121 and Antifoam C 

cultures, and in some cases did not greatly change the heat output as seen with some P2000 

and Antifoam A cultures. It might be that cells in a certain growth phase are more affected 

by the presence of the antifoams. For example, if a greater number of the cell population 

were entering stationary phase, perhaps the antifoams had less effect. Although cells were 

taken from cultures in log phase, it is possible that they contained cells that were in late log 

or stationary phase which could explain differences between traces. Because of the 

variation in the data which may be due to the population of the cells present, it is unclear 

whether increases or decreases in heat output can be directly linked to an increase in 

productivity. 

 

 

4.2.2 Effect of antifoams upon dissolved oxygen availability in cultures 

Antifoams can affect the DO available in the medium, and this effect has been observed in 

several studies[59, 93, 196]. Therefore, it was investigated whether the antifoams affected 

the DO in the shake flasks and thereby altered the growth of the cells.  

 

 

4.2.2.1 Measurements in a multiwell format 

In the first instance, the effect of each antifoam concentration upon DO was measured with 

a PreSens SensorDish Reader (SDR). This equipment was loaned by Applikon 

Biotechnology and is able to detect oxygen and pH in a multiwell plate format. A 24 well 

OxoDish was selected with sensor spots at the bottom of the wells containing luminescent 

dye shown in Fig 4.7A. The dye is excited by the SensorDish reader upon which the 

multiwell plate sits, and the luminescence lifetime is detected through the transparent 

bottom of the plate. The luminescence lifetime depends upon the oxygen partial pressure in 
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the medium and is monitored wirelessly by the software (Fig. 4.7B), converting it into 

percentage oxygen in the medium using calibration data and an internal conversion 

formula. Real time measurements can be viewed throughout the experiment and displayed 

in the form of a graph[197]. 

 

 

A)                                                                     B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: PreSens SensorDish reader (SDR) equipment                                                                                                   

A) A well from an OxoDish containing DO and pH sensor spots allowing online measurement of dissolved 

oxygen partial pressure and pH; B) SDR main units. Images adapted from the Presens SFR web page[197]. 

 

 

P. pastoris cultures producing GFP containing the first antifoam to be tested, Antifoam A, 

were set up in the multiwell plate in BMMY medium and incubated at 30°C for 48 h. The 
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results obtained while using this system were variable; some wells did not appear to detect 

the oxygen in the medium as accurately as others. Using this multiwell format, there was 

also a problem with evaporation of the samples due to the small volumes used which may 

have interfered with the readings. Some of the data generated for Antifoam A in BMMY 

are shown in Fig. 4.8. This graph also highlights some of the problem wells, where the DO 

remained low before suddenly increasing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: PreSens SensorDish reader data                                                                                                            

Data generated for a 24 well setup with cultures of P. pastoris in BMMY producing GFP in the presence of 

various concentrations of Antifoam A.  

 

It was decided that for more comparable conditions to those that had been used for the 

shake flask experiments of Chapter 3, another piece of equipment with the same technology 

would be used in a shake flask format. It was anticipated that this would avoid the problems 

of evaporation seen in the multiwell setup. 
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4.2.2.2 Measurements in a shake flask format 

The effect of the addition of each of the antifoams on DO was assessed in shake flask 

cultures with the PreSens Shake Flask Reader (SFR, loaned by Applikon Biotechnology), 

and flasks with DO patches allowing online monitoring. A flask containing pH and DO 

sensor spots is illustrated in Fig. 4.9A, and the SFR in Fig. 4.9B. Similar to the SDR, the 

sensor patches in the flasks contain luminescent dyes which are excited by the SFR. Again, 

the luminescence lifetime depends upon the oxygen partial pressure and is monitored 

wirelessly by the software, which converts it into percentage oxygen in the medium using 

calibration data and an internal conversion formula. The data can be displayed graphically 

in real time[198].     

  

 

A)                                                       B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: PreSens shake flask reader equipment                                                                                                        

A) A shake flask containing DO and pH sensor spots allowing online measurement of dissolved oxygen 

partial pressure and pH; B) SFR main unit. Images adapted from the Presens SFR web page[198].  
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The experimental set up was the same as originally used for the shake flask experiments, 

except 125 mL shake flasks with sensor spots were used as the closest match to 100 mL 

flasks. Cultures of P. pastoris producing GFP were set up in 25 mL BMMY medium in the 

sensor flasks and clamped upon the SFR in a shaking incubator set to 30°C. The DO in the 

flasks was monitored over 48 h. 

 

Figure 4.10 shows that there was no difference in DO in the flasks in the presence or 

absence of antifoam for each antifoam. After approximately 12 h for each culture condition, 

the DO in the flasks became limiting. Since functional GFP can be expressed by anaerobic 

bacteria and in media containing 0.1 ppm dissolved oxygen[199], there was no concern that 

this would influence the data obtained. For the cultures containing Antifoam A, C and 

J673A, methanol was added before it was fully consumed and became limiting. For the 

cultures containing P2000 and SB2121, methanol addition was delayed in order to observe 

the effects on the DO of the cultures where methanol was limiting. The DO decreased as 

the cells metabolized the methanol present in the medium and rose once they had consumed 

it as was seen with P2000 and SB2121 cultures. DO then remained high in the P2000 and 

SB2121 cultures until additional methanol was added at which point the DO immediately 

decreased and utilization continued. Methanol concentrations for the P2000 and SB2121 

cultures were confirmed by gas chromatographic analysis. Some of these data are shown in 

Fig.4.11. Overall, there was no difference in the DO content of cultures containing 

antifoam and those without. This suggested that the antifoams either did not have any effect 

upon DO in shake flasks, or if they did have an effect, it was too small to be detected by 

this equipment. It is possible that in low volumes, effects upon DO may also be small and 

thus did not have any noticeable effect upon the growth of the cells. Alternatively, the 

antifoams may have increased the DO in the flasks and the cells in these cultures rapidly 

consumed any extra oxygen in order to produce more recombinant protein. In that case, the 

DO detected in the flasks would appear to be the same as that of the control. 
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Figure 4.11: Methanol chromatography trace for P. pastoris shake flask culture supernatant                           

Chromatography trace for supernatant from a sample of P. pastoris in BMMY incubated with 1% P2000 for 6 

h. Methanol concentrations were calculated by measuring the area under the graph. No peaks were observed 

for samples at 24 h suggesting that no methanol was present.   

 

 

4.2.3 Effect of antifoams upon A2aR production in shake flask cultures of 

S. cerevisiae strains with different requirements for DO 

As discussed previously, antifoams are widely believed to exert their action by influencing 

the oxygen available in the medium, as measured by DO and kLa. As there did not appear to 

be any difference in the DO in shake flasks in the presence or absence of concentrations of 

antifoams examined, another approach was used. Strains were therefore selected for which 

data suggest that recombinant protein yields are related to high or low DO conditions. The 

S. cerevisiae TM6* strain has been observed to produce more A2aR in high DO conditions 

and the WT strain found to produce more A2aR in low DO conditions in preliminary small 

scale screening performed by Z. Bawa, Aston University (unpublished data), shown in 

Table 4.1.  
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Table 4.1: Effect of DO upon A2aR production by WT and TM6* S. cerevisiae strains. Data provided by Z. 

Bawa, Aston University 

 

 

 

 

These strains were incubated with 0.6% Antifoam A which was found to increase the kLa 

and 1% Antifoam A was found to lower the kLa. Samples were taken once the glucose in 

the culture had decreased to 30 mmol. The yield of A2aR produced was assayed by 

radioligand binding. The data are shown below in Fig 4.12. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: A2aR production in S. cerevisiae in the presence of antifoams                                                                 

Effect of Antifoam A at 0.6% and 1% v/v upon the production of A2aR in two strains of S. cerevisiae, TM6* 

and WT in 100mL  shake flasks. In all cases (except 1% Antifoam A with TM6* where n = 1) n = 6. 

 

The data shown demonstrate that in the presence of 1% Antifoam A, theTM6* strain 

produced significantly less A2aR than the 0.6% Antifoam A culture. 0.6% Antifoam A in 

DO (%) WT (fmol/mg protein) TM6* (fmol/mg protein) 
30 442.13 4.59 
50 14.01 35.47 
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shake flasks was found to increase the kLa, and TM6* has previously been found to produce 

more A2aR under conditions with high DO, suggesting that the antifoam may have caused 

an increase in protein yield by altering the rate of oxygen transfer in the culture medium. 

However, with the WT strain, there was also less A2aR produced in the culture containing 

1% Antifoam A although this strain had been observed to produce a better yield of protein 

in low DO conditions. The difference in yield was not as pronounced as the differences 

seen for TM6*. This could suggest that the DO in the flask is a more essential parameter in 

order for the TM6* strain to produce recombinant proteins, whereas it may be less critical 

to the growth and protein production of the WT strain. It could alternatively suggest that 

the antifoam had another unknown effect which caused the difference in yields and the 

change to the kLa were not substantial enough to alter the DO conditions in the flask to the 

optimum levels required to produce higher protein yields. Again as with the DO shake flask 

experiments, it is possible that if there were any changes to the DO in these cultures 

influenced by the antifoams, it could be small and therefore not large enough to have 

resulted in any noticeable effect. The DO present in the flasks may already have been 

sufficient for the growth of the cells and the production of recombinant protein, and any 

changes to this did not have any further influence. Since a control without antifoam was not 

performed, it is unknown whether the concentrations of antifoam tested improved or 

reduced the yield compared to 0%. Follow up experiments including this control need to be 

performed to fully interpret the results. 

 

 

4.2.4 Effect of antifoams upon the kLa characteristics of cultures in shake 

flasks  

As P2000 and SB2121 affected the density of the cultures as shown in Chapter 3, there is a 

possibility that the oxygen transfer rate in the system was affected by antifoam addition 

which may explain the increase in GFP yields. The volumetric mass oxygen transfer 

coefficient, kLa, is a measure of how readily oxygen dissolves into the medium, whilst the 

DO is the quantity oxygen that has dissolved into the medium and is affected by the kLa. As 

this coefficient is widely recognized to be affected by antifoams[59, 93, 94, 200], the kLa 

was therefore measured in shake flasks in the presence of 0-1% v/v of the antifoams. The 
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PreSens SFR was again used for this investigation with 125 mL non-baffled shake flasks 

with 25 mL BMMY at 30°C without any inoculum. The dynamic method of kLa 

measurement based upon the method outlined by Bandyopadhyay and Humphrey[201] was 

used. 

 

The experiment was carried out by firstly sparging the flask with compressed air until the 

DO reached saturation at approximately 80% air saturation. This reading was taken to be 

the 100% DO saturation in the flask. The kLa measurements were carried out by starting at 

100 % DO and flushing with nitrogen until the DO dropped to 0 % (See Figure 4.13).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13.: SFR set up for kLa measurements                                                                                                              

125 mL shake flasks with sensor spots containing 25 mL P. pastoris producing GFP in BMMY were clamped 

above the detectors with lines allowing sparging with compressed air and N2. Photographed at Aston 

University. 

 

The flask was then supplied with air and the DO gradually rose to 100 % saturation, 

whereupon it was again flushed with nitrogen to reduce it to 0 % before reconnecting the 
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air.  The time points were recorded by the SFR software and DO was plotted as a function 

of time as shown by Fig. 4.14. As several antifoam concentrations were tested, they were 

added cumulatively in a step-wise fashion to the flask once the DO was at 100% saturation, 

followed by a flush with nitrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: kLa measurements logged by SFR software 

SFR software logging changes in DO in the presence of antifoam while sparging with compressed air to 

increase the DO and with N2 to reduce it to 0%. 

 

The data generated for the upwards slope of the plot where oxygen dissolved into the 

medium were used to calculate the kLa using the following formula: 

 

   kLa (t2-t1) = ln   c1,∞ - c1,t1 

                            c1, ∞ - c1,t2 

 

N2

sparging

Air 
sparging
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where t1 and t2 are consecutive time points, c1,∞ is the oxygen saturation concentration and 

c1 is the oxygen concentration at each time point.  c1,∞ was calculated by using the 

following constants: 

 XO2 (Fraction of O2 in air) = 0.2095 

 T (Temperature) = 30ºC or 303 K 

 P (Approximate pressure in the flask) = 1 bar 

 R (Gas constant) = 8.3144 J/(K x mol) 

 MO2 (O2 partition coefficient) = 30 

 

Combining C = n / V, where C is the concentration of gas in the head space, n is the 

number of moles and V is the volume, and the universal gas law PV= nRT, gives C = P / 

(RT). This enables the concentration of air in the gas phase, or all gases, to be calculated. 

The gas concentration of O2 in the gas phase was then calculated by multiplying the 

concentration of gas in air by XO2. Dividing the gas concentration of O2 by MO2 gave the 

maximum liquid oxygen saturation concentration, c1,∞ at 100% DO. DO percentage values 

at a particular time point were converted to oxygen concentrations by dividing by 100 and 

multiplying by c1,∞. The kLa data for the shake flasks with BMMY media in the presence of 

antifoam are shown in Table 4.2. The data were normalized to the control (0% antifoam) to 

allow comparison between the antifoams.  

 

Table 4.2: The effect of antifoam addition to the kLa in shake flasks with BMMY medium. The data highlighted 

in yellow represent no significant change from the control kLa, green a significant increase and red a 

significant decrease in the % change of kLa. In all cases n = 2. 

 

       

 
    % Antifoam     

Antifoam 0% 0.2% 0.4% 0.6% 0.8% 1% 

Antifoam A 100 98.6 290 380.8 78.1 55.4 
Antifoam C 100 43.2 89.5 138.6 269.4 98.8 
J673A 100 66.6 58.7 58.5 58.4 108.2 
P2000 100 63.9 115.9 116.2 34.7 32.3 
SB2121 100 70.2 102.8 65.1 45.8 43.8 
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Addition of 0.4% and 0.6% Antifoam A caused a large increase in kLa compared to the 

control, whereas addition of the related antifoam, Antifoam C, led to an initial reduction in 

kLa, which increased on addition of antifoam up to 0.8% and then returned to control levels 

at 1%. After an initial decrease in kLa was caused by J673A addition up to 0.4%, it 

remained relatively constant up to 1%. Addition of P2000 at all concentrations tested 

caused relatively minor changes to the kLa. SB2121 addition did not substantially increase 

the kLa at any of the concentrations tested. Most of the concentrations investigated caused a 

decrease in the kLa. In shake flasks, the kLa was higher at mid-range values and decreased 

with increasing concentration. Overall there was no statistically significant correlation 

between increased kLa and total yield. 

 

 

4.3 Antifoams as potential carbon sources 

It is possible that the antifoam agents could provide a carbon source for the P. pastoris cells 

which could explain the boost to productivity observed with the GFP cultures. J673A, for 

example, contains fatty acids on a vegetable oil base and it is thought that vegetable oils 

may be metabolized as a carbon source[202], which could explain why J673A addition 

enhanced the yield of GFP. In order to determine whether the antifoams could be 

metabolized, shake flask cultures were set up as before in 100 mL non-baffled shake flasks 

with 20 mL culture producing GFP. A culture was set up in BMGY medium and then the 

cells were transferred to medium without any glycerol or methanol with 1mL of each 

antifoam (5% v/v) denoted BMAY. Controls were set up in medium that did not contain 

glycerol, methanol or antifoams which was denoted BMY. All shake flasks were set up in 

triplicate. The OD595 was measured after 24 h and the data are shown in Fig 4.15.  
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Figure 4.15: Antifoams as potential carbon sources at 5% v/v                                                                                                                     

The effect of 1 mL of antifoam in medium without either glycerol or methanol present upon P. pastoris growth 

in shake flasks after 24 h. In each case n =3. 

 

The data in Fig 4.15 show that Antifoam A can be metabolized by the P. pastoris cells in 

the absence of other carbon sources. Compared to the control cultures without any antifoam 

added, the OD was significantly higher. The related antifoam, Antifoam C, however led to 

a reduction in the OD in comparison with the control. Antifoams J673A and SB2121 did 

not have much effect upon the growth of the cells compared to the control. Cultures 

containing P2000 did not grow at all.  

 

Further shake flask experiments were set up taking the best and worst yielding conditions. 

This time 2 mL (10% v/v) Antifoam A were added and 2 mL P2000 to see if the effects on 

the OD would be more pronounced and if higher concentrations of antifoam were required 

to obtain any growth for P2000. The data are shown in Fig 4.16. 
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Figure 4.16: Antifoams A and P2000 as potential carbon sources at 10% v/v                                                                 

The effect of 2 mL Antifoam A and P2000 upon P. pastoris growth in shake flasks in medium without either 

glycerol or methanol present after 24 h. In each case n =3. 

 

Fig 4.16 shows that at higher volumes of Antifoam A, the OD has increased to double that 

of the control. This suggests that the volume of antifoam A added previously was depleted 

in the first set of experiments and became limiting to the growth. Antifoam A can clearly be 

metabolized in the absence of other carbon sources, and at 2 mL, the OD in this experiment 

of 16 is almost comparable to the OD’s of 24 h shake flask cultures of BMGY after this 

period, which are usually between 18-22. The cultures containing 2 mL P2000 grew in this 

investigation, suggesting that the concentration of antifoam required to allow growth varies 

between antifoams. It appears that although the antifoams may be metabolized at 

concentrations of 10% v/v, the highest concentration used in the initial shake flask 

experiments was 1% v/v therefore for all of the antifoams, possibly except for Antifoam A, 

this concentration would be unlikely to substantially affect the growth of the cells if 

methanol became limiting. In the case of these antifoams, a different mechanism may be 

responsible for the changes in the yield of protein. 
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4.4 Summary 

Antifoams have been demonstrated to affect the ability of P. pastoris cells to secrete 

recombinant GFP and can have various effects depending upon the type and concentration. 

Investigation into their effects upon the secretion of GFP by P. pastoris cells showed that in 

the case of cultures containing Antifoam A, Antifoam C and J673A, significantly more 

protein was secreted into the medium than the cultures without antifoam. Cultures 

containing P2000 and SB2121 retained significantly more GFP than the control, and 

produced more GFP, both retained and secreted, overall. When total complement of protein 

produced by cultures containing the antifoams was measured, it was found that it had not 

significantly been increased. This suggested that the antifoams influenced only the 

recombinant protein secretion pathway for GFP and had no effect upon total protein 

produced by P. pastoris.  

 

Preliminary mass spectrometry data for glycerophospholipids suggested that there may 

have been a change to the relative compositions of phosphatidylcholine for 1% P2000 

containing cultures and phosphatidylinositol composition for each antifoam-containing 

culture compared to controls. Microcalorimetery data suggested that the antifoams did 

affect the metabolism of the cells, illustrated by increases or reductions in heat output 

compared to control cultures. Due to varied data however, it is unclear whether the 

increases in yield of GFP can be linked with either an increase or a decrease in heat output. 

Investigation into the effects of antifoams upon DO suggested that there was no difference 

in the DO in the flasks both with and without antifoam, implying that effects were either 

too small to be detected, or that the cells were rapidly utilizing any extra oxygen causing 

the traces to appear similar. Effects upon the kLa were more noticeable, with Antifoam A 

and C at two concentrations increasing the kLa and other antifoams and concentrations 

either causing no change or decreasing it. While there was no correlation with the total GFP 

yields suggesting that the DO was already sufficient for the cells to grow, the antifoams had 

very different effects upon the kLa which should be taken into account along with the 

recombinant protein to be produced, as some proteins may sensitive to DO concentrations, 

such as EPO[187] and antifbody Fab fragments[203]. 
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When the ability of P. pastoris cells to metabolize the antifoams in the absence of other 

carbon sources was examined, it was found that at 5% v/v only cultures containing 

Antifoam A were able to grow better than the control. P2000 cultures did not grow at all, 

however, when the concentration was increased to 10%, the cells were able to grow and 

Antifoam A-containing cultures grew almost as well as cultures in medium containing 

methanol or glycerol. However, in the shake flask experiments, antifoams were added up to 

1%, therefore except possibly for those containing Antifoam A, the concentration would 

not be high enough in these cultures to allow the cells to grow any better should methanol 

have become limiting. 

 

It seems that the antifoams have several mechanisms of action, and although the exact 

mechanism for the increases in GFP yield could not be pinpointed from these 

investigations, it is most likely that a combination of effects led to the changes to 

recombinant protein yield. 
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5. THE EFFECTS OF ANTIFOAMS UPON RECOMBINANT 

PROTEIN PRODUCTION IN BIOREACTORS 

 

After initial screening experiments for optimal conditions in shake flasks, bioreactors are 

usually employed in order to produce large quantities of the recombinant protein of interest. 

Antifoams are more commonly used in this system than in shake flasks, as stirring and the 

introduction of the gases required for the organisms to grow lead to foam formation which 

can compromise the sterility of the culture if a foam-out occurs. Foaming may also cause 

damage to the equipment if foam blocks a filter and over pressurization of the vessel 

results. The antifoams examined in Chapter 3 were therefore tested in bioreactors in order 

to determine whether their effects could be reproduced on a large scale to further boost 

protein yield. GFP and A2aR were the target proteins for these investigations. Their effects 

upon the DO and kLa were specifically investigated as optimization of these parameters in 

bioreactors is often an objective in scale-up. 

 

 

5.1. Effect of antifoams upon GFP production in bioreactors 

A commonly-used bioreactor for recombinant protein production is the stirred-tank reactor 

with agitation provided by impellors[183]. A 3 L stirred-tank autoclavable bioreactor and 

equipment from Applikon Biotechnology were used for these investigations (See Chapter 2 

Fig 2.1 for an image of the set up). A preculture of P. pastoris strain X33-GFP was grown 

overnight in BMGY. The bioreactor was set up and 1 L basal salts medium added before 

autoclaving. Basal salts medium was used for these experiments as it is more commonly 

used in large scale recombinant protein production as the composition is well defined, 

unlike BMGY or BMMY which contain yeast extract. The probes were connected and the 

DO probe allowed to polarize overnight. The next day, the temperature of the bioreactor 

was set to 30°C and the pH was set to 5.0 with 28% v/v ammonium hydroxide and 50% v/v 

phosphoric acid. The stirrer was put into a cascade ranging from 700 rpm to 1,250 rpm to 

maintain a DO setpoint of 30%. 1.5 L/min of compressed air was passed into the vessel. An 

oxygen cylinder containing 40%: 60% nitrogen: oxygen was also connected to the mass 
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flow controller unit at 2.5 bar to allow further control of the DO to maintain the 30% 

setpoint. These settings were maintained for 1 h and the DO calibrated to 100%. 4.35 mL 

PTM1 trace salts was added aseptically and the required volume of antifoam was also 

added[204].  

 

The bioreactor was then inoculated to an OD595 of 0.5 in 1 L with the preculture. The run 

was started immediately after inoculation and BioXpert software was used to log the data. 

The batch phase continued until a DO spike was observed[66], indicating that the glycerol 

present in the growth medium had been metabolized (20–24 h after inoculation). A fed 

batch phase was then begun to increase biomass using 50% v/v glycerol with 12 mL PTM1 

trace salts per L of feed. After 4 h of fed batch, the culture was starved for 1 h to ensure all 

remaining glycerol was utilized. Induction with 20% v/v methanol was then performed to 

initiate recombinant protein production. Holmes et al found that the highest protein 

yielding induction feed for P. pastoris producing GFP was a 60% methanol 20% sorbitol 

feed[36]. Problems were encountered while using this feed, however, as the sorbitol 

accumulated in the tubing causing it to burst. The second most productive feed was 20% 

v/v methanol therefore this was used for each run. The induction phase was allowed to 

continue to around 96 h post-inoculation. A typical bioreactor trace is shown in Fig 5.1. 
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5.1.1 Effect of antifoams upon total GFP yield in bioreactors 

Initial bioreactor experiments were conducted using the best yielding antifoam 

concentrations observed in the small scale shake flask evaluations described in Chapter 3. 

The antifoams were added to bioreactor cultures of P. pastoris producing GFP at 0.1% and 

at the optimum concentration in shake flasks as shown in Table 5.1. 

 

Table 5.1: Concentrations of antifoam added to 1 L bioreactor cultures of P. pastoris producing GFP. 

Control concentrations were 0.1% and the optimum concentrations from shake flasks were used for the test 

concentrations. 

 

 

Antifoams were added immediately prior to inoculation. In the case of 0.1% Antifoam C 

and 0.1% P2000, foaming occurred during the run, and more antifoam was added (200 μL 

and 500 μL, respectively). All conditions were performed in duplicate, except for 0.1% and 

0.6% Antifoam A which were performed in quadruplicate as some of these runs were 

preliminary tests, initially run for 51 h. GFP measurements were made as previously for the 

shake flask experiments using fluorimetry with a recombinant GFP standard and basal salts 

medium as a blank. The results are shown in Fig 5.2. 

Antifoam 
 

Control 
Concentration 

Volume 
Added 

Test 
Concentration 

Volume 
Added 

Antifoam A 0.1% 1 mL 0.6% 6 mL 
Antifoam C 0.1% 1 mL 0.8% 8 mL 
J673A 0.1% 1 mL 1% 10 mL 
P2000 0.1% 1 mL 1% 10 mL 
SB2121 0.1% 1 mL 1% 10 mL 
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Fig 5.2 E shows that after 100 h the best antifoam condition was 0.1% SB2121 which 

resulted in a total yield of 59 mg/L GFP, followed by 0.1% P2000 (Fig 5.2 D) which 

produced a total yield of 47 mg/L GFP. The poorest yielding condition was 0.1% Antifoam 

A (Fig 5.2A) which produced a total yield of 8 mg/L (although it is unclear if 0.6% would 

have produced less GFP if the run had lasted 100 h as the 0.1% Antifoam A run did), 

followed by 0.8% Antifoam C which produced 12 mg/L GFP.   

 

In the shake flask studies, a higher concentration of antifoam had produced a higher yield, 

whereas in the bioreactors a higher yield was seen at a low concentration of antifoam, 

except for Antifoam A. Although a different concentration effect was observed, the trend 

for the highest yielding and lowest yielding antifoams was still the same. 

 

The yield of GFP produced by the bioreactor cultures containing Antifoam A decreased 

after 71.5 h for 0.1% and after 52 h for 0.6%. This suggests possible increased protease 

activity in the presence of this antifoam, especially as the effect occurred sooner with a 

higher concentration. Shake flask cultures were set up with a dilution series of protease 

inhibitors, however the P. pastoris cells did not grow in any of the cultures. Possible 

protease activity could be more easily verified by setting up a bioreactor culture with a 

protease deficient strain and comparing the effects of the presence of 0.6% Antifoam A on 

yields in the non-protease deficient strain used here. 

 

To confirm the fluorimetry readings which suggest that the cultures with 0.1% antifoam 

produced a higher total yield of GFP, a Western blot was performed on 18 µL sample 

supernatants for 0.1% SB2121 and 1% SB2121. The Western shown in Fig. 5.3 backs up 

the fluorimetery data with darker bands present for the 0.1% samples compared to the 1% 

samples.  
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                                                                  A)      B) 

 

Figure 5.3: Western blot performed on bioreactor X33-GFP culture samples                                                                   

A) 0.1% SB2121 and B) 1% SB2121. Protein ladder marker with bands at 25 and 35 kDa show that the 

sample bands are 29 kDa GFP. The band obtained for the 0.1% SB2121 sample is much darker than that of 

the 1% sample suggesting the presence of more protein. 

 

 

5.1.2 Effect of antifoams upon specific yield of GFP 

To determine whether altered growth of the cells in the bioreactor cultures explained the 

differences in yield, the dry cell weights for 1 mL of cells was measured and used to 

calculate the dry cell weight per L. The total yield of GFP per L was divided by the dry cell 

weight per L to obtain the yield of GFP per mg of cells. The data are shown in Fig 5.4.  

 

The data show that with the exceptions of J673A and SB2121, more GFP was produced per 

mg of cells by the cultures containing higher concentration cultures than those with 0.1% 

v/v antifoam. SB2121 again produced the most GFP at 0.1% (1.9 µg GFP/mg cells) with a 

large difference of approximately double the GFP yield compared to the 1% cultures (0.8 

µg GFP/mg cells). A difference in specific yield between the two concentrations suggests 

that this was not due to a difference in the growth of the cells, which is in contrast to the 

effects observed in the shake flask experiments. The cultures containing J673A also 

showed a large difference in the specific yield of GFP produced, with more GFP present 

per mg of cells in the 0.1% cultures. Again this suggests that the effects are not due to 

changes in the growth of the cells, which is also what was observed in the shake flask 

experiments. P2000 cultures showed little difference between the 0.1% and 1% cultures, 

however slightly more GFP was produced in the cultures containing 1% which is the 

opposite to the results for the total yield where 0.1% produced more total GFP. This result 

is similar to that seen for the shake flask investigation, where there was no significant 

difference between the high and low concentrations, suggesting that for these cultures the 

increase in total GFP yield could be due to changes in the growth of the cells. 
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Antifoam A at 0.6% produced more GFP per mg cells at 50 h compared to cultures 

containing 0.1% antifoam, which was the same trend as for the total yield. There was a 

slightly larger difference in the amount of protein produced therefore increases in total 

yield appear to be due to another mechanisms of action and not due to the growth of the 

cells. Bioreactor cultures containing Antifoam C normalized to the specific yield of GFP 

showed small differences at each concentration therefore the total yield increases were due 

to the growth of the cells. For this antifoam, the higher concentration produced more GFP 

per mg of cells than the 0.1% cultures. 

 

The same trend is still observed for the best and worst producing antifoam effects for the 

specific yield as the total yield in bioreactors as well as the shake flask experiments, with 

the most productive antifoams being SB2121, J673A and P2000, and the poorest being 

Antifoams A and C.  The antifoams can again be split into two different categories 

according to their mechanisms of action; those that caused increases to total GFP yields due 

to changes in growth as shown by P2000 and Antifoams A and C; and those that caused an 

increase in production or secretion of GFP per cell as demonstrated by antifoams SB2121 

and J673A. The antifoams in each group are also interesting, as previously in the shake 

flasks P2000 and SB2121 had caused changes to growth, whereas in the bioreactors it 

appears that Antifoams A and C also have this effect rather than increasing the secretion or 

production per cell. Another interesting trend is that the two antifoams that produced a 

greater amount of GFP at 0.1% for both the total and specific yields (SB2121 and J673A) 

are in the group that seems to enhance the secretion or production of the protein. In 

contrast, P2000, Antifoam A and Antifoam C which caused a switch in concentration effect 

upon normalizing the total GFP yield to the per mg of cells yield (although differences 

were small) are also all in the same group which appears to have influenced the growth of 

the cells. This could suggest that antifoams that enhance the production or secretion of the 

GFP are more effective at this when added at low concentrations to bioreactors, but in all 

cases, except for Antifoam A, the total yield is improved by adding 0.1% antifoam rather 

than higher concentrations.  
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5.1.3 Influence of the culture medium on the results 

One of the conditions that differed in the bioreactor experiments compared to the shake 

flask tests was basal salts medium was used instead of BMMY. To rule out the involvement 

of the medium on the ‘concentration switching’ effect seen with the bioreactor results, a 

shake flask experiment was set up as previously, this time using basal salts medium. 

Cultures were set up in basal salts medium containing 40 g /L glycerol. Flasks were then set 

up in basal salts medium containing 0.5% v/v methanol and were inoculated with the 

culture to an OD of 1. Either 0.1% or the optimum antifoam concentration observed in the 

BMMY shake flasks was added and the flasks were incubated for 48 h at 30°C, 220 rpm. 

Samples were measured in triplicate and analyzed by a one-way ANOVA (P < 0.0001) and 

a Dunnett's multiple comparison test where * = P ≤ 0.05 and ** = P ≤ 0.01 and *** = P ≤ 

0.001). Data are shown in Fig. 5.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Effect of Antifoams upon P. pastoris X33 producing GFP in basal salts medium in shake 

flasks                

Af A represents cultures containing Antifoam A, Af C represents Antifoam C, J represents J673A, P 

represents P2000 and S represents cultures containing SB2121. In each case n =9.
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Fig 5.5 shows that all 0.1% antifoam-containing samples produced a significantly greater 

yield of GFP than the control in basal salts medium, except for those containing Antifoam 

A and C. This was mirrored at higher concentrations of antifoams. In addition, the higher 

concentrations of antifoam also produced more GFP than the 0.1% cultures with the 

exception of 0.6% Antifoam C, which is similar to the trend seen for the BMMY shake 

flask results. Again, the best yielding antifoams were J673A, P2000 and SB2121. This 

suggests that the switching effect is not due to changing from BMMY medium to basal 

salts medium in the bioreactors.  

 

Notably, the total GFP yields in basal salts medium in shake flasks were much lower than 

those achieved in BMMY medium. The 0% cultures in BMMY medium produced 

approximately 250 µg of GFP in 20 mL compared to 60 µg in basal salts medium. The 

maximum total GFP yield in BMMY was 422 µg compared to just 80 µg in basal salts 

medium. Interestingly, the ODs reached in basal salts medium were higher than achieved in 

BMMY. The average OD for cultures without antifoam was 49.4 compared to 22.66 in 

BMMY. Therefore, in basal salts medium the cells produced much less GFP per cell than in 

BMMY. This implies that basal salts medium is less suitable for recombinant protein 

production in small scale shake flask cultures. It is possible that as methanol was not 

constantly fed into the flasks as it would be in the bioreactors, this suggests that cultures 

growing in basal salts medium may require the constant feed of methanol to produce 

greater quantities of protein, whereas in BMMY the nutrients and methanol provided are 

enough for the cells to effectively produce recombinant protein. 

 

 

5.1.4 Influence of the point of addition of the antifoam 

In order to determine whether the antifoams had a better or worse effect upon the 

production of recombinant protein when added at the beginning of the fermentation or only 

when required to destroy foam, J673A was added to bioreactor cultures of P. pastoris 

producing GFP at concentrations of 0.1% and 1% only when foaming occurred. This was 

around 20 h after the start of the run for each culture, and the conditions were run in 

duplicate. Data are shown in Fig.5.6. 
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Figure 5.6: Effect of J673A addition to bioreactor cultures only when foaming occurred                                     

J673A at 0.1% and 1% J673A were added only when required to reduce foaming to cultures of P. pastoris 

producing GFP in 3 L stirred tank bioreactors. Foaming occurred around 20 h into the run and antifoams 

were added. Induction occurred at 27 h. In each case n = 6. 

 

When antifoam J673A was added to the bioreactor cultures once foaming occurred, the 

total yield when it was added to 0.1% was 50 mg, whereas at 1% the total yield was 20 mg. 

The same trend was observed as when the antifoam was added from the beginning of the 

run, with 0.1% producing the best effect. However, 43 mg was obtained when J673A was 

present throughout the run, suggesting that adding this concentration of antifoam later in 

the run had a better effect. When 1% J673A was present from the start of the run, a total 

yield of 30 mg was achieved, but when this concentration was added when foaming 

occurred, only 20 mg of GFP was produced. For this concentration, it appears to be more 

effective when added at the start of the run, although this could also reflect batch-to-batch 

variation. 
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5.2 Effect of antifoams upon oxygen availability in bioreactors 

As demonstrated by the GFP bioreactor experiments, low concentrations of antifoam 

produced a better yield, whereas the opposite was true in the shake flasks where high 

concentrations produced more GFP. This change in concentration effect occurred upon 

scaling up from a shake flask to a bioreactor, where the most obvious difference between 

these two systems is the oxygen transfer characteristics of the system. The difference in the 

physical properties of the vessels such as the shape affects the kLa. In a shake flask, the 

oxygen in the flask is uncontrolled and as seen in Chapter 4 (Fig 4.10), the DO dropped to 

0% as the cells consumed the methanol in the medium. In a bioreactor however, the DO 

can be maintained at the desired setpoint by introduction of air or oxygen-enriched gas, or 

by stirring. An investigation into the effects of the antifoams upon the kLa and the DO in 

bioreactors was therefore conducted in order to determine whether these parameters might 

explain the differences observed. 

 

 

5.2.1 Effect of antifoams upon kLa in bioreactors 

The antifoams in the shake flasks had an effect upon the kLa at different concentrations, 

although this did not seem to be correlated with recombinant protein yield. Their effects 

upon kLa in the bioreactors were expected to differ from that of the shake flasks. In this 

system, the dynamic method of kLa measurement outlined by Bandyopadhyay and 

Humphrey[201] was again used in the absence of cells. 

 

1L of BMMY was dispensed into the bioreactor and the antifoams were added in a stepwise 

manner. The bioreactor settings were a stirrer speed of 700 rpm, temperature set to 30°C, 

and 1.0 L/min flow rate of air. A DO probe was connected and calibrated[205]. The DO 

data were recorded with a Picolog ADC-16 recorder every 300 ms via the DO 

measurements from the DO probe. The kLa measurements were carried out by starting at 

100% DO, adding the required volume of antifoam then flushing with nitrogen until the DO 

had reached 0%. This was repeated twice for each antifoam concentration and the data were 

recorded via a laptop. These data were used to calculate the kLa, as explained in Chapter 4. 
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The results are shown in Table 5.2 with red indicating a decrease in kLa, yellow no 

significant difference and green indicating an increase. 

 

Table 5.2: Effect of the presence of antifoams upon kLa in a 3 L stirred-tank bioreactor at increasing 

concentrations. Percentage increases and decreases are shown in relation to the control readings taken 

without antifoam present (100%).  Green indicates an increase, yellow no change and red a decrease to kLa. 

 

         

 
      % Antifoam       

Antifoam 0% 0.01% 0.1% 0.2% 0.4% 0.6% 0.8% 1% 

Antifoam A 100 118.8 55.6 63.8 50.4 88.7 147.1 206.9 
Antifoam C 100 338.5 140.3 207.5 238.4 232.7 265.3 366.2 
J673A 100 64.5 51.7 204 90.7 99.6 130.9 103.9 
P2000 100 270.4 140.8 94.7 68.7 193 211.5 769 
SB2121 100 52.8 34.9 39.9 23.4 32.6 73.1 35.7 
 

 

The only antifoam to not decrease the kLa at any of the concentrations tested was Antifoam 

C. The kLa was highest at 1% and lowest at 0.1%. SB2121 decreased the kLa at each 

concentration, with the highest being at 0.8% and the lowest at 0.4% which was the lowest 

kLa value out of all the conditions investigated. P2000 caused the biggest increase in kLa 

out of the antifoams at 1%. Antifoam A initially caused a decrease in the kLa which was 

then doubled at 1% and J673A caused a decrease in kLa at low concentrations and increased 

it at 0.8%. In most cases the antifoams reduced the kLa at low concentrations which rose 

again at high concentrations.  

 

Compared to the kLa in shake flasks, in the bioreactors there were more conditions which 

caused an increase in kLa. The kLa was only significantly increased in the shake flasks at 

concentrations of 0.4% and 0.6% Antifoam A and 0.6% and 0.8% Antifoam C. These data 

show there are very clear differences in the effect of antifoams upon kLa in shake flasks and 

bioreactors. The bioreactor kLa data could not be correlated to that of the total GFP yield 

data in this study, as at least one other antifoam concentration is required to generate a 

further data point to enable analysis. These experiments could be performed at an 
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intermediate concentration, such as 0.5%, in the future to gain further insight into the 

effects of kLa upon protein yield in bioreactors. 

 

5.2.2 Effect of antifoams upon DO control in bioreactors 

Antifoams affect the DO in bioreactors[200]. To test whether their effects on the DO are 

substantial enough to influence the growth of the cells, J673A was added during the 

induction phase and the air supply was switched off.  The stirrer remained on to prevent the 

cells from settling at the bottom of the bioreactor but was taken out of cascade and stayed at 

700 rpm throughout the induction phase. J673A was added at 0.1% and 1% and the runs 

were performed in duplicate. Fig 5.7 illustrates the results. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Effect of J673A upon GFP yield without DO control in bioreactors                                                                  

Effect of 0.1% and 1% J673A upon GFP production by P. pastoris in 3 L stirred-tank bioreacotrs without DO 

control during the induction phase. The stirrer speed was set to 700 rpm throughout the run and the air 

supply was turned off. In each case n = 3. 

 

0.1% J673A, again had the best effect out of the two concentrations, however the yields 

were extremely low compared to runs where DO was maintained at 30%. The yields for 

both concentrations without DO control did not change from the GFP yields produced at 

the beginning of induction. This suggests that if there is an effect upon the DO by the 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

25.5 45.5 65.5 85.5 105.5 

G
F

P
 (

m
g

/L
) 

Time (h) 

0.1% 

J673A 

1% 

J673A 



 181 

antifoams, it is not sufficient for the cells to grow and produce high levels of recombinant 

protein.  

 

As the cultures shown in Fig 5.7 did not grow sufficiently to produce high yields of GFP, 

J673A addition was tested at 70% DO. If DO is not limiting, the effects of the antifoam 

should be removed and less difference in the yield of GFP observed. 0.1% or 1% J673A 

were therefore added and the DO set point placed at 70%. The bioreactors were run for 78.5 

h. The data are shown in Figure 5.8 with the J673A total GFP yield data at 30% DO from 

Fig 5.2 for comparison). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Effect of J673A at different DO settings in bioreactors                                                                                                   

Effect of 0.1% and 1% J673A upon GFP production by P. pastoris at 70% DO and 30% DO in 3 L stirred 

tank bioreactors with data for 0.1% and 1% J673A at 30% DO for comparison. 

 

Figure 5.8 suggests that even when the DO in bioreactors is high, there is still a significant 

difference between the total yield of GFP at high and low concentrations of J673A. Again, 

the same trend as previously observed was demonstrated; in the presence of 0.1% J673A, 

40 mg/L of GFP was produced and 11 mg/L in the presence of 1% J673A. As there were 

still significant differences in the yield of protein at both antifoam concentrations, this 
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suggests that the effect of antifoams upon DO is not a major influence on the ability of the 

cells to produce GFP. 

 

When the 70% DO data is compared to yields at 30%, it is demonstrated that 0.1% J673A 

added at both of these DO settings provides the largest GFP yields. The 70% cultures 

produced more GFP, suggesting that production of GFP is improved at higher DO settings 

which agrees with findings by Holmes et al[36]. However, the data for the 1% J673A 

cultures show that at 30% DO, more GFP was produced than at 70%.  

 

The total yield of GFP was divided by the dry cell weights to obtain the specific yield of 

GFP per mg of cells. The data are shown in Fig 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Effect of J673A upon specific yield at 70% DO                                                                                       

Effect of 0.1% and 1% J673A upon the specific yield of GFP per mg of P. pastoris cells at 70% DO in 3 L 

stirred tank bioreactors with data for 0.1% and 1% J673A at 30% for comparison. For all datasets n = 6. 

 

The same trend is observed for the normalized data shown in Fig 5.9 for the 70% DO 

cultures implying that the difference in effects is not due to changes in the growth of cells 

at this DO setting. Again as was observed for the total yield, bioreactor cultures with 0.1% 

J673A at 70% DO produced a higher yield of GFP than at 30% DO, and 1% J673A cultures 

at 30% DO produced a higher yield than those at 70% DO. The investigations into the 
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effect of antifoams upon DO in bioreactors suggest that although antifoam can influence 

the kLa, their effects upon DO do not explain any improvements in yield of GFP.  

 

 

5.3 Effect of antifoam upon total EPO yield in bioreactors 

Bioreactors with P .pastoris producing EPO were set up containing 0.6% Antifoam C and 

1% J673A as these were the lowest and highest yielding conditions, respectively, from the 

shake flask investigation. Western blots were performed upon the samples, however many 

bands were observed as demonstrated by Fig 5.10. Several blots were performed using new 

samples with similar results. This made it difficult to come to a conclusion as to effects of 

each antifoam. Previous attempts at performing ELISAs proved to be inaccurate, therefore 

the results from these experiments were inconclusive. EPO is highly glycosylated and the 

carbohydrate chains make up around 30% of its mass (approximately 32-37 kDa)[120]. It 

has been previously found upon production of recombinant EPO by P. pastoris that several 

glycoisoforms may be produced. These were visualized as smears or several bands when 

Western blots were performed[120]. The presence of differing amounts of glycans could 

explain the presence of multiple bands on the Western blots shown in Fig 5.10. It appears 

that production in a bioreactor provides conditions more favorable for the formation of 

several different glycoisoforms. This could be due to a change from BMMY medium to 

basal salts medium, or due to more efficient oxygenation and feeding when compared to 

shake flasks. 
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Figure 5.10: Western blot performed on bioreactor X33-EPO samples                                                                    

Western blot performed on supernatant samples from P. pastoris producing soluble EPO in a 3 L bioreactor. 

Lanes contain samples in the presence of different antifoams, however due to the presence of numerous 

bands, the effect of the antifoams upon EPO production in bioreactors was inconclusive. Protein ladder 

marker indicates the size of bands in kDa. 

 

 

5.4 Effect of antifoams upon total A2aR yield in bioreactors 

In the shake flask investigation, 0.5% J673A produced the best yield of A2aR and 1% 

P2000 the lowest out of the antifoam conditions tested. Bioreactor cultures were set up with 

these concentrations of antifoam to discover whether the antifoams had the same effect in 

scale up. The settings used were a stirrer cascade of 700 – 1,250 rpm, pH 5, basal salts 

medium, and 1.5 L/min air flow rate. Temperature was 30°C during the batch and fed batch 

phases and dropped to 22°C during induction. The effect of reducing the temperature 

during induction was found by Fraser to double the yield of A2aR produced[76]. He also 

found an improvement in yield upon adding the A2aR  antagonist, theophylline, however 

this was not added during these investigations to reduce the number of variables present for 

the antifoams to interact with.  Membrane preparations were analyzed from 10 mL of 

culture at 23, 51 and 76 h post-innoculation. Radioligand binding assays were performed on 

the samples in triplicate. The results are shown in Fig 5.11 and illustrate data at 79 h post-

innoculation where the protein yield was highest. 
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Figure 5.11: The effect of antifoams upon A2aR production by P. pastoris in bioreactors                                             

0% antifoam, 0.5% J673A and 1% P2000 bioreactor membrane preps from 79 h post-inoculation cultures 

analyzed by radioligand binding to determine A2aR yield. In each case n = 4. 

 

These data show that the highest yielding condition tested was without antifoam added to 

the cultures. Of the antifoams, 1% P2000 added to the bioreactor produced a higher yield of 

A2aR than the best condition in the shake flask, 0.5% J673A. Again there is a switching of 

effects of the antifoams upon scale up into the bioreactors. When a t-test was performed on 

the culture with very little antifoam, the bioreactor equivalent of 0%, compared to the 

culture containing 1% P2000, there was no significant difference between the A2aR yields. 

Binding curves were also performed on these samples to determine the Bmax and Kd for 

each condition. Each tube contained 100 µg of membrane protein with increasing 

concentrations of radiolabeled ZM241285. Binding curves were performed with 3 readings 

per concentration of radiolabled ZM241385 ligand. The curves were performed twice, with 

the repeat performed on a different day. The curves are illustrated in Fig 5.12 with the Bmax 

and Kd for each antifoam condition. 
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Bmax Kd
(pmol/mg protein)              (nM)

6.64 (± 2.37)         9.16 (±7.04)

2.29 (± 2.06)         2.83 (±2.06)

1.11 (± 1.0)           22.77 (±33.23)
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Figure 5.12: Binding curve for A2aR produced in the presence of antifoam                                                        

Saturation binding curve for production of A2aR by P. pastoris in the presence of 0%, 1% P2000 and 0.5% 

J673A  bound to increasing concentrations of[
3
H]ZM241285. Bmax in pmol/mg protein and Kd in nM. 

Standaed error is shown in brackets and n = 4. Bmax P = 0.048 measured by one-way ANOVA. 

 

The highest Bmax was obtained for the A2aR samples without antifoam present which was 

6.64 pmol/mg protein. The lowest Bmax was seen in the presence of 0.5 % J673A which 

supports the data in Figures 5.11 at 1.11 pmol/mg protein. 1% P2000 had the highest Bmax 

out of the two antifoam conditions tested, however this was 2.29 pmol/mg protein and 

lower than that achieved without antifoam. This is consistent with the data from Fig 5.11 

that also showed a higher yield of protein was produced with the control culture. In 

experiments conducted by Fraser, for membrane preparations of A2aR produced using P. 

pastoris, the Bmax was 8.5 ± 0.1 pmol/mg membrane protein. This value is higher than the 

Bmax values achieved in these experiments, however theophylline was not added which is 

known to improve the yields[76] and this could account for the slightly lower values here. 

 

The lowest Kd was seen with the 1% P2000 samples at 2.83 nM, and the highest with 0.5% 

J673A at 22.77 nM. The Kd for the 0% samples was 6.64 nM, suggesting that although the 

Bmax was lower for the 1% P2000 samples, the affinity of the ligand for the receptor was 

slightly higher than in the presence of 0% antifoam. Fraser’s membrane-bound A2aR Kd 
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values varied slightly between samples; Kd = 0.35 ± 0.02; 0.79 ± 0.06; 1.39 ± 0.12 nM, but 

were lower than those achieved in these experiments.  

 

The error values are high for these data, but the curves were performed on different days 

and variability was seen between these measurements. It has been noticed in the laboratory 

that the A2aR appears to degrade over time once membrane preparations have been isolated. 

This may explain why there was variation between binding curve results performed on 

different days. 

 

 

5.5 Summary 

In bioreactors, the opposite effects were observed than in the shake flask GFP experiments. 

While high concentrations had previously resulted in higher total yields of GFP in flasks, in 

bioreactors low concentrations led to higher total yields. The best antifoam was SB2121 at 

0.1% which produced 60 mg/L. The trend for the best and worst antifoams however 

remained similar to that for the shake flask experiments. When the total GFP yield data 

were normalized, the trends were similar to the total yield data, with 0.1% antifoams still 

producing much higher yields of GFP per dry cell weight, except for Antifoam C. For this 

antifoam, the increase in total yield in bioreactors appears to be due to the growth of the 

cells. The change in medium from BMMY to minimal medium was also investigated; the 

trend in GFP yield for cultures grown in minimal medium in shake flasks however was the 

same as for BMMY so this does not account for changes in the trends when scaling up from 

shake flasks into bioreactors.  

 

When P2000 and J673A were tested upon bioreactor cultures of A2aR, it was found that 

whereas in shake flasks J673A had produced the least detrimental effect upon protein yield 

and P2000 had led to the lowest yield, the opposite was true in bioreactors. However, the 

control culture containing approximately 10 µL of Antifoam A, still produced a higher 

yield of A2aR than both antifoam conditions. A binding curve showed that the Kd was 

lowest for 1% P2000 than the control, suggesting that although less protein had been 

produced, the affinity of the receptor for the ligand was higher for cultures in the presence 
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of this antifoam. J673A had a higher Kd than both the control and P2000 samples. 

Bioreactor cultures producing EPO in the presence of antifoams were inconclusive as to the 

effect of the antifoams upon the yield due to smearing and the presence of several bands 

which could be attributed to several different glycoisoforms. 

 

In bioreactors, the effect of the antifoams upon kLa was still variable depending upon the 

type and concentration. SB2121 was the only antifoam this time to decrease the kLa at 

every concentration tested. The data suggest that antifoams have a more positive effect 

upon kLa in bioreactors than they do in shake flasks. Bioreactors containing 0.1% and 1% 

J673A without DO control during the induction showed that DO is important for the 

growth of the cells and the production of recombinant protein. At 0.1% J673A, the kLa was 

decreased from the control kLa, and at 1% the kLa remained the same. These factors did not 

appear to influence the growth of the culture positively, therefore the effects of J673A at 

these concentrations did not benefit the growth of the cells. At 70% DO however, there was 

still a difference between the total yield of GFP produced, suggesting that the antifoam 

effect upon DO does not contribute significantly to the increases in yield observed. 

 

Based on these findings and from shake flasks it is likely that another mechanism is 

responsible for these results or a combination of factors is involved. 
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6. DISCUSSION 

 

The investigations described in this thesis have shown that antifoams can influence the 

yield of recombinant proteins produced by yeast, on both a small scale in shake flasks and 

on a large scale in bioreactors. There are a range of different types of antifoam available, 

some of which destroy foam more effectively than others. The concentrations at which 

antifoams affect protein yields is dependent upon the type of antifoam, the recombinant 

protein itself and the system it is produced in. The antifoams were found to affect the 

growth of the cells, the ability of the cells to secrete or retain protein and also the kLa.  

 

 

6.1 The effect of antifoams upon recombinant protein yield                         

Antifoams can be split into two categories of fast and slow antifoams, depending upon their 

mechanism of foam destruction. Slow antifoams are often oils which destroy foam over a 

longer period of time. Fast antifoams are generally mixed agents which enter foam films 

within a short space of time and destroy them by the bridging-stretching mechanism[92]. It 

has also been observed that the most effective agents at destroying foam are those with the 

most efficient oil film spreading characteristics[206]. Due to the rapid destruction of the 

foam by all the agents investigated in the Bartsch test in Chapter 3, these antifoams fall into 

the category of fast antifoams.   

 

One of the least effective agents Antifoam C, is a 30% aqueous emulsion of Antifoam 

A[192] which may have contributed to the reduced activity compared to the other agents. 

This does not however appear to influence the ability of this antifoam to increase the yield 

of protein, although out of the panel of antifoams, it possessed the weakest ability to 

increase the yield of protein.  Antifoam J673A produced the best foam destruction results, 

which coincides with one of the best increases in protein yield observed out of these 

antifoams.  This antifoam is an alkoxylated fatty acid ester on a vegetable oil base and it is 

known that vegetable oils can alter the structure of foams by increasing bubble size and 

reducing the stability of the foam[202]. Antifoam SB2121 also had a larger effect upon 
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increasing the total yields of GFP compared to Antifoams A and C and was better at 

destroying foam. P2000 however, produced the highest yield of GFP, but was worse at 

destroying foam than all the agents but Antifoam C. There is a trend between the ability of 

the panel of antifoams to destroy foam and increase the yield of GFP in shake flasks, except 

for antifoam P2000. A better understanding of the components present in each antifoam is 

required to determine the mechanisms and differences in foam destruction by each 

antifoam.  

 

Other agents with similar properties such as PEG and EG appeared not to have a benefit 

upon recombinant GFP production. It seems that there is a common mechanism or a direct 

link between foam destruction and recombinant protein yield, which is supported by the 

Bartsch test data.  It has also been demonstrated that the effects of the antifoams upon GFP 

production can be scaled up to larger volumes in shake flasks. This could therefore possibly 

be of benefit to those producing recombinant proteins in these systems without access to 

the much more costly large scale bioreactors and associated equipment. 

 

  

6.1.1 The effects of antifoam upon GFP yields 

In the 100 mL shake flask study of the effect of antifoams upon GFP production, addition 

of the five antifoams tested increased the total yield of secreted recombinant GFP produced 

by 20 mL P. pastoris cultures. Generally, the total GFP yield secreted into the culture 

medium was increased when antifoam was added at concentrations of at least 0.4% v/v 

compared with the 0% antifoam control. These concentrations are higher than those that 

would be used for defoaming purposes in bioreactors, which are normally below 0.1%, and 

which caused no effect in these experiments. The biggest effect was seen with addition of 

1% P2000 to the cultures, and the total yield of GFP was increased from 244 µg to 422 µg. 

Addition of 1% J673A to a 20 mL culture yielded 394 μg GFP compared with 246 μg GFP 

when there was no antifoam present. This is notable as J673A is approved for industrial 

use. 
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When the specific yield of GFP was calculated for shake flask cultures of P. pastoris 

producing GFP, there was found to be no statistically significant difference in the specific 

yield at each antifoam concentration compared with the control for cultures containing 

P2000 and SB2121 (with the exception of 1% P2000). This finding suggested that the 

enhancements in total yield due to P2000 or SB2121 addition might be attributable to 

changes in the number of the cells since there was no change in the yield per cell. This 

suggested at least two methods of action were responsible for the effects of the antifoams 

upon GFP production. In bioreactor cultures, it was found that cultures containing 

Antifoam C and P2000 at 0.1% contained a greater number of cells which contributed to 

the increases in GFP yield compared to those containing higher concentrations. 

Interestingly, slightly more GFP appeared to be produced per mg of cells by cultures 

containing higher concentrations of antifoam, although the total yields were greater with 

0.1% antifoam due to greater numbers of cells in these cultures.   

 

 

6.1.2 The influence of antifoams upon culture growth rates 

The growth rates for the log phase cultures in the presence of the antifoams suggest that 

cultures containing 0.8% Antifoam C had the slowest growth, whereas the highest yielding 

antifoams, J673A, P2000 and SB2121 also had higher growth rates, with J673A growing 

the fastest at (µ = 0.19 h-1). A similar observation was made by Holmes et al, where J673A 

increased the growth of P. pastoris and J673A, P2000 and SB2121 increased the growth of 

S. cerevisiae producing a recombinant Fc fusion protein in shake flasks[82]. Increased 

growth rates have been found to lead to increased productivity[184, 207] which is true for 

0.6% Antifoam A, 1% J673A, 1% P2000 and 1% SB2121 cultures which grew at similar or 

higher growth rates than the control cultures and produced a higher yield of GFP. However, 

some studies aiming to control growth rates in order to improve specific productivity (qp) 

have found that maximal specific growth rates did not relate to maximal specific 

productivity[208-211]. It has also been found that high levels of protein expression may 

lead to a reduction in specific growth rate[69]. This could explain the results obtained for 

Antifoam C at 0.8% which grew at a lower growth rate than the control but still produced a 
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higher yield of protein. It seems that the relationship between growth rate and productivity 

varies depending upon the specific parameters of the cultures.   

 

Antifoams have been shown to influence the permeability of yeast cells as well as the sterol 

distribution[193]. If the antifoams in the P. pastoris cultures producing GFP had affected 

the membrane permeability by altering the sterol composition and leading to an increase in 

diffusion of nutrients or methanol into the cells, this may have allowed the cells to grow at 

a higher rate, as an increasing substrate uptake rate has been correlated to increasing growth 

rates[184]. In addition, the cells may also have produced a higher yield of recombinant 

protein due to a higher nutrient uptake rate, as increases in specific uptake rate has been 

linked to increases in specific productivity[184, 212]. This suggests that certainly in the 

case of antifoams J673A, P2000 and SB2121, an increase in nutrient uptake caused by an 

alteration of the permeability of the membrane could have lead to a higher growth rate and 

as a result an increase in protein yield. TAM data suggests that in the presence of J673A 

there was a difference in metabolism compared to control cultures. This could be as a result 

of increased nutrient uptake thereby altering the metabolism of the cells. Antifoam A, and 

most notably Antifoam C, grew more slowly and TAM data for these antifoams was 

inconclusive. This may suggest a different mechanism for the increase in GFP yield for 

these antifoams. 

 

 

6.1.3 The influence of antifoams upon secretion 

Combining flow cytometry and fluorimetry data showed that the antifoams can influence 

the amount of GFP retained inside the cell as well as the amount secreted into the medium. 

Antifoam A, Antifoam C and J673A enhanced the GFP secreted compared to 0% antifoam 

suggesting that the increase in total yield observed could be due to this secretion effect. 

This is consistent with an earlier study which suggested that antifoams can affect cell 

permeability in yeast by perturbing sterol biosynthesis which then alters the permeability of 

the membrane[193]. It has recently been shown that alterations in the ergosterol 

biosynthesis pathway have been linked with increases in recombinant protein secretion and 

that surfactants may affect the membrane fluidity also leading to a greater amount of 
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secreted protein[194]. Antifoams P2000 and SB2121 produced a higher total yield of GFP 

compared to the other antifoams as discussed in Chapter 3, however the flow cytometry 

data showed that a greater proportion of this protein was retained inside the cell. This is 

also clearly visible in the fluorescence microscopy images of the cultures (Fig. 3.21), with 

P2000 and SB2121 cells appearing greener than the others. The increases in yield in the 

presence of Antifoam A, C and J673A could therefore be due to the fact that the GFP is 

secreted more efficiently from the cell as a result of increased permeability of the 

membrane. This suggests that the antifoam effect may be especially beneficial for the 

production of soluble proteins. Although more GFP was produced overall, it seems that for 

these antifoams, the main reason for increase in total GFP was due to an increase in the 

secretion of the GFP. The presence of the antifoam may have not only allowed more GFP 

to be secreted, but this increase in secretion may have in turn reduced a bottle-neck and 

allowed the cell to produce more recombinant protein as it did not accumulate inside the 

cell. 

 

 

6.1.4 Influence of antifoams upon membrane composition 

Yeast plasma membranes contain polar lipids such as glycerophospholipds and 

sphingolipids. Non-polar lipids consist of free fatty acids, diacylglycerols, triacylglycerols, 

sterols and steryl esters[213]. Ergosterol is a major component of yeast plasma 

membranes[214-216] and helps to maintain the structure of the membrane[215] as sterols 

are rigid hydrophobic molecules with a polar hydroxyl group[217]. Membrane fluidity is 

important for nutrient uptake and exchange of substrates[217], and affects the movement 

and activity of membrane proteins and insertion sites[218]. Fatty acids and sterols affect the 

fluidity of the membrane[218]. Preliminary analysis of electrospray mass spectrometry data 

suggested changes in relative phosphatidylcholine composition in 1% P2000 samples and 

changes in relative phosphatidylinositol composition for all antifoam-containing cultures 

compared to controls. These findings imply that the antifoams may have affected the lipid 

composition of the membranes which has been suggested previously[193]. However, a 

more detailed analysis of the data is required in addition to investigation of the antifoam 
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effects upon other lipid classes to confirm these findings and correlate them to 

improvements in secretion of recombinant protein or more efficient nutrient uptake.   

 

 

6.1.5 Antifoams as a carbon source 

There is evidence to suggest that vegetable oils may be metabolized as a carbon 

source[202], but there is no information regarding the ability of yeast to metabolize the 

other agents such as silicone polymers or polyalkylene glycols. The investigation into 

adding the antifoam agents into medium as a carbon source (denoted BMAY) revealed that 

P. pastoris could grow in medium without carbon sources (denoted BMY). It appeared that 

the cells in these cultures may have utilized the peptone and YNB for growth which 

became limiting resulting in lower ODs being reached than if either glycerol or methanol 

were present. Cultures containing 1 mL (5% v/v) J673A and SB2121 reached similar ODs 

as cultures in the medium without any antifoam added. This implies that these two 

antifoams were not beneficial to the growth of the cells at this concentration. Antifoam C 

and most significantly P2000 actually appeared to inhibit the growth of the yeast. Antifoam 

A was the only antifoam at this concentration that allowed the cells to grow more than the 

control implying that this antifoam can be metabolized and utilized by the cells for growth.  

 

When P2000 and Antifoam A were added at 10% v/v, the OD for the culture containing 

Antifoam A increased up to 17, which is almost as high as cultures growing on glycerol, 

with ODs between 18-25. The P2000 culture grew almost as well as the control culture, 

suggesting that certain antifoams need to be added at higher concentrations to prevent 

inhibition of growth and for any useful effect upon growth to occur. It has been found that 

certain strains of bacteria, such as Sphingomonads, Pseudomonas sp. and 

Stenotrophomonas maltophilia can utilize polypropylene glycols as well as polyethylene 

glycols as a sole carbon source[219]. This was not found with the concentrations of P2000, 

which is a polypropylene glycol, in these experiments. However, the OD increased upon 

increasing the volume so it is possible that when added at high concentrations it could 

provide enough of a carbon source to be metabolized enabling the yeast to grow. 
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6.1.6 The influence of culture format 

Bioreactor cultures of P. pastoris producing GFP had the opposite effect when antifoams 

were added at high concentrations. This main difference from scaling up from shake flasks 

to bioreactors is the oxygenation in the medium, which is discussed further in section 6.2. It 

is likely that the DO in bioreactors is already sufficient for the growth of the cells in both 

shake flasks and bioreactors, and although the antifoams did influence the kLa, this did not 

affect the way the cells grew. This suggests that other mechanisms are responsible, such as 

an alteration to membrane permeability leading to better secretion of protein or a faster 

uptake rate of nutrients. 

 

 

6.1.7 Protein-dependent effects 

When the effect of the antifoams upon other proteins was evaluated in shake flasks, it was 

found that of the concentrations tested, the control cultures produced a higher yield of 

protein for both EPO and A2aR. The antifoams at these concentrations tested appeared to be 

detrimental to the production of these proteins, however J673A had the best effect in both 

cases. When the A2aR investigation was carried out in bioreactors, it was found that P2000, 

which had previously had the most detrimental effect upon protein production produced a 

higher yield of A2aR than J673A. In shake flask experiments for S. cerevisiae WT and 

TM6* strains producing A2aR, a decrease in yield was observed for both strains when 

increasing the Antifoam A concentration from 0.6% to 1%. The effect of Antifoam A upon 

kLa may have contributed to these results in the case of the TM6* strain which has been 

found to produce a higher yield of A2aR at high DO conditions. This evidence highlights 

the fact that it is important to evaluate the antifoams and different concentrations in each 

bioprocess system and for each recombinant protein, as the yield could be boosted or it 

could be severely decreased. If further concentrations had been tested upon EPO and A2aR 

cultures, it is possible that a combination would have been discovered that did boost the 

yield. It is likely that as the control cultures produced the best yields in both the shake 

flasks and bioreactors, that the optimum antifoam concentrations for these two proteins is 

low.   
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6.2 The effects of antifoams upon the oxygenation of recombinant 

cultures 

The shake flask investigations on oxygenation of the cultures showed that in the presence 

of antifoams, there was no overall difference in the DO present in the media compared to 

cultures without antifoam. This is most likely to be because the addition of the antifoams 

had not led to a noticeable effect upon the DO, but may possibly be due to the fact that the 

cells had consumed any extra dissolved oxygen made available. The bioreactor experiments 

conducted without any DO control during the induction phase clearly demonstrated that the 

cells could not grow under these conditions. This suggests that the effects, if any, of the 

antifoams upon DO are small and do not contribute substantially to the growth of the cells. 

This would agree with the shake flask DO findings, if as the trace may suggest, there was 

no change in the DO between control and antifoam cultures. 

 

When the effects of the antifoams upon how readily the oxygen dissolves into the medium 

(the kLa, which therefore influences the DO available to cells) was investigated, a different 

effect was observed upon the kLa for each of the antifoams at different concentrations and 

between shake flasks and bioreactors. The kLa of a system can be influenced by several 

factors such as the properties of the medium like viscocity, the presence of organisms and 

their by-products. Additions to the medium such as antifoams also have an effect[57]. 

Changes to the kLa can be due to effects on kl (m/s) and on a (specific surface area m-1)[59, 

200]. It has been suggested that antifoams enhance bubble coalescence and increase bubble 

size leading to a reduction in the specific surface area therefore lowering kLa[59, 83, 93, 94, 

200].  However it has also been previously observed by Morao et al and Liu et al that at 

higher concentrations of antifoam agents the kLa rises. They concluded that this could be 

due to the detrimental effects of bubble coalescence and reduced a reaching a limit and 

contacting bubbles coalescing suppressing surface motility and decreasing surface tension.  

This then leads to decreasing bubble size and kLa rises again. Secondly it is possible that 

antifoams accumulate oxygen from rising bubbles as they have good oxygen solubility, and 

release it to the aqueous phase. Bubbles bursting at the surface also disperse small drops of 

the antifoam causing more oxygen to be released[58, 59]. In the case of oils which have a 

greater oxygen solubility than water, oil droplets may increase oxygen permeability in the 



 197 

water boundary layer of the gaseous dispersion[202]. Koide suggested that the ability of 

antifoams to reduce kL is less for bubble swarms than for a single bubble[97]. Yagi et al 

suggested that surfactants can lead to rippling or eddying which influences the kLa . They 

found that kL was not greatly affected by antifoam agents, and their main effect was upon 

a[57]. This could explain why a change in the trends of kLa were observed between the 

shake flasks and bioreactors, as there is a significant difference in the surface area of the 

cultures.  

 

In the shake flask investigations there was no correlation between the yield of GFP and the 

kLa. There also does not appear to be any trend between the kLa and protein yield in 

bioreactors. It is therefore possible that the kLa is already providing sufficient DO for the 

cells to grow and produce protein and is not a limiting factor, suggesting a combination of 

factors is responsible for the increases in GFP yield observed.  As mentioned previously, in 

bioreactor cultures of P. pastoris producing GFP, a switch in the concentration effects of 

the antifoams was observed. A major difference between shake flasks and bioreactors is the 

oxygenation. However, investigations into the effect of the antifoams upon the kLa and the 

actual DO concentrations did not suggest that the antifoams had improved the yield by 

influencing these parameters. The precise reason for the switching in concentration effect 

of the antifoams upon scale up could not be explained from these investigations. However, 

a combination of factors is responsible for the way the cells grow and produce recombinant 

protein, which varies with each individual bioprocess. Therefore changing conditions 

changes the effects and interactions of these parameters, and when the culture conditions 

are scaled up, different factors to those in the shake flasks would affect the cultures 

resulting in a different antifoam effect. For these reasons the optimum conditions, including 

antifoam addition, should be evaluated for each bioprocess and system. 

 

 

6.3 The effects of antifoam upon protein purification 

GFP was successfully purified using nickel affinity columns and in two cases, with J673A 

and SB2121, appeared to improve the amount of GFP purified. This could be explained by 

the antifoams aiding the binding of the protein to the resin beads, as there also appeared to 



 198 

be less GFP present in the flow through of these samples. For this protein and purification 

method, high concentrations of antifoam are not an issue.   

 

 

6.4 Conclusion and future work 

The aim of this thesis has been to investigate the range of effects that antifoams could 

influence in bioprocesses to highlight the importance of careful selection of antifoam type 

and concentration for each individual process as well as to provide information regarding 

their mode of action. The main focus of this work has been to determine the effects of high 

concentrations of antifoam addition to cultures, as low concentrations are more frequently 

used due to concerns that high concentrations affect purification. This study has not only 

shown antifoams added at high concentrations in shake flasks can increase protein yields, 

but also that they do not have a detrimental effect upon purification of the protein.  

 

The biological effects of antifoams are poorly understood and this is in part due to the 

range of types available and the lack of information regarding their compositions being 

available from the manufacturers. Antifoams have commonly been added to bioprocesses 

without considering their possible effects, but as an additive, these effects should be 

assessed. This work has demonstrated that each antifoam not only destroys foam with a 

range of effectiveness, but may also affect the cells and the proteins themselves.  

 

From these studies, it has been demonstrated that the concentration of antifoams added to 

the process can vastly influence the yield of protein, to both positive and negative effect. 

The type of antifoam, too is important, as some antifoams, such as J673A seem to have an 

overall less detrimental effect than others, for example Antifoam C. The system to which 

the agents are added can also completely reverse the effects observed, namely when scaling 

up from a shake flask into a bioreactor. Finally, the protein that is to be produced is also an 

important factor; certain antifoams and concentrations, while beneficial to the production of 

one protein could prove to be detrimental to the production of another.  
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This study found that antifoams can increase the yield of GFP, by enhancing its secretion, 

improving growth rates or increasing biomass. While the antifoams were found to increase 

and decrease kLa both in shake flasks and bioreactors, it did not appear to be sufficient to 

cause any change to the productivity of the cells. Their effect upon the DO in shake flasks 

was found to be minimal. This suggests that their influence upon these factors is not as 

important as the many articles detailing their effects suggest. Instead their effects upon the 

cells themselves, such as effects upon the permeability of the membrane leading to an 

increase in nutrient or methanol uptake rate, seems to be of more consequence. 

 

Some of the mechanisms investigated in this study which may explain the improvements in 

GFP yield is summarized below for each antifoam:  

 Antifoam A: Improvements to protein secretion 

 Antifoam C: Improvements to protein secretion         

 J673A: Increased specific growth rate (and possibly higher nutrient uptake) and 

improvements to protein secretion  

 P2000: Increased specific growth rate (and possibly higher nutrient uptake) and 

increased biomass                       

 SB2121: Increased specific growth rate (and possibly higher nutrient uptake) and 

increased biomass 

                                                                                                                                                                                                                                                                           

Of the antifoams tested, J673A produced the most beneficial effects overall. It was the most 

effective antifoaming agent at foam destruction, and produced some of the biggest 

increases to protein yield in both shake flask and bioreactor GFP cultures. In shake flask 

cultures of EPO and A2aR at the concentrations tested, it had the least detrimental effect and 

produced similar yields to the control cultures. Cultures in shake flasks containing 1% 

J673A also had higher growth rates than with the other antifoams. A summary of the 

effects of the antifoams is shown in Table 6.1. 
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In summary, the investigations conducted in this thesis have illustrated that antifoams, 

could increase the productivity of a process or hinder it. The benefits of investigating the 

optimum type of antifoam and concentration were demonstrated by experiments in both 

shake flask and bioreactor cultures of P. pastoris producing GFP where significant 

improvements in yield were observed. The importance of selecting the most appropriate 

concentration was also highlighted by investigations with antifoams upon EPO and A2aR 

yield. It is not likely that the precise mechanisms of antifoams action will be easily 

understood, especially as has been shown by this work, that a combination of factors may 

have led to the effects upon protein yields. For these reasons, it is important to thoroughly 

evaluate the effects of antifoam addition to fermentation cultures on both a small and large 

scale. 

 

As the antifoams affect several factors, there is still useful research that could be conducted 

in this area. Future work could include testing the antifoams upon EPO and A2aR at a wider 

range of concentrations to determine whether antifoams could be used to boost the 

productivity of these proteins as well as GFP. The effects of different concentrations of 

antifoam upon the binding affinity of A2aR and its ligands could also be informative if the 

presence of antifoams could potentially improve the affinity. Further concentrations could 

also be tested in bioreactors with GFP cultures at lower concentrations to determine 

whether 0.1% is actually the highest yielding concentration. TAM data suggested that there 

may be a difference in metabolism of the cells in the presence of J673A. This coupled with 

an increase in nutrient or substrate uptake due to a change in the permeability of the cells 

could explain its mechanism of action. This theory could be further explained by measuring 

the rate of methanol uptake using a methanol probe in the presence of different antifoams 

and concentrations. Polysome profiling could also reveal an insight into the effects of 

antifoams upon translation within the cell which in turn could provide more information 

about how the cells are growing in the presence of these agents.  

 

Previously, antifoams have been added to bioprocesses with little regard to their possible 

influence. This study has demonstrated their effect upon cells and recombinant protein 

production, and emphasizes the benefit of their optimization.  
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8. APPENDICES 

 

8.1. RCP-TEV-GFP sequence alignment 

Alignment of the plasmid DNA sequence with the expected construct sequence using          

T-Coffee software version 8.99. 
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Translated: 
 
            L F A A S S A L A A P V N T T T E D E T A Q I P A E A V I G Y S D L E G D F 

D V A V L P F S N S T N N G L L F I N T T I A S I A A K E E G V S L E K R E 
A E A A G I L Met E V K D A N S A L L S N Y E V F Q L L T D L K E Q R K E 
S G K N K H S S G Q Q N L N T I T Y E T L K Y I S K T P C R H Q S P E I V R 
E F L T A L K S H K L T K A E K L Q L L N H R P V T A V E I Q L Met V E E 
S E E R L T E E Q I E A L L H T V T S I L P A E P E A E Q K K N T N S N V A 
Met D E E D P A A A Q P A V S D R Y L E N L Y F Q G P R R P L Met S K G E 
E L F T G V V P I L V E L D G D V N G H K F S V S G E G E G D A T Y G K L 
T L K F I C T T G K L P V P W P T L V T T F S Y G V Q C F S R Y P D H Met K 
R H D F F K S A Met P E G Y V Q E R T I S F K D D G N Y K T R A E V K F E 
G D T L V N R I E L K G I D F K E D G N I L G H K L E Y N Y N S H N V Y I T 
A D K Q K N G I K A N F K I R H N I E D G S V Q L A D H Y Q Q N T P I G D 
G P V L L P D N H Y L S T Q S A L S K D P N E K R D H Met V L L E F V T A 
A G I T H G Met D E L Y K I L E Q K L I S E E D L N S A V D H H H H H H  
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8.2 Human growth hormone sequence alignment                                       

Alignment of the plasmid DNA sequence with the expected construct sequence using          

T-Coffee software version 8.99. 
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Translated: 
 
            Met R F P S I F T A V L F A A S S A L A A P V N T T T E D E T A Q I P A E A 

V I G Y S D L E G D F D V A V L P F S N S T N N G L L F I N T T I A S I A A 
K E E G V S L E K R E A E A E F H H H H H H I E G R F P T I P L S R L F D N 
A Met L R A H R L H Q L A F D T Y Q E F E E A Y I P K E Q K Y S F L Q N P 
Q T S L C F S E S I P T P S N R E E T Q Q K S N L E L L R I S L L L I Q S W L 
E P V Q F L R S V F A N S L V Y G A S D S N V Y D L L K D L E E G I Q T L 
Met G R L E D G S P R T G Q I F K Q T Y S K F D T N S H N D D A L L K N Y 
G L L Y C F R K D Met D K V E T F L R I V Q C R S V E G S C G F Stop  
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8.3 Presentations and publications arising from this thesis 
 
 
Presentation given at the IChemE Young Researchers Meeting 2010 and awarded first 

prize. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The effect of antifoam on recombinant protein yield 

By Sarah Routledge
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Fermentation

Exploitation of microorganisms
Yeast used as expression systems for recombinant protein production –

Pichia pastoris

Proteins
Insulin
Human growth hormone 

GFP

Shake flasks
Initial screening for conditions

Bioreactors 
Culture thousands 

of litres

Foaming and Chemical Antifoams

Foaming reduces efficiency
Increased costs
Reduced productivity
Detrimental effects

Both positive and negative effects observed

Observation upon
Foam destruction
kLa – volumetric mass oxygen transfer coefficient
Concentration effect
Media
Growth of organisms
Protein production

Usually added to a process without 
consideration of the effects
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Antifoam A Antifoam C

P2000

J673A SB2121

Antifoams Affect Total Protein Yield in Shake 

Flasks

All antifoams increased total protein yield at higher 

concentrations than those normally used

Antifoams A and C show significant effect upon yield of GFP 

above 0.6%

Antifoam J673A shows the best effect of the antifoams tested at 

0.8%

The effects of antifoam addition are not due to changes in 

growth rate of the cultures, except for P2000 and SB2121 
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Correlation of kLa and Protein Yield

Antifoams had a positive effect upon the kLa for each of the antifoams except SB2121.  

The only antifoam that increased the kLa at each concentration was Antifoam C. 

kLa at increasing concentrations of P2000 is correlated with the yield of GFP obtained in 
shake flasks at the same concentrations  

R2 of 0.7 

P value > 0.05  

The rest of the antifoam kLa measurements and yields of GFP were not found to have 
any correlation, suggesting that changes in kLa are not the mechanism leading to 
increased protein yield for these antifoams.
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Influence of Antifoams Upon Oxygen Availability

Volumetric mass oxygen transfer coefficient

kLa (t2-t1) = ln     c1,∞ - c1,t1
c1, ∞ - c1,t2

Antifoams reported to reduce kLa at low concentrations

Certain antifoams may increase kLa at higher concentrations 
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Flow Cytometry

Determine whether more GFP was retained or secreted under 

the influence of antifoams

Flow cytometry data used to determine retained GFP

Total GFP yield used to determine secreted GFP

Assume control data = 1 to compare between antifoam effects

Antifoam A - 52%

Antifoam C – 51%

J673A – 58%

P2000 – 38%

SB2121 – 31%

Effect of Antifoams on GFP Retained and Secreted 

by P. pastoris X33

**** ** * ** * *** ****** *** ***
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Summary

Antifoams can increase recombinant protein yield at higher 
concentrations than normally used in shake flasks
They affect the kLa in bioreactors both positively and negatively 
depending upon the antifoam and the concentration
Increased kLa was correlated to increased yield for P2000
They can alter the ability of the cell to secrete GFP
Antifoams tested can be split into two different groups by their 
mechanism of action

Changes to growth
P2000
SB2121

Improved secretion:
Antifoam A
Antifoam C
J673A
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Antifoam addition to shake flask cultures of
recombinant Pichia pastoris increases yield
Sarah J Routledge1, Christopher J Hewitt2, Nagamani Bora1 and Roslyn M Bill1*

Abstract

Background: Pichia pastoris is a widely-used host for recombinant protein production. Initial screening for both

suitable clones and optimum culture conditions is typically carried out in multi-well plates. This is followed by

up-scaling either to shake-flasks or continuously stirred tank bioreactors. A particular problem in these formats is

foaming, which is commonly prevented by the addition of chemical antifoaming agents. Intriguingly, antifoams are

often added without prior consideration of their effect on the yeast cells, the protein product or the influence on

downstream processes such as protein purification. In this study we characterised, for the first time, the effects of

five commonly-used antifoaming agents on the total amount of recombinant green fluorescent protein (GFP)

secreted from shake-flask cultures of this industrially-relevant yeast.

Results: Addition of defined concentrations of Antifoam A (Sigma), Antifoam C (Sigma), J673A (Struktol), P2000

(Fluka) or SB2121 (Struktol) to shake-flask cultures of P. pastoris increased the total amount of recombinant GFP in

the culture medium (the total yield) and in the case of P2000, SB2121 and J673A almost doubled it. When

normalized to the culture density, the GFP specific yield (μg OD595
-1) was only increased for Antifoam A, Antifoam

C and J673A. Whilst none of the antifoams affected the growth rate of the cells, addition of P2000 or SB2121 was

found to increase culture density. There was no correlation between total yield, specific yield or specific growth

rate and the volumetric oxygen mass transfer coefficient (kLa) in the presence of antifoam. Moreover, the antifoams

did not affect the dissolved oxygen concentration of the cultures. A comparison of the amount of GFP retained in

the cell by flow cytometry with that in the culture medium by fluorimetry suggested that addition of Antifoam A,

Antifoam C or J673A increased the specific yield of GFP by increasing the proportion secreted into the medium.

Conclusions: We show that addition of a range of antifoaming agents to shake flask cultures of P. pastoris

increases the total yield of the recombinant protein being produced. This is not only a simple method to increase

the amount of protein in the culture, but our study also provides insight into how antifoams interact with

microbial cell factories. Two mechanisms are apparent: one group of antifoams (Antifoam A, Antifoam C and

J673A) increases the specific yield of GFP by increasing the total amount of protein produced and secreted per

cell, whilst the second (P2000 or SB2121) increases the total yield by increasing the density of the culture.

Background

The laboratory-scale production of recombinant pro-

teins using P. pastoris requires that cells are cultured

either in large shake flasks or in continuously stirred

tank bioreactors. In these vessels, the formation of foam

is an issue that requires intervention. This is in contrast

to the situation in the small vessels typically used in the

initial stages of protein production experiments where

foaming is minimal [1].

Foaming can lead to reduced yields since bursting

bubbles can damage proteins [2] and can also result in a

loss of sterility if the foam escapes [3]. In bioreactors,

foaming can lead to over-pressure if a foam-out blocks

an exit filter. To prevent the formation of foam,

mechanical foam breakers, ultrasound or, most often,

the addition of chemical antifoaming agents (or “anti-

foams”) [3] are routinely employed.

There is a well-established literature on antifoams [3].

One useful classification categorizes them as either

* Correspondence: r.m.bill@aston.ac.uk
1School of Life and Health Sciences, Aston University, Aston Triangle,

Birmingham B4 7ET, UK
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hydrophobic solids dispersed in carrier oil, aqueous sus-

pensions/emulsions, liquid single components or solids

[4-6]. Several mechanisms of action for these agents

have been suggested which include bridging-dewetting,

spreading fluid entrainment and bridging-stretching [7].

Many are commercially-available, with 19 being sold by

Sigma-Aldrich alone. While little information is routi-

nely given about their composition, their specific anti-

foam properties have been thoroughly investigated.

These include their effects on foam height with time,

their influence on the volumetric oxygen mass transfer

coefficient (kLa) of the system, their gas hold-up charac-

teristics and their globule size and distribution in rela-

tion to their action upon foams [3,5,7-11]. Such studies

have been performed in various growth media in both

the absence and presence of cultures of prokaryotic and

eukaryotic microbes.

In contrast, literature on the biological effects of anti-

foams on recombinant protein yields from microbial cell

factories is more limited. Additional file 1: Table S1

shows an analysis of representative examples of this

body of work including previous studies on four bacter-

ial hosts and one yeast species. In some cases, the addi-

tives tested are not antifoams sensu stricto. It is also

noteworthy that the yeast, Schizosaccharomyces pombe,

is not widely used in biotechnology applications and

that there have been no prior studies on the biological

effects of antifoam addition to recombinant P. pastoris

cultures. A recent review stated that in the last 15 years,

80% of all recombinant genes reported in the literature

were expressed in either Escherichia coli or P. pastoris

[12]. In this study, we therefore examined five antifoams

that are widely used in controlling the foaming of

recombinant P. pastoris cultures [13-16] in order to ana-

lyze effects over and above that of their de-foaming

action. We looked at polypropylene glycol (PPG) P2000

that is analogous to previously-examined liquid single

components of the PPG-type [11] as well as examples

from other categories such as Antifoam A and Antifoam

C, which are silicone polymers, SB2121, which is a poly-

alkylene glycol, and J673A, which is an alkoxylated fatty

acid ester on a vegetable base and has not previously

been documented in this context: for all antifoams

examined, this was the first report of their effect on the

yield of recombinant GFP secreted from shake-flask cul-

tures of P. pastoris.

Results

We wanted to establish whether antifoams affect recom-

binant protein yield in P. pastoris X33 cultures, and if

so to investigate the underlying mechanisms. To exam-

ine this we chose an experimental system, under the

control of the methanol-inducible AOX1 promoter,

comprising GFP secreted from 20 mL cultures in shake

flasks in the presence of five different antifoams at a

range of concentrations from 0-1% v/v. These concen-

trations are higher than the 0.1% routinely used for

de-foaming purposes. The total amount of GFP in these

20 mL cultures (the total yield) was measured by fluori-

metry 48 h post-induction.

Antifoam addition affects total GFP yield in shake flasks

The total yield of GFP as a function of Antifoam A

addition rose significantly at concentrations of 0.6% and

above (Figure 1A) with no further increases above 1%

(data not shown). A similar but more pronounced trend

was observed for Antifoam C (Figure 1B), which is

unsurprising since Antifoam C is a 30% emulsion of the

same antifoam concentrate as Antifoam A, but with dif-

ferent non-ionic emulsifiers [17]. Figure 1C shows that

addition of 1% J673A almost doubled the total yield of

GFP compared to the control without antifoam, repre-

senting one of the largest effects of the antifoams evalu-

ated. At concentrations above 1%, the total yield of

GFP decreased (data not shown). Addition of P2000

(Figure 1D) also resulted in a significant increase in

total yield at or above 0.6%, while addition of SB2121

(Figure 1E) increased total yield at concentrations above

0.4%. In both cases the largest improvement was

obtained on addition of 1% of the antifoam, again

almost doubling the yield. Overall, the five antifoams

tested all increased the total yield of GFP at concentra-

tions in the range of 0.4-1% v/v. The highest yield was

achieved by adding 1% P2000 (422 μg GFP) followed by

1% SB2121 (396 μg GFP), 1% J673A (394 μg GFP), 0.6%

Antifoam A (373 μg GFP) and 0.8% Antifoam C (348 μg

GFP). All five yields were significantly higher than the

corresponding yields from the 0% control, as shown in

Figure 1.

The effects of antifoam addition are due to changes in

culture density for P2000 and SB2121

To account for any changes in the growth characteris-

tics of the cells on addition of the antifoams, we nor-

malized the total yield to the optical density of the

cultures to obtain the specific yield (μg OD595
-1). OD595

was demonstrated to be a reliable measure of cell den-

sity in these experiments by comparing the number of

cells at a given OD595 in the absence and presence of a

range of concentrations of the different antifoams used

in our study: there was no statistically significant differ-

ence in cell number between cells harvested at a given

OD595 in the absence or presence of all antifoam con-

centrations tested. Typical values were 4.8 × 107 cells/

mL at an OD595 of 20.5 in the absence and presence of

0.5% SB2121.

For Antifoam A, Antifoam C and J673A, the specific

yield data were similar in trend to the total yield data

Routledge et al. Microbial Cell Factories 2011, 10:17
http://www.microbialcellfactories.com/content/10/1/17

Page 2 of 11



(Figure 1A-C): addition of these antifoams in the range

0.6-1% v/v caused a significant increase in specific yield

compared to the control cultures with no antifoam. For

cultures containing P2000 or SB2121, however, there was

no statistically significant difference in the specific yield

at each antifoam concentration compared with

the control except for 1% SB2121 where P < 0.05 (Figure

1D-E). This suggested that the enhancements in total

yield due to P2000 or SB2121 addition might be attribu-

table to changed growth characteristics of the cells. The

specific growth rates (μ) for cultures containing either 1%

P2000 or 1% SB2121 were 0.17 h-1 and 0.18 h-1 respec-

tively compared with 0.17 h-1 for the control samples (0%

antifoam) indicating that the growth characteristics dur-

ing the log phase were not affected by the presence of the

antifoams. However, we noted an increase in OD595 (at

both 24 and 48 h) with increasing antifoam concentration

for both antifoams (Figure 1D-E; 48 h data), which was

less pronounced for Antifoam A, Antifoam C and J673A

(Figure 1A-C). We concluded, therefore, that there was

more than one mechanism of antifoam action: one due

to changed culture density (P2000, SB2121) and a second

due to increased cellular production levels of recombi-

nant GFP (Antifoam A, Antifoam C, J673A).

Antifoam addition does not affect cell viability

We investigated the influence of antifoams on cell viability

by propidium iodide exclusion and flow cytometry. In this

assay, dead cells are stained red [18] and appear in popula-

tion C (Figure 2) while live cells fluoresce green due to

GFP production and appear in population B. The data

shown in Figure 2A suggest that there are no dead

cells present in cultures containing 0% antifoam. Figure 2B

shows that the same result was obtained in the presence of

0.6% Antifoam A. This result was seen for all antifoams

tested.
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Figure 1 Antifoam addition increases the total yield of GFP in 20 mL P. pastoris cultures. Bar charts showing the total yield of GFP (μg) at

48 h in 20 mL P. pastoris cultures following addition of Antifoam A (A), Antifoam C (B), J673A (C), P2000 (D) and SB2121 (E) at concentrations

from 0-1%. The error bars show the respective standard deviations. In all cases n = 9. The numbers within each bar are the corresponding

specific yield (μg OD595
-1) with the respective standard deviations in parentheses (n = 9). The horizontal line is a visual aid to link the mean

optical density (grey squares) for each concentration of antifoam across the full experimental range; error bars show the respective standard

deviations (n = 9). In each case a one-way ANOVA showed that P < 0.001. Asterisks show the significance of the total yield and specific yield

data for each antifoam concentration compared to the respective 0% antifoam control as determined by a Dunnett’s multiple comparison test,

where * = P ≤ 0.05 and ** = P ≤ 0.01.
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The foam destruction capacity of an antifoam is related

to its ability to improve GFP yield

We wanted to understand how the five antifoams

increase total yield and hence began by evaluating their

foam destruction properties. Simple methods of deter-

mining the ability of antifoams to reduce foam are the

Bartsch shaking test [19] and the Ross-Miles pouring test

[20]. A Bartsch shaking test was conducted (Figure 3)

and demonstrated that in the absence of an antifoaming

agent, initial foam destruction was quick until a stable

foam was formed. Foam height reduced slowly and in the

15 min testing time did not reach zero (Figure 3A). The

most effective agent for foam reduction was J673A,

where less foam was formed after initial shaking, and

destruction was rapid. Antifoam C had the least activity

of the agents tested. All antifoams were effective at foam

destruction and most foam was destroyed within one

minute (Figure 3B). Although there was no statistical cor-

relation between foam destruction capacity and either

total or specific yield, J673A was the most effective at

foam destruction and one of the best at increasing GFP

yield, whilst Antifoam C was the least effective.

Improved yields cannot be explained by antifoam-

induced changes in GFP fluorescence

In order to determine whether any of the antifoams

affected the fluorescence of GFP, 1% antifoam was incu-

bated in BMMY for 48 h to mimic the experimental set-

up. This was then spiked with a similar concentration of

recombinant GFP standard to that obtained in Figure 1.

There was no significant difference between the fluores-

cence of GFP in the presence and absence of any of the

antifoams suggesting that they did not influence the

sample readings. The fluorescence values of the anti-

foams themselves were also measured at 1% and found

to be minimal, similar to the buffer control readings.

The kLa characteristics of antifoam-containing cultures are

not correlated with improvements in GFP yield

As P2000 and SB2121 affected the density of the cul-

tures, we investigated the possibility that the oxygen

availability in the system was affected by antifoam addi-

tion and that this could explain increased GFP yields.

The kLa was therefore measured in shake flasks in the

presence of 0-1% v/v of these antifoams. Addition of

0.4% or 0.6% Antifoam A caused a large increase in kLa

compared to the control (Figure 4A), whereas addition

of the related antifoam, Antifoam C, led to an initial

reduction in kLa, which increased on addition of anti-

foam up to 0.8% and then returned to control levels at

1%. After an initial decrease in kLa was caused by J673A

addition up to 0.4%, it remained relatively constant up

to 1%. Addition of P2000 at all concentrations tested

caused relatively minor changes to the kLa. SB2121

addition did not substantially increase the kLa at any of

the concentrations tested. Overall, there was no correla-

tion between kLa and total yield for any of the condi-

tions tested, or with the density of the cultures,

A B

Figure 2 Antifoams do not affect cell viability. Viable cells without antifoam (A) and with 0.6% Antifoam A (as a representative example; B)

are shown. Population A, which is not cellular, comprises events that are related to electronic and particulate noise. Population B comprises cells

with enhanced green fluorescence due to the expression of GFP. Population C is where any dead cells (stained red with propidium iodide)

would be observed.
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suggesting that changes in kLa may not directly lead to

increased protein yield for these antifoams.

DO in shake flasks is not affected by the presence of

antifoams P2000 and SB2121

In addition to measuring kLa, we looked at the dissolved

oxygen (DO) content of the cultures. The effect of 1%

P2000 or 1% SB2121 addition on DO was assessed in

shake flask cultures with PreSens DO patches and online

monitoring. Figure 5 shows that there was no difference

in DO in the flasks in the presence or absence of anti-

foam: after approximately 12 h for each culture condition

the DO in the flasks became limiting. Since functional

GFP can be expressed by anaerobic bacteria and in media

containing 0.1 ppm dissolved oxygen [21], there was no

concern that this would influence our data. DO

decreased as the cells metabolized the methanol present

in the medium and rose once they had consumed it. DO

remained high until additional methanol was added at

which point the DO immediately decreased and utiliza-

tion continued. Methanol concentrations were confirmed

by gas chromatographic analysis (data not shown). Over-

all, there was no difference in the DO content of cultures

containing antifoam and those without.

Addition of Antifoam A, Antifoam C or J637A affects the

total yield of GFP secreted into the medium

We next investigated whether antifoam addition might

have a physical influence on the cells. We therefore

measured the amount of GFP retained in the cell (by flow

cytometry) and that in the culture medium (by fluorime-

try). Figure 6 shows that addition of Antifoam A, Anti-

foam C and J673A caused a statistically significant

increase (P < 0.01) in the amount of GFP secreted into the

medium compared with the 0% antifoam control. The

amount of protein retained in the cells was also greater

suggesting that antifoam addition enhanced the ability of

the cells to produce recombinant GFP. For P2000 how-

ever, more GFP was retained inside the cells compared

with the 0% antifoam control. This is consistent with the

growth of the cells being affected by P2000 addition rather

than resulting in improved secretion efficiency, and also

suggests that there has been some metabolic change to the

cells compared to the control. Data for SB2121 was similar

to that for P2000. We also noted that addition of antifoam

did not cause any change in the total concentration of all

proteins in the supernatant (measured using a bicinchoni-

nic acid (BCA) assay) for cultures containing antifoams at

representative concentrations of 0%, 0.5% and 1%, except

for 0.5% Antifoam C (P < 0.05) and 1% SB2121 ( P < 0.01).

In the presence of these 2 antifoam concentrations, a

decrease of 13-14% was observed in the total protein con-

centration of the supernatant compared to 0% antifoam-

containing control cultures.

Discussion

Antifoams have previously been suggested to alter the

growth of cells and influence protein yield in bioprocesses
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[2,11], but their addition to P. pastoris cultures has never

been examined systematically. In this study, addition of

the five antifoams tested increased the total yield of

secreted recombinant GFP produced by 20 mL P. pastoris

cultures. Generally, the total GFP yield secreted into the

culture medium was increased when antifoam was added

at concentrations of at least 0.4% v/v compared with the

0% antifoam control. Addition of 1% J673A to a 20 mL

culture yielded 394 μg GFP compared with 246 μg GFP

when there was no antifoam present. This is notable as

J673A is approved for industrial use.

Antifoams can be split into two categories of fast and

slow antifoams, depending on their mechanism of foam

destruction. Slow antifoams are often oils which destroy

foam over a longer period of time. Fast antifoams, as

examined in this study, are generally mixed agents

which enter the foam film and destroy it by a bridging-

stretching mechanism [7]. It has also been observed that

the most effective agents at destroying foam are those

with the most efficient oil film spreading characteristics

[22]. The least effective de-foaming agents in this study

were Antifoams A and C, which are 30% aqueous emul-

sions of Antifoam A concentrate [17]. Their reduced de-

foaming capability was accompanied by the weakest

ability to increase the yield of protein. In contrast,

J673A addition produced one of the best results, almost

doubling the yield. This antifoam is an alkoxylated fatty

acid ester on a vegetable oil base and it is known that

vegetable oils can alter the structure of foams by

increasing bubble size and reducing the stability of the

foam [23]. While vegetable oils may be metabolized as a

carbon source [23], which might explain why J673A

addition enhanced the yield of GFP, our data show

that J673A did not influence the growth of the cells

(Figure 1C), but rather enhanced the amount secreted

into the medium (Figure 6). J673A was additionally

found to be the most effective de-foamer of the panel of

five antifoams that we assayed (Figure 3).

Antifoams are also known to affect the kLa of a system,

which can be influenced by several factors such as med-

ium viscosity, the presence of organisms and their

by-products. These variables affect both kL (ms
-1) and a

(specific surface area m-1) [24,25]. For example, antifoam

addition is known to have an effect [26] by enhancing

bubble coalescence and increasing bubble size which

leads to a reduction in the specific surface area thereby

lowering kLa [3,8,24,25,27]. However, it has also been

previously observed [25,28] that at higher concentrations

of antifoam the kLa rises possibly due to the detrimental

effects of bubble coalescence. Consequently the reduced

specific surface area (a) reaches a limit and bubbles coa-

lesce suppressing surface motility and decreasing surface

tension. This then leads to decreasing bubble size and

kLa rises again. Additionally it is possible that antifoams

accumulate oxygen from rising bubbles, as they have

good oxygen solubility, and then release it to the aqueous

phase. Bubbles bursting at the surface disperse small

drops of antifoam causing more oxygen to be released

[25,28]. In the case of oils which have a greater oxygen

solubility than water, oil droplets may increase oxygen

permeability in the water boundary layer of the gaseous

dispersion [23]. Yagi and colleagues suggested that
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surfactants can cause rippling or eddying which influ-

ences the kLa [26]. They also found that kL was not

greatly affected by antifoams, but that their main effect

was on a [26]. Koide subsequently suggested that the

ability of antifoams to reduce kL is less for bubble swarms

than for a single bubble [29].

We found that in shake flasks, the kLa was higher at

mid-range values and decreased with increasing concen-

tration, but that there was no statistically significant cor-

relation between increased kLa and total yield. It is

therefore possible that the kLa is already sufficient for the

cells to grow and produce protein and is not a limiting

factor, or that a combination of factors is responsible for

the increases in total yield that we observed. This is sup-

ported by the DO shake flask data which suggest there is

no difference between the DO in flasks without antifoam

and those with either P2000 or SB2121 added. Combin-

ing flow cytometry and fluorimetry data showed that the

antifoams can influence the amount of GFP retained

inside the cell as well as the amount secreted into the

medium. Antifoam A, Antifoam C and J673A enhanced

the GFP secreted compared to 0% antifoam suggesting

that the increase in total yield observed could be due to

this secretion effect. This is consistent with an earlier

study which suggested that antifoams can affect cell per-

meability in yeast by perturbing sterol biosynthesis which

then alters the permeability of the membrane [30]. This

is currently under investigation.

Conclusions

We show that when Antifoam A, Antifoam C, J673A,

P2000 or SB2121 are added at concentrations higher
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than those routinely used for de-foaming purposes, they

all increase the total yield of shake-flask cultures. Two

effects are apparent: one group of antifoams (Antifoam

A, Antifoam C and J673A) increases the specific yield of

GFP by increasing the total amount of protein produced

and secreted per cell, whilst the second (P2000 or

SB2121) increases the total yield by increasing the den-

sity of the culture. Addition of commonly-used anti-

foaming agents to shake flask cultures of yeast is

therefore an effective way to increase the total yield of

the recombinant protein being produced; any necessary

changes to downstream steps such as protein purifica-

tion are therefore likely to be worthwhile. Furthermore,

this study provides insight into the manner in which

antifoams interact with microbial cell factories: any data

contributing to a fuller understanding of the specific

effects of an antifoam on the growth and yield charac-

teristics of such cultures, in addition to its primary

action as a de-foamer, will be essential in bioprocess

optimisation. These findings should provide an impetus

to increase productivity in shake flask cultures of

P. pastoris.

Methods

Yeast strains and culturing conditions

Pichia pastoris strain X33 transformed with pPICZaA-

GFPuv (designated X33GFPuv) [1] was used in all experi-

mental procedures. Cells were cultured in shake flasks in

medium buffered to pH 6.0 with 1 M potassium phos-

phate buffer and at 30 °C and 220 rpm. BMGY medium

(1% yeast extract, 2% peptone, 100 mM potassium phos-

phate pH 6.0, 1.34% YNB, 4 × 10-5% biotin, 1% glycerol

[31]) was used for the initial biomass accumulation stage

before transferring to the induction medium, BMMY (1%

yeast extract, 2% peptone, 100 mM potassium phosphate

pH 6.0, 1.34% YNB, 4 × 10-5% biotin, 0.5% methanol

[31]), to induce production of GFP.

Shake flask cultures

Cells were cultured in 50 mL BMGY in 250 mL baffled

shake flasks to accumulate biomass. 20 mL BMMY was

then inoculated to a final OD595 of 1.0 and transferred

to a 100 mL non-baffled shake flasks for antifoam eva-

luations. Each evaluation was done in triplicate, with

each flask containing the desired concentration of anti-

foam (0%, 0.2%, 0.4%, 0.6%, 0.8% or 1.0% (v/v)) with

incubation at 30 °C and 220 rpm. After 24 h, 100% ster-

ile methanol was added to 1% v/v to maintain produc-

tion of GFP [1]. All optical density measurements were

blanked against the relevant antifoam-containing med-

ium. Since the antifoams themselves might influence

OD595, we analyzed the relationship between OD595

readings in the absence and presence of a range of con-

centrations of different antifoams. In all cases the pair

wise relationship was linear (R2 was 0.91-0.99).

We further verified that OD595 was a reliable measure

of cell density by comparing the number of cells at a

given OD595 in the absence and presence of a range of

concentrations of different antifoams. There was no sta-

tistically significant difference in cell number between

cells harvested at a given OD595 in the absence or pre-

sence of any of these antifoam concentrations, suggest-

ing that OD595 is indeed a robust measurement of cell

density.
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Antifoam agents

The antifoams tested in this study were Schill and Sche-

linger’s Struktol SB2121 (a polyalkylene glycol), Schill

and Schelinger’s Struktol J673A (an alkoxylated fatty

acid ester on a vegetable base), Fluka P2000 (a polypro-

pylene glycol), Sigma Antifoam A (a 30% emulsion of

silicone polymer) and Sigma Antifoam C (a 30% emul-

sion of silicone polymer). All antifoams were autoclaved

prior to use and each shake flask experiment was per-

formed in triplicate, with the undiluted antifoam being

added directly to the medium.

Fluorescence measurements

Culture supernatants (100 μL) were assayed at 24 h and

48 h post-induction for GFP fluorescence using a Spec-

tramax Gemini XS plate reader with an excitation wave-

length (lexe) of 397 nm, and emission wavelength (lem)

of 506 nm. Triplicate determinations were performed

for each independent sample. All samples and blanks

were buffered to pH >7.0 using 50 μL 1 M potassium

phosphate pH 7.5. Data were collected at 25 °C. To

determine the concentration of GFP in each of the sam-

ples, a recombinant GFP standard (Vector Laboratories

Ltd) was used to construct a standard curve relating

RFU to protein concentration, as previously described

[1]. All data were analyzed using a one-way ANOVA to

test for a significant difference between any of the

means. In all cases P < 0.001 indicating a high degree of

significance. A Dunnett’s multiple comparison test was

then performed to compare each treatment mean (addi-

tion of various antifoam concentrations) and the control

mean (0% antifoam).

Total protein analysis

The total protein content of culture supernatants (2 μl)

at 48 h post-induction was analyzed by bicinchoninic

acid (BCA) assay. Cultures were examined in the pre-

sence of representative concentrations of 0%, 0.5% and

1% antifoam. 4.9 mL of proprietary BCA solution

(B9643, Sigma) was mixed with 100 μL 4% mM copper

(II) sulfate solution (C2284, Sigma). 200 μL of this solu-

tion was used to assay each independent supernatant

sample in duplicate using a plate reader (BioTek Instru-

ments) at 570 nm. To determine the concentration of

protein in the samples, a bovine serum albumin stan-

dard (Sigma) was used to plot a standard curve. The

data were analyzed using a one-way ANOVA (P <

0.0001) and a Dunnett’s multiple comparison test.

Bartsch antifoam test

Bartsch tests were conducted following a protocol

adapted from that outlined by Denkov and colleagues

[32]. A 500 mL graduated glass cylinder was filled with

166 mL BMMY medium and in all cases except for the

control, antifoam was added to 0.01% v/v. The cylinder

was sealed with parafilm and shaken ten times at ambi-

ent temperature. The height of the foam was recorded

using the graduations on the cylinder every 30 s for

15 min. Determinations were performed in quintuplet

for each antifoam. The activity of a given antifoam was

reported as a volume [32], obtained by subtracting the

volume of medium from the total volume (foam plus

medium) in the cylinder.

kLa determination

The influence of each antifoam on the volumetric mass

oxygen transfer coefficient (kLa) in 125 mL plastic non-

baffled shake flasks with DO fluorescent sensors

(PreSens; the closest available size to our previous experi-

mental set-up using the same total:working volume ratio

of 5:1) was measured using a dynamic method adapted

from that of Bandyopadhyay and Humphrey [33].

A working volume of 25 mL BMMY was used for each

determination, with each antifoam being added in a step-

wise manner to a final concentration of 0%, 0.2%, 0.4%,

0.6%, 0.8% and finally 1.0% (v/v). Shake flasks were sealed

with foam bungs and incubated at 220 rpm, 30°C. The

medium was saturated with 1.5 L min-1 compressed air

and flushed with N2. Determination of the kLa was car-

ried out in triplicate by adding the required volume of

antifoam at 100% DO, flushing with N2 until the DO was

0% and then allowing the DO to return to 100%. The

data were logged every second using SFR software (Pre-

Sens). The data logged during the increase in DO from

0% to 100% were used to calculate the kLa with the fol-

lowing formula, where t1 and t2 are consecutive time

points, c1,t1 is the oxygen concentration at time t1 and

c1,∞ is the oxygen saturation concentration.

kLa(t2 - t1) = ln

(

c1,∞ − c1,t1

c1,∞ − c1,t2

)

Dissolved oxygen measurements

Dissolved oxygen was measured in 125 mL non-baffled

shake flasks with DO fluorescent sensors (PreSens)

attached to the underside of each flask. The flasks were

placed on a shake flask reader which excites the dyes in

the sensors and allows the DO data to be logged over

48 h with SFR software (Presens).

Flow cytometry

Shake flask cultures of P. pastoris, as described above,

were used to generate samples for flow cytometry analy-

sis. The antifoams used were Antifoam A at 0.6%, Anti-

foam C at 0.6%, J673A at 0.8%, P2000 at 0.6% and

SB2121 at 0.6% (v/v). Triplicate flasks were used for

each antifoam. 48 h samples were diluted 1:1000 in

phosphate buffered saline to a final concentration of

Routledge et al. Microbial Cell Factories 2011, 10:17
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106-107 cells mL-1, as determined using a haemocyt-

ometer. Fluorescent measurements were made using a

Beckman Coulter (High Wycombe, UK) flow cytometer

with lexe = 488 nm from an argon-ion laser at 15 mW.

Diluted samples were additionally stained with 10 μL

propidium iodide (PI; 1 mgmL-1 in water). All solutions

were passed through a 0.2 μm filter, immediately prior

to use, to remove particulate contamination. The optical

filters were set up so that PI fluorescence was measured

at 630 nm and GFP fluorescence was measured at 525

nm. The data were analyzed using a one-way ANOVA

(P < 0.0001) and a Dunnett’s multiple comparison test.

Additional material

Additional file 1: Table S1: Summary of the biological effects of

antifoam addition to microbial cell factories.
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