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ABSTRACT 

This research develops a low cost remote sensing system for use in agricultural 
applications. The important features of the system are that it monitors the near 
infrared and it incorporates position and attitude measuring equipment allowing for 
geo-rectified images to be produced without the use of ground control points. The 
equipment is designed to be hand held and hence requires no structural modification 
to the aircraft. The portable remote sensing system consists of an inertia 
measurement unit (IMU), which is accelerometer based, a low-cost GPS device and a 
small format false colour composite digital camera. The total cost of producing such 
a system is below GBP 3000, which is far cheaper than equivalent existing systems. 
The design of the portable remote sensing device has eliminated bore sight 
misalignment errors from the direct geo-referencing process. A new processing 
technique has been introduced for the data obtained from these low-cost devices, and 
it is found that using this technique the image can be matched (overlaid) onto 
Ordnance Survey Master Maps at an accuracy compatible with precision agriculture 
requirements. The direct geo-referencing has also been improved by introducing an 
algorithm capable of correcting oblique images directly. This algorithm alters the 
pixels value, hence it is advised that image analysis is performed before image geo-
rectification. The drawback of this research is that the low-cost GPS device 
experienced bad checksum errors, which resulted in missing data. The Wide Area 
Augmented System (WAAS) correction could not be employed because the satellites 
could not be locked onto whilst flying. The best GPS data were obtained from the 
Garmin eTrex (15 m kinematic and 2 m static) instruments which have a high-
sensitivity receiver with good lock on capability. The limitation of this GPS device is 
the inability to effectively receive the P-Code wavelength, which is needed to gain 
the best accuracy when undertaking differential GPS processing. Pairing the carrier 
phase L1 with the pseudorange C/A-Code received, in order to determine the image 
coordinates by the differential technique, is still under investigation. To improve the 
position accuracy, it is recommended that a GPS base station should be established 
near the survey area, instead of using a permanent GPS base station established by 
the Ordnance Survey. 

Keywords: Low-Cost remote sensing, Precision Agriculture, Geometric Correction and 
Transformation. 
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1. INTRODUCTION 

 

1.1 Research Motivation 

The motivation for this research was triggered by the ambition to assist the 

Government of Malaysia in seeking an alternative way to manage agriculture. 

Improvement in the agriculture sector was the main topic in the 9th Malaysian 

Planning agenda., where the Government of Malaysia has allocated MYR 6.96 

billion (Ministry of Agriculture Malaysia, 2006) to enhance the sector by introducing 

high-technology systems.  This high technology includes remote sensing systems, 

geo-information systems, bio-diversity technology and fertilisers.  

 

Remote sensing systems were selected for inclusion in order to provide the main 

spatial data stream in agricultural areas because of their capability for wide and 

frequent coverage. In particular airborne remote sensing systems the image analysis 

technique, which analyses the electromagnetic spectrum, particularly the near 

infrared part is valuable, for example, the output could enable the assessment to be 

made of the fertiliser requirements for each square metre of paddy fields even at the 

early stages of paddy growth.  At the early stage, it is important to monitor and run 

frequent assessments in order to ensure that the paddy plants are healthy, since they 

are then vulnerable to damage from bacteria, insects and rodents. 

 

Generally, the best platform for undertaking frequent monitoring and rapid 

assessment is an airborne remote sensing system.  This system is preferred as the 

main data capturing tool, because it gives wide area coverage with high resolution 
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data (< 1 metre) when compared to data captured from satellite remote sensing 

systems.  More importantly, airborne remote sensing system has the distinct 

advantage over the use of satellite in that it can repeated frequently and whenever 

needed. 

 

However, to establish an airborne remote sensing system is very expensive, time 

consuming and involves expensive safety procedures associated with the 

modification to the aircraft required for installation of the remote sensing 

instruments.  For example, Nikulainen et al. (2002) took twelve months to modify 

the Short SC7 Skyvan turboprop aircraft to carry remote sensing instruments, while 

Gulliver (2008) quoted £15K as required to modify a Cessna 152 door panel for 

mounting an imaging sensor.   

 

These expensive modification costs can be reduced by introducing alternative 

technique for mounting the imaging sensor to the aircraft.  For example, the imaging 

sensor can be mounted on the wing of the aircraft, attached to the nose of the aircraft, 

embedded on the inspection panel floor, or attached to the isle window by using a 

mounting bracket.  This latter will be discussed in Chapter 2.   

 

The second main problem in imaging the earth’s surface from an airborne remote 

sensing system is the geometric correction.  In agricultural areas it is often difficult to 

identify an adequate number of ground control points to enable an image to be 

corrected (Pooley, 2007).  However, the geometry of the image can be corrected if 

the attitude and position of the imaging sensor are known (Moffit and Mikhail, 

1980). These can be obtained by measuring the movement of the imaging device by 
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installing a Global Navigation Satellite System (GNSS) receiver and Inertial 

Measurement Unit (IMU) on the imaging sensor.  Read and Graham (2002) observe 

that GNSS and IMU are essential for aerial mapping today.    

 

The implementation of these devices has been carried out successfully by a number 

of researchers, including Toth (2002), Cramer (2001), Pinto and Forlani (2002) and 

Schwarz et al. (1993).  However, these researchers have focused only on high 

accuracy devices, which are very expensive and unaffordable for individual farmers 

or small companies.  Zhang and Xiao (2003) found that it is not possible to correct 

the image geometry for devices which are cheap and simple because of the following 

problems: 

1) Signal fluctuation in the receiving and transmitting process,  

2) Competency of embedded software, and  

3) Duration of operational time the devices can work and give results to the 

required accuracy.   

These problems may cause system pauses, jamming, inaccuracies, terminations and 

other sorts of discontinuity in the data capturing process which affect the accuracy of 

the end product. 

 

In addition, since the existing processing techniques and procedures successful when 

using the high accuracy devices, there is little incentive to develop technology for 

lower accuracy systems.  For instance, Chiang et al.  (2003) found that the existing 

techniques such as Kalman filtering perform adequately only under certain 

predefined dynamic models, and Hide and Moore (2005) found that the Kalman filter 

smoothing is rarely considered in the case of low-accuracy devices because the 
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signal fluctuation is unpredictable.  El-Sheimy et al. (2006) have introduced a fuzzy 

logic solution, while Schmitz et al. (2001) adopted a rigorous method solution for 

curing the fluctuation problem. However, the results that they obtained were not very 

convincing when applied to low-accuracy device problems. 

 

Hsiao et al., (2006) presents a method of integrating the image sensor with an 

inclinometer, altimeter and gyro-compass as an alternative to the use of GNSS, IMU 

and separate sensing developed for this research.  They quote the development of 

their system as very inexpensive at a cost of $1300.  However as the sensor and IMU 

were provided by Skyfarm, an agricultural consultancy, free of charge for the use of 

this project it considered more useful to investigate this area rather than emulate the 

work of Hsiao et al. 

 

1.2    Research Objectives  

The main research objective is to develop a low cost portable remote sensing system 

to assist the Government of Malaysia to monitor and manage the agriculture, 

especially the paddy fields.  The low cost remote sensing system should be cheap, 

easy to install and suitable for use on the small aircraft, such as the Cessna 152.  

Specifically, this research is going; 

1) To develop a portable remote sensing system which requires no 

modification to the aircraft which can be: loaded into a small engine 

aircraft, flown to the target location, and is able to capture an 

appropriate image. 

2) To develop an algorithm for assisting the geometric correction of the 

captured image, by means of a direct geo-referencing method.  
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3)  To test the portable remote sensing in real time condition. 

4) To analyse the accuracy of the resulting geo-rectified images. 

 

1.3 Limitations of the Research 

The main constraint of this research study was the limited finance to support the 

development of the low cost portable remote sensing system and hence, the choice of 

possible instruments was limited.  The constraints on the research project, therefore 

including the following.               

1) The use of an Agriculture Digital Camera (ADC) manufacture by the 

Tetracam Company, and loaned by Mike Pooley of Skyfarm, for the imaging 

sensor for this research.  This has been used for capturing agricultural 

activities ranging from the early stage of plant growth, cultivating the soil, 

sowing the seeds, through to monitoring plant development and harvesting.   

2) The navigation sensor system for use in conjunction with imaging 

sensor included an IMU loaned by Dr. Tom Chidley, together with a Garmin 

76, a Garmin eTrex and a wireless GPS is a personal instruments. 

 

1.4 Research Design 

It should be noted that this research is primarily based on experimentation.  The 

experiments begin by reviewing the loaned instruments through manufacturer’s 

manuals and websites.  Ideally the instruments should meet four main criteria: 1) 

low-cost, 2) flexibility, 3) simplicity, and 4) sufficient precision for the geometric 

correction.  Cost was most important because the aim of the research is to develop a 

low-cost remote sensing system.  These instruments should have the flexibility that 
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enables them to be attached to each other, and also be simple to operate and capture 

the information they measure. 

 

Secondly, these instruments were tested through laboratory and field investigation 

for response to various types of movement; both slow and steady, and rapid and 

sudden. The measurements gave an idea of the occurrence of systematic, random and 

gross errors.  Based on the information, a suitable solution would be obtained.  

 

The third experiment was to prove that the instruments could be used to acquire real 

flight data, and to verify that the solutions obtained from the laboratory investigation 

were applicable to real flight data.  The verification was undertaken in qualitative 

and quantitative analysis modes.  The qualitative analysis was used to verify that the 

data obtained had a sufficient level of accuracy, while the quantitative analysis is 

used to ensure the research goal had been achieved. 

 

1.5 Thesis Structure 

Following this Introduction, Chapter 2 is devoted to a literature review on airborne 

remote sensing systems.  It discusses the background of low-cost airborne remote 

sensing systems, low-cost airborne remote sensing instruments and their ancillary 

equipment, and reviews the geometric correction process, sources of geometric 

distortion and the algorithm for the geometric correction solution.  The background 

study also investigates the platforms that can be used for low-cost airborne remote 

sensing.  The geometric correction process is focused on a direct geo-referencing 

method.  The source of geometric distortion gives an initial picture which can be 

used as a guideline for developing a direct geo-referencing algorithm.   
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Chapter 3 discusses the proposed design of the low-cost airborne remote sensing 

system.  It begins with the design objective, design layout, and moves on to the 

selection of instrumentation, the data types, the expectation of error of the selected 

devices and error optimisation.  The research objective, identified that the main cost-

reduction that could be achieved by implementing a portable system with no 

structural modification to the aircraft. The characteristics of the selected device 

suited to the proposed design constraints are discussed in detail.  The data types that 

can be obtained from the selected devices may indicate how to acquired data where 

can be reduced.  Based on the expected data types, the expected error from the 

selected device can be predicted and hence the error optimisation procedure can be 

established.  The outcome from this chapter provides an input to the Chapter 4. 

 

Chapter 4 is dedicated to explaining the direct geo-referencing process.  It covers the 

concept of direct geo-referencing, data preparation, image orientation and mapping 

pixels into a user coordinate system.  The concept of direct geo-referencing is 

explored to provide possible approaches for the implementation of direct geo-

referencing.  Under data preparation, the initial processing of GNSS and IMU data, 

for infilling the missing data and the extraction of the navigation and the ancillary 

data, is explained in detail.   The reconstruction of image geometry, focuses on 

camera lens distortion, lens misalignment and principle distance and the resolution of 

errors associated with roll, pitch and heading.  The method scaling and aligning the 

entire dataset to the local coordinate system is described.  The mathematical equation 

algorithm developed, which includes the tilt and oblique solutions for direct geo-

referencing, is explained in detail.  The algorithm developed is an input to the next 
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chapter, which develops the software for managing the low-cost airborne remote 

sensing data. 

 

Chapter 5 is devoted to discussing the software developed as an enabling tool for the 

direct image geo-referencing.  The software structure consists of 1) input parameter, 

2) intrinsic parameter, 3) extrinsic parameter, 4) image processing, and 5) discussion. 

 

Chapter 6 investigates the available instruments and their performance.   The 

investigation is divided into three parts:  performance test, simulation test and 

investigation results.  The performance test discusses the performance of each 

instrument in terms of system endurance, system halting and system failure.  The 

simulation is undertaken to investigate and predict the output and error sources of 

each of the instruments.   

 

Chapter 7 is devoted to discussing how system validation was achieved through 

flight testing.  The flight test was the only way to validate the system in a real 

agricultural monitoring environment.  The chapter includes the test site, data 

acquisition, flight mission, data obtained, installation of equipment and some results.   

 

Chapter 8 is devoted to discussion.  It begins with a summary and critiques the 

imagery data obtained in Chapter 7, and then evaluates the overall capability of the 

developed system.  

 

Based on the previous discussions, conclusions and recommendations for future 

work are given in Chapter 9. 
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2. LOW -COST AIRBORNE REMOTE SENSING 

SYSTEM AND GEOMETRIC CORRECTION 

 

2.1 Background of Low-cost Airborne Remote Sensing 

Remote sensing is a technique of acquiring information about the earth surface which 

includes natural and man-made objects, area, or phenomenon without having direct 

contact with the object, area or phenomenon being investigated (Lillesand and 

Kiefer, 2000; Dunggal, 2009) by means of the electromagnetic spectrum.  The 

electromagnetic spectrum ranges from radio, microwave, infrared, visible, 

ultraviolet, x-ray to gamma rays that are produced by solar energy or the remote 

sensing instrument itself.  Figure 2.1 illustrates the process of collecting information 

by using airborne remote sensing where the sun is the electromagnetic source.  

  

Even though the range of the electromagnetic spectrum is very wide, the 

electromagnetic spectra available to be used for sensing the earth’s surfaces is 

limited.  Some wavelength of the electromagnetic spectra can be sensed by using 

photographic devices but the remainder need special instruments for their capture.  

The selected device can be mounted in an aircrafts when is referred to as airborne, or 

a spacecraft it is referred to as spaceborne.  The choice of platform depends on their 

design purpose.  The airborne remote sensing option has been used widely in aerial 

geomatic applications.  Aerial geomatics is employed for gathering information 

about the earth surfaces when high spatial resolution is required.  Examples of such 

applications are gathering information about high density areas such as Cities, 

inspecting construction site or monitoring the development of a highway.  
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Spaceborne remote sensing is used more for small scale mapping and studying 

inaccessible terrain or large areas such as deserts (Aerial survey, 2005).  Various 

types of device can be used for acquiring information about the earth’s surfaces 

either through airborne or spaceborne remote sensing.  

 

 

Source: Modified from Paine and Kiser, 2003. 

Figure 2.1: The process of gathering information using airborne remote sensing.  

 

In airborne remote sensing, the off-the-shelf market offers an extensive range of 

devices, which include thermal radiometers, high spatial resolution spectrometers, 

cosine Collector Spectro radiometers or Sun Photometers, Multi-angular radiometers, 

Charge Couple Device (CCD), video imagery instruments, Lidar and/or range-

finders, radar and passive microwave instruments, GPS units and CDI’s (Course 

Deviation Indicators), and Cameras (Dabney and Deering, 1998).  However, the 

device selection is dependent on project requirements, budget allocations and device 
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reliability.  For example in low-cost airborne remote sensing, the main constraints 

will be the budget allocations.   

 

2.2 Low-Cost Airborne Remote Sensing Instruments 

Interest in low-cost airborne remote sensing has been stimulated by the Instrument 

Incubator Program (IIP) under the technological development of innovative earth 

science initiative funded by NASA in 2001 (Steitz, 2001).  The objective of the 

initiative was to invest in new and innovative technologies that could lead to smaller, 

less expensive and more efficient flight instruments for obtaining reliable 

information of the earth’s surface.  The current established airborne remote sensing 

instruments such as the airborne hyperspectral sensor, the airborne thematic mapper 

and laser scanning devices, are quite large and need a lot of aircraft space for 

operations, which involves very high cost.  Figure 2.2 depicts an example of airborne 

remote sensing instruments and their layout on board an aircraft.   

Figure 2.2: Layout for instrument installation. 

In this research study, the incentive for designing a low-cost airborne remote sensing 

system has been driven mainly by the cost factor of conventional airborne remote 
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sensing systems.  The most costly part in developing an airborne remote sensing 

system is the need for a large aircraft due to power and space requirements (Roberts 

et al., 2000), modifying the aircraft, and obtaining an authorisation certificate from 

the aviation authority for the modification.  The cost of developing such an airborne 

remote sensing system is billions of dollars, but with a low-cost airborne remote 

sensing system, the cost can be reduced to a range of a thousand to a million of 

dollars (Roberts et al., 2000).  

With a view to reducing the aircraft modification cost, several innovation platforms 

have been introduced.  One example is the satellite-based small cheap instrument for 

low-cost remote sensing systems developed by the University of Surrey, through its 

technology transfer company, Surrey Satellite Technology Limited (SSTL) (Fouquet 

and Sweeting, 1995).  The low-cost remote sensing system was loaded with a CCD 

camera which orbits the earth at a range of 600 to 800 km.  The system covers an 

area of about 75x55 km (narrow band) to 2550x1880 km (wide band). 

A tethered balloon can also be employed as an alternative to reduce the aircraft 

modification cost.  Its applications have been demonstrated by: Piwowar (1993) in 

aerial imaging; Storvold et al. (1998) in monitoring the temperature, wind, and water 

vapour profiles through the atmospheric boundary layer in the Arctic; Stamness and 

Storvold (1999) in measuring cloud micro-physical and radioactive properties; 

Siebert et al. (2003) in fine-scale measurements of metrological and microphysical 

properties; and, Vierling et al. (2006) who used tethered balloon in studying basic 

remote sensing questions and linking landscape level trace gas fluxes with spatially 

and temporally appropriate spectral observations.  



 - 25 - 

There are examples of research work on tethered balloons which have been used in 

remote sensing science dating to the birth of aerial remote sensing itself.  In 1858 

Gaspard Felix Tournachon manually collected an aerial photograph near Paris while 

aboard a tethered hot air balloon. Numerous aerial photographic surveys using 

manned tethered balloons followed in the 1860s, establishing this method as a viable 

means for collecting airborne data for municipal, military, aesthetic and scientific 

purposes (Newhall, 1969). 

Another platform, which can be used as an alternative to a plane, is the kite.  The 

first photograph taken using a kite was demonstrated by Musee Arthur Batutin 1889 

over Labruguierein, France (Estes and Hemphill, 2006).  Some other researchers 

involved in this area are: De Moraes (2001) and Murray et al. (2001) who researched 

the use of a kite as a portable, low cost, and high quality alternative to current aerial 

photography methods; and Aber et al. (2002), who demonstrated the use of a kite for 

acquiring large-scale, high resolution and multiview-angle imagery from unmanned 

small-format aerial photography.   

The Unmanned Aerial Vehicle (UAV) concept was first introduced by Julius 

Neubranner in 1903, who designed and patented a breast-mounted aerial camera for 

carrier pigeons (Figure 2.3). Weighing only 70 g the camera took automatic 

exposures at 30-second intervals along the flight line followed by a pigeon 

(Baumann, 2001).   
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Source: Baumann, 2001

Figure 2.3: First unmanned vehicle for airborne remote sensing. 

The unmanned vehicle as a remote sensing platform has been demonstrated by 

several researchers (to name just a few) such as: Stombaugh and Mueller (2006), 

who developed a low-cost remote sensing system by using a UAV as a platform for 

monitoring agricultural fields; Schinstock and Ham (2005) patented a prototype 

UAV remote sensing system to be used for environmental study; and, Swain et al. 

(2007) who employed a radio-controlled helicopter as an alternative platform for 

low-cost remote sensing for monitoring agricultural fields.   

 

However, the low-cost remote sensing platforms mentioned above can only be used 

with the approval of the local aviation authority (Graham, 2010) as each country has 

its own regulations.  To void the authority problem of obtaining official 

authorisation, some researchers have invested in low-cost remote sensing instruments 

for use in light aircraft.  Pioneering work by Graham and Read in 1986, is a good 

example of implementing the ultralight aircraft as a low-cost remote sensing 

platform. In 1985, Vooren and Offermans demonstrated the application of ultralight 

aircraft for low-cost, large-scale stereoscopic aerial photography.   
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The use light aircraft as the remote sensing platform has been documented by 

Graham and Read (1986) and Read and Graham (2002) and indeed, a workshop on 

low-cost remote sensing instruments to be embedded in a single engined light aircraft 

was held at the University of Maryland on 6 October 1997 (Dabney and Deering, 

1998). The workshop discussed experiences with light aircraft equipped with various 

types of spectral regime such as optical, lidar, thermal, microwave, and radar sensors 

together with ancillary equipment.   

 

2.2.1 Low-Cost Imaging Device  

The imaging device usually collects several wave bands within the electromagnetic 

spectrum.  A camera, for instance, usually captures/collects the three primary 

colours: blue, green and red.  A multispectral sensor is able to capture more than 

three discrete bands which can provide more information about crop health and vigor 

than one can detect with ones own eyes.  In them, the more bands that the sensor can 

detect the more information that can be obtained.  However, the more bands the 

sensor can detect the more expensive the sensor will be.  Therefore, for the design of 

a low cost remote sensing system for agricultural monitoring, a knowledge and 

understanding of the interaction of the electromagnetic spectrum with the earth’s 

surfaces is very useful.  For example, the near-infrared (or NIR) is able to provide 

more sensitive information about canopy health than the visible bands of blue, green 

and red.  Figure 2.4 illustrates the components of the electromagnetic spectrum 

required for monitoring agricultural regimes and especially in calculating the 

Normalised Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation 
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Index (SAVI). While, Table 2.1 lists the major regions of electromagnetic spectra 

and their remote sensing applications in general terms.      

 
(a) 

(b)

 
(c) 
Source: a) Modified from Hakim (2008), b) modified from Tortosa (2010) and c) 

modified from Jensen (2007).  
Figure 2.4: Electromagnetic spectrum a) Electromagnetic spectrum range from 

radio to gamma rays while b) electromagnetic spectrum used in 
remote sensing applications and their imaging systems; c) show the 
visible (Blue, Green, Red) and Infrared electromagnetic spectrum 
used for NDVI and SAVI calculation. 
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Table 2.1: Major regions of electromagnetic spectrum. 

Source: Pidwirny (2006) 

The use of remote sensing imaging devices for agricultural applications has been 

established since 1970.  Sensor fall into two difference categories, which are 

photographic sensors (Heller, 1970) and non-photographic sensors (Hotler et al., 

1970).  These imaging devices have been used to aid agricultural planning, 

development and administration (Luney and Dill, 1970).  The photographic sensors 

such as aerial cameras provide black and white panchromatic, black and white 

infrared, Ektachrome infrared and colour photographs.  The non-photographic 

sensors, such radar, passive microwave, infrared and multispectral sensors, which are 
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based on the capture of distinct electromagnetic spectrum wavebands, provide 

images that contains a wide range of spectral regimes.  At the early stage of remote 

sensing development, the sizes of these devices were large, had a high power 

consumption, and required appropriate space for their installation. 

    

However, these imaging devices had gone through a period of innovation which has  

led to smaller, less expensive, and more efficient flight instruments.  The innovative 

effort has been triggered by NASA under their Instrument Incubator Program, with 

total funds made available for these investigations averaging nearly USD$1 million 

per year for three years or a total of approximately USD$29.5 million (Steitz, 2001).  

Due to this incentive, a wide range of low-cost imaging devices are currently 

available for installation on single engined light aircraft.   

 

Off-the-shelf, low-cost airborne imaging devices include the small-format digital 

camera, the medium-format digital camera, the large-format digital camera and the 

digital video camera.  Unfortunately, there are only two types of imager applicable 

for light single engine aircraft, which are the small-format digital camera and the 

digital video camera.  The other systems are too complicated and too large to be 

installed onboard a light single engine aircraft (Dare, 2005).  

 

The most popular small format digital camera for agricultural use is the Kodak’s 

DCS 4XX series, which includes DCS 420 GPS-C, DCS 420 GPS-IR, DCS 420 

GPS-M, DCS 420CIR and DCS 460CIR, which were first introduced in 1994 and 

1996 (McGarvey, 2004) .  These digital cameras are ideal for environmental and law 

enforcement that required forestry and vegetation analysis.  The pixels size for these 
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cameras is 1012x1524, except for the DCS 460CIR which has a 2036x3060 pixel 

size (McGarvey, 2004).  The Kodak’s DCS series has contributed significantly to the 

development of Aerial Digital Photographic System (ADPS) for mapping or 

monitoring applications.  For example; Geotechnologies of Bath Spa University had 

developed the ADPS system based on DCS 420 and DCS 460; Technical University 

of Delft in Netherlands has carried out a pilot studies on the DCS 200 and DCS 460 

mounted on a helicopter; the University of Calgary in Canada also developed a 

system similar to the ADPS, based on the DCS 420; and, the University of Florida in 

America has been working with DCS 420 for collecting land cover samples (Petrie, 

2003).  These examples show that Kodak’s DCS series have proved successful for 

remote sensing tasks and small area mapping (Warner et al., 1996).  Figure 2.5 

shows the example of ADPS based on Kodak’s DCS series developed by 

Geotechnologies of Bath Spa University (Petrie, 2002 and 2003). 

 
Source: Petrie (2002 & 2003)

Figure 2.5: The ADPS based on Kodak DCS 460CIR digital frame camera 
which is produced by Geotechnologies of Bath Spa University. 
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Tetracam is another manufacturer that produces imaging device for agricultural 

applications.  The products that they produce are known as the Multi-spectral 

Camera for Agriculture and the Agriculture Digital Camera.  These two products 

have been used widely by individual farmers and crop consultants, as well as large 

organisations such as AG Canada, the U.S Department of Agriculture and 

universities in America (Petrie, 2003).  Both imaging devices have a 1280 x 1020 

pixel size and are equipped with a Bayer mosaic filter.  The Bayer mosaic filter 

enables captured images to be seen on the screen fitted to the back of the camera and 

stored on a flash card.  The imaging devices are also equipped with a USB port and a 

serial port to allow it to be connected to a laptop computer and a GPS device 

(Tetracam, 2010).  Figure 2.6 illustrates the imaging device produce by Tetracam. 

 
 

Source: Tetracam (2010)
Figure 2.6 : The Multispectral Digital Camera produced by Tetracam. 

 

SensyTech (formerly known as Daedalus Enterprises) is another well known 

company that produced multispectral and line-scan imagers in the early 1980s 

(Petrie, 2003).  Their current product includes digital frame cameras which are based 
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on Kodak’s MegaPlus Monochrome (Black and White) series digital camera that 

include: MegaPlus 1.0, MegaPlus 1.4i, MegaPlus 1.6i, MegaPlus 4.2i, MegaPlus 6.3i 

and Megaplus 16.8i each with different size of CCD array.  The SensyTech’s AA456 

Airborne Digital Camera is base on MegaPlus 4.2i and is equipped with a camera 

mount, a system control unit with built-in GPS, and an operator control and display 

unit for use in airborne mapping.  An upgraded version of the AA456, the AA497 

Airborne Multi-spectral Digital Camera is fitted with coloured optical filters for 

generating the multispectral image by using rotating colour filter wheels and an 

Inertial Measurement Unit for providing attitude data.  SensyTech collaborated with 

ERIM International in developing the software for registration and rectification that 

enables the production of separate band images or colour or false-colour composite 

images (Petrie, 2003).  Figure 2.7 demonstrate the SensyTech Airborne Multispectral 

Digital Camera. 

 
Source: Imaging Group (2010) 

Figure 2.7: The Airborne Multispectral Scanner produced by SensyTech. 
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In addition to the manufacturing companies above, RedLake (formerly known as 

DuncanTech) is another well known company that is involved in manufacturing 

small format digital cameras that use a beam splitter, with three CCD arrays to 

collect simultaneously the three individual band images (Petrie, 2003).  This 

multispectral camera has overcome the limitations of the two systems mentioned 

above, where the true colour or false colour images were being generated either by 

using a Bayer mosaic filter, an alternative mosaic filter screen and subsequent 

interpolation, or through the use of sequential images via a rotating wheel.  Some 

examples of Redlake products are; MS2100, MS2150, MS3100, MS4000, and MS 

4100.  The pixel size for these multispectral cameras ranges from 494 x 656 to 1080 

x 1920 pixels.  These multispectral cameras can be integrated with an electronic 

control unit, a GPS set and flight control and navigation software (Petrie, 2003).  For 

example an integrated system called Agri-View, developed by Airborne Data 

Systems from Minnesota, was based on the MS3100 or the MS4100.  Spectronics 

from Australia has developed the Integrated Spectronics Airborne Acquisition 

Camera System, that combines the MS3100 or MS4100 with a control unit and 

connections to an Applanix POS/AV unit and the Furgo Omnistar DGPS system, and 

as well as providing its own image data acquisition and processing software  (Petrie, 

2003). 

 

Instead of the small format imaging devices which have been discussed above, there 

are several types of imaging sensors that can be used as low-cost data acquisition 

devices.  Examples of these are, line scanner imaging, hyperspectral scanner, laser 

scanning, thermal imaging and polarmetric microwave systems.  The line scanner 

developed by Redlake known as MS2200 is able to provide data in four bands: near 
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infrared, red, green and blue as reported by Dare (2005).  Whilst, Bochert et al., 

(2000) have developed a low-cost line scanner, which is able to provide 2048 x 2048 

pixels for the green, red and near infrared bands. 

 

In the field of hyperspectral scanners, a company from Finland called SPECIM has 

manufactured various types of hyperspectral scanner which are small, easy to install, 

easy to transport, have high performance, stable operation, good spatial accuracy and 

spectral resolution, and are reliable data, low maintenance, and efficient data 

collector (SPECIM, 2008).  For example, the AISA Airborne Hyperspectral Sensor 

System called AisaEAGLE, provides very near infrared in the range of 400-970nm, 

with 512 or 1024 spatial pixels and up to 488 spectral bands and weighs 6.5 kg. 

 

RIEGL, an Austrian company (REGL, 2008) has developed four types of Airborne 

Laser Scanning device known as LMS-Q560, REIGL VQ-480, LMS-Q240 and 

LMS-Q160, which can be installed in twin-engine aircraft, single engine aircraft, 

helicopters or unmanned airborne vehicles.  These instruments weighs between 4.6 to 

20 kg and provide near infrared data with various types of measuring option, such as 

time-of-flight measurement, echo-signal digitization, wave form analysis, first return 

signal, last return signal, or alteration signal. 

  

FLIR system is one of the manufacturers who has invented a compact thermal 

imaging cameras (FLIR, 2008).   An example of the compact thermal camera is 

ThermalCam P620, which has 640 x 480 pixel resolution with high thermal 

sensitivity (0.06oC) that provides a precision of ±0.2°C.  This camera operates in the 
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same manner as a typical digital video camera, with data being stored on a computer 

hard disk through a Firewire (IEEE1394) connection (Dare, 2005).  

 

Colliander (2007) has developed a Polarmetric Microwave Radiometer for remote 

sensing applications.  The Polarmetric Microwave Radiometer operates at 36.5 GHz 

and uses a direct cross-correlation technique.  It has a radiometric resolution of about 

0.2 K for the orthogonal polarisations.  This instrument is used to measure 

microwave emissions from rough surfaces such as the ocean.  

 

The installation of the low-cost imaging devices referred to above in small single 

engined light aircraft, enables the study of the fields by remote sensing techniques at 

a much lower cost.  There is evidence that the various types of low-cost imaging 

device which can be installed onboard together cover almost the entire 

electromagnetic spectrum, even though some of the imaging device need little 

modification. For example, Wood, et al., (2003) modified Kodak’s DCS 420 by an 

embedding optical band-pass filter in front of the 18mm optics to centre the red 

waveband at 640 nm and the near infrared waveband at 840 nm made to evaluate 

vegetation indices investigations.    

 

The selection of a low-cost imaging device, however, depends totally on budget 

allocation, project needs and device reliability.  This research study, focused on 

budget allocation and reliability of the low-cost remote sensing system, and the 

Tetracam Agriculture Digital Camera was selected because this camera was loaned 

by Skyfarm without a fee. 
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2.2.2 Ancillary Instruments 

The most important ancillary instruments in airborne remote sensing systems are the 

navigation devices.  There are various types of traditional navigation systems such as 

altimeter, gyroscope, inclinometer, and compass.  However, the now well established 

method in navigating airborne remote sensing aircraft is the integration of an Inertial 

Measurement Unit (IMU) and a Global Positioning System (GPS).  The integration 

of IMU and GPS in airborne applications work was published by Schwarz in 1995.  

This made a substantial contribution on the principles of IMU and GPS in airborne 

environments.  In 1997, Cramer conducted tests for analogue frame cameras and 

digital line scanner sensors which been integrated with IMU and GPS, ad found that 

the accuracies are high enough for almost all mapping applications.  Lithoupolous 

(1999) reported the possibility of commercial IMU and GPS integration systems for 

high-end applications. 

 

Since the initial work done by Schwarz, the focus of integrating the IMU and GPS 

has been on the extensive testing in airborne sensor environments, such as multi-line 

pushbroom airborne cameras (Neukum, 1999), digital airborne cameras (Wegmann 

et al., 2004), laser scanners (Nagai et al., 2004; Talaya et al., 2004), analogue frame 

cameras and digital line scanners (Cramer, 1997).  Some work on integrating IMU 

and GPS for mapping has been described by Talaya et al. (2004), Wegmann et al., 

(2004), Nagai et al. (2004), Baumker and Heimes (2002), Seara (2002), Gruen and 

Zhang (2001), Mostafa (2001), Jacobsen (2000) and Cramer (1997).  Table 2.2 

summaries published work on the integration of IMU and GPS.  An accuracy of <0.6 

cm can be achieved by  the integration of aerotriangulation, IMU and GPS while 

direct orientation gives 0.30 m to 1 m mapping accuracy.  It has been reported by 
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several researchers that mapping accuracies fall between 0.03 m to 1.0 m (in RMS), 

with respect to the accuracy of IMU, GPS, imaging device and camera resolution 

(Grejner-Brzezinska and Toth, 1998). 

 

Table 2.2: Previous studies on integration of IMU/GPS 

 

Researcher 

Accuracy of IMU Corrected 
Coordinate 
(RMS) 

 

Technique 
Applied Roll 

(Deg) 
Pitch 
(Deg) 

Yaw 
(Deg) 

Position 
(m) 

X 
(cm) 

Y 
(cm) 

Niu et al. 
(2006)  

0.5 0.5 0.5     

Wegmann et 
al.,  (2004) 

<0.005 <0.005 <0.008 <0.1 5.0  5.0  Combination 
AT, IMU & 
GPS 

Nagai et al. 
(2004) 

0.1 0.1 0.1 0.4 3.0 6.0 Combination 
AT, IMU & 
GPS 

Baumker&Hei
mes (2002) 

<0.005 <0.005 <0.025 - 

 

30  43  DO 
(Laboratory 
Test) 

Seara (2002) 0.013 0.013 0.035 0.05 17.0 100.0 DO 

Heipke et al.     
(2002) 

 

0.005 0.005 0.008 0.1 5.0  5.0 Combination 
AT, IMU & 
GPS 

Gruen (2001) 0.005 0.005 0.005 0.02 7.9  7.9  DO 

Mostafa et al.  
(2001) 

0.005 0.005 0.008 0.1 0.8 0.5 DO 

Jacobsen 
(2000) 

0.005 0.005 0.008 

 

0.1 30 30 Check on 
systematic 
error on IMU 

Cramer (1997) 0.002 0.002 0.001 0.15 13 15 DO 

Note: AT = Aerotriangulation, DO = Direct Orientation 

Niu et al. (2006) using IMU based on accelerometer, others using gyroscopes and 
accelerometers IMU. 
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2.2.2.1   Inertial Measurement Unit 

Off-the-shelf, there are various types of low-cost IMU devices ranging from 

navigation grade to consumer grade IMU.  The difference between them is the 

accuracies they produce.  A study of IMU performance has been carried out by 

several researchers, including Schwarz and El-Sheimy (1999), Greenspan (1995) and 

Gebre-Egziabher et al. (2001). Table 2.3 shows the performance difference between 

different IMUs. 

Table 2.3: Performance difference between IMUs 

Grade 

Source: Shin, 2001. 

Originally, the IMU device was based on a combination of gyroscope (angular rate) 

and accelerometer (force).  The development of an IMU device based on gyroscope 

and accelerometer measurements is very complex and expensive, especially with 

regard to the gyroscope.  Thus, through advanced technology investment an IMU 

based on a linear accelerometer has been developed.  Merhav (1982) found that the 

linear accelerometer based IMU is essentially drift-free and the dynamical errors due 

to angular rate and force are very small.  This invention has been enhanced by 

Hulsing (1998), who employed the single coriolis inertial rate to measure the angular 

rate and used the linear acceleration to measure the force.  This invention has been a 

corner stone for inventing smaller and cheaper IMU devices through Micro-
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Mechanical Electronic Manufacturing System (MEMS).  Ahn and Lee (2003) have 

been interested in estimating the altitude of the sun-pointing mode satellite by using 

gyroless IMU, Pamadi and Ohlmeyer (2004) have worked on assessing the GPS for 

guiding a spinning projectile by using an accelerometer-only IMU, and Niu et al. 

(2006) have carried out research on direct geo-referencing terrestrial imagery by 

using an IMU based on a linear accelerometer.  Park et al. (2005) have introduced a 

scheme for improving the performance of a gyroscope-free IMU. 

 

The accelerometer-based IMU has become popular as the price has become cheaper, 

where it is around USD$5 to USD$30 (Niu et al., 2006) and the size has reduced to 

that of small coins.  This type of device has opened up the choices available for 

selecting the most appropriate device according to budget allocation, project needs 

and the reliability of the device. 

 

2.2.2.2   Global Navigation Satellite System 

Low-cost GNSS were invented for recreation, road navigation and other activities 

which do not need a very good accuracy.  There are various off-the-shelf low-cost 

GNSS brands and some examples are Garmin recreation products, such as Garmin 

eTrex, Garmin 76 and Garmin 12 XL; Magellan have a product called Triton 200, 

Thales Explorist and Magellan Marine GPS.  In GNSS wireless (Bluetooth) products, 

there are various types of Holux wireless device such as Holux M-1200, Holux M-

1000 and GPslim240 and from GlobalSat there are GlobalSat BT-359,  BT-335 and 

5843 RDS TMC.  Regardless of types, brands or qualities, the low-cost GNSS uses 

the same principle for receiving and transmitting the GNSS signals. 
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Global Navigation Satellite System (GNSS) is a term used to describe a navigation 

network system for determining the coordinates of a location.  There are three 

navigation networks in use; NAVISTAR, GLONASS and Galileo.  All of them use 

radio signals to communicate within the system which consists of three major 

segments known as the control segment, the space segment and the user segment.  

Each of the segments has a receiver to transmit, receive or transmit and receive radio 

signals with a dedicated frequency.  In the control and space segments, there is 

receiver able to transmit, receive or transmit and receive six types of frequencies 

known as C1, C2, L1, L2, P1 and P2 (see Table 2.4).  

Table 2.4: Frequencies and observation type 

f1 f2 Observation type Units 

L1 L2 Carrier phase cycles 

C1 C2 C/A code pseudorange metres 

P1 P2 P-Code pseudoranges metres 

S1 S2 Signal-to-noise ratio decibels 

D1 D2 Doppler frequencies Hz 

 

The control segment is used to track the satellites constantly and make sure that they 

are operating correctly and has a very precise radar to check their altitude, position 

and speed.  Subsequently, the data are used to calculate the ephemeris constants and 

clock adjustments transmitted to the satellites in the space segment.  The satellites in 

turn use these updates in the signals that they send to the user.  Figure 2.8 shows the 

GPS components. 
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(a) 

Source:Motorola, 1997. 

 
(b) 

Source: NASA, 2006. 

Figure 2.8: (a) GPS components and (b) the location of GPS monitoring 
stations. 
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In the user segment, receiving the frequencies depends totally on the type of receiver 

used.  For example, the military receiver is capable of receiving Y code which 

consists of P1 and P2 together with L1 (1575.42 MHz) and L2 (1227.60 MHz) 

frequencies.  L1 and L2 are used to calculate the differential GPS for better accuracy.  

For the layman, there are single frequency and dual frequency receivers able to 

receive C/A code which consists of C1 or C2, or C1 and C2.  The single frequency 

receiver will receive C/A code which consists of C1 or C2, or C1 and C2 together 

with either L1 or L2.  A dual frequency receiver will receive C/A code which 

consists of C1 or C2, or C1 and C2 together with L1 and L2.  In a dual frequency 

receiver, a technique called squaring, cross-correlation or P-W correlation is used to 

obtain full L2 wavelength for achieving better accuracy (Hassan, 2004). 

 

Generally, NAVSTAR, GLONASS and GALILEO use a common principle for 

determining the local position (see El-Rabbany (2002) for details of process for 

translating signals to position).  All have an identical Ground Control segment with 

applications for land, sea and air.  The navigation networks have slightly different 

constellations of receivers in the Space segment where relates to satellite geometry, 

orbit, orbit period and the radio frequency signals.  Table 2.5 shows the constellation 

description for all three GPS network. 
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Table 2.5: Constellation Description for GPS 

 Galileo NAVSTAR GLONASS 

Source: European Space Agency (2007) and Space and Tech (2001) 
 

2.3 Geometry Correction Review 

It should be noted that the geometry correction carried out in this research study is 

based on a parametric method which leads to direct geo-referencing.  In the 

parametric method, the extra information needed to geo-rectify the image is the 

attitude, position and intrinsic parameter of the imaging sensor.  This information is 

used to reconstruct the system’s trajectory; in this case, it is the airborne remote 

sensing system.  The reconstruction relates the imaging sensor to the platform, earth 

and map projection.  The main idea behind the reconstruction of the sensor system’s 
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trajectory is to place the image in its real position at the time of acquisition.  As a 

result, each image pixel is moved to its adjusted position and the appearance of the 

image is thus less distorted.  This technique has limited reliance on ground control 

and has potential for automation (Roy et al., 1997). 

 

The reconstruction of the sensor system’s trajectory requires all the relevant devices 

to be at one common coordinate reference, because the coordinate systems employed 

by each device do not comply with the coordinate system and angles used in 

photogrammetry.  The IMU coordinate system refers to the body coordinate system, 

where the IMU has been strapped down to the body of the aircraft as illustrated in 

Figure 2.9.  The mathematical equation to connect the body coordinate system with 

navigation coordinate system is given in 2.1. 

 

 

Figure 2.9: Definition of body coordinate system of Euler angles φφφφ, θθθθ, ψψψψ 
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where; 

= connection matrix of the body and navigation coordinate systems 
Rz = rotation about z axis 
 
Ry = rotation about y axis 
Rx = rotation about x axis 
ψ  = angle of yaw 
θ  =  angle of pitch 
φ  = angle of roll 
 

Therefore, the transformation from body coordinate system into navigation 

coordinate system can be given as: 

bn
b

n rCr ⋅=  (2.2) 

where; 

= connection matrix of the body and navigation coordinate systems 
rn = transformation coefficient in navigation coordinate system 
rb = transformation coefficient in body coordinate system 
 

 

and the inverse transformation is performed by: 

nn
b

nb
n

b rCrCr ⋅=⋅= −1)(  (2.3) 

where; 

= connection matrix of the body and navigation coordinate systems 
b
nC = connection matrix of the navigation and body coordinate systems 

rn = transformation coefficient in navigation coordinate system 
rb = transformation coefficient in body coordinate system 

 

 

On the imaging side, the image obtained is referred to the earth coordinate system 

with rotation angles referred to the body coordinate, since the camera is strapped 

down to the body of the aircraft, as illustrated in Figure 2.10. The mathematical 

equation to connect between body coordinate system with navigation coordinate 

system is given in 2.4.   

n
bC

n
bC

n
bC
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Figure 2.10: Definition of image coordinate system of Euler angles ωωωω, ϕϕϕϕ, κκκκ 
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where 
B
EC = connection matrix of the earth and body coordinate systems 

Rz = rotation about z axis 
Ry = rotation about y axis 
Rx = rotation about x axis 
κ  = angle of yaw 
ϕ  =  angle of pitch 
ω  = angle of roll 

 

 

Therefore, the transformation from image coordinate system into earth coordinate 

system can be given as: 

EB
E

B rCr ⋅=  (2.5) 

B
EC = connection matrix of the earth and body coordinate systems 

rB = transformation coefficient in body coordinate system 
rE = transformation coefficient in earth coordinate system 
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and the inverse transformation is performed by: 

BB
E

BE
B

E rCrCr ⋅=⋅= −1)(  (2.6) 

B
EC = connection matrix of the body and navigation coordinate systems 

rE = transformation coefficient in earth coordinate system 
rB = transformation coefficient in body coordinate system 

 

 

From equations (2.1) to (2.6), it is seen that both systems have one coordinate system 

in common, which is the body coordinate system.  However, the orientation of the 

body coordinate system in the IMU is referred to East-North-Up (ENU), while the 

body coordinate system in the image is referred to Earth-Centre-Fixed Cartesian 

Frame (ECEF).  These two systems are not the same, and thus an additional 

transformation is needed to convert the body coordinate system in IMU and the 

image body coordinate system in image – this is given in equation 2.7. 

















−
−=

100

010

001
B

bT  

(2.7) 

where; 
B

bT = transformation conversion between body coordinate system in IMU and body 

coordinate system. 
 

Equation 2.7 has been developed at the University of Hanover (Jacobsen, 1996) 

called BLUH.  There is another transformation equation developed at the University 

of Stuttgart (INPHO GmbH, 1999) called PATB, as follows: 
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where; 
B

bT = transformation conversion between body coordinate system in IMU and body 

coordinate system. 
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Finally, the common body coordinate system can be converted into the navigation 

coordinate system by equation 2.9. 
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where; 
E

nT = transformation conversion between earth coordinate system and navigation 

coordinate system. 
 

Equations 2.1 to 2.9 can be found in Skaloud (1999), Baumker and Heimes (2002) 

and Fiani and Pistillo (2004). These equations can be modified for tightly-coupled or 

single step IMU and GPS direct geo-referencing, the equation for which appears in 

Grejner-Brzezinska (1999), Mostafa and Schwarz (2001), Pinto and Forlani (2002), 

Grejner-Brzezinska and Toth (2004), Schwarz and El-Sheimy (2004) and Niu et al., 

(2006) and is as follows: 
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where; 
 

iMr ,         
= 3D object coordinates in mapping frame 

IMUMr , (t) = time-dependent 3D IMU coordinates in mapping frame, provided by 

IMU/GPS 

fCr ,         
= image coordinate of object in camera frame C 

BINS
CR       =boresight matrix between IMU body and camera frame C 

)(tRM
BINS  =time-dependent rotation matrix between body and mapping frames   

(measured by IMU) 
S             =scale factor 

IMUb         =boresight offset vector    

λ,ϕ          = longitude and latitude measured by GPS 
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In order to enhance the quality of the geo-referenced image, the direct geo-

referencing method has been combined with the traditional method known as 

aerotriangulation, as reported by Haala et al. (1998, 2000), Mostafa (2002) and 

Wegmann (2002).  Aerotriangulation has been introduced in order to reduce some of 

the GPS and boresight misalignment problems.   

 

2.4 Sources of Geometric Distortion 

In this research study, three sources of geometric distortion were expected, as 

reported by Skaloud (1999) and Baumker and Heimes (2002) namely: 1) IMU 

distortion; 2) GPS distortion; and, 3) intrinsic image distortion.  The IMU distortion 

is mainly caused by misalignment between the IMU and camera frame is referred to 

as boresight.  This misalignment will cause coordinates shifting and angular error, 

which can be determined by calibration, and subsequently an adjustment is made 

based on the calibration data.  Several researchers (eg. Mostafa et al. (2001), Toth 

(2002), Grejner-Brzezinska and Toth (2004) and Skaloud and Lichti (2006)) have 

introduced a technique to reduce the misalignment problem, such as the use of least 

squares (Skaloud and Schaer, 2003) and comparing with aerotriangulation (Grejner-

Brzezinska, 2000).  Figure 2.11 shows the definition of misalignments. 
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Figure 2.11: Definition of misalignment in IMU and GPS integration. 

 

The GPS distortion will cause a shift in aircraft position and attitude, which can be 

minimised by implementing the differential GPS technique (Baroni and Kuga, 2005).   

 

The intrinsic image distortion, such as relief distortion and lens distortion, are other 

sources of geometric error.  These distortions affect the scale and the appearance of 

the image:  for example, a straight road might appear as a curved path in the image.  

The fundamental approach to mitigate image distortion is by reconstruction of the 

geometrical plane.  Table 2.6 summarises the sources of geometric distortion in this 

research study. 
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Table 2.6: Sources of Geometric Distortion. 

Source of 
distortion 

Distortion Effect on Image 
(distortion) 

IMU Misalignment between IMU and 
camera frame, effect on shift and 
angular (∆roll, ∆pitch, ∆yaw) 

 
 
 
 
 
     Scale,  
     Relief distortion,  
     Tangential 

distortion, 
      Skew  

GPS Platform position and attitude, cause 
shift and attitude (∆X, ∆Y, ∆Z, 
∆roll, ∆pitch, ∆yaw) 

Camera 
calibration 

Interior orientation parameters (focal 
length, principal point, distortion 
parameters: lens & tilt) 

Miscellaneous 
distortion 

Image coordinate measurement 

Impact of camera window in 
pressurised cabin 

Camera rigidity 

Topography of earth’s surface 
 

2.5 Summary 

This chapter begins with the background low-cost airborne remote sensing systems, 

and includes discussions of the electromagnetic spectrum, the platform and previous 

developments.  This followed by a brief discussion on low-cost airborne remote 

sensing instruments, which include optical systems, lidar systems, thermal systems, 

microwave, radar and the ancillary equipment, namely IMU and GPS.  The 

integration of low-cost airborne remote sensing systems with ancillary data which 

leads to direct geo-referencing, is given in the next section, before a review of 

geometric correction by the direct geo-referencing technique.  The source of 

geometric distortion gives a general idea about what to expect in the integrating 

process.  The next chapter will discuss the proposed design of the low-cost remote 

sensing system for agricultural applications. 
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3. PROPOSED DESIGN OF LOW-COST AIRBORNE 

REMOTE SENSING SYSTEM 

 

“Low-cost technology is not a low-cost data, but it means 
comparatively cheap to build, install and fly…” 

(Mascall and Dare, 2005) 

 

3.1 Literature Findings 

From the literature review in Chapter 2, it was found:  

1)  The best platform to carry the low-cost airborne remote sensing instrument is a 

single engined aircraft as it is cheap to hire and easy to find.       

2)  With a low budget, digital camera is the best device for obtaining multispectral. 

3)  An IMU based on a linear accelerometer or gyro-free IMU is able as appropriate 

motion monitoring system. 

4) Low-cost GPS equipped with WAAS facilities glues accurate position 

measurements. 

5)  Boresight misalignment contributes to an additional error to the direct geo-

referencing process. 

6)  The algorithm used to solve the geometric issues via direct geo-referencing 

method is focused on vertical and tilt images.  A traditional method (bundle 

adjustment and triangulation) is selected for processing the oblique image. 

 

These six major issues will be addressed in this chapter and solutions developed.  It 

begins by introducing the design objective and is followed by the design layout for 

the low cost remote sensing system, which presents an alternative to platforms 
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currently available.  Subsequently, the devices selected for the proposed system are 

described.  The characteristic of each of the devices is explained in detail together 

with justification and rationalisation for their selection.  Since the system is new to 

airborne remote sensing, there is very little information on using it for airborne 

remote sensing applications, and consequently the quality of the data from the 

receiver is unknown. The expected errors of the selected devices and their 

minimisation are also discussed in this chapter.  Based on the discussions within this 

chapter, a mathematical model is developed and discussed in Chapter 4.    

 

3.2 Design Objective 

The main objective of the proposed design is to reduce the cost of airborne remote 

sensing through the introduction of a portable system requiring no structural 

modification to the aircraft.  The application of the portable remote sensing 

instrument has been driven by the potentially low-price compared to the satellite 

originating remote sensing system such as Daedalus, CASI, and CHRIS.  Appendix 

A lists most of the imaging sensors used in airborne remote sensing systems. 

 

The project objective is achievable with advanced technology in the manufacturing 

sector, which is able to reduce the size and complexity of the equipment.  The 

advances in Micro-Electro Mechanical Systems (MEMs) technology using machine-

based micro-fabrication techniques to assemble the small mechanical or electronic 

parts of the instruments, enables material and labour costs to be reduced and hence 

the production of high quality but cheaper equipment.  The total expected cost of the 

proposed design is listed in Table 3.1. 
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Table 3.1: Estimated cost of proposed low-cost airborne remote sensing system 

Item                            Cost £ 

IMU (Non-Gyro IMU) 800.00 

Low-cost GPS 100.00 

Agriculture Digital Camera  1000.00 

Cessna single engined aircraft (Charter) @ £185 per hour 100.00 

Software for processing  100.00 

Total (all costs in GBP) 2100.00 

Note: The prices are based on receipts and company quotation. 
 

3.3 Design Layout 

As the objective of this design is to propose a portable remote sensing system, which 

is light, and easy to install, it needs a layout plan to explain how this portable system 

is going to work.  Ideally, the portable system should have a pilot and a single 

operator to handle the instrument.  However, for this research study, two operators 

are needed: 1) navigator who points the imaging device at the target object, and 2) 

data manager for the whole system.  Figure 3.1 shows the proposed design of the 

low-cost remote sensing system for the research project.  

 

Theoretically, the equipment of a low-cost remote sensing system should simply 

consist of a navigation system and an imaging device.  As normal  navigation system 

is used to track the location and the attitude of the platform, whereas in the portable 

equipment, it is used to locate the position and the attitude of the imaging device. 

This is a significant change, and has been employed in order to avoid boresight 

misalignment, as discussed in Chapter 2. 
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Figure 3.1: Layout of cabin crew positions for replacing fixed installation 
 

3.4 Selection of the Devices 

The portable remote sensing system needs to be small, light and easy to carry but 

able to give an equal level of quality to the current low-cost imaging devices.  With 

the plug and play generation, an electronic engineer is no longer required to connect 

remote sensing sensors to computers when building bespoke systems.  Generally, the 

airborne remote sensing system requires:  

1) an imaging device for image acquisition; 

2) a navigation device to measure attitude and position of imaging device; 

3) a data storage device. 

All these devices can be connected to each other through fire-wire cables or wireless 

connections, such as Bluetooth, which enables the data to be transferred at high 

speed without the need of additional support hardware.   
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3.4.1 Low-cost Inertial Measurement Unit 

The low-cost IMU which has been identified for inclusion in this proposed design is 

a non-gyroscope linear accelerometer device.  This device is preferable because it is 

fast, essentially drift-free and the dynamic errors due to force and angular rate are 

reduced to small values (Merhav, 1982).  Secondly, this device is far cheaper than 

IMUs with gyroscopes and accelerometer, and it is small, which enables it to be 

attached to the imaging device. 

 

Specifically, the eGyro-XP (PCFlightsystems) IMU has been selected.  In it, there 

are three solid-state electronic gyroscope equivalents, three solid-state 

accelerometers and a micro-controller.  The ‘gyroscopes’ sense the rate of rotation of 

the moving body (imaging device) around the roll, pitch and yaw axes.  The 

accelerometers sense the acceleration of the moving body (imaging device) along 

these axes and also sense the orientation relative to the earth.  The micro-controller 

converts the gyroscope and accelerometer signals into digital signals. 

 

All these components are wire bonded onto an electromechanical circuit board.  The 

electromechanical circuit is a board contains: 1) mechanical parts (gyroscope and 

accelerometer); and, 2) electronic parts (integrated circuit and micro-controller).  

Figure 3.2 shows the electromechanical circuits fixed on the interface board.  Each of 

the electromechanical circuits is arranged with regard to the axes of the moving 

body.  X-direction is a wing direction moving up and down, Y-direction is nose 

direction moving up and down and Z-direction is the heading direction.  
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Figure 3.2: Electromechanical (‘A’) and Micro Controller (‘B’) assembled 

together on interface board. 
 

A.   Mechanical Part 

The mechanical part contains vibration mechanical elements (proof-mass) to 

simulate the body (imaging device) acceleration.   This acceleration is measured by 

an electrodes sensing element, which is placed on both sides of the proof-mass (see 

Figure 3.3).  These sensing electrodes are connected to micro processors on a circuit 

board in integrated circuit units (ICs) to process the force and angular rate data 

before transmittion to a data storage device.  The IMU has been designed with a 

lateral comb on both sides, surrounded by a silicon frame boundary, banded to a 

glass substrate.  There is also a suspension beam on the four corners of the mass, 

which functions as a spring to return the mass to its original position when it is in 
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stationary.  The frame acts like a damper and limits the proof mass from outrange 

acceleration.  The mechanical system is manufactured using micro-fabrication 

technology (using micro-machined silicon) and mounted on a nonconductive 

material such as glass. 

 

 

 
 

Figure 3.3: Mechanisation of micro-machined IMU accelerometer 

 

The ‘gyroscope’ measures angular rate by using the Coriolis acceleration1 concepts 

introduced by Hulsing (1998).  It is based on the energy disturbance caused by 

Coriolis acceleration.  In most cases, an electric power supply, such as a battery, is 

used to generate the energy (magnetic) field. These energy fields create a potential 

difference between the proof-mass and the sensing electrodes.  Any change in 

movement by the freely moving mass will disturb the magnetic field. This 

                                                 

1 Coriolis acceleration, named after the French scientist and engineer, G. G. de Coriolis 

(1792–1843), is an apparent acceleration arising in a rotating reference frame and is 

proportional to the rate of rotation (Figure 2.5) (Nasiri, 2000). 
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disturbance will be recorded by an on-board microchip on the interface board, which 

interprets the disturbance of the electric signal and translates the signals into an angle 

of movement.  The translation is developed from the corresponding inertial force 

equation (3.1) as follows: 

f = ma 
 
where, 
f = force (known parameter, calculated from x = f / k) 
m = mass  (known parameter) 
a = acceleration 
x = mass displacement 
k = gap constant 

3.1 

 

This force acts on and displaces the mass a distance x = f / k, where k is the gap 

constant between sensing electrodes and the mass (see Figure 3.4).  The sensor's 

output is related either to the mass displacement or to the internal force required to 

accelerate the mass, both of which are proportional to the applied acceleration.  The 

equation (3.1) is then multiplied by the Coriolis equation (Figure 3.5) to produce the 

Coriolis force.  The multiplication result is shown in equation (3.2). 

 

Ω= mVxf 2  
 
where, 
f   = Coriolis force  
m  = mass  (known parameter) 
Ω = angular velocity 
V = velocity of particle (easting, northing or up/down axis) 
 

3.2 

 

The rotation angle (roll, pitch and yaw) has now been derived from this equation 

(3.2) in terms of  the angular velocity which is related to the angular rate multiplied 

by the rotation angle, as in equation (3.3): 
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ϕw=Ω  
where, 
w = angular rate 
ϕ = rotation angle (roll, pitch or yaw) 
 

3.3 

 

Since each axis has its own mechanical device, V can be eliminated and the equation 

for determining the rotation angle is:  

mw

f

2
=ϕ  

where, 
ϕ = rotation angle (roll, pitch or yaw) 
f = Coriolis force 
m = mass   
w = angular rate 

 
   
  

3.4 

 
 

Figure 3.4: Relationship between force, mass and acceleration. 

 



 

 

Figure 3.

 

B.  Micro-Controller

The micro-controller is a microelectronic 

transistors, resistors, capacitors and all the connecting wiring onto a single crystal (or 

'chip') made of semiconductor material such as silicon and germanium.  A micro

controller can be classified as a medium to proc

signals.  While operating, the micro

such as converting the signal into some other format

modifying it in some other way.  These digital signals are t

algorithms and sent over a serial communication cable to the data logger.

 

3.4.2 Low-cost GPS

Three low-cost GPS devices 

1) Garmin 76 GPS, 2) Garmin

GPSs are equipped with W
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Figure 3.5: Coriolis accelerometer concept 

Controller  

controller is a microelectronic semiconductor device which places the 

transistors, resistors, capacitors and all the connecting wiring onto a single crystal (or 

'chip') made of semiconductor material such as silicon and germanium.  A micro

controller can be classified as a medium to process analogue, digital or mixed 

signals.  While operating, the micro-controller changes the signal in some manner

such as converting the signal into some other format, such as a digital signal or 

modifying it in some other way.  These digital signals are then processed using 

algorithms and sent over a serial communication cable to the data logger.

cost GPS 

GPS devices were selected for locating the imaging device

1) Garmin 76 GPS, 2) Garmin eTrex GPS and 3) Holux wireless GPS.  All of these 

are equipped with Wide Area Augmented System (WAAS) 

 

semiconductor device which places the 

transistors, resistors, capacitors and all the connecting wiring onto a single crystal (or 

'chip') made of semiconductor material such as silicon and germanium.  A micro-

ess analogue, digital or mixed 

controller changes the signal in some manner, 

such as a digital signal or 

hen processed using 

algorithms and sent over a serial communication cable to the data logger. 

for locating the imaging device, namely 

wireless GPS.  All of these 

 which promises ±3 
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metres of positioning accuracy.  This can be an alternative solution for a low-cost 

GPS receiver to obtain differential GPS data.  The WAAS has been developed by the 

Federal Aviation Administration to enable small aircraft to have better safety during 

landing and takeoff.  The term WAAS is used in the United States, in Europe it is 

called European Geostationary Navigation Overlay Service (EGNOS) and in Japan 

the term Multi-Functional Satellite Augmentation System is used.  These three 

systems are compatible to each other and the generic term SBAS (Satellite Based 

Augmentation Systems) is used by the International Civil Aviation Organisation 

(Kohne and Wobner, 2009).  In this thesis, the term SBAS is used for all these 

system. 

 

The importance of SBAS is its capability for improving the GPS vertical and 

horizontal positional data.  The SBAS consists of geostationary satellites and ground 

reference stations.  The latter receive GPS signals and determine if any errors exist.  

If there is judged to be an error, the correction is computed and sent to the 

geostationary satellites via a ground uplink system at the reference stations.  Finally, 

the geostationary satellites transmit the correction to the individual receiver.  This 

correction can only be received by a receiver with the SBAS capability.           

 

Garmin 76 GPS 

One of the selected GPSs is Garmin 76 GPS, and as it has SBAS capability, it has the 

capacity for differential GPS measurements.  The accuracy claimed by the 

manufacturer is ±15 metres without differential GPS, ±3-5 metres with differential 

GPS and less than ±3 metres with SBAS correction.  It has 12 channels which means 

it is able to lock on to up to 12 satellites at a time with a fast update rate of 1/second.  
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Interfacing can be made via NMEA 0183 and RTCM SC-104 differential GPS to a 

data logger, such as personal data assistant, laptop or field electronic book.  It also 

has an external antenna, which is small and can be attached to any small space within 

the aircraft.  From the internet review, it can be said that this device is rugged, 

accurate (2 metres with external antenna), full function and easy to operate (Garmin, 

2001; Mehaffey and Yeazel, 2004). 

 

Garmin eTrex 

The main reason for selecting this GPS is its high-sensitivity.  The high-sensitivity 

enabled the position to be located quickly, precisely (2 metres accuracy at best) and 

is able to maintain its GPS location even in heavy cover and deep canyons.  It is also 

SBAS capable which enables better accuracy.  The track-log is very good compared 

to the Garmin 76 GPS, and therefore the travel print can be traced-back more easily.  

The manufacturer claims an accuracy of ±15 metres without differential GPS, ±3-5 

metres with differential GPS and less than ±3 metres with SBAS correction.  It has 

12 channels which means it is able to lock onto up to 12 satellites at a time with fast 

update rate at 1/second.  Interfacing can be made via NMEA 0183, RTCM SC104 

differential GPS and proprietary Garmin eTrex to a data logger such as a personal 

data assistant, laptop or field electronic book. 

 

Holux wireless GPS 

The main advantage of using this GPS is that it does not need to be tethered by cable 

or wire to connect with the data logger, and provides real time navigation for location 

based services.  It is also SBAS capable, which ensure that it is able to obtain high 

level of accuracy.  The manufacturer claims that the accuracy is ±10 metre without 
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differential GPS, ±1-5 metre with differential GPS and less than ±7 metre with 

SBAS correction.  It has 20 channels which means it is able to lock on to up to 20 

satellites at a time with fast update rate at 1 Hz/second.  Interfacing can be made via 

NMEA 0183 protocol and SiRF binary code to a data logger such as personal data 

assistant, laptop or field electronic book with Bluetooth enabled. 

 

3.4.3 Low-cost Imaging Sensor 

The low-cost imaging sensor selected for this study is known as the Agriculture 

Digital Camera (ADC) illustrated in Figure 3.6.  The camera has been purposely 

designed for the study of agricultural vegetation canopies by farmers, agronomists, 

crop consultants, viticulturists and agricultural engineers.  The study of vegetation 

canopies is useful in precision agriculture for differentiating, monitoring or planning 

the crop management.  It has a 1.3 megapixels digital camera with three bands; red, 

green and near infrared.  The ADC is a single lens camera featuring a Motorola 

CMOS (Complementary Metal Oxide Semiconductors) areal array that generates 

1280 x 1024 pixels when equipped with a Bayer mosaic filter.  The resulting colour 

image can be seen directly on tiny screen fitted to the back of the camera and is 

stored on a flash card (Petrie, 2003).  The output image can be stored in two types of 

format which are; JPEG (Joint Photographic Experts Group) and raw data format 

with .DCA extension.  The true colour composite image is stored in JPEG format 

while the monochrome (black-and-white) image is stored in raw data format with 

.DCA extension.  The image format is interchangeable by using appropriate software 

such as PixelWrench and Briv32, which are included in the imaging packages.  

These software are able to extract NDVI, SAVI, IPVI and NIR/G index data in 

grayscale or colorized format. 
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Figure 3.6: ADC compartment 

 

3.4.3.1 Generating Colour Composite Image by using Single Shot Imaging 

Device 

There are three methods used in single sensor imaging for generating colour images 

which are; mosaic filter, rotating filter wheels and beam splitter.  The rotating filter 

wheel and beam splitter have been used by the Airborne Multispectral Digital 

Camera and Redlake Multispectral camera respectively.   

 

The rotating filter wheel method (see Figure 3.7a) will generate two to five separate 

colour images with between 80% to 98% overlap.  These images need to be rectified 

in order to register the individual images into their exact position for creating the 

final colour composite images.  The advantage of this method is that the user can 

obtained either separate colour images or colour composites.   
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The beam splitter method (Figure 3.7b) splits the spectral bands through the beam 

splitter and colour separating prism that are located immediately behind the lens.  As 

a final result, the user can obtained separate colour images or colour composites.   

 
(a) 

 
(b) 

Figure 3.7 : Device that been embedded into single sensor imaging for 
generating colour composite images.  (a) the rotating filter wheel 
and (b) the beam splitter with colour separated prism. 

   

The mosaic filter or Bayer mosaic filter is the most popular method for generating 

colour composite images using a single sensor imaging device such as ADC and 

Kodak’s DCS series.  The Bayer mosaic filter comprises an RGB filter mask applied 

to a standard grey or monochrome sensor.  It is placed either in front of the sensor 

chip beneath a micro lens, as illustrated in Figure 3.8, or in some systems the filter is 

inserted behind the lens in the optical path (Wrotniak, 2004).  The mosaic filter is 

made up of  a two-dimensional array of photosensitive detectors.  On each element of 

the array only red, green or near-infrared waveband are captured (in-case of ADC 

device).  This filter mosaic red (R), green (G) and near infrared (NIR) are then 

recorded in alternating rows of RG and GNIR.  There are twice as many green filters 

as red and near infrared.  Figure 3.9 shows the arrangement of Red, Green and near 

infrared resulting from the use of the Bayer mosaic filter.  Details discussions on 

mosaic filter have been given by Lukac (2008).   



 

Figure 3.8

 

To produce the final colour

detectors should have a red, green and near infrared.  An interpolation technique such 

as nearer neighbor, BiLinear, BiCubic, Spline, Laplacian and adaptive interpolation 

can be applied for this purpose.  In
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8 : The architecture of single shot imaging device.

Figure 3.9 : The Bayer mosaic filter 

final colour image, each element on the array photosensitive 

detectors should have a red, green and near infrared.  An interpolation technique such 

as nearer neighbor, BiLinear, BiCubic, Spline, Laplacian and adaptive interpolation 

can be applied for this purpose.  In this research project, the interpolation technique 

 

: The architecture of single shot imaging device. 

 

image, each element on the array photosensitive 

detectors should have a red, green and near infrared.  An interpolation technique such 

as nearer neighbor, BiLinear, BiCubic, Spline, Laplacian and adaptive interpolation 

this research project, the interpolation technique 
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is not being discussed because it is achieved using specific software which comes 

with the single shot imaging device packages. 

 

The specific software not only processes the colour images but also the 

monochromatic images or black-and-white images.  Using the ADC sensor the 

monochromatic images can be obtained by setting the digital imaging device into 

monochromatic mode.  Subsequently, the filters (red, green and near infrared) 

produce a grayscale value proportional to the amount of red, green and near infrared 

light reaching the photosensitive detectors. The images taken in monochromatic 

mode are stored in raw digital format and specific software is required to open them.  

The raw files contain the image pixels and image metadata, such as camera model, 

serial number, shutter speed, aperture, focal length, navigation data and some other 

additional information that is recorded during the image acquisition process.  All the 

recorded data (colour images or raw images) can be saved to a compact flash card, so 

that it can be downloaded later for processing purposes or saved directly to a portable 

computer through data streaming.  In most single shot imaging devices, including the 

ADC, the captured image is labelled with the date and time of acquisition, as this 

information is important in any remote sensing system (Mascall and Dare, 2005).   

 

3.5 Justification of Selected Devices 

The foremost consideration with respect to the selected devices is the image 

resolution.  Image resolution describes the detail apparent in an image and depends 

on the pixel resolution and the spatial resolution of the imaging sensor.  Dabney and 

Deering (1998) have found that an effective imaging sensor for use in a low-cost 

remote sensing system should have a minimum image size of 1.3 mega pixels.  
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However, the spatial resolution determines the ideal size of an object to be 

discernible in the image with that particular size of pixel.  The spatial resolution 

depends primarily on the Instantaneous Field of View (IFOV).  In this research study 

the specification of the single shot digital imaging device used is shown in Table 3.2. 

 

Table 3.2: Specification of ADC single shot CMOS imaging device. 

 Source: Swain et al., 2007. 
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From the specification information in Table 3.2, the approximate ground resolution 

(GR) or ground sample distance (GSD) at 1000 feet (304.8 metres) can be obtained 

as follows: 

Step 1: Conversion pixels to mm; 

pixelmicronmmmmWidth /6006.0
1280

7.7
)( ≈==  

(3.5) 

pixelmicronmmmmHeight /6006.0
1024

1.6
)( ≈==  

(3.6) 

Step 2: Calculation of Instantaneous Field of View (IFOV) angle: 




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−=
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640*006.01
2

1
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[ ]0.451764701
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1 −= TanIFOV
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0.4243204826
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≈∴
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radIFOV

 

Step 3: Calculation of GR or GSD 

(3.7) 

GR or GSD refers to the smallest size on the ground that can be apparent on the 

image and it can be determined as: 

640

))42432048.0(*8.304(
)(

Tan
mGSD =  

                                             =  0.2151529 metres 

(3.8) 

or it can also be calculated by using (Neumann, 2008; Comer et al., 1998); 

                         
)000006.0*

0085.0

8.304
()( =mGSD                                                 (3.9) 

                  = 0.2151529 metres 
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The correlation between GSD and map scale can be interpreted by equation 3.10 

(Comer et al., 1998), whereby; 

ScaleMapxcapabilityresolvingmGSD ____)( =  (3.10) 

then the scale is; 

capabilityresolving

GSD
Scale

_
=

 

(3.11) 

                                
2150

1.0

215 ==
mm

mm
Scale

 

 

The value of resolving capability of human eye can be taken as 0.1mm (Koh, 2007) 

or 0.3mm (Comer et al., 1998).  The resolving capability is considered as the 

smallest pixel or dot that can be seen by the human eye on the output (either on 

screen or paper) for the particular image.  Equation 3.10 is similar to equation 3.12 

which has been introduced by Foster (1985) if 3x10-4 metres (0.3mm) is consider as 

the resolving capability of the human eye.  

m
4

m S10x3P −≤                                                      (3.12) 

ScalexMap_0003.021.0 =  

                           700
0003.0

21.0
_ ≈=∴ ScaleMap

 

but if the resolving capability of the human eye is 0.1mm then the map scale would 

be 2100.  Therefore, it can be said that the smallest scale for that particular image is 

1:2100 while the largest scale for that image will be 1:700.
 

For future reference: 

Pm is pixel size of image data 

Sm is the map scale 
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However, although, the scale become an irrelevant factor when dealing with the 

digital images (Comer et al., 1998), because digital images are not photos, it can be 

an indicator for the quality reproduced images.  

 

The second constraint of the ADC imaging device is the CMOS micro lens that is 

located above the photosensitive detectors along the optical path.  The problem of the 

CMOS micro lens is that it might result optical crosstalk.  Optical crosstalk is where 

an image sensor degrades the colour separation when light entering at angles other 

than orthogonal, passes through a filter and is partially be absorbed by the adjacent 

pixel rather than one vertically the lens below the lens (Agranov et.al., 2003).  As a 

result the particular pixel might have poor colour separation.  However, this may be a 

minor problem because in remote sensing the determination of object in an image is 

done by analysing a group of pixels.  Furthermore, it is unlikely that a single pixel 

represents a single object.    

 

The third constraint on the selected devices is the capability of the low-cost IMU to 

measure the angle on the nominally horizontal axes.  It is noticeable that the 

maximum angle this axes can be tilted is ±3 degrees to produce a vertical image, as 

mentioned in Moffit and Mikhail (1980).  The advantage of the vertical image is that 

it can be readily converted to create a map, because the radial distortion is minimum 

and the relief distortion is minimum at the centre of the image and increases in an 

outward direction from the centre. 
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The final constraint on the selected devices is the capability of the low-cost GPS to 

measure the position of the location.  The best accuracy which can be achieved by 

the low-cost GPS is ±1 to 2 metres with the use of the Wide Area Augmentation 

System (WAAS) (see European Space Agency, 2006).  Since all the GPS devices 

selected have WAAS capability, it therefore justified their choice..   

 

In this study, it is estimated that the final accuracy of the end product will be ±3 

metres, of which the major errors will be due to the low-cost GPS which has an 

accuracy of 2 metres, followed by the pixels size, which is 0.2 metres at a flying 

height above 304.8 metres (1000 feet).  This accuracy is adequate in precision 

agriculture and moreover, it is much better than the satellite imagery data such as 

LandSat, TiungSat and Micro-Satellite which produce ± 30 to 80 metres accuracy.  

However, the accuracy cannot be achieved if the systematic and random errors in the 

selective devices have not been minimised appropriately. Examples of these 

systematic errors are lag in data delivery, shutter actuations and GNSS output 

frequency, while random errors are unpredictable events that occur during the 

acquisition process.  These errors can be identified through experimental 

investigation- see Chapter 6.    

 

3.6 Expected Data Type 

It was anticipated that the imaging device data would be in raster data format, the 

IMU device would provide ASCII data format according to ARINC 705, whilst GPS 

devices would provide ASCII-based NMEA 0183 data format and binary data 

written in ASCII-based RINEX data format.   
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The imaging device stores the acquired images in DCA (Digital Camera Format), 

which is a compressed file that can be un-compressed and transferred to Bitmap 

format.  An alternative data format for the IMU is ‘raw signal’ data which can be 

obtained by using an oscilloscope device.  Obtaining IMU data by using this device 

(oscilloscope) is not included in this thesis.   

 

There is no other alternative for storing GPS data, as low-cost GPS devices are 

restricted to NMEA 0183 data format (output).  Fortunately, research by Hill et al., 

(2002), shows that GPS raw data can be retrieved by using a force algorithm such as 

embedded in the GRINGO software, even though success is not guaranteed.  This 

software enables the GPS raw data to be stored in RINEX format. The GPS data (in 

RINEX format) is used for differential processing.   

 

It very important to determine which data format is required for each task as some 

tasks cannot be performed if the data format does not match the required  processing 

requirement format.  For example, GPS with NMEA 0183 data format is not 

compatible for differential processing.  Table 3.2 lists the data protocols and their 

message types. 
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Table 3.3: List of data protocols available for GPS 

 

(Source: Yan, 2006) 

 

3.7 Expected Errors of Selected Devices 

Error has been classified as the imperfection of the measurement (Paine and Kiser, 

2003) and can be caused by technical aspects, the working conditions, the operation 

or the instrument itself.  For example, a personal computer such as laptop, is not able 

to work properly under high pressure conditions, and some researcher have 

experienced problems where it was not possible to unable lock onto a GPS signal for 

this reason.  The GPS signal can also be obstructed by parts of the aircraft body.  The 

causes error are minimised by setting up an appropriate procedure or sequence 

during measurement process, but this does not guarantee that the measurements are 
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free from error.  Based on previous research, there are several typical errors which 

are common in the devices selected, which can be grouped as illustrated in Table 3.4. 

Table 3.4: Typical errors occurring during measurement process 

Instrument(s) Typical Error 

Low-Cost IMU Biases 

Scale factor 

Noise 

GPS Satellite Clocks 

Orbit Errors 

Ionosphere 

Troposphere 

Receiver Noise 

Multipath 

ADC Sensor Lens distortion 

Relief distortion 

 

3.7.1 Low-cost IMU Error 

The errors typical of a low-cost IMU are known as: 1) bias, 2) scale factor, and 3) 

noise.  These errors can be expected to accrue in the navigation data due to the 

dynamic noise of the accelerometer output (Ding and Wang, 2005) and can be 

revealed by a self-determination test process.  In this method, the instrument is 

placed under conditions where the instrument’s errors are zero.  At the end of the 

test, output values plotted on a graph and the likely errors identified.  Figure 3.10 

illustrates typical errors in the low-cost IMU instrument. 
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Figure 3.10:  Typical errors in low-cost IMU 

 

3.7.2 Low-cost GPS Error 

Investigations on GPS error have been carried out since the first receiver was 

invented.  Most researchers, for example, agreed that the GPS contains errors mainly 

caused by: 1) ionosphere and troposphere delays; 2) receiver clock; 3) ephemeris 

orbit; 4) multipath; 5) number of satellites; 6) satellite geometry; 7) selective 

availability (removed in 2000); 8) antenna bias, and 9) processing algorithm used.   

 

Table 3.4 summarises the main GPS error sources.  Some can be reduced by 

processing techniques, such as the differential technique, and some are not 

applicable.  It is assumed that the three selected low-cost GPS receivers have a 

similar pattern of error since they share the same navigation satellites, and further 

explanation of these errors will be discussed in Chapter 6.  
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Table 3.5: Summary of GPS Error Sources 
 

Source: Trimble (2007) 

 

3.7.3 Low-cost Imaging Sensor Error 

The imaging sensor error may be due to a variety of factors, including one or more of 

the following: 1) perspective error, 2) motion scanning error, 3) stability of platform, 

4) terrain relief, 5) radial distortion, 6) the microlens and 7) curvature and rotation of 

the earth.  Some of these errors can be cancelled out in the appropriate equations, 

some can be ignored because the error is not significant, and some need further 

considerations.  These errors are treated as either systematic or random.  Systematic 

error correction is carried out if the displacement’s parameter can be determined.  If 

this is not possible, the error will be treated as random and the nature of the error is 

studied to determine if there is any pattern which enables adjustment or reduction.   
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3.7.4 Data Synchronisation Errors 

An integration error occurs when combining two sets of data captured from different 

devices, such as IMU and GPS, which may result in missing data.  There are several 

factors which cause missing data, such as during signal outages, receiver power 

failure or when the minimum interval recorded does not meet specific requirements.  

In this study, the IMU output is integrated with the GPS velocity data. This is 

calculated from the difference of two positions obtained by the Differential Global 

Positioning (DGPS) technique at ∆t, where ∆t is the time difference between the two 

positions.  

 

The combination of drift, scale factor, random fluctuation and bias in the IMU is 

known as cohesion error.  Even though the estimated position produced by the IMU 

is deemed of appropriate accuracy, the internal cohesion error of the IMU device has 

to be compensated for this can only be achieved if it is known.  Therefore, a 

laboratory investigation was undertaken to investigate the internal cohesion error of 

the IMU device and all other devices used in this study (see Chapter 6). 

 

3.8 Error Optimisation 

Error optimisation is aimed at minimising the unwanted signals which influence the 

IMU and GPS observation data.  For instance, the dither spike and noise in the IMU 

and GPS data, has to be removed from the observation data. Since all the errors in 

the IMU and GPS data (as mentioned in the previous section) are accumulated from 

different error sources, it is therefore difficult to trace and correct the error of each 

individual source.  The most effective way to minimise the error is by using a 

modelling and estimating method. 
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It is frequent in modelling to employ a statistical approach, because this gives a 

measure of the quality of the observation.  Based on the resulting indication, the IMU 

and GPS errors are estimated, and these values are used to compensate the raw data.  

The most popular modelling and estimating method is known as Kalman Filtering.     

 

3.9 Summary 

This chapter has given an overall idea of the low-cost remote sensing system for use 

in an agricultural environment.  Then, an alternative to the low-cost remote sensing 

system, based on portable devices has been set out.  These proposed portable devices 

have been discussed and the justification for the devices selected has been put 

forward.  Furthermore, the expected errors, which may occur during the acquisition 

process have been identified and the error optimisation procedure has also been 

discussed in detail.  The estimation of these expected errors will be discussed in 

Chapter 6.     

 



 - 82 - 

 

4. DIRECT GEO-REFERENCING 

 

4.1 Introduction 

This chapter reveals the technique of direct geo-referencing of digital imagery.  It 

begins with the introduction of the concept of direct geo-referencing, which together 

with the necessary instruments.  The preparation of data has been emphasised as very 

important, since synchronisation of both intrinsic and extrinsic parameters is crucial 

input data.  Subsequently, the data obtained needs to be cleaned of noise, bias and 

scale factors.  The clean data are then used to estimate any positional information lost 

due to bad data or signal loss.  Next, these data are extracted from the file data to be 

matched with the image ancillary data.  Finally, the reconstruction of the image 

geometry begins.  This starts with minimising the radial distortion which enables the 

reduction of lens and relief distortion.  The image orientation algorithm is then used 

to correct the orientation of the image before mapping the image it into the user 

coordinate system 

 

4.2 Concept of Direct Geo-referencing 

Geo-referencing can be defined as a process of gaining information about the origin 

of an image captured from the imagery sensor.  The information can be attained by; 

1) comparing recognisable objects in the image with ground control points; or  

2) by measuring the position, attitude, velocity and time during the image 

acquisition. 

The velocity is required to interpolate any missing or erroneous data.  Gaining the 

information from the second technique is called direct geo-referencing, and it needs a 
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navigation device to be installed on-board the platform.  This device for example a 

combined Inertial Measurement Unit (IMU) and Global Positioning System (GPS), is 

used to measure the exterior orientation parameter.  In particular, the exterior 

orientation gives the initial position and the attitude information of the image centre, 

while the velocity data is required to interpolate any missing or erroneous data lost 

during the acquisition process. 

 

As well as the exterior orientation, direct geo-referencing requires the interior 

orientation parameters of focal length, principal point, lens characteristic, and image 

scale (Moffit and Mikhail, 1980), together with the pixel resolution, instantaneous 

field of view angle, ground spatial resolution and altitude.  This additional 

information is used to correlate the relation between image and ground position.  

Figure 4.1 depicts the representation of direct geo-referencing without the aid of 

aero-triangulation.  In direct geo-referencing, the navigation data (motion data and 

position data) needs to be reduced to minimise the error then these data will used as 

an input parameter together with the principle point, focal length and pixel 

information to correct the image. 
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Figure 4.1: Flowchart depicting the geo-referencing process 
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4.3 Preparation of Data 

Data obtained from the navigation device and the imagery sensor has to be ready for 

the minimisation process before they can be used for the direct geo-referencing 

process.  Since the IMU and GPS data are mixed in one file they need to be 

separated, and are then uploaded into a spreadsheet for initial preparation, such as 

converting the roll, pitch and yaw angles into radians.  Subsequently, the standard 

deviation of the roll, pitch and yaw angle are calculated, the latitude and longitude 

position information extracted from the GPS data, the latitude and longitude 

(WGS84) converted into the British National Grid reference system, and the 

synchronisation between image data and navigation data determined.  Figure 4.2 

illustrates the preparation process for direct geo-referencing. 

 

4.3.1 Pre-processing 

The goal of pre-processing is to minimise random errors, especially bias and noise. 

There are three steps to be taken: 

1)  Filtering the IMU data: the most effective technique for reducing the 

random error is by filtering out the incoming high frequency signals 

(Skaloud, 1999). 

2)   For the GPS, the best technique to minimise the bias and noise in the GPS 

signal is by using the Differential GPS technique. 

3)  The final output can be improved by a process of approximation and 

revision technique. 

The output from this pre-processing process will provide an input for the direct geo-

referencing.  Since there will be several sets of data detained at the same time (IMU, 

GPS and Imagery), a time synchronisation technique is therefore employed.  
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Figure 4.2: Flowchart of the preparation process 
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4.3.2 Filter 

Filtering is the most suitable tool for isolating an error from the data stream.  In 

filtering, a cut-off value is set and any data beyond this cut-off value will be isolated 

from the data stream.  For instance, in mean filtering, the mean value plus a selected 

interval used as a cut-off value whereby any observation data outside this range will 

be eliminated and replaced with a new value. 

 

Skaloud (1999) set the cut-off value as mean + σIMU, whereby IMU data 10% higher 

than this cut-off value was given a new value (mean value).  Zhou (2006) used the 

bandwidth as the cut-off value, whereby the bandwidth is the difference between the 

high frequencies and the low frequencies, and any signal exceeding this value was 

given a new value.  In fact, the filter can be designed to suit the IMU device, for 

instance El-Shimey et al., (2004) designed a federate filter to minimise error in the 

Honeywell IMU device.  

 

In this study, the main constraint of the IMU data was the fluctuation of the IMU 

signals, which resulted in a yo-yo pattern in one-second data.  To overcome this 

problem, the IMU data have been segmented into groups. Ideally each of the groups 

should contain values which are ±2% of the original data.  For example, if the data is 

75 then the group would not contain any value which exceeds the maximum value of 

77 or falls below a minimum value of 74.  However, if a data value did not fall 

within the bounds set for a group then it would be considered as missing data and an 

interpolation procedure applied to determine an appropriate value for the missing 

data.  Figure 4.3 shows the flowchart of the working procedure to minimise the 

biases in the IMU data.  Figure 4.4 illustrates the implementation of the minimising 

procedure using a spread sheet. 
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Figure 4.3: Flowchart of the filter working procedure 

 

Figure 4.4: Spread sheet showing the process of filtering 
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An interval of ±2% was used to ensure that each of the faction contains small 

dispersion, whereby the small dispersion means that the IMU data has been tightly 

clustered and large dispersion means that the IMU data is widely scattered.  The 

dispersion can be expressed as; 

∑ −
−

= 2
i

2 )xx(
1n

1
s  (4.1) 

where; 
s2 = sample variance 
n  = sample size 
xi = current IMU data 
x  = mean of IMU data 

 
This technique has been compared with alternative methods for smoothing dynamic 

data, such as the moving average and polynomial method as in Figure 4.5.  It is 

found that the polynomial technique tries to average the IMU data in order to create a 

smooth curve.  The moving average has created a wide-gap between the original data 

and the adjusted data, while in the ±2% method the “yo-yo” has been removed and 

replaced by new values because it does not belongs to any nearest members in that 

particular epoch. 

 
Figure 4.5: Difference between filtering method 
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4.3.3 Differential GPS 

One of the advantages of using the WAAS GPS receiver is that the coordinates given 

are formed in DGPS fix mode when the WAAS satellites (35, 47, 33, 37 and 39) 

appear in the orbit.  The coordinates from the DGPS fix mode are considered as 

accurate, which means no further reduction process is needed.  In the Garmin 76, the 

coordinate from the DGPS fix mode is coded as 2 in $GPGGA NMEA 1813 code, 

for example.  The red column indicates that the coordinates are in DGPS fix mode, if 

not this column would read 0 (invalid) or 1 (GPS fix).   

$GPGGA,162422,5106.22,N,42.7275,E,2,10,1.5,738.9,M,47,M, , *41 
 

On occasions where the WAAS satellites are not visible at the ephemeris orbit (GPS 

on fix mode) the DGPS coordinate can be obtained by using post processing software 

such as GRINGO, Trimble Geomatics Office (Trimble), SKI-Pro (Leica) and Javad.  

The particular software chosen should support the data format obtained from the 

GPS receiver, as some of the handheld GPS receivers, such as Garmin 76, Garmin 

eTrex, Garmin 12 and Garmin 12XL, do not store the pseudo-range and carrier phase 

like geodetic receivers (Schwieger, 2003).  However, this information can be 

accessed by decoding the Garmin Communications Protocol (Hill et al., 2002). 

 

In the case of GPS fix mode being flagged 0 (invalid), an external data source such 

as an inertial measurement unit should be used to estimate the current position.  

Later, this position can be verified or improved with the updated coordinates from 

the GPS.  Besides, the inertial data for the approximation process, estimating the 

current position also needs the velocity and time information. 
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4.4 Approximation Process for Missing Coordinate 

The objective of the approximation process is to estimate the current position where 

there are ‘missing’ coordinates.  In this study, the ‘missing’ coordinates are 

computed by either interpolation or extrapolation.  The computation takes into 

account the initial base value which should be as accurate as possible, being 

determined by WAAS or post-processing DGPS.  From this starting point, the 

‘missing’ coordinates are computed.  Figure 4.6 illustrates the approximation process 

to determine the missing coordinates. 

 

 

Figure 4.6: Approximation process 
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It is obvious from Figure 4.6 that the ‘missing’ coordinates can be determined if the 

vector ‘s’ is known.  This can be computed if the speed and the time of travel of the 

vehicle are known.  If the GPS receiver is on board the vehicle then the velocity and 

travel time of the vehicle can be extracted from the NMEA data coded as; 

 

$GPVTG,360.0,T,348.7,M,005.5,N,010.2,K*41 

 

The yellow column is the ground speed in knots while the red column is the ground 

speed in kilometres per hour.   

 

By using the relationship between measured speed, time and distance the vector ‘s’ 

can be determined.  By rotating the vector ‘s’ is according to the rotation angle 

provided by the IMU device, the final coordinates for the ‘missing’ coordinates are 

computed by using Equation (4.2) as follows; 

 

L(t+1) = s . R + L(t) (4.2) 

in matrix form 

tt
L

L
s

L

L








+








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2

1

1
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where; 
L(t+1) = missing position in X, Y or Z 

ss            s     = distance obtain for conversion of  speed and time 
R      = rotation from IMU device 
L(t)    = known position from initial base value 

 

 

The ‘missing’ coordinates are improved by using updated information from the GPS 

receiver to model the error through statistical modelling or by smoothing the error 

with forward and backward determination. 
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4.4.1 Extraction of Navigation and Image Ancillary Data 

Direct geo-referencing needs an input from the interior orientation, exterior 

orientation and image ancillary data.  This information has to be extracted from the 

data logger and pre-processed before it can be used for the direct geo-referencing 

task.  Figure 4.7 depicts the extraction of the navigation data.   

 

The image ancillary data can be obtained from the image header or header file, which 

contains information about image size, shutter speed, focal length, date and time 

taken.  The ancillary data are really important for geometry correction of the single 

imagery.  Figure 4.8 illustrates the information obtained from the image header. 
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Figure 4.7: Extraction of navigation data 
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ancillary data                                         image 

 

Figure 4.8: Extraction of ancillary data from imagery 

 

4.4.2 Reconstruction of Image Geometry 

The main objective of the reconstruction process is to revolve a tilted image into a 

horizontal-plane image and thereby enable direct measurements to be obtained from 

the image.  The reconstruction begins with developing the camera projection (as 

shown in Figure 4.9).  The camera projections can express the relationship between 

an object and its image, which lie on a straight line passing through the perspective 

centre.  The reconstruction process based on this relationship involves interior and 

exterior parameters such as focal length, flying height, spatial resolution, pixel 

resolution and tilting angles, such as 1) radial distortion, 2) sensor orientation and 3) 

relief distortion.   
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Figure 4.9: Camera projection, inset taken from portable device showing 
platform axes in flight direction. 

 

4.4.3 Radial Distortion 

Traditionally, all lens sensors are laboratory-calibrated at regular intervals.    

However, since the CMOS-based sensors are not professional metric devices and are 

small format sensors, their calibration raises some issues.  Some of these issues 

mentioned in Toth (2002) are the long-term stability of the parameters and the way in 

which the calibration should be or can be performed (for example, collimators built 

for calibrating large-format aerial cameras cannot properly handle the small sensor 

size). 

 

These issues have led to automatic calibration techniques, indeed the calibrations are 

well understood and widely used (Robson and Shortis, 1998).  Table 4.1 lists the 
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popular equations which have been used to correct radial error, but in automatic 

calibration the equations in row 1 are preferable. 

Table 4.1: Lens distortion equation 

Method Equation 
1) Radial distortion xrk 2

1x =δ  

yrk 2
1y =δ  

2) Radial distortion xrkxrk 4
2

2
1x +=δ  

yrkyrk 4
2

2
1y +=δ  

3) Radial & Tangential 
distortion 

xy2k)x2r(kxrk 3
22

2
2

1x +++=δ  

xy2k)y2r(kyrk 2
22

3
2

1y +++=δ  

4) Radial distortion  )rkrkk(rx 4
2

2
10x ++=δ  

)rkrkk(ry 4
2

2
10y ++=δ  

where; 

yx ,δδ                = correction value 

k1, k2, k3….      = distortion coefficient 
x and y              = image coordinate r2 = x2 + y2 
 
In automatic calibration, the factor ‘k’ is designed to be flexible and can take any 

number within a range set by the program (see Figure 4.10 for an example).  The 

choice of the ‘k’ value is determined by visual interpretation.        

 
Note: Snapshot from Ulead Photo Explorer 

Figure 4.10: Example of automatic calibration 

Adjusted 
‘k’ factor 
list box 
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4.5 Image Orientation 

It should be noted that the aim of image orientation in this study is to reconstruct the 

image geometry.  There are two types of images to deal with; 1) tilt image, and 2) 

oblique image.  Tilt image relates to images taken with the optical axis 

unintentionally tilted slightly from the vertical, while an oblique image is one taken 

with the camera axis strongly tilted (Moffit and Mikhail, 1980).  These two cases 

need to be considered when projecting the image onto the horizontal-plane, as 

discussed below. 

 

1) Projecting tilt imagery onto horizontal-plane.  

The idea of projecting the tilt image onto the horizontal plane is to minimise the 

radial distortion at the periphery of the image (measured outward from the image 

centre).  This can be done by computing the potential position of a pixel (P) in the 

horizontal plane (P’) shown as in Figure 4.11.  A simple sine-cosine formula can be 

used for this purpose.  For instance,  

 

XP’= XP x Cos (Tilt) (4.3) 

YP’= YP x Cos (Tilt) (4.4) 

where; 
XP’ distance of O and P’ on X direction in horizontal plane 
YP’ distance of O and P’ on Y direction in horizontal plane 
XP  distance of O and P on X direction in image plane 
YP  distance of O and P on Y direction in image plane 
Tilt is pitch rotation in Y direction and Tilt is roll rotation in X direction. 
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However, theory shows that the rotation in one axis affects the direction of the 

following axes, and thus moves the pixel.  For example, rotation in the X direction 

will move the pixel towards the Y and Z directions.  These conditions can be 

formulated as follows; 

 X rotation Y rotation Z rotation 

XP’ X X*Cos(Pitch)-Z*Sin(Pitch) X*Cos(Yaw)+Y*Sin(Yaw) 

YP’ Y*Cos(Roll)+Z*Sin(Roll) Y -X*Sin(Yaw)+Y*Cos(Yaw) 

ZP’ -Y*Sin(Roll)+Z*Cos(Roll) X*Sin(Roll)+Z*Cos(Roll) Z 

where; 

XP’distance of O and P’ on X direction in horizontal plane 
YP’distance of O and P’ on Y direction in horizontal plane 
ZP’distance of O and P’ on Z direction in horizontal plane 
XP distance of O and P on X direction in image plane 
YP distance of O and P on Y direction in image plane 
ZP’distance of O and P’ on Z direction in image plane 
Roll, Pitch and Yaw are the rotation angles 
 

In the case where the Z coordinates are not available (for example, Z coordinate 

obtained from low accuracy GPS), –Z*Sin(Pitch) and Z*Cos(Roll) have to be 

removed  from the equations above, giving: 

XP’ = X  + X*Cos(Pitch) +  X*Cos(Yaw) + Y*Sin(Yaw) (4.5) 

YP’= Y  + Y*Cos(Roll)   -  X*Sin(Yaw)  + Y*Cos(Yaw) (4.6) 
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(a) 

 
(b) (c) 

Figure 4.11: Geometry obtained from camera projection.  (a) geometry of 
camera, (b) plane of tilting image and horizontal-image plane and 
(c) conversion from tilt image plane to horizontal-image plane. 

 

Unfortunately, equations (4.5) and (4.6) are not capable of orientating the image into 

the horizontal position, especially when the rotation angle is large.  Figure 4.12(a) 

shows distortion occurring when using equations (4.5) and (4.6).  To overcome this 

problem, a ratio between distance OP and OP’ (Figure 4.11) has been used.  The 

distance of OP and OP’ can be computed as follows; 

22 )YP()XP(DOP +=  (4.7) 

22

)Pitch(Cos

YP

)Roll(Cos

XP
'DOP 








+








=  

(4.8) 
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Therefore; 
'

,
DOP

DOP
kratio = ; replace multiplicative parameters, X and Y with 

k, then; 

(4.9) 

XP’  = X  + k*Cos(Pitch) +  k*Cos(Yaw) + k*Sin(Yaw) (4.10) 

YP’ = Y  + k*Cos(Roll)   -  k*Sin(Yaw)  + k*Cos(Yaw) (4.11) 
 

By using equations (4.10) and (4.11) the image orientation is rotated into horizontal-

position.  Figure 4.12(b) shows the results obtained from equations (4.10) and (4.11).  

Subsequently, the corrected image can be scaled according to the ratio of the focal 

length and flying height.  If the optical axis is unintentionally tilted then the image is 

oblique and has to be orientated by using an appropriate algorithm.   

 

(a) 

 

(b) 

Figure 4.12:  (a) Projected image using the simple rotation matrix expressed as 
equations (4.5), (4.6);  

                       (b) Projected image using equations (4.10), (4.11). 
 

 

 

 

 

 

Shifted pixels in 
Y direction 
 



 

2) Projecting oblique image onto 

In the case mentioned above

tilted from the vertical axis then the image has to be treated as oblique.  Oblique 

imagery can be projected onto 

geometry via intrinsic and ex

the oblique image.   

 

Figure 4.
 

In Figure 4.13, it is assumed that one end of the image coincide

plane.  L is an exposure station with a 

position can be traced by projecting the line of nP to the 

to the condition of collinearity
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Projecting oblique image onto horizontal-plane 

case mentioned above, when the optical axis of the camera lens 

tilted from the vertical axis then the image has to be treated as oblique.  Oblique 

imagery can be projected onto the horizontal plane by reconstructing the image 

geometry via intrinsic and extrinsic parameters.  Figure 4.13 depicts

Figure 4.13:  Geometry of oblique image. 

, it is assumed that one end of the image coincide

plane.  L is an exposure station with a distance of OL from the image centre.  The P 

position can be traced by projecting the line of nP to the horizontal

collinearity, the image of P should be somewhere on line LP’.  

when the optical axis of the camera lens is strongly 

tilted from the vertical axis then the image has to be treated as oblique.  Oblique 

plane by reconstructing the image 

depicts the geometry of 

 

, it is assumed that one end of the image coincides with the ortho-

of OL from the image centre.  The P 

horizontal-plane (P’).  Due 

the image of P should be somewhere on line LP’.  To 



 

compute the coordinate P in 

be undertaken and Figure 4.14

 

 

Figure 4.
 

From Figure 4.14, let P” be the position 

 
It is also known that β

and;                                      
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compute the coordinate P in the ortho-plane (P”), a trigonometric triangulation has to 

Figure 4.14 illustrates graphical construction for this

Figure 4.14: Establishment of trigonometric triangulation.

, let P” be the position of P in the ortho-plane, then

)'YLPtan('y'x ∠=  

)TILTcos(

y
'y =  

β = 90 - TILT, therefore nO is 

)tan(

hFocalLengt
nO

β
=  

;                                      








+
=α −

ynO

x
tan 1  

plane (P”), a trigonometric triangulation has to 

for this. 

 
: Establishment of trigonometric triangulation. 

plane, then 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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Then,  

)tan(*nY'YP α=  (4.16) 

and;                                   






=∠ −

LY

YP
YLP

'
tan' 1  

(4.17) 

where;                                    
)TILT90cos(

hFocalLengt
LY

−
=  

(4.18) 

 

Equations (4.12) to (4.18) have been used to compute the new position of all pixels 

in the image on the horizontal-plane.  Please note that all computations are done in 

pixel unit.  The conversion from pixels metric to metric units is based on the pixels 

per cm.  For example, if an image has been scanned at resolution of 28 pixels per cm, 

then a 1024x1024 pixel image can be transformed to 36 x 36 cm.  If the image scale 

is 1: 1000, then 1 cm (in photo) = 1000 cm (on ground) and the image covers an area 

of 36000 x 36000 cm square.  Later, each pixel in an image can be mapped into the 

user coordinate system. 

 

4.6 Map Pixels into User Coordinate System 

The objective of mapping the image pixels into a user coordinate system is to enable 

direct measurements to be taken.  There are two techniques for mapping the pixel 

image into a user coordinate system, which are; 

1) Based on the coordinates of the image centre, compute the coordinates of the 

four corners.  The resulting image then needs to be orientated to reconstruct 

the image geometry.  Please note that all computations should be in metric 

units. 

2) Reconstruct the image geometry according to the attitude information, and 

then compute the coordinates of the four corners based on the coordinates of 

the image centre.  The computations of the geometric image reconstruction 
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can be in pixel units, and during the calculations for the coordinates of the 

four corners the conversion between pixel and metric units can take place.   

 

However, both techniques need the image to be mapped onto the local coordinate 

system.  Figure 4.15 illustrates the relationship between the image coordinate system 

and the local coordinate system. 

 
Figure 4.15: Relationship between image coordinate system and the local 

coordinate system. 
 

Figure 4.15 shows that P is representing P’ in the image, and therefore the 

coordinates of P’ can be computed as;  

) 
2

α
  tan(Length  x   FocalXP'=

 

(4.19) 

Where α is the field of view and is equal for both axes, then XP’=YP’.                                 
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The α value is normally given by the instrument manufacturer.  However, if the α 

value is unknown it can be calculated as follows:  

1) If  image width and image height can be determined, for example by 
using photomodeler software, then α will be; 

direction Yn .........i).........
lengthFocal

Height
(Tan2α

direction Xn .........i).........
lengthFocal

Width
(Tan2α

1

1

−

−

=

=

 

 

 

(4.20) 

 

(4.21) 

2) If the magnification is known, then α will be; 

direction Yin ..........M)........x  
lengthFocal

FH
(Tan2α

direction Xin ..........M)........ x 
lengthFocal

FH
(Tan2α

1

1

−

−

=

=

 

 
 
(4.22) 
 
 
(4.23) 

By knowing the field of view (α), the four corners of the image can be determined 

into local coordinate system.  For example, assume that the width and height of the 

image are known to be 4.8 mm and 6.4 mm as obtained from photomodeler software, 

and the focal length is 8.5 mm, given by the manufacturer, then; 

�

�
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2
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92
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If the camera station is 1000 metre North and 1000 metre East with a flying height of 

380 metres, then the coordinates of the four corners can be determined as illustrated 

in Figure 4.16.  The difference in longitude departure (∆D) and difference in latitude 

(∆L) can be calculated as; 



 

 

Figure 4.16: Coordinates for the four corners of the image that refers to local 
coordinate system

 

The calculated coordinate

equal to the north direction

according to the yaw.  Figure 4.17 shows the process 

into local coordinate system.
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metres  118.862L

(37)Tanx380L

)
2

α
Tan(  x FH∆L

metres  214.588D

Tan(29)x380

)
2

α
Tan(  x FH∆D

1

=∆
=∆

=

=∆
=∆

=

−

D

 

Coordinates for the four corners of the image that refers to local 
coordinate system. 

The calculated coordinates, as shown in Figure 4.16 are correct if the 

north direction.  However if it is not, the image needs to be rotated 

according to the yaw.  Figure 4.17 shows the process of how the image

into local coordinate system.   

 

Coordinates for the four corners of the image that refers to local 

in Figure 4.16 are correct if the Y direction is 

not, the image needs to be rotated 

how the image is mapped 
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(a)                                                                    (b) 

Figure 4.17: Mapping pixels into local coordinate system.  (a) red box is image 
area plot, blue box area shifted after rotating image in roll and 
pitch directions.  (b) Rotated image in yaw direction (blue), 
coordinates in black used to create world file format to geo-
reference image into user coordinate system. 

 

An alternative to mapping the image into the local coordinate system is by 

determining the orientation of the image before calculating the coordinates of the 

four corners.  The advantage of this technique is that there is an opportunity to check 

the position of the image by comparing the orientated image with google earth  

(URL: http://www.google.com/earth/index.html) or ready map obtained from British 

Ordnance Survey.  Figure 4.18 shows the process of mapping the image into local 

coordinate system by this latter method.  
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Figure 4.18: Image rotated in roll, pitch, then yaw direction.  Later, coordinates 

of four corners are computed.  Coordinates in black used to create 
world file format to geo-reference image into user coordinate 
system. 

 

The process of mapping the image into the local coordinate system can be done 

either mathematical or graphical.  The mathematical method needs well organise 

documentation whereby every single step documented.  The graphical method is 

achieved with suitable software, such as AutoCad.  The graphical method is tedious 

in that it requires reconstructing the geometry of the image.   

 

Once the geocorrection has been achieved, the coordinates are transferred into 

“World File” format to enable the image to be used directly without repeating the 

same registration process having to be repeated.  
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World File 

World file is a small-standardised support file employed by some software such as 

ESRI for images in Arcview (Luijten, 2003) to geo-reference a digital image to a 

user coordinate system.  For example, an image with .TIF format has a world file 

with .TFW extension, which acts as a support file.  The .TFW contains initial 

information such as pixel size, image origin and origin coordinates, and can be 

created by any software which can produce ASCII data format.  Table 4.2 shows an 

example the .TFW format and the content information. 

 

Table 4.2: Sample of .TFW format 

 
                 +6.00                             Line1 
                 -0.00                              Line2                                          
                 -0.00                              Line3 
                 -6.00                              Line4 
                 589428.6267                   Line5 
                 137625.5105                   Line6 
  
Note: Line1 to Line 6 are not included in the .TFW format.  It is only the annotation 
to describe the contents of that particular line as listed below:      
         Line 1 - Cell size in "X" direction 
         Line 2 - Insertion point in "X" direction 
         Line 3 - Insertion point in "Y" direction 
         Line 4 - Cell size in "Y" direction 
         Line 5 - Easting value of insertion point "X" 
         Line 6 - Northing value of insertion point "Y" 
Additional remarks: sign on line 4 shows if insertion point is upper left or lower left 
corner.  Positive means "Y" values are increasing upwards and therefore registration 
must start at bottom or lower corner.  Vice-versa for negative sign. 
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4.7 Summary 

This chapter has covered the fundamentals of direct geo-referencing, which include 

the concept of direct geo-referencing, data preparation, pre-processing, extraction of 

navigation information, image reconstruction and finally mapping the digital image 

onto the user coordinate system.  It begins by describing the concept of direct geo-

referencing and the information needed to carry out the process.  The information 

obtained from the imaging and navigational devices need ‘curing’ before pre-

processing tasks are undertaken.  The discussion of the pre-processing tasks is 

limited to filtering, differential GPS and approximation processes.  Subsequently, the 

particular data required for reconstructing the image geometry, and includes 

correcting radial distortion and image orientation, is extracted and applied.  Finally, a 

discussion on transferring the pixels coordinates into the user coordinate system has 

been presented.  The process of writing the mathematical equations developed in this 

chapter is described in Chapter 5. 
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5. DEVELOPMENT OF SOFTWARE 

 

5.1 Introduction 

The objective of software development in this study is to assist the direct geo-

referencing process.  The input to this software is raster and text data.  Raster data 

are obtained during the image acquisition process, while text data are from the IMU, 

GPS and other extrinsic processed data, such as the initial coordinates and the flying 

height.  The intrinsic parameters of the image, such as pixel resolution and image 

size, are obtained by using the visual basic .net customised programming scripts.  

The specifications for the various devices, such as digital screen size, lens focal 

length and band channel, are given by the manufacturer, and the software structure 

has been designed based on this information.  The programming script lists the detail 

of each task, such as input image, input extrinsic data, extracting the image intrinsic 

data, processing and resampling tasks, and each of the command lines has been 

labelled for easy identification.   

 

5.2 Software Structure 

The software has been structured as follows: 

1) Image Input.  Since there are various types of image format the focus 

is on raster images that can be recognised by the visual basic .net 

programming language. 

2) Intrinsic Parameters.  The intrinsic parameters of an image can be 

extracted by using a ready-made command in the visual basic 

software. 
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3) Extrinsic Parameters.  The extrinsic parameters for the direct geo-

referencing are entered by using a form created for the purpose. 

4) Processing.  The processing task will be trigged by selecting the 

appropriate application process from the pull-down menu. 

5) Resampling.  The resampling process used the image warping 

technique to alter the image pixels. 

 

5.3 Programming Script 

The programming script is written in visual studio 2009 .net programming language 

with visual basic .net as the main source.  Some of the script is adopted or modified 

from Internet forums such as VB.net forum and CNET forum. A complete script of 

the programme development is given in Appendix G. 

 

5.3.1 Image Input 

The programming script used for selecting the raster file to be processed uses 

standard a visual basic framework for calling the file.  Below is the programming 

script to input the image file with default extensions from visual basic framework. A 

programming script used for extracting the default extensions from the image file is 

given in Appendix G. 

 

5.3.2 Intrinsic Parameters 

The program to extract the intrinsic parameters of the image is given in Appendix G. 
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5.3.3 Extrinsic Parameters 

The extrinsic parameters are imported into the program by keyboard entry.  A 

multiple Tab control dialog box was designed to able the import process, see Figure 

5.1. 

 

 

Figure 5.1: Keyboard entry form for extrinsic parameter 

 

5.3.4 Image Processing 

The image processing script is based on a pull-down selection menu where the user 

is able to select the process needed.  Figure 5.2 illustrates the dialog box for choosing 

the application and the programming script is given in Appendix G. 

 

 

Figure 5.2: Selecting image processing task. 
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5.3.5 Image Resampling 

A programming script used for image resampling is based on warping technique 

where the pixels are altered individually and is provided in Appendix G.  Since 

altering pixels individually may cause the image size to expand, and as it is important 

to maintain the original size (rectangular or square), any pixels extending beyond the 

original frame are removed.  The reason for discarding the coverage beyond the 

image size is to reduce the image distortion because these pixels which are distant 

from the image centre suffered severe distortion when compared with those nearest 

to the centre of the image.  This resulting image makes the mapping of the pixels to 

the user coordinate system a simpler and more direct process. 

 

5.3.6 Interface 

Figure 5.3 shows the user interface, developed in the visual basic .net programming 

language, to make the process of moving from task to task simple. 

 

Figure 5.3: User interface. 



 - 116 - 

 

5.4 Summary 

This chapter has outlined the programmes developed for the direct geo-referencing 

process.  The various operations are managed by an interface for easy browsing from 

task to task.  The software product is used for direct geo-referencing task described 

in Chapters 6 and 7. 
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6. EXPERIMENTAL INVESTIGATION 

 

6.1 Introduction 

As an initial investigation into the suitability of the IMU, a laboratory test was 

undertaken. In addition, to ensure that the instruments met the requirements of the 

Low Cost Remote Sensing System (LCRSS), three types of test were set up.  The 

first was a performance test to examine the performance of the instruments.  The 

second was a simulation test to ensure that the instruments provided sufficient data 

for the image geo-rectification process.  The third test was a test-drive to evaluate the 

data quality.  Finally, all the instruments were installed in a light aircraft for the final 

test to evaluate the full portable remote sensing system (see Chapter 7). The 

laboratory investigation included designing, analysing and determining an 

appropriate test for the system. 

 

6.2 Performance Test 

Performance testing is a rigorous evaluation of usability, capability and approximate 

accuracy of the instrument.  In this study, all the instruments (sensor, GPS and IMU) 

were tested independently to identify and remove gross or systematic errors.  The 

performance test was necessary since all the instruments were new (first time of use) 

to the LCRSS application (Cramer, 2005).  In addition, the instruments (especially 

the IMU/GPS) contained random errors such as acceleration biases and noise (El-

Sheimy et al, 2006; George and Sukkarieh, 2005) which need to be minimised. 
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6.2.1 IMU Performance Test 

The IMU performance test was carried out to determine the characteristic behaviour 

of the IMU.  In this test, the IMU was attached statically to a survey-pole on the 

ground surface.  The roll, pitch and yaw data were obtained from the IMU for three 

hours which was sufficient to sense any drift which occurred in the IMU.  El-Sheimy 

(1996) allocated the same time (three hours) for testing the IMU/GPS performance 

on a flight-run.  At the end of this test, it was expected that: 

1) The characteristic of each epoch, either homogeneous or heterogeneous, 

could be obtained. 

2) The quality of each epoch measurement could be established. 

3)  The approximate accuracy of the IMU could be obtained and compared 

with the manufacturer’s claimed accuracy. 

 

6.2.1.1 IMU Performance Test Results 

The IMU performance test yielded 7200 epochs in the two and half hours period of 

observation were analysed because the first 30 min is a warm up period to let the 

IMU become stable (El-Sheimy, 1996).  For the first 30 min of two and half hours, 

the mean values were 0.056, 0.030 and 150.189 degrees for the rotation angle in roll, 

pitch and yaw, respectively.  The mean value remained the same for the next one 

hour of observation, but improved in accuracy in the last one hour.  However, the 

standard deviations for the first 30 min, 1 hour and the last 1 hour were nearly the 

same.  The RMS fell between 0.001 to 0.003 degrees which is unexpected for the 

rate grade gyroscope, as El-Sheimy et. al., (2006) found that gyroscope to be the 

most erroneous gyro device compared to tactical and inertial grade gyros.  Table 6.1 

summarises the mean, standard deviation and RMS for the roll, pitch and yaw 
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rotations.  Figure 6.1 shows the observation angles (Roll, Pitch and Yaw) during the 

performance test. 

Table 6.1: Overall errors of rotation angle (roll, pitch and yaw) 
Observed Overall Errors 
 Mean Standard 

Deviation 
DRMS 

First 30 minutes 
Roll (degrees) 0.056 0.344 0.002 
Pitch (degrees) 0.030 0.490 0.003 
Yaw (degrees) 150.189 133.432 1.370 

1st hour 
Roll (degrees) 0.057 0.371 0.002 
Pitch (degrees) 0.038 0.461 0.002 
Yaw (degrees) 177.851 104.063 0.994 

2nd hour 
Roll (degrees) 0.029 0.401 0.001 
Pitch (degrees) 0.042 0.626 0.002 
Yaw (degrees) 179.001 127.563 0.750 
 

 

 

 
 

Figure 6.1: Observed angles (Roll, Pitch and Yaw) during performance test. 
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6.2.2 GPS Performance Test 

GPS performance test was carried out to identify the positioning accuracy, satellite 

availability and battery life span.  In this test, the GPS instrument was placed 

statically in a single position for three hours.  All the information from the GPS 

receiver was recorded in the Personal Data Assistant (PDA).  These data were 

written in ASCII format in a file data.  At the end of the test, the standard deviation 

of the GPS was obtained.  This standard deviation was to be an initial input for the 

error modelling process in the assimilation procedure of IMU and GPS data. 

 

6.2.2.1 GPS Performance Test Results 

This performance test revealed that the Garmin 76 is capable of producing position 

accuracy in the range of ±0.005 degrees to ±0.006 degrees in northing and easting 

directions.  The height above the ellipsoid reference was about ±6.002 m which was 

not really suitable to determine height for a single point; however, this particular 

accuracy might be sufficient for determining the altitude of the flying aircraft.  Table 

6.2 shows the residual mean, standard deviation and RMSE for the GPS Garmin 76.  

It is also notable that the WAAS satellite (35, 47, 33, 37 and 39) did not exist during 

the time of the observations.  This means that the chances of having DGPS 

coordinates was very high, with 95 per cent of the positions determined by the DGPS 

method. 

Table 6.2: Accuracy of Garmin 76 
 

 Residual Mean Standard 
Deviation 

RMSE 

North (±second) 3.1 x 10-10 0.001 0.005 
East (±second) 8.5 x 10-12 0.001 0.006 
Height (±metre) 0.368 0.049 6.220 
Velocity (ms-1) 0.000 0.000 0.0000 
 



 - 121 - 

6.2.3 Imaging Sensors Performance Test 

The sensor performance test was done by fitting the sensor on the test rig (see section 

6.3.1) built in a ratio of 1:1000 to the real flying height, whereby 1 metre height of 

the rig was equal to 1000 metres of real flying height.  Then the sensor was rotated to 

create unpredictable movement to determine the best speed for flying and the fastest 

exposure the sensor can make.  Seeing objects through moving glass (lens) will cause 

high temporal frequency, which occurs when there is relative movement between 

camera and scene or if the brightness of lighting changes.  In this research, the main 

cause of temporal frequency will be the relative movement between camera (flight 

speed) and scene.  To overcome this issue, the camera shutter should be set at the 

optimum level to allow enough light onto the imaging sensor to both allow adequate 

exposure time, and reduce the temporal effects.  It can be said that the camera shutter 

is inversely proportional to the flight speed as shown by equation 6.1. 

edShutterSpe

1 αFlight speed 
(6.1) 

 

6.2.3.1 Imaging Sensors Performance Test Results 

In this performance test, 104 images were captured from the simulation platform.  

During the capture period, the platform was rotated to provide various different 

angles and movements: slow, rapid and fast.  It was found that it is very difficult to 

capture good quality images while moving, because the speed of the moving 

platform (aircraft) should tally with the shutter of the imaging sensor, otherwise it 

results in blurring and unfocused imagery, as shown in Figure 6.2.   
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Figure 6.2: Blurring and unfocused imagery caused by untallied movement 
between platform speed (aircraft) and imaging shutter. 

 

6.3 Simulation Test 

The main objective of the simulation test was to use the rotation angles to orientate 

the image into its true geometric position. Secondly, the simulation test was used to 

evaluate the frequency of capture of the GPS and IMU data.  From the simulation 

test, the quality, the capability and the sensitivity of the navigation instruments on the 

image could be determined.  For the main objective, the laboratory test drive was set 

up and for the second the on-the-road test drive was performed. 

 

6.3.1 Laboratory Test 

In the laboratory test, a simulation platform was built to a scale of 1:1000, with a 

designed bracket, control points and pivoting system.  The bracket had flexible 

movement in roll, pitch and yaw.  The twirling system moved the bracket up and 

down in roll and pitch directions, and the rotary motor was used to simulate the yaw 

movement.     
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A.   Platform/Rig 

The platform was designed to simulate the instantaneous position of an airborne 

system during the data acquisition process. This platform was built with an ‘A’ 

shaped frame.  The platform base size was 1 metre x 1 metre and platform height was 

3 metres.  On the top of the platform was captured of parallel bars on which to hang 

the bracket containing the sensor and the IMU device.  The gap between the bracket 

and parallel bars was designed with 45 degrees of clearance to simulate the roll and 

pitch movement.  The rotary motor to simulate yaw movement was attached inside 

the bracket while the roll and pitch were simulated by pulling a string attached to 

linear actuators.  Figure 6.3 shows the simulator platform/rig. 

 
 

Figure 6.3: The simulation rig and bracket with dummy camera 

 

B. Control Points 

A control model was used for calibration purposes.  In this investigation, fifty-one 

stickers 2.5 mm x 2.5 mm square were placed beneath the rig and acted as well-

distributed control points.  The position of each square was transferred onto a 

transparency and by using the digitising table the position of the squares was 
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converted into digital form.  Figure 6.4a shows an image of the control points and 

Figure 6.4b depicts the control points in vector form after digitising. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.4: Position of control points (a) image of control points captured by 
sensor, (b) actual control points after digitise and c) digitising 
equipment 

 

C. Root Mean Square Error (RMSE) 

To determine the accuracy for the laboratory test, the test image was overlaid onto 

the digitised control points in vector format.  The differences between the control 

points (in image and digitise) were measured.  Based on these measurements the root 

mean square error (RMSE) was produced to show the quality of lens distortion 

algorithm, tilt algorithm and oblique algorithm.  Figure 6.5 shows the difference 

between extracted reference points from the test image and reference points from the 
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digitised control points, while Table 6.3 shows an example of determining the RMSE 

for each of the particular laboratory test images.  The laboratory experiment was 

measured quantitatively to ensure the algorithm is suitable for low cost remote 

sensing images. 

 

 

 

Note: Units in millimetres. 

Figure 6.5: Sample of accuracy determination on the laboratory test product. 
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Table 6.3: Sample of RMSE for the laboratory product. 
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ID01 -0.3 0.4 20.2 -12.3 408.0 151.3 
ID02 -0.1 0.4 4.4 -2.5 -1.6 -1.2 -1.2 5.5 -2.7 3.3 19.4 6.3 2.6 1.4 1.4 30.3 7.3 10.9 
ID03 0.0 0.4 -0.1 0.6 -2.2 -1.6 -2.7 -6.5 -1.8 2.8 0.0 0.4 4.8 2.6 7.3 42.3 3.2 7.8 
ID04 0.1 0.4 -0.4 1.5 -2.7 -1.3 -3.2 -10.8 -1.4 3.3 0.2 2.3 7.3 1.7 10.2 116.6 2.0 10.9 
ID05 0.2 0.4 1.8 2.9 -0.9 -1.4 -2.4 -21.8 -0.3 2.1 3.2 8.4 0.8 2.0 5.8 475.2 0.1 4.4 
ID06 0.4 0.3 3.4 3.0 -0.4 -1.1 -2.2 -31.1 2.0 1.7 11.6 9.0 0.2 1.2 4.8 967.2 4.0 2.9 
ID07 0.3 0.2 2.5 1.4 -1.4 -3.5 -3.0 -27.6 0.2 -1.2 6.3 2.0 2.0 12.3 9.0 761.8 0.0 1.4 
ID08 0.2 0.3 0.3 1.7 -1.3 -3.2 -2.3 -17.4 0.5 0.6 0.1 2.9 1.7 10.2 5.3 302.8 0.3 0.4 
ID09 -0.1 0.3 0.4 0.2 -1.9 -1.9 -1.8 0.9 -2.1 1.5 0.2 0.0 3.6 3.6 3.2 0.8 4.4 2.3 
ID10 -0.2 0.3 8.2 -3.3 -0.6 -1.6 -0.1 13.6 -2.5 1.9 67.2 10.9 0.4 2.6 0.0 185.0 6.2 3.6 
ID11 -0.3 0.3 
ID12 -0.2 0.2 2.2 -0.5 -1.5 -1.5 -1.2 9.0 -3.1 1.1 4.8 0.3 2.3 2.3 1.4 81.0 9.6 1.2 
ID13 0.0 0.2 -1.0 0.2 -0.9 -2.8 -1.2 -4.9 -0.7 -0.6 1.0 0.0 0.8 7.8 1.4 24.0 0.5 0.4 
ID14 0.1 0.2 -0.4 0.2 -0.2 -3.3 -0.7 -9.1 0.5 -0.8 0.2 0.0 0.0 10.9 0.5 82.8 0.3 0.6 
ID15 0.2 0.2 1.2 -0.5 -1.0 -4.3 -2.2 -21.1 1.2 -1.3 1.4 0.3 1.0 18.5 4.8 445.2 1.4 1.7 
ID16 0.3 0.2 4.1 -0.1 -1.5 -3.5 -3.4 -31.5 1.0 -2.2 16.8 0.0 2.3 12.3 11.6 992.3 1.0 4.8 
ID17 0.1 0.1 0.1 -1.0 0.1 -3.3 -0.8 -12.8 1.1 -1.9 0.0 1.0 0.0 10.9 0.6 163.8 1.2 3.6 
ID18 -0.1 0.1 -0.3 0.2 -0.9 -1.7 -0.8 3.1 -1.4 -0.1 0.1 0.0 0.8 2.9 0.6 9.6 2.0 0.0 
ID19 -0.3 0.2 7.9 -0.6 -0.2 -1.1 0.7 17.3 -2.5 0.8 62.4 0.4 0.0 1.2 0.5 299.3 6.3 0.6 
ID20 -0.4 0.1 
ID21 -0.2 0.1 3.4 1.2 -0.6 -0.9 -0.3 12.4 -2.3 0.0 11.6 1.4 0.4 0.8 0.1 153.8 5.3 0.0 
ID22 0.0 0.0 -0.5 -0.8 0.0 -1.9 -0.4 -1.2 -0.4 -1.6 0.3 0.6 0.0 3.6 0.2 1.4 0.2 2.6 
ID23 0.0 0.0 -0.8 -0.8 0.0 -1.4 -0.6 -3.6 -0.2 -1.3 0.6 0.6 0.0 2.0 0.4 13.0 0.0 1.7 
ID24 0.2 0.0 0.6 -1.7 -0.7 -1.4 -1.9 -15.3 0.1 -1.6 0.4 2.9 0.5 2.0 3.6 234.1 0.0 2.6 
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ID25 0.3 0.0 3.7 -3.5 -1.5 -2.9 -3.1 -27.8 2.0 -2.3 13.7 12.3 2.3 8.4 9.6 772.8 4.0 5.3 
ID26 0.3 -0.1 3.0 -3.7 -1.6 -2.2 -3.5 -26.4 1.6 -1.8 9.0 13.7 2.6 4.8 12.3 697.0 2.6 3.2 
ID27 0.2 0.0 0.3 -2.5 -0.8 -1.2 -1.9 -14.3 -0.3 -1.7 0.1 6.3 0.6 1.4 3.6 204.5 0.1 2.9 
ID28 0.0 0.0 -0.5 -2.0 -0.2 -2.0 -0.4 -3.6 -0.4 -2.4 0.3 4.0 0.0 4.0 0.2 13.0 0.2 5.8 
ID29 0.0 0.0 0.1 -1.3 0.1 -1.9 -0.1 0.2 -0.5 -2.1 0.0 1.7 0.0 3.6 0.0 0.0 0.2 4.4 
ID30 -0.2 0.0 4.9 1.0 0.1 -0.7 0.9 14.1 -1.8 -0.7 24.0 1.0 0.0 0.5 0.8 198.8 3.2 0.5 
ID31 -0.4 0.0 
ID32 -0.3 -0.1 15.9 5.4 252.8 29.2 
ID33 -0.1 -0.1 3.2 0.8 0.3 -0.7 0.6 9.4 -1.3 -1.6 10.2 0.6 0.1 0.5 0.4 88.4 1.7 2.6 
ID34 0.1 -0.1 -0.6 -2.7 -1.2 -1.5 -2.0 -7.4 -1.4 -2.7 0.4 7.3 1.4 2.3 4.0 54.8 2.0 7.3 
ID35 0.2 -0.1 1.2 -3.8 -1.6 -1.7 -2.9 -19.2 0.4 -1.3 1.4 14.4 2.6 2.9 8.4 368.6 0.2 1.7 
ID36 0.3 -0.2 1.9 -3.1 -1.5 -2.4 -3.0 -23.8 1.5 -3.3 3.6 9.6 2.3 5.8 9.0 566.4 2.3 10.9 
ID37 0.1 -0.2 0.5 -2.8 -1.5 -1.6 -2.4 -11.3 -1.5 -3.8 0.3 7.8 2.3 2.6 5.8 127.7 2.3 14.4 
ID38 0.0 -0.2 0.8 -0.6 -1.1 -1.1 -1.4 0.3 -2.0 -2.8 0.6 0.4 1.2 1.2 2.0 0.1 4.0 7.8 
ID39 -0.1 -0.2 2.8 1.1 0.2 -0.1 0.2 4.5 -1.0 -2.1 7.8 1.2 0.0 0.0 0.0 20.3 1.0 4.4 
ID40 -0.2 -0.1 9.7 5.3 1.9 1.4 2.6 18.8 -0.9 -0.1 94.1 28.1 3.6 2.0 6.8 353.4 0.8 0.0 
ID41 -0.3 -0.2 
ID42 -0.4 -0.1 -95.1 95.0 9044.0 9025.0 
ID43 -0.1 -0.2 6.5 4.7 1.0 1.2 1.3 12.9 -1.1 -1.0 42.3 22.1 1.0 1.4 1.7 166.4 1.2 1.0 
ID44 0.1 -0.3 0.6 0.3 -1.9 -0.9 -2.5 -4.5 -2.5 -3.3 0.4 0.1 3.6 0.8 6.3 20.3 6.3 10.9 
ID45 0.2 -0.3 0.3 -1.9 -2.1 -2.1 -3.7 -16.4 -2.3 -4.6 0.1 3.6 4.4 4.4 13.7 269.0 5.3 21.2 
ID46 0.3 -0.4 0.8 1.8 0.6 3.2 
ID47 0.1 -0.3 0.8 2.1 0.6 4.4 
ID48 0.0 -0.3 3.9 6.9 -1.4 1.5 -1.6 6.1 -2.7 -1.7 15.2 47.6 2.0 2.3 2.6 37.2 7.3 2.9 
ID49 -0.1 -0.3 6.3 6.7 0.5 1.7 0.5 9.0 -1.3 -1.3 39.7 44.9 0.3 2.9 0.3 81.0 1.7 1.7 
ID50 -0.2 -0.3 16.0 13.3 4.4 5.1 5.2 23.8 1.6 2.0 256.0 176.9 19.4 26.0 27.0 566.4 2.6 4.0 
ID51 -0.4 -0.3 
TOTAL err  
(value in mm) 44.2 105.5 -28.3 -56.0 -48.9 

-
208.5 -28.7 -32.1 10432.9 9666.3 80.9 190.3 187.1 9988.2 104.0 177.2 

Sample Number 45.0 45.0 41.0 41.0 41.0 41.0 41.0 41.0 231.8 214.8 2.0 4.6 4.6 243.6 2.5 4.3 
RMSE (value in mm) 15 15 1 2 2 16 2 2 
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D. Determination of Intrinsic Parameters 

Instead of qualitative measurement, the laboratory test was also used to measure 

quantitatively measure the laboratory product, in order to assess the consistency of 

the observation made by the low cost remote sensing device (IMU and imaging 

device).  Before measuring the consistency, the imaging device was calibrated by 

using well established software, photomodeler scanner version 6.6 (Photomodeler, 

2011).  The calibration gave the intrinsic parameters of the imaging device.  These 

parameters were compared with the intrinsic parameters obtained the from single 

image approach.  Later, the rotation of the camera was extracted and compared with 

the rotation given by the IMU device.   

 

In the calibration process, six images, is the minimum requirement for camera 

calibration by photomodeler software, were selected namely; LAB14020602, 

LAB14020617, LAB14020608, LAB14020672, LAB14020614 and LAB14020698.  

These images had been selected because the combination of these images enable 

photomodeler to process the calibration task where other combinations had failed.  In 

the calibration process, the reference points on each image were matched to each 

other manually, because the laboratory images did not have an identical control point 

compatible with the calibration grid provided by photomodeler. Figure 6.6 shows the 

images and the 3D view after the calibration process. 

 

For the single image, the intrinsic parameters can be obtained by matching the 

reference points in the laboratory image with the reference points from digitised 

control points, which had been imported through the autocad exchange format or .dxf 
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format.  This process enabled the intrinsic parameters such as focal length, roll, pitch 

and yaw to be produced.  Figure 6.7 shows an example image and the 3D view after 

the processing process.  Results from calibration and single image processing can be 

compared to evaluate the low cost remote sensing device, especially the IMU and the 

imaging device. 

 
(a) 

 
(b) 

Figure 6.6: Calibration process for determining the intrinsic parameters.  (a) 
Images used in the calibration process and (b) their view angle in 

3D. 
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Figure 6.7: Single image technique for determining the intrinsic parameters.  
Top left is the image, bottom left is the photo browse and on the 
right is the product after processing. 

 

6.3.1.1 Laboratory Test Results 

Qualitative Test 

The simulation test revealed that the imaging sensor might have suffered from lens 

distortion, for example pincushion distortion as illustrate in Figure 6.8. By using the 

lens distortion algorithm as described in Chapter 4, the pincushion distortion could 

be removed.  Its application, showed that the algorithm used for correcting the lens 

distortion performed very well.  In the qualitative test, the laboratory results had 

shown significant accuracy for the geometric correction task.  The accuracy of the 

geometric correction was in the range of ±01 mm to ±16 mm, depending on the 

method of correction applied to the images.  For instance, the vertical imagery 

needed only the lens distortion correction, in other words the vertical imagery can be 

used instantly if the lens is in perfect conditions.  The tilt imagery can be considered 
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as a special case of oblique image, as these images can be corrected by using the 

oblique algorithm.  It was also found that the tilt algorithm was able to correct the 

vertical imagery. Unfortunately, the implementation of the tilt algorithm on tilt 

imagery was not successful.  Discussions on the failure of the tilt algorithm to correct 

the tilt images will be presented in Section 6.4.   

 

Figure 6.8: Pincushion distortion in image taken from laboratory test 

For the oblique algorithm, it was found that the performance was acceptable within 

the range of ±01 mm to ±03 mm.  It also revealed that the oblique algorithm was able 

to correct vertical and tilt images.  It is presumed that in a real test a good result can 

be obtained from these low cost remotes sensing sensors.    Figure 6.9 shows the 

image corrected by using different types of correction algorithm and Table 6.4 shows 

the IMU data collected from the laboratory test.  The results will be discussed further 

in section 6.4.    
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Table 6.4: IMU data from simulation test 

   Roll Pitch Time 
ID Data SEC Deg Min Sec Deg Min Sec Hour Min Sec 
LAB14020602 64 0 6 30 0 4 0 12 13 4 
LAB14020603 121 4 33 0 0 21 30 12 14 1 
LAB14020606 288 0 22 0 0 49 0 12 16 48 
LAB14020608 357 4 20 30 3 15 30 12 17 57 
LAB14020609 483 0 49 30 -3 37 0 12 20 3 
LAB14020610 527 0 8 0 0 33 0 12 20 47 
LAB14020611 582 0 5 0 0 20 30 12 21 42 
LAB14020612 631 0 45 0 0 35 30 12 22 31 
LAB14020613 734 0 11 0 0 7 30 12 24 14 
LAB14020614 780 -3 51 30 0 53 0 12 25 0 
LAB14020616 840 -2 35 0 0 3 0 12 26 0 
LAB14020617 900 4 47 0 1 39 30 12 27 0 
LAB14020619 960 2 21 30 2 5 0 12 27 0 
LAB14020620 1020 -2 56 30 0 23 0 12 29 0 
LAB14020621 1090 -2 55 30 0 31 30 12 30 10 
LAB14020628 1416 1 27 0 -1 50 0 12 35 36 
LAB14020629 1457 2 27 30 0 1 0 12 36 17 
LAB14020633 1656 -3 55 30 -1 39 30 12 39 36 
LAB14020634 1709 -17 11 0 0 6 0 12 40 29 
LAB14020646 2580 2 37 30 -2 19 0 12 55 0 
LAB14020647 2614 1 14 30 -2 3 0 12 55 34 
LAB14020651 2741 0 35 0 0 18 30 12 57 41 
LAB14020654 2815 1 11 0 0 40 30 12 58 55 
LAB14020656 2851 -5 58 0 -1 1 0 12 59 31 
LAB14020657 2874 10 20 0 0 48 30 12 59 54 
LAB14020668 3171 -2 22 0 4 23 0 1 4 51 
LAB14020672 3275 -6 18 30 0 2 0 1 6 35 
LAB14020675 3347 -11 7 30 4 14 0 1 7 47 
LAB14020677 3412 -5 34 30 -4 16 0 1 8 52 
LAB14020678 3435 -2 9 0 0 16 0 1 9 15 
LAB14020679 3455 -4 28 0 0 19 30 1 9 35 
LAB14020685 3589 -4 52 0 0 39 30 1 11 49 
LAB14020687 3639 -1 10 30 2 21 0 1 12 39 
LAB14020688 3666 0 34 0 0 28 30 1 13 6 
LAB14020695 3813 0 29 30 -4 2 30 1 15 33 
LAB14020698 3884 -11 11 30 0 35 30 1 16 44 
LAB14020699 3923 1 34 0 0 48 0 1 17 23 
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IMAGE ID / 
ROTATION ANGLE 

ORIGINAL / 
UNCORRETED 

AFTER LENS 
DISTORTION 

CORRECTED USING 
TILT ALGORITHM 

CORRECTED USING 
OBLIQUE ALGORITHM 

LAB14020602 

ROLL    = 0o 06’ 30” 

PITCH   = 0o 04’ 00” 

 

 
RMSEX = ±04 mm 
RMSEY = ±05 mm 

 
RMSEX = ±02 mm 
RMSEY = ±03 mm 

 
RMSEX = ±02 mm 
RMSEY = ±03 mm 

 
RMSEX = ±01 mm 
RMSEY = ±02 mm 

LAB14020608 

ROLL    = 4o 20’ 30” 

PITCH   = 3o 15’ 30” 

  
RMSEX = ±15 mm 
RMSEY = ±15 mm 

 
RMSEX = ±02 mm 
RMSEY = ±02 mm 

 
RMSEX = ±02 mm 
RMSEY = ±16 mm 

 
RMSEX = ±02 mm 
RMSEY = ±02 mm 

LAB14020614 

ROLL    = -3o 51’ 30” 

PITCH   =  0o 53’ 00” 

  
RMSEX = ±15 mm 
RMSEY = ±15 mm 

 
RMSEX = ±02 mm 
RMSEY = ±02 mm 

 
RMSEX = ±03 mm 
RMSEY = ±16 mm 

 
RMSEX = ±01 mm 
RMSEY = ±02 mm 
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LAB14020617 

ROLL    = 4o 47’ 00” 

PITCH   = 1o 39’ 30” 

 

 
RMSEX = ±02 mm 
RMSEY = ±04 mm 

 
RMSEX = ±02 mm 
RMSEY = ±02 mm 

 
RMSEX = ±02 mm 
RMSEY = ±19 mm 

 
RMSEX = ±02 mm 
RMSEY = ±03 mm 

LAB14020698 

ROLL    = -11o 11’ 30” 

PITCH   =    0o 35’ 30” 

 

 
RMSEX = ±02 mm 
RMSEY = ±04 mm 

 
RMSEX = ±03 mm 
RMSEY = ±04 mm 

 
RMSEX = ±08 mm 
RMSEY = ±20 mm 

 
RMSEX = ±02 mm 
RMSEY = ±03 mm 

 

Figure 6.9: Laboratory test results. 
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Quantitative Test 

The quantitative test has found that not all images can be used for field calibration.  

In this study, it was found that only six images was suitable for field calibration out 

of the thirty six (36) images obtained.  However, it shows that the field calibration 

was able to attain the full interior orientation parameters.  Table 6.5 shows the full 

interior orientation parameters obtained from the photomodeler software. 

Table 6 5: Intrinsic parameters obtained from the calibration process 

Parameters Value 
Focal Length 9.329514 mm 
Xp – Principle Point x 3.317975 mm 
Yp – Principle Point y 2.706496 mm 
Format Width 6.008832 mm 
Format Height 4.800000 mm 
K1- radial distortion -3.637e-003 
K2- radial distortion -5.704e-005 
K3- radial distortion 0.000e+000 
P1 - decentering -2.329e-003 
P2 - decentering 3.155e-003 

 

The quantitative test also revealed that eighteen (18) out of the thirty six (36) images 

could not be processed by the photomodeler software using the single image 

technique.  The difference in roll and pitch between extraction from the software and 

the IMU device fall in the range of -8.2 to 10.8 degrees in roll and -12.5 to 7.8 

degrees in pitch.  Table 6.6 show the comparisons of rotation angles between 

extraction and the IMU device.   

 

The focal length obtained from the photomodeler software fall in range of 0.1 to 9.6 

mm with one of the test image (LAB14020621) giving a focal length that is similar 

to manufacturer’s value which is 8.5mm.   
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Table 6.6: Comparison of the rotation angles gather through extraction and 
IMU device 

ID
 D

A
T

A
 

F
o

ca
l 

Le
n

g
th

  

P
P

 (
X

) 

P
P

(Y
) 

F
o

rm
a

t 

W
id

th
 

F
o

rm
a

t 

H
e

ig
h

t 

R
O

LL
 

P
IT

C
H

 

R
o

ll
 

P
it

ch
 

D
if

f.
 R

o
ll
 

D
if

f.
 

P
it

ch
 

LAB14020602 0.3 3.0 2.4 6.0 4.8 0.0 0.0 0.1 0.1 -0.1 -0.1 

LAB14020603 4.1 3.0 2.4 6.0 4.8 1.7 2.8 4.6 0.4 -2.9 2.4 

LAB14020606 UNABLE TO BE PROCESSED 0.4 0.8 

  LAB14020608 0.2 3.0 2.4 6.0 4.8 0.1 -0.2 4.3 3.3 -4.3 -3.4 

LAB14020609 6.1 3.0 2.4 6.0 4.8 9.8 -7.0 0.8 -2.4 8.9 -4.6 

LAB14020610 UNABLE TO BE PROCESSED 0.1 0.6 

  LAB14020611 0.2 3.0 2.4 6.0 4.8 0.0 -0.2 0.1 0.3 0.0 -0.5 

LAB14020612 UNABLE TO BE PROCESSED 0.8 0.6 

  LAB14020613 UNABLE TO BE PROCESSED 0.2 0.1 

  LAB14020614 UNABLE TO BE PROCESSED -2.1 0.9 

  LAB14020616 UNABLE TO BE PROCESSED -1.4 0.1 

  LAB14020617 9.6 3.0 2.4 6.0 4.8 -3.4 -0.2 4.8 1.7 -8.2 -1.9 

LAB14020619 UNABLE TO BE PROCESSED 2.4 2.1 

  LAB14020620 1.2 3.0 2.4 6.0 4.8 -0.2 0.9 -1.1 0.4 0.9 0.5 

LAB14020621 8.5 3.0 2.4 6.0 4.8 -2.2 -3.4 -1.1 0.5 -1.1 -3.9 

LAB14020628 UNABLE TO BE PROCESSED 1.5 -0.2 

  LAB14020629 UNABLE TO BE PROCESSED 2.5 0.0 

  LAB14020633 UNABLE TO BE PROCESSED -2.1 -0.3 

  LAB14020634 UNABLE TO BE PROCESSED -16.8 0.1 

  LAB14020646 UNABLE TO BE PROCESSED 2.6 -1.7 

  LAB14020647 0.2 3.0 2.4 6.0 4.8 -0.1 0.1 1.2 -2.0 -1.4 2.0 

LAB14020651 UNABLE TO BE PROCESSED 0.6 0.3 

  LAB14020654 UNABLE TO BE PROCESSED 1.2 0.7 

  LAB14020656 UNABLE TO BE PROCESSED -4.0 -1.0 

  LAB14020657 8.0 3.0 2.4 6.1 4.8 15.0 2.5 10.3 0.8 4.7 1.7 

LAB14020668 UNABLE TO BE PROCESSED -1.6 4.4 

  LAB14020672 6.1 3.0 2.4 6.0 4.8 -2.3 7.8 -5.7 0.0 3.4 7.8 

LAB14020675 5.1 3.0 2.4 6.0 4.8 -2.1 4.0 -10.9 4.2 8.8 -0.2 

LAB14020677 0.1 3.0 2.4 6.0 4.8 0.0 0.0 -4.4 -3.7 4.4 3.8 

LAB14020678 UNABLE TO BE PROCESSED -1.9 0.3 

  LAB14020679 5.5 3.0 2.4 6.0 4.8 4.6 -7.4 -3.5 0.3 8.1 -7.7 

LAB14020685 UNABLE TO BE PROCESSED -3.1 0.7 

  LAB14020687 UNABLE TO BE PROCESSED -0.8 2.4 

  LAB14020688 6.3 3.0 2.4 6.0 4.8 6.1 -12.0 0.6 0.5 5.5 -12.5 

LAB14020695 2.3 3.0 2.4 6.0 4.8 -1.1 1.8 0.5 -4.0 -1.5 5.8 

LAB14020698 0.9 3.0 2.4 6.1 4.8 0.0 0.9 -10.8 0.6 10.8 0.3 

LAB14020699 UNABLE TO BE PROCESSED 1.6 0.8 

  Note: ROLL and PITCH is obtained from image extraction, Roll and Pitch is 
obtained from IMU device, Diff. Roll and Diff. Pitch is the different in roll and pitch 
between angles obtained from image extraction and IMU device. 
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The chip format for the imaging sensor obtained from the photomodeler software is 

6.8 x 4.8 mm which is consistent for all test images.  It shows that the established 

photomodeler software is unable to give consistent results (especially the focal 

length) for these low cost remote sensing images.  These issues will be discussed 

further in section 6.6. 

 

6.3.2 On-the-road Test Drive 

The objective of the on-the-road test drive was to evaluate the ability of the GPS 

(Garmin 76) receiver to receive the GPS signal when the vehicle speed varied.  This 

investigation was used to determine the optimum speed of the light aircraft to be 

used for image acquisition.  In the on-the-road test drive, the navigation units 

containing the GPS receiver and IMU unit were loaded into the vehicle, which was 

driven at speeds varying from 10 to 70 mph for the test duration of three hours.  At 

the end of the test, a series of GPS and IMU data was obtained.  All the navigation 

information was recorded by a personal data assistant.  Figure 6.10 shows the 

navigation equipment loaded in the land vehicle.  

 
 

Figure 6.10: GPS and IMU devices for test drive 
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6.3.2.1 On-the-road Test Drive Results 

The on-the-road test drive confirmed that the WAAS satellites were available, 

whereby all the GPS coordinates could be obtained using the differential method, 

which is recognised as the best technique to obtain GPS data.  The reference position 

had an error of ±0.04 seconds of arc in both directions (North and West).  This means the 

error would be ±1.300 metres for northing and ±0.786 metres for easting in the 

OSTN02 coordinate system.  The conversion from WGS84 to OSTN02 was made by 

using the Grid InQuest software provided by Ordnance Survey of Great Britain.  

Analysis had shown that the Garmin 76 GPS was sufficient for precision agriculture 

applications (Searcy, 2003).  In addition, a plot of the trajectory (Figure 6.11) 

showed no missing data occurred during the test.  It had been expected that during 

the validation test (Chapter 7) the same results could obtained. 

 
Figure 6.11: Trajectory plot of test drive 
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The IMU had shown an acceptable difference (error) in both axes (roll and pitch), but 

a district difference in yaw axis was found.  However, it was noticeable that this error 

was much better than what was claimed by the manufacturer.  Therefore, it can be 

said that the selected IMU device had adequate accuracy for use as a navigation tool.  

Table 6.7 shows the difference of IMU and GPS at the reference station, before and 

after the on-the-road test drive. 

Table 6.7: Leap-frog test 

 Time 12:59:22 13:30:16 13/09/2007   

 Item Before After Diff Units 

 Roll -3.5000 -3.5833 0.0083 degrees 

 Pitch 1.6667 2.0000 -0.0333 degrees 

 Yaw 2758.0000 2181.0833 5.7692 degrees 

$GPGGA West 1o48.6101’ 1o48.6109’ -0.0480 sec 

 North 52o39.2459’ 52o39.2452’ 0.0420 sec 

$GPGLL West 1o48.6101’ 1o48.6108’ -0.0420 sec 

 North 52o39.2458’ 52o39.2453’ 0.0330 sec 

 

6.4 Results Discussions 

The investigation results show the pattern of the errors in the GPS, the IMU and the 

imaging sensor.  The error pattern was analysed in order to assess the competency of 

the instruments for use in the portable remote sensing system.  By pinpointing the 

pattern of errors in the individual instruments, the correct procedure could be 

determined in order to mitigate the errors.  The most important thing was to ensure 

that all the instruments were capable of delivering the information needed for the 

research. 
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The IMU performance test show good accuracy, as claimed by the manufacturer with 

≈0.5 degrees in roll and pitch orientation, but it gives a poor result with ≈130 degrees 

in yaw direction.  The GPS gives good results with an accuracy of ±0.005 and 

±0.006 degrees in the north and south directions and ±6.002 metre for height.  The 

GPS simulation test showed that an accuracy of ±1.300 m can be achieved, since it 

was discovered that most of the position was determined by the WAAS capability.   

 

The simulation test has shown that the IMU could produce an accuracy of ±2 mm to 

±16mm when the tilt algorithm was employed and ±4 mm and ±3 using the oblique 

algorithm.  However, following testing, it was found that the tilt algorithm is only 

suitable for vertical images (with tilt angle less than ±3 degrees).  This is because the 

tilt algorithm formula orientated the image by using the image centre as the pivot 

point, whereas for tilt image the orientation axis should be at the photo nadir point.  

Employing the oblique algorithm overcame the tilt algorithm problem and was used 

in the real applications. 

 

The established software (photomodeler) is unable to work with the low cost remote 

sensing imaging device.  A publish article from the photomodeler website in 2008, 

state that the application of this software is limited to imaging devices that have 11 

megapixels and above, in order to run the field calibration (Photomodeler, 2008).  

The field calibration enabled full interior calibration to be obtained at a high level of 

accuracy.  Even though the quantitative test was able to obtain the full interior 

calibration, the accuracy is not good enough.  Remondino and Fraser (2006) found 

that it is not always possible to perform field-calibration for practical projects, 
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because the network geometries that are optimal for scene reconstruction are 

different from those (network geometries) that support comprehensive camera 

calibration.  Therefore, it is better to pre-calibrate the camera rather than performing 

a field-calibration simultaneously with the object reconstruction.  Since, the selected 

software was not able to give consistent results for the laboratory test, the 

manufactures values (as in section 7.2.3) were used for the direct georeferencing, 

whilst the RMS value was used to evaluate the accuracy of the low-cost remote 

sensing system rather than making a comparison with other particularly software.  

The low-cost remote sensing system required further testing to assess the accuracy of 

the system via real-data acquisition.  This is described in Chapter 7.    

 

6.5 Summary 

This chapter has discussed the experimental investigation for the selected devices.  

Two types of experiments were carried out: 1) performance test and 2) simulation 

test.  The main focus of the performance test was to verify the accuracy of the 

devices.  This accuracy would be an initial input for filtering the IMU data.  While 

for GPS this performance test gave an idea of the accuracy to be expected from the 

Garmin 76, for the imaging sensor it gave a warning of action necessary during the 

data acquisition process. 

 

The simulation test focused on the dynamic accuracy with respect to position, direct 

geo-reference accuracy, and stability of the IMU and GPS devices.  Two types of test 

were carried out: 1) laboratory test, and 2) on-the-road test drive.  In the laboratory 

test, the accuracy of direct geo-referencing using IMU data was evaluated.  In the test 
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drive mode, the dynamic capability was assessed.  Finally, the experimental 

investigation results were presented and will be discussed in Chapter 9. 
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7. SYSTEM VALIDATION: A FLIGHT TEST 

 

7.1 Introduction 

Chapter 6 showed that the system has good performance, especially the low-cost 

GPS, Garmin 76, which records 100% differential data, while the IMU data provides 

the capability for orientating the images. The oblique algorithm works well for 

vertical images and that a tilt image can be regarded as a special case of oblique.   

 

This chapter will demonstrate how the system was tested in a real world situation 

aboard a light aircraft and, importantly, it will confirm that the data processing 

technique, discussed in Chapter 4, is adequate to solve the geo-rectification problem.  

As the equipment has been designed for use with respect to agriculture, the flight test 

was carried out for data acquisition in a known designated area of agricultural fields.  

Data acquisition included determination of the test site, planning the flight mission 

and obtaining the image data and ancillary data. These data were then processed as 

discussed in Chapter 4, and the accuracy of the final results, which was a geocoded 

image was evaluated.  The discussions on results follow in Chapter 8. 

 

7.2 Data Acquisition 

Data acquisition took place on 30 January, 7 February and 25 July, 2008.  The first 

attempt was unsuccessful because of technical failure, whereby the data logging 

software could not store the volume of data captured from the IMU and GPS devices.  

The second attempt seemed to work very well in the field and on the processing 

desk, but unfortunately, the accuracy obtained did not meet expectations, and thus 
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the third test was carried out.  In all attempts, the procedure and main instruments 

remained unchanged, except that an additional GPS and new logging software were 

included and the number of crew members onboard increased.  There were three 

crew members: 1) pilot, 2) navigator and 3) data manager.  The pilot flew the aircraft 

to the test site and controlled the aircraft (turning, banking and gliding) during the 

acquisition process.  The navigator pointed the imaging device at the target objects, 

whilst the operator managed the logging system. 

 

Before acquiring data, it was very important that a short briefing on the procedure 

was given to all crew members, since the test flight test did not follow the normal of 

remote sensing or photogrammetry procedures.  Here, the navigator would instruct 

the pilot to bank the aircraft about 70-90 degrees to enable a vertical position 

downwards towards the target object to be detained as defined by the sensor’s 

viewfinder.  The pilot had to ensure that the position was safe for this acrobatic 

move.  In addition, the pilot had to keep providing updates on current wind speed, 

tracking information from the base station and maintaining a stable aircraft platform.  

The navigator and pilot received updates on the acquisition progress from the data 

manager, who controlled the data logging system.  This task showed that effective 

communication was essential to ensure a smooth and clean process. 

 

Since the procedure did not follow an existing method applied by photogrammetrists 

to get an overlap image, the light aircraft had to circle above the target area.  This 

enabled the sensor operator to capture an over-lapping image of that particular area.  

The orientation of the overlap images were determined by GPS coordinates.  As the 
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device used was portable, the position of the camera could be changed very 

frequently.  

 

7.2.1 Test Site 

The test site was an agricultural farming area in the south west of Kent in the UK.  

The farming area was selected on account of its reputation: “The Rural Economy of 

the Southern Counties” was mentioned by William Marshall in 1798, but it has been 

named the Garden of England for more than 400 years (Wainwright, 2006) and also 

because of the navigator’s local knowledge.   

 

Intensive agriculture and smaller scale farms exist side-by-side here, with a total area 

of 374 000 hectares covered with a dense concentration of high value crops, 

especially soft fruits and hops, and this made the test site very interesting to the 

study.  Figure 7.1 shows the agriculture land classification from the Kent County 

Landscape Information System and was obtained from Kent County Council (2008).  

Another factor in the choice of site was the availability of local airports and 

aerodromes, which have a variety of light aircraft available for hire for personal 

purposes: these include Rochester Airport, Kent International Airport, Headcorn 

Aerodrome, Bekesbourne Aerodrome and Damnys Hall Aerodrome all of which 

offer a variety of aviation activity.  
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                                                                                                                                           Source: Kent County Council (2008)  

Figure 7. 1: Sites assigned for flight tests. 



 - 147 - 

7.2.2 Flight Missions 

The flight missions were to test a new design of portable remote sensing system and 

the procedure adopted to manage the system, being a first of its kind.  The flight 

missions would provide unprecedented information on the condition of the portable 

remote sensing system, especially on its capability and quality and most important, 

the limitations of the system. 

 

For a flight mission, a single engined light aircraft, specifically a Cessna 172, with 

four seated cabin, opening window next to the front passenger seat and glass topped 

roof had been chosen.  The choice of this particular aircraft was to ensure that the 

aerial photographer was able to capture the scene through the open window and that 

the GPS receiver could receive signals continuously.  The flying height varied 

between 150 to 460 m above ground level and the data acquisition was based on a 

single location verified previously on the map. This meant that no distinct pattern of 

flight-lines would be formed.  For each location, the aircraft would fly in a circle 

with a ground speed of 100 miles per hour before continuing to the next location.  

The wind speed at the time of the flight mission should not exceed 15 knots, to 

reduce the aircraft vibration due to cross-wind, for safe operation.   

 

Table 7.1 shows the outline of the flight missions undertaken on January 30, 

February 7 and July 25, 2008.  Different airfields were used due to availability of the 

light aircraft.  The flights each took about 30-40 minutes, including the journey from 

the airfield to the target area. 
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Table 7. 1: Flight missions: Field data 

Date/Time 
30 January 2008  
Airport Stappleford Aerodrome (Essex) 
Weather Bright/Sunny 
Flying Duration 30 min  
Aircraft Speed 105 km/hr 
Average flying height above ground 2500/2000/1500/1000/500 ft 
Wind Speed 8 knots 
Date/Time 
7 February 2008  
Airport Headcorn Aerodrome (Kent) 
Weather Bright/Sunny 
Flying Duration 30 min  
Aircraft Speed 105 km/hr 
Average flying height above ground 1000 ft 
Wind Speed 15 knots 
Date/Time 
25 July 2008  
Airport Rochester Airport (Kent) 
Weather Bright/Sunny 
Flying Duration 30 min  
Aircraft Speed 105 km/hr 
Average flying height above ground 2000/1000/500 ft 
Wind Speed 14 knots 
 

7.2.3 Remotely Sensed Data 

During the test, 21 images were captured on the 30 January, 15 on 7 February and 18 

on 30 January 2008.  Unfortunately, none of the images acquired on 30 January 2008 

could be processed because of the technical failure of the data logger device, due to 

problems with jack plugs and the software itself.  Seven of the images taken on 7 

February 2008 were available for processing, while the other eight could not be 

synchronized with the IMU due to lost signals.  On 25 July 2008, seven of seventeen 

images were available for direct geo-referencing, others could not be processed 

because no matching IMU data was detained. 
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The images mainly covered the agricultural fields, residential areas and road lines as 

recognised objects.  The pixels resolution of each image was about 1.3 mega pixels 

imaged on a 7.7 x 6.1 mm digital sensor screen (Heinold, 2008).  The spatial 

resolution of each image was 6 microns per pixel, thus the particular image was 

sufficient for practical handling, interpretation, mapping and fine detailing, as 

reported by Baltsavias (1998), see Table 7.2.  According to Ferrano et al., (2010), 

digital images produced either by scanning the image photo or obtained directly from 

a digital camera, have two important common features: 

i- discrete spatial information:  which means that spatial information is 

stored and sampled in a fixed pattern array which determines the pixel 

size and pixel number; 

ii-  the grey values digitised on the sensors are available as analogue values 

even on CCD or CMOS sensors, and analogue to Digital (A/D) 

conversion, or vice-versa can be achieved after the image capture. 

Therefore, Table 7.2 can be used as a guideline for determining the limit of 

applications for digital cameras. 

Table 7.2: Optimal pixel sizes for applications 

 Source: Baltsavias, 1998. 
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In addition, the pixel size in microns also shows that the acquired images have 

equivalent quality when compared with high resolution camera images, as shown in 

Table 7.3. 

Table 7.3: Top high resolution camera with pixel size 

Source: Petrie, 2003. 
 

The coverage of field area depends on the altitude of the platform.  A 40o field of 

view (FOV) angle at an altitude of 500m would give coverage of approximately 0.8 x 

0.8 km square, with a spatial resolution of approximately 1.2 m.  This spatial 

resolution is sufficient for precision agriculture applications.  The estimations of 

pixel size, spatial resolution, FOV and the coverage area can be derived from the 

sensor specification as listed in Table 7.4 and this specification was used in the 

processing tasks.   

Table 7.4: Specification of imaging sensor (Agricultural Digital Camera) 

                                                                        (Sources: Heinold, 2008) 
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7.2.4 Ancillary Data 

The main purpose of the ancillary data in the validation process is to facilitate the 

direct geo-referencing task.  This task needs: IMU data to orientate the image into the 

geo-position; GPS coordinates to rectify the image coordinates; topographical map to 

assess the accuracy; GPS base reference coordinates to reduce the GPS data; image 

property to scale and convert pixels (unit) into metric units; and, other relevant 

sources, such as the average height above mean sea level detained from the Ordnance 

Survey or a map. 

 

The ancillary data were collected directly from the field or gathered from a 

recognised agency. For instance the digital topographical maps were obtained from 

UK Ordnance Survey, a subsidiary of the Ordnance Survey of Great Britain.  The 

GPS reference data were obtained from the British Isles GPS archive Facility (BIGF) 

operated by Nottingham University's IESSG (BIGF, 2008).  Other data, such as the 

image properties were inclusive within the image data or obtained through the 

relevant website. 

 

7.2.5 Software 

The main software for orienting the image into the geo-position was developed in 

Visual Basic .net programming language using Microsoft Visual Studio 2005, as 

given in Appendix G.  Other software was used for processing, analysing and 

displaying the acquired data: an AutoCad 3D map was used to display the reference 

map and in determining the image coordinates; Trimble Geomatics Office was used 

to process the GPS kinematic data; ArcView version 9.0 was used to analyse the 

final results; and, Microsoft Excel spread sheet to analyse and reduce the IMU data.   
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7.3 Installation of Test Equipment 

Since the sensing system is intended to be portable there was no intricate installation 

needed.  However, it is necessary to be well prepared and it is advisable for the 

devices to be connected and tested before takeoff, to avoid any miscommunications 

between devices.  The connecting cables should be laid on a non-destructive path and 

free from photographer movement.  The data logger should hold enough power for 

maintaining the data transferring process and it is advisable for an external power 

supply to be available.  The data manager controlling the data logger should monitor 

closely the data collection process to identify and trace any inexplicable incidents.  

The navigator and the pilot should be informed of any odd incident so that a mistake 

or error may be dealt with before returning to ground.  Thus, effective internal 

communications between navigator, data manager and pilot are needed to ensure a 

smooth acquisition process.   

 

As the portable remote sensing device is assembled from a series of selected devices, 

it is vital to ensure that they are tightly stacked. It is preferable that a specially 

designed bracket is used to hold the devices together.  Figure 7.2 shows the aircraft 

used in this research study, while Figure 7.3 shows the devices used in the validation 

test drive. 
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Figure 7. 2: Aircraft used for  flight test 
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Figure 7.3:  Preparation of devices ready for system validation test drive. 
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7.4 Flight Test Results 

The various results obtained from the flight test were processed independently to 

study the behaviour of each individual device.  The device behaviour study is a 

significant element, as the performance of each device used in the integrated 

IMU/GPS/image sensor system cannot be directly interpreted (in terms of mapping 

accuracy) unless operations and conditions are consistent (e.g. camera type and 

quality, image scale, image processing and operational aspects) (Skaloud, 1999).  In 

addition, the specific operationing conditions, which have led to algorithm 

development, have their own relative merits.  This means that there is no unique 

algorithm that can be applied as a universal solution, and hence they can only be 

referred to as guidelines (see, for instance, Abdullah and Tuttle (1999); Reid et al. 

(1998); Grejner-Brzezinska and Toth (1998)).   

 

In this research study, three sets of GPS data were obtained from the flight tests: 1) 

Garmin 76 GPS data, 2) Garmin eTrex GPS data, and 3) Holux Bluetooth (wireless) 

GPS data.  Garmin 76 and Wireless.  The majority of the GPS data were recorded in 

NMEA0183 data format while Garmin eTrex GPS data were recorded in Rinex 

version 2.0 data format.  Data recorded in NMEA0183 is considered as ‘process 

data’ via built-in software in the receivers, while data recorded in Rinex format are 

raw data and need to be processed.  Unfortunately, data in Rinex format could not be 

processed due to a large number of check-sum errors (data acquired on 25 July 

2008).  The behaviour of Garmin 76 and wireless GPS is plotted in Figures 7.4 (a) 

and (b) in easting and northing coordinates, respectively. 
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(a) 

 
(b) 

Figure 7.4: Graphs showing behaviour of GPS data obtained from wireless and 
Garmin 76 GPS, with camera shot position. 

 

In addition to GPS, the IMU data were also recorded in NMEA0183 data format 

which gives an output in roll, pitch, yaw and yaw rate.  All the data were processed 

with the built-in software. Figures 7.5 (a) and (b) show the behaviour of the IMU 

data in roll and pitch, respectively.  Later, these data (images, GPS and IMU) were 

matched based on the acquisition time-tag.  Table 7.5 lists a sample of final data 

which were input in the direct geo-referencing process.  These data were input to the 

software (developed in Chapter 5) manually in keyboard entry mode, since there was 

no intention to develop an automatic system as part of the research project.  A 
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sample direct geo-referencing image is shown in Figure 6.9 in Chapter 6.  In the 

direct geo-referencing process, the coordinates were converted into the British 

National Grid (OSTN02) coordinate system, which fits to the standard digital map 

produced by the Ordnance Survey for data analysis, as discussed in Chapter 8. 

 
(a) 

 
(b) 

Figure 7.5: Roll and pitch obtained from IMU device, yaw data extracted from 
GPS data 

 

7.5 Summary 

The system validation process, which focused mainly on data acquisition, test site, 

flight mission, installation of equipment and a sample analysis of results, has been 

presented in this chapter.  The data acquisition, which included test site, flight 

mission, remotely sensed data, ancillary data and software, was a ‘real-time’ 

experience in operating the remote sensing system.  The flight test results have 

shown the behaviour of the various devices in a real-time environment, with respect 

to images acquired by a small format digital camera.  The accuracy of the direct geo-

referencing of the images will be discussed in Chapter 8. 
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Table 7.5: Final data obtained from imaging sensor, GPS and IMU devices. 

No 1 2 3 4 5 6 

ID TTC_0911 TTC_0912 TTC_0913 TTC_0914 TTC_0915 TTC_0916 

Time Stamp 23:19:56 23:20:28 23:21:03 23:22:47 23:24:26 23:25:10 
Time 
Different 00:02:37 00:00:32 00:00:35 00:01:44 00:01:39 00:00:44 

Reduce Time 13:20:10 13:20:42 13:21:17 13:23:01 13:24:40 13:25:24 

Easting (m) 570226.229 570193.997 570342.132 570229.241 572249.736 No Data 

Northing (m) 156328.545 156525.364 157568.384 156398.803 155986.051 No Data 

Height (m) 438.071 438.070 438.070 438.071 438.088 No Data 

Roll -4 o No DATA -4  o -5o 0 o No Data 

Pitch 3o No DATA -17o -19 o 20 o No Data 

Yaw 57 o No DATA -4 o 2 o 302 o No Data 

Remarks Vertical Unknown Tilt Tilt Tilt Unknown 

Image 
 
 
 
 

 

 

 

 

 

 

 

 

 

  

(continued) 
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…Table 7.5  (continued) 

No 7 8 9 10 11 12 

ID TTC_0917 TTC_0918 TTC_0919 TTC_0920 TTC_0921 TTC_0922 

Time Stamp 23:26:36 23:27:18 23:27:29 23:27:46 23:28:44 23:30:23 
Time 
Different 00:01:26 00:00:42 00:00:11 00:00:17 00:00:58 00:01:39 

Reduce Time 13:26:50 13:27:32 13:27:43 13:28:00 13:28:58 13:30:37 

Easting (m) No Data No Data No Data 569559.131 571530.155 570607.113 

Northing (m) No Data No Data No Data 155767.884 156952.919 157319.593 

Height (m) No Data No Data No Data 438.068 438.080 438.073 

Roll No Data No Data No Data No Data -12 o -6 o 

Pitch No Data No Data No Data No Data -50o 36o 

Yaw No Data No Data No Data No Data 258 o 222 o 

Remarks Unknown Unknown Unknown Unknown Oblique Tilt 

Image 
 
 
 
 

      

(continued)…. 
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…..Table 7.5  (continued) 

No 13 14 15 16 17  

ID TTC_0923 TTC_0924 TTC_0925 TTC_0926 TTC_0927  

Time Stamp 23:30:33 23:31:02 23:32:28 23:32:51 23:34:26  
Time 
Different 00:00:10 00:00:29 00:01:26 00:00:23 00:01:35  

Reduce Time 13:30:47 13:31:16 13:32:42 13:33:05 13:34:40  

Easting (m) No Data 570679.741 No Data No Data No Data INTENDED 

Northing (m) No Data 157223.447 No Data No Data No Data BLANK 

Height (m) No Data 438.073 No Data No Data No Data  

Roll No Data 8o No Data No Data No Data  

Pitch No Data 2o No Data No Data No Data  

Yaw No Data 314 o No Data No Data No Data  

Remarks Unknown Tilt Unknown Unknown Unknown  

Image 
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8. RESULTS AND ACCURACY ASSESSMENT 

DISCUSSIONS 

 

8.1 Introduction 

This chapter discusses the direct geo-referencing results obtained by means of the 

portable remote sensing device and the assessment of each component’s accuracy.  

These results are examined comprehensively and their significance is discussed 

along with device performance and reliability.  The significance of each device is 

reflected in the final product of the direct geo-referencing image.  A summary of 

results and their accuracy is given at the end of this chapter.  

 

8.2 Results 

Three types of data were produced by the portable remote sensing device:  1) 

imaging data, 2) navigation data, and 3) directly geo-referenced images.  The 

imaging data were recorded in monochrome format instead of true colour, because 

monochrome has both greater sensitivity and higher spatial resolution than true 

colour (Videre Design, 2010; Dage-MTI, 2009).  The navigation data includes GPS 

and IMU data recorded in ASCII data format.  ASCII data format is the most 

satisfactory for data processing as it is interchangeable into different types of format, 

easy to access by computer programming, extractable and can be input to most 

established software.  The directly geo-referenced images are produced from the 

navigation data and imaging data.  Thus, their accuracy is dependent on the accuracy 

of the navigation devices as well as the accuracy of the imaging device.   
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8.2.1 Imaging Results 

The images obtained were overlaid on relevant Ordnance Survey Master Maps.  It 

was found that all the images were distorted, as none coincided with the topography.  

The most obvious distortion occurring in the image was lens distortion.  Two types 

of lens distortion have been distinguished: 1) pincushion distortion and 2) orientation 

distortion (trapezium distortion), as discussed in Chapter 3.  Even the image closest 

to vertical (TTC_0911.DCM), which has 3 degrees of roll and -4 degrees of pitch, 

displays lens distortion.  It is clear from the images that even when they were close to 

vertical, the lens distortions results is significant error in geo-rectification.  Figure 8.1 

shows a comparison of before and after pincushion correction.  See Appendix F for a 

complete list of the images before and after pincushion correction. 

 

Seven of the seventeen images obtained in the third flight are suitable for further 

direct geo-referencing process, while the other images have coordinates, orientation 

data or both missing.  The focus is therefore on these seven images, which are 

complete with their ancillary data, and the other images have been eliminated from 

further processing.  Table 7.5 in Chapter 7 has a complete list of the images and their 

ancillary data. 
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Before 

 

 
After 

Figure 8.1: Image sample from the third test, (a) before, and (b) after 
pincushion correction. 

 

Curve 

Straight 
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8.2.2 Navigation Results 

Two types of navigation data were obtained during the acquisition process, from 

GPS devices and IMU device.  The end product of GPS devices was recorded in two 

types of ASCII format, NMEA 0183 and RINEX GPS data format.  The NMEA 

0183 data were processed by the built-in micro-processor in the device itself, while 

RINEX GPS data were processed using the external software GRINGO (version 2.0).  

The main reason for recording the GPS data in NMEA 0183 data format is because it 

was a ready-made end product if the WAAS satellites had been available, as 

discussed in Chapter 6.  Recording in RINEX data format enables differential GPS 

data processing for comparisons with the NMEA 0183 data format.  The IMU data 

were recorded in NMEA 0183 data format as it can be instantly used for image 

orientation purposes.  All GPS devices were set to record to one second of data 

intervals to ensure that the location for every image was captured. 

 

During the image acquisition process, it was observed that none of the WAAS 

satellites was broadcasting its data.  This was required in order to obtain coordinates 

by the differential GPS method for the Garmin 76 GPS, which had been proved 

during the test-drive in Birmingham.  The Garmin eTrex ascii file (in Rinex format) 

shows that the C/A and L1 wavelength code signals had been detected.  It had been 

observed that the low-cost GPS had the capability to record all signals received from 

the locked satellites. 

 

The GPS receivers exhibited different levels of data quality.  The best quality GPS 

data were received for Garmin eTrex with its waypoint data recorded through 

GRINGO version 2.0.  None of the GPS data could be processed using the 
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differential technique.  The worst GPS data were received from Garmin 76 GPS, 

which was only able to record for a short period before the signal was completely 

lost.  The wireless GPS from Holux shows great potential for coordinating the flight 

path.  However, it experienced signal loss during the image acquisition process, 

because the GPS equipment was totally blocked by the photographer from receiving 

the satellites’ signals. 

 

It was also found that the RS232 cable was unable to provide smooth and reliable 

communication between devices, especially the Garmin 76 GPS and IMU.  The 

longest duration of signal loss was 4052 sec for the Garmin 76 , 26 sec for the 

Garmin eTrex and 41 sec for wireless GPS.  The occurrence of signal loss is very 

rapid in wireless GPS with 45 occurrences experienced, 30 with the Garmin 76 GPS 

and 6 with the Garmin eTrex.  The latter has the shortest total period of signal loss 

occurrences and the Garmin 76 GPS the longest.  The signal losses are caused not 

only by the communication cable problems but also depending on overhead 

obstruction.  In this case, the Garmin 76 and Garmin eTrex were placed completely 

clear from any obstructions, while wireless GPS is placed on top of the camera, and 

can be easily obscured by navigator interactions and the aircraft wing during the 

acquisition process.  Figure 8.2 shows the trajectory of the GPS track prints for the 

July 25th 2008 flight. 

 

None of the GPS data could be processed using the differential method due to a lack 

of C/A-code and P-code signals.  The NMEA 0183 is a ready-made data therefore 

the failure record any raw data containing carrier phase and the pseudorange data 

thus limits the reduction techniques for minimising random error (Yan, 2006).  The 
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GPS data which were recorded directly to Rinex ascii file could not be corrected by 

the differential method because there were not enough redundant pairs to enable 

DGPS processing.  Figure 8.3 shows part of a GPS data processing report produced 

by Total Trimble Control Software and the GPS data recorded by GRINGO software 

in Rinex ascii format. 

 
 

Figure 8.2: Trajectory of flight test in Malling, East Kent on July 25, 2008. 
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(a) WAVE Baseline Processor 3.12 
 
************************* 
* Initializing database * 
************************* 
 
base.rnx: Estimated load size: -1 bytes (-1 0 3.000 1.000 1.000) 
rover-2.rnx: Estimated load size: -1 bytes (-1 0 3.000 1.000 1.000) 
Load file:  C:\Trimble Geomatics Office\Projects\suib\Data Files\Trimble 
Files\base.rnx 
base.rnx: Estimated load size: 1400735 bytes (4669116 4669116 3.000 1.000 1.000) 
MCNAV    : No solution @ 475261.0 : Bad code observations detected 
MCNAV    : Disabling all observations to all SVs @ 475261.0 
……………….. 
……………….. 
………………..           
………………..          
………………..          
MCNAV    : No solution @ 475265.0 : Bad code observations detected 
MCNAV    : Disabling all observations to all SVs @ 475265.0 
MCNAV    : No solution @ 475266.0 : Bad code observations detected 
 
(b)     
 2.10           OBSERVATION DATA    GPS                       RINEX VERSION / TYPE 
GRINGO [2.0.0]      Aston University    25-Jul-08 13:53:14   PGM / RUN BY / DATE 
[Registered Version - Serial Number : 11736]                         COMMENT 
My Marker                                                                              MARKER NAME 
1                                                                                              MARKER NUMBER 
ShuibRambat        Aston University                                        OBSERVER / AGENCY 
80322155            GARMIN eTrex        2.14                            REC # / TYPE / VERS 
00000000            External                                                       ANT # / TYPE 
  3991675.8681    35134.6501  4957848.5569APPROX POSITION XYZ 
[APPROX POSITION XYZ based on receiver's lat/lon& zero ht.]COMMENT 
[approx lat/lon/ht =  51.3484457    0.5043033      0.000   ]     COMMENT 
        0.0000        0.00000.0000                                         ANTENNA: DELTA H/E/N 
     1     0                                                                                     WAVELENGTH FACT L1/2 
2    C1    L1                                                                            # / TYPES OF OBSERV 
SNR mapping                                                                             COMMENT 
>1650 -> 1; >1700 -> 2; >1800 -> 3; >2000 -> 4;                     COMMENT 
>2400 -> 5; >3200 -> 6; >4800 -> 7; >8000 -> 8; >11200 -> 9 COMMENT 
     1                                                                                              INTERVAL 
  2008    07    25    12    53   46.0000000                                    TIME OF FIRST OBS 
     1                                                                                             RCV CLOCK OFFS APPL 
                                                                                                    END OF HEADER 
     2       *** START MOVING ANTENNA ! ***                   COMMENT 

Figure 8.3: (a) Part of GPS data processing report by Total Trimble Control 
Software (b) Part of Rinex ascii format. 
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Interruptions to the data stream recorded by the computer were a major problem on 

all flights, and the best flight from this point of view was the last one undertaken on 

25th July 2008. On this flight the IMU experienced data loss on 13 separate 

occasions, each lasting 10 to 13 seconds. It was known that the IMU had continued 

to work, as when data capture began again, the roll pitch and yaw were in their 

correct locations. They had simply not been recorded by the computer for this period. 

Unfortunately, these data stream interruptions coincided with when 10 images were 

being acquired, and they therefore lacked the attitude information necessary for geo-

referencing and could not be used further in this project. Data Connect Enterprises 

(2008) report similar failings with the RS232 data communication cable for high 

speed data transfer protocol. 

 

RS232 communication protocol states that higher frequency devices such as the IMU 

have a problem with the wave signal becoming rounded instead of the ideal square 

wave form and hence can be incorrectly interpreted by the receiving device, the lap 

top computer (Data Connect Enterprises, 2008). The use of the RS232 cable is 

therefore not recommended for the low cost airborne sensor system.  However, it was 

all that was available at the time and the problems were only identified once the field 

tests has commenced. 

 

The IMU presented its data in ARINC 075 format with a considerable amount of 

processing already carried out. This made further processing difficult, other than 

employing digital techniques to smooth and filter the data to remove noise and bias. 

It was found that over the one hour flight duration there were no scale factor or drift 

errors, as shown in Chapter 6. Drift errors occurred after approximately 2 hours of 
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operation. Therefore, provided the flight lasts less than one hour this should not 

prove a problem in data acquisition.  

 

The IMU data have been smoothed by employing a forward and backward moving 

average smoothing technique to minimise random errors, with the means of the two 

taken as the ‘true’ value of the IMU data.  This method could only be validated by 

examining the direct geo-referencing product, because there are no references to be 

compared with.  Figure 8.4 shows the comparisons between moving average and 

polynomial smoothing techniques.  It was discovered that the polynomial smoothing 

technique was best on certain occasions, such as if the IMU had a well distributed 

data. 

 

Using the 2% filtering technique (see section 4.2.1) on the IMU data produced good 

results and readily showed the correct camera attitude at the moment the image was 

captured. However, there was some ambiguity in selecting the correct IMU data to 

match the correct image and this took some sorting out.  For example, for the image 

taken at 13:24:53 on 25th July 2008, there were three possible groups of IMU data, 

which could be chosen from the green, light blue and cyan highlighted groups in  

Figure 8.5 (note that this group has been filtered by the 2% technique).  The best way 

to determine the appropriate IMU data is therefore by ‘trial and error’, and hence 

shows the advantage of using the epoch analysis technique for dynamic data, 

whereby each epoch can be analysed independently. 
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Figure 8.4:  Smoothing techniques to minimise random errors 

 

 

 

 

Figure 8.5: IMU data determination problem 
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It has been demonstrated that the MEMS IMU device, which has 0.5 degree per hour 

(manufacturer information) bias drift, is capable of being used as an added 

instrument for directly geo-referencing an image.  These results indicated that 

orientation is not a major issue in the direct geo-referencing.  This therefore depends 

on the GPS data, which could evaluated through direct accuracy assessment of the 

geo-referencing results. 

Table 8.1: Before and after image orientation using oblique algorithm. 

Before image orientation After image orientation 

 
Imaging direction vertical 

 
Imaging direction vertical 

 
Imaging direction tilt 

 
Imaging direction tilt 

 
Imaging direction oblique 

 
Imaging direction oblique 
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8.2.3 Directly Geo-referencing Result 

Seventeen images were acquired from the flight test, but only seven had the 

orientation data provided by the IMU device as well as GPS position data from the 

Garmin eTrex (Waypoints).  Of these images: one was considered vertical and could 

be used directly after pincushion correction; one was considered to be a tilt image; 

and, the remainder were considered to be oblique images, with a range of angles 

between -50 to 36 degrees of pitch and range of -6 to 8 degrees of roll, and needed 

further processing after the pincushion correction.  Table 8.2 lists the three main 

categories of images before and after direct geo-referencing using the algorithm 

discussed in Chapter 4. 

 

Practice showed that the .tif world file format works well during conversion process 

to enable the corrected image to be read by existing software as this format type can 

combine image and their coordinate’s information and it is needed in ArcView 

(ESRI) software to display the corrected images. 

 

When resampling the image it was decided to maintain a rectangular output image 

orientated to the British National Grid, with the maximum coordinates that could be 

derived without any null pixels.  Other options exist, such as a minimum bounding 

rectangle, but flagging as missing any pixels not gathered by the camera. Pixel size 

was retained as the size of the original.  As a result, an image size which has the 

same dimension as the input image is produced.  The advantage of this was that 

coordinates for the four corners and the image centre can be defined with a simple 

mathematical equation as shown in Chapter 4. 
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Table 8.2 : List of images before and after direct geo-referencing. 

Before direct geo-referencing After direct geo-referencing 

 
Vertical Image  

 
Tilt image  

 
Oblique Image 
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8.3 Accuracy Assessment Test 

The accuracy assessment was done by visual interpretation, due to the small area 

coverage and very few control points that could be identified on the Ordnance 

Survey reference map.  The accuracy assessment was based on the disparity of linear 

features such as agricultural field boundaries, houses, ponds, and/or any distinct 

feature for which a comparison between image and the reference map could be 

undertaken. 

 

For the root mean square error (RMSE) to be a useful measure of spatial accuracy, 

there should be a good number of ground control points randomly scattered around 

the image. However, in most of the corrected images there were only one or two 

points identifiable.  For example, in figure 8.6a the hedge lines provide a linear 

feature which appears to define the field boundaries very well, but there is only one 

identifiable intersection and one angular bend. In Figure 8.6b, the identifiable points 

are all towards the east of the image. As the image is accurately rendered at that side, 

the good RMSE may give an overly optimistic impression of the accuracy of the 

overall rectification. 

 

Two other points are worthy of note in Figure 8.6.  In Figure 8.6b one of the 

recognised objects to be used as a ground control point for geo-rectification had 

changed position, whilst some features shown on the map were no longer present 

when the image was detained. Figure 8.6a shows a general problem with the areas, in 

that the field boundaries are mapped precisely, but the canopy of the hedges does not 

provide a distinct line on the ground.  Table 8.3 lists the images which were 

successfully corrected by of direct geo-referencing. 
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(a) 
 

 
(b) 

Figure 8.6: Image (a) shows few topographical reference lines, while image (b) 
shows topographical reference lines are only available in one half of 
the image. 

Image line not 

clear in image 

but sufficient 

Area with no 

control points 

for checking  

Area with no 

control points 

for checking  



 - 176 - 

The mastermap data obtained from the Ordnance Survey did often not show the 

boundaries between farming plots which were visible in the imagery.  However, in 

many instances these boundaries were available from other sources. For example, 

imagery from Google earth could be downloaded and referenced to the British 

National Grid. Figure 8.7 shows this methodology.  Note that it is fortuitous that this 

imagery was available and its use for checking the accuracy of the geo-rectification 

process was simple.  However, since the date of the Google earth imagery was not 

known and it could not be ordered on demand, it is not possible to use it for precision 

farming applications. 

 

Figure 8.8 shows an enlargement of the second row, final column of the Table 8.3, so 

that the spatial accuracy can be seen more clearly.  The poorest of the rectified 

images is shown in Figure 8.9 with an error of 15m at one point, but with other parts 

of the image apparently more accurately registered. This large error can be ascribed 

to errors in measuring the height of the aircraft using the GPS.  Figure 8.10 shows a 

more successful rectification with errors of about 1m. The lack of ground control 

points in this image illustrates the problem of rectifying small format images in 

agricultural areas. 
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Table 8.3: Summary of images before and after direct geo-referencing. 
 

Image ID /  

Rotation Angle 

Original Image / Uncorrected Corrected using Tilt 
Algorithm 

Corrected using Oblique 
Algorithm 

Map pixels to user coordinate 
system 

TTC_0911.DCM 

Roll: -4o 

Pitch: 3o 

Yaw: 57o     

TTC_0913.DCM 

Roll: -4o 

Pitch: -17o 

Yaw: -4o     

TTC_0914.DCM 

Roll: -5o 

Pitch: -19o 

Yaw: 2o   
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Image ID /  

Rotation Angle 

Original Image / Uncorrected Corrected using Tilt 
Algorithm 

Corrected using Oblique 
Algorithm 

Map pixels to user coordinate 
system 

TTC_0915.DCM 

Roll: 15o 

Pitch: 7o 

Yaw: 302o     

TTC_0921.DCM 

Roll: -12o 

Pitch: -50o 

Yaw: 258o     

TTC_0922.DCM 

Roll: 36o  

Pitch:-6o  

Yaw: 222o     
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Image ID /  

Rotation Angle 

Original Image / Uncorrected Corrected using Tilt 
Algorithm 

Corrected using Oblique 
Algorithm 

Map pixels to user coordinate 
system 

TTC_0924.DCM 

Roll: 8o 

Pitch: 2o 

Yaw: 314o     

Note: Yellow circle shows mis-registration between image and OS map reference.
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Figure 8.8:  Image showing poor georectification and possible errors in map 
content 

Error of 4 to 5 metres. The 
gap in the hedge and 
gateway to field on the map 
and photograph differ 

Concerns about the field 
boundary shown in the 
photography and that available 
from the map. It is believed 
that the map may be out of date 
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Figure 8.9: Further example of large error 

Largest error seen on the 
automatically referenced 
imagery of approximately 
15m. 

Electricity pylon in 
apparently the correct 
location 
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Figure 8.10: Well rectified image 

  

Hedge line 
accurately 
mapped 

Artefacts 
from the 
resampling 
algorithm 
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8.4 Summary 

The results have shown the capability of a portable remote sensing system as a low-

cost device for acquiring images and then directly rectifying them into a user 

coordinate system.  The experimental investigation in Chapter 6 helped to predict the 

outcome from a real test flight and thus the errors and their correction were as 

expected.   

 

Unfortunately, the quality of real-flight data could not be examined quantitatively 

due to a lack of identifiable ground control points.  As an alternative, the quality can 

be assessed visually by matching feature in an image with those on a reference map 

or publicly available image.  Care is required in the use of existing Ordnance Survey 

Master Maps as they may well be outdated.   

 

The IMU data can be used to orientate the image, when the GPS data is not able to 

detect any WAAS/EGNOS satellites.  This is because the WAAS/EGNOS program 

is still under preliminary test therefore the availability of those satellites is not 

guaranteed.  The use of the Sync In and Pulse per Second (PPS) signals on 

recreational GPS were not considered, since the standard NMEA (0183) in these 

GPS devices does not have a pulse per second output that can be utilised for 

synchronising the GPS with the data storage device.   

 

The potential for GPS sampling frequency error was taken into account by specifying 

the speed at which the flight test were undertaken (about 100 km/hour).  

Additionally, highly sensitive recreational GPS (Garmin eTrex) were added to the 

flight tests to avoid or minimise the GPS lag, due to the speed at which it picked up 
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the first fix and was able to stay locked on the satellites.  In order to minimise the 

multipath error, the antenna of the GPSs was placed on the front panel of the aircraft, 

where there were no obstructions.   

 

Overall, the geo-corrected images met the requirements for precision agricultural 

use, which requires ±3m accuracy (Searcy, 2003), but at one or two places in some 

photographs the error was 15m.  This error was primarily due to method (affine 

transformation method) used for the geo-correction process.  The affine 

transformation is best for small and flat area, and since, no digital elevation model 

(DEM) was introduced into the geo-correction process, the error could not be 

eliminated. However, the oblique algorithm was capable of directly geo-rectifying 

the images of small and flat areas.  On the whole, the portable remote sensing system 

has potential to assist low-cost remote sensing, but a few modifications are still 

required, especially with respect to the GPS devices.  Chapter 9 will discuss the 

conclusions which can be drawn from this research and recommendations are made 

at the end of the chapter on how to improve the portable remote sensing system.  
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9. CONCLUSIONS AND RECOMMENDATIONS 

 

9.1 Review of Research Study 

The overall objective of this research was to develop a low-cost airborne remote 

sensing system without the requirement of structural modification to the aircraft.  To 

accomplish this objective, research has been undertaken which embraced: current 

sensing technology; the investigation and selection of the most appropriate 

combination of readily instruments, appropriate techniques for processing imaging 

from low-cost system developed for use in an agriculture environment.  From the 

results achieved and documented in this thesis, the main objective of the research has 

been met, thus the following questions have been answered. 

 

(1)  What is the current status of technology available for incorporation into 

low-cost remote sensing systems? 

Literature search and review showed that there are plenty of appropriate low-cost 

IMU, GPS and imaging devices readily available on the market. 

 

(2) Can a low-cost remote sensing system be developed that will enable 

geometric correction of digital image by means of a direct geo-referencing 

method? 

There are existing appropriate low-cost instruments which can be combined to 

produce a comprehensive low-cost airborne remote sensing system.  For example, an 

IMU based accelerometer, purposely designed for use in the aviation field, will 
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provide attitude orientation data.  There are high sensitivity GPSs able to lock onto 

‘visible’ satellites for the whole duration of the image acquisition process. 

 

(3) Is there an appropriate technique available for processing low-cost IMU and 

GPS data? 

Investigation showed that there was no appropriate technique immediately available 

for processing the low-cost IMU and GPS data.  Approaches such Kalman filtering, 

effective Kalman filter and neural networks were not suitable for low-cost IMU data 

because they need frequent reference updates to calculate the necessary correlation 

coefficients. 

 

Therefore, an epoch analysis was introduced, whereby, each of the epochs was 

studied and a smoothing technique used to accommodate bias and random errors.  

Three types of smoothing techniques were tested:  moving average, polynomial and 

averaging smoothing.  The averaging smoothing technique gave the worst results, 

while the polynomial smoothing technique works very well for calibrating the IMU 

data.  The means of forward and backward moving average produce very good 

results for smoothing the IMU data, which later was subsequently matched with the 

relevant image. 

 

A technique for extracting the correct IMU data for the particular image from a 

number of possibilities has also been developed during this research study.  This 

used the concept that an image is acquired instantaneously and not over a period of 

time by photographer (at least 0.02 seconds).  Therefore, there is a group of data 

which belongs to this specific moment in time.  A window searching technique was 
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applied to look for this particular group, and once identified, the mean value from 

this group was matched with easting and northing data obtained from the GPS by 

using time synchronisation. 

 

(4) What is the effect of accepting (2) and (3)? 

A portable low-cost airborne remote sensing system was successfully developed and 

tested in this research study.  It was demonstrated that this system met the project 

objectives through the acquisition of imaging that could be used for mapping 

agricultural fields.  The low-cost IMU component of the system also enabled the 

reorienting of tilt images into the vertical position.    

 

9.2 Conclusions 

From the work presented in this thesis, the following conclusions can be drawn: 

1) Overall System 

It can be concluded that a low-cost airborne remote sensing system has been 

successfully developed, and installed on a light aircraft.  Imagery, GPS and IMU data 

have been acquired, the data processed and the images geo-rectified. 

 

The installation procedures for the system have raised some important issues, such as 

effectiveness of operator communications and the arrangement of the devices various 

employed. 

2) Instruments 

From the results obtained, it is evident that although all devices were able to produce 

some results, the effectiveness was influenced by connection problems.  Unlike when 

mounted in a land based vehicle, the single engined aircraft is very small and 



 - 189 - 

consequently wire-cable connections may be easily disturbed and/or broken by 

navigator or data manager movement.  Due to the high data transfer speeds involved, 

RS232 cabling was found unsuitable for this purpose. 

 

The low-cost IMU device selected was able to obtain roll, pitch and yaw data of 

sufficient accuracy for the geometric correction.  Geometric distortion of all the 

seven images with compitable IMU data were corrected using either by tilt or the 

oblique algorithm.  The GPS receivers created some difficulties as the expected 

accuracy could not be achieved.  The best accuracy was 2 to 4 m when static, but 

when in motion the accuracy was about 10-15 m (the same as reported by Schwieger, 

2003). 

 

The imaging device could produce a multi-spectral image with three bands: green, 

red and infrared.  The flight images obtained were free from vignette problems, such 

as blurring and unfocused images, experienced during the experimental investigation.  

However, it was found that images suffered from pincushion distortion, as none 

could be matched perfectly with the reference map.  This lens effect was successfully 

removed using an appropriate correction algorithm. 

 

3) Data Processing  

The image data obtained from the digital small format camera covered an area of 

between 200x 200 m and 400x400 m, depending on the aircraft height.  As this area 

was quite small it was found that there is often a limited availability of reference 

point for geo-rectifying the image, especially for purely agriculture areas. 
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The low cost of accelerometer- based IMU produced data suitable for use as an 

extrinsic parameter for direct geo-referencing.  Even though the accuracy claimed by 

the manufacturer was 0.5 degrees, with proper data processing techniques, the 

accuracy could be enhanced. 

 

Epoch analysis on IMU data enables the correct data set for the image orientation to 

be selected.  It has proved that the reducing technique in processing the low-cost 

device data is very important. 

 

Any misalignment between the imaging sensor and IMU device can be reduced as 

the ancillary device of the portable remote sensing equipment is able to measure the 

orientation of the portable device directly. 

 

9.3 Recommendations 

The following recommendations for future work are proposed: 

1) This research shows that the oblique algorithm works very well on oblique 

images captured by a small format digital camera.  Therefore the algorithm 

should be tested on other types of imaging device, such as medium or large 

format digital cameras. 

2) As the image warping technique employed for direct geo-referencing was 

found to produce good results, it should therefore be tested on geo-

referencing multiple images.  For a comparison, the multivision software for 

oblique management and analysis tool can be used to test the results (GPS 

World Staff, 2006).  The Ricoh G700SE digital camera which has a GPS 

system that enables geotagging and which allows the image to be uploaded 
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and overlaid over Google Earth images (Ricoh, 2011), might also be useful 

for comparing the geo-referencing results with an established device. 

3) It is found that the mean of forward and backward moving averages gives 

good smoothing results for IMU data.  Thus, it should be used on other IMU 

data to reduce the bias and random errors.  

4) The epoch analysis approach has shown that the signal fluctuation from the 

IMU device works very well, whereby images are perfectly matched with the 

reference map after the orientation process.  Thus, this technique should be 

tested on IMU device such as navigation or tactical devices.  

5) In this research, it has been found that low-cost GPS with high sensitive 

response, such as Garmin eTrex, are good at locking onto visible satellites.  

Therefore, it is recommended that high-sensitivity low-cost GPS receivers 

should be installed on every low-cost airborne remote sensing system.  

6) In raw GPS data, it is found that the P-Code wavelength needed for 

differential processing techniques is not fully received by low-cost GPS 

receivers.  Thus low-cost GPS should be improved to enable them to receive 

better P-Code wavelengths.  

7) The track-log from the Garmin eTrex GPS shows good tracking mode, and 

therefore an investigation into converting track-log data to accurate positional 

data would be beneficial to the low-cost airborne remote sensing industry. 

8) The boresight correction can be ignored as it is possible to measure the 

location of the image acquisition device directly.  Therefore, it is 

recommended that the IMU device should be installed in the imaging device. 

9) It is recommended that a completely integrated system which includes an 

IMU, a GPS and an Imaging device is designed for commercial marketing.   
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10) The GI-Eye camera which is small (2 x 2 x 4 cm), light and capable of 

recording near infrared images can be integrated with an IMU and GPS. 
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Appendix A: List of Available Sensors 
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List of available sensor for airborne remote sensing used. 





Source: http://hydrolab.arsusda.gov/rsbasics/acknow.php 
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Appendix B: Chronological History of Aerial Photography and 

Remote Sensing 

Download from http://www.geog.ussb.edu/~jeff/115a/remotesensinghistory.html 
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Appendix C: Image Captured 
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TTC_0893.DCM 
February 7, 2008 

 
TTC_0894.DCM 
February 7, 2008 

 
TTC_0895.DCM 
February 7, 2008 

 
TTC_0896.DCM 
February 7, 2008 

 
TTC_0897.DCM 
February 7, 2008 

 
TTC_0899.DCM 
February 7, 2008 

 
TTC_0900.DCM 
February 7, 2008 

 

 
TTC_0905.DCM 
February 7, 2008 

Note:  All above data are unable to be corrected by using direct georeferencing 
method because the average height above mean sea level cannot be 
obtained. 



 - 237 - 

 
TTC_0910.DCM 

July 25, 2008 
Unable to be corrected 

 
TTC_0911.DCM 

July 25, 2008 
Able to be corrected 

 
TTC_0912.DCM 

July 25, 2008 
Unable to be corrected 

 
TTC_0913.DCM 

July 25, 2008 
Able to be corrected 

 
TTC_0914.DCM 

July 25, 2008 
Able to be corrected 

 
TTC_0915.DCM 

July 25, 2008 
Able to be corrected 
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TTC_0916.DCM 

July 25, 2008 
Unable to be corrected 

TTC_0917.DCM 
July 25, 2008 

Unable to be corrected 

 
TTC_0918.DCM 

July 25, 2008 
Unable to be corrected 

 
TTC_0919.DCM 

July 25, 2008 
Unable to be corrected 

 
TTC_0920.DCM 

July 25, 2008 
Unable to be corrected 

 
TTC_0921.DCM 

July 25, 2008 
Able to be corrected 
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TTC_0922.DCM 

July 25, 2008 
Able to be corrected 

 
TTC_0923.DCM 

July 25, 2008 
Unable to be corrected 

 
TTC_0924.DCM 

July 25, 2008 
Able to be corrected 

 
TTC_0925.DCM 

July 25, 2008 
Unable to be corrected 

 
TTC_0926.DCM 

July 25, 2008 
Unable to be corrected 

 

 
 
 
 
 
 
 

INTENDED BLANK 

Note:  The image that unable to be corrected is because of the IMU or GPS or 
bothe data were missing. 
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Appendix D: IMU Data (Process Data) 
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Appendix E: GPS DATA 
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Trajectory of flight test undertaken on July 25, 2008 using Garmin eTrex GPS. 

 

 

Note: The vertical axis is referring to the north direction while the horizontal 
axis is referred to the easting direction in OSGB36 (OSTN02) 
coordinates system. 

 



 

 

Trajectory of flight test

 

Note: The vertical axis is referring to the north direction while the horizontal 
axis is referred to the easting direction in OSGB36 (OSTN02) 
coordinates system.
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Trajectory of flight test  undertaken on July 25, 2008 using Garmin 76 GPS.

Note: The vertical axis is referring to the north direction while the horizontal 
axis is referred to the easting direction in OSGB36 (OSTN02) 
coordinates system. 

using Garmin 76 GPS. 

 
Note: The vertical axis is referring to the north direction while the horizontal 

axis is referred to the easting direction in OSGB36 (OSTN02) 



 

Trajectory of flight test

GPS 

 

Note: The vertical axis is referring to the north direction while the horizontal 
axis is referred to the easting direction in OSGB36 (OSTN02) 
coordinates system.
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Trajectory of flight test  undertaken on July 25, 2008 using wireless bluetooth 

Note: The vertical axis is referring to the north direction while the horizontal 
axis is referred to the easting direction in OSGB36 (OSTN02) 
coordinates system. 

using wireless bluetooth 

 

Note: The vertical axis is referring to the north direction while the horizontal 
axis is referred to the easting direction in OSGB36 (OSTN02) 
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Appendix F: Corrected Images 
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Pincushion Correction 
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Appendix G: Microsoft Visual Studio (Visual Basic) 

Programming Scripts Listing 
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Snapshot of the user interface. 
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'NOTE: The following procedure is develop to assist  the image 
'correction process.  The description of each progr amm script is given 
'as comments.  The image correction process include s: 
'   i  –Pincushion Correction 
' ii -Tilt Correction 
' iii -Oblique Correction 
' iv -Rotation 
 
Imports  System 
Imports  System.IO 
Imports  System.Data 
Imports  System.Windows.Forms 
Imports  System.Drawing 
Imports  System.Collections 
Imports  System.Object 
Imports  System.Array 
Imports  System.Drawing.Drawing2D.Matrix 
Imports  System.Drawing.Imaging.PixelFormat 
Imports  System.Drawing.Point 
Imports  System.Drawing.Drawing2D.GraphicsPath 
Imports  System.Drawing.Imaging 
Imports  System.Windows.Forms.Control 
Imports  System.Windows.Forms.ScrollBar 
Imports  System.Windows.Forms.HScrollBar 
Imports  System.Windows.Forms.VScrollBar 
Imports  System.Drawing.Color 
Imports  System.Runtime.InteropServices 
Imports  System.Math 
 
PublicClass  FrmMain 
Inherits  System.Windows.Forms.Form 
#Region "Declaration" 
Public  InFile AsString 
Public  OutFile AsString 
Dim N1 AsDouble 
Dim N2 AsDouble 
Dim E1 AsDouble 
Dim E2 AsDouble 
Dim Z1 AsDouble 
Dim Z2 AsDouble 
Dim FL AsDouble 
Dim ALT AsDouble 
Dim MAXE AsDouble 
Dim MINE AsDouble 
Dim ROLL AsDouble 
Dim PITCH AsDouble 
Dim YAW AsDouble 
Dim HEAD AsDouble 
Dim Photo As Bitmap 
Dim PixelCOL AsInteger 
Dim PixelROW AsInteger 
Dim DotInch AsInteger 
Dim RRoll(2, 2) AsDouble 
Dim RPitch(2, 2) AsDouble 
Dim RYaw(2, 2) AsDouble 
Dim YAWDEG AsDouble 
Dim SC AsDouble 
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Dim ScanPara AsDouble 
Dim NDist AsDouble 
Dim RP(2, 2) AsDouble 
Dim MM(2, 2) AsDouble 
Dim HEADRAD AsDouble 
'Dim YAWDEG As Double 
Dim DEG AsDouble 
Dim DIRECT AsDouble 
#EndRegion 
#Region "Windows Form Designer generated code " 
 
PublicSubNew () 
MyBase.New() 
 
'This call is required by the Windows Form Designer . 
        InitializeComponent() 
 
'Add any initialization after the InitializeCompone nt() call 
 
EndSub 
 
'Form overrides dispose to clean up the component l ist. 
ProtectedOverloadsOverridesSub  Dispose( ByVal  disposing AsBoolean ) 
If  disposing Then 
IfNot  (components IsNothing ) Then 
                components.Dispose() 
EndIf 
EndIf 
MyBase.Dispose(disposing) 
EndSub 
 

'Required by the Windows Form Designer 
Private  components As System.ComponentModel.IContainer 
 
'NOTE: The following procedure is required by the W indows Form Designer 
'It can be modified using the Windows Form Designer .   
'Do not modify it using the code editor. 
FriendWithEvents  PicImage As System.Windows.Forms.PictureBox 
FriendWithEvents  TabControl1 As System.Windows.Forms.TabControl 
FriendWithEvents  GroupBoxInputFile As System.Windows.Forms.GroupBox 
FriendWithEvents  GroupBoxIPara As System.Windows.Forms.GroupBox 
FriendWithEvents  TabGPS As System.Windows.Forms.TabPage 
FriendWithEvents  TabFlight As System.Windows.Forms.TabPage 
FriendWithEvents  TabImu As System.Windows.Forms.TabPage 
FriendWithEvents  Label3 As System.Windows.Forms.Label 
FriendWithEvents  Label2 As System.Windows.Forms.Label 
FriendWithEvents  Label1 As System.Windows.Forms.Label 
FriendWithEvents  Label4 As System.Windows.Forms.Label 
FriendWithEvents  Label5 As System.Windows.Forms.Label 
FriendWithEvents  BtnBrowse As System.Windows.Forms.Button 
FriendWithEvents  BtnCal As System.Windows.Forms.Button 
FriendWithEvents  Label6 As System.Windows.Forms.Label 
FriendWithEvents  Label7 As System.Windows.Forms.Label 
FriendWithEvents  Label8 As System.Windows.Forms.Label 
FriendWithEvents  Label9 As System.Windows.Forms.Label 
FriendWithEvents  Label10 As System.Windows.Forms.Label 
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FriendWithEvents  Label11 As System.Windows.Forms.Label 
FriendWithEvents  Label12 As System.Windows.Forms.Label 
FriendWithEvents  GroupBox1 As System.Windows.Forms.GroupBox 
FriendWithEvents  hScrollBar1 As System.Windows.Forms.HScrollBar 
FriendWithEvents  vScrollBar1 As System.Windows.Forms.VScrollBar  
FriendWithEvents  TxtFile As System.Windows.Forms.TextBox 
FriendWithEvents  TxtN1 As System.Windows.Forms.TextBox 
FriendWithEvents  TxtE1 As System.Windows.Forms.TextBox 
FriendWithEvents  TxtZ1 As System.Windows.Forms.TextBox 
FriendWithEvents  TxtN2 As System.Windows.Forms.TextBox 
FriendWithEvents  TxtE2 As System.Windows.Forms.TextBox 
FriendWithEvents  TxtZ2 As System.Windows.Forms.TextBox 
FriendWithEvents  TxtMinE As System.Windows.Forms.TextBox 
FriendWithEvents  TxtMaxE As System.Windows.Forms.TextBox 
FriendWithEvents  TxtAlt As System.Windows.Forms.TextBox 
FriendWithEvents  TxtFL As System.Windows.Forms.TextBox 
FriendWithEvents  TxtHead As System.Windows.Forms.TextBox 
FriendWithEvents  TxtPitch As System.Windows.Forms.TextBox 
FriendWithEvents  TxtRoll As System.Windows.Forms.TextBox 
FriendWithEvents  ComboBox1 As System.Windows.Forms.ComboBox 
FriendWithEvents  GroupBox2 As System.Windows.Forms.GroupBox 
FriendWithEvents  BtnSaveAS As System.Windows.Forms.Button 
<System.Diagnostics.DebuggerStepThrough()> PrivateSub  
InitializeComponent() 
Me.PicImage = New System.Windows.Forms.PictureBox 
Me.TxtFile = New System.Windows.Forms.TextBox 
Me.BtnBrowse = New System.Windows.Forms.Button 
Me.GroupBoxInputFile = New System.Windows.Forms.GroupBox 
Me.GroupBoxIPara = New System.Windows.Forms.GroupBox 
Me.BtnCal = New System.Windows.Forms.Button 
Me.TabControl1 = New System.Windows.Forms.TabControl 
Me.TabGPS = New System.Windows.Forms.TabPage 
Me.Label5 = New System.Windows.Forms.Label 
Me.Label4 = New System.Windows.Forms.Label 
Me.Label1 = New System.Windows.Forms.Label 
Me.Label2 = New System.Windows.Forms.Label 
Me.TxtN1 = New System.Windows.Forms.TextBox 
Me.Label3 = New System.Windows.Forms.Label 
Me.TxtE1 = New System.Windows.Forms.TextBox 
Me.TxtZ1 = New System.Windows.Forms.TextBox 
Me.TxtN2 = New System.Windows.Forms.TextBox 
Me.TxtE2 = New System.Windows.Forms.TextBox 
Me.TxtZ2 = New System.Windows.Forms.TextBox 
Me.TabFlight = New System.Windows.Forms.TabPage 
Me.TxtMinE = New System.Windows.Forms.TextBox 
Me.Label9 = New System.Windows.Forms.Label 
Me.TxtMaxE = New System.Windows.Forms.TextBox 
Me.Label8 = New System.Windows.Forms.Label 
Me.TxtAlt = New System.Windows.Forms.TextBox 
Me.Label7 = New System.Windows.Forms.Label 
Me.TxtFL = New System.Windows.Forms.TextBox 
Me.Label6 = New System.Windows.Forms.Label 
Me.TabImu = New System.Windows.Forms.TabPage 
Me.TxtHead = New System.Windows.Forms.TextBox 
Me.TxtPitch = New System.Windows.Forms.TextBox 
Me.Label12 = New System.Windows.Forms.Label 
Me.Label11 = New System.Windows.Forms.Label 
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Me.TxtRoll = New System.Windows.Forms.TextBox 
Me.Label10 = New System.Windows.Forms.Label 
Me.GroupBox1 = New System.Windows.Forms.GroupBox 
Me.BtnSaveAS = New System.Windows.Forms.Button 
Me.hScrollBar1 = New System.Windows.Forms.HScrollBar 
Me.vScrollBar1 = New System.Windows.Forms.VScrollBar 
Me.ComboBox1 = New System.Windows.Forms.ComboBox 
Me.GroupBox2 = New System.Windows.Forms.GroupBox 
Me.GroupBoxInputFile.SuspendLayout() 
Me.GroupBoxIPara.SuspendLayout() 
Me.TabControl1.SuspendLayout() 
Me.TabGPS.SuspendLayout() 
Me.TabFlight.SuspendLayout() 
Me.TabImu.SuspendLayout() 
Me.GroupBox1.SuspendLayout() 
Me.GroupBox2.SuspendLayout() 
Me.SuspendLayout() 
' 
'PicImage 
' 
Me.PicImage.Location = New System.Drawing.Point(8, 24) 
Me.PicImage.Name = "PicImage" 
Me.PicImage.Size = New System.Drawing.Size(608, 680) 
Me.PicImage.TabIndex = 0 
Me.PicImage.TabStop = False 
' 
'TxtFile 
' 
Me.TxtFile.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 
9.75!, System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, CType(0, Byte )) 
Me.TxtFile.Location = New System.Drawing.Point(8, 24) 
Me.TxtFile.Name = "TxtFile" 
Me.TxtFile.Size = New System.Drawing.Size(328, 22) 
Me.TxtFile.TabIndex = 1 
Me.TxtFile.Text = "" 
' 
'BtnBrowse 
' 
Me.BtnBrowse.Location = New System.Drawing.Point(120, 56) 
Me.BtnBrowse.Name = "BtnBrowse" 
Me.BtnBrowse.Size = New System.Drawing.Size(112, 32) 
Me.BtnBrowse.TabIndex = 3 
Me.BtnBrowse.Text = "Browse" 
' 
'GroupBoxInputFile 
' 
Me.GroupBoxInputFile.Controls.Add( Me.TxtFile) 
Me.GroupBoxInputFile.Controls.Add( Me.BtnBrowse) 
Me.GroupBoxInputFile.Location = New System.Drawing.Point(640, 16) 
Me.GroupBoxInputFile.Name = "GroupBoxInputFile" 
Me.GroupBoxInputFile.Size = New System.Drawing.Size(344, 96) 
Me.GroupBoxInputFile.TabIndex = 4 
Me.GroupBoxInputFile.TabStop = False 
Me.GroupBoxInputFile.Text = "Input File" 
' 
'GroupBoxIPara 
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' 
Me.GroupBoxIPara.Controls.Add( Me.BtnCal) 
Me.GroupBoxIPara.Controls.Add( Me.TabControl1) 
Me.GroupBoxIPara.Location = New System.Drawing.Point(640, 136) 
Me.GroupBoxIPara.Name = "GroupBoxIPara" 
Me.GroupBoxIPara.Size = New System.Drawing.Size(344, 360) 
Me.GroupBoxIPara.TabIndex = 5 
Me.GroupBoxIPara.TabStop = False 
Me.GroupBoxIPara.Text = "Input Parameter" 
' 
'BtnCal 
' 
Me.BtnCal.Location = New System.Drawing.Point(120, 312) 
Me.BtnCal.Name = "BtnCal" 
Me.BtnCal.Size = New System.Drawing.Size(112, 32) 
Me.BtnCal.TabIndex = 1 
Me.BtnCal.Text = "Calculate" 
' 
'TabControl1 
' 
Me.TabControl1.Controls.Add( Me.TabGPS) 
Me.TabControl1.Controls.Add( Me.TabFlight) 
Me.TabControl1.Controls.Add( Me.TabImu) 
Me.TabControl1.ItemSize = New System.Drawing.Size(109, 30) 
Me.TabControl1.Location = New System.Drawing.Point(8, 24) 
Me.TabControl1.Multiline = True 
Me.TabControl1.Name = "TabControl1" 
Me.TabControl1.RightToLeft = System.Windows.Forms.Rig htToLeft.No 
Me.TabControl1.SelectedIndex = 0 
Me.TabControl1.Size = New System.Drawing.Size(328, 272) 
Me.TabControl1.TabIndex = 0 
Me.TabControl1.Tag = "" 
' 
'TabGPS 
' 
Me.TabGPS.Controls.Add( Me.Label5) 
Me.TabGPS.Controls.Add( Me.Label4) 
Me.TabGPS.Controls.Add( Me.Label1) 
Me.TabGPS.Controls.Add( Me.Label2) 
Me.TabGPS.Controls.Add( Me.TxtN1) 
Me.TabGPS.Controls.Add( Me.Label3) 
Me.TabGPS.Controls.Add( Me.TxtE1) 
Me.TabGPS.Controls.Add( Me.TxtZ1) 
Me.TabGPS.Controls.Add( Me.TxtN2) 
Me.TabGPS.Controls.Add( Me.TxtE2) 
Me.TabGPS.Controls.Add( Me.TxtZ2) 
Me.TabGPS.Location = New System.Drawing.Point(4, 34) 
Me.TabGPS.Name = "TabGPS" 
Me.TabGPS.Size = New System.Drawing.Size(320, 234) 
Me.TabGPS.TabIndex = 0 
Me.TabGPS.Text = "GPS Coordinate" 
' 
'Label5 
' 
Me.Label5.Location = New System.Drawing.Point(168, 8) 
Me.Label5.Name = "Label5" 
Me.Label5.Size = New System.Drawing.Size(144, 24) 
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Me.Label5.TabIndex = 10 
Me.Label5.Text = "Second Coordinate" 
' 
'Label4 
' 
Me.Label4.Location = New System.Drawing.Point(80, 168) 
Me.Label4.Name = "Label4" 
Me.Label4.Size = New System.Drawing.Size(144, 24) 
Me.Label4.TabIndex = 9 
Me.Label4.Text = "Atitude (m)" 
Me.Label4.TextAlign = System.Drawing.ContentAlignment .MiddleCenter 
' 
'Label1 
' 
Me.Label1.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.Label1.Location = New System.Drawing.Point(8, 8) 
Me.Label1.Name = "Label1" 
Me.Label1.Size = New System.Drawing.Size(144, 24) 
Me.Label1.TabIndex = 6 
Me.Label1.Text = "First Coordinate" 
' 
'Label2 
' 
Me.Label2.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.Label2.Location = New System.Drawing.Point(88, 40) 
Me.Label2.Name = "Label2" 
Me.Label2.Size = New System.Drawing.Size(144, 24) 
Me.Label2.TabIndex = 7 
Me.Label2.Text = "Northing (m)" 
Me.Label2.TextAlign = System.Drawing.ContentAlignment .MiddleCenter 
' 
'TxtN1 
' 
Me.TxtN1.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.TxtN1.Location = New System.Drawing.Point(8, 72) 
Me.TxtN1.Name = "TxtN1" 
Me.TxtN1.Size = New System.Drawing.Size(144, 22) 
Me.TxtN1.TabIndex = 0 
Me.TxtN1.Text = "" 
' 
'Label3 
' 
Me.Label3.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.Label3.Location = New System.Drawing.Point(80, 104) 
Me.Label3.Name = "Label3" 
Me.Label3.Size = New System.Drawing.Size(144, 24) 
Me.Label3.TabIndex = 8 
Me.Label3.Text = "Easting (m)" 
Me.Label3.TextAlign = System.Drawing.ContentAlignment .MiddleCenter 
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' 
'TxtE1 
' 
Me.TxtE1.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.TxtE1.Location = New System.Drawing.Point(8, 136) 
Me.TxtE1.Name = "TxtE1" 
Me.TxtE1.Size = New System.Drawing.Size(144, 22) 
Me.TxtE1.TabIndex = 1 
Me.TxtE1.Text = "" 
' 
'TxtZ1 
' 
Me.TxtZ1.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.TxtZ1.Location = New System.Drawing.Point(8, 200) 
Me.TxtZ1.Name = "TxtZ1" 
Me.TxtZ1.Size = New System.Drawing.Size(144, 22) 
Me.TxtZ1.TabIndex = 2 
Me.TxtZ1.Text = "" 
' 
'TxtN2 
' 
Me.TxtN2.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.TxtN2.Location = New System.Drawing.Point(168, 72) 
Me.TxtN2.Name = "TxtN2" 
Me.TxtN2.Size = New System.Drawing.Size(144, 22) 
Me.TxtN2.TabIndex = 3 
Me.TxtN2.Text = "" 
' 
'TxtE2 
' 
Me.TxtE2.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.TxtE2.Location = New System.Drawing.Point(168, 136) 
Me.TxtE2.Name = "TxtE2" 
Me.TxtE2.Size = New System.Drawing.Size(144, 22) 
Me.TxtE2.TabIndex = 4 
Me.TxtE2.Text = "" 
' 
'TxtZ2 
' 
Me.TxtZ2.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.TxtZ2.Location = New System.Drawing.Point(168, 200) 
Me.TxtZ2.Name = "TxtZ2" 
Me.TxtZ2.Size = New System.Drawing.Size(144, 22) 
Me.TxtZ2.TabIndex = 5 
Me.TxtZ2.Text = "" 
' 
'TabFlight 
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' 
Me.TabFlight.Controls.Add( Me.TxtMinE) 
Me.TabFlight.Controls.Add( Me.Label9) 
Me.TabFlight.Controls.Add( Me.TxtMaxE) 
Me.TabFlight.Controls.Add( Me.Label8) 
Me.TabFlight.Controls.Add( Me.TxtAlt) 
Me.TabFlight.Controls.Add( Me.Label7) 
Me.TabFlight.Controls.Add( Me.TxtFL) 
Me.TabFlight.Controls.Add( Me.Label6) 
Me.TabFlight.Location = New System.Drawing.Point(4, 34) 
Me.TabFlight.Name = "TabFlight" 
Me.TabFlight.Size = New System.Drawing.Size(320, 234) 
Me.TabFlight.TabIndex = 1 
Me.TabFlight.Text = "Flight Parameter" 
' 
'TxtMinE 
' 
Me.TxtMinE.Location = New System.Drawing.Point(176, 104) 
Me.TxtMinE.Name = "TxtMinE" 
Me.TxtMinE.Size = New System.Drawing.Size(136, 22) 
Me.TxtMinE.TabIndex = 7 
Me.TxtMinE.Text = "" 
' 
'Label9 
' 
Me.Label9.Location = New System.Drawing.Point(176, 72) 
Me.Label9.Name = "Label9" 
Me.Label9.Size = New System.Drawing.Size(136, 24) 
Me.Label9.TabIndex = 6 
Me.Label9.Text = "Min. Elevation (m)" 
' 
'TxtMaxE 
' 
Me.TxtMaxE.Location = New System.Drawing.Point(176, 40) 
Me.TxtMaxE.Name = "TxtMaxE" 
Me.TxtMaxE.Size = New System.Drawing.Size(136, 22) 
Me.TxtMaxE.TabIndex = 5 
Me.TxtMaxE.Text = "" 
' 
'Label8 
' 
Me.Label8.Location = New System.Drawing.Point(176, 8) 
Me.Label8.Name = "Label8" 
Me.Label8.Size = New System.Drawing.Size(120, 24) 
Me.Label8.TabIndex = 4 
Me.Label8.Text = "Max. Elevation (m)" 
' 
'TxtAlt 
' 
Me.TxtAlt.Location = New System.Drawing.Point(8, 104) 
Me.TxtAlt.Name = "TxtAlt" 
Me.TxtAlt.Size = New System.Drawing.Size(136, 22) 
Me.TxtAlt.TabIndex = 3 
Me.TxtAlt.Text = "" 
' 
'Label7 
' 
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Me.Label7.Location = New System.Drawing.Point(8, 72) 
Me.Label7.Name = "Label7" 
Me.Label7.Size = New System.Drawing.Size(136, 24) 
Me.Label7.TabIndex = 2 
Me.Label7.Text = "Altitude (m)" 
' 
'TxtFL 
' 
Me.TxtFL.Location = New System.Drawing.Point(8, 40) 
Me.TxtFL.Name = "TxtFL" 
Me.TxtFL.Size = New System.Drawing.Size(136, 22) 
Me.TxtFL.TabIndex = 1 
Me.TxtFL.Text = "" 
' 
'Label6 
' 
Me.Label6.Location = New System.Drawing.Point(8, 8) 
Me.Label6.Name = "Label6" 
Me.Label6.Size = New System.Drawing.Size(120, 24) 
Me.Label6.TabIndex = 0 
Me.Label6.Text = "Focal Lenght (mm)" 
' 
'TabImu 
' 
Me.TabImu.Controls.Add( Me.TxtHead) 
Me.TabImu.Controls.Add( Me.TxtPitch) 
Me.TabImu.Controls.Add( Me.Label12) 
Me.TabImu.Controls.Add( Me.Label11) 
Me.TabImu.Controls.Add( Me.TxtRoll) 
Me.TabImu.Controls.Add( Me.Label10) 
Me.TabImu.Location = New System.Drawing.Point(4, 34) 
Me.TabImu.Name = "TabImu" 
Me.TabImu.Size = New System.Drawing.Size(320, 234) 
Me.TabImu.TabIndex = 2 
Me.TabImu.Text = "IMU Parameter" 
' 
'TxtHead 
' 
Me.TxtHead.Location = New System.Drawing.Point(8, 168) 
Me.TxtHead.Name = "TxtHead" 
Me.TxtHead.Size = New System.Drawing.Size(128, 22) 
Me.TxtHead.TabIndex = 5 
Me.TxtHead.Text = "" 
' 
'TxtPitch 
' 
Me.TxtPitch.Location = New System.Drawing.Point(8, 104) 
Me.TxtPitch.Name = "TxtPitch" 
Me.TxtPitch.Size = New System.Drawing.Size(128, 22) 
Me.TxtPitch.TabIndex = 4 
Me.TxtPitch.Text = "" 
' 
'Label12 
' 
Me.Label12.Location = New System.Drawing.Point(8, 136) 
Me.Label12.Name = "Label12" 
Me.Label12.Size = New System.Drawing.Size(128, 24) 
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Me.Label12.TabIndex = 3 
Me.Label12.Text = "Heading (dd.mmss)" 
' 
'Label11 
' 
Me.Label11.Location = New System.Drawing.Point(8, 72) 
Me.Label11.Name = "Label11" 
Me.Label11.Size = New System.Drawing.Size(128, 24) 
Me.Label11.TabIndex = 2 
Me.Label11.Text = "Pitch (in degree)" 
' 
'TxtRoll 
' 
Me.TxtRoll.Location = New System.Drawing.Point(8, 40) 
Me.TxtRoll.Name = "TxtRoll" 
Me.TxtRoll.Size = New System.Drawing.Size(128, 22) 
Me.TxtRoll.TabIndex = 1 
Me.TxtRoll.Text = "" 
' 
'Label10 
' 
Me.Label10.Location = New System.Drawing.Point(8, 8) 
Me.Label10.Name = "Label10" 
Me.Label10.Size = New System.Drawing.Size(128, 24) 
Me.Label10.TabIndex = 0 
Me.Label10.Text = "Roll (in degree)" 
' 
'GroupBox1 
' 
Me.GroupBox1.Controls.Add( Me.BtnSaveAS) 
Me.GroupBox1.Location = New System.Drawing.Point(640, 584) 
Me.GroupBox1.Name = "GroupBox1" 
Me.GroupBox1.Size = New System.Drawing.Size(336, 64) 
Me.GroupBox1.TabIndex = 6 
Me.GroupBox1.TabStop = False 
Me.GroupBox1.Text = "Out File" 
' 
'BtnSaveAS 
' 
Me.BtnSaveAS.Location = New System.Drawing.Point(120, 24) 
Me.BtnSaveAS.Name = "BtnSaveAS" 
Me.BtnSaveAS.Size = New System.Drawing.Size(112, 32) 
Me.BtnSaveAS.TabIndex = 1 
Me.BtnSaveAS.Text = "Save AS" 
' 
'hScrollBar1 
' 
Me.hScrollBar1.Location = New System.Drawing.Point(0, 0) 
Me.hScrollBar1.Name = "hScrollBar1" 
Me.hScrollBar1.TabIndex = 0 
' 
'vScrollBar1 
' 
Me.vScrollBar1.Location = New System.Drawing.Point(0, 0) 
Me.vScrollBar1.Name = "vScrollBar1" 
Me.vScrollBar1.TabIndex = 0 
' 
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'ComboBox1 
' 
Me.ComboBox1.DropDownStyle = 
System.Windows.Forms.ComboBoxStyle.DropDownList 
Me.ComboBox1.Items.AddRange( NewObject () { "Pincushion" , "Vertical" , 
"Tilt" , "Oblique" , "Rotate" , "Scale" , "Scale1" }) 
Me.ComboBox1.Location = New System.Drawing.Point(8, 32) 
Me.ComboBox1.Name = "ComboBox1" 
Me.ComboBox1.Size = New System.Drawing.Size(320, 24) 
Me.ComboBox1.TabIndex = 0 
' 
'GroupBox2 
' 
Me.GroupBox2.Controls.Add( Me.ComboBox1) 
Me.GroupBox2.Location = New System.Drawing.Point(640, 504) 
Me.GroupBox2.Name = "GroupBox2" 
Me.GroupBox2.Size = New System.Drawing.Size(344, 72) 
Me.GroupBox2.TabIndex = 8 
Me.GroupBox2.TabStop = False 
Me.GroupBox2.Text = "Distortion Correction" 
' 
'FrmMain 
' 
Me.AutoScaleBaseSize = New System.Drawing.Size(6, 15) 
Me.AutoScroll = True 
Me.ClientSize = New System.Drawing.Size(992, 734) 
Me.Controls.Add( Me.GroupBox2) 
Me.Controls.Add( Me.GroupBox1) 
Me.Controls.Add( Me.GroupBoxIPara) 
Me.Controls.Add( Me.GroupBoxInputFile) 
Me.Controls.Add( Me.PicImage) 
Me.Font = New System.Drawing.Font( "Microsoft Sans Serif" , 9.75!, 
System.Drawing.FontStyle.Regular, System.Drawing.Gr aphicsUnit.Point, 
CType(0, Byte )) 
Me.MaximizeBox = False 
Me.Name = "FrmMain" 
Me.Text = "ADC Image Registration" 
Me.GroupBoxInputFile.ResumeLayout( False ) 
Me.GroupBoxIPara.ResumeLayout( False ) 
Me.TabControl1.ResumeLayout( False ) 
Me.TabGPS.ResumeLayout( False ) 
Me.TabFlight.ResumeLayout( False ) 
Me.TabImu.ResumeLayout( False ) 
Me.GroupBox1.ResumeLayout( False ) 
Me.GroupBox2.ResumeLayout( False ) 
Me.ResumeLayout( False ) 
 
EndSub 
 
#EndRegion 
#Region "Initialization" 
Private  m_operations As Collection 
PrivateEnum  WarpOperations 
        Pincushion 
        Vertical 
        Tilt 
        Oblique 
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        Rotate 
        Scale 
        Scale1 
EndEnum 
PrivateSub  form1_load( ByVal  sender As System.Object, ByVal  e As 
System.EventArgs) HandlesMyBase .Load 
        m_operations = New Collection 
        m_operations.Add(WarpOperations.Pincushion,  "Pincushion" ) 
        m_operations.Add(WarpOperations.Vertical, "Vertical" ) 
        m_operations.Add(WarpOperations.Tilt, "Tilt" ) 
        m_operations.Add(WarpOperations.Oblique, "Oblique" ) 
        m_operations.Add(WarpOperations.Rotate, "Rotate" ) 
        m_operations.Add(WarpOperations.Scale, "Scale" ) 
        m_operations.Add(WarpOperations.Scale1, "Scale1" ) 
EndSub 
#EndRegion 
#Region "Input Data" 
PublicSub  Input_String() 
Dim N1_str AsString 
Dim N2_str AsString 
Dim E1_str AsString 
Dim E2_str AsString 
Dim Z1_str AsString 
Dim Z2_str AsString 
Dim ALT_str AsString 
Dim FL_str AsString 
Dim MAXE_str AsString 
Dim MINE_str AsString 
Dim Roll_str AsString 
Dim Pitch_str AsString 
Dim Head_str AsString 
        InFile = Me.TxtFile.Text 
        N1_str = Me.TxtN1.Text : E1_str = Me.TxtE1.Text : Z1_str = 
Me.TxtZ1.Text 
        N2_str = Me.TxtN2.Text : E2_str = Me.TxtE2.Text : Z2_str = 
Me.TxtZ2.Text 
        FL_str = Me.TxtFL.Text : ALT_str = Me.TxtAlt.Text : MAXE_str = 
Me.TxtMaxE.Text : MINE_str = Me.TxtMinE.Text 
        Roll_str = Me.TxtRoll.Text : Pitch_str = Me.TxtPitch.Text : 
Head_str = Me.TxtHead.Text 
Try 
            N1 = System.Convert.ToDouble(N1_str) 
            N2 = System.Convert.ToDouble(N2_str) 
            E1 = System.Convert.ToDouble(E1_str) 
            E2 = System.Convert.ToDouble(E2_str) 
            Z1 = System.Convert.ToDouble(Z1_str) 
            Z2 = System.Convert.ToDouble(Z2_str) 
            FL = System.Convert.ToDouble(FL_str) 
            ALT = System.Convert.ToDouble(ALT_str) 
            MAXE = System.Convert.ToDouble(MAXE_str ) 
            MINE = System.Convert.ToDouble(MINE_str ) 
            ROLL = System.Convert.ToDouble(Roll_str ) 
            PITCH = System.Convert.ToDouble(Pitch_s tr) 
            HEAD = System.Convert.ToDouble(Head_str ) 
Catch  exception As System.OverflowException 
            System.Console.WriteLine( _ 
"Overflow in String-to-Double conversion." ) 
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Catch  exception As System.FormatException 
            System.Console.WriteLine( _ 
"The string is not formatted as a Double." ) 
Catch  exception As System.ArgumentException 
            System.Console.WriteLine( "The string is null." ) 
EndTry 
 
EndSub 
#EndRegion 
#Region "Grasp an Image & Image Info" 
PrivateSub  BtnBrowse_Click( ByVal  sender As System.Object, ByVal  e As 
System.EventArgs) Handles  BtnBrowse.Click 
Dim dlgOpen AsNew OpenFileDialog 
Dim Result AsInteger 
        dlgOpen.Title = "Load Image" 
        dlgOpen.Filter = "JPEG Files (*.jpg,*.jpeg)|*.jpg;*.jpeg|Bitmap 
Files(*.bmp)|*.bmp" & _ 
"|PCX Files (*.pcx)|*.pcx|PNG Files (*.png)|*.png" & _ 
"|GIF Files (*.gif)|*.gif" & _ 
"|Wireless Bitmap Files (*.wbm, *.wbmp)|*.wbm;*.wbm p" & _ 
"|TIFF Files (*.tif, *.tiff)|*.tif;*.tiff" & _ 
"|All Image 
Files|*.bmp;*.jpg;*.jpeg;*.pcx;*.png;*.gif;*.wbm;*. wbmp;*.tif;*.tiff" 
        dlgOpen.FilterIndex = 9 
        Result = dlgOpen.ShowDialog() 
If  Result <> DialogResult.Cancel Then 
            InFile = dlgOpen.FileName 
Me.TxtFile.Text = InFile 
            Photo = Image.FromFile(InFile) 
            PicImage.Image = CType(Photo, Image) 
Me.DisplayScrollBars()              'ADD SCROLL BAR 
Me.SetScrollBarValues()             'SET SCROLL BAR MOVEMENT 
EndIf 
 
        PixelCOL = Photo.Width 
        PixelROW = Photo.Height 
        DotInch = Photo.VerticalResolution 
Dim PixCenRow AsDouble 
Dim PixCenCol AsDouble 
        PixCenRow = PixelROW / 2 : PixCenCol = Pixe lCOL / 2 
Dim ScanPara AsDouble 
        ScanPara = CType(DotInch, Double ) / 0.0254 
Dim NDist AsDouble 
Dim SC AsDouble 
        NDist = ScanPara / SC 
EndSub 
#EndRegion 
#Region "Calculating Process" 
PrivateSub  BtnCal_Click( ByVal  sender As System.Object, ByVal  e As 
System.EventArgs) Handles  BtnCal.Click 
'Setup-UP an Initail Value 
        RRoll(0, 0) = ROLL / 180.0 * System.Math.PI  
        RPitch(0, 0) = ROLL / 180.0 * System.Math.P I 
        HEADRAD = DDMMSSTORAD(HEAD) : DIRECT = BRG( N1, N2, E1, E2) : 
RYaw(0, 0) = Math.Abs(DIRECT - HEAD) 
        YAWDEG = RADTODEG(RYaw(0, 0)) 
'MsgBox(RRoll, , "RRoll") 
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'Matrix Preparation 
'Dim SC As Double 
Dim FL1 AsDouble 
        FL1 = FL / 1000 : SC = 1 / (FL1 / ALT) 
Dim CROLL(2, 2) AsDouble 'defines a matrix ROLL with dimensions (3x3) 
Dim CPITCH(2, 2) AsDouble 'defines a matrix PITCH with dimensions (3x3) 
Dim CYAW(2, 2) AsDouble 'defines a matrix YAW with dimensions (3x3) 
        CROLL(0, 0) = 1.0 : CROLL(0, 1) = 0.0 : CRO LL(0, 2) = 0.0 
        CROLL(1, 0) = 0.0 : CROLL(1, 1) = Math.Cos( RRoll(0, 0)) : 
CROLL(1, 2) = Math.Sin(RRoll(0, 0)) 
        CROLL(2, 0) = 0.0 : CROLL(2, 1) = -1 * Math .Sin(RRoll(0, 0)) : 
CROLL(2, 2) = Math.Cos(RRoll(0, 0)) 
        CPITCH(0, 0) = Math.Cos(RPitch(0, 0)) : CPI TCH(0, 1) = 0.0 : 
CPITCH(0, 2) = -1 * Math.Sin(RPitch(0, 0)) 
        CPITCH(1, 0) = 0.0 : CPITCH(1, 1) = 1.0 : C PITCH(1, 2) = 0.0 
        CPITCH(2, 0) = Math.Sin(RPitch(0, 0)) : CPI TCH(2, 1) = 0.0 : 
CPITCH(2, 2) = Math.Cos(RPitch(0, 0)) 
        CYAW(0, 0) = Math.Cos(RYaw(0, 0)) : CYAW(0,  1) = 
Math.Sin(RYaw(0, 0)) : CYAW(0, 2) = 0.0 
        CYAW(1, 0) = -1 * Math.Sin(RYaw(0, 0)) : CY AW(1, 1) = 
Math.Cos(RYaw(0, 0)) : CYAW(1, 2) = 0.0 
        CYAW(2, 0) = 0.0 : CYAW(2, 1) = 0.0 : CYAW( 2, 2) = 1.0 
        RP = MatLib.Multiply(CROLL, CPITCH) 
        MM = MatLib.Multiply(RP, CYAW) 
        MsgBox(YAWDEG, , "YAW") 
        MsgBox(SC, , "CALCULATE SCALE") 
        MsgBox(MatLib.PrintMat(MM), , "Combination Matrix" ) 
        MsgBox(PixelCOL & " x " & PixelROW, , "Col & Row" ) 
        MsgBox(DotInch, , "DotPerInch" ) 
        MsgBox(ScanPara, , "Scan Parameter" ) 
        MsgBox(NDist, , "Nature Distance" ) 
 
EndSub 
#EndRegion 
#Region "Transform Image" 
PrivateSub  ComboBox1_SelectedIndexChanged( ByVal  sender As 
System.Object, ByVal  e As System.EventArgs) Handles  
ComboBox1.SelectedIndexChanged 
Me.Cursor = Cursors.WaitCursor 
        Application.DoEvents() 
'Select Distortion 
Dim warp_op As WarpOperations = 
DirectCast (m_operations(ComboBox1.Text), WarpOperations) 
'Transform Image 
Dim bm_src As Bitmap = DirectCast (PicImage.Image.Clone(), Bitmap) 
Dim bm_dest AsNew Bitmap(PixelCOL, PixelROW) 
        TransformImage(bm_src, bm_dest, warp_op) 
'Display Result 
        PicImage.Image = bm_dest 
        bm_src.Dispose() 
Me.Cursor = Cursors.Default 
EndSub 
 
#EndRegion 
#Region "ScrollBars" 
PrivateSub  Form1_Resize( ByVal  sender AsObject , ByVal  e As 
System.EventArgs) HandlesMyBase .Resize 
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' If the PictureBox has an image, see if it needs 
' scrollbars and refresh the image.  
IfNot  (PicImage.Image IsNothing ) Then 
Me.DisplayScrollBars() 
Me.SetScrollBarValues() 
Me.Refresh() 
EndIf 
EndSub 
 
PublicSub  DisplayScrollBars() 
' If the image is wider than the PictureBox, show t he HScrollBar. 
        hScrollBar1.Dock = DockStyle.Bottom 
        vScrollBar1.Dock = DockStyle.Right 
If  PicImage.Width < PicImage.Image.Width Then 
            PicImage.Controls.Add(hScrollBar1) 
EndIf 
If  PicImage.Height < PicImage.Image.Height Then 
            PicImage.Controls.Add(vScrollBar1) 
EndIf 
EndSub 
PrivateSub  HandleScroll( ByVal  sender As [Object], ByVal  se As 
ScrollEventArgs) _ 
Handles  vScrollBar1.Scroll, hScrollBar1.Scroll 
' Create a graphics object and draw a portion  
' of the image in the PictureBox.  
Dim g As Graphics = PicImage.CreateGraphics() 
 
        g.DrawImage(PicImage.Image, New Rectangle(0, 0, PicImage.Right 
- vScrollBar1.Width, _ 
          PicImage.Bottom - hScrollBar1.Height), _ 
New Rectangle(hScrollBar1.Value, vScrollBar1.Value, Pi cImage.Right - 
vScrollBar1.Width, _ 
          PicImage.Bottom - hScrollBar1.Height), Gr aphicsUnit.Pixel) 
 
        PicImage.Update() 
EndSub 
PublicSub  SetScrollBarValues() 
' Set the Maximum, Minimum, LargeChange and SmallCh ange properties. 
Me.vScrollBar1.Minimum = 0 
Me.hScrollBar1.Minimum = 0 
 
' If the offset does not make the Maximum less than  zero, set its 
value. 
IfMe .PicImage.Image.Size.Width - PicImage.ClientSize.Wi dth > 0 Then 
Me.hScrollBar1.Maximum = Me.PicImage.Image.Size.Width - _ 
              PicImage.ClientSize.Width 
EndIf 
' If the VScrollBar is visible, adjust the Maximum of the  
' HSCrollBar to account for the width of the VScrol lBar. 
IfMe .vScrollBar1.Visible Then 
Me.hScrollBar1.Maximum += Me.vScrollBar1.Width 
EndIf 
Me.hScrollBar1.LargeChange = Me.hScrollBar1.Maximum / 10 
Me.hScrollBar1.SmallChange = Me.hScrollBar1.Maximum / 20 
' Adjust the Maximum value to make the raw Maximum value attainable by 
user interaction. 
Me.hScrollBar1.Maximum += Me.hScrollBar1.LargeChange 
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' If the offset does not make the Maximum less than  zero, set its 
value. 
IfMe .PicImage.Image.Size.Height - PicImage.ClientSize.H eight > 0 Then 
Me.vScrollBar1.Maximum = Me.PicImage.Image.Size.Height - _ 
              PicImage.ClientSize.Height 
EndIf 
' If the HScrollBar is visible, adjust the Maximum of the  
' VSCrollBar to account for the width of the HScrol lBar. 
IfMe .hScrollBar1.Visible Then 
Me.vScrollBar1.Maximum += Me.hScrollBar1.Height 
EndIf 
Me.vScrollBar1.LargeChange = Me.vScrollBar1.Maximum / 10 
Me.vScrollBar1.SmallChange = Me.vScrollBar1.Maximum / 20 
' Adjust the Maximum value to make the raw Maximum value attainable by 
user interaction. 
Me.vScrollBar1.Maximum += Me.vScrollBar1.LargeChange 
EndSub 
#EndRegion 
#Region "Subroutine" 
#Region "    SubTransform" 
' Transform the image. 
PrivateSub  TransformImage( ByVal  bm_src As Bitmap, ByVal  _ 
        bm_dest As Bitmap, ByVal  warp_op As WarpOperations) 
' Find image information. 
Dim xmid AsDouble  = bm_dest.Width / 2 
Dim ymid AsDouble  = bm_dest.Height / 2 
Dim rmax AsDouble  = bm_dest.Width * 0.75 
 
Dim ix_max AsInteger  = bm_src.Width - 2 
Dim iy_max AsInteger  = bm_src.Height - 2 
 
' Generate a result for each output pixel. 
Dim x0 AsDouble 
Dim y0 AsDouble 
For  y1 AsInteger  = 0 To bm_dest.Height - 1 
For  x1 AsInteger  = 0 To bm_dest.Width - 1 
' Map back to the source image. 
                MapPixel(warp_op, xmid, ymid, rmax,  x1, y1, x0, y0) 
 
' Interpolate to get the result pixel's value. 
' Find the next smaller integral position. 
Dim ix0 AsInteger  = CInt (Int(x0)) 
Dim iy0 AsInteger  = CInt (Int(y0)) 
 
' See if this is out of bounds. 
If  (ix0 < 0) Or (ix0 > ix_max) Or _ 
                   (iy0 < 0) Or (iy0 > iy_max) Then 
' The point is outside the image. Use white. 
                    bm_dest.SetPixel(x1, y1, Color. White) 
Else 
' The point lies within the image. 
' Calculate its value. 
Dim dx0 AsDouble  = x0 - ix0 
Dim dy0 AsDouble  = y0 - iy0 
Dim dx1 AsDouble  = 1 - dx0 
Dim dy1 AsDouble  = 1 - dy0 
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' Get the colors of the surrounding pixels. 
Dim color00 As Color = bm_src.GetPixel(ix0, _ 
                        iy0) 
Dim color01 As Color = bm_src.GetPixel(ix0, _ 
                        iy0 + 1) 
Dim color10 As Color = bm_src.GetPixel(ix0 _ 
                        + 1, iy0) 
Dim color11 As Color = bm_src.GetPixel(ix0 _ 
                        + 1, iy0 + 1) 
 
' Compute the weighted average. 
Dim r AsInteger  = CInt ( _ 
                        color00.R * dx1 * dy1 + col or01.R * dx1 _ 
                            * dy0 + _ 
                        color10.R * dx0 * dy1 + col or11.R * dx0 _ 
                            * dy0 _ 
                        ) 
Dim g AsInteger  = CInt ( _ 
                        color00.G * dx1 * dy1 + col or01.G * dx1 _ 
                            * dy0 + _ 
                        color10.G * dx0 * dy1 + col or11.G * dx0 _ 
                            * dy0 _ 
                        ) 
Dim b AsInteger  = CInt ( _ 
                        color00.B * dx1 * dy1 + col or01.B * dx1 _ 
                            * dy0 + _ 
                        color10.B * dx0 * dy1 + col or11.B * dx0 _ 
                            * dy0 _ 
                        ) 
                    bm_dest.SetPixel(x1, y1, _ 
                        Color.FromArgb(255, r, g, b )) 
EndIf 
Next  x1 
Next  y1 
EndSub 
#EndRegion 
#Region "    SubMap Pixel" 
' Map the output pixel (x1, y1) back to the input p ixel 
' (x0, y0). 
PrivateSub  MapPixel( ByVal  warp_op As WarpOperations, ByVal  _ 
        xmid AsDouble , ByVal  ymid AsDouble , ByVal  rmax As _ 
Double , ByVal  x1 AsInteger , ByVal  y1 AsInteger , ByRef  _ 
        x0 AsDouble , ByRef  y0 AsDouble ) 
Dim dx AsDouble 
Dim dy AsDouble 
Dim r1 AsDouble 
Dim r2 AsDouble 
Dim theta AsDouble 
Dim Rolla AsDouble 
Dim Pitcha AsDouble 
Dim H AsDouble  = 11968.50394 
Dim ymax AsDouble  = PixelROW 
'Dim dyG As Double 
'Dim dxG As Double 
'Dim kyG As Double 
'Dim kxG As Double 
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'Oblique 
 
Dim SD AsDouble  = 368039.1267 
 
'Process on 11/11/08, the input data 
'Pitcha = -0.070831279 : Rolla = 0 '0.060650192'TTC _0911 
'Pitcha = 0.063413629 : Rolla = 0 '-0.288779269'TTC _0913 
'Pitcha = -0.08683013 : Rolla = 0.0 ' - 0.334303274 'TTC_0914 
'Pitcha = 0.12260938 : Rolla = 0 '.268198928 ' TTC_ 0915  
'Pitcha = 0.217893449 : Rolla = 0 '-0.877191574 
        Pitcha = 0.623955208 : Rolla = 0 '-0.097738438 
'Pitcha = 0.146956723 : Rolla = 0 '0.026965337 
'Pitcha = 1.27409 : Rolla=-0.05236 
'Pitcha = 1.047198 : Rolla = -0.05236 
'Pitcha = 0.645772 : Rolla = 0.0 
'Pitcha = 0.366519 : Rolla = 0.069813 
'Pitcha = 0.244346 : Rolla = 0.034907 
'Pitcha = -0.244346 : Rolla = -0.401426 
'Pitcha = -0.314159 : Rolla = -0.314159 
'Pitcha = -0.366519 : Rolla = -0.244346 
'Pitcha = -0.20944 : Rolla = -0.174533 
'Pitcha = -0.10472 : Rolla = -0.087266 
'Pitcha = -0.05236 : Rolla = 0.017453 
'Pitcha = -0.15708 : Rolla = 0.017453 
'Pitcha = -0.226893 : Rolla = 0.0 
'Pitcha = 1.186824 : Rolla = 0.087266 
'Pitcha = 1.169371 : Rolla = 0.05236 
'Pitcha = 0.244346 : Rolla = -0.558505 
'Pitcha = 0.122173 : Rolla = -0.610865 
'Pitcha = 0.017453 : Rolla = -0.506145 
'Pitcha = 0.017453 : Rolla = -0.383972 
'Pitcha = 0.10472 : Rolla = 0.0 
'Pitcha = 0.279253 : Rolla = 0.174533 
'Pitcha = 0.122173 : Rolla = 0.226893 
'Pitcha = 0.331613 : Rolla = 0.366519 
'Pitcha = 0.820305 : Rolla = 0.15708 
'Pitcha = 0.959931 : Rolla = 0.139626 
'Pitcha = 0.383972 : Rolla = 0.10472 
'Pitcha = 0.471239 : Rolla = 0.069813 
'Pitcha = 0.349066 : Rolla = -0.017453 
'Pitcha = 0.418879 : Rolla = -0.034907 
Dim flenght AsDouble  = 1270 
'Dim kroll As Double 
'Dim kpitch As Double 
'Dim FY As Double 
'Dim tx As Double 
'Dim FX As Double 
'Dim ty As Double 
Dim k AsDouble 
'Dim xx2 As Double 
'Dim yy2 As Double 
SelectCase  warp_op 
Case WarpOperations.Pincushion 
                dx = x1 - xmid 
                dy = y1 - ymid 
                r1 = Sqrt((dx * dx + dy * dy) / 150 0) '1000 
If  r1 = 0 Then 
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                    x0 = xmid 
                    y0 = ymid 
Else 
                    r2 = (rmax / 2 * (1 / (1 - r1 /  rmax) - 1)) / 0.6 
'Scale Image into: 683 x 783 
                    x0 = (dx * r2 / r1 + xmid) 
                    y0 = (dy * r2 / r1 + ymid) 
EndIf 
'************************************************** ************* 
Case WarpOperations.Vertical 
                x0 = x1 * Cos(Pitcha) + y1 * Sin(Pi tcha) 
                y0 = x1 * Sin(Rolla) + y1 * Cos(Rol la) + Sin(Rolla) * 
Cos(Pitcha) 
 
'************************************************** ************* 
Case WarpOperations.Oblique 
                dx = x1 - xmid 'current pixel position (x) 
                dy = y1 - ymid 'current pixel position (y) 
 
'Dim Flenght As Double = 2360.189 '2438.4 
Dim LK AsDouble 
                LK = SD / System.Math.Sin(Pitcha) 
'MsgBox(LK, , "Lk") 
Dim KPP AsDouble 
                KPP = SD / System.Math.Tan(Pitcha) 
'MsgBox(KPP, , "KPP") 
Dim PPn AsDouble 
                PPn = SD * System.Math.Tan(Pitcha) 
'MsgBox(PPn, , "PPn") 
Dim Kn AsDouble 
                Kn = KPP + PPn 
'MsgBox(Kn, , "Kn") 
Dim VD AsDouble 
Dim Lambda AsDouble 
Dim KP AsDouble 
Dim BETA1 AsDouble 
Dim DELTAX AsDouble 
If  dy < 0 Then 
                    VD = PPn + Abs(dy) 
Else 
                    VD = PPn - Abs(dy) 
EndIf 
                Lambda = Atan(dx / VD) 
                KP = Kn * System.Math.Tan(Lambda) 
                BETA1 = Atan(KP / LK) 
                DELTAX = dy * System.Math.Tan(BETA1 ) 
'################# For Y coordinate placement ##### ################ 
Dim dyn AsDouble  = xmid + PPn 
Dim Ln AsDouble  = Sqrt(flenght * flenght + PPn * PPn) 
Dim m AsDouble  = Atan(PPn / flenght) 
Dim mprime AsDouble  = Atan(dy / flenght) 
Dim delm AsDouble  = m - mprime 
'Dim DELTAY As Double = VD * System.Math.Tan(Pitcha ) 
Dim dynew AsDouble  = VD * System.Math.Tan(Pitcha) * 
System.Math.Tan(delm) 
Dim Hprime AsDouble  = H / Sin(Pitcha) 
Dim Fprime AsDouble  = flenght / Sin(Pitcha) 
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Dim deltay AsDouble  = dy * Cos(Pitcha) 
'################################################## ################ 
'If dy >= 0 Then 
 
                x0 = x1 + DELTAX 
If  dy = 0 Then 
                    y0 = y1 
Else 
                    y0 = y1 * deltay / dy ' dyn - dynew + (dy ^ 2 * 
Cos(Pitcha) ^ 2 / (147388 * SD)) 
EndIf 
 
'Else 
'    x0 = (x1 + DELTAX) 
'    y0 = y1  'dyn - dynew + (dy * Cos(Pitcha) / (1 47388)) 
'End If 
 
'************************************************** ************* 
Case WarpOperations.Tilt 
                dx = x1 - xmid 
                dy = y1 - ymid 
                r1 = Sqrt(dx * dx + dy * dy) 
If  r1 = 0 Then 
                    x0 = xmid 
                    y0 = ymid 
Else 
'Determine the radius if the image is horizontal 
                    r2 = Sqrt(((dy / Cos(Pitcha)) ^  2) + ((dx / 
Cos(Rolla)) ^ 2)) 
 
                    k = r1 / r2 
                    theta = Atan(dy / dx) 'Determine the angle of the 
radius 
 
                    x0 = x1 + (k * Cos(theta)) + (k  * Sin(theta)) + (k 
* Cos(Pitcha)) 
                    y0 = y1 + (k * Cos(theta)) - (k  * Sin(theta)) + (k 
* Cos(Rolla)) 
EndIf 
'************************************************** ************* 
Case WarpOperations.Rotate 
 
 
                dx = (x1 - xmid) 
                dy = (y1 - ymid) 
                r1 = Sqrt(dx * dx + dy * dy) 
                theta = Atan(dy / dx) 
Dim rangle AsDouble 
                rangle = 1.570796327 
If  r1 = 0 Then 
                    x0 = xmid 
                    y0 = ymid 
Else 
                    x0 = x1 + (r1 * Cos(theta + ran gle))  'Rotated by 
Yaw Angle 
                    y0 = y1 + (r1 * Sin(theta + ran gle)) 'obtained from 
GPS 



 - 274 - 

EndIf 
 
'************************************************** ************* 
Case WarpOperations.Scale 
                dx = (x1 - xmid) 
                dy = (y1 - ymid) 
                r1 = Sqrt(dx * dx + dy * dy) 
If  x0 = 0 Then 
                    x0 = xmid 
                    y0 = ymid 
Else 
'ty = System.Math.Atan(dy / flenght) 
'FY = dy / Sin(ty) 
'tx = System.Math.Atan(dx / flenght) 
'FX = dx / Cos(tx) 
                    x0 = x1 * 1 
                    y0 = y1 * 0.6 
EndIf 
'************************************************** ************* 
Case WarpOperations.Scale1 
                dx = x1 - xmid 
                dy = y1 - ymid 
Dim LOP AsDouble 
Dim LOR AsDouble 
                LOP = 512 * System.Math.Tan(Pitcha)  'L TO O FOR PITCH 
                LOR = 640 * System.Math.Tan(Rolla) 'L TO O FOR ROLL 
Dim LKP AsDouble 
Dim LKR AsDouble 
                LKP = Sqrt((LOP * LOP) + (512 * 512 )) 'L TO K FOR PITCH 
                LKR = Sqrt((LOR * LOR) + (640 * 640 )) 'L TO K FOR ROLL 
Dim KNP AsDouble 
Dim KNR AsDouble 
                KNP = LKP * System.Math.Acos(Pitcha ) ' K TO N FOR PITCH 
                KNR = LKR * System.Math.Acos(Rolla)  ' K TO N FOR ROLL 
Dim ONP AsDouble 
Dim ONR AsDouble 
                ONP = KNP - 512 'O TO N FOR PITCH 
                ONR = KNR - 640 'O TO N FOR ROLL 
Dim DXNEWP AsDouble 
Dim DYNEWR AsDouble 
If  dy < 0 Then 
                    DXNEWP = KNP * (dx / (ONP - Abs (dy))) 
Else 
                    DXNEWP = KNP * (dx / (ONP + Abs (dy))) 
EndIf 
If  dx < 0 Then 
                    DYNEWR = KNR * (dy / (ONR - Abs (dx))) 
Else 
                    DYNEWR = KNR * (dy / (ONR + Abs (dx))) 
EndIf 
                x0 = DXNEWP 
                y0 = dy 'DYNEWR 
 
EndSelect 
EndSub 
#EndRegion 
#Region "    SubCalculate Bearing" 
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PublicFunction  BRG( ByVal  N1 AsDouble , ByVal  N2 AsDouble , ByVal  E1 
AsDouble , ByVal  E2 AsDouble ) 
Dim LAT AsDouble 
Dim DIP AsDouble 
Dim SUD AsDouble 
Dim BRG1 AsDouble 
        LAT = N2 - N1                   'Latitude 
        DIP = E2 - E1                   'Dipature 
        SUD = Math.Atan2(LAT, DIP)      'Angle 
If  (LAT > 0 And DIP > 0) Then 
            BRG1 = 90 - SUD 
ElseIf  (LAT < 0 And DIP > 0) Then 
            BRG1 = 90 + SUD 
ElseIf  (LAT < 0 And DIP < 0) Then 
            BRG1 = 270 - SUD 
Else 
            BRG1 = 270 + SUD 
EndIf 
Return  BRG1 
EndFunction 
#EndRegion 
#Region "    SubRadian" 
Function  DDMMSSTORAD(ByVal  HEAD AsDouble ) 
Dim DD AsInteger 
Dim MM AsInteger 
Dim SS AsInteger 
Dim DEG AsDouble 
Dim RAD AsDouble 
        DD = CInt (HEAD) 
        MM = CInt ((HEAD - DD) * 100) 
        SS = CInt ((((HEAD - DD) * 100) - MM) * 100) 
        DEG = (DD + (MM / 60) + (SS / 3600)) 
        RAD = DEG / 180.0 * System.Math.PI 
Return  RAD 
EndFunction 
#EndRegion 
#Region "    SubDegree" 
'To convert radians to degree, min, sec  
Function  RADTODEG(ByVal  X AsDouble ) 
Dim DEG AsDouble 
        DEG = X * 180.0 / System.Math.PI 
Return  DEG 
EndFunction 
#EndRegion 
#Region "        Sub SaveAS" 
PrivateSub  BtnSaveAS_Click( ByVal  sender As System.Object, ByVal  e As 
System.EventArgs) Handles  BtnSaveAS.Click 
' Displays a SaveFileDialog so the user can save th e Image 
' assigned to Button SaveAS. 
Dim dlgSave AsNew SaveFileDialog 
        dlgSave.Title = "SaveAS" 
        dlgSave.Filter = "JPeg Image|*.jpg|Bitmap Image|*.bmp|Gif 
Image|*.gif|Tiff Image|*.tif" 
        dlgSave.ShowDialog() 
' If the file name is not an empty string open it f or saving. 
If  dlgSave.FileName <> "" Then 
' Saves the Image via a FileStream created by the O penFile method. 
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Dim fs As System.IO.FileStream = CType _ 
               (dlgSave.OpenFile(), System.IO.FileS tream) 
' Saves the Image in the appropriate ImageFormat ba sed upon the 
' file type selected in the dialog box. 
' NOTE that the FilterIndex property is one-based. 
Dim bm AsNew Bitmap(PicImage.Image.Width, PicImage.Image.Height ) 
Dim gr As Graphics = Graphics.FromImage(bm) 
            gr.DrawImage(PicImage.Image, 0, 0, bm.W idth, bm.Height) 
 
SelectCase  dlgSave.FilterIndex 
Case 1 
                    bm.Save(fs, 
System.Drawing.Imaging.ImageFormat.Jpeg) 
 
Case 2 
                    bm.Save(fs, _ 
                       System.Drawing.Imaging.Image Format.Bmp) 
 
Case 3 
                    bm.Save(fs, _ 
                       System.Drawing.Imaging.Image Format.Gif) 
Case 4 
                    bm.Save(fs, _ 
                       System.Drawing.Imaging.Image Format.Tiff) 
EndSelect 
 
            fs.Close() 
EndIf 
EndSub 
#EndRegion 
#EndRegion 
EndClass 

 

 

 


