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Abstract

In this thesis the dynamic properties of unknotted ring polymers at high densities

is investigated. We hypothesise an unusual type of glass transition which is purely

attributed to the topological constraints between the penetrating rings.

A mean-field model is developed to describe the strongly constrained ring

polymers as ideal lattice trees. Equilibrium properties can be derived within the

framework of statistical thermodynamics using an argument based on structural

recurrence. Here each ring can be seen as a linear object—as a loop strand with

branching protrusions.

The ring polymers were simplified as loop strands without any branching.

We focused on the constraints emerging from the circular topology, and the polymer

dynamics was simulated using a Monte Carlo technique. The degree of inter-ring

penetrations essentially controls the slowing of dynamics and represents a universal

parameter for the glass transition. The penetrating rings form a percolating network

involving reversible quasi-topological entanglements. As such, the stress relaxation

of each ring is prolonged by the coupled penetrations which have limited pathways

to release constraints from one another.

The simulation data suggest the existence of a glassy material exclusively

formed by the topological constraints associated with the circular structure. In

order to test the picture of topological glass, the fluorescence-labelled circular DNA

was used to observe its self-diffusion in the entangled state. The experimental

method has demonstrated its potential for the future investigation of the dynamics

of entangled ring polymers despite the fact that it failed to provide evidence of the

glassy state in our experiment.
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Chapter 1

Introduction

Amorphous solids are found all around us. These materials lack the long-range

order characteristic of crystalline solids and exhibit a broad range of diverse physical

properties; an amorphous solid can be as soft as a polymer gel or it can be as rigid

as obsidian. Among the amorphous solids, glass is the oldest one utilised by human

and of the widest applications in our daily lives. It is usually formed by cooling a

viscous liquid rapidly, like the lava in the case of obsidian. The process of viscous

liquids becoming rigid, brittle disordered solids is called the glass transition.

While a great deal of work continues to be published on the glass transition

in various physical systems, including colloids [Dyre, 2006; Binder and Kob, 2011;

Berthier and Biroli, 2011] and polymers [Turner, 1978; Schweizer, 1989a; Angell,

1995], a complete understanding of this transition remains elusive. The glass transi-

tion has several characteristic properties including a dramatic (usually exponential)

slowing of dynamics for temperatures above a glass transition temperature Tg (which

is itself often not well defined) combined with the lack of any crystalline order. Be-

yond these general features the glass transition appears to lack universality—its

properties vary according to the microscopic details of the particular system.

The fundamental mechanism involved in the glass transition is not well un-

derstood albeit the long history of manufacturing glass since the ancient Egypt,

but it is interpreted as a direct result of the frozen molecular motion. Among the

glass formers, polymers are of particular interest because of their wide applications.

The frozen molecular motion below Tg in polymers is largely contributed by the

topological constraints due to their repetitive structures distinct from that of the

simple, low molecular weight glass formers. Since there are multiple ways to mod-

ify the structure of a polymer to change its Tg, being inserting stiff monomers or

adding pendant groups, we are thus inspired to hypothesise an unusual form of glass
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transition only can be found in polymers of the circular topology.

In the present thesis we study high molecular weight ring polymers at high

densities. We are interested in melt of the ring polymers or their concentrated so-

lutions in good solvents where the topological constraints have strong effects on

both their static and dynamic properties. We assume that the ring polymers are

synthesised as trivial rings and remain unknotted, in the strict topological sense,

throughout the polymerisation process. There is now a significant body of liter-

ature on ring polymers, including on their static properties [Cates and Deutsch,

1986; Müller et al., 1996; Brown and Szamel, 1998; Suzuki et al., 2008; Vettorel

et al., 2009] with continuing contemporary interest in their conformations in the

entangled state [Suzuki et al., 2009; Halverson et al., 2011; Rosa et al., 2011]. Ex-

perimental progress has been made on the synthesis of ring polymers with few knots

and concatenations but experiments are still difficult, due to contamination by lin-

ear chains, polydispersity and the inherent limitations of rheological measurements.

In particular it is challenging to measure the rheology associated with the extreme

(long lived) tail of stress relaxation, and the rheological properties are known to

be sensitive to contamination from linear polymers [Roovers, 1988; Robertson and

Smith, 2007; Kapnistos et al., 2008].

Despite years of effort investigating ring polymers, we believe there is at

least one interesting aspect that has been overlooked by these previous studies. It

is usually assumed that the ring polymers collapse and segregate when they are

brought into close contact. However, some recent computer simulations [Halverson

et al., 2011; Rosa et al., 2011] showed that the structure of these rings were not as

trivial as many had expected; the entangled ring polymers segregated in the sense

of scaling law, but part of each ring polymers also protruded and entangled with

other polymers. We speculate the unknotted and unconcatenated rings could also

penetrate each other without violating the topological constraints. This can be

achieved by extending an arm of loop from one ring polymer and threading this arm

through the middle of another ring polymer.

The penetration surely would influence the dynamics of ring polymers be-

cause their motion would be farther restricted. With a high frequency of penetration

between the ring polymers, the molecular motion can be strongly hindered by the

non-crossing constraint. As a result, the stress relaxation of these rings can be sig-

nificantly slower and make it resemble a glassy material. Since the slowing of stress

relaxation is exclusively attributed to the unique topology of ring polymers, it is

called the topological glass to be distinguished from the common glass. As yet there

is no evidence for the kind of transition that we predict in this thesis but we believe
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that this does not preclude its existence due to the experimental limitations noted

above.

In this thesis the detailed investigation of entangled ring polymers is pre-

sented. Our research has been conducted through various approaches utilising the-

oretical models, a Monte Carlo simulation and an experiment using fluorescence

microscopy. The content of the thesis is organised as follows. In Chapter 2 we

will briefly review the preceding studies of ring polymers. It will be mainly focused

on the properties of ring polymers in melt or in gels. Chapter 3 is dedicated to a

mean-field model based on the concept of lattice trees. This model will be analysed

within the framework of statistical thermodynamics with the argument of structural

recurrence in the lattice tree. The analysis offers insights of the equilibrium prop-

erties of entangled ring polymers and the clues of calculating the dynamics of such

polymers. In Chapter 4 we will exploit the results shown in Chapter 3 to construct

a coarse-grained model, which was employed in the Monte Carlo simulation. The

simulation data indeed demonstrate that the topological constraints contributed by

the penetration of rings significantly extend the process of stress relaxation. We

consider that the simulation data reinforce our picture of how these polymers might

form the topological glass. In Chapter 5 we present a discussion of our fluorescence

microscopy experiment performed on concentrated DNA solutions. A more detailed

discussion of the results of Chapter 3–5 is given in Chapter 6. The implication of

these results regarding the existence of the topological glass is examined as well. At

the end, the conclusions of this study will be drawn in Chapter 7.
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Chapter 2

From Entangled Ring Polymers

to Lattice Trees

Polymers are constituted of single or multiple linear chains, which are composed

of repeating units joined via covalent bonds. For example, star polymers are made

of several linear chains attached to a multifunctional group at the centre, forming

a starfish-like structure. The ends of these linear chains play an important role in

many properties of polymers, such as the reptation mechanism in melt and gels

[de Gennes, 1971]. However, ring polymers represent a peculiar class among poly-

mers since they have no chain end [McLeish, 2002a], thus one may expect that many

properties of ring polymers must be different from those of other classes. Although

ring polymers are not as common as linear polymers, effective protocols to syn-

thesise ring polymers have been found since the 1980s. Besides synthesised ones,

there are naturally occurring ring polymers like plasmid DNA, the circular extra-

chromosomal DNA present in many bacteria. Despite extensive studies on plasmids

due to their potential applications in genetic engineering, there is continuing inter-

est in examining the physical properties of plasmids, for instance, the branching

structure and elasticity of supercoiled DNA [Marko and Siggia, 1995b; Marko, 2007;

Forth et al., 2008; Clauvelin et al., 2009]. Through these studies one may gain a

more thorough understanding of these materials and help future innovations and

technological progress in diverse fields.
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2.1 Static Conformations of Ring Polymers

2.1.1 Topological Constraints of Entangled Ring Polymers

Ring polymers have puzzled many scientists and engineers for years. For a single

ring polymer in a good solvent, i.e. the dilute limit, one may imagine its static and

dynamic properties are quite easy to understand. Unfortunately the situation is

not as simple as it appears. For example, Zimm and Stockmayer [1949] and Klein

[1986] had analysed how such a ring polymer would behave in a solvent. In certain

situations, such as with Θ conditions so that the polymer had no excluded volume in-

teraction, the calculation was straightforward. However, the unique topology of ring

polymers introduces constraints that are very distinct from other polymer classes,

particularly when one acknowledges the probability of forming knots or concatena-

tions during polymerisation. In fact, de Gennes [1979] had imagined a fascinating

kind of polymer gels based on the topological constraints. Without bonding to form

crosslinks, what he called an Olympic gel was formed by concatenated ring polymers,

which would look like medieval chain mail armour.

If the rings are unknotted and unconcatenated, they impose the topological

constraints on themselves and on each other when they come into close contact. Des

Cloizeaux argued that, for long flexible rings in solutions, the topological constraints

and the excluded volume interactions would have similar effects [des Cloizeaux,

1981]. He pointed out that the knotted configurations had to be excluded in order

to maintain the ring as a circle. The calculation was proceeded by using the Gaussian

invariant to find the linking number of two rings. This approach could not always

specify the configurations between these two rings, an obtained linking number

might refer to either the two rings were linked or not. Under such circumstances,

carrying out the calculation required further approximate assumptions.

The difficulty of analysing ring polymers is more visible if one compares

the topological constraints of ring polymers with that of linear polymers. For linear

polymers the non-crossing constraints have great effects on their dynamic properties

but not on the static properties, since all configurations are still accessible. Many

important breakthroughs have been done by developing mean-field models like the

tube model to depict the dynamics of entangled linear polymers. In the tube model,

for example, the non-crossing constraints posed on a polymer are viewed as if there

is a tube surrounding it [de Gennes, 1979; Doi and Edwards, 1986].

However, the topological constraints also strongly affect the static proper-

ties of entangled ring polymers. In order to calculate the equilibrium properties,

one needs to consider all the possible configurations and exclude those violating
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the topological constraints, for instance, the concatenated or knotted rings. To

rigorously express such a system in a mathematical model is extremely difficult.

As mentioned above, the Gaussian invariant can be used to distinguish whether

polymers cross each other, it is not enough to specify the topological class of ring

polymers in contact [Doi and Edwards, 1986, pp. 156–159]. For instance, a pair of

separated ring polymers is not distinguishable from certain ways in which they are

knotted.

Arguably the complicated mathematics related to the topological constraints

is one of the reasons why the theories describing ring polymers are not as well

established as for other polymer architectures. Many have recognised these issues

and tried to build an analogue of the tube model for entangled ring polymers.

Although a ring polymer has no end to explore new paths and to disengage itself,

the entanglements formed by neighbouring chains act as a barrier to confine its

motion in a manner that is similar to that in entangled linear polymers. Therefore,

a great deal of work since the 1980s has been based on the concept of lattice animals1,

which is covered below.

2.1.2 Statistical Sizes of Entangled Ring Polymers

Because of the great success of the tube model, many researchers attempted to

describe entangled ring polymers in a similar way. To avoid the complication of

certain configurations, which will be covered later in this thesis, a well defined system

for the current discussion is a ring pulled in between an array of fixed obstacles.

This corresponds to the case of a ring in gels without concatenation, and it has

been considered as a preliminary model of entangled ring polymers. Since the ring

is unable to cross the obstacles, many have conjectured that the ring must adopt the

conformation of a lattice tree to accommodate itself within the array of obstacles.

In their seminal paper, Cates and Deutsch [1986] analysed the statistics of

ring polymers in gels and melt and their dynamic properties with the topological

constraints and the excluded volume interactions by following the concept of lattice

trees. The radius of a ring polymer in gels was thought to follow the same scaling

law as a branched polymer with excluded volume interactions. This led to the result

that the radius followed a Gaussian distribution [Parisi and Sourlas, 1981]. They

further argued that ring polymers in melt were unlikely to follow the same Gaussian

distribution as a ring would be in gels. They applied a Flory-like scaling analysis

1In this thesis we will use the term lattice tree rather than lattice animal. The main difference
between them is that closed loops are allowed in a lattice animal. This of course does not make
sense at all for ring polymers since any arbitrary linear section of the lattice tree or animal actually
represents a duplex structure of the constrained ring polymer.
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to this system which yielded the prediction as follows. The radius of rings R scales

with the degree of polymerisation N as R ∝ N2/(δ+2), where δ is the dimensionality

of space, or simply R ∝ N2/5 in three dimensions.

This result has been supported by some later computer simulations. For

example, Müller et al. [1996] used the bond fluctuation model, a dynamic Monte

Carlo method, to simulate such systems. They obtained an exponent ν ≈ 0.39±0.03

for the average ring radius R ∝ Nν , and the result is in agreement with Cates and

Deutsch’s prediction. Brown and Szamel [1998] also obtained a similar result by

employing the bond fluctuation model, and the result gives ν = 0.42 for the radius

of gyration Rg ∝ Nν . In a later paper, Brown et al. [2001] again obtained a similar

result ν = 0.415.

However, these computer simulations suffered from unavoidable limitations

on polymer contour length L and the total number of polymer chains Nc due to

the limitation of computation hardware at the time. Further hindering simulations

was the fact that the entanglement length le (the average contour length of chain

between effective entanglements) can be ∼ 102 monomeric units [Kremer and Grest,

1990; Vettorel et al., 2009]. Universal results of the scaling law will only be found

for long enough polymers, i.e. those with a large number of entanglements. Com-

puter simulations that explicitly include monomeric units are therefore effectively

handicapped by two orders of magnitude in system size. These simulations did

not properly explore the entangled regime, and the results were likely to be in the

crossover region.

Indeed several more recent simulations showed different scaling laws from

the prediction ν = 2/5. These results suggest that the ν = 2/5 behaviour is only a

crossover to the collapsed rings (ν = 1/3). For instance, Suzuki et al. [2008] found

that the exponent ν decreased with increasing N . The authors concluded that ν

was in the range of 1/3 ≤ ν � 0.365 when the molecular weight of a ring polymer

was high enough. Vettorel et al. [2009] carried out a Monte Carlo simulation on

a simple cubic lattice. They found the sufficiently long rings behaved as compact

objects and their radius scaled as N1/3 for large chain length N . Even in a following

paper of their original simulation, Müller et al. [2000] discovered the same result.

They tuned the persistence length to increase the ring overlap required for the mean-

field picture to hold. As a result, the new simulation then demonstrated that the

exponent decreases down to ν . 1/3 with increasing persistence length.

Although there have been many theoretical and numerical analyses of entan-

gled ring polymers, experimental evidence of the static properties is scarce. There

were a few reported experiments which probed the radius of gyration of ring poly-
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mers in melt by scattering experiments. Arrighi et al. [2004] investigated ν for ring

polymers in melt using neutron scattering, and they found ν = 0.42. The molecular

weight of the samples used in this experiment was less than 15,000. Takano [2007]

also performed a neutron scattering experiment and obtained ν = 0.34. Notably

the author specified that the percentage of linear contamination of the sample was

4% or less.

2.1.3 Penetrations between Ring Polymers

As explained above, few formal theoretical results exist for ring polymers due to the

difficulty in handling the essential non-locality of the topological constraints. The

problem would be much more tractable were chains able to pass through one another

like so-called phantom chains. Instead the assumption that they cannot do so at

once makes the problem difficult but also results in their unusual physics of interest

to us. Most of the existing theoretical studies adopt the approach of representing a

constrained ring polymer as a lattice tree. To make the model consistent with the

original system, the excluded volume interactions are included such that the trees

become self-avoiding. This prevents the rings from penetrating each other.

Currently the consensus regarding the scaling of the radius of entangled ring

polymers seems to favour R ∝ N1/3 for the high N limit, and the scaling sug-

gests that the ring polymers tend to collapse and segregate at a high density. The

segregated ring is seen by many as a self-consistent interpretation of the dynamic

behaviour measured in the experiments. These measurements showed that the ring

polymers were less entangled and exhibited faster relaxation than their linear coun-

terparts. Nevertheless, some recent numerical studies have raised the question upon

the picture of the fully segregated ring polymers.

Suzuki et al. [2009] employed Monte Carlo simulations using the bond fluc-

tuation model and calculated the segment density ρ(r) of each ring polymer in melt,

where r is the radial distance from the centre of mass of a ring polymer. The seg-

ment density decreased with the increasing distance r. For an ideal chain ρ(r) should

have decreased continuously with increasing N . Contrary to that, they found ρ(r)

was bound to a value with sufficiently large N . They concluded that, although the

ring polymer would tend to squeeze itself rather to penetrate into the neighbouring

molecules, it was not completely segregated from the surroundings.

Furthermore, Bohn and Heermann [2010] investigated the interactions be-

tween two ring polymers, and they found that the rings were strongly elongated

and aligned perpendicular at short separations. Halverson et al. [2011] conducted

molecular dynamics simulations to investigate the structural properties of uncon-

8



catenated ring polymers in melt. Despite they reproduced the result of ν = 2/5

crossing over to ν = 1/3 for the long chain limit, the further analysis showed these

rings were very irregularly and self-similar shaped objects. As a result, they sug-

gested the rings in the melt, although reasonably segregated in the scaling sense,

had significant protrusions into one another.

Intuitively these protrusions or penetrations should result in a different dy-

namic behaviour from that of the self-avoiding lattice trees, especially when their

number per ring polymer exceeds a threshold value. One may appreciate why this is

the case by taking a box of entangled rubber bands as a conceptual example. When

the density of rubber bands is high enough and they have been stirred for a long

time, there are a lot of rubber bands penetrating surrounding ones and sometimes

themselves, simultaneously. If one slowly extracts a rubber band from the box, a

number of the rubber bands will move together, as if the whole is a single solid body.

This sort of behaviour cannot be modelled within the framework of the self-avoiding

lattice tree.

2.2 Dynamics of Entangled Ring Polymers

2.2.1 Theoretical Models of the Dynamics

In Section 2.1 we reviewed the preceding investigations of the static properties of

entangled ring polymers. We surmised that the entangled ring polymers might not

simply collapse and segregate. As a result, the dynamics of these entangled ring

polymers should reflect this due to the topological constraints affecting both the

static and dynamic properties. In any case, however, derived results can be very

different from one another, depending on which model is applied to studying this

system.

Without any surprise, there are even fewer theoretical studies of the dynamic

behaviour of entangled ring polymers in the literature. We already explained in

Section 2.1 that a first-principle theory for the entangled ring polymers is very

difficult. It is usually assumed that the microscopic process of relaxation in entangled

ring polymers is in the same manner as that in entangled linear polymers. Then

the calculation is performed using simple models like the lattice tree. For example,

a ring polymer in a gel can be modelled as a self-avoiding lattice tree.

The diffusion constant of the centre of mass of such a ring polymer can be

easily estimated if we adapt de Gennes’ picture of kink gas, i.e. the non-interacting

length defects, to the ring polymer [de Gennes, 1971]. The self-diffusion of the whole

ring polymer essentially is proceeded by the transport of length defects along the
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Length Defect

Figure 2.1: A ring polymer confined between fixed obstacles (closed circles). The
translational displacement of the whole ring is proceeded by the diffusion of length
defects. Accumulating the random migration of length defects all around the con-
tour, a whole arm of loop can move around the obstacles, as indicated by the bold
arrow and the dashed line.

chain contour [Cates and Deutsch, 1986; Rubinstein, 1986]. These length defects are

supposed to diffuse in the same way as those on a linear chain. The time required

for a length defect to diffuse along the contour for a distance equivalent to the radius

of the ring R can be estimated according to the scaling of R mentioned in Section

2.1. The number of length defects scales with N since there is no end to relax

these length defects. Combining these results, it is straightforward to obtain the

translational diffusion constant of the ring polymer. Both groups of authors derived

D ∝ N−2 and the relaxation time τ ∝ N3.

However, Obukhov et al. [1994] argued that, also considering a ring polymer

in a gel, the diffusion of length defects along the polymer contour differed from that

on a linear chain. The ring polymer was also modelled as a lattice tree, formed by a

trunk and branches. There should be two different processes involved. The first step

is the migration of length defects within the branches, and the second one involving

the diffusion of length defects along the trunk. They suggested that these previous

work had overlooked some modes of motion available to a ring polymer thus the rate

of evolution of polymer configuration was underestimated. They obtained the same

result of diffusion constant D ∝ N−2 but a different scaling of the relaxation time,

τ ∝ N5/2. Taking a different approach, Iyer et al. [2006] adopted a dynamic model

inspired by the pom-pom model of branched polymers and also obtained results

which agreed with those of Obukhov et al. [1994].
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2.2.2 Viscoelasticity and Rheological Measurements

Experimentally a common strategy to study the dynamics of non-Newtonian fluids,

such as concentrated polymer solutions, is to perform rheometry. By measuring

responses of bulk material against a small deformation, one is able to extract infor-

mation of the dynamics of the material. In the case of polymers, particularly when

they are entangled, the topological constraints contribute to the viscoelasticity. The

viscoelastic properties, such as the zero-shear viscosity and the relaxation modulus,

are widely used to characterise polymers and to probe their microscopic structure at

a certain level of length scale and above. Meanwhile, rheometry is also very useful

to identify characteristic time scales of relaxation in these non-Newtonian fluids.

Roovers had measured the rheological response of synthesised ring polymers

of polystyrene and polybutadiene [Roovers, 1985, 1988]. It was observed that the

melt viscosity of the ring polymer tested was about 10 times smaller than that

of the linear polymers with the same molecular weight. McKeena et al. [1989]

used the measurement of recoverable compliance to address the question of the

fraction quality in the ring polymer prepared by several groups [McKenna et al.,

1987; Roovers, 1985]. Orrah et al. [1988] measured the low-shear bulk viscosity of

cyclic and linear poly(dimethylsiloxane) (PDMS). The critical molecular weight for

entanglement (Mc) of these samples was estimated. They found that both cyclic

and linear PDMS had the same Mc and the same scaling of the viscosity η ∝M3.4,

where M is the molecular weight.

Unfortunately these data are not enough to be compared with the theoretical

analyses in a systematic way. These experiments did not necessarily explore the same

regime as the chemical structure and concentration of the samples varied from one

to another. The results are not always consistent with each other either, thus it is

difficult to conclude any universal property from them. For entangled polymers, the

data of rheological measurements are only applicable to detecting structures which

have a length scale above the entanglement length. It is questionable whether or

not these data genuinely represent the microscopic structure of the entangled ring

polymers. There could be several factors affecting the outcome of the rheological

measurements, such as polydispersity, linear contaminants and so on.

Notably the question of within which range of concentrations (or molecular

weights) the lattice tree picture is valid will be the key of using the experimental

data. One expect that the model is valid when each ring polymer is sufficiently

entangled. It is obvious that the concentration must exceed the overlap concentra-

tion C?, the concentration at which the coil volume of a polymer starts to overlap

with that of the neighbouring polymers. However, beyond C? it is unclear at which
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concentration the picture of lattice trees starts to be a good representation of the

entangled ring polymers. Moreover, the theoretical analyses usually did not offer

accessible predictions to rheological measurements, like the plateau modulus or the

complex modulus. The lack of theoretical predictions on these quantities makes the

comparison between models and experimental data very difficult.

2.2.3 The Problem of Contamination in Ring Polymers

One of the factors which potentially affect the experiment is the issue of polydis-

persity. More specifically, it is not just of ring polymers in different sizes but also

of the contamination of linear polymers among the rings. There is evidence which

shows that contamination of linear chains, even in trace amounts, can greatly af-

fect the viscoelasticity of ring polymers. This is not surprising at all since it has

been proved that rheological measurements are particularly sensitive to changes in

molecular topology on the scale of entanglement length and above [McLeish, 2002b].

Roovers [1988] concluded that rings contaminated with 20–25% linear polymers had

the same melt viscosity as linear polymers, although the plateau modulus was only

about half of that of linear polymers. Using the method of liquid chromatography at

the critical condition, Kapnistos et al. [2008] obtained properly purified ring poly-

mers and measured the relaxation moduli. They also used purposely contaminated

samples to show that even 0.1% linear contaminants was sufficient to change the

measured relaxation modulus. By using their data as basis of calibration, they con-

cluded that many previously reported data had possibly been affected by a trace of

linear chains.

Other than synthesised ring polymers, circular DNA also has been used to

study properties of entangled ring polymers and, in particular, the differences of

dynamics between blends of ring and linear polymers [Robertson and Smith, 2007].

In their measurements with 45 kilo base pairs (kbp) DNA at 1 mg/mL, the circles

diffused about 100 times slower when surrounded by linear molecules than when

surrounded by circles. Linear DNA diffused about 10 times slower when surrounded

by its own kind than the circular DNA surrounded by circles. More importantly, the

diffusion constant of linear DNA surrounded by circular ones is only about 80% of

the circular DNA surrounded by its own kind. This experiment demonstrated that

the diffusion of DNA strongly depended on topology of both the marked molecules

and the surrounding molecules.

From these researchers’ efforts we may summarise that the difficulties of

studying ring polymers arise from their unique closed structure and the challenge

of purification. The non-local topological constraints are difficult to handle mathe-
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matically. In some experiments like rheological measurements, trace contaminants

in ring polymers can affect the obtained results drastically. Such contaminants

like unclosed linear chains or knotted ring polymers are common products of most

polymerisation processes. Without an effective purification method, the results of

experiments will be difficult to interpret, as Kapnistos et al. [2008] concluded.

2.3 Conjectures on Topological Glass

2.3.1 Polymer Glass and Glass Transition

It has been emphasised in the last two sections that the topological constraints

of ring polymers significantly affect both their static and dynamic properties in

melt. We also introduced the idea of penetrating rings which could cause different

behaviour of the rings in such melt. This picture leads to the main topic of this

thesis, the topological constraints affect the molecular motion and make the ring

polymers resemble a glassy material.

The glass transition of polymers is of great interest in industry. Many com-

mercial products of polymers are actually used in the glassy state, for example,

thermoplastics such as polystyrene and poly(methyl methacrylate). Despite its

great importance in a lot of daily applications, a detailed theoretical description

of the glass transition in polymers is lacking. Generally speaking, the topological

constraints of entangled polymers make them good glass formers since the molecular

motion can be greatly prohibited, but the mathematics of describing the transition

process is inevitably complicated. Currently the most successful theory for quan-

titative calculation of the dynamics of glass-forming is the mode-coupling theory

[Binder and Kob, 2011]. However, the classic mode-coupling theory is only useful

for simple or low molecular weight liquids, such as silicates or propylene carbonate.

Nonetheless, some researchers have tried building an extended mode-coupling theory

for the polymer glass transition [Schweizer, 1989a,b; Chong and Fuchs, 2002].

There are many routes to form glass, but the normal mode of glass formation

is cooling of a viscous liquid [Angell, 1995]. It has been observed that the viscosity

(η) of glass formers strongly increases when the temperature is decreased within

a certain range. This range of temperature depends on the chemical compositions

of the liquid, therefore a temperature called the glass transition temperature Tg is

usually defined by means of η(Tg) = 1012 Pa·s to characterise the point where the

liquid becomes glass [Binder and Kob, 2011]. The detailed processes involved in the

glass transition are not yet fully understood, as there are many liquids with different

properties which are found to be glass formers. For example, silica and polystyrene
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have absolutely different molecular structures but they all can form glass, even

though silica has a much higher Tg (fused silica ≈1200◦C) than polystyrene (95◦C).

Nevertheless, it is thought that the processes of glass transition are related to

the hindrance of molecular motion. The molecules in a glass former are either forced

to move in a cooperative way [Adam and Gibbs, 1965] or only have very limited

free volume to move (the so-called cage effect) [Cohen and Turnbull, 1959]. In any

case, the relaxation time of these molecules becomes very long, which is reflected

in the strongly increased viscosity near Tg. For polymer melt it is natural to form

glass without difficulties. First of all it is difficult for entangled polymers to align

in crystalline orders, although sometimes a bulk of polymer is partially disordered

and crystalline simultaneously. Secondly the entanglements between polymer chains

become effective barriers against the relaxation of polymer chains. This of course

leads to the well-known results given by the reptation and the tube model. How-

ever, making the entangled polymers become glass will require further constraints

to suppress the relaxation modes, such as the reptation and the contour length fluc-

tuation. A full microscopic theory to explain the polymer glass transition is beyond

the scope of this thesis. The special topological constraints that only can be found

in ring polymers, on the other hand, is what motivates this research.

2.3.2 Topological Glass

The topological constraints as well as the non-crossing constraints of polymer chains

play an important role in the glass transition of polymers. It is known that the

introduction of relatively stiff chemical groups (such as benzene rings) or pendant

groups can interfere the motion of polymer chains and hence increase Tg [Cowie and

Arrighi, 2008]. In this thesis we consider a hypothetical type of polymer glass which

is caused by the unique topology of ring polymers. As we have already illustrated

in the conceptual example of rubber bands, the penetration between rings may

greatly change the dynamics of entangled ring polymers. The relaxation of each

ring polymer now is not just restricted by the surrounding polymers, the temporary

blockage of the penetrating rings will further restrict the available relaxation modes.

If the number of penetrations per ring polymer exceeds a certain level, which

is likely related to the concentration of the ring polymers, a large number of the

ring polymers can form a giant cluster via the penetrations. When the system

reaches such a state, the relation of penetrations between rings can be treated as a

problem of percolation. For these rings in order to escape from the trapped state,

the penetrations can only be removed through a limited set of routes. As a result,

the relaxation time of each ring polymer will be extremely long, and, once it is much
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longer than the time scale in experiments, the ring polymers can be seen as in a

glassy state.

To our knowledge so far, there is no research dedicated to this kind of glass

formers. For one thing a theoretical analysis for entangled ring polymers is a difficult

task, for the other to produce highly purified ring polymer samples is a demanding

job. The only related research we have found in the literature is possibly the glass

transition of DNA [Norberg and Nilson, 1996; Sokolov et al., 1999; Grunina et al.,

2006]. This is of great interest in biology since the glassy form of biopolymers is

used to preserve biological functions in some species when facing harsh environments

[Angell, 1995]. Disappointingly, though, we do not find any specific study of glass

transition in circular DNA.

In this thesis we are going to demonstrate our study of the dynamics of

entangled ring polymers. In spite of our interest in the glass transition of ring

polymers, it is not our intention to study this system near its Tg. On the contrary,

it is the state where these rings are still able to penetrate and disengage, namely

the equilibrium (T � Tg), that attracts our attention. We expect that, even at a

temperature far above Tg, such a system can show significantly slower relaxation

time simply due to the topological constraints. Furthermore, even the system is far

from the glass transition, it exhibits some similar behaviours as those glass formers

near their Tg.
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Chapter 3

Statistical Properties of

Constrained Lattice Trees

In this chapter we will proceed to discuss the mean-field description for entangled

ring polymers. In such environments the ring polymers suffer from the topological

constraints from themselves and other neighbouring ones, thus we postulate that

they are forced to adopt conformations resembling lattice trees [Cates and Deutsch,

1986; McLeish, 2002a]. We will explore this concept within the framework of statis-

tical thermodynamics and incorporate the idea of penetrating rings into the model

of lattice trees.

3.1 Historical Background

As we have mentioned in Chapter 2, the conformation of an unknotted ring polymer

in an array of fixed obstacles is thought to resemble lattice trees. This is reasonable

since the conformation is restricted due to the non-crossing constraints posed by the

obstacles. Likewise, many have conjectured that the conformation of entangled ring

polymers, e.g. in melt, should show a similar structure. Also there is numerical and

experimental evidence indicating that the scaling exponent of the radius of entangled

ring polymers falls between a Gaussian chain (ν = 1/2) and a collapsed one (ν =

1/3). These results demonstrate similar exponents to those of branched polymers,

and it seems sensible to approximate the conformation of entangled ring polymers

as lattice trees. However, there is to date no validation of this approximation, thus

it is difficult to assess its range of validity.

One advantage of modelling entangled ring polymers as lattice trees is that

the lattice tree shares many similar characteristics with branched polymers. It is
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(a)

(b)
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Figure 3.1: A schematic diagram showing the topological constraints of ring poly-
mers under various circumstances. (a) A ring polymer in solutions which looks like
a random coil. (b) A ring confined by fixed obstacles. It is forced to adopt such a
conformation due to the non-crossing constraints. (c) Two concatenated rings. This
is forbidden in our calculation, because the rings do not enclose any other chains
throughout the polymerisation process.

not difficult to see why by comparing their conformations. Both branched poly-

mers and lattice trees are constructed by linear sections attached to each other at

certain points. The biggest difference, though, is that in branched polymers these

branching points are formed by multifunctional groups via covalent bonds. Once

the polymerisation process is terminated, the branching structure will not change

thereafter. For lattice trees it is not necessarily the case1.

Branched polymers have been extensively studied since the 1940s [Flory,

1941a,b,c; Stockmayer, 1943, 1944] because of their role in the gel formation, in

which branched polymers build up an infinitely large network structure with crosslinks.

However, most of the theoretical analyses of branched polymers in melt were con-

ducted much later after the concept of reptation and the tube model had been

established. In the following text of this section, the relevant properties of branched

polymers to our problem of ring polymers will be introduced.

As mentioned in Chapter 2, a ring polymer in an array of fixed obstacles can

be properly modelled by a lattice tree. Its static properties, such as the radius of

gyration, should be equivalent to that of a randomly generated branched polymer.

Such static properties have been investigated via direct calculations [Zimm and

1This is probably the reason why many used the term lattice animals rather than lattice trees,
regardless of forming a loop in the structure. It seems natural to call the constrained ring polymer
an animal since the branching points are not fixed so that it can alter the shape like an amoeba.
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Stockmayer, 1949], on the Bethe lattice (namely the Cayley tree) [Khokhlov and

Nechaev, 1985], by field theories [Lubensky and Isaacson, 1978, 1979], the Lee-Yang

edge singularity [Parisi and Sourlas, 1981] and the method of dimensional reduction

[Imbrie, 2003]. It was found that the radius of gyration of an ideal branched polymer

followed the relation Rg ∝ N1/4 [Zimm and Stockmayer, 1949]. On the other hand,

the radius of gyration was found to follow a Gaussian distribution as Rg ∝ N1/2

when the excluded volume interactions was included [Parisi and Sourlas, 1981]. This

result coincidentally is the same as that of ideal random walks.

Furthermore, there exists another system which behaves similarly to our pic-

ture of constrained ring polymers in melt. In many aqueous surfactant solutions, am-

phiphiles are found to assemble reversibly into various structures, depending on the

conditions such as the shape of amphiphiles, the concentration and so on. There is a

certain type of structure called a wormlike micelle, which is a long, flexible branched

object. Since its branching is randomly formed by the aggregated amphiphiles, the

branches can be spontaneously manipulated or even eliminated. Once these worm-

like micelles reach a high density, they can form entangled viscoelastic fluid. The

dynamics of these entangled wormlike micelles can be accounted by the extended

reptation model [Cates, 1987], although sometimes extremely long wormlike micelles

exhibit higher fluidity than expected [Lequeux, 1992].

From our point of view, however, none of the models mentioned above are

satisfactory to describe the dynamics of entangled ring polymers. In the case of

wormlike micelles, the branched structure can be broken and altered by moving

away a column of the surfactants, or it can attach to others. This is not the case for

entangled ring polymers, as the diffusion of kinks along their contours is the only

mechanism for transferring material, and this should change the whole conformation

in a continuous manner. More importantly, for both the self-avoiding lattice tree

and the wormlike micelles, the models do not account for the situations in which the

rings penetrate each other. The excluded volume interactions of the self-avoiding

lattice tree repels any segment closer than a correlation length. Clearly no primitive

path of any linear section is able to penetrate any other. Although wormlike micelles

are able to connect to one another, the process and the constraints involved are very

different from that of entangled ring polymers.

When the density or the molecular weight of ring polymers reaches a thresh-

old, we expect that a significant portion of the rings will penetrate other rings. This

forms extra quasi-topological entanglements that prevent the rings moving freely,

as the conceptual example of rubber bands in Section 2.1. Therefore we anticipate

a much slower stress relaxation may occur in such systems. Still, in order to in-
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vestigate the dynamics of entangled ring polymers analytically, a simple model is

necessary to begin with. In this chapter a modified model of lattice trees is applied

to studying the equilibrium of entangled ring polymers. The lattice tree will be

deconstructed into multiple parts, and the corresponding grand canonical partition

functions will be derived to calculate statistical properties.

3.2 Constrained Lattice Trees

3.2.1 Phantom Chains

We consider the case of a compact unknotted ring polymer in melt of its own kind

and neglect the excluded volume interactions. In the concentrated regime we adopt

the ansatz in which each ring takes the configurations resembling lattice trees as

explained in Section 2.1 and 3.1. Each segment of the lattice tree is made up of

duplex pairs of polymer chains, one outward and the other returning within the

volume of a segment. In this thesis the lattice tree is assumed to be made up of Ns

segments, each of which has a physical length ls, with a coordination number z.

Consider that such a lattice tree has u branches extruding from a linear

backbone, formed by Nl segments; see Figure 3.2. Let Nr represents the set of these

numbers of segments, Nr ≡ {N1, N2, · · · , Nu, Nl}, in which the elements satisfy

Nl +
u∑
i=1

Ni = Ns. (3.1)

Suppose that the backbone has an end-to-end distance r, the partition function of

the whole lattice tree can be expressed by

Z(r) =
∑
Nr

Qs(Nr)Q
′
Nl

(r)
u∏
i=1

QNi . (3.2)

QNi and Q′Nl
are the canonical partition functions of the extruding branches and the

linear backbone with the given number of segments, respectively. Qs is the partition

function associated with the probability of each way to construct such lattice trees,

which is subject to the set Nr. The summation over the set Nr is applied to all the

possible combinations of elements in Nr.

In principle Eq. (3.2) presents all the possible microstates of the system,

but it has little practical use. This is because computing the right hand side of

Eq. (3.2) is a tedious job. To see why this is the case, one may consider the

canonical partition function of the extruding branches QNi alone first. The lattice

19



ls

Figure 3.2: An example of lattice trees with a coordination number z = 4. The
segments in red colour are of the linear backbone, which contains Nl segments. The
black segments are of the extruding branches. In this figure, there are three such
branches, i.e. u = 3.

tree is assumed having zero interaction energy between segments, and QNi is simply

given by the number of configurations to form these branches. The number of

configurations can be computed by the following expression [Flory, 1953, p. 365]

ω(Ni) =
[(z − 1)Ni]!

Ni![(z − 2)Ni + 1]!
, (3.3)

where i = 1, 2, · · · , u. This result is based on the assumption that the segments are

indistinguishable, and indeed it gives a correct value for any rooted tree provided Ni.

In order to derive the partition function, computing all the possible configurations

among the u branches is necessary. As for the backbone, Q′Nl
may be assumed to

have a Gaussian distribution [Doi and Edwards, 1986] since the excluded volume

interactions are neglected, so that

Q′Nl
(r) ∝ (z − 1)Nl exp

(
− 3r2

2Nll2s

)
. (3.4)

As it has been explained in Section 3.1, lattice trees as the analogue of ring

polymers have a significant difference from the branched polymers. The branching

points are not fixed in the lattice trees. This greatly complicates the calculation of

Eq. (3.2) since the partition function Qs(Nr) has to include all the possible ways to

form such lattice trees. The only constraint upon that is the sum of the segments

needs to be Ns. Therefore, combining all the terms on the right hand side of Eq.
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Figure 3.3: A topologically constrained ring polymers (blue solid line) resembling a
lattice tree (dashed line). The surrounding obstacles are not shown in this figure.
This ring polymer encloses two point-like obstacles, denoted by the circles A and
B, with separation r = |r|. The lattice tree can be deconstructed as a rooted tree
attached to A and B, respectively, and a backbone section between them.

(3.2), it is too complicated to proceed to obtain equilibrium quantities such as the

mean end-to-end distance of the backbone.

3.2.2 Recurrence of Branches in the Lattice Tree

Although it looks hopeless to calculate the equilibrium properties, there is a way

to work around the difficult mathematics mentioned above. To study the effect of

penetrations between entangled ring polymers, it is appropriate to consider the case

when the contour of a ring polymer is forced to enclose two point-like obstacles with

separation r. For such a lattice tree there is always a way to track a backbone section

(not necessarily to be exclusively a linear structure) which is as a bridge to connect

these two obstacles. Hence we construct the lattice tree as follows. There is a linear

section, as a major part of the backbone, whose end-to-end distance is r; see Figure

3.3. The backbone is decorated by a rooted tree on each of its ends, respectively.

Later we seek the grand canonical partition function of the three compartments in

order to obtain the equilibrium properties of the whole lattice tree.

We first consider the grand canonical partition function Zt of a rooted tree

in the grand canonical ensemble in which the number of segments Nt is conjugated

to the chemical potential. Here for the sake of simplicity we only consider the case
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in which z = 3. The grand canonical partition function of a rooted tree is

Zt(µ) =

∞∑
Nt=0

e−αNtQNt , (3.5)

where µ is the chemical potential, α = −µ/kBT , kB the Boltzmann constant and

T the temperature. QNt is the canonical partition function subject to a fixed Nt.

Each level of the branching can be seen as merely a linear chain attached to two

rooted trees when scrutinising the rooted tree carefully. This branching process can

be repeated indefinitely in the mathematical sense. Therefore a recurrence relation

for Zt can be constructed by equating the grand canonical partition function of a

rooted tree to the sum of the grand canonical partition function of a linear chain and

that for a tree with a linear section leading to a branch, connecting to two rooted

trees; see Figure 3.4. Hence

Zt = Zl(1 + εZt′Zt′′)

= Zl(1 + εZ2
t ), (3.6)

where the prime and double-prime denote the partition functions being of different

parts of the rooted tree, ε is the fugacity associated with the three-fold branching

and

Zl =
∞∑

Nl=0

e−αNlQNl
, (3.7)

the grand partition function of a linear chain. The canonical partition function QNl

is relatively simple due to the strict ways to form a linear chain and, as a result,

QNl
∼ exp(Nl ln 2). To simplify the calculation below, we let the orientational

freedom ln 2 be absorbed within α.

Here we are interested in the regime of large Ns limit, i.e. Ns � 1. Hence

we expect 〈Nl〉 � 1 so that we may also treat Nl as a continuous variable. The

summation over Nl then can be replaced by an integral, and Eq. (3.6) becomes

Zt =
1

α

(
1 + εZ2

t

)
. (3.8)

The sensible solution of Eq. (3.8) is

Zt =
1

2ε

(
α−

√
α2 − 4ε

)
, (3.9)

because when ε → 0, which corresponds to a chain without branching, the other
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Figure 3.4: A lattice tree like the one shown in Figure 3.3 can be studied by consid-
ering the recurrence relationship of branching structure. The enclosed obstacles A
and B divide it into a backbone section (blue lines) and two rooted trees (red lines).
The arrows represent that the branching structure can continue indefinitely.

solution diverges and contradicts the assumption of small ε.

The other structure present in the compact lattice tree is the backbone,

extending a distance r, decorated with rooted trees. The grand canonical partition

function of the backbone is

Zb(µ, r) =
∞∑

Nb=0

e−αNbQNb
(r), (3.10)

where QNb
is the canonical partition function subject to a fixed Nb, the number

of segments in the backbone, and the vector r pointing from one end to the other.

Eq. (3.10) can be rewritten by a Laplace transform via the force f acting on the

backbone as the field conjugated to r as follows:

Zb(µ, f) =
∞∑

Nb=0

e−αNb

∫
dr exp

(
−f · r
kBT

)
QNb

(r). (3.11)

A recurrence relation for the backbone can be constructed in a similar way as that

for the rooted tree above. We identify the grand canonical partition function of the

backbone as equal to the sum of that for a linear chain and a linear chain connected

to a two-fold branch that spawns a rooted tree on one branch and a continuation of
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the backbone on the other. Therefore

Zb(µ, f) =
∞∑

Nb=0

e−αNb

∫
dr exp

(
−f · r
kBT

)
GNb

(r)[1 + 2εZb(µ, f)Zt(µ)], (3.12)

where Zt is the grand canonical partition function of the decorating rooted tree.

Again the linear section is assumed to follow the Gaussian distribution so that

GNb
(r) =

(
3

2πNbl2s

)3/2

exp

(
− 3r2

2Nbl2s

)
(3.13)

with GNb
(r) being subject to the number of segments in the backbone section Nb.

In the Cartesian coordinates, f ≡ (f1, f2, f3) and r ≡ (r1, r2, r3), and the

integral in Eq. (3.12) can be calculated as follows:

3∏
i=1

∞∫
−∞

dri exp

(
−firi
kBT

)
GNb

(ri)

=
3∏
i=1

∞∫
−∞

dri exp

(
−firi
kBT

)
×
(

3

2πNbl2s

)1/2

exp

(
−3r2i
2Nbl2s

)

=

3∏
i=1

(
3

2πNbl2s

)1/2
∞∫
−∞

dri exp

[
−
(
firi
kBT

+
3r2i

2Nbl2s

)]

=
3∏
i=1

exp

(
Nbl

2
sf

2
i

6k2BT
2

)
= exp(Nbk

2), (3.14)

where k2 = k21 + k22 + k23 and ki = lsfi/
√

6kBT , i = 1, 2 and 3. This new variable k

is a dimensionless energy associated with the force f . Again we expect 〈Nb〉 � 1 so

that Nb is treated as a continuous variable, and Zb becomes

Zb =

∞∑
Nb=0

e−(α−k
2)Nb(1 + 2εZbZt) =

1

α− k2
(1 + 2εZbZt). (3.15)

This equation can be solved without any difficulty and the solution is

Zb =
(
α− k2 − 2εZt

)−1
=

1√
α2 − 4ε− k2

. (3.16)

The grand canonical partition function for the entire lattice tree, constrained to

only cover a distance r via the applied force f , is therefore the product of the grand
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canonical partition function of the backbone and that for a rooted tree at each end

of the backbone. Consequently it is expressed as

Z(µ, k) = Zb(µ, k)Zt(µ)2. (3.17)

3.2.3 Statistical Properties of the Lattice Tree

The average number of segments in the rooted tree can be calculated via Zt(µ) by

〈Nt〉 = − ∂

∂α
lnZt =

−1

Zt

∂Zt
∂α

=
1√

α2 − 4ε
. (3.18)

Likewise, the average number of segments in the trunk can be calculated via Zb(µ, k)

as follows:

〈Nb〉 =
−1

Zb

∂Zb
∂α

=
α

√
α2 − 4ε

(√
α2 − 4ε− k2

) (3.19)

Considering the case of no applied force such that k = 0 and anticipating 〈Nb〉 � 1

due to Ns � 1, one can further write α = αc + δα, where α2
c = 4ε and δα� αc, to

show that

δα =
1

4ε1/2〈Nt〉2
(3.20)

and

δα =
1

2〈Nb〉
(3.21)

according to Eqs. (3.18) and (3.19). Eqs. (3.20) and (3.21) suggest that in equilib-

rium 〈Nt〉 ∼ ε−1/4〈Nb〉1/2. Thus if anticipating that most of the segments lie in the

decorated backbone, one can write δα = 1/2Ns and thus 〈Nt〉 ∼ ε−1/4N1/2
s .

The components of the average end-to-end distance of the backbone section

can be computed from the normalised first moment

〈∆rb〉i =

∞∑
Nb=0

e−αNb
∫
dr ri exp (−f · r/kBT )QNb

(r)

∞∑
Nb=0

e−αNb
∫
dr exp (−f · r/kBT )QNb

(r)

. (3.22)

By noticing ki = lsfi/
√

6kBT , i = 1, 2 and 3, one can write the above equation as

〈∆rb〉i =
−ls√

6

1

Zb

∂Zb
∂ki

=
−2ls√

6

ki√
α2 − 4ε− k2

. (3.23)

Indeed if there is no force applied to the backbone, the average end-to-end distance

becomes zero as expected.
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On the other hand, the first non-vanishing moment when the force vanishes

is the second moment,

〈∆r2b 〉i =

∞∑
Nb=0

e−αNb
∫
dr r2i exp (−f · r/kBT )QNb

(r)

∞∑
Nb=0

e−αNb
∫
dr exp (−f · r/kBT )QNb

(r)

. (3.24)

Hence the second moment can be easily calculated by

〈∆r2b 〉i =
l2s
6

1

Zb

∂2Zb
∂k2i

=
l2s
3

[
4k2i − k2 +

√
α2 − 4ε

(
√
α2 − 4ε− k2)2

]
. (3.25)

With the limit in which k → 0 one obtains the mean-squared end-to-end distance

of the backbone section

lim
k→0
〈∆r2b 〉 = lim

k→0

3∑
i=1

〈∆r2b 〉i = l2s
(
α2 − 4ε

)−1/2
. (3.26)

Following Eqs. (3.20) and (3.21) one has

〈∆r2b 〉eq = lim
k→0
〈∆r2b 〉 =

l2s
2
ε−1/4δα−1/2 =

√
2

2
ε−1/4〈Nb〉1/2l2s . (3.27)

As a result, the root mean-squared end-to-end distance of the backbone section is

proportional to 〈Nb〉1/4.

3.3 Characteristics of Lattice Trees

3.3.1 Overlap Concentrations and Density of Lattice Trees

Eq. (3.27) shows the root mean-squared end-to-end distance of the backbone Rb =

〈∆r2b 〉
1/2
eq ∼ 〈Nb〉1/4ls. If one assumes that this part of lattice tree contains most

segments of the whole and Ns � 1, one expects that Rb ∝ N
1/4
s . This leads to an

over-packed tree whose density diverges as Ns →∞. Nevertheless, this result does

not devastate the theoretical model we have built so far.

The statistical weight of branching is associated with the branching fugacity

ε. This can be seen to originate from the energy cost of bending the polymer chains

to create a branching between dense surrounding chains. Therefore, we expect

ε and thus Rb are related to the stiffness of the ring polymer. The appropriate

parameter to present the stiffness of a polymer chain is its persistence length lp. As
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we will explain below, the prefactor of Rb becomes important when the ratio of the

persistence length and the diameter of polymer chains d is very high, i.e. lp/d� 1.

This condition corresponds to the case of semiflexible polymers.

Furthermore, the phantom chain approximation could be reasonable if the

system is above the semidilute regime C � C?, where C is the concentration of poly-

mers and the overlap concentration C? ∼ R−3b . In such a regime, the excluded vol-

ume interactions is known to be screened. Here we are interested in seeing whether

the conditions with ring penetrations are accessible in experiments. Essentially we

have to examine whether a ring fully occupies a volume V ∼ R3
b within the range of

concentrations which interests us.

By reviewing the model we have discussed so far, it is clear that the segment

length ls can be related to the persistence length lp. It can be proved that ls = 2lp in

the case of long, flexible linear polymers (L� lp), and ls is called the Kuhn length

[Grosberg and Khokhlov, 1994]. In this work ls is a unit length scale corresponding

to a duplex polymer strands of the ring polymer, and ls is of the same order as lp.

For the sake of convenience in the discussion below, we will ignore the prefactor and

just replace ls by lp. The volume fraction of a single chain within its own coil volume,

namely the volume fraction corresponding to C?, is estimated with the result from

Eq. (3.27) so that

φ? ∼ Nsd
2lp

(ε−1/8N
1/4
s lp)3

= ε3/8N1/4
s

(
d

lp

)2

, (3.28)

where d is the diameter of a chain. We speculate that the penetrating ring poly-

mers need to be (i) highly overlapping with neighbouring chains, (ii) having many

neighbours with which they can be threaded and (iii) not exceeding the maximum

concentration of the melt limit, φ ≈ 1. As a result, the volume fraction of the ring

polymers has to be φ? � φ . 1. We are reassured that, according to Eq (3.28) and

ε → 1 (the branching limit), φ? does not reach the order of unity for semiflexible

polymers, such as DNA, until Ns & O(108).

3.3.2 Effects of Stiffness on the Branching

As explained above, the branching of such lattice trees at high concentrations are

controlled via the fugacity ε, which is related to the stiffness of the polymer chain.

Here we are going to examine the energy cost associated with the bending of chains
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near the branch. The fugacity ε can be expressed as

ε = exp

(
−E
kBT

)
, (3.29)

where E is the bending energy associated with the reorientation of the polymer

chains to make a branch. With a higher concentration, the energy cost of making a

branch becomes much higher since there are more neighbouring chains to be pushed

away in order to make enough space to accommodate the branch.

One simple way to proceed the calculation is to consider the bending energy

of making a branch in an array of fixed obstacles, where our representation of lattice

trees is exact. This corresponds to the case of a ring polymer in a gel, which has

a bulk modulus of the order of K ∼ kBT/l
3
e . Moreover, in order to make a branch

between the entangled ring polymers, it involves a distortion of the neighbouring

chains with a volume of the order r̂3. Assuming the duplex polymer chains within

the tube push away the surrounding chains near the branch, the bending chains near

the branch must have a radius of curvature r̂. The energy of branching therefore is

of the order of

E ∼ kBT

[
lp
r̂

+

(
r̂

le

)3
]
. (3.30)

The second term in the bracket arises from the fact that the bending chains have

to compress against the neighbouring chains, of which the energy cost is associated

with the bulk modulus. Here we consider a regime where le < lp, and r̂ is of the same

order of lp. As a result, the cubic term in Eq. (3.30) is dominant in the bending

energy. Expecting the penetrating rings to have a cost of bending, E/kBT � 1, the

fugacity will be ε � 1. For a long ring polymer, which has been considered in this

model, one expects 1� Ns � N ′, where N ′ corresponds to the the volume fraction

that is limited by φ . 1, so that

1� Ns �
(
lp
d

)8

ε−3/2. (3.31)

According to the condition ε � 1 and Eq. (3.31), one can estimate the

limits of the fugacity required in experiments in order to observe penetrating ring

polymers. If plotted on the Ns-ε phase space, the boundaries of the conditions

should be Ns > 1, ε < 1 and ε < (lp/d)16/3N
−2/3
s . This is shown in Figure 3.5.

Furthermore, with Eq. (3.20) and δα = 1/2Ns, one obtains the number of
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Ns

ε

Figure 3.5: A diagram showing the Ns-ε phase space. The yellow-black pattern
indicates the region where ε and Ns are relevant to the scenario of penetrating ring

polymers. The curve (red solid line) is ε = 3.0 × N
−2/3
s , which corresponds to

lp/d ≈ 1.23.

segments in the rooted tree as

〈Nt〉 &
(
d

lp

)4/3

N2/3
s . (3.32)

This is consistent with our previous assumption that most of the segments lie in the

decorated backbone. In fact, if one examines Eq. (3.12) carefully, it is obvious that

most of the segments are part of the linear section of the backbone. In other words,

the ring looks more like a linear object with some relatively small branches extruding

from the linear part. This finding will be the main topic of the next chapter, and

we will exploit it to calculate the dynamics of penetrating ring polymers. Another

important result obtained from the fugacity limits is that

〈∆r2b 〉eq &
(
d

lp

)4/3

N2/3
s l2p; (3.33)

see Eq. (3.27). Hence the root mean-squared end-to-end distance of the backbone

Rb has a scaling with Ns as Rb ∝ N
1/3
s .
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Chapter 4

The Stress Relaxation of

Penetrating Loop Strands

As we have discussed in Chapter 3, the mass distribution predominantly falls into

the backbone section. This is consistent with the assumption that the penetration

events are in a perturbative sense. A further simplified model was built by ignoring

the branching such that each ring polymer resembled a loop strand. Our approach

involved several simplifying assumptions that mitigated the ring penetration prob-

lem. This model of penetrating loop strands then was analysed by following the

Doi-Edwards tube model. Subsequently the resulting coarse-grained model was em-

ployed in the Monte Carlo simulation. The simulation clearly demonstrated the

slowing of dynamics caused by the penetrations. These simulation data and their

implications on experiments will be discussed in Chapter 6.

4.1 Entangled Loop Strands

4.1.1 Ideal Chains

Based on the analysis in Section 3.3, a simpler model of entangled ring polymers can

be made by adopting the ansatz that the ring polymer compactifies in such a way as

to form a duplex structure in which each tube segment [Cates and Deutsch, 1986]

contains an outgoing and a returning segment of the ring polymer; see Figure 4.1.

The effective length of the tube is reduced by a factor of two if assumed ideal [Zimm

and Stockmayer, 1949], but the chain is now guaranteed to satisfy its topological

constraints and remains unknotted.

This represents an explicit set of microscopic configurations that can be

shown to satisfy all the topological constraints rigorously. This set may fail to include
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Figure 4.1: A schematic diagram showing three unbranched, compactified ring poly-
mers (solid curves) and the tubes (dash-dotted curves) provided by their entangle-
ments with a background gel and/or neighbouring rings (not shown). The labels
identify the nature of penetrations on Polymer 1.

some equilibrium chain states in the melt, where the duplex structure may permit

penetration between the duplex pair (violating compactification) and be branched.

However, it is the primary aim of this research to study the effect of such pene-

trations perturbatively (where they remain rare). While one can also suppress the

branching by setting the mesh size of the background gel or neighbouring rings to

be much smaller than the persistence length of the chain, it is anyway natural to

study the unbranched limit first. It is likely that the onset of the topological glass

transition that we describe below will be shifted if we permit branched structures,

e.g., removing the background gel or choosing one with a large mesh size. However,

it is difficult to see how its existence could be affected by branching. The novelty

of our approach lies in the way in which we account for penetration events; see

Figure 4.1. These do not violate topological constraints and can be thought of as a

perturbative relaxation of the compact chain ansatz introduced above.

In Figure 4.1, the labels identify the nature of penetrations on Polymer 1.

Here Polymer 2 has actively penetrated Polymer 1, creating an associated passive

penetration in the corresponding tube segment of Polymer 1. Polymer 3 has been

penetrated by Polymer 1, resulting in a passive penetration to Polymer 3 and an

active penetration to Polymer 1. The passive penetration on Polymer 1 will remain

until one end of Polymer 2 has diffused through that tube segment. Until that
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happens the motion of Polymer 1 is restricted by this penetration, which prevents

either end diffusing through this tube segment. The active penetration on Polymer

1 will be lost as soon as either of its ends moves through the tube segment containing

this penetration, simultaneously annihilating the corresponding passive penetration

on Polymer 3.

4.1.2 Fluctuation, Length Defects and Reptation

Before discussing the detailed calculation of the penetrating loop strands, it is in-

structive to review the most successful mean-field model of entangled linear poly-

mers. As proposed by de Gennes [1971], the fundamental relaxation mode of an

entangled linear polymer is believed to be the propagation of kink gas, a series of

non-interacting length defects, along the polymer chain; see Figure 4.2. This is

based on the concept that the non-crossing constraints imposed by the surrounding

chains prevent a chain laterally moving through them. The length defects hence

tend to move randomly along a curvilinear path, which is correlated to the tube-like

confinement of the surrounding chains. The random motion of these length defects,

of course, originates from the thermal fluctuation of the length and the conformation

of the polymer chain itself.

Later Edwards refined this concept and built a detailed analytic model (now

often referred to the Doi-Edwards tube model) to describe such processes. The most

important result of this model is the disengagement time,

τ
(0)
d =

ζ0N
3b4

π2kBTa2
, (4.1)

where ζ0 is the friction constant of a monomer, N the degree of polymerisation, b

the bond length and a the tube width. This is the time needed for a primitive chain,

the statistical representation of a confined polymer, to disengage from the original

tube it was confined to at t = 0. Notice that the parameter a is of the order of the

mesh size of surrounding chains, which is approximately the entanglement length le

[Doi and Edwards, 1986]. In later discussions this disengagement time is rescaled

by ζ0 → ζ, N → Ns and Nb2/a→ Lc, where ζ is the friction constant of a segment,

Ns the number of segments and Lc the contour length of a primitive chain. The

rescaled disengagement time can be seen as a special case without penetration of

primitive chains involved, therefore it is denoted as τ
(0)
d to stress the fact that there

is no penetration.

It is noticeable that, as shown in Figure 4.1, the ring polymers have no chain

end to relax length defects as that in the Doi-Edwards tube model. This is one of
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(a)

(b)

(c)

Figure 4.2: The tube model describes the relaxation process of entangled linear
polymers as follows. Each polymer can only move along a curvilinear path—the
primitive path (dashed lines)—due to the constraints of neighbouring chains. The
kinks, also called the length defects, randomly diffuse along the path until them move
to the ends. The fluctuation at the ends also creates new kinks simultaneously. The
chain ends essentially explore new paths toward random directions, see (a)–(c), and
eventually the whole chain disengages from the original primitive path. In this figure
the tube is not shown.

the reasons why many see developing analytic models for entangled ring polymers

as a challenge in polymer physics. Without the chain ends, the most accessible

mean-field theory seems to have no way to describe the dynamics of ring polymers.

However, in certain conditions, the fluctuation of the length and the conformation

should still provide a similar relaxation mode to that of reptation. Combined with

the discussion in Chapter 3, it is possible for highly entangled ring polymers to be

modelled as linear objects with relaxation via a form of reptation. In this chapter,

we will demonstrate a simple model of penetrating loop strands which is built on

the basis of the Doi-Edwards tube model.

4.2 Obstructed Reptation

4.2.1 Tube Model with Obstructions

Let sn be the curvilinear coordinate of the n-th segment of primitive chain measured

from a fixed point on the tube so that the contour length of the primitive chain

Lc = |sNs − s0|, where Ns is the number of segments in the primitive chain. In this

thesis the length between two segments is assumed to be constant. This is a valid
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ξ

Figure 4.3: A primitive chain (solid line) confined in a tube (dash-dot lines). The
contour length of this primitive chain is Lc, including Ns segments. In the obstructed
reptation, the motion of chain ends is blocked by the passive penetrations (closed
circles) along the primitive path. In this figure, the right end moves a distance ξ
to meet the nearest passive penetration. Each passive penetration can be viewed
as a wall which forces the chain ends bouncing back and forth, until the associated
penetrating chain moves away from the primitive path.

assumption for Ns � 1 since the contour length fluctuation is negligible compared

to Lc [Doi and Edwards, 1986]. As a result, the dynamics of the whole primitive

chain can be easily depicted by the motion of its centre of mass.

To describe the stress relaxation of the loop strand, or its self-diffusion within

the tube, a random force exerted upon the centre of mass may be explicitly expressed

in an equation of motion. The dynamics of the centre of mass of the primitive chain

can be described by the Langevin equation

ζc
∂

∂t
sc(t) = − ∂

∂s
[Up(s0, t) + Up(sNs , t)] + fc(t), (4.2)

where sc is the position of the centre of mass. fc is the random force acting on the

centre of mass and characterised by the moments 〈fc(t)〉 = 0 and 〈fc(t)fc(t′)〉 =

2ζckBTδ(t − t′). The constant ζc is the effective friction constant of the centre of

mass and ζc = Nsζ, where ζ is the friction constant of a single segment.

In Eq. (4.2) the potential Up(s, t) is zero everywhere except where there

is a passive penetration in the tube. The form of Up can be arbitrary as long as

it is localised and has a large magnitude to prevent chain ends passing through.

For example, a Gaussian function with a small width can be such a potential. In

real cases there could be multiple passive penetrations in a tube, so Up should
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be a convolution of Gaussian function and delta functions along the coordinate s.

Nevertheless, the potential Up only matters when one of the two ends is close to the

position at which it has a non-zero value.

An alternative approach is to consider the Smoluchowski equation of the

probability function Ψ(ξ, t; s), which is the probability that the primitive chain

moves the distance ξ while its ends have not reached the position s of the origi-

nal tube [Doi and Edwards, 1986]. The equation is written as

∂Ψ

∂t
=

∂

∂ξ

1

Nsζ

(
kBT

∂Ψ

∂ξ
+
∂U ′p(χp, t)

∂ξ
Ψ

)
, (4.3)

where U ′p(χp, t) is a function of χp ≡ {χ1, χ2, · · · , χm}, the curvilinear coordinates

of obstructions formed by penetrations. Like Up in Eq. (4.2), U ′p plays the role as

potential barriers to prevent Ψ(ξ, t; s) spreading toward certain directions along the

tube. U ′p is also localised so that Eq. (4.3) will be equivalent to a diffusion equation

before the ends reaching any of χp.

Unfortunately, both Eqs. (4.2) and (4.3) are difficult to handle, because the

potential Up and U ′p are not just localised but also time-dependent. It is easy to see

the difficulty by imagining several chains penetrating each other and maintaining

the equilibrium; the average number of active or passive penetrations per chain

remains constant for a very long time compared to the time scale of observation.

The only way to relax a passive penetration is to move the penetrating chain away

from the corresponding active penetration. The motion of this penetrating chain is

also constrained by the passive penetrations on its own primitive path. Therefore

both Up and U ′p have to be realised within a self-consistent framework, and the

mathematics to express them would be complicated. Instead of deriving Up and

U ′p directly, we consider fixed obstacles in the next subsection and study the more

general problem of time-varying penetrations by a Monte Carlo simulation in Section

4.3.

4.2.2 Permanent Obstacles

As explained above, Eq. (4.3) is equivalent to a diffusion equation as long as the ends

do not reach any of χp before reaching an arbitrary segment s. For an instructive

purpose, the obstructed reptation model discussed above can be simplified if the

penetrations are static. Since the ends cannot pass through these penetrations, only

the two outermost penetrations affect the dynamics of this primitive chain. Consider

that the same tube picture explained in Subsection 4.2.1 now contains only two

permanent obstacles inside the tube, denoted by their curvilinear coordinates χ1
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(a)

(b)

(c)

χ1

χ1

χ1

χ2

χ2

χ2

ξ

ξ

ξ

Figure 4.4: The tube with two permanent obstacles χ1 and χ2 inside. The black
dots represent the arbitrary segment s in the calculation.

and χ2 (χ2 > χ1), at which the ends of primitive chain cannot pass. The ends of the

primitive chain, in fact, will never be anywhere between χ1 and χ2. It is obvious

that the remaining length of the original tube will be χ2 − χ1 as t→∞.

By applying the method of images to Eq. (4.3), the potential U ′p can be dis-

carded. Instead, appropriate boundary and initial conditions are used to generate

the same solutions of the original differential equation. On the one hand, the obsta-

cles are effectively hard walls which stop Ψ(ξ, t; s) further spreading through them.

On the other, the arbitrary segment s is a soft boundary at which Ψ(ξ, t; s) becomes

zero when one of the ends reaches s. Hence one can generate solutions by using

the method of images and including appropriate image sources of the probability

function Ψ(ξ, 0; s) at time t = 0; see Figure 4.5. These sources need to be in the

same magnitude and symmetric or anti-symmetric, i.e. sign reversed, with respect

to the hard boundaries or the soft ones, respectively. In this way Ψ(ξ, t; s) maintains

a finite value at the obstacles and vanishes at the segment s after a certain time

interval. The time evolution of the probability function Ψ(ξ, t; s) now is described

by the diffusion equation
∂Ψ

∂t
= D

∂2Ψ

∂ξ2
. (4.4)
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(a)

(b)

(c)

Ψl

Ψr

Ψm

ξ

ξ

ξ

0

2s

2(χ2 − Lc)
2(χ2 − Lc − s)

4(s+ Lc − χ2)

0

2(s− Lc)
2χ1

2(χ1 + Lc − s)

4(χ1 + Lc − s)

0 2χ12(χ2 − Lc)2(χ2 − χ1 − Lc)

4(Lc + χ1 − χ2)

Figure 4.5: A schematic diagram showing the initial conditions (peaks in solid lines)
for Ψl, Ψr and Ψm (from top to button), respectively. The dashed lines show the
probability functions some time after t = 0. The two-sided arrows indicate the
period of each probability function.

The diffusion constant is given by D = kBT/Nsζ. The general solution of Eq. (4.4)

can be written in such a form

Ψ(ξ, t; s) = A0 +
∞∑
q=1

(
Aq cos

qπξ

2Li
+Bq sin

qπξ

2Li

)
exp

(
−q2t
τs;Li

)
, (4.5)

where Li is the period of Ψ and τs;Li = 4L2
i /Dπ

2. Latter the initial and boundary

conditions will determine the coefficients A0, Aq and Bq. For a tube segment s to

remain at time t, the chain can have moved a distance ξ between arbitrary values a

and b so that

ψ(s, t) =

b∫
a

dξ Ψ(ξ, t; s) (4.6)

gives the probability that the segment s remains at time t. In the picture of ob-

structed reptation with permanent obstacles, the chain is divided into three parts

by χ1 and χ2. We will present the derivation of Ψ and ψ for the separated three

parts below.
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For an arbitrary segment s that s < χ1, as shown in Figure 4.4 (a), the

corresponding probability function Ψl is

Ψl =

∞∑
q=1

−1

Ll

[
sin

qπs

2Ll
+ sin

qπ(s+ 2Lc − 2χ2)

2Ll

]
sin

qπ(ξ − s)
2Ll

exp

(
−q2t
τs;Ll

)
, (4.7)

where Ll = s + Lc − χ2. Hence the probability that the tube segment s (where

s < χ1) is remaining at time t is

ψl =

s∫
χ2−Lc

dξ Ψl =

∞∑
q=1

2

qπ

[
sin

qπs

2Ll
+ sin

qπ(s+ 2Lc − 2χ2)

2Ll

]
×

[
1− cos

qπ(s+ Lc − χ2)

2Ll

]
exp

(
−q2t
τs;Ll

)
. (4.8)

Similarly for an arbitrary segment s that s > χ2, as shown in Figure 4.4 (b),

the corresponding probability function Ψr is

Ψr =

∞∑
q=1

1

Lr

[
sin

qπ(Lc − s)
2Lr

+ sin
qπ(Lc − s+ 2χ1)

2Lr

]
sin

qπξ

2Lr
exp

(
−q2t
τs;Lr

)
, (4.9)

where Lr = χ1 + Lc − s. The probability that this tube segment s (where s > χ2)

is remaining at time t is

ψr =

χ1∫
s−Lc

dξ Ψl =

∞∑
q=1

−2

qπ

[
sin

qπ(Lc − s)
2Lr

+ sin
qπ(Lc − s+ 2χ1)

2Lr

]
×

[
cos

qπ(χ+ Lc − s)
2Lr

− 1

]
exp

(
−q2t
τs;Lr

)
. (4.10)

The last situation is that an arbitrary segment s falls between χ1 and χ2, i.e. χ1 <

s < χ2; see Figure 4.4 (c). Intuitively the chain ends never reach s as both are

blocked by either χ1 or χ2. The corresponding probability function Ψm is

Ψm =
1

Lm
+

∞∑
q=1

1

Lm

[
3 cos

qπξ

2Lm
− 2 sin

qπχ1

2Lm
sin

qπ(χ1 − ξ)
2Lm

−

2 sin
qπ(χ2 − Lc)

2Lm
sin

qπ(χ2 − Lc − ξ)
2Lm

]
exp

(
−q2t
τs;Lm

)
, (4.11)

where Lm = Lc + χ1 − χ2. The tube segment s in the middle between χ1 and χ2
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should persist all the time, and the probability of that is expressed by

ψm =

χ1∫
χ2−Lc

dξ Ψm

= 1 +

∞∑
q=1

2

qπ

[
sin

qπχ1

2Lm
− sin

qπ(χ2 − Lc)
2Lm

]
exp

(
−q2t
τs;Lm

)
. (4.12)

The portion of the original tube remains at time t, denoted as ϕ(t), should

be obtained by integrating ψ(s, t) with respect to the coordinate s from 0 to Lc.

Since the two penetrations separate the tube into three parts, however, one has

ϕl(t) =
1

Lc

χ1∫
0

ds ψl(s, t), (4.13)

ϕr(t) =
1

Lc

Lc∫
χ2

ds ψr(s, t) (4.14)

and

ϕm(t) =
1

Lc

χ2∫
χ1

ds ψm(s, t). (4.15)

Therefore the portion of the original tube remains at time t is given by

ϕ(t) = ϕl(t) + ϕm(t) + ϕr(t). The remaining lengths of the left and right section

decrease with time, and ϕ(t)→ (χ2 − χ1)/Lc when t→∞ according to Eqs. (4.8),

(4.10) and (4.12), as expected. The calculation above demonstrates that the effect

of the penetrations is localised, only affecting the stress relaxation when the ends

encounter these penetrations.

4.3 Monte Carlo Simulations

4.3.1 The Coarse-grained Tube Model

In Section 4.2 we showed that analytically computing the stress relaxation of the en-

tangled loop strands would be a difficult task, if not impossible. When the obstacles

were simplified to permanent ones, the calculation was manageable with the method

of images, though it did not offer much useful insight into the dynamics. Nonethe-

less, the calculation demonstrated the consequence of introducing the topological

constraints created by penetrations.
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The direct effect of the penetrations was to stop the chain diffusing freely

along the primitive path, thus the stress relaxation was hindered by these obstacles.

Before the chain ends reached any of the penetrations, however, they created new

sections of primitive path and reduced the length of the original tube in the same

way as that in the Doi-Edwards tube model. This has been shown in Eqs. (4.8),

(4.10) and (4.12). Therefore a simple phenomenological model can be built based

on this observation.

To build such a phenomenological model, the first challenge is to integrate the

effect of the penetration into the model. Indeed the free energy (or statistical weight)

associated with these penetration events is difficult to calculate and likely depends

on the monomer density and persistence length lp. We do not attempt to compute

this from first principles, as explained in Section 4.2, but rather define a parameter

p to be the probability that the primitive path of a duplex chain penetrates a

neighbouring ring on moving one entanglement length. Provided p is non-zero one

always expects many penetrations in the large Ns limit. As it will be shown below,

the onset of the transition to the glassy state occurs when the number of penetrations

per ring is only of order unity and should therefore be physically accessible.

Here and in what follows we make the system coarse-grained on the scale

of the entanglement length le. Thus Ns represents the number of entanglement

lengths along the duplex ring polymer tube. When employing such a model into a

numerical simulation, this is a significant advantage over microscopically detailed

models, speeding up the computation by orders of magnitude. We then can study the

curvilinear diffusion of the primitive chain within the tube formed by entanglements

provided by its neighbours. In this model the system is directly controlled by only

two parameters, the entanglement length le and the penetration probability p. Since

we are interested in how the chain relaxes from a tube with the additional constraints

of penetrations, we will only focus on the penetration probability p. Hereafter le

will merely play the role of a length unit.

4.3.2 The Monte Carlo Experiment

As we have discussed in Section 4.2, studying the dynamics of entangled loop strands

requires a self-consistent description for the penetrations and the relaxation process.

Here we attempt to study a more general problem rather than a special system like

that with permanent penetrations. Numerical methods provide excellent tools for

solving such problems. The coarse-grained model mentioned above was studied via

a Monte Carlo experiment. The self-diffusion of a primitive chain in a tube was sim-

ulated as a stochastic process, and the process of penetration was directly controlled
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by the probability p. By employing the Monte Carlo simulation we investigated the

process of stress relaxation and the number of penetrations per ring in equilibrium.

It is convenient to think of the curvilinear coordinate for each chain being

transformed into a straight, horizontal line so that each chain can be thought of as

moving to the right or left at random. The stress relaxation function ϕ(t) therefore

corresponds to the original tube segments remaining at time t [Doi and Edwards,

1986]. The time that the centre of mass of a chain moved a distance le, denoted

as th, was designated as the time step of the Monte Carlo simulation. As a result,

given the curvilinear diffusion coefficient D = kBT/Nsζ, th depended on N since

th = ζl2eNs/kBT . In the absence of any penetration, the mean relaxation time 〈τd〉
obtained from the simulation [see Eqs. (4.16) and (4.17) below] appeared to be

proportional to N2
s , one power of Ns being absorbed into th.

This Monte Carlo experiment included the effects of chain penetration events

as follows. All Nc chains started in the unpenetrated state. At each time step a

randomly chosen chain attempted to move rightward or leftward by one unit of

length. This move was allowed, and the coordinate of the chain was updated, pro-

vided the chain did not contain a passive penetration at the last segment preventing

this move; see Figure 4.1. Every chain that successfully moved (i) experienced a

corresponding reverse translation of all active and passive penetrations, these being

associated with the corresponding tube segments, rather than the chain itself (in

our code, as in the physical system, these penetrations remained stationary and

only the chain position was updated); (ii) if an active penetration was associated

with its trailing tube segment this was annihilated, together with the corresponding

passive penetration through a tube segment associated with the other chain; (iii) a

new active-passive penetration pair was created with the probability p. In this case

the active penetration was associated with the newly created leading tube segment

on the moving chain, the corresponding passive penetration was associated with a

randomly chosen tube segment on one of the Nc chain. If this segment had had a

penetration, either active or passive, or it was the chain leading segment itself, the

penetration would be rejected. This scheme tended to lead to an initial increase in

the number of penetration pairs (from zero) and a slowing of stress relaxation due

to the constraints on the polymer dynamics associated with passive penetrations.

Active penetrations themselves did not directly hinder motion.

4.3.3 Execution of the Monte Carlo Simulation

At the beginning of simulation, a single chain was tracked until ten times of tube

relaxation had completed. The time steps spent to accomplish this process were

41



I. II.

III.a III.b

Figure 4.6: A diagram showing how the chain movement and penetration were car-
ried out in the Monte Carlo simulation. I. In each time step, a chain was randomly
chosen to move along its primitive path, as long as the trailing segment was not
blocked by a passive penetration. The direction of movement was also randomly
determined. II. Once the movement was granted, there was the probability p by
which the chain would penetrate a randomly chosen segment from chains, including
itself. Here the second chain from the top penetrates the left end of the fourth one
by its leading segment (the left end). III.a In the next time step, this penetrated
chain could not move toward the direction as shown in the figure. This move would
be rejected, and the simulation proceeded to the next time step. III.b On the other
hand, if in the next time step the same chain moved to the left and penetrated
the same penetrated segment as that in II., this penetration would be rejected but
the movement retained. Notice that the position of penetrations relative to the
primitive path do not change with the movement of chains.
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averaged to obtain an estimated relaxation time te. This was used as a guideline

to assess an adequate time interval for the system to reach equilibrium. Based on

te, the simulation ran for 10te to let the system reach equilibrium before the formal

run, which had 150te. During the formal run, the tube relaxation of all chains were

recorded simultaneously until all the chains were fully relaxed, and the process was

repeated until the maximum time step limit reached. The stress relaxation function

ϕ(t) was obtained by monitoring the remaining length of the original tube segments.

We calculated the characteristic relaxation time of each chain sample as follows:

τj =

tm∑
i=1

tijthϕ(tij)

tm∑
i=1

ϕ(tij)

, (4.16)

where i was the index of time steps, j the index of chain samples and tm the

maximum time step recorded for the samples. The mean relaxation time over an

ensemble of js chain samples was then simply computed by

〈τd〉 =
1

js

js∑
j=1

τj . (4.17)

The number of samples of each simulation run varied because of the stochastic

nature of the system, but in general js ∼ O(102).

4.4 Stress Relaxation of Penetrating Loop Strands

4.4.1 The Slowing of Relaxation Times

In the simulation all the rings were available to penetrate with all the others, i.e.

their coil volumes were assumed to be overlapped. The maximum number Nc was

therefore limited by the chain number density. The creation of new penetration

pairs was rejected if the randomly chosen target segment had been occupied by

either an active or passive penetration. According to our mean-field estimation,

Eq. (4.19), in the worst scenario the rejection rate would be no more than 1/3 for

p = 0.3. The actual rejection rate should be lower than this estimation, because

the movement of chains was likely blocked first especially when there were a lot of

penetrations, while creating new penetrations required such movements in the first

place. In other words, the rejection did not directly affect the relaxation time since

the creation of penetrations was always executed after the chain movement. Figure
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Figure 4.7: Penetrations significantly slowed ring polymer dynamics. The mean
stress relaxation time 〈τd〉 depended on the chain length Ns and the penetration
probability p: Shown is data for p = 0 (asterisks), 0.1 (squares), 0.2 (circles) and 0.3

(triangles). The Doi-Edwards’ scaling τ
(0)
d /th ∼ N2

s for linear polymers is shown as
a dotted straight line, and the lines connecting the data points are guides to the eye.
Error bars are shown but are often invisibly small. The number of chains Nc = 4 in
these simulations

4.7 shows the variation of mean relaxation time with ring lengthNs for various values

of the penetration probability p. With a zero penetration probability, the relaxation

times followed a power law 〈τd〉 ∝ N3
s , which is what the Doi-Edwards tube model

predicts. For the cases of non-zero p, the relaxation time significantly increased

with the increasing ring length. When comparing 〈τd〉/th of the rings having the

same length but different values of probability p in Figure 4.7, the differences in

magnitude can be as high as the order of 104.

Another remarkable finding of the simulation is that the system size, here

Nc, strongly controlled the stress relaxation time, shown in Figure 4.8. This is

to be expected based on the following simple reasoning. Since the penetration

dynamics is always time reversible, there is at least one way to disentangle a system

of penetrating rings. While this route may be easily accessible when there are a

few rings, when they are numerous (and heavily inter-penetrating) it can be obscure

and only slowly accessed by chance.

This effect is more visible in Figure 4.9, which illustrates the penetration

events between ring polymers as a directed graph. There are Nc vertices in the

graph. Each vertex represents a ring polymer which has a maximum degree equal to

the number of segments Ns. The direction of an arrow indicates a penetration event

from the penetrating chain towards the penetrated one. Even though one cannot
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Figure 4.8: The mean stress relaxation time 〈τd〉 increased with the number of
rings Nc available to interpenetrate and on the penetration parameter p: Shown is
data for p = 0 (asterisks), 0.1 (squares), 0.2 (circles) and 0.3 (triangles). The lines
connecting the data points are guides to the eye. Error bars are shown but are often
invisibly small. The number of segments Ns = 64 in these simulations.

identify a specific order of the relaxation of penetrations from this graph, it is fair

to approximate that the longest route of the directed edges takes the longest time to

relax. Recall that the penetration events were directly controlled by the penetration

probability p, which is exactly the probability to designate an directed edge between

a pair of vertices. Therefore our coarse-grained model actually represents a system

very similar to that of bond percolation on a random graph. This will be discussed

with more details later in Chapter 6.

4.4.2 Penetration Densities

According to Figures 4.8 and 4.9, the number of penetrations per ring m seems to

be a key parameter which affects the dynamics of penetrating ring polymers. In the

simulation the number of active and passive penetrations was also recorded, and

the mean value 〈m〉, including both active and passive penetrations, in equilibrium

was calculated. In the simulation 〈m〉 appeared to be directly controlled by the

probability p, which could be described by the mean-field estimate shown below.

Since in the model a penetration event started (or terminated) from creat-

ing (or eliminating) an active penetration, we calculate the time evolution of the

active penetrations to understand how the penetration events were controlled via

the probability p. The number of active penetrations per ring ma increased by one

whenever the following three conditions were satisfied: (i) a polymer successfully
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Figure 4.9: A graph representing the relationship of penetrations between ring poly-
mers. A long path of edges can be tracked from S to F via A–E, labelled by red
colour. For the ring F, in order to relax it would need all these red edges removed
in the reverse way. However, some of the rings lie on the path also are penetrated
by other rings. With more ring polymers present and more penetrations linking in
such a way, each ring will take a significantly longer time waiting the constraints
released.

diffused, which occurred with probability 1− 〈mp〉/Ns, where mp is the number of

passive penetrations, (ii) it attempted to create a penetration, which occurred with

probability p and (iii) it found somewhere had not been occupied by a penetration

to create a new one, which occurred with probability 1 − 〈m〉/Ns. Likewise an ac-

tive penetration was lost whenever a chain diffused through it, which occurred with

probability 〈ma〉/Ns. Hence

d〈ma〉
dt

= p

(
1− 〈mp〉

Ns

)(
1− 〈m〉

Ns

)
− 〈ma〉

Ns
= 0. (4.18)

Finally in equilibrium 〈ma〉 = 〈mp〉 = 〈m〉/2 which yields

〈m〉
Ns

=
3p+ 1−

√
p2 + 6p+ 1

2p
, (4.19)

which is compared with the simulation data in Figure 4.10.

Although Eq. (4.19) gives a qualitatively correct prediction when compared

with the simulation data, the difference between the prediction and the data is

easily recognised even for the low p cases. This discrepancy probably originated

from the fact that the two types of penetrations did not uniformly distributed along
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Figure 4.10: Mean number of penetrations per ring normalised by number of seg-
ments versus penetration probabilities, for Ns = 16 (circles) and 32 (squares). The
number of chains Nc = 4 in these simulations. The mean-field prediction [solid line,
Eq. (4.19)] is qualitatively correct but gives higher values over the whole range of
p over which we performed simulations. There is no guarantee that the mean-field
argument should be quantitatively accurate, as discussed in the text.

each chain. Despite the mean value of ma and mp was the same, as expected, the

cumulative number of penetrations along the chain showed different distributions

between the two penetration types. For example, the two ends of a chain spent more

time steps to have active penetrations than the centre of the chain. However, in the

case of passive penetrations, the situation was reversed. The non-mean-field spatial

distribution of penetration might affect the outcome of 〈m〉 in a way that could not

be captured by Eq. (4.18). Nonetheless, for our purposes Eq. (4.19) is an adequate

approximation of the simulation data.

While Figure 4.7 shows the variation of relaxation time with ring length Ns

for various values of the penetration probability p, it is more informative to plot

this against the mean number of penetration per ring 〈m〉; see Figure 4.11. Explicit

Ns dependencies is removed by rescaling the relaxation time by the average time to

diffuse a mean-squared distance equal to the average distance between penetrations

τe =
[Lc/(m+ 1)]2

π2D
=

τ
(0)
d

(m+ 1)2
, (4.20)

where τ
(0)
d denotes the relaxation time of chains having no penetration, i.e. the

disengagement time of the primitive chain in our coarse-grained model.

Here τe is called the encounter time, and it is a measure of the time interval

needed for chain ends to encounter two adjacent penetrations in the original tube;
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Figure 4.11: The mean stress relaxation time 〈τd〉, normalised by the encounter time
τe, increases with the mean number of penetrations 〈m〉, itself controlled by p, and
with the number of rings Nc available to inter-penetrate: Shown is data for Nc = 4
(circles), 8 (squares), 12 (triangles), 16 (reversed triangles) and 20 (diamonds). For
the largest values of Nc the relaxation is suggestive of an exponential slowing down
with the number of penetrations per ring (dotted line). The inset shows the same
normalised relaxation time with a very small mean number of penetrations, where
Nc = 4 with Ns = 16 (open circles) and Ns = 32 (open squares), and Nc = 20 with
Ns = 64 (asterisks).

see Figure 4.3. Imagine that if, once an end reached a penetration, the penetration

had been annihilated immediately, the chain would have relaxed as an ordinary

reptation and its relaxation time would have been exactly τ
(0)
d . In the real cases,

the penetrations often persisted longer than that, hence the chain needed longer to

fully relax from the original tube. Therefore, τe is a coarse-graining time associated

with the fastest physically significant process—the curvilinear diffusion between

penetrations (on average). It is the average time which a diffusing chain tests the

penetration nearest to its ends.

Figure 4.11 shows a dramatic increase of the relaxation time with the in-

creasing number of penetrations, that is consistent with an exponential rise in the

largest system (Nc = 20). Interestingly, for the simulations of the same Nc, no mat-

ter how the other parameters varied, all the obtained 〈τd〉/τe fall on the same curve.

This suggests that the number of penetration per ring can be seen as a universal

parameter of the system. Also, the onset of slowed relaxation is indeed where 〈m〉
is about the order of unity; see the inset of Figure 4.11. These findings will be

discussed with more details later in Chapter 6.
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4.4.3 Correction of Correlation Holes and Limited Penetrating Chains

Within the framework of the obstructed reptation, there are several limitations of

the Monte Carlo simulation discussed in Section 4.3. To conclude this chapter, we

are going to point out the possible consequences of addressing these.

The assumption that a chain is equally likely to penetrate all the chains,

including the chain itself, in the Monte Carlo simulation may be questionable. Con-

sidering in a body of melt every linear polymer has one monomer labelled, for

example, by substituting a hydrogen atom with a deuterium. The structure factor

of the melt can be measured via a scattering experiment. If the correlation function,

derived from the structure factor, is plotted against the radial distance to a labelled

polymer, it will show a sink of signal when the distance is smaller than the radius

of the polymer in the melt. This is called the correlation hole [de Gennes, 1979].

The importance of such experiments is that it shows the segment distribution

is not uniform in a many-chain system. More precisely, when probing segments

around a marked chain in such many-chain systems, it is more likely to find a

segment which is part of the marked chain. In the case of entangled ring polymers

we expect that there will be also a correlation hole for each ring polymer. The

direct consequence of the correlation hole is that, when each loop strand penetrates

an arbitrary duplex segment, there is higher probability that this segment belongs to

the same loop strand. In other words, in the Monte Carlo simulation, the penetration

probability p should have been weighed to favour self-penetration rather than equally

likely penetrating all the chains. This effect may be small but becomes significant

if the polymer becomes fully compact, where R3
g ∼ Nslpd

2.

The second omission is that effectively the simulated system was confined

into zero dimensional space. Although the spatial position of ring polymers was

irrelevant in the simulation, and as such that there was no real boundary present,

the penetrations essentially were exclusively created by the Nc rings. In melt of ring

polymers, however, even there is a finite number of rings which are fully entangled

and penetrated with each other within a volume of space, there should be also

penetrations contributed from rings outside of the volume. These rings only partially

overlap the observed volume, which contains Nc rings in terms of our simulation.

On the other hand, the Nc rings would also partially overlap the neighbouring

rings, at the shell region of the observed volume. Some of the active penetrations

could create passive penetrations in rings outside of the volume, and the number of

passive penetrations inside the volume associated with the Nc chains might reduce

accordingly.

Although the total number of penetrations inside the volume may be un-
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changed, due to an equal exchange of penetrations at the overlapping region, the

dynamics must be affected because the percolating network of penetrations expands

to larger extent. The slowing of dynamics shown in our simulation might have been

enhanced if the exchange of penetration had been included in the simulation. Never-

theless, the current model is still a good representation of entangled rings when the

penetration events are rare, i.e. 〈m〉 ∼ O(1), because the effect of the penetration

exchange would be marginal.
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Chapter 5

The Self-diffusion of Entangled

Circular DNA

In Chapter 4 we have shown that the penetration between loop strands can strongly

slow down the stress relaxation. It is obviously of interest to find experimental

evidence of such a dynamic behaviour in entangled ring polymers. We used circular

DNA as the ring polymer to carry out a simple experiment to study its self-diffusion

in a concentrated solution. One advantage of using DNA is that it is relatively easy

to produce unknotted circular DNA with a very narrow distribution of molecular

weights. By exploiting this advantage it is possible to observe the dynamics of

entangled ring polymers without many contaminants. In this experiment, we used

fluorescence microscopy to observe a trace of labelled DNA molecules and track

their positions. In such a way, the dynamics of the entangled circular DNA can be

studied by analysing the mean-squared displacements.

5.1 Circular DNA as a Ring Polymer

5.1.1 Circular DNA

We chose a plasmid DNA called pUC19 to be the ring polymer in this experiment.

pUC19 is one of the most widely used cloning vectors in molecular biology. It

is a circular double-stranded DNA (dsDNA) and has 2,686 base pairs (bp). The

reason behind this choice was that pUC19 was readily available, being produced on

a massive scale in the laboratory. We used DH5α E. coli cells (New England BioLabs

Inc.) to replicate pUC19 through transformation. After the transformation, these

E. coli cells were able to form colonies on LB (lysogeny broth) agar plate against

the antibiotic ampicillin. The cells taken from the colonies then were further grown
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Figure 5.1: A flow chart representing the experimental protocol.

in LB with ampicillin. The grown E. coli cells in the LB were finally processed using

the QIAGEN Plasmid Mega Kit to isolate and purify the plasmid DNA from the

bacteria.

It has been well known for decades that circular dsDNA has two different

conformations. The slight unwinding found in supercoiled plasmid DNA cause the

helical axis to twist about itself such that it resembles a linear rod. Supercoiled DNA

is converted to open-circular (OC) DNA by the introduction of a single breakage in

one of the two strands (a nick). The nick provides the degree of freedom for the chain

to relax such tension by rotating the strand, hence the DNA can maintain its circular

conformation in a solution. Therefore, studying the topological constraints emerged

from the penetration between ring polymers would require to keep pUC19 in its

open-circular conformation. In the experiment we used the nicking endonuclease

Nt.BspQI to introduce a single nick on one strand of pUC19.

Figure 5.2 shows an agarose gel in which pUC19 samples processed by en-

zymes feature various lengths and conformations. The linear chromosomal DNA

(> 10 kbp, not shown in the gel) was removed by exonuclease III (ExoIII). ExoIII

could be also active at nicks and make an open circle become a circular single-

stranded DNA (ssDNA), which should have higher mobility than the supercoiled
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Figure 5.2: An 1.2% (w/w) agarose gel which features various pUC19 samples and
1 kbp ladder (Lane A). Lane B, C and D are the control pUC19 which present
the supercoiled, open-circular and linear conformation, respectively. The samples
nicked by Nt.BspQI are shown in Lane E and F. The lane at the right end is of the
sample of linear pUC19.

DNA. However, the gel did not show the existence of such DNA in the samples.

The non-existence of circular ssDNA has been confirmed by adding Nt.BspQI to

nick the DNA after the reaction of ExoIII. Presumably the circular ssDNA, if any,

would remain as Nt.BspQI only acted on duplex DNA. In Figure 5.2 it is clear that

no stained DNA can be found beyond the open-circular pUC19 at Lane E and F.

This suggests that no circular ssDNA had presented in the sample. We also pre-

pared linear pUC19 to compare the dynamics with the open-circular DNA in the

later analysis. These linear pUC19 molecules were made by cutting the circular

pUC19 with the restriction endonuclease HindIII at the corresponding site. In Fig-

ure 5.2 it is shown in Lane G that the front band falls at the position between 2.0

and 3.0 kbp, as expected.

When a plasmid is maintained in E. coli, two copies of the plasmid will

become joined covalently by homologous recombination to form a dimer, identical

to the monomer except that it contains two copies of the plasmid in a single circle

with twice the contour length of the monomer. It is impossible to remove the

unwanted dimeric pUC19 by just adding enzymes to target on it specifically, because

the enzymes would be active on the monomeric pUC19 as well. Nonetheless, the

dimeric pUC19 only comprised a small fraction of the whole sample. In Figure 5.3
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Figure 5.3: The profile of the fluorescence intensity of the stained DNA shown in
Figure 5.2. The front of loading wells of the gel is designated as the origin of the
distance. Here only the profiles of Lane A (ladder), F (open-circular pUC19) and
G (linear pUC19) are displayed. The peaks indicated by a and b are the dimeric
open-circular pUC19 and dimeric linear pUC19, respectively.

the dimeric pUC19 is indicated by a and b for the sample of open-circular and linear

pUC19, respectively.

There were two methods available to us to label the DNA. One is called

the nick translation; DNA polymerase I (Pol I) was used to replace some of the

nucleotides starting from nicks with their labelled analogues, in this case, Cy3-

dCTP (GE Healthcare). When Pol I detached from the DNA, it left a nicked site

some base pairs away from the original one. The DNA was first nicked by Nt.BspQI,

then the nicking enzyme was deactivated by heat. Later dATP, dGTP, dTTP, Cy3-

dCTP and Pol I were added into the solution. The mixture was incubated overnight

and then purified consecutively by phenol-chloroform extraction and QIAquick PCR

Purification Kit (QIAGEN). After the labelling, most of the pUC19 molecules had

one nick and were tagged by each nicked site with a Cy3 fluorophore.

The other method was to use a nucleic acid dye to stain the DNA directly.

In this research we chose to use a dimeric cyanine nucleic acid stain called YOYO-1

(Molecular Probes, Invitrogen; 1,271 daltons). It has not only a high affinity for

nucleic acids but also a very high fluorescence quantum yield which results in very

bright fluorescence signals. We diluted the stock YOYO-1 solution by 1,000-fold

to 1 µM using Tris-EDTA (TE, 10 mM Tris-HCl and 1 mM EDTA) buffer and

mixed the solution with the DNA samples (≈ 100 ng/µL) by a volume ratio of 4:1.

Before mixing the labelled DNA molecules with the unlabelled, concentrated ones,

the labelled DNA molecules were centrifuged through Micro Bio-Spin 30 columns
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(Bio-Rad) in order to remove the free flowing YOYO-1 in the solution to prevent

them staining the unlabelled DNA afterwards. The column selectively removed

small molecules (< 40,000 daltons or 20 bp nucleic acids) from the DNA solution.

This method has been proved effective, because the density of labelled DNA did not

change after mixing the labelled and unlabelled DNA molecules.

At the early stage of this work, the preferred labelling method had been

the nick translation using the fluorophore-coupled nucleotide Cy3-dCTP. This la-

belled the pUC19, either linear or open-circular, in a well controlled manner, and

the bonding of fluorophore to the DNA was robust because of the covalent bond-

ing of the phosphate backbone. Unfortunately, an issue regarding the conformation

of the circular pUC19 put the suitability of this method in doubt. The gel elec-

trophoresis of the samples taken from various steps of nick translation showed that

the labelled pUC19, which was supposed to have at least one nick, had a higher

mobility similar to the supercoiled pUC19 only after purification. At this moment

we cannot specify whether it is that its conformation changed from the open circle

to the supercoil or there was any profound effect of the labelling upon the mobil-

ity in gel electrophoresis. As a consequence, we chose to use YOYO-1 to label the

pUC19 instead. As shown in Figure 5.4 (b), the gel showed that the mobility of

pUC19 only slightly changed after the labelling. This is expected since the changes

of the dsDNA persistence length in a good solvent by dimeric cyanine nucleic acid

dyes has been well characterised in the literature [Bakajin et al., 1998; Doyle et al.,

2000]. Hence both the open-circular and the linear pUC19 were thought to remain

the conformations after the labelling. In this work only the same conformation of

the DNA molecules, both labelled and unlabelled ones, were mixed together to be

observed on the microscope. This allowed us to follow dilute tracer molecules in a

background of unlabelled chains.

5.1.2 Preparation of Concentrated Solutions

Here we define a concentrated solution of DNA by the concentration being higher

than ten times of its overlap concentration C?, acknowledging that this regime is

not clearly defined in the context of polymer physics [de Gennes, 1979; Doi and

Edwards, 1986]. In order to reach such high concentrations, it is most convenient

to extract DNA by ethanol precipitation and resuspend the precipitated DNA with

a small volume of TE buffer.

Ethanol precipitation is a widely used technique in molecular biology to

purify or concentrate DNA [Sambrook et al., 1989]. The highly charged phosphate

backbone of DNA can be stabilised by water molecules, which form hydration shells
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Figure 5.4: (a) The gel before stained by SYBR Gold. At the moment only the
YOYO-1 labelled DNA showed fluorescence. (b) The gel showed all the lanes after
stained by SYBR Gold. In Lane I it showed the same 1 kbp ladder as that in Figure
5.2, Lane II the supercoiled and open-circular pUC19, Lane III and IV the open-
circular pUC19, and finally, Lane V and VI the linear pUC19. The mobility of both
open-circular and linear pUC19 after labelling was slightly slower than the original
ones.

around these negative charges. On the other hand, adding ethanol to solution

reduces the effectiveness of charge screening from the hydration shells. With the

presence of positive charges, electrical attraction between the phosphate groups and

these counterions can be strong enough to form ionic bonds and hence collapse the

DNA so that it can be precipitated.

In this experiment each volume of unlabelled DNA (10–35 ng/µL) was mixed

with 0.1 volume of 3 M sodium acetate (pH 5.3) and two volumes of ice-cold absolute

ethanol. After being on ice for 15–30 minutes, the ethanol solution was centrifuged

with a high speed (≈ 20,000×g) at 0◦C for 10 minutes. Because the volume of the

microcentrifuge tube is limited to 1.5 mL, and there was normally 10–15 mL of the

ethanol solution to be centrifuged, we needed to separate the solution and centrifuge

it repeatedly in the same tube to collect all the precipitated DNA as a single, large

pellet. Afterwards the pellet was washed by 70% ethanol and centrifuged again with

the same high speed at 4◦C for 2 minutes. Later the supernatant liquid was removed,

and the microcentrifuge tube was dried at room temperature until the last traces

of fluid had evaporated. Finally the pellet was resuspended by 4 µL of TE buffer

[Sambrook et al., 1989]. Then the pellet dissolved in the buffer for overnight, and

thereafter 1 µL of the labelled DNA was added into the solution. Contrary to the

normally practised routine, we did not add the oxygen scavenger1, used to reduce

1The final concentration of the constituents would be as follows: 4.5 mg/mL glucose, 0.2 mg/mL
glucose oxidase, 0.035 mg/mL catalase and 0.5% (w/w) β-mercaptoethanol.
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Figure 5.5: The profile of the fluorescence intensity of the YOYO-1 stained DNA
in the gel shown in FIG. 5.4 (a). The front of loading wells of the gel is designated
as the origin of the distance. The conformation of the DNA corresponding to the
second, smaller peak of each profile is unclear. It might be the fluorescence from the
dimeric pUC19. However, in both samples, these molecules migrated faster than
the dimeric pUC19. See Figure 5.4 (b) Lane III–VI.

photobleaching due to the intense light beam of a fluorescence microscope, into the

buffer. The presence of any protein (e.g. glucose oxidase in the oxygen scavenger)

in the sample would have affected the absorption of ultraviolet light when using the

spectrophotometer to quantify the DNA concentration later. Therefore the samples

were kept as purified dsDNA as much as possible in order to obtain accurate readings

from the spectrophotometer.

5.2 Fluorescence Microscopy

5.2.1 Preparation for Observation

As the self-diffusion of the labelled DNA is of greatest interests in this experiment,

all the factors which affected the motion of DNA and the later tracking had to

be eliminated [Crocker and Hoffman, 2007]. The microscope had been fitted on

an optical table, which was lifted by air to stabilise it from vibration transmitted

through the floor and walls. Each sample was sealed in the small chamber using

Gene Frame (Thermo Scientific) on a standard thin glass cover slip (thickness 0.12–

0.17 mm); see Figure A.1. Gene Frame is a commercial product designed to isolate

reaction on a glass cover slip from external environments. Between the polystyrene

cover slip of Gene Frame above and the glass cover slip below the sample, there
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were two layers of Parafilm (Pechiney Plastic Packaging Company) to sustain the

aqueous solution by its waxy, hydrophobic surface. The sample was injected by a

laboratory pipette at the centre of the bottom Parafilm, where there was a hole of

5.5 mm in diameter. The glass cover slip was treated by a plasma cleaner beforehand

and the surface exposed through the hole of the Parafilm was coated by 6 mg/mL

BSA (bovine serum albumin) and later washed by deionised water. The cleaning

and coating prevented most of the DNA from adsorbing on the glass surface.

5.2.2 Observation and Particle Tracking

The samples were observed using an Olympus IX71 inverted fluorescence micro-

scope and Andor iXon EMCCD (electron-multiplying CCD) camera. The image

was magnified by an 100× oil objective (NA 1.4) and an 1.6× integrated magnifier

within the microscope. The physical size of the images taken by the camera was

51.07× 51.20 µm, provided a resolution of 512× 512 pixels.

Despite the control panel of iXon EMCCD camera is capable of changing

exposure time to under 33.3 ms, the recording frame rate is fixed at 30 frames

per second (FPS). In fact we found that the resulting average frame rate with the

exposure time set at 33.3 ms was 28–29 FPS, probably due to a lag of transmitting

and writing the raw images to the hard disc drive.

When starting the observation, we first tuned the focus to find the surface

of glass cover slip by searching for fixed fluorescent spots, which were mostly DNA

adhered on the surface. These fluorescent spots sometimes were autofluorescent

particles, but they usually had very different sizes and shapes from the DNA so

that it was easy to distinguish them from each other. After locating these spots, at

which the focus was supposed to be close to the glass surface, we rotated the fine

tuning knob to move the focus upwards to a position 25 µm above the surface.

The images were taken from several regions in each sample. One of the im-

portant criteria of choosing such regions was to avoid any slow, large fluorescent

particles that were unlikely to be DNA. The other important factor was the bright-

ness of the labelled DNA as the photobleaching limited the duration of observation

within the volume exposed to the excitation light beam. The exposure time was

always set at 33.3 ms, and there were 2,100 consecutive frames taken from each

region. The restriction of taking only 2,100 frames was posed by the file format

requiring huge amount of memory for analysis, and the accessible memory on our

computer used to perform particle tracking was just barely able to handle these. On

average, the time span of the images for each region was about 70 seconds.

In this work the particle tracking was accomplished by using an IDL (Inter-
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Figure 5.6: An example of the trajectory and the time evolution of positions in x-, y-
and z-coordinate of a tracked DNA molecule. The positions in z-coordinate shown
in the figure are actually the intensity fluctuation of fluorescent signals. In this work
we only performed two-dimensional tracking, which only required the positions in
x- and y-coordinate.

active Data Language) package2 developed by John C. Crocker and David G. Grier;

Eric R. Weeks also has contributed a few supplemental routines. This package is

capable of identifying multiple particles in each frame, according to given parame-

ters for filtering and centroid locating, and linking their positions between frames

to establish trajectories of the particles [Crocker and Hoffman, 2007].

5.2.3 Quantification of the DNA

The DNA samples were recovered from the sealed chamber on the cover slips to

quantify their concentrations. 2 µL of each sample was recovered by a 0.1–10 µL

pipette tip and put into a 0.5 mL microcentrifuge tube. The samples were then

diluted by 25-fold with TE buffer.

The concentration of DNA can be determined by its absorption of ultraviolet

light at 260 nm using a spectrophotometer. This is based on Beer-Lambert law by

which, regarding nucleic acids, an optical density (OD) of unity corresponds to a

concentration of 50 ng/µL for dsDNA [Sambrook et al., 1989]. However, instead of

using a standard cuvette, which would have a 10 mm optical path length, we used a

special cuvette designed for small volumes of sample to perform the measurement.

In accordance to the 1 mm path length of this cuvette, an OD of 0.1 now corresponds

to a concentration of 50 ng/µL for dsDNA.

Table 5.1 lists the average readings of absorption measurements following the

2This package can be downloaded at http://www.physics.emory.edu/∼weeks/idl/.
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Sample A260 δA260 A280 B320 Ratio δratio
L1 0.2331 0.0001 0.1313 0.0024 1.7902 0.0014
L2 0.2348 0.0001 0.1329 0.0042 1.7910 0.0010
L3 0.2403 0.0001 0.1378 0.0080 1.7908 0.0018

OC1 0.4143 0.0001 0.2314 0.0027 1.7997 0.0019
OC2 0.4145 0.0002 0.2312 0.0025 1.8015 0.0013
OC3 0.4428 0.0005 0.2529 0.0113 1.7858 0.0007

Table 5.1: Absorption of ultraviolet light in the unit of OD. A260, A280 and B320 is
the absorption of the sample at 260, 280 and 320 nm, respectively. B320 serves as
the background test such that it is denoted by B. The ratio is calculated as follows:
(A260-B320)/(A280-B320). The notation L stands for linear and OC for open-circular.
Each sample was repeatedly measured for five times. The values shown in this table
are the average over the five measurements for each sample. δA260 and δratio is the
standard error of A260 and the ratio, respectively.

procedures described above. Converting the readings of OD to concentrations and

taking average over the three samples from each conformation, we obtain the mean

concentration of both samples. The concentration of the open-circular pUC19 is 5.3

µg/µL and that of the linear pUC19 is 3.0 µg/µL. Notice that the ratios listed in

Table 5.1 are all very close to 1.8. These suggest that the samples are pure DNA

without contamination such as proteins [Sambrook et al., 1989].

5.3 The Self-diffusion of Entangled DNA Molecules

5.3.1 Mean-squared Displacements

The mean-squared displacement is the ensemble average of squared displacements

over a number of particles travelling in a given time interval, the lag time τl, and

can be written as

〈∆x2j (τl)〉 = 〈[xj(t+ τl)− xj(t)]2〉, (5.1)

where xj is the particle position and j the coordinate index [Crocker and Hoffman,

2007]. The particle tracking package links positions of each particle located in con-

secutive frames to form the trajectory for the particle according to given parameters.

The most important parameter of tracking is the maximum distance of move-

ment between frames. This value has to be set somewhat smaller than the average

distance between particles, otherwise the programme would mistakenly recognise

multiple particles as a single one. This particular issue mostly arises from the fact

that these particles also randomly move along the vertical directions. Several par-

ticles close to each other could appear and disappear between frames so that the
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programme would link these particles, which contribute to larger displacements in

the later stage of analysis.

The other two parameters are used to deal with the false identification of

noise and the temporary disappearance of particles, at which they moves away from

the focus. In our analysis, any trajectory sustained less than 10 frames, namely,

≈ 330 ms, was discarded for that it was likely from the noise. Particles temporarily

disappeared for at most 3 frames, ≈ 100 ms, were still considered to be the original

particles instead of new ones.

The package not just calculates the mean-squared displacements but also the

mean displacements, which is supposed to be zero for an ideal Brownian particle in

isotropic matrix. In experiments, however, it is more likely to observe horizontal

drifting in many cases. Even though we had taken precautions against such a

drifting, for instance, to maintain the temperature of the stage and the objective at

22◦C, to fix the cover slip on the stage tightly and so on, there was still a slow drifting

detected. The package does compensate such drifting by computing 〈∆x2j (τl)〉 −
〈∆xj(τl)〉2. This is the final values used as the mean-squared displacement, and the

two-dimensional mean-squared displacements,

〈∆r2(τl)〉 =
∑
j=1,2

〈∆x2j (τl)〉 − 〈∆xj(τl)〉2, (5.2)

are shown in Figure 5.7. Notice that the number of particle samples of each lag time

would be inversely proportional to τl, but the actual decline of the sample number is

worse than that since the particles eventually moved away from the focus. In order to

obtain statistically significant results, we only take the mean-squared displacements

which have more than 1,000 samples as valid results. Consequently, the range of τl

shown in Figure 5.7 is far less than the true time span of the videos.

5.3.2 The Comparison of Relaxation Times

We use the function f(τl) = aτ bl , where a and b are the fitting parameters, to fit the

mean-squared displacement versus the lag time τl. The results are as follows. The

mean-squared displacement of the linear pUC19 is fitted by a = 1.2486±0.0042 and

b = 0.9553 ± 0.0048. The mean-squared displacement of the open-circular pUC19

is fitted by a = 0.8756± 0.0145 and b = 0.7938± 0.0117. Then we consider various

time scales and try to understand the dynamics behind the results of mean-squared

displacements as follows.

The radius of gyration Rg of λ-DNA (48,502 bp) was reported to be 0.73

µm in good solvents [Smith et al., 1996]. By assuming a Kuhn length to be 300 bp
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Figure 5.7: The two-dimensional mean-squared displacements of the linear and open-
circular pUC19. The linear pUC19 demonstrates a typical self-diffusion behaviour
which is linearly proportional to the lag time. However, the open-circular pUC19
follows a power law which has an anomalous exponent 0.8. The fitting lines are also
shown in this figure: 〈∆r2(τl)〉 = 1.25 × τ0.96l (black dashed line) and 〈∆r2(τl)〉 =
0.88× τ0.79l (purple dotted line).

[Marko and Siggia, 1995a] and the Flory exponent to be 0.588 [Cotton, 1980], we

can estimate Rg of pUC19. For a linear pUC19 in good solvents, its Rg is estimated

to be 0.133 µm. Hence the overlap concentration C? of the linear pUC19 can be

easily calculated and it is 0.3 µg/µL. For an open-circular pUC19, by adopting the

result derived by Zimm and Stockmayer [1949], its Rg is estimated to be 0.089 µm

and the overlap concentration is 1.0 µg/µL.

The Rouse time of both the linear and open-circular pUC19 could be well

below the shortest lag time available in our analysis, which is limited by the fixed

frame rate of videos. The Rouse time is

τR =
4ζNR2

g

3π2kBT
, (5.3)

where the friction constant ζ = 12πηsRg and ηs is the viscosity of the solvent [Doi

and Edwards, 1986]. Here we consider the temperature to be 20 or 25◦C, thus the

corresponding viscosity of the solvent, assuming water, is 1.002×10−3 or 8.9×10−4

Pa·s, respectively. Therefore the Rouse time of the linear pUC19 is 26.55 ms at

20◦C and 23.19 ms at 25◦C. The Rouse time of the open-circular pUC19 is 7.96 ms

at 20◦C and 6.95 ms at 25◦C.

The disengagement time τ
(0)
d , on the other hand, is difficult to accurately

assess since we lack information on the entanglement length. The entanglement
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length serves as a parameter in the Doi-Edwards tube model and it is critical for

estimating the dynamics of entangled linear polymers. For the ring polymer, it is

unclear in what conditions the tube model is still relevant as a good approximation.

Nevertheless, according to the estimation of C? and τR above, we expect to see that

these pUC19 molecules fully relax and demonstrate a standard diffusion behaviour

for any lag time longer than 100 ms.

In Figure 5.7 it is clear to see that both linear and open-circular pUC19 follow

a power law, 〈∆r2(τl)〉 ∝ τ bl , but only the linear pUC19 shows a standard diffusion

behaviour in which b ≈ 1.0 according to the fitting above. For the open-circular

pUC19, despite not being highly entangled, its mean-squared displacement follows

a power law with b ≈ 0.8. The origin of this anomalous power law is unclear at the

moment.

Finally, a remark regarding the difference of the dynamics between the lin-

ear and the open-circular pUC19 should be made here. It has been reported that

concentrated ring polymers move faster than their linear counterparts at the same

concentration [Robertson and Smith, 2007; Kapnistos et al., 2008]. This is under-

standable in the dilute limit since the ring polymer has a smaller Rg than its linear

counterpart. As for the concentrated solutions, these groups of authors concluded

that ring polymers did not entangle with each other as well as linear polymers.

Therefore, the confinement on each ring polymer from the neighbouring chains was

not as effective as that in linear polymers.

Here our experimental data might support this point of view. Despite the

linear pUC19 had a lower concentration (but reached 10C?) than the open-circular

pUC19, both samples had similar magnitudes of the mean-squared displacement over

the range of lag times shown in Figure 5.7. The fact that the concentration of the

open-circular pUC19 did not reach 10C? indicates that its degree of entanglements

might not be as high as the linear pUC19 in the experiment. The experimental

results will be discussed with more details in Chapter 6.
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Chapter 6

Ring Polymers as Topological

Glass

So far we have demonstrated the theoretical calculation, the Monte Carlo simula-

tion and the experimental data of entangled ring polymers. In this chapter we will

proceed to discuss the meaning of these results obtained from Chapter 3–5. We will

show how our results can be linked to future studies, for example, to experimental

data of viscoelasticity of entangled ring polymers. More importantly, we will illus-

trate the implication of existence of topological glass according to these results. In

the last section some topics for future studies are briefly introduced. We believe

these topics will eventually help us better understand entangled ring polymers and

the topological glass.

6.1 Penetration Densities and Universality

In Chapters 3 and 4 we already discussed a simple model of entangled ring polymers,

which allowed the rings to penetrate each other. We then further developed the

model to a coarse-grained model based on the assumption that the penetration

events only occurred in a perturbative sense. Therefore, we built the model in which

the ring polymer was treated as if it was a linear chain with additional constraints

other than just the confinement of surrounding chains.

One of the most important conclusions we draw from the simulation is that

the mean number of penetrations per ring fundamentally controls the dynamics.

It is shown in Figure 4.11 that 〈m〉 represents a universal parameter of the entan-

gled ring polymers. According to Figure 4.11, therefore, one may write down a
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phenomenological equation

〈τd〉 =
τ
(0)
d

(〈m〉+ 1)2
eC0〈m〉, (6.1)

where C0 is a constant only depending on Nc and 〈m〉 following Eq. (4.19). The

exponential term can be expressed as a Taylor series such that

〈τd〉 =
τ
(0)
d

(〈m〉+ 1)2

(
1 + C0〈m〉+

C2
0 〈m〉2

2
+ · · ·

)
. (6.2)

For the cases in which there are only a few penetrations among the polymers, that

is, 〈m〉 � 1, one can approximate 〈τd〉 as

〈τd〉 ≈ τ
(0)
d

(
1 +

C0〈m〉
2〈m〉+ 1

)
= τ

(0)
d + ∆τd. (6.3)

Once C0 and 〈m〉 are determined, one can use Eq. (6.3) to estimate the relaxation

time of entangled ring polymers if the penetration events are rare. Unfortunately,

there are two problems that have to be dealt with. Firstly we currently do not have

sufficient simulation data to determine the form of C0. The only thing we know is

that the normalised relaxation time 〈τd〉/τe follows the same curve if Nc is fixed,

thus C0 must depend on Nc; see Figure 4.11. Even if we could relate Nc to the chain

density and the radius of gyration, it is still unclear how C0 could be expressed in

terms of Nc. The second problem is that 〈m〉 is determined by Ns and p, where the

probability p is an artificial parameter controlling the stochastic dynamics in the

simulation. Before we can estimate 〈m〉, the microscopic origin of p in the entangled

ring polymers should be better understood.

Nevertheless, Eq. (6.3) has an implication of great importance regarding the

viscoelasticity of entangled ring polymers. Since the steady state viscosity can be

obtained through the exact integral

η =

∞∫
0

G(t)dt, (6.4)

where G(t) is the relaxation modulus, it is also true that η ≈ Gτd with G being

an effective modulus [McLeish, 2002b]. Eq. (6.3) shows that a correction to the

steady state viscosity should be measured in the entangled ring polymers if there

are penetrations.

In real systems the situation is probably not as simple as that predicted
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by Eq. (6.3), as our model is a mean-field model based on several simplifications.

Moreover, we have assumed that each ring polymer behaves like a linear object,

and the fluctuation of the ring polymer along this linear path (the primitive path)

eventually makes it diffuse and relax from the original position. This is in contrast to

the picture in which the rings tend to segregate, according to some of the computer

simulations mentioned in Chapter 2. As yet there is no experimental evidence to

verify our model for now, this prediction requires further investigation to confirm

its validity.

An interesting remark about Eq. (6.2) is that it is very similar to the virial

expansion for the pressure of many-particle system in equilibrium. This might be

just a coincidence, because the exponential function was chosen to fit the data, and

the Taylor expansion of an exponential function is also a power series. The reasons

behind why our simulation data have such a trend deserves detailed investigation

in the future. Nonetheless, a simple interpretation can be made as follows. In our

model of loop strands, the fundamental relaxation mode is reptation. Without any

penetration the relaxation is the same as the Doi-Edwards prediction. As long as

there are penetrations, these penetrations interact with each other through the topo-

logical constraints and change the relaxation time. The effect of such interactions

between penetrations becomes stronger when there are more penetrations between

rings. Here one can treat the number of penetrations per ring m as the counterpart

of the particle density ρ in the virial expansion. As a result, one may further express

the relaxation time of penetrating loop strands as follows:

τd

τ
(0)
d

= 1 + C1m+ C2m
2 + C3m

3 + · · · , (6.5)

where Ci, i = 1, 2, 3, · · ·, are the dimensionless coefficients corresponding to the

virial coefficients in the virial expansion. At this moment, unfortunately, there is no

analytic calculation which gives these coefficients.

6.2 Implications of Simulation and Experimental Data

6.2.1 Temperature Dependence of Viscosity

By comparing Figures 4.7 and 4.11, one may want to generalise the expression of Eq.

(6.1) in terms of more accessible variables. Since 〈m〉 can be determined by Ns and

p, see Eq. (4.19), one can use the parameters Ns and λ, a function characterising

the extent of penetrations, to express the relaxation time. As a result, the steady
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state viscosity of entangled ring polymers becomes

η(T ) ≈ Gτd = η0(T )eλ(T )Ns , (6.6)

where G is an effective relaxation modulus and η0(T ) = Gτ0(T ) the viscosity be-

fore penetrations taking effect. The relaxation time τ0 appears to depend on tem-

perature explicitly since τ0 ∼ ζNsR
2
g/kBT . However, for ring polymers in solu-

tions ζ ∼ kBT/6πηslp, and Rg ∼ Nν
s lp, thus both quantities depend on temper-

ature as well. The persistence length is inversely proportional to temperature, as

lp = EyI/kBT , where Ey is the Young’s modulus and I = πd4/64 [Doi and Edwards,

1986]. Although the temperature dependency of ηs can be in forms of exponential

functions, for example, in the Arrhenius model, but this dependency is irrelevant in

our consideration. We are interested in the effect of the topological constraints in

this study, and the ring polymers have been assumed capable of relaxing through

thermal fluctuation. Therefore, the relevant temperature is likely of the order 100–

102 ◦C, and ηs can show a weak temperature dependency at such temperatures,

like the viscosity of water near room temperatures. Comparing these quantities, we

conclude that τ0 may be inversely proportional to temperature under the conditions

relevant to our model.

The parameter λ is probably a function of density ρ, the number of segments

per unit volume. In our simulations, ρ did not explicitly appear in the coarse-grained

model. Instead we used the penetration probability p to determine the extent of

penetrations. The penetration probability p can be crudely estimated by the volume

fraction of Nc chains occupying a space V ∼ R3
g, where Nc ∼ ρR3

g/Ns, and thus

p ∼ Nsled
2Nc

V
∼
Nsled

2ρR3
g/Ns

R3
g

= ρled
2. (6.7)

Moreover, λ should also reflect the fact that, with more rings occupying the volume

V , the penetrations will significantly prolong the relaxation process. This corre-

sponds to the growth rate of 〈τd〉/τe that varies with different values of Nc shown

in Figure 4.11. It is unclear what the temperature dependency of λ looks like, but

λ is certainly a function of p and Nc. From the discussion above, λ essentially is

a function of persistence length and so it must depends on temperature. The key

is the mathematical form of λ, in particular, the prefactor may be important to

determine how it should vary with temperature.

Compared with the Vogel-Fulcher law of typical glass formers [Binder and
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Kob, 2011],

η(T ) = η0 exp

(
B

T − T0

)
, (6.8)

Eq. (6.6) also shows an exponential growth in viscosity but can be dependent on

temperature in a different fashion. The Vogel-Fulcher law does not have robust

theoretical foundation, but it gives a good representation of the experiment data.

Likewise, Eq. (6.6) may represent a special type of the glass transition which has a

different origin of the frozen molecular motion. Indeed this resonates with our idea

that the entangled ring polymers form a disordered material with slow dynamics

simply due to the topological constraints. More importantly, our Monte Carlo code

solved a well posed problem, the curvilinear diffusion in inter-penetrating rings,

which could be extended to lattice trees. Thus it represents a potentially tractable

universal class of glass formers, indifferent of, for instance, chemical compositions

of the rings. In this sense Eq. (6.6) is considered universal for the topological glass.

6.2.2 Time Dependence of Mean-squared Displacements

At the end of Chapter 5 we compared the experimental data with the Rouse times. It

turned out that the time scales of observation were likely longer than the disengage-

ment times of these entangled DNA molecules, thus a standard diffusion behaviour

was expected for both topologies of DNA. It is puzzling, however, that the circu-

lar DNA showed a sublinear time dependence in its mean-squared displacements,

〈∆r2(τl)〉 ∝ τ0.79±0.01l . Milner and Newhall [2010] reported the mean-squared dis-

placement of centrality, considered as the counterpart of centre of mass in their

model of lattice trees, scaled with time as 〈∆c2〉 ∼ tb where b = 0.75–0.8. However,

this may be just a coincidence that this result agrees with our observation. We need

to stress that this reported result was based on the scenario in which a lattice tree

diffused between an array of fixed obstacles. This is the limit in which the ring must

compactify to the conformation of a lattice tree. Such a regime is only expected

when the concentration or the molecular weight of ring polymers is sufficiently high.

We already showed in Chapter 5 that the concentration of the circular pUC19

was only about five times of its overlap concentration. Therefore we are sceptical

that the sample was sufficiently entangled to show properties similar to that in

permanent confinement of gel fibres. Furthermore, in a recent molecular dynamics

simulation reported by Rosa et al. [2011], the authors showed that the mean-squared

displacements of unknotted rings followed the standard linear time dependence when

above the squared radius of gyration. In our experimental data, the smallest mean-

squared displacement is beyond the squared radius of gyration, hence the data should
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demonstrate a linear time dependence as well.

One possible explanation of the anomalous exponent is that it is an artefact

of the particle tracking. According to our experience of performing the fluores-

cence microscopy experiment, many sources can introduce errors into the tracking

of labelled DNA. The tracking is done via automatic image processing and centroid

locating, thus inevitably the quality of images greatly affects the outcome. Although

we had taken a lot of effort to eliminate several possible error sources, the tracking

might not be as accurate as we expected and possibly led to some systematic error.

More importantly, our data show that the conditions of the experiment were

far from where we would have hoped to achieve. As explained in Chapter 2 and 3, the

significantly slower stress relaxation of penetrating rings is detectable only when the

ring polymers are highly entangled. It is obvious that our samples were just barely

entangled such that the relaxation time was hardly affected by penetrations between

rings. One critical factor which made the experiment fail to reach the necessary

entangled state was that the circular DNA we used was too short. The contour

length of pUC19 is only about nine times of its Kuhn length in good solvents. In

order to create sufficient entanglements for each ring, the concentration of the DNA

would have needed to be very high, but we only managed to concentrate the circular

DNA to a concentration even less than 10C?. Without a plasmid up to tens of kilo

base pairs, it was impossible to test either our speculation of the topological glass

or the properties of ring polymers in gels at a concentration which was reasonably

achievable in a standard biochemical laboratory.

6.3 Some Topics for Future Studies

6.3.1 Improved Simulation Methods

As it was indicated in Chapter 4, a main advantage of our coarse-grained model is

that it guarantees the loop strands are sufficiently long compared with the entangle-

ment length without overwhelming the computation power. We estimate that the

performance of our code scales with the size of simulated system as O(NsNc). This

advantage have been proved beneficial by the simulation data because the mean re-

laxation time scaled with Ns exponentially. If we had simulated the system down to

monomeric scale, the computation time would have been roughly Ne times longer,

where Ne is the number of monomers between entanglements. On the other hand,

such a coarse-grained model ignores mesoscopic structure and dynamics, which could

also be important to the phenomena we are interested in. In particular the diffu-

sive motion of these loop strands is assumed a priori without rigorous mathematical
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derivation.

An alternative approach is to employ highly detailed simulations, either

Monte Carlo simulations or molecular dynamics simulations, to study the ring poly-

mers. Many researchers have done such simulations for years, but they are too slow

for the dynamics that interests us. With the progression of computation hardware

in the past decade, now we have more and more computation power at our disposal

at a reasonable price. The development of parallel computation, especially the in-

troduction of general-purpose computing on graphics processing units (GPGPU),

is attracting a lot of attention among the community of scientific computation.

Nonetheless, for simulating dynamics of the glass transition, one may need more

sophisticated algorithms than parallel computation.

In the past few decades a majority of research of the glass transition was done

by using computer simulations. It was mainly because the strongly slowing dynamics

of the glass transition made experiments very difficult to proceed. However, this is

also a problem for computer simulations, especially for the molecular dynamics

simulations due to the extremely broad time scales involved in the simulations.

Certain levels of simplification to release the computation burden is still necessary

when using most of the readily available machines in the nowadays marketplace,

which are already several orders more powerful than the machines in the 1980s. In

any case, a revision of the simulation model is likely to be fruitful when parallel

computation is implemented into the algorithm in the future. A dynamic coarse-

graining algorithm may be helpful to manage computation resources in a more

efficient way. We wish the new detailed simulation will also benefit us to investigate

the validity of the model of lattice trees described in Chapter 3.

6.3.2 Penetrations as a Network of Percolation

In Chapter 4 it was briefly mentioned that the process of penetrations between rings

could be seen as a problem of directed graph. Here we are going to explore this

idea a bit more. We have discussed the similarity between the penetration of ring

polymers and the percolation model on a directed graph. Typically the percolation

model on random graphs is limited to the graphs with Poisson degree distribution

at their vertices [Callaway et al., 2000]. This is one of the major differences between

our model and the random graph, as the degree of each vertex in our model is

bound to the segment number Ns. Nonetheless, when the penetrations are rare,

this penetration graph should approximate to the percolation model on a random

graph.

From a different point of view, one can also treat the entangled ring polymers
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(a) (b)

Figure 6.1: (a) An example of bond percolation which represents the penetrations in
a melt of ring polymers. (b) The bond percolation shown in (a) can be mapped to a
spin system according to the corresponding dynamic behaviours of each site. There
are rings without penetration (open circles), rings with exclusive active penetrations
(black closed circles) and rings with passive penetrations (red closed circles).

as a bond percolation problem on lattices instead of graphs. This is detached from

our model based on the tube model since there is no tube introduced to the scheme

below, although it is still true that each ring is thought as a lattice tree. The pur-

pose of this new scheme is not to calculate the measurable quantities quantitatively

but merely to illustrate how penetrations affect the dynamics. Let us consider a

hypercubic lattice with a dimensionality δ. On each site there is a particle present-

ing a ring polymer. The bonds of the lattice represent the segments of each ring

polymers, namely, Ns. Thus for rings with Ns segments, the lattice has to have a

dimensionality δ = Ns/2.

The simplest situation in the scheme is that there is no penetration between

polymers. Hence the lattice can present melt of linear or branched polymers. Such a

model can be employed in Monte Carlo simulations. Given a probability to exchange

a pair of nearest-neighbouring polymers, it can simulate the relaxation process of

the melt. Once all the possible configuration changes have been made, in which the

time correlation of the sites becomes zero, one may see the system as being fully

relaxed. The relaxation time is supposed to be the total time steps normalised by

the size of the simulated system.

One can also randomly add bonds between nearest-neighbouring sites to

represent penetrations of ring polymers; see Figure 6.1 (a). Every bond is designated

with a specific direction, which is from the penetrating ring towards the penetrated
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one. At this stage one already has a bond percolation problem in hand, although it

is a slightly more complicated one since the bonds are directed. In any case, what

really complicates the situation is the consequence of adding these bonds. As we

have discussed in Chapter 4, the relaxation of ring polymers is directly restricted by

passive penetrations. In such a percolating system, the penetrating rings are still

able to move and to exchange the site with other available rings. On the contrary,

any penetrated ring is pinned down at its own site until its passive penetrations are

all removed.

In a classic percolation system, either it is site percolation or bond percola-

tion, there is a probability threshold P∞ which determines the transition point above

which all the sites are linked as an infinite cluster. It is proved that P∞ is related to

dimensionality of the lattice. From the previous computer simulations it is shown

that the threshold P∞ decreases with the increasing dimensionality [Stauffer and

Aharony, 1992]. Similar to these classic percolation systems, one also expects that

the configuration of the lattice system mentioned above shows an infinite cluster at

an arbitrary time if the penetration probability p′ (denoted differently from p used

in simulations for clarification) is larger than a certain threshold.

The real challenge of analytic calculations for this model, however, will be the

dynamic process of exchanging rings according to the type of penetrations. Only the

pure sources of the directed bonds and the bond-free sites are able to move freely.

When there are a lot of penetrations between the rings, it is more likely that most

of the sites are constrained by some others. Intuitively, a bigger cluster takes longer

time to fully shuffle its configuration, namely, the time correlation function of the

sites within the cluster does not vanish even a long time has passed. Although this

seems to be a very different model from that discussed in Chapter 4, one may be

able to obtain analytic results of C0 and Eq. (6.1) from studying this percolation

model.

6.3.3 Connections to Spin Glass

The percolation model described above can be expanded to a related field of disor-

dered solids. In a ferromagnet the random dilution of spins with competing ferro-

and antiferromagnetic interactions leads to a frustrated state [Binder and Kob,

2011]. At a temperature Tf a freezing transition occurs, and such ferromagnets are

called the spin glass. If on one particular observation a spin is ~S
(1)
i then if it is

observed again a long time later, there is a nonvanishing probability that ~S
(2)
i will

point in the same direction [Edwards and Anderson, 1975]. In other words, the time

correlation of the spin will be 〈~S(1)
i · ~S(2)

i 〉 6= 0. The Hamiltonian of such a spin
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system can be written as

H = −
∑
i 6=j

Jij(~Si · ~Sj)−H
∑
i

Szi . (6.9)

The lattice sites are labelled by i (and also j when necessary). Each site carries a

n-component spin ~Si of length |~Si| = 1. Jij is the exchange interaction energy and

H the strength of magnetic field. This is a general expression of the n-vector model

[Chaikin and Lubensky, 2000], but actually a Potts model with q = 3, i.e., each spin

having three states available, is sufficient to describe the percolation of penetration

network.

In our percolation model there will be three different states of each site and

two types of dynamic behaviour. Each site can be occupied by a bond-free ring,

an active-penetration-exclusive (APE) ring or a penetrated (PP) ring. Only the

first two are able to exchange its site with nearest-neighbouring sites, if they are

available. Hence one may model the lattice as each site having a spin with a value of

1, 0 or -1 to present its state; see Figure 6.1 (b). By intuition one can imagine that

there should be configurations in which a great number of APE rings are unable to

find sites to exchange their positions. As a result, these spins are trapped in the

frustrated states and the configuration is frozen.

Although the idea is very simple, the challenges come from how one can write

down the proper exchange interaction energy Jij for such a percolation system. It

is obvious that the exchange energy between sites of different states should vary

according to the combination of the pairs. For example, exchange between a bond-

free ring and a PP ring is forbidden since the PP ring is trapped by penetrations.

In the theoretical model of spin glasses, the randomness of the system is determined

by Jij via a probability distribution P (Jij). If following the same approach, then a

more complicated P (Jij) has to be used instead of the simple Gaussian distribution

which gives P (Jij) = P (−Jij) [Binder and Kob, 2011]. An even trickier issue is how

the bonds linked between APE and PP rings are modified once APE rings change

sites. At this moment it is unclear how one can progress with this spin model, but

the resemblance between it and the percolation model should not be ignored easily.
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Chapter 7

Conclusions

The goals of this work were to build a theoretical model for studying the dynamic

properties of unknotted ring polymers at high densities, and to measure such prop-

erties experimentally. The topological constraints emerging from the circular topol-

ogy could lead to a glassy state in which the process of stress relaxation became

extremely long. Ultimately we were looking for evidence of such glass transition.

The development of the theoretical model began from adopting the ansatz

that the conformation of entangled ring polymers resembled a lattice tree. Our

mean-field model incorporated with the argument based on a recurrence relation

describing the branching structure of lattice trees. This model was further simpli-

fied into a coarse-grained model representing the entangled ring polymers as loop

strands, and the simplified model was employed in the Monte Carlo simulation. We

also attempted to produce ring polymers with a narrow distribution of molecular

weights. The circular DNA pUC19 was replicated via bacterium transformation in

a massive scale. The DNA was processed by proper enzymes to ensure its conforma-

tion remained a trivial circle. The dynamics of the DNA was studied by observing a

trace of labelled DNA in the concentrated DNA solution via fluorescence microscopy.

The major results and findings of this research are as follows. With the

argument of structural recurrence, the grand canonical partition functions of a lattice

tree were easy to calculate. The volume fraction of ring polymers of which the mean-

field model is to hold falls in the range N
1/4
s (d/lp)

2 � φ . 1. Each ring polymer—as

a lattice tree—can be viewed as a linear object with an end-to-end distance of the

backbone section as

Rb &

(
d

lp

)2/3

N1/3
s lp. (7.1)

These results have provided the basis of the coarse-grained model employed in the

Monte Carlo simulation and the experimental conditions for using the circular DNA
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as the ring polymer.

The Monte Carlo simulation showed that the relaxation time increased ex-

ponentially with the increasing length of ring polymers. The relaxation time also

increased with the increasing number of rings. The number of rings, which corre-

sponded to the actual system size in the simulation, was associated with a reversible

percolating network formed by the penetrations between rings. More importantly,

the number of penetrations per ring m was identified as a universal parameter which

related to the relaxation time as follows:

τd =
τ
(0)
d

[m(p,Ns) + 1]2
exp[C0(Nc)m(p,Ns)]. (7.2)

This relation suggested that the viscosity of penetrating loop strands could be writ-

ten in the form η(T ) = η0(T ) exp[λ(T )Ns]. The viscosity grew exponentially with

the increasing penetrations, and it might have a different temperature dependency

from the common glass transition. The simulated system essentially represents a

potentially tractable class of glass formers.

As for the experiment, the translational movement of the concentrated linear

and circular DNA was tracked through the particle tracking technique. The circu-

lar DNA showed a sublinear time dependence in its mean-squared displacements,

〈∆r2(τl)〉 ∝ τ0.79±0.01l . This result was unexpected since the range of mean-squared

displacements was above the squared radius of gyration; a linear time dependence

should have been shown in the data instead. Unfortunately, the experimental data

were not enough to clarify the origin of this anomalous behaviour. Although the

experiment turned out to be inconclusive, this was mostly due to the limitations of

the experimental conditions rather than conclusive evidence that such topological

glass is not present.

In spite of the inconclusive result, our experimental method has shown its

potential for studying the dynamics of entangled ring polymers. The length and

conformation of DNA can be easily controlled by using appropriate enzymes. There

are also many techniques to manipulate or label DNA for specific purposes or con-

ditions. The particle tracking technique used in this work is capable of tracking

a great number of particles automatically, therefore it can save a lot of time and

achieve higher quality of results.

Furthermore, the theoretical models and simulation suggest that the topo-

logical glass may be found in entangled ring polymers. Although it only included

penetrating loop strands, the model employed in the simulation can be extended

to include lattice trees. Treating each entangled ring polymer as a phantom lattice
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tree established a reasonable description of such a system. Equilibrium properties,

such as the average size of rings, can be calculated with the topological constraints

improvised into the mathematical expression. Therefore, our models and simulation

have demonstrated that studying the entangled ring polymers qualitatively is well

achievable.

The work described in this thesis is just a beginning of studying the dynam-

ics of entangled ring polymers and the topological glass. Several topics for future

studies have been discussed in Chapter 6. Other than improving the simulation and

considering related analytic models of the glass transition, the following research

directions may also enhance the understanding of such systems.

The Monte Carlo simulation has provided the information of dynamics of the

penetrating loop strands. The coarse-grained model can be extended to penetrating

lattice trees based on this information. This can be done by considering each lattice

tree as a combination of multiple loop strands and slipping knots at branching

points. The new model can be employed in the Monte Carlo simulation with only

minor changes in the current programme code.

The grand canonical partition functions of lattice trees led to the equilibrium

properties in the calculation, but the cases of exerting steady forces on both sides of

the backbone section was overlooked in this thesis. A detailed calculation for such

conditions may be helpful to the understanding of how entangled ring polymers

response to the topological constraints. Its predictions also can be used to be com-

pared with experiments using optical tweezers to stretch a confined ring polymer in

the future.

Finally, we still believe that the topological glass may be physically accessible

in experiments, as our simulation analysis has shown in this thesis. The circular

DNA should have been far beyond entangled states if very long DNA at the same

concentration had been used in the experiment. Using very long plasmid DNA

(> 50 kbp), an entangled state can be reached at a concentration of the order of

100 ng/µL. We estimate that the corresponding DNA concentration of the regime

considered in our model will be at the order of 10 µg/µL. Preparing DNA solutions

in a volume of 10 µL at such concentrations is manageable in a standard biochemical

laboratory. Hopefully experimental evidence of the existence of topological glass,

for example, in concentrated plasmid DNA solutions, can be found in the future.
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Appendix A

Protocols and Procedures of the

Experiment

A.1 Sample Preparation

• The λ-DNA (48,502 bp) for testing purposes is a commercial product manu-

factured and sold by Fermentas. The stock concentration is 0.3 µg/µL and

the weight of the DNA for each aliquot is 500 µg.

• The circular DNA pUC19 (2,686 bp) is produced from DH5α E. coli cells (New

England Biolabs Inc.) via transformation. The source pUC19 is a commercial

product manufactured and sold by New England Biolabs Inc. The protocol of

transformation and growing the E. coli is as follows.

a. First thaw a tube of DH5α E. coli cells on ice for 10 minutes.

b. Add 0.5 µL DNA solution containing 0.5 ng pUC19 for each 5 µL of the

E. coli cells. Prepare three aliquots, and add pUC19 into two aliquots

and one without it. Carefully flick the tube 4–5 times to mix cells and

pUC19. Do not vortex the tube.

c. Place the aliquots on ice for 30 minutes. Do not vortex the tube.

d. Heat shock the aliquots at exactly 42◦C for exactly 30 seconds. Do not

vortex the tube.

e. Place the aliquots on ice for 5 minutes. Do not vortex the tube.

f. Dilute the aliquots containing pUC19 100- and 200-fold, respectively, in LB.

Dilute the aliquot without pUC19 100-fold in LB.

g. Spread 25 µL of the diluted cells from each aliquot on a LB agar plate

containing ampicillin, respectively. Incubate overnight at 37◦C.
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h. Inspect the colonies grown on the LB agar plates. Note that the cells with-

out pUC19 should not be capable of forming any colony on LB agar plate

against ampicillin. Follow the instruction of QIAGEN Plasmid Mega Kit

to grow the E. coli in LB. After spinning in LB for an appropriate time,

isolate and purify the pUC19 from the bacteria in LB using the kit.

• The oxygen scavenger is prepared as follows. Each 100 volumes contain (1)

glucose (150 mg/mL) 3 volumes, (2) glucose oxidase (20 mg/mL) 1 volume,

(3) catalase (3.5 mg/mL) 1 volume, (4) β-mercaptoethanol (50%, ∼ 7.15 M)

1 volume and (5) TE buffer 94 volumes.

A.2 Sample Characterisation

• Concentration Measurement Using Spectrophotometer

a. Dilute the sample down to a concentration less than 500 ng/µL.

b. Turn on the desktop PC and start the RNA/DNA software module of

spectrophotometer. Tick the option background check and set the

wavelength to be 320 nm.

c. Transfer 5 µL of 1× TE buffer on the cuvette lens (specifically designed for

tiny drop volumes) of the spectrophotometer to perform blank measure-

ment. Clean the lens and transfer 5 µL of each sample on the cuvette

lens. Start the measurement and repeat the procedure until all samples

has been measured. Clean the lens when finished.

d. Notice that this cuvette has a shorter optical path length thus the reading

requires a correction factor 10 to match the normal cuvette; that is, now

the reading 0.1 represent a concentration 50 ng/µL for dsDNA.

e. The ratio A260/A280, or (A260 − B320)/(A280 − B320) if background check

performed, of a pure DNA sample should be 1.8.

• Gel Electrophoresis Using Agarose Gel

a. Weigh 0.7 g agarose powder on a balance for each 100 g solution (for prepar-

ing 0.7% agarose gel).

b. Dissolve the agarose with 1× TAE (Tris-acetate-EDTA, 40mM Tris, 20mM

acetic acid and 1mM EDTA, pH 8.0) buffer in a beaker until the whole

solution reaches the wanted concentration.

c. Heat the solution using a microwave oven until it is nearly boiled.
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d. Cool the whole beaker by water flow until hands can hold the beaker.

e. Pour the solution into a gel mould with the well mould in place. Wait for

30–60 minutes.

f. Remove the well mould and put the gel mould with the gel altogether in an

electrophoresis tank. Pour 1× TAE buffer into the tank until the whole

gel is covered by the buffer.

g. Prepare samples to run the gel electrophoresis. For each five volumes of

sample, add one volume of loading dye and mix. Note that the concen-

tration of DNA sample is recommended to be lower than 10 ng/µL, or

the volume of sample injected to each well should not be more than 20

µL, to prevent saturation of fluorescent signal during scanning later.

h. Carefully inject each sample (loading dye added) into the wells by pipette.

Connect two electrodes to the power supply. Be aware of the relative

position of the wells and the two electrodes. Set the voltage to 75 V (or

a voltage giving an electric field 7.5 V/cm) and run the electrophoresis

for one hour.

i. Turn off the power supply and remove the gel from the mould. Prepare 50

µL of 1× TAE buffer with 10 µL SYBR Gold (nucleic acids dye) stock

solution added in. Gently stir the buffer until the dye is uniformly mixed.

Soak the gel into the buffer and wait for 15–20 minutes. Put the gel on

a ultraviolet light table or scanner to see the result.

A.3 Nick Translation

1. First of all the DNA to be labelled has to be nicked. For every 250 µL reaction

it contains 25 µL 10× NEB (NE Buffer) 2, 10 µg of DNA and deionised water.

Optional: Remove a 25 µL aliquot for agarose gel test later. Then add 2 µL

of 10 unit/µL Nt.BspQI into the solution. Incubate the aliquot at 50◦C for

2 hours. Deactivate the nicking enzyme at 80◦C for 20 minutes. Optional:

Remove a second 25 µL aliquot for agarose gel test later.

2. Now the DNA is labelled via nick translation. Firstly add 2.5 µL of 2 mM

dATP, dTTP and dGTP into the reaction, respectively. Then add 5 µL of Cy3-

dCTP stock solution into the reaction. Finally add 10 µL of DNA polymerase

I into the reaction. Incubate the aliquot at 25◦C overnight. Optional: After

the reaction, remove a third 25 µL aliquot for agarose gel test later.
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3. Extract the DNA once with equal volume of phenol and once with chloroform

from the aqueous phase after a short centrifuge in a tabletop centrifuge. Most

of the dye and the enzymes end up in the non-aqueous phase.

4. Purify the DNA from free nucleotides remaining in the solution by using QI-

Aquick PCR Purification Kit (split reaction into two) or gel filtration with

Micro Bio-Spin 30 columns (split reaction into three). Alternatively, it can

also be purified via ethanol precipitation especially when very long DNA (>

10 kbp) is labelled. Remove the final 25 µL aliquot for agarose gel test.

5. Prepare 0.7% agarose gel with TAE buffer and perform gel electrophoresis

with 75 V for one hour to confirm the success of labelling.

A.4 Extraction Using Ethanol Precipitation

1. Prepare the DNA sample whose concentration is between 10–30 ng/µL. Mix

one volume of the DNA sample with 0.1 volume of 3 M sodium acetate (pH

5.3).

2. Optional: Add 1–10 µL of the Cy3 labelled DNA sample into the mixture if it

is to be observed. Be aware that YOYO-1 labelled DNA is very likely to lose

the affinity of these fluorophores after the precipitation.

3. Add two volume of ice cold absolute ethanol into the tube and mix by vortex.

Put the tube on ice for 15–30 minutes.

4. Transfer the ethanol solution into a single 1.5 mL microcentrifuge tube and

centrifuge the solution with a high speed (≥ 15, 000×g) at 0–4◦C for 10 min-

utes. Remove the supernatant fluid carefully and be aware not to let pipette

tip contact the pellet or the tube wall above it. Repeat this process using the

same microcentrifuge tube until all the ethanol solution has been centrifuged.

5. Fill the tube half way with 70% ethanol solution and centrifuge the sample

with the same high speed at 4◦C for 2 minutes. Remove the supernatant

carefully as the last step. Put the tube on bench at room temperature or on

a dry bath heater at 45◦C until the last traces of fluid have evaporated.

6. Dissolve the DNA pellet with deionised water or TE buffer. Note that up

to 50% of the DNA is smeared on the wall of the tube (mostly above the

pellet). To recover all of the DNA, it is necessary to work a drop of fluid on

the tip backward and forward over the appropriate quadrant of wall. For more
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Gene Frame

ø 5.5 mm
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Parafilm

15×15 mm
Parafilm

Gene Frame
cover slip

Figure A.1: Instruction diagram of the cover slip with Gene Frame.

detailed information of the protocol please refer to the book of Sambrook et al.

[1989].

A.5 Preparation for Microscopy

1. Process 25×45 mm glass cover slips (thickness 0.12–0.17 mm) in a plasma

cleaner for 15 minutes. Cut Parafilm into 13×13 and 15×15 mm squares.

Punch a hole (diameter ≈ 5.5 mm) at the centre of each 13×13 mm Parafilm

using a typical paper puncher. Notice that in order to have a clean edge of

the holes, you will have to punch the Parafilm with several layers of paper.

2. Put a 13×13 mm Parafilm at the centre of a 25×45 mm processed cover slip.

Put a 15×15 mm Parafilm on a polystyrene cover slip of Gene Frame and press

the Parafilm with a curved object to ensure that it tightly fits on the surface.

Gently heat the 25×45 mm cover slips on a lens tissue via dry bath heater

at 55◦C for 30 minutes, then press the Parafilm with your fingers carefully to

make it tightly fit on the surface.

3. Take a Gene Frame and follow the manual to put off the plastic sheet of Gene
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Frame. Carefully place the Gene Frame on the 25×45 mm cover slip. Now

it should surround the 13×13 mm Parafilm. Press the edge of Gene Frame

through the plastic sheet still covering the other side to ensure the Gene Frame

tightly fit on the glass surface. Now put off the remaining plastic sheet. Notice

that the surface of Gene Frame is very sticky so be careful not to touch or let

any object contact it.

4. Inject 5 µL BSA solution (6 mg/mL) inside the hole of the 13×13 mm Parafilm

and rinse it with deionised water after 5 minutes. Let the surface dry and then

transfer 5 µL of sample solution inside the hole of the 13×13 mm Parafilm.

5. Slowly cover the Gene Frame using the polystyrene cover slip with the 15×15

mm Parafilm facing the 13×13 mm Parafilm. Be aware that if the sample

is very aqueous, the sample will easily flow through a gap between the two

Parafilm layers. Use a finger to press the edge of the Gene Frame to make it

air tight sealed.

6. Store the whole cover slip in a box at 4◦C.

A.6 Fluorescence Microscopy (Using Olympus IX71)

1. Turn on the desktop PC and mercury lamp burner. Also turn on both the stage

and objective temperature controlling devices (including the cooler pump).

Open aperture to let the light pass through the objective. Start the control

panel of Andor iXon EMCCD camera and wait 20–30 minutes for the camera

cooling down to −70◦C and the temperature of stage and objective reaching

the wanted range.

2. Apply some immersion oil to the 100× oil objective (NA 1.4). Remember

that the magnifier under the filter cube rotor has to be pulled out (1.6×) if

the software has been calibrated according to this set up. Place the sealed

sample above the objective on the stage and fix its position tightly. Raise the

objective until the immersion oil slightly contact the cover slip and squash.

3. Rotate the filter cube rotor to WIG for Cy3 or the other proper cube set,

depending on the fluorescent dye used on the sample. Choose a saved profile

or change the camera setting manually, e.g., EM gain, pre-gain, exposure time,

etc., then click Live button to observe the microscopic image.

4. Rotate the coarse tuning knob to find some static bright spots, where the

focus is possibly near the surface of the glass contacting the sample solution.
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Use the fine tuning knob to raise the objective by 25 µm (25 clicks, counter-

clockwise). Fix at the position of the objective and only move the stage to

search for suitable regions for observation and recording.

A.7 Recording Images

1. Search for a region in which there are around 100 visible labelled DNA molecules.

2. Determine a proper frame interval by observing the random motion of the la-

belled DNA. For more details please refer to the paper of Crocker and Hoffman

[2007]. Choose an appropriate exposure time and number of averaging frames

according to the quality of image.

3. If the frame interval required is longer than 30 seconds, record the images by

taking snapshots and control the aperture manually to protect the labelled

DNA from photobleaching. Use a timer to count the interval as accurate as

possible.

4. If the fame interval required is shorter than 30 seconds, set a suitable exposure

time and frame averaging number and record videos while exciting the labelled

DNA continuously. Due to the large size of saved file, it is not recommended

to exceed 2,100 frames fro each recording.

5. Save the images or videos in TIFF format (default 14-bit TIFF) and copy the

files to an external USB hard disc drive. Leave saved files on the desktop PC

as backup for future recovery.

A.8 Particle Tracking Using IDL

The particle tracking kit for IDL, created by John C. Crocker and David Grier, was

used to track the labelled DNA in the recorded images of fluorescence microscopy.

To read the tutorial please visit http://www.physics.emory.edu/∼weeks/idl/. For

more detailed discussions of the error sources please refer to the paper of Crocker

and Hoffman [2007]. Note that the default save format of the iXon camera is 14-

bit TIFF. In order to read the file correctly in IDL using readtiffstack.pro, the main

array to store the pixel data has to be declared by LONARR instead of the original

BYTARR (line 22 and 23). In epretrack.pro, line 106, the option /lomem should

be deleted. This is (probably) a legacy option used when the user wants to save

memory. But when run on CSC (The University of Warwick) Linux desktop an
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syntax error would be shown and terminate the routine. The deletion of this option

prevent the routine from termination and does not affect the execution. For more

details of the programmes in this package please refer to the comments in the source

code.
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