
Efficient implementations of machine vision algorithms
using a dynamically typed programming language

WEDEKIND, Jan

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/6633/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

WEDEKIND, Jan (2012). Efficient implementations of machine vision algorithms
using a dynamically typed programming language. Doctoral, Sheffield Hallam
University.

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. Users may download and/or print
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/

Efficient implementations of machine vision algorithms
using a dynamically typed programming language

WEDEKIND, Jan

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/6633/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

WEDEKIND, Jan (2012). Efficient implementations of machine vision algorithms
using a dynamically typed programming language. Doctoral, Sheffield Hallam
University.

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. Users may download and/or print
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

Efficient Implementations of
Machine Vision Algorithms
using a Dynamically Typed

Programming Language

Jan Wedekind

A thesis submitted in partial fulfilment of the

requirements of

Sheffield Hallam University

for the degree of Doctor of Philosophy

February 2012

http://www.wedesoft.de/

Abstract

Current machine vision systems (or at least their performance critical parts) are predo-

minantly implemented using statically typed programming languages such as C, C++, or

Java. Statically typed languages however are unsuitable for development and maintenance

of large scale systems.

When choosing a programming language, dynamically typed languages are usually

not considered due to their lack of support for high-performance array operations. This

thesis presents efficient implementations of machine vision algorithms with the (dynam-

ically typed) Ruby programming language. The Ruby programming language was used,

because it has the best support for meta-programming among the currently popular pro-

gramming languages. Although the Ruby programming language was used, the approach

presented in this thesis could be applied to any programming language which has equal

or stronger support for meta-programming (e.g. Racket (former PLT Scheme)).

A Ruby library for performing I/O and array operations was developed as part of this

thesis. It is demonstrated how the library facilitates concise implementations of machine

vision algorithms commonly used in industrial automation. That is, this thesis is about

a different way of implementing machine vision systems. The work could be applied to

prototype and in some cases implement machine vision systems in industrial automation

and robotics.

The development of real-time machine vision software is facilitated as follows

1. A just-in-time compiler is used to achieve real-time performance. It is demonstrated

that the Ruby syntax is sufficient to integrate the just-in-time compiler transparently.

2. Various I/O devices are integrated for seamless acquisition, display, and storage of

video and audio data.

In combination these two developments preserve the expressiveness of the Ruby program-

ming language while providing good run-time performance of the resulting implementa-

tion.

To validate this approach, the performance of different operations is compared with

the performance of equivalent C/C++ programs.

i

Publications

Refereed Journal Articles

• M. Boissenin, J. Wedekind, A. N. Selvan, B. P. Amavasai, F. Caparrelli, and J.

R. Travis. Computer vision methods for optical microscopes. Image and Vision

Computing, 25(7):1107–16, 07/01 2007 (Boissenin et al., 2007)

• A. J. Lockwood, J. Wedekind, R. S. Gay, M. S. Bobji, B. P. Amavasai, M. Howarth,

G. Möbus, and B. J. Inkson. Advanced transmission electron microscope triboprobe

with automated closed-loop nanopositioning. Measurement Science and Technol-

ogy, 21(7):075901, 2010 (Lockwood et al., 2010)

Refereed Conference Publications

• Jan Wedekind, Manuel Boissenin, Balasundram P. Amavasai, Fabio Caparrelli, and

Jon R. Travis. Object Recognition and Real-Time Tracking in Microscope Imaging.

Proceedings of the 2006 Irish Machine Vision and Image Processing Conference

(IMVIP 2006), pages 164–171, Dublin City University, 2006. (Wedekind et al.,

2006)

• J. Wedekind, B. P. Amavasai, and K. Dutton. Steerable filters generated with the

hypercomplex dual-tree wavelet transform. In 2007 IEEE International Confer-

ence on Signal Processing and Communications, pages 1291–4, Piscataway, NJ,

USA, 24–27 Nov. 2007 2008. Mater. & Eng. Res. Inst., Sheffield Hallam Univ.,

Sheffield, UK, IEEE (Wedekind et al., a)

• J. Wedekind, B. P. Amavasai, K. Dutton, and M. Boissenin. A machine vision

extension for the Ruby programming language. In 2008 International Conference

on Information and Automation (ICIA), pages 991–6, Piscataway, NJ, USA, 20–

23 June 2008 2008. Microsyst. & Machine Vision Lab., Sheffield Hallam Univ.,

Sheffield, UK, IEEE (Wedekind et al., b)

Formal Presentations

• Jan Wedekind. Real-time Computer Vision with Ruby. O’Reilly Open Source Con-

vention (OSCON), Portland, Oregon, USA, July 23rd 2008 (Wedekind, 2008)

ii

• Jan Wedekind. Computer Vision Using Ruby and libJIT. (RubyConf), San Fran-

cisco, California, USA, Nov. 19th 2009 (Wedekind, 2009)

• Jan Wedekind, Jacques Penders, Hussein Abdul-Rahman, Martin Howarth, Ken

Dutton, and Aiden Lockwood. Implementing Machine Vision Systems with a Dy-

namically Typed Language. 25th European Conference on Object-Oriented Pro-

gramming, Lancaster, United Kingdom, July 28th 2011 (Wedekind et al., 2011)

Published Software Packages

• malloc1

• multiarray2

• hornetseye-alsa3

• hornetseye-dc13944

• hornetseye-ffmpeg5

• hornetseye-fftw36

• hornetseye-frame7

• hornetseye-kinect8

• hornetseye-linalg9

• hornetseye-narray10

• hornetseye-opencv11

• hornetseye-openexr12

• hornetseye-qt413

• hornetseye-rmagick14

1http://github.com/wedesoft/malloc/
2http://github.com/wedesoft/multiarray/
3http://github.com/wedesoft/hornetseye-alsa/
4http://github.com/wedesoft/hornetseye-dc1394/
5http://github.com/wedesoft/hornetseye-ffmpeg/
6http://github.com/wedesoft/hornetseye-fftw3/
7http://github.com/wedesoft/hornetseye-frame/
8http://github.com/wedesoft/hornetseye-kinect/
9http://github.com/wedesoft/hornetseye-linalg/

10http://github.com/wedesoft/hornetseye-narray/
11http://github.com/wedesoft/hornetseye-opencv/
12http://github.com/wedesoft/hornetseye-openexr/
13http://github.com/wedesoft/hornetseye-qt4/
14http://github.com/wedesoft/hornetseye-rmagick/

iii

http://github.com/wedesoft/malloc/
http://github.com/wedesoft/multiarray/
http://github.com/wedesoft/hornetseye-alsa/
http://github.com/wedesoft/hornetseye-dc1394/
http://github.com/wedesoft/hornetseye-ffmpeg/
http://github.com/wedesoft/hornetseye-fftw3/
http://github.com/wedesoft/hornetseye-frame/
http://github.com/wedesoft/hornetseye-kinect/
http://github.com/wedesoft/hornetseye-linalg/
http://github.com/wedesoft/hornetseye-narray/
http://github.com/wedesoft/hornetseye-opencv/
http://github.com/wedesoft/hornetseye-openexr/
http://github.com/wedesoft/hornetseye-qt4/
http://github.com/wedesoft/hornetseye-rmagick/
http://github.com/wedesoft/malloc/
http://github.com/wedesoft/multiarray/
http://github.com/wedesoft/hornetseye-alsa/
http://github.com/wedesoft/hornetseye-dc1394/
http://github.com/wedesoft/hornetseye-ffmpeg/
http://github.com/wedesoft/hornetseye-fftw3/
http://github.com/wedesoft/hornetseye-frame/
http://github.com/wedesoft/hornetseye-kinect/
http://github.com/wedesoft/hornetseye-linalg/
http://github.com/wedesoft/hornetseye-narray/
http://github.com/wedesoft/hornetseye-opencv/
http://github.com/wedesoft/hornetseye-openexr/
http://github.com/wedesoft/hornetseye-qt4/
http://github.com/wedesoft/hornetseye-rmagick/

• hornetseye-v4l15

• hornetseye-v4l216

• hornetseye-xorg17

15http://github.com/wedesoft/hornetseye-v4l/
16http://github.com/wedesoft/hornetseye-v4l2/
17http://github.com/wedesoft/hornetseye-xorg/

iv

http://github.com/wedesoft/hornetseye-v4l/
http://github.com/wedesoft/hornetseye-v4l2/
http://github.com/wedesoft/hornetseye-xorg/
http://github.com/wedesoft/hornetseye-v4l/
http://github.com/wedesoft/hornetseye-v4l2/
http://github.com/wedesoft/hornetseye-xorg/

Acknowledgements

First I would like to thank Bala Amavasai for his supervision, support, and his unshakable

optimism. He developed a large part of the Mimas C++ computer vision library and

organised the Nanorobotics grant. Without him I would not have been able to do this

work. I am also very indebted to Jon Travis who has been a valuable source of help and

advice when coming to the UK and while working at university.

I would also like to thank Ken Dutton, Jacques Penders, and Martin Howarth for

continuing supervision of the PhD, for their advice and support and for giving me room

to do research work.

I would also like to thank Arul Nirai Selvan, Manuel Boissenin, Kim Chuan Lim,

Kang Song Tan, Amir Othman, Stephen, Shuja Ahmed and others for being good col-

leagues and for creating a friendly working environment. In particular I would like to

express my gratitude to Georgios Chliveros for his advice and moral support.

Thanks to Julien Faucher who introduced 3D camera calibration to the research group.

A special thanks to Koichi Sasada for his research visit and for the many interesting

and motivating discussions.

Thanks to Aiden Lockwood, Jing Jing Wang, Ralph Gay, Xiaojing Xu, Zineb Saghi,

Günter Möbus, and Beverly Inkson for their valuable help in applying the work to trans-

mission electron microscopy in context of the Nanorobotics project.

Finally I would like to thank my parents who sacrificed a lot so that I can achieve the

best in my life. Without their support I would not have made it this far.

A seven year part-time PhD is a long time to work and make friends. My apologies

but there is just not enough room to mention you all.

The work presented in this thesis was partially funded by the EPSRC Nanorobotics18

project. I also received a student bursary of the Materials and Engineering Research

Institute.

18http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=GR/S85696/01

v

http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=GR/S85696/01

Declaration

Sheffield Hallam University

Materials and Engineering Research Institute

Mobile Machines and Vision Laboratory

The undersigned hereby certify that they have read and recommend to

the Faculty of Arts, Computing, Engineering and Sciences for acceptance

a thesis entitled “Efficient Implementations of Machine Vision Algo-

rithms using a Dynamically Typed Programming Language” by Jan

Wedekind in partial fulfilment of the requirements for the degree of Doc-

tor of Philosophy.

Date: February 2012

Director of Studies:

Dr. Martin Howarth

Research Supervisor:

Dr. Jacques Penders

Research Supervisor:

Dr. Jon Travis

Research Advisor:

Dr. Ken Dutton

Research Advisor:

Dr. Balasundram Amavasai

vi

http://www.wedesoft.de/
http://www.wedesoft.de/

Disclaimer

Sheffield Hallam University

Author: Jan Wedekind

Title: Efficient Implementations of Machine Vision Algorithms

using a Dynamically Typed Programming Language

Department: Materials and Engineering Research Institute

Degree: PhD Year: 2012

Permission is herewith granted to Sheffield Hallam University to circulate and to have

copied for non-commercial purposes, at its discretion, the above title upon the request of

individuals or institutions.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE

USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER

THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT

IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY

ACKNOWLEDGED.

Signature of Author

vii

http://www.wedesoft.de/

Contents

Contents viii

Symbols xiii

Acronyms xv

List of Figures xviii

List of Tables xxii

Listings xxiii

1 Introduction 1

1.1 Interpreted Languages . 1

1.2 Dynamically Typed Languages . 3

1.3 Contributions of this Thesis . 6

1.4 Thesis Outline . 7

2 State of the Art 9

2.1 Object Localisation . 9

2.2 Existing FOSS for Machine Vision . 10

2.2.1 Statically Typed Libraries . 12

2.2.2 Statically Typed Extensions . 15

2.2.3 Dynamically Typed Libraries 18

2.3 Ruby Programming Language . 21

2.3.1 Interactive Ruby . 22

2.3.2 Object-Oriented, Single-Dispatch 23

2.3.3 Dynamic Typing . 24

2.3.4 Exception Handling . 24

2.3.5 Garbage Collector . 26

2.3.6 Control Structures . 26

2.3.7 Mixins . 27

2.3.8 Closures . 27

2.3.9 Continuations . 28

2.3.10 Introspection . 29

2.3.11 Meta Programming . 29

viii

2.3.12 Reification . 30

2.3.13 Ruby Extensions . 31

2.3.14 Unit Testing . 31

2.4 JIT Compilers . 32

2.4.1 Choosing a JIT Compiler . 32

2.4.2 libJIT API . 33

2.5 Summary . 36

3 Handling Images in Ruby 37

3.1 Transparent JIT Integration . 38

3.2 Malloc Objects . 40

3.3 Basic Types . 41

3.3.1 Booleans . 42

3.3.2 Integers . 42

3.3.3 Floating-Point Numbers . 43

3.3.4 Composite Numbers . 44

3.3.5 Pointers . 44

3.3.6 Ruby Objects . 46

3.4 Uniform Arrays . 46

3.4.1 Variable Substitution . 47

3.4.2 Lambda Terms . 48

3.4.3 Lookup Objects . 48

3.4.4 Multi-Dimensional Arrays . 49

3.4.5 Array Views . 51

3.5 Operations . 52

3.5.1 Constant Arrays . 52

3.5.2 Index Arrays . 53

3.5.3 Type Matching . 53

3.5.4 Element-Wise Unary Operations 55

3.5.5 Element-Wise Binary Operations 57

3.5.6 LUTs and Warps . 59

3.5.6.1 LUTs . 59

3.5.6.2 Warps . 60

3.5.7 Injections . 61

3.5.8 Tensor Operations . 64

3.5.9 Argmax and Argmin . 64

3.5.10 Convolution . 66

3.5.11 Integral . 68

3.5.12 Masking/Unmasking . 71

3.5.13 Histograms . 72

ix

3.6 JIT Compiler . 73

3.6.1 Stripping Terms . 75

3.6.2 Compilation and Caching . 75

3.7 Unit Testing . 77

3.8 Summary . 79

4 Input/Output 80

4.1 Colour Spaces . 81

4.1.1 sRGB . 81

4.1.2 YCbCr . 82

4.2 Image Files . 85

4.3 HDR Image Files . 88

4.4 Video Files . 90

4.5 Camera Input . 94

4.6 Image Display . 95

4.7 RGBD Sensor . 97

4.8 GUI Integration . 99

4.9 Summary . 100

5 Machine Vision 101

5.1 Preprocessing . 101

5.1.1 Normalisation and Clipping . 101

5.1.2 Morphology . 102

5.1.2.1 Erosion and Dilation 102

5.1.2.2 Binary Morphology 104

5.1.3 Otsu Thresholding . 105

5.1.4 Gamma Correction . 105

5.1.5 Convolution Filters . 106

5.1.5.1 Gaussian Blur . 106

5.1.5.2 Gaussian Gradient . 107

5.1.6 Fast Fourier Transform . 111

5.2 Feature Locations . 113

5.2.1 Edge Detectors . 113

5.2.1.1 Roberts’ Cross Edge-Detector 113

5.2.1.2 Sobel Edge-Detector 114

5.2.1.3 Non-Maxima Suppression for Edges 115

5.2.2 Corner Detectors . 115

5.2.2.1 Corner Strength by Yang et al. 115

5.2.2.2 Shi-Tomasi Corner Detector 116

5.2.2.3 Harris-Stephens Corner- and Edge-Detector 118

5.2.2.4 Non-Maxima Suppression for Corners 120

x

5.3 Feature Descriptors . 120

5.3.1 Restricting Feature Density . 120

5.3.2 Local Texture Patches . 122

5.3.3 SVD Matching . 123

5.4 Summary . 124

6 Evaluation 125

6.1 Software Modules . 125

6.2 Assessment of Functionality . 127

6.2.1 Fast Normalised Cross-Correlation 127

6.2.2 Lucas-Kanade Tracker . 127

6.2.3 Hough Transform . 132

6.2.4 Microscopy Software . 133

6.2.5 Depth from Focus . 134

6.2.6 Gesture-based Mouse Control 136

6.2.7 Slide Presenter . 139

6.2.8 Camera Calibration . 141

6.2.8.1 Corners of Calibration Grid 142

6.2.8.2 Camera Intrinsic Matrix 146

6.2.8.3 3D Pose of Calibration Grid 147

6.2.9 Augmented Reality . 148

6.3 Performance . 151

6.3.1 Comparison with NArray and C++ 151

6.3.2 Breakdown of Processing Time 153

6.4 Code Size . 155

6.4.1 Code Size of Programs . 155

6.4.2 Code Size of Library . 157

6.5 Summary . 157

7 Conclusions & Future Work 159

7.1 Conclusions . 159

7.2 Future Work . 161

A Appendix 163

A.1 Connascence . 163

A.2 Linear Least Squares . 164

A.3 Pinhole Camera Model . 164

A.4 Planar Homography . 165

A.5 “malloc” gem . 168

A.6 “multiarray” gem . 168

A.7 Miscellaneous Sources . 168

xi

A.7.1 JIT Example . 168

A.7.2 Video Player . 169

A.7.3 Normalised Cross-Correlation 169

A.7.4 Camera Calibration . 170

A.7.5 Recognition of a rectangular marker 173

A.7.6 Constraining Feature Density 174

A.7.7 SVD Matching . 175

Bibliography 177

xii

Symbols

≔ “is defined to be”

≕ “defines”

≡ “is logically equivalent to”

∈ “is an element of”

! “must be”

7→ “maps to”

→ “from . . . to . . .”

× product (or Cartesian product)

∧ “and”

⊖ erosion

⊕ dilation

⊗ convolution

→β β-reduction

∀ “for all”

B Boolean set

B blue . 72

C clipping

Cb chroma blue. .83

Cr chroma red. .83

∃ “there exists”

G green . 72

Kb weight of blue component in luma channel

Kr weight of red component in luma channel

N normalisation

N0 set of all natural numbers including zero

Pb chroma blue

Pr chroma red

xiii

R set of all real numbers

R red . 72

S structure tensor

U chroma blue. .83

V chroma red. .83

Y luma . 83

Z set of all integers

xiv

Acronyms

1D one-dimensional . 48

2D two-dimensional .10

3D three-dimensional . 10

AAC Advanced Audio Coding . 90

ALSA Advanced Linux Sound Architecture

AOT ahead-of-time . 8

API application programming interface . 15

ASF Advanced Systems Format . 90

AVC Advanced Video Coding

AVI Audio Video Interleave .90

BLUE best linear unbiased estimator

BMP Bitmap Image File . 86

CIE Commission internationale de l’éclairage

CPU central processing unit . 42

CRT cathode ray tube . 82

DFT discrete Fourier transform . 111

DICOM Digital Imaging and Communications in Medicine . 86

DLL dynamic-link library . 33

FFT Fast Fourier Transform. 111

FFTW Fastest Fourier Transform in the West

FFTW3 FFTW version 3 . 111

FLV Flash Video . 90

f oldl fold-left . 61

f oldr fold-right . 62

FOSS free and open source software .10

GCC GNU Compiler Collection. .126

GIF Graphics Interchange Format . 86

xv

GNU “GNU’s Not Unix!”

GPL GNU General Public License

GPGPU general purpose GPU . 6

GPU graphics processing unit . 7

GUI graphical user interface . 8

H.264 MPEG-4 AVC standard . 90

HDR high dynamic range . 8

HSV hue, saturation, and value .73

I input . 6

IIR infinite impulse response . 106

IR Infrared . 97

IRB Interactive Ruby Shell . 22

JIT just-in-time . 7

JPEG Joint Photographic Experts Group . 83

LDR low dynamic range .8

LLVM Low Level Virtual Machine . 32

LUT lookup table . 59

MP3 MPEG Audio Layer 3 . 90

MPEG Motion Picture Experts Group

MPEG-4 MPEG standard version 4 . 90

MOV Apple Quicktime Movie . 90

MR magnetic resonance

O output . 6

OCR optical character recognition . 15

Ogg Xiph.Org container format .90

PBM portable bitmap . 86

PGM portable graymap . 86

PNG Portable Network Graphics . 86

PPM portable pixmap . 86

RGB red, green, blue . 44

RGBD RGB and depth . 81

RANSAC Random Sample Consensus . 10

xvi

SLAM Simultaneous Localisation and Mapping . 10

SO shared object . 73

sRGB standard RGB colour space . 81

SVD singular value decomposition . 123

TEM transmission electron microscopy . 134

Theora Xiph.Org video codec . 90

TIFF Tagged Image File Format . 86

Vorbis Xiph.Org audio codec . 90

VP6 On2 Truemotion VP6 codec . 90

VM virtual machine . 8

V4L Video for Linux

V4L2 V4L version 2

WMA Windows Media Audio . 90

WMV Windows Media Video . 90

xvii

List of Figures

1.1 Optical parking system for a car . 2

1.2 Feedback cycle in a compiled and in an interpreted language 2

1.3 ARM Gumstix boards . 3

1.4 Early vs. late method binding . 4

1.5 Static typing vs. dynamic typing. Comment lines (preceded with “//”)

show the output of the compiler . 4

1.6 Static typing and numeric overflow. Comment lines (preceded with “//”)

show the output of the program . 5

1.7 Ariane 5 disaster caused by numerical overflow 5

1.8 Software architecture of machine vision system 7

2.1 Overview of a typical object localisation algorithm 9

2.2 Binary operations for different element types (Wedekind et al., b) 13

2.3 Low resolution image of a circle . 15

2.4 Processing time comparison for creating an index array with GCC com-

piled code vs. with the Ruby VM . 19

2.5 Interactive Ruby Shell . 22

2.6 Mark & Sweep garbage collector . 26

2.7 Conditional statements in Ruby (Fulton, 2006) 26

2.8 Loop constructs in Ruby (Fulton, 2006) 27

3.1 Pointer operations (compare Listing 3.5) 41

3.2 Abstract data type for 16-bit unsigned integer 43

3.3 Abstract data types for single-precision and double-precision floating point

numbers . 44

3.4 Composite types for unsigned byte RGB, unsigned short int RGB, and

single-precision floating point RGB values 45

3.5 Abstract data type for pointer to double precision floating point number . 45

3.6 Shape and strides for a 3D array . 50

3.7 Extracting array views of a 2D array . 52

3.8 Type matching . 54

3.9 Avoiding intermediate results by using lazy evaluation 56

3.10 Pseudo colour palette . 60

3.11 Thermal image displayed with pseudo colours (source: NASA Visible

Earth) . 60

xviii

http://visibleearth.nasa.gov/view_rec.php?id=1564
http://visibleearth.nasa.gov/view_rec.php?id=1564

3.12 Visualised components of warp vectors 61

3.13 Warping a satellite image (source: NASA Visible Earth) 61

3.14 Recursive implementation of injection (here: sum) 63

3.15 Recursive implementation of argument maximum 65

3.16 Diagonal injection . 66

3.17 Applying a moving average filter to an image 68

3.18 Recursive implementation of integral image 70

3.19 Computing a moving average filter using an integral image 70

3.20 Histogram segmentation example . 73

3.21 Histograms of the red, green, and blue colour channel of the reference

image . 74

3.22 3D histogram . 74

4.1 Input/output integration . 80

4.2 Colour image and corresponding grey scale image according to sensitivi-

ties of the human eye . 83

4.3 Colour space conversions (Wilson, 2007) 84

4.4 YV12 colour space (Wilson, 2007) . 84

4.5 YUY2 colour space (Wilson, 2007) . 84

4.6 UYVY colour space (Wilson, 2007) . 85

4.7 Artefacts caused by colour space compression 85

4.8 Low resolution colour image using lossless PNG and (extremely) lossy

JPEG compression . 86

4.9 Examples of images in medical science and material science 87

4.10 Bracketing, alignment, and tone mapping 89

4.11 Decoding videos using FFmpeg . 91

4.12 Encoding videos using FFmpeg . 92

4.13 Logitech Quickcam Pro 9000 (a USB webcam) 94

4.14 Display, windows, and visuals on a standard X Window desktop 96

4.15 RGB- and depth-image acquired with an RGBD sensor 98

4.16 Work flow for creating Qt4 user interfaces 99

4.17 XVideo widget embedded in a GUI . 100

5.1 Normalisation and clipping of RGB values 102

5.2 Grey scale erosion and dilation . 103

5.3 Binary dilation according to Listing 5.2 104

5.4 Gamma correction . 105

5.5 1D Gaussian blur filter . 108

5.6 2D Gaussian blur filter . 108

5.7 Gaussian blur (σ = 3, ǫ = 1/256) applied to a colour image 109

5.8 1D Gauss gradient filter . 110

xix

http://visibleearth.nasa.gov/view_rec.php?id=7100

5.9 2D Gauss gradient filter . 110

5.10 Gauss gradient filter (σ = 3, ǫ = 1/256) applied to a colour image 111

5.11 Spectral image of a piece of fabric . 112

5.12 Example image and corresponding Roberts’ Cross edges 114

5.13 Example image and corresponding Sobel edges 115

5.14 Non-maxima suppression for edges . 116

5.15 Corner detection by Yang et al. 117

5.16 Shi-Tomasi corner-detector . 118

5.17 Harris-Stephens response function . 119

5.18 Harris-Stephens corner- and edge-detector (negative values (edges) are

black and positive values (corners) are white) 119

5.19 Non-maxima suppression for corners . 120

5.20 Restricting feature density . 121

5.21 Computing feature locations and descriptors 122

5.22 SVD tracking . 124

6.1 Normalised cross-correlation example 128

6.2 Comparison of template and warped image 128

6.3 Gradient boundaries of template . 129

6.4 Warp without and with interpolation . 131

6.5 Example of Lucas-Kanade tracker in action 131

6.6 Line detection with the Hough transform 132

6.7 Configuration GUI . 133

6.8 Closed-loop control of a nano manipulator in a TEM 134

6.9 Part of focus stack showing glass fibres 136

6.10 Results of Depth from Focus . 136

6.11 Human computer interface for controlling a mouse cursor 137

6.12 Software for vision-based changing of slides 139

6.13 Quick gesture for displaying the next slide 140

6.14 Slow gesture for choosing a slide from a menu 141

6.15 Unibrain Fire-I (a DC1394-compatible Firewire camera) 141

6.16 Custom algorithm for labelling the corners of a calibration grid 143

6.17 Result of labelling the corners . 144

6.18 Estimating the pose of the calibration grid 149

6.19 Custom algorithm for estimating the 3D pose of a marker 150

6.20 Augmented reality demonstration . 152

6.21 Performance comparison of different array operations 152

6.22 Processing time of running “m + 1” one-hundred times for different array

sizes . 153

6.23 Processing time increasing with length of expression 153

xx

6.24 Breakdown of processing time for computing “-s” where “s” is an array

with one million elements . 154

7.1 The main requirements when designing a programming language or sys-

tem (Wolczko, 2011) . 159

7.2 Vicious cycle leading to programming languages becoming entrenched . . 162

A.1 Pinhole camera model . 165

xxi

List of Tables

2.1 Processing steps performed by a typical machine vision systems 10

2.2 Existing FOSS libraries for Machine Vision I/II 11

2.3 Existing FOSS libraries for Machine Vision II/II 11

2.4 Ruby notation . 28

2.5 Just-in-time compilers . 33

3.1 Directives for conversion to/from native representation 40

3.2 Methods for raw memory manipulation 41

3.3 Generic set of array operations . 53

4.1 Different types of images . 82

4.2 Methods for loading and saving images 87

4.3 Methods for loading and saving images 89

5.1 Non-maxima suppression for edges depending on the orientation 116

6.1 Processing times measured for tasks related to computing “-s” for an array 154

6.2 Size of OpenCV code for filtering images 157

6.3 Size of Hornetseye code for all array operations 157

xxii

Listings

2.1 Multi-dimensional “+” operator implemented in C++. Comment lines

(preceded with “//”) show the output of the program 14

2.2 Integrating RMagick and NArray in Ruby. Comment lines (preceded with

“#”) show the output of the program . 16

2.3 Using OpenCV in Ruby. Comment lines (preceded with “#”) show the

output of the program . 16

2.4 Using NArray in Ruby. Comment lines (preceded with “#”) show the

output of the program . 17

2.5 Array operations in Python using NumPy. Comment lines (preceded with

“#”) show the output of the program . 17

2.6 Tensor operation with the FTensor C++ library 18

2.7 Multi-dimensional “+” operator implemented in Ruby. Comment lines

(preceded with “#”) show the output of the program 18

2.8 Arrays in Ruby. Comment lines (preceded with “#”) show the output of

the program . 19

2.9 Arrays in GNU Common Lisp. Comment lines (preceded with “;”) show

the output of the program . 20

2.10 Lush programming language. Comment lines (preceded with “;”) show

the output of the program . 21

2.11 Method dispatch in Ruby . 23

2.12 Methods in Ruby which are not overloadable 23

2.13 Dynamic typing in Ruby . 24

2.14 Numerical types in Ruby . 25

2.15 Exception handling in Ruby . 25

2.16 Mixins in Ruby . 27

2.17 Closures in Ruby . 28

2.18 Continuations in Ruby . 28

2.19 Introspection in Ruby . 29

2.20 Meta programming in Ruby . 30

2.21 Reification in Ruby . 30

2.22 Example of a C-extension for Ruby . 31

2.23 Using the extension defined in Listing 2.22 31

2.24 Unit test for “Array#+” defined in Listing 2.7 32

2.25 Array operation implemented in C . 34

xxiii

2.26 Array operation compiled with libJIT 35

3.1 Reflection using missing methods . 38

3.4 Converting arrays to binary data and back 40

3.5 Manipulating raw data with Malloc objects 41

3.6 Boxing booleans . 42

3.7 Constructor short cut . 42

3.8 Template classes for integer types . 43

3.9 Boxing floating point numbers . 43

3.10 Composite numbers . 44

3.11 Boxing composite numbers . 45

3.12 Pointer objects . 46

3.13 Boxing arbitrary Ruby objects . 46

3.14 Variable objects and substitution . 47

3.15 Lambda abstraction and application . 48

3.16 Implementing arrays as lazy lookup . 49

3.17 Uniform arrays . 49

3.18 Multi-dimensional uniform arrays . 50

3.19 Array views . 51

3.20 Constant arrays . 54

3.21 Index arrays . 54

3.22 Type matching . 55

3.23 Element-wise unary operations using “Array#collect” 55

3.24 Short notation for element-wise operations 56

3.25 Internal representation of unary operations 56

3.26 Element-wise binary operations using “Array#collect” and “Array#zip” 57

3.27 Internal representation of binary operations 58

3.28 Element-wise application of a LUT . 59

3.29 Creating a pseudo colour image . 59

3.30 Warp from equirectangular to azimuthal projection 61

3.31 Left-associative fold operation in Ruby 62

3.32 Internal representation of injections . 62

3.33 Various cumulative operations based on injections 63

3.34 Concise notation for sums of elements 63

3.35 Tensor operations in Ruby (equivalent to Listing 2.6) 64

3.36 Argument maximum . 65

3.37 One-dimensional convolutions in Ruby 67

3.38 Two-dimensional convolutions in Ruby 68

3.39 Moving average filter implemented using convolutions 69

3.40 Moving average filter implemented using an integral image 70

3.41 Conditional selection as element-wise operation 71

xxiv

3.42 Injection with a conditional . 71

3.43 Injection on a subset of an array . 71

3.44 Element-wise operation on a subset of an array 72

3.45 Two-dimensional histogram . 72

3.46 Histogram segmentation . 73

3.47 Lazy negation of integer . 75

3.51 The resulting C code to Listing 3.50 . 76

3.53 Some unit tests for integers . 77

3.54 Tests for array operations . 78

4.1 Handling compressed colour spaces . 85

4.2 Loading and saving images . 87

4.3 Converting an HDR image to an LDR image (no tone mapping) 89

4.4 Reading a video file . 91

4.5 Writing a video file . 93

4.6 Opening a V4L2 device and negotiating a video mode 95

4.7 Opening a V4L2 device and selecting a fixed mode 95

4.8 Loading and displaying an image . 95

4.9 Displaying a video using Python and OpenCV 96

4.10 Displaying a video using Ruby and Hornetseye 97

4.11 Minimalistic video player . 97

4.12 Hardware accelerated video output . 97

4.13 Ruby example for accessing a Kinect sensor 98

5.1 Implementing dilation using diagonal injection 103

5.2 Implementing a structuring element using convolution and a lookup table 104

5.3 Otsu thresholding . 105

5.4 Generating a gamma corrected gradient 106

5.5 Estimating the spectrum of a 2D signal 112

5.6 Roberts’ Cross edge-detector . 113

5.7 Sobel edge-detector . 114

5.8 Non-maxima suppression for edges . 115

5.9 Yang et al. corner detector . 117

5.10 Shi-Tomasi corner detector . 118

5.11 Harris-Stephens corner and edge detector 120

5.12 Non-maxima suppression for corners . 121

5.13 Extracting local texture patches . 122

5.14 SVD matching . 123

6.1 Lucas-Kanade tracker . 130

6.2 Hough transform to locate lines . 132

6.3 Implementation of Depth from Focus . 135

6.4 Human computer interface for controlling the mouse cursor 138

xxv

6.5 Lookup table for re-labelling . 138

6.6 Vision-based changing of slides . 140

6.7 Custom algorithm for labelling the corners of a calibration grid 145

6.8 Webcam viewer implemented using Python and OpenCV 155

6.9 Webcam viewer implemented using Ruby and Hornetseye 155

6.10 Sobel gradient viewer implemented using Python and OpenCV 156

6.11 Sobel gradient viewer implemented using Ruby and Hornetseye 156

xxvi

“Plan to throw one away; you will anyhow.”

Fred Brooks - The Mythical Man-Month

“If you plan to throw one away, you will throw away

two.”

Craig Zerouni

“How sad it is that our PCs ship without programming

languages. Every computer shipped should be pro-

grammable - as shipped.”

Word Cunningham

“I didn’t go to university. Didn’t even finish A-levels. But

I have sympathy for those who did.”

Terry Pratchett

1
Introduction

Machine vision is a broad field and in many cases there are several independent ap-

proaches solving a particular problem. Also, it is often difficult to preconceive which

approach will yield the best results. Therefore it is important to preserve the agility of the

software to be able to implement necessary changes in the final stages of a project.

A traditional application of computer vision is industrial automation. That is, the cost

of implementing a machine vision system eventually needs to be recovered by savings

in labour cost, increased productivity, and/or better quality in manufacturing. Most ma-

chine vision systems however are still implemented using a statically typed programming

language such as C, C++, or Java (see Section 2.2). Development and maintenance of

large scale systems using a statically typed language is much more expensive compared

to when using a dynamically typed languages (Nierstrasz et al., 2005).

This thesis shows how the dynamically typed programming language Ruby can be

used to reduce the cost of implementing machine vision algorithms. A Ruby library is in-

troduced which facilitates rapid prototyping and development of machine vision systems.

The thesis is organised as follows

• Section 1.1 discusses interpreted programming languages

• Section 1.2 introduces the notion of dynamically typed programming languages

• Section 1.3 states the contribution of this thesis

• Section 1.4 gives an outline of the thesis

1.1 Interpreted Languages

Historically software for machine vision systems was predominantly implemented in

compiled languages such as assembler or C/C++. Most compiled languages map effi-

1

ciently to machine code and they don’t use a run-time environment for managing vari-

ables and data types. Concise and efficient code is a requirement especially for embedded

systems with limited processing power and memory (e.g. see Figure 1.1 for an example

of an embedded system involving computer vision).

Figure 1.1: Optical parking system for a car

The downside of using a compiled language is that a developer is required to make

changes to the source code, save them in a file, compile that file to create a binary file, and

then re-run that binary file. In contrast, interpreted languages offer considerable savings

in development time. In an interpreted language the developer can enter code and have it

run straight away. Figure 1.2 shows that the feedback cycle in an interpreted language is

much shorter than the one of a compiled language.

Ru
n

Compile

Save

En
ter Code

Compiled language

En
te
r C

ode

Run

Interpreted language

Figure 1.2: Feedback cycle in a compiled and in an interpreted language

A shorter feedback cycle consumes less time as the developer does not need to spend

time waiting for the result of the previous change. The immediate feedback also fits well

with the human learning process. Immediate feedback about the progress being made

is a requirement for the human mind to enter a state of “flow” where it operates at full

capacity (Nakamura and Csikszentmihalyi, 2002; DeMarco and Lister, 1987).

2

Even though interpreted languages have been applied to machine vision as early as

1987 (see Mundy (1987)), machine vision systems are still predominantly implemented

using compiled languages. The reason is that if an embedded system is produced in large

quantities, it is possible to offset the considerable software development cost against small

per-unit savings in hardware cost. However this trade-off might become less important

with the advent of modern embedded hardware (Figure 1.3 for example shows the Gum-

stix board which is an embedded computer capable of running an operating system).

Figure 1.3: ARM Gumstix boards

It can be argued that the widespread adoption of compiled languages is currently

hampering innovation (Nierstrasz et al., 2005). The publication by Roman et al. (2007)

demonstrates that robotic projects can greatly benefit from the properties of the interpreted

programming language Ruby. Interpreted languages not only allow for concise code, they

also make interactive manipulation of data possible where one can confirm the results

immediately.

1.2 Dynamically Typed Languages

The benefits of using an interpreted language are quite obvious. A less visible but never-

theless important issue is the difference between statically typed languages and dynami-

cally typed languages. Note that this issue should not be confused with the issue of strong

typing versus weak typing. A language is statically typed if all type checks are performed

at compile-time. Dynamically typed languages on the other hand perform type checks

at run-time and allow to define new types at run-time. Dynamic typing however makes

early method binding impossible which has a negative impact on run-time performance.

Figure 1.4 gives an example. In C++ the “+” operation can be compiled to a machine

instruction (e.g. “ADD AX, 1”). The method “test” is limited to processing integers. In

3

Ruby however it is in general impossible to determine whether the value of “x” always

will be an integer. For example the value might be a floating point number or a rational

number.

int test(int x)

{

return x + 1;

}

// ...

int y = test(42);

// ...

C++ (early method binding)

def test(x)

x + 1

end

...

y = test 42

z = test Complex::I

Ruby (late method binding)

Figure 1.4: Early vs. late method binding

Type safety is a term to describe the fact that static typing prevents certain program-

ming errors such as type mismatches or misspelled method names from entering produc-

tion code. With static typing it is possible to reject these kind of errors at compile time.

Statically typed languages are engrained in safety critical systems such as nuclear power

plants, air planes, and industrial robots because of increased type safety. Figure 1.5 gives

an example where the bug in the C++ program is rejected by the compiler. The equivalent

Ruby program however discovers the error only at run-time and only for certain input.

#include <stdlib.h>

int main(int argc, char *argv[])

{

int x = atoi(argv[1]);

if (x == 0) x += "test";

// error: invalid conversion from

// ’const char*’ to ’int’

return 0;

}

C++ (static typing)

x = ARGV[0].to_i

x += "test" if x == 0

Ruby (dynamic typing)

Figure 1.5: Static typing vs. dynamic typing. Comment lines (preceded with “//”) show

the output of the compiler

However statically typed implementations tend to become inflexible. That is, when a

developer wants to modify one aspect of the system, the static typing can force numerous

rewrites in unrelated parts of the source code (Tratt and Wuyts, 2007). Development and

maintenance of large scale systems using a statically typed language is much more ex-

pensive compared to when using a dynamically typed languages (Nierstrasz et al., 2005).

Heavy users of statically typed languages tend to introduce custom mechanisms to deal

with the absence of support for reflection and meta-programming in their language (see

the CERN’s C++ framework for example Antcheva et al. (2009)).

4

Though offering some safety, static typing does not prevent programming errors such

as numerical overflow or buffer overflow (Tratt and Wuyts, 2007). That is, the efficiency

gained by using C or C++ is at the cost of security (Wolczko et al., 1999). Figure 1.6

shows two programs where numerical overflow occurs if a native integer type of insuffi-

cient size is chosen. A well known example is the failure of the first Ariane 5 (shown in

#include <iostream>

using namespace std;

int main(void)

{

int x = 2147483648;

x += 1;

cout << x << endl;

// -2147483647

return 0;

}

32-bit integer

#include <iostream>

using namespace std;

int main(void)

{

long x = 2147483648;

x += 1;

cout << x << endl;

// 2147483649

return 0;

}

64-bit integer

Figure 1.6: Static typing and numeric overflow. Comment lines (preceded with “//”) show

the output of the program

Figure 1.7) due to an arithmetic overflow (see talk by Fenwick, 2008). That is, even when

Figure 1.7: Ariane 5 disaster caused by numerical overflow

using static typing, it is still necessary to use techniques such as software assertions or

unit tests to prevent runtime errors from happening.

Dynamic typing on the other hand allows to combine integers, rational numbers, com-

plex numbers, vectors, and matrices in a seamless way. The Ruby core library makes use

of dynamic typing to represent integers, big numbers, floating point numbers, complex

numbers, and vectors work together seamlessly (see Section 2.3.3 for more details).

Ruby data types do not map well to native data types (i.e. the integer and floating-point

registers of the hardware). For example Ruby integers do not exhibit numerical overflow

5

and the boundaries of Ruby arrays are resized dynamically. Furthermore dynamic typ-

ing requires late binding of method calls which is computationally expensive on current

hardware (Paulson, 2007). This thesis tries to address these problems by defining repre-

sentations of native types in a Ruby extension1 (see Section 1.3).

1.3 Contributions of this Thesis

The title of this thesis is “Efficient Implementations of Machine Vision Algorithms using

a Dynamically Typed Programming Language”, The Ruby extension implemented in the

context of this thesis makes it possible for researchers and developers working in the field

of image processing and computer vision to take advantage of the benefits offered by this

dynamically typed language. The phrase “efficient implementation” was intentionally

used in an ambiguous way. It can mean

• machine efficiency: The run-time performance of the system is sufficient to imple-

ment real-time machine vision systems.

• developer efficiency: The programming language facilitates concise and flexible

implementations which means that developers can achieve high productivity.

The contribution of this thesis is a set of computer vision extensions for the existing

Ruby programming language. The extensions bring together performance and productiv-

ity in an unprecedented way. The Ruby extensions provide

• extensive input (I)/output (O) integration for image- and video-data

• generic array operations for uniform multi-dimensional arrays

– a set of objects to represent arrays, array views, and lazy evaluations in a

modular fashion

– optimal type coercions for all combinations of operations and data types

The work presented in this thesis brings together several concepts which previously

have not been integrated in a single computer vision system:

• expressiveness: An library for manipulating uniform arrays is introduced. A generic

set of basic operations is used to build computer vision algorithms from the ground

up.

• lazy evaluation: Lazy evaluation of array operations makes it possible to reduce

memory-I/O. This facilitates the use of general purpose GPU (GPGPU) (not done

as part of this thesis) where memory-I/O is the performance-bottleneck.

1Ruby libraries are generally called “Ruby extensions”

6

• array views: Shared references make it possible to extract sub-arrays without mak-

ing a “deep copy” of the array.

• transparent just-in-time (JIT) compilation: A JIT compiler and a cache are inte-

grated transparently to achieve real-time performance.

• I/O integration: The implementation also provides integration for image- and video-

I/O (see Figure 1.8) as well as the necessary colour space conversions.
Qt

4
Qt

4R
ub

y

gn
up

lo
t

ru
by

-s
er

ia
lp

or
t

AL
SA

Op
en

GL

lib
dc

13
94

V4
L/

V4
L2

XV
id

eo

FF
M

pe
g

Op
en

EX
R

fft
w

3

Im
ag

eM
ag

ic
k

RM
ag

ic
k

GNU+Linux operating system

Ruby

IRB/FXRI/NaturalDocs/RDoc Application

Ho
rn

et
sE

ye
 R

ub
y

Ge
m

s

rg
pl

ot

lib
fre

en
ec

t
Figure 1.8: Software architecture of machine vision system

The functionality was implemented in a modular way (see Section 3.4). The result is a

comprehensive approach to implementing computer vision algorithms.

The type system and the expressions presented in Chapter 3 constitute the library

which was developed as part of this thesis. If some of the expressions appear to be part

of the Ruby syntax at first sight, it is due to the dynamic nature of the programming

language. Although the Ruby programming language was used, this approach could be

applied to other dynamically typed languages with sufficient meta-programming support.

The approach presented in this thesis could also be used to provide transparent integration

of graphics processing units (GPUs) for parallel processing. Finally the facilitation of

succinct implementations of various computer vision algorithms allows for a more formal

understanding of computer vision.

1.4 Thesis Outline

Chapter 1 (this chapter) showed that there is sufficient motivation to address the perfor-

mance issues involved with applying a dynamically typed language to the problem of

7

implementing machine vision algorithms. Apart from offering productivity gains, dy-

namically typed languages also make it possible to combine various types and operations

seamlessly.

Chapter 2 gives an overview of the state of the art in machine vision software, illus-

trating the difficulty of achieving performance and productivity at the same time. It will

be shown that the performance of the Ruby virtual machine (VM) is significantly lower

than the performance achieved with GNU C. But it will also be argued that ahead-of-

time (AOT) compilation is incompatible with the goal of achieving productivity.

Chapter 3 is about the core of the work presented in this thesis. Starting with memory

objects and native data types, a library for describing computer vision algorithms is intro-

duced. It is demonstrated how this approach facilitate succinct implementations of basic

image processing operations. JIT compilation is used to address the issue of performance.

Chapter 4 covers key issues in implementing interfaces for input and output of im-

age data. Image I/O involving cameras, image files, video files, and video displays is

discussed. The key issues are colour space compression, image and video compression,

low dynamic range (LDR) versus high dynamic range (HDR) imaging, and graphical user

interface (GUI) integration.

In Chapter 5 it is shown how different algorithms which are common in the field of

computer vision can be implemented using the concepts introduced in chapter Chapter 3

and Chapter 4.

Chapter 6 shows some examples of complete applications implemented using the Hor-

netseye Ruby extension which was developed as part of this thesis (see page iii). Further-

more a performance comparison is given.

At the end of the thesis Chapter 7 offers conclusions and future work.

8

“There are two ways of constructing a software design:

One way is to make it so simple that there are obviously

no deficiencies, and the other way is to make it so com-

plicated that there are no obvious deficiencies. The first

method is far more difficult.”

Sir Charles Antony Richard Hoare

“I am a historian and a computer programmer, but pri-

marily I am a lawyer. My research, ongoing for a decade,

follows a purely experimental paradigm:

1. Try to create freedom by destroying illegitimate

power sheltered behind intellectual property law.

2. See what happens.

Early results are encouraging.”

Eben Moglen

2
State of the Art

This chapter gives an overview of the state of the art in machine vision systems, it dis-

cusses the features of the Ruby programming language, and available JIT compilers are

discussed

• Section 2.1 shows the typical structure of an object localisation system

• Section 2.2 gives an overview of a typical object localisation algorithm and how it

is implemented

• Section 2.3 characterises the Ruby programming language by describing the para-

digms it supports

• Section 2.4 points out different JIT compilers and their properties

• Section 2.5 gives a summary of this chapter

2.1 Object Localisation

The task of an object localisation algorithm is to determine the pose of known objects

given a camera image as input. Figure 2.1 shows an overview of a typical object locali-

sation algorithm. The processing steps are explained in Table 2.1. The processing steps

Sensor Data Preprocessing Key-Point
Localisation

Feature
Description

Recognition/
Tracking

Updated
World Model

Figure 2.1: Overview of a typical object localisation algorithm

9

Table 2.1: Processing steps performed by a typical machine vision systems

Processing step Details

preprocessing basic operations such as filtering, thresholding, mor-

phology and the like are applied to the image
key-point localisation a feature extraction method defines feature locations

in the image
feature description the descriptors for the local feature context are com-

puted
recognition/tracking the features are used to recognise and track known

objects in the scene

are not mandatory. Some algorithms do not use feature descriptors (e.g. Geometric Hash-

ing (Lamdan and Wolfson, 1988)). Some algorithms for two-dimensional (2D) object lo-

calisation do not even use features at all (e.g. Fast Normalised Cross-Correlation (Lewis,

1995)).

Current three-dimensional (3D) object recognition and tracking algorithms however

are predominantly based on feature extraction and feature matching (e.g. spin image fea-

tures by Johnson and Hebert (1999), Geometric Hashing (Lamdan and Wolfson, 1988),

Bounded Hough Transform (Greenspan et al., 2004), Random Sample Consensus (RAN-

SAC) (Shan et al., 2004)). Approaches based on feature matching are furthermore used

to deal with related problems such as real-time Simultaneous Localisation and Mapping

(SLAM) (e.g. Davison, 2003; Pupilli, 2006) and 3D modelling (e.g. Pan et al., 2009;

Pollefeys et al., 2004; Tomasi and Kanade, 1992; Yan and Pollefeys, 2006).

There are more unconventional techniques (e.g. tensor factorisation (Vasilescu and

Terzopoulos, 2007), integral images (Viola and Jones, 2001)) but they are mostly applied

to object detection. That is, the algorithms detect the presence of an object but do not

estimate its pose.

2.2 Existing FOSS for Machine Vision

A survey of existing free and open source software (FOSS) for machine vision has been

conducted in order to find out about commonalities of current algorithms in use and how

current computer vision systems are implemented.

Table 2.2 and Table 2.3 give an overview of noticeable computer vision libraries. The

libraries where checked against a set of features. Each check mark signifies a feature

being supported by a particular library. One can see that no library completely covers all

the features which are typically required to develop an object recognition and tracking

system as shown in Figure 2.1.

One can distinguish three different kinds of libraries: statically typed libraries, stati-

10

Table 2.2: Existing FOSS libraries for Machine Vision I/II

feature B
le

p
o

C
a
m

el
li

a

C
M

V
is

io
n

li
b

C
V

D

E
a
sy

V
is

io
n

F
il

te
rs

F
ra

m
ew

a
v
e

G
a
m

er
a

G
a
n

d
a
lf

Camera Input ✔ ✔ ✔ ✔

Image Files ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Video Files ✔ ✔

Display ✔ ✔ ✔ ✔ ✔ ✔

Scripting ✔ ✔ ✔

Warps ✔ ✔ ✔

Histograms ✔ ✔ ✔ ✔

Custom Filters ✔ ✔ ✔ ✔ ✔ ✔

Fourier Transforms ✔ ✔

Feature Extraction ✔ ✔ ✔ ✔ ✔ ✔ ✔

Feature Matching ✔ ✔

GPL compatible ✔ ✔ ✔ ✔ ? ✔ ✔ ✔ ✔

Table 2.3: Existing FOSS libraries for Machine Vision II/II

feature IT
K
/V

T
K

IV
T

L
T

Il
ib

L
u

sh

M
im

a
s

N
A

S
A

V
.
W

.

O
p

en
C

V

S
ce

n
eL

ib

V
IG

R
A

Camera Input ✔ ✔ ✔ ✔ ✔ ✔

Image Files ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Video Files ✔ ✔ ✔

Display ✔ ✔ ✔ ✔ ✔ ✔ ✔

Scripting ✔ ✔

Warps ✔ ✔ ✔ ✔ ✔

Histograms ✔ ✔ ✔ ✔ ✔

Custom Filters ✔ ✔ ✔ ✔ ✔ ✔ ✔

Fourier Transforms ✔ ✔ ✔ ✔

Feature Extraction ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Feature Matching ✔ ✔ ✔ ✔

GPL compatible ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

11

http://www.ces.clemson.edu/~stb/blepo/
http://camellia.sourceforge.net/
http://www.cs.cmu.edu/~jbruce/cmvision/
http://mi.eng.cam.ac.uk/~er258/cvd/
http://www.easyvision.googlepages.com/
http://filters.sourceforge.net/
http://framewave.sourceforge.net/
http://gamera.informatik.hsnr.de/
http://gandalf-library.sourceforge.net/
http://www.itk.org/Insight/Doxygen/html/index.html
http://ivt.sourceforge.net/
http://ltilib.sourceforge.net/doc/homepage/index.shtml
http://lush.sourceforge.net/
http://vision.eng.shu.ac.uk/mediawiki/index.php/Mimas
http://ti.arc.nasa.gov/projects/visionworkbench/
http://opencv.willowgarage.com/
http://www.doc.ic.ac.uk/~ajd/software.html
http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/

cally typed extensions for a dynamically typed language, and dynamically typed libraries.

2.2.1 Statically Typed Libraries

Most computer vision libraries are implemented in the statically typed C/C++ language.

However C++ has a split type system. There are primitive types which directly corre-

spond to registers of the hardware and there are class types which support inheritance and

dynamic dispatch. In C++ not only integers and floating point numbers but also arrays

are primitive types. However these are the most relevant data types for image processing.

To implement a basic operation such as adding two values so that it will work on different

types, one needs to make extensive use of template meta-programming. That is, all combi-

nations of operations, element-type(s), and number of dimensions have to be instantiated

separately. For example the FrameWave1 C-library has 42 explicitly instantiated different

methods for multiplying arrays.

For this reason most libraries do not support all possible combinations of element-

types and operations. Assume a library supports the following 10 binary operations

• addition (“+”)

• subtraction (“-”)

• division (“/”)

• multiplication (“*”)

• exponent (“**”)

• greater or equal (“>=”)

• greater than (“>”)

• less or equal (“<=”)

• less than (“<”)

• equal to (“==”)

Furthermore assume that it supports the following types as scalars and array elements

• 6 integer types: 8-,16-, and 32-bit, signed/unsigned

• 2 floating-point types: single/double precision

Finally for every binary operation there are the following variations

• scalar-array operation

1http://framewave.sourceforge.net/

12

http://framewave.sourceforge.net/

• array-scalar operation

• array-array operation

This results in 10 · 8 · 8 · 3 = 1920 possible combinations of operations and element-types.

That is, to fully support the 10 binary operations on these element-types requires 1920

methods to be defined either directly or by means of C++ template programming. That

is, static typing and ahead-of-time compilation leads to a explosion of combinations of

basic types and operations. Listing 2.1 shows how much code is required when using

C++ templates to implement a element-wise “+” operator (array-array operation only) for

the “boost::multi array” data types provided by the Boost library. The implementation

works on arrays of arbitrary dimension and arbitrary element-type.

Static typing not only leads to an explosion of methods to instanciate. A related prob-

lem caused by static typing is that when a developer wants to modify one aspect of the

system, the static typing can force numerous rewrites in unrelated parts of the source

code (Tratt and Wuyts, 2007). Static typing enforces unnecessary “connascence” (a tech-

nical term introduced by Weirich (2009), also see Appendix A.1) which interferes with

the modularity of the software. In practise this causes problems when implementing

operations involving scalars, complex numbers, and RGB-triplets (Wedekind et al., b).

Figure 2.2 shows that binary operations are not defined for some combinations of the

argument types involved. That is, it is not sufficient to simply use C++ templates to in-

Complex

RGB

Scalar

C
o
m

p
le

x

S
ca

la
r

R
G

B

x + y, x − y

Complex

RGB

Scalar

C
o
m

p
le

x

S
ca

la
r

R
G

B
x · y, x/y

Complex

RGB

Scalar

C
o
m

p
le

x

S
ca

la
r

R
G

B

xy

Complex

RGB

Scalar

C
o
m

p
le

x

S
ca

la
r

R
G

B

x ≤ y,x ≥ y

Figure 2.2: Binary operations for different element types (Wedekind et al., b)

13

Listing 2.1: Multi-dimensional “+” operator implemented in C++. Comment lines (pre-

ceded with “//”) show the output of the program

#include <boost/multi_array.hpp> // 3726 lines of code

#include <iostream>

using namespace boost;

template< typename T >

T &multi_plus(T &a, const T &b, const T &c) {

a = b + c;

return a;

}

template< template< typename, size_t, typename > class Arr, typename Alloc,

typename T, size_t N >

detail::multi_array::sub_array< T, N > multi_plus

(detail::multi_array::sub_array< T, N > a, const Arr< T, N, Alloc > &b,

const Arr< T, N, Alloc > &c) {

typename Arr< T, N, Alloc >::const_iterator j = b.begin(), k = c.begin();

for (typename detail::multi_array::sub_array< T, N >::iterator i =

a.begin(); i != a.end(); i++, j++, k++)

multi_plus(*i, *j, *k);

return a;

}

template< template< typename, size_t, typename > class Arr, typename Alloc,

typename T, size_t N >

Arr< T, N, Alloc > &multi_plus

(Arr< T, N, Alloc > &a, const Arr< T, N, Alloc > &b,

const Arr< T, N, Alloc > &c) {

typename Arr< T, N, Alloc >::const_iterator j = b.begin(), k = c.begin();

for (typename Arr< T, N, Alloc >::iterator i = a.begin();

i != a.end(); i++, j++, k++)

multi_plus(*i, *j, *k);

return a;

}

template < template< typename, size_t, typename > class Arr, typename Alloc,

typename T, size_t N >

multi_array< T, N > operator+

(const Arr< T, N, Alloc > &a, const Arr< T, N, Alloc > &b) {

array< size_t, N > shape;

std::copy(a.shape(), a.shape() + N, shape.begin());

multi_array< T, N > retVal(shape);

multi_plus(retVal, a, b);

return retVal;

};

int main(void) {

multi_array< int, 2 > a(extents[2][2]);

a[0][0] = 1; a[0][1] = 2; a[1][0] = 3; a[1][1] = 4;

multi_array< int, 2 > b(extents[2][2]);

b[0][0] = 5; b[0][1] = 4; b[1][0] = 3; b[1][1] = 2;

multi_array< int, 2 > r(a + b);

std::cout << "[[" << r[0][0] << ", " << r[0][1] << "], ["

<< r[1][0] << ", " << r[1][1] << "]]" << std::endl;

// [[6, 6], [6, 6]]

return 0;

}

14

stantiate all combinations of operations and argument types. One also has to address the

problem that binary operations usually only are meaningful only for some combinations

of element-types.

Finally using a combination of multiple libraries is hard, because each library usually

comes with its own set of data types for representing images, arrays, matrices, and other

elements of signal processing.

2.2.2 Statically Typed Extensions

Some computer vision libraries come with bindings in order to use them as an exten-

sion to a dynamically typed language. For example for the OpenCV2 library there are

Python bindings (PyCV3) as well as Ruby bindings (opencv.gem4). Some projects (e.g.

the Gamera optical character recognition (OCR) software (Droettboom et al., 2003) and

the Camellia5 Ruby extension) use the Simplified Wrapper Generator (SWIG6) to gener-

ate bindings from C/C++ header files. This allows one to use a statically typed extension

in an interpreted language and it becomes possible to develop machine vision software

interactively without sacrificing performance.

Open classes and dynamic typing make it possible to seamlessly integrate the func-

tionality of one library into the application programming interface (API) of another. For

example Listing 2.2 shows how one can extend the NArray7 class to use the RMagick8

library for loading images. The method “NArray#read” reads an image using the RMag-

ick extension. The image is exported to a Ruby string which in turn is imported into an

object of type “NArray”. The image used in this example is shown in Figure 2.3.

Figure 2.3: Low resolution image of a circle

However supporting all possible combinations of types and operations with a statically

typed library is hard (see Section 2.2.1). In practise most computer vision extensions only

provide a subset of all combinations. Listing 2.3 shows that the OpenCV library for

example supports element-wise addition of 2D arrays of 8-bit unsigned integers (line 3).

2http://opencv.willowgarage.com/
3http://pycv.sharkdolphin.com/
4http://rubyforge.org/projects/opencv/
5http://camellia.sourceforge.net
6http://swig.org/
7http://narray.rubyforge.org/
8http://rmagick.rubyforge.org/

15

http://opencv.willowgarage.com/
http://pycv.sharkdolphin.com/
http://rubyforge.org/projects/opencv/
http://camellia.sourceforge.net
http://swig.org/
http://narray.rubyforge.org/
http://rmagick.rubyforge.org/

Listing 2.2: Integrating RMagick and NArray in Ruby. Comment lines (preceded with

“#”) show the output of the program

require ’narray’

require ’RMagick’

class NArray

def NArray.read(filename)

img = Magick::Image.read(filename)[0]

str = img.export_pixels_to_str 0, 0, img.columns, img.rows, "I",

Magick::CharPixel

to_na str, NArray::BYTE, img.columns, img.rows

end

end

arr = NArray.read ’circle.png’

arr / 128

NArray.byte(20,20):

[[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],

[1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1],

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],

[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

...

But trying to add elements of 8-bit unsigned and 16-bit unsigned will cause an exception

Listing 2.3: Using OpenCV in Ruby. Comment lines (preceded with “#”) show the output

of the program

1 require ’opencv’

2 include OpenCV

3 CvMat.new(6, 2, CV_8U) + CvMat.new(6, 2, CV_8U)

4 # <OpenCV::CvMat:2x6,depth=cv8u,channel=3>

5 CvMat.new(6, 2, CV_8U) + CvMat.new(6, 2, CV_16U)

6 #(irb):4: warning: OpenCV error code (-205) : cvAdd (840 in cxarithm.cpp)

7 #OpenCV::CvStatusUnmatchedFormats:

8 # from (irb):4:in ‘+’

9 # from (irb):4

(line 5). Other libraries such as EasyVision9 (an extension for Haskell) even have different

method names depending on the types of arguments involved. For example “absDiff8u”

to compute the element-wise absolute difference of arrays of 8-bit unsigned integers or

“sqrt32f” to compute the element-wise square root of arrays of 32-bit floating point

values.

In contrast to the previously mentioned libraries, the NArray10 (Tanaka, 2010a,b)

Ruby extension supports adding arrays with different element-types (see Listing 2.4).

The library also does optimal return type coercions. For example adding an array with

9http://perception.inf.um.es/easyVision/
10http://narray.rubyforge.org/

16

http://perception.inf.um.es/easyVision/
http://narray.rubyforge.org/

Listing 2.4: Using NArray in Ruby. Comment lines (preceded with “#”) show the output

of the program

require ’narray’

a = NArray.byte 6, 2

NArray.byte(6,2):

[[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0]]

b = NArray.sint 6, 2

NArray.sint(6,2):

[[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0]]

a + b

NArray.sint(6,2):

[[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0]]

2 * a + b

NArray.sint(6,2):

[[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0]]

Listing 2.5: Array operations in Python using NumPy. Comment lines (preceded with

“#”) show the output of the program

1 from numpy import *

2 a = array([[1, 2], [3, 4]], dtype = int8)

3 b = array([[1, 2], [3, 4]], dtype = uint16)

4 a + b

5 # array([[2, 4],

6 # [6, 8]], dtype=int32)

7 2 * a + b

8 # array([[3, 6],

9 # [9, 12]], dtype=int32)

single precision complex numbers (“NArray::SCOMPLEX”) and an array with double preci-

sion floating point numbers (“NArray::DFLOAT”) will result in an array of double precision

complex numbers (“NArray::DCOMPLEX”). In contrast to OpenCV however, the NArray li-

brary does not support unsigned integers.

A similar but more sophisticated library is NumPy11 for Python (also see Oliphant,

2006). NumPy also offers a C-API which makes it possible to define custom element-

types. Listing 2.5 shows that NumPy supports unsigned integer as well as signed integer

types. In contrast to NArray the result of the type coercion is an array of 32-bit integers

(line 4). Similar to the NArray library, NumPy is implemented in C and uses tables of

function pointers to do operations on combinations of elements.

The problem with this approach is that the last operation shown in Listing 2.4 as well

as Listing 2.5 (multiplying an array with two and adding another array) creates an array

as intermediate result. That is, the result of the scalar-array multiplication is written to

memory and then read back again when the array-array addition is performed. Since the

11http://numpy.scipy.org/

17

http://numpy.scipy.org/

Listing 2.6: Tensor operation with the FTensor C++ library

Index< ’i’, 3 > i;

Index< ’j’, 3 > j;

Index< ’k’, 3 > k;

Tensor2< double, 3, 3 > r, a, b;

r(i, k) = a(i, j) * b(j, k);

array operations are just calls to a static library, there is no means of optimising them.

For this reason one cannot really use this array operations in order to build higher-level

functions without sacrificing performance!

In general it is not possible to instantiate efficient implementations of all the possible

combinations of operations and compile them ahead-of-time. For example the FTensor

C++ library (see Listing 2.6 for example) allows one to instantiate various tensor opera-

tions using C++ templates (Landry, 2003). However the library contains code specific

to the dimensions 0, 1, . . . , 4. That is, the functionality of the library is diminished for

dimensions higher than 4.

2.2.3 Dynamically Typed Libraries

Listing 2.7: Multi-dimensional “+” operator implemented in Ruby. Comment lines (pre-

ceded with “#”) show the output of the program

class Array

def +(other)

zip(other).collect { |x,y| x + y }

end

end

a = [[1, 2], [3, 4]]

b = [[5, 4], [3, 2]]

puts (a + b).inspect

[[6, 6], [6, 6]]

Listing 2.7 shows an implementation of an element-wise “+” operator (array-array

operation) for the “Array” data type of the Ruby standard library. It is much shorter

than the equivalent C++ implementation shown in Listing 2.1. That is, implementing a

computer vision library in Ruby is straightforward but there is a performance issue.

Figure 2.4 shows a performance comparison of GNU C compiled code and code in-

terpreted with two different versions of the Ruby VM. One can see that in the best case

the Ruby example is 30 times slower than the equivalent C++ example.

Ruby arrays can contain elements of arbitrary type. For example Listing 2.8 shows the

definition of the array of integers “a” in line 1. In line 9 however one element of “a” is set

to a string value. Also Ruby arrays support dynamic resizing and they do not suffer from

buffer overrun. If the array index is out of bounds, a “nil” object is returned (e.g. see line

7 of Listing 2.8). This means that Ruby code involving arrays is difficult to optimise. In

18

#include <stdlib.h>

#define SIZE 10000000

int main(void)

{

int i, *arr = (int *)

malloc(SIZE * sizeof(int));

for (i = 0; i < SIZE; i++)

arr[i] = i;

free(arr);

return 0;

}

gcc 4.2.4 0.06s

SIZE = 10000000

arr = (0 ... SIZE).collect { |i| i }

ruby 1.8.6 76.3s

ruby 1.9.1 1.8s

Intel R© CoreTM2 CPU T5600 @ 1.83GHz

Linux 2.6.24-24-generic SMP i686 GNU/Linux

Figure 2.4: Processing time comparison for creating an index array with GCC compiled

code vs. with the Ruby VM

Listing 2.8: Arrays in Ruby. Comment lines (preceded with “#”) show the output of the

program

1 a = [[2, 3, 5], [7, 11, 13]]

2 # [[2, 3, 5], [7, 11, 13]]

3 a[0]

4 # [2, 3, 5]

5 a[0][2]

6 # 5

7 a[0][3]

8 # nil

9 a[0][2] = ’x’

10 # "x"

11 a

12 # [[2, 3, "x"], [7, 11, 13]]

19

general it is not possible to remove the dispatcher code and the boundary checks. That is,

the current implementation of Ruby arrays is not suitable for real-time machine vision.

A noteworthy example of a machine vision library implemented in a dynamically

typed language is Lush12 which is based on Common Lisp. The Common Lisp program-

ming language supports multi-dimensional arrays (Graham, 1994). Line 8 of Listing 2.9

shows that the array type does not support dynamic resizing which makes it possible to

generate more efficient code. However the array type still supports elements of arbitrary

Listing 2.9: Arrays in GNU Common Lisp. Comment lines (preceded with “;”) show the

output of the program

1 (setq m (make-array ’(2 3) :element-type ’integer

2 :initial-contents ’((2 3 5)(7 11 13))))

3 ; #2A((2 3 5) (7 11 13))

4 (aref m 0)

5 *** - AREF: got 1 subscripts, but #2A((2 3 5) (7 11 13)) has rank 2

6 (aref m 0 2)

7 ; 5

8 (aref m 0 3)

9 *** - AREF: subscripts (0 3) for #2A((2 3 5) (7 11 13)) are out of range

10 (setf (aref m 0 2) "x")

11 ; "x"

12 m

13 ; #2A((2 3 "x") (7 11 13))

type even if an element-type was specified (e.g. line 10 of Listing 2.9). GNU Common

Lisp doesn’t seem to support extracting array slices.

It is possible however to introduce uniform arrays as data types and use just-in-time

compilation to generate efficient code at run-time. The Lush language demonstrates this

approach (Lush was used to implement OCR software for example (Lecun et al., 1998)).

Listing 2.10 shows some operations involving 2D arrays. Lush does not support dynamic

resizing (e.g. line 6 of Listing 2.10) and it enforces uniform arrays (e.g. line 8 of List-

ing 2.10). Although Lush does just-in-time compilation, it defaults to double-precision

floating point numbers (e.g. line 13 of Listing 2.10) instead of doing optimal coercions

like NArray (Listing 2.4). The problem is that implementing support for coercions of

native types requires a substantial amount of work and there is insufficient incentive for a

developer to invest the time given the low acceptance of the Lisp programming language

in the image processing community.

Furthermore Lush is not a Lisp library but it is a Lisp dialect (i.e. it is an independent

programming language). That is, there are potential integration issues when using other

software developed in different programming languages. A library for a language with

broader adoption such as Lisp, Racket (former PLT Scheme developed by Steele and

Sussman (1979)), or Clojure13 would be more desirable.

12http://lush.sourceforge.net/
13http://clojure.org/

20

http://lush.sourceforge.net/
http://clojure.org/

Listing 2.10: Lush programming language. Comment lines (preceded with “;”) show the

output of the program

1 (setq m [i [2 3 5][7 11 13]])

2 ($*0 m 0)

3 ; [i 2 3 5]

4 (m 0 2)

5 ; 5

6 (m 0 3)

7 *** validate-subscript : invalid subscript : 3

8 (m 0 2 "x")

9 *** m : not a number : "x"

10 m

11 ; [i[i 2 3 5]

12 ; [i 7 11 13]]

13 ? (+ m 1)

14 = [d[d 3.0000 4.0000 6.0000]

15 [d 8.0000 12.0000 14.0000]]

16 ? (* m m)

17 = [d[d 4.0000 9.0000 25.0000]

18 [d 49.0000 121.0000 169.0000]]

2.3 Ruby Programming Language

Ruby is a multi-paradigm language and it is inspired by Perl, Python, Smalltalk, Eiffel,

Ada, and Lisp. Ruby supports the following language features

• object-oriented, single-dispatch

• dynamic typing

• exception handling

• garbage collection (i.e. managed environment)

• mixins

• closures

• continuations

• introspection

• meta programming

• reification

The Ruby programming language14 was designed by Yukihiro Matsumoto (see article

by Matsumoto, 2000 for a short introduction to Ruby; see Fulton, 2006, Matsumoto,

2002, or Cooper, 2009 for a thorough introduction). He first released his implementation

14http://www.ruby-lang.org/

21

http://www.ruby-lang.org/

of a Ruby interpreter as free software in 1995. With Ruby version 1.9 Koichi Sasada’s

implementation has become the current Ruby VM in use (Sasada, 2008).

The design philosophy of the Ruby programming language follows the following prin-

ciples (Matsumoto, 2007)

• Brevity: The language is expressive so that programs written in that language are

succinct.

• Conservatism: Ruby sticks to traditional control structures to reduce the cost of

adoption.

• Simplicity: The Ruby programming language supports simple solutions.

• Flexibility: Ruby should adapt to the user instead of the user adapting to Ruby.

• Balance: The Ruby programming language tries to achieve a balance between all

previous concepts.

A brief introduction to the language features of Ruby follows.

2.3.1 Interactive Ruby

The Interactive Ruby Shell (IRB) provides a command-line interface to develop programs

interactively. Figure 2.5 shows IRB running in an X-Terminal. IRB accepts Ruby expres-

Figure 2.5: Interactive Ruby Shell

sions and interprets them in the same context. After evaluating the expression, IRB calls

22

“#inspect” on the result and prints the string returned by that method. For example if the

user inputs “2 + 3”, IRB will call “5.inspect” which returns “"5"”. The unquoted string

then will be printed to standard output (here prefixed with “=>”). Figure 2.5 furthermore

illustrates how in the case of an error, IRB simply catches the exception and prints it to

standard output instead.

2.3.2 Object-Oriented, Single-Dispatch

Ruby is object-oriented with single-dispatch. That is, every object is an instance of a class

and the class defines which methods and attributes an object supports. Ruby is purely

object-oriented in the sense that everything including arrays, integers, floating point num-

bers, and classes is an object.

Ruby has open classes. That is, it is possible to add methods to a class at any point

in time. Listing 2.11 shows an example where the already existing “Numeric” class is

extended with a “plus” method (lines 1 to 5). Afterwards the method is called (line 6).

Listing 2.11: Method dispatch in Ruby

1 class Numeric

2 def plus(x)

3 self.+ x

4 end

5 end

6 y = 5.plus 6

7 # 11

However there are operations in Ruby which are not overloadable. Listing 2.12 gives

several examples of operations (logical and, logical or, conditional statements) which have

a behaviour which cannot be changed from within the Ruby language. The advantage of

Listing 2.12: Methods in Ruby which are not overloadable

1 false and true

2 # false

3 false or true

4 # true

5 3 < 4 ? ’3 is less than 4’ : ’3 is not less than 4’

6 # "3 is less than 4"

7 if true

8 1

9 else

10 2

11 end

12 # 1

this is that programs are easier to understand since certain statements always have the

expected behaviour. However this limits the meta programming capabilities of Ruby.

This problem will be revisited in Section 3.1.

23

2.3.3 Dynamic Typing

Ruby uses dynamic typing. In Listing 2.13 the method “test” is defined. Since Ruby

Listing 2.13: Dynamic typing in Ruby

1 def test(a, b)

2 a + b

3 end

4 x = test 3, 5

5 # 8

6 x = test ’a’, ’b’

7 # ’ab’

8 x = test 3, ’b’

9 # TypeError: String can’t be coerced into Fixnum

is a dynamically typed language, it is possible to pass objects of any type as parameters.

However the object passed for parameter “a” must support the method “+” and this method

must accept one argument (the definition of method “test” is based on this). In a statically

typed language an erroneous argument would cause an error message at compile time. In

a dynamically typed language it will cause an exception at runtime (line 8).

Listing 2.14 shows how the Ruby standard library allows to combine integers, rational

numbers, complex numbers, vectors, and matrices in a seamless way. For example line

6 shows a complex number with rational numbers as components. Note that Ruby uses

dynamic typing to switch between native integers and big number representations in order

to prevent numeric overflows. Implementing a comparable library in a statically typed

language is hard because the type system has to reflect exactly which combinations of

data types and operations are supported. If there are n operations, there are potentially 2n

possible composite types, each of them supporting a different subset of operations.

Note that dynamic typing and weak typing are two different properties! Ruby uses

strong, dynamic typing.

2.3.4 Exception Handling

Like many other programming languages, Ruby supports exceptions as a means of han-

dling errors without using old-fashioned return codes. Thus the “spaghetti logic” that

results from checking return codes can be avoided. That is, exception handling facilitates

separation of the code that detects the error and the code for handling the error without

the semantic overhead of checking return values (Fulton, 2006). Exception handling is

state-of-the art and supported by most modern programming languages (e.g. C++, Java,

Python, Ruby, and Smalltalk all support it).

Listing 2.15 shows an example where the call to “File.new” in line 5 can potentially

raise an exception. The exception is handled in the block starting after the “rescue”

statement (lines 7 to 9). That is, if an error occurs during the execution of lines 2 to 6, the

program flow will continue in the rescue clause (lines 7 to 9).

24

Listing 2.14: Numerical types in Ruby

1 require ’mathn’

2 require ’complex’

3 require ’matrix’

4 x = -8 / 6

5 # -4/3

6 y = x * Complex(1, 2)

7 # Complex(-4/3, -8/3)

8 z = 2 ** 40

9 # 1099511627776

10 y + z

11 # Complex(3298534883324/3, -8/3)

12 m = Matrix[[1, 2], [3, 4]]

13 # Matrix[[1, 2], [3, 4]]

14 v = Vector[1/2, 1/3]

15 # Vector[1/2, 1/3]

16 m * v

17 # Vector[7/6, 17/6]

18 z ** 2

19 # 1208925819614629174706176

Listing 2.15: Exception handling in Ruby

1 begin

2 print "Enter filename: "

3 STDOUT.flush

4 file_name = STDIN.readline.delete("\n\r")

5 file = File.new file_name, ’r’

6 # ...

7 rescue Exception => e

8 puts "Error: #{e.message}"

9 end

25

2.3.5 Garbage Collector

The Ruby VM uses the Mark & Sweep algorithm as a garbage collector. Figure 2.615 il-

marked = false marked = true

root

marked = truemarked = true marked = true

marked = false

Figure 2.6: Mark & Sweep garbage collector

lustrates the algorithm. Every object has a mark which initially is set to “false”. Starting

from the root context, the graph of references is traversed recursively and every object en-

countered is marked with “true”. Afterwards all objects which are still marked “false”

are deallocated. Cyclical references are not a problem since only objects connected to the

root context are marked as “true”.

2.3.6 Control Structures

Ruby supports control structures for branching (see Figure 2.7) and looping (see Fig-

ure 2.8). The syntax of Ruby offers many different ways to write code with the same

semantics. This requires the software developer to make frequent choices. But the ad-

vantage is that the software developer has more control over the appearance of the code.

if x < 5 then

statement1

end

if x < 5 then

statement1

else

statement2

end

statement1 if y == 3

unless x >= 5 then

statement1

end

unless x < 5 then

statement2

else

statement1

end

statement1 unless y != 3

Figure 2.7: Conditional statements in Ruby (Fulton, 2006)

15http://www.brpreiss.com/books/opus5/html/page424.html

26

http://www.brpreiss.com/books/opus5/html/page424.html

while cond do

statement

end

until cond do

statement

end

for x in array do

statement

end

array.each do |x|

statement

end

loop do

statement

break if cond

end

loop do

statement

break unless cond

end

for i in 0 .. n - 1 do

statement

end

for i in 0 ... n do

statement

end

array.each_index do |i|

statement

end

Figure 2.8: Loop constructs in Ruby (Fulton, 2006)

2.3.7 Mixins

Ruby mixins are a unifying concept for namespaces and interfaces. That is, the “module”-

statement in Ruby can be used to declare a namespace. For example the “Math”-module

in Ruby contains constants such as “Math::PI” and methods such as “Math::cos” (or

“Math.cos”). However Ruby modules can also be used to “mix” methods into a class (Ful-

ton, 2006). When a Ruby module is included in a class, all the module’s instance methods

become available as methods in the class as well. In that case the mixed-in module effec-

tively behaves as superclass (Thomas et al., 2004). Listing 2.16 shows an example where

the mixin “TimesThree” providing the method “three times” is mixed into the “String”

class.

Listing 2.16: Mixins in Ruby

module TimesThree

def three_times

self + self + self

end

end

class String

include TimesThree

end

’abc’.three_times

"abcabcabc"

2.3.8 Closures

Closures are code blocks retaining the variable scope. Listing 2.17 gives an example

where a function returns a closure. Even after returning from the method “inc” (lines

1 to 5), the closure returned by that method (lines 2 to 4) still has access to the method

parameter “i”. Note that while the vertical bar “|” is used to represent the absolute value

in mathematical notation, in Ruby syntax it is used to denote the parameters of a block

(see Table 2.4 for more detail).

27

Listing 2.17: Closures in Ruby

1 def inc(i)

2 proc do |v|

3 v + i

4 end

5 end

6 t = inc 5

7 # <Proc:0xb742ed2c@(irb):3>

8 t.call 3

9 # 8

10 [1, 2, 3].collect do |x|

11 x ** 2

12 end

13 # [1, 4, 9]

14 [1, 2, 3].inject do |v,x|

15 v + x

16 end

17 # 6

Table 2.4: Ruby notation

Ruby syntax mathematical notation

function “f = proc { |x| x * x }” f (x) ≔ x2

absolute value “x.abs” |x|

2.3.9 Continuations

Ruby supports continuations. A continuation captures the current state of the process in

a variable. That is, the continuation offers a way to save the current program pointer and

context. Listing 2.18 gives an example where two continuations are used to jump into and

out of a method. The order of execution is as follows:

Listing 2.18: Continuations in Ruby

1 require ’continuation’

2 def test(c2)

3 callcc do |c1|

4 return c1

5 end

6 c2.call

7 end

8 callcc do |c2|

9 c1 = test(c2)

10 c1.call

11 end

1. The method “test” is defined (lines 2–7) and later called in line 9

2. In line 4 the continuation “c1” is returned and execution resumes in line 10

28

3. Line 10 calls the continuation so that execution resumes in line 6

4. Line 6 calls the continuation “c2” so that execution resumes after line 11 (i.e. the

program terminates)

Basic language features such as exception handling, fibers (cooperative multi-thread-

ing), and break statements can all be implemented using continuations.

2.3.10 Introspection

Listing 2.19: Introspection in Ruby

1 x = 5

2 # 5

3 x.class

4 # Fixnum

5 x.class.class

6 # Class

7 x.class.superclass

8 # Integer

9 x.is_a?(Fixnum)

10 # true

11 Fixnum < Integer

12 # true

13 5.respond_to?(:+)

14 # true

15 5.methods.grep(/ˆf/).sort

16 # ["floor", "freeze", "frozen?"]

Introspection allows the program to “see” itself. Listing 2.19 gives some examples

querying information about objects and their types. Using the method “methods” it is

possible to get an array with the names of the methods supported by an object (line 15).

2.3.11 Meta Programming

Ruby supports meta programming. That is, the interpreter provides means of modifying

the program during run-time. Listing 2.20 gives a few examples. Using “eval” one can

evaluate strings (line 1), using “instance eval” (lines 4–6) and “class eval” (lines 10–

14) one can evaluate code blocks in the context of a particular object or class, and using

“define method” one can create a method with the specified name and code block (lines

11–13).

Ruby meta programming is not as powerful as meta programming in Lisp or Small-

talk. For example some control structures such as while-loops and if-then-else statements

cannot be overloaded which means that their behaviour cannot be changed.

29

Listing 2.20: Meta programming in Ruby

1 eval ’x=5’

2 # 5

3 a = [1]

4 a.instance_eval do

5 push 2

6 end

7 # [1, 2]

8 a.send :push, 3

9 # [1, 2, 3]

10 Object.const_get(’String’).class_eval do

11 define_method ’test’ do

12 reverse

13 end

14 end

15 ’abc’.test

16 # ’cba’

2.3.12 Reification

Ruby supports some means of reification. Reification means that the program can modify

the behaviour of the interpreter. By overloading the standard method “method missing”

one can implement a different behaviour for the case an unknown method was called. For

example Listing 2.21 shows a definition of “Numeric#method missing” (lines 2 to 10)

which tries to find and call a method with the same prefix as the missing method. When

Listing 2.21: Reification in Ruby

1 class Numeric

2 def method_missing(name, *args)

3 prefix = Regexp.new("ˆ#{name}")

4 full_name = methods.find { |id| id =˜ prefix }

5 if full_name

6 send(full_name, *args)

7 else

8 super

9 end

10 end

11 end

12 5.mod 2

13 # calls 5.modulo 2

the missing method “Numeric#mod” is called in line 12, “Numeric#method missing” is

called which will call “Numeric#modulo” instead.

There are other hooks for handling missing constant (“const missing”), inheritance

changes (“inherited”), module inclusions (“extend object”), and method definitions

(“method added”) (Fulton, 2006).

30

2.3.13 Ruby Extensions

Ruby has a C-API for developing Ruby extensions16. Compared to other APIs such as the

Java Native Interface (JNI) it is very easy to use. The problem of the current API is that

it does not allow for relocation of allocated memory (Sasada, 2009a) (such as required by

compacting garbage collectors).

Listing 2.22 shows a small Ruby extension which upon loading registers the method

“Numeric#logx”. The Ruby native interface provides type definitions (e.g. “VALUE”),

macros (e.g. “NUM2DBL”, “RUBY METHOD FUNC”), and methods (e.g. “rb define method”,

“rb float new”, . . .) to manipulate the objects of the Ruby interpreter. The Ruby exten-

Listing 2.22: Example of a C-extension for Ruby

1 // gcc -shared -fPIC -I/usr/lib/ruby/1.8/x86_64-linux \

2 // -o myextension.so myextension.c

3 #include <ruby.h>

4 #include <math.h>

5

6 VALUE wrap_logx(VALUE self, VALUE x)

7 {

8 return rb_float_new(log(NUM2DBL(self)) / log(NUM2DBL(x)));

9 }

10

11 void Init_myextension(void) {

12 VALUE numeric = rb_const_get(rb_cObject, rb_intern("Numeric"));

13 rb_define_method(numeric, "logx", RUBY_METHOD_FUNC(wrap_logx), 1);

14 }

sion needs to define a method where the method’s name is the base name of the library

prefixed with “Init ” (here “Init myextension”). When the library is loaded using the

“require” statement (see Listing 2.23), this method is called so that the Ruby extension

can register new methods (here: the method “Numeric#logx”) with the Ruby interpreter.

Listing 2.23: Using the extension defined in Listing 2.22

require ’myextension’

true

1024.logx 2

10.0

2.3.14 Unit Testing

Unit testing is a common practise in the Ruby community (Martin, 2009). There are sev-

eral unit testing tools for Ruby. The basic Test::Unit17 framework is part of the Ruby stan-

dard library. Effective testing continues to play an important role in removing software

16http://www.rubyist.net/˜nobu/ruby/Ruby_Extension_Manual.html
17http://ruby-doc.org/core/classes/Test/Unit.html

31

http://www.rubyist.net/~nobu/ruby/Ruby_Extension_Manual.html
http://ruby-doc.org/core/classes/Test/Unit.html

defects (Rajendran, 2002). Ideally unit tests are automated and run after every change.

This makes it possible to identify bugs at an early stageor when refactoring the code,

i.e. when they are being introduced. For example Listing 2.24 shows a unit test for the

implementation of “Array#+” defined in Listing 2.7.

Listing 2.24: Unit test for “Array#+” defined in Listing 2.7

require ’test/unit’

class TC_Array < Test::Unit::TestCase

def test_plus

assert_equal [[6, 6], [6, 6]],

[[1, 2], [3, 4]] + [[5, 4], [3, 2]]

end

end

Loaded suite array_plus

Started

.

Finished in 0.002186 seconds.

#

1 tests, 1 assertions, 0 failures, 0 errors

With sufficient test coverage a test suite can become an executable specification of the

behaviour of a program. For example the RSpec18 project provides sets of tests for each

version of Ruby in order to test different implementations of the Ruby VM and measure

their degree of compatibility.

2.4 JIT Compilers

The Ruby programming language is an interpreted, pure object-oriented, and dynamically

typed general purpose programming language (see Section 2.3). Furthermore Ruby sup-

ports closures and meta-programming. Also Ruby has a straightforward API for writing

extensions. Finally Ruby currently is on place 11 of the Tiobe Programming Community

Index19. However in order for developers of machine vision software to take advantage

of the productivity gains offered by Ruby, it is necessary to address the performance issue

(see Figure 2.4 on page 19).

2.4.1 Choosing a JIT Compiler

Since Ruby supports meta-programming, a JIT compiler in general is indispensable for

the perfomant execution of Ruby programs. Table 2.5 shows several software projects

which can be used to perform JIT compilation. As one can see, the level of support varies

greatly. Of the projects shown in Table 2.5 only the Low Level Virtual Machine (LLVM)

project by Lattner (2002) and the RubyInline20 approach support all the desired properties.

18http://rspec.info/
19http://www.tiobe.com/index.php/content/paperinfo/tpci/
20http://rubyforge.org/projects/rubyinline

32

http://rspec.info/
http://www.tiobe.com/index.php/content/paperinfo/tpci/
http://rubyforge.org/projects/rubyinline

Table 2.5: Just-in-time compilers

L
L

V
M

li
b
JI

T

R
u
b
y
In

li
n
e

li
g
h
tn

in
g

A
sm

ji
t

X
b
y
ak

register allocation ✔ ✔ ✔

platform independence ✔ ✔ ✔ ✔

optimisation ✔ ✔

• register allocation: the JIT compiler should provide an abstract machine with an

infinite number of registers

• platform independence: the JIT compiler should be able to generate code for at

least x86, x86-64, and ARM

• optimisation: the JIT compiler should provide code optimisation (preferably global

optimisation)

Note that Table 2.5 is not complete. However the other JIT compilers are not readily

available as a free software library with a dedicated API.

The libJIT API is worth studying because it offers insights in what constitutes a JIT

compiler. The Ludicrous project21 provides a Ruby API to use the libJIT just-in-time

compiler library. However the Ruby API does not support pointer operations.

After initially working with libJIT, in the end the RubyInline approach was chosen for

the work of this thesis. The C language together with the Ruby extension API is a stable

interface for JIT compilation. Also the GNU C compiler offers state of the art optimisation

which facilitates competitive performance. The C code is generated at runtime and an

ordinary AOT compiler is called to produce a dynamic-link library (DLL) which can be

loaded on-the-fly.

Note that the Ricsin project (Sasada, 2009b,c) also provides a means of embedding C

code into Ruby programs as well. However it requires the C code to be available AOT.

2.4.2 libJIT API

This section gives a small introduction to libJIT for the interested reader.

Listing 2.25 and Listing 2.26 show a basic array operation implemented directly in

C and implemented using libJIT. The operation takes an array as argument (line 12 of

Listing 2.26) and increments every element of that array by one (line 23–31). This is

performed by sequentially loading each element (line 24), adding one to it (line 25), and

21http://rubystuff.org/ludicrous/

33

http://rubystuff.org/ludicrous/

Listing 2.25: Array operation implemented in C

// g++ -o ctest ctest.c

#include <stdlib.h>

#define SIZE 1000000

unsigned char *f(unsigned char *p, unsigned char one, unsigned char *pend)

{

for (; p != pend; p++)

*p += one;

return p;

}

int main(void)

{

unsigned char *data = malloc(SIZE * sizeof(unsigned char));

f(data, 1, data + SIZE);

free(data);

return 0;

}

writing it back to memory (line 27). The array pointer is incremented (line 28–29) and a

conditional branch (line 30–31) is used to continue with the next element until the whole

array was processed.

The example demonstrates how the libJIT library exposes the JIT compiler function-

ality using the following data structures:

1. a JIT context object keeping the functions

2. functions with parameters, instructions, and return value

3. values (virtual registers) of different types

• integers

• floating point numbers

• pointers

4. labels

The methods of the libJIT library expose the functionality of a complete compiler:

1. creating and destructing the context

2. defining functions and their arguments

3. adding instructions

• setting virtual registers to a constant

• loading values into a virtual register and writing values back to memory

• logical and mathematical operations

• control flow statements (e.g. conditional branching)

34

Listing 2.26: Array operation compiled with libJIT

1 // gcc -o jittest jittest.c -ljit

2 #include <stdlib.h>

3 #include <jit/jit.h>

4 #define SIZE 1000000

5 int main(void)

6 {

7 // Compile function

8 jit_context_t context = jit_context_create();

9 jit_context_build_start(context);

10 jit_type_t params[3];

11 params[0] = jit_type_void_ptr;

12 params[1] = jit_type_int;

13 params[2] = jit_type_void_ptr;

14 jit_type_t signature =

15 jit_type_create_signature(jit_abi_cdecl, jit_type_void_ptr,

16 params, 3, 1);

17 jit_function_t function = jit_function_create(context, signature);

18 jit_value_t p, px, one, end, eq;

19 jit_label_t start = jit_label_undefined;

20 p = jit_value_get_param(function, 0);

21 one = jit_value_get_param(function, 1);

22 end = jit_value_get_param(function, 2);

23 jit_insn_label(function, &start);

24 jit_value_t temp1 = jit_insn_load_relative(function, p, 0, jit_type_ubyte);

25 jit_value_t temp2 = jit_insn_add(function, temp1, one);

26 jit_value_t temp3 = jit_insn_convert(function, temp2, jit_type_ubyte, 0);

27 jit_insn_store_relative(function, p, 0, temp3);

28 jit_value_t temp4 = jit_insn_add_relative(function, p, sizeof(jit_ubyte));

29 jit_insn_store(function, p, temp4);

30 eq = jit_insn_lt(function, p, end);

31 jit_insn_branch_if(function, eq, &start);

32 jit_insn_return(function, p);

33 jit_function_compile(function);

34 jit_context_build_end(context);

35 // Call function

36 unsigned char *data = malloc(SIZE * sizeof(unsigned char));

37 void *args[3];

38 jit_ptr arg1 = data;

39 jit_ubyte arg2 = 1;

40 jit_ptr arg3 = data + SIZE;

41 jit_ptr result;

42 args[0] = &arg1;

43 args[1] = &arg2;

44 args[2] = &arg3;

45 jit_function_apply(function, args, &result);

46 free(data);

47 // Destruct function

48 jit_context_destroy(context);

49 return 0;

50 }

35

4. creating labels to jump to

5. allocating virtual registers and constants

6. compiling and calling methods

2.5 Summary

This chapter has highlighted some basic difficulties with implementing machine vision

systems. It was shown that AOT compilation of basic image processing operations is not

feasible to due the large number of combinations of methods and parameter types. It was

also shown that dynamic typing facilitates much more concise code than static typing.

The properties of the Ruby programming language were discussed. The Ruby pro-

gramming language is an interpreted language. It is pure object-oriented and dynamically

typed. It supports exception handling, mixins, and closures. Furthermore there is support

for continuations and meta-programming.

Finally the choice of a JIT compiler was discussed. It was decided to use GNU C as

a JIT compiler because the C language represents a stable interface. Also the GNU C

compiler comes with a powerful optimiser.

36

“Programming languages: performance, productivity,

generality - pick any two.”

Mario Wolczko

“Elegance and familiarity are orthogonal.”

Rich Hickey

“In ‘Elephant’ the programmer would write nothing

about an array or database for storing reservations. Ar-

rays of course would be necessary but the compiler would

invent them.”

John McCarthy
3

Handling Images in Ruby

This chapter is about the core of the work presented in this thesis. Since digital images are

represented as 2D arrays, the way array operations are implemented is of great importance

when developing machine vision systems. Most existing image processing libraries only

support some combinations of operations and array element-types (also see Section 2.2.1).

In this chapter a library for manipulating uniform arrays is introduced. The library brings

together performance and productivity in an unprecedented way (also see Section 1.3).

• transposing array views (i.e. transposing an array “without deep copy” of elements)

• lazy evaluation of array operations (i.e. avoiding unnecessary memory-I/O for in-

termediate results)

• JIT compilation of array operations to achieve real-time performance

A set of objects is introduced to represent arrays, array views, and lazy evaluations in

a modular fashion.

• Section 3.1 explains how meta-programming can be used to integrate a JIT compiler

into the Ruby programming language

• Section 3.2 introduces memory objects

• Section 3.3 defines native data types based on the memory objects

• Section 3.4 presents uniform arrays based on previously introduced objects

• Section 3.5 introduces a library for describing computer vision algorithms

• Section 3.8 gives a summary of this chapter

37

It is demonstrated how this approach facilitates succinct implementations of machine vi-

sion algorithms.

The software was published under the name Hornetseye. The software is provided as

a set of packages (see page iii).

3.1 Transparent JIT Integration

The performance of the Ruby VM is significantly lower than the performance achieved

with GNU C (see Section 2.2.3). One can achieve higher performance by introducing

operations based on uniform arrays with native element types into the target language.

It is desirable to introduce a JIT compiler without requiring the developer community

to accept a modification of the Ruby language. In order to test the meta-programming

capabilities of Ruby one can implement the method “#method missing” as shown in List-

ing 3.1 (lines 7–13) in order to reflect on code instead of executing it. Whenever an object

Listing 3.1: Reflection using missing methods

1 class Const

2 attr_accessor :inspect

3 alias_method :to_s, :inspect

4 def initialize(s)

5 @inspect = s.to_s

6 end

7 def method_missing(name, *args)

8 str = "#{ self }.#{ name }"

9 unless args.empty?

10 str += "(#{args.join ’, ’})"

11 end

12 Const.new str

13 end

14 def coerce(y)

15 return Const.new(y), self

16 end

17 end

of type “Const” receives a message for a method that is not implemented, it invokes the

method “#method missing” instead (Fulton, 2006). The method creates a textual repre-

sentation of the method call as shown in Listing 3.2. Listing 3.2 shows that the Ruby

programming language supports changing the behaviour of unary negation (line 22), bi-

nary plus (line 24), and element access (line 26).

However Listing 3.3 shows that meta programming support in Ruby is limited (also

see Section 2.3.11). For example the statement in line 34 returns “a” instead of “a.or(b)”.

In order to implement transparent JIT integration, it is therefore necessary to restrict the

use of the programming language to a subset of Ruby with full meta programming sup-

port.

Some operations such as constructing the transpose of a 2D array merely require

38

Listing 3.2: Example applying reflection to simple operations

18 a = Const.new ’a’

19 # a

20 b = Const.new ’b’

21 # b

22 -a

23 # a.-@

24 a + b

25 # a.+(b)

26 a[2]

27 # a[](2)

28 2 * a

29 # 2.*(a)

30 2 * a + b

31 # 2.*(a).+(b)

32 2 * (a + b)

33 # 2.*(a.+(b))

Listing 3.3: Limitations of reflection in Ruby

34 a or b

35 # a

36 a < b ? a : b

37 # a

38 b = a

39 # a

40 if a > b

41 a -= b

42 end

43 # a.-(b)

44 begin

45 a += 1

46 end until a > b

47 a

48 # a.+(1)

39

the data to be interpreted differently (in this case the order of array indices needs to be

swapped). This can be achieved by deferring the calculation (i.e. implementing support

for lazy evaluation (Abelson et al., 1996)). It turns out that this also makes it possible to

avoid writing and reading intermediate results and to build tensor expressions.

3.2 Malloc Objects

In order to convert between native representation and Ruby values, the existing methods

“Array#pack”1 and “String#unpack”2 of the Ruby core library are used. Listing 3.4

shows how Ruby values get converted to a Ruby string with a native representation of the

values (line 3) and back (line 5). The methods “Array#pack” and “String#unpack” re-

Listing 3.4: Converting arrays to binary data and back

1 array = [0x52, 0x75, 0x62, 0x79]

2 # [82, 117, 98, 121]

3 string = array.pack ’c’ * 4

4 # "Ruby"

5 array = string.unpack ’c’ * 4

6 # [82, 117, 98, 121]

quire a template string as parameter which specifies the native data type(s) (see Table 3.1).

Table 3.1: Directives for conversion to/from native representation

Directive Native Data Type

C Unsigned byte

c Byte

d Double-precision float

f Single-precision float

I Unsigned integer

i Integer

Q Unsigned long

q long

S Unsigned short

s Short

Since Ruby strings do not support pointer operations or multiple objects viewing the

same memory location, “Malloc”-objects were introduced (as part of the work presented

in this thesis). “Malloc” objects allow one to see a chunk of memory as an array of cubby-

holes, each containing an 8-bit character (similar as “vector-ref” in Scheme (Abelson

et al., 1996)). Listing 3.5 shows an example using “Malloc” objects. The method

1http://www.ruby-doc.org/ruby-1.9/classes/Array.html#M000766
2http://www.ruby-doc.org/ruby-1.9/classes/String.html#M000659

40

http://www.ruby-doc.org/ruby-1.9/classes/Array.html#M000766
http://www.ruby-doc.org/ruby-1.9/classes/String.html#M000659

Listing 3.5: Manipulating raw data with Malloc objects

require ’malloc’

include Hornetseye

m = Malloc.new 4

Malloc(4)

m.write ’abcd’

n = m + 2

Malloc(2)

n.read 2

"cd"

“Malloc#+” is used to create a new object viewing a memory location with the given off-

set (also see Figure 3.1 for a graphical illustration). An explanation of important methods

a b c d

m

n = m + 2

Figure 3.1: Pointer operations (compare Listing 3.5)

is given in Table 3.2.

Table 3.2: Methods for raw memory manipulation

Method Description

“Malloc.new” Allocate memory

“Malloc#read” Read data from memory and return as string

“Malloc#write” Write string data to memory

“Malloc#+” Operation for doing pointer arithmetic

3.3 Basic Types

As shown in Section 2.2.3, in general an implementation using native data types can

be optimised much better than an implementation using Ruby data types. In order to

facilitate implementation of real-time machine vision software, representations of native

types starting with booleans are introduced. Note that the type system is not part of the

Ruby programming language or the Ruby core library. The type system was developed as

part of the work presented in this thesis.

41

3.3.1 Booleans

In order to annotate a boolean value with type information, one can define a wrapper class

for representing native booleans in Ruby (similar to “boxing” in Java3). Listing 3.6 shows

the application of the class “BOOL”. The methods “[]” and “[]=” are used for getting

Listing 3.6: Boxing booleans

1 b = BOOL.new

2 # BOOL(false)

3 b.class

4 # BOOL

5 b[]

6 # false

7 b[] = true

8 # true

9 b

10 # BOOL(true)

(line 5) and setting (line 7) the boolean value encapsulated by an object of this class.

The method “BOOL#inspect” is used to define the textual representation for the output of

Interactive Ruby.

Listing 3.7: Constructor short cut

b = BOOL true

BOOL(true)

Although it is considered bad style to give Ruby methods a name starting with a capital

letter, the language does not forbid this. This is sometimes used to define a short cut to a

constructor such as for “BOOL.new” which then can be used as shown in Listing 3.7.

In formal language one would define types and variables as shown in Equation 3.1

using the boolean set B ≔ { f alse, true}.

b ∈ B, b = true (3.1)

3.3.2 Integers

One can introduce classes to represent native integers in a similar fashion. However note

that there are different types of native integers. That is, current central processing units

(CPUs) usually support 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers.

Using template classes one can achieve the behaviour shown in Listing 3.8. By specifying

the number of bits and the signed-ness one can instantiate an integer classes (e.g. lines

1 and 3). See Figure 3.2 for a corresponding visual representation. Furthermore one can

define type names and constructor shortcuts for certain integer types (e.g. lines 5 and 7).

3http://eclipse.org/aspectj/doc/released/adk15notebook/autoboxing.html

42

http://eclipse.org/aspectj/doc/released/adk15notebook/autoboxing.html

Listing 3.8: Template classes for integer types

1 INT 16, UNSIGNED

2 # USINT

3 INT(16, UNSIGNED).new 65535

4 # USINT(65535)

5 u = USINT.new 65535

6 # USINT(65535)

7 u = USINT 65535

8 # USINT(65535)

INT

16 SIGNED

Figure 3.2: Abstract data type for 16-bit unsigned integer

In formal language usually only integers (Z) and non-negative integers (N0) are dis-

tinguished. See Equation 3.2 and Equation 3.3 for examples.

i ∈ Z, i = −123 (3.2)

u ∈ N0, u = 234 (3.3)

3.3.3 Floating-Point Numbers

Listing 3.9: Boxing floating point numbers

FLOAT SINGLE

SFLOAT

FLOAT DOUBLE

DFLOAT

FLOAT(SINGLE).new

SFLOAT(0.0)

DFLOAT.new

DFLOAT(0.0)

f = DFLOAT Math::PI

DFLOAT(3.14159265358979)

Classes for representing single- and double-precision floating point numbers are im-

plemented in a similar fashion as the integer classes. The behaviour of the implementation

is shown in Listing 3.9. See Figure 3.3 for a visual representation of the floating point

data types.

The computer’s representation of a double-precision floating point number consists of

64 bits. That is, the hardware can represent 264 different numbers. In mathematics the set

43

FLOAT

SINGLE

FLOAT

DOUBLE

Figure 3.3: Abstract data types for single-precision and double-precision floating point

numbers

of real numbers is uncountable and represented by the symbol R (e.g. see Equation 3.4).

π ∈ R, π = 3.1415926 . . . (3.4)

3.3.4 Composite Numbers

Listing 3.10 demonstrates composite numbers such as “RGB” (for representing red, green,

blue triplets) in Ruby. Note that the red, green, blue (RGB) class supports left-handed

Listing 3.10: Composite numbers

1 c = RGB 4, 5, 6

2 # RGB(4,5,6)

3 c - 3

4 # RGB(1,2,3)

5 7 - c

6 # RGB(3,2,1)

(line 5) and right-handed (line 3) subtraction of a scalar. Right-handed subtraction of a

scalar is handled by the method “RGB#-”. In order to handle left-handed subtraction of

a scalar, one has to implement the method “RGB#coerce”. This method gets called by

“Fixnum#-” when it encounters an unknown data type. All numeric data types of the

Ruby core library handle left-handed operations with an unknown data type in this way.

This makes it possible to define data types at runtime and integrate them without having

to change the implementation of existing data types. Examples of data types which are

not part of the Ruby core are matrices and vectors.

Composite numbers are wrapped in a similar way as scalar numbers. Listing 3.11

gives a few examples using the resulting API. Figure 3.4 illustrates how the data types

are composed.

3.3.5 Pointers

Furthermore a pointer type is introduced. For example see Figure 3.5 showing how a

pointer to a double precision floating point number is composed. The pointer encap-

44

Listing 3.11: Boxing composite numbers

c = UBYTERGB RGB(1, 2, 3)

UBYTERGB(RGB(1,2,3))

c = RGB(INT(16, UNSIGNED)).new RGB(1, 2, 3)

USINTRGB(RGB(1,2,3))

c = RGB(FLOAT(SINGLE)).new RGB(0.1, 0.2, 0.3)

SFLOATRGB(RGB(0.1,0.2,0.3))

RGB

INT

8 UNSIGNED

RGB

INT

16 UNSIGNED

RGB

FLOAT

SINGLE

Figure 3.4: Composite types for unsigned byte RGB, unsigned short int RGB, and single-

precision floating point RGB values

POINTER

FLOAT

DOUBLE

Figure 3.5: Abstract data type for pointer to double precision floating point number

45

sulates a “Malloc”-object. One can see a pointer object as a delayed fetch operation.

That is, the pointer object supports lazy evaluation of fetch operations. In Chapter 3.2

it was shown how the methods “Array#pack” and “String#unpack” convert between a

Ruby value and a string with the native representation. Listing 3.12 shows how the me-

thods “Pointer #store” (line 3) and “Pointer #demand” (lines 9 and 11) can be used

to write/read boxed values to/from memory. That is, the pointer object handles read-

Listing 3.12: Pointer objects

1 p0 = Pointer(DFLOAT).new Malloc.new(16)

2 # *(DFLOAT)(Malloc(16))

3 p0.store DFLOAT(Math::PI)

4 # DFLOAT(3.14159265358979)

5 p1 = p0.lookup INT(1), INT(1)

6 # *(DFLOAT)(Malloc(8))

7 p1.store DFLOAT(Math::E)

8 # DFLOAT(2.71828182845905)

9 p0.demand

10 # DFLOAT(3.14159265358979)

11 p1.demand

12 # DFLOAT(2.71828182845905)

ing and writing native values using the type information stored in its class. The method

“Pointer #lookup” (line 5) facilitates pointer operations in Ruby which are used as a

basis for defining arrays later on.

3.3.6 Ruby Objects

Listing 3.13: Boxing arbitrary Ruby objects

OBJECT ’Hello!’

OBJECT("Hello!")

OBJECT 2 ** 127 - 1

OBJECT(170141183460469231731687303715884105727)

In order to integrate the system of native types with the existing Ruby type system, a

means of specifying non-native types is introduced. The class “OBJECT” is used to encap-

sulate Ruby objects which do not have a native representation as shown in Listing 3.13.

Note that in practise one needs to define a class based on Ruby arrays which supports

reading/writing values and pointer operations in a similar way to “Malloc” but providing

this functionality for Ruby objects.

3.4 Uniform Arrays

A uniform array can be seen as a special case of a function accepting one or more indices

as arguments and returning an array element as result. For example Equation 3.5 shows a

46

function returning the square of a value4.

f :


{1, 2, 3} → Z

x 7→ x2
(3.5)

Since the function is defined on a finite set (i.e. the set {1, 2, 3}), it can instead be defined

using the function values f (1), f (2), and f (3). That is, f can also be represented as an

array, vector, or sequence (e.g. the vector f ′ = (1 4 9)⊤ with f ′
1
= 1, f ′

2
= 4, and f ′

3
= 9).

Using the insight that matrices, arrays, vectors, and sequences are essentially different

notations for functions, one can develop a representation which unifies these concepts.

This section shows how variables, lambda terms, lookup objects, and the basic types

introduced in the previous section can be used as building blocks to construct multi-

dimensional arrays.

3.4.1 Variable Substitution

Listing 3.14: Variable objects and substitution

1 v1 = Variable.new INT

2 # Variable(INT)

3 v2 = Variable.new INT

4 # Variable(INT)

5 v2.subst v1 => INT(7)

6 # Variable(INT)

7 v2.subst v2 => INT(7)

8 # INT(7)

9 INT(5).subst v1 => INT(7)

10 # INT(5)

Listing 3.14 shows application of the variable class. The method “Variable#subst”

accepts a Ruby hash as argument (lines 5 and 7). It returns either a replacement for the ob-

ject (line 8) or the object itself (line 6). By furthermore defining methods “INT #subst”,

“FLOAT #subst”, “BOOL #subst”, . . . and have them return “self”, one can achieve the

behaviour shown in Listing 3.14 where applying a substitution to a scalar value has no ef-

fect (line 9). In formal language the substitutions shown in Listing 3.14 is specified using

square brackets as shown in Equation 3.6 (Church, 1951; McCarthy, 1960; Barendregt

and Barendsen, 1984).

v2

[
v1 ≔ 7

] ≡ v1

v2

[
v2 ≔ 7

] ≡ 7

5
[
v1 ≔ 7

] ≡ 5

(3.6)

4here the formal notation of the form f :

{
X → Y

x 7→ f (x)
according to Heuser (1991) is used with X

and Y being the domain and codomain of f

47

3.4.2 Lambda Terms

In λ-calculus the basic operations are abstraction and application (Church, 1951; Mc-

Carthy, 1960; Barendregt and Barendsen, 1984). The concept of application is also

known as β-reduction. For example Equation 3.7 shows the square function x → x ∗ x

written in lambda notation. A dot is used to separate the bound variable x from the term

x ∗ x.

λx.x ∗ x (3.7)

Equation 3.8 is an example of β-reduction. Here the square function is applied to the

number 3. The bound variable x is replaced with the value 3.

(λx.x ∗ x)3→β (x ∗ x)
[
x ≔ 3

]→ 3 ∗ 3→ 3 (3.8)

A “Lambda” class was implemented in order to facilitate manipulation of lambda ex-

pressions in Ruby. Listing 3.15 shows application of the class “Lambda”. The identity

Listing 3.15: Lambda abstraction and application

1 v = Variable.new INT

2 # Variable(INT)

3 l = Lambda.new v, v

4 # Lambda(Variable(INT),Variable(INT))

5 l.element INT(7)

6 # INT(7)

function is used as an example to demonstrate abstraction and application. The variable

“v” becomes a bound variable in the λ-term “l” (line 3). The same example written using

the formal system of λ-calculus is shown in Equation 3.9.

(λx.x)7→β x
[
x ≔ 7

] ≡ 7 (3.9)

3.4.3 Lookup Objects

In principle one can view a one-dimensional (1D) array as a function accepting one argu-

ment. That is, given a (typed) memory pointer p and a stride s one can define an arbitrary

array a as shown in Equation 3.10.

a :


{0, 1, . . . , n − 1} → R

i 7→ f etchR(p + i ∗ s)
(3.10)

The function f etchR is a pristine array representing physical memory (e.g. memory of

camera holding image data). Note that the array index is limited to a certain range, i.e.

i ∈ {0, 1, . . . , n − 1}.
Listing 3.16 shows how an array is constructed using a pointer, a lookup object, and

48

Listing 3.16: Implementing arrays as lazy lookup

1 v = Variable.new INDEX(INT(5))

2 # Variable(INDEX(INT(5)))

3 p = Pointer(DFLOAT).new Malloc.new(40)

4 a = Lambda.new v, Lookup.new(p, v, INT(1))

5 a[1] = 4.2

6 # 4.2

7 a[1]

8 # 4.2

a lambda term. Line one creates an index variable. The size of the array becomes part of

the type information of the variable (i.e. “INDEX(INT(5))”). Line 3 allocates 40 bytes of

memory and creates a pointer object for interpreting the memory as a sequence of double-

precision floating point numbers. In line 4 the variable and the memory are used to create

a lookup object. Finally the variable is bound using a lambda term.

By defining the Ruby operators “[]” and “[]=” one can implement element access.

Element-access internally is implemented as beta-reduction (see Section 3.4.2). In prac-

tise the construction of arrays is hidden using the method “Sequence.new” as shown in

Listing 3.17.

Listing 3.17: Uniform arrays

a = Sequence.new DFLOAT, 5

a[1] = 4.2

4.2

a[1]

4.2

3.4.4 Multi-Dimensional Arrays

One can treat a multi-dimensional array as a function accepting multiple indices as argu-

ments. Equation 3.11 shows the definition of an arbitrary 3D array m using a memory

pointer p and the strides s0, s1, and s2.

m :


{0, 1, . . . , n2 − 1} × . . . × {0, 1, . . . , n0 − 1} → R

(x0 x1 x2) 7→ f etchR(p + s2 x2 + s1 x1 + s0 x0)

(3.11)

Internally the multi-dimensional array is represented by recursively nesting “Lambda” and

“Lookup” objects. By extending the methods “[]” and “[]=” in a suitable manner and

by introducing the method “MultiArray.new”, one can achieve the behaviour shown in

Listing 3.18. The statement “MultiArray.new UBYTE, 2, 4, 3” in line 1 allocates a 3D

array with 2 × 4 × 3 elements. Figure 3.6 illustrates the shape and the strides of the 3D

array. The corresponding formal notation is given in Equation 3.12.

49

Listing 3.18: Multi-dimensional uniform arrays

1 m = MultiArray.new UBYTE, 2, 4, 3

2 m[1, 2, 0] = 3

3 # 3

4 m[1, 2, 0]

5 # 3

6 m[0][2][1]

7 # 3

8 m[0][2][1] = 5

9 # 5

10 m[1, 2, 0]

11 # 5

i sh
a

p
e[

i]

st
ri

d
e
s[

i]

x
[i

]
0 2 1 1

1 4 2 2

2 3 8 0

strides[i] =
i−1∏

k=0

shape[k]

x[2]

x[1]

x[0]

Figure 3.6: Shape and strides for a 3D array

m :


{0, 1} × {0, 1, 2, 3} × {0, 1, 2} → {0, 1, . . . , 255}

(x0 x1 x2) 7→ f etch{0,1,...,255}(p + s2 x2 + s1 x1 + s0 x0)

(3.12)

Note that the methods “[]” and “[]=” are defined in a fashion which makes it possible

to specify either the major index first (e.g. “m[0][2][1]” in line 6 of Listing 3.18) or the

minor index first (e.g. “m[1,2,0]” in line 4 of Listing 3.18). It is also possible to access

the same element using hybrid notation (e.g. “m[2,0][1]”). This makes it possible to

interpret the 3D array of scalars as a 2D array m′ of 2D vectors or as a 2D array m′′ array

of 1D functions. See Equation 3.13 for the corresponding formal domain specifications

(the actual array definitions are omitted here for brevity).

m′ : {0, 1, 2, 3} × {0, 1, 2} → {0, 1, . . . , 255}2

m′′ : {0, 1, 2, 3} × {0, 1, 2} → ({0, 1} → {0, 1, . . . , 255})
(3.13)

50

3.4.5 Array Views

In the Ruby language the declaration “1 .. 5” is a short cut for “Range.new 1, 5,

false”. Ranges are similar to intervals in mathematics, e.g. [1, 5] in this case5. On the

other hand “1 ... 6” is a short cut for “Range.new 1, 6, true” which is a right-open

interval. The mathematical notation is [1, 6) in that case6. The method “[]” (and also the

method “[]=”) can be extended so that they accept “Range” objects.

Listing 3.19 shows some examples where sub-arrays of a 2D array are specified using

ranges. Note that while the vertical bar “|” is used to represent the absolute value in

mathematical notation, in Ruby syntax it is used to denote the parameters of a block (see

Table 2.4 for more detail). Note that the order of the dimensions of the resulting array is

Listing 3.19: Array views

1 m = lazy(5, 4) { |i,j| i + j * 5 }

2 # MultiArray(INT,2):

3 # [[0, 1, 2, 3, 4],

4 # [5, 6, 7, 8, 9],

5 # [10, 11, 12, 13, 14],

6 # [15, 16, 17, 18, 19]]

7 u = m[1 .. 2]

8 # MultiArray(INT,2):

9 # [[5, 10],

10 # [6, 11],

11 # [7, 12],

12 # [8, 13],

13 # [9, 14]]

14 v = u[1 .. 3]

15 # MultiArray(INT,2):

16 # [[6, 7, 8],

17 # [11, 12, 13]]

18 v = m[1 .. 3, 1 .. 2]

19 # MultiArray(INT,2):

20 # [[6, 7, 8],

21 # [11, 12, 13]]

22 v = m[1 .. 2][1 .. 3]

23 # MultiArray(INT,2):

24 # [[6, 7, 8],

25 # [11, 12, 13]]

cycled n times where n is the number of ranges specified. For example after declaring “m”

in line 1, the values 5, 6, 7, . . . appear in one row of the array. However extracting the sub

array “u” (line 7) changes the order of the array indices so that the same elements now

appear in one column.

Figure 3.7 illustrates the advantage of this semantics: It allows one to specify the ma-

jor indices first by invoking the operation “[]” twice and specifying the ranges separately

(e.g. “m[1 .. 2][1 .. 3]”). But it also allows one to specify the minor indices first

by invoking the operation “[]” only once (e.g. “m[1 .. 3, 1 .. 2]”).

5[a, b] denotes the closed interval from a to b. That is, [a, b] ≔ {x ∈ R|a ≤ x ≤ b}
6[a, b) denotes the right-open interval from a to b. That is, [a, b) ≔ {x ∈ R|a ≤ x < b}

51

1 2 3 40
6 7 8 95
1112131410
1617181915

6
7
8
9

5
11
12
13
14

10

6 7 8
111213

u = m[1 .. 2]

v = u[1 .. 3]

v = m[1 .. 3, 1 .. 2]

v = m[1 .. 2][1 .. 3]
or

Figure 3.7: Extracting array views of a 2D array

The equivalent formal notation for the definition of the sub arrays v is shown in Equa-

tion 3.14.

v :


{0, 1, 2} × {0, 1} → Z

(x0 x1) 7→ m(x0 + 1, x1 + 1)
(3.14)

3.5 Operations

Table 3.3 gives an overview of generic array operations which can be found in computer

vision algorithms. “a” and “b” are parameters, and “r” is the result. Each of “r”, “a”, and

“b” denotes a scalar or an array depending on the operation. In some cases a function

“f” is involved. “i” and “j” are array indices. Note that this set of array operations is

not complete since it does not cover operations involving multi-dimensional arrays (e.g.

matrix-vector multiplication). Also it is not minimal since an array-scalar binary function

can be created using a constant array and an array-array binary function.

3.5.1 Constant Arrays

As shown in Section 3.4.3, one can see arrays as functions where the indices are the

arguments of that function. A 1D constant array carr where the value of each element is

0 becomes a constant function as shown in Equation 3.15.

carr ≔ λi.0 (3.15)

Lines 4, 7, and 11 of Listing 3.20 show different ways of using the lambda class

introduced in Chapter 3.4.2 to create a function returning 0. Using closures it is possible

to define the method “lazy”. The method accepts the shape of the array as argument and a

closure for generating the array elements. For example one can construct a constant array

using the statement “lazy(5) { 0 }”. Note that it is possible to define multi-dimensional

arrays by nesting calls to “lazy”.

52

Table 3.3: Generic set of array operations

operation array index

read element r =a(b) -

read sub-array r(i) =a(i+b) i

constant array r(i) =a i

index array r(i) =i i

unary function r(i) =f(a(i)) i

scalar-array binary function r(i) =f(a,b(i)) i

array-scalar binary function r(i) =f(a(i),b) i

array-array binary function r(i) =f(a(i),b(i)) i

accumulate r =f(r,a(i)) i

warp/mask r(i) =a(b(i)) i

unmask r(b(i))=a(i) i

downsampling r(i) =a(b*i) i

upsampling r(b*i)=a(i) i

integral r(i) =r(i-1)+a(i) i

map r(i) =b(a(i)) i

histogram r(a(i))=r(a(i))+1 i

weighted hist. r(a(i))=r(a(i))+b(i) i

convolution r(i) =r(i)+a(i-j)*b(j) i,j

3.5.2 Index Arrays

In practise index arrays can be useful (e.g. for computing warp fields). In the 1D case the

simplest index array is the identity function id shown in Equation 3.16.

id ≔ λi.i (3.16)

Listing 3.21 gives a few examples of index arrays and how they can be constructed

using the “lazy” method. The index arrays “x” and “y” (lines 1 and 6) are useful for

computing warp fields in practise. The class method “indgen” is a short cut for creating

a multi-dimensional index array.

3.5.3 Type Matching

Type matching is introduced in order to conveniently convert Ruby values to native values.

Figure 3.8 illustrates how a Ruby value is passed on to the “Match#fit” method of each

native type class:

• “Sequence #fit” rejects the value because it is not an array

• “RGB #fit” rejects the value because it is not an RGB value

• “FLOAT #fit” rejects the value because it is not a floating point number

53

Listing 3.20: Constant arrays

1 Lambda.new Variable.new(INDEX(INT(5))), UBYTE.new(0)

2 # Sequence(UBYTE):

3 # [0, 0, 0, 0, 0]

4 lazy(5) { 0 }

5 # Sequence(UBYTE):

6 # [0, 0, 0, 0, 0]

7 lazy(3, 2) { 0 }

8 # MultiArray(UBYTE,2):

9 # [[0, 0, 0],

10 # [0, 0, 0]]

11 lazy(2) { lazy(3) { 0 } }

12 # MultiArray(UBYTE,2):

13 # [[0, 0, 0],

14 # [0, 0, 0]]

Listing 3.21: Index arrays

1 x = lazy(3, 3) { |i,j| i }

2 # MultiArray(INT,2):

3 # [[0, 1, 2],

4 # [0, 1, 2],

5 # [0, 1, 2]]

6 y = lazy(3, 3) { |i,j| j }

7 # MultiArray(INT,2):

8 # [[0, 0, 0],

9 # [1, 1, 1],

10 # [2, 2, 2]]

11 idx = lazy(3, 3) { |i,j| i + j * 3 }

12 # MultiArray(INT,2):

13 # [[0, 1, 2],

14 # [3, 4, 5],

15 # [6, 7, 8]]

16 MultiArray(INT,2).indgen 3, 3

17 # MultiArray(INT,2):

18 # [[0, 1, 2],

19 # [3, 4, 5],

20 # [6, 7, 8]]

Bool::Match#fit

FLOAT_::Match#fit

INT_::Match#fit

OBJECT::Match#fit

RGB_::Match#fit

Sequence_::Match#fit
127

UBYTE

Figure 3.8: Type matching

54

• “INT #fit” accepts the value because it is an integer between −263 and 264 − 1. The

method returns “UBYTE” because this is the smallest native integer sufficient to hold

the value “127”

That is, the method “Match#fit” determines whether the corresponding native type is the

best fit for the given Ruby value. Listing 3.22 shows how this simplifies declarations of

native arrays.

Listing 3.22: Type matching

Sequence[1, 2, 3]

Sequence(UBYTE):

[1, 2, 3]

Sequence[1, 2, -1]

Sequence(BYTE):

[1, 2, -1]

Sequence[1.5, RGB(1, 2, 3)]

Sequence(DFLOATRGB):

[RGB(1.5,1.5,1.5), RGB(1.0,2.0,3.0)]

MultiArray[[1, 2], [3, 4]]

MultiArray(UBYTE,2):

[[1, 2],

[3, 4]]

3.5.4 Element-Wise Unary Operations

Listing 3.23 shows element-wise operations in Ruby. The method “Array#collect” ac-

cepts a closure as argument which computes 2 x + 1 for each element x of the argument

in this example. In order to facilitate more concise code, one can define methods which

Listing 3.23: Element-wise unary operations using “Array#collect”

a = [1, 2, 3]

a.collect { |x| x * 2 + 1 }

[3, 5, 7]

make it possible to use a shorter notation as shown in Listing 3.24. The problem how-

ever is that eager evaluation will create intermediate results. For example evaluation of

the statement “a * 2 + 1” will create the intermediate result “a * 2” and then add “1” to

each element. That is, an array to store the intermediate result is allocated and the values

are written to it only to be read back again immediately. If one were to use lazy evaluation

this would not happen (see Figure 3.9). That is, in order to have concise code as well as

performant code, it is important to facilitate lazy evaluation.

Listing 3.25 shows how lazy unary operations can be represented internally using

objects (e.g. of type “ElementWise(proc { |x| -x }, :-@, proc { |t| t })”). That

is, , here the unary operation is characterised using following information

55

Listing 3.24: Short notation for element-wise operations

class Array

def *(scalar)

collect { |x| x * scalar }

end

def +(scalar)

collect { |x| x + scalar }

end

end

Example use

a = [1, 2, 3]

a * 2 + 1

[3, 5, 7]

1
2
3

2
4
6

3
5
7

*2

*2

*2

+1

+1

+1

eager evaluation

1
2
3

3
5
7

*2

*2

*2

+1

+1

+1

lazy evaluation

Figure 3.9: Avoiding intermediate results by using lazy evaluation

Listing 3.25: Internal representation of unary operations

1 s = Sequence(INT)[1, 2, 3]

2 # Sequence(INT):

3 # [1, 2, 3]

4 ElementWise(proc { |x| -x }, :-@, proc { |t| t.contiguous }).new s

5 # Sequence(INT):

6 # [-1, -2, -3]

7 lazy { -s }

8 # Sequence(INT):

9 # [-1, -2, -3]

10 lazy { |i| -s[i] }

11 # Sequence(INT):

12 # [-1, -2, -3]

13 -s

14 # Sequence(INT):

15 # [-1, -2, -3]

16 (-Sequence[:a, 1, :b])[1]

17 # NoMethodError: undefined method ‘-@’ for :a:Symbol

18 lazy { -Sequence[:a, 1, :b] }[1]

19 # -1

56

1. “proc { |x| -x }”: A closure (see Section 2.3.8 with the operation to apply to each

element

2. “:-@”: A unique symbol to identify the operation (for debugging purposes and to

compute a cache key)

3. “proc { |t| t }”: A closure for computing the data type of the result

This representation is preserved when doing lazy evaluation (e.g. when executing the

statement “lazy { -s }”). When doing eager evaluation (the default) the operation will

be applied to each element and the result is stored in a new array (e.g. when executing

the statement “-s”). The difference between lazy and eager operations becomes visible

when using operations in combination with element access. Line 16 Listing 3.25 shows

that eager evaluation of “-Sequence[:a, 1, :b]” will throw an exception since “:a” is

a symbol and does not support negation. However it is possible to perform the operation

lazily and extract the second element of the result without computing the other elements

as shown in line 18.

Equation 3.17 shows how one can use formal language to describe the application of

a unary operator to an index array as an example.

− (λi.i) = λi. − i (3.17)

Note that in practise it is not necessary to normalise the expression. For example it is not a

problem if “lazy { |i| -s[i] }” and “lazy { -s }” have different lazy representations.

3.5.5 Element-Wise Binary Operations

Listing 3.26: Element-wise binary operations using “Array#collect” and “Array#zip”

a = [1, 2, 3]

[1, 2, 3]

b = [-1, 1, 3]

[-1, 1, 3]

a.zip b

[[1, -1], [2, 1], [3, 3]]

a.zip(b).collect { |x,y| x + y }

[0, 3, 6]

Listing 3.26 shows how one can perform element-wise addition of two arrays in Ruby.

The method “Array#zip”7 merges elements of both arrays. Afterwards “Array#collect”

performs element-wise addition using the array of pairs as input.

Binary operations with support for lazy evaluation are introduced in a similar fashion

as unary operations. That is, they are internally represented as objects (e.g. of type

7http://www.ruby-doc.org/core/classes/Array.html#M002198

57

http://www.ruby-doc.org/core/classes/Array.html#M002198

“ElementWise(proc { |x,y| x + y }, :+, proc { |t,u| t.coercion u })”) and the

representation is only preserved in lazy mode. In practise binary operations occur as

array-array-, array-scalar-, and scalar-array-operations as one can see in Listing 3.27. In

Listing 3.27: Internal representation of binary operations

s = Sequence(INT)[1, 2, 3]

Sequence(INT):

[1, 2, 3]

ElementWise(proc { |x,y| x + y }, :+, proc { |t,u| t.coercion u }).

new s, UBYTERGB(RGB(1, 2, 3))

Sequence(INTRGB):

[RGB(2,3,4), RGB(3,4,5), RGB(4,5,6)]

s + RGB(1, 2, 3)

Sequence(INTRGB):

[RGB(2,3,4), RGB(3,4,5), RGB(4,5,6)]

RGB(1, 2, 3) + s

Sequence(INTRGB):

[RGB(2,3,4), RGB(3,4,5), RGB(4,5,6)]

s + s

Sequence(INT):

[2, 4, 6]

a similar fashion as in the case of unary operations, the binary operation is characterised

by the following information

1. “proc { |x,y| x + y }”: A closure with the operation to apply to each pair of

elements

2. “:+”: A unique symbol to identify the operation (for debugging purposes and to

compute a cache key)

3. “proc { |t,u| t.coercion u }”: A closure for deriving the data type of the result

Equation 3.18 show examples of formal representation of array-scalar, scalar-array,

and array-array binary operations.

(
λi. f (i)

)
+ c ≡ λi. f (i) + c

c +
(
λi. f (i)

) ≡ λi.c + f (i)

(
λi. f (i)

)
+
(
λi.g(i)

) ≡ λi. f (i) + g(i)

(3.18)

Furthermore there are unary and binary methods. For example “Math.sqrt(x)” will

compute the square root of x, “Math.atan2(y, x)” will compute the polar angle of (x y)⊤.

However methods and operators are just different forms of notation for element-wise op-

erations. That is, they are handled the same way as element-wise operations.

58

3.5.6 LUTs and Warps

3.5.6.1 LUTs

Like any other array, one can understand a lookup table (LUT) as a function. Element-

wise lookup can be understood as element-wise application of that function. See List-

ing 3.28 for example.

Listing 3.28: Element-wise application of a LUT

MultiArray[1, 2, 0].lut Sequence[:a, :b, :c]

Sequence(OBJECT):

[:b, :c, :a]

In general it is desirable to support multi-dimensional LUTs, i.e. using vectors with

multiple dimensions as lookup index. Furthermore it is possible to have LUTs with multi-

dimensional arrays as elements. Equation 3.19 shows application of the LUT l to the array

a.

b(~x)(~y) = l
(
a(~x)
)
(~y) (3.19)

The array a is interpreted as an n1-dimensional array with n2-dimensional vectors as el-

ements. The n2-dimensional vectors are used for a lookup with l. See Equation 3.20 for

the types of a, l, and the result b.

a : N0
n1 → N0

n2 , l : N0
n2 → (N0

n3 → K), b : N0
n1 → (N0

n3 → K) (3.20)

Listing 3.29 shows how to use a LUT for computing a pseudo colour image. First

Listing 3.29: Creating a pseudo colour image

1 class Numeric

2 def clip(range)

3 [[self, range.begin].max, range.end].min

4 end

5 end

6 colours = Sequence.ubytergb 256

7 for i in 0...256

8 hue = 240 - i * 240.0 / 256.0

9 colours[i] =

10 RGB(((hue - 180).abs - 60).clip(0...60) * 0xFF / 60.0,

11 (120 - (hue - 120).abs).clip(0...60) * 0xFF / 60.0,

12 (120 - (hue - 240).abs).clip(0...60) * 0xFF / 60.0)

13 end

14 MultiArray.load_ubyte(ARGV[0]).lut(colours).save_ubytergb ARGV[1]

the “Numeric” class is extended with a method for clipping numbers to a certain range

(lines 1–5). Then a colour palette with 256 elements is allocated (line 6) and populated

with values (lines 7–13). Figure 3.10 shows a plot of the colour channels of the resulting

palette. Finally an image is loaded, element-wise lookup is performed, and the resulting

59

x

y

0.0 32.0 64.0 96.0 128.0 160.0 192.0 224.0 256.0

0.0

64.0

128.0

192.0

256.0

red red

red

red

green

green green

green

blue

blue

blue blue

Figure 3.10: Pseudo colour palette

image is written to disk (line 14). Figure 3.11 shows a thermal image used as input and

the corresponding pseudo colour image created with afore mentioned program.

input image output image

Figure 3.11: Thermal image displayed with pseudo colours (source: NASA Visible Earth)

Listing 3.29 shows how the concepts introduced in previous chapters apply to im-

plementation of image processing algorithms. The implementation of the pseudo colour

visualisation is both concise and real-time capable.

3.5.6.2 Warps

An image warp is essentially the same as element-wise lookup. That is, the image is used

as a LUT and the input data is a 2D array of warp vectors. Listing 3.30 shows how one can

convert a topographical image from equirectangular to azimuthal projection. Note that in

this example the components of the warp vectors are two separate arrays (i.e. “angle” in

line 6 and “radius” in line 5). The array class of the Ruby language was extended so that

the expression “[angle, radius].lut(img)” (line 7) can be used to specify the arrays

60

http://visibleearth.nasa.gov/view_rec.php?id=1564

Listing 3.30: Warp from equirectangular to azimuthal projection

1 img = MultiArray.load_ubytergb ’world.jpg’

2 w, h = *img.shape

3 c = 0.5 * (h - 1)

4 x, y = lazy(h, h) { |i,j| i - c }, lazy(h, h) { |i,j| j - c }

5 radius = lazy { Math.hypot(x, y).to_int }

6 angle = lazy { ((Math.atan2(x, y) / Math::PI + 1) * w / 2).to_int }

7 [angle, radius].lut(img).save_ubytergb ’polar.jpg’

holding the components of the warp vectors.

Figure 3.12 illustrates how the components of the warp vectors are constructed. The

x1 x2 ∠(x1, x2)
√

x2
1
+ x2

2

Figure 3.12: Visualised components of warp vectors

visualisation was inspired by Baker and Matthew (2004). Arrays with x1 and x2 values

are used to construct arrays with the angle and radius of the azimuthal projection. The

result of applying the warp is shown in Figure 3.13.

input image output image

Figure 3.13: Warping a satellite image (source: NASA Visible Earth)

3.5.7 Injections

Apart from element-wise functions (e.g. LUTs) one frequently encounters the fold-left

(f oldl) operation in functional programming. The operation is also known as the reduce

part of Google’s MapReduce implementation (Lämmel, 2008). Given a binary function

61

http://visibleearth.nasa.gov/view_rec.php?id=7100

A → B → B and a value of type B, the f oldl operation yields a function taking an array

as argument which does cumulative application of the binary function (Hutton, 1999) (see

Equation 3.21).

(A→ B→ B)→ B→ ((N0 → A)→ B
)

f oldl(f , v)([x1, x2, x3, . . .]) = f (. . . f (f (f (v, x1), x2), x3), . . .)
(3.21)

Note that f oldl is left-associative. When applying the fold operation to non-associative

operations (e.g. division or subtraction) it is important to distinguish between left-as-

sociative (f oldl) and right-associative folding (fold-right (f oldr)). In Ruby the f oldl

operation is known as injection. Listing 3.31 shows two ways of specifying an injection

for computing the product of all elements of an array. The equivalent formal expression

Listing 3.31: Left-associative fold operation in Ruby

[2, 3, 5, 7, 11].inject(1) { |a,b| a * b }

2310

[2, 3, 5, 7, 11].inject 1, :*

2310

using the product symbol is shown in Equation 3.22.

∏

i∈{1,2,...,5}
si where s ≔ (2 3 5 7 11) (3.22)

Listing 3.32 shows how an injection can be represented internally using an object of

class “Inject”. The closure (or nameless function) “proc { |a,b| a * b }” is con-

Listing 3.32: Internal representation of injections

1 s = Sequence[2, 3, 5, 7, 11]

2 # Sequence(UBYTE):

3 # [2, 3, 5, 7, 11]

4 v = Variable.new INDEX(s.size)

5 # Variable(INDEX(INT(5)))

6 v1 = Variable.new INT

7 # Variable(INT)

8 v2 = Variable.new INT

9 # Variable(INT)

10 block = proc { |a,b| a * b }.call v1, v2

11 # *(Variable(INT),Variable(INT))

12 inject = Inject.new s.element(v), v, INT(1), block, v1, v2

13 # INT(2310)

14 Sequence[2, 3, 5, 7, 11].inject(1) { |a,b| a.to_int * b }

15 # 2310

verted to an object by passing it “Variable” objects as parameters (line 10). The end of

the listing shows how the operation might be invoked in practise (line 14).

The image processing operations “min”, “max”, and “range” can be implemented us-

ing f oldl (see Listing 3.33). Injection can be implemented recursively. The injection

62

Listing 3.33: Various cumulative operations based on injections

m = MultiArray[[2, 3, 5], [7, 11, 13]]

MultiArray(UBYTE,2):

[[2, 3, 5],

[7, 11, 13]]

m.min

2

m.max

13

m.range

2..13

is applied to each dimension separately. For example Figure 3.14 shows the recursive

computation of the sum of an array. Other associative operations such as computing the

1
2
3

4
5
6

7
8
9

12
15
18

45+ +

Figure 3.14: Recursive implementation of injection (here: sum)

maximum, minimum, or the product can be computed in the same recursive manner as

well.

Using Ruby closures and “Variable” objects it is possible to develop a concise nota-

tion for sums. For example 1D and 2D sums as shown in Equation 3.23.

ui ≔

2∑

j=1

m ji

v ≔

2∑

j=1

3∑

i=1

m ji, m ∈ Z3×2

(3.23)

The corresponding Ruby code to compute u and v is shown in Listing 3.34. Note that

Listing 3.34: Concise notation for sums of elements

m = MultiArray[[2, 3, 5], [7, 11, 13]]

MultiArray(UBYTE,2):

[[2, 3, 5],

[7, 11, 13]]

u = sum { |i| m[i] }

Sequence(UBYTE):

[9, 14, 18]

v = sum { |i,j| m[i,j] }

41

63

Listing 3.35: Tensor operations in Ruby (equivalent to Listing 2.6)

a = MultiArray.dfloat 3, 3

b = MultiArray.dfloat 3, 3

r = eager { |i,k| sum { |j| a[i,j] * b[j,k] } }

it is not even necessary to specify the ranges for the index variable because they can be

inferred from the element access.

3.5.8 Tensor Operations

The “lazy” method and the “sum” operator (see Chapter 3.5.1 and Chapter 3.5.7) in com-

bination with unary and binary element-wise operations (see Chapter 3.5.4 and Chap-

ter 3.5.5) are sufficiently generic to implement tensor operations. Listing 2.6 shows a

tensor operation implemented using the FTensor C++ library. The equivalent Ruby im-

plementation is shown in Listing 3.35. The “eager” performs the operation lazily the

same way as the “lazy” method does. However it forces the result to be computed and

stored in a new array.

3.5.9 Argmax and Argmin

The definitions of the operations argmax and argmin are given in Equation 3.24 and Equa-

tion 3.25

argmin
~x

(
f (~x)
)
≔
{
~x
∣∣∣∀~x′ : f (~x) ≤ f (~x′)

}
(3.24)

argmax
~x

(
f (~x)
)
≔
{
~x
∣∣∣∀~x′ : f (~x) ≥ f (~x′)

}
(3.25)

where ~x is any coordinate in the n-dimensional input array f . The operations return the

argument for which the function attains the maximum or the minimum value. Listing 3.36

shows three operations:

1. 1D argmax for locating the maximum of each row (line 10)

2. Instruction for extracting the maxmimum of each row (line 10)

3. 2D argmax for locating the maximum (line 13)

The listing demonstrates how to construct a warp for extracting the maximum of each row

of the input array. Note that the argument operation returns an array (or several arrays) if

the input array has more dimensions than the argument.

The argument functions are implemented recursively using warps as illustrated in Fig-

ure 3.15. First the argument maximum of each row is located. The locations are used as

coordinates for a warp to select the maximum of each row. Using the warped array, the

64

Listing 3.36: Argument maximum

1 m = MultiArray[[1, 2, 3], [4, 5, 9], [7, 8, 3], [7, 6, 4]]

2 # MultiArray(UBYTE,2):

3 # [[1, 2, 3],

4 # [4, 5, 9],

5 # [7, 8, 3],

6 # [7, 6, 4]]

7 argmax { |i| m.unroll[i] }

8 # [Sequence(INT):

9 # [2, 2, 1, 0]]

10 m.warp argmax { |i| m.unroll[i] }.first, lazy(4) { |i| i }

11 # Sequence(UBYTE):

12 # [3, 9, 8, 7]

13 argmax { |i,j| m[i,j] }

14 # [2, 1]

11 2 3
4 5 9
7 8 3
7 6 4

2 012

3 789

2

Figure 3.15: Recursive implementation of argument maximum

65

column of the maximum can be determined. The column in turn is used to determine

the row of the maximum by selecting the appropriate element from the array of argument

maxima determined earlier.

3.5.10 Convolution

Convolution filters are commonly used to define image features. Equation 3.26 gives the

definition of a 1D convolution (discrete case).

ci ≔

∑

k

ak bo+k−i, where o =

⌈
n

2

⌉
(3.26)

In the continuous case a convolution integral as shown in Equation 3.27 is used.

(a ⊗ b)(~x) ≔

∫
a(~x) b(~z − ~x) d~z (3.27)

Once can perform a 1D convolution by first computing a product table and then com-

puting diagonal sums of it as shown in Figure 3.16. Furthermore one can see the compu-

a2

a3

a4

a4

a5

a1 a1 · b1

a2 · b1

a3 · b1

a4 · b1

a6 · b1

a5 · b1

a1 · b2

a2 · b2

a3 · b2

a4 · b2

a6 · b2

a5 · b2

a1 · b3

a2 · b3

a3 · b3

a4 · b3

a5 · b3

a6 · b3

b2 b2b1

c5 = a4 · b1 + a5 · b2 + a6 · b3

c4 = a3 · b1 + a4 · b2 + a5 · b3

c3 = a2 · b1 + a3 · b2 + a4 · b3

c1 = a1 · b2 + a2 · b3

c2 = a1 · b1 + a2 · b2 + a3 · b3

...
...

...

Figure 3.16: Diagonal injection

tation of diagonal sums as a special case of diagonal injection. Listing 3.37 shows how

this is done in Ruby. The internal representation of diagonal injections is similar to the

one of ordinary injections (see Chapter 3.5.7). Variables are used to convert the closure

(declared in line 7) to an object (line 27). The diagonal injection is constructed in line

29. The array index of the result is bound using a lambda expression (line 33). In practise

diagonal injections and convolutions are implemented as methods. The end of the listing

shows how they can be invoked (lines 36 and 39).

Two-dimensional convolutions can be calculated using the same concept. In this case

a four-dimensional product table and two sequential diagonal injections are used. See

66

Listing 3.37: One-dimensional convolutions in Ruby

1 a = Sequence[0, 1, 0, 0, 0, 2, 0, 0]

2 # Sequence(UBYTE):

3 # [0, 1, 0, 0, 0, 2, 0, 0]

4 b = Sequence[1, 2, 3]

5 # Sequence(UBYTE):

6 # [1, 2, 3]

7 product = a.table(b) { |x,y| x * y }

8 # MultiArray(UBYTE,2):

9 # [[0, 0, 0],

10 # [1, 2, 3],

11 # [0, 0, 0],

12 # [0, 0, 0],

13 # [0, 0, 0],

14 # [2, 4, 6],

15 # [0, 0, 0],

16 # [0, 0, 0]]

17 i = Variable.new Hornetseye::INDEX(nil)

18 # Variable(INDEX(INT(nil)))

19 j = Variable.new Hornetseye::INDEX(nil)

20 # Variable(INDEX(INT(nil)))

21 k = Variable.new Hornetseye::INDEX(nil)

22 # Variable(INDEX(INT(nil)))

23 v1 = Variable.new product.typecode

24 # Variable(UBYTE)

25 v2 = Variable.new product.typecode

26 # Variable(UBYTE)

27 block = proc { |x,y| x + y }.call v1, v2

28 # +(Variable(UBYTE),Variable(UBYTE))

29 term = Diagonal.new product.element(j).element(k), i, j, k, nil, block, v1, v2

30 # ...

31 i.size = j.size

32 # INT(8)

33 c = Lambda.new i, term

34 # Sequence(UBYTE):

35 # [1, 2, 3, 0, 2, 4, 6, 0]

36 c = lazy { |j,i| a[i] * b[j] }.diagonal { |x,y| x + y }

37 # Sequence(UBYTE):

38 # [1, 2, 3, 0, 2, 4, 6, 0]

39 c = a.convolve b

40 # Sequence(UBYTE):

41 # [1, 2, 3, 0, 2, 4, 6, 0]

67

Listing 3.38: Two-dimensional convolutions in Ruby

1 m = MultiArray.int(6, 4).fill!; m[1, 1] = 1; m[4, 2] = 2; m

2 # MultiArray(INT,2):

3 # [[0, 0, 0, 0, 0, 0],

4 # [0, 1, 0, 0, 0, 0],

5 # [0, 0, 0, 0, 2, 0],

6 # [0, 0, 0, 0, 0, 0]]

7 f = MultiArray(INT,2).indgen 3, 3

8 # MultiArray(INT,2):

9 # [[0, 1, 2],

10 # [3, 4, 5],

11 # [6, 7, 8]]

12 m.convolve f

13 # MultiArray(INT,2):

14 # [[0, 1, 2, 0, 0, 0],

15 # [3, 4, 5, 0, 2, 4],

16 # [6, 7, 8, 6, 8, 10],

17 # [0, 0, 0, 12, 14, 16]]

Listing 3.38 for a demonstration of 2D convolutions. An array “m” (line 1) and a filter

“f” (line 7) are declared. The array is convolved with the filter in line 12.

Figure 3.17 shows a moving average filter applied to an image. This filter operation

input image moving average

Figure 3.17: Applying a moving average filter to an image

can be implemented using convolutions as shown in Listing 3.39 (gamma 1.0 was as-

sumed). The 2D moving average filter is a separable filter, i.e. it can be separated into

two consecutive 1D convolutions, which is computationally more efficient.

3.5.11 Integral

An integral image (or a summed area table) is an array with the sum of all elements with

indices lower or equal to the current set of indices. For example Equation 3.28 shows the

68

Listing 3.39: Moving average filter implemented using convolutions

n = 15

ma_x = lazy(n, 1) { 1 }

ma_y = lazy(1, n) { 1 }

(MultiArray.load_ubytergb(ARGV[0]).to_usintrgb.

convolve(ma_x).convolve(ma_y) / n ** 2).save_ubytergb ARGV[1]

definition of a 1D integral array and Equation 3.29 the definition of a 2D integral array.

bi =

i∑

k=0

ak (3.28)

b j,i =

j∑

l=0

i∑

k=0

al,k (3.29)

Integral images can be used to quickly compute the sum of elements in a rectangular

region of the input data. If the sum of elements for many rectangles is required it can

be computationally more efficient to make use of an integral image (e.g. as in the real-

time face detection algorithm by Viola and Jones (2001)). In practise integral arrays are

computed iteratively. The 1D case is shown in Equation 3.30.

b0 = a0

bi = bi−1 + ai

(3.30)

The 1D algorithm can be used recursively to compute multi-dimensional integral arrays.

The 2D case is shown in Equation 3.31.

b0,i =

i∑

k=0

a0,k

b j,i = b j−1,i +

i∑

k=0

a j,k

(3.31)

Figure 3.18 gives an example of recursion for computing a 2D integral image. First each

row is integrated and then integration is performed on each column of the resulting array.

Note that lazy computation of integral images is inefficient since the computation of

an element can depend on the values of all other elements in the worst case. Therefore

integral images are always computed eagerly and the result is stored in memory.

Listing 3.40 uses an integral image to apply a moving average filter to an image (as-

suming gamma 1.0). Note that the image boundaries are omitted here for simplicity so

that the output image is smaller than the input image (see Figure 3.19).

69

0
1
1

1
2
0

0
0
0

0
1
1

1
3
1

1
3
1

0
1
2

1
4
5

1
4
5

Figure 3.18: Recursive implementation of integral image

integral image moving average

Figure 3.19: Computing a moving average filter using an integral image

Listing 3.40: Moving average filter implemented using an integral image

img = MultiArray.load_ubytergb ARGV[0]

w, h = *img.shape; n = 9

int = img.to_intrgb.integral

a = int[n ... w, n ... h]

b = int[0 ... w - n, n ... h]

c = int[n ... w, 0 ... h - n]

d = int[0 ... w - n, 0 ... h - n]

((a - b - c + d) / n ** 2).save_ubytergb ARGV[1]

70

Listing 3.41: Conditional selection as element-wise operation

class Node

def sgn

(self<0).conditional -1, (self>0).conditional(1,0)

end

end

Sequence[-3,-2,-1,0,1,2,3].sgn

Listing 3.42: Injection with a conditional

Sequence[false, true, true, false].inject(0) { |a,b| a + b.conditional(1, 0) }

2

3.5.12 Masking/Unmasking

Piecewise functions such as the signum function shown in Equation 3.32 can be imple-

mented using the element-wise conditional function as shown in Listing 3.41.

sgn(x) ≔



1 x > 0

0 x = 0

−1 otherwise

(3.32)

The conditional function simply is a ternary element-wise operation.

However it is not possible to combine a conditional operation with an injection in an

efficient manner, e.g. when computing the number of elements for which a condition is

true (see Equation 3.33). ∑

x∈M

1 where M ⊂ Z (3.33)

When using the conditional function as shown in Listing 3.42, the number of additions

will be 4. An efficient implementation would only require 1 or 2 additions.

Listing 3.43 shows an implementation using a masking operation to perform an injec-

tion on a subset of an array. A constant array is masked (line 2) and the sum of elements

is computed (line 5). This implementation only needs 1 addition. Masking is especially

useful when doing complex operations on a small subset of an array.

Listing 3.44 shows an example using a masking and an unmasking operation. A mask

to select elements greater than zero is created (line 4). Then the operation 6 divided by

Listing 3.43: Injection on a subset of an array

1 s = Sequence[false, true, true, false]

2 m = lazy(s.size) { 1 }.mask s

3 # Sequence(UBYTE):

4 # [1, 1]

5 m.inject { |a,b| a + b }

6 # 2

71

Listing 3.44: Element-wise operation on a subset of an array

1 s = Sequence[0, 1, 2, 3]

2 # Sequence(UBYTE):

3 # [0, 1, 2, 3]

4 m = s > 0

5 # Sequence(BOOL):

6 # [false, true, true, true]

7 (6 / s.mask(m)).unmask m

8 # Sequence(UBYTE):

9 # [0, 6, 3, 2]

Listing 3.45: Two-dimensional histogram

1 MultiArray[[0, 0], [2, 1], [1, 1]].histogram 3

2 # Sequence(UINT):

3 # [2, 3, 1]

4 MultiArray[[0, 0], [2, 1], [1, 1]].histogram 3, 3

5 # MultiArray(UINT,2):

6 # [[1, 0, 0],

7 # [0, 1, 1],

8 # [0, 0, 0]]

x is performed on the masked array and the result is “unmasked” (line 7). That is, the

implementation performs an element-wise operation on a subset of an array.

Note that the design of the Intel Larrabee architecture for parallel processing also

includes masking and unmasking operations. They are called “vcompress” and “vex-

pand” (Abrash, 2009).

3.5.13 Histograms

A histogram is a record of the number of pixels in an image or a region that fall into partic-

ular quantization buckets in some colour space (Forsyth and Ponce, 2003). Equation 3.34

shows the definition of the histogram of a.

h(~y) = H{a}(~y) =
∑

~x


1 a(~x) = ~y

0 otherwise
where a : N0

n1 → N0
n2 , h : N0

n2 → N0 (3.34)

In a similar way as with integral images, the computational complexity of computing a

single element is the same as the complexity of computing all elements of a histogram.

Therefore histograms are computed eagerly as well.

Listing 3.45 shows a Ruby program which first computes a 1D histogram (with three

elements) of the values of a 2D 2×3 array (line 1). Listing 3.45 furthermore demonstrates

that the 2D array given as input can be interpreted as a 1D array of 2D vectors resulting

in a 2D (3 × 3) histogram (line 4).

Listing Listing 3.46 shows computation of a colour (here RGB) histogram. The

expression “reference >> 2” (left-shift by two) divides the red (R), green (G), and blue

72

Listing 3.46: Histogram segmentation

1 reference = MultiArray.load_ubytergb ’neon.png’

2 hist = (reference >> 2).histogram(64, 64, 64).convolve lazy(5, 5, 5) { 1 }

3 img = MultiArray.load_ubytergb ’neontetra.jpg’

4 seg = (img >> 2).lut(hist).convolve lazy(9, 9) { 1 }

5 (img * seg).normalise.save_ubytergb ’fish.jpg’

(B) values by 4 resulting in 64 quantisation steps for each channel (line 2). The 64×64×64

reference histogram is convolved with a 3D moving average to reduce noise (line 2). The

reference histogram then is used as a LUT with another image (line 4). Finally a moving

average filter is applied to the result (line 4). Some example data is given in Figure 3.20.

The input image is a picture of a tropical aquarium with Neon Tetra fish. The histogram of

Input image

➠
Reference

image
Output image

Figure 3.20: Histogram segmentation example

the reference image is used as a LUT. The result is used to create an output image which

highlights the areas which have similar colours as found in the reference image. Although

the floor of the aquarium is not fully discarded, the algorithm is able to highlight most of

the fish visible in the image.

The histograms of the red, green, and blue colour channels of the reference image

are shown in Figure 3.21, i.e. three 1D histogram. The histogram segmentation exam-

ple however uses a 3D histogram which is more difficult to visualise. See Figure 3.22

for a visualisation of the 3D histogram using a visual representation inspired by Barthel

(2006) (the visualisation was created using the POV-Ray ray tracer (POVRay, 2005)).

Note that in practise it is often preferable to use a colour space which is independent of

the luminosity (e.g. hue, saturation, and value (HSV)).

3.6 JIT Compiler

In order to achieve real-time performance, each array operation is converted to a C method

on-the-fly. The C method is compiled to a Ruby extension (i.e. a shared object (SO) file

or a DLL). This library is loaded dynamically and the method is registered with the Ruby

VM. Then the method is called with the appropriate parameters (also see Chapter 2.3.13).

73

0 8 16 24 32 40 48 56 64
0

32

64

96

128

160

192

224

Figure 3.21: Histograms of the red, green, and blue colour channel of the reference image

Figure 3.22: 3D histogram

74

Listing 3.47: Lazy negation of integer

1 a = INT 5

2 # INT(5)

3 b = ElementWise(proc { |x| -x }, :-@).new a

4 # Continued in Listing 3.48 ...

Listing 3.48: Stripping values from an expression

5 # ... continuing from Listing 3.47

6 r = Pointer(INT).new

7 term = Store.new r, b

8 variables, values, skeleton = term.strip

9 # [[Variable(*(INT)), Variable(INT)], [*(INT)(Malloc(4)), INT(5)],

10 # Store(Variable(*(INT)),-@(Variable(INT)))]

11 types = variables.collect { |var| var.meta }

12 # [*(INT), INT]

13 # Continued in Listing 3.49 ...

The following sections explain how the C code is generated.

3.6.1 Stripping Terms

Listing 3.47 shows a simple negation of an integer value. A lazy negation is instantiated

explicitly to avoid immediate evaluation in Ruby. The equivalent in formal notation is

shown in Equation 3.35.

a = −5, b = −a (3.35)

In practise it is necessary to compute the values of every expression at some point

and store the value(s) in memory. In this case it can be done by introducing the opera-

tion storeZ which has a side-effect on the memory location pointed to by r as shown in

Equation 3.36.

storeZ
(
r,−a
)

(3.36)

3.6.2 Compilation and Caching

In order to generate the corresponding C code, the expression of Listing 3.47 is stripped

as shown in Listing 3.48 in line 4. The stripping operations results in variables, the

corresponding values, and a skeleton of the expression. To avoid repeated compilation of

the same expression, a unique descriptor of the expression will be used as a method names.

Listing 3.49 shows how the method name is computed. The hash table “labels” with

labels for the variables is created (line 2) in order to distinguish expressions where only

the order of variables is different. This hash table is used to generate a unique descriptor

for the stripped expression (line 4). Since method names in C cannot contain special

characters, a translation table is used to replace special characters with alphanumerical

ones (lines 6–7).

75

Listing 3.49: Generating a unique descriptor

14 # ... continuing from Listing 3.48

15 labels = Hash[*variables.zip((0 ... variables.size).to_a).flatten]

16 # {Variable(*(INT))=>0, Variable(INT)=>1}

17 descriptor = skeleton.descriptor labels

18 # "Store(Variable0(*(INT)),-@(Variable1(INT)))"

19 method_name = (’_’ + descriptor).tr(’(),+\-*/%.@?˜&|ˆ<=>’,

20 ’0123\456789ABCDEFGH’)

21 # "_Store0Variable0050INT112490Variable10INT111"

22 # Continued in Listing 3.50 ...

Listing 3.50: Using special objects to generate C code

23 # ... continuing from Listing 3.49

24 c = GCCContext.new ’extension’

25 f = GCCFunction.new c, method_name, *types

26 subst = Hash[*variables.zip(f.params).flatten]

27 # {Variable(*(INT))=>*(INT)(param0), Variable(INT)=>INT(param1)}

28 skeleton.subst(subst).demand

29 f.compile

30 # Continued in Listing 3.52 ...

The variables of the stripped expression are substituted with parameter objects (i.e.

“param0”, “param1”, . . .) as shown in line 28 of Listing 3.50. This expression is re-

evaluated (by calling “#demand”) in order to generate C code (line 28). In this example

the code for a function to compute −a is generated. This is achieved using operator

overloading. That is, re-evaluating generates code instead of performing the actual com-

putation. Listing 3.51 shows the C method generated by above example. In addition

code for registering the method and for converting the arguments is generated. The code

is not shown here. See Listing 2.22 for a complete listing of a Ruby extension.

The compiled code becomes a class method of the class “GCCCache”. Listing 3.52

shows how the method is called. The arguments are extracted from the values (line 32).

The C method is called and it writes the result to the specified memory location (line

34). Note that the code is sufficiently generic to handle cases where the result of the

computation is a composite number or an array.

Listing 3.51: The resulting C code to Listing 3.50

VALUE _Store0Variable0050INT112490Variable10INT111(unsigned char *param0,

int param1)

{

int v01;

int v02;

v01 = param1;

v02 = -(v01);

*(int *)(param0 + 0) = v02;

}

76

Listing 3.52: Calling the compiled method

31 # ... continuing from Listing 3.50

32 args = values.collect { |arg| arg.values }.flatten

33 # [Malloc(4), 5]

34 GCCCache.send method_name, *args

35 r

36 # INT(-5)

3.7 Unit Testing

The implementations of the various array operations presented in this chapter and the JIT

compiler are tested using unit testing (also see Section 2.3.14.)

Scalar operations can be seen as units which can be tested individually. Listing 3.53

shows a few tests for operations on boxed integers (introduced in Section 3.3.2).

Listing 3.53: Some unit tests for integers

require ’test/unit’

require ’multiarray’

class TC_Int < Test::Unit::TestCase

I = Hornetseye::INT

def I(*args)

Hornetseye::INT *args

end

def test_int_inspect

assert_equal ’INT’, I.inspect

end

def test_typecode

assert_equal I, I.new.typecode

end

def test_shape

assert_equal [], I.new.shape

end

def test_inspect

assert_equal ’INT(42)’, I(42).inspect

end

def test_plus

assert_equal I(3 + 5), I(3) + I(5)

end

end

Loaded suite irb

Started

.....

Finished in 0.001675 seconds.

#

5 tests, 5 assertions, 0 failures, 0 errors

Array operations are tested in a similar fashion. Listing 3.54 shows a few tests for ar-

ray operations. Technically speaking these are functional tests, since the array operations

are not tested separately from the scalar operations.

77

Listing 3.54: Tests for array operations

require ’test/unit’

require ’multiarray’

class TC_Int < Test::Unit::TestCase

O = Hornetseye::OBJECT

I = Hornetseye::INT

C = Hornetseye::INTRGB

M = Hornetseye::MultiArray

def S(*args)

Hornetseye::Sequence *args

end

def M(*args)

Hornetseye::MultiArray *args

end

def test_multiarray_inspect

assert_equal ’MultiArray(OBJECT,2)’, M(O,2).inspect

assert_equal ’MultiArray(OBJECT,2)’, S(S(O)).inspect

end

def test_int_inspect

assert_equal ’INT’, I.inspect

end

def test_typecode

assert_equal O, M(O, 2).new(3, 2).typecode

assert_equal I, M(I, 2).new(3, 2).typecode

assert_equal C, M(C, 2).new(3, 2).typecode

end

def test_shape

assert_equal [3, 2], M(O, 2).new(3, 2).shape

end

def test_inspect

assert_equal "MultiArray(OBJECT,2):\n[[:a, 2, 3],\n [4, 5, 6]]",

M[[:a, 2, 3], [4, 5, 6]].inspect

end

def test_plus

assert_equal M[[2, 3, 5], [3, 5, 7]],

M[[1, 2, 4], [2, 4, 6]] + 1

assert_equal M[[2, 3, 5], [3, 5, 7]],

1 + M[[1, 2, 4], [2, 4, 6]]

assert_equal M[[-1, 2, 3], [4, 5, 6]],

M[[-3, 2, 1], [8, 6, 4]] +

M[[2, 0, 2], [-4, -1, 2]]

end

def test_dilate

assert_equal [[1, 1, 0], [1, 1, 0], [0, 0, 0]],

M[[1, 0, 0], [0, 0, 0], [0, 0, -1]].dilate.to_a

end

end

Loaded suite irb

Started

.......

Finished in 2.230944 seconds.

7 tests, 12 assertions, 0 failures, 0 errors

78

3.8 Summary

In this chapter a Ruby library for implementing machine vision algorithms was developed.

A set of native basic types was introduced. It was shown that multi-dimensional, uniform

arrays can be represented as lazy pointer operations. That is, multi-dimensional arrays

are just a special case of functions. Finally a generic set of operations on these data types

was introduced. In some cases it was shown, how this array operations relate to image

processing.

79

Seldon: “I have said, and I say again, that Trantor will lie

in ruins within the next three centuries.”

Advocate: “You do not consider your statement a disloyal

one?”

Seldon: “No, sir. Scientific truth is beyond loyalty and

disloyalty.”

Advocate: “You are sure that your statement represents

scientific truth?”

Seldon: “I am.”

Advocate: “On what basis?”

Seldon: “On the basis of the mathematics of psychohis-

tory.”

Advocate: “Can you prove that this mathematics is

valid?”

Seldon: “Only to another mathematician.”

Isaac Asimov - The Foundation Trilogy

4
Input/Output

Apart from the array operations introduced in Chapter 3, implementation of machine

vision systems requires input and output of images. Figure 4.1 gives an overview of the

I/O integration implemented in context of this thesis. There are image sources (cameras

and files) and image sinks (displays and files). Furthermore there are other popular free

software libraries which were integrated in order to take advantage of the functionality

offered by them (Fourier transforms) or in order to facilitate projects requiring integration

of other competing projects (OpenCV, NArray).

Figure 4.1: Input/output integration

This chapter introduces various I/O libraries and how they interoperate with the array

operations introduced in the previous section.

80

• Section 4.1 explains different colour spaces commonly used by I/O devices

• Section 4.2 presents the interface to the RMagick library for loading and saving

LDR images

• Section 4.3 shows the integration of the OpenEXR library for loading and saving

HDR images

• Section 4.4 covers the different issues one encounters with encoding and decoding

video files

• Section 4.5 points out how Ruby closures can be used to provide a powerful and

concise API for accessing cameras

• Section 4.6 shows how Ruby closures can be used to implement a concise API for

displaying videos

• The integration of an RGB and depth (RGBD) sensor is presented in Section 4.7

• Section 4.8 is about the integration with the Qt4-QtRuby library for developing

GUIs

• Section 4.9 gives a summary of this chapter

4.1 Colour Spaces

4.1.1 sRGB

There are different representations of images (see Table 4.1). In practise images are dis-

crete, finite, quantised, grey scale or colour functions. The image is acquired by a captur-

ing device with a limited number of photosensitive cells. On the other hand for purposes

of theoretical signal processing it can be beneficial to represent images as continuous,

infinite, high dynamic range, colour functions. For example when dealing with convolu-

tions (see Section 3.5.10) using a finite domain would require a formal treatment of the

image boundaries.

There is no upper limit for g(~x) which expresses the fact that there is no upper limit

for luminosity (see Reinhard et al., 2006 for a detailed introduction to high dynamic range

imaging). In practise however, most capture and display devices have a limited and quan-

tised codomain (typically it is {0, 1, . . . , 255} or {0, 1, . . . , 255}3).

Humans have trichromatic vision. There are different colour spaces for representing

trichromatic images. Usually the standard RGB colour space (sRGB) is used with pri-

maries defined in terms of the CIE 1391 primaries (Smith and Guild, 1931). These are

not as generally believed the sensitivity curves of the human photosensitive cones, which

have maxima at 445 nm, 535 nm, and 570 nm (Dröscher, 1975) (furthermore the photo

81

Table 4.1: Different types of images

discrete, finite, quantised, grey scale

function

g:!{0, 1, . . . ,w−1}×{0, 1, . . . , h−1} → {0, 1, . . . , 255}

discrete, finite, high dynamic range,

grey scale function

g : {0, 1, . . . ,w − 1} × {0, 1, . . . , h − 1} → R

discrete, infinite, high dynamic

range, grey scale function

g : Z2 → R

continuous, infinite, high dynamic

range, grey scale function

g : R2 → R

discrete, finite, quantised, colour

function

~c : {0, 1, . . . ,w−1}×{0, 1, . . . , h−1} → {0, 1, . . . , 255}3

discrete, finite, high dynamic range,

colour function

~c : {0, 1, . . . ,w − 1} × {0, 1, . . . , h − 1} → R
3

discrete, infinite, high dynamic

range, colour function

~c : Z2 → R
3

continuous, infinite, high dynamic

range, colour function

~c : R2 → R
3

receptors for black-and-white vision at night have their sensitivity maximum at 507 nm).

However as long as the sensitivity curves of the three colour channels of the camera are

more or less accurate linear combinations of the sensitivity curves of the human visual

cortex, it is possible to accurately reproduce the visual impression perceived by the hu-

man visual cortex.

It is worth mentioning that the relation between the radiant intensity (or luminosity)

and the luma value is non-linear. The sRGB standard closely models the behaviour of

a cathode ray tube (CRT) monitor with gamma of 2.2 while avoiding a slope of zero at

the origin for practical reasons. Given sRGB values in [0, 1] the corresponding linear

intensity values can be obtained using Equation 4.1 (where C is one of R, G, or B) (Stokes

et al., 1996).

Clinear =



CsRGB

12.92
, CsRGB ≤ 0.04045

(
CsRGB+0.055

1.055

)2.4
, CsRGB > 0.04045

(4.1)

Although for performance reasons it is omitted in the work presented here, strictly speak-

ing one has to take the sRGB definition into account when processing images. For ex-

ample many web browsers (and even image processing programs) implicitly assume a

gamma of 1.0 when scaling images which can lead to significant errors (Brasseur, 2007).

4.1.2 YCbCr

Many cameras make use of compressed colour spaces. The YCbCr (or YUV) colour space

separates luma- and colour-information as shown in Equation 4.2 (R, G, and B represent

82

the red, green, and blue channel of an image) (Wilson, 2007).



Y

Cb

Cr


=



0.299 0.587 0.114

−0.168736 −0.331264 0.500

0.500 −0.418688 −0.081312





R

G

B


+



0

128

128


(4.2)

The YCbCr colour space actually is the digital version (with values in {0, 1, . . . , 255})
of the YPbPr colour space (see Equation 4.3).



Y

Pb

Pr


=



Kr R + (1 − Kr − Kb) G + Kb B

1

2

B − Y

1 − Kb

1

2

R − Y

1 − Kr



, where

R,G, B ∈ [0, 1]

Y ∈ [0, 1]

Pb, Pr ∈ [−0.5, 0.5]

(4.3)

The values Kr and Kb are the estimated sensitivities of the human photo receptors for

black-and-white vision to the colours red and blue. Here (i.e. in Equation 4.2) the def-

initions Kr = 0.299 and Kb = 0.114 of the Joint Photographic Experts Group (JPEG)

standard (Hamilton, 1992) are used (e.g. see Figure 4.2).

Figure 4.2: Colour image and corresponding grey scale image according to sensitivities

of the human eye

Figure 4.3 gives a visual explanation of colour space compression. While the luma (Y)

channel is provided in high resolution, the chroma channels chroma blue (Cb) and chroma

red (Cr) are sampled with a lower resolution. Note that the chroma channels cannot be

visualised separately. In fact chroma values can represent negative colour offsets.

Y , Cb, and Cr are also known as Y , U, and V . In practise there are various ways of

ordering, sub sampling, and aligning the channels Wilson (2007). Popular pixel formats

are

• YV12: The format comprises an n × m Y plane followed by n
2
× m

2
chroma red (V)

and chroma blue (U) planes (see Figure 4.4). The lines of each plane are 8-byte

memory-aligned.

83

Y Y +Cr

Y +Cb Y +Cb +Cr

Channel Resolution

Y luma high

Cb chroma blue low

Cr chroma red low

Figure 4.3: Colour space conversions (Wilson, 2007)

• I420: Same as YV12 but the V plane follows the U plane.

• YUY2: This is a packed pixel format. The V and U component are down sam-

pled only in one direction. The component packing order is Y0, U0, Y1, V0 (see

Figure 4.5). The lines are 8-byte memory aligned.

• UYVY: Same as UYVY but with different component packing order (see Fig-

ure 4.6).

Y0,0 Y1,0 · · · Yn−2,0 Yn−1,0

Y0,1 Y1,1 · · · Yn−2,1 Yn−1,1

.

.

.
.
.
.

. . .
.
.
.

.

.

.

Y0,m−2 Y1,m−2 · · · Yn−2,m−2 Yn−1,m−2

Y0,m−1 Y1,m−1 · · · Yn−2,m−1 Yn−1,m−1

V0,0
· · ·

Vn/2−1,0· · ·
.
.
.

.

.

.
. . .

.

.

.
.
.
.

V0,m/2−1
· · ·

Vn/2−1,m/2−1· · ·

U0,0
· · ·

Un/2−1,0· · ·
.
.
.

.

.

.
. . .

.

.

.
.
.
.

U0,m/2−1
· · ·

Un/2−1,m/2−1· · ·

Figure 4.4: YV12 colour space (Wilson, 2007)

In order to control colour space conversions in Ruby, compressed frame data is ex-

posed in Ruby using parametrised classes as shown in Listing 4.1. The actual conver-

sions are performed using the FFmpeg rescaling library (libswscale). One can see that a

conversion round trip from unsigned byte RGB to YV12 and back affects the values. Fig-

Y0,0 U0,0 Y1,0 V0,0 Y2,0 U1,0 Y3,0 V1,0 · · ·
Y0,1 U0,1 Y1,1 V0,1 Y2,1 U1,1 Y3,1 V1,1 · · ·
...

...
...

...
...

...
...

...
. . .

Figure 4.5: YUY2 colour space (Wilson, 2007)

84

U0,0 Y0,0 V0,0 Y1,0 U1,0 Y2,0 V1,0 Y3,0 · · ·
U0,1 Y0,1 V0,1 Y1,1 U1,1 Y2,1 V1,1 Y3,1 · · ·
...

...
...

...
...

...
...

...
. . .

Figure 4.6: UYVY colour space (Wilson, 2007)

Listing 4.1: Handling compressed colour spaces

img = MultiArray.load_ubytergb ’test.jpg’

MultiArray(UBYTERGB,2):

[[RGB(35,38,45), RGB(45,48,55), RGB(46,50,59), RGB(46,50,59),],

[RGB(46,49,56), RGB(55,58,65), RGB(56,59,68), RGB(57,60,67),],

[RGB(46,51,57), RGB(57,60,67), RGB(57,60,67), RGB(58,61,68),],

[RGB(46,51,57), RGB(58,61,68), RGB(58,61,68), RGB(58,61,68),],

[RGB(47,50,59), RGB(58,61,70), RGB(59,62,69), RGB(59,62,69),],

....

frame = img.to_yv12

Frame(YV12,320,240)(0x042caf2a)

frame.to_ubytergb

MultiArray(UBYTERGB,2):

[[RGB(33,38,45), RGB(42,47,54), RGB(45,49,59), RGB(45,49,59),],

[RGB(44,48,55), RGB(53,58,65), RGB(54,59,68), RGB(54,59,68),],

[RGB(45,49,54), RGB(54,59,63), RGB(54,59,66), RGB(55,60,67),],

[RGB(45,49,54), RGB(55,60,65), RGB(55,60,67), RGB(55,60,67),],

[RGB(45,49,56), RGB(55,60,67), RGB(56,61,68), RGB(56,61,68),],

....

ure 4.7 shows how YV12 colour space compression leads to compression artefacts when

the edges do not align favourably with the lower resolution of the U and V channels.

original RGB data converted to YV12 and back

Figure 4.7: Artefacts caused by colour space compression

4.2 Image Files

The RMagick1 Ruby-extension allows one to use the powerful ImageMagick/Magick++2

library in Ruby for loading and saving images. The ImageMagick library supports a large

1http://rmagick.rubyforge.org/
2http://www.imagemagick.org/Magick++/

85

http://rmagick.rubyforge.org/
http://www.imagemagick.org/Magick++/

number of file formats. Frequently used file formats are

• Bitmap Image File (BMP) format

• Graphics Interchange Format (GIF)

• Portable Network Graphics (PNG) format

• portable pixmap (PPM) format (with variations portable graymap (PGM) and portable

bitmap (PBM))

• Joint Photographic Experts Group (JPEG) format

• Tagged Image File Format (TIFF)

• Digital Imaging and Communications in Medicine (DICOM)

In general one needs a format for lossy compression (e.g. JPEG) and a format for lossless

compression (e.g. PNG) when using 8-bit grey scale or 24-bit colour images (e.g. see Fig-

ure 4.8). Listing 4.2 shows how the functionality of the RMagick Ruby-extension was in-

Figure 4.8: Low resolution colour image using lossless PNG and (extremely) lossy JPEG

compression

tegrated. The method “MultiArray.load ubytergb” uses the RMagick library to load an

image and convert it to unsigned byte (8 bit) RGB data. The resulting “Malloc” object (see

Chapter 3.2) is used to construct a uniform array of RGB values. The “#save ubytergb”

method provides saving unsigned byte RGB data.

Medical image processing software frequently uses the DICOM format for storing 16-

bit radiology images and in material science TIFF is a common format for exchanging 16-

bit electron images. Figure 4.9 shows examples of images in medical science and material

science. Here they are shown using 8-bit quantisation only since most computer displays

do not support more than 28 grey levels. To support saving and loading of grey scale

and colour images of different depth the methods shown in Table 4.2 were implemented

(using the RMagick library).

86

Listing 4.2: Loading and saving images

img = MultiArray.load_ubytergb ’lossless.png’

MultiArray(UBYTERGB,2):

[[RGB(18,14,13), RGB(21,15,15), RGB(24,17,14), RGB(27,19,14),],

[RGB(34,20,14), RGB(36,18,14), RGB(78,51,34), RGB(88,63,43),],

[RGB(33,24,18), RGB(37,23,18), RGB(69,44,23), RGB(71,40,30),],

[RGB(29,21,16), RGB(41,27,18), RGB(58,29,18), RGB(52,30,19),],

[RGB(17,11,13), RGB(37,16,17), RGB(59,24,18), RGB(43,22,17),],

[RGB(19,12,15), RGB(40,15,18), RGB(57,22,19), RGB(13,11,12),],

[RGB(20,13,15), RGB(35,15,15), RGB(44,19,17), RGB(17,12,12),],

[RGB(17,12,14), RGB(46,17,19), RGB(63,19,20), RGB(70,22,22),],

[RGB(23,13,16), RGB(64,24,21), RGB(71,31,23), RGB(79,36,26),],

[RGB(35,25,27), RGB(60,40,35), RGB(68,45,35), RGB(83,66,54),],

....

img.save_ubytergb ’lossy.jpg’

....

MR scan of knee (source: Sébastien Barré’s

DICOM collection)

TEM image of tungsten tip (courtesy of

Sheffield University Nanorobotics Research

Group)

Figure 4.9: Examples of images in medical science and material science

Table 4.2: Methods for loading and saving images

(integer) type loading saving

8 bit monochrome “MultiArray.load ubyte” “Node#save ubyte”

16 bit monochrome “MultiArray.load usint” “Node#save usint”

32 bit monochrome “MultiArray.load uint” “Node#save uint”

8 bit RGB “MultiArray.load ubytergb” “Node#save ubytergb”

16 bit RGB “MultiArray.load usintrgb” “Node#save usintrgb”

32 bit RGB “MultiArray.load uintrgb” “Node#save uintrgb”

87

http://www.barre.nom.fr/medical/samples/
http://www.barre.nom.fr/medical/samples/
http://nano.group.shef.ac.uk/
http://nano.group.shef.ac.uk/

In some cases it might be desirable to let the file format determine the image type

(bit depth, grey-scale/colour) and vice versa instead of forcing it. For this case methods

named “MultiArray.load magick” and “Node#save magick” were implemented which

make use of dynamic typing available in the Ruby language. In fact this two methods are

the basis for the other methods for loading and saving images.

Note that dynamic typing has a compelling advantage in the case of loading images.

C/C++ libraries such as OpenCV and ImageMagick cannot make use of the (static) type

system of the programming language to handle image types because in general it is not

desirable having to specify the image type before loading the image.

4.3 HDR Image Files

Theoretically there is no upper limit for the radiant intensity. Therefore in many situation

the linear quantisation (low dynamic range) does not allow for an optimal trade-off be-

tween quantisation noise and measurement range. The human eye uses photo receptors

with different sensitivities and a non-linear response to address this problem.

It is possible to acquire HDR images using LDR devices with the help of exposure

bracketing. That is, a series of pictures with different exposures is acquired and fused

using an algorithm. HDR images are usually represented using arrays of floating point

numbers. A popular format for HDR images is the OpenEXR3 format by Industrial Light

& Magic (Kainz and Bogard, 2009). The format uses 16 bit (half precision) floating point

numbers.

Tone mapping is the digital analogy to the traditional technique of dodging and burn-

ing. Tone mapping maps a HDR image to an LDR image by locally adapting the lumi-

nosity of the image. Figure 4.10 illustrates the complete process of HDR imaging using a

consumer camera. First a set of images with different exposures is acquired. If the cam-

era has shifted, the images need to be aligned using feature matching (here the panorama

stitching software Hugin4 was used). The images are fused to an HDR image. For display

on a low dynamic range device, the image is tone mapped (here the tone mapping soft-

ware QtPfsGui5 was used). There are different algorithms for tone mapping. Figure 4.10

shows a result obtained using the algorithm by Fattal et al. (2002).

To support saving and loading of grey scale and colour images and convert them to

floating point arrays of different depth the methods shown in Table 4.3 were implemented

(using the OpenEXR library). Listing 4.3 shows how the methods might be used in prac-

tise.

Similar as in Chapter 4.2 the methods “MultiArray.load openexr” as well as the

method “Node#save openexr” let the file format determine the image type.

3http://www.openexr.com/
4see http://hugin.sourceforge.net/
5see http://qtpfsgui.sourceforge.net/

88

http://www.openexr.com/
http://hugin.sourceforge.net/
http://qtpfsgui.sourceforge.net/

Exposure bracketing

➧

Alignment (Hugin)

➧

HDR compilation and tone

mapping (QtPfsGui)

Figure 4.10: Bracketing, alignment, and tone mapping

Table 4.3: Methods for loading and saving images

(floating point) type loading saving

32 bit monochr. “MultiArray.load sfloat” “Node#save sfloat”

64 bit monochr. “MultiArray.load dfloat” “Node#save dfloat”

32 bit RGB “MultiArray.load sfloatrgb” “Node#save sfloatrgb”

64 bit RGB “MultiArray.load dfloatrgb” “Node#save dfloatrgb”

Listing 4.3: Converting an HDR image to an LDR image (no tone mapping)

img = MultiArray.load_dfloatrgb ’hdr.exr’

...

(img * 1000).round / 1000

MultiArray(DFLOATRGB,2):

[[RGB(0.249,0.283,0.363), RGB(0.294,0.324,0.422),],

[RGB(0.293,0.329,0.412), RGB(0.339,0.376,0.478),],

[RGB(0.289,0.337,0.429), RGB(0.345,0.389,0.486),],

[RGB(0.298,0.336,0.437), RGB(0.357,0.393,0.506),],

[RGB(0.307,0.331,0.435), RGB(0.372,0.39,0.513),],

[RGB(0.317,0.338,0.478), RGB(0.369,0.397,0.529),],

[RGB(0.324,0.34,0.514), RGB(0.362,0.4,0.548),],

[RGB(0.318,0.338,0.458), RGB(0.359,0.394,0.537),],

[RGB(0.321,0.339,0.473), RGB(0.353,0.403,0.554),],

[RGB(0.309,0.35,0.45), RGB(0.363,0.412,0.528),],

....

peak = img.max

RGB(71.2704849243164,56.86302947998047,81.38863372802734)

factor = 255 / [peak.r, peak.g, peak.b].max

3.133115624622988

(img * factor).save_ubytergb ’ldr.png’

...

89

http://hugin.sourceforge.net/
http://qtpfsgui.sourceforge.net/

4.4 Video Files

File formats generally use algorithms such as Huffmann coding for lossless compression.

Image file formats furthermore exploit spatial similarity. For example the JPEG format

uses a block-wise discrete cosine transform followed by application of a custom quan-

tisation matrix. Most video codecs additionally exploit temporal similarity by replacing

full frames with motion vector fields and motion-compensated difference pictures. The

occasional full frame is included to reduce the computational cost of randomly accessing

a frame in the video.

For reading and writing video files the FFmpeg6 library was integrated. Many video

formats consist of a container format which usually offers a video stream and potentially

an audio stream. Many container formats support several video and audio codecs. The

video and audio codec determine the format of the video and audio stream. Popular file

formats and codecs are

• popular container formats

– Audio Video Interleave (AVI)

– Advanced Systems Format (ASF)

– Flash Video (FLV)

– Apple Quicktime Movie (MOV)

– MPEG standard version 4 (MPEG-4)

– Xiph.Org container format (Ogg)

• popular video codecs

– On2 Truemotion VP6 codec (VP6)

– MPEG-4 AVC standard (H.264)

– Windows Media Video (WMV)

– Xiph.Org video codec (Theora)

• popular audio codecs

– Advanced Audio Coding (AAC)

– MPEG Audio Layer 3 (MP3)

– Xiph.Org audio codec (Vorbis)

– Windows Media Audio (WMA)

6http://www.ffmpeg.org/

90

http://www.ffmpeg.org/

Listing 4.4: Reading a video file

1 input = AVInput.new ’test.avi’

2 input.frame_rate

3 # (15/1)

4 input.sample_rate

5 # 44100

6 input.pos = 60

7 input.read_video

8 # Frame(YV12,320,240)(0x04abdce6)

9 input.read_audio

10 # MultiArray(SINT,2):

11 # [[0, 0],

12 # [0, 0],

13 # [0, 0],

14 # [0, 0],

15 # [0, 0],

16 #

17 input.video_pos

18 # (184/3)

19 input.audio_pos

20 # (122671/2000)

Figure 4.11 shows the coarse architecture of the FFmpeg decoder. The demuxer of the

container format decodes the file and generates audio and video packets. The video de-

coder accepts video packets and decodes video frames. The audio decoder accepts audio

packets and returns audio frames. The video frames are usually given as YV12 data (see

Chapter 4.1.2). Typically the video is given with a frame rate of 25 frames/second. Note

that video data might have a pixel aspect ratio other than 1 : 1 and it can be interlaced.

The audio frames are given as 16-bit signed integer arrays (for stereo audio the values

come in pairs of two). A common sampling rate is 44.1 kHz. The audio and video frames

video packets

audio packets

file

video frames

audio frames

demuxer

audio decoder

video decoder

Figure 4.11: Decoding videos using FFmpeg

are tagged with a presentation time stamp. The time stamps are required to synchronize

the audio and video frames properly. Another reason for the existence of time stamps are

video formats with support for variable frame rate.

Listing 4.4 demonstrates the behaviour of the class “AVInput” which was developed

to make the FFmpeg decoder accessible in Ruby. A video file is opened (line 1) and

91

the decoding of the first 60 seconds is skipped (line 6). A video frame (320 × 240 YV12

data) and an audio frame (1152 16-bit stereo samples) are decoded (lines 7 and 9). At

the end the time stamps of the previously decoded frames are retrieved (lines 17 and 19).

One can see that the time stamps of audio and video frames do not necessarily coincide

(184
3
= 61.3̄, 122671

2000
= 61.3355).

The FFmpeg library also supports video and audio encoding. One can see in Fig-

ure 4.12 that the encoder’s data flow is symmetric to the decoder’s data flow. Instead of

video and audio decoders there are video and audio encoders. The demuxer is replaced

with a muxer.

The class “AVOutput” was implemented to expose the encoding functionality of the

FFmpeg library in Ruby. Listing 4.5 shows a small program creating an MPEG-4 file

with a static picture (loaded in line 5) as video and a 400 Hz sine wave (created in lines

13–15) as audio. The interface is minimalistic and does not give access to the various

file

video packets

audio packets

video frames

audio frames

audio encoder

video encoder

muxer

Figure 4.12: Encoding videos using FFmpeg

parameters of the encoding algorithms. When encoding a video file one has to merely

specify the following basic properties (see lines 23–25 of Listing 4.5)

• video bit rate: the approximate number of bits per second for encoding the video

stream

• width: the width of each video frame

• height: the height of each video frame

• frame rate: the number of video frames per second

• pixel aspect ratio: the ratio of pixel width to pixel height

• video codec: the video codec to use

• audio bit rate: the approximate number of bits per second for encoding the audio

stream

• audio sampling rate: the number of audio samples per second

92

Listing 4.5: Writing a video file

1 VIDEO_BITRATE = 500_000; AUDIO_BITRATE = 30_000

2 DURATION = 3; RATE = 44_100

3 FPS = 25; CHANNELS = 2

4 ASPECT = 1.quo 1; LEN = 110

5 img = MultiArray.load_ubytergb ’test.png’

6 # MultiArray(UBYTERGB,2):

7 # [[RGB(77,77,77), RGB(77,77,77), RGB(77,77,77), RGB(77,77,77),],

8 # [RGB(77,77,77), RGB(77,77,77), RGB(77,77,77), RGB(77,77,77),],

9 # [RGB(77,77,77), RGB(77,77,77), RGB(77,77,77), RGB(77,77,77),],

10 # [RGB(255,255,255), RGB(255,255,255), RGB(255,255,255),],

11 # [RGB(77,77,77), RGB(77,77,77), RGB(77,77,77), RGB(77,77,77),],

12 #

13 wave = lazy(CHANNELS, LEN) do |j,i|

14 Math.sin(i * 2 * Math::PI / LEN) * 0x7FFF

15 end.to_sint

16 # MultiArray(SINT,2):

17 # [[0, 0],

18 # [1870, 1870],

19 # [3735, 3735],

20 # [5587, 5587],

21 # [7421, 7421],

22 #

23 output = AVOutput.new ’test.mp4’, VIDEO_BITRATE, img.width, img.height,

24 FPS, ASPECT, AVOutput::CODEC_ID_MPEG4, true,

25 AUDIO_BITRATE, RATE, CHANNELS, AVOutput::CODEC_ID_MP3

26 (RATE * DURATION / LEN).times do

27 output.write_audio wave

28 end

29 (FPS * DURATION).times do

30 output.write_video img

31 end

93

• audio channels: the number of audio channels (e.g. two for stereo audio)

• audio codec: the audio codec to use

Note that the program shown in Listing 4.5 encodes all the audio frames (lines 26–28)

before starting to encode the video frames (lines 29–31). When creating large files this is

not good practise because the muxer needs to interleave video and audio packets. That is,

the muxer would be forced to allocate a lot of memory for queueing the audio frames.

4.5 Camera Input

Camera input is a prime example for the benefit of closures. Initialising a camera (e.g.

Logitech Quickcam Pro 9000 shown in Figure 4.13) requires the calling program to

choose a video mode (i.e. width, height, and colour space). However the supported

Figure 4.13: Logitech Quickcam Pro 9000 (a USB webcam)

video modes can only be requested after opening the camera device. For this reasons

most APIs either allow the calling program to handle a camera device which is not fully

initialised yet, or the calling program has to specify a preferred video mode which might

not be supported by the camera.

Using closures however it is possible to involve the calling program during initialisa-

tion in an elegant way as demonstrated in Listing 4.6. The constructor “V4L2Input.new”

opens the specified device (here “’/dev/video0’”). The supported video modes are re-

quested, compiled to a list, and passed to the closure as a parameter. In this example the

closure prints the list to the terminal and the user is prompted to select one.

Listing 4.7 gives a more minimalistic example. Here it is assumed that the camera

supports the specified video mode (800 × 600, YUY2 colour space). The closure ignores

the list of modes and just returns the desired resolution. If the camera does not support

the desired video mode, the initialisation will fail.

94

Listing 4.6: Opening a V4L2 device and negotiating a video mode

camera = V4L2Input.new ’/dev/video0’ do |modes|

modes.each_with_index { |mode,i| puts "#{i + 1}: #{mode}" }

modes[STDIN.readline.to_i - 1]

end

1: Frame(YUY2,160,120)

2: Frame(YUY2,176,144)

3: Frame(YUY2,320,240)

4: Frame(YUY2,352,288)

5: Frame(YUY2,640,480)

6: Frame(YUY2,800,600)

7: Frame(YUY2,960,720)

8: Frame(YUY2,1600,1200)

$ 6

#<Hornetseye::V4L2Input:0x993af7c>

camera.read

Frame(YUY2,800,600)(0x049c3d40)

Listing 4.7: Opening a V4L2 device and selecting a fixed mode

camera = V4L2Input.new(’/dev/video0’) { Frame(YUY2, 800, 600) }

#<Hornetseye::V4L2Input:0x8ca9ee8>

camera.read

Frame(YUY2,800,600)(0x046283d4)

4.6 Image Display

When developing computer vision algorithms it is important to be able to visually inspect

processed or annotated images on the desktop. Figure 4.14 shows the structure of a stan-

dard X Window desktop. The X library allows a program to access multiple displays and

open multiple windows on each of them. The window manager software draws the title

bar and the window boundary. The program is only responsible for drawing the content

of each window. When the program is idle it can query the X Server to get notified when

an event occurs (e.g. a window close button was pressed, a key was pressed, or an area of

a window needs repainting).

Functionality for displaying a single image was exposed in Ruby using the “#show”

method as demonstrated in Listing 4.8. The method opens a window showing the image

and it returns control to the calling program when the window is closed (or [Esc] or

[Space] was pressed).

Apart from displaying single images it is also important to be able to display videos.

The OpenCV computer vision library offers functionality for displaying videos as shown

in Listing 4.9. The program reads frames from a video file, converts them to grey scale,

Listing 4.8: Loading and displaying an image

MultiArray.load_ubytergb(’test.png’).show

95

Figure 4.14: Display, windows, and visuals on a standard X Window desktop

Listing 4.9: Displaying a video using Python and OpenCV

import sys

from opencv import cv

from opencv import highgui

highgui.cvNamedWindow(’test video’)

capture = highgui.cvCreateFileCapture(’test.avi’)

while 1:

frame = highgui.cvQueryFrame(capture)

gray = cv.cvCreateImage(cv.cvSize(frame.width, frame.height), 8, 1)

cv.cvCvtColor(frame, gray, cv.CV_BGR2GRAY)

highgui.cvShowImage(’test video’, gray)

if highgui.cvWaitKey(5) > 0:

break

and then displays them in a window.

Listing 4.10 shows an equivalent program implemented using Ruby and the Hornets-

eye Ruby extension presented in this thesis. For comparison with Listing 4.9 the complete

code with loading of libraries and name space handling is given. The Ruby programming

language has mature support for closures (see Chapter 2.3.8). This makes it possible to

implement a method such as “X11Display.show” which accepts a closure returning suc-

cessive video frames for display. Only the custom part of the display loop needs to be

specified by the calling program. Thus the calling program is much more concise and the

overall redundancy is less.

Listing 4.11 is another example emphasizing the importance of closures. It shows a

minimalistic video player (no sound, assuming pixel aspect ratio of 1 : 1, no handling of

variable frame rate). Without closures the code for synchronising video display with the

96

Listing 4.10: Displaying a video using Ruby and Hornetseye

require ’rubygems’

require ’hornetseye_ffmpeg’

require ’hornetseye_xorg’

include Hornetseye

video = AVInput.new ’test.avi’

X11Display.show(:title => ’test video’) do

video.read.to_ubyte

end

Listing 4.11: Minimalistic video player

video = AVInput.new ’test.avi’

X11Display.show(:frame_rate => video.frame_rate) { video.read }

clock would have to be part of the calling program. The program shown in Listing 4.11

does not do any signal processing. However it provides the video I/O necessary to imple-

ment a machine vision algorithm with visualisation. That is, the code of the minimalistic

video player represents a lower bound for the most concise implementation of a machine

vision algorithm. Therefore it is worthwhile to minimise its size.

When visualising real-time machine vision algorithms, the time for displaying the re-

sults can exceed the time of the algorithms involved. In order to address this problem

one can use 2D hardware acceleration. Most graphic cards provide hardware accelerated

display (the XVideo extension of the X Window System) for a single visual. The accel-

eration typically requires the image to be compressed as YV12 data. Listing 4.12 shows

how Ruby optional parameters are used to expose that functionality in Ruby. Note that

adding sound I/O to this program results in a video player which compares with profes-

sional video player software in terms of performance (see Appendix A.7.2).

4.7 RGBD Sensor

RGBD sensors provide a depth channel in addition to the RGB channels. A recent exam-

ple is the Primesense sensor (which is part of the Microsoft Kinect device). The sensor

uses an Infrared (IR) laser to project a pattern. The IR camera takes a picture of the pattern

and the device uses correlation techniques to estimate the disparity and the depth (Freed-

man et al., 2010). A separate RGB camera is used to acquire optical images. Figure 4.15

shows a depth image and optical image acquired with the device. The image pair was

acquired using the program shown in Listing 4.13. The Ruby bindings are based on

Listing 4.12: Hardware accelerated video output

video = AVInput.new ’test.avi’

X11Display.show(:frame_rate => video.frame_rate,

:output => XVideoOutput) { video.read }

97

Figure 4.15: RGB- and depth-image acquired with an RGBD sensor

Listing 4.13: Ruby example for accessing a Kinect sensor

class Numeric

def clip(range)

[[self, range.begin].max, range.end].min

end

end

colours = Sequence.ubytergb 256

for i in 0 ... 256

hue = 240 - i * 240.0 / 256.0

colours[i] =

RGB(((hue - 180).abs - 60).clip(0 ...60) * 0xFF / 60.0,

(120 - (hue - 120).abs).clip(0 ...60) * 0xFF / 60.0,

(120 - (hue - 240).abs).clip(0 ...60) * 0xFF / 60.0)

end

input = KinectInput.new

img = MultiArray.ubytergb 1280, 480

X11Display.show do

img[0 ... 640, 0 ... 480] = input.read_video

img[640 ... 1280, 0 ... 480] = (input.read_depth >> 2).clip.lut colours

img

end

98

the libfreenect library7. The 11-bit depth image is shifted right by 2 bits. The resulting

9-bit depth image is clipped to 8-bit values and converted to a pseudo colour image. Note

that the depth image and the RGB image are not aligned properly. That is, it is necessary

to calibrate the sensor and rectify the data if depth- and RGB-images are to be used in

conjunction. Another problem is that the depth- and RGB-images are always taken at

different times.

4.8 GUI Integration

When developing a GUI to parametrise and run computer vision algorithms it usually

requires video display as part of the interface. For the work presented in this thesis the Qt4

library (Gurtovoy and Abrahams, 2009) was used. The Qt4 library has become the tool of

choice for developing cross-platform GUIs (Blanchette and Summerfield, 2008). Qt4 is

a C++ library. However Richard Dale’s qt4-qtruby8 extension facilitates development of

GUIs in Ruby using the work flow shown in Figure 4.16. For displaying videos in a Qt4

rbrcc

Qt Designer

rbuic4

form.ui main.qrc

ruby

icon1.png
icon2.png

icon3.png

form.rb

qrc_main.rb

ui_form.rb

main.rb

Figure 4.16: Work flow for creating Qt4 user interfaces

GUI, a widget for 2D hardware accelerated display (XVideo) was developed. The widget

makes it possible to display videos with high frame rate as part of a GUI. Figure 4.17

shows a minimalistic video player window consisting of a XVideo widget and a slider.

7http://openkinect.org/
8http://rubyforge.org/projects/korundum/

99

http://openkinect.org/

Figure 4.17: XVideo widget embedded in a GUI

4.9 Summary

In this chapter it was shown how various I/O facilities can be integrated into the Ruby

language in order to acquire and output or store images. In order to get per-pixel access

to the data, it is necessary to understand and manage colour space transformations. It

was pointed out that most devices and file formats provide a limited quantisation range.

However there are specific file formats (and even devices) for handling HDR data.

Ruby closures where used to implement an API which supports negotiation of a cam-

era resolution when opening a camera. Ruby closures also proved to be useful for defining

a concise API for displaying videos. Furthermore the power of Ruby as a glue language

comes into play when integrating the different APIs for the GUI, the video I/O, and image

processing.

100

“An older and by now well-accepted idea is that of the

stored-program computer. In such a computer the pro-

gram and the data reside in the same memory; that is, the

program is itself data which can be manipulated as any

other data by the processor. It is this idea which allows

the implementation of such powerful and incestuous soft-

ware as program editors, compilers, interpreters, linking

loaders, debugging systems, etc.

One of the great failings of most high-level languages is

that they have abandoned this idea. It is extremely dif-

ficult, for example, for a PL/I (PASCAL, FORTRAN,

COBOL ...) program to manipulate PL/I (PASCAL,

FORTRAN, COBOL ...) programs.”

Guy Steele and Gerald Sussman (1979)

“I want computers to be my servants, not my masters.

Thus, I’d like to give them orders quickly. A good servant

should do a lot of work with a short order.”

Yukihiro Matsumoto

5
Machine Vision

This chapter shows how the I/O integration and the array operations introduced in previ-

ous chapters facilitate concise implementation of machine vision algorithms.

• Section 5.1 shows how various preprocessing algorithms can be implemented using

the array operations introduced previously in this thesis

• Section 5.2 illustrates that the array operations are sufficiently generic to create

concise implementations of various corner and edge detectors

• Section 5.3 shows how feature locations and descriptors can be developed using

basic array operations such as masks and warps

• Section 5.4 gives a summary of this chapter

5.1 Preprocessing

This section will demonstrate how the array operations presented in previous sections can

be used to implement basic image processing operations.

5.1.1 Normalisation and Clipping

In general displaying an image with an LDR display can lead to numerical overflow as

shown in Figure 5.1. This is because graphic cards typically accept 8-bit integers for

each colour channel. In general it is therefore necessary to either normalise or clip the

values before displaying them. The definitions for normalisation and clipping of grey

101

normalised image original image clipped image

Figure 5.1: Normalisation and clipping of RGB values

scale images are given in Equation 5.1 and Equation 5.2.

N{g}(~x) ≔

(
g(~x) −min

~v

(
g(~v)
)) 255 − 0

max~v
(
g(~v)
) −min~v

(
g(~v)
) + 0 (5.1)

C{g}(~x) ≔



0 g(~x) < 0

255 g(~x) ≥ 255

g(~x) otherwise

(5.2)

The operations can be extended to colour images analogously.

5.1.2 Morphology

5.1.2.1 Erosion and Dilation

General erosion and dilation in grey scale morphology can be defined according to Har-

alick et al. (1987). The definition of grey scale erosion and dilation are shown in Equa-

tion 5.3 and Equation 5.4.

(f ⊖ k)(~x) ≔ min
~z∈K, ~x−~z∈F

{
f (~x −~z) − k(~z)

}
where f : F → E and k : K → E (5.3)

(f ⊕ k)(~x) ≔ max
~z∈K, ~x−~z∈F

{
f (~x −~z) + k(~z)

}
where f : F → E and k : K → E (5.4)

Here only the special case of a flat, block-shaped structuring element is considered (see

Equation 5.5).

k :


{−1, 0, 1}n → R

~z 7→ 0
(5.5)

The dilation of a 1D array can be performed by creating a sum table followed by

a diagonal injection taking the maximum as shown in Listing 5.1. Multi-dimensional

erosion and dilation can be implemented using the same principle (see Figure 5.2 for

dilation and erosion with a 3 × 3 structuring element applied to a 2D image). Note that

the implementation of grey scale morphology is almost identical to the implementation of

convolutions which was shown in Section 3.5.10. Instead of a product table, a sum table

is used (line 7 of Listing 5.1). Instead of using the diagonal injection to compute the sum,

102

Listing 5.1: Implementing dilation using diagonal injection

1 f = Sequence[0, 0, 1, 0, 0, 0, 1, 1, 0]

2 # Sequence(UBYTE):

3 # [0, 0, 1, 0, 0, 0, 1, 1, 0]

4 k = Sequence[0, 0, 0]

5 # Sequence(UBYTE):

6 # [0, 0, 0]

7 sum = f.table(k) { |x,y| x + y }

8 # MultiArray(UBYTE,2):

9 # [[0, 0, 0],

10 # [0, 0, 0],

11 # [1, 1, 1],

12 # [0, 0, 0],

13 # [0, 0, 0],

14 # [0, 0, 0],

15 # [1, 1, 1],

16 # [1, 1, 1],

17 # [0, 0, 0]]

18 sum.diagonal { |x,y| x.major y }

19 # Sequence(UBYTE):

20 # [0, 1, 1, 1, 0, 1, 1, 1, 1]

input image eroded image dilated image

Figure 5.2: Grey scale erosion and dilation

103

Listing 5.2: Implementing a structuring element using convolution and a lookup table

1 img = MultiArray.load_ubyte(’morph.png’) >= 0x80

2 # MultiArray(BOOL,2):

3 # [[false, false, false, false, false, false, false, false, ...],

4 # [false, false, false, false, false, false, false, false, ...],

5 #

6 filter = lazy(3, 3) { |i,j| 1 << (i + j * 3) }.to_usint

7 # MultiArray(USINT,2):

8 # [[1, 2, 4],

9 # [8, 16, 32],

10 # [64, 128, 256]]

11 cross = MultiArray[[false, true, false],

12 [true, true, true],

13 [false, true, false]]

14 # MultiArray(BOOL,2):

15 # [[false, true, false],

16 # [true, true, true],

17 # [false, true, false]]

18 bit_mask = cross.conditional(filter, 0).inject { |a,b| a | b }

19 # 186

20 lut = finalise(0x200) { |i| (i & bit_mask).ne 0 }

21 # Sequence(BOOL):

22 # [false, false, true, true, false, false, true, true, true, true,]

23 img.to_ubyte.convolve(filter).lut(lut).show

the maximum is computed (line 18).

5.1.2.2 Binary Morphology

Listing 5.2 shows how one can implement binary dilation with a non-trivial structuring

element using convolution and a lookup table according to Gerritsen and Verbeek (1984).

The binary image (line 1) is convolved (line 27) with a filter (line 6) so that the bits of each

pixel of the result are a copy of the local 3×3 region of the binary input image. Since there

are only 23·3 = 512 possible values, one can use a lookup table (line 20) to implement any

morphological operation. Figure 5.3 shows the result of Listing 5.2 which implements

binary dilation with a cross-shaped structuring element (line 11 of Listing 5.2).

input image dilated image

Figure 5.3: Binary dilation according to Listing 5.2

104

Listing 5.3: Otsu thresholding

1 class Node

2 def otsu(hist_size = 256)

3 hist = histogram hist_size

4 idx = lazy(hist_size) { |i| i }

5 w1 = hist.integral

6 w2 = w1[w1.size - 1] - w1

7 s1 = (hist * idx).integral

8 s2 = to_int.sum - s1

9 m1 = w1 > 0

10 u1 = m1.conditional s1.to_sfloat / w1, 0

11 m2 = w2 > 0

12 u2 = m2.conditional s2.to_sfloat / w2, 0

13 between_variance = (u1 - u2) ** 2 * w1 * w2

14 self > argmax { |i| between_variance[i] }.first

15 end

16 end

17 if ARGV.size != 2

18 raise "Syntax: otsu.rb <input image> <output image>"

19 end

20 img = MultiArray.load_ubyte ARGV[0]

21 img.otsu.conditional(255, 0).show

5.1.3 Otsu Thresholding

Otsu thresholding refers to Otsu’s algorithm for choosing a threshold for binarising an

image (Otsu, 1979). A general thresholding operation is shown in Equation 5.6.

b(~x) =


0 g(~x) < t

1 otherwise
(5.6)

Given a threshold t and an image g the binary image b is obtained by element-wise ap-

plication of a thresholding operation. Otsu’s method chooses the threshold so that the

in-class variance of the binarisation is minimal. This is equivalent to maximising the

between-class variance (Otsu, 1979). Listing 5.3 shows that, using the argmax operation,

Otsu thresholding can be implemented in 21 lines of code.

5.1.4 Gamma Correction

As explained in Section 4.1.1 the response of an sRGB display is non-linear. Figure 5.4

shows two grey scale gradients. The top bar has linear values in memory and the bottom

linear g(~x) = x1

gamma corrected g(~x) = x
1

2.2

1

Figure 5.4: Gamma correction

105

Listing 5.4: Generating a gamma corrected gradient

finalise(256, 32) { |i,j| (i / 255.0) ** (1.0 / 2.2) * 255.0 }.show

bar has gamma corrected values (γ = 2.2). That is, only the bottom bar displays a linear

slope of intensities on a standard display.

However gamma correction is merely an element-wise binary operation (see Sec-

tion 3.5.5). Listing 5.4 shows how the gamma corrected bar of Figure 5.4 generated

using the element-wise operation “**”.

5.1.5 Convolution Filters

Convolution filters (or linear shift-invariant filters) are based on the convolution which

was introduced in Section 3.5.10.

5.1.5.1 Gaussian Blur

The Gaussian blur filter is an infinite impulse response (IIR) filter. That is, in practise the

filter can only be approximated. Equation 5.7 gives the definition of the one-dimensional

(1D) Gauss curve (Forsyth and Ponce, 2003).

φσ(x) ≔
1

√
2 π |σ|

e
−

x2

2σ2 (5.7)

The 1D Gauss filter (for σ = 1) is shown in Figure 5.5. A boundary for the approximation

error of the convolution integral (or sum) can be determined using the error function.

That is, given a maximum error ǫ, the minimum filter size 2 s can be determined using

Equation 5.8.

0
(∗)
≤ (g ⊗ φσ)(x) −

∫ x+s

x−s

g(x) φσ(z − x) dz =

∫ x−s

−∞
g(x) φσ(z − x) dz +

∫ ∞

x+s

g(x) φσ(z − x) dz

(∗)
≤ 2 G

∫ ∞

x+s

φσ(z − x) dz

= G

(
1 − erf

(s
√

2 |σ|

)) !

≤ ǫ

(∗) using ∀x ∈ R : 0 ≤ g(x) ≤ G

(5.8)

Note that for 0 ≤ g(x) ≤ G the convolution integral over the range [−s,+s] will always

underestimate the value of the IIR filter. For example applying the Gaussian filter to

a constant function g(x) = g0 should have no effect but the approximation will be g0 ·

106

erf
(s
√

2 |σ|

)
which is always below g0. Therefore it is better to apply a scaling factor

resulting in the unbiased approximation shown in Equation 5.9.

(g ⊗ φσ)(x) ≈
1

erf
(

s√
2 |σ|

)
∫ x+s

x−s

g(x) φσ(z − x) dz (5.9)

The error boundaries for the approximation are given in Equation 5.10.

G

(
1 −

1

erf
(

s√
2 |σ|

)
)

︸ ︷︷ ︸
≈−ǫ′≥−ǫ

≤ (g⊗φσ)(x)−
1

erf
(

s√
2 |σ|

)
∫ x+s

x−s

g(x) φσ(z−x) dz ≤ G

(
1 − erf

(s
√

2 |σ|

))

︸ ︷︷ ︸
≤ǫ

(5.10)

Note that the lower boundary in Equation 5.10 is below −ǫ. However since lim
x→∞

erf(x) = 1,

the lower boundary can be approximated by ǫ′ ≤ ǫ.
The corresponding discrete filter can be generated using the integral of the Gaussian

as shown in Equation 5.11.

φσ,s(i) ≔
1

erf
(

s√
2 |σ|

)
∫ i+1/2

i−1/2

φσ(z)dz =
erf
(

i+1/2√
2 |σ|

)
− erf

(
i−1/2√

2 |σ|

)

2 erf
(

s√
2 |σ|

) (5.11)

In practise σ and a desired error boundary ǫ are given. Starting with a filter size s = 1/2,

the filter size s is increased by 1 until the approximation has the desired accuracy. For ex-

ample if s = 5/2 would be sufficient, the filter would have 5 elements (i ∈ {−2,−1, 0, 1, 2})
as shown in Figure 5.5.

Gaussian filters for higher dimensions are essentially separable filters where each

component is equal to the 1D Gaussian filter. See Equation 5.12 for the 2D Gauss fil-

ter for example (Hinderer, 1993).

ϕσ :



R
2 → R

~x 7→
1

2 πσ2
e
−
|~x|2

2σ2

(5.12)

The 2D Gauss filter (for σ = 1) is shown in Figure 5.6. Since the 2D filter is separable,

the required filter size can be chosen by simply requiring a maximum error of ǫ/2 for

each component so that the overall error boundary is ǫ. Figure 5.7 shows application of a

Gaussian filter with σ = 3 and ǫ = 1/256 applied to a colour image.

5.1.5.2 Gaussian Gradient

The Gauss gradient filter is an IIR filter as well. It is commonly used to locate steps

or edges in a signal. Equation 5.13 shows the Gauss gradient filter which is simply the

107

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-3 -2 -1 0 1 2 3

y

x

1D Gaussian blur filter

gauss(x)

Figure 5.5: 1D Gaussian blur filter

2D Gaussian blur filter

gauss(x,y)

-3 -2 -1 0 1 2 3
x -3

-2
-1

 0
 1

 2
 3

y

 0

z

 0

 0.04

 0.08

 0.12

 0.16

Figure 5.6: 2D Gaussian blur filter

108

original blurred

Figure 5.7: Gaussian blur (σ = 3, ǫ = 1/256) applied to a colour image

derivative of the Gauss filter shown earlier in Equation 5.7.

φ′σ(x) = −
x

√
2 π |σ|3

e
−

x2

2σ2 (5.13)

Figure 5.8 shows the 1D Gauss gradient filter for σ = 1. The minimal filter size for a

given error bound can be determined in a similar fashion as was shown for the Gauss

filter in Section 5.1.5.1.

Error boundaries for the Gauss gradient filter are estimated in a similar fashion as for

the Gauss blur filter. However here absolute integrals are used as shown in Equation 5.14

since the Gauss gradient filter has negative values.

∣∣∣∣∣(g ⊗ φ
′
σ)(x) −

∫ x+s

x−s

g(x) φ′σ(z − x) dz

∣∣∣∣∣ ≤
∫ x−s

−∞

∣∣∣g(x) φ′σ(z − x)
∣∣∣ dz +

∫ ∞

x+s

∣∣∣g(x) φ′σ(z − x)
∣∣∣ dz

(∗)
≤ 2 G

∫ ∞

x+s

∣∣∣φ′σ(z − x)
∣∣∣ dz

= 2 G φσ(s)
!

≤ ǫ

(∗) using ∀x ∈ R : 0 ≤ g(x) ≤ G

(5.14)

The corresponding discrete filter can be generated using the Gaussian as shown in

Equation 5.15.

φ′σ,s(i) ≔
1

C

∫ i+1/2

i−1/2

φ′σ(z)dz =
φσ(i + 1/2) − φσ(i − 1/2)

C
(5.15)

A normalisation constant C is used so that the convolution of a linear function f (i) = a i+b

with the Gauss gradient filter will result in the constant function f ′(i) = a. That is, C is

109

chosen so that
∑

i

i φσ,s(i) = 1. Figure 5.8 shows the result for a filter with 5 elements

(s = 5/2).

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-3 -2 -1 0 1 2 3

y

x

1D Gauss gradient

dgauss(x)

Figure 5.8: 1D Gauss gradient filter

The Gauss gradient filter for a higher dimension is the derivative of the corresponding

Gauss filter. For example the Gauss gradient filter for the 2D case is shown in Equa-

tion 5.16.

ϕ′σ :



R
2 → R

2

~x 7→ −
~x

2 πσ4
e
−
|~x|2

2σ2

(5.16)

Note that the derivative has two components as shown in Figure 5.9. Figure 5.10 shows

1th component of Gauss gradient

dgaussx(x,y)

-3 -2 -1 0 1 2 3
x -3

-2
-1

 0
 1

 2
 3

y

-0.05
 0

 0.05
z

-0.1

 0

 0.1

2nd component of Gauss gradient

dgaussy(x,y)

-3 -2 -1 0 1 2 3
x -3

-2
-1

 0
 1

 2
 3

y

-0.05
 0

 0.05
z

-0.1

 0

 0.1

Figure 5.9: 2D Gauss gradient filter

application of a Gauss gradient filter with σ = 3 and ǫ = 1/256 applied to a colour image.

Note that the images of the gradient components are normalised. It is not possible to

display negative values.

110

original gradient

(1st component)

gradient

(2nd component)

norm of gradient

Figure 5.10: Gauss gradient filter (σ = 3, ǫ = 1/256) applied to a colour image

5.1.6 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an algorithm to compute the values of the discrete

Fourier transform (DFT) by using the divide-and-conquer principle. While a naive imple-

mentation of the DFT is of complexity O(n2) (with n being the number of samples), FFT

is of complexity O(n log(n)). Here the FFTW version 3 (FFTW3) library was used. The

FFTW3 library provides an optimiser which selects a combination of different decompo-

sition methods to facilitate the recursion (Frigo and Johnson, 2005). The FFTW3 library

implements Fourier transforms of multidimensional arrays. It also implements Fourier

transforms of real data exploiting the fact that the Fourier transform of real data is sym-

metric complex data. In contrast many FFT implementations only implement the radix-2

Cooley-Tukey algorithm (Cooley and Tukey, 1965) which requires the array dimensions

to be a power of two or or they implement the mixed-radix Cooley-Tukey algorithm with

a worst case complexity of O(n2) (i.e. for n being a prime number).

Equation 5.17 shows the definition of the 1D Fourier transform.

F { f }(ω) ≔

∫ ∞

−∞
f (x) e−2 π xωdx (5.17)

The power spectrum of a signal can be estimated by computing the Fourier transform of

the autocorrelated signal (see Equation 5.18).

F ∗{ f } F { f } (5.18)

In practise the signal always is finite. In order to implement a consistent estimator for the

spectrum of a signal, it is necessary to apply a window function (e.g. a triangular window

as shown in lines 2–9 of Listing 5.5) and to use zero padding (lines 10–14 of Listing 5.5)

in order to avoid cyclical convolution. Figure 5.11 shows the optical image of a piece of

Nylon fabric and the steps to obtain a spectral estimate of the signal. Since the pattern is

self-similar, it shows pronounced peaks in the spectral estimate.

111

Listing 5.5: Estimating the spectrum of a 2D signal

1 class Node

2 def window

3 finalise do |i,j|

4 x = ((i + 0.5 - 0.5 * width) / (0.5 * width)).abs

5 y = ((j + 0.5 - 0.5 * height) / (0.5 * height)).abs

6 w = (1 - Math.sqrt(x ** 2 + y ** 2)).major 0.0

7 self[i,j] * w

8 end

9 end

10 def zeropad

11 retval = MultiArray.new(typecode, 2 * width, 2 * height).fill!

12 retval[0 ... width, 0 ... height] = self

13 retval

14 end

15 def spectrum

16 fft = window.zeropad.fft

17 (fft.conj * fft).real

18 end

19 end

20 img = MultiArray.load_ubyte ’test.png’

21 (img.spectrum ** 0.1).normalise(255 .. 0).show

original windowing

zero padding spectral estimate

Figure 5.11: Spectral image of a piece of fabric

112

Listing 5.6: Roberts’ Cross edge-detector

class Node

def roberts

r1 = MultiArray(SINT,2)[[-1, 0], [0, 1]]

r2 = MultiArray(SINT,2)[[0, -1], [1, 0]]

convolve(r1).abs + convolve(r2).abs

end

end

img = MultiArray.load_ubyte ’test.png’

img.roberts.normalise(255 .. 0).show

5.2 Feature Locations

Many algorithms for object recognition and tracking are feature-based in order to make a

real-time implementation possible. The input image is reduced to a set of feature locations

and descriptors. The low-level operations presented in Section 3.5 can be used to create

concise implementations of feature extraction algorithms.

5.2.1 Edge Detectors

5.2.1.1 Roberts’ Cross Edge-Detector

The Roberts’ Cross edge-detector is based on a pair of 2 × 2 filter kernels (Fisher et al.,

2003). The kernels R1 and R2 are shown in Equation 5.19.

R1 =


−1 0

0 +1

 and R2 =


0 −1

+1 0

 (5.19)

These kernels are designed to respond maximally to edges running at 45◦ to the pixel

grid, one kernel for each of the two perpendicular orientations (Fisher et al., 2003). For

computational efficiency one can use the Manhattan norm in order to estimate the edge

strength (see Equation 5.20).

|(g ⊗ R1)(~x)| + |(g ⊗ R2)(~x)| (5.20)

Listing 5.6 shows how one can use open classes in Ruby to extend the “Node” class

with a method for computing Roberts’ Cross edge strength. Figure 5.12 shows the

Roberts’ Cross edge-detector applied to an example image.

113

Figure 5.12: Example image and corresponding Roberts’ Cross edges

Listing 5.7: Sobel edge-detector

class Node

def sobel

s1 = MultiArray(SINT,2)[[1, 0, -1], [2, 0, -2], [1, 0, -1]]

s2 = MultiArray(SINT,2)[[1, 2, 1], [0, 0, 0], [-1, -2, -1]]

Math.sqrt convolve(s1) ** 2 + convolve(s2) ** 2

end

end

img = MultiArray.load_ubyte ’test.png’

img.sobel.normalise(255 .. 0).show

5.2.1.2 Sobel Edge-Detector

The Sobel edge-detector uses two 3 × 3 filter kernels (Sobel and Feldman, 1968). The

kernels S1 and S2 are shown in Equation 5.21.

S1 =
1

4



−1 0 1

−2 0 2

−1 0 1


and S2 =

1

4



−1 −2 −1

0 0 0

1 2 1


(5.21)

One can compute the norm of the resulting gradient vector as shown in Equation 5.22.

√
(g ⊗ S1)2(~x) + (g ⊗ S2)2(~x) (5.22)

The corresponding Ruby code using open classes is shown in Listing 5.7. Figure 5.13

shows the Sobel edge-detector applied to an example image.

Note that the Prewitt edge detector is based on a similar set of filters. The Prewitt filter

kernels P1 and P2 are shown in Equation 5.23.

P1 =
1

3



−1 0 1

−1 0 1

−1 0 1


and P2 =

1

3



−1 −1 −1

0 0 0

1 1 1


(5.23)

114

Figure 5.13: Example image and corresponding Sobel edges

Listing 5.8: Non-maxima suppression for edges

1 THRESHOLD = 3.0

2 SIGMA = 1.4

3 PI = Math::PI

4 input = V4L2Input.new

5 w, h = input.width, input.height

6 X11Display.show do

7 img = input.read_ubyte

8 x, y = img.gauss_gradient(SIGMA, 0), img.gauss_gradient(SIGMA, 1)

9 norm, angle = Math.hypot(x, y), Math.atan2(y, x)

10 orientation = (((2 - 1.0 / 8) * PI + angle) * (4 / PI)).to_ubyte % 4

11 idx, idy = lazy(w, h) { |i,j| i }, lazy(w, h) { |i,j| j }

12 dx = orientation.lut Sequence[-1, 0, 1, 1]

13 dy = orientation.lut Sequence[-1, -1, -1, 0]

14 edges = norm >= norm.warp(idx + dx, idy + dy).

15 major(norm.warp(idx - dx, idy - dy)).major(THRESHOLD)

16 edges.conditional RGB(255, 0, 0), img

17 end

5.2.1.3 Non-Maxima Suppression for Edges

Edge points are usually defined as locations where the gradient magnitude reaches a local

maximum in the direction of the gradient vector (Canny, 1986). That is, the gradient norm

of each pixel is only to be compared with neighbouring values perpendicular to the edge.

Non-maxima suppression for edges can be implemented using warps as shown in

Listing 5.8. The gradient norm of each pixel (line 9) is compared with the gradient norm

of two neighbouring pixel (line 14–15). The locations of the two neighbouring pixel

depends on the orientation of the gradient as shown in Table 5.1.

The result of applying the algorithm to an image is shown in Figure 5.14.

5.2.2 Corner Detectors

5.2.2.1 Corner Strength by Yang et al.

Yang et al. (1996) shows a corner detector which uses the local distribution of gradients

115

Table 5.1: Non-maxima suppression for edges depending on the orientation

orientation 0 1 2 3

locations for comparison

Figure 5.14: Non-maxima suppression for edges

to detect corners. An anisotropic measure is defined which is high if the covariance of

the gradient vectors in the local area Ω around ~x is low. The values of the 2 × 2 structure

tensor S are shown in Equation 5.24.

S{g}(~x) ≔


!

Ω

(δg
δx1

)2
dx1dx2

!

Ω

(δg
δx1

)(δg
δx2

)
dx1dx2

!

Ω

(δg
δx1

)(δg
δx2

)
dx1dx2

!

Ω

(δg
δx2

)2
dx1dx2

 (5.24)

The elements of the structure tensor are used to define an anisotropic measure (for a

continuous, infinite image g) as shown in Equation 5.25.

YBFU{g}(~x) ≔

(!

Ω

(δg
δx1

)2 − (δg
δx2

)2
dx1dx2

)2
+
(!

Ω
2
(δg
δx1

)(δg
δx2

)
dx1dx2

)2

(
σ2 +

!

Ω

(δg
δx1

)2
+
(δg
δx2

)2
dx1dx2

)2 (5.25)

This heuristic function emphasises regions which have large gradient vectors as well as

high anisotropy.

Listing 5.9 show the corresponding Ruby code. The Gaussian gradient is used to

estimate the local gradient of the image (lines 6 and 7). Instead of a local area Ω, a

Gaussian blur is used to perform a weighted sum in order to compute the local structure

tensor S (lines 8–10). Figure 5.15 shows a result obtained with this technique.

5.2.2.2 Shi-Tomasi Corner Detector

Shi and Tomasi (1994) introduced a corner-detector based on the eigenvalues of the struc-

116

Listing 5.9: Yang et al. corner detector

1 GRAD_SIGMA = 2.0

2 COV_SIGMA = 1.0

3 NOISE = 1.0

4 EXP = 0.5

5 img = MultiArray.load_ubyte ’test.png’

6 x = img.gauss_gradient GRAD_SIGMA, 0

7 y = img.gauss_gradient GRAD_SIGMA, 1

8 a = (x ** 2).gauss_blur COV_SIGMA

9 b = (y ** 2).gauss_blur COV_SIGMA

10 c = (x * y).gauss_blur COV_SIGMA

11 g = ((a - b) ** 2 + (2 * c) ** 2) / (a + b + NOISE ** 2) ** 2

12 result = g.normalise(1.0 .. 0.0) ** EXP * (x ** 2 + y ** 2)

13 result.normalise(0xFF .. 0).show

Figure 5.15: Corner detection by Yang et al.

117

Listing 5.10: Shi-Tomasi corner detector

GRAD_SIGMA = 1

COV_SIGMA = 1

img = MultiArray.load_ubyte ’test.png’

x = img.gauss_gradient GRAD_SIGMA, 0

y = img.gauss_gradient GRAD_SIGMA, 1

a = (x ** 2).gauss_blur COV_SIGMA

b = (y ** 2).gauss_blur COV_SIGMA

c = (x * y).gauss_blur COV_SIGMA

tr = a + b

det = a * b - c * c

"major" is needed to deal with numerical errors.

dissqrt = Math.sqrt((tr * tr - det * 4).major(0.0))

Take smallest eigenvalue. Eigenvalues are "0.5 * (tr +- dissqrt)"

result = 0.5 * (tr - dissqrt)

result.normalise(0xFF .. 0).show

ture tensor of the gradient vectors in a local region. The heuristic function chosen here is

simply the smallest eigenvalue of the structure tensor S (see Equation 5.26).

ST{g}(~x) ≔ min(λ1, λ2) where ∃Λ ∈ R2×2 : S{g}(~x) = Λ⊤

λ1 0

0 λ2

 Λ ∧ Λ⊤Λ =

1 0

0 1


(5.26)

This corner-detector was developed with the motivation to find features which are suitable

for tracking. Tomasi and Kanade (1992) demonstrates that the corner-detector indeed is

suitable to serve as a basis for a stable tracking algorithm. The corner detector also was

used to estimate stereo disparity (Lucas and Kanade, 1981).

Listing 5.10 shows a implementation of the Shi-Tomasi corner detector in Ruby. The

result of applying the Shi-Tomasi corner detector to an image is shown in Figure 5.16.

Figure 5.16: Shi-Tomasi corner-detector

5.2.2.3 Harris-Stephens Corner- and Edge-Detector

Harris and Stephens, 1988 (also see Derpanis (2004)) have developed a filter which can

detect corners as well as edges. Similar to the approach by Shi and Tomasi a measure

118

based on the covariance of the gradient vectors is used. A heuristic function is chosen

which has a large positive value where there is a high anisotropy (i.e. a corner). If there

are large gradient vectors with high covariance the function has a high negative value (i.e.

an edge). The heuristic measure uses a constant k as shown in Equation 5.27.

HSk{g}(~x) ≔ λ1 λ2 − k (λ1 + λ2)2 where λ1 and λ2 defined as in Equation 5.26 (5.27)

Figure 5.17 shows how the response function behaves for different values of λ1 and

λ2. The implementation of the Harris-Stephens corner and edge detector is given in List-

Corner/Edge Response Function (K=0.2)

 0 1 2 3 4

lambda 1

 0

 1

 2

 3

 4

la
m

b
d

a
 2

-4

-3

-2

-1

 0

 1

 2

 3

 4

Figure 5.17: Harris-Stephens response function

ing 5.11. Note that the filter was implemented as a method by extending the class “Node”.

The result of applying the filter (with k = 0.05) to an image is shown in Figure 5.18.

Figure 5.18: Harris-Stephens corner- and edge-detector (negative values (edges) are black

and positive values (corners) are white)

119

Listing 5.11: Harris-Stephens corner and edge detector

class Node

def features(grad_sigma, cov_sigma, k)

x = gauss_gradient grad_sigma, 0

y = gauss_gradient grad_sigma, 1

a = (x ** 2).gauss_blur cov_sigma

b = (y ** 2).gauss_blur cov_sigma

c = (x * y).gauss_blur cov_sigma

trace = a + b

determinant = a * b - c * c

determinant - k * trace ** 2

end

end

GRAD_SIGMA = 1

COV_SIGMA = 1

K = 0.05

img = MultiArray.load_ubyte ’test.png’

img.features(GRAD_SIGMA, COV_SIGMA, K).normalise.show

5.2.2.4 Non-Maxima Suppression for Corners

Corner locations are local maxima of the corner image. A local maximum can be de-

termined by comparison of the corner image with the grey scale dilation as introduced

in Section 5.1.2.1. Listing 5.12 shows an implementation of the Harris-Stephens corner-

and edge-detector followed by non-maxima suppression for corners (i.e. “Node#maxima”).

The result of applying the algorithm to an image is shown in Figure 5.19.

Figure 5.19: Non-maxima suppression for corners

5.3 Feature Descriptors

5.3.1 Restricting Feature Density

In Section 5.2.2.3 it was shown how to obtain a feature image using the Harris-Stephens

corner-detector. The individual corners can be extracted using non-maxima suppression

for corners (as shown in Section 5.2.2.4). Usually a certain threshold is used to ignore

120

Listing 5.12: Non-maxima suppression for corners

class Node

def maxima(threshold)

(self >= threshold * max).and eq(dilate)

end

def features(sigma, k)

gx, gy = gauss_gradient(sigma, 0), gauss_gradient(sigma, 1)

cov = [gx ** 2, gy ** 2, gx * gy]

a, b, c = cov.collect { |arr| arr.gauss_blur sigma }

trace = a + b

determinant = a * b - c ** 2

determinant - k * trace ** 2

end

end

THRESHOLD = 0.05

SIGMA = 1.0

K = 0.1

img = MultiArray.load_ubyte ’test.png’

features = img.features SIGMA, K

mask = features.maxima THRESHOLD

mask.dilate(5).conditional(RGB(255, 0, 0), img).show

weak features. However in order to be able to track motions in every part of the image,

it is desirable to have a constant feature density. Bouget (also see OpenCV source code)

computes the distance of each new feature to every already accepted feature. The feature

is rejected if the minimum distance is below a certain threshold.

Figure 5.20 illustrates a different approach which is based on array operations. A warp

corner features strongest feature for each

grid square

result

Figure 5.20: Restricting feature density

is used to transform the feature image into a 3D array of blocks. Afterwards the strongest

feature in each block can be determined using the “argmax” method as shown below.

maxima = argmax { |i,j| lazy { |k| features.warp(*warp)[i,j,k] } }

This enforces an upper limit on the feature density. The complete source code is shown

in Section A.7.6.

121

Listing 5.13: Extracting local texture patches

class Node

def maxima(threshold)

(self >= threshold * max).and eq(dilate)

end

def features(sigma, k)

gx, gy = gauss_gradient(sigma, 0), gauss_gradient(sigma, 1)

cov = [gx ** 2, gy ** 2, gx * gy]

a, b, c = cov.collect { |arr| arr.gauss_blur sigma }

trace = a + b

determinant = a * b - c ** 2

determinant - k * trace ** 2

end

def descriptors(img, r)

x = lazy(*shape) { |i,j| i }.mask self

y = lazy(*shape) { |i,j| j }.mask self

dx = lazy(2 * r + 1, 2 * r + 1) { |i,j| i - r }

dy = lazy(2 * r + 1, 2 * r + 1) { |i,j| j - r }

warp_x = lazy { |i,j,k| x[k] + dx[i,j] }

warp_y = lazy { |i,j,k| y[k] + dy[i,j] }

img.warp warp_x, warp_y

end

end

THRESHOLD = 0.17

SIGMA = 1.0

K = 0.1

R = 4

img = MultiArray.load_ubytergb ’test.png’

features = img.to_sfloat.features SIGMA, K

mask = features.maxima THRESHOLD

descriptors = mask.descriptors img, R

5.3.2 Local Texture Patches

Feature matching algorithms usually use descriptors for feature matching. Here the fea-

ture descriptors are based on local image patches around each corner feature. The method

“Node#descriptors” in Listing 5.13 creates a 3D field of 2D warp vectors for extract-

ing the descriptors. The components of the vectors are stored in the variables “warp x”

and “warp y”. By applying the warp to the image one can obtain a stack of local image

patches (i.e. a 3D array) in an efficient manner. See Figure 5.21 for an illustration.

➧ ➧ ➧

Figure 5.21: Computing feature locations and descriptors

122

Listing 5.14: SVD matching

...

measure = proximity * similarity

t, d, ut = *measure.svd

e = lazy(*d.shape) { |i,j| i.eq(j).conditional 1, 0 }

s = t.x(e).x(ut)

max_col = argmax { |j| lazy { |i| s[j, i] } }.first

max_row = argmax { |j| lazy { |i| s[i, j] } }.first

mask_col = [lazy(s.shape[0]) { |i| i }, max_row].histogram(*s.shape) > 0

mask_row = [max_col, lazy(s.shape[1]) { |i| i }].histogram(*s.shape) > 0

q = mask_col.and(mask_row).and measure >= CUTOFF

...

5.3.3 SVD Matching

Pilu (1997) presents a simple algorithm for feature matching based on the singular value

decomposition (SVD). A combined measure of the feature proximity and similarity id

computed for every possible pair of features (Ii, I j) with descriptors A and B (see Equa-

tion 5.28).

g j,i ≔ e
−

(c j,i−1)2

2 γ2 · e−
r2

j,i

2σ2 where c j,i ≔

∑
u,v(Auv − Ā) (Buv − B̄)

∑
u,v(Auv − Ā)2

∑
u,v(Buv − B̄)2

and ri, j ≔

∣∣∣Ii − I j

∣∣∣

(5.28)

Equation 5.29 shows the SVD of the resulting matrix G (Pilu, 1997).

G ≔ T DU whereD = diag(d1, d2, . . .) (5.29)

Equation 5.30 shows how the resulting matrices T andU are multiplied with the rectan-

gular identity matrix E (Pilu, 1997).

P ≔ T EU (5.30)

A pair of features (I j, Ii) is regarded a match if and only if p j,i is both the greatest element

in its row and the greatest element in its column (Pilu, 1997).

Listing 5.14 shows the corresponding implementation. The “argmax” function is

used to locate the maximum in each row and column of the correspondence matrix. The

histogram operation is used to create two masks. The two masks are combined to detect

elements in the matrix which are the greatest element in its row as well as in its column.

Additionally a threshold is introduced in order to discard matches with low correspon-

dence (see Section A.7.7 for complete code listing). Figure 5.22 shows an example of the

algorithm in action.

123

Figure 5.22: SVD tracking

5.4 Summary

This chapter has shown how many preprocessing operations commonly found in the area

of machine vision can be implemented using the library introduced in Chapter 3. The con-

cise code also made the similarities of different popular corner detectors visible. Finally

it was shown how warps can be used to extract feature descriptors from selected regions

of the input image.

124

“Robert and I both knew Lisp well, and we couldn’t see

any reason not to trust our instincts and go with Lisp.

We knew that everyone else was writing their software

in C++ or Perl. But we also knew that that didn’t mean

anything. If you chose technology that way, you’d be run-

ning Windows. When you choose technology, you have

to ignore what other people are doing, and consider only

what will work the best.”

Paul Graham

“We haven’t found intelligent life so far. Some people

believe it has yet to occur on earth.”

Stephen Hawking

“If you’re using early-binding languages as most people

do, rather than late-binding languages, then you really

start getting locked in to stuff that you’ve already done.”

Alan Kay

6
Evaluation

This chapter shows how the concepts introduced in previous chapters can be used to create

concise implementations of real-time machine vision systems.

• Section 6.1 describes the FOSS packages developed as part of this thesis

• Section 6.2 presents concise implementations of several computer vision applica-

tions

• Section 6.3 provides a performance analysis and a comparison with equivalent C

implementations

• Section 6.5 gives a summary of this chapter

6.1 Software Modules

The software developed as part of this thesis was made available as free software and

released on Github1 and on Rubygems2. It is packaged as follows.

• The package malloc defines the “Malloc” class (also see Section 3.2). “Malloc”

objects are used to introduce pointer operations to the Ruby language. Pointer

objects are the simplest possible interface for exchanging image- and video-data.

Instead of requiring the different I/O-packages to use certain static types for ex-

changing information, each I/O-package comes with dynamic types providing the

meta-information.

1http://github.com/
2http://rubygems.org/

125

http://github.com/wedesoft/malloc/
http://github.com/
http://rubygems.org/

• The multiarray extension provides the image processing operations presented in

Chapter 3. The package uses GNU Compiler Collection (GCC) as a JIT compiler

in order to achieve high performance.

• Conversion of compressed video frames is handled by the hornetseye-frame Ruby

extension. The Ruby extension makes use of the FFmpeg rescaling library.

• The following packages implement various I/O-interfaces.

– The hornetseye-xorg package can be used to display images and videos using

the X Window System.

– hornetseye-rmagick provides saving and loading of image files using the RMag-

ick library.

– hornetseye-ffmpeg provides saving and loading of video files using the FFm-

peg library.

– hornetseye-alsa provides capture and playback of audio using ALSA.

– hornetseye-fftw3 provides Fast Fourier Transforms using the FFTW3 library.

– hornetseye-v4l2 provides live camera images using V4L2.

– hornetseye-dc1394 provides live camera images using DC1394-compatible

Firewire cameras.

– hornetseye-kinect provides capture of depth images using the Microsoft Kinect.

– hornetseye-openexr provides loading and saving of HDR images with the

OpenEXR library.

• The following packages provide integration with other libraries.

– hornetseye-opencv provides integration with the Ruby bindings of the OpenCV

computer vision library.

– hornetseye-narray provides conversions between “NArray” objects and the ar-

rays of the Hornetseye library.

– hornetseye-linalg provides conversions between the “DMatrix” objects of the

linalg library (LAPACK bindings for Ruby) and the arrays of the Hornetseye

library.

– hornetseye-qt4 provides a Qt4 widget for hardware accelerated video output

in a Qt4 GUI.

126

http://github.com/wedesoft/multiarray/
http://github.com/wedesoft/hornetseye-frame/
http://github.com/wedesoft/hornetseye-xorg/
http://github.com/wedesoft/hornetseye-rmagick/
http://github.com/wedesoft/hornetseye-ffmpeg/
http://github.com/wedesoft/hornetseye-alsa/
http://github.com/wedesoft/hornetseye-fftw3/
http://github.com/wedesoft/hornetseye-v4l2/
http://github.com/wedesoft/hornetseye-dc1394/
http://github.com/wedesoft/hornetseye-kinect/
http://github.com/wedesoft/hornetseye-openexr/
http://github.com/wedesoft/hornetseye-opencv/
http://github.com/wedesoft/hornetseye-narray/
http://github.com/wedesoft/hornetseye-linalg/
https://github.com/wedesoft/hornetseye-linalg
http://github.com/wedesoft/hornetseye-qt4/

6.2 Assessment of Functionality

6.2.1 Fast Normalised Cross-Correlation

One can use correlation methods in order to detect a 2D template in an image if only

translations are involved (i.e. no scale or rotation). Lewis (1995) shows how to compute

the correlation coefficients γ shown in Equation 6.1 for every possible shift ~u.

γ(~u) =

∑
~x∈T (~u)

[
g(~x) − ḡ(~u)

] [
t(~x − ~u) − t̄

]
√∑

~x∈T (~u)

[
f (~x) − f̄ (~u)

]2 ∑
~x∈T (~u)

[
t(~x − ~u) − t̄

]2
(6.1)

Here g is the input image, ḡ is the average of a template-sized area of the input image, t is

the template, and t̄ is the average value of the template. The integration area T (~u) ensures

that t(~x − ~u) is defined for every ~x ∈ T (~u).

Using t′(~x) ≔ t(~x) − t̄ one can simplify the numerator of the correlation coefficient as

shown in Equation 6.2

num
γ (~u) =

∑

~x∈T (~u)

g(~x) t′(~x − ~u) − ḡ(~u)
∑

~x∈T (~u)

t′(~x − ~u)

︸ ︷︷ ︸
=0

(6.2)

The numerator requires correlation of the input image with the template which (for larger

template sizes) is most efficiently done in the Fourier domain.

The second part of the denominator (see Equation 6.3) simply is the variance of the

template. The first part of the denominator can be computed using integral images (Lewis,

1995) (also see Section 3.5.11).

den

γ2(~u) =
∑

~x∈T (~u

[
f 2(~x) − f̄ 2(~u)

] ∑

~x∈T (~u

[
t(~x) − t̄

]2
(6.3)

The implementation of the normalised cross-correlation is given in Appendix A.7.3.

Figure 6.1 shows how the normalised cross-correlation can be used to successfully

locate a template in a test image.

6.2.2 Lucas-Kanade Tracker

The warps introduced in Section 3.5.6.2 can be used to create a concise implementation of

a Lucas-Kanade tracker (Baker and Matthew, 2004; Wedekind et al., b; Wedekind, 2008).

The (inverse compositional) Lucas-Kanade tracker works by comparing the warped input

image with a template. Equation 6.4 shows the warp formula for a 2D isometry with

127

Input image

➠
Template

Result

Figure 6.1: Normalised cross-correlation example

translation parameters p1 and p2 and rotation parameter p3.

W~p(~x) =


x cos(p3) − y sin(p3) + p1

x sin(p3) + y cos(p3) + p2

 (6.4)

The vector ~p with the transformation parameters of the warp is updated iteratively by

adding an optimal offset ∆̂~p in order to minimise the difference between the template and

the warped image (see Equation 6.5 and Figure 6.2).

∆̂~p = argmin
∆~p

∑

~x

[
t(~x) − g

(
W−1
~p+∆~p(~x)

)]2
(6.5)

The inverse compositional algorithm makes use of the fact that the warp for the changed

T (~x)

I(W−1
~p

(~x))

I(W−1
~p

(W−1
∆~p

(~x)))

Figure 6.2: Comparison of template and warped image

vector of parameters ~p + ∆~p can be approximated by concatenation as shown in Equa-

tion 6.6.

W~p+∆~p(~x) ≈ W~p
(
W∆~p(~x)

)
(6.6)

128

The difference between the template and the warped image in Equation 6.5 can be sim-

plified using Equation 6.6 and by substituting ~x = W∆~p(~x′) (see Equation 6.7).

t(~x) − g
(
W−1
~p+∆~p(~x)

) (6.6)
= t(~x) − g

(
W−1
~p

(
W−1
∆~p(~x)

))
= t
(
W∆~p(~x′)

) − g
(
W−1
~p (~x′)

)
(6.7)

Near ~p = ~0 the warped template t
(
W∆~p(~x)

)
can be approximated with a first order Taylor

expansion as shown in Equation 6.8.

t
(
W∆~p(~x)

) ≈ t(~x) +

(δt
δ~x

(~x)

)⊤(δW~p
δ~p

∣∣∣∣∣
~p=~0

(~x)

)
∆~p (6.8)

Using Equation 6.7 and the approximation of Equation 6.8 one can reformulate Equa-

tion 6.5 as a linear least squares problem (see Equation 6.9).

∆̂~p ≈ argmin
∆~p

(||H ∆~p + ~b||) = (H⊤H)−1H⊤ ~b

whereH =



h1,1 h1,2 · · ·
h2,1 h2,2 · · ·
...

...
. . .


and ~b =



b1

b2

...



with hi, j =

(
δt

δ~x
(~xi)

)⊤
·
(δW~p
δp j

∣∣∣∣∣
~p=~0

(~xi)

)
and bi = t(~xi) − g(W−1

~p (~xi))

(6.9)

In practise it is usually necessary to update ~p a couple of times since Equation 6.9 merely

gives an approximation for ∆̂~p.

Listing 6.1 shows a Ruby implementation of the (inverse compositional) Lucas-Kanade

tracker (using a Gauss gradient with σ = 2.5 and using two iterations for each video

frame). The tracking template is captured (line 30) from the first frame (line 26) of the

input video (line 13) using the initial vector of transformation parameters (line 14). Note

that the Gauss gradient of the template is computed from a bigger area of the input image

in order to avoid boundary effects (see Figure 6.3). Another noteworthy implementation

template boundary effects no boundary effects

Figure 6.3: Gradient boundaries of template

detail is the interpolated warp (see Figure 6.4). It is mandatory to implement interpolation

since the Lucas-Kanade tracker might not converge on a stable solution otherwise.

Figure 6.5 shows every 10th frame of a test video. The Lucas-Kanade tracks the

polygon, which undergoes shifts and rotations, successfully.

129

Listing 6.1: Lucas-Kanade tracker

1 class Node

2 def warp_clipped_interpolate(x, y)

3 x0, y0 = x.floor.to_int, y.floor.to_int

4 x1, y1 = x0 + 1, y0 + 1

5 fx1, fy1 = x - x0, y - y0

6 fx0, fy0 = x1 - x, y1 - y

7 return warp(x0, y0) * fx0 * fy0 + warp(x1, y0) * fx1 * fy0 +

8 warp(x0, y1) * fx0 * fy1 + warp(x1, y1) * fx1 * fy1

9 end

10 end

11 SIGMA, N = 2.5, 2

12 W, H = 94, 65

13 input = AVInput.new ’test.avi’

14 p = Vector[80.0, 35.0, 0.0]

15 def model(p, x, y)

16 cw, sw = Math::cos(p[2]), Math::sin(p[2])

17 Vector[x * cw - y * sw + p[0], x * sw + y * cw + p[1]]

18 end

19 def derivative(x, y)

20 Matrix[[1, 0], [0, 1], [-y, x]]

21 end

22 def compose(p, d)

23 cw, sw = Math::cos(p[2]), Math::sin(p[2])

24 p + Matrix[[cw, -sw, 0], [sw, cw, 0], [0, 0, 1]] * d

25 end

26 img = input.read_ubyte

27 b = (Array.gauss_gradient_filter(SIGMA).size - 1) / 2

28 x = lazy(W + 2 * b, H + 2 * b) { |i,j| i - b }

29 y = lazy(W + 2 * b, H + 2 * b) { |i,j| j - b }

30 tpl = img.warp_clipped_interpolate *model(p, x, y)

31 gx = tpl.gauss_gradient SIGMA, 0

32 gy = tpl.gauss_gradient SIGMA, 1

33 tpl, gx, gy, x, y = *[tpl, gx, gy, x, y].

34 collect { |arr| arr[b...(W+b), b...(H+b)] }

35 c = derivative(x, y) * Vector[gx, gy]

36 hs = (c * c.covector).collect { |e| e.sum }

37 hsinv = hs.inverse

38 X11Display.show do

39 img = input.read_ubyte

40 for i in 0...N

41 diff = tpl - img.warp_clipped_interpolate(*model(p, x, y))

42 s = c.collect { |e| (e * diff).sum }

43 p = compose(p, hsinv * s)

44 end

45 gc = Magick::Draw.new

46 gc.fill_opacity 0

47 gc.stroke(’red’).stroke_width 1

48 gc.line *(model(p, 0, 0).to_a + model(p, W, 0).to_a)

49 gc.line *(model(p, 0, H).to_a + model(p, W, H).to_a)

50 gc.line *(model(p, 0, 0).to_a + model(p, 0, H).to_a)

51 gc.line *(model(p, W, 0).to_a + model(p, W, H).to_a)

52 gc.circle *(model(p, 0, 0).to_a + model(p, 3, 0).to_a)

53 result = img.to_ubytergb.to_magick

54 gc.draw result

55 result.to_ubytergb

56 end

130

without interpolation with interpolation

Figure 6.4: Warp without and with interpolation

Figure 6.5: Example of Lucas-Kanade tracker in action

131

Listing 6.2: Hough transform to locate lines

1 A_RANGE = 0 .. 179

2 THRESHOLD = 0x7F

3 img = MultiArray.load_ubyte ’test.png’

4 diag = Math.sqrt(img.width ** 2 + img.height ** 2)

5 d_range = -diag.to_i.succ.div(2) ... diag.to_i.succ.div(2)

6 binary = img <= THRESHOLD

7 x = lazy(*img.shape) { |i,j| i - img.width / 2 }.mask binary

8 y = lazy(*img.shape) { |i,j| j - img.height / 2 }.mask binary

9 angle = lazy(A_RANGE.end + 1) { |i| Math::PI * i / A_RANGE.end }

10 dist = lazy(d_range.end + 1 - d_range.begin) { |i| i + d_range.begin }

11 cos, sin = lazy { |i| Math.cos(angle[i]) }, lazy { |i| Math.sin(angle[i]) }

12 a = lazy(angle.size, x.size) { |i,j| i }

13 d = lazy { |i,j| (x[j] * cos[i] + y[j] * sin[i] - d_range.begin).to_int }

14 histogram = [a, d].histogram A_RANGE.end + 1, d_range.end + 1 - d_range.begin

15 (histogram ** 0.5).normalise(255 .. 0).show

6.2.3 Hough Transform

The Hough transform (Duda and Hart, 1972) can be used to efficiently detect shapes in

images if the parameter space has two dimensions or less (e.g. lines or circles with a fixed

radius). If the parameter space has more than two dimensions (e.g. circles with unknown

radius), the Hough transform is usually complemented with other algorithms in order to

keep the computational cost manageable (e.g. using the gradient direction to reduce the

number of votes (Borovička, 2003)).

The lazy operations introduced in Section 3.4 facilitate concise and flexible imple-

mentations of the Hough transform. Listing 6.2 shows the implementation of a Hough

transform to locate lines. The application of the Hough transform is shown in Figure 6.6.

input image

➠

Hough space

➠

detected lines

Figure 6.6: Line detection with the Hough transform

For every point in the input image, the Hough transform accumulates votes for the pa-

rameters of all possible lines passing through that point (Duda and Hart, 1972). The peaks

in the Hough transform correspond to detected lines in the input image (see detected lines

in Figure 6.6). The peaks can be located using thresholding followed by non-maxima sup-

132

pression. Note that the Hough transform in Listing 6.2 is implemented using a histogram

operation (line 14). The votes for different combinations of distance (“d”) and angle (“a”)

are generated using lazy tensor expressions (lines 13 and 12). A formal representation of

the Hough transform is given in Equation 6.10.

h(a, d) =
∑

i, j

δ(a − θ j) δ(d − ⌊xi,1 cos(θ j) + xi,2 sin(θ j)⌋) (6.10)

The implementation shown in Listing 6.2 is not optimal though. It uses a masking

operation to create the intermediate arrays “x” and “y” with the coordinates of all black

points of the input image.

6.2.4 Microscopy Software

Using the GUI integration shown in Section 4.8 one can develop sophisticated Qt4 GUIs

involving video I/O. Figure 6.7 shows a dialog for configuring different object recognition

and tracking algorithms. The figure shows the software being tested on an artificial test

Figure 6.7: Configuration GUI

video.

133

Configuration Closed-loop control

Figure 6.8: Closed-loop control of a nano manipulator in a TEM

The software was used to demonstrate closed-loop control of a nano manipulator in a

transmission electron microscopy (TEM) as shown in Figure 6.8 (Lockwood et al., 2010).

The software was also used to measure the hysteresis of Piezo drives.

6.2.5 Depth from Focus

Depth from focus is a computational method to estimate a 3D profile using a focus stack

of images (Wedekind, 2002). A local sharpness measure is defined to estimate which

image is nearer to the focal plane. A possible sharpness measure is the (square of the)

Sobel gradient norm shown in Equation 6.11

sz(~x) = (gz ⊗ S1)2(~x) + (gz ⊗ S2)2(~x) (6.11)

The depth map or 3D profile of the object is obtained by determining the depth at which

the local sharpness reaches its maximum.

dm(~x) = argmax
z

sz(~x) (6.12)

dv(~x) = gdm(~x)(~x) (6.13)

Listing 6.3 shows an implementation of Depth from Focus. The Sobel gradient mag-

nitude of the focus stack is used as a sharpness measure (lines 29–30). An image with

extended depth of field is created (line 26 and 33). Furthermore a height field is gener-

ated (line 25 and 32). The implementation makes use of the “trollop” library to provide a

command line interface (lines 1–20).

Figure 6.9 shows every 10th image of a focus stack. The series of images was taken

using an optical microscope and it shows small glass fibres3. Figure 6.10 shows the result

3glass fibres courtesy of BMRC, Sheffield Hallam University

134

Listing 6.3: Implementation of Depth from Focus

1 opts = Trollop::options do

2 banner <<EOS

3 Generate height field and deep view from focus stack.

4 Usage:

5 ./depthfromfocus.rb [options] <file names>+

6

7 where [options] are:

8 EOS

9 opt :sigma, ’Sigma for Gaussian blur (1/pixelsize)’, :default => 2.5

10 opt :field, ’Output PGM file name for height field’, :type => String

11 opt :view, ’Output PPM file name for deep view’, :type => String

12 end

13 sigma = opts[:sigma]

14 Trollop::die :sigma, ’must be greater than zero’ unless sigma > 0

15 field_file = opts[:field]

16 Trollop::die :field, ’is required’ unless field_file

17 view_file = opts[:view]

18 Trollop::die :view, ’is required’ unless view_file

19 stack_file = ARGV

20 Trollop::die ’Cannot handle more than 255 files’ if stack_file.size > 255

21 field, view, max_sharpness = nil, nil, nil

22 stack_file.each_with_index do |f_name,i|

23 img = MultiArray.load_ubytergb f_name

24 unless field

25 field = MultiArray.ubyte(*img.shape).fill!

26 view = MultiArray.ubytergb(*img.shape).fill!

27 max_sharpness = MultiArray.dfloat(*img.shape).fill!

28 end

29 sharpness = (img.sobel(0) ** 2 + img.sobel(1) ** 2).

30 to_dfloat.gauss_blur sigma

31 mask = sharpness > max_sharpness

32 field = mask.conditional i, field

33 view = mask.conditional img, view

34 max_sharpness = mask.conditional sharpness, max_sharpness

35 end

36 field.save_ubyte field_file

37 view.save_ubytergb view_file

135

Figure 6.9: Part of focus stack showing glass fibres

obtained with the Depth from Focus method.

depth map extended depth of field

Figure 6.10: Results of Depth from Focus

6.2.6 Gesture-based Mouse Control

Wilson (2006) shows how one can use basic image processing operations to implement

a computer vision system to control a mouse cursor with gestures. The algorithm can

detect pinching gestures where touching of the thumb and forefinger creates a disjoint

region where the background is visible. The concept is illustrated in Figure 6.11.

136

1. acquire image

2. subtract background reference

3. apply a threshold

4. label connected components

5. suppress components which are too small or too large

6. suppress components connected to image borders

7. determine centre of gravity if exactly one component remains

background reference difference image thresholded image

connected components components filtered for size components not touching

image borders

component fulfilling both

conditions

centre of gravity

Figure 6.11: Human computer interface for controlling a mouse cursor

The Ruby source code of this algorithm is shown in Listing 6.4. The size of each

component is computed by taking a histogram of the label image (line 13). Compo-

nents touching the image borders are found out by taking a weighted histogram (line

15) where the image border pixels have non-zero weights (lines 6–7). “mask area” and

137

Listing 6.4: Human computer interface for controlling the mouse cursor

1 THRESHOLD = 15

2 RANGE = 0.001 .. 0.25

3 input = V4L2Input.new

4 background = input.read_sint

5 shape = background.shape

6 border = MultiArray.int(*shape).fill! 1

7 border[1 ... shape[0] - 1, 1 ... shape[1] - 1] = 0

8 X11Display.show do

9 img = input.read_ubyte

10 binary = img - background <= THRESHOLD

11 components = binary.components

12 n = components.max + 1

13 area = components.histogram n

14 mask_area = area.between? RANGE.min * img.size, RANGE.max * img.size

15 mask_border = components.histogram(n, :weight => border).eq 0

16 mask = mask_area.and(mask_border).to_ubyte

17 target = components.lut(mask.integral * mask)

18 if target.max == 1

19 sum = target.sum.to_f

20 x = lazy(*shape) { |i,j| i }.mask(target.to_bool).sum / sum

21 y = lazy(*shape) { |i,j| j }.mask(target.to_bool).sum / sum

22 puts "#{x} #{y}"

23 end

24 img

25 end

“mask border” are 1D arrays with boolean values indicating for each component whether

it is to be suppressed or not. “mask” is a 1D array of integers where “1” indicates a

component which is fulfilling all conditions (line 16). The components are re-labelled

by using “mask.integral * mask” as a lookup table (line 17). For example Listing 6.5

shows a case where “mask” has 3 non-zero values. By multiplying the integral array with

the array, one can obtain a “1D” lookup table which assigns a running index to accepted

components. All rejected components get mapped to zero.

The coordinates obtained with Listing 6.4 can be used to create mouse-motion and

Listing 6.5: Lookup table for re-labelling

mask

Sequence(UBYTE):

[0, 0, 1, 0, 0, 0, 1, 1, 0]

mask.integral

Sequence(UBYTE):

[0, 0, 1, 1, 1, 1, 2, 3, 3]

lut = mask.integral * mask

Sequence(UBYTE):

[0, 0, 1, 0, 0, 0, 2, 3, 0]

MultiArray[[0, 0, 2, 0, 0], [3, 0, 0, 0, 6]].lut lut

MultiArray(UBYTE,2):

[[0, 0, 1, 0, 0],

[0, 0, 0, 0, 2]]

138

mouse-button events (Wilson, 2006). It is also possible to extend the concept so that two

hands can be used to create mouse-scroll events. Listing 6.4 demonstrates that using the

Ruby-extension presented in this thesis it requires only a short amount of time to put an

idea into practise.

6.2.7 Slide Presenter

Figure 6.12 illustrates the idea for a software for changing slides. After a certain time

Figure 6.12: Software for vision-based changing of slides

a reference image is acquired. If the user’s hand reaches into the centre of the image,

the blurred difference image is thresholded and the centre of gravity of the resulting bi-

nary image is used as a 1D sensor for controlling the presentation of slides. Listing 6.6

implements the basic concept.

The 1D sensor input is used as follows. A quick downward or upward motion is used

to display the next or previous slide (see Figure 6.13). A slow gesture is used to display

a menu and select a particular slide (see Figure 6.14). The system was used to give a

presentation at a conference (Wedekind, 2009)4. Note that the sensor value might change

significantly when the hand is removed. To make recognition more robust, the system

picks the slide which was selected for the longest period of time in such cases. This can

be achieved using weighted histograms.

4See http://www.wedesoft.demon.co.uk/rubyconf09video.html for a video of the talk

139

http://www.wedesoft.demon.co.uk/rubyconf09video.html

Listing 6.6: Vision-based changing of slides

input = DC1394Input.new

w, h, o = 20, input.height, input.width / 2 - 10

box = [o ... o + w, 0 ... h]

bg = input.read_ubyte[*box]

t = Time.new.to_f

X11Display.show do

img = input.read_ubytergb

if Time.new.to_f > t + 10

bg = img[*box].to_ubyte

t = Time.new.to_f

end

slice = (img[*box].to_sint - bg).gauss_blur(2).abs >= 12

n = slice.to_ubyte.sum

if n > 20

y = lazy(w, h) { |i,j| j }.mask(slice).sum / n

puts y

else

t = Time.new.to_f

puts ’----’

end

img[*box].r = slice.to_ubyte * 255

img[*box].g = slice.not.to_ubyte * 255

img

end

Figure 6.13: Quick gesture for displaying the next slide

140

Figure 6.14: Slow gesture for choosing a slide from a menu

As one can see in Listing 6.6, the input class “DC1394Input” was used instead of

“V4L2Input”. This input class is for accessing DC1394-compatible Firewire cameras

(see Figure 6.15). The camera has the advantage that it supports a fixed exposure setting

Figure 6.15: Unibrain Fire-I (a DC1394-compatible Firewire camera)

which is important when using difference images.

6.2.8 Camera Calibration

Camera calibration usually is done by taking images of a chequer board of known size.

A corner detector then detects the coordinates of the projected corners. The corners are

labelled so that for each corner of the chequer board the corresponding corner in the

image is known. Using a pinhole camera model (see Appendix A.3), camera calibration

then becomes an optimisation problem (Ballard and Brown, 1982; Zhang, 2000; Faucher,

2006). Camera calibration is a requirement for 3D reconstruction with lasers (Lim, 2009)

141

and real-time visual SLAM (Davison et al., 2007; Pupilli, 2006) for example. In general

some means of initial calibration or self-calibration (Mendonça and Cipolla, 1999) is

required in order to solve non-trivial 3D machine vision problems.

6.2.8.1 Corners of Calibration Grid

Many algorithms for detecting the corners of a calibration grid are not fully automated.

For example to most popular calibration toolbox requires the user to manually select the

four outer corners of the calibration grid (Bouguet, 2010). Other calibration software

such as the implementation of the OpenCV library uses a sophisticated custom algorithm

which makes use of basic operations such as thresholding, connected components, convex

hull, and nearest neighbours (see OpenCV source code5).

Here an elegant algorithm is presented which is based on standard image process-

ing operations. A planar homography is used to establish the order of the corners. The

algorithm is illustrated in Figure 6.16 and Figure 6.17.

Listing 6.7 shows the implementation of the algorithm including visualisation. The

implementation makes use of other algorithms presented earlier in this thesis. The imple-

mentation makes use of the Ruby matrix library and the LAPACK bindings for Ruby6 (the

code for integrating Ruby matrices and LAPACK matrices is not shown). The algorithm

consists of the following steps:

1. Apply Otsu Thresholding to input image (line 8).

2. Take difference of dilated and eroded image to get edge regions (line 9).

3. Label connected components (line 10).

4. Compute corners of input image (e.g. Harris-Stephens corners as shown in Sec-

tion 5.2.2.3) and use non-maxima suppression (lines 7 and 8).

5. Count corners in each component (line 11, implementation of “have” is not shown)

6. Look for a component which contains exactly 40 corners (line 11, implementation

of “have” is not shown).

7. Get largest component of inverse of grid (i.e. the surroundings) (line 15, implemen-

tation of “largest” is not shown).

8. Grow that component and find all corners on it (i.e. corners on the boundary of the

grid) (lines 15–16).

9. Find centre of gravity of all corners and compute vectors from centre to each bound-

ary corner (lines 14 and 17).

5https://sourceforge.net/projects/opencvlibrary/
6http://rubyforge.org/projects/linalg/

142

https://sourceforge.net/projects/opencvlibrary/
http://rubyforge.org/projects/linalg/

input image grey scale image corner strength

corners Otsu thresholding edges

connected components component with 40 corners boundary region

boundary corners vectors vectors longer than

neighbours

homography x-coordinate homography y-coordinate numbered corners

Figure 6.16: Custom algorithm for labelling the corners of a calibration grid

143

Figure 6.17: Result of labelling the corners

144

Listing 6.7: Custom algorithm for labelling the corners of a calibration grid

1 CORNERS = 0.3; W, H = 8, 5; N = W * H; GRID, BOUNDARY = 7, 19

2 input = V4L2Input.new

3 coords = finalise(input.width, input.height) { |i,j| i + Complex::I * j }

4 pattern = Sequence[*(([1] + [0] * (W - 2) + [1] + [0] * (H - 2)) * 2)]

5 X11Display.show do

6 img = input.read_ubytergb; grey = img.to_ubyte

7 corner_image = grey.corners; abs = corner_image.abs

8 corners = abs.nms CORNERS * abs.max; otsu = grey.otsu

9 edges = otsu.dilate(GRID).and otsu.not.dilate(GRID)

10 components = edges.components

11 grid = components.have N, corners

12 result = img

13 if grid

14 centre = coords.mask(grid.and(corners)).sum / N.to_f

15 boundary = grid.not.components.largest.dilate BOUNDARY

16 outer = grid.and(boundary).and corners

17 vectors = (coords.mask(outer) - centre).to_a.sort_by { |c| c.arg }

18 if vectors.size == pattern.size

19 mask = Sequence[*(vectors * 2)].shift(vectors.size / 2).abs.nms(0.0)

20 mask[0] = mask[mask.size-1] = false

21 conv = lazy(mask.size) { |i| i }.

22 mask(mask.to_ubyte.convolve(pattern.flip(0)).eq(4))

23 if conv.size > 0

24 offset = conv[0] - (pattern.size - 1) / 2

25 r = Sequence[*vectors].shift(-offset)[0 ... vectors.size].

26 mask(pattern) + centre

27 m = Sequence[Complex(-0.5 * W,-0.5 * H), Complex(0.5 * W, -0.5 * H),

28 Complex(0.5 * W, 0.5 * H), Complex(-0.5 * W, 0.5 * H)]

29 constraints = []

30 for i in 0 ... 4 do

31 constraints.push [m[i].real, m[i].imag, 1.0, 0.0, 0.0, 0.0,

32 -r[i].real * m[i].real, -r[i].real * m[i].imag, -r[i].real]

33 constraints.push [0.0, 0.0, 0.0, m[i].real, m[i].imag, 1.0,

34 -r[i].imag * m[i].real, -r[i].imag * m[i].imag, -r[i].imag]

35 end

36 h = Matrix[*constraints].svd[2].row(8).reshape(3, 3).inv

37 v = h.inv * Vector[coords.real, coords.imag, 1.0]

38 points = coords.mask grid.and(corners) +

39 Complex(input.width/2, input.height/2)

40 sorted = (0 ... N).

41 zip((v[0] / v[2]).warp(points.real, points.imag).to_a,

42 (v[1] / v[2]).warp(points.real, points.imag).to_a).

43 sort_by { |a,b,c| [(c - H2).round, (b - W2).round] }.

44 collect { |a,b,c| a }

45 result = (v[0] / v[2]).between?(-0.5 * W, 0.5 * W).and((v[1] / v[2]).

46 between?(-0.5 * H, 0.5 * H)).conditional img * RGB(0, 1, 0), img

47 gc = Magick::Draw.new

48 gc.fill_opacity(0).stroke(’red’).stroke_width 1

49 sorted.each_with_index do |j,i|

50 gc.circle points[j].real, points[j].imag,

51 points[j].real + 2, points[j].imag

52 gc.text points[j].real, points[j].imag, "#{i+1}"

53 end

54 result = result.to_magick; gc.draw result; result = result.to_ubytergb

55 end

56 end

57 end

58 result

59 end

145

10. Sort boundary corners by angle of those vectors (line 17).

11. Use non-maxima suppression on list of length of vectors to get the 4 “corner cor-

ners” (convexity) (lines 19–26).

12. Use the locations of the 4 “corner corners” to compute a planar homography (see

Appendix A.4) mapping the image coordinates of the 8 times 5 grid to the ranges

0..7 and 0..4 respectively (lines 27–36).

13. Use the homography to transform the 40 corners and round the coordinates (lines

37–42).

14. Order the points using the rounded coordinates (line 43).

Once the corners of the calibration grid shown in a camera image have been identi-

fied, the correspondences can be used to establish a more accurate 2D homography (see

Appendix A.4).

6.2.8.2 Camera Intrinsic Matrix

Zhang (2000) describes a method for determining the parameters of a linear camera model

for calibration which includes displacement of the chip (principal point), skewness, and

non-square pixel size. Furthermore a non-linear method for determining radial distortion

is discussed. The method requires at least four pictures of the calibration grid being in

different positions.

However in many cases one can assume that there is no radial distortion, skewness,

displacement of the chip and that the pixel are square-shaped. In that case it is only

necessary to determine the ratio of focal length to pixel size f /∆s.

Let H be the planar homography (multiplied with an unknown factor) which was

determined according to Appendix A.4. LetA be the intrinsic and R′ the extrinsic camera

matrix (see Equation 6.14 and Equation A.11).

H = λAR′ ⇔ λR′ = A−1H (6.14)

The rotational part of R′ is an isometry as shown in Equation 6.15.

R′⊤ R′ !
=



1 0 ∗
0 1 ∗
∗ ∗ ∗


(6.15)

Using Equation 6.14 and Equation 6.15 and by decomposing H as shown in Equa-

146

tion 6.16, one obtains Equation 6.17 (Zhang, 2000).

(
~h1
~h2
~h3

)
≔ H where ~hi =



h1,i

h2,i

h3,i


(6.16)

~h⊤1 A−⊤A−1 ~h2
!
= 0 and ~h⊤1 A−⊤A−1 ~h1

!
= ~h⊤2 A−⊤A−1 ~h2 (6.17)

If f /∆s is the only intrinsic camera parameter, the camera intrinsic matrix is a diagonal

matrix as shown in Equation 6.18.

A =



f /∆s 0 0

0 f /∆s 0

0 0 1


(6.18)

In this case Equation 6.17 can be reformulated as shown in Equation 6.19.

(h1,1 h1,2 + h2,1 h2,2)(∆s/ f)2 + h3,1 h3,2
!
= 0 and

(h2
1,1 + h2

2,1 − h2
1,2 − h2

2,2)(∆s/ f)2 + h2
3,1 − h2

3,2

!
= 0

(6.19)

This is a overdetermined equation system which does not have a solution in general.

Therefore the least squares algorithm (see Appendix A.2) is used in order to find a value

for (∆s/ f)2 which minimises the left-hand terms shown in Equation 6.19. Furthermore

the least squares estimation is performed for a set of frames in order to get a more robust

estimate for f /∆s.

The horizontal camera resolution w (e.g. 640 pixel) together with the ratio f /∆s can

be used to determine the camera’s horizontal angle of view α.

α = arctan
w∆s

2 f
(6.20)

The complete source code of the camera calibration is shown in Section A.7.4.

6.2.8.3 3D Pose of Calibration Grid

If the camera intrinsic matrix A is known, it is possible to derive the 3D pose of the

calibration grid from the planar homographyH . Using Equation 6.14 one can determine

the camera extrinsic matrix R′ up to a scale factor. However since R is an isometry,∣∣∣~r1

∣∣∣ !
= 1 and

∣∣∣~r2

∣∣∣ !
= 1 must hold. That is, one can estimate the scaling factor λ according to

Equation 6.21.

λ =
t3

2 |t3|
(
∣∣∣~r1

∣∣∣ +
∣∣∣~r2

∣∣∣) (6.21)

147

When the calibration grid is detected, it must be in front of the camera. The factor t/ |t3|
ensures that λ t3 > 0

Equation A.11 shows that R′ is composed out of two rotational vectors (~r1 and ~r2) and

a translational vector ~t. The composition is shown in Equation 6.22.

(
~r1 ~r2 ~t

)
≔ R′ where ~r1 =



r1,1

r2,1

r3,1


, ~r2 =



r1,2

r2,2

r3,2


, and ~t =



t1

t2

t3


(6.22)

The third vector ~r3 of the 3D rotation matrix must be orthogonal to ~r1 and ~r2 and can be

determined using the vector cross-product as shown in Equation 6.23.

~r3 = ~r1 × ~r2 (6.23)

Due to noise the resulting matrix Q =
(
~r1 ~r2 ~r3

)
usually will not be an isometry. How-

ever Zhang (2000) shows that the nearest isometry (nearest in terms of Frobenius norm)

can be determined using the SVD of Q (see Equation 6.24).

R = UV⊤ where U ΣV⊤ = Q is SVD of Q =
(
~r1 ~r2 ~r3

)
(6.24)

An example sequence is shown in Figure 6.18 (the visualisations were created using the

POV-Ray ray tracer (POVRay, 2005)). Note that sometimes the colours of the chequer

board do not match because the detection of the calibration grid is based on corners and

there is a 180◦ rotational ambiguity. Otherwise the alignment of the model and the camera

image is good. This means that the perfect pinhole camera model is sufficiently accurate

for the camera in use (Feiya Technology built-in camera sensor).

6.2.9 Augmented Reality

Kato and Billinghurst (1999) first published the ARToolKit7 augmented reality tool kit.

Inspection of the source code reveals that the markers are located by an algorithm which

locates rectangular markers by tracking contours and recording contours which have 4

abrupt orientation changes (i.e. 4 corners).

Figure 6.19 illustrates a different custom algorithm for recognising a rectangular mar-

ker. The algorithm can be implemented using the basic image processing operations pre-

sented in this thesis. The algorithm works as follows:

1. acquire image

2. apply threshold

3. do connected component labelling

7also see http://www.hitl.washington.edu/artoolkit/

148

http://www.hitl.washington.edu/artoolkit/

Figure 6.18: Estimating the pose of the calibration grid

149

input image threshold image label connected components

impose size constraint extract edge of component compute gradients

group dominant orientations estimate centre of each line estimate angle of each line

compute intersections of

lines

estimate 3D pose of marker

Figure 6.19: Custom algorithm for estimating the 3D pose of a marker

150

4. suppress components which are too small or too large

5. for each remaining component:

(a) extract edge of component

(b) compute gradients

(c) group dominant orientations

(d) if there are four dominant orientations:

i. estimate centre of each line

ii. estimate angle of each line

iii. compute intersections of lines

iv. estimate 3D pose of marker

Appendix A.7.5 shows that it only requires 44 lines of code to locate the four corners of

the marker. The homography then can be estimated as shown in Section 6.2.8.

Figure 6.20 shows the augmented reality demonstration based on the approach pre-

sented in this section. Note that there are 4 possible solutions for the 3D pose of the

rectangular marker since the marker is self-similar. A small dot is used to resolve this

ambiguity. The correct 3D pose is chosen by determining the brightness of the image in

each of the 4 possible locations and choosing the pose with the lowest one.

6.3 Performance

6.3.1 Comparison with NArray and C++

Figure 6.21 shows different operations and the time required for performing them 1000

times with Hornetseye (Ruby 1.9.2 and GCC 4.4.3), NArray (Ruby 1.9.2 and GCC 4.1.3),

and a naive C++ implementation (G++ 4.4.3). The tests were performed on an Intel
TM

Celeron
TM

2.20GHz processor. The arrays “m” and “n” are single-precision floating point

arrays with 500 × 500 and 100 × 100 elements.

The results show that Hornetseye takes about four times as much processing time

as the pure C++ implementation. The fact that NArray is almost as fast as the C++

implementation shows that the overhead incurred by the Ruby VM can be negligible.

Figure 6.22 shows the time required for running the operation “m + 1” for arrays of

different size. One can see that there are steps in the processing time at 4 MByte and

8 MByte. This is probably because of the mark-and-sweep garbage collector running

more often when larger return values need to be allocated (the steps disappear if the state-

ment “GC.start” is used to force a run of the garbage collector after each array operation).

Another problem is that the processing time for the current implementation of lazy

expressions does not scale linearly with the size of the expression (see Figure 6.23). The

151

Figure 6.20: Augmented reality demonstration

1s 2s 3s 4s 5s 6s 7s 8s 9s

calloc

m.fill! 1.0

m + m

m * m

m + 1

m * 2

r[i,k] = n[i,j] * n[j,k]

r[j] = m[i,j]

r[i] = m[i,j]

Hornetseye

NArray

C++

Figure 6.21: Performance comparison of different array operations

152

0 2,000 4,000 6,000 8,000 10,000

0

1

2

size/kByte

ti
m

e/
se

co
n
d

s

Hornetseye

NArray

C++

Figure 6.22: Processing time of running “m + 1” one-hundred times for different array

sizes

0 10 20 30 40 50

0

5

10

15

n

ti
m

e/
se

co
n
d

s

m+m+. . .+m

Figure 6.23: Processing time increasing with length of expression

reason is that the tree is traversed multiple times when an expression is composed. That

is, the complexity is O(n2) where n is the length of the expression.

6.3.2 Breakdown of Processing Time

Table 6.1 shows time measurements of the processing time for performing element-wise

negation for an array with one million elements a thousand times. The measurements

where obtained by manually optimising the generated code and in other cases by re-

moving parts of the program. The values obtained can be used to get a more detailed

understanding of where the processing time is spent.

Figure 6.24 shows a breakdown of the processing time for the element-wise negation.

The processing time is broken down into the following parts

153

Table 6.1: Processing times measured for tasks related to computing “-s” for an array

program processing time

current implementation 2.581641 s

manually optimised Ruby code 1.937845 s

manually optimised Ruby and C code 1.913475 s

Ruby memory allocation only 0.708125 s

C only 1.065510 s

C allocation only 0.000184 s

C code

41%

dynamic memory layout

27%

suboptimal Ruby code

25%
Ruby VM

6%
suboptimal C code1%

Figure 6.24: Breakdown of processing time for computing “-s” where “s” is an array

with one million elements

• C code: time for doing the actual array operation in C

• dynamic memory layout: cost of using a dynamic memory layout instead of a

static memory layout

• suboptimal Ruby code: optimisation potential in the calling Ruby program

• Ruby VM: estimated lower bound for overhead of Ruby program

• suboptimal C code: optimisation potential in the generated C code

One can see that most of the optimisation potential is in using a static memory layout

(such as commonly done in Fortran and C implementations). For example Tanaka (2011)

provides method calls for specifying in-place operations. However this requires manual

optimisation by the developer.

Finally computing the method name and extracting the parameters as shown in Sec-

tion 3.6.2 incurs a large overhead as well. Unfortunately meta-programming in Ruby

is not sufficiently powerful to replace the operation with a method call to the compiled

154

Listing 6.8: Webcam viewer implemented using Python and OpenCV

1 import sys

2 from opencv import cv

3 from opencv import highgui

4 highgui.cvNamedWindow(’Camera’)

5 capture = highgui.cvCreateCameraCapture(-1)

6 while 1:

7 frame = highgui.cvQueryFrame(capture)

8 gray = cv.cvCreateImage(cv.cvSize(frame.width, frame.height), 8, 1)

9 cv.cvCvtColor(frame, gray, cv.CV_BGR2GRAY)

10 highgui.cvShowImage(’Camera’, gray)

11 if highgui.cvWaitKey(5) > 0:

12 break

Listing 6.9: Webcam viewer implemented using Ruby and Hornetseye

1 require ’hornetseye_v4l2’

2 require ’hornetseye_xorg’

3 include Hornetseye

4 capture = V4L2Input.new

5 X11Display.show(:title => ’Camera’) { capture.read.to_ubyte }

code. A workaround would be to use compact representations for arrays and to use meta-

programming in order to generate efficient Ruby code for calling the compiled C methods.

However this requires sophisticated meta-programming and it would make maintaining

the code more difficult.

6.4 Code Size

6.4.1 Code Size of Programs

Listing 6.8 shows the implementation of a webcam viewer using Python and OpenCV.

The equivalent implementation using Ruby and Hornetseye is shown in Listing 6.9. One

can see that the Ruby implementation is much shorter. One can also see that the semantics

of the Ruby implementation is simpler. The OpenCV implementation requires the devel-

oper to write code for allocating memory for the result of the conversion to grey scale.

Also the code for displaying images in a loop is more verbose because Python does not

have support for closures.

A more sophisticated example is the Sobel gradient viewer. Listing 6.10 shows the

Python/OpenCV implementation and Listing 6.11 shows the corresponding implemen-

tation using Ruby/Hornetseye. One can see that the OpenCV code is much more

verbose. The readability of the code suffers because the code is cluttered with instruc-

tions for allocating memory for the return values (note that the static memory layout leads

to performance improvements though (see Section 6.3.2)).

155

Listing 6.10: Sobel gradient viewer implemented using Python and OpenCV

1 import sys

2 from opencv import cv

3 from opencv import highgui

4 highgui.cvNamedWindow(’Sobel Gradient’)

5 capture = highgui.cvCreateCameraCapture(-1)

6 while 1:

7 frame = highgui.cvQueryFrame(capture)

8 gray = cv.cvCreateImage(cv.cvSize(frame.width, frame.height), 8, 1)

9 cv.cvCvtColor(frame, gray, cv.CV_BGR2GRAY)

10 sobel_x = cv.cvCreateMat(gray.height, gray.width, cv.CV_16S)

11 cv.cvSobel(gray, sobel_x, 1, 0)

12 sobel_y = cv.cvCreateMat(gray.height, gray.width, cv.CV_16S)

13 cv.cvSobel(gray, sobel_y, 0, 1)

14 square = cv.cvCreateMat(gray.height, gray.width, cv.CV_32F)

15 cv.cvConvert(sobel_x * sobel_x + sobel_y * sobel_y, square)

16 magnitude = cv.cvCreateMat(gray.height, gray.width, cv.CV_32F)

17 cv.cvPow(square, magnitude, 0.5)

18 dest = cv.cvCreateImage(cv.cvSize(frame.width, frame.height), 8, 1)

19 cv.cvNormalize(magnitude, dest, 0, 255, cv.CV_MINMAX);

20 highgui.cvShowImage(’Sobel Gradient’, dest)

21 if highgui.cvWaitKey(5) > 0:

22 break

Listing 6.11: Sobel gradient viewer implemented using Ruby and Hornetseye

1 require ’hornetseye_v4l2’

2 require ’hornetseye_xorg’

3 include Hornetseye

4 capture = V4L2Input.new

5 X11Display.show :title => ’Sobel Gradient’ do

6 img = capture.read.to_ubyte

7 sobel_x, sobel_y = img.sobel(0).to_int, img.sobel(1).to_int

8 Math.sqrt(sobel_x * sobel_x + sobel_y * sobel_y).normalise 0 .. 255

9 end

156

Table 6.2: Size of OpenCV code for filtering images

lines words characters

cvcorner.cpp 664 2438 22743

cvderiv.cpp 831 3424 34024

cvfilter.cpp 2666 11235 100672

cvsmooth.cpp 1099 3917 34098

total 5260 21014 191537

Table 6.3: Size of Hornetseye code for all array operations

lines words characters

total 5747 14721 132979

6.4.2 Code Size of Library

Implementing image processing operations is not well supported by the C/C++ language

as shown in Section 2.2.1. This makes implementation of basic machine vision function-

ality more labour-intensive; a fact which is also reflected in the size of the library code.

Table 6.2 shows that the OpenCV-1.0.0 library contains about 5400 lines of code and (ex-

cluding headers and comments) for implementing 2D filter operations for various integer

and floating-point element types.

Table 6.3 shows the code size of all array operations of the Hornetseye library. This

includes the source code for all type definitions and array operations presented in this

thesis as well as the JIT-compiler. Also the operations are not limited to two or three

dimensions. That is, implementing, maintaining, and extending a machine vision library

is much less time-consuming when using a dynamically typed language.

6.5 Summary

In this chapter it was shown how the Ruby library developed in this thesis can be used

to develop concise implementations of machine vision systems. For example the code

for the Lucas-Kanade tracker (see Listing 6.1) is of similar size as the corresponding

mathematical formalism. It is also worth noting that the lazy operations of the Ruby

library facilitate a generic API for the Hough transform (e.g. see Listing 6.2).

The performance of the library was compared with the NArray Ruby extension and it

was compared with an equivalent C++ implementation. It was shown that the Hornetseye

library is about 4 times slower than an equivalent static C++ implementation. It was

also shown that most of the performance loss is caused by the dynamic memory layout.

157

Further optimisation potential is in the code for calling compiled methods.

A webcam viewer and a Sobel gradient viewer each were implemented first using

Python and OpenCV and then using Ruby and Hornetseye. In each case the implementa-

tion using Ruby+Hornetseye requires half as many lines of code as the Python+OpenCV

implementation. Also the semantics of the Ruby implementation is much more con-

cise. Furthermore the implementations of the libraries themselves were compared. It

was clearly demonstrated that the library developed in this thesis allows for much higher

productivity.

158

“I figure that since proprietary software developers use

copyright to stop us from sharing, we cooperators can use

copyright to give other cooperators an advantage of their

own: they can use our code.”

Richard Stallman

“Programs are not models of a part of reality. They are,

when executed, a part of reality.”

Klaus Ostermann

“Talk is cheap. Show me the code.”

Linus Torvalds
7

Conclusions & Future Work

In this final chapter the results of the research in efficient implementation of machine

vision algorithms are discussed. At the end of the thesis, future work is suggested.

7.1 Conclusions

productivity

performance

generality

Figure 7.1: The main requirements when designing a programming language or system

(Wolczko, 2011)

As Figure 7.1 illustrates, the fundamental problem of designing a programming lan-

guage or system is to bring together performance, productivity, and generality. The work

presented in this thesis is in that spirit. That is, it is about bringing together performance

and productivity in an unprecedented way. Although this thesis is about machine vision,

the results could be applied to numerical processing in general.

Existing free and open source software (FOSS) for machine vision is predominantly

implemented in C/C++. Albeit the performance of machine code generated by C/C++

compilers is high, the static type system of the C++ language makes it exceedingly dif-

ficult to provide a complete and coherent basis for developing machine vision software.

159

It is hard to support all possible combinations of operations and native data types in a

statically typed language. Therefore most libraries implemented in such a programming

language either only support some combinations (e.g. OpenCV and NArray) or they al-

ways default back to a few selected native types (e.g. Lush and NumPy). In contrast Ruby

already comes with a set of numeric data types which can be combined seamlessly.

The contribution of this thesis is a machine vision system which brings together per-

formance and productivity in an unprecedented way. To achieve this, 16 Ruby extensions

where implemented. In terms of generality the Ruby extensions provide

• extensive I/O integration for image- and video-data

• generic array operations for uniform multi-dimensional arrays

– a set of objects to represent arrays, array views, and lazy evaluations in a

modular fashion

– optimal type coercions for all combinations of operations and data types

To address the performance, it was shown how the evaluation of expressions in Ruby

can be changed so that it takes advantage of a JIT compiler . Since Ruby programs are

not readily available as data the way they are in Lisp or Racket, it was necessary to use

Ruby objects to represent various operations. The implementation presented in this thesis

is about 4 times slower than the compiled code of an equivalent C implementation. That

is, the system can be used for prototyping of real-time systems in industrial automation

and in some cases the performance is sufficient to implement the actual system. It was

shown that the main bottlenecks are the dynamic memory layout (i.e. less utilisation of

the CPU cache) and the overhead of the calling Ruby code.

The programming language facilitates concise and flexible implementations which

means that developers can achieve high productivity. It was demonstrated how the li-

brary introduced in this thesis can be used to implement machine vision algorithms. Con-

cise implementations of various computer vision algorithms were presented in order to

demonstrate the productivity of the system. Note that the concise implementations make

several formal identities visible:

• Section 5.2.2 demonstrates the commonalities of different corner detectors

• In Section 6.2.3 it was shown how the Hough transform can be implemented using

lazy operations and a histogram operation

• Sum, product, minimum, and maximum all can be defined using injections (intro-

duced in Section 3.5.7)

• Section 3.5.6 shows that warps and lookup-tables are formally identical

• The convolutions in Section 3.5.10 and the morphological operations shown in Sec-

tion 5.1.2.1 are both implemented using diagonal injections (also see Figure 3.16)

160

It was shown beyond proof-of-concept that a dynamically typed language can be used

to overcome the limitations of current machine vision systems.

7.2 Future Work

Although the Ruby programming language was used, the field of machine vision could

greatly benefit from any programming language which has equal or stronger support

for meta-programming (e.g. Racket (former PLT Scheme)). Computer programs imple-

mented in a language such as LISP, Racket, or Clojure are specified using s-expressions.

That is, the program is itself data which can be manipulated by another part of the pro-

gram. This facilitates implementation of optimisation algorithms which would be hard to

do in currently popular programming languages. For example generating optimal code for

a convolution with a certain filter and a certain number of dimensions. Another example

would be to implement a garbage collector which could imitate the static memory layout

for better performance of the resulting program.

Recently GPGPUs have become popular for doing parallel computing. Using meta-

programming it is possible to avoid implementing large amounts of hardware-dependent

code to access APIs such as OpenCL1 in order to utilise GPGPUs. Future work could

be to transparently integrate GPGPU computation the same way a JIT compiler can be

integrated as shown in this thesis. The difference would be that the JIT compiler would

generate calls to the OpenCL API instead of generating C code. Note that data transfers

rates from main memory to the GPU and back are low on current architectures. That is,

it is important to compile large expressions and avoid round-trips to the main memory.

Lazy operations as implemented in this thesis could be used to address this problem.

The thesis was mostly focused on a more rigorous formal understanding of basic im-

age processing operations and feature extraction. Future should address the problem of

implementing more complex algorithms such as FFT or RANSAC in a similar fashion

in order to build complex machine vision systems for tasks such as panorama stitching

or SLAM. Developing a more rigorous formal understanding of existing machine vision

algorithms might help to discover more commonalities. By understanding how different

algorithms are related, one can avoid redundant work when developing machine vision

systems. Furthermore by aligning formal descriptions and actual implementation with

each other, the work flow becomes more efficient. That is, there should be no need to first

specify a prototype system in an abstract language, and then have it specified again in the

programming language used to implement the actual system.

Figure 7.2 explains why a popular programming language can remain popular for a

long time even if it is obviously deficient. Developers tend to choose a programming

languages with a familiar syntax. That means their choice is biased toward one of the

popular programming languages or a language which looks similar. But if many deve-

1http://www.khronos.org/opencl/

161

http://www.khronos.org/opencl/

familiar syntax

more libraries

more users more users

Figure 7.2: Vicious cycle leading to programming languages becoming entrenched

lopers choose a particular programming language, they will write many programming

libraries for it which in turn attracts more users. That is, the individual choice of pro-

gramming language is forced by the availability of libraries available for that language.

It is important to be aware of the factors influencing once’s choice when selecting

a programming language for developing a machine vision system. A programming lan-

guage offering superior abstractions makes it possible to develop a more rigorous under-

standing of existing machine vision algorithms and capture it for future work. Not only

will it make the library more generic and powerful but it will also make it easier for users

of future programming languages to reuse the code.

S-expression syntax is more verbose than Ruby syntax for small programs. For exam-

ple the Racket equivalent to the Ruby term “2 + 3” is “(+ 2 3)”. Ruby could be seen as

a programming language which offers less meta-programming than Racket but provides a

more readable syntax. Future research could be into developing programming languages

which have a regular structure and are open to modification like Racket and are readable

like Ruby. This work could take inspiration from the way the numerical libraries of Ruby

are implemented.

162

v=0000;eval$s=%q˜d=%!ˆLcf<LK8, _@7gj*LJ=c5nM)Tp1g0%Xv.,S[<>YoP

4ZojjV)O>qIH1/n[|2yE[>:ieC "%.#% :::##" 97N-A&Kj_K_><wS5rtWk@*a+Y5

yH?b[Fˆe7C/56j|pmRe+:)B "##% ::##########" O98(Zh)’Iof*nm.,$C5Nyt=

PPu01Avwˆ<IiQ=5$’D-y? "##: ###############" g6‘YT+qLw9kˆch|K’),tc

6ygIL8xI#LNz3v}T=4W "# #. .####:#######" lL27FZ0ij)7TQCI)P7u

}RT5-iJbbG5P-DHB<. " ##### # :############" R,YvZ_rnv6ky-G+4U’

$*are@b4U351Q-ug5 " #######################" 00x8RR%‘Om7VDp4M5

PFixrPvl&<p[]1IJ " ############:#### %#####" EGgDt8Lm#;bc4zSˆ

y]0‘_PstfUxOC(q " .#############:##% .## ." /,}.YOIFj(k&q_V

zcaAi?]ˆlCVYp!; " %% .################. #. " ;s="v=%04o;ev"%

(;v=(v-($*+[45, ":####: :##############% : "])[n=0].to_i;)%

360)+"al$s=%q#{ "%######. ######### " ;;"%c"%126+$s<<

126}";d.gsub!(/ "##########. #######% " |\s|".*"/,"");;

require"zlib"|| "########### :######. " ;d=d.unpack"C*"

d.map{|c|n=(n|| ":#########: .######: . ")*90+(c-2)%91};

e=["%x"%n].pack " :#######% :###### #: " &&"H*";e=Zlib::

Inflate.inflate(" ######% .####% :: " &&e).unpack("b*"

)[0];22.times{|y| " ####% %### " ;w=(Math.sqrt(1-(

(y*2.0-21)/22)**(; " .###: .#% " ;2))*23).floor;(w*

2-1).times{|x|u=(e+ " %## ")[y*z=360,z]*2;u=u[

90*x/w+v+90,90/w];s[(" #. " ;y*80)+120-w+x]=(""<<

32<<".:%#")[4*u.count((" . " ;"0"))/u.size]}};;puts\

s+";_ The Qlobe#{" "*18+ ("# :#######" ;"Copyright(C).Yusuke End\

oh, 2010")}";exit˜;_ The Qlobe Copyright(C).Yusuke Endoh, 2010

Yusuke Endoh - Ruby quine with rotating globe

A
Appendix

A.1 Connascence

“Connascence” is a term introduced by Weirich (2005, 2009). It is defined as follows

Connascence occurs between two software components when ...

• It is possible to postulate that some change in one component requires a change

in the other component to preserve overall correctness.

• It is possible to postulate some change that require both components to change

together to preserve overall correctness.

Weirich (2005) gives examples of different types of connascence ordered by increas-

ing degree of connascence

• Connascence of Name (static)

• Connascence of Type (static)

• Connascence of Meaning (static)

• Connascence of Algorithm (static)

• Connascence of Position (static)

• Connascence of Execution (dynamic)

• Connascence of Timing (dynamic)

• Connascence of Value (dynamic)

• Connascence of Identity (dynamic)

163

As a general rule it is desirable to reduce the degree of connascence in a system.

Weirich (2009) uses several examples to illustrate how a connascence of high degree can

be converted to a connascence of lower degree.

A.2 Linear Least Squares

The Gauss-Markov theorem states that given a regression model with uncorrelated zero-

mean errors of equal variance, the linear least squares method is the best linear unbiased

estimator. Any linear least squares problem can be formulated using a design matrix H
and an observation vector ~b as shown in Equation A.1.

H ~x = ~b + ~ǫ (A.1)

The popular LAPACK library provides single- and double-precision solvers for linear

systems. The LAPACK methods sgels1 and dgels2 are solvers for overdetermined as well

as under determined linear systems. Here only the case where the equation system is

overdetermined is discussed. In the overdetermined case a solution with minimal
∣∣∣~ǫ
∣∣∣ is

desired. That is, the term shown in Equation A.2 is to be minimised.

J(~x) =
∣∣∣~ǫ
∣∣∣2 = ~ǫ⊤ ~ǫ = (H~x − ~b)⊤ (H~x − ~b) (A.2)

The minimum can be determined using the necessary condition
δJ(~x)

δ~x

∣∣∣∣∣∣̂
~x

!
= 0 as

shown in Equation A.3.

δJ(~x)

δ~x

∣∣∣∣∣∣̂
~x

=
δ
(
~x⊤H⊤H ~x − 2 ~x⊤H⊤ ~b + ~b⊤ ~b)

δ~x

∣∣∣∣∣∣̂
~x

= 2H⊤H ~̂x − 2H⊤ ~b (A.3)

The linear least square estimate is obtained by solving for ~̂x.

~̂x = (H⊤H)−1H⊤~b (A.4)

A.3 Pinhole Camera Model

Figure A.1 shows the pinhole camera model (Forsyth and Ponce, 2003). The object at

position ~x = (x1 x2 x3)⊤ is projected onto the screen of the pinhole camera where it appears

at the position ~x′. The projection is a simple linear relation as shown in Equation A.5 and

1http://www.netlib.org/lapack/single/sgels.f
2http://www.netlib.org/lapack/double/dgels.f

164

∆s x′
1

f
=

x1

x3

∆s x′
2

f
=

x2

x3

∆s x′
1

f

x3

x1

focal length

pixel size:

:f

∆s

(
f

∆s
known from camera calibration)

Figure A.1: Pinhole camera model

Equation A.6.

∆ x′
1

f
=

x1

x3

(A.5)

∆ x′
2

f
=

x2

x3

(A.6)

∆s is the size of a camera pixel and f is the focal length of the camera. That is, calibration

of an ideal pinhole camera merely requires determining the ratio f /∆s.

A.4 Planar Homography

Equation A.5 and Equation A.6 can be represented using 2D homogeneous coordinates

by introducing the unknown variable λ and an additional constraint for it as shown in

Equation A.7 (Zhang, 2000).

x3 x′
1
=

f

∆s
x1

x3 x′
2
=

f

∆s
x2

⇔∃λ ∈ R/{0} :

λ x′
1
=

f

∆s
x1

λ x′
2
=

f

∆s
x2

λ = x3

⇔∃λ ∈ R/{0} : λ



x′
1

x′
2

1


=



f /∆s 0 0

0 f /∆s 0

0 0 1


︸ ︷︷ ︸

intrinsic parameters



x1

x2

x3



(A.7)

The parameters characterising the camera are also known as the intrinsic parameters

(Zhang, 2000).

165

With homogeneous coordinates introducing an additional rotation and translation is

straightforward. Equation A.8 shows the modified homogeneous equation.

∃λ ∈ R/{0} : λ



x′
1

x′
2

1


=



f /∆s 0 0

0 f /∆s 0

0 0 1



≕R︷ ︸︸ ︷

r11 r12 r13

r21 r22 r23

r31 r32 r33





x1

x2

x3


+



t1

t2

t3



⇔∃λ ∈ R/{0} : λ



x′
1

x′
2

1


=



f /∆s 0 0

0 f /∆s 0

0 0 1





r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3


︸ ︷︷ ︸

extrinsic parameters



x1

x2

x3

1



(A.8)

Equation A.8 also shows how the rotation and translation can be represented with a single

matrix if 3D homogeneous coordinates are used (Zhang, 2000). Rotation and translation

of the camera can be different for each picture and the parameters are called extrinsic

parameters (Zhang, 2000).

The planar calibration grid gives n correspondences of picture coordinates and 3D

scene coordinates located on a plane in 3D space. That is, instead of a single pair (~x, ~x′

there are n pairs of points as shown in Equation A.9


x′

1

x′
2

 is


m′

11

m′
12

 ,

m′

21

m′
22

 , . . . ,

m′

n1

m′
n2

 and



x1

x2

x3


is



m11

m12

0


,



m21

m22

0


, . . . ,



mn1

mn2

0


(A.9)

Each point pair shown in Equation A.9 is inserted into Equation A.8. Equation A.8

also is modified to take into account that in reality the coordinates of the projection will

be distorted by noise (ǫi j). The result is shown in Equation A.10 where i ∈ {1, 2, . . . , n}
(Zhang, 2000).

∃λi ∈ R/{0} : λi





m′
i1

m′
i2

1


+



ǫi1

ǫi2

0




=



f /∆s 0 0

0 f /∆s 0

0 0 1





r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3





mi1

mi2

0

1


(A.10)

⇔∃λi ∈ R/{0} : λi





m′
i1

m′
i2

1


+



ǫi1

ǫi2

0




=

≕A︷ ︸︸ ︷

f /∆s 0 0

0 f /∆s 0

0 0 1



≕R′︷ ︸︸ ︷

r11 r12 t1

r21 r22 t2

r31 r32 t3


︸ ︷︷ ︸

≕H



mi1

mi2

1


(A.11)

The planar homography H is the product of the unknown camera intrinsic matrix A and

the unknown extrinsic camera matrix R′ as shown in Equation A.11. The equation is

166

reformulated as shown in Equation A.12.

(A.10)⇔∃λi ∈ R/{0} : λi





m′
i1

m′
i2

1


+



ǫi1

ǫi2

0




=



h11 h12 h13

h21 h22 h33

h31 h32 h33





mi1

mi2

1



⇔ (h31 mi1 + h32 mi2 + h33

)
︸ ︷︷ ︸

λi



m′

i1

m′
i2

 +

ǫi1

ǫi2


 =

h11 h12 h13

h21 h22 h33





mi1

mi2

1



(A.12)

It is not possible to isolate the error ǫi j in Equation A.12. However assuming that λ1 ≈
λ2 ≈ . . . ≈ λn one can introduce ǫ̃i j as shown in Equation A.13 in order to isolate the error

term (Zhang, 2000).

(
h31 mi1 + h32 mi2 + h33

)

m′

i1

m′
i2

 +

ǫ̃i1

ǫ̃i2

 =

h11 h12 h13

h21 h22 h33





mi1

mi2

1



⇔

ǫ̃i1

ǫ̃i2

 =

h11 h12 h13

h21 h22 h33





mi1

mi2

1


− (h31 mi1 + h32 mi2 + h33

)

m′

i1

m′
i2



(A.13)

The errors ǫ̃i j are assumed to be uncorrelated, have zero mean, and have equal variance.

That is, the least square estimator is the best linear unbiased estimator for the camera

matrixH (Gauss-Markov theorem).

The complete linear least squares problem can be formulated by collecting the equa-

tions in a large matrix as shown in Equation A.14 and by stacking the coefficients of the

matrixH in the vector ~h.



m11 m12 1 0 0 0 −m′
11

m11 −m′
11

m12 −m′
11

0 0 0 m11 m12 1 −m′
12

m11 −m′
12

m12 −m′
12

m21 m22 1 0 0 0 −m′
21

m21 −m′
21

m22 −m′
21

0 0 0 m21 m22 1 −m′
22

m21 −m′
22

m22 −m′
22

...
...
...
...

...
...

...
...

...

mn1 mn2 1 0 0 0 −m′
n1

mn1 −m′
n1

mn2 −m′
n1

0 0 0 mn1 mn2 1 −m′
n2

mn1 −m′
n2

mn2 −m′
n2


︸ ︷︷ ︸

≕M



h11

h12

...

h33


︸︷︷︸
≕~h

=



ǫ̃11

ǫ̃12

ǫ̃21

ǫ̃22

...

ǫ̃n1

ǫ̃n2



(A.14)

Additionally the constraint ||~h|| = µ , 0 is introduced in order to avoid the trivial solution.

That is, the problem now is to find ~h ∈ R9 so that ||M~h|| is minimal and ||~h|| = µ.
The solution is to perform a SVD onM as shown in Equation A.15.

M = U ΣV∗ (A.15)

167

The linear least squares solution is ~h = µ~v9 where ~v9 is the right-handed singular vector

with the smallest singular value σ9 (here µ is an arbitrary scale factor). The final solution

for the planar homography is shown in Equation A.16.

H = µ



v91 v92 v93

v94 v95 v96

v97 v98 v99


(A.16)

The planar homography H is sufficient to correctly map points from the plane of the

calibration grid to the screen.

A.5 “malloc” gem

The source code of the “malloc” Ruby extension is provided as PDF attachment.

• malloc-1.4.0.tgz

A.6 “multiarray” gem

The source code of the “multiarray” Ruby extension is provided as PDF attachment.

• multiarray-1.0.1.tgz

A.7 Miscellaneous Sources

A.7.1 JIT Example

require ’rubygems’

require ’multiarray’

include Hornetseye

a = INT 5

b = ElementWise(proc { |x| -x }, :-@).new a

r = Pointer(INT).new

term = Store.new r, b

variables, values, skeleton = term.strip

types = variables.collect { |var| var.meta }

labels = Hash[*variables.zip((0 ... variables.size).to_a).flatten]

descriptor = skeleton.descriptor labels

method_name = (’_’ + descriptor).tr(’(),+\-*/%.@?˜&|ˆ<=>’,

’0123\456789ABCDEFGH’)

c = GCCContext.new ’extension’

f = GCCFunction.new c, method_name, *types

subst = Hash[*variables.zip(f.params).flatten]

skeleton.subst(subst).demand

f.compile

args = values.collect { |arg| arg.values }.flatten

GCCCache.send method_name, *args

r

168

A.7.2 Video Player

require ’rubygems’

require ’hornetseye_ffmpeg’

require ’hornetseye_xorg’

require ’hornetseye_alsa’

include Hornetseye

input = AVInput.new ARGV[0]

alsa = AlsaOutput.new ’default’, input.sample_rate, input.channels

audio_frame = input.read_audio

X11Display.show((input.width * input.aspect_ratio).to_i, input.height,

:title => ARGV.first, :output => XVideoOutput) do |display|

video_frame = input.read_video

n = alsa.avail

while alsa.avail >= audio_frame.shape[1]

alsa.write audio_frame

audio_frame = input.read_audio

end

t = input.audio_pos - (alsa.delay + audio_frame.shape[1]).quo(alsa.rate)

delay = [input.video_pos - t, 0].max

display.event_loop delay

video_frame

end

A.7.3 Normalised Cross-Correlation

class Node

def avg

sum / size

end

def sqr

self * self

end

def corr(other)

(rfft * other.rfft.conj).irfft

end

def zcorr(other)

zother = MultiArray.dfloat(*shape).fill!

zother[0 ... other.shape[0], 0 ... other.shape[1]] = other

corr zother

end

def ma(*box)

iself = MultiArray.dfloat(*shape).fill!

iself[1 ... shape[0], 1 ... shape[1]] = self[0 ... shape[0] - 1,

0 ... shape[1] - 1]

int = iself.integral

int[0 ... shape[0] - box[0], 0 ... shape[1] - box[1]] +

int[box[0] ... shape[0], box[1] ... shape[1]] -

int[0 ... shape[0] - box[0], box[1] ... shape[1]] -

int[box[0] ... shape[0], 0 ... shape[1] - box[1]]

end

def ncc(other, noise)

box = other.shape

zcorr(other - other.avg)[0 ... shape[0] - box[0],

0 ... shape[1] - box[1]] /

Math.sqrt((sqr.ma(*other.shape) -

ma(*other.shape).sqr / other.size) *

(other - other.avg).sqr.sum + noise)

169

end

end

image = MultiArray.load_ubyte ’scene.jpg’

template = MultiArray.load_ubyte ’template.png’

ncc = image.to_dfloat.ncc template.to_dfloat, 0.1

shiftx, shifty = argmax { |i,j| ncc[i,j] }

result1 = image / 2

result2 = MultiArray.ubyte(*image.shape).fill!

result2[shiftx ... shiftx + template.shape[0],

shifty ... shifty + template.shape[1]] = template / 2

(result1 + result2).show

A.7.4 Camera Calibration

require ’rubygems’

require ’matrix’

require ’linalg’

require ’hornetseye_rmagick’

require ’hornetseye_ffmpeg’

require ’hornetseye_xorg’

require ’hornetseye_v4l2’

include Linalg

include Hornetseye

class Matrix

def to_dmatrix

DMatrix[*to_a]

end

def svd

to_dmatrix.svd.collect { |m| m.to_matrix }

end

end

class Vector

def norm

Math.sqrt inner_product(self)

end

def normalise

self * (1.0 / norm)

end

def reshape(*shape)

Matrix[*MultiArray[*self].reshape(*shape).to_a]

end

def x(other)

Vector[self[1] * other[2] - self[2] * other[1],

self[2] * other[0] - self[0] * other[2],

self[0] * other[1] - self[1] * other[0]] *

(2.0 / (norm + other.norm))

end

end

class DMatrix

def to_matrix

Matrix[*to_a]

end

end

class Node

def nms(threshold)

self >= dilate.major(threshold)

end

def have(n, corners)

hist = mask(corners).histogram max + 1

170

msk = hist.eq n

if msk.inject :or

id = lazy(msk.size) { |i| i }.mask(msk)[0]

eq id

else

nil

end

end

def abs2

real * real + imag * imag

end

def largest

hist = histogram max + 1

msk = hist.eq hist.max

id = lazy(msk.size) { |i| i }.mask(msk)[0]

eq id

end

def otsu(hist_size = 256)

hist = histogram hist_size

idx = lazy(hist_size) { |i| i }

w1 = hist.integral

w2 = w1[w1.size - 1] - w1

s1 = (hist * idx).integral

s2 = to_int.sum - s1

u1 = (w1 > 0).conditional s1.to_sfloat / w1, 0

u2 = (w2 > 0).conditional s2.to_sfloat / w2, 0

between_variance = (u1 - u2) ** 2 * w1 * w2

max_between_variance = between_variance.max

self > idx.mask(between_variance >= max_between_variance)[0]

end

end

def homography(m, ms)

constraints = []

m.to_a.flatten.zip(ms.to_a.flatten).each do |p,ps|

constraints.push [p.real, p.imag, 1.0, 0.0, 0.0, 0.0,

-ps.real * p.real, -ps.real * p.imag, -ps.real]

constraints.push [0.0, 0.0, 0.0, p.real, p.imag, 1.0,

-ps.imag * p.real, -ps.imag * p.imag, -ps.imag]

end

Matrix[*constraints].svd[2].row(8).reshape 3, 3

end

CORNERS = 0.3

W, H = ARGV[1].to_i, ARGV[2].to_i

W2, H2 = 0.5 * (W - 1), 0.5 * (H - 1)

N = W * H

SIZE = 21

GRID = 7

BOUNDARY = 19

SIZE2 = SIZE.div 2

f1, f2 = *(0 ... 2).collect do |k|

finalise(SIZE,SIZE) do |i,j|

a = Math::PI / 4.0 * k

x = Math.cos(a) * (i - SIZE2) - Math.sin(a) * (j - SIZE2)

y = Math.sin(a) * (i - SIZE2) + Math.cos(a) * (j - SIZE2)

x * y * Math.exp(-(x**2+y**2) / 5.0 ** 2)

end.normalise -1.0 / SIZE ** 2 .. 1.0 / SIZE ** 2

end

input = AVInput.new ARGV.first

width, height = input.width, input.height

coords = finalise(width, height) { |i,j| i - width / 2 + Complex::I * (j - height / 2) }

pattern = Sequence[*(([1] + [0] * (W - 2) + [1] + [0] * (H - 2)) * 2)]

171

o = Vector[]

d = Matrix[]

X11Display.show do

img = input.read_ubytergb

grey = img.to_ubyte

corner_image = grey.convolve f1 + f2 * Complex::I

abs2 = corner_image.abs2

corners = abs2.nms CORNERS * abs2.max

otsu = grey.otsu

edges = otsu.dilate(GRID).and otsu.not.dilate(GRID)

components = edges.components

grid = components.have N, corners

result = img

if grid

centre = coords.mask(grid.and(corners)).sum / N.to_f

boundary = grid.not.components.largest.dilate BOUNDARY

outer = grid.and(boundary).and corners

vectors = (coords.mask(outer) - centre).to_a.sort_by { |c| c.arg }

if vectors.size == pattern.size

mask = Sequence[*(vectors * 2)].shift(vectors.size / 2).abs.nms(0.0)

mask[0] = mask[mask.size-1] = false

conv = lazy(mask.size) { |i| i }.mask(mask.to_ubyte.convolve(pattern.flip(0)).eq(4))

if conv.size > 0

offset = conv[0] - (pattern.size - 1) / 2

m = Sequence[Complex(-W2, -H2), Complex(W2, -H2),

Complex(W2, H2), Complex(-W2, H2)]

rect = Sequence[*vectors].shift(-offset)[0 ... vectors.size].mask(pattern) + centre

h = homography m, rect

v = h.inv * Vector[coords.real, coords.imag, 1.0]

points = coords.mask(grid.and(corners)) + Complex(width/2, height/2)

sorted = (0 ... N).zip((v[0] / v[2]).warp(points.real, points.imag).to_a,

(v[1] / v[2]).warp(points.real, points.imag).to_a).

sort_by { |a,b,c| [(c - H2).round,(b - W2).round] }.collect { |a,b,c| a }

m = finalise(W, H) { |i,j| i - W2 + (j - H2) * Complex::I }

h = homography(m, sorted.collect { |j| points[j] - Complex(width/2, height/2)})

o = Vector[*(o.to_a + [-h[2, 0] * h[2, 1], h[2, 1] ** 2 - h[2, 0] ** 2])]

d = Matrix[*(d.to_a + [[h[0, 0] * h[0, 1] + h[1, 0] * h[1, 1]],

[h[0, 0] ** 2 + h[1, 0] ** 2 - h[0, 1] ** 2 - h[1, 1] ** 2]])]

fs = 1.0 / ((d.transpose * d).inv * d.transpose * o)[0]

if fs > 0

f = Math.sqrt fs

a = Matrix[[f, 0.0, 0.0], [0.0, f, 0.0], [0.0, 0.0, 1.0]]

r1, r2, t = *proc { |r| (0 .. 2).collect { |i| r.column i } }.call(a.inv * h)

s = (t[2] >= 0 ? 2.0 : -2.0) / (r1.norm + r2.norm)

q = Matrix[(r1 * s).to_a, (r2 * s).to_a, (r1 * s).x(r2 * s).to_a].t

r = proc { |u,l,vt| u * vt }.call *q.svd

v = h.inv * Vector[coords.real, coords.imag, 1.0]

result = (v[0] / v[2]).between?(-W2, W2).and((v[1] / v[2]).between?(-H2, H2)).

conditional img * RGB(0, 1, 0), img

gc = Magick::Draw.new

gc.fill_opacity(0).stroke(’red’).stroke_width 1

for i in 0 ... N

j = sorted[i]

gc.circle points[j].real, points[j].imag, points[j].real + 2, points[j].imag

gc.text points[j].real, points[j].imag, "#{i+1}"

end

gc.stroke ’black’

gc.text 30, 30, "f/ds = #{f}"

result = result.to_ubytergb.to_magick

gc.draw result

result = result.to_ubytergb

172

end

end

end

end

result

end

A.7.5 Recognition of a rectangular marker

W, H = 320, 240

THRESHOLD = 80

SIGMA = 1.5

ANGLE_BINS = 36

ORIENTATION_NOISE = 3

RANGE = 100 .. 10000

img = MultiArray.load_ubyte ’test.png’

grad_x, grad_y = img.gauss_gradient(SIGMA, 0), img.gauss_gradient(SIGMA, 1)

arg = ((Math.atan2(grad_y, grad_x) /

Math::PI + 1) * ANGLE_BINS / 2).to_int % ANGLE_BINS

norm = Math.hypot grad_x, grad_y

components = (img <= THRESHOLD).components

n = components.max + 1

hist = components.histogram n

mask = hist.between? RANGE.min, RANGE.max

lazy(n) { |i| i }.mask(mask).to_a.each do |c|

component = components.eq c

edge = component.dilate.and component.erode.not

orientations = arg.mask edge

distribution = orientations.histogram ANGLE_BINS, :weight => norm.mask(edge)

msk = distribution >= distribution.sum / (4 * ORIENTATION_NOISE)

segments = msk.components

if msk[0] and msk[msk.size - 1]

segments = segments.eq(segments.max).conditional 1, segments

end

if segments.max == 4

partitions = orientations.lut segments

weights = partitions.histogram(5).major 1

x = lazy(W, H) { |i,j| i + Complex::I * j }.mask edge

centre = partitions.histogram(5, :weight => x) / weights

diff = x - partitions.lut(centre)

slope = Math.sqrt partitions.histogram(5, :weight => diff ** 2)

corner = Sequence[*(0 .. 3).collect do |i|

i1, i2 = i + 1, (i + 1) % 4 + 1

l1, a1, l2, a2 = centre[i1], slope[i1], centre[i2], slope[i2]

(l1 * a1.conj * a2 - l2 * a1 * a2.conj -

l1.conj * a1 * a2 + l2.conj * a1 * a2) /

(a1.conj * a2 - a1 * a2.conj)

end]

Sequence(DCOMPLEX):

[Complex(262.0, 117.7), Complex(284.2, 152.4), ...]

...

end

end

The dominant gradient orientations are estimated by creating a gradient orientation his-

togram with 36 bins (“distribution”) and thresholding it (“msk”). The components of

the resulting 1D binary array are labelled (“segments”). The variable “partitions” is a

173

1D array with the label of each edge pixel. The coordinates of each edge pixel are rep-

resented as complex numbers (“x”). The centre of each edge is determined by taking a

histogram of the labels and using the pixel coordinates as weights (“centre”).

The orientation of each edge is determined by computing a complex number repre-

senting the vector to the centre of the edge for each edge pixel (“diff”), squaring that

number, accumulating the numbers for each edge, and taking the square root of the result

for each edge (“slope”). Using squares of complex numbers takes care of the ambiguous

representation of the edge’s orientation (i.e. vectors with angle α and α + π can be used

to represent the same edge orientation). This ensures that the vectors of an edge, which

point in opposing directions, accumulate instead of cancelling each other out (the method

was inspired by Bülow (1999) where a similar method is used to deal with the ambiguity

of structure tensors).

The intersections of the four edges are the corners of the rectangle (“corner”). The

corners can be used to determine a planar homography (see Appendix A.4). If the ratio

of focal length to pixel size is known from camera calibration (see Section 6.2.8.2), it is

also possible to estimate the 3D pose of the marker (i.e. separate the camera intrinsic and

extrinsic parameters).

A.7.6 Constraining Feature Density

require ’rubygems’

require ’hornetseye_v4l2’

require ’hornetseye_xorg’

include Hornetseye

class Node

def features(grad_sigma = 1.0, cov_sigma = 2.0, k = 0.05)

gx, gy = gauss_gradient(grad_sigma, 0), gauss_gradient(grad_sigma, 1)

cov = [gx ** 2, gy ** 2, gx * gy]

a, b, c = cov.collect { |arr| arr.gauss_blur cov_sigma }

trace = a + b

determinant = a * b - c ** 2

determinant - k * trace ** 2

end

def maxima(threshold)

(self >= max * threshold).and eq(dilate)

end

end

BLOCK = 20

THRESHOLD = 0.001

input = V4L2Input.new(’/dev/video0’) { [YUY2, 320, 240] }

w, h = input.width, input.height

m, n = w / BLOCK, h / BLOCK

x0, y0 = (w - m * BLOCK) / 2, (h - n * BLOCK) / 2

warp = [lazy(BLOCK, BLOCK, m * n) { |i,j,k| i + x0 + (k % m) * BLOCK },

lazy(BLOCK, BLOCK, m * n) { |i,j,k| j + y0 + (k / m) * BLOCK }]

X11Display.show do

img = input.read_ubytergb

features = img.to_ubyte.features

warped = features.warp *warp

maxima = argmax { |i,j| lazy { |k| warped[i,j,k] } }

xp = lazy { |i| x0 + maxima[0][i] + (i % m) * BLOCK }

174

yp = lazy { |i| y0 + maxima[1][i] + (i / m) * BLOCK }

mask = features.maxima(THRESHOLD).warp xp, yp

x, y = xp.mask(mask), yp.mask(mask)

[x, y].histogram(w, h).to_bool.dilate.conditional RGB(255, 0, 0), img

end

A.7.7 SVD Matching

require ’rubygems’

require ’hornetseye_v4l2’

require ’hornetseye_ffmpeg’

require ’hornetseye_linalg’

require ’hornetseye_xorg’

require ’hornetseye_rmagick’

require ’matrix’

include Linalg

include Hornetseye

class Node

def features(grad_sigma = 1.0, cov_sigma = 2.0, k = 0.05)

gx, gy = gauss_gradient(grad_sigma, 0), gauss_gradient(grad_sigma, 1)

cov = [gx ** 2, gy ** 2, gx * gy]

a, b, c = cov.collect { |arr| arr.gauss_blur cov_sigma }

trace = a + b

determinant = a * b - c ** 2

determinant - k * trace ** 2

end

def maxima(threshold)

(self >= max * threshold).and eq(dilate)

end

def svd

to_dmatrix.svd.collect { |m| m.to_multiarray }

end

def x(other)

(to_dmatrix * other.to_dmatrix).to_multiarray

end

end

SIGMA = 40.0

GAMMA = 0.4

BLOCK = 20

PATCH = 5

CUTOFF = 0.8

THRESHOLD = 0.01

input = V4L2Input.new(’/dev/video0’) { [YUY2, 320, 240] }

w, h = input.width, input.height

m, n = w / BLOCK, h / BLOCK

x0, y0 = (w - m * BLOCK) / 2, (h - n * BLOCK) / 2

warp = [lazy(BLOCK, BLOCK, m * n) { |i,j,k| i + x0 + (k % m) * BLOCK },

lazy(BLOCK, BLOCK, m * n) { |i,j,k| j + y0 + (k / m) * BLOCK }]

patch = [lazy(PATCH, PATCH) { |i,j| i - PATCH / 2 },

lazy(PATCH, PATCH) { |i,j| j - PATCH / 2 }]

x_old, y_old, descriptor_old, variance_old = nil, nil, nil, nil

X11Display.show do

img = input.read_ubytergb

features = img.to_ubyte.features

warped = features.warp *warp

maxima = argmax { |i,j| lazy { |k| features.warp(*warp)[i,j,k] } }

xp = lazy { |i| x0 + maxima[0][i] + (i % m) * BLOCK }

yp = lazy { |i| y0 + maxima[1][i] + (i / m) * BLOCK }

mask = features.maxima(THRESHOLD).warp xp, yp

175

x, y = xp.mask(mask), yp.mask(mask)

descriptor = img.to_ubyte.warp lazy { |i,j,k| x[k] + patch[0][i, j] },

lazy { |i,j,k| y[k] + patch[1][i, j] }

descriptor -= lazy { |k| descriptor[k].sum } / PATCH ** 2.0

variance = finalise { |i| Math.sqrt (descriptor[i] ** 2).sum }

result = [x, y].histogram(w, h).to_bool.dilate.conditional RGB(0, 0, 255), img

if x_old and y_old and descriptor_old

covariance = finalise { |i,j| (descriptor[i] * descriptor_old[j]).sum } /

lazy { |i,j| variance[i] * variance_old[j] }

proximity = finalise do |i,j|

Math.exp -((x[i] - x_old[j]) ** 2 + (y[i] - y_old[j]) ** 2) / (2 * SIGMA ** 2.0)

end

similarity = finalise do |i,j|

Math.exp -(covariance[i,j] - 1) ** 2.0 / (2 * GAMMA ** 2.0)

end

measure = proximity * similarity

t, d, ut = *measure.svd

e = lazy(*d.shape) { |i,j| i.eq(j).conditional 1, 0 }

s = t.x(e).x(ut)

max_col = argmax { |j| lazy { |i| s[j, i] } }.first

max_row = argmax { |j| lazy { |i| s[i, j] } }.first

mask_col = [lazy(s.shape[0]) { |i| i }, max_row].histogram(*s.shape) > 0

mask_row = [max_col, lazy(s.shape[1]) { |i| i }].histogram(*s.shape) > 0

q = mask_col.and(mask_row).and measure >= CUTOFF

gc = Magick::Draw.new

gc.stroke ’red’

gc.stroke_width 1

a, b = lazy(*d.shape) { |i,j| i }.mask(q), lazy(*d.shape) { |i,j| j }.mask(q)

a.to_a.zip(b.to_a).each do |i,j|

gc.line x[i], y[i], x_old[j], y_old[j]

end

img = result.to_ubytergb.to_magick

gc.draw img

result = img.to_ubytergb

end

x_old, y_old, descriptor_old, variance_old = x, y, descriptor, variance

result

end

176

Bibliography

Hal Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and interpretation of

computer programs. Citeseer, 1996. URL http://mitpress.mit.edu/sicp/. 40

M. Abrash. A first look at the Larrabee new instructions (LRBni). The Dr. Dobb’s Journal,

2009. URL http://drdobbs.com/high-performance-computing/216402188.

72

I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, Ph. Canal,

D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata, D. Gonzalez

Maline, M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. Marcos Segura, R. Maunder,

L. Moneta, A. Naumann, E. Offermann, V. Onuchin, S. Panacek, F. Rademakers,

P. Russo, and M. Tadel. ROOT – a C++ framework for petabyte data storage,

statistical analysis and visualization. Computer Physics Communications, 180(12):

2499–2512, 2009. URL http://www.sciencedirect.com/science/article/

pii/S0010465509002550. 4

S. Baker and I. Matthew. Lucas-Kanade 20 years on: a unifying framework. International

Journal of Computer Vision, 56(3):221–55, February 2004. URL http://www.ri.

cmu.edu/projects/project_515.html. 61, 127

D. H. Ballard and C. M. Brown. Computer Vision. Prentice Hall, 1982. URL http:

//homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm. 141

H.P. Barendregt and E. Barendsen. Introduction to lambda calculus. Nieuw archief

voor wisenkunde, 4(2):337–372, 1984. URL ftp://ftp.cs.ru.nl/pub/CompMath.

Found/lambda.pdf. 47, 48

Kai Uwe Barthel. 3d-data representation with ImageJ. In ImageJ User and Developer

Conference 2006, May 2006. URL http://www.f4.htw-berlin.de/˜barthel/

ImageJ/ImageJ3D/3D-Data%20Representation%20with%20ImageJ.pdf. 73

Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with Qt

4. Prentice Hall Press, Upper Saddle River, NJ, USA, second edition,

2008. ISBN 9780137143979. URL http://www.qteverywhere.com/qt/book/

c-gui-programming-with-qt-4-2ndedition.pdf. 99

M. Boissenin, J. Wedekind, A. N. Selvan, B. P. Amavasai, F. Caparrelli, and J. R. Travis.

Computer vision methods for optical microscopes. Image and Vision Computing, 25

177

http://mitpress.mit.edu/sicp/
http://drdobbs.com/high-performance-computing/216402188
http://www.sciencedirect.com/science/article/pii/S0010465509002550
http://www.sciencedirect.com/science/article/pii/S0010465509002550
http://www.ri.cmu.edu/projects/project_515.html
http://www.ri.cmu.edu/projects/project_515.html
http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm
http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm
ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf
ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf
http://www.f4.htw-berlin.de/~barthel/ImageJ/ImageJ3D/3D-Data%20Representation%20with%20ImageJ.pdf
http://www.f4.htw-berlin.de/~barthel/ImageJ/ImageJ3D/3D-Data%20Representation%20with%20ImageJ.pdf
http://www.qteverywhere.com/qt/book/c-gui-programming-with-qt-4-2ndedition.pdf
http://www.qteverywhere.com/qt/book/c-gui-programming-with-qt-4-2ndedition.pdf

(7):1107–16, July 2007. URL http://dx.doi.org/10.1016/j.imavis.2006.03.

009. ii

Jaroslav Borovička. Circle detection using Hough transform documentation. Technical

report, 2003. URL http://linux.fjfi.cvut.cz/˜pinus/bristol/imageproc/

hw1/report.pdf. 132

Jean-Yves Bouget. Pyramidal implementation of the Lucas Kanade feature tracker de-

scription of the algorithm. Technical report. URL http://robots.stanford.edu/

cs223b04/algo_tracking.pdf. 121

Jean-Yves Bouguet. Camera calibration toolbox for Matlab, 2010. URL http://www.

vision.caltech.edu/bouguetj/calib_doc/. 142

Eric Brasseur. Gamma error in picture scaling. Web site, 2007. URL http://www.4p8.

com/eric.brasseur/gamma.html. 82

Thomas Bülow. Hypercomplex Spectral Signal Representations for Image Pro-

cessing and Analysis. PhD thesis, Christian-Albrechts-Universität, Kiel, Ger-

many, 1999. URL http://www.informatik.uni-kiel.de/uploads/tx_

publication/1999_tr03.ps.gz. 174

J. Canny. A computational approach to edge detection. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, (6):679–698, 1986. URL http://www.limsi.

fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf. 115

Alonso Church. The Calculi of Lambda-Conversion, volume 6 of Annals of Mathematical

Studies. Princeton University Press, Princeton, 1951. (second printing, first appeared

1941). 47, 48

J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier

series. Mathematics of Computation, 19(90):297–301, 1965. URL http://dx.doi.

org/10.2307/2003354. 111

Peter Cooper. Beginning Ruby: from novice to professional. Apress, 2009. URL http:

//beginningruby.org/. 21

A. J. Davison. Real-time simultaneous localisation and mapping with a single camera. In

ICCV 2003: 9th International Conference on Computer Vision, volume 2, pages 1403–

10, Los Alamitos, CA, USA, October 2003. Dept. of Eng. Sci., Oxford Univ., UK. URL

http://www.doc.ic.ac.uk/˜ajd/Publications/davison_iccv2003.pdf. 10

Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, and Olivier Stasse. MonoSLAM:

Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(6):1052–1067, 2007. 142

178

http://dx.doi.org/10.1016/j.imavis.2006.03.009
http://dx.doi.org/10.1016/j.imavis.2006.03.009
http://linux.fjfi.cvut.cz/~pinus/bristol/imageproc/hw1/report.pdf
http://linux.fjfi.cvut.cz/~pinus/bristol/imageproc/hw1/report.pdf
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
http://robots.stanford.edu/cs223b04/algo_tracking.pdf
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.4p8.com/eric.brasseur/gamma.html
http://www.4p8.com/eric.brasseur/gamma.html
http://www.informatik.uni-kiel.de/uploads/tx_publication/1999_tr03.ps.gz
http://www.informatik.uni-kiel.de/uploads/tx_publication/1999_tr03.ps.gz
http://www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf
http://www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf
http://dx.doi.org/10.2307/2003354
http://dx.doi.org/10.2307/2003354
http://beginningruby.org/
http://beginningruby.org/
http://www.doc.ic.ac.uk/~ajd/Publications/davison_iccv2003.pdf

Tom DeMarco and Timothy Lister. Peopleware: productive projects and teams. New

York: Dorset House Publishing, second edition, 1987. 2

Konstantinos G. Derpanis. The Harris corner detector. Technical report, Octo-

ber 2004. URL http://www.cse.yorku.ca/˜kosta/CompVis_Notes/harris_

detector.pdf. 118

Michael Droettboom, Karl Macmillan, and Ichiro Fujinaga. The Gamera framework for

building custom recognition systems. In Proceedings of the Symposium on Document

Image Understanding Technologies, pages 275–286, 2003. URL http://gamera.

informatik.hsnr.de/publications/droettboom_gamera_03.pdf. 15

V. B. Dröscher. Magie der Sinne im Tierreich. Dt. Taschenbuch-Verl., 1975. 81

R.O. Duda and P.E. Hart. Use of the Hough transformation to detect lines and curves in

pictures. Communications of the ACM, 15(1):11–15, 1972. ISSN 0001-0782. URL

http://www.ai.sri.com/pubs/files/tn036-duda71.pdf. 132

R. Fattal, D. Lischinski, and M. Werman. Gradient domain high dynamic range compres-

sion. ACM Transactions on Graphics, 21(3):249–256, 2002. ISSN 0730-0301. URL

http://www.cs.huji.ac.il/˜danix/hdr/hdrc.pdf. 88

Julien Faucher. Camera calibration and 3-d reconstruction. Technical report, June 2006.

141

Paul Fenwick. An illustrated history of failure. Presentation at OSCON 2008, Portland,

Oregon, 2008. URL http://blip.tv/file/1137169. 5

Bob Fisher, Simon Perkins, Ashley Walker, and Erik Wolfart. Roberts cross edge detector.

Web page, 2003. URL http://homepages.inf.ed.ac.uk/rbf/HIPR2/roberts.

htm. 113

David A. Forsyth and Jean Ponce. Computer Vision: A modern Approach. Prentice Hall,

2003. URL http://luthuli.cs.uiuc.edu/˜daf/. 72, 106, 164

Barak Freedman, Alexander Shpunt, Meir Machline, and Yoel Arieli. Depth map-

ping using projected patterns. United States Patent, May 2010. URL http://www.

freepatentsonline.com/20100118123.pdf. 97

M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-

ceedings of the IEEE, 93(2):216–31, February 2005. URL http://fftw.org/

fftw-paper-ieee.pdf. 111

Hal Fulton. The Ruby Way. Addison Wesley, November 2006. URL http://

rubyhacker.com/. xviii, 21, 24, 26, 27, 30, 38

179

http://www.cse.yorku.ca/~kosta/CompVis_Notes/harris_detector.pdf
http://www.cse.yorku.ca/~kosta/CompVis_Notes/harris_detector.pdf
http://gamera.informatik.hsnr.de/publications/droettboom_gamera_03.pdf
http://gamera.informatik.hsnr.de/publications/droettboom_gamera_03.pdf
http://www.ai.sri.com/pubs/files/tn036-duda71.pdf
http://www.cs.huji.ac.il/~danix/hdr/hdrc.pdf
http://blip.tv/file/1137169
http://homepages.inf.ed.ac.uk/rbf/HIPR2/roberts.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/roberts.htm
http://luthuli.cs.uiuc.edu/~daf/
http://www.freepatentsonline.com/20100118123.pdf
http://www.freepatentsonline.com/20100118123.pdf
http://fftw.org/fftw-paper-ieee.pdf
http://fftw.org/fftw-paper-ieee.pdf
http://rubyhacker.com/
http://rubyhacker.com/

Frans A. Gerritsen and Piet W. Verbeek. Implementation of cellular-logic operators using

3*3 convolution and table lookup hardware. Computer Vision, Graphics, and Image

Processing, 27(1):115–123, 1984. ISSN 0734-189X. URL http://dx.doi.org/10.

1016/0734-189X(84)90086-0. 104

Paul Graham. On Lisp. Prentice Hall, 1994. URL http://www.paulgraham.com/

onlisptext.html. 20

M. A. Greenspan, L. Shang, and P. Jasiobedzki. Efficient tracking with the Bounded

Hough Transform. In CVPR’04: Computer Vision and Pattern Recognition,

June 2004. URL http://www.ece.queensu.ca/hpages/faculty/greenspan/

papers/GreShaJas04.pdf. 10

A. Gurtovoy and D. Abrahams. Qt4.6 white paper. Technical report, Nokia, 2009. URL

http://qt.nokia.com/products/files/pdf/qt-4.6-whitepaper. 99

Eric Hamilton. JPEG file interchange format, 1992. URL http://www.jpeg.org/

public/jfif.pdf. 83

Robert M. Haralick, Stanley R. Sternberg, and Xinhua Zhuang. Image analysis using

mathematical morphology. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, PAMI-9(4):532 –550, July 1987. URL http://dx.doi.org/10.1109/

TPAMI.1987.4767941. 102

C. G. Harris and M. Stephens. A combined corner and edge detector. Proceedings 4th

Alvey Vision Conference, pages 147–151, 1988. URL http://www.rose-hulman.

edu/class/cs/csse461/handouts/Day26/avc-88-023.pdf. 118

H. Heuser. Lehrbuch der Analysis, Teil 1. Teubner, ninth edition, 1991. 47

Karl Hinderer. Stochastik für Informatiker und Ingenieure. Institut für Mathematische

Stochastik Universität Karlsruhe, Karlsruhe, fourth edition, 1993. 107

Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal of

Functional Programming, 9(4):355–372, July 1999. URL http://www.cs.nott.

ac.uk/˜gmh/fold.pdf. 62

Andrew E. Johnson and Martial Hebert. Using Spin images for efficient object recog-

nition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(5):433–449, 1999. URL http://www.ri.cmu.edu/publication_

view.html?pub_id=3598. 10

Florian Kainz and Rod Bogard. Technical introduction to OpenEXR. Technical report,

February 2009. URL http://www.openexr.com/TechnicalIntroduction.pdf.

88

180

http://dx.doi.org/10.1016/0734-189X(84)90086-0
http://dx.doi.org/10.1016/0734-189X(84)90086-0
http://www.paulgraham.com/onlisptext.html
http://www.paulgraham.com/onlisptext.html
http://www.ece.queensu.ca/hpages/faculty/greenspan/papers/GreShaJas04.pdf
http://www.ece.queensu.ca/hpages/faculty/greenspan/papers/GreShaJas04.pdf
http://qt.nokia.com/products/files/pdf/qt-4.6-whitepaper
http://www.jpeg.org/public/jfif.pdf
http://www.jpeg.org/public/jfif.pdf
http://dx.doi.org/10.1109/TPAMI.1987.4767941
http://dx.doi.org/10.1109/TPAMI.1987.4767941
http://www.rose-hulman.edu/class/cs/csse461/handouts/Day26/avc-88-023.pdf
http://www.rose-hulman.edu/class/cs/csse461/handouts/Day26/avc-88-023.pdf
http://www.cs.nott.ac.uk/~gmh/fold.pdf
http://www.cs.nott.ac.uk/~gmh/fold.pdf
http://www.ri.cmu.edu/publication_view.html?pub_id=3598
http://www.ri.cmu.edu/publication_view.html?pub_id=3598
http://www.openexr.com/TechnicalIntroduction.pdf

Hirukazu Kato and Mark Billinghurst. Marker tracking and HMD calibration for a video-

based augmented reality conferencing system. In Proceedings of the 2nd IEEE and

ACM International Workshop on Augmented Reality (IWAR 99), page 85, October

1999. URL http://www.hitl.washington.edu/artoolkit/Papers/IWAR99.

kato.pdf. 148

Y. Lamdan and H. J. Wolfson. Geometric hashing: a general and efficient model-based

recognition scheme. Second International Conference on Computer Vision, pages 238–

249, Tampa, FL, USA, December 1988. Courant Inst. of Math., New York Univ.,

NY, USA. ISBN 0 8186 0883 8. URL http://www.cs.utexas.edu/˜grauman/

courses/spring2007/395T/395T/papers/Lamdan88.pdf. 10

W. Landry. Implementing a high performance tensor library. Scientific Programming,

11(4):273–90, 2003. URL http://www.oonumerics.org/FTensor/FTensor.pdf.

18

Chris Lattner. LLVM: An infrastructure for multi-stage optimization. Master’s thesis,

Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, De-

cember 2002. URL http://llvm.org/pubs/2002-12-LattnerMSThesis.html.

32

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11):2278 –2324, November 1998. URL

http://dx.doi.org/10.1109/5.726791. 20

J. P. Lewis. Fast template matching. In Vision Interface, volume 10, pages 120–123. Cite-

seer, 1995. URL http://scribblethink.org/Work/nvisionInterface/vi95_

lewis.pdf. 10, 127

Kim Chuan Lim. Development of 3-D Surface Data Acquisition System Using Non-

Calibrated Laser Alignment Techniques. PhD thesis, Sheffield Hallam University,

September 2009. 141

A. J. Lockwood, J. Wedekind, R. S. Gay, M. S. Bobji, B. P. Amavasai, M. Howarth,

G. Möbus, and B. J. Inkson. Advanced transmission electron microscope triboprobe

with automated closed-loop nanopositioning. Measurement Science and Technol-

ogy, 21(7):075901, 2010. URL http://dx.doi.org/10.1088/0957-0233/21/7/

075901. ii, 134

Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with

an application to stereo vision. In Proceedings of the 7th International Joint Con-

ference on Artificial Intelligence (IJCAI ’81), pages 674–679, April 1981. URL

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.2019. 118

181

http://www.hitl.washington.edu/artoolkit/Papers/IWAR99.kato.pdf
http://www.hitl.washington.edu/artoolkit/Papers/IWAR99.kato.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2007/395T/395T/papers/Lamdan88.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2007/395T/395T/papers/Lamdan88.pdf
http://www.oonumerics.org/FTensor/FTensor.pdf
http://llvm.org/pubs/2002-12-LattnerMSThesis.html
http://dx.doi.org/10.1109/5.726791
http://scribblethink.org/Work/nvisionInterface/vi95_lewis.pdf
http://scribblethink.org/Work/nvisionInterface/vi95_lewis.pdf
http://dx.doi.org/10.1088/0957-0233/21/7/075901
http://dx.doi.org/10.1088/0957-0233/21/7/075901
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.2019

R. Lämmel. Google’s MapReduce programming model - revisited. Sci-

ence of Computer Programming, 70(1):1–30, 2008. ISSN 0167-6423.

URL http://www.systems.ethz.ch/education/past-courses/hs08/

map-reduce/reading/mapreduce-progmodel-scp08.pdf. 61

Robert Martin. What killed Smalltalk could kill Ruby, too. Presentation at RailsConf,

2009. URL http://www.youtube.com/watch?v=YX3iRjKj7C0. 31

Yukihiro Matsumoto. The Ruby programming language. informIT, June 2000. URL

http://www.informit.com/articles/article.aspx?p=18225. 21

Yukihiro Matsumoto. Ruby in a Nutshell: A Desktop Quick Reference. O’Reilly Media,

Inc., 2002. URL http://oreilly.com/catalog/9780596002145. 21

Yukihiro Matsumoto. Beautiful Code, chapter 29. O’Reilly Media, Inc., 2007. URL

http://oreilly.com/catalog/9780596510046. 22

John McCarthy. Recursive functions of symbolic expressions and their computation

by machine, part i. Communications of the ACM, 3(4):184–195, April 1960. ISSN

0001-0782. doi: 10.1145/367177.367199. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.50.9776. 47, 48

Paulo R. S. Mendonça and R. Cipolla. A simple technique for self-calibration. In

Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference

on., volume 1. IEEE, 1999. URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.28.5767&rep=rep1&type=pdf. 142

Joseph Mundy. Model-based computer vision. University Video Communication, 1987.

URL http://www.archive.org/details/JosephMu1987. 3

J. Nakamura and M. Csikszentmihalyi. The concept of flow. Handbook of positive psy-

chology, pages 89–105, 2002. URL http://myweb.stedwards.edu/michaelo/

2349/paper1/ConceptOfFlow.pdf. 2

O. Nierstrasz, A. Bergel, M. Denker, S. Ducasse, M. Gaelli, and R. Wuyts. On the

revival of dynamic languages. In Software Composition, 4th International Work-

shop, pages 1–13. Springer, 2005. URL http://scg.unibe.ch/archive/papers/

Nier05bRevival.pdf. 1, 3, 4

T. Oliphant. A Guide to NumPy. Trelgol Publishing, 2006. URL http://www.tramy.

us/numpybook.pdf. 17

Nobuyuki Otsu. A threshold selection method from gray-level histograms. Systems,

Man and Cybernetics, IEEE Transactions on, 9(1):62–66, January 1979. URL http:

//web.ics.purdue.edu/˜kim497/ece661/OTSU_paper.pdf. 105

182

http://www.systems.ethz.ch/education/past-courses/hs08/map-reduce/reading/mapreduce-progmodel-scp08.pdf
http://www.systems.ethz.ch/education/past-courses/hs08/map-reduce/reading/mapreduce-progmodel-scp08.pdf
http://www.youtube.com/watch?v=YX3iRjKj7C0
http://www.informit.com/articles/article.aspx?p=18225
http://oreilly.com/catalog/9780596002145
http://oreilly.com/catalog/9780596510046
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9776
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9776
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.5767&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.5767&rep=rep1&type=pdf
http://www.archive.org/details/JosephMu1987
http://myweb.stedwards.edu/michaelo/2349/paper1/ConceptOfFlow.pdf
http://myweb.stedwards.edu/michaelo/2349/paper1/ConceptOfFlow.pdf
http://scg.unibe.ch/archive/papers/Nier05bRevival.pdf
http://scg.unibe.ch/archive/papers/Nier05bRevival.pdf
http://www.tramy.us/numpybook.pdf
http://www.tramy.us/numpybook.pdf
http://web.ics.purdue.edu/~kim497/ece661/OTSU_paper.pdf
http://web.ics.purdue.edu/~kim497/ece661/OTSU_paper.pdf

Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilistic Feature-based On-

line Rapid Model Acquisition. In Proc. 20th British Machine Vision Conference

(BMVC), London, September 2009. URL http://mi.eng.cam.ac.uk/˜qp202/my_

papers/BMVC09/BMVC09.pdf. 10

L. D. Paulson. Developers shift to dynamic programming languages. Computer, 40(2):

12–15, February 2007. URL http://dx.doi.org/10.1109/MC.2007.53. 6

Maurizio Pilu. Uncalibrated stereo correspondence by singular value decomposition.

Technical report, Hwelett Packard Lab Technical Publ Dept, 1997. URL http:

//www.hpl.hp.com/techreports/97/HPL-97-96.pdf. 123

M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and

R. Koch. Visual modeling with a hand-held camera. International Journal of Com-

puter Vision, 59(3):207–32, 2004. URL http://www.cs.unc.edu/˜marc/pubs/

PollefeysIJCV04.pdf. 10

POVRay. Persistence of vision raytracer, 2005. URL http://www.povray.org/. 73,

148

Mark Pupilli. Particle Filtering for Real-time Camera Localisation. PhD thesis, Depart-

ment of Computer Science, Bristol University, 2006. URL http://www.cs.bris.

ac.uk/Publications/pub_master.jsp?id=2000621. 10, 142

R.Venkat Rajendran. White paper on unit testing. Technical report, February 2002. URL

http://www.mobilein.com/WhitePaperonUnitTesting.pdf. 32

Erik Reinhard, Greg Ward, Sumanta Pattanaik, and Paul Debevec. High Dynamic Range

Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann, 2006.

ISBN 978-0-12-585263-0. URL http://www.hdrbook.com/. 81

Brent Roman, Chris Scholin, Scott Jensen, Eugene Massion, Roman Marin III, Christina

Preston, Dianne Greenfield, William Jones, and Kevin Wheeler. Controlling a robotic

marine environmental sampler with the Ruby scripting language. JALA - Journal of

the Association for Laboratory Automation, 12(1):56–61, 2007. URL http://www.

jalajournal.com/article/S1535-5535(06)00349-2/abstract. 3

Koichi Sasada. Future of Ruby VM. Presentation at RubyConf 2008, Orlando,

Florida, 2008. URL http://www.atdot.net/˜ko1/activities/rubyconf2008_

ko1.pdf. 22

Koichi Sasada. Ruby memory management hacks. Presentation at RubyConf 2009, San

Francisco, California, 2009a. URL http://www.atdot.net/˜ko1/activities/

rubyconf2009_ko1_pub.pdf. 31

183

http://mi.eng.cam.ac.uk/~qp202/my_papers/BMVC09/BMVC09.pdf
http://mi.eng.cam.ac.uk/~qp202/my_papers/BMVC09/BMVC09.pdf
http://dx.doi.org/10.1109/MC.2007.53
http://www.hpl.hp.com/techreports/97/HPL-97-96.pdf
http://www.hpl.hp.com/techreports/97/HPL-97-96.pdf
http://www.cs.unc.edu/~marc/pubs/PollefeysIJCV04.pdf
http://www.cs.unc.edu/~marc/pubs/PollefeysIJCV04.pdf
http://www.povray.org/
http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000621
http://www.cs.bris.ac.uk/Publications/pub_master.jsp?id=2000621
http://www.mobilein.com/WhitePaperonUnitTesting.pdf
http://www.hdrbook.com/
http://www.jalajournal.com/article/S1535-5535(06)00349-2/abstract
http://www.jalajournal.com/article/S1535-5535(06)00349-2/abstract
http://www.atdot.net/~ko1/activities/rubyconf2008_ko1.pdf
http://www.atdot.net/~ko1/activities/rubyconf2008_ko1.pdf
http://www.atdot.net/~ko1/activities/rubyconf2009_ko1_pub.pdf
http://www.atdot.net/~ko1/activities/rubyconf2009_ko1_pub.pdf

Koichi Sasada. Ricsin: RubyにCを埋め込むシステム. In 情報処理学会論文誌,

volume 2, pages 13–26, 2009b. URL http://www.atdot.net/˜ko1/activities/

ricsin2009.pdf. 33

Koichi Sasada. Ricsin: RubyにCを埋め込むシステム. Conference presentation, 2009c.

URL http://www.atdot.net/˜ko1/activities/ricsin2009_pro.pdf. 33

Y. Shan, B. Matei, HS Sawhney, R. Kumar, D. Huber, and M. Hebert. Linear model

hashing and batch RANSAC for rapid and accurate object recognition. In Com-

puter Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004

IEEE Computer Society Conference on, volume 2, pages 121–128, 2004. URL http:

//www.ri.cmu.edu/pub_files/pub4/shan_y_2004_1/shan_y_2004_1.pdf. 10

Jianbo Shi and Carlo Tomasi. Good features to track. Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, pages 593–

600, Seattle, WA, USA, June 1994. Cornell Univ, Ithaca, NY, USA. URL http:

//citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.7147. 116, 118

T. Smith and J. Guild. The C.I.E. colorimetric standards and their use. Transactions of the

Optical Society, 33(3):73, 1931. URL http://dx.doi.org/10.1088/1475-4878/

33/3/301. 81

Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for image processing.

Never published but presented at a talk at the Stanford Artificial Project, 1968. 114

Guy L Steele and Gerald J Sussman. Design of lisp-based processors, or scheme: A

dielectric lisp, or finite memories considered harmful, or lambda: The ultimate opcode.

Technical report, Cambridge, MA, USA, March 1979. URL http://repository.

readscheme.org/ftp/papers/ai-lab-pubs/AIM-514.pdf. 20, 101

Michael Stokes, Matthew Anderson, Srinivasan Chandrasekar, and Ricardo Motta. A

standard default color space for the Internet - sRGB. Web site, 1996. URL http:

//www.w3.org/Graphics/Color/sRGB. 82

Masahiro Tanaka. NArray and scientific computing with Ruby. Presentation at

RubyKaigi 2010, Tokyo, Japan, August 2010a. URL http://www.slideshare.net/

masa16tanaka/narray-and-scientific-computing-with-ruby. 16

Masahiro Tanaka. Pwrake distributed workflow engine for e-science. Presentation at

RubyConf 2010, New Orleans, Louisiana, November 2010b. URL http://www.

slideshare.net/masa16tanaka/ruby-conftanaka16. 16

Masahiro Tanaka. Ruby科学データ処理ツールの開発NArrayとPwrake. Presentation,

July 2011. URL http://www.slideshare.net/masa16tanaka/narray-pwrake.

154

184

http://www.atdot.net/~ko1/activities/ricsin2009.pdf
http://www.atdot.net/~ko1/activities/ricsin2009.pdf
http://www.atdot.net/~ko1/activities/ricsin2009_pro.pdf
http://www.ri.cmu.edu/pub_files/pub4/shan_y_2004_1/shan_y_2004_1.pdf
http://www.ri.cmu.edu/pub_files/pub4/shan_y_2004_1/shan_y_2004_1.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.7147
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.7147
http://dx.doi.org/10.1088/1475-4878/33/3/301
http://dx.doi.org/10.1088/1475-4878/33/3/301
http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-514.pdf
http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-514.pdf
http://www.w3.org/Graphics/Color/sRGB
http://www.w3.org/Graphics/Color/sRGB
http://www.slideshare.net/masa16tanaka/narray-and-scientific-computing-with-ruby
http://www.slideshare.net/masa16tanaka/narray-and-scientific-computing-with-ruby
http://www.slideshare.net/masa16tanaka/ruby-conftanaka16
http://www.slideshare.net/masa16tanaka/ruby-conftanaka16
http://www.slideshare.net/masa16tanaka/narray-pwrake

Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby. Pragmatic Bookshelf,

first edition, 2004. 27

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: a

factorization method. International Journal of Computer Vision, 9(2):137–54, Novem-

ber 1992. URL http://www-inst.cs.berkeley.edu/˜cs294-6/fa06/papers/

TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%

20orthography.pdf. 10, 118

Laurence Tratt and Roel Wuyts. Guest editors’ introduction: Dynamically typed lan-

guages. IEEE Software, 24(5):28–30, 2007. URL http://dx.doi.org/10.1109/

MS.2007.140. 4, 5, 13

M. Alex O. Vasilescu and Demetri Terzopoulos. Multilinear projection for appearance-

based recognition in the tensor framework. Computer Vision, IEEE International Con-

ference on, 0:1–8, 2007. URL http://www.media.mit.edu/˜maov/mprojection/

iccv07.pdf. 10

Paul Viola and Michael Jones. Robust real-time object detection. In International Journal

of Computer Vision, 2001. URL http://research.microsoft.com/en-us/um/

people/viola/Pubs/Detect/violaJones_IJCV.pdf. 10, 69

J. Wedekind, B. P. Amavasai, and K. Dutton. Steerable filters generated with the hy-

percomplex dual-tree wavelet transform. In 2007 IEEE International Conference on

Signal Processing and Communications, pages 1291–4, a. URL http://shura.shu.

ac.uk/953/. ii

J. Wedekind, B. P. Amavasai, K. Dutton, and M. Boissenin. A machine vision extension

for the Ruby programming language. In 2008 International Conference on Information

and Automation (ICIA), pages 991–6. IEEE, b. URL http://shura.shu.ac.uk/

952/. ii, xviii, 13, 127

Jan Wedekind. Fokusserien-basierte Rekonstruktion von Mikroobjekten. Master’s

thesis, University of Karlsruhe (TH), May 2002. URL http://digbib.ubka.

uni-karlsruhe.de/volltexte/1872002. 134

Jan Wedekind. Real-time computer vision with Ruby. Presentation at OSCON

2008, Portland, Oregon, 2008. URL http://www.slideshare.net/wedesoft/

oscon08-foils. ii, 127

Jan Wedekind. Computer vision using Ruby and libJIT. Presentation at RubyConf 2009,

San Francisco, California, 2009. URL http://www.slideshare.net/wedesoft/

rubyconf09. iii, 139

185

http://www-inst.cs.berkeley.edu/~cs294-6/fa06/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf
http://www-inst.cs.berkeley.edu/~cs294-6/fa06/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf
http://www-inst.cs.berkeley.edu/~cs294-6/fa06/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf
http://dx.doi.org/10.1109/MS.2007.140
http://dx.doi.org/10.1109/MS.2007.140
http://www.media.mit.edu/~maov/mprojection/iccv07.pdf
http://www.media.mit.edu/~maov/mprojection/iccv07.pdf
http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_IJCV.pdf
http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_IJCV.pdf
http://shura.shu.ac.uk/953/
http://shura.shu.ac.uk/953/
http://shura.shu.ac.uk/952/
http://shura.shu.ac.uk/952/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1872002
http://digbib.ubka.uni-karlsruhe.de/volltexte/1872002
http://www.slideshare.net/wedesoft/oscon08-foils
http://www.slideshare.net/wedesoft/oscon08-foils
http://www.slideshare.net/wedesoft/rubyconf09
http://www.slideshare.net/wedesoft/rubyconf09

Jan Wedekind, Manuel Boissenin, Bala P. Amavasai, Fabio Caparrelli,

and Jon R. Travis. Object recognition and real-time tracking in micro-

scope imaging. Proceedings of the 2006 Irish Machine Vision and Im-

age Processing Conference (IMVIP 2006), pages 164–171, Dublin City

University, 2006. URL http://www.scribd.com/doc/71015261/

Object-Recognition-and-Real-time-Tracking-in-Microscopic-Imaging.

ii

Jan Wedekind, Jacques Penders, Hussein Abdul-Rahman, Martin Howarth, Ken

Dutton, and Aiden Lockwood. Implementing machine vision systems with

a dynamically typed language. Demonstration at ECOOP 2011, Lancaster,

United Kingdom, 2011. URL http://ecoop11.comp.lancs.ac.uk/?q=content/

implementing-machine-vision-systems-dynamically-typed-language. iii

Jim Weirich. Connascence and Java. Web site, March 2005. URL http://

onestepback.org/articles/connascence/. 163

Jim Weirich. The building blocks of modularity. Presentation at Mountain West Ruby

Conference 2009, Salt Lake City, Utah, 2009. URL http://confreaks.net/

videos/77-mwrc2009-the-building-blocks-of-modularity. 13, 163, 164

Andy Wilson. Robust computer vision-based detection of pinching for one and

two-handed gesture input. In Proceedings of the 19th annual ACM sympo-

sium on User interface software and technology, pages 255–258. ACM, 2006.

ISBN 1595933131. URL http://research.microsoft.com/en-us/um/people/

awilson/publications/wilsonuist2006/UIST%202006%20TAFFI.pdf. 136,

139

Dave Wilson. Video codecs and pixel formats. Web site, 2007. URL http://www.

fourcc.org/. xix, 83, 84, 85

Mario Wolczko. Past, present and future of virtual machines: A personal view. Presenta-

tion at ICOOOLPS workshop at ECOOP, 2011. xxi, 159

Mario Wolczko, Ole Agesen, and David Ungar. Towards a universal implementation sub-

strate for object-oriented languages. OOPSLA 99 workshop on Simplicity, Performance,

and Portability in Virtual Machine Design, 1999. URL http://labs.oracle.com/

people/mario/pubs/substrate.pdf. 5

Jingyu Yan and Marc Pollefeys. Automatic kinematic chain building from feature trajec-

tories of articulated objects. In 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, CVPR 2006, volume 1, pages 712–719, New York,

NY, United States, June 2006. Department of Computer Science, University of North

186

http://www.scribd.com/doc/71015261/Object-Recognition-and-Real-time-Tracking-in-Microscopic-Imaging
http://www.scribd.com/doc/71015261/Object-Recognition-and-Real-time-Tracking-in-Microscopic-Imaging
http://ecoop11.comp.lancs.ac.uk/?q=content/implementing-machine-vision-systems-dynamically-typed-language
http://ecoop11.comp.lancs.ac.uk/?q=content/implementing-machine-vision-systems-dynamically-typed-language
http://onestepback.org/articles/connascence/
http://onestepback.org/articles/connascence/
http://confreaks.net/videos/77-mwrc2009-the-building-blocks-of-modularity
http://confreaks.net/videos/77-mwrc2009-the-building-blocks-of-modularity
http://research.microsoft.com/en-us/um/people/awilson/publications/wilsonuist2006/UIST%202006%20TAFFI.pdf
http://research.microsoft.com/en-us/um/people/awilson/publications/wilsonuist2006/UIST%202006%20TAFFI.pdf
http://www.fourcc.org/
http://www.fourcc.org/
http://labs.oracle.com/people/mario/pubs/substrate.pdf
http://labs.oracle.com/people/mario/pubs/substrate.pdf

Carolina at Chapel Hill, Chapel Hill, NC 27599, Institute of Electrical and Electron-

ics Engineers Computer Society, Piscataway, NJ 08855-1331, United States. URL

http://www.cs.unc.edu/˜marc/pubs/YanCVPR06.pdf. 10

G. Z. Yang, P. Burger, D. N. Firmin, and S. R. Underwood. Structure adaptive anisotropic

image filtering. Image and Vision Computing, 14(2):135–45, March 1996. URL http:

//dx.doi.org/10.1016/0262-8856(95)01047-5. 115

Zhengyou Zhang. A flexible new technique for camera calibration. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, 22(11):1330–

1334, 2000. URL http://research.microsoft.com/en-us/um/people/zhang/

Papers/TR98-71.pdf. 141, 146, 147, 148, 165, 166, 167

187

http://www.cs.unc.edu/~marc/pubs/YanCVPR06.pdf
http://dx.doi.org/10.1016/0262-8856(95)01047-5
http://dx.doi.org/10.1016/0262-8856(95)01047-5
http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf
http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf

	Contents
	Symbols
	Acronyms
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Interpreted Languages
	1.2 Dynamically Typed Languages
	1.3 Contributions of this Thesis
	1.4 Thesis Outline

	2 State of the Art
	2.1 Object Localisation
	2.2 Existing FOSS for Machine Vision
	2.2.1 Statically Typed Libraries
	2.2.2 Statically Typed Extensions
	2.2.3 Dynamically Typed Libraries

	2.3 Ruby Programming Language
	2.3.1 Interactive Ruby
	2.3.2 Object-Oriented, Single-Dispatch
	2.3.3 Dynamic Typing
	2.3.4 Exception Handling
	2.3.5 Garbage Collector
	2.3.6 Control Structures
	2.3.7 Mixins
	2.3.8 Closures
	2.3.9 Continuations
	2.3.10 Introspection
	2.3.11 Meta Programming
	2.3.12 Reification
	2.3.13 Ruby Extensions
	2.3.14 Unit Testing

	2.4 JIT Compilers
	2.4.1 Choosing a JIT Compiler
	2.4.2 libJIT API

	2.5 Summary

	3 Handling Images in Ruby
	3.1 Transparent JIT Integration
	3.2 Malloc Objects
	3.3 Basic Types
	3.3.1 Booleans
	3.3.2 Integers
	3.3.3 Floating-Point Numbers
	3.3.4 Composite Numbers
	3.3.5 Pointers
	3.3.6 Ruby Objects

	3.4 Uniform Arrays
	3.4.1 Variable Substitution
	3.4.2 Lambda Terms
	3.4.3 Lookup Objects
	3.4.4 Multi-Dimensional Arrays
	3.4.5 Array Views

	3.5 Operations
	3.5.1 Constant Arrays
	3.5.2 Index Arrays
	3.5.3 Type Matching
	3.5.4 Element-Wise Unary Operations
	3.5.5 Element-Wise Binary Operations
	3.5.6 LUTs and Warps
	3.5.6.1 LUTs
	3.5.6.2 Warps

	3.5.7 Injections
	3.5.8 Tensor Operations
	3.5.9 Argmax and Argmin
	3.5.10 Convolution
	3.5.11 Integral
	3.5.12 Masking/Unmasking
	3.5.13 Histograms

	3.6 JIT Compiler
	3.6.1 Stripping Terms
	3.6.2 Compilation and Caching

	3.7 Unit Testing
	3.8 Summary

	4 Input/Output
	4.1 Colour Spaces
	4.1.1 sRGB
	4.1.2 YCbCr

	4.2 Image Files
	4.3 HDR Image Files
	4.4 Video Files
	4.5 Camera Input
	4.6 Image Display
	4.7 RGBD Sensor
	4.8 GUI Integration
	4.9 Summary

	5 Machine Vision
	5.1 Preprocessing
	5.1.1 Normalisation and Clipping
	5.1.2 Morphology
	5.1.2.1 Erosion and Dilation
	5.1.2.2 Binary Morphology

	5.1.3 Otsu Thresholding
	5.1.4 Gamma Correction
	5.1.5 Convolution Filters
	5.1.5.1 Gaussian Blur
	5.1.5.2 Gaussian Gradient

	5.1.6 Fast Fourier Transform

	5.2 Feature Locations
	5.2.1 Edge Detectors
	5.2.1.1 Roberts' Cross Edge-Detector
	5.2.1.2 Sobel Edge-Detector
	5.2.1.3 Non-Maxima Suppression for Edges

	5.2.2 Corner Detectors
	5.2.2.1 Corner Strength by Yang et al.
	5.2.2.2 Shi-Tomasi Corner Detector
	5.2.2.3 Harris-Stephens Corner- and Edge-Detector
	5.2.2.4 Non-Maxima Suppression for Corners

	5.3 Feature Descriptors
	5.3.1 Restricting Feature Density
	5.3.2 Local Texture Patches
	5.3.3 SVD Matching

	5.4 Summary

	6 Evaluation
	6.1 Software Modules
	6.2 Assessment of Functionality
	6.2.1 Fast Normalised Cross-Correlation
	6.2.2 Lucas-Kanade Tracker
	6.2.3 Hough Transform
	6.2.4 Microscopy Software
	6.2.5 Depth from Focus
	6.2.6 Gesture-based Mouse Control
	6.2.7 Slide Presenter
	6.2.8 Camera Calibration
	6.2.8.1 Corners of Calibration Grid
	6.2.8.2 Camera Intrinsic Matrix
	6.2.8.3 3D Pose of Calibration Grid

	6.2.9 Augmented Reality

	6.3 Performance
	6.3.1 Comparison with NArray and C++
	6.3.2 Breakdown of Processing Time

	6.4 Code Size
	6.4.1 Code Size of Programs
	6.4.2 Code Size of Library

	6.5 Summary

	7 Conclusions & Future Work
	7.1 Conclusions
	7.2 Future Work

	A Appendix
	A.1 Connascence
	A.2 Linear Least Squares
	A.3 Pinhole Camera Model
	A.4 Planar Homography
	A.5 ``malloc'' gem
	A.6 ``multiarray'' gem
	A.7 Miscellaneous Sources
	A.7.1 JIT Example
	A.7.2 Video Player
	A.7.3 Normalised Cross-Correlation
	A.7.4 Camera Calibration
	A.7.5 Recognition of a rectangular marker
	A.7.6 Constraining Feature Density
	A.7.7 SVD Matching

	Bibliography

