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ABSTRACT

PROTEIN AND CELL THERAPY FOR LECITHIN–

CHOLESTEROL ACYLTRANSFERASE (LCAT)

DEFICIENCY

Lecithin-cholesterol acyltransferase (LCAT) is an enzyme principally secreted by the

liver into the circulation where it esterifies cholesterol and plays a key role in high-

density lipoprotein (HDL) metabolism. In familial and acquired (liver disease) LCAT

deficiency, the failure to esterify cholesterol causes many cellular and metabolic

disturbances. Here, I describe the purification of recombinant LCAT and assess two

approaches to treat LCAT deficiency. Human LCAT cDNA was cloned into a

selectable expression vector and used to generate a stably–transfected Chinese

hamster ovary (CHO) cells secreting human LCAT tagged with 6 histidine residues.

Productive clones were selected, monitoring LCAT activity by a modification of a

radioactive enzymic assay for plasma, and the enzyme purified from culture medium

by immobilised cobalt affinity chromatography. The pure LCAT, as judged by SDS-

PAGE, was used to raise monoclonal antibodies in LCAT knockout mice for future

development of a sensitive immunoassay. For therapy, I evaluated injection of pure

LCAT into the peritoneal cavity of LCAT knockout mice using single and repeat

dose regimes. LCAT activity was measurable in plasma post-injection and the

percentage of esterified cholesterol increased, while agarose gel electrophoresis

confirmed a rise in HDL levels. In a second approach, I encapsulated the

recombinant CHO cells in biocompatible and semipermeable alginate-polylysine

microcapsules using a syringe pump extrusion method. A study in vitro showed that,

after an initial lag phase, LCAT was secreted for over 90 days with the capsules

remaining intact. These microencapsulated cells were implanted into peritoneal

cavities of LCAT-deficient mice. LCAT activity was detected in mice plasma one

week post-implantation; the relative amount of esterified cholesterol was increased

and lipoprotein profile was improved. I conclude that injection of recombinant

enzyme or of encapsulated LCAT-secreting cells are feasible therapies for familial

and acquired LCAT deficiency.
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1. INTRODUCTION

1.1 Lipoprotein Metabolism

1.1.1 Introduction

Lipoproteins are macromolecular complexes that consist of a hydrophobic core

of triglyceride and cholesteryl ester surrounded by an amphipathic monolayer of

phospholipids, free cholesterol and proteins. The major lipids cholesterol and

triglycerides are insoluble in aqueous solutions and are transported in blood as

lipoproteins. Lipoproteins are classified on the basis of their density, electrophoretic

mobility, and relative lipid and protein content (Gotto et al., 1986), into five major

classes: (1) Chylomicrons are very large particles that float even on standing and have a

density of  0.95 g/mL; they remain at the origin on electrophoresis. (2) Very-low-

density lipoprotein (VLDL) floats at a density of 0.95-1.006 g/ml and migrate to a “pre-

beta” position on paper electrophoresis. (3) Intermediate-density lipoprotein (IDL)

floats in the density range 1.006-1.019 g/ml. (4) Low-density lipoprotein (LDL) floats

in the density range 1.019-1.063 g/mL and migrates in the beta position. (5) High-

density lipoprotein (HDL) floats between 1.063 and 1.21 g/mL and migrates furthest on

electrophoresis to the alpha position.

Apoproteins or apolipoproteins are the protein components of lipoproteins and

are important in regulating lipid transport. There are at least nine apolipoproteins that

are distributed in significant amounts in different human lipoproteins. They are water

soluble and have high alpha- helix content.

1.1.2 Function of lipoproteins

Chylomicrons

In humans, chylomicrons are lipoproteins that transport dietary fats, cholesterol

and fat soluble nutrients. The chylomicron surface is composed of phospholipid,

apoB48 and apoAI, AII and AIV. Triglyceride makes up 90 % of the core weight and is

less dense than the plasma. The chylomicrons, which carry these triglycerides, appear

only after a fatty meal. They are assembled in intestinal mucosal cells and released into

the lacteals of intestinal villi. The chylomicrons reach the general circulation via the

thoracic duct. After entry into the plasma, the chylomicrons acquire apoC and apoE



13

from the surface of HDL. Free cholesterol, cholesteryl esters and phospholipids from

HDL are transferred to chylomicrons. In the extrahepatic tissues, the chylomicron’s

triglyceride is hydrolyzed to free fatty acids and 2-monoacylglycerol by lipoprotein

lipase (LPL). As hydrolysis proceeds, decreasing core volume, the surface area is also

reduced by the transfer of phospholipid, free cholesterol and apoC lipoproteins back to

HDL. The remaining remnant particles are enriched with cholesteryl ester and apoE can

interact with receptors on hepatocytes (Gotto et al., 1986). The uptake of chylomicron

remnants involves interaction with heparin sulphate proteoglycans followed by binding

to the LDL-receptor or the LDL-receptor-related protein (LRP). This binding requires

apoE. After binding to one of the receptors, the remnant particle is endocytosed and its

constituent lipids and proteins are hydrolyzed by lysosomal enzymes.

Very-low-density lipoproteins

VLDL is synthesized in the liver and transport mainly triglyceride in the fasting

state. They contain 10 - 15 % of total serum cholesterol and are precursors for LDL.

Nascent VLDL contains apoB-100 and small amounts of apoE and apoC. Like the

chylomicrons, VLDL later acquires more apoE and apoC by transfer from HDL. ApoB,

apoE and apoC play a significant role in VLDL catabolism via their interactions with

enzymes, cell surface proteoglycans and specific receptors. Like chylomicrons, VLDL

is metabolized initially by LPL on endothelial cell surfaces. As lipolysis proceeds,

VLDL become smaller and denser and is converted to IDL. Triglyceride hydrolysis is

accompanied by the transfer of surface cholesterol, phospholipids and apolipoproteins

to HDL, but like chylomicron remnants, VLDL remnants possess apoE, which mediates

their uptake into liver.

The term VLDL remnant has been used along with IDL to describe the product

of LPL-mediated VLDL triglyceride catabolism. Larger VLDL remnants containing

multiple copies of apoE are removed from the plasma by the liver, whereas the smaller

denser VLDL are targeted for conversion to IDL and eventually remodelled to LDL

(Packard et al., 1984). The catabolism of VLDL remnant is affected by hepatic lipase

(HL). Studies suggest that HL play a role in removing triglycerides from partially

catabolised VLDL or IDL and LDL (Deckelbaum et al., 1992). In addition, HL

facilitates the uptake of VLDL remnants by hepatocytes.
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Low-density lipoprotein production and catabolism

LDL is a major carrier of cholesterol and cholesteryl esters. They contain about

70 % of total serum cholesterol and function to deliver cholesterol to peripheral tissues

in the body, where it is used for synthesis of cell membranes and steroid hormones.

LDL is mainly produced as a result of catabolism of VLDL and IDL. Studies in

humans (Arad et al., 1990) and animals have demonstrated that some may also be

produced independently of VLDL or IDL via direct secretion from the liver. Its lipid

component includes a high proportion of cholesterol and cholesterol esters. The

metabolism of LDL is intimately connected to cholesterol metabolism. Although

cholesterol is a necessary component of mammalian cell membranes, excess synthesis

and failure to clear cholesterol results in a greatly increased risk of cardiovascular

disease.

LDL circulates in the blood on average for 3 days as its metabolism is sluggish.

The LDL-receptor is a glycoprotein with a molecular weight of 160 kD and is present

on the cell surfaces of nearly all tissues in the body. Approximately two-thirds of the

LDL is taken up by the liver and one-third by the extrahepatic tissues. LDL acquired

through the LDL-receptor is the major external source of cholesterol (Goldstein and

Brown, 1985). After binding of LDL apoB-100 to the LDL-receptor, the particle is

internalized and delivered to lysosomes. Within the lysosomes, apolipoproteins are

degraded to amino acids by proteases. Cholesteryl ester is converted to free cholesterol

via the action of an acid lipase.

The majority of LDL (60 % to 80 %) is cleared by LDL-receptor mediated

pathways. Macrophages and some endothelial cells possess alternative lipoprotein

receptors collectively known as the scavenger receptors. There are several of them with

various affinities for native and chemically modified LDL. Their main function is the

removal of aberrant or aged lipoproteins that are no longer ligands for other lipoprotein

receptors.

High-density lipoprotein metabolism

HDL is responsible for transporting about 20 % of cholesterol. It is an important

carrier for reverse cholesterol transport which involves the transfer of membrane

cholesterol to HDL, its conversion to cholesteryl esters and its ultimate transfer to LDL

and the liver (Bruce and Tall, 1995). High levels of HDL-cholesterol are associated with

a reduced risk for atherosclerosis (Barter and Rye, 1994).
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Nascent HDL is secreted by the liver and intestine. They are small, cholesterol-

poor, phospholipids-rich particles, which resemble a disc of lipid bilayer with

apolipoproteins at the edge. Nascent HDL from liver contains apoAI, apoAII, apoE and

the apoC but the HDL from intestine has only apoAI as its principal apolipoprotein, the

rest being acquired later by the transfer from other lipoproteins.

Once in the circulation, nascent HDL adsorbs free, unesterified cholesterol both

from other lipoproteins and from cell membranes and become HDL3 particles. Recent

work suggests that ATP-binding cassette transporter, class A1 (ABCA1), a membrane

protein, mediates the efflux of cholesterol across peripheral cell membranes and

indirectly function as a cholesterol efflux regulatory protein (Oram and Lawn, 2001;

Owen and Mulcahy, 2002). The effluxed cholesterol is transferred to extracellular lipid-

poor apoAI. Cell surface transporter ABCG1, have been implicated in the transfer of

additional cholesterol to nascent HDL and HDL3 (Wang et al., 2004; Zannis et al.,

2006). The cell- derived cholesterol is converted to cholesteryl esters through the action

of lecithin-cholesterol acyltransferase (LCAT), an enzyme that is activated by the HDL

component apoAI. The hydrophobic cholesteryl esters formed migrate to the centre of

the particle and increase the capacity of the HDL3 surface to accept more free

cholesterol. The original discoidal HDL expands into a spherical particle. As the HDL3

enlarges, they accommodate apoCII and apoCIII as well as more phospholipid on their

surfaces. HDL also acquires apoE at this time and all these processes lead to the

formation of HDL2. When they reach the liver, they are taken up by endocytosis.

Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl

ester from HDL to other lipoproteins (chylomicrons and VLDL) (Tall, 1990) either

alone or exchanged for triglycerides. As the chylomicron and VLDL remnants are taken

up by the liver via LDL or other receptor-mediated pathways, the CETP-transferred

cholesteryl esters are also removed. Cholesterol uptake from HDL by cells is mediated

by scavenger receptor class B, type 1 (SR-B1), which is localised in membrane

invaginations termed caveolae (Kreiger, 2001; Silver et al., 2001). SRB1 is highly

expressed in liver, adrenal, ovaries and testes, all tissues with a high cholesterol demand

for bile acid synthesis or steroidogenesis. When SR-B1 binds HDL in hepatocytes, the

intact particles are taken up into endosomes. The cholesteryl esters are hydrolysed to

free cholesterol, while the receptor and its lipid-depleted HDL are not degraded but

recycled to the cell surface (Owen and Mulcahy, 2002).

The number of cholesterol molecules, especially esterified cholesterol in each

HDL particle and the number of HDL particles determine the plasma concentration of
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HDL cholesterol. However, regulatory pathways of HDL levels are still unknown. It is

postulated that cholesteryl content is regulated by the ability of HDL2 to accept cell

membrane cholesterol, LCAT activity (see 1.1.3), the rate of CETP-catalysed

cholesteryl transfer from HDL2 to triglyceride rich lipoproteins (chylomicrons or

VLDL) and the rate of selective cholesteryl delivery to cells. HDL particle number is

affected by the direct uptake of apoE containing HDL particles to hepatocytes.

1.1.3 Lecithin-cholesterol acyltransferase

Introduction

LCAT was first recognized by Sperry in 1935. He found that when human serum

was incubated the free cholesterol concentration fell markedly without a change in total

cholesterol. He attributed this to enzymatic esterification of free cholesterol because the

effect was abolished by heating serum to 55 – 60 0 C. Subsequent work by Glomset

(Glomset, 1962; Glomset, 1963; Glomset and Wright 1964) led to the identification of

LCAT as a unique plasma enzyme. This enzyme is primarily synthesized in the liver

and secreted into the circulation where it converts cholesterol to cholesteryl esters on

the surface of HDL. The enzyme catalyses the transfer of a fatty acid from the 2-

position of lecithin (phosphatidylcholine) to the 3--hydroxyl group of free cholesterol,

forming cholesteryl ester and lysolecithin. Interest in LCAT has increased since the first

family with three siblings affected with LCAT deficiency was described (Norum et al.,

1967). The number of patients with secondary LCAT deficiency is large since many

individuals with liver disease have at least some degree of LCAT deficiency. The

enzyme plays a pivotal role in the metabolism of cholesterol and lipoproteins. Of

particular interest is the relationship of the enzyme to the HDL and the reverse transport

of tissue cholesterol and its ultimate excretion from the body. LCAT is the key enzyme

involved in cholesterol homeostasis and regulating its transport in blood and this link

with the pathophysiology of atherosclerosis makes the enzyme of great interest to many

researchers and clinicians.

Distribution

The plasma concentrations of LCAT (about 6 g/ml) vary little in adult humans

with age, gender and smoking (Albers et al., 1982). Some LCAT is produced in the

brain and is in cerebrospinal fluid at very low concentrations; it is also present in

intestinal lymph and interstitial fluid. In plasma, LCAT binds reversibly to lipoproteins
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and is found in different proportions in the HDL, LDL or lipid-free fractions, depending

on the method of isolation.

Function

LCAT has several major functions with respect to plasma lipoprotein metabolism.

In blood it binds to its preferred substrate, HDL and is activated by apoAI (Mclean et

al., 1986). Cholesterol and lecithins in HDL are converted into cholesteryl esters and

lysolecithin. The acyltransferase catalytic activity, which involves the transfer of a fatty

acid from lecithin to the hydroxyl group of cholesterol, is responsible for the formation

of essentially all plasma cholesteryl esters. The formation and accumulation of

cholesteryl esters in the core of HDL not only removes cholesterol from the surface of

HDL but also promotes movement of cholesterol from cell membranes into HDL. This

pathway serves to transport cholesterol, in the form of cholesteryl esters, to the liver or

to steroidogenic tissues for excretion or utilization in bile salt or steroid hormone

synthesis. As nascent discoidal HDL acquires cholesteryl esters, they become spherical

HDL (Jonas, 2000). Excess cholesteryl esters are transferred to other HDL species and

then to VLDL, IDL and LDL by CETP. This process ensures that cholesteryl ester

accumulation within the HDL surface does not inhibit further LCAT action.

There is a preference for LCAT to transfer the fatty acid at the sn-2 position of

lecithin to cholesterol. Long chain and unsaturated fatty acids at the sn-2 position of

lecithin (Sgoutas, 1972) are ideal. In addition fatty acids in the sn-1 position can serve

as substrates for cholesteryl ester formation (Aron et al., 1978). The rate of cleavage of

the sn-2 ester bond appears to be influenced by the nature of the fatty acid in the sn-1

position.

In the absence of an acyl acceptor LCAT also exhibits significant phospholipase

acitivity (Aron et al., 1978). The hydrolysis of the sn-2 fatty acid lecithin to lysolecithin

and free fatty acid is also stimulated by apoAI. The prescence of serum albumin as the

acyl acceptor is calcium independent unlike the more active calcium dependent

phospholipases. It is unlikely that this reaction is of physiological significance.

The third property of LCAT is the catalytic reaction of lysolecithin acyl

transferase (Subbaiah et al., 1980). Plasma LDL is the main substrate and apoAI is not

required as a cofactor. There is no net formation of either lecithin or lysolecithin.
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Structure

LCAT is a 64 kDa plasma glycoprotein as determined by SDS-PAGE. Chemical

sequencing of LCAT was completed in 1987 (Yang et al., 1987). In the mature secreted

form, human LCAT has a polypeptide mass of 47 kDa and 416 amino acids. The

enzyme contains six cysteine residues of which four are involved in disulphide bridges.

Two disulphide bridges between C50-C74 and C313-C356 are important in maintaining the

structure and function of the enzyme (Qu et al., 1993). Human LCAT has two free

cysteine residues C31 and C184 which are thought to be located near the active site of the

enzyme (Francone and Fielding, 1991). The loop spanned by C50-C74 is essential for

LCAT binding to lipoprotein surfaces (Jin et al., 1999).

Carbohydrate accounts for 25 % of the molecular mass of which 13 % is hexose

(mannose and galactose), 6 % glucosamine and 5 % sialic acid. There are four N-linked

glycosylation sites at Asn-20, 84, 272 and 384 (Mclean et al., 1986). Based on the

diverse carbohydrate structures at each glycosylation position, more than 20 isoforms of

the enzyme are possible. In addition to the N-linked carbohydrate chains, LCAT has

two O-linked chains at T407 and S409. Heterogeneity occurs in the carbohydrate chains,

with one to three terminal sialic residues. Human LCAT expressed in animal cells is

also glycosylated but the degree of glycosylation varies from one expression system to

the next (Miller et al., 1996).

The function of the LCAT glycan chains is uncertain. They seem to increase the

solubility of the enzyme, prevent non-specific binding to cell membranes and provide a

removal mechanism for old enzyme from plasma. Although they are required for the

efficient secretion of LCAT from cultured cells, blocking of individual carbohydrate

chain sites does not interfere with the folding and secretion of the enzyme. When

individual chains are removed, there is either an increase or decrease in reactivity of the

enzyme with HDL substrates (Francone et al., 1993; Qu et al., 1993).

The Functional Domains

The catalytic site of LCAT has been identified from studies with specific

chemical modifications, by sequence homology with other lipases and by site-directed

mutagenesis. The active site of the enzyme was identified as serine on position 181

(Farooqui et al., 1988) according to its homology with other serine-type esterases which

have a common structure of glycine-variable amino acid-active serine-variable amino

acid-glycine (Gly-X-Ser*-X-Gly).
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ApoAI is the most potent activator of LCAT followed by apoAIV (Fielding et

al., 1972; Steinmetz and Utermann, 1985). Other apolipoproteins such as apoCI, apo

CII, apo CIII, apoAII, and apoE have been shown to activate LCAT to various extents

but less effectively than apoAI (Jonas, 1991). Several mechanisms have been proposed

for the activation of LCAT reaction by apolipoproteins, specifically by apoAI. The latter

concentrates the lipid substrates in the vicinity of LCAT where it specifically binds and

presents the lipid substrates in an optimal conformation to LCAT. In addition, apoAI

removes the products of enzyme reaction and promotes the final dissociation of LCAT

from the lipid surface (Jonas, 1998).

1.2 LCAT Deficiency

1.2.1 Genetic Mutations of LCAT

The human LCAT gene is localized in the q21-22 region of chromosome 16

(Tiesberg et al., 1975) and is principally expressed in the liver. It consists of 6 exons

separated by 5 introns and encompasses a total of 4.2 kilobases. Human LCAT mRNA

consists of approximately 1550 bases and encodes a protein of 416 amino acids with a

hydrophobic leader sequence of 24 residues (McLean et al., 1986).

LCAT deficiency arises as a consequence of either a defect in the enzyme, or in

its synthesis and secretion or a mutation in the major plasma activator, apoAI, which

results in an inability to stimulate the reaction. Mutations in the human gene are the

basis for either familial LCAT deficiency (FLD) or fish-eye disease (FED). About 40

natural mutations in the LCAT gene have been identified and many involve single

amino acid substitutions, located throughout the LCAT molecule. All these substitutions

significantly reduce the LCAT activity. Four classes of either complete or partial human

LCAT deficiency syndromes have been characterized at the molecular level

(Kuivenhoven et al., 1997).

(1) The first class of LCAT gene mutations is a null mutation resulting in a

clinical phenotype of FLD with total loss of catalytic activity and virtual absence of

LCAT mass. (2) The second class is characterized by missense mutations (a total of 18

have been described) causing FLD, with reduced plasma LCAT concentrations (most

cases) and virtual absence of LCAT activity (Owen et al., 1996). (3) A third class of

missense mutations or minor deletions cause an intermediate phenotype in between

those described for classes (1), (2) and FED. This class is characterized by a partial loss
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of activity using LDL as substrate or combined partial loss of activity against both HDL

and LDL (Kuivenhoven et al., 1995) associated with a reduction in plasma LCAT mass.

Only three mutations with this phenotype have been reported. (4) The fourth class of

mutations cause the classical FED phenotype as a result of specific loss of activity

against HDL analogues with a normal or reduced LCAT mass (Kuivenhoven et al.,

1997). The LCAT activity from some class (3) and (4) mutants still retain the capability

to esterify cholesterol on LDL and VLDL. This finding explains the relatively normal

cholesterol esterification rates in fish-eye disease (FED) as opposed to the FLD subjects

with severely reduced levels of cholesteryl esters.

1.2.2 Familial LCAT deficiency

FLD was first described in a Norwegian family in 1967 by Norum and Gjone. It

is characterized by low or undetectable concentrations of LCAT in plasma, or by

absence of LCAT activity in all lipoprotein substrates. The disorder is characterised by

HDL deficiency, abnormal triglyceride-rich VLDL and LDL and markedly reduced

cholesteryl ester contents of lipoproteins. Erythrocytes have abnormal structures and

elevated cholesterol contents. The major clinical findings were anaemia, corneal

opacity, premature atherosclerosis, proteinuria and renal disease.

Corneal opacities are common in genetic disorders affecting HDL metabolism

e.g. deficiency of apoAI or apoCIII, Tangier disease (Chu et al., 1979) and in FED

(Carlson, 1982). Patients with FLD have corneal opacities in their early childhood. The

whole cornea appears cloudy and consists of numerous minute, grayish dots in the

parenchyma. A dense accumulation of the dots near the limbus form a prominent

annular opacity. Despite these changes, the patients have normal visual acuity.

Ultrastructural examination of sections obtained from superficial keratectomy revealed

the presence of many vacuoles containing electron-dense membranous deposits. The

exact nature of the deposits is not known but the tissue contains an excess of free

cholesterol and phospholipid.

Renal disease is common and is a major cause of morbidity and mortality in

FLD. Proteinuria is one of the earliest findings in these patients but the pathogenesis of

glomerulosclerosis is poorly understood. Some studies have suggested that the renal

changes seen in FLD may be immune–complex and complement mediated (Borysiewicz

et al., 1982; Lager et al., 1991) and may be further exacerbated by the accumulation of

oxidised phospholipids in the glomeruli. Large LDL particles and Lp-X found in
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capillary loops have been implicated to induce endothelial and vascular injury in the

kidneys of FLD patients (Norum et al., 1971; Gjone et al., 1974; Imbasciati et al.,

1986). Ultimately this may lead to renal failure in the fourth or fifth decade of life.

Despite low HDL levels, FLD patients do not appear to have an increased risk

for developing cardiovascular disease (Kuivenhoven et al., 1997). However, premature

coronary heart disease has been found in a subset of these patients (Kuivenhoven et al.,

1996). It has been found in the aorta and large arteries of many patients. Renal arteries

and arterioles also show early atherosclerotic changes (Hovig and Gjone, 1973).

Electron-microscopy of sections of arteries shows lipid accumulation, similar to those

found in other organs. They are present together with foam cells in all layers of the

vessel wall. Only 35 % of the total cholesterol is esterified in contrast with 75 % in

atheromas of typical vascular disease. Furthermore, the fatty acid pattern in these

atherosclerotic lesions differs from the common lesions as it contains a markedly

increased ratio of oleic to linoleic acid. It resembles the abnormal pattern found in

plasma and mimics the pattern in cells as a result of the action of acyl-coenzyme

A:cholesterol acyltransferase.

The pathology of this early atherosclerosis is unknown and one possible

explanation is that reduced plasma LCAT activity impairs the transport of cholesterol

from peripheral cells, including macrophages, to the liver for excretion (Assman and

Jabs, 1985). A second possibility is the deposition of excess cholesterol after cellular

uptake of abnormal lipoproteins, such as LDL found in familial LCAT deficiency

(Gjone, 1974) and in obstructive jaundice (Agorastos et al., 1978). The accumulation of

cholesterol in erythrocyte and platelet membrane raises a third possibility. Nucleated

cells such as macrophages also take up cholesterol from cholesterol-rich lipoproteins by

a non-receptor pathway, bypassing the LDL receptor (Brown and Goldstein, 1983).

Through this unregulated process, the net transport of cholesterol to cells may

contribute to the premature atherosclerosis of familial LCAT deficiency and to the

xanthomata of patients with prolonged biliary obstruction.

1.2.3 Fish-eye-disease

FED or partial LCAT deficiency was extensively studied by Carlson and

Philipson in two unrelated families of Swedish origin (Carlson and Philipson, 1979;

Carlson, 1979; Carlson, 1982). There were two sisters from a village in northern

Sweden who had corneal opacities, as did their father. Villagers said that they had ‘fish
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eye’ disease because their eyes resembled those of boiled fish. It is characterised by

HDL deficiency, elevated LDL, VLDL and triglyceride. LCAT concentration is

partially decreased and its activity is significantly reduced in plasma particularly with

HDL substrates despite near normal esterification rates (Carlson et al., 1985). However,

cholesteryl ester levels in plasma are almost normal because of the predominant LCAT

action with LDL. More specifically, the cholesteryl ester content of HDL was very low

whilst the relative cholesterol ester content of VLDL and LDL was normal. These

features clearly distinguished this disorder from FLD.

. Carlson and Holmquist originally suggested that two types of LCAT activities

normally exist in plasma, one that esterifies HDL cholesterol (-LCAT activity) and

one that esterifies LDL and VLDL cholesterol (-LCAT activity). Furthermore, they

proposed that FED was due to deficiency of -LCAT and that FLD was due to the lack

of both alpha and beta LCAT activity. However, it is now clear that only one gene for

LCAT is present and that certain mutations in this gene cause FLD, whereas others

cause FED.

In contrast to FLD, the partial LCAT deficiency in FED has no major clinical

manifestations, except for corneal opacity. Poor vision is developed late in life and both

cornea are opaque with the irises visible only as indistinct shadows. The peripheral

cornea is most opaque and although there is no distinct arcus, a thin yellow ring-shaped

opacity is present superficially. Microscopically, small white-yellow dots form a mosaic

pattern present in all layers of the cornea. It is interesting to note that the disease does

not cause an apparent increase in atherosclerosis.

1.2.4 Acquired liver disease

The liver plays a key role in the synthesis and secretion of VLDL and of

(nascent) HDL; it is also the major site for the synthesis of several enzymes including

LCAT (Osuga and Portman, 1971; Nordby et al., 1976) and apolipoproteins (Guo et al.,

1982) that regulate lipoprotein metabolism in the plasma and peripheral tissues.

Furthermore, the liver is involved in the uptake of intermediates and products of plasma

lipoprotein catabolism and functions in the final degradation of these remnant

lipoproteins. It regulates total body cholesterol stores via the disposition of cholesterol

and other lipids into bile.

In liver disease, LCAT mRNA is reduced substantially compared with the

mRNA of other secreted proteins (Bingle et al., 1991). As LCAT protein mass is
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reduced, it is common to find low plasma LCAT enzymic activity in acute and chronic

liver diseases (Floren et al., 1987) and in medical illness which secondarily affect liver

function. Cholesterol esterification is reduced resulting in a profound lipid and

lipoprotein abnormalities, which predominantly reflect those seen in familial LCAT

deficiency (Day et al., 1979; Seidel, 1987). Abnormal circulating lipoprotein particles in

liver disease result in the change of membrane lipid composition and this in turn affects

the ability of membrane proteins to function because cholesterol deposited in the

membrane reduces the fluidity of the lipid bilayer (Owen, 1990). As this mechanism

tends to affect many cells, it has been proposed that many of the cellular disturbances

and metabolic abnormalities accompanying liver disease result from, or are exacerbated

by, lipoprotein-induced changes in membrane lipid composition and function. Examples

of clinical problems in which membrane lipid abnormalities appear to play a significant

role include anaemia, variceal bleeding and renal dysfunction in liver disease (Owen,

1990). A wide spectrum of liver disease exists and many of the underlying disorders

having acute and chronic presentations.

Acute presentation

Acute liver failure (ALF) is defined as the onset of hepatic encephalopathy

because of severe liver injury in patients and in the absence of pre-existing liver disease

(O’ Grady et al., 1993). Although a rare disorder, it is rapidly progressive with

devastating consequences. It is characterised by a sudden cessation of normal hepatic

function, which triggers a multi-organ response and is reflected by haemodynamic

instability, cerebral oedema, susceptibility to infection, renal failure, coagulopathy and

profound metabolic disturbances. However, it is potentially reversible and the rapidity

of onset is an important indicator of prognosis (Nevens, 1997).

ALF in its most severe form continues to carry a high mortality rate because of

multi-organ failure. Unless emergency orthotopic liver transplantation (OLT) can be

performed, many patients do not survive. Currently, a worldwide shortage of donor

organs limits the applicability of OLT in the setting of ALF (Riordan and Williams

2000). Those on long-term pharmacological immunosuppression who had successful

transplantation are still at risk of serious side effects.

In view of the potential for complete recovery of native liver in ALF, new

modalities of providing temporary liver support based on extracorporeal devices

(artificial or biological) or hepatocyte transplantation (Strom et al., 1997), either as a
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“bridge” to OLT or, ideally, to obviate the need for it by promoting native liver

regeneration and reversing multi-organ failure would theoretically be the best treatment

option. Hence, this has led to my work on encapsulating recombinant cells that secrete

LCAT to reverse some of the abnormal cell and metabolic functions in patients, as this

should help them over acute episodes of hepatocellular dysfunction and or improve

metabolic states prior to surgery in jaundiced patients.

Chronic presentation

Primary biliary cirrhosis is a disease of unknown aetiology associated with a

profound immunological disturbance resulting in progressive destruction of intra-

hepatic bile ducts (Gershwin et al., 1991). It typically presents as cholestatic jaundice.

Primary sclerosing cholangitis (PSC) on the other hand is characterised by chronic

fibrosing inflammation of the bile ducts which results in obliteration of the biliary tree

and ultimately in biliary cirrhosis (Lee et al., 1995, Cullen and Chapman, 2005).

Another common cause of cirrhosis in the western world is alcoholic liver disease. The

latter can progress and lead to the development of hepatocellular carcinoma and liver

failure. At the advanced stage of all these diseases, the only effective therapeutic option

is liver transplantation.

Hepatitis viruses A, B, C, D or E can cause acute hepatitis. The majority of

infections with hepatitis viruses of all types is asymptomatic or result in anicteric

illnesses that may not be diagnosed as hepatitis. All forms of viral hepatitis have a basic

pathological lesion, which is an acute inflammation of the entire liver. Hepatitis B and C

virus are parenterally transmitted and cause most cases of chronic viral hepatitis, which

is defined as a chronic inflammatory reaction in the liver continuing without

improvement for at least 6 months. About 20 % of patients presenting with chronic viral

hepatitis go on to develop liver cirrhosis. The detection of cirrhosis is important as

patients are at risk of complications, including variceal bleeding and hepatocellular

carcinoma and even fulminant liver failure

Haemochromatosis and Wilson’s disease are both autosomal recessive metabolic

disorders where there is an increased iron absorption in the former and impaired biliary

copper excretion in the latter. Due to increased deposition of iron and copper in tissues,

an inflammatory fibrous reaction occurs that results in end organ (e.g. liver and

pancreas) damage and causes cirrhosis, hepatocellular carcinoma and diabetes.
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1.2.5 Lipoprotein abnormalities in liver disease

As the liver plays an important role in the synthesis and degradation of

lipoproteins (Cooper, 1985), it is not surprising that liver disease is accompanied by

abnormalities in lipoprotein structure and composition. Differences and similarities exist

when we compare the changes in obstructive jaundice with those of parenchymal liver

disease. The similarities appear to be related to the reduction in the concentration of

LCAT in plasma.

Lipoproteins in obstructive jaundice

In obstructive jaundice, the total lipids tend to be high irrespective of plasma

LCAT activity (Agorastos et al., 1978). There is marked increase in plasma free

cholesterol and phospholipids (mainly lecithin), and triglyceride. In those with normal

or high LCAT, the individual lipoprotein fractions contain particles with near normal

composition and structure. However, when the LCAT activity is low there are striking

changes especially in LDL and HDL.

Three types of particles are found in the LDL fraction when separated by

column chromatography. One is an abnormal lipoprotein which has been designated as

lipoprotein-X (Lp-X) (Seidel et al., 1972). It is rich in phospholipids and free

cholesterol and complexed with albumin and apoC, a normal constituent of VLDL.

Triglyceride and cholesteryl esters are virtually absent. Under electron microscopy, Lp-

X appears as disc shaped (40-60 nm in diameter) surrounded by a lipid bilayer and the

individual particles tend to form rouleaux. The origin of Lp-X remains unclear, but may

be due to regurgitation of biliary lipids with interaction of bile and serum constituents,

particularly albumin (Manzato et al., 1976). It is removed by the cells of the

reticuloendothelial system. Detection of Lp-X in the serum of patient is a sensitive and

specific clinical chemical parameter for the diagnostic confirmation of obstructive

jaundice (Narayanan, 1984). A second large particle (30-70 nm), rich in triglyceride and

containing apoB and apoC is present when LCAT activity is low (Kostner et al., 1976).

Finally, there are spherical particles of the same size as LDL from normal subjects (20

nm) but with abnormal composition; they are triglyceride rich and cholesteryl ester

depleted.

HDL concentrations are not always reduced in cholestasis. Patients with

relatively early primary biliary cirrhosis have raised HDL levels especially HDL2. This

contrasts with reduced HDL found in advanced disease and in patients with acute biliary

obstruction and due to other causes (Clifton et al., 1988). When LCAT is low in
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obstructive jaundice, three peaks may be seen within HDL on column chromatography

(Agorastos et al., 1978). In the first, the material looks like normal HDL in size and

appearance but is triglyceride and free cholesterol rich and depleted in cholesteryl esters

and phospholipid. The other peak is rich in free cholesterol and phospholipid but poor in

cholesteryl esters and has the appearance of stacked discs or rouleaux under the electron

microscope. They resemble nascent HDL (Hamilton et al., 1976) and the HDL of

patients with familial LCAT deficiency (Norum et al., 1971). In some patients small

spherical particles rich in triglyceride and phospholipid are found in a third small peak.

They are also seen in familial LCAT deficiency and are thought to be intestinal in

origin.

VLDL can be isolated in the ultracentrifuge but they have  mobility on agarose

because they are deficient in apoA (Seidel et al., 1972). They are rich in free cholesterol

and phospholipid but lack cholesteryl esters and triglyceride (Agoratos et al., 1978).

These abnormalities in plasma lipids and lipoproteins in obstructive jaundice are

similar to those found with familial LCAT deficiency. This suggests that acquired

LCAT deficiency may be important in their genesis. In obstructive jaundice, only

patients with reduced LCAT activity show these changes. Patients with normal LCAT

activity have marked hyperlipidaemia but lipoproteins of normal composition and

electrophorectic ability.

The apolipoprotein content of lipoproteins also changes. The most striking

abnormality in HDL apolipoproteins in obstructive jaundice is an increase in apoE

(Floren and Gustafon, 1985). Both apoAI and apoAII are quantitatively reduced in

cholestasis with a disproportionate reduction in apoAII.

Lipoproteins of parenchymal liver disease

Hypercholesterolaemia and hypertriglyceridaemia are common in parenchymal

liver disease. The most characteristic abnormality in plasma lipids is a decrease in the

concentration of cholesteryl esters as a result of LCAT deficiency. This is possibly due

to inadequate synthesis or loss of the enzyme secondary to hepatocyte necrosis

(McIntyre et al., 1974) and results in changes in most lipoprotein fractions, which

become depleted in cholesterol esters and enriched in triglycerides and phospholipids.

Furthermore, the apolipoprotein composition and content of the lipoprotein particles are

abnormal.

Patients with normal or high LCAT activity have normal plasma lipid levels and

lipoprotein fractions of normal structure, electrophoretic mobility and composition.
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However, when LCAT activity is low, there are several HDL abnormalities (Day et al.,

1979). For example, the HDL level is reduced and is similar to those found with familial

LCAT deficiency and in those with obstructive jaundice who had low LCAT levels. In

these patients, as revealed by electron microscopy, nascent HDLs appear like the

stacked discs observed in obstructive jaundice. These are low in cholesteryl ester but

rich in free cholesterol, phospholipid and triglyceride. Their protein content was

reduced with marked decrease in the levels of apoAI and apoAII. As in cholestatic

jaundice, the HDL fraction was rich in apoE. Small HDL particles found in obstructive

jaundice and familial LCAT deficiencies are not found in parenchymal liver disease.

In addition, patients with low LCAT activity have abnormal LDL composition

being deficient in cholesteryl ester and rich in triglyceride (Day et al., 1979). These

LDL are similar to LDL fractions found in obstructive jaundice (and low LCAT) and

with familial LCAT deficiency. VLDL levels were markedly reduced in patients with

parenchymal liver disease and low LCAT. Lastly, low levels of VLDLs are found in

these patients. This may be due to failure in VLDL synthesis and release, either because

of malnutrition or because of damage to parenchymal cells responsible for the

manufacture of VLDL (McIntyre, 1978).

1.2.6 Clinical implications of dyslipoproteinaemia in liver disease

Lipoprotein abnormalities are sensitive indicators of metabolic insufficiency in

liver but the biochemical changes are not usually of diagnostic significance. HDL-

cholesterol level decreases as primary biliary cirrhosis advances and thus may be a

useful marker in disease progression (Jahn et al., 1985). Lp-X is present consistently in

cholestasis but is of no diagnostic value in distinguishing between intra or extrahepatic

cholestasis.The degree of LCAT deficiency may be of some prognostic significance

since patients with low activity appear to have a greater impairment of liver function

and therefore a worse prognosis than patients with lesser degrees of impaired LCAT

activity (Gjone et al., 1971). Some attempts have been made to predict allograft

viability and assess early allograft function by measuring plasma LCAT activity in

organs and recipients following liver transplantation (Higashi et al., 1990; Shimada et

al., 1989). LCAT activity is significantly higher in the donors with good allograft

function than in ones with fair or poor function. A significant correlation was found

between mean LCAT activities during the first 24 hour orthotoptic liver transplantation

(OLT) and early allograft function.
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Thus, although a few overt clinical consequences of the plasma lipoprotein

abnormalities are found with liver disease, there are a number of indirect consequences

which may be of considerable biological importance. In particular, many of the

metabolic disturbances seen in patients with liver disease may be secondary to changes

in the composition and function of cell membranes as described in the next section.

1.2.7 Extrahepatic manifestations exacerbated by dyslipoproteinaemia

The surface composition of plasma lipoproteins is markedly altered in severe

liver disease. LCAT secretion by the liver is decreased leading to accumulation of

cholesterol and lecithin. There is a reduced proportion of arachidonate in phospholipid

and the apolipoprotein composition of the lipoprotein subfractions, particularly HDL is

abnormal. As cholesterol and phospholipid molecules in the surface lipids of

lipoproteins tend to exchange and equilibrate with their counterparts in cell surface

membranes, similar lipid abnormalities can be found in cell membranes. Membrane

function may be altered by membrane abnormalities through change in membrane

fluidity, altered binding of charged substances to phospholipid groups, interaction of

hydrophobic substances with the interior of the membrane, changing the state of water

at the surface and in the interior of the membrane and by reducing the concentration of

arachidonic acid which is a precursor of prostaglandins and thromboxanes (Owen et al.,

1982). Changes in membrane fluidity affect many membrane properties such as

membrane permeability and may alter the activity of membrane proteins which act as

receptors, transport of proteins or enzymes.

We now know that lipoproteins influence cell functions, independently of lipids.

Important functional effects may be due to changes in the apolipoprotein composition.

In patients with severe liver disease, HDL is rich in apoE. This competes with apoB of

LDL for binding to the LDL receptor present in cell surfaces (Owen et al., 1984). This

receptor controls the cellular uptake of LDL, the major carrier of plasma cholesterol,

which provides cells with this essential nutrient. Reduced cellular uptake of LDL has

important implications for cellular cholesterol metabolism.

Renal failure occurs in familial LCAT deficiency. Large amounts of cholesterol

and phospholipids accumulate in the renal cortex and glomeruli. This has been

demonstrated in LCAT-/- mice (Lambert et al., 2001) and in rat kidneys with

experimental liver disease. In chronic biliary obstruction, there was an increased C:PL

ratio in kidney brush border membranes. In advanced liver failure when LCAT activity
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is low (Gjone, 1981), renal failure with similar histological changes also occurs.

Moreover, a reduction in renal plasma membrane arachidonic acid, which in the

precursor for synthesis of the vasodilator prostaglandin, PGE2, was observed in rats with

liver failure (Folkert et al., 1984). Renal prostaglandins, including the vasodilator

prostaglandin E2, seem to play a role in regulating renal vascular resistance, to affect

renal Na+ and water excretion, and to interact with the rennin-angiotensin system and

may be an important factor causing impaired free water clearance and renal failure in

cirrhotic patients (Arroyo et al., 1983; Perez-Ayuso et al., 1984). In bile-duct ligated

rats, there was an increased Na+-dependent D-glucose uptake by the renal cortical brush

border membrane 3 days after ligation compared with non-ligated animals. There was a

positive correlation between Na+/glucose co-transport and the C:PL ratio in the renal

brush border membrane.

The life span of erythrocyte is diminished in familial LCAT deficiency and in

liver disease. Enrichment of erythrocyte with cholesterol is associated with reductions in

membrane fluidity (Owen et al., 1982) and cell deformability (Cooper et al., 1985). In

liver disease patients, HDL with abnormal apolipoprotein (rich in apoE) composition

causes echinocyte (spur cells) formation. The shape change involves the occupation of

binding sites on the cell surface by abnormal HDL. These abnormalities may underlie

the premature removal of the cells from the circulation and predispose to haemolytic

anaemia.

Platelet aggregation is reduced in severe liver disease and this may be related to

a reduced amount of arachidonic acid in the platelet phospholipids (Owen et al., 1981),

since this can result in diminished production of proaggregatory thromboxane A2.

These findings may implicate abnormal lipoproteins in the cause of abnormal clotting

seen in severe liver disease and may be an important factor in variceal bleeding (Laffi et

al., 1986). Binding of normal LDL by platelet surfaces stimulates agonist-induced

aggregation. However, abnormal apolipoprotein E rich-HDL from jaundiced patients

are known to compete with LDL for binding by the LDL receptor on nucleated cells and

thus contribute to the platelet hypo-aggregability (Owen et al., 1984). In addition,

inhibition of platelet aggregation has been correlated to the high apolipoprotein E

content of HDL in patients with liver cirrhosis (Desai et al., 1989).

Abnormal HDL of liver disease inhibits lymphocyte transformation and appears

to be due to binding of HDL apolipoproteins (Owen et al., 1984). Patients with severe

liver disease have increased susceptibility to infection and show abnormalities of

humoral and cellular immunity (Owen et al., 1984).
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In cirrhosis, cardiovascular function is deranged. It has been demonstrated that

inotropic and chronotropic responses to -adrenergic stimulation are substantially

reduced in both cirrhotic patients and animal models of cirrhosis (Ramond et al., 1986;

Lee et al., 1990). The cardiac membrane in cirrhotic rats were found to be more rigid

than controls primarily due to an increase in membrane cholesterol content and C:PL

ratio. As a result, there is an associated decrease in -adrenoceptor function (Ma et al.,

1994; Liu et al., 2006).

Cutaneous xanthomata occur when plasma free cholesterol and phospholipids

are very high, as in chronic obstructive jaundice. A large proportion of cholesterol ester,

with some free cholesterol is usually present in the deposit. There may be scanty or

there may be widespread eruption with a characteristic distribution in the palmar

creases, in the skin of the palms and soles, around the eyes and over the elbows,

buttocks and knees. Nucleated cells seem to take up and accumulate cholesterol from

cholesterol-rich lipoproteins by a non-receptor pathway. It has been shown that when

LDL in liver disease was added to the culture medium of human fibroblasts, the cells

increased their rate of cholesterol esterification and accumulated cholesteryl ester

(Owen and Gillet, 1983). In addition, plasma LDL is not cleared by the normal route

because apoE-rich HDL from jaundiced patients are known to compete with LDL for

binding by the LDL receptor on nucleated cells (Owen et al., 1984)

1.2.8 Animal Models of LCAT Deficiency

Given the gaps in our knowledge of LCAT deficiency and the associated

difficulties with using human subjects, animal models play an important role in

research. In order to understand the pathophysiology and evaluate the potential forms of

treatment in LCAT deficiency, various animal models have been used. They range from

animal models of liver failure to genetically engineered animals.

Several mouse models to study liver failure have been described and they

include surgical (hepatic resections), devascularisation procedures, and pharmacological

manipulations such as the administration of hepatotoxic drugs. The criteria for a

satisfactory animal model of acute liver failure include: (1) induced liver failure should

be reversible, (2) liver damage should be reproducible, (3) selective liver damage should

occur that leads to death during an interval similar to that seen clinically, (4) death

should occur long enough from the insult to provide a suitable therapeutic window, (5) a
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large animal model should be used, and (6) any method used should pose minimal

hazard to personnel (Terblanche and Hickman 1991).

Two Models of Liver Injury

Liver injury in animal models may be induced by either using a toxic agent or a

surgical disconnection of the bile duct. Although not ideal, for the purposes of this study

these models simulate to some extent the biochemical and metabolic disturbances in

liver failure.

(i) Galactosamine hepatitis. Keppler and Decker in 1971 first described the

hepatotoxic effects of galactosamine in rats. Subsequently a reproducible study was

substantiated using galactosamine on a strain of rabbits (Blitzer et al., 1978). Coma

preceded the death of the majority of rabbits between 21 and 44 hour following

injection. Serum biochemistry and liver histology resembled the findings seen in acute

liver failure in humans. Our laboratory has studied the membrane lipid changes in

erythrocytes, liver and kidney, after inducing liver disease in rats by administering

intraperitoneal D-galactosamine hydrochloride (1g/kg body weight) dissolved in saline

on the 1st and 3rd days (Kawata et al., 1986). Control rats were given saline alone and all

were killed on the 4th day. D-galactosamine is a selective hepatotoxin, an amino sugar

metabolized by the galactose pathway in the liver. This leads to depletion of

intracellular uridine nucleotides, which in turn disturbs hepatocyte RNA metabolism,

ultimately leading to hepatocyte necrosis (Keppler et al., 1968; Farber et al., 1973;

Keppler and Decker 1969; Shinozuka et al., 1973).

(ii) Bile duct ligation. Under diethyl ether anaesthesia, the common bile duct of

rats was doubly ligated and divided between the two ligatures. Other rats were subjected

to sham-operations and both groups were studied 3 weeks after operations.

Plasma LCAT activity was significantly reduced in both galactosamine-treated

and bile duct-ligated rats. As expected, in both these animal models there was a

significant increase in the proportion of plasma total cholesterol present as free

cholesterol and in the cholesterol : phospholipid molar ratio, C:PL. There was an

accumulation of cholesterol in lipoprotein surfaces and a modest rise in C:PL (15%) in

red cell membranes. The increased cholesterol content of such erythrocytes correlates

closely with a reduced membrane fluidity and with impaired carrier-mediated

membrane transport of cations and anions. In addition, rats with chronic (3 weeks)

biliary obstruction accumulated cholesterol in renal cortical brush-border membranes

resulting in significant increases in cholesterol content and C:PL ratio, which correlated
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with decreased membrane fluidity and contribute to renal dysfunction (Kawata et al.,

1987). Kidney brush border membrane and red cell membrane from obstructed rats

were deficient in arachidonate and thus PGE2 synthesis would diminish.

Transgenic Mice and Rabbits that Overexpress Human LCAT Gene

The generation of transgenic animals overexpressing LCAT has helped to

answer some questions regarding the role of LCAT in lipoprotein metabolism. They are

(1) Is LCAT rate-limiting in the metabolic pathways of plasma HDL and LDL? (2) How

does overexpression of LCAT influence the lipoprotein profile? (3) Are there other gene

products acting synergistically with LCAT in controlling lipoprotein metabolism? (4)

Can modification of plasma LCAT activity alter the reverse cholesterol transport and

atherosclerosis?

Recent work on overexpression of human LCAT gene in mice and rabbits has

reported changes in plasma lipids, lipoproteins and the susceptibility to diet-induced

atherosclerosis in these animals. LCAT activity increases from 3-100 folds in these

transgenic animals (Vaisman et al., 1995). Similarly, levels of total cholesterol, HDL

cholesterol, apoA-I apoA-II and apoE increase significantly. Large HDL was present in

mice but apoB containing lipoproteins decreased in both mice and rabbits. With a

decreased LDL- and increased HDL-cholesterol, the lipoprotein profile appears

antiatherogenic. However, when these two animal models were fed high cholesterol,

atherogenic diet, unexpected results were observed. Mice transgenic for the human

LCAT gene became more prone to develop atherosclerosis than control mice (Berard et

al., 1997), whereas the transgenic rabbits became less susceptible to diet-induced

atherosclerosis than their controls (Hoeg et al., 1996). The species difference is

apparently due to the presence of CETP in rabbits, which is absent in mice.

Consequently, there is an impaired transport of newly formed cholesteryl esters to LDL,

and they accumulate in HDL (Berard et al., 1997). Indeed, coexpression of simian

CETP with human LCAT in mice does reduce diet-induced atherosclerosis (Foger et al.,

1999). CETP appears to reduce the level of large proatherogenic HDL found in the

LCAT transgenic mice. When CETP was absent, large HDL persists in the circulation

(Brousseau et al., 1996) due to slow liver clearance (Berard et al., 1997). Indeed, when

transgenic mice containing both human LCAT and CETP genes were crossbred, they

were significantly protected against diet-induced atherosclerosis (Foger et al., 1999).
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LCAT-Deficient Mouse

To evaluate the role that LCAT plays in modulating HDL metabolism, reverse

cholesterol transport, and atherosclerosis, a mouse model had been created for human

LCAT deficiency by performing targeted disruption of the LCAT gene in mouse

embryonic stem cells (Sakai et al., 1997). Homozygous LCAT-/- mice were born healthy

and fertile. Compared with age-matched wild-type littermates, the LCAT activity in

heterozygous and homozygous knockout mice was reduced by 30 and 99 %

respectively. The LCAT-/- mice had a complete deficiency of both - and -LCAT

activities in plasma indicating that biochemically these were most similar to patients

with classical LCAT deficiency but with no evidence of corneal opacities or renal

insufficiency.

LCAT deficiency resulted in significant reductions in plasma concentrations of

total cholesterol, HDL cholesterol and apoAI in LCAT-/- mice to 25, 7 and 12 % of

normal levels respectively. The cholesteryl ester/total cholesterol ratio in LCAT-/- and

wild type were 34-52 % and 79-81 % respectively reflecting the absence of LCAT-

mediated cholesterol esterification in the plasma of homozygous mice. The residual

cholesteryl esters remaining in LCAT-/- mice plasma may originate from intracellular

pools in the intestine and liver formed by the enzyme acylCoA: cholesterol

acyltransferase. In addition, plasma triglycerides were significantly higher in male

homozygous knockout mice compared with wild-type animals but remained normal in

female LCAT-/- mice.

LCAT-/- mice that were fed on a high-fat high-cholesterol diet had reduced

plasma levels of the proatherogenic apoB-containing lipoproteins through upregulation

of the LDL-receptor and an increase in plasma apoE. Reduced atherosclerosis in spite of

low HDL levels can be explained by the compensatory reduction in the plasma levels of

the proatherogenic apoB containing lipoproteins in LCAT-/- mice. A marked reduction

in aortic atherosclerosis was seen in these mice. No ocular abnormalities were found in

the LCAT-/- mice even though corneal opacities were found in several syndromes

associated with HDL deficiency.

In addition to severe hypoalphalipoproteinaemia, and hypertriglyceridaemia,

LCAT-/- mice also present with a clinical phenotype similar to patients with FLD,

including normochromic normocytic anaemia and glomerulosclerosis. Anaemia is

probably due to altered red cell membrane lipids resulting in mild haemolysis. The

presence of Lp-X in these mice appears to be associated with the development of

glomerulosclerosis (Lambert et al., 2001). They developed renal lesions similar to those
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previously described in patients with FLD. Proteinuria, being one of the earliest findings

in FLD patients was detectable in LCAT-/- mice fed on a high fat/high cholesterol diet.

1.3 Molecular Therapies

1.3.1 Recombinant Protein Therapy

The basis for recombinant therapeutic proteins was laid when the first gene

technology experiment was published in 1973 (Cohen et al, 1973). Over the past 20

years, recombinant proteins have gained increasing importance as therapeutic agents.

They are becoming more attractive compared with conventional drugs because the time

required to develop protein drugs is considerably shorter (Bienz-Tadmor et al, 1992;

Struck, 1994).

Proteins by nature are neither carcinogenic nor tetratogenic and are specific in

their function. They have lower toxicity compared with chemical substances. Therefore,

they have less potential for development of idiosyncratic reactions or interference with

unrelated biochemical pathways. The specificity of protein actions is usually reflected in

the specificity of their expression and sequestration within tissues or organs. Their

development into a medicinal product involves fewer safety issues compared with

chemical products once its biological mode of action has been identified and its medical

application described.

Greatest research effort in developing new protein drugs is being devoted to

cancer. Other therapeutic areas include AIDS, asthma, diabetes, heart disease, multiple

sclerosis, rheumatism, stroke and viral disease. Monoclonal antibodies comprise the

largest group of products whilst vaccines make up the second largest group. The latest

form of protein production is gene therapies, whicn involves restoring or enhancing the

normal functioning proteins to the body, most commonly by viral or nonviral gene

transfer. Gene therapy was originally developed as a treatment modality for the

management of hereditary defects such as adenosine deaminase deficiency (Mullen et

al, 1996). Now it is being developed for the treatment of acquired diseases such as

cancer or AIDS.

The first generation therapeutic proteins were naturally occurring proteins that

had been produced and made available by gene technology methods. The majority of

proteins currently on the market belong to this category. They include insulin, growth

hormones, interferons, erythropoietin, factor VIII, granulocyte/macrophage colony
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stimulating factor and tissue plasminogen activator. Recombinant production allows the

manufacture of a drug that cannot be produced by conventional means e.g.

erythropoietin. Large quantities of a drug can also be produced, which otherwise would

only be available in limited amounts, e.g. insulin or growth hormone. Finally, the

products e.g. factor VIII or hepatitis vaccines are free from human pathogenic viruses

Second generation proteins are described as the products of ‘protein

engineering’. They are the result of either minor or larger modifications related to

manufacturing processes or pharmaceutical formulation, or to protein fusions with

combined or new functions. Some examples of specific constructions are binding

domains of ligands that are used as receptor antagonists, or fusions between antibody

domains and new functions such as toxin fragments for tumour therapy.

Proteins have the great advantage of having been developed by nature as highly potent,

specific agents and thus are ideal medicines. However, the problem is that proteins have

to be administered from outside the body for therapeutic purposes. Usually proteins

have to be injected as they cannot be administered orally. But even then problems can

arise with the natural potency of proteins. Exogenous administration results in

fluctuating drug concentrations that can differ from the natural state. Systemic

administration may not be effective because of the interaction of protein with cells of

the immune system. In theory, some of these problems can be overcome by in vivo

expression of proteins, in other words by gene transfer and production within the body.

Despite this, considerable technical difficulties exist and have yet to be overcome. Some

of the major challenges are: (1) efficient gene transfer into cells, (2) the antigenicity of

vectors, (3) cell and tissue specific gene transfer (targeting), (4) cell and tissue specific

gene expression, (5) efficient and sustained in vivo gene expression, (6) regulatable gene

expression, and (7) stable, directed integration of vectors (Gunzburg and Salmons,

1996).

1.3.2 Viral Gene Therapy

In the late 1950s, the discovery that viruses have an intrinsic capability to

transfer their genetic material into infected cells gave birth to the idea of gene therapy.

One of the main viral vectors used in gene therapy is the adenovirus. The high

efficiency of adenoviral-mediated gene transfer results from (1) the availability of

adenovirus stocks of sufficient titer to transduce a large number of cells in the liver, (2)
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the affinity of adenovirus to infect mammalian cells, (3) the capacity of adenovirus to

infect and express encoded genes in both actively dividing and nondividing cells and (4)

the ability of adenovirus particles to access hepatocytes via the pores in the fenestrated

endothelium of the liver (Wilson, 2001).

Basic Biology of Adenovirus

More than 50 different serotypes are known, and the most frequently utilized for

gene therapy are type 2 and type 5. Adenovirus can infect a broad range of mammalian

cell types and the group of adenoviruses associated with human diseases (typically

diseases of the respiratory system) is suitable for use as gene transfer vectors. The

capacity for foreign DNA is up to 8.5 kb, which suffices for most therapeutic genes and

these can be inserted at a variety of sites in the adenovirus genome to generate

recombinant vectors. Transduction into recipient cells and internalization is mediated

through fiber protein anchored to the vertex of the adenovirus capsid. Adenovirus

enters cells via an endocytic mechanism that is mediated by 1 integrin binding to the

viral penton protein (Wickham et al, 1993). During lytic infection, the viral genome is

replicated and the DNA packaged into virions by self-assembly of the major capsid

proteins. This takes place within the nucleus of infected cells.

Three generations of adenoviral vectors have been developed in order to

decrease cytopathic effects and immune responses. The first generation has a deletion in

the E1 region encoding viral replication and DNA synthesis (Stillman, 1986). However,

these E1 deleted viruses can be complemented by co-infection of another DNA virus.

Moreover, there was still low-level replication and notable immunogenicity of the first

generation (Yang et al., 1994) and thus led to the preparation of the second generation,

which was constructed by deletion of other viral regions, either E2 or E4 (Halbert et al.,

1985; Medghalchi et al., 1997). This second generation has a significantly reduced

cytopathic effects and immune responses. The third generation, called “gutless vectors”

was developed by deleting all viral genes except inverted terminal repeats and

packaging signal and is characterized by reduced immunogenicity (Morsy and Caskey,

1999). These vectors have a capacity of 34 kb but are not able to replicate unless

complemented and so are often termed, helper dependent (Gao et al., 1996).

These viruses have a relatively favourable safety profile and have not been

associated with human malignancies or persistent infections. The viral particles can be

purified and concentrated to high titre (about 1011 plaque-forming units/ml), making
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systemic clinical administration feasible. Adenovirus rarely integrates into the host

chromosome and replicates in an extra chromosomal state. This reduces the risk of

insertional mutagenesis but renders a transient expression of foreign delivered genes

(Silman and Fooks, 2000).

The immune system plays an important role in adenovirus-mediated gene

transfer (Yang et al., 1996). Exposure to adenovirus infection is common and the

majority of the population carry antibodies against the different serotypes. Therefore,

when adenovirus vectors are injected, more than 85 % are degraded before they reach

target cells. Acute-phase responses after injection are usually caused by capsid protein

resulting in release of pro-inflammatory cytokines (Ritter et al., 2002), whereas

inflammatory responses involve the activation of B and T-helper cell–mediated

immunity. Ultimately, this influences the efficiency of gene delivery (DeMatteo et al.,

1997). Different approaches are being explored to inhibit the inflammatory responses

against adenoviral vectors and to circumvent the degradation of adenoviral particles.

Using vectors with capsid proteins derived from different adenoviral serotypes seem to

give promising results (Chia et al., 2004).

Adenovirus Gene Transfer to Liver

The liver is an attractive target for somatic gene transfer. Ex vivo gene therapy of

liver is based on transplantation of autologous genetically modified hepatocytes and has

been extensively developed in animal models. In vivo gene therapy is a more practical

and potentially effective strategy for genetic reconstitution in the liver. The hepatocyte

is accessible to parenterally administered gene transfer agents via large pores called

fenestrae in the microcirculation of the liver. The feasibility of using recombinant

adenovirus for liver-directed gene therapy has been demonstrated in mice (Imai et al.,

2005), rabbits (Rashid et al., 2003), dogs (Wang et al., 2000; Mount., et al 2002) and

Rhesus monkeys (Haegel-Kronenberger et al., 2004). It is a highly efficient process that

can result in transduction frequencies in excess of 90 % (Herz and Gerard, 1993) and is

much higher than that achieved with other vector systems such as recombinant

retroviruses, liposomes or molecular conjugates.

1.3.3 Microencapsulated-artificial cells

The concept of artificial cells was first demonstrated by Chang in 1964 (Chang

1964). Preparation of these cells involved encapsulating charcoal, enzymes, genes
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within microscopic, semipermeable containers. A number of potential medical

applications of ‘artificial tissue/organ’ have been developed, including red blood cell

substitutes (Chang et al., 2003), artificial liver for detoxification (Chang, 1992),

artificial kidney (Chang and Malave, 2000) and immunosorbent and drug delivery

systems. Encapsulation of living cells represents another important aspect of the

artificial cell concept. Whole cells were first encapsulated to treat diabetes mellitus

(pancreatic  cells) (Lim and Sun, 1980), and later hepatocytes were used for liver

failure (Balladur et al., 1995) and parathyroid cells for hypocalemia (Picariello et al.,

2001). Potentially, encapsulated cell technology can offer a solution to the problem of

donor organ shortage. It not only enables the transplantation of human cells and tissues

without immunosuppressant but also can permit the use of cells isolated from animals

(Lanza and Cooper, 1998).

A useful application of the artificial cell concept is encapsulation of genetically

modified cells which represents an alternative approach to somatic gene therapy. It has

broad application to treat diseases such as cancer (Lohr et al., 2001; Joki et al., 2001;

Xu et al., 2002) and a wide range of other disorders resulting from functional defects of

native cell systems. However, the main obstacle impeding progress in this field is the

inability to achieve efficient gene transfer and persistent gene expression in appropriate

somatic cells (Palmer et al., 1991; Puthenveetil and Malik, 2004).

Principles of Action of Microcapsules

Small molecules including peptides produced inside the microcapsules can

diffuse across the membrane into the ‘extracellular’ environment. Biologically active

materials retained inside microcapsules can act on smaller molecules outside to diffuse

across the membrane of the microcapsule. The principle factors determining the rate of

diffusion are the type and size of a solute, interactions between the solute and the

membrane, and the membrane thickness (Uludag et al., 2000).

A further advantage of microcapsules is that capsule contents are protected from

immune rejection because the capsule is designed to be impermeable to leukocytes and

antibodies (Cirone et al., 2004). This allows allogeneic or even xenogeneic cells to be

implanted into the host organism. The encapsulated cells are sustained by an external

supply of oxygen and nutrients that can diffuse into, and their secreted products out of,

the microcapsules to fulfil their functions.
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Microcapsules offer a number of distinct advantages over the use of other

encapsulation devices, including: (1) greater surface to volume ratio, (2) ease of

implantation.

Alginate-polylysine-alginate Microcapsule

Sodium alginate (composed of mannuronic and guluronic dimers) is commonly

used as the polyanion and poly-L-lysine (PPL) as polycation for microcapsule design

(Orive et al., 2004). Since undergoing many modifications, the present form of the

capsular membrane is composed of PLL sandwiched between two alginate layers

(alginate-polylysine-alginate or APA) (Thu et al., 1996). In a typical process,

encapsulation begins with the formation of alginate droplets containing cells which are

produced by forcing alginate and cells to flow through a needle. The diameters of the

droplets are controlled either by regulated air flow or by a high-voltage pulse around the

tip of the needle. Next, the beads are formed by gelling of the alginate in a calcium-rich

medium (Smidrod and Skjak-Broek, 1990). Subsequently, the beads are coated with a

PLL membrane by suspending them in a PLL solution. During this step, PLL binds with

mannuronic and guluronic acids in the alginate molecules to form complexes consisting

of alpha-helical polypeptide cores surrounded by super helically orientated

polysaccharide chains. By varying molecular weight, concentration of the PLL and

incubation time, one can modulate the porosity of the capsule membrane (van

Schilfgaarde and de Vos, 1999). The biocompatibility of APA biocapsules has been

demonstrated in numerous in vivo transplantation experiments involving

microencapsulation of pancreatic islets. (Soon-Shiong, 1999; Uludag et al., 2000).

Capsular construction is critical and capsular size is an important factor in the

kinetics of biologic substances released by encapsulated cells and in the easy access to

nutrients and oxygen. Smaller capsules have the following advantages: (1) encapsulated

cells have quicker access to oxygen and nutrients and thus promote cell survival, (2)

reduced dead space allows faster cell responses to physiological fluctuations and (3) less

susceptibility to cell overgrowth on capsular surfaces, as the smaller capsules have

greater mobility.

Although APA microcapsules have been widely used in microencapsulation of

cells, its membrane function is still limited by mechanical fragility, low tensile

resistance against swelling, immunogenicity and cytotoxicity. A recent study of alginate

microcapsules coated with three different polycations, PLL, poly-D-lysine and poly-L-

ornithine evaluated their performance in relation to morphology, osmotic resistance,
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mechanical stability and viability of the immobilized C2C12 myoblasts cells. Poly-D-

lysine and poly-L-ornithine did not show any significant improvement over the PLL

microcapsules (De Castro et al., 2005).

Microencapsulation of Hepatocytes

The survival following conventional treatment of fulminant hepatic failure

(FHF) is only in the range of 10 - 20 %. Although liver transplantation has good results

with more than 90 % 1 year survival and 50 % 5 year survival, it is still a major

procedure that is limited by the shortage of donor livers and is associated with rejection

complications. Transplantation of microencapsulated hepatocytes is potentially a

simpler, less hazardous treatment and allows large stocks of hepatocytes to be shared for

future use. The feasibility of encapsulated hepatocytes to treat FHF has been

investigated previously (Sun, 1997). Initially, viable hepatocytes were encapsulated in

APA membranes. Encapsulated rat hepatocytes were shown to survive and function for

more than one week in vitro and up to one month in vivo in both normal rats and rats

with galactosamine-induced FHF. In addition, encapsulated hepatocytes were found to

produce urea. In an extended study, free hepatocytes were harvested from normal rat

livers and encapsulated in APA membranes before they were implanted into the

peritoneal cavities of rats with galactosamine-induced FHF. The control group of

animals received empty capsules. A statistically significant improvement in survival at

seven and fourteen days was demonstrated in those FHF rats with hepatocyte

implantation. Following transplantation of encapsulated hepatocytes, the liver began to

regenerate. By 21 days post-transplantation, this regeneration had reached a point where

the viability of the encapsulated hepatocytes was no longer critical to the survival of the

rats. In vitro studies showed that encapsulated hepatocytes continued to synthesise

albumin for up to 3 weeks and they remained viable up to 30 days (Wong and Chang,

1986; Cai et al., 1989). The results of this study prove that allograft of encapsulated

hepatocytes can take over some functions of the damaged liver caused by toxins, drugs

or acute disease whilst allowing the liver time to regenerate or recover fully. In future,

microencapsulated hepatocytes could potentially provide a useful method to treat acute

or chronic liver failure as well as a therapeutic bridge prior to liver transplant (Benoist

and Nordlinger, 2001; Ambrosino et al., 2003).
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Implantation of Encapsulated Genetically Engineered Cells

A novel approach to gene therapy which avoids problems associated with the

use of autologous tissue is the use of genetically engineered cell lines to secrete the

desired therapeutic gene product. However cell lines have the potential problems of

rejection by the immune system. Immunoisolation of transplanted cells is a promising

way to avoid immune rejection. The technique involves expanding clones of transduced

cell lines showing stable integration and sustained expression of the therapeutic gene

and encapsulating them in a semipermeable biocompatible membrane such as APA.

Implantation of microencapsulated cells would have the following advantages: (1)

durable capsules will limit cell growth preventing uncontrolled cell line proliferation in

recipient animals, (2) immunosuppressive therapy is not needed, and (3) the

transplantation requires minimal surgery. The feasibility of delivery of therapeutic gene

products from encapsulated recombinant cells has been demonstrated in both in vivo and

in vitro (see Table 1.1).

Long-term Function of Encapsulated cells and genetically engineered cells after

implantation

The encapsulations of endocrine cells, hepatocytes and genetically engineered cells

have yielded promising results. Further research is focused on improving the safety and

long-term feasibility of implantation. Of major interest is increasing mass transfer

efficiency (Coromili and Chang, 1993; Dionne et al., 1996) and biocompatibility (Lanza

and Cooper, 1998). When microcapsules are recognised as foreign, a foreign body

reaction is triggered resulting in coating by giant cells and fibrous tissues that decreases

the mass transfer of oxygen, nutrients and metabolites and eventually lead to death of

the encapsulated cells (Soon-Shiong et al., 1991; Clayton et al., 1991; Vandenbossche

et al., 1993; Fritschy et al., 1994). In relation to immunological acceptance,

microcapsules can exclude recruited leukocytes (T lymphocyte sub-population i.e.

CD8+) preventing cell-to-cell contact between encapsulated cells and the host’s immune

system during allograft immunity. In addition, access to antibodies as well as

complement fractions released during xenograft immunity is restricted by the

microcapsule. However, if small molecules (~ a few kD) or antigens released cross the

microcapsule membrane, a significant inflammatory cell reaction will result. Cytokines,

nitric oxide and free oxygen radicals released from the inflammatory cells may destroy

the encapsulated cells (Strand et al., 2001). Highly purified biocompatible polymers

with minimal endotoxin and protein content are necessary to prevent graft rejection.
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More research is still needed to improve the biocompatibility of microcapsules.

Although lack of biocompatibility does not appear to pose a problem in microcapsules

transplanted over a short time, a number of problems still need to be addressed before

microencapsulated cells can be routinely implanted into humans for longer periods.
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Table 1.1 Some therapies based on the implantation of microencapsulated

genetically engineered cells

Cell Type Gene Type of

Capsule

Mode of

Action

Disease References

Hamster

kidney cells

Ciliary

neurotrophic

factor (CNTF)

Polymer Secrete

CNTF

Amyotrophic

lateral

sclerosis

Aebischer

et al., 1996

Mouse

fibroblasts

Human

growth

hormone

(hGh)

APA Secrete hGh Dwarfism Basic et

al., 1996

Neuro2A

cells

Pro-opio

melanocortin

(POMC)

Polymer Secrete -

endorphin

Chronic pain Saito et al.,

1995

SK2

hybridoma

APA Secrete

monoclonal

antibodies

Secrete

human

interleukin 6

IgG1

plasmacytosis

Okada et

al., 1997

Mouse

fibroblasts

Factor XI APA Secrete

human factor

XI

Haemophilia Hortelano

et al., 1995

Hamster

kidney

fibroblasts

Human nerve

growth factor

(hNGF)

Polymer Secrete hNGF Parkinson’s

disease

Date et al.,

1996

Xenogeneic

Baby

Hamster

Kidney cells

Human nerve

growth factor

Polymer Secrete hNGF Axotomised

septal

cholinergic

neurons

Winn et

al., 1994
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1.4 Aims of Thesis

The aim of this thesis is to ascertain the feasibility of two proposed approaches

to treat LCAT deficiency in animal models, namely infusion of recombinant protein and

encapsulated cell therapy. Studies performed in vitro and in vivo were set out with the

following four aims:

Aim 1: To establish a method to purify histidine-tagged human LCAT from medium

collected from genetically modified CHO (LCAT-CHO cells).

Aim 2: To determine whether purified LCAT is biochemically active and can reverse

dyslipoproteinaemia when injected into LCAT -/- mice.

Aim 3: To investigate whether LCAT-CHO cells can survive in a microencapsulated

environment and secrete LCAT.

Aim 4: To determine whether implantation of encapsulated LCAT-CHO cells into the

peritoneum of LCAT -/- mice can correct their plasma lipoprotein abnormalities.
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CHAPTER 2

METHODS AND MATERIALS
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2. METHODS AND MATERIALS

2.1 Cell Culture

2.1.1 Materials

Iscove’s modified Dulbecco’s Modified Eagle’s Medium (DMEM), CHO-S-

Serum Free Medium II (SFM), CHO-III-Protein Free Medium (PFM) and CD-CHO

medium were purchased from Life Technologies. In searching for an ideal medium

from which to isolate pure LCAT, the cells were cultured in these different media.

Iscove’s modified DMEM, the basic growth medium was supplemented with dialysed

fetal bovine serum (FBS, Sigma-Aldrich Co, Dorset, UK). All media were

supplemented with glutaMAX, penicillin, streptomycin and non-essential amino acids

(all from Life Technologies), while phosphate buffered saline (PBS), trypsin-EDTA

solution and methotrexate were purchased from Sigma-Aldrich Co, Dorset, UK.

2.1.2 Cell Growth

The CHO-H6LCAT cells were grown in Iscove’s modified DMEM media

supplemented with 2 mM glutaMAX, 100 U/ml penicillin, 100 µg/ml streptomycin, 1%

non-essential amino acids and 5% heat-inactivated dialysed FBS. The cells were

cultured as a monolayer in 75 cm2 tissue culture flasks (T-75) at 37 0C in a humidified

atmosphere of 5% CO2 and 95% air.

2.1.3 Passaging of cells

When the cells were nearly confluent, they were trypsinized and passaged. The

spent medium in the flask was removed and discarded. The cells were washed once with

5 ml PBS and trypsin-EDTA (2-3 ml) was added to cover the entire monolayer of cells.

After incubating the flask in the incubator for 2-3 min, the cells were detached from the

surface of the flask by gentle agitation, which was confirmed by inspection under the

microscope. The trypsin was neutralised by addition of growth medium. The cells were

then split by volume, usually 1:6, by adding pre-warmed medium (37 0C) and were

resuspended and distributed into new flasks (15 ml per T-75 flask).
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2.1.4 Freezing of cells

Stocks of cells were stored frozen in liquid nitrogen without compromising their

function. A flask of near-confluent cells was trypsinized as above. The trypsin was

neutralised with growth medium after the cells were made into a suspension and an

aliquot (100 l) was used to estimate cell density (see 2.2.5). The recommended number

of cells for freezing = 1 x 106 cells/ml. The remainder was centrifuged at 2,000 x g in a

sterilin tube for 3 min at 22 0C. The freezing medium was FBS and 10 % DMSO,

filtered through a 0.2 m acrodisc prior to use. The pelleted cells were resuspended in

freezing medium at 106 cells/ml and were aliquoted (0.5 ml) into cryovials. The vials

were gradually cooled at approximately 1 0C/min to avoid excessive stress to the cells

and after 2-3 h transferred to a liquid nitrogen storage tank.

2.1.5 Thawing of cells from liquid nitrogen

An aliquot of 15 ml of growth medium (not prewarmed) was added to a 20 ml

sterile tube. The required frozen cryovial of cells was transferred from the liquid

nitrogen to a 37 0C waterbath and was rapidly thawed. It was then sprayed with ethanol

and placed into the tissue culture hood. The cell suspension was transferred immediately

into the growth medium and the cells resuspended. Usually the cell suspension was

transferred directly into a T-75 flask for incubation, but in some cases I first removed

the toxic DMSO by centrifuging the tube and resuspending the pellet in a new batch of

medium.

2.1.6 Estimation of cell numbers

Trypan blue staining and a haemocytometer were used to determine total cell

counts and viable cell number. The underlying principle is that live (viable) cells take

up and excrete trypan blue dye, whereas dead (non viable) cells absorb but cannot

excrete the dye and therefore appear blue.

Equal volumes of cell suspension (50 l) and 0.4% (w/v) trypan blue (50 l)

were mixed together and were allowed to stand for 5-15 min. With the coverslips in

place, a small amount of the mixture was transferred to both chambers of the

haemocytometer by carefully, touching a drop to the edge so that filling was by

capillary action.
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Starting with chamber 1 of the haemocytometer, all the cells in the 1 mm corner

squares and centre were counted. Non-viable cells stained blue and a separate count of

these was made. The same procedure was repeated for chamber 2 and a minimum of 8

squares were counted. As 1 cm3 = 1ml, each square of the hemocytometer with

coverslip in place represents a total volume of 0.1mm3 or 10-4 cm3. Cells per ml were

calculated as average count per square x dilution factor x 104.

If Average Count = 94.5 per square

= 94.5 x 2 (dilution factor) x104

= 1.89 x 106/ml

The total cell number was calculated as cells per ml x the original volume of medium

containing the cells e.g. for 8 ml = 15.12 x 106. The percentage of viable cells (%) was

calculated as total viable cells (unstained)  total cells (stained + unstained) x 100.

2.1.7 Screening Cells for Mycoplasma Infection

The incidence of mycoplasma infections of cell cultures is variable.

Mycoplasma infections may be transmitted from laboratory staff (M. orale) and infected

bovine serum (M. arginini, M. hyorhinis, A. laidlawii) or from other mycoplasma-

infected cell cultures. The infection cannot be detected by naked eye but may be evident

by signs of general deterioration in culture, such as a decrease in protein production by

the cell line. Mycoplasma within cells grows slowly and does not destroy host cells;

hence it is important to regularly screen for covert contamination of established cell

lines. There are several techniques to detect mycoplasma infection in cell culture.

DAPI (4’, 6-Diamidine-2’-phenylindole dihydrochloride) method

This is a fluorescent dye that selectively binds to DNA and forms strongly

fluorescent DNA-DAPI complexes with high specificity. When DAPI is added to tissue

culture medium, it is readily taken up by the cells yielding fluorescent nuclei with a dark

cytoplasmic background. When the cells are contaminated with mycoplasma, discrete

fluorescent foci are seen in the cytoplasm and intercellular spaces.

The cells to be tested were grown in antibiotic-free media for at least two

passages on coverslips in petri-dishes. At 50-70 % confluence, the medium was

discarded and the cells washed once with DAPI-methanol (1 g/ml). The cells were

incubated with DAPI-methanol for 15 min at 37 0C. The staining solution was removed
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and the cells were washed with methanol. The inverted coverslip was mounted on a

microscope slide with glycerol and examined under a fluorescence microscope (Nikon)

with 340/380 nm filter and LP 430 barrier filter.

PCR to detect Mycoplasma infection

The polymerase chain reaction (PCR) is one of the most powerful tools in

molecular biology and amplifies a DNA or cDNA template many thousand- or million-

times quickly and reliably. It is a relatively simple, but sensitive technique. The PCR

process amplifies short (usually 100-500 bp) segments of a longer DNA molecule. A

typical amplification reaction includes the sample target DNA, a thermostable DNA

polymerase, two oligonucleotide primers, deoxynucleotide triphosphates (dNTPs),

reaction buffer and magnesium. The components of the reaction are mixed and the

reaction is placed in a thermal cycler and exposed to a series of different temperatures

for varying amounts of time, referred to as one cycle of amplification. This consists of

three steps: 1) production of single-stranded DNA templates by denaturing the DNA, 2)

annealing with an excess of two oligonucleotide sequences (the primers), each

complementary to a stretch of DNA at the target DNA and 3) synthesis of a copy from

each strand of template by DNA polymerase. Each PCR cycle theoretically doubles the

amount of targeted template sequence in the reaction.

Materials

PCR primers used to amplify the 16S rRNA, found specifically in mycoplasma were:

GPO-3 forward primer: GG GA GCAAA CAGGA TTAGA TA CCCT (10 M) and

MGSO reverse primer: TGGCACCATCTGTCAC TCTGTTAACCTC (10 M). The

primers were added to a 2 M cocktail of dNTPs (dATP, dTTP, dGTP and dCTP),

thermostable DNA polymerase e.g. Pfu or Taq (5 U/l), thermostable DNA polymerase

reaction buffer (10 x stock concentration) and sterile filtered water. The final mixture

was overlaid with mineral oil. A contaminated cell culture lysate was used as a positive

control.

Methods

The test medium was collected from a 70 - 100 % confluent adherent culture and

1 ml was centrifuged for 10 min at 13,000 rpm. Most of the supernatant was removed,
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the tube recentrifuged and any remaining supernatant discarded. The pellet was

resuspended in 100 l of water and transferred to PCR tubes and incubated in a PCR

machine for 10 min at 95 0C to completely lyse the cells. It was further centrifuged for 2

min at 13,000 rpm and the supernatant containing the templates was kept for the PCR

reaction.

A master mix for amplification was prepared by adding the reagents in the order

and proportions shown below to 0.2 ml thin-walled PCR tubes (Table 2.1). Tube

contents were covered with 20 l of mineral oil and incubated in a Stratagene PCR

Robocycler (Stratagene Ltd; Cambridge UK) as follows:- After heating at 95 0C for 5

min, amplification was programmed for 35 cycles, with denaturation for 1 min at 95 0C,

annealing of primers for 1 min at 55 0C and extension for 1 min at 72 0C. Finally, the

reaction was completed by a further extension step at 72 0C for 10 min.
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Table 2.1 Composition of the PCR reaction

Component Volume (l) Final concentration

GPO-3 primer 5 1 M

MGSO primer 5 1 M

dNTP’s 5 0.2 M

Buffer 10 x stock 5 1 x stock

Water 27.5 ___

Template 2 ___

Polymerase 0.5 2.5 units

Total volume 50
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Agarose gel electrophoresis of DNA

The PCR reaction was analysed using agarose gel electrophoresis, followed by

staining the DNA with ethidium bromide and visualization by UV irradiation of the gel.

The minigel apparatus (Horizon minigel apparatus, Life Technologies) was set up as

recommended by the manufacturer. Table 2.2 outlines the separation ranges for typical

gel concentrations. The required weight (1.5 g) of agarose (AquaPor LE GTAC agarose;

National Diagnostics, Hull, UK) was added to the appropriate amount (100 ml) of 1 x

Tris-Acetate EDTA (TAE) buffer from a 10 x stock; National Diagnostics) to make a

1.5% gel. The mixture was heated in a microwave oven until the agarose just dissolved

(usually 2 min) with mixing at regular intervals. The solution was cooled to 50 - 60 0C

and ethidium bromide was added (1 g/ml) before pouring into the cast. The gel was

allowed to set for ~ 30 min at room temperature. The comb and blocks were removed

and a sufficient volume of 1 x TAE buffer was added until the gel was completely

immersed. The PCR products were mixed 4:1 with 10x loading buffer (10 mM

Tris.HCL, pH 7.5 containing 50 mM EDTA, 10% Ficoll 400, 0.25% xylene cyanol FF)

and loaded (10 - 20 l) into the wells. A 100 bp DNA ladder (5 l; Life Technologies,

UK) was used as a marker. The gel was run at a constant voltage of 125 V for ~30 min

or until the dye front had migrated 2 cm from the bottom of the gel. After

electrophoresis, the gel was removed, visualised and photographed under UV lightbox.

Results

During one routine test, a batch of CHO-H6LCAT cells (Fig 2.1, lane 5) was

positive for a PCR product of ~ 300 bp, suggesting the presence of mycoplasma as this

was also in the positive control (lane 1). The negative control (lane 2) and a second

batch of CHO-H6LCAT cells (lane 4) did not demonstrate any PCR product. As

expected the LCAT secretion from the infected CHO-H6LCAT cells had fallen, from a

normal production of 6 - 10 g/ml/48 h to less than 1 g/ml/48 h. These cells were

immediately discarded and replaced by a new batch of CHO-H6 LCAT cells, negative

for mycoplasma.
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Table 2.2 Separation ranges for typical agarose gel concentrations

DNA Size (bp) Gel Concentration

100 - 3000 2.00 %

150 - 4000 1.75 %

200 - 5000 1.50 %

300 - 8000 1.25 %

400 - 12000 1.00 %

1000 - 23000 0.75 %
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Figure 2.1 Testing cultured CHO-H6LCAT cells for mycoplasma contamination

using PCR

The PCR products were run on 1.5% agarose gel. The marker (100 bp DNA ladder) for

DNA sizes is in lane 7. Lane 5 was the test sample which had a similar band (~300 bp)

as lane 1 (positive control). It confirms the presence of mycoplasma in the test sample.

LANES

1. Positive control
2. Negative control
3. Blank
4. Uninfected CHO-H6LCAT cells
5. Infected CHO-H6LCAT cells
6. Blank
7. Marker

1
1

2 3 4 5 6 7

500 bp

100 bp
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2.2 LCAT assay

2.2.1 Background

Although there is a definite potential for the clinical use of LCAT assays, its

measurement is not widespread, being now limited to the diagnosis of deficiency

syndromes, such as classical LCAT deficiency and Fish Eye disease. Several clinical

conditions such as liver and renal disease are associated with low and even absent levels

of plasma LCAT. It is reported that LCAT measurement is more sensitive than

conventional liver function tests and is a good prognostic indicator in liver

transplantation (Shimada et al., 1989); its assay may also be useful in studies of

hyperlipidaemias. In man the percentage of plasma total cholesterol as cholesteryl ester

is remarkably constant (70 - 74%) and any reduction will invariably indicate low LCAT

activity.

The LCAT reaction in plasma consists of three phases. Each of them can be

influenced by reaction conditions during an in vitro assay. The availability of

unesterified cholesterol and its transfer from various compartments of the plasma pool

may affect the esterification rate thus affect the final result. These stages are as follows:

1. Activation of the phospholipid bilayer by a protein or peptide. This takes

place primarily in HDL and is mostly due to the presence of apolipoprotein AI (apoAI).

2. Release of a fatty acid by hydrolysis of lecithin (mostly in the sn-2 position)

by phospholipase A2-like activity. The esterification rate depends on the composition of

lecithin, particularly on the acyl-chain lengths and their degree of saturation.

3. Transfer of the fatty acyl chain to an acceptor, the 3-hydroxyl group of

cholesterol.

The current methods of measuring LCAT can be divided into those estimating

LCAT protein (mass) in plasma either directly (immunoassay) or indirectly by assaying

LCAT activity using exogenous substrates (proteoliposomes or heat-inactivated

plasma); and those measuring the rate of cholesterol esterification in plasma using the

subject’s own plasma or plasma depleted of apoB-containing lipoproteins (HDL-

plasma). Because heat-inactivated plasma has low sensitivity and low reproducibility,

this source of the reaction substrate has been mostly abandoned. The assay described

below is based on the proteoliposome method for the measurement of enzyme activity

(Gillet and Owen, 1992). This assay uses a highly efficient substrate for LCAT, a

proteoliposome containing apoAI: lecithin: labelled unesterified cholesterol, in the
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molar ratio of 0.8: 250: 12.5 (Chen and Albers, 1982), so that any influence of

endogenous lipoproteins is bypassed. This method is considered to reflect the LCAT

mass in the plasma sample. LCAT enzymic activity is then measured by counting the

conversion of radiolabelled cholesterol to cholesteryl ester.

2.2.2 Substrate for LCAT activity test

Materials

Tritium (3H)-labelled cholesterol (1 Ci/l), L--phosphatidylcholine (100

mg/ml), fatty acid- free bovine serum albumin (BSA), -mercaptoethanol and free

cholesterol (1 g/ml) were all purchased from Sigma-Aldrich. ApoAI was isolated from

plasma in our laboratory; sodium cholate and sodium chloride were purchased from

Merck. Amberlite beads (AD-2 nonionic polymeric adsorbent, 20-60 mesh) were

purchased from Sigma-Aldrich.

Solvents

The solvents used for LCAT assays such as chloroform, methanol, hexane,

diethylether, acetic acid and cocktail T scintillation fluid were all purchased from

Sigma-Aldrich, UK. In addition whatman TLC plates 60 0 A (Fisher Scientific, UK),

drying block (Techne, UK) and nitrogen gas were required.

Control plasma

Pooled human plasma was used as a standard source of LCAT activity and was

obtained from normal adult volunteers. Blood was drawn into vacutainer tubes

containing sodium-EDTA (1 mg/ml) as anticoagulant and plasma was obtained after

centrifugation at 4 0C. It was pooled and heated at 56 0C for 30 min, prior to batching

and storing at –20 0C until required.

Preparation of dialysis tubing

Dialysis tubing (10,000 MWCO) was treated to remove metal ions and other

substances that may have adverse effects on the LCAT substrate. The tubing was

initially immersed in 1 mM EDTA solution and slowly warmed to 80-90 0C. It was then

warmed to 90 0C in 0.1 % NaHCO3. The tubing was then washed thoroughly in

deionised water and finally stored in 0.5 % sodium azide solution at 4 0C.
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Preparation of substrate proteoliposomes

In a 50 ml glass tube with a teflon-lined screw cap, 348 l L--

phosphatidylcholine (100 mg/ml) and 820 l free cholesterol (1 g/ml) were mixed and

36 Ci 3H labelled cholesterol was added. The solution was evaporated under nitrogen

gas and “freeze dried” for 2 h to ensure all solvent traces were removed. ApoAI (4 mg

in 10.8 ml PBS) was added and, while vortexing 1.36 ml of 0.725 M of sodium cholate

was added dropwise to give a clear solution. The proteoliposomes were dialysed at 4 0C

in the cold room for 24 h against 4 litres of 0.9 % NaCl with 5 - 6 changes to remove

cholate.

A solution of fatty acid-free BSA (0.5 g in 25 ml PBS) was heat-inactivated for

30 min at 56 0C. Then the solution was centrifuged at 2,000 rpm for 10 min and the

supernatant filtered through a 0.22 m membrane. Dialysed proteoliposomes were

transferred to a 100 ml beaker and PBS added until the volume was 64.8 ml. BSA (22.5

ml) and 31.4 l of -mercaptoethanol were then added to the proteoliposomes.

Amberlite beads (1 g) were washed with 20 ml of methanol at room temperature

for 15 min on a roller-mixer. The supernatant was discarded and the beads washed with

3 x 20 ml water for 5 min each followed by 3 x 20 ml PBS washes. The Amberlite

beads were added to the proteoliposomes and incubated on a roller-mixer at 4 0C. After

24 h, the substrate was further incubated with fresh beads to ensure that all traces of

cholate were removed. It was then batched into aliquots of 242.5 l and stored at –70

0C.

Results and Discussion

Serum albumin as a component of the substrate is thought to enhance apoAI

stimulated LCAT activity by stabilising the enzyme and or binding lysolecithin to

minimise product inhibition (Chen and Albers, 1982).

Large stocks of porcine apoAI were available in our own laboratory and were

also tested as a substrate constituent. However, they only gave an esterification of less

than 2 %/h with human plasma and therefore were a poor substitute for human apoAI

(10 - 12 % esterification/h (Chen and Albers, 1982)). Other studies have also

demonstrated that in vitro activation of LCAT by apoAI is species-specific (Chen and

Albers, 1983).

Plasma LCAT activity increases as apoAI concentration increases in the

proteoliposome with maximal activity obtained at 0.8 nmol of apoAI (Chen and Albers,
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1982). ApoAI may exert a cofactor activity by interacting reversibly with the enzyme at

water-lipid interfaces. This may lead to activation of the enzyme and the optimal

orientation of substrate molecules for enzymatic reaction. Coexistence of apoAI on

substrate vesicles promotes the structural integrity of the active site by preventing the

excessive unfolding of the enzyme at the vesicle surface (Furukawa and Nishida, 1979).

During each step of the preparation as outlined in Table 2.3, a volume of 242.5

l was sampled and the substrate quality was measured by adding a defined amount of

enzyme (7.5 l of plasma). The results were expressed as percentages of cholesterol

esterification (% CE). Despite adding apoAI, the activity of plasma LCAT was still low

giving a CE of 0.55 % (Table 2.3). This is still turbid and therefore not a true liposome.

Sodium cholate is necessary for lipid solubilisation and formation of a proteoliposome

solution. However, sodium cholate strongly inhibited enzyme, resulting in no LCAT

activity. Prolonged dialysis (> 24 h) of the substrate in sodium chloride solution was

avoided as this was found to cause precipitation and an inactive substrate.

Unexpectedly, a 24 h dialysis with several changes gave a very poor substrate (0.07 %

of cholesterol esterified), although addition of mercaptoethanol did increase this to 0.74

% (Table 2.2). Reducing agents are known to stabilise LCAT activity by maintaining

cysteine residues in the reduced (-SH) state. Thus low concentrations of -

mercaptoethanol enhance enzyme activity with a maximal effect at approximately 4

mM mercaptoethanol (Furukawa and Nishida, 1979).

Incubation of the substrate with Amberlite beads was an important step in

making it fully active. Although the LCAT activity at 4 h was slight, there was a marked

increase following 24 h incubation (6.83 % CE). The role of the beads was to help

ensure complete removal of sodium cholate which strongly inhibits LCAT activity.

When the substrate was stored at –20 0C, esterification decreased over one month period

(from 6.44 % to 2.98 %). However, when it was stored at –70 0C, the substrate

maintained its esterification for at least 2 months.

The substrate made using the above method achieved a desired esterification of

5 - 15 %/h using 7.5 l of human plasma as the source of LCAT enzyme. This method

enabled me to prepare a large amount of stable, homogeneous proteoliposome vesicle

substrate for a rapid and sensitive determination of LCAT activity in plasma and in

culture medium.
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Table 2.3 The evolutionary stages of substrate preparation and its esterification by

plasma LCAT

Preparation Stage LCAT activity (%CE/h)

After adding ApoAI 0.55

After adding Sodium Cholate 0.00

After 24 h of dialysis against 0.9 % NaCl 0.07

After adding BSA 0.17

After adding -mercaptoethanol 0.74

After 4 h incubation with Amberlite beads 0.44

After 24 h incubation with Amberlite beads 6.84

Thawed after storage at –70 0C 7.09

This table illustrates a typical pattern of LCAT catalytic activity at different stages of

substrate preparation. A volume of 242.5 l was sampled for use in an LCAT assay with

7.5 l of human plasma. A significant increase in esterification was observed after 24 h

incubation with the Amberlite beads. There was no loss of esterification after storage at

–70 0C.
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2.2.3 Standard LCAT assay

Previously prepared substrate (proteoliposomes) was thawed in water bath at 37

0C. For each test sample an aliquot containing LCAT e.g. 7.5 l of plasma was

transferred into 242.5 l of the substrate. The mixture was placed in a water bath and

incubated at 37 0C for 1 h before transfer to a glass tube containing 4 ml of chloroform-

methanol (1 : 1). The mixture was vortexed again. The assay can be stopped here

temporarily and the sample mixture stored at 4 0C.

To continue, 1.2 ml of deionised water was added to each tube. They were

vortexed and centrifuged for 10 min at 2000 g at 4 0C; alternatively, they can be left to

stand overnight when they will also separate into layers. At the top was the aqueous

methanol phase whereas separated by a thin interphase layer of protein, the bottom was

largely chloroform containing the lipids. Using the Pasteur pipettes, the chloroform

phases were transferred into small glass tubes each containing 5-6 drops of methanol;

the latter helps in removing water traces when drying under nitrogen gas. The tubes

were placed in the wells of the Drying Block preheated at 40 0C and dried under

nitrogen gas. Chloroform-methanol (200 l 1:1) was then added and the evaporation

process repeated. The dry residue was dissolved in chloroform (10 l).

TLC Whatman chromatogram plates were marked out for each sample. The

concentrated lipid extracts were applied onto the chromatogram silica about 2 cm from

the bottom of the plate (i.e. higher than the level of the running solvent). The thin-layer

chromatography chamber was prepared by lining the walls with Whatman (3 mm) paper

and adding 40 ml of solvent. The solvent was prepared using hexane, diethyl ether and

acetic acid in the ratio of 90 : 20 : 1, by volume.

The chromatogram plate was placed in the chamber and the solvent was allowed

to rise to 1-2 cm from the top. The plate was dried at room temperature for 1-3 min and

was stained by exposing to iodine vapour. The band second from the top was the

cholesteryl esters (CE) and the band just above the origin unesterified cholesterol (UC),

as verified by comparison with lipid standards as markers in one lane (Fig 2.2).

Scintillation vials were prepared by adding 8 ml of cocktail-T (toluene-based) to

each plastic vial. The CE and UC bands were scrapped off and transferred into separate

vials and the radioactivity counted in a Beckman eta counter. As CE has a low

disintegration per min (d.p.m.) it was counted for 10 min whilst UC with a high d.p.m.

was counted 1 min. After the radioactivity was counted in the CE and UC fractions, the

percentage of CE was calculated as follows:
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CE d.p.m. X 100%

_______________

UC d.p.m. + CE d.p.m.

The result is then subtracted from control reactions containing no enzyme which were

run simultaneously to correct for nonenzymic reaction. The final value represents the

LCAT activity of the test sample, expressed as the percentage of cholesterol esterified

per hour (% CE/h).
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Figure 2.2 Diagram showing the separation of neutral lipids on a silica-coated

TLC plate

After a lipid sample is loaded onto the Whatman Chromatogram plates, cholesterol,

free- fatty acid, triglyceride and esterified cholesterol migrate and separate out in order

of increasing distance from the loading point with esterified cholesterol being furthest

away.
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2.3 Characterisation of the LCAT Assay

2.3.1 Linearity of LCAT assay

This experiment was done in triplicate. The test plasma volume (with varying

LCAT mass) used ranged from 0.5-25 l and heat-inactivated plasma was added to

make the volume of each sample to 25 l and therefore the total volume was constant

throughout this study. The assay was performed in the standard way (section 2.2.3). The

percentage of esterified cholesterol was plotted against increasing plasma volume

(Figure 2.3).

From the observation, there is a linear relationship of LCAT activity from 2.5-15

l of plasma in the presence of heat-inactivated plasma (Fig 2.3). For example, as the %

CE in 5 l was twice that in 2.5 l plasma and 10 l twice that in 5 l plasma. This

implies that there is a good correlation between LCAT mass and enzymic activity (%

CE) using this proteoliposome substrate. At higher volumes (20 and 25 l), there was

some loss of linearity, perhaps because the products of the enzymatic reaction,

cholesteryl esters and lysolecithin, accumulate to inhibit LCAT catalytic activity by

negative feedback. These become significant when % CE exceeds about 5 - 6 %.

In the original Alber’s method (Chen and Albers, 1982), 7.5 l of plasma was

used together with 242.5 l of substrate as the standard LCAT enzyme reaction. Since

this volume corresponded to a % CE value that falls within an estimated linear slope

between plasma volumes 2.5 to 15 l, it was decided that this would be the standardised

volume for the plasma control in subsequent experiments.
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Figure 2.3 Linearity of the LCAT assay

Various amounts of plasma (l) were added to proteoliposome substrate and the LCAT

activity determined as described in section 2.3.3. Heat- inactivated plasma was added

to make the total volume constant (25 l). Each value is the mean of 3 determinations 

s.e.
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2.3.2 The effect of increasing volume of CD-CHO containing LCAT on

esterification of cholesterol

The LCAT assay is reported to be most sensitive for samples in which the level

of LCAT activity is low e.g. culture medium. Therefore it is ideal for use to monitor

LCAT production in different medium, during each LCAT purification step and

assaying mice plasma following LCAT treatment. However, the effect of test sample

volume on LCAT activity is not known. To investigate this factor, I have chosen CD-

CHO medium as the test sample here as it is a sample commonly assayed for LCAT

activity, and whose volume varies considerably.

The volume of conditioned CD-CHO medium containing LCAT (CD-

CHO.H6LCAT used ranged from 5-195 l and native CD-CHO medium was added to

make up the volume of each sample to 195 l, keeping the total volume constant

throughout. The LCAT assay was performed as before (section 2.2.3).

As expected, the % CE increased in a linear manner as the proportion of CD-

CHO.H6LCAT medium was increased (Fig 2.4). This was true when the diluent was

CD-CHO medium alone. In practical terms, LCAT activity is proportional to the LCAT

mass available in the test sample and is dependent of its volume within the range, 0-195

l.
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Figure 2.4 LCAT activities with increasing volume of CD-CHO.H6LCAT

CD-CHO.H6LCAT medium was collected after 48 h and a range of volumes (0-195 l)

was assayed for LCAT activity using the proteoliposome substrate method. Native CD-

CHO medium was added to make up to a total of 195l.



67

2.3.3 The effect of heat-inactivated plasma on concentrated CD-CHO.H6LCAT

medium

Pooled human plasma has been used as a source of LCAT and as a reference

standard in my experiments. It is not clear whether the amount of LCAT in test sample

e.g. CD-CHO medium, is directly equivalent to the amount in human plasma given the

fact that human plasma bar LCAT may have a small effect on LCAT activity (Fielding

et al., 1971; Albers et al., 1981). To evaluate whether this effect exist, heat-inactivated

(HI) plasma was added to CD-CHO medium.

Conditioned CD-CHO.H6LCAT medium was collected after 48 h interval and

concentrated by a factor of 6 using Vivaspin columns (MWCO 30,000). The volume of

this medium used ranged from 0.5-25 l and heat-inactivated plasma or native CD-CHO

medium was added to make up the volume of each sample to 25 l. The assay was

performed in the standard way.

The esterification of cholesterol was approximately linear whether heat-

inactivated plasma or neat CD-CHO medium was the diluent, although the % CE was

lower in the presence of heat-inactivated plasma (Fig 2.5). This suggest that the amount

of LCAT in CD-CHO medium does not equate directly with LCAT in plasma i.e.

constituents in plasma suppressing enzymic activity. Since I routinely use plasma as a

reference standard, then there is a need to use heat-inactivated plasma to correct for this

inconsistency.
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Figure 2.5 Concentrated CD-CHO.H6LCAT with and without HI plasma and its

effect on cholesterol esterification

CD-CHO.H6LCAT medium was collected after 48 h interval and concentrated 6 fold. A

range of volume of this medium was added to 242.5 l of proteoliposome substrate for

measurement of LCAT activity. Native CD-CHO medium or heat-inactivated plasma

was added to make the total volume of each test sample constant (25 l).



69

2.3.4 The effect of enzymatic activity in varying volumes of CD-CHO with

constant amount of LCAT

A 48 h collection of CD-CHO.H6LCAT medium was concentrated  6-fold.

LCAT assays were performed using 7.5 l of the concentrate containing LCAT and a

constant volume of heat-inactivated plasma (7.5 l), whilst adding increasing volumes

of native CD-CHO medium to a maximum of 300 l.

Keeping the amount of LCAT constant, the esterification was between 4.4-6.0 %

despite increasing the total volume of the test medium by 10 fold (30-300 l) (Fig 2.6).

Thus, varying the volume had very little effect on the enzyme activity.

Conclusion

Since human plasma has a fairly constant LCAT concentration of 6 g/ml, we

can assume that 7.5 l of plasma would have an equivalent of 45 ng LCAT. By equating

LCAT activity to its mass, it was possible to calculate the mass of LCAT in various

medium by comparing the % CE with a reference pool of human plasma, using 7.5 l of

plasma/242.5 l substrate. Therefore LCAT mass in a test sample is calculated as

follows:

% CE (test sample) X 45 ng

____________________

% CE (human plasma)

Alternatively, the concentration of LCAT in test sample is calculated as shown below:

% CE (test sample) X (6 g/ml or 6 ng/l)

____________________

% CE (human plasma)

However, as my data suggest that plasma itself suppresses LCAT (Fig 2.5), all future

assays of CD-CHO medium also contained 7.5 l of heat inactivated plasma to ensure a

more accurate estimate of LCAT mass. An additional point to mention is that for LCAT

assay on in vivo experiments, the volume of plasma and substrate used was reduced by
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50 % (i.e. 3.75 l of plasma/121.25 l substrate) as the volume of plasma obtained was

limited.

When using plasma, the value of %CE should not exceed 6 % as it becomes

inaccurate beyond this value (Fig 2.3). Finally, allowing for small experimental

variation, LCAT activity was found to be independent of the volume of CD-CHO used

as shown in Fig 2.6.
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Figure 2.6 Cholesterol esterification with constant amount of LCAT in varying

volumes of CD-CHO media

Using a fixed amount of LCAT (7.5 l of concentrated CD-CHO LCAT medium,

substrate and heat inactivated plasma, the esterification of cholesterol was determined

in increasing volumes of CD-CHO medium. The %CE was fairly constant between 4.5-

5.5%.
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2.4.1 Evaluation of hexane for lipid extraction

Lipids are usually defined as those substances that are soluble in hydrophobic

organic solvents (such as hexane, chloroform or ether), but are insoluble in water. The

ideal solvent for lipid extraction would completely extract all lipid components, while

leaving all the other components behind. In practice, the efficiency of solvent extraction

depends on the polarity of the lipids present compared to the polarity of the solvent.

Non-polar lipids (e.g. tri-acylglycerols) are more soluble in non-polar solvents (e.g.

hexane) than in polar ones. But polar lipids (e.g. glycolipids) are more soluble in polar

solvents (e.g. alcohols) than in non-polar solvents. For lipids with intermediate polarity,

chloroform can serve as a good solvent. Solvents should also be inexpensive, non-toxic

and be nonflammable and also of low boiling point (i.e. it can be easily removed by

evaporation). No single solvent can meet all these requirements. The use of hexane here

was to ascertain whether it was as efficient at extracting lipids from the LCAT assay as

chloroform. As it separates above the methanol layer, it facilitates the transfer of

dissolved lipids for drying.

Hexane method for extracting cholesterol

The substrate was distributed into 2 tubes, one containing 250 l and the other

400 l. After adding 1 ml of ethanol to each of these tubes, they were vortexed for 2

min. Then 1 ml of hexane was added to each tube and vortexed again for 2 min. The

mixture was allowed to stand for 5 min to separate. From each tube, 0.5 ml of the top

layer was removed and transferred to a scintillating vial each containing 10 ml of

cocktail T scintillation fluid. The radioactivity in each vial was counted. Similarly, 250

l and 400 l of substrate were added directly to individual scintillating vial to obtain a

total radioactivity count.

Most of the 3H-labelled cholesterol should have dissolved in the 1 ml hexane.

When 0.5 ml of the hexane (top layer) was removed from the tubes, the corrected

cholesterol extracted was 77% from 250 l of substrate and 84% from 400 l of

substrate. Although there was no significant difference in recovery rates when the

volume of substrate was between 250 l and 400 l, it was significantly short of the

expected value of 100%. Hence, it makes hexane a less attractive solvent for free

cholesterol even though it was on the top layer, easily separated from ethanol.
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Extraction of Cholesteryl Esters

Human plasma was added to radioactive substrate and incubated in a 37 0C

water bath for 1 h. The mixture was then divided into 9 tubes of equal volume. In the

first 3 tubes, the lipid was extracted and assayed using the conventional chloroform-

methanol method. In 3 other tubes, the lipid was extracted using the hexane method, re-

dried with 200l of hexane and transferred to the TLC plate with 30 l of hexane. In the

remaining 3 tubes, the lipids were extracted with hexane method but were re-dried with

200 l of chloroform and methanol and were transferred with 30 l of chloroform to the

TLC plate. The rest of the assay was the same as the method described before.

The calculated % CE averages were 7.21  0.04, 8.88  0.69 and 7.35  0.61 for

the conventional method, hexane method and hexane method of lipid extraction with

conventional drying, respectively. Hexane method of extraction gave the highest % CE

and one explanation may be because some free cholesterol was left behind in the

aqueous ethanol, thus giving a false high value. However, the results were not

statistically significant and therefore the conventional method continued to be used as

the principle method for extraction of lipid in all the LCAT assays.

2.5 Lipid and Lipoprotein analysis

2.5.1 Total cholesterol assay

Principle of assay

Serum cholesterol levels can reflect the state of the hepatic function, biliary

function, thyroid function, intestinal absorption, risk of coronary artery disease and

adrenal disease. Cholesterol levels help in the diagnosis and classification of

hyperlipoproteinaemias.

The method to assay cholesterol is based on a reaction described by Allain et al.,

1974 which has been modified to render the reagent stable in solution.

In the assay system, the series of reactions involved are as follows:

1. Cholesteryl esters are enzymatically hydrolyzed by cholesterol esterase (CE) to

cholesterol and free fatty acids.

Cholesteryl esters CE Cholesterol + Fatty acids
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2. Free cholesterol including that originally present, is then oxidized by cholesterol

oxidase (CO) to cholest-4-en-3-one and hydrogen peroxide.

Cholesterol + O2 CO Cholest-4en-3-one + H2O2

3. The hydrogen peroxide combines with hydroxybenzoic acid (HBA) and 4-

aminoantipyrine (4AAP) in the presence of peroxidase (POD) to form a

chromophore (quinonemine dye) which is quantified at an absorbance of 500-

550nm. The intensity of the colour produced is directly proportional to the total

cholesterol concentration in the sample.

2H2O2 + HBA + 4AAP POD Quinonemine Dye + 4H2O

Materials

The commercial Sigma cholesterol reagent contains the following active

ingredients:

Cholesterol Oxidase (CO) > 100 U/L

Cholesterol Esterase > 1250 U/L

Peroxidase (POD) > 800 U/L

4-Aminoantipyrine 0.25 mmol/L

Hydroxybenzoic acid (HBA) 10 mmol

A cholesterol standard (Precinorm, 177 mg/dl), was also purchased from Sigma

Diagnostics.

Method

This was based on the method described in Sigma Diagnostics procedure 401,

but with some modifications. The standards were prepared as shown in Table 2.4. and

were measured in duplicate by adding 10 l to each well of a 96-well plate. Blanks

were prepared by adding 10 l of PBS to each well. The same volume of test plasma

was added to each well. Finally, a multi-channel pipette was used to deliver 200 l of

cholesterol reagent to each well. The multi-well plate was then incubated at 370C for 10

min following which, there was a gradation of colour changes in the standard. A

concentration versus absorbance calibration curve was plotted and the concentrations of

the test samples were then determined from their absorbance within the linear region of

the plot. The wells were read in a plate reader measuring absorbance at 490 nm; blanks

were subtracted before plotting values.
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Table 2.4 Preparation of the cholesterol standard curve

No. Precinorm (l) PBS (l) Concentration of

Standards (mg/dl)

1 75 25 132.75

2 50 50 88.5

3 40 60 70.8

4 30 70 53.1

5 25 75 44.25

6 20 80 35.4

7 10 90 17.7

8 5 95 8.85

9 5 195 4.425

10 50l of No. 9 Std 50 2.213

11 25l of No. 9 Std 75 1.106

A range of cholesterol concentrations from 1.1 to 132.7 mg/dl were being prepared by

adding PBS to Precinorm, a commercial calibrated serum.
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2.5.2 Free cholesterol assay

Principle

As before, cholesterol is oxidized by cholesterol oxidase to cholestenone.

Cholesterol + O2 Cholesterol oxidase Cholest-4en-3-one + H2O2

The hydrogen peroxide combines with 4-aminophenazone and phenol in the presence of

peroxidase (POD) to form 4-(p-benzoquinone-monoimino) phenazone and water.

2 H2O2 + 4-Aminophenazone + Phenol POD 4-(p-benzoquinone-monoimino)

phenazone + 4H2O

Materials

The reagents required were (A) phenol (20 mmol/L), (B) 4-Aminophenazone (2

mmol/L), (C) cholesterol oxidase ( 12U/ml) and peroxidase  8 U/ml and were

purchased from Roche.

Method

A working reagent was prepared by mixing 10 ml of solution (A), 10ml of

solution (B) and 100 l solution (C) and stored in the dark. Standards and test samples

(both 10 l) were added in duplicate to wells of a 96-well plate. The blank was 10 l of

PBS. A multi-channel pipette was used to add 200 l of the assay reagent to each well

and the plate was incubated for 10 min. Absorbance were read in a spectrophotometer at

490 nm and, as for total cholesterol, the concentrations of test samples were calculated

from the calibration curve.

2.5.3 Cholesteryl esters

Cholesteryl ester concentrations were derived by subtracting the free cholesterol

values from those of the total cholesterol measurements. The percentage of total

cholesterol as cholesteryl esters was then calculated.

2.5.4 Agarose gel electrophoresis

Plasma lipoprotein profiles of the injected mice were most conveniently

analysed by electrophoresis on alkaline buffered (pH 8.8) agarose gels. The following
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protocol was recommended by the manufacturer (Sebia, UK) and describes a typical gel

analysis.

 Deionized water (177.5 ml) was added to 22.5 ml of 13.3 x stock tris-barbital buffer

(2.45% barbital, 13.73% sodium barbital and 0.13% sodium azide) to make to 300

ml.

 The K20 electrophoresis chamber was prepared by loading 150 ml of 1 x tris-

barbital buffer into each chamber.

 Agarose gels purchased were ready to use from the manufacturer. The 10-slit

sample application template was placed on the gel, aligning the two outside slits

with the arrows on the gel backing. Undiluted mouse plasma (2 l) was transferred

into each slit; human plasma was used as a marker. The samples were allowed to

diffuse completely into the gel for 10 min and then template was taken off.

 The gel was placed facing down with the samples on the cathodic side and

immersed about 1 cm into the buffer on each side. The gel was run at 50 V and 23

mA for 90 min. After electrophoresis, the gel was dried in the oven for about 90

min. The separated lipoproteins were stained with a lipid-specific Sudan black stain.

The excess stain was removed with an alcoholic solution. The resulting gel can be

evaluated visually for lipoprotein abnormalities or by densitometry to quantify

relatively the individual bands.

On agarose gels, lipoproteins separate into the following fractions in order of increasing

mobility:

1) Chylomicrons: these are large particles with high triglyceride content. They

remain at the application point but are normally absent from plasma if the

animals are fasted.

2) Low-density lipoproteins normally migrate to beta-2-globulin positions.

3) Very-low-density lipoproteins have a higher molecular weight and a density

lower than LDL. As they are more mobile due to their charge, they migrate to

the beta-1-globulin position (usually termed pre-beta).

4) High-density lipoproteins are the fastest fraction and they migrate in the alpha-2-

globulin position.

2.5.5 Protein measurement

All protein quantification in this thesis was performed using the ‘Bio-Rad

Protein Assay Kit’ (Bio-Rad, Hemel Hempstead, UK).
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The Bio-Rad (Bradford) Protein Assay

This assay is based on Bradford’s observation that there is a shift from 465 nm

to 595 nm of the acidic solution of Coomassie Brilliant Blue G-250 as a result of its

binding to proteins (Bradford, 1976). Bradford first demonstrated the usefulness of this

principle (Bradford, 1976), whilst Spector demonstrated that the extinction coefficient

of a dye-albumin complex solution was constant over a 10-fold range (Spector, 1978).

This protein-dye binding method gives a rapid and relatively accurate but not entirely

linear response over a broad range of protein concentrations.

A standard curve ranged from 0-20 g protein/50 l was used for every assay.

This was performed by triplicate dilutions of an appropriate protein standard [usually

bovine serum albumin (Sigma)] in distilled water to a final volume of 50 l. Triplicates

of the unknown samples were also diluted in 50 l of distilled water. The standards and

the unknown samples were added to appropriate wells of a 96-well plate. To each well,

250 l of freshly diluted Bio-Rad dye reagent (final concentration 20%, v/v) was added.

After 10 min incubation at room temperature, the OD595 versus reagent blank was

measured using a Dynex plate-reader (Jencons-PLS, East Sussex, UK). The

concentration of the standards versus their OD595 was plotted, and the test sample

concentrations were determined from the standard curve.

2.5.6 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)

SDS-PAGE is one of the most commonly used methods for fractionation and

characterization of proteins. It dissociates all the proteins within a complex mixture into

their individual polypeptide subunits due to the presence of the ionic detergent sodium

dodecyl sulphate (SDS) which was purchased from National Diagnostics

(Leicestershire, UK). The presence of excess SDS in the buffer and the use of a reducing

agent such as -mercaptoethanol, denatures the proteins and facilitates their binding to

SDS once the samples are heated to 100 oC. As a consequence, each polypeptide-SDS

complex will have a constant negative charge per mass unit and moves towards the

anode during electrophoresis. In addition, the mobilities of the complexes are inversely

proportional to their molecular weights due to the molecular-sieving properties of the

gels. Proteins with known molecular weights can therefore be used to determine the

molecular weight of sample proteins.
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In this thesis, SDS-PAGE was used to determine the size of a protein and

estimate the purity of a protein in a solution (section 4.4-4.5, 4.7-4.9). Pre-cast Tris-

glycine gradient gels of 4-20% (Novex gels) were purchased from Invitrogen (Paisley,

UK) and prepared for electrophoresis following the instructions in the manual.

Electrophoresis

For all SDS-polyacrylamide gels, samples were prepared as follows: samples

were mixed (3:1 ratio) with 4 X SDS-PAGE sample buffer [200 mM Tris.HCl (pH 6.8),

8% (w/v) SDS, 0.2% (w/v) bromophenol blue, and 20% (v/v) glycerol]. For reduced

samples, -mercaptoethanol was added to a final concentration of 2% (v/v). Reduced

samples were heated in a boiling water bath for 5 min. In addition, a broad range

molecular weight marker (6-175 kDa; New England Biolabs, Hertfordshire, UK) was

also heated for 3 min. The samples (maximum volume of 30 l) and the marker (15 l)

were loaded on to the gel, after which the electrophoresis chamber was filled with 1 X

running buffer (Novex). When the dye front had migrated to the bottom of the gel, the

gel was removed from its cassette and stained with either Coomassie blue or Silver stain

or alternatively for Western blotting (section 2.5.7).

Coomassie Staining of SDS-Polyacrylamide gels

Coomassie blue staining has a sensitivity of 0.1-0.5 g protein and is a technique

that is commonly used to visualize protein bands on gels. The reagent reacts with any

protein regardless of its biological activity. After polypeptide separation by SDS-PAGE,

the gel was incubated on a shaker for 30 min at room temperature with 50 ml of

Coomassie stain: 0.25% (w/v) Coomassie brilliant blue R-250 (Sigma), 50% (v/v)

methanol, and 10% (v/v) glacial acetic acid. The gel was then destained using

successive volumes of destaining solution: 30% (v/v) methanol and 10% (v/v) glacial

acetic acid. The thoroughly destained gel was then washed in distilled water and either

dried in a GelAir Drying Frame (Bio-Rad) for archiving purposes or used for Western

blotting (section 2.5.7).

Silver Staining

Silver staining was performed on gels immediately after SDS-PAGE i.e. not

previously stained with other stains. The gels were fixed by adding a solution of 30%

(v/v) ethanol and 10% (v/v) glacial acetic acid for 3 x 10 min. The gel was then rinsed

with deionized water for 3 x 5 min, equilibrated in silver staining solution [0.2% silver
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nitrate (w/v) in 1 mM formaldehyde], rinsed with distilled water and developed using a

Silver Stain Kit (Sigma) according to the manufacturer’s protocol. Once the background

began to darken, the reaction was stopped by adding 1% (v/v) acetic acid solution for 5

min.

2.5.7 Western blotting

Antigens present within a complex mixture of proteins are normally detected by

specific antibodies. In Western blotting, electrophoretically separated proteins are

transferred from a gel to a solid matrix support. This is then probed with antibodies that

are specific to a particular antigenic epitope displayed by the target protein allowing the

identification of specific proteins. Western blotting is summarized in Figure 2.7.

Electrotransfer for Western Blots

Proteins that were subjected to 4-20% Tris-Glycine electrophoresis were

electrotransferred to a nitrocellulose membrane with the Blot module of the X-Cell II

Novex electrophoresis system (25 V constant for 60 min) according to the

manufacturer’s protocol.

To prepare for transfer, four sheets of of 3MM absorbent paper (Whatman

International Ltd., Maidstone, UK) and one sheet of nitrocellulose membrane

(Amersham Biosciences) were cut to the dimensions of the gel. These were pre-soaked

for 5 min in transfer buffer (Novex). The electrode plates of the cell were washed with

distilled water and the transfer ‘sandwich’ made up on the bottom plate as follows:

 Bottom electrode

 2 sheets of Whatman paper, pre-soaked in transfer buffer

 1 sheet of nitrocellulose soaked in transfer buffer

 polyacrylamide gel slightly wetted in transfer buffer

 2 sheets of Whatman paper, pre-soaked in transfer buffer

After transfer, the ‘sandwich’ was removed and the bottom left corner of the

nitrocellulose was cut to help lane identification after immunoblotting.

Immunoblotting

Following transfer, the membrane was blocked for 45 min at room temperature

or overnight at 4 C in blocking buffer [5% (w/v) non-fat Marvel dry milk, 0.1% (v/v)

Tween-20 (Sigma), 0.2% (w/v) 2-chloracetamide in PBS (Sigma)] and then



81

immunoblotted for the histidine residues of LCAT. Briefly, primary anti-His antibody

(Clone HIS-1; Sigma) was diluted 1/1000 in PBST wash buffer [0.1% (v/v) Tween-20,

0.2% (w/v) 2-chloracetamide in PBS] and incubated with the blot for 1 h at room

temperature. The blot was then washed 6 x 5 min in PBST wash buffer and incubated

for 1 h with 1/10,000 dilution a secondary antibody (Sheep anti-mouse Fab–HRP;

Jackson Immuno Research). After washing as before, the membrane was transferred to a

dark room, developed by immersion in ECL reagent (Amersham Biosciences), wrapped

in clingfilm, placed in a film cassette and exposed to autoradiographic film. Hyperfilm

ECL X-ray films (Amersham Biosciences) were exposed to the membrane from 5 sec to

30 min, depending on the intensity of the signal. Exposed films were developed in an

automatic X-ray film processor (Compact X4, Xograph Imaging Systems).
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Figure 2.7 Steps required for immunoblotting technique

Transfer of proteins to nitrocellulose membrane


Blocking of protein binding sites


Incubation with primary antibody


Washing to remove unbound primary antibody


Incubation with anti-primary antibody carrying a
reporter group (secondary antibody)


Washing to remove unbound secondary antibody


Chemiluminescence detection
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CHAPTER 3

PRODUCTION AND CLONING OF RECOMBINANT

CELLS SECRETING LCAT
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3. PRODUCTION AND CLONING OF RECOMBINANT CELLS

SECRETING LCAT

3.1 Introduction

In modern biotechnology, pure, soluble and functional proteins are of high

demand. Natural protein sources can rarely meet the requirements for quantity and ease

of isolation. The ability of scientists to grow eukaryotic cells in vitro and to produce

recombinant cells and the concomitant production of proteins has led to a huge increase

in demand for recombinant cell factories. The proliferation of animal cells in culture has

many applications, including their use as model systems for biochemical, physiological

and pharmacological studies and for the production of growth factors, blood factors,

monoclonal antibodies, interferon, enzymes, vaccines and hormones.

The expression of eukaryotic genes when transfected into animal cells is

regulated by factors such as the number of gene copies, transcriptional control and

mRNA stability. In this chapter I describe how the LCAT-secreting recombinant

Chinese hamster ovary (CHO) cells were produced and grown. The mutant CHO cell

line, deficient in dihydrofolate reductase (CHO-dhfr –) was purchased from the

European Collection of Animal Cell Cultures (ECACC). These cells which exhibit

epithelial morphology, lack the dhfr gene and so are defective in endogenous purine and

pyrimidine base synthesis; as such they have an absolute requirement for hypoxanthine

and thymidine in order for purine and pyrimidine synthesis to occur by salvage

pathways.

Cells were transfected with a mammalian expression plasmid containing full-

length LCAT cDNA and mouse dhfr gene as a selectable marker. The dhfr gene

encodes for the enzyme dihydrofolate reductase (DHFR) which is inhibited by

methotrexate (Mtx). Non-transfected CHO-dhfr – cells when grown in normal selection

medium lacking in hypoxanthine and thymidine would all die. However, when

transfected cells are cultivated in normal selection medium which contains Mtx, the

majority die, but a few cells survive because they have stably integrated the dhfr gene

(and LCAT cDNA).

Moreover, by increasing the Mtx concentration in the medium it is potentially

possible to amplify the number of dhfr gene copies. The number of copies of the gene of

interest (LCAT) should also correspondingly increase with the marker gene. Indeed, co-

amplification of two transgenes has been demonstrated (Schimke et al., 1978), with an
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increase in concentration of Mtx, leading to more productive cell lines. However, the

disadvantage of the method is the time consuming procedure of Mtx amplification,

which must be done in a step-wise manner while passaging the cells.

3.2 Vector system

Different recombinant cell systems have been described previously for the

production of LCAT. These include stably-transfected CHO (Miller et al., 1996; Jin et

al., 1997) and baby hamster kidney (BHK) cells (Hill et al., 1993). The secreted LCAT

displays very similar physical characteristics, (e.g. molecular weight, MW), and

biologic/enzymic (i.e. specific activity) characteristics when compared to plasma

LCAT. However, they are heterogeneously glycosylated in both carbohydrate sequence

and structure. It has been suggested that the oligosaccharides on the protein contribute

to structure and conformational stability of the protein in an aqueous environment

(Yang et al., 1987). LCAT has also been expressed in insect cells using the baculovirus

system (Chawla and Owen, 1995) and although enzymatically active, contains much

less carbohydrate than LCAT from mammalian sources. Despite relatively high

productions of LCAT by these methods, isolation of the enzyme has still proved

difficult and results in low yield. An alternate and theoretically more reliable method is

to add an epitope tag to recombinant LCAT as an aid to purification. Our laboratory has

reported that LCAT tagged with six histidine residues at the carboxyl terminus is

catalytically active and immunodetectable using an anti-His4 antibody (Vinogradov et

al., 1998).

In our laboratory, we used a cDNA clone encoding LCAT within pUCLCAT.10

plasmid (a gift from Dr J. McLean; Genetech Inc., USA). A His6 tag was added to the

3'end of the LCAT cDNA. The resulting fragment was digested with BamHI-HindIII

and substituted for interleukin-2 cDNA in the expression vector p7055 (generously

provided by Dr B. Miloux, Sanofi Recherché, France) which was designed to express

dhfr along with the gene of interest (LCAT). This expression construct was designated

as pxLCAT. The expression system uses the SV-40 promoter reinforced by the hepatitis

B virus X transactivator, while the selectable dhfr gene is weakened by insertion of an

A+T-rich sequence derived from the 3’-untranslated region of GM-CSF mRNA. This

enables us to select highly producing clones by a simple one-step procedure. Although

in most cases Mtx should not be necessary, it does however increase LCAT production

and may aid selection of LCAT producing clones. Dr D. Vinogradov in our laboratory
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demonstrated that LCAT production increased substantially when the cells were grown

in the presence of Mtx (unpublished data).

3.2.1 Transfection of CHO cells with gal cDNA

In order to optimise transfection efficiency, I used -galactosidase (-gal) as a

reporter gene. This is one of a series of enzymes involved in the breakdown of lactose to

glucose plus galactose. It is coded by the -gal gene which is present in the pCMVgal

plasmid. Screening for the presence and absence of -gal involves a lactose analogue

called X-gal (5-bromo-4-chloro-3-indolyl--D-galactopyranoside) which is hydrolysed

by -galactosidase to a product that is coloured deep blue. If X-gal (plus an inducer of

the enzyme such as isopropyl-thiogalactoside, IPTG) is added, then those cells that have

been transfected and hence synthesize -gal will be coloured blue whereas non

transfected cells (unable to make -gal) will be white.

Materials

pCMV-gal and serum-free medium (Iscove’s containing no serum, no protein

supplements and no antibiotics) were purchased from Life Technologies/Gibco BRL

(Invitrogen), Paisley, UK, as was growth medium (see 2.1.1). Transfectam reagent was

purchased from Promega Ltd., Southampton, UK and Superfect from Qiagen Ltd.,

Crawley, UK. CHO-dhfr – cells were purchased from the ECACC (Salisbury, UK).

Method

CHO-dhfr- cells were plated onto two 12 - well plates (8 wells were plated per

plate only) and incubated at 37 0C and 5% CO2 so that the cells were 50 – 80 %

confluent on the day of transfection. Two millilitres of growth medium was added to

each well with an equivalent growth area of 3.83 cm2. The cells were transfected with

Transfectam or Superfect using increasing concentrations of pCMV-gal gene in order

to determine the efficiency of the reagents. After 48 h of incubation, they were stained

using an X-gal staining assay kit (catalog no. 3145000) purchased from ICN

Biomedical, Bassingstoke, UK.
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3.2.2 Transfection of cells using Transfectam

Transfectam is a synthetic, cationic lipopolyamine molecule called

diotadecylamidoglycyl spermine (DOGS). The strongly positively charged spermine

group has a high affinity for DNA and coating the DNA with a cationic lipid layer

facilitates binding to the cell membrane and entry into cell.

Following the instructions from Promega, 200 l of ethanol was added to 0.5 mg

Transfectam. The mixture was vortexed and left at room temperature for 5 min and

stored at 4 0C. On the day of transfection, 2 sets of solutions were set up in sterile tubes

as follows:

Solution A in 3 sterile tubes:

I 2 g (2 l) pCMV-gal was added to 178 l of serum-free medium

II 4 g (4 l) pCMV-gal was added to 176 l of serum-free medium

III 6 g (6 l) pCMV-gal was added to174 l of serum-free medium

Solution B in 3 sterile tubes:

I 6 l Transfectam was added to 174 l serum-free medium

II 12 l Transfectam was added to 168 l serum-free medium

III 18 l Transfectam was added to 162 l serum-free medium

The two solutions were immediately vortexed (AI+BI, AII+BII, AIII+BIII). The

medium from one plate was removed and the cells were washed gently with 2 ml of

serum-free medium per well. Then 100 l serum-free medium was added to each well.

Half of the resultant mixture from I, II and III were added to duplicate wells

respectively. Thus, three different concentrations of pCMV-gal (1 g, 2 g and 3g)

were evaluated in duplicates. As a negative control, two wells were left untransfected.

After 6 h of incubation, the cells were washed with 1 ml of serum-free medium before 2

ml of growth medium were added to each well.

3.2.3 Transfection of cells using Superfect reagent

Following the protocol for stable transfection of adherent cells in Qiagen’s

manual, three sterile tubes of solutions were prepared as below:

I 3 g (3 l) pCMV-gal was added to 147 l serum-free medium
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II 6 g (6 l) pCMV-gal was added to 144 l serum-free medium

III 9 g (9 l) pCMV-gal was added to 141 l serum-free medium

The solutions were each added to 15 l of the Superfect reagent, mixed by

vortexing and incubated for 5 - 10 min. In the meantime, 800 l of growth medium was

added to the transfection reagent mix. After removing the medium from the cells, half of

the reagent mixes (I, II, III) were added to each well (1.5 g, 3 g, and 4.5 g

respectively) and incubated for 5 h. The cells were then washed with 1 ml of serum-free

medium before adding 2 ml of growth medium.

3.2.4 X-Gal Staining

After incubating the cells for 48 h, the growth medium was removed from the

wells and washed with PBS. The cells were fixed with the formaldehyde solution

provided in the kit for 15 min and, after this was removed, 500 l of X-gal staining

solution was added to each well. After 12 h incubation, cells were washed with PBS and

examined by microscopy.

3.2.5 Results

Cells that had taken up the transfected plasmid pCMV-gal containing the gene

coding for -galactosidase would stain blue in the wells. This was estimated by

visualisation under a light microscope (using the x 10 objective lens). Counting stained

and unstained cells in a field (> 50 cells) and taking the average of three fields gave the

percentage of stained cells in the total population (Table 3.1). The duplicate wells using

the Transfectam reagent with three different concentrations of plasmid had 50 % or less

staining of its cells. Similarly those duplicate wells using Superfect with 3 and 4.5 g of

plasmid had less than 50 % of cells stained. However in the presence of 1.5 g of

plasmid, the Superfect reagent resulted in approximately 80 % of cells turning blue and

was considered the optimum transfection efficiency.
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Table 3.1 Efficiency of transfection using Superfect and Transfectam

Transfection

Reagent

pCMV-gal

Plasmid (g)

Well (1)

% Staining

Well (2)

% Staining

Wells (3a,b)

Control

% Staining

1 30 20 0

2 50 40 -

Transfectam

3 40 30 -

1.5 80 80 0

3.0 30 30 -

Superfect

4.5 40 30 -

The transfecion experiment was performed in duplicate (Wells (1) and (2)). Wells (3a,b)

containing untransfected cells acted as a control. Three different concentrations of the

pCMV-gal plasmid for each reagent were used. Superfect with 1.5 g of pCMV-gal

plasmid gave the optimum transfection efficiency as 80% of the cells in the wells of a 12

- well plate were stained blue.
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3.3 Transfection of CHO cells with LCAT cDNA

3.3.1 Method

In order to scale up the transfection of CHO cells with LCAT cDNA, CHO-dhfr-

cells were plated into 3 wells (6 - well plates). The 3 wells were transfected identically,

and serial collections were obtained from each and the 4th well as a control (Fig. 3.1).

After 24 h, they were 80 % confluent. According to Qiagen’s protocol for scale up

culture formats and my previous optimization experiments with -gal and Superfect we

found that 1.5 g DNA was optimum for a 12 - well plate (Table 3.1). Therefore for the

6 - well plate, we increased the amount of DNA accordingly to 2.5 g of pxH6LCAT

plasmid (prepared by our laboratory) which was added to 100 l of growth medium. No

plasmids were added to control wells. Ten microlitres of Superfect reagent was then

added, mixed and left for 5 - 10 min at room temperature in order for the plasmid and

Superfect to complex. This was followed by the addition of 600 l of growth medium to

the Superfect complex and, after mixing, was immediately transferred onto cells which

already had their growth medium removed. After 5 h incubation, the cells were washed

with warm PBS and 3 ml of fresh selection medium was added to each well. Regular 24

h collections of the medium from cells was commenced and continued for one month.

After the 19th day there was rapid proliferation of colonies of cells believed to be stably-

transfected cells, whereas the surrounding cells were slowly dying. All the samples

collected were centrifuged and stored at –20 0C until the collection period was

completed. A similar transfection was carried out on a T-75 culture flask of cells, using

7.5 g of pxH6LCAT plasmid.

3.3.2 Results

LCAT assays were performed which showed that the transfection was successful

with enzymic activity detectable in 2 wells on the 8th day, which slowly increased to day

11 (Fig. 3.1) where there was LCAT activitydemonstrated in all three transfected wells

(well 1, 2, 3). No collection was then made until day 20, when a large rise in LCAT

secretion was detected. The peak LCAT production for each well was on day 21, when

most of the viable cells were likely to be LCAT-secreting. Moreover, at 28 days when

the wells were over-confluent, LCAT continued to be secreted. There was no LCAT

activity in the negative control throughout this period of study (Fig. 3.1).
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Similarly after 3 weeks, LCAT was detected in the T-75 culture flask, when

most stably-transfected cells were selected from untransfected ones. There was 150

ng/ml of LCAT in the first 48 h collection in 15 ml of medium, followed by 144 ng/ml

of LCAT in the 2nd 48 h collection. Therefore, these cells were frozen for cloning to

improve the yield of LCAT secretion (Table 3.2).
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Figure 3.1 LCAT production following transfection in a 6 - well plate

CHO-dhfr- cells were plated onto 4 wells (6-well plate). Three wells of cells were

transfected with LCAT cDNA and the 4th well only contained transfectam reagent but

no plasmid (negative control).The medium from each well was collected and replaced

every 24 h. It was sampled to assay for LCAT. The graph shows the amount of LCAT

(ng) secreted in each well at 24 h interval. There was a lag phase of 7 days before

LCAT was detected in the medium and this generally increased from day 8 to 11. No

further collections were made until day 20 when a significant rise in LCAT secretion

was detected, which most likely peaked on day 21, and sustained secretion thereafter.

No LCAT activity over background control was detected in medium from 4th well at any

time point.
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3.4 Cloning of CHO-H6LCAT Cells

One T-75 culture flask containing a monolayer of stably transfected CHO-

H6LCAT cells in selection medium was trypsinized and the cells were suspended in

medium. The cells were counted and diluted to 10 cells/ml suspension, which was

transferred in 100 l aliquots to each well of a 96 - well plate. Each well then received

100 l of growth medium containing 10 % FCS. When a colony of cells appeared after

several days in the individual wells, they were picked. During this cloning some cells

did not proliferate or grew very slowly and therefore these wells were discarded. Thirty

six clones were transferred into 12 - well plates but only 12 clones survived. These were

further expanded sequentially in 6 - well plates, and then in a T-75 culture flask (Table

3.2). LCAT secretion in clones that became confluent was checked initially in 12-well

plates and later in 6 - well plates.

As shown in Table 3.3, apart from clone 1, 5 and 11, the rest of the clones were

secreting LCAT. The three highest producers were clone 2, 3 and 12, each yielding

more than 350 ng/ml/48h of LCAT. They were expanded in 6-well plate and then

transferred into T-75 culture flasks. Clone 3 being the highest producer secreted more

than 600 ng/ml/48h of LCAT. These cells were then grown and passaged with stepwise

increments of Mtx concentration; commencing at 1 – 2 – 5 – 10 – 25 – 50 – 70 - 100

and finally 150 nM. I found that increasing the concentration of Mtx, showed a

substantial increase in LCAT production. Further increase in Mtx concentration beyond

150 nM showed a decline in LCAT production most likely due to Mtx toxicity on the

cells (data not shown). The cells that secreted maximally (> 8 g/ml) at 150 nM of Mtx

in cell media were designated as H6LCAT 150 (Table 3.4). This clone was subjected to

a further round of subcloning by limiting dilution to ensure it was truly clonal and the

estimated highest producer designated H6LCAT 150B.
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Table 3.2 Summary of the sequence of events in cloning H6LCAT cells

CHO cells



Transfection with plasmid pxH6LCAT



Transfected CHO cells placed in selection medium

without hypoxanthine and thymidine supplements



Stably-transfected H6LCAT cells selected

(36 clones were picked and grown in 12 – well plates)



12 clones survived and grown in 12 –well and expanded into 6 – well plate



Three highest producer clones picked (2, 3 & 12)

and expanded into T-75 flasks



The highest producer clone 3, was subjected to Mtx amplification



Cells secrete maximally at 150nM Mtx in growth medium



Cells subcloned to ensure truly clonal and the highest producer (H6LCAT
150B) chosen for subsequent study
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Table 3.3 Secretion of LCAT by H6LCAT clones during selection

H6LCAT

Clones

LCAT Secretion (ng/ml/48h)

12-well plate 6-well plate T-75 flask

1 0 0

2 379 378 595

3 511 473 616

4 440 245

5 0 0

6 7 96

7 397 334

8 287 319

9 158 237

10 158 220

11 151

12 491 432 482

Thirty-six clones of cells from 96 - well plate were transferred into 12 - well plate for

expansion. Twelve viable CHO-H6LCAT clones were further isolated and labeled 1 - 12

as shown in the 1st column. They were initially grown in 12 - well and 6 - well plates.

The three highest producing clones 2, 3 and 12 secreted > 350 ng/ml/48h and were

further expanded into T-75 flasks.
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Table 3.4 Amplification of LCAT production by CHO-H6LCAT cells using Mtx

CHO-H6LCAT Clones Mtx concentration (nM) LCAT production

(g/ml/48h)

H6-0 0 0.6

H6-70 70 2.7

H6-150 150 8.4

H6-150B 150 8.7

Clone 3 (Table 3.3) was subjected to a stepwise increments of Mtx concentration

starting with 1 nM and progressing to 150 nM. The cell media at 70 and 150 nM Mtx

were collected after 48 h and assayed for LCAT. A 3 - fold increase in LCAT production

from 2.7 to 8.7 g/ml was noted. The subclone, 150B has a similar LCAT secretion

compared to its original clone 150 confirming its true clonal status.
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3.5 Production of LCAT in different culture medium

3.5.1 Introduction

Below are described the various cell culture media used for the growth of CHO-

H6LCAT cells in my search for a medium for isolating pure LCAT. Ideally, the medium

should be able to support growth and metabolism of CHO-H6LCAT cells and promote

expression of LCAT in large-scale culture. Low protein content and minimal

macromolecules in the medium would facilitate processing and purification of LCAT.

3.5.2 Materials

Iscove’s selection medium (hypoxanthine and thymidine free), serum free

medium (SFM), protein-free medium (PFM) and CD-CHO medium all prepared as

before (section 2.1.2). Mtx (150 nM) was added from 40 mM stock solution for routine

use in the various media.

3.5.3 Method

The highest producing clone of CHO-H6LCAT cells, which had undergone

several passages, was seeded into 5 culture T-75 flasks. They were allowed to grow to

confluence in 5% FCS with Mtx. Each flask was washed with PBS before different

medium (15 ml) was added to each flask. The media were 5 % FCS with 150 nM Mtx,

5% FCS without Mtx, SFM, PFM and CD-CHO medium. The medium in each flask

was collected 6 times at intervals of 48 h replacing with fresh medium after each

collection. A LCAT activity assay (section 2.2.3) was performed on the collected

medium taking 20 l as the sample volume. Finally, LCAT production in each medium

was plotted against time.

3.5.4 Results and Discussion

Cells that were grown in FCS with Mtx showed a good amount secreted from 1st

(8.2 g/ml) and peaked at 4th (11 g/ml) collection (Fig. 3.2 A). It declined in

production on 5th and 6th collection (5 g/ml) but still gave a relatively sustainable level

of secretion. Those grown in FCS without Mtx showed a similar secretion pattern

ranging from 4.5 – 13.7 g/ml during the 1st to 4th collection before declining to a
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sustained secretion level of 6.4 g/ml by the 6th collection. Those medium containing

less protein nutrients (SFM and PFM) showed a general trend towards a decline in

LCAT production throughout the study period (Fig. 3.2 C & D). In SFM, 4.5 g/ml of

LCAT was present in the 1st collection, which peaked on the 2nd collection (9.3 g/ml)

and subsequently declined in production to less than 1 g/ml. LCAT production in PFM

was 5.7 g/ml in the 1st collection and declined thereafter to 0.1 g/ml at the 6th

collection, the lowest recorded (Figure 3.2 D). However, CD-CHO with the least protein

contents gave a gradual increase in LCAT production from 1.4 g/ml (1st collection) to

5.4 g/ml (3rd collection) and LCAT production increased significantly at the 4th

collection (13.4 g/ml) (Fig. 3.2 B)) and peaked at 5th collection (14.3 g/ml) (Fig. 3.2

B). There was a slight fall to 10.6 g/ml on the 6th collection which is a good amount

even at day 12. After this period, considerable cell detachment was observed which was

most marked in the PFM and SFM but less in CD-CHO and least in FCS +/- Mtx

medium. From the results, CD-CHO has emerged as a good medium to use for bulk

collection. Furthermore, the absence of proteins or peptides in CD-CHO could

potentially facilitate the purification of LCAT.
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Figure 3.2 LCAT secretion by CHO-H6LCAT cells cultured in different medium

(A) LCAT production in normal medium; (B) LCAT production in CD-CHO medium,

(C): LCAT production in SFM and (D) LCAT production in PFM.

Cells were grown in T-75 flasks in respective medium and changed every 48 h for LCAT

assay. The amount of LCAT (g/ml) produced in each medium were evaluated over 6

(48 h) collections.
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3.6 LCAT secretion by CHO-H6LCAT cells in normal versus CD-

CHO medium

3.6.1 Introduction

A good growth medium for CHO-H6LCAT cells should be able to support a sustained

LCAT secretion for several collections. At the same time, a large amount of LCAT

should be produced within a short interval of time. To further verify the choice of CD-

CHO medium, a comparison study between LCAT production in CD-CHO medium and

normal growth medium was set up. The latter consists of Iscove’s selection medium

(hypoxanthine and thymidine free), 5 % FCS and 150 nM Mtx.

3.6.2 Method

The CHO-H6LCAT cells were seeded into a 6-well plate and grown to

confluence. Cells were then washed with PBS and three wells received 3 ml of normal

medium while the other three received 3 ml of CD-CHO medium. Culture medium was

collected every 48 h and completed on the 6th collection. The media were assayed for

LCAT as described in 2.2.3. The data were analysed and LCAT production expressed as

g/ml per 48 h collection interval.

3.6.3 Result and Discussion

The mean LCAT concentration in CD-CHO medium from the 1st 48 h collection

was 1.6  0.3 g/ml compared to 2.5  0.2 g/ml in normal growth medium containing

5% FCS (Fig. 3.3 A, B). LCAT production in CD-CHO medium rose steadily peaking

at an average of 4.6  1 g/ml at the 5th 48 h interval (Fig 3.3 C). During the 6th 48 h

interval, 4.5  0.2 g/ml of LCAT was detectable. However, in normal growth medium,

LCAT production peaked at the 3rd 48 h interval, (2.9  0.5 g/ml) and then steadily

declined to 1  0.1 g/ml at the 6th interval.

Although initially LCAT secretion was less in CD-CHO medium than normal

growth medium, LCAT production after the 4th 48 h interval was sustained at 2-3 times

the initial concentration. Moreover, the maximum LCAT production in CD-CHO

medium exceeded the peak production in normal growth medium.
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Figure 3.3 LCAT production in normal growth medium and CD-CHO medium

LCAT production by CHO-H6LCAT cells in 3 different wells grown in (A) normal

medium or (B) CD-CHO medium. The medium was collected and replaced every 48 h

over a period of 12 days. LCAT level at each interval was ascertained by assay and the

amount secreted expressed as g/ml. (C) Mean values  s.e. were plotted for both

normal and CD-CHO culture conditions. Asterisks denote data points (LCAT

production in normal vs CD-CHO medium) at time intervals (4th –6th 48 h interval) that

were significantly different using the Student’s t-test (p < 0.05).

*

*
*



102

3.7 Effect of sodium butyrate on LCAT production by CHO-

H6LCAT cells grown in CD-CHO media

3.7.1 Introduction

Sodium butyrate produces many reversible morphological and biochemical

modifications when added to mammalian cell cultures at low concentrations. Some of

them occur in all cell lines. They concern regulatory mechanisms of cell growth, cell

morphology and gene expression. Butyrate reduces the growth of many cell types

(Wright, 1973; Leibovitch and Kruh, 1979; Dyson et al., 1992); it can induce

differentiation as observed with erythroleukemia cells and HeLa cells (Henneberry and

Fishman, 1976; Friend et al., 1987) or it can lead to a growth arrest at the G1 phase of

the cell cycle as in cultured hepatoma cells (VanWijk et al., 1981; Gupta et al., 1994).

In 1977, Riggs et al. established that cell treatment with sodium butyrate led to

increased histone acetylation. This resulted from inhibition of the enzyme histone

deacetylase and was reversed upon the removal of sodium butyrate (Candido et al.,

1978; Sealy and Chalkley 1978). Reversible histone acetylation is now considered to

play an important role in the regulation of chromatin structure and its transcriptional

activity. The aim of this study was to evaluate whether sodium butyrate affect LCAT

secretion by CHO-H6LCAT cells.

3.7.2 Methods

The CHO-H6LCAT cells were seeded into 6-well plates and grown in normal

growth medium until they were confluent. They were washed with PBS and 1 ml of

CD-CHO medium with Mtx was added to each well. After 24 h, sodium butyrate was

added to make concentrations of 0, 1, 10, 30 and 50 mM in duplicate wells. The

medium was collected after 48 h of incubation and replaced with the same medium for

the second 48 h collection.

3.7.3 Results and Discussion

Upon addition of 1 mM of sodium butyrate to growth medium, LCAT

production was at an average of 1.2 to 1.4 g/ml and a negligible increase (1.23 g/ml)

was observed with 10 mM of sodium butyrate after 48 h (Fig. 3.4). The LCAT
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production was smaller in 30 mM and 50 mM compared with those without sodium

butyrate. In the 2nd 48 hour, the production in 1 mM was less and much smaller in 10

and 30 mM compared with control. There was no LCAT production in 50 mM sodium

butyrate in the 2nd 48 h. As increasing sodium butyrate concentration led to a decrease

in LCAT production, this agent was clearly not necessary for LCAT production by

CHO-H6LCAT cells.

These findings are in contrast to the report of Chisholm and Parks (1999), who

showed that addition of sodium butyrate (10 mM) to CHO-H6LCAT cells in protein-

free complete medium (PFX-CHO) resulted in a 3-fold increase in LCAT production

(15 g/ml at 72 h), compared to PFX-CHO alone. Whilst Chisholm and Parks showed

that sodium butyrate positively enhanced LCAT production at the transcriptional level,

my study showed a dose-dependent decline in LCAT production from 48-96 h.

Conceivably, random integration of LCAT cDNA into the CHO cell genome during

transfection, may have caused sodium butyrate to suppress promoter activity in my

particular cloned cells reducing LCAT synthesis. In addition, other experimental

variation such as the use of different cell line (CHO-dhfr vs CHO-K1) and selection

agent (Mtx vs Geneticin), expression vector or growth medium (CD-CHO vs. PFX-

CHO) could have contributed to these results.
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Figure 3.4 Effect of sodium butyrate on LCAT production

Histogram represents mean values of LCAT production ± s.e.(n=2) over a range of

sodium butyrate during the 1st 48 h (grey) and 2nd 48 h (black). In the first 48 h, the

production of LCAT remained about the same (1.2-1.4 g/ml) in 0, 1 and 10 mM

sodium butyrate. But there was reduced production in 30 and 50 mM sodium butyrate.

In the 2nd 48 h, there is a general decline in LCAT production most marked in 10-50

mM concentrations.
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CHAPTER 4

LCAT - PURIFICATION
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4. LCAT – PURIFICATION

4.1 Immobilized metal affinity chromatography

Affinity chromatography separates proteins on the basis of a reversible

interaction between a protein and a specific ligand coupled to a chromatographic

matrix. Immobilized metal affinity chromatography (IMAC) was first used in 1975 as a

group-specific affinity technique for separating proteins (Porath et al., 1975). This

principle is based on a reversible interaction between various amino acid side chains

and immobilized metal ions. Depending on the type of immobilized metal ions,

different side chains can be involved in this reversible adsorption process. Most

notably, histidine, cysteine and tryptophan side chains have been implicated in protein

binding to immobilized metal ions (Porath, 1992).

Histidines exhibit highly selective coordination with certain transition metals

and have great utility in IMAC. Under conditions of physiological pH, histidines bind

by sharing electron density of the imidazole nitrogen with the electron-deficient orbitals

of transition metals. Although three histidines may bind transition metals under certain

conditions, six histidines have been shown to reliably bind transition metals in the

presence of strong denaturants such as guanidium (Hochuli et al., 1987). These protein

tags are commonly referred to as “H6” or “His6”.

Elution occurs when the imidazole nitrogen is protonated, generating a

positively charged ammonium ion which is repelled by the positively charged metal ion.

By adding imidazole to the elution buffer, the bound polyhistidine-tagged protein can

be competitively eluted. The aim of this chapter is to identify a suitable method for

LCAT purification by comparing different methods of affinity purification.

4.2 Nickel-nitrilotriacetic acid (Ni-NTA) spin columns

The recombinant CHO cells that I produced secreted LCAT that was tagged

with six histidine molecules. This facilitates its binding to metal chelating resins and

thus its isolation from the cell culture media. Nickel is one such ion that binds to

histidine molecules.

I first evaluated ready-to-use spin columns packaged with nitrilotriacetic acid

(NTA) resin, which chelates nickel. Protein purification system is based on the high

selectivity of the Ni-NTA resin for recombinant proteins carrying His6. The high
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affinity of the Ni-NTA resins for proteins or peptides tagged with His6 is due to both the

specificity of the interaction between histidine residues and immobilized nickel ions and

to the strength with which these ions are held by the NTA resin. The silica material in

the resin has been modified to provide a hydrophilic surface and hence a reduction in

nonspecific hydrophobic interactions. The spin columns allow rapid purification of a

protein from cell medium under native conditions. According to the manufacturer, up to

150 g of His6 tagged protein can be purified in 20 min.

4.2.1 Materials and Methods

Ni-NTA spin columns were purchased from Qiagen (West Sussex, UK). The

buffers required were freshly prepared on the day of the experiment. They contained 50

mM NaH2PO4 (pH 8.0) and 300 mM NaCl plus increasing amounts of imidazole for

lysis (10 mM), washing (20 mM) and elution (250 mM).

To assess the recovery of LCAT from three different cell culture media, 48 h

collections of LCAT-containing normal growth medium, SFM and PFM were thawed in

a 37 0C water bath. These had previously been centrifuged at 1,500 x g for 15 min at

40C following collections and the supernatants stored at –20 0C. In the meantime, the

Ni-NTA spin columns was equilibrated with 600 l lysis buffer, and briefly centrifuged

for 2 min at 700 x g.

The pre-equilibrated column was loaded with 600 l of medium containing

His6-tagged LCAT. It was centrifuged at 700 x g for 2 min and the flow-through was

collected. The Ni-NTA spin column was washed twice with 600 l wash buffer by

centrifuging for 2 min at 700 x g. Bound protein was eluted from the column with 200

l elution buffer by centrifuging for 2 min at 700 x g. The eluate was collected for

LCAT assay (section 2.2.3).

4.2.2 Results and Discussion

The three different starting media plus their respective flow-throughs, washes

and eluates were assayed for LCAT (Table 4.1). Approximately 19.5 % (normal growth

medium), 12.8 % (SFM) and 16.2 % (PFM) active enzyme detected in the flow-

throughs, while the corresponding washes contained 15.8 %, 10.7 % and 1.5 % and all

were notably very high. The majority of His6-tagged LCAT (65-82 %) was retained by

the column. When the eluate from growth medium was assayed 11.4 % of LCAT was

recovered, whereas the recovery from SFM was only 2.4 % and less than 1 % from

PFM.
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The initial losses in the flow-throughs and washes were disappointing as the

total amounts of LCAT loaded onto the columns (<7 g; Table 4.1) were considerably

less than the claimed capacity (150 g). One explanation is that protein constituents of

the medium or those released by CHO-H6LCAT cells interfere with the binding and

weaken the Ni-H6LCAT interaction. This would account for incomplete capture and

additional loss on washing, although the presence of imidazole at low concentration in

both loading (lysis) and wash buffers should help reduce non-specific binding. Another

possible factor, which was not examined, is that the LCAT had been partially

inactivated or denatured because the buffers used were all at pH 8 rather than pH 7.4 of

the culture mediums. This factor might also explain the low recovery of LCAT activity

following elution, rather than avid retention by the column, particularly as this buffer

contains a much higher concentration of imidazole (250 mM). Although recycling the

flow-through and wash solutions and buffer exchange may allow a higher recovery of

active LCAT, it was clear that an alternative protocol was required. Therefore, in the

next sections of this chapter, I examined the purification process in more detail and also

evaluated additional isolation systems.
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Table 4.1 Purification of H6LCAT from different culture medium using Ni-NTA

spin columns

Normal Medium Serum Free

Medium

Protein Free

Medium

LCAT

(g)

Recovery

(%)

LCAT

(g)

Recovery

(%)

LCAT

(g)

Recovery

(%)

Start 6.70 100 3.28 100 2.60 100

Flow-

through

1.30 19.4 0.42 12.8 0.42 16.2

Wash 1.06 15.8 0.35 10.7 0.04 1.5

Eluate 0.76 11.4 0.08 2.4 0.02 0.8

The LCAT activities in start medium, flow-through, wash and eluate were measured by

standard proteoliposome method and converted to g of H6LCAT (section 2.3.4).

Recoveries are expressed as a percentage of each start medium.
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4.3 Binding capacity of the Ni-NTA spin columns

4.3.1 Materials and Methods

Serum-free medium was collected from CHO-H6LCAT cells after 72 h and

concentrated 5-times using a membrane filter (30,000 MWCO) and centrifugation at

2,500 x g for 10 min. The final volume of concentrated medium was 2.5 ml. A Ni-NTA

spin column was equilibrated in the usual way and loaded with 600 l of concentrated

medium. The flow-through was collected and the process was repeated three times,

each time loading 600 l of fresh media. Finally, the column was washed and eluted.

4.3.2 Results and Discussion

As shown in Table 4.2, there was more than 60 % loss in the 1st and 2nd flow-

throughs, with more than 80 % loss in the 3rd and 4th follow-throughs. This indicated

that the column had become near saturated after the 1st loading which contained 13.5 g

of LCAT. In the previous study, when 3.28 g of LCAT in SFM was loaded, the loss

was only 13 % adding further evidence to support saturation of the column (see Table

4.1). The total amount of LCAT loaded was 54 g and the eluate contained 14.3 g of

LCAT. There was an overall loss (73.6 %) of LCAT some of which in the flow-

through, the rest may be still bound to the column, inactivated or denatured during the

purification process. In total, 26.4 % of LCAT was recovered. This was an

improvement compared with the previous recovery of LCAT from SFM which was

only 2.4 % and an accompanying overall loss of 97.6 % of LCAT with a small

proportion in the flow-through (12.8 %). This does suggest that the efficiency of

capturing and recovering LCAT can be enhanced by increasing the initial load of LCAT

on the column at near saturation levels. Another key question is the time allowed for

binding may have been insufficient. Under native conditions, it is possible to close the

lid on the column and mix on a roller for 30-60 min. In addition, centrifuging the

column with a closed lid may reduce the flow rate thereby further extending the binding

time. Recycling the flow-through a few more times may also improve the capture of

LCAT.
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Table 4.2 Assessing the binding capacity of Ni-NTA spin columns for H6LCAT

Ni-NTA Column LCAT

(g)

Loss

(%)

Recovery

(%)

Start Medium 13.5 x 4 - -

Flow-through 1 8.6 63.7 -

Flow-through 2 10.4 77.0 -

Flow-through 3 11.7 87.0 -

Flow-through 4 11.6 85.9 -

Eluate 14.3 - 26.4

Four consecutive batches of LCAT (each 13.5 g in 600 l) were loaded onto the Ni-

NTA colum and the flow-throughs collected. Finally, the column was washed, eluted

and the LCAT in each collection was quantified by LCAT assay (section 2.2.3). The

fraction of LCAT in the eluate was expressed as a percentage of the total LCAT loaded

onto column capture.
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4.4 Hydrophobic interaction chromatography – octyl-Sepharose

column

4.4.1 Introduction

Hydrophobic interaction chromatography (HIC) separates proteins and peptides

based on the interaction between the hydrophobic groups of the sample and an insoluble

immobilized hydrophobic matrix containing short-chain phenyl or octyl non-polar

groups. Separation on HIC matrices exploits differences in hydrophobicity between

proteins is usually done in aqueous salt solutions which are generally non-denaturing.

Samples are loaded onto the matrix in a high-salt buffer and elution is by a descending

salt gradient. HIC depends on surface hydrophobic groups and is carried out under

conditions which maintain the integrity of the proteins.

It has been noted that a 20-30 % reduction in binding strength occurs when the

temperature is reduced from 20 C to 4 C. If the experiment is done in a cold room, the

strength of the hydrophobic interactions will be lessened. Once the sample has been

applied to the column, the hydrophobic protein will bind to the column and unbound

protein will be washed away in the void volume. Elution of proteins is accomplished in

several ways: (1) reducing the concentration of salting out ions in the buffer with a

negative salt gradient; (2) eluting with a positive gradient of detergent; (3) raising the

pH; and (4) reducing the temperature. HIC gels can be reused several times depending

on the quality of the buffers and sample. After every chromatographic run, a wash with

6 M urea will remove tightly bound proteins.

4.4.2 Materials and Methods

Octyl-Sepharose, CL-4B was purchased from Amersham Biosciences,

Buckinghamshire, UK and stored in 24 % ethanol. The chromatographic equipment

used was LKB Bromma 2111 Multirac and LKB 2132 and Microperpex peristaltic

pump with variable speed control.

The experiment was performed in collaboration with Dr S Schepelmann. An

octyl-Sepharose suspension (40 ml) in ethanol was washed with 40 ml of water by

centrifuging at 200 g for 1 min and de-gassed under a partial vacuum for 5 min. The

column used had a diameter of 1.5 cm and hence a cross-sectional area of 1.77 cm2. The

octyl-Sepharose slurry was transferred into the column using a glass funnel and allowed

to settle by gravity. A pump was connected to the column with the flow rate set at 90
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(2.2 ml/min or 132 ml/h) and is equivalent to linear flow rate of 74.6 cm2/h, well within

the permitted maximum linear flow rate of 150 cm2/h for packing.

The column was then washed with 10 ml of 0.5 M sodium hydroxide solution at

a flow rate of approximately 2 ml/min and was left for 30 min to equilibrate with the

column. Next the column was washed with deionised water followed by equilibration of

the column with PBS. Non-concentrated CD-CHO H6LCAT medium (400 ml) from a

48 h collection was loaded onto the column. The pump flow rate was set at 1.175

ml/min and the chart recorder was set at 1 mm/min, 100 mV and the absorbance at 0.2

on the detector. The flow-through (400 ml) was collected and the column was washed

with PBS until the indicator returned to a stable baseline. The column was eluted with

deionised water, which showed a sharp peak in absorbance as protein eluted, and this

was continued until the absorbance indicator returned to stable baseline. The amount of

protein and LCAT at each stage of the purification was determined using Bradford

(section 2.5.5) and LCAT activity assays (section 2.2.3). Protein purity in the eluate was

checked by running an 8 % Tris-Glycine gel (section 2.5.6).

4.4.3 Results and Discussion

A total of 13 mg of protein in the CD-CHO H6LCAT medium was loaded onto

the column. There was 8.5 mg (65 %) of protein in the flow-through, nearly

undetectable proteins in the wash (20 g) and 1.6 mg (12.5 %) in the eluate (Table 4.3).

In terms of LCAT capture, the actual amount of LCAT loaded on the column was 500

g and 108 g (21.6 %) in the flow-through, 4.7 g (0.9 %) in the wash and 184.8 g

(37 %) in the eluate (Table 4.3).

LCAT only made up 3.8 % of the protein at the start and hence a large

proportion of non-specific proteins were loaded onto the column. From Table 4.3, 35 %

of protein was presumed bound to the column after the flow-through phase, although in

relative terms, more LCAT was bound (78.4 %; Table 4.3). There was virtually no

protein detected in the wash, but of the 1.62 mg protein in the eluate, only

approximately 0.18 mg (~ 10 %) was LCAT. It is apparent that a significant amount of

contaminating proteins were bound and eluted from the column.

Gel electrophoresis analysis revealed a band of the expected size for LCAT (64

kDa; see arrow Fig 4.1). However, additional proteins marked (  ) were also present.

Although HIC is capable of capturing a significant amount of LCAT from culture



114

medium, contaminants in the eluate make it unlikely to be suitable for 1-step

purification procedure.
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Table 4.3 Purification of LCAT by octyl-Sepharose column chromatography

Total Protein LCATPurification

Stage
mg % recovery g % recovery

Start medium

(400 ml)

13 100 500 100

Flow-through

(400 ml)

8.5 65 108 21.6

Wash (10 ml) 0.02 < 0.1 4.7 0.9

Eluate

(23.6 ml)

1.6 12.5 184.8 37.0

The amount of protein (mg) and LCAT (g) in the start medium, flow-through, wash

and eluent were estimated by Bradford and LCAT activity assays, respectively. The

percentage recovery of total protein and LCAT was then calculated for each stage of

the purification process.
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Figure 4.1 Electrophoretic purity of LCAT isolated by octyl-Sepharose column

chromatography

The eluate of the column was run on a 8 % Tris-Glycine gel and silver stained. The left

lane shows molecular weight markers in kDa, while the right lane is the column’s

eluate. A prominent band with the expected size for LCAT (64 kDa) was evident

although some contaminants with higher and lower molecular weight were also present

(  ).

250 kDa

148 kDa

60 kDa 64 kDa




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4.5 Ni-NTA spin column purification following octyl-Sepharose

isolation

4.5.1 Materials and Methods

In order to reduce the impurities present following octyl-Sepharose separation, a

further purification step was employed using a Ni-NTA spin column. The eluate from

the octyl-Sepharose column was concentrated 10x using a Vivaspin concentrator with

MWCO of 10,000 Da and dialysed against 50 mM NaH2PO4 buffer, pH 8.0 containing

300 mM NaCl and 10 mM imidazole. Concentrated octyl-Sepharose eluate (400 l) was

then loaded onto the Ni-NTA column to further purify LCAT as described in 4.2. The

flow-through was collected and the column was washed with 600 l of wash buffer.

Finally, the column was eluted with 200 l of elution buffer and the eluate collected.

Aliquots were taken at each step of the purification for LCAT (section 2.2.3), Bradford

assays (section 2.5.5) and SDS-PAGE (section 2.5.6).

4.5.2 Results and Discussion

Concentrated octyl-Sepharose eluate, which was the start material for the Ni-

NTA column, had 360 g of protein (Table 4.4). There was a loss of 204.4 g (56.8 %)

of protein in the flow-through and the protein recovered in the eluate was 46.6 g (12.9

%). At each stage of this purification, the concentration of LCAT was also measured

(Table 4.4). A total of 117.4 g LCAT was loaded onto the Ni-NTA column. About

96.8 g (82.4 %) was lost in the flow-through, while the eluate contained only 6.8 g of

LCAT giving a recovery of 5.8 %. SDS-PAGE showed that there was essentially pure

LCAT following this two stage purification procedure (Fig 4.2).

Loss of LCAT in the flow-through was significant (82.4 %) even though the

start material was relatively pure LCAT. This might be explained by the high LCAT

(117.4 g of H6LCAT) loaded onto the Ni-NTA as its binding capacity was relatively

limited (Table 4.2). Earlier I showed (Table 4.2) that after loading 13.5 g of LCAT in

non-fractionated culture medium onto Ni-NTA column, the loss of LCAT in the flow-

through was similarly high (63.7 %). Moreover, only 6.8 g (5.8%) of LCAT was

recovered from the eluate and this was a lower recovery compared with the previous

result from the Ni-NTA column (Table 4.2). Since, this two-step method is not an



118

efficient way of purifying LCAT from cell culture medium, I attempted using another

purification technique with His-Bind Quick cartridges, which is described in the

following section (4.6).
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Table 4.4 Purification of LCAT by Ni-NTA spin column following octyl-Sepharose

chromatography

Total Protein LCATPurification Stage

g % recovery g % recovery

Start (Concentrated

octyl-Sepharose

Eluate) (400 l)

360.0 100 117.4 100

Flow through (400 l) 204.4 56.8 96.8 82.4

Wash - - 0 0

Eluate (200 l) 46.6 12.9 6.8 5.8

The amount of protein (g) in the start medium, flow-through, wash and eluate were

estimated by Bradford assay. LCAT activity was determined at each step using

proteoliposome substrate (section 2.2.3) and hence its corresponding amount

(g).From these values, the percentage of total protein and LCAT at each stage of Ni-

NTA column purification was calculated.
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1 2 3 4

Figure 4.2 Analysis of LCAT purity SDS-PAGE following a two-stage purification

using octyl-Sepharose and Ni-NTA columns

Samples from the purification process were run on a 8 % Tris-Glycine gel and silver

stained. Lane 1 shows molecular weight markers in kDa, Lane 2 represents the start

medium (“purish”LCAT, octyl-Sepharose eluate) indicated by a thick dark band above

60kDa, Lane 3 representing wash of Ni-NTA column with a few visible bands of

unbound proteins and Lane 4 eluate of Ni-NTA column, showing a single dark band

above 60 kDa representing purer LCAT.

250 kDa

148 kDa

60 kDa
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4.6 His-Bind Quick Cartridges and Columns

4.6.1 Introduction

The His-Bind Quick cartridges were packed with pre-charged nickel cations

resin and are designed for use with a syringe. Like the spin columns, they are suited to

the rapid purification of proteins containing a histidine tag sequence. They have a large

diameter cellulose matrix and have flow-rates 5–50 times faster than agarose resins,

while maintaining a similar binding capacity. Target proteins can be purified from crude

cell lysates in as little as 5 mins. However, the re-use of these cartridges is not

recommended by the manufacturer.

4.6.2 Materials and Methods

Quick 900 Cartridges with a column volume of 2 ml and a binding capacity of 2.0

mg per run were purchased from Novagen. The His–Bind Buffer kit contains the

following components:

 Binding buffer: 5 mM imidazole, 0.5M NaCl, 20 mM Tris-HCl, pH 7.9

 Wash buffer: 60 mM imidazole, 0.5M NaCl, 20 mM Tris-HCl, pH 7.9

 Elution buffer: 1 M imidazole, 0.5M NaCl, 20 mM Tris-HCl, pH 7.9

Using a 20 ml syringe, the appropriate buffer can be pushed through the cartridge at

a rate of approximately 5 ml/min. According to the manufacturer’s instructions, the

column was initially equilibrated with 6 ml of binding buffer. The test sample was

prepared by a 48 h collection of normal growth medium in a 75 cm2 culture flask

containing confluent CHO-H6LCAT cells. A sample of the medium was retained for

LCAT assay and the remaining 13 ml was applied to the column. The column was then

washed with 20 ml binding buffer followed by 10 ml of wash buffer. Finally, proteins

were eluted with 4 ml of elution buffer. The flow-through and eluate were collected and

assayed for LCAT.

4.6.3 Results and Discussion

There was 13.4 g of LCAT in the normal growth medium loaded onto the His-

Bind Quick cartridge. The amount of LCAT lost in the flow-through was 0.6 g (4.5 %)

(Table 4.5), while 3.9 g (29.1 %) was recovered in the eluate. The rest of the
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unrecovered LCAT (66.4 %) could be accounted for in the wash but a significant

proportion is likely to have been inactivated. When using the Ni-NTA spin column, the

starting amount of LCAT in the normal growth medium was half (6.7 g; Table 4.1)

that used here. The amount lost after the 1st flow-through was four times more (19.5 %)

and the recovery of LCAT from the eluate was about one third less (11.4%) (Table 4.1)

compared to the corresponding values for the His-Bind Quick cartridge (4.5 % and 29

%; Table 4.5). This suggests that His-Bind Quick cartridges are more efficient in

isolating active LCAT than Ni-NTA spin column. An added advantage here is that the

culture medium containing LCAT does not need to be concentrated, a step which is

necessary when using spin columns.
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Table 4.5 Purification of H6LCAT using His-Bind Quick Cartridge

His-Bind Cartridge LCAT

(g)

Recovery

(%)

Start 13.4 100

Flow-through 0.6 4.5

Eluate 3.9 29.1

The His-Bind Quick Cartridge was loaded with 13.4 g of LCAT in 13 ml of normal

growth medium. LCAT activity in the flow-through and eluate were estimated by

standard assay. The LCAT recovered was calculated as a percentage of LCAT in eluate

compared to the start.
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4.7 Hi-Trap affinity column chromatography

4.7.1 Introduction

Hi-Trap is a ready to use, disposable column designed for affinity

chromatography. The columns are 1 ml or 5 ml and have a porous top and bottom frits

which allow high flow rates. The separation can be achieved using a syringe or a

laboratory pump. Here, the chelating Sepharose consists of highly cross-linked agarose

beads to which imino-diacetic acid has been coupled by stable ether groups. As a result

of this coupling, a high capacity and performance gel is obtained, which is stable over

the pH range 2-14. When charged with suitable ions, the matrix will selectively retain

proteins if complex forming amino acid residues are exposed on the surface of the

protein.

4.7.2 Materials and Methods

The matrix (purchased from Amersham Biosciences, UK) is supplied with 20%

ethanol, free of metal ions and has to be charged with a suitable ion before use. The

metal ion most commonly used is Cobalt (Co2+) and the following solutions were

prepared:

 Binding buffer: 50 mM Na2 PO4, 0.5 M NaCl, 5 mM imidazole, pH 8

 Wash buffer: 50 mM Na2 PO4, 0.5 M NaCl, 50mM imidazole, pH 8

 Elution buffer: 50 mM Na2 PO4, 0.5 M NaCl, 50 mM EDTA, pH 8

EDTA (50 mM) was used as a chelating agent to strip the metal ions from the gel and

cause desorption. The charged column was stored in 20 % ethanol.

Tubing of a peristaltic pump was connected to a 1 ml Hi-Trap column and the

matrix washed with 5 ml of water at 1 ml/min. About 1 ml of 0.1M cobalt sulphate was

loaded to charge the column as indicated by the column turning pink, followed by 5 ml

of binding buffer and then 5 ml of wash buffer. This was to elute non-specifically

bound cobalt ions that might otherwise be released during elution. The column was then

equilibrated with 5 ml of binding buffer. After a 48 h collection, concentrated 5 ml CD-

CHO H6LCAT medium was loaded onto the column with the flow rate preset at 300

l/min, the chart printer set to run at 1 mm/min and the absorbance at 0.2. The flow-

through was collected and the column washed with 5 ml of wash buffer. Finally, the
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column was eluted and the fraction of eluate (1.6 ml) corresponding to the peak

absorbance was collected and assayed for LCAT activity.

The whole process of purification was repeated to obtain a duplicate result and

to test the re-usability of the column. First, the column was washed with 15 ml of water

at a flow rate of 1 ml/min, followed by recharging with 1 ml 0.1 M cobalt sulphate and

removal of excess metal ions. A second aliquot of CD-CHO H6LCAT medium (5 ml)

was then loaded onto the column, and samples from the various stages of purification

were taken for LCAT assay (section 2.2.3).

4.7.3 Results and Discussion

The starting amount of LCAT was 22.7 g in the 1st run and 18.6 g in the 2nd

run (Table 4.6). There was no loss of LCAT detectable in the flow-through and is

clearly a first compared to Ni-NTA (Table 4.1), His-Bind Quick Cartridges (Table 4.3)

and octyl-Sepharose columns (Table 4.4). This implies that there was 100% capture of

LCAT. However, in the wash, there was 4.6 % of LCAT detected in the 1st run

compared with 11.8 % in the 2nd run. In contrast, there was virtually no LCAT detected

in the wash following octyl-Sepharose column chromatography and two-stage

purification using octyl-Sepharose and Ni-NTA columns. The LCAT in this wash may

be due to the higher concentration of imidazole (50 mM) and this loss could be reduced

by lowering the concentration of imidazole. LCAT recovered were similar with 22.3 %

in the 1st run and 20.5 % in the 2nd run. SDS-page gel-electrophoresis (section 2.5.6)

demonstrated that pure LCAT was recovered (Fig 4.3). The purity of the LCAT

obtained here was comparable to the LCAT after two-stage purification using octyl-

Sepharose and Ni-NTA columns (Fig. 4.2) but less contaminant than the LCAT

recovered from octyl-Sepharose column alone. However, the efficiency of LCAT

purification was still relatively low at about 20 %. It is likely that the majority of LCAT

was still bound to the column. An alternative to overcome this problem was to elute the

protein at a lower pH (e.g. 7.2), but this may compromise the catalytic function of

LCAT.
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Table 4.6 Purification of H6LCAT via a reusable cobalt-charged Hi-Trap column

1st Run 2nd RunHi-Trap Column

LCAT

(g)

LCAT

% recovery

LCAT

(g)

LCAT

% recovery

Start Medium

(5ml)

22.7 100.0 18.6 100.0

Flow through

(5 ml)

0 0 0 0

Wash (30 ml) 1.1 4.6 2.2 11.8

Eluate (1.6 ml) 5.1 22.3 3.8 20.5

Concentrate CD-CHO. H6 LCAT medium was loaded onto the Hi-Trap column for the

1st run and the amounts detected in the flow-through, wash and eluate are shown in the

table. Tthe column was then recharged with cobalt ions and again used to purify a

similar amount of LCAT (2nd run). The percentage recovery of LCAT in the three

fractions is also shown.
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Figure 4.3 Electrophoretic purity of H6LCAT after isolation by chromatography

on a cobalt-charged Hi-Trap column

The left lane shows molecular markers in kDa and eluate of the cobalt- column was run

on a 8-16% Tris-Glycine gel. The gel was silver stained which showed a dark band

above the 62 kDa level representing pure LCAT with very little impurities evident.

83 kDa

62 kDa

47.7 kDa
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4.8 Talon resin gravity-flow columns

4.8.1 Introduction

Talon resins are durable, cobalt-based resins designed to purify recombinant His6

proteins (Bush et al., 1991). These resins are compatible with many commonly used

reagents and allow protein purification under either native or denaturing conditions. To

overcome the problem of metal leakage encountered with other resins, Talon utilizes a

special tetradentate metal chelator. This tightly holds the electropositive metal in an

electronegative pocket, which is ideal for binding metal ions such as cobalt. It enhances

the resin’s protein binding capacity by making the bound metal ion accessible to

surrounding polyhistidine-tagged proteins.

Nickel-base resins often exhibit an undesirable tendency to bind unwanted

“background” proteins containing exposed histidine residues (Kasher et al., 1993).

Talon resin is said to bind polyhistidine-tagged proteins with enhanced selectivity over

nickel-based resins since it has a reduced affinity for background proteins. As a result

no background proteins are expected to bind to Talon resin when the sample is applied.

Therefore elaborate washing procedures are not generally required before protein

elution. Another practical advantage is that His6 proteins elute from Talon under slightly

higher pH or lower imidazole concentration, less stringent conditions than from nickel-

based resin.

4.8.2 Materials and Methods

Talon purification kit (#K1253-1) was purchased from Clontech laboratories. It

contains the following items:

 Talon metal affinity resin supplied as a 50% (v/v) slurry in non-buffered 20%

ethanol

 Disposable 2 ml gravity columns

 Extraction buffer: 50 mM sodium phosphate, pH 7.4 ; 300 mM NaCl

 Elution buffer : 50 mM sodium phosphate, pH 7.4; 300 mM NaCl; 150 mM

imidazole

 20 mM MES, pH 5; 0.1 M NaCl
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CHO-H6LCAT cells were grown to confluence in a 175 cm2 culture flask and

switched to CD-CHO medium (28 ml) for a 48 h collection. One ml of Talon resin (2

ml of the 50 % slurry) has a binding capacity of at least 3 mg of tagged protein, which

exceeds that of the H6LCAT in the CD-CHO medium, and the medium to resin ratio

was standardized to 20:1. Therefore 1.4 ml of resin (2.8 ml of the resin suspension) was

centrifuged at 1500 x g for 2 min at 4 0C, and, after removing the supernatant, the resin

was equilibrated with 10-bed volumes (14 ml) of extraction buffer. The resin was

sedimented again by centrifugation at 1500 x g for 2 min at 4 0C, and, after a second 10-

bed volume wash, was incubated with the LCAT-containing medium on a roller mixer

for 2 h at 4 0C.

After incubation, the mixture was centrifuged at 1500 x g for 2 min. The

supernatant (flow-through) was removed, the resin washed twice with 25 ml of

extraction buffer, pH 7.4, and then resuspended in 2 ml of extraction buffer. It was

transferred into a gravity-flow column and washed with 5 bed volumes of extraction

buffer (pH 7.4). The column was then eluted with 5 bed volumes of elution buffer. The

elutions were collected in approximately 500 l fractions. Finally, the resin was washed

with 7 ml of 20 mM MES/0.1 M NaCl (pH 5) followed by 7 ml deionized water and

stored in 20% ethanol at 40C. The samples obtained during various stages of

purification were used for LCAT assay (section 2.2.3) and to assess purity by SDS-

PAGE (section 2.5.6).

4.8.3 Results and Discussion

Table 4.7 summarises the results of four independent purifications using

individual single-use Talon resin column to isolate H6LCAT from CD-CHO medium.

Whilst the amount of LCAT varied from 19.7 – 104.0 g, the volume of medium was

kept constant at 28 ml. When 19.7 g of LCAT was present in the medium, there was

no LCAT lost in the flow-through and the recovery in the eluate was 53.9 % which was

an improvement compared with previous methods of purification. The recovery was

even higher (66.7 %) when the medium contained 40 g LCAT was present in the

medium but this was at the expense of a 27 % LCAT loss in the flow-through. Further

increases in LCAT to 87.8 and 104 g resulted in a decline of LCAT recovery to 54.1

and 47.2 % respectively, although the amount of LCAT protein actually isolated was

nearly doubled (47.5 and 49.1 g).
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At each stage of the purification, individual fractions were run on an 8-16 %

Tris-glycine gel (Novex) (Fig. 4.4). In a typical gel, Lane 1 represents the markers and

lane 2 showed a prominent light band in the region of 64 kDa demonstrating the

presence of LCAT in the starting medium (CD-CHO). There were other associated faint

bands, which represented non-specific proteins in the medium. A faint band in lane 3 at

64 kDa indicated a negligible loss of LCAT in the flow-through. Lane 4 showing a

marked dark band at 64 kDa signifying the presence of concentrated LCAT with a high

degree of purity and this was confirmed by enzymic assay.

It would appear that the resin was functioning at good efficiency throughout the

range of LCAT (20-104 g) loaded onto the 1.4 ml of Talon resin which was used each

time. Since more than 50 % of LCAT could be recovered from CD-CHO.H6LCAT

medium, this method clearly out performed other methods of purification. Therefore, it

was chosen to purify LCAT throughout the study.

To determine the feasibility of reuse, the resin is regenerated by washing with

20 mM MES buffer and was equilibrated with extraction buffer as before. CD-

CHO.H6LCAT medium (28 ml) was collected over 48 h and subjected to the same

purification steps as described above. There was approximately 4 % recovery of LCAT

from CD-CHO.H6LCAT medium. This compared poorly with 47-66 % recovery of

LCAT when the resin was used only once. There was also a significant loss in the flow-

through of approximately 70% compared to less than 30% when the resin was used as

fresh. This suggests that very little LCAT loaded was binding in the column. One

possible way to address this problem is to use a larger volume of used resin.

Alternatively, re-charge the column by passing a cobalt solution through prior to reuse.

Electrophoresis of the eluate, showed a small pure band (LCAT) in the 65kDa region.

Although the purity of LCAT was not compromised, the recovery was substantially less

than expected and therefore it was not cost effective to reuse the resin.

Increasing LCAT in the starting medium would involve concentrating greater

volumes of medium and hence the presence of other non-specific proteins. These would

compete with LCAT for the Talon resin making it less available for binding. One way

to overcome this problem is a 2-stage procedure involving an initial purification step

using octyl-Sepharose column chromatography to remove a major proportion of protein

contaminants before using Talon resin to isolate H6LCAT from large volumes of

medium. This is described in the next section (section 4.9).
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Table 4.7 Purification of H6LCAT using a Talon resin gravity-flow column

Samples 1st 2nd 3rd 4th

LCAT

(g)

Recovery

(%)

LCAT

(g)

Recovery

(%)

LCAT

(g)

Recovery

(%)

LCAT

(g)

Recovery

(%)

Start 19.7 100 40.1 100 87.8 100 104.0 100

Flow-

through

0 0 10.8 26.9 16.0 18.2 7.5 7.2

Eluate 10.4 53.9 26.7 66.7 47.5 54.1 49.1 47.2

Four separate collections of CD-CHO.H6LCAT medium were passed through

individual Talon resin column (single use). The flow-through and eluate were collected

and the amount of LCAT activity in the start, flow-through and eluate was estimated by

standard assay (expressed as micrograms). The percentage recovery of LCAT in the

two fractions is also shown.
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Lanes 1 2 3 4

Figure 4.4 Electrophoretic purity of H6LCAT during each stage of isolation by

Talon resin affinity chromatography

Samples were taken at each stage of purification using Talon resin gravity column, and

run on a 8-16% Tris-Glycine gel followed by silver staining to ascertain the purity of

LCAT. Lane 1 show the broad range molecular weight markers (kDa), Lane 2 start

medium, CD-CHO containing H6LCAT as represented by a faint band above 62 kDa,

Lane 3 flow-through as shown by a very light band above 62 kDa indicating some loss

of LCAT in the flow-through. Lane 4 eluate as indicated by a marked dark band above

62kDa signifying pure LCAT. As typified by the analysis shown in Lane 4, this isolation

procedure consistently produce pure LCAT.

83 kDa

62 kDa

47.7 kDa
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4.9 An optimized two-step purification of H6LCAT using octyl-

Sepharose chromatography and a Talon resin column

4.9.1 Introduction

In order to purify a large stock of H6LCAT for injection into LCAT-deficient

mice, large volumes of CD-CHO LCAT medium would be used. Purification of LCAT

by HIC–octyl-Sepharose column would be an ideal first step for a preliminary

purification and concentration. Following this, Talon resin purification method would

be an effective second step procedure as it gave a satisfactory recovery and high-purity

LCAT, as described in section 4.8.

4.9.2 Materials and Methods

The Equipment set-up has previously been described in section 4.4.2. After the

column was equilibrated with 300 ml of PBS, 1.35 L of CD-CHO H6LCAT medium

(1.4 g/ml) pooled from several collections was thawed and passed through the column

overnight. The pump flow rate was set at 53 (1.6 ml/min) and the chart recorder set at

100 mV and a speed at 1 mm/min; the absorbance of the detector was 0.2. The next day,

after the medium had been pumped through, the column was washed with an excess of

10 mM sodium phosphate (pH 7.5). Finally the column was eluted with water (48 ml)

which showed a sharp peak in absorbance on the chart recorder as protein was eluted.

When the elution was complete, the absorbance indicator returned to a stable baseline,

and the collected eluate was concentrated to 20 ml using a 10,000 MWCO Vivaspin

concentrator at 2,500g and 4 0C.

This concentrate was then incubated with 2 ml of primed Talon resin at 4 0C for

2 h on a roller mixer. Next, the resin was washed with 40 ml of extraction buffer for 10

min at 4 0C, centrifuged at 700 g for 10 min and after discarding the supernatant and the

whole wash process repeated. Subsequently, the resin was transferred to the gravity-

flow column and eluted with 10 ml of elution buffer.

A second purification was carried out in an identical manner using a new batch

of Talon resin (2 ml), except that a smaller volume of CD-CHO.H6LCAT medium was

fractionated (350 ml). For both purifications, the amount of protein and LCAT at each

stage of the isolation was determined by Bradford (section 2.5.5) and LCAT assays

(section 2.2.3) and the purities assessed by SDS-PAGE (section 2.5.6).
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4.9.3 Results and Discussion

For the 1st purification, there was 1890 g of LCAT in the CD-CHO medium

(Table 4.8). Binding of LCAT was efficient as LCAT could not be detected in the flow-

through. This appears better than the previous result (Table 4.3) where 21.6 % of LCAT

was found in the same fraction after 500 g of LCAT was loaded onto the column. In

the eluate, 322 g (17%) of LCAT was recovered and this amount proportionally is less

than previously (37%) using a smaller LCAT load (500 g) (Table 4.3). The eluate was

further purified using Talon resin and there was 52 g (2.8%) of LCAT in the flow-

through and 260.9 g (an overall recovery 13.8%) in the eluate. In the 2nd run, when the

starting volume of CD-CHO medium was much smaller (350 ml containing 490 g of

LCAT), there was a small amount of LCAT in the flow-through 5 g (1 %). However,

in the eluate there was 129.4 g (26.4 %) of LCAT, an improved recovery compared

with the 1st run. This result may reflect the smaller amount of LCAT loaded onto the

column and the relative increased proportional binding of LCAT. Using Talon resin,

there was 3.5 g (0.7 %) of LCAT in the flow-through and 53.2 g (10.9 %) of LCAT

in the eluate. The proportions of LCAT recovered relative to the amounts loaded on the

Talon resin, were 81% and 41% for the 1st and 2nd runs, respectively.

The amount of total protein in 1.35 L of CD-CHO medium was 34.6 mg. After

passing through the octyl-Sepharose column, there was 3.45 mg (10%) of protein in the

eluate. When eluted from the Talon resin, there was 0.77 mg (2.2%) of protein present.

In the 2nd run, the CD-CHO medium contained 9 mg of total protein, which was

reduced to 2.1 mg (23.3%) of protein after octyl-Sepharose chromatography and to 0.5

mg (5.6%) after Talon resin purification.

Overall, a combined total of 451 g (19 %) of LCAT was recovered from octyl-

Sepharose column, 314 g (13.2 %) after elution from the Talon resin. Although gel-

electrophoresis showed that the LCAT recovered was of high purity similar to that in

Fig 4.4, there was a significant loss of LCAT (> 85%) during this process.

4.9.4 Conclusion

The problem with the 2-step octyl-Sepharose chromatography and talon resin

column is that % LCAT protein recovered is low (1st run: 13.8 % i.e. 260.9 g / 1890

g; 2nd run: 10.9 % i.e. 53.2 g / 490 g see Table 4.8). Recovery of protein by the
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Talon resin step in the 1st run was 22.3 % (i.e. 0.77 mg / 3.45 mg) and in the 2nd run ,

23.8 % (i.e. 0.5 mg / 2.1mg). The combined % LCAT protein was 24.2% (314.1 g /

1300 g see Table 4.9). Similar results with low % LCAT protein yield were observed

using Ni-NTA column (14.6 % i.e. 6.8 g / 46.6 g see Table 4.4) and and octyl-

Sepharose column (11.6 % i.e. 184.8 g / 1600 g see Table 4.3). This raises the

probability that LCAT may be inactivated during the process of purification since no

obvious contamination was seen on my gels e.g. Fig 4.4. This is further substantiated by

the high recovery of “active and inactive” LCAT of 53.4% (% ratio of total protein in

eluate [770 + 500 g] to total LCAT [2380 g]). Another possible explanation for the

high protein yield in the eluate may be due to an over-estimation of protein

concentration based on the Bradford assay whose standard is the bovine serum albumin

(BSA). As there are many different types of proteins in the culture medium, the

concentration of protein derived from one protein standard may not be accurately reflect

the true amount of protein present.

Mercaptoethanol reduces disulfide bonds and preserve the active sulfur-

hydroxyl groups in LCAT. One way to prevent unwanted interaction between

contaminant proteins and His6tagged LCAT is to add -mercaptoethanol to the buffers

during purification. Recycling of flow-throughs (although no LCAT here) increases the

binding time and thus could potentially recover some LCAT lost (e.g. 21.6%, see Table

4.3) at this stage.

In conclusion, purifying LCAT from small volumes of medium was found to be

feasible using Talon resin. Scaling up this purification to larger volumes of medium

using a two-step procedure was inefficient, even though very pure LCAT was

recovered. Further work will need to focus on this area, perhaps using Talon resin in a

larger column to purify higher amounts of LCAT. For my subsequent in vivo work on

protein therapy, I adopted the method described in section 4.8 to purify LCAT.
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Table 4.8 Large-scale purification of LCAT using a combination of octyl-

Sepharose and Talon resin column chromatography

1st Run (1.35 L) 2nd Run (0.35 L)Octyl-

sepharose

LCAT

(g)

LCAT

Recovery

(%)

Total

Protein

(mg)

Protein

Recovery

(%)

LCAT

(g)

LCAT

Recovery

(%)

Total

Protein

(mg)

Protein

Recovery

(%)

Start 1890.0 100 34.6 100 490 100 9.0 100

Flow

through

0 0   5.0 1.0  

Eluate 322.0 17.0 3.45 10.0 129.4 26.4 2.1 23.3

Talon

resin

Flow

through

52.0 2.8   3.5 0.7  

Eluate 260.9 13.8 0.77 2.2 53.2 10.9 0.5 5.6

Two separate purifications of CD-CHO medium were carried out (1.35 L and 0.35 L).

For both runs, the amount of LCAT (g) in the start, flow-through and eluate was

determined after passing through the octyl-sepharose column and the Talon resin.

Protein contents in the start and eluate of both stages were determined by Bradford

assays but not in the flow-throughs.
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Table 4.9 The combined result of the large volume purification of LCAT using

octyl-sepharose column and Talon resin

Octyl-Sepharose LCAT

(g)

LCAT

Recovery

(%)

Total Protein

(mg)

Protein

Recovery

(%)

Start 2380 100 43.5 100

Flow through 5.0 0.2

Eluate 451.4 19 5.5 12.6

Talon resin

Flow through 55.5 2.3

Eluate 314.1 13.2 1.3 3.0

The combined data from the large scale purification of LCAT is shown. After passing

through the octyl-Sepharose column, 19 % of LCAT and 12.6 % of protein were eluted.

Elution from Talon resin yielded 13.2 % of LCAT and 3 % of total protein were

recovered.
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CHAPTER 5

IN VIVO STUDIES



139

5. IN VIVO STUDIES

5.1 Protein Therapy

5.1.1 Introduction

Protein therapy refers to the ability to deliver therapeutic proteins in humans.

The major potential uses of proteins include direct replacement of deficient protein or

enzyme and the augmentation of a pre-existing pathway leading to reduced levels of a

toxic metabolite.

Live proteins extracts have been used to treat hepatitis and cirrhosis. One such

protein is the thymus protein that is being used to increase host’s resistance and is

responsible for modulation of cell-mediated immunity (Zeman et al., 1991). Hepatocyte

Growth Factor (HGF) is another live protein that has been employed to improve the

regenerative capabilities of the liver. It has been identified as one of the many active

proteins and growth factors found in the liquid liver extract that is said to stimulate liver

regeneration, accelerate hepatic function and reverse fibrosis and cirrhosis (Kaido et al.,

1998).

One approach to treat the lipoprotein abnormality in liver disease is by direct

injection of pure LCAT via either intravenous route or intraperitoneal cavity. I have

evaluated this method by performing a series of pilot experiments with LCAT -/- mice.

The latter were kindly provided by Dr Eddy Rubin from Berkeley (Ng et al., 1997).

Homozygous LCAT-/- mice were healthy and, like their human counterparts, have

markedly reduced plasma concentrations of cholesterol, HDL cholesterol, apoAI and

apoAII making them ideal for my studies.

5.1.2 Intravenous Injection

I report here a pilot study infusing H6LCAT into LCAT -/- mice via the tail vein

and then measuring LCAT activity at three time intervals post-injection.

Materials and Methods

Pure LCAT was freshly prepared as described in section 4.8 using Talon resin

and was then frozen. An activity assay on the day of injection showed the concentration

of active enzyme was 189 ng/l. One female LCAT -/- mouse, 20 months old and
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weighing 26 g was injected with 70 l (13.23 g) of pure LCAT intravenously via the

tail vein. This amount was based on the fact that the LCAT concentration in human

plasma is 6 g/ml and that the approximate blood volume in a mouse is 78 ml/kg.

Therefore, a 26 g mouse has an estimated circulatory volume of approximately 2.0 ml.

As its haematocrit or packed cell volume is 40, the plasma volume is 0.8 ml. Hence, it

would require approximately 4.8 g equivalent of LCAT in order to achieve a plasma

concentration of 6 g/ml. An arbitrary excess amount of LCAT (13.23 g) was used to

compensate for any loss of LCAT during preparation and injection (e.g. LCAT

remaining in syringe and needle).

A tail bleed was taken prior to injection and at 0.5, 3 and 22 h intervals. Home

Office guidelines require that mice are not bled more than 15 % of their blood volume

per month. Assuming a 26 g mouse has a blood volume of 2ml, the maximum volume

permitted is 300 l and therefore, I have limited each bleed to a safe volume of 30-40

l. Collected blood in plain Eppendorfs was immediately transferred onto ice and

centrifuged at 13000 rpm at 4 0C. The plasma was temporarily stored at –200C and

subsequently assayed for LCAT (section 2.2.3).

Results and Discussion

As expected, plasma from the LCAT -/- mouse did not contain any endogenous

LCAT as demonstrated by undetectable LCAT activity in the pre-bleed sample. A peak

of 11 g/ml of LCAT (Fig 5.1) was detected in the mouse plasma 30min after tail-vein

injection which was more than the estimated LCAT concentration (6-7 g/ml)

predicted. This could be explained by an overestimation of the mouse plasma volume as

discussed later. A further plasma sample taken at 3 h, showed that 8.9 g/ml of LCAT

was present. The last sample at 22 h recorded 2.23 g/ml of LCAT thus demonstrating a

substantial decline in activity.

Haematocrit is defined as the ratio of the volume occupied by packed red blood

cells to the volume of the whole blood. Assuming that the plasma volume is 1 ml, the

total blood volume in a mouse with a normal haematocrit (35-40 %) would be

approximately 1.5-1.7 ml. This value is nearly equivalent to the total blood volume (1.8

ml) of a 26 g mouse. This would explain the unexpected high peak concentration of 11

g/ml of LCAT at 30 min. Further more, 70 l LCAT infused is  4 % of the blood

volume and may increase the viscosity of the blood in the mouse thus impair the heart to

pump effectively. It results in abnormal distribution of LCAT which may account for
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this high LCAT concentration. However, infusion of normal saline would dilute the

blood and reduce the viscosity to normality.

After 22 h, there was a significant reduction (80 %) in LCAT concentration

compared to its peak value. This suggests that LCAT was rapidly cleared and is most

likely due to normal rate of clearance e.g. perhaps due to HDL catabolism. Of specific

importance is that human LCAT was still enzymically active in mouse plasma.
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Figure 5.1 Plasma LCAT concentration after a bolus tail-vein injection of purified

LCAT in one LCAT -/- mice.

A bolus of purified LCAT (13.23 g) was administered into the tail-vein of a LCAT -/-

mouse. Mouse plasma was sampled at 0.5, 3 and 22 h. The plasma was assayed for

LCAT activity as described in section 2.2.3. The % CE calculated was converted to an

equivalent LCAT mass in g/ml.
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5.1.3 Intraperitoneal Injection (IP)

An alternative method using the intraperitoneal route was chosen to deliver

LCAT into the LCAT -/- mice. This route was of interest as it would be a prelude to

implanting encapsulated cells into the peritoneal cavity once this stage of the study was

deemed feasible. No advantage has been demonstrated of one needle size over another,

quadrant of injection, or investigator (Miner et al., 1969).

Materials and Methods

Two healthy female LCAT -/- mice, both about 19 months old and weighing 36

g, were used in this experiment. The 1 ml syringes with 26-gauge needles were used for

IP injections. LCAT with a concentration of active enzyme of 189 ng/l was used in

this experiment (section 4.1.1). Both LCAT -/- mice were injected with 100 l (18.9 g)

of pure LCAT into their peritoneal cavities. Tail bleeds of 20-50 l were taken prior to

injection and at 0.5, 1, 2, 4 and 22 h intervals. The plasma collected was assayed for

LCAT activity, free and total cholesterol as described in sections 2.2.3 and 2.5

respectively.

Results and Discussion

In both mice, there was detectable LCAT in their plasma within 0.5 h in mouse

(2) and 1 h in mouse (1) (Fig 5.2). In mouse (2), the plasma LCAT was 13.2 g/ml at 1

h post injection followed by the highest concentration recorded, 14.9 g/ml at 2 h. At

the 4th hour, the plasma LCAT was 13.3 g/ml. It may have peaked even further

between 1 and 4 h but it was not possible to collect blood samples at more frequent

intervals as it would have made the animal unwell and also have exceeded the

recommended guidelines for bleeding. The concentration of LCAT in mouse (2) was

high. This could be explained by the small circulatory plasma volume in these mice

(1.26 ml); whereas the total blood volume with a normal haematocrit (0.35) would be

approximately 1.9 ml. It is plausible that this picture could be representative of the way

in which LCAT could behave when secreted from encapsulated cells.

At 22 h, 5.3 g/ml of LCAT was still present in the plasma. In mouse (1), a

maximum of 3.26 g/ml of LCAT was present in the plasma at 4 h. Although the LCAT

level was much less than in mouse (2), it was maintained at 3.20 g/ml even at 22 h.

This could be a result of a delay in absorption and or the amount absorbed was less than
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expected. The peritoneal cavity blood barrier could be abnormal from previous

inflammatory process causing impaired absorption of LCAT into the blood stream.

Apart from mouse (1), where there was insufficient plasma at 1 h to do the free

cholesterol assay, cholesteryl ester was calculated as a percentage as described before

(section 2.5). An apparent decrease in % CE/TC in mice (2) one hour post injection (34

%) was noted, followed by a significant rise at 22 h (51 %) (Fig 5.3). There was a

similar decrease in % CE/TC in mice (1) at 2 h (27 %), but a smaller rise at the 22 h (41

%).

Intravenous injection of LCAT into mice provides a relatively rapid route for

administration of the protein and achieves a high plasma level in a short time. However,

intraperitoneal injection as demonstrated here is an alternative that is easily accessible

and just as effective even though there is lag time of absorption for the LCAT to

traverse into the bloodstream. More importantly, it produces a physiological response

by increasing the esterification of cholesterol. However, the peak levels of LCAT in the

mice plasma do not correspond to the maximal levels of esterified cholesterol. It appears

that there was delay in esterification and this process may be slow and cumulative in

effect.

An additional advantage here is that the peritoneal cavity could act as a

reservoir, slowly releasing LCAT into the circulation after only a single injection. There

were no adverse effects suffered by both animals following administration of LCAT and

blood sampling.



145

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25Time (Hour)

L
C

A
T

( 
g

/m
l)

Mouse (1)

Mouse (2)

Figure 5.2 Plasma LCAT concentration in LCAT -/- mice following IP injection of

pure LCAT.

A bolus of pure LCAT (18.9 g) was administered to both LCAT -/ mice via IP route.

Tail bleeds were taken at 0, 0.5, 1, 2 and 22 h and plasma collected were checked for

LCAT activity as described in section 2.3.3. The results were converted to LCAT mass

expressed as g/ml.
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Figure 5.3 The percentage esterified cholesterol in two LCAT -/- mice plasma

following IP injections of LCAT.

After each LCAT -/- mouse (mouse (1) and mouse (2)) was given a bolus IP injection of

pure LCAT (18.9 g), tail bleeds were taken at 0, 0.5, 1, 2 and 22 h. The concentration

of free and total cholesterol was estimated in the standard manner as described in

section 2.5. Cholesteryl ester concentrations were derived by subtracting the free

cholesterol values from those of the total cholesterol measurements. The percentage of

total cholesterol as cholesteryl esters was then calculated as shown in the bar graph.

.
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5.1.4 Bolus injection of LCAT

With the initial apparent success with IP administration, I decided to do a

follow-up study using more LCAT -/- mice. Unfortunately, as there were problems with

in-house breeding, I was limited to 3 mice to verify the pilot study.

Materials and Methods

Three female LCAT -/- mice, all 3 months old and weighing 18-20 g, were each

given a bolus injection of 15.2 g of LCAT into their peritoneal cavities. Tail bleeds

were taken just before the single injection and 1, 2, 4, 6 and 22 h post-injection. The

samples were collected on ice and centrifuged at 13,000 rpm at 4 0C. The supernatant

plasma was aliquoted for LCAT, total and free cholesterol assays as described in

sections 2.3.3 and 2.5. Plasma was analysed by agarose gel electrophoresis (section

2.5.4) to monitor changes in the lipoprotein profile (results described on page 150 and

shown in Fig. 5.10).

Results and Discussion

In this experiment, all the pre-bleed plasma of the LCAT -/- mice showed the

absence of basal LCAT. There was a significant increase in LCAT concentration in all 3

mice at 1 h (Fig 5.4). The highest level of LCAT concentration 2 h post injection was

15.6 g/ml in mouse (2) and 14.3 g/ml in mouse (3). At 6 h, LCAT concentration in

mouse (1) was 14.9 g/ml. As before, the plasma LCAT concentration in mouse (2) at

2h exceeded the bolus dose (15.2 g). The average peak plasma LCAT concentration

achieved was 14.7 g/ml at 2 h. LCAT concentration remained relatively constant from

2-6 h except for mouse (3). In the latter, there was a more rapid decline in LCAT

concentration after its peak concentration. Due to limitations of collecting blood, I was

unable to obtain more samples between the time intervals. As a result, the point at

which LCAT concentration began to decline rapidly could not be accurately determined.

It is likely to be between 6 and 22 h. Even at 22 h, the plasma LCAT concentration was

~ 6 g/ml. This represents a 60 % drop from its peak LCAT concentration and thus

suggests that rapid clearance of LCAT may have occurred. All 3 mice behaved similarly

as the peak LCAT concentrations were achieved within 6 h of injection followed by a

rapid decline in LCAT concentration to 22 h. The mean plasma LCAT concentration of

all 3 LCAT -/- mice following single bolus IP injection is shown in Fig 5.5. The average

peak LCAT concentration was 14.7  0.3 g/ml at 2 h post injection and followed by a



148

gradual decline to 6  1.2 g/ml at 22 h. The plasma half life of LCAT (t ½) was 7.35

g/ml at 18.5 h.

The LCAT -/- mice being homozygous for LCAT deficiency, have an intrinsic

basal level of esterified cholesterol in the mice expressed as 25.5  1.5 % CE (Fig 5.6).

This is a marked difference to the homozygotes for classic familial LCAT deficiency

where the LCAT activity is either severely reduced ( 5-9% of normal) or not detectable

and esterification of cholesterol is virtually absent (Glomset et al., 1995, Kuivenhoven

et al., 1995). The residual cholesteryl esters still present in LCAT -/- mice plasma most

likely originate from intracellular pools formed by acylcoenzyme A:cholesterol

acyltransferase (Sakai et al., 1997). Chylomicrons which are produced in the intestinal

mucosa may also account for the basal cholesteryl esters level. They transport dietary

cholesteryl esters from intestine into the general circulation via the thoracic duct.

Another source of basal cholesteryl esters is the liver where the former are synthesized

and are transported as VLDL.

The plasma LCAT concentration in mouse (2) (15.6 g/ml) was greater than the

bolus dose (15.2 g) injected. Although such high plasma LCAT concentration could be

explained by the small circulatory plasma volume in these mice (1 ml), most mice with

a weight greater than 25 g would have a plasma volume exceeding 1 ml. Re-activation

or re-naturation of enzyme in circulation seems likely to explain the discrepancy

between the amount of LCAT injected and the mice plasma LCAT. The LCAT assay

has been validated (see Chap 2.3) and there is no reason to suggest that the method

employed here was inaccurate. The role of glycan chains is not known with certainty.

One possibility is that alteration of glycan chains of purified human LCAT in mouse

plasma can lead to a change in reactivity of the enzyme with HDL substrates. In Chapter

4, where the steps for purification of LCAT were described, the total protein in the

eluent greatly exceeds the LCAT mass as determined by activity even though the LCAT

in the eluent was pure by SDS-PAGE (Fig 4.4). This suggests that activation of human

LCAT in mouse plasma is possible.

A statistically significant increase in % CE/TC was detected 4 h post injection

and very significant after 22 h (see Table 5.1, Fig 5.6). Again it appears that peak LCAT

levels do not correspond to high levels of cholesteryl esters. One can infer that there was

a lag phase and a gradual increase in esterification although the peak level could not be

certain due to the relatively wide time intervals.
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Figure 5.4 Plasma LCAT concentrations following a single bolus IP injection of

pure LCAT in 3 individual LCAT -/- mice.

A bolus of pure LCAT (15.2 g) was injected into the peritoneal cavities of 3 LCAT -/-

mice. At various time intervals (0, 1, 2, 4, 6 and 22 h) following injection, tail bleeds

were taken. The plasma collected was assayed for LCAT activity as described in 2.2.3.

The results were converted to its equivalent LCAT mass expressed ing/ml indicated on

the y-axis.
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Figure 5.5 Mean plasma LCAT concentration of 3 LCAT -/- mice following single

bolus IP injection.

LCAT concentration was calculated from its LCAT activity assay. The values are

expressed as means  SD The average peak LCAT level (14.7 g/ml) was achieved at

approximately 2 h post injection and followed by an initial gradual decline (2-6 h)

before the last observed value, 6 g/ml of LCAT at 22 h. This is estimated to be

approximately 40 % of the dose of LCAT injected. The plasma half-life (t ½) of LCAT

was 7.35 g/ml at 18.5 h.
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Table 5.1 The percentage of esterified cholesterol in the 3 LCAT -/- mice following

IP injection of pure LCAT.

Hour Mouse 1

(%CE/TC)

Mouse 2

(%CE/TC)

Mouse 3

(%CE/TC)

0 24.9 27.9 23.6

1 23.0 43.8 33.1

2 35.9 54.4 26.0

4 46.1 56.6 41.5

6 57.5 54.2 47.0

22 55.9 52.0 54.4

After each LCAT -/- mice was given a bolus IP injection of LCAT (15.2 g), tail bleeds

were taken at 0, 1, 2, 4, 6 and 22 h. The concentration of free and total cholesterol was

estimated in the standard manner as described in 2.5. The percentage of total

cholesterol as cholesteryl esters was then calculated. The % CE/TC highlighted in all 3

mice at 4, 6 and 22h was statistically significant when compared with the basal

esterification at 0 h.
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Figure 5.6 The percentage esterified cholesterol in plasma of three LCAT -/- mice

following IP injection of LCAT.

Bar graph represents the % CE/TC means  SD. The background basal esterification (0

h) is represented in grey, whilst the % CE at 1, 2, 4, 6 and 22 h is represented in black..

Asterisk * denotes p < 0.05, ** p < 0.01 and *** p < 0.0001.
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5.1.5 Repeated Injections

Based on my previous results, there was enough evidence to suggest that human

LCAT is active in LCAT -/- mice with a high-dose single injection. To determine if a

smaller repeat dose produces a similar or enhanced effect, the same number of mice was

used for this study over 4 days.

Materials and Method

Three male mice, 2 months old and weighing 18-20 g each, were injected with

4.5 g of pure LCAT into their peritoneal cavities every 24 h for 3 consecutive days. A

tail bleed was taken prior to injection and at every 24 h post-injection for 3 consecutive

days when the experiment was terminated. The samples were collected on ice and

centrifuged at 13,000 rpm at 4 0C. The supernatant plasma was aliquoted for LCAT,

total cholesterol and free cholesterol assays. Plasma was run on ready-to-use agarose gel

provided in the Hydragel-Mini Lipo Kit (Sebia) to observe the changes in lipoprotein

profile (section 2.5.4).

Results and Discussion

After the 1st 24 h post injection, 2.8 g/ml LCAT was detectable in mouse (A)

and 3.0 g/ml in mouse (B) (Fig 5.7). However, LCAT was undetectable in mouse (C)

(Fig 5.7). It is possible that for mouse (C), LCAT was administered into the

subcutaneous tissues instead of the peritoneal cavity and thus did not show a

demonstrable rise in plasma LCAT concentration. However, after the 2nd injection, ~ 3.1

g/ml of LCAT was detectable in the plasma of mouse (C) 24 h later.

Again, the amount of LCAT detectable in plasma ( 3 g/ml) at 24 h compared

with the amount of LCAT injected (4.5 g) is very high. There was a relatively steady

plasma LCAT concentration (2 g/ml to 3.1 g/ml) over the remaining test period for

all 3 mice (Fig 5.8). These results suggest that LCAT may be consistently activated in

mouse plasma on repeated injections in order to account for the high LCAT in mouse

plasma. Indeed, % CE/TC in plasma of all 3 mice was statistically significant after 24 h

and remained so at day 2 and 3 (Fig 5.9). These data show that repeat injections can

give more stable and sustained LCAT levels in the plasma (Fig 5.8) and hence provide a

steady rate of esterification (Fig 5.9).
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Figure 5.7 Plasma concentration of LCAT in LCAT -/- mice following 3 repeated

injections at 24 hour intervals.

Three LCAT -/- mice were each given IP injection of 4.5 g of LCAT over 3 consecutive

24 h interval. Tail bleeds were taken at each 24 h interval and plasma was assayed for

LCAT activity in the standard way (section 2.3.3) with the results expressed as g/ml.
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Figure 5.8 The combined result of plasma LCAT concentration following repeated

injections in 3 LCAT -/- mice.

The plasma LCAT concentration is expressed as means  SD at 0-3 days. A satisfactory

LCAT level (2 g/ml) was achieved after 24 h post injection. Thereafter, a steady

plasma level was maintained by consecutive 24 h injection of LCAT.
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Table 5.2 The percentage of esterified cholesterol in plasma following repeated

LCAT injections in 3 LCAT -/- mice.

Day Mouse A

(%CE/TC)

Mouse B

(%CE/TC)

Mouse C

(%CE/TC)

0 44.4 49.2 47.2

1 57.6 59.8 52.6

2 56.0 61.0 56.2

3 63.2 63.9 63.5

The three mice represented by (A), (B) and (C) were administered 4.5 g LCAT every 24

h for 3 consecutive days. Tail bleeds were taken at 24 h interval and the plasma assayed

for total and free cholesterol described in 2.5. From this result, the cholesteryl esters

were quantified and % CE/TC calculated. The values highlighted in bold demonstrated

a statistically significant increase in esterification following repeated LCAT injection.
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Figure 5.9 Mean percentage esterified cholesterol in plasma from 3 LCAT -/- mice

following repeated IP injection of LCAT.

Bar graph represents the % CE/TC means  SD. The background basal esterification

(0 h) is represented in grey and whilst the % CE at 1, 2 and 3rd day is represented by

black. Asterisk * denote statistically significant differences in comparison to pre-

injected estrification level using the Student’s t-test, with * p < 0.05, ** p < 0.01.
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A comparison of lipoprotein profiles following single or repeat intraperitoneal injections

of LCAT, as determined by agarose gel electrophoresis

Corresponding lipoprotein profile of single LCAT bolus injected (section 5.1.4)

versus smaller repeated injected mice (section 5.1.5) were compared. Plasma taken from

mice at various time intervals were examined by running 2 l of each test sample on

agarose gel (section 2.5.4), which was then stained with Sudan black. Human plasma

was used as a positive control (C). All the LCAT -/- mice had virtually absent HDL

bands in their plasma prior to the start of experiment. The VLDL and LDL bands were

merged. When LCAT -/- mice were given a single bolus dose injection of purified

LCAT, the HDL band progressively became more visible and broader from 1 to 21 h

post-injection (Fig 5.10) suggesting some restoration of HDL in plasma. Moreover,

changes in VLDL and LDL were noted, but at shorter time intervals (4-6 h) compared

with HDL (4-22 h). Levels of VLDL and LDL bands were reduced at 4 and 6 h post

injection in mouse (1) and (2) and at 4 h in mouse (3) demonstrating a reduction in

level. These findings corresponded with a significant increase in cholesterol

esterification from 4 h to 22 h post injection (Fig 5.6). However, there was also

evidence for a rebound effect of VLDL/LDL i.e. at 22 h increased compared to 4 and 6

h (Fig 5.10). Interestingly, HDL holds up (most apparent in mice 1 and 2).

When given repeated injections with lower doses of LCAT, there was some

evidence of increased HDL appearing during the 1st day until the 3rd day, in particular

mice (2) and (3) (Fig 5.11). There was insufficient plasma from mouse (1) on days 2

and 3 for this agarose gel electrophoresis. However, the bands were less prominent

compared with the ones with single injections. VLDL and LDL bands did not show any

obvious changes on agarose gel electrophoresis. Although repeated injections do work,

LCAT -/- mice may need a higher dose of human LCAT (at least 10 g or more) in order

to increase their capacity for cholesterol esterification. The changes in the lipoprotein

profile which exhibit a clear increase in HDL (and sometimes a corresponding decrease

in VLDL and LDL) suggests that replacement LCAT therapy may have a beneficial

effect and could be a practical method for correcting lipoproteins abnormalities.
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Figure 5.10
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Figure 5.11
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5.1.6 General Discussion

Proteins when used as therapeutic agents have many advantages over chemical

compounds. By nature, proteins are specific in their function and thus have less

potential to interfere with unrelated pathways, and hence are less likely to produce

unwanted side-effects. LCAT’s mode of action is very specific and it acts exclusively in

the circulatory system. As it cannot be administered orally, the routes of administering

were either intravenous or intraperitoneal. Even though the intravenous route gave

comparable results with one mouse, the intraperitoneal route was pursued as the route

for implanting encapsulated cells. It was interesting to note that LCAT was equally well

absorbed from the peritoneal cavity into the portal venous system and then into the

general systemic circulation. Intermittent administration when compared with daily

bolus injection maintains a steady plasma concentration and significantly improves

efficacy of treatment. However, there is a time lag of at least 4 h before esterification of

cholesterol becomes significant. This is demonstrated in the bolus injection study and

may be related to the time taken for LCAT to be absorbed into the systemic circulation.

We used mammalian (CHO) cells for LCAT expression because it can be stably

transfected with an expression vector which produces fully glycosylated LCAT. Unlike

the immature high-mannose type LCAT produced by insects which is rapidly cleared by

the hepatic mannose receptor (Taylor, 1993), the glycosylated LCAT from CHO cells is

postulated to have an extended circulating half-life due to the presence sialic-acid

terminated N-glycans to prevent premature clearance. Glycan chains may have a role in

increasing the solubility of enzyme in plasma, prevent non-specific binding to cell

membranes and may facilitate removal of old desialylated enzyme from plasma. In

addition, the glycan chains are necessary for the efficient secretion of LCAT from

cultured cells. Removal of individual glycan chains has been shown to affect the

enzymic activity (Francone et al., 1993, Qu et al., 1993, OK et al., 1993).

Due to time constraints and the limited number of mice, I have only been able to

show the amelioration of reduced esterified cholesterol and low HDL. Other areas of

interest which could be looked at in the future include assessing cell membrane

abnormalities and kinetic studies of the enzyme. Of importance is also the investigation

into any emergence of neutralising antibodies against human LCAT which acts as a

neoantigen here since LCAT-/- mice was used. It would not provoke adverse immune

responses in cirrhotic mouse or LCAT+/- mouse since human LCAT has very high

homology with mouse
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In conclusion, LCAT protein will normalize lipoproteins and predict correct

membrane lipids. Hence, work from LCAT-/- mouse should equate to liver disease.

Patients with liver failure may benefit from short-term intravenous LCAT therapy to

reverse lipoprotein abnormalities in order to optimize their condition prior to transplant

surgery.
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5.2 Microencapsulation

5.2.1 Encapsulation of CHO-H6LCAT cells in Alginate Microspheres

Introduction

Microencapsulation of cells offers a safe method for the systemic delivery of

therapeutic protein from genetically engineered cells (Chang, 1997; Chang, 1998).

Sodium alginate, a polyanion when mixed with polymers such as poly-L-lysine (PLL),

supports growth of cells (Koch et al., 2003) in an encapsulated environment. The high

porosity of alginate allows for high diffusion rates of macromolecules. Nutrients and

oxygen can cross this barrier and desired gene product can be secreted unhindered. Here

I encapsulate recombinant CHO cells expressing human LCAT in alginate-based

microcapsules and confirm that LCAT protein is secreted and is biologically active in

vitro.

Materials and Methods

PLL with a MW 25,000 Da (cat no P2636) was purchased from Sigma-Aldrich,

and sodium alginate (mannuronic:guluronic, 1:1) from Kelco International. The cells

used were CHO-H6LCAT prepared as described in section 2.2.1. The protocol for

encapsulation of the CHO-H6LCAT cells was developed by Dr K.A Heald, Worcester

Royal infirmary.

The required solutions were prepared according to provided recipes as follows:

(a) Gelling solution

Weight (g) Concentration (mM)

KCl 0.15 2

CaCl2 14.70 100

HEPES 2.38 10

pH was adjusted to 7.4 with NaOH before making up to the final volume of 1 litre.
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(b) Krebs Ringer Buffer (KRB) with Ca2+

Weight (g) Concentration (mM)

NaCl 6.72 115

NaHCO3 2.02 24

KCl 0.37 5

MgCl2 0.2 1

CaCl2. 2H2O 0.367 2.5

HEPES 2.38 10

pH was adjusted to 7.4 with NaOH before making up to the final volume of 1 litre.

(c) Calcium-free Krebs Ringer Buffer (Ca2+ -free KRB)

Weight (g) Concentration (mM)

NaCl 7.89 115

NaHCO3 2.02 24

KCl 0.37 5

MgCl2 0.20 1

HEPES 2.38 10

pH was adjusted to 7.4 with NaOH before making up to final volume of 1 litre.

(d) Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetra-acetic acid (EGTA)

solution was prepared by dissolving 19 mg EGTA in 50 ml Ca2+-free KRB

(e) PLL was made up to 0.1% in saline i.e. 0.1 g of PLL in 100 ml normal saline. This

was then filtered, aliquoted and stored at –20 0C until required

(f) Alginate solution was made up to 2-3 % in normal saline.

CHO-H6LCAT cells were grown to confluency in two T75 culture flasks. CHO-

dhfr – cells were grown in a separate T75 flask as a negative control. An estimated 12 x

106 cells in each flask were suspended in 2 ml of 2 % purified alginate. Large air

bubbles were removed and the alginate/cell mixture was loaded into a syringe. The

plunger was re-inserted and was attached to a syringe driver (Fig 5.12). The nozzle of

the syringe was then connected to the air jacket and the tubing from the air-flow meter
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to the air jacket. A collecting vat was placed underneath the syringe. The air flow was

1.5 ml/min upon switching on the syringe pump.

Alginate droplets gelled in 0.1 M CaCl2 solution. These beads were collected in

a 50 ml tube and washed 3 times in KRB with Ca2+ (each time allowing the beads to

settle, decanting supernatant and refilling to 25 ml mark). After the final wash, the

beads were suspended in 10 ml KRB with Ca2+. PLL (10 ml) was then added to the

suspension and incubated for 9 mins (final concentration of PLL: 0.05 %). The beads

were washed 3 times in Ca2+ -free KRB solution followed by incubation in 0.2 %

alginate for 5 min. Finally, the beads were incubated in 1 mM EGTA (5 mls) for 10 min

to liquify inner alginate. They were washed once in Ca2+ -free KRB, twice in KRB with

calcium, and once in fresh culture medium. Encapsulated CHO-H6LCAT and CHO-

dhfr – cells were grown in respective growth medium and 24 h collections were carried

out. The samples were centrifuged and the supernatant was assayed for LCAT activity

(section 2.2.3), converting the results to its equivalent LCAT mass. Viability of the cells

was checked 10 days later with trypan blue staining.

Results and Discussion

Several attempts were made to encapsulate the CHO-H6LCAT cells with PLL of

MW 25,000 Da. However, LCAT assays on the samples collected over a period of 4

weeks did not show any LCAT in the medium. Nevertheless, the cells within the

capsules had been proliferating when viewed under the microscope. Trypan blue stained

the outer coat of the capsules but was unable to enter the capsules and did not stain the

cells within. When the capsules were ruptured, the cells adhered to the cell culture flask

and proliferated. We know from our laboratory in vitro studies on encapsulation of apoE

recombinant CHO cells (Tagalakis et al., 2005), that the small apoE molecule (34-kDa)

was secreted into the medium. My results suggest that the pore size of the capsules

prevented the larger 64-kDa LCAT molecule from being excreted, but did not prevent

nutrients from entering the capsule as the cells remained viable. Perhaps there was also

a feedback inhibition mechanism to reduce LCAT secretion as the concentration of

LCAT built up within the microcapsule, but the proliferation of cells was not restricted.

It has been shown previously that the molecular weight cut-off values of the

capsule membrane can be controlled by varying the molecular weight (the lower the

molecular weight of PLL, the less permeable the capsules) and the concentration of

PLL, as well as the contact time between alginate and PLL (Goosen et al., 1999).
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Alginate gels made from high guluronic acid content are more porous and exhibit high

diffusion rates for proteins (Thu et al., 1996). The charge on a protein can also influence

its rate of diffusion from an alginate based capsule. A protein with a high pH and

overall net positive charge can potentially interact with the negatively charged alginate

polymer, thus inhibiting diffusion from the capsules.

Further attempts were made to increase the pore size of the microcapsules by

encapsulating LCAT-CHO cells using a higher molecular weight of PLL (50,000 Da)

and reducing the incubation time from 9 min to 8 min. The encapsulation was

performed using duplicate T75 flasks of CHO-H6LCAT cells and one T-75 flask of

CHO-dhfr - cells as control. The encapsulated cells were transferred back into their

respective flasks containing 15 ml of normal growth medium. For the first month,

medium was collected every 24 h and in the second month, every 48 h and a final

collection at the end of the 3rd month. LCAT was detected in the medium by performing

the radioactive cholesterol esterification assay (section 2.2.3).

During the initial 2 days, LCAT production increased as the encapsulated cells

adapted to their new environment. After the third day post-encapsulation, the LCAT

production was steady at approximately 1 g/24 h for 2 weeks and this was followed by

a gradual rise to 1.5 - 2 g/24 h towards the end of the 1st month (Fig. 5.13). In the 2nd

month of study, as I anticipated a fall in LCAT production, I collected the medium over

a 48 h period so that the LCAT concentration in the medium was measurable. It showed

in principle that LCAT was still being secreted with Flask (1) generating 1.3-2.1 g/48

h (Fig 5.14). The production in Flask (2) was ~1.0 g/ml/48 h during the first 2 weeks

of the 2nd month but declined to ~0.7 g/ml/48 h at the end of the 2nd month (Fig. 5.14).

After 12 weeks, LCAT was still detectable with each flask of encapsulated cells giving

~0.6-0.8 g/48 h. Unencapsulated and encapsulated CHO-dhfr - cells acting as controls,

were grown simultaneously in T75 flask containing growth medium with hypoxanthine

and thymidine supplements and without Mtx. Throughout the period of encapsulation

study, there was no LCAT activity detectable in the controls. Western blot (section

2.5.7) confirmed that LCAT was secreted by encapsulated cells and it displayed the

same migration properties as LCAT from non-encapsulated cells (Fig 5.15).

LCAT production of the encapsulated cells increased during the latter half of the

1st month. This could be due to the proliferation of cells within the microcapsules.

However, after 6 weeks, the LCAT production seemed to have decreased in both flasks.

One explanation would be the physical limitation of the microcapsules as cells reached

a state of full occupancy and proliferation of cells was halted. Soon a critical state arose



164

where some cells within the centre of the microcapsules could not receive adequate gas

exchange and supply of nutrients and hence they began to die. Flask 1 also shows a fall

and then a rise in LCAT production in 2nd month. One possibility is that the cells may

die off but the space gets re-populated with proliferating cells again which continue to

secrete LCAT and hence may explain the rise in LCAT production in the later in the 2nd

month. Nevertheless, there was a sustainable amount of LCAT being secreted by the

encapsulated cells to proceed with implanting these encapsulated cells into the

peritoneal cavities of LCAT -/- mice and study its effects.
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Figure 5.12 Technique of encapsulating cells
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Figure 5.13 LCAT production by encapsulated CHO-H6LCAT cells during the 1st

month

Encapsulated CHO-H6LCAT cells were grown in a T75 flask containing 15 ml normal

growth medium. Collections of medium were made every 24 h throughout the 1st month

except days 15 and 16. Medium collected was assayed for LCAT activity (see 2.2.3) and

the result was converted to (A) its equivalent LCAT mass expressed as g/24 h/flask in

the top bar chart and (B) ng/ml/24 h in the bottom bar chart.
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Figure 5.14 LCAT production by encapsulated CHO-H6LCAT cells during the

2nd month

The encapsulated cells continued to be grown in a T75 flask containing 15 ml normal

growth medium. Collections were every 48 h and the medium assayed for LCAT. (A)

Graph shows the amount of LCAT secreted per flask (g/24 h). (B) Graph shows the

concentration of LCAT (ng/ml) secreted each day.
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Figure 5.15 Western blot showing LCAT secretion by non-encapsulated and

encapsulated cells

With the purified LCAT acting as a control, LCAT secreted from non-encapsulated and

encapsulated cells were loaded onto agarose gel. All migrate to the same level.
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5.2.2 Cell therapy - implantation of microencapsulated cells into peritoneal

cavities of mice

Study A – a 4 day pilot study

This study was designed to determine if LCAT was secreted when implanted

into LCAT -/- mice. The ability of the secreted LCAT to restore some of the plasma lipid

abnormalities was also investigated.

Materials and Methods

CHO-H6LCAT cells were encapsulated as before (5.2.1) by suspending ~12 x

106 cells in 2 ml of alginate. The encapsulated cells were transported to the animal

laboratory in normal growth media. The latter was removed and the microcapsules were

washed with PBS several times to remove any remaining medium that might cause

subsequent antigenic reaction. Microcapsules were then drawn into a 2 ml syringe via a

large bore 18G needle. Three 18 months old female LCAT -/- mice were implanted with

microcapsules in their peritoneal cavity. Two were injected with 1 ml of microcapsules

secreting 7.4 g/ml of LCAT. The third (control) mouse was injected with encapsulated

CHO cells. Tail bleeds were taken prior to injection and at 4 h, 1, 2, and 4 days

following injection. LCAT, total cholesterol and free cholesterol assays were performed

as described in section 2.2.3 and 2.5.

Results and Discussion

Following the injection of the microcapsules, a small amount of LCAT (54

ng/ml) was detected in mouse (1) after 4 h (Fig 5.16-A). On the 1st and 2nd day, LCAT

was found in the plasma of both mice implanted with LCAT secreting cells. It was

higher on the second day rising to approximately 270 ng/ml in mouse (2) (Fig 5.16-A).

However, LCAT was not detectable on the 4th day. Throughout the period of study, the

control LCAT -/- mice did not have any detectable LCAT in its plasma. The plasma of

mouse (1) showed an increase in esterified cholesterol on the 4th day (Fig 5.16-B) but

there was no detectable esterified cholesterol on 2nd day again suggesting the possibility

of a lag phase in esterification as demonstrated in section 5.1.4. Alternatively, this could

be due to an error in sampling or the assay not working for this sample. Agarose gel

electrophoresis demonstrated HDL formation in the plasma of the mice injected with

microcapsules secreting LCAT, but no visible HDL band in the control mice (data not



170

shown). Therefore implantation of encapsulated cells secreting LCAT appears to be

feasible therapy for LCAT -/- mice but will need further evaluation and optimization.
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Figure 5.16 Study A – 4 day pilot study

(A) Plasma LCAT concentration (ng/ml) following peritoneal implantation of

encapsulated CHO-H6LCAT cells in LCAT-/- mice. One ml of encapsulated CHO-

H6LCAT cells was injected into the peritoneal cavity of two LCAT -/- mice (mouse 1

(grey) and 2 (black)) but control mouse (white) received only encapsulated CHO cells

which did not secrete LCAT. Blood was collected pre- and 4 h, 1, 2 and 4 days post

implantation and assayed for LCAT activity. The plasma LCAT concentration was

expressed as ng/ml. (B) Esterification of cholesterol following implantation of CHO-

H6LCAT cells in LCAT-/- mice. One ml of encapsulated CHO-H6LCAT cells was

injected into the peritoneal cavity of two LCAT -/- mice, mouse 1 (grey)) and mouse 2

(black) with control mouse (white) receiving encapsulated CHO cells. Tail bleeds were

taken from the three mice at 0, 4 24 48 h and 4th day and plasma collected was assayed

for free and total cholesterol. The plasma cholesteryl ester content was calculated and

expressed as a percentage of the cholesterol.
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Pilot Study B – a second short-term (4 day) study

In order to verify the results of the first pilot study, a further second study with

four LCAT -/- mice were undertaken.

Materials and Methods

CHO-H6LCAT cells were encapsulated as before (5.2.1) by suspending ~12 x

106 cells in 2 ml of 2 % alginate to produce microcapsules with the same cell density

per capsule as in pilot study A. The encapsulated cells were placed in normal growth

medium before injection. The following day LCAT secretion was confirmed by

proteoliposome assay. Three female LCAT -/- mice, 2 months of age, were each injected

with 1 ml of microencapsulated CHO-H6LCAT cells. One mouse was injected with

empty capsules. Tail bleeds were taken prior to injection and at daily intervals for 4

consecutive days. The samples were centrifuged and aliquoted for LCAT assay (section

2.2.3), total cholesterol, free cholesterol (section 2.5) and agarose gel (section 2.5.4)

analysis.

Results and Discussion

Mouse (A) recorded a small increase in plasma LCAT concentration from 47

ng/ml on the 1st day to 89 ng/ml on the 3rd day (Fig. 5.17-A). In mouse (B) LCAT was

detected on the 2nd day and there was sustained level of LCAT concentration, ~50 ng/ml

till 4th day. However, in mouse (C), there was a modest increase in LCAT concentration

on 1st day (120 ng/ml) to 3rd day (280 ng/ml) but this declined to ~ 50 ng/ml on the 4th

day (Fig. 17-A). No LCAT was detectable in the control mouse throughout the 4 day

period.

The percentage of esterification in mouse (A) increased on 3rd and 4th day (Fig

5.17-B) which weakly corresponded to the small increase in LCAT concentration seen

(Fig 5.17-A). Mouse (B) basal esterifcation was 26 % and increased to 33 % on the 1st

day before returning to its basal level. Mouse (C) showed a steady basal esterification of

39 % but fell to less than 20 % on day 4. Analysis by agarose gel electrophoresis (Fig

5.18) showed some HDL formation from day 2-4 in mouse (A). Although mouse (B)

demonstrate the presence of LCAT, it was probably insignificant to cause any real

change in the percentage of esterification which corresponded to the absence of HDL on

agarose gel (Fig 5.18). Mouse (C) with the biggest rise in LCAT concentration, showed

HDL formation from day 1-4 on agarose gel.
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Figure 5.17 Study B – second 4 day study

(A) Plasma LCAT concentration (ng/ml) following peritoneal cavity implantation of

encapsulated CHO-H6LCAT cells Three LCAT-/- mice were each injected with 1 ml of

encapsulated CHO-H6LCAT cells. Tail bleeds were taken prior to injection and on the

1st, 2nd 3rd and 4th days post- injection. The plasma was assayed for LCAT activity and

the corresponding LCAT mass was calculated. The bar chart above shows the plasma

LCAT concentration in ng/ml. Control mouse (not shown) did not show any LCAT

activity in its plasma on all test days (B) Three LCAT-/- mice were each injected with 1

ml of encapsulated CHO-H6LCAT cells. Tail bleeds were taken prior to injection and

on the 1st, 2nd 3rd and 4th days post-injection. Free and total cholesterol assay were

performed on the plasma. Cholesteryl ester was indirectly determined and the

percentage of esterified cholesterol in the plasma is shown.
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Figure 5.18
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Study C – a longer-term (14 day) study

Based on the initial 4 day studies, a greater number of mice were implanted with

the encapsulated cells to verify the feasibility of enzyme delivery over a longer time

period (14 days).

Materials and Methods

The maximum volume permitted per injection in mice is about 1 ml. In an

attempt to boost the level of plasma LCAT in the LCAT-/- mice, the cell density in each

microcapsule was nearly doubled by suspending ~24 x 106 cells in 2 ml of alginate.

CHO-H6LCAT cells were encapsulated using the same method as described before

(section 5.2.1). The encapsulated cells were placed in normal growth medium before

injection. The following day the medium was collected and assayed for LCAT. Having

confirmed that LCAT was secreted, the encapsulated cells were washed with PBS and 1

ml of the encapsulated cells was transferred into individual syringes. Empty capsules

were also prepared in the same manner.

The remaining encapsulated cells were placed back into a T75 flask containing

15 ml of normal growth medium and were cultured in the incubator. The medium was

collected at 24 h intervals from the 2nd to 15th day. The 1st day was omitted because

there was less than 20 h of incubation. New growth medium (15 ml) was added every

24 h. LCAT secretion was monitored by the LCAT assay. These acted as an additional

control for the encapsulated cells, but in an in vitro environment.

In this experiment, five (2 months old) male LCAT-/- mice were selected.

Unfortunately, no female LCAT-/- mice, which were used in studies A and B, were

available. Tail bleeds were performed one day before the injection. The mice were

starved of food for 4 h before each bleed throughout the period of study, but had free

access to water. Immediately after the injection, they were fed with their normal diet.

Four mice (A-D) were injected with 1 ml of encapsulated cells and mouse (E)

with 1 ml of empty capsules as a control. Tail bleeds were performed on the 1st, 4th, 8th

and 14th days following injection. When the bleeds were collected, they were

immediately transferred onto ice. The samples were then centrifuged at 13,000 rpm for

10 min. The plasma was separated and aliquoted for LCAT, free and total cholesterol

assays. The remainder was set aside for agarose gel electrophoresis. At the end of the

experiment, all the mice were killed by CO2 inhalation and the microcapsules were

retrieved through a small abdominal incision by washing the peritoneal cavity with

sterile saline.
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Results and Discussion

On the 2nd day, ~ 0.9 g/ml of LCAT was being secreted by the in vitro control

(encapsulated) cells (Fig 5.19). After one week, this declined to ~ 0.6 g/ml, but

increased to 0.7-0.8 g/ml of LCAT being secreted into the medium towards the end of

2 weeks. Despite a higher cell density in each microcapsule, the LCAT production was

slightly lower than my previous in vitro study (section 5.2.1). Due to the high cell

density, encapsulated cells may not be receiving sufficient oxygen and nutrient supply.

In addition a new batch of PLL (cat no 1274) purchased from Sigma-Aldrich with

higher molecular weight (70, 000 Da) was used. As a result, the pore size may have

changed and thus limited the amount of LCAT secreted out of the microcapsules.

Plasma assays prior to implantation (Fig 5.20) showed a small amount of LCAT

was present in mouse (A) (125 ng/ml) and mouse (C) (111 ng/ml). This was an

unexpected finding as there may be an error in the sampling or that LCAT assay is not

reliable at very low values. However, LCAT was not present in the prebleed samples of

mouse (B) and (D) and the control (E).

On the 1st day following the implantation, there was ~ 234 ng/ml of LCAT in

mouse (A) plasma (Fig 5.20). On the 4th day, the serum of mouse (A) recorded a peak

LCAT concentration of ~ 1.3g/ml. And by the 8th and 14th day, LCAT concentration

had declined to ~ 240 ng/ml and 32 ng/ml respectively. In mouse (B), no LCAT was

detectable on the 1st day but 361 ng/ml of LCAT was demonstrated on the 4th day. More

than 80 ng/ml of LCAT was detected on 8th and 14th day of study. Mouse (C) had ~ 100

ng/ml of LCAT on the 1st day, which increased to 234 ng/ml on the 4th day before

declining to 138 ng/ml and 31 ng/ml on the 8th and 14th days. Apart from the 4th day

(195 ng/ml), LCAT was not detected in mouse (D) throughout the study. For all the four

mice (A-D), day 4 was the peak of plasma LCAT activity. Nevertheless, the amount of

LCAT in mouse plasma secreted from the encapsulated CHO-H6LCAT cells secretion

was poor except for mouse (A) though mice (B-D) were consistent with studies A and

B.

In terms of plasma esterified cholesterol, mouse (A) showed a substantial

increase in percentage, achieving more than 60 % compared with 20 % in the control

mouse on the 4th day (Fig 5.21). The remaining mice did not show any changes.

Agarose gel electrophoresis (Fig 5.22) was performed on plasma samples from all four

mice following implantation of microcapsules. Human serum was used as a control

marker. The presence of HDL and VLDL/LDL was determined by comparing the

migratory pattern in the control. There was some formation of HDL in mouse (A) and
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mouse (D) as indicated by weak bands (Figure 5.22). In mouse (A), VLDL and LDL

bands were weaker on 4th and 8th day suggesting a reduction in level and this correspond

with the timing of increased plasma LCAT. Mouse (B) and mouse (C) as well as the

control showed no changes.
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Figure 5.19 Expression and release of LCAT from encapsulated CHO-H6LCAT

cells in vitro.

One milliliter of encapsulated cells was grown in a T75 flask containing 15 ml of

normal growth medium. Daily collections of the medium were made and assayed for

LCAT. It was expressed as LCAT mass (ng).
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Figure 5.20 Plasma LCAT concentration following implantation of encapsulated

CHO-H6LCAT cells

Equal volumes (1 ml) of encapsulated CHO-H6LCAT cells were injected into four

LCAT-/- mice. Plasma was obtained through tail bleeds taken at 0 (pre-injection), 1, 4, 8

and 14 day following implantation. The samples were assayed for LCAT activity and the

final results expressed as ng/ml.
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Figure 5.21 Percentage of esterified cholesterol in plasma following implantation

of encapsulated CHO-H6LCAT cells

After 1 ml of encapsulated CHO-H6LCAT cells were injected into 4 LCAT-/- mice, tail

bleeds were taken at pre-injection, 1, 4, 8 and 14 days post-implantation. The amount of

free and total cholesterol was measured and the percentage as cholesteryl esters was

calculated. The % CE/TC of each mouse (A to D) is shown in separate bar charts and

compared to the control mouse (E).
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Figure 5.22 Agarose gel electrophoresis

Plasma (2 l) taken from each of the four LCAT-/- mice following implantation of

microcapsules, was separated on (agarose) Hydragel and stained with Sudan black.

Pre-injection, day 1, 4, 8 and 14 samples were represented by 0, 1, 4, 8 and 14 at the

bottom of each lane. Human serum denoted by C was used as a control marker. The

presence of HDL(indicated by H) and VLDL/LDL (indicated by V) was determined

by comparing the migratory pattern in the control. There was some formation of

HDL in mouse (A) and mouse (D) as indicated by the appearance a faint band. The

rest of the mice as well as the human control, showed no changes.

0 1 4 8 14



182

5.2.3 Histological Examination

Pre-implantated capsules are macroscopically clear and spherical in shape.

Under microscopy, they appear as round capsules surrounding numerous cells (Fig

5.23-A, B and C). An increased aggregation of cells was observed within the

microcapsules (Fig 5.23-B) indicating that cell proliferation had taken place. On

average, the diameter of the microcapsules was 650-700 m before and after

implantation. Under higher magnification, the outer layer of PLL and inner layer of

alginate can be visualized (Fig 5.23-D).

At autopsy of the mice most of the microcapsules examined had retained their

original shape except for a few misshapen capsules mainly from mouse (C) and (D).

Microcapsules retrieved from control mice (second short-term 4 day study) showed

some empty capsules coated in varying degrees by a layer of cells (Fig 5.24-A,B). A

magnified view of the coated microcapsule is shown in Fig 5.24-C.

In those mice injected with encapsulated cells, some of the microcapsules

retrieved showed increased in cell density and multiple groups of cells appear within the

capsules, consistent with cell proliferation (Fig 5.25-A,B). However in Fig 5.25-C, two

microcapsules showing early signs of external coating with thin layer of cells compared

with 3 other normal looking microcapsules although some degree of cell proliferation

had occurred.

In the longer-term (14 day) study, microcapsules retrieved from implanted mice

at day 14, were found in big clumps within the peritoneal cavity (Fig 5.25-D).

Macroscopically, the contents of the microcapsules appeared opaque and coated with a

thick layer consisting of coagulated cell debris, secreted extracellular matrix or

inactivated proteins from the ascitic fluid in the peritoneal cavity which was absent

from pre-implanted capsules (Fig 5.23). When these capsules were ruptured, there were

no viable cells observed in in-vitro culture medium.

Under microscopy, a thin layer of cells is seen coating the empty microcapsule

that was retrieved from control mouse. Haematoxlyin and eosin which stain nucleus

(blue) and cytoplasm (pink) confirm a layer of cells covering the surface of the

microcapsules (Fig 5.26-A,B). Those microcapsules which had encapsulated cells

showed more intense fibrous overgrowth on the surface. With haematoxlyin and eosin

stain, a thicker layer of cells is seen coating externally (Fig 5.26-C,D). Mr John Auld,

senior scientific officer in the Histopathology Department, Royal Free Hospital,

characterised these cells further using markers for fibroblasts (CD34), monocytes
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(CD15) and macrophages (CD68); they were positive for all three cells. Many of the

retrieved microcapsules showed a fibrous overgrowth on the surface.

When the microcapsules were retrieved from the peritoneal cavities especially

from mice (B), (C) and (D) (14 day study), microscopic examination revealed that many

had lysed and were empty of cells. Only some of the retrieved CHO-H6LCAT cells

remained viable and proliferated, whilst the majority were non-viable as confirmed by

trypan blue staining.
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Figure 5.23 Microscopic appearance of encapsulated cells prior to implantation

into mice

(A) Encapsulated cells at x 10 magnification. (B) Increased density of cells within

microscapsule demonstrating proliferation of cells. (C) The microcapsule magnified x

20 and shows that the cells were evenly distributed within (D) shows the microcapsule

magnified x 40 showing an outer layer of PLL and an inner layer of alginate.
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Figure 5.24 Empty microcapsules obtained from control mouse

(A), (B) and (C) show empty microcapsules at x 10, x 10, and x 20 magnification,

respectively. (A), (B) and (C) were microcapsules retrieved from control mouse after 3

days and some showed a layer of cells coating their surfaces.

A B C
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Figure 5.25 Microcapsules retrieved 3 and 14 days after implanted into LCAT -/-

mice.

(A) Microcapsules with x 10 magnification showing early stage of cell proliferation. (B)

Multiple clumps of proliferated cells in implanated microcapsule. (C) Two

microcapsules showing early signs of external coating with thin layer of cells compared

with 3 other normal looking microcapsules. (D) Intense aggregation of microcapsules

when they were retrieved from the mice at day 14. They were coated with a thick layer

cells and do not show viable cells within.
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Figure 5.26 Histology of microcapsules after implantation into LCAT-/- mice

(A and (B) were empty microcapsules recovered from the control mice. (A) Shows

an empty microcapsule magnified x 10 and being coated with a thin layer of cells.

(B) The same microcapsule magnified x 20. (C) This microcapsule with

encapsulated cells was retrieved from an experimental mouse peritoneal cavity.

The capsule with its external thick layer of cells was stained with haematoxylin

and eosin. (D The wall of the microcapsule magnified x 40 showing nuclei of cells

within the capsule and those coating the capsule, staining blue whilst the

cytoplasm of cells stain pink.
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5.2.4 Discussion

The LCAT-/- mouse is a valuable experimental model of human LCAT

deficiency. No LCAT is secreted and this results in the near absence of HDL in the

circulatory system. Therefore, this circulatory deficiency allows us to investigate the

feasibility of two alternative methods of delivery of gene product, namely direct

infusion of purified recombinant LCAT from CHO-H6LCAT cells and the peritoneal

implantation of non-autologous recombinant cells protected in alginate capsules.

Purified recombinant LCAT can be administered to LCAT-/- mouse either as a

bolus or as multiple repeated injections. A sustained plasma LCAT concentration and

prolonged cholesterol esterification is seen in LCAT-/- mice being given repeated

injections. HDL lipoprotein is formed in plasma proving that this strategy of enzyme

replacement in principle does work in the short-term. Larger studies of longer duration

involving a larger cohort of LCAT-/- mice will be needed to evaluate whether there

would be any immune response to prolonged repeated injections of recombinant LCAT

and hence its effectiveness.

From the three animal studies (section 5.2.2), some of the treated LCAT-/- mice

demonstrated that encapsulated cells can survive and secrete LCAT, which then gets

absorbed and enters the circulatory system. In addition, the LCAT secreted showed

biological activity by increasing the percentage of esterified cholesterol and raising the

level of HDL in some mice. However, these physiological changes only lasted for a few

days. I was unable to repeat the experiment on a larger scale due to time constraints and

the shortage of mice as a result of difficulties with in-house breeding.

In the course of this study, it was interesting to note that the preparation of

perfect capsules was far from simple. The quality of the capsule varied from one

preparation to the next. Capsule strength may play an important role for studies in vivo.

When capsules were weak, they would tend to collapse a few days after implantation

and this probably explained why a number of microcapsules had lysed and was empty

of cells.

The size of the capsule is also critical for the prolonged survival of the

encapsulated cells. We now understand that in a vascularised tissue, the maximum

distance for an effective diffusion of oxygen and nutrients from capillary to cells is 200

m (Mueller-Klieser et al., 1986; Dionne et al., 1993). As there is no convection

movement within the microcapsule, the principle driving force for the transfer of

nutrients to encapsulated cells is the concentration gradient. The latter is proportional to

the distance between the capsular surface and the centre of the oxygen-consuming cell
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(Schrezenmeir et al., 1992; Schrezenmeir et al., 1994). Furthermore, there is a

significant reduction in pericapsular reaction when using microcapsules as small as 185

m in diameter when compared to using microcsapsules of a standard size (Hallé et al .,

1994; Robitaille et al ., 1999). Some authors have suggested that the critical diameter

for optimal function and biocompatibility of the microcapsules is between 400-450 m

(Hunkeler, 2001; Orive et al., 2003).

Viscosity of the alginate solution and the alginate-polylysine reaction time from

cross-linking must be strictly tested and controlled; otherwise capsule strength and

smoothness of the capsular membrane will not be ideal. As no biomaterial is 100%

biocompatible, it is inevitable that some capsules will eventually attract cell overgrowth.

Many factors can promote overgrowth if inadequately controlled, notably spheroidicity,

smoothness of the capsular surface, strength and volume of the microcapsules, viscosity,

composition and purity of the alginate.

Alginate, a linear polysaccharide with gel forming properties, is composed of 1,

4 linked -D-mannuronic acid (M), L-glucuronic acid (G) and alternating MG blocks.

Some studies have shown that mitogenic impurities, which are found in commercial

alginate but not in purified alginate, are solely responsible for the side effects observed,

including cytokine release and inflammatory reactions (Orive et al., 2006). Other groups

have shown that alginate rich in mannuronic acid is a potent stimulator of cytokines (IL-

1 and TNF-). In my study, the alginate used was manufactured commercially by Kelco

International. Due to some fibroproliferative connective tissue observed on the outer

surface of the microcapsules and the short-lived production of LCAT, there is some

doubt about the purity of alginate used.

Non-specific host inflammatory reactions to capsule components, related to

immune response mounted by the host, include lymphocyte and macrophage adhesion

to the microcapsule surface and early fibrotic overgrowth. These will reduce effective

LCAT secretion whilst at the same time impair metabolic functions of the encapsulated

cells by decreasing the transfer of oxygen, nutrients and metabolites and ultimately

causing cell death.

Encapsulation therapy has many advantages over systemic injections in that it

can provide a sustained systemic therapy. The mode of delivery is also clinically

benign, potentially economical, highly versatile and amenable to industrial-scale

production. The microcapsules also have the potential of being retrievable, particularly

when implanted subcutaneously. Although the clinical efficacy has not been proven
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here, further studies are warranted to investigate the potential of microencapsulated cells

as a clinical treatment of LCAT deficiency.
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CHAPTER 6

GENERAL DISCUSSION
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6. General Discussion

Aims of the project

Liver disease is frequently complicated by widespread cellular and metabolic

disturbances in other tissues and organs. These include heart and vascular dysfunctions,

abnormal handling of salt and water by the kidney, leading to swollen legs and ascites,

and increased susceptibility to infections. The reasons are poorly understood, but

increasing evidence suggests that many of these metabolic disturbances are caused by

an imbalance of cholesterol and other fats present in patient’s blood and cell

membranes. LCAT, the principal cholesterol-esterifying enzyme, is manufactured in the

liver and is a key regulator of fat metabolism. In liver disease and familial LCAT

deficiency, reduced LCAT activity leads to marked changes in the lipid and

apolipoprotein composition of circulating lipoproteins which in turn leads to altered

lipid composition and fluidity of cell membranes throughout the body. This cause cells

to malfunction, through adverse effects on the receptors, transport proteins and

enzymes, which are embedded in their membranes.

The major aim of my studies was to develop two new approaches to treat plasma

LCAT deficiency, namely protein therapy and encapsulated cell technology. As well as

being important for the treatment of the small number of patients with familial LCAT

deficiency, it has major clinical implications for correcting the lipoprotein abnormalities

in liver diseases. Thus normalising LCAT activity would improve the widespread

cellular dysfunctions caused or exacerbated by abnormal lipoproteins and so help in the

management of severe hepatitis or in the preparation of patients with metabolic liver

disease or severe liver disease for surgery or transplantation, by improving associated

cellular dysfunctions.

Establishing stably producing clones

CHO cells have been used extensively in the industry for the production of

proteins. Protein produced from these cell lines has appropriate post-translational

modification such as glycosylation, whereas E. coli or insect cell lines are incapable of

this (Kim et al 1998, Grabenhorst et al 1999). A clonal cell line of productive CHO cells

secreting LCAT cDNA tagged with six histidine residues (CHO.H6LCAT) was selected

from amongst numerous clones and was further subjected to increasing concentration of

Mtx. This increased the LCAT yield in a T75 flask by 14 fold from ~600 ng/ml/48h to

8.7 g/ml/48h. LCAT activity was confirmed by using our laboratory modified
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radioactive LCAT assay as discussed below. The LCAT expression CHO-H6LCAT

cells was relatively high compared to LCAT production in other studies using

mammalian and insect cell lines (Chawla and Owen, 1995, Miller et al., 1996, Jin et al.,

1997, Vinogradov et al., 1998, Jeffrey et al., 1999). This was an important step towards

ensuring the success of the proposed treatments. In future studies the recombinant

LCAT produced here can be further characterised for particle sizing, and in addition,

use of electron microscopy can help to assess the shape of the particles.

More recently, human LCAT has been cloned and expressed in a human lung

cell line (Lane et al., 2004). The scaled-up LCAT production of this cell line yielded

approximately 5 g/ml of conditioned medium. The enzymatic properties and the

carbohydrate components of the recombinant LCAT were similar to those of the

circulating human plasma enzyme, suggesting that this source of LCAT may be more

suitable for use in some form of enzyme replacement.

LCAT assay

Measurement of plasma LCAT mass was difficult. During the course of my

experiments, the proteoliposome substrate method used allowed the assay of LCAT

activity to be optimised and standardised for plasma. However, the quality of substrate

varied with each preparation and it lacked specificity and sensitivity especially when the

LCAT activity was low. Nevertheless, this substrate has been reported to have excellent

correlation between LCAT activity in normal plasma and LCAT protein by

radioimmunoassay (Albers et al., 1981). The isolation of pure H6LCAT would in the

future allow us to produce in-house antibodies and develop an ELISA assay for the

quantification of serum LCAT.

Purifying LCAT

The presence of foetal bovine serum in normal growth medium would inevitably

contain a small amount of LCAT enzyme. Published reports had revealed marked

similarities between human and other mammalian LCAT (Mclean et al., 1986; Warden

et al., 1989). To avoid the likely event of co-purifying bovine LCAT from culture

medium and subsequent contamination of the final preparation, I had to use an

alternative serum-free medium. After testing the LCAT production from cells grown in

three other media (SFM, PFM and CD-CHO), CD-CHO was found to support a similar

LCAT production as in normal growth medium after an initial lag phase. Another

advantage of using this medium was that it would simplify the purification of LCAT, as
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it had the least contaminating amount of protein. Hundreds of mls of this medium

containing LCAT were produced with ease.

The use of pre-charged mini-columns with nickel-nitrotriacetic acid and nickel

resin did not yield pure LCAT. Isolating LCAT with octyl-sepharose column as an extra

step improved the efficiency of recovery (37%), but still had contaminants. Therefore,

this eluate was passed through another nickel column with success in getting a high

purity on SDS-page gel electrophoresis but sacrificing efficiency. Further attempts to

improve the quality by using cobalt-based IMAC resin (Talon resin) yielded good

results. On average at least 50% pure LCAT was recovered but this only allowed a

small scale purification (100 ml). Therefore, I attempted to scale up the purification

process to 1 L by loading the LCAT medium onto an octyl-sepharose column first and

then passing the smaller volume of LCAT-enriched eluent through a Talon column.

Although pure LCAT was eluted, less than 10 % of LCAT was recovered and thus this

two-step procedure was not justified. Hence, I made multiple small-scale purifications

using the Talon resin.

Protein therapy

Having obtained pure LCAT, the next step was to evaluate the routes of

administration. As expected, intravenous injection gave a direct route into the systemic

circulation of the LCAT-/- mice achieving a high LCAT plasma concentration within 30

min. It is envisaged that administration of LCAT into systemic circulation will not be a

problem in humans as veins are easily accessible in the peripheral tissues.

A pilot study using the intraperitoneal route gave encouraging results, which led

to a more detailed study with a bolus injection of pure LCAT into the peritoneal cavities

of LCAT-/- mice. A high concentration of plasma LCAT was detected in the circulation

within 2 h of injection. After a delay of several hours, the LCAT secreted proved to be

functionally active since it increased the amount of esterified cholesterol in the plasma.

A sustained level of LCAT concentration and esterification took place when the LCAT-

/- mice were given repeated injections. More importantly, all injected mice had

increased levels of HDL as detected by agarose gel electrophoresis. LCAT had been

shown to be primarily responsible for HDL particle maturation as well as maintenance

of HDL plasma concentration (Séguret-Macé et al., 1988). Further work with larger

number of mice would be needed to evaluate the plasma, erythrocyte lipid compositions

and lipoprotein profiles.
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Cell therapy

Studies in vitro showed that encapsulated recombinant CHO cells secreted

biologically active human H6LCAT for 3 months. The in vivo study of the feasibility of

cell therapy was hampered by only having limited number of mice available due to in-

house breeding difficulties. However, some mice did show that LCAT was secreted by

the microcapsules and absorbed into the circulation to produce a certain normalisation

of the lipoprotein profile. Compared to the in vitro study, LCAT secretion by

encapsulated CHO cells in LCAT-/- mice is reduced. The transfer of the encapsulated

cells from the incubator to the peritoneum of LCAT-/- mice could decrease LCAT

production, but it would be difficult to know.

A second reason may be due to the over proliferation of cells in the

microcapsules resulting in poor nutrient supply, hence less viable cells available for

LCAT secretion. One way to overcome excess cell proliferation and diminished

secretion is to encapsulate recombinant mouse C2C12 myoblasts (Deglon et al., 1996;

Regulier et al., 1997, Orive et al., 2005). These terminally differentiate into myotubes in

low FCS, allowing implantation of non-dividing cells and thereby permitting controlled

LCAT production. Another approach to overcome low yield in LCAT production in

encapsulated cells is to use a more productive cell line for encapsulation.

Finally, other factors may include limited activation of human enzyme. Potential

explanations are differences in the size and composition of mouse versus human HDL,

the different specificities of the 2 enzymes for available esters as well as limited

availability of FC as substrate (Vaiseman et al., 1995). Differences in mouse and human

apoA1 (Karathanasis et al., 1983; Stoffel et al., 1992) could lead to reduced activation

of human LCAT by mouse co-factor.

These studies also highlight the need to improve capsule biocompatibility. In my

short-term in vivo studies, implantation of the microcapsules in LCAT-/- mice appear to

cause non-specific hosts inflammatory reactions to the microcapsules leading to fibrotic

overgrowth on the surface of the capsules and further compromising the long-term

viability of the CHO-H6LCAT cells. Biocompatibility will not be a problem in capsules

implanted over the short term as ultra-pure alginate can now be obtained and uniform

capsules can be produced by automated machines (Anilkumar et al., 2001). However, it

is clear that a number of issues still need to be addressed for implanting capsules for

longer periods. These include toxicology, bio-safety and the type of polymer to be used,

although progress is being made in developing immune-compatible cross-linking

coating polymers (Orive et al., 2003, 2004).
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Conclusions

In many regards, the aims of this thesis have been satisfied even though many

issues remained unanswered. As compared to viral gene therapy, studies on non-viral

strategies for LCAT replacement are still at present limited. The results presented in this

thesis could hopefully provide further insights into the feasibility of delivering

therapeutic proteins by protein injection and encapsulated cell technology.
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