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ABSTRACT 

 

Although the mechanical behaviour of particle-reinforced and fibre-reinforced 

composites have been studied extensively in infinitesimal deformation regime, their 

properties under finite deformation are still not well understood due to the complex 

interaction mechanisms between matrix and reinforcement, the intrinsic material and 

geometry nonlinearities. In this work, theoretical analysis, numerical simulation, and 

experimental data in the literature are employed to investigate the mechanical properties 

of composites with reinforcement in finite deformation.  

First, a three-dimensional Representative Volume Element (RVE) is developed for neo-

Hookean composite, in which the incompressible neo-Hookean matrix is reinforced 

with spherical neo-Hookean particles. Four types of finite deformation (i.e., uniaxial 

tension/compression, simple shear and general biaxial deformation) are simulated using 

the RVE models with periodic boundary conditions enforced. The simulation results 

show that the overall mechanical responses of the incompressible particle-reinforced 

neo-Hookean composite (IPRNC) can be well predicted by another simple 

incompressible neo-Hookean model. The results also indicate that the effective shear 

modulus of IPRNC with different particle volume fraction and different particle/matrix 

stiffness ratio can be well predicted by the classical linear elastic estimation.  

In the second half of the study, the significance of the fibre-matrix interaction in the 

Human Annulus Fibrosus (HAF) is identified and analysed in detail. Based on the 

experimental results in the literature it is shown that the mechanical behaviour of the 

matrix can be well simulated by the incompressible neo-Hookean type model, but the 

effective stiffness of the matrix depends on fibre stretch ratio, which can only be 

explained by fibre-matrix interaction. Furthermore, it is found that this interaction takes 

place anisotropically between the matrix and the fibres distributed in different 

proportions in different directions. The dependence of the tangent stiffness of the matrix 

on the first invariant of the deformation tensor can also be explained by this fibre 

orientation dispersion.   
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Chapter 1 Introduction 

 

 

As a fundamental problem of reinforced composite, predicting the overall mechanical 

behaviour of the composite based on the mechanical properties of the constituents and 

microstructure is very important for understanding and characterizing the material. The 

aim of this thesis is to model and analyse the mechanical behaviour of composites with 

reinforcement under finite deformation, and both particle-reinforced composite (PRC) 

and fibre-reinforced composite (FRC) will be discussed. The mechanical performance 

of incompressible particle-reinforced neo-Hookean composite under finite deformation 

will be investigated numerically, while the significance of the fibre-matrix interaction in 

the Human Annulus Fibrosus (HAF) will be identified by studying the experimental 

data, theoretical constitutive models and the numerical simulation results in literature. In 

this chapter, a broad background of composite material is introduced in section 1.1 with 

focus on composites with reinforcement. In section 1.2, classical models for the 

mechanics analysis of composites with reinforcement in infinitesimal deformation 

regime are briefly explored, while the literature related to mechanics of composites with 

reinforcement in finite deformation regime is reviewed sketchily in section 1.3. The 

objective and the structure of the thesis are provided in the last two sections. 

 

1.1 Composites with reinforcement 

 

1.1.1 General composite 

 

In order to meet the basic and advanced needs of human living and development, 

various kinds of substances are acquired and extracted from the natural world by 

chemical reactions or physical combinations. In chemical reaction, the bonds in the 

molecules are broken and new chemical will be composed by reconstructing the atoms 

or ions; while the physical combination just combine two or more substances into a new 

material without any change on the molecular level of each substance.  
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Composite material is a concept with respect to simple material, and it is not easy to define it 

adequately due to the structural complexity.  Generally speaking, a material system, which 

consists of a mixture or a combination of two or more distinctly differing materials 

which are insoluble in each other and differ in form or chemical composition, is defined 

as composite material. Figure 1.1 presents the schematic diagram of a composite 

material with 2 different phases [1], one of which is usually discontinuous (and stiffer 

and stronger), and is called the reinforcement phase. The other phase is called the matrix 

phase, which is usually continuous (and less stiff and weaker).  

 

 

Figure 1.1 Schematic diagram of the composite phases [1]. 

 

Dating back to the ancient Egyptians, the application of fibre-reinforced materials has 

experienced a really long development in human history. People used mud, clay and 

straw to build bricks, which can be considered as the primary application of fibre-

reinforced composite in the structural field [1, 2]. In Roman times, mortar and concrete 

were produced on large scale to construct vaults, domes and foundations [2]. The 

modern steel concrete originated from the 1800s, when iron rods were put into masonry 

as reinforcements [1]. The great development of composite materials started in the 20
th

 

century. In 1940s, the fibreglass and reinforced plastics were first developed and put 

into practice. Later on, filament winding, carbon fibres, metal matrix composites were 

introduced, and till the end of the 1970s, composites had been widely applied in many 

areas, such as aircraft, automotive, sporting products and biomedical devices [1]. 

Nowadays, large civil aircrafts, automotive industry, turbine blades and ground 

transportation facilities become the new hotspots for composite applications [3], and 

those developments are pushing forward the development of composite. Many natural 

materials, such as soft tissue and wood, can be considered as composite materials. 
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According to different criteria, composite can be classified into different categories, 

such as structural composite and functional composite based on their functions; resin-

based, metal-based and ceramic-based composite based on the different ground (matrix) 

materials. Another way to categorize composite is grounded on the microstructures of 

the composite. The constituents compose separate phases of composite, and usually one 

of the components is the ground base material (matrix phase), inside which other 

materials (reinforcement phase(s)) are randomly or sequentially distributed. Some 

molecular force or chemical interactions will form the bond between inclusions and 

matrix material, and sometimes it is considered as a separate phase and referred as 

interphase. There are several important aspects in the microstructure of a composite 

such as the inclusion’s shape, the dispersion condition and the volume fraction of 

inclusions. The volume fraction, the inclusion distribution pattern and the properties of 

each phase have significant influence on the mechanical performance of the composite.  

 

Composites with single material reinforcement phase inside the matrix are considered to 

have two phases. Various two-phase composites have been widely used in industry. 

Because the geometry of inclusions varies from one composite to another, the two-

phase composite can be roughly categorised into three groups according to the inclusion 

geometry, type, and orientation, which are particulate filler reinforced material, 

discontinuous fibre or whisker reinforced material and continuous fibre-reinforced 

material. Normally, composites with different types of inclusions would present distinct 

mechanical behaviours. The particle-shaped inclusions, such as sphere, ellipsoid and 

platelet, will normally enhance the strength and stiffness of the composite. Normally, 

the volume fraction of inclusions is smaller comparing to that of the matrix and the 

inclusions are distributed inside the matrix, so the matrix material is exposed to the 

main load and contributes more to the stiffness of the composite. On the other hand, 

long and continuous inclusions, such as fibres, are the main support of the composite, 

while the matrix material becomes the protection substance to the relatively flexible 

fibres. The particle-reinforced composite (PRC) and the fibre-reinforced composites 

(FRC) will be the main focus of the thesis: a simple PRC is modelled in chapter 3, while 

soft tissue investigated in chapter 4 is considered as a type of FRC.  

 

Consisting of two or more solid phases, composites usually have some advantages over 

monolithic materials, including high strength, high stiffness, low density, environmental 

stability, better fatigue properties, more flexible, anti-corrosion, biocompatibility, 
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superior thermal and electrical properties, being adaptable to desired functional 

requirement of the structure (e.g., can make the composite strong in a particular 

direction). For example, in industry, rubber particles are added into brittle materials, like 

polymers, to improve their tensile strength; fibre reinforcements are adopted in 

polymers to increase the bulk modulus. Due to the advanced performances, composite 

have been widely adopted in many engineering areas (e.g., aeronautics and astronautics, 

biomaterials, automobile, etc.) and new composite materials are developed to satisfy 

new requirements in industry.  

 

Except for those advantages mentioned above, composites have their own limitations 

and shortcomings. Composites are the combination of two or more materials and are 

usually anisotropic, which makes it complicated to identify and model the mechanical 

behaviours comparing with the conventional materials. The common methods are not 

good enough to measure and represent the composite’s properties and behaviours 

accurately, which may limit the application of composites. Due to its superior properties, 

composite is always used in critical circumstances, which makes it important to monitor 

the conditions of the material. Sometimes it is not simple to detect internal changes in 

composites and extra techniques are adopted to detect damages and potential material 

failure. In addition, high cost, complex manufacturing techniques and tools for 

composite may affect the applications as well.  

 

1.1.2 Composites with reinforcement 

 

As mentioned above, modelling, characterisation and analysis of the mechanical 

properties of composite materials (particularly the anisotropic composite materials) are 

very challenging. The focus of this work is to model and analyse the mechanical 

behaviours of the PRC and the FRC under finite deformation. In this subsection, the 

concepts of PRC and FRC will be further discussed. 

 

Particle-reinforced composite (PRC) 

  

The reinforcement is treated as particle when all its dimensions are similar. Particle-

reinforced materials have been extensively used in industry in the past few decades, and 

one of the common applications is rubber tire, which has carbon-black particles added 

to normal rubber matrix. From the structural point of view, the dispersed particles 
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obstruct the deformation of the whole composite, and could enhance the stiffness of the 

composite, but the matrix will bear the main deformation because normally the stiffness 

ratio between particles and matrix is far bigger than 1. We note that the rubber tire can 

undergo large deformation and this type of composite’s mechanical behaviour will be 

investigated in Chapter 3. 

  

The mechanical performance of the PRC is closely related to the volume fraction of the 

inclusions, the size, shape and distribution of the particles, and the stiffness ratio 

between the inclusions and the ground matrix. For example, for the incompressible 

matrix with rigid particles, the overall effective modulus of the composite only depends 

on the stiffness of matrix and volume ratio [4], if the influence of the size, shape and 

distribution of the rigid particles are reasonably ignored.  

 

Fibre-reinforced composite (FRC) 

 

As a very important material in engineering applications, the use of fibre-reinforced 

materials has been growing rapidly in the last few years [5]. This type of material has 

been applied into many fields, including aircraft, automobile, boat, chemical, furniture, 

equipment, electrical product and sport products. Take helicopter rotor blade for 

example, the blades of helicopter rotor were made of wood and fabric originally; later, 

the adoption of steel and aluminium greatly improved the performance of the previous 

design, but the fatigue resistance and the strength/density ratio are not satisfactory 

among many other deficiencies. Then, carbon fibre-reinforced composite brings many 

advantages compared to metal, such as easy to manufacture, high strength/density, as 

well as low cost.  

 

Due to the wide application of the FRCs, it is crucial to characterise its mechanical 

performance in order to better exploit it. There are several parameters which will affect 

the mechanical properties of the FRC, such as the volume fraction, the length and 

orientation of the fibres, the effective diameter of fibre cross section, the stiffness ratio 

between the fibres and the matrix. According to the fibre length, FRC can be divided 

into two categories, namely the discontinuous fibre-reinforced composite and the 

continuous fibre-reinforced composite. For both types of FRCs, the fibre orientation can 

be unidirectional or randomly distributed. Composites with fibres of randomly 

distributed orientation may be considered as quasi-isotropic because from the 
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macroscopic point of view, the overall mechanical properties of the composite are the 

same regardless the measuring directions. Meanwhile, composites with unidirectional 

fibres, no matter they are continuous or discontinuous, the material is usually 

anisotropic, which means the mechanical behaviour of the material depends on the 

measuring direction. Normally, the stiffness and the strength can be quite different from 

the along-fibre direction and the direction perpendicular to the fibre direction. Generally, 

fibres are used to improve the mechanical performance of the matrix phase, so the 

stiffness ratio between the fibres and the ground matrix is normally greater than 1. In 

this case, larger stiffness ratio will lead to larger changes in the stiffness and strength of 

the composite comparing to the original ground matrix material based on the same 

geometry. For the same reason, larger fibre volume ratio will enhance the stiffness of 

the composite more significantly. However, the volume ratio should be controlled 

within certain range due to the composite stability requirements. Biological soft tissues, 

such as muscle, ligament, tendon, skin and human annulus fibrosus, are modelled as 

fibre-reinforced materials in order to study their mechanical performance due to their 

similar structures (e.g. [6, 7]).  

 

1.2 Mechanics of composites with reinforcement in infinitesimal deformation 

 

The major aim of composite mechanics is to characterise, model and analyse the 

mechanical behaviours of composite materials. The methods used in composite 

mechanics can be categorised into three types: theoretical methods, numerical methods 

and experimental methods.  

 

One important objective of composite mechanics is to predict and model the mechanical 

behaviours of composite materials provided that the properties of each constituent are 

known. Many theoretical methods have been developed to estimate the overall 

macroscopic mechanical behaviours of composites (sometimes named as “effective 

mechanical properties” or “average mechanical properties”) based on the properties of 

the constituents. Here only the following classical theoretical approaches are briefly 

discussed: the mechanics of materials approach, variational methods, direct prediction 

models, and semi-theoretical, semi-empirical approach. 

 

The so-called “mechanics of materials” approach assumes either uniform strain or 

uniform stress in the solid phases and leads to two simple models, i.e., the parallel 
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(Voigt) model (assuming uniform strain field) and the series (Reuss) model (assuming 

uniform stress distribution). Because these two models do not consider the 

microstructure of the composites, their predictions of composite stiffness are usually not 

close to the real behaviours of composites. However, it can be derived that the stiffness 

obtained by series model (the load direction is vertical to the material layer so the stress 

field is homogeneous) is a lower bound, while the parallel model (the load direction is 

parallel to the material layer so the strain field is homogeneous) predicts an upper bound.  

  

To get better bounds on effective properties of composite material, different variational 

methods based on energy principles have been proposed in the literature [8-11]. 

Because the microstructure of the composites can be considered in these variational 

methods, for some properties (e.g., effective longitudinal modulus 1E  for unidirectional 

fibre-reinforced composites), the upper and lower bounds obtained by variational 

methods are close to each other, which implies that they provide a good estimation of 

properties of the composite materials. But for some properties like the effective 

transverse modulus 1E , the difference between the bounds estimated by variational 

methods is quite large and neither of them provides a good approximation to the 

properties of the real composites. Nevertheless, the bounds derived from variational 

methods can be used to check the validity of the effective properties of composites 

predicted by other theoretical methods. 

  

Because variational methods can only provide bounds rather than the direct estimation 

of the effective properties of composites, other theoretical models have been developed 

in the literature to obtain direct predictions of the effective properties of composites. 

Hill [12-16] proposed the famous self-consistent model for composites with 

reinforcement, and it was soon adopted by other researchers (e.g., [17]). Christensen 

and Lo [18, 19] improved the self-consistent model to the so-called “three phase model”, 

in which the composite element (with reinforcement phase and matrix phase) is 

embedded in an infinite homogeneous medium whose properties are identical to the 

effective properties of the composite (i.e., the properties to be obtained). Classical 

elasticity theory is used in these self-consistent type models to derive closed-form 

solutions for the effective properties of composite materials. Mori and Tanaka [20] 

estimated the effective elastic properties of the PRC based on mean-field approximation. 

Theocaris and Sideridis [21] used a composite-unit cell model to investigate the static 
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and dynamic elastic moduli of PRC with isotropic-elastic particles and linear 

viscoelastic matrix phase. Ravichandran [22] approximated a two-phase composite with 

discontinuous reinforcements by a unit cell model incorporating isostrain and isostress 

elements to estimate the effective elastic moduli and the Poisson’s ratios of the 

composite. Bourkas et al. [23] predicted the static and dynamic elastic constants of PRC 

using a theoretical cube-within-cube model. Torquato [24, 25] derived the third-order 

approximation for effective elastic properties of PRC. Recently, Jiang et al. [26] 

proposed a three-phase confocal elliptical cylinder model to predict the effective elastic 

properties of the FRC. In their models, the variations in fibre section shapes and 

randomness in fiber section orientation are taken into consideration by a generalised 

self-consistent method. Ju and Yanase [27] developed a micromechanical framework to 

estimate the effective elastic moduli of PRC. In their analysis, the near-field particle 

interactions are accounted, and the anisotropy of reinforced particles can be considered.  

 

The direct prediction models sometimes lead to very complex formulae for effective 

properties of composite materials and these results are usually difficult to use in 

engineering. To circumvent this difficulty, Halpin and Tsai [28] proposed a consistent 

form to estimate all effective properties of composite materials with different 

microstructures. This famous Halpin-Tsai formula represents a judicious interpolation 

between the series and parallel models (that is, the upper and lower bounds), which 

provides the formula solid theoretical basis. Only one parameter is employed in the 

Halpin-Tsai formula to consider various effects such as the influence of the 

reinforcements’ shape, distribution, and the reinforcing efficiency. Because this 

parameter can be determined by experimental data, this approach is usually named as 

semi-theoretical, semi-empirical approach. 

 

Simplifications of the microstructure are usually assumed in the theoretical approaches 

to make the closed-form solutions possible in the related elastic problems. Therefore it 

is difficult for the theoretical models of composites to fully consider the effect of 

complex microstructures in real composite materials. For example, the interaction 

effects between fibres in FRC are usually neglected by most theoretical models, which 

lead to the underestimation of the effective properties for the FRCs with higher fibre 

volume fractions. Similarly, it is also very difficult to consider the nonlinear behaviours 

of the constituents in theoretical models. To overcome these problems, numerical 

approaches using finite difference, finite element, or boundary element methods have 
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been adopted by researchers to simulate the mechanical behaviours of composites. For 

example, Jaensson and Sundstorm [29] determined the Young’s modulus and the 

Poisson’s ratio for WC-Co alloys using finite element method (FEM). Tessier-Doyen et 

al. [30] used four FEM software to simulate the mechanical responses of the PRC and 

found that the obtained numerical predictions are close to the lower bound of the Hashin 

and Shtrikman's model [10]. Llorca and Segurado [31] developed a modified random 

sequential adsortion algorithm to generate three-dimensional cubic unit cell models with 

particle volume fractions up to 50%. The mechanical responses of the representative 

volume element (RVE) models were simulated by FEM using periodic boundary 

conditions and the effective elastic properties of the PRC were obtained. They found 

that both the third-order approximation [25] and the three-phase model [18] match the 

numerical results very well. The concept of Representative Volume Element (RVE) was 

first proposed by Hill [14]. According to his description, the particular microstructure of 

the composite is essential and important to carry out the calculation and define RVE 

[32]. As an idealized volume from a material, piled RVEs should be able to regain the 

material structure both microscopically and macroscopically as a special case.  

 

One of the important problems in numerical approaches is to find the required size of 

the RVE in FEM simulations to obtain accurate results. Drugan and Willis [33, 34] 

proved that a small size RVE model can well predict the effective mechanical properties 

of linear elastic PRC.  The size of RVE was also studied by analysing the composite 

with randomly distributed non-overlapping similar particles. The results indicated that 

only twice of the inclusion diameter size could be enough for a RVE to gain accurate 

estimation of effective modulus of the whole material. Comparing to the theoretical 

models, the numerical approach is able to consider various complex situations such as 

realistic complex microstructures of the composites, the complex matrix-reinforcement 

interaction, nonlinear mechanical responses of solid phases in the composites, and 

damage/fracture behaviours of the composite materials, etc. The numerical methods 

usually lead to accurate prediction of the composites’ mechanical behaviours provided 

the RVE models represent the features of the composites correctly. However, there are 

also some disadvantages of the numerical approach. First, in numerical methods, the 

closed-form formula usually cannot be obtained (the results are normally represented by 

a series of curves). An accurate numerical model of composites can be very complex 

and the simulation can be time-consuming even on super-computers. 

 



10 

In the experimental approaches, various testing facilities and experimental techniques 

are utilised to measure and characterise the mechanical properties of composites directly 

(or indirectly via theories of micromechanics and macromechanics). Experiments can be 

performed on composite materials at three scales: micromechanical, macromechanical 

and structural [35-38]. Experimental study is important to the mechanics analysis of 

composites. It is required not only to validate the theoretical and numerical predictions 

of the effective properties of composites, but also to provide input data (e.g., the 

properties of the constituents, interactions between different phases, etc.) for the 

theoretical and numerical models. For example, the effective elastic properties of 

different kind of PRCs (e.g., WC-Co cermet [29, 39, 40], polymer-based dental 

composites consisting of silica particles [41], metal matrix based on Al-SiC [42], 

polymer embedded with glass particles [43, 44], glass-alumina based composites [45, 

46], epoxy-silica composites [47]) are reported in the literature and they are collected to 

validate theoretical models (e.g., [22]). The properties of single fibres were 

characterised to obtain input data for related FRC modelling[48]. Measuring the 

properties of composites is more complex than that of the traditional materials and 

many new techniques and new facilities are designed. For example, fibre-push-out 

technique was proposed by Singh and Sutcu [49]. Although the experimental methods 

provide accurate and usually direct measurements of the mechanical behaviours of 

composite materials, they are normally expensive and limited by the experimental 

procedures and facility availability. The accuracy of the mechanical methods is 

sometimes affected by the complex microstructure of composite materials and the 

nature of existing imperfection in composites. Besides, some properties are extremely 

difficult to measure directly even if it is possible. For instance, there is no technique 

available in the literature to measure transverse coefficient of thermal expansion of FRC 

directly [1].  

 

1.3 Mechanics of composites with reinforcement in finite deformation 

 

As discussed in the previous section, the mechanical behaviours of composites with 

reinforcement in infinitesimal deformation have been studied extensively and many 

models have been developed in the literatures. However, the mechanical responses of 

composites with reinforcement in finite deformation regime have not been well 

understood due to the intrinsic difficulties from the nature of geometrical and material 

nonlinearities. Hill [50] considered the transition from microscopic to macroscopic 
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levels for composites under finite deformation. He defined a set of constitutive macro-

variables and volume averages of micro-fields over a representative sample under finite 

strain. Using these macro-variables, Ogden [51] estimated the bulk modulus of a PRC 

consisting of dilute spherical inclusions embedded in a matrix of second-order elastic 

solid under finite strain. Hashin [52] derived the strain field in the hyperelastic PRC 

under hydrostatic loading. Castaneda [53] developed a self-consistent scheme for 

hyperelastic composites and derived an approximate model for particle reinforced neo-

Hookean composite. Imam et al. [54] derived a second order elastic field of an 

incompressible infinite matrix with dilute inclusions. Castaneda and Tiberio [55] 

suggested a “linear comparison” homogenisation technique to approximate the effective 

behaviour of hyperelastic composites. Castaneda and co-workers have used this 

technique to model different composites [56-60]. The resulted models are very complex 

but not necessarily accurate [61]. Bergstrom and Boyce [62] examined the uniaxial 

compression behaviour of Chloroprene rubber filled with carbon black particles 

(volume fraction 7%, 15%, and 25%) up to true strain of about -1.0. They proposed an 

approximate model based on the strain amplification concept. Some simple FE 

simulations were performed to verify the model. Khisaeva and Ostoja-Starzewski [63] 

investigated the size of RVE needed for composite modelling in FE simulations in finite 

elasticity.  

  

1.4 Objective 

 

In this thesis, the mechanical behaviours of composite with reinforcements under finite 

deformation will be investigated. The PRC and the FRC will be studied separately by 

theoretical analysis and numerical simulation. Experimental data from the literature will 

also be employed to justify the theoretical models and numerical results when possible.  

 

The first part of the study will focus on the mechanical modelling of the PRC in finite 

strain based on numerical homogenisation. The planned objectives are presented as 

follows: 

 

 To develop three-dimensional representative volume element (RVE) models 

with periodic boundary conditions to investigate the mechanical behaviours 

under general finite deformation; 
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 To investigate the RVE simulation results and to develop a theoretical 

constitutive model based on the numerical homogenisation results; 

 To compare the effective modulus of the hyperelastic composite obtained from 

the numerical homogenisation with the theoretical models in the literature and 

the classical linear elastic estimation. 

 

The second part of the research aims to identify the significance of the fibre-matrix 

interaction in the FRC under finite deformation by analysing the theoretical constitutive 

models, the numerical simulation results, and the experimental data presented in 

literature. The following objectives will be investigated: 

 

 To identify the fibre-matrix interaction by investigating the strain energy 

contribution from the ground matrix of the human annulus fibrosus (HAF) with 

collagen fibres under contraction and various stretch ratios; 

 To analyse the significance of the identified fibre-matrix interaction by 

comparing the finite element simulations of the uniaxial test of the HAF along 

the circumferential direction with the experimental data in the literature;  

 To discuss the potential physical mechanisms related to the identified fibre-

matrix interaction and various constitutive models considering fibre-matrix 

interaction. 

 

1.5 Outline 

 

In chapter 2, the classical results of composite mechanics in infinitesimal and finite 

deformation regimes are reviewed in detail, in which the mechanics of the FRC and the 

PRC will be discussed separately. Chapter 3 is devoted to the mechanical modelling of 

the incompressible particle-reinforced neo-Hookean composite under finite deformation 

based on a numerical homogenisation approach. In Chapter 4, the significance of the 

fibre-matrix interaction in the HAF is identified and analysed in detail by investigating 

the theoretical models, the numerical simulations results, and the experimental data 

available in the literature. At last, conclusions of the research and some remarks are 

provided in Chapter 5, while some potential further research is suggested in Chapter 6.  
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Chapter 2 Basics of Composite Mechanics 

 

 

Before the mechanical behaviours of the advanced composites with reinforcement under 

finite deformation are investigated, some classical results of composite mechanics are 

briefly reviewed in this chapter as they serve as a solid basis of the research work in this 

thesis. First, the classical theories of composite mechanics in infinitesimal deformation 

are discussed in section 2.1. Then the literature related to composite mechanics in finite 

deformation is explored in section 2.2. Because there is only few researches to study the 

mechanical behaviours of reinforced composite under finite deformation, models 

developed for linear elastic reinforced composite are paid much attention to. In this 

thesis, the research mainly focuses on hyperelastic composites with reinforcement 

(pseudo-hyperelastic biomaterials are modelled by hyperelastic models mathematically), 

therefore only the elasticity results are discussed. 

  

2.1 Classical results of composite mechanics in infinitesimal deformation 

 

2.1.1 General theories 

 

For mechanics of composite under infinitesimal deformation, the focus lay on the linear 

elastic models and the concept of effective material properties (e.g., the effective 

Young’s modulus and the effective Poisson’s ratio for isotropic composite) is proposed 

to represent the mechanical behaviour of the composite.  

 

The material is macroscopically isotropic and its mechanical behaviours are 

characterized by effective moduli, which are not applicable from the microscopic point 

of view. Under this condition, the composite is assumed to be an equivalent simple 

material, and the effective material properties come from the mechanical behaviours of 

this simple material. This concept is based on the representative volume element, which 

could represent the mechanical characteristics of the composite. 
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Many theoretical approaches have been developed to estimate/predict the effective 

parameters of different composites. Among them, parallel model and series model are 

probably the simplest models, which are used to roughly predict the effective elastic 

moduli of the reinforced composite under infinitesimal deformation. In these two 

models, two phases are usually considered separately and piled up, with the uniaxial 

tensile load applied. Figure 2.1 shows the two model systems with the uniaxial tensile 

load applied [1].  

 

 

                                        (a)                                                      (b) 

Figure 2.1 Parallel model (a) and series model (b) [2] 

 

For the parallel model, the strain field is homogeneous and the Young’s modulus of the 

composite cE can be expressed as  

 

 1 1 2 2cE EV E V  , (2.1) 

 

Where 1E and 2E represent the Young’s Moduli of each phase, and 1V  and 2V
 
denote the 

volume fractions of each phase, respectively. For a two-phase composite, we have 

1 2 1V V  . For the series model, the stress field is homogeneous and the Young’s 

modulus of the composite cE can be derived as  

 

 1 2

1 2 2 1

c

E E
E

E V E V



. (2.2) 
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Eq.s (2.1) and (2.2) give a rough estimate of the Young’s modulus for a two-phase 

composite. Based on the energy principles it can be derived that the series model gives a 

lower-bound prediction of the effective Young’s modulus of the composite, while the 

parallel model predicts an upper-bound for the effective modulus of the composite [1, 2]. 

 

Hashin and Shtrikman [10] worked out more strict bounds of the effective moduli by 

adopting the variational principles and there was no certain presupposition about the 

geometry of each phase. Sometimes the estimation is quite close to the experimental 

results based on the assumption that each component is isotropic, elastic and 

homogeneous. The lower bound is derived from the minimum complementary energy 

theorem and the upper bound is calculated according to the minimum potential energy 

theorem. By comparing the results to the experimental data, Hashin’s estimation was 

proved to give good predictions to the effective shear and bulk modulus of the 

composite with two phases [64].  

 

Based on Hill’s self-consistent model, Halpin and Tsai [28] proposed the following 

unified semi-empirical, semi-theoretical expression to predict the effective parameters 

of the composite: 

 

 
(1 )

(1 )

f

m f

vp

p v









, (2.3) 

 

where the scalar   is defined as 

 

 ( / 1) / ( / )f m f mp p p p    . (2.4) 

 

Here p is the effective modulus of the composite; fp  is the modulus of the filler (i.e., 

the reinforcement); mp  is the modulus of the matrix; the parameter   is related to the 

microstructure of the composite which relates to loading conditions. By applying the 

geometry factor  , the Halpin-Tsai semi-empirical equation considered the influence of 

the inclusions’ shapes on the stiffness of the composites by examining a series of 

geometries from sphere (aspect ratio is one) to long fibre (aspect ratio increases to 

infinity), and the predictions are well consistent to the experimental results. 
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2.1.2 Theories for particle-reinforced composite (PRC) 

 

The results given in the previous subsection usually do not consider the microstructure 

of the composites and the geometry of the inclusions. In this subsection, some classical 

results derived for PRC will be discussed. In the early 1900s, A. Einstein [65] 

investigated the viscosity of a Newtonian viscous fluid with rigid-spherical nonsolvated 

particles. The result was extended to the PRC to estimate the Young’s modulus of the 

rigid particle reinforced composite as [66] 

 

 1 2.5c m fE E v  , (2.5) 

  

where cE  and mE  are the Young’s moduli of the PRC and the matrix, respectively, and 

fv  represents the volume fraction of the fillers (i.e., particles).  

 

Guth [4] extended Einstein’s approach to consider higher order terms and the prediction 

of the Young’s modulus of the rigid particle reinforced composite was given by 

 

 21 2.5 14.1c m f fE E v v   . (2.6) 

 

To consider deformable particle reinforced composites, Eshelby’s result [67] was 

employed to approximate the effective elastic properties of the composites based on the 

moduli of individual components. Kerner [68] is one of the pioneers who gave out the 

solutions of the effective shear and bulk moduli of the PRC by applying the averaging 

method. Later, a self-consistent model was brought forward by Hill [13] aiming to 

predict the effective shear modulus of the PRC. In this model, the composite was placed 

in an arbitrary homogeneous substance, and the effective modulus of the composite was 

assumed to be equal to the surrounded medium. So the mechanical properties of the 

composite could be gained through calculating the properties of the surrounding 

substance. 

 

Christensen and Lo [18] improved the self-consistent model to a three phase model, in 

which the geometrical model of PRC comprises three parts, the spherical inclusion, the 

matrix around the reinforcement and the equivalent medium surrounding the single 

particle model. In their model, the effective shear modulus of the PRC is predicted by 
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(the results were proved to be consistent to Eshelby’s dilute suspension results [67] 

when the volume fraction is set small) 
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where 
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 1 [ / 1](49 50 ) 35( / )( 2 ) 35(2 )i m i m i m i m i mv v v v v v           , (2.11) 

 2 5 [ / 8] 7[ / 4]i i m i mv        , (2.12) 

 3 ( / )(8 10 ) (7 5 )i m m mv v      , (2.13) 

 3( / )c a b .  (2.14) 

 

Here  , m  and i  represent the effective shear moduli of the composite, the matrix 

and the spherical inclusion phase respectively; mv  and iv   denote the Poisson’s ratios of 

the matrix and the spherical inclusion phase respectively; and c  is the volume fraction 

of the inclusion phase. Although this model was developed for particle reinforced 

composite under infinitesimal deformation, the simulation results obtained in the 

following chapter proved that this model could be able to provide the precise 

approximation to the numerical results for PRC under finite deformation.  

 

Ravichandran [22] proposed a unit cell incorporating isostrain and isostress type 

elements to simulate the microstructure of two-phase composites with discontinuous 
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reinforcements. Then simple expressions can be derived as the lower bound 
l

cE  and the 

upper bound 
u

cE  of the effective modulus of the composite: 
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where mE , fE  are the Young’s modulus of the matrix and the filler, respectively; c  is 

the volume fraction of the filler. Comparing to the experimental data, the expressions 

above gave much better predictions than the commonly used Hashin and Shtrikman 

bounds, particularly for composites with large stiffness contrast between the particles 

and the matrix. By adopting a new approximation approach, Torquato [24, 25] worked 

out third-order accurate expressions to estimate the shear and bulk moduli of the PRC, 

in which the phase arrangement information is included in the formula.  

 

Most of the models for estimating the mechanical properties of the PRC assume that the 

PRC is macroscopically isotropic with randomly distributed inclusions rather than 

paying attention to the specific arrangement of the particles. For this reason, a new 

numerical approach was proposed to study the overall mechanical behaviours of the 

PRC, which is to solve the boundary value problems of a representative volume element 

(RVE) of the material [69]. The influence of the RVE size on the moduli estimation was 

studied by Drugan and Willis [33, 34], and their results indicate that a small size RVE is 

sufficient to represent the composite and it can be employed to predict the mechanical 

behaviours of the whole PRC. Following this approach, Segurado and Llorca [31] 

developed their linear elastic PRC model with 30 similar-sized spheres randomly 

distributed in a cube, and elastic, shear and bulk moduli were obtained by analysing the 

numerical simulation results from various loading conditions.  

 

2.1.3 Theories for fibre-reinforced composite (FRC) 

 

Hashin and Rosen [9] estimated the elastic moduli of unidirectional fibre reinforced 

composite (UFRC) using variational approach in 1964. Hill [12, 15, 16] developed a 

self-consistent model to predict the mechanical behaviours of UFRC. Christensen and 
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Lo [18] improved it to a three phase model to predict the effective transverse shear 

modulus of the UFRC. The form of the equation is quite similar to that of the PRC, and 

only the coefficients A , B and D  are defined differently. 

 

The effective shear modulus of the UFRC is predicted by 
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Where A , B , and D  are parameters relating to volume ration c , effective shear moduli 

of fibre (
f ) and matrix ( m ), Poisson’s Ratio of fibre (

fv ) and matrix ( mv ), transverse 

shear and plane strain bulk moduli of the “overall” composite 23  and 23K . By 

comparing the predicted results to the existing models, this approach avoids the 

discontinuity conditions.  

 

2.2 Basics of composite mechanics in finite deformation 

 

2.2.1 General theories 

 

In the infinitesimal regime, the relation between the microstructure and macro 

mechanical behaviours has been extensively investigated and the results fit the 

experimental observations well. However, the same problem seems much more difficult 

when the strains applied to the composite model go beyond infinitesimal regime. The 

fundamental work on composites under large deformations was first presented by Hill 

[50]. He derived some relations between the microstructure and macro mechanical 

properties of the composite by considering arbitrary strain distributions in a 

representative volume under finite deformation. Later, Castaneda and Tiberio [55] 

proposed a “linear comparison” homogenization technique to model hyperelastic 

composite. 

 

2.2.2 Theories for particle-reinforced composite (PRC) 

 

Based on Hill’s macroscopic average definition of variables for composite under finite 

deformation, Ogden estimated the bulk modulus of a PRC consisting of dilute spherical 
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inclusions embedded in a matrix of second-order elastic solid under finite strain. 

Castaneda [53] predicted the shear modulus of incompressible nonlinear particle-

reinforced composite by working out the first order and second order bounds of the 

macro mechanical properties. Polyconvexity was applied throughout the work for its 

advantages in expressing the minimum potential energy mathematically [70] and 

tightening the general convex envelops [71, 72]. The results from the research proved 

that the theories can be used to predict the overall mechanical behaviours of nonlinear 

elastic materials with multi-phases, and the self-consistent estimation is capable of 

estimating the shear modulus of the incompressible particle-reinforced neo-Hookean 

composites (IPRNC), though we will show that this prediction significantly 

overestimate the shear modulus of IPRNC with moderate reinforcement volume fraction 

(e.g., >10%).  

 

Bergstrom and Boyce [62] studied how the reinforced particles affect the overall 

behaviours of the composite by comparing the theoretical models available in the 

literature with the experimental data. In order to avoid the drawbacks of available 

models for their limited application in the small deformation regime, and investigate the 

behaviours of the reinforced composite under large strain, a method called strain 

amplification [73] was adopted.   

 

 1 ( 1)X     , (2.18) 

 

where   is the stretch, and X  is a constant which is decided by the volume fraction fv . 

Because it is not clear about how to amplify the existing strain and there are different 

ideas towards this question, a new approach was proposed in [62]. The first invariant 

2 2 2 1/2

1 1 2 3( )I       was chosen as the variable to amplify, and the strain energy 

function was given out for a special case, neo-Hookean matrix embedded with rigid 

particles: 

  2

1(1 ) 1 3.5 30 [ 3]
2

m
f f fW v v v I


     , (2.19) 

 

where the fv  expression comes from Smallwood[74], Einstein [75], Guth [4] and Guth-

Gold [76]. The comparisons between the experimental data and the prediction from 

Guth [4], Guth-Gold [76], Govindjee-Simo [77], Ponte Castaneda [53] and Bergstrom-
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Boyce [62] indicated that the newly developed Bergstrom-Boyce model gives relatively 

better estimation to the effective modulus of multiphase composites both in 

infinitesimal deformation and finite deformation. 

 

Moreover, finite element (FE) methods were introduced to obtain homogenised 

properties of the particulate composites in [62]. The two dimensional analysis first 

examined an RVE with one particle inside, and the results showed that one particle 

model would underestimate the overall modulus of the composite. Then a two 

dimensional RVE model with many particles was studied, and both the models 

predicted smaller effective moduli of the composite according to the experimental 

results, which suggested that the two dimensional model is not suitable for the 

evaluation of multiphase composites. The three dimensional RVE model with many 

particles (not in spherical shape) was also simulated, and the results gave a fairly good 

approximation to the composite modulus when the volume fraction of particles was 

small (7% and 15%), but the approximation went higher when the volume fraction was 

25%, which would overestimate the stiffness of the composite. 

 

2.2.3 Theories for fibre-reinforced composite (FRC) 

 

In order to investigate the mechanical behaviours of unidirectional fibre-reinforced 

composite, the structure of the FRC is simplified as a bundle of unidirectional fibres 

embedding in the isotropic matrix, and the material is treated as transversely isotropic. 

The fibre direction is the preferred direction of the material, and the plane which is 

perpendicular to the fibre direction is the isotropic plane. There are two main 

approaches to describe the mechanical performances of the FRC under finite 

deformation, Fung’s approach and Spencer’s invariant framework for anisotropic 

materials.   

 

Fung type model 

 

For fibre-reinforced composite under finite deformation, one important application is 

the soft tissue modelling, where the soft tissue is treated as collagen fibre reinforced 

composite. Fung et al. [78] studied the biomechanical behaviours of arteries under finite 

strain condition and proposed the so-called “Fung type” model which adopts strain 

components directly to express the strain energy. In general, most biological soft tissues 
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are macroscopically anisotropic and nonlinear. For example, the mechanical behaviours 

of the human annulus fibrosus (HAF) in the circumferential direction are very different 

from its mechanical behaviours in the longitudinal and radical directions. A typical 

Fung type model for the arteries uses the following strain energy function to simulate its 

mechanical behaviour [78]: 
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Here the exponential form is used for strain energy, C , 1a , 2a  and 4a  are constants 
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the selected pairs of stress related to strain components *E
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zzE . Sometimes the 

polynomial form of strain energy function is adopted as follows for soft tissues [78]: 

 

 (2) 2 2 3 2 2 3

oW Aa Bab Cb Da Ea b Fab Gb        , (2.21) 

 

where a E , zzb E , and A to G are material constants. For both strain functions, the 

parameters, such as 1a  , 2a  , 4a  and A to G, are simply constants fitted from 

experimental data without any clear physical meanings. The pseudo strain energy 

function was validated by fitting the experimental data, and the exponential expression 

was proved to be superior to the polynomial form for most soft tissues [78]. 

 

The general shear deformation is not included in the previous two strain energy 

functions and their capability to predict the soft tissue’s behaviour under general 

deformation is questionable. Nevertheless, Fung type model has been widely adopted in 

the later researches. Recently it is found that this approach has convexity problem [79, 

80]. By fitting the experimental data to the Fung type model, Bass’s results [81] showed 

that Fung’s approach would lead to some boundary condition problems.  

 

Spencer’s framework for FRC 

 

For isotropic hyperelastic materials, the strain energy can be expressed by the three 

invariants 1I , 2I  and 3I  of C , where T
C = F F  is the Cauchy-Green deformation tensor 
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and /  F x X  is the deformation gradient (X and x represent the position of a 

material point in the original (undeformed) configuration and the current (deformed) 

configuration, respectively). Here the invariants are defined as  

 

 1I tr C , (2.22) 

 2 2

2 [( ) ] / 2I tr tr C C , (2.23) 

 3 detI  C . (2.24) 

 

When the matrix material is reinforced with unidirectional fibres, the composite is 

usually treated as transversely isotropic. In Spencer’s framework, two additional 

invariants 4I  and 5I  are introduced to represent the physical condition of the 

unidirectional fibres 

 

 2

4 FI   N CN , (2.25) 

 
5I   2

N C N , (2.26) 

 

where N  is the preferred direction of the composite (i.e., the direction of the 

unidirectional fibre reinforcement), and F  F N  represents the stretch ratio of fibres. 

 

Although the five invariants approach is capable of representing the mechanical 

behaviours of the transversely isotropic materials, the construction of strain energy 

function W  based on experimental data is difficult. The reason is that it is practically 

impossible to change one invariant while other four invariants are kept constant during 

an experiment. For the sake of better presenting the mechanical behaviours of 

transversely isotropic materials, Criscione [82] proposed a set of physically based strain 

invariants to express the transversely isotropic behaviours. The every parameter has 

physical meaning, such as 1  represents the dilatation strain, 2  is the distortion fibre 

stretch, 3  is the cross-fibre shear strain, 4  is the along-fibre shear strain and 5  is the 

angular measurement. 
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 Uncoupled models 

 

Holzapfel et al. [83] studied the mechanical behaviours of artery walls by considering 

the artery’s multi-layer structure. In their model, each layer is treated as separate 

isotropic matrix reinforced by two families of aligned fibres. The strain energy function 

for every layer is written as: 

 

 ( ) ( ) ( )iso aniso   01 02 01 02C,a ,a C C,a ,a . (2.27) 

 

Here 
01a  and 20a  represent the preferred directions of two families of fibres; and the 

strain energy function is split into two parts: iso  is the strain energy contribution from 

the matrix and aniso  represents the strain energy contribution from the fibres. 

According to the assumption from Holzapfel’s work, the strain energy contribution 

from fibres is negligible when fibres are under contraction, but it will make important 

contribution to the strain energy when fibres are under stretch.  

 

Quapp and Weiss [84] worked on human ligaments to identify their mechanical 

properties in both longitudinal and transverse directions. In their model, the soft tissue is 

treated as an incompressible transversely isotropic hyperelastic composite, and the 

strain energy was written as follows: 

 

 
1 1, 2 2 3 1, 2,( ) ( ) ( )W F I I F F I I    , (2.28) 

 

where 1F  indicates the contribution from the matrix; 2F  represents the contribution 

from the fibres; 3F  is the contribution from the fibre-matrix interaction; and   is the 

stretch along the fibre direction. The fibre-matrix interaction is finally ignored and 3F  is 

omitted from the model. 

 

Both the Holzapfel and Quapp models are categorized as uncoupled (or decoupled) 

models, because they treat matrix and fibres as separate parts without considering the 

fibre-matrix interaction. Although these approaches simplified the form of strain energy 

and simplified the problem researchers found out later that the classic decoupled models 

cannot always well predict the experimental results. Peng et al. [7] discovered that the 
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fibre-fibre angle changes computed from the numerical simulations of the uniaxial 

testing of the Human Annulus Fibrosus along the circumferential direction based on 

uncoupled models are very different from the experimental observation. Similar 

phenomenon was also reported by Gasser et al. [85]. These suggest that the fibre-matrix 

shear interaction should be taken into account. 

 

Coupled models 

 

Inspired by Criscione’s physically based strain invariants model, along-fibre shear and 

cross-fibre shear are considered in Blemker’s muscle model [86]. Both shear moduli are 

assumed constants and represented through 1I , 4I  and 5I  [82] (which are defined on 

deviatoric deformation gradient  
1 3

det


F F F ): 

 

 1 4 5 1 1 4 5 2 1 4 5 3 4( , , , ) ( ( , )) ( 2( , , )) ( ( ), )iso I I I W B I I W B I I I W I      , (2.29) 

 

where 
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1

4

1
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B
I

  , (2.30) 
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2

4

cosh ( )
2

I I I
B

I

 
 , (2.31) 

 4I  . (2.32) 

 

Here the two strain invariants 1B  and 2B  represent the shears along and cross the fibre 

direction, respectively;   is the stretch ratio and   indicates the muscle active level. 

The results show that the shear between fibres is very important, and it will affect the 

final results of strain energy. 

 

In Peng’s study of the mechanical properties of HAF [7], the strain energy function 

based on Spencer’s framework [87] for fibre reinforced materials is divided into three 

parts, contributions from matrix, fibres and fibre-matrix shear interaction.  

 

 ( ) M F FMW W W W W   0C,a , (2.33) 
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where MW and FW  represent the strain energy contribution from the ground matrix and 

the fibre reinforcement respectively, and FMW  is the strain energy contribution from the 

fibre-matrix interaction. In their paper, the proposed interaction energy FMW  depends 

on the fibre stretch ratio and the shear angle between the fibre direction and the 

transverse matrix plane. 

 

Guo et al. [6] proposed a composites-based hyperelastic constitutive model to describe 

the mechanical behaviours of soft tissue. The inhomogeneous deformation of the 

composite is considered to be the main reason for fibre-matrix shear interaction due to 

the difference between constituents’ material properties inside the composite. The 

deformation is then decomposed multiplicatively into uniaxial deformation along fibre 

direction and shear deformation, and the conventional composite theories are applied to 

estimate the strain energy stored in the composite. The developed transversely isotropic 

hyperelastic model is then used to examine the mechanical behaviours of HAF. Their 

simulation results show that the proposed model can accurately predict the mechanical 

behaviours of the HAF. Moreover, they also illustrated that the composite model is 

compatible with the phenomenological model in [7]. 

 

Fibre orientation distribution 

 

All the models mentioned above assume the fibres embedded in the matrix are 

unidirectional. However, there will always be some dispersion on fibre orientations in 

real soft tissues. Holzapfel et al. [88] studied the fibre directions inside the human 

lumbar annulus fibrosus, and the results show that the fibre orientations are similar and 

independent of the position in the annulus. Also, the fibre angles in different lamellae 

have no obvious difference, and there is no observed correlation between fibre 

orientation and donors’ age. In each lamella, the fibre angle increases from about 20° on 

the ventral side to approximately 50° on the dorsal side, which means the fibre angle 

mainly depend on the circumferential position rather than radial and vertical positions. 

  

Caner et al. [89] adopted the microplane model to study the consequences of fibre 

orientation dispersion in HAF. It is found that in some cases the experimental data could 

be fitted and reproduced by considering the contribution from directional distributed 

fibres only (that is, without explicit consideration of the fibre-matrix shear interaction). 
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Numerical work 

 

Based on the numerical approach for FRC in the infinitesimal regime, deBotton et al. 

[90] extended the research to examine the material properties of FRC under finite strain. 

A numerical model of a hexagonal unit cell is proposed in the chapter, which intends to 

represent the basic repeatable block for composite material. Although the composite 

built with such unit cells is not transversely isotropic, the general structure of the 

composite can be represented well to some extent. The comparison results show that the 

FE simulation results support the analytical predictions for in-plane and axial stresses 

very well. 

 

Guo et al. [91] studied hyperelastic fibre-reinforced composites under finite strain 

theoretically and numerically. In order to identify the fibre-matrix interaction, a 

numerical model of a representative unit cell was presented in the paper, which contains 

a cylindrical fibre inside a cube. Periodic boundary conditions were applied in order to 

obtain a better prediction of the overall mechanical behaviours of the composite 

material [92]. Five combined loading cased were simulated (i.e., uniaxial tension 

combined with along fibre shear, uniaxial tension combined with transverse shear, along 

fibre shear combined with transverse shear, along fibre shear in two directions and 

uniaxial tension combined with along fibre and transverse shear). The results presented 

an excellent agreement between the analytical analysis and numerical simulation. The 

assumption, that the energy from along fibre, along fibre shear and transverse 

deformation were independent of each other, was corroborated by the FE simulations. 

 

Experimental work 

 

In order to validate whether the theoretical or numerical model of FRC is suitable to 

represent the mechanical behaviours of real soft tissue, experimental data are necessary 

and crucial.  

 

Adams and Green [93] tried to identify the fibre-matrix interactions by investigating the 

tensile properties of the annulus fibrosus. 6 lumber spines were harvested and totally 37 

specimens were investigated in the experiments. Each specimen was obtained from 

lateral and tailored into a vertical slice of about 5mm thick and 30mm wide. Tensile 

strain was applied vertically on the sample after preconditioning, and the size effect of 
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specimen was studied later by cutting the original sample into smaller ones 

schematically. The new sample was geometrically similar to the original one but only 

with smaller size. The mechanical behaviours of the soft tissue were proved to be size-

dependent by Adams and Green’s study, and the stiffness of the material would reduce 

when the sample size decreases. 

 

Bass et al. [81] carried out a series of uniaxial and biaxial tensile tests to characterise the 

mechanical responses of HAF. Healthy human spines were obtained from autopsy, 

properly stored and later cut into the required shape for experiments following strict 

procedures. The outer annulus was kept with the vertebra bones attached on both sides, 

which helped to maintain the physiological loading condition and the maximum height 

of specimen For biaxial tests, the circumferential strains were held at six constant values 

(0.0, ±0.0125, ±0.025 and +0.0375) while the tension was applied on the orthogonal 

direction on the specimen plane. Based on Fung’s approach [78], strain data from 

experiments were directly used to fit the strain energy functions. By comparing the 

constitutive models obtained from different data set, the results showed that the strain 

energy functions obtained from uniaxial tension data cannot be applied to estimate the 

material responses in biaxial tensile tests, and vice versa. Due to the multi-axial loading 

condition for annulus, as well as the nonlinearity and anisotropy of HAF, they 

concluded that uniaxial data is insufficient to predict the mechanical behaviours of HAF 

under general deformation state. 
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Chapter 3 Mechanical Modelling of Incompressible Particle-

Reinforced neo-Hookean Composites Based on Numerical 

Homogenisation 

 

 

Objective 

 

 To develop three-dimensional representative volume element (RVE) models to 

simulate the microstructure of composites with randomly distributed spherical 

particles; 

 To generate periodic boundary conditions for the RVEs to simulate the 

mechanical behaviour of the particle-reinforced composites; 

 To simulate the mechanical behaviour of the RVEs under finite deformation; 

 To investigate the RVE simulation results and to develop a theoretical 

constitutive model based on the numerical homogenisation results; 

 To compare the effective modulus of the hyperelastic composite obtained from 

the numerical homogenisation with the classical linear elastic estimation. 

 

Summary 

 

In this Chapter, the mechanical responses of incompressible particle-reinforced neo-

Hookean composites (IPRNC) under general finite deformation are investigated 

numerically. Three-dimensional representative volume element (RVE) models 

containing 27 non-overlapping identical randomly distributed spheres are created to 

represent the neo-Hookean composite which consists of one incompressible neo-

Hookean elastomer embedded with randomly distributed equal-sized spherical 

incompressible neo-Hookean particle reinforcements. Four types of finite deformation 

(i.e., uniaxial tension, uniaxial compression, simple shear and general biaxial 

deformation) are simulated using the RVE models with periodic boundary condition 

(PBC) enforced. The simulation results show that the overall mechanical responses of 
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the IPRNC can be well predicted by another simple incompressible neo-Hookean model. 

It is also shown that the effective shear modulus of the IPRNC with different particle 

volume fraction and different particle/matrix stiffness ratio can be well predicted by the 

classical linear elastic estimation.  

 

3.1 Introduction 

 

A fundamental problem for particle-reinforced composites (PRC) is to predict the 

overall mechanical behaviour of the composite based on the mechanical properties of 

the constituents and the microstructure of the composites. Guth [4] extended Einstein’s 

linear estimate originally developed for viscous fluid and proposed a second order 

polynomial to predict the small strain Young’s modulus of (rigid) particle-filled solids. 

Kerner [68] designed an averaging procedure to estimate the effective shear modulus 

and bulk modulus of the PRC. Hill [13] proposed a self-consistent model to estimate the 

effective shear modulus of the PRC. The three-phase model developed by Christensen 

and Lo [18] gives a very good prediction of the PRC’s effective shear modulus [31]. 

Torquato [25] derived accurate expressions for the bulk and shear moduli of the PRC 

based on a third-order approximation. Although a few studies investigated some special 

microstructures such as cubic arrays of spheres [e.g., 94], most papers in the literature 

have focused on macroscopically isotropic composites with randomly distributed 

particles. Besides the direct estimation of the effective moduli of the PRC, some 

rigorous bounds for the elastic properties of the PRC have been obtained from 

variational principles [e.g., 10]. Another approach to investigate the “overall” 

mechanical behaviour of the PRC is to solve the boundary value problems for a 

representative volume element (RVE) model of the composite numerically [69]. Drugan 

and Willis [34] showed that a small size RVE model can predict accurately the 

mechanical response of the PRC. Segurado and Llorca [31] provided a comprehensive 

numerical study of the mechanical properties of the linear elastic PRC using multi-

particle RVE models.  

 

Although the mechanical properties of the PRC in infinitesimal strain have been 

investigated extensively, their mechanical behaviour in the finite deformation regime is 

still not well-understood due to the intrinsic difficulties related to the geometrical and 

material nonlinearities. Hill [50] proposed a set of macroscopic variables for 

constitutive modelling of composites in finite deformation. Based on that, Ogden [95] 
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derived an approximate expression for the overall bulk modulus of the PRC with 

second-order isotropic compressible elastic constituents under finite strain. Hashin [52] 

studied the response of hyperelastic PRC under hydrostatic loading. Imam et al. [54] 

derived the second order elastic field for incompressible hyperelastic composites with 

dilute inclusions, which was then employed to estimate the overall moduli of the PRC. 

Although recently several research groups have investigated hyperelastic composites 

with inclusions in two dimension (which physically implies composites with aligned 

fibre reinforcement) and some related boundary value problems are solved analytically 

[e.g., 6, 90, 96, 97], exact solutions for three-dimensional PRC model under general 

homogeneous displacement boundary conditions are still not available in the literature. 

Nevertheless, Castaneda [53] proposed a self-consistent approach to predict the shear 

modulus of incompressible particle-reinforced neo-Hookean composites (IPRNC). 

Bergstrom and Boyce [62] used the concept of strain amplification under large strain to 

estimate the shear modulus of incompressible neo-Hookean composites filled with rigid 

particles. Because these two models are not based on an accurate approximation of the 

elastic fields, it is not surprising to find that they don’t provide good estimates of 

effective shear modulus of IPRNC with moderate particle volume fractions. The 

numerical studies of hyperelastic composites available in the literature are also mainly 

limited to two-dimensional problems of composites with aligned fibres or voids [e.g., 61, 

97, 98], though Bergstrom and Boyce [62] used simple 2D axisymmetric models to 

simulate IPRNC under uniaxial deformation. Three-dimensional RVE modelling in 

finite deformation is only investigated for single-fibre unit cell [91]. To the best of the 

authors’ knowledge, there is no comprehensive numerical study of the PRC under finite 

deformation published in the literature. 

 

Because it is difficult to predict the mechanical response of the PRC under general finite 

deformation theoretically due to the related geometrical and material nonlinearities, this 

study employs the numerical homogenisation approach to investigate the mechanical 

behaviour of the simplest hyperelastic PRC under general finite deformation, in which 

the mechanical properties of both the matrix and the reinforcement are described by an 

incompressible neo-Hookean model. In this chapter, three-dimensional RVE models are 

created to represent the neo-Hookean composite which consists of one incompressible 

neo-Hookean elastomer embedded with the other randomly distributed equal-sized 

spherical incompressible neo-Hookean particle reinforcement. Four types of finite 

deformation (i.e., uniaxial tension, uniaxial compression, simple shear and general 
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biaxial deformation) are investigated using the RVE models with periodic boundary 

condition (PBC) enforced. The simulation results show that the overall mechanical 

responses of the IPRNC can be well predicted by another simple incompressible neo-

Hookean model. The numerical results also suggest that the classical linear elastic 

estimation [18] can be used to predict the effective shear modulus of the IPRNC with 

different particle volume fraction and different particle/matrix stiffness ratio. 

 

The structure of the chapter is as follows: In section 3.2, the IPRNC to be investigated is 

described and the theoretical basis of the numerical homogenisation in finite 

deformation [50, 95] is also introduced. In section 3.3, the RVE models are developed 

for numerical simulations using finite element method (FEM) and some related issues 

(e.g., isotropy of the RVE models, FEM mesh) are discussed. The results of the RVE 

simulations are presented and investigated in section 3.4. The effective modulus of the 

hyperelastic composites is also compared with classical linear elastic estimation. Some 

concluding remarks are given in section 3.5. 

 

3.2 Particle-reinforced neo-Hookean composites and theoretical basis of numerical 

homogenisation 

 

As mentioned in Chapter 2, for a continuum solid, the deformation gradient is defined 

as   F x X , where X and x  denote the positions of a typical material point 

respectively in the original (undeformed) and deformed configuration of the solid. The 

mechanical behaviour of an isotropic hyperelastic material can be determined by its 

strain energy function (per unit volume in the original configuration)  W W F . If the 

material is compressible, the nominal stress P  , which means the average stress on the 

area, can be obtained as 

 

 
 
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F
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P

F
, (3.34) 

 

while for incompressible material, it reads 

 

 
 T W

p  
  



F
P F

F
, (3.35) 
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where p  is the pressure. The simplest model for hyperelastic materials is the 

incompressible neo-Hookean model, as follows 

 

    1

1
3

2
W I F ,  (3.36) 

 

where the only material constant   is the shear modulus of the material;  1I tr C  is 

the first invariant of the right Cauchy-Green deformation tensor.  

 

In the chapter, the interest will focus on the mechanical behaviour of the simplest 

hyperelastic PRC, the so-called “incompressible particle-reinforced neo-Hookean 

composite” (IPRNC), in which both the matrix and the particle reinforcement are 

incompressible neo-Hookean materials and they are perfectly bonded on the surface. Let 

m  and r  denote the shear moduli of the matrix and the reinforcement respectively. If 

the mechanical properties of the composite are assumed to be macroscopically isotropic 

and homogeneous, only two parameters need to be considered, the stiffness ratio r m   

and the volume fraction of the reinforcement c . Hence the shear modulus of the matrix 

m  can be set as 1 (one unit) without losing any generality.  

 

The macroscopic mechanical behaviour of the (microscopically inhomogeneous) 

hyperelastic composite can be characterised by the constitutive macro-variables defined 

in Hill [50]. A representative volume of the inhomogeneous hyperelastic material is 

considered here, which occupies volume V  in the reference configuration. The volume 

average (denoted by an over-bar) of the deformation gradient F , the nominal stress 

tensor P , and the strain energy W  are given by [50, 95] 

 

  
 

, ,V V V
dV dV W dV

W
V V V

  
  F P F

F P F . (3.37) 

 

Using the divergence theorem, it can be derived that 
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where S  is the surface of the volume V ; 
j jnn e  is the outward unit vector normal to 

the surface S . Here 
je  is the unit vector in the direction of the 

jX  axis. That means the 

average deformation gradient F  can be computed in terms of the displacement on the 

surface S .  

 

Similarly, if the continuum body is in equilibrium, the average nominal stress P  can be 

obtained as 

 

 ,
i kj k

S
ij

X P n dS
P

V



 (3.39) 

 

which implies that the average nominal stress P  can be computed in terms of the 

nominal stress P  on the surface S . Hill [50] showed that 

 

 
 W




F
P

F
 (3.40) 

 

for compressible composites. If the material is incompressible, it reads 

 

 
 T W

p  
  



F
P F

F
, (3.41) 

 

Hence  W F  can be treated as a potential (strain energy) for the volume V  and a 

function of F . The mechanical behaviour of the overall composite can be determined 

by  W W F . However, because of the fundamental difficulties caused by the related 

geometrical and material nonlinearity, even for the simplest PRC defined above, it is 

still impossible to derive strain energy field in the volume V  under general deformation 

state analytically. To the best of the authors’ knowledge, there is no accurate 

approximation of  W F  reported in literature for this simple IPRNC.  

 

To overcome the theoretical difficulty, numerical homogenisation methods have been 

proposed to estimate the effective properties of microscopically inhomogeneous 

composites [69, 92]. In order to determine the mechanical behaviour of hyperelastic 
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composites under any given “overall” deformation (represented by the average 

deformation gradient F ) based on the macro-variables defined in Hill [50], appropriate 

displacement boundary conditions, which satisfy Eq. (3.38), are applied to a geometrical 

representative model, and the corresponding stress/strain fields can then be computed 

numerically (usually by finite element mechanics). The macroscopically defined 

nominal stress tensor P  can be obtained based on Eq. (3.40) and the related strain 

energy  W F  can also be computed numerically.  

 

For macroscopically homogeneous and isotropic incompressible hyperelastic material, 

any general deformation can be treated as a biaxial deformation in its principal 

directions. Hence any general deformation can be represented by principal stretches 1  

and 2  (the third principal stretch can be determined by the incompressibility constraint 

as  3 1 21   ). If the principal stretches are further sorted as 1 2 3    , then only 

the region   1 2

1 2 1 1 2 1, 1,         needs to be investigated numerically. Now the 

overall strain energy function can be written as  1 2,W W   . When the invariant 

approach is used, the overall strain energy function can be represented by 1I  and 2I  as 

 1 2,W W I I , where  
2 2

2

1

2
I tr tr  

 
C C  is the second invariant of the right 

Cauchy-Green deformation tensor C , which is defined as 
T

C F F  here. If sufficiently 

many values of W  are computed numerically, for some simple composites, the data 

might suggest a simple function  1 2,W    or  1 2,W I I , as illustrated later in this 

chapter. 

 

3.3 RVE models and finite element simulations 

 

The first step of numerical homogenisation is to generate a set of appropriate RVE 

models which can statistically represent the composite. In the chapter, the IPRNC is 

geometrically simulated by three-dimensional representative cubic unit cell with 27 

non-overlapping identical spheres randomly distributed inside. Because the PBC will be 

applied to the RVE models in the FEM simulations, it is required that the RVE models 

have periodic microstructures, or else it would not be proper and possible to use 

periodic boundary condition. That is, if a particle intersects the RVE surface, it has to be 
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split into an appropriate number of parts and copied to the opposite sides of the cube. 

Figure 3.1 explains the concept of an RVE model with periodic microstructure. 

 

 

Figure 3.1 Schematic diagram of a RVE. 

 

Therefore the RVE model can be used as a unit block to build composite models with 

correct periodic microstructure. The software DIGIMAT 4.1 (http://www.e-

xstream.com/) is used to generate RVE models with periodic microstructure. To 

investigate the effect of different particle volume fraction c , RVE models with various 

particle volume fractions (i.e., c   5%, 10%, 20% and 30%) are generated. For each 

volume fraction value, 4 different RVE samples are created to study the variation of the 

predictions.  

 

There are 27 spheres inside a RVE and the diameter of the particles d  in each RVE can 

be determined by the particle volume fraction c .  

 

 27RVE pV c V    (3.42) 

 34
( )

3 2
p

d
V   (3.43) 
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Here RVEV  is the volume of the RVE and PV  is the volume of a sphere. Here the RVE is 

considered as a unit cubic cell, the length of each edge is 1L   and the volume of RVE 

1RVEV  . 

 

Combining Eq. (3.42) and Eq. (3.43), the diameter of the embedded spheres is 

calculated by 

 

1

3

2
4

27
3

RVEV c
d



 
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  
 
 

 (3.44) 

 

The particle volume ratios and the corresponding diameters of the embedded spheres are 

listed in Table 3.1. 

 

c 5% 10% 20% 30% 

d 
0.1524 0.1920 0.2418 0.2768 

 

Table 3.1 Particle volume ratios and the corresponding sphere diameters. 

 

In order to prevent severely distorted finite element mesh in the matrix necking zone 

between particles, the distance between spheres and sphere- surface should be restricted.  

In this study, the distance should be larger than 0.1d  when the particle volume ratio is 

no more than 20%, and 0.05d  when the volume ratio is 30%.  

  

For every RVE cube, the length of each edge is 1, which is 3.6 times of the biggest 

diameter (when the volume fraction of inclusion is 30%). According to Drugan and 

Will’s research [34], the RVEs are big enough in size to represent the general 

mechanical behaviours of the composites in the linear elastic regime.  

 

The interfaces between spheres and matrix are presumed to be perfectly bounded 

initially and throughout the simulation. If the microstructure is damaged, those RVEs 

are no longer applicable to represent the composite because the broken interfaces would 

change the mechanical performance of the material and certain rearrangement of 

particles might show great effects on the stiffness in certain direction of the composite . 
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In this work, the mechanical behaviours of RVEs are studied under large deformation 

but damage is not considered, because the stability of the composite no longer exists 

and RVEs lose their meanings in this condition. Although it is impossible to identify if 

the microstructures of deformed RVEs are damaged or not, the simulation results show 

that the mechanical behaviours could be represented by the neo-Hookean model, which 

in the other way around proves that the RVEs are not damaged during the deformations. 

 

To correctly predict the mechanical response of the macroscopically isotropic IPRNC, it 

is important to make sure that the generated RVE models are close to isotropic. The 

isotropy of the particle distribution in the16 RVE models is analysed by computing the 

positions of the centroid of the particles and their moment of inertia in relation to the 

three axes which are parallel to the three axes of the coordinate system and pass through 

the centre of the RVE unit. The results are plotted in Figure 3.2. When the particles are 

ideally randomly distributed, the moment of inertia is 
2 6I cL  [31]. This is also 

plotted in Figure 3.2 for comparison. The results in Figure 3.2 show that, for all RVE 

samples, the centroid is always close to 2L , and the value of the moment of inertia is 

also close to the ideal value 
2 6cL  (the moment of inertia of the particles in an RVE 

model is usually slightly smaller than the ideal value because the partition of the 

particles leads to smaller contribution of the particles to the overall moment of inertia). 

This implies that there are no axial preferential directions identified in the 16 RVE 

samples. An alternative method to verify the isotropy of an RVE model is to simulate 

directly the response of the RVE model under uniaxial tension/compression along 

various directions, which will be discussed in the next section. 

 

For a given average deformation gradient F , based on (3.38), it is obvious that the 

choice of boundary condition is not unique. Usually three types of boundary condition 

are used for general RVE models: 

 

(i) The prescribed displacement boundary condition (PDBC); 

(ii) The prescribed traction boundary condition (PTBC) (or sometimes named as “mixed 

boundary condition (MBC)”); 

(iii) The periodic boundary condition (PBC) [64]. 
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(a) Coordinates of the centroid of the spherical particles vs. the particle volume fraction 

c . For each value of c , there are 4 RVE samples, which produce 12 coordinate values 

( , ,x y z  coordinate values for every RVE sample) 
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(b) Moment of inertia, I , of the spherical particles vs. the particle volume fraction c . 

2 6I cL  for ideally randomly distributed particles is also plotted in solid line for 

comparison. Similarly, there are 12 values of I  for each value of c  (there are , ,x y zI I I  

for every RVE sample). 

 

Figure 3.2 Centroid coordinates and moment of inertia of spherical particles. 
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Chen et al. [64] investigated the effects of these three types of boundary condition on 

predictions of RVE models and their results showed that the PBC provides the best 

performance, while the PDBC and the MBC over and underestimate the effective 

modulus respectively. Under the prescribed displacement boundary condition, the 

deformed Representative Volume Elements need extra restraints to form the material, 

which would increase the overall stiffness of the material; while the prescribed traction 

boundary condition does satisfy the balance requirements, but when the deformed RVEs 

are piled up to form the material, gaps between RVEs result in lower effective modulus. 

For periodic boundary condition, RVE is put under an ideal loading condition, so the 

predicted modulus stay between the high and lower bounds and is more close to the real 

value. This observation has also been verified by many other researchers (e.g., Hohe and 

Becker [99] and Demiray and Becker[100]).  

 

Because of this, the PBC is applied to all FEM simulations of RVE models in the 

chapter. For any given average deformation gradient F  applied to the RVE model, the 

PBC can be represented as the following general format [91] 

 

 

       

   

1 2 1 2

1 2

Q Q Q Q

Q Q

    

 

x x F X X

V V

 (3.45) 

 

where 1Q  represents a general node on a face of the RVE cube and the corresponding 

node 2Q  is at the same location of the opposite face of the RVE model. V  is the force 

applied on the nodes. Here again X and x  denote the position of a material point 

respectively in the original (undeformed) and deformed configuration. The first 

equation in Eq. (3.45) represents the periodic displacements, while the second equation 

represents the antiperiodic traction condition.  

 

The Periodic Boundary Condition is implemented by “Equation” type of constraints in 

ABAQUS 6.10 [101]. PBC was imposed on three pairs of paralleled surfaces and three 

sets of paralleled edges of RVEs. When the RVE deforms due to the given strain,  the 

PBC can be described according to displacement ( u ). If the displacement u  is applied 

on surface 1X L  ( 1 2 3X X X  is a coordinate system defined by three concurrent edges 

of the unit cube), the distance between the corresponding nodes on surfaces 1 0X   and 
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1X L  will be decided according to U , which relates to the specific loading conditions 

applied on RVE, e.g., for a uniaxial tensile deformation, 1 (1,0,0)U  , 2 2(0, ,0)U u  and 

3 3(0,0, )U u , while for a simple shear deformation, 1 (0,0,0)U  , 2 (1,0,0)U   and 

3 (0,0,0)U  . Details are given in Appendix B: Boundary conditions. To implement the 

PBC, it is good to have periodic meshes (i.e., identical meshes on each pair of faces of 

the RVE cube) for the RVE models. The same procedure proposed by Segurado and 

Llorca [31] is employed here to mesh the RVE models to guarantee that all the meshes 

are periodic.  

 

The FEM simulations of all RVE models are performed with ABAQUS/Standard 6.10 

within the framework of finite deformation [101]. The matrix is modelled as 

incompressible neo-Hookean material with 1m  . The particles are also modelled as 

incompressible neo-Hookean material and different particle/matrix stiffness ratios are 

considered, i.e., 100,10, 0.5r   ( 0.5r   implies a softer particle reinforcement), and 

the case of rigid particle (which corresponds to r   ) is also investigated. In a 

standard mesh of an RVE model, there are about 60,000 elements for the matrix phase 

and about 20,000 elements for the particles. Quadratic tetrahedral elements (element 

type C3D10MH in ABAQUS) are used and around 120,000 nodes are defined. Because 

of the material and geometric nonlinearity, as well as the severe meshing distortion in 

the matrix necking zone between spherical particles, convergence is usually very 

challenging in the numerical simulations (particularly when the stiffness contrast 

between the particles and the matrix is large) and a typical simulation on an RVE with 

the standard mesh takes about 4-7 days on a HP Z600 workstation with 16 GB of RAM 

and 12 CPU cores. Implicit approach was adopted when the FEM simulation was 

carried out, so the material geometry nonlinearity would lead to the convergence 

problem. Moreover, the high stiffness contrast between matrix and inclusions could 

make the system matrix ill-conditioned, which makes the convergence difficult. 

 

To check if this standard mesh is good enough or not to predict accurately the response 

of the RVE models, an RVE model with 0.2c   is meshed with a refined mesh 

containing more than 170,000 elements and 200,000 nodes. The uniaxial tension along 

the 1X  axial direction is simulated for the RVE model with standard and refined meshes 

respectively. The nominal stress vs. nominal strain (defined as 1   , where   
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denotes the stretch ratio) curves for both meshes are plotted in Figure 3.3. The two 

curves are practically superposed, which implies that the standard mesh is able to 

predict the mechanical response of the RVE model at almost the same level of accuracy 

as the refined mesh (though the model with the refined mesh can simulate larger value 

of uniaxial tensile stretch). Hence the standard mesh is used in all the numerical 

simulations in the chapter due to the limitation of the computing resources. 
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Figure 3.3 Results of the FEM simulations of an RVE model ( 0.2, 10rc   ) 

subjected to uniaxial tension along the 1X  axial direction with standard (denoted by 

circles) and refined meshes (denoted by triangles). The curves show the nominal stress 

and the nominal strain 1   . 

 

As pointed out in the previous section, any general deformation can be represented by a 

biaxial deformation provided the model is “overall” isotropic. Therefore the following 

four types of finite deformations are simulated: uniaxial tension, uniaxial compression 

(along the coordinate axial directions and random directions), simple shear and general 

biaxial deformation. For all FEM simulations carried out in this study, the deformation 

is applied until convergence is not achieved by ABAQUS with minimum strain 

increment setting as 0.001.  
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3.4 Results and Discussion 

 

3.4.1 Size of the RVE in finite deformation 

 

Based on homogenisation theory, an RVE model should be sufficiently large to be 

statistically representative of the composite [34]. But because of the limitation of 

computing resources, the size of an RVE model should be chosen for the purpose of 

predicting the overall response of the composite with desired accuracy [34]. According 

to Drugan and Willis [34]’s study, a small size RVE model can well represent the 

macroscopic behaviour of many composites with reinforcement within the framework 

of linear elasticity: for example, the minimum RVE size required to obtain “overall” 

modulus of the composite with less than 5% error is just about twice of the 

reinforcement diameter. This is verified by the numerical simulation of RVE model for 

the linear elastic PRC [31]. For composites with nonlinear phase(s), although there is no 

theoretical estimates for the minimum RVE size, various numerical investigations 

showed that similar size of RVE models can be used to obtain predictions with the same 

degree of accuracy [102, 103].  

 

For hyperelastic composites, however, as pointed out by Moraleda et al. [61], there is no 

critical size of the RVE because of the instabilities coming from the non-convexity of 

the local strain energy functions [104]. The numerical simulations of fibre-reinforced 

composites in finite deformation [61, 63] suggested that the edge length of RVE should 

be 16 times as much as the sphere diameter, which is 16L d  . However, for the RVE 

models created here, L d is ranging from 3.61 ( 0.3c  ) to 6.56 ( 0.05c  ). If the ratio 

L d  was increased to 16, more than 390 spheres would be contained inside the RVE 

and obviously the corresponding computing cost is beyond the practical limit. On the 

other hand, as will be illustrated in the following sections, the simulation results show 

that the variations of predictions between various RVE models are well below 5% in 

general, which implies that the small RVE size used in the chapter is able to obtain 

exact responses (to a few percent) of the IPRNC under general three-dimensional finite 

deformation. That is, similar accuracy can also be obtained for the IPRNC in the finite 

deformation regime with small size RVE models comparing to the results in the 

infinitesimal deformation regime.  
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3.4.2 Isotropy of the RVE models 

 

After the random distribution of the particles in the 16 RVE models is verified in the 

previous section, the isotropy of the mechanical behaviour of the RVE models is 

double-checked by direct simulations of the responses of the RVE models subjected to 

uniaxial tension/compression along various directions. For an RVE model with 0.2c  , 

10r  , the nominal stress vs. nominal strain curves for uniaxial tension along the three 

coordinate axial directions are plotted in Figure 3.4. For the three uniaxial tension 

simulations, convergence problem occurs when the stretch ratio   reaches about 1.5 ~ 

1.7. The ultimate stretch ratio obtained by ABAQUS depends on the particle/matrix 

stiffness ratio, the RVE geometry, the mesh, as well as the stretch direction. The 

response of the same RVE model subjected to uniaxial tension along a random direction 

represented by the unit vector  0.6461, 0.1411, 0.7501   is also simulated and plotted 

in Figure 3.4 (all random directions and numbers used in the study are generated in 

MATLAB prior to the ABAQUS simulation). The four curves are practically 

superposed (relative difference less than 0.85%, which is within the error of the FEM 

simulation itself). The nominal strains in the two transverse directions are also 

examined for the four simulations against the isotropic solution 

 
1 21 2

2 3 11 1 1   
       (Figure 3.4). The eight curves from numerical 

simulation results are very close to the theoretical solution (maximum relative variation 

less than 1.5%). This indicates that the uniaxial tensile behaviour of this RVE model (in 

the undeformed configuration) is very close to isotropic. Similarly, the FEM simulation 

results of this RVE model subjected to uniaxial compression along the three coordinate 

axial directions and a random direction  0.6366, 0.6433, 0.4253  are plotted in Figure 

3.5. Uniaxial compression can be simulated until about 0.55  . It is clear that the 

uniaxial compression behaviour of this RVE model is also very close to isotropic 

because the maximum variation between the four simulations is well below 0.9%.  
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(a) 

 

(b) 

Figure 3.4 (a) Nominal stress vs. nominal strain curves of an RVE model 

( 0.2, 10rc   ) subjected to uniaxial tensions along the three axial directions and a 

random direction  0.6461, 0.1411, 0.7501  . The theoretical nominal stress vs. 

nominal strain curve from the fitted strain energy function is plotted as a dotted line. (b) 

The corresponding nominal strains in the transverse directions are also plotted against 

the nominal tensile strain. The isotropic solution  
1 21 2

2 3 11 1 1   
       is 

plotted as a dotted line. 
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Since both Castaneda [53] and Bergstrom and Boyce [62] proposed the use of an 

incompressible neo-Hookean model to estimate the response of an IPRNC, the strain 

energy results W  computed from the FEM simulations of the uniaxial tension are 

plotted against 1 3I   in Figure 3.6. A clear propositional relation is observed and the 

data is well fitted by  10.7441 3W I   using MS Excel 2007 (the coefficient of 

determination 2 0.9999R   indicates an excellent fit), which implies the effective shear 

modulus of the IPRNC is 1.4882c   for the loading case of uniaxial tension. The 

theoretical nominal stress-strain curve computed from the fitted strain energy function is 

plotted as a dotted line in Figure 3.4, which is practically identical to the numerical 

results. The strain energy results W  computed from the uniaxial compression 

simulations are also fitted as  10.7459 3W I   in Figure 3.6 ( 2 0.9998R   in MS 

Excel 2007). The corresponding theoretical nominal stress-strain curve obtained from 

this fitted strain energy function is plotted in dotted line in Figure 3.5, which is again 

practically superposed with the numerical results. The difference between the effective 

shear moduli of the IPRNC predicted by uniaxial tension and uniaxial compression is 

less than 0.24%, which suggests that a unique incompressible neo-Hookean model 

might be capable of predicting the mechanical behaviour of the IPRNC under general 

finite deformation. Similar procedure is applied to all 16 RVE models to examine their 

isotropy. The simulation results show that, for any RVE model, its responses under 

uniaxial tension or compression along different directions can all be well described by a 

unique incompressible neo-Hookean model. The differences between the effective shear 

moduli predicted by various tension or compression simulation cases for one model is 

well below 4.6%. Therefore the isotropy of the 16 RVE models is confirmed directly by 

the FEM simulations.  
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(a) 

 

(b) 

Figure 3.5 (a) Nominal stress vs. nominal strain curves of an RVE model 

( 0.2, 10rc   ) subjected to uniaxial compressions along the three axial directions 

and a random direction  0.6366, 0.6433, 0.4253 . The theoretical nominal stress vs. 

nominal strain curve from the fitted strain energy function is plotted in dotted line. (b) 

The corresponding nominal strains in the transverse directions are also plotted against 

the nominal compression strain. The isotropic solution  
1 21 2

2 3 11 1 1   
       

is plotted as a dotted line.  
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(a) W  vs. 1 3I   for uniaxial tension simulations 
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(b) W  vs. 1 3I   for uniaxial compression simulations 

Figure 3.6 (a) The strain energy results W  computed from four FEM simulations of an 

RVE model ( 0.2, 10rc   ) subjected to uniaxial tensions are plotted against 1 3I  . 

The data is fitted by  10.7441 3W I   (solid line). (b) The strain energy results W  

computed from four FEM simulations of an RVE model ( 0.2, 10rc   ) subjected to 

uniaxial compressions are plotted against 1 3I  . The data is fitted by 

 10.7459 3W I   (solid line). 
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To study the variations between different RVE models, the other three RVE models 

with 0.2c   are subjected to uniaxial tension along the 1X  and 2X  axial directions, as 

well as uniaxial compression along the 3X  axial directions and a random direction in 

FEM simulations ( 10r  ). In Figure 3.7, all the computed strain energy data W  from 

the 20 simulations is plotted against 1 3I   and they are fitted excellently by a linear 

relation  10.7479 3W I   in MS Excel 2007 ( 2 0.9999R  ). The effective shear 

moduli of the 4 RVE model are obtained individually (by fitting the corresponding 

simulation results on each RVE model) as 1.4896,1.4948,1.505,1.5064,c   

respectively. The relative differences between these effective shear moduli are less than 

1.2%. This shows again that the small size RVE models used here are able to obtain 

exact responses (to a few percent) of the IPRNC. 
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Figure 3.7 Average strain energy W  vs. 1 3I   for the 20 uniaxial tension/compression 

simulations of 4 RVE models ( 0.2, 10rc   ). The linear fitting curve is plotted in 

solid line. 
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3.4.3 Composites embedded with rigid particles 

 

When the particles are rigid (i.e., r   ), each particle component (some particles are 

partitioned into several components by the RVE surface) is defined as a rigid body 

using the nodes on its matrix-particle surface. Hence there is no need to discretise it into 

elements (Figure 3.8). If a spherical particle is divided into several components by the 

RVE surface, the translational and rotational degrees of freedom (d.o.f.s) of those 

components are constrained properly to make sure the PBC is satisfied on the RVE 

surface. This can be verified, for example, by the deformed shape of an RVE model 

with 5 vol% rigid particles under uniaxial tension (Figure 3.8).  

 

Three simple deformations, i.e., uniaxial tension (along the 1X  axial direction and up to 

1 1.85  ), uniaxial compression (along the 3X  axial direction and up to 3 0.60  ) and 

simple shear (in the 1 2X X  plane and up to 0.32k  ), are simulated for an RVE model 

with 0.05c  . The nominal stress-strain curves are plotted in Figure 3.9. Numerical 

simulation of a biaxial deformation with nominal strain ratio 2 1   randomly assigned 

as -0.3432 (because only 1 2

1 2 1     needs to be considered, a random value 

between 0.5  and 1  is assigned to    2 1 2 11 1      ) is performed (up to 

1 0.85  ) to check the response of the RVE model under general three-dimensional 

finite deformation. The nominal stress-strain (in the 1X  direction only) curve is plotted 

in Figure 3.9. The strain energy W  obtained from the 4 simulations is plotted against 

1 3I   in Figure 3.10 and they are fitted excellently by a linear relation 

 10.5687 3W I   in MS Excel 2007 ( 2 1.0R  , and relative error (between the fitted 

function and the numerical data) well below 0.23%). Therefore the effective shear 

modulus of the RVE model is predicted as 1.1374c  . The theoretical nominal stress-

strain curves from the effective shear modulus are plotted as dotted lines in Figure 3.9, 

which is almost identical to the numerical results (maximum relative error less than 

1.6%.).  
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(a) 

 

 

(b) 

 

Figure 3.8 An RVE model with 5 vol% of rigid particles (a) and its deformed shape 

after uniaxial tension (b).  
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(a) Nominal stress 11P vs. nominal strain 1  for uniaxial tension simulation along the 1X  

axial direction (up to 1 1.85  ) 

 

 

(b) Nominal stress 33P vs. nominal strain 3  for uniaxial compression simulation along 

the 3X  axial direction (up to 3 0.6  ) 
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(c) Nominal shear stress 12P vs. nominal shear strain 12F  for simple shear simulation in 

the 1 2X X  plane (up to 12 0.32k F  ) 

 

 

(d) Nominal stress 11P vs. nominal strain 1  for simulation of a biaxial deformation with 

nominal strain ratio 1 2   = -0.3424 

 

Figure 3.9 Simulation results of an RVE model with 5 vol% of rigid particles. The 

theoretical nominal stress-strain curve from the effective shear modulus is plotted as a 

dotted line in each figure. 
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Figure 3.10 Average strain energy W  vs. 1 3I   for 4 numerical simulations of an RVE 

model with 5 vol% of rigid particles. The linear fitting curve is plotted as a solid line. 

 

FE simulations on other three RVE models with 0.05c   are required to obtain an 

“average” effective shear modulus of the IPRNC with  0.05, rc    . Ideally all the 

four types of deformations should be examined on every RVE model to compute the 

effective shear modulus, however, because of the extensive computing time required for 

the simulations, the following strategy is used: to compute the effective shear modulus 

for a given  , rc   case, the following three requirements are satisfied: (i) at least 6 FE 

simulations are performed; (ii) all four types of deformations are simulated; and (iii) all 

four related RVE models (with the particular volume ratio) are involved. Then the strain 

energy data from all the FE simulations are collected together to fit the effective shear 

modulus of the IPRNC. For example, 8 FE simulations are performed on the 4 RVE 

models for the IPRNC with  0.05, rc     discussed above, and the effective shear 

modulus is computed by fitting all the strain energy data from the 6 simulations as 

1.1376c   (Figure 3.10). To investigate the variation between the effective shear 

moduli of different FE simulations, the effective shear modulus of every simulation is 

calculated by fitting related strain energy data and the maximum and minimum effective 

shear moduli are recorded to compare with the average effective shear modulus. For the 
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IPRNC with  0.05, rc    , the maximum and minimum values of the 6 computed 

effective shear moduli are 
max 1.1404c   and 

min 1.1350c  , and they are represented by 

the error bars in Figure 3.11.  

 

Similarly, the effective shear modulus of the IPRNC can be computed numerically for 

0.1, 0.2, 0.3c   (we note that for RVE models with large rigid particle volume fraction 

value, ABAQUS standard can only simulate a relatively limited extent of deformation 

because all deformations are carried by the matrix phase and the mesh in the matrix 

necking zones between close particles is severely distorted at even the early state of the 

deformation). The obtained moduli are plotted in Figure 3.11 as a function of the 

particle volume fraction. 
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Figure 3.11 The effective shear moduli computed from numerical homogenisation for 

IPRNC with rigid particles and the SAE (strain amplification estimate), SCE (self-

consistent estimate), and TPM (three phase model) predictions. 
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Based on the concept of strain amplification, Bergstrom and Boyce [62] proposed the 

following estimate of shear modulus for incompressible neo-Hookean composite 

embedded with rigid particles: 

 

   21 1 3.5 30c m c c c     . (3.46) 

 

Castaneda [53] gave a self-consistent estimate of the effective shear modulus of the 

IPRNC as follows: 

 

 
       

2

1 3 3 2 8 1 3 3 2

4

r m m r r m

c

c c c c     


             
 . (3.47) 

 

When the particles are rigid, it leads to the following result [53] 

 

 
1 3

m
c

c


 


. (3.48) 

 

Obviously it will overestimate c  when 1 3c  . The strain amplification estimate, 

SAE [62], and the self-consistent estimate, SCE [53] are both plotted in Figure 3.11 to 

be compared with the numerical results. Because the dispersion of the values of the 

effective shear moduli obtained from different RVE models (maximum and minimum 

values illustrated by the error bar in Figure 3.11) is remarkably small in all cases (less 

than 2.1%), the numerical results can be taken as a very close approximation to the 

“exact” solution. From Figure 3.11, it can be found that both the SCE and the SAE 

overestimate c  when 0.1c  . When 0.05c  , the prediction of the SCE and the SAE 

are about 3.42% and 4.39% larger than the numerical result, respectively. The errors 

increase up to 8.47% and 12.8% when 0.1c  . For moderate particle volume fraction 

0.2c  , 44.3% and 33.9% errors are introduced to the SCE and the SAE predictions, 

respectively. The SCE result is actually not useable when 0.2c  : it will overestimate 3 

times the value of c  when 0.3c  . The SAE prediction overestimate c  by 39.8% 

when 0.3c  . 

 

Because the large deformation estimates for PRC cannot well predict the effective 

modulus of the IPRNC with rigid particles, the classical results for PRC in infinitesimal 
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deformation regime are examined. Because the formula proposed by Christensen and Lo 

[18] based on the three phase model (TPM) for the effective shear modulus of the linear 

elastic PRC agrees very well with the numerical homogenisation results under small 

strain [31] and is relatively simple, it is chosen to be compared with our numerical 

results under large deformation (Figure 3.11). Surprisingly, the TPM model originally 

developed for linear elastic PRC provides a much better prediction than the large 

deformation formulae. The differences between the predictions of the TPM model and 

the numerical results are only 0.39%, 2.05%, 0.22%, 5.08% for 0.05c  , 0.1, 0.2, and 

0.3, respectively. In the case of infinitesimal deformation, Segurado and Llorca’s [31] 

results suggest that the TPM model slightly underestimate the shear modulus of the 

linear elastic PRC when 0.3c  , which is consistent to our observations for neo-

Hookean PRC under finite deformation.  

 

3.4.4 Particles 100 times stiffer than matrix  

 

FEM simulations are carried out on the IPRNC with large but finite stiffness contrast 

between particles and matrix ( 100r  ). Again the effective shear modulus are 

obtained by simulations of four types of deformations, i.e., uniaxial tension along the 

1X  axial direction (up to 1 1.50  ), uniaxial compression along the 3X  axial direction 

(up to 3 0.59  ), simple shear in the 1 2X X  plane (up to 0.77k  ), and general biaxial 

deformation ( 2 1   = 0.8116 up to 1   0.24) on an RVE with 0.1c  . The nominal 

stress-strain curves are shown in Figure 3.12 (a)-(c) for uniaxial tension, uniaxial 

compression and simple shear simulations, while the strain energy W  computed in the 

four simulations of this RVE is plotted against 1 3I   in Figure 3.12 (d). The observed 

linear relation between W  and 1 3I   is fitted by  10.6457 3W I   ( 2R = 1 in MS 

Excel 2007). The effective shear moduli computed from numerical homogenisation for 

the IPRNC with 100r   are compared with the SCE, TPM predictions in Figure 3.13. 

The variations represented by the error bars are all below 4.25% (Figure 3.13). The 

TPM model matches the numerical results very well and the differences for c   0.05, 

0.1, 0.2, 0.3 are only 0.41%, 0.96%, 0.22% and 3.82%, respectively. The SCE result 

will overestimate the shear modulus significantly when 0.1c  , and the relative errors 

are 3.14%, 8.69%, 36.39% and 123.77% for c   0.05, 0.1, 0.2, 0.3, respectively. 
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(a) Nominal stress vs. nominal strain for uniaxial tension simulation 
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(b) Nominal stress vs. nominal strain for uniaxial compression simulation 
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(c) Nominal shear stress vs. nominal shear strain for simple shear simulation 
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(d) Strain energy W  vs. 1 3I 
 

 

Figure 3.12 The nominal stress-strain curves of an RVE ( 0.1, 100rc   ) for uniaxial 

tension (a), uniaxial compression (b) and simple shear (c) simulations respectively, 

while the obtained strain energy W  is plotted against 1 3I  in (d).  
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Figure 3.13 The effective shear moduli computed from numerical homogenisation for 

IPRNC with 100r   and the SCE (self consistent model), TPM (three phase model) 

predictions. 

 

3.4.5 Particles 10 times stiffer than matrix 

 

To explore the case that the particle stiffness is comparable to the matrix stiffness, a set 

of simulations is performed for 10r   in ABAQUS. Because previously the uniaxial 

tension and the uniaxial compression deformations have already been investigated 

extensively to verify the isotropy of the RVE models, only simple shear and general 

biaxial simulations are required. To validate the neo-Hookean model for the IPRNC, 8 

series of biaxial simulations ( 2 1   = 1, 0.8, 0.6, 0.4, 0.2, 0, -0.2, -0.4) as well as the 

simple shear simulation (up to 1.0k  ) are performed on an RVE model with 0.2c   to 

cover a significant amount of general deformations. All the W  vs. 1 3I   data from 34 

FE simulations (9 biaxial, 3 simple shear, 12 uniaxial tension and 10 uniaxial 

compression simulations) for the IPRNC with  0.2, 10rc    is fitted by the linear 

relation  10.7480 3W I   (which implies that   1.4960) in Figure 3.14, which is 

consistent with the effective shear modulus obtained from uniaxial tension simulations 
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in section 4.2 ( 1.4958). The maximum and minimum effective shear moduli from 

individual simulation are 
max 1.5190c   and 

min 1.4526c  , which implies the variations 

of the effective shear moduli are within 4.5%. This clearly indicates that the IPRNC can 

be well predicted by a neo-Hookean model. 

 

The numerical results for the effective shear modulus are plotted in Figure 3.15 together 

with the predictions of the SCE and TPM models, and the reported dispersions in the 

numerical simulation are less than 4.56%. Again the TPM model represents an excellent 

approximation the numerical results and the maximum difference for c   0.3 is only 

1.8%. The SCE model still overestimates the shear modulus by 1.65%, 4.41%, 12.36% 

and 213.22%, respectively, for c   0.05, 0.1, 0.2, 0.3, though the introduced error for a 

given volume fraction is smaller than that of the IPRNC with 100r  . This is expected 

because the difference between the stiffness of the composite and the matrix is smaller 

due to the reinforcement of less stiff particles.  
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Figure 3.14 All the W  vs. 1 3I   data from 34 FE simulations (9 biaxial, 3 simple shear, 

12 uniaxial tension and 10 uniaxial compression simulations) for the IPRNC 

 0.2, 10rc    are fitted by the linear relation  11.496 3W I   ( 2 0.9998R  ). 
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Figure 3.15 The effective shear moduli computed from numerical homogenisation for 

IPRNC with 10r   and the SCE(self consistent model) and TPM (three phase model) 

predictions. 

 

3.4.6 Matrix twice stiffer than particles  

 

In previous simulations, the particles are always stiffer than the matrix. The opposite 

case (i.e., the matrix is stiffer than the particles) is considered here to fully examine the 

effect of stiffness contrast between particles and matrix. A small stiffness contrast 

( 2m r   , or 0.5r  ) is used to make relatively large deformation possible in the 

numerical simulation (the convergence problem usually occurs at relatively moderate 

deformation in previous simulations, which partly comes from the large stiffness 

contrast, i.e., 10r m   ). The FE simulations of uniaxial tension (up to 1 2.0  ), 

uniaxial compression (up to 3 0.17  ), simple shear (up to 2.40k  ), and general 

biaxial ( 2 1   = -0.4025 up to 1   1.0) deformation are performed on an RVE with 

c   0.3. The strain energy data W  from all the 4 simulations are fitted in Figure 3.16 (a) 

and the obtained effective shear modulus c  0.8296. The nominal stress-strain curve 

is plotted Figure 16 (b), which is almost identical to the theoretical result based on the 

computed effective shear modulus. This suggests that the IPRNC’s response at 

significant stretch still follows the neo-Hookean model’s prediction.  
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(a) Nominal stress vs. nominal strain for uniaxial tension simulation 

 

 

(b) Nominal stress vs. nominal strain for uniaxial compression simulation 
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(c) Nominal shear stress vs. nominal shear strain for simple shear simulation 
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(d) Strain energy W  vs. 1 3I   

 

Figure 3.16 The nominal stress-strain curves are shown in (a), (b) and (c) for uniaxial 

tension, uniaxial compression and simple shear simulations respectively, while the 

obtained strain energy W  is plotted against 1 3I   for an RVE ( 0.3, 0.5rc   ) in (d).  
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The effective shear moduli derived from the FE simulation results are shown in Figure 

3.17 with maximum dispersions represented by error bars (all less than 0.7%). The 

numerical results are also compared with the theoretical approximations of the SCE and 

TPM models. Because the stiffness contrast between the particles and the matrix is 

small, the effective shear moduli of the IPRNC are close to the shear modulus of the 

matrix. It is then not surprising that both the SCE and TPM models agree well with the 

numerical results. The maximum errors for c   0.3 are only 0.36% and 0.76% for the 

SCE and TPM models, respectively. 
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Figure 3.17 The effective shear moduli computed from numerical homogenisation for 

IPRNC with 0.5r   are compared with the SCE (self consistent model) and TPM 

(three phase model) predictions. 

 

3.4.7 Deformation ranges of the FE simulations 

 

Altogether 152 FE simulations have been performed on the 16 RVE models. The strain 

energy W  computed from each FE simulation shows a clear linear proportional relation 

with 1 3I  , which suggests a neo-Hookean type response and the corresponding 

effective shear modulus can be obtained by data fitting for each FE simulation. The 

dispersions of fitted effective shear moduli are within 7.5% as shown in Figures 3.11, 

3.13, 3.15 and 3.17. 
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It should be noted that convergence is a big issue in our numerical simulation even for 

RVE models with very refined mesh (e.g., with more than 200,000 elements), 

particularly when the stiffness contrast between the particles and the matrix is large (e.g.

r   , 100). Because we can only claim the neo-Hookean type response of the IPRNC 

with the deformations simulated by our FE simulations, it is worthy to report the 

deformation ranges of the FE simulations for various IPRNC in Table 3.2, in which the 

deformation range is represented by the maximum 1I  reached by the FE simulations, as 

well as the principal stretches for uniaxial tension/compression, or nominal shear strain 

for simple shear deformation.  

 

For IPRNCs with particular volume fraction of particles, the larger the stiffness contrast 

between the particles and the matrix, the smaller deformation range the FE simulations 

can reach. For IPRNCs with particular r m  , the larger the volume fraction of 

particles, the more limited the FE simulations. The reason is that larger volume fraction 

of particles usually means more severe mesh distortion at the necking area between 

particles due to the deformation localisation. 
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0.5 10 100 ∞ 

  

    

  

0.05 

17.55 (λ = 4.13) 4.96 (λ = 1.98) 3.87 (λ = 1.62) 4.5 (λ = 1.84)   

  13.71 (λ = 0.14) 6.31 (λ = 0.32) 3.74 (λ = 0.58) 5.19 (λ = 0.39)   

  13.68 (k = 3.26) 4 (k = 1) * 4 (k = 1) * 3.21 (k = 0.45)   

  5.03 5.66 3.41 4.53   

  

0.1 

17.16 (λ = 4.08) 4.4 (λ = 1.81) 3.58 (λ = 1.49) 3.31 (λ = 1.35)   

  17.79 (λ = 0.11) 5.02 (λ = 0.41) 3.77 (λ = 0.58) 3.66 (λ = 0.60)   

  10.42 (k = 2.72) 4 (k = 1) * 3.60 (k = 0.77) 3.08 (k = 0.28)   

  8.17 4.49 3.47 3.3   

  

0.2 

14.36 (λ = 3.71) 4.22 (λ = 1.75) 3.35 (λ = 1.37) 3.05 (λ = 1.13)   

  19.63 (λ = 0.10) 4.29 (λ = 0.49) 3.41 (λ = 0.67) 3.17 (λ = 0.78)   

  11.96 (k = 2.99) 4 (k = 1) * 3.6 (k = 0.77)  3.06 (k = 0.24)   

  7.81 3.9 3.43 3.25   

  

0.3 

13.77 (λ = 3.63) 3.51 (λ = 1.46) 3.08 (λ = 1.17) 3.06 (λ = 1.14)   

  11.74 (λ = 0.17) 3.92 (λ = 0.55) 3.14 (λ = 0.8) 3.003 (λ = 0.96)   

  8.80 (k = 2.40) 3.53 (k = 0.72)  3.07 (k = 0.27) 3.03 (k = 0.17)   

  5.06 3.43  3.15 3.006   

       * The simulations finished without convergence problems. 

 

Table 3.2 Deformation range represented by 1I  for all the FE simulations. 

  

µr/µm 

c 
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3.4.8 One particle unit cell model  

 

The simple “one particle in the centre” unit cell model (Figure 3.18) is sometimes used 

in the literature to simulate PRC (e.g., Boyce). This type of unit cell represents 

composites embedded with cubic arrays of spheres [94], which is macroscopically 

orthotropic. To examine the mechanical responses of the IPRNC with this particular 

type of microstructure under finite deformation, FEM simulations of the unit cell model 

are performed in ABAQUS for uniaxial tension/compression and simple shear. The 

particle volume fraction 0.2c   and there are around 20,000 tetrahedral elements and 

30,000 nodes in the FEM model. Both the matrix and the particles are modelled as 

incompressible neo-Hookean materials with 1m   and 10r  , respectively. In all 

simulations, PBC is applied to get a good estimate of the real response of the composite 

and a deformed unit cell is shown in Figure 3.18. 

  

 

 

Figure 3.18 Simple “one particle in the centre” unit cell model.  
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The average strain energy W  vs. 1 3I   curves are plotted for three loading cases 

(Figure 3.19). For each loading case, a clear proportional relation between W  and 

1 3I   can be observed and the effective shear moduli predicted from uniaxial 

tension/compression and simple shear simulations are 1.6698c   ( 2 0.9999R  , 

uniaxial tension), 1.8596  ( 2 0.9989R  , uniaxial compression) and 1.4150  ( 2 1.0R  , 

simple shear), respectively, and the relative difference is about 27.2%. While for the 

multi-particle RVE models with  0.2, 10rc    used in the study, the maximum 

relative difference between effective shear moduli predicted by different loading cases 

is well below 1.2%. The effective modulus predicted by the multi-particle RVE models 

( 0.2c  , 10r  ) is 1.4946c  . The comparisons between results from one-particle 

unit cell model and multi-particle RVE models suggest that, although the effective 

modulus predicted by the one-particle unit cell model is close to the one predicted by 

multi-particle RVE models (relative error about 20%), the behaviour of the one-particle 

unit cell model is anisotropic under finite deformation, as determined by its orthotropic 

microstructure. Furthermore, a one-particle unit cell model cannot capture the 

characteristics of the stress/strain field in the matrix necking zone, which is critical to 

the strength investigation of the IPRNC. Hence multi-particle RVE models should be 

used to obtain realistic response of IPRNC under finite deformation. 
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(a) Strain energy W  vs. 1 3I   for uniaxial tension simulation 
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(b) Strain energy W  vs. 1 3I   for uniaxial compression simulation 
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(c) Strain energy W  vs. 1 3I   for simple shear simulation 

 

Figure 3.19 The average strain energy W  vs. 1 3I   curves are plotted for three loading 

cases   
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3.5 Concluding Remarks  

 

Three-dimensional RVE models are employed to investigate the mechanical behaviour 

of the IPRNC, in which both the matrix and the particle reinforcement are 

incompressible neo-Hookean materials. To consider different particle volume fractions 

(i.e., 0.05, 0.1, 0.2, 0.3c  ), 16 RVE samples (4 for each volume fraction value) with 

periodic microstructures are created. In each RVE, 27 non-overlapping identical spheres 

are randomly distributed in a cubic unit. The isotropy of the random distributions of 

particles in the 16 RVE models is then examined, and the RVE models are meshed for 

finite element computation. Periodic meshes are generated so that the periodic boundary 

conditions can be applied during the FE simulations. The mesh convergence study 

shows that a standard mesh with about 80,000 elements can obtain accurate result, 

which means the errors between both results (standard mesh and refined mesh) are well 

below 2%.  

 

To double check the isotropy of the RVE models’ mechanical responses, uniaxial 

tension and compression along different directions are simulated for the RVE models 

and the isotropy of the RVE models is verified directly. The simulation results of the 

uniaxial tension and compression are consistent, which implies that the small-size RVE 

models used are sufficient to obtain accurate responses of the IPRNC. The computed 

strain energy data suggests that the mechanical response of the IPRNC can be well 

predicted by an incompressible neo-Hookean model.  

 

Four different particle/matrix stiffness ratios are studied in the FE simulations: r m    

  (i.e., rigid particles), 100, 10, 0.5, to investigate the effect of stiffness ratio between 

the particle and the matrix. The following four types of finite deformations are 

simulated: uniaxial tension and compression along coordinate axial directions and 

random directions, simple shear, and general biaxial deformation. All the simulation 

results (i.e., RVE with any particle volume fraction, any particle/matrix stiffness ratio 

and any loading case) show that the average strain energy W  is proportional to 1 3I  , 

which suggests that the overall behaviour of the IPRNC can be modelled by an 

incompressible neo-Hookean model. The effective shear moduli c  of the IPRNCs are 

obtained by fitting the strain energy data from the numerical simulation results. Because 
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the dispersion in the values of the obtained moduli is remarkably small in all cases, the 

numerical results can be considered as a very close approximation to the “exact” 

effective shear moduli of the IPRNC. They are compared with three theoretical models: 

the self-consistent estimate, SCE [53], the strain amplification estimate for composites 

with rigid particles, SAE [62], and the classical linear elastic three phase model, TPM 

[18]. It is found that the TPM provide very accurate approximation to the numerical 

results (maximum relative difference less than 5.1%) though it is developed for linear 

elastic PRC. Even though the SCE and the SAE are proposed for neo-Hookean 

composites, they overestimate the effective shear modulus of the IPRNC when the 

particle volume fraction 0.1c  . 

  

We note that mesh of the matrix necking zone between close particles is very 

challenging and severe deformation localisation may happen when the stiffness contrast 

between the particle and the matrix is large. Hence convergence is a big issue in our 

numerical simulation even for RVE models with very refined mesh (e.g., with more 

than 200,000 elements). For example, it is only possible to reach moderate deformation 

state for some cases (e.g., 1 3.06I  , or 14% tension for the IPRNC with 

 , 0.3r c    . For much less critical case like the IPRNC with  0.5, 0.3r c   , 

huge deformation can be reached (i.e, 313% tension or 86% compression). The 

numerical results show clearly that up to the deformations the FE simulations can reach 

(that is, until there is a convergence problem), all the numerical results of W  and 1 3I   

can be fitted almost exactly using the linear relation suggested by the incompressible 

neo-Hookean model. Therefore it is safe to conclude that the mechanical behaviour of 

the IPRNC studied here can be well modelled by another incompressible neo-Hookean 

model within the limit of current FE software ABAQUS.  
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Chapter 4 Fibre-Matrix Interaction in Fibre-Reinforced Composites 

under Finite Deformation 

 

 

Objective 

 

 To investigate the strain energy contribution from the ground matrix of the 

human annulus fibrosus (HAF) with collagen fibres under contraction by fitting 

the experimental data of the uniaxial tension along the axial direction of the 

HAF available in the literature; 

 To investigate the strain energy contribution from the ground matrix of the HAF 

with collagen fibres under different stretch ratios by fitting the corresponding 

uniaxial and biaxial testing results available in the literature; 

 To identify the fibre-matrix interaction from the fibre stretch dependent 

behaviour of the ground matrix, which cannot be explained by the classical 

uncoupled constitutive models for soft tissue; 

 To analyse the significance of the identified fibre-matrix interaction by 

comparing the finite element simulations of the uniaxial test of the HAF along 

the circumferential direction with the experimental data in the literature;  

 To discuss the potential physical mechanisms related to the identified fibre-

matrix interaction and various constitutive models considering fibre-matrix 

interaction. 

 

Summary 

 

Although the mechanical behaviour of the human annulus fibrosus (HAF) has been 

extensively studied, the interaction between the collagen fibres and the ground matrix 

has not been well understood and is therefore ignored by most constitutive models. The 

objective of this study is to identify the significance of the fibre-matrix interaction in the 

HAF by careful investigation of the experimental data, the theoretical constitutive 

models, and the numerical simulation results in the literature. Based on the experimental 
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results from biaxial and uniaxial tests, it is shown that the mechanical behaviour of the 

matrix can be well simulated by an incompressible neo-Hookean type model, but the 

effective stiffness of the matrix depends on fibre stretch ratio, which can only be 

explained by fibre-matrix interaction. Furthermore, it is found that this interaction takes 

place anisotropically between the matrix and the fibres distributed in different 

proportions in different directions. The dependence of the tangent stiffness of the matrix 

on the first invariant of the deformation tensor can also be explained by this fibre 

orientation dispersion.  

 

4.1 Introduction 

 

It is reported that about 85% of the population in the Western countries are likely to 

experience lower back pain (LBP) during their lives. The most important etiologic 

factor for LBP is the degeneration of intervertebral disc (human annulus fibrosus, HAF), 

which usually stems from fibre disorganisation in the disc, due to excessive physical 

activities or an extreme lack of physical activity that causes degeneration of the collagen 

fibres. In the latter case, a simple improper posture, can cause the HAF to deform 

excessively or even to rupture as the stresses experienced by the degenerated HAF are 

well above the level the tissue can accommodate [105]. Many other spine-related 

diseases and injury (i.e. Degenerative Disc Disease or vehicle injury) are also related to 

the degeneration or mechanical damage of the HAF. An accurate understanding of the 

mechanical properties of the HAF is very important for (i) understanding of the intrinsic 

sources of related diseases; (ii) assessing optimised surgical options for patients; and (iii) 

optimal design of the implants. Because of these reasons, the mechanical behaviour of 

the HAF has been extensively studied [106-108].  

 

The simplest model for the HAF treats the matrix as an isotropic solid while collagen 

fibres are modelled as separate nonlinear springs or rebars [108] (i.e., the HAF is not 

modelled as one single composite material). Obviously a much better approach is to 

model the HAF as a hyperelastic fibre-reinforced composite material. One approach of 

the hyperelastic modelling is to use the strain components directly, e.g., the classical 

“Fung-type” model [78, 109], which is widely used in the literature [81]. Normally the 

parameters involved in this kind of model do not have clear physical meaning and this 

approach usually has the convexity problem [79, 110]. It will most likely violate the 

traction free boundary conditions [81]. Another approach is to model soft tissue as a 
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hyperelastic material using the invariants of the deformation tensor and fibre directions 

[83, 106, 111, 112]. However, it was recently found out that none of these models are 

able to predict a general multiaxial behaviour of the HAF: Bass et al. [81] found that 

none of the available constitutive models can adequately reproduce the experimental 

results as evidenced by both uniaxial and biaxial tests of the HAF simultaneously. 

Hence the reliability of general numerical simulations based on current models remains 

questionable. This is probably because the precise nature of the mechanism of the 

interaction between the fibres and the ground matrix is still elusive.  

 

Adams and Green [93] found that the strength of the HAF soft tissue depends on the 

specimen size. This size dependence stems from the fibre-matrix shear interaction, as 

well as the boundary effect. However, currently most hyperelastic models ignore the 

interaction between the fibre and the matrix. These models decouple the strain energy 

function only into contributions from the fibres and the matrix [83, 84], and they are 

denominated as “classical decoupled models” thereafter. Recently Peng et al. [7] found 

that the angle change observed in the uniaxial test of the HAF along the circumferential 

direction cannot be predicted by the classical decoupled models, and the fibre-matrix 

shear interaction has to be counted. In the popular invariant set proposed by Spencer 

[87], no invariant can fully characterise the fibre-matrix interaction. Wu and Yao [106] 

tried to predict the fibre-matrix interaction based on curve fitting of uniaxial test of the 

HAF along the circumferential direction, but their model cannot be applied to other 

loading situations (e.g., uniaxial test of the HAF along the axial direction). To overcome 

this problem, Criscione et al. [82] developed a physically based strain invariant set for 

transversely isotropic material. Based on this strain invariant set, Blemker et al. [86] 

proposed a muscle model with a interaction term while the matrix term is ignored. In 

their model, the effective along-fibre shear modulus and cross-fibre (transverse) shear 

modulus are both assumed to be constant. Peng et al. [7] used the relative shear angle 

between the fibre and the matrix plane originally perpendicular to the fibre direction to 

describe the fibre-matrix shear interaction. The same relative shear angle is used in the 

finite deformation version of the microplane model [113, 114]. A phenomenological 

model was then developed to predict the fibre-matrix shear interaction [7]. In this model, 

the along fibre shear stiffness depends on the fibre stretch, which is consistent with the 

experimental study [115]. Guo et al. [6] found that the phenomenological shear 

interaction term can be explained by composite theory. This so-called “composites-

based” (shear) interaction comes from the inhomogeneous deformation due to the 
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different mechanical properties of the fibres and the matrix. deBotton et al. [90] found 

similar fibre-matrix interaction for incompressible neo-Hookean composites. The 

mechanism of the composites-based interaction was later verified theoretically [116, 

117] and numerically [90, 91, 97]. Caner et al. (2007) used the microplane model to 

simulate the collagen fibre orientation dispersion in the HAF and concluded that 

although some of the experimental data can be simulated by taking into account the 

directional distribution of the collagen fibres only, in reality there must also be some 

fibre-matrix interaction in the HAF. 

 

However, the fibre-matrix interaction in soft tissue has not been characterised from 

experimental results directly. For anisotropic materials, biaxial experiments are usually 

required to characterise the mechanical properties of the materials [118]. The objective 

of this study is to identify the significance of the fibre-matrix interaction in the HAF by 

careful investigation of the experimental data, the theoretical constitutive models, and 

the numerical simulation results in the literature.  

 

First the uniaxial and biaxial experimental data [81] is used to reveal the fibre-stretch 

dependence of the effective matrix stiffness of the HAF, which can only be explained 

by fibre-matrix interaction. The finite element (FE) results are also employed to show 

that the classical uncoupled models fail to capture the deformation characteristics of the 

soft tissues due to the absence of the fibre-matrix interaction in the models. Several 

typical constitutive models of soft tissues with fibre-matrix interaction are then 

investigated and the associated physical interpretations are discussed in detail. The 

quantitative analysis suggests that a combination of the composite effect and the fibre 

orientation dispersion is required to explain the fibre-matrix interaction in the HAF. 

 

The structure of this chapter is as follows. In section 4.2, the framework of classical 

uncoupled constitutive models of soft tissue is introduced. The assumptions involved 

are briefly discussed. In section 4.3, the uniaxial experimental result [81] of HAF along 

the axial direction is first used to investigate the strain energy of the ground matrix with 

collagen fibres under contraction. It is found that the incompressible neo-Hookean 

model is sufficient to approximate the strain energy of the ground matrix. Then the 

biaxial experimental data [81] is analysed to obtain the strain energy of the ground 

matrix with the collagen fibres under different stretch ratios. The result shows that the 

effective matrix stiffness depends on the collagen fibre stretch ratio, which cannot be 
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explained by the classical uncoupled models. In section 4.4, it is shown that the FE 

simulations based on the classical uncoupled models predict incorrect deformation of 

the HAF for uniaxial tensile test along the circumferential direction because the fibre 

stretch dependence of the effective matrix stiffness is not modelled. In section 4.5, 

several typical constitutive models of soft tissues with fibre-matrix interaction are 

studied and the associated physical interpretations are investigated in details. After 

several issues are discussed briefly in section 4.6, some concluding remarks are given in 

section 4.7. 

 

4.2 Classical uncoupled constitutive models of soft tissue 

 

Soft tissue is usually treated as pseudo-elastic material and modelled as hyperelastic 

fibre reinforced composite in order to study its mechanical behaviours under finite 

deformation [78]. The mechanical behaviour of a hyperelastic material can be fully 

characterised by the strain energy density function W, which is a scalar function of the 

right Cauchy-Green deformation tensor C . If the hyperelastic material is isotropic, W 

can be written as a function of the three principle invariants of C , i.e., 

   1 2 3, ,W W I I IC . Because the soft tissues are reinforced by collagen fibre, and 

most of them are not isotropic. Some well-organized soft tissues, such as ligaments, 

tendons, and lamellae in the HAF, are reinforced with unidirectional collagen fibres, so 

they are treated as transversely isotropic materials in mechanical analysis. For these 

unidirectional fibre-reinforced composites, the fibre direction (also the preferred 

direction of the material, or the axis of isotropy), which is represented by a unit vector 

0a , needs to be introduced to the strain energy function, i.e.,  0,W W C a . The strain 

energy can now be represented as a function of five invariants [87]: 

 

    0 1 2 3 4 5, , , , ,W W I I I I IC a , (4.1) 

 

where all the five invariants have been defined in chapter 2. The stretch ratio along the 

preferred direction of the material can be expressed by
 0F  Fa . The physical 

meaning of 5I  is related to the fibre-matrix shear interaction: 
2

5 4I I  defines the extent 

of along fibre shear deformation [6, 97, 117, 119]. Because the energy contribution 

from the fibre-matrix interaction has not been well-understood yet, it is usually ignored 

in many hyperelastic models for soft tissues in the literature, such as models for the 
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ligaments [120], the HAF [121], and the arterial walls [83]. These models use the 

following classical uncoupled framework: 

 

      0 1 2 3 4, , ,matrix fibreW W I I I W I C a , (4.2) 

 

where the energy contribution from the matrix  1 2 3, ,matrixW I I I  is only a function of the 

right Cauchy-Green deformation tensor but  not related to fibre direction 0a ; while the 

contribution from the fibre family  4fibreW I  only depends on the fibre stretch 

( 4F I  ). This equation based on the following assumptions: (i) the deformation in 

the matrix phase is homogeneous and the composite shows identical “overall” 

deformation as the matrix phase; (ii) the fibres are treated as non-linear springs 

embedded in the ground matrix and their shear deformation, as well as the interaction 

between the fibres and the matrix, is not considered; and (iii) fibre-fibre interaction is 

ignored.  

 

To identify and illustrate the significance of the fibre-matrix interaction, experimental 

data in the literature and the finite element (FE) simulation results of the uncoupled 

models will be employed to show that the uncoupled models cannot predict the 

mechanical responses of the HAF correctly. For soft tissue like the arterial wall and the 

multi-lamellae HAF (Figure 4.1), there are two families of reinforced collagen fibres, 

whose original directions can be denoted as 0a  and 0b . When the mechanical properties 

of these two fibre families are identical (which is usually assumed for many soft tissues, 

such as the HAF and the arterial wall), the uncoupled framework can be extended to 

include these two fibre families as follows: 

 

        0 0 1 2 3 4 6, , , ,matrix fibre fibreW W I I I W I W I  C a b , (4.3) 

 

where 6 0 0I   b C b  is similar to 4I . Then 4I  and 6I  could be expressed as 
2

4 FaI   

and 
2

6 FbI  , where Fa  and Fb  represent the stretch ratios of fibre family a and b, 

respectively. The potential fibre-fibre interaction between the two fibre families is 

ignored in the strain energy equation. The choice of the strain energy function 

 4fibreW I  usually depends on the experimental data which the constitutive models 
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attempt to fit. For example, Holzapfel et al. [83] adopted an exponential function for 

arterial wall, and Peng et. al. [7] chose a polynomial equation to model HAF, while a 

piecewise formula was employed by Quapp and Weiss [84] to simulate ligament’s 

mechanical responses. Although these models employed different functions to describe 

 4fibreW I , they adopted a common assumption, which assumes that the contribution of 

the fibres can be ignored when the fibres are under contraction ( 1F  ), i.e.,   

 

  4 40          when <1fibreW I I . (4.4) 

 

This assumption comes from the wavy nature of the collagen fibres from physiological 

point of view, which is observed in most soft tissues [122]. On the other hand, most 

hyperelastic models for soft tissues chose the simplest hyperelastic model, the 

incompressible neo-Hookean model, to simulate the mechanical behaviour of the matrix 

[6, 83, 84]:  

 

    1 2 3 1

1
, , 3

2
matrix mW I I I I  , (4.5) 

 

where only one parameter m , the shear modulus of the material, and one invariant 1I  

are employed. 

 

 

              (a) Laminated structure of HAF [7]              (b) Coordinate system 

 

Figure 4.1 Schematic of the intervertebral disk. 
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4.3 Strain energy based analysis of uniaxial and biaxial testing results 

 

4.3.1 Strain energy of the matrix with collagen fibres under contraction 

 

To identify the strain energy contribution of the potential fibre-matrix interaction, we 

need first to verify whether the incompressible neo-Hookean model is sufficient to 

simulate the mechanical behaviour of the matrix. It is predicted that both collagen fibre 

families in HAF are under contraction during the starting stage of the uniaxial tension 

along the axial direction [6] (This is also verified later in this section by the careful 

analysis of the experimental data in Bass et al. [81]), and the strain energy contribution 

from the collagen fibres under contraction is assumed to be negligible (or, in other 

words, Eq. (4.4) is still valid). Therefore the uniaxial tensile test along the axial 

direction can be applied to investigate the strain energy contribution from the matrix. 

The laminated structure of HAF is illustrated in Figure 4.1. For the sake of consistency, 

the coordinate system used in Bass et al. [81] is adopted. The axial direction is defined 

as the 1x  axis, while the circumferential direction is used as the 2x  axis. Therefore the 

third axis can be determined by 3 1 2 x x x , which coincides with the radial direction 

(Figure 4.1). In the undeformed configuration, the angle between each fibre direction 

and the 1x  axis is 
o

0 60   (Figure 4.1). Two fibre directions can be expressed as: 

 

 
o o o o

0 1 2 0 1 2cos60 sin60 , cos60 sin60   a x x b x x . (4.6) 

 

It is assumed that the mechanical properties of these two fibre families are identical. 

The overall HAF is therefore orthotropic and the 1x , 2x , and 3x  axes coincide with the 

symmetric axes of the composite. The experimental results reported in Bass et al. [81] 

(i.e., the 2
nd

 Piola-Kirchhoff (PK2) stress component vs. the Lagrangian strain 

component curves) are digitalized and fitted by cubic polynomials (Table 4.1).  
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Table 4.1 Cubic polynomial curve fitting results of the uniaxial and the biaxial 

experiments in Bass et al. [81] 

 

  

Type 
x  

(strain) 

y  

(MPa) 

0x  

(strain) 

0y  

(MPa) 
Fitting ( 0 0,x x x y y y    ) 

Uniaxial 

(1-dir) 

E11 

E22 

S11 

S11 

0  

0  

0  

0  

2 30.4695 2.553 9.607y x x x    

2 30.5882 4.588 27.96y x x x     

Uniaxial 

(2-dir) 

E22 

E11 

S22 

S22 

0  

0  

0  

0  

2 31.943 6.182 765.0y x x x    

2 31.643 12.60 165.7y x x x     

Biaxial 

0.0375  

E11 

E11 

S11 

S22 

0.0749  

0.0749  

0  

0.1219  

2 31.923 7.374 190.6y x x x    

2 31.419 21.39 93.94y x x x    

Biaxial 

0.025  

E11 

E11 

S11 

S22 

0.0456  

0.0456  

0  

0.0644  

2 31.400 7.420 156.6y x x x    

2 32.144 23.03 109.4y x x x    

Biaxial 

0.0125  

E11 

E11 

S11 

S22 

0.0182  

0.0182  

0  

0.0267  

2 32.305 5.487 177.8y x x x    

2 35.674 22.67 338.4y x x x    

Biaxial 

0.0  

E11 

E11 

S11 

S22 

0  

0  

0  

0  

2 32.990 1.739 193.0y x x x    

2 37.881 51.69 475.6y x x x    

Biaxial 

0.0125  

E11 

E11 

S11 

S22 

0.0155  

0.0155  

0.0067  

0  

2 32.262 26.49 36.54y x x x    

2 38.441 59.22 520.2y x x x    

Biaxial 

0.025  

E11 

E11 

S11 

S22 

0.0307  

0.0307  

0.0123  

0  

2 32.597 30.11 24.98y x x x    

2 310.22 99.18 788.3y x x x    
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For the uniaxial tensile test along the axial direction (the 1x  axis), the relation between 

the PK2 stress component 11S  and the Lagrangian strain component 11E  can be best 

fitted by (Figure 4.2(a))  

 

 
2 3

11 11 11 110.4695 2.553 9.607S E E E    (MPa). (4.7) 

 

Here the HAF at the original (undeformed) configuration is assumed to be stress free, 

which means 11 22 0S S   when 11 22 0E E  . This is therefore enforced in the curve 

fitting. The Lagrangian strain tensor is defined as   2 E C I , where I  is the unit 2
nd

 

order tensor. The PK2 stress tensor S  is work-conjugate to E , i.e., W  S E . The 

optimal cubic polynomial for the relation between 11S  and 22E  reads (Figure 4.2(b)) 

 

 
2 3

11 22 22 220.5882 4.588 27.96S E E E     (MPa). (4.8) 

 

For any given Lagrangian strain 11E , PK2 stress 11S  can be computed from (4.7). 

Substitute it into (4.8), 22E  can be obtained numerically (only one root in the range 

 0.5,0 ). With the incompressibility assumption, the corresponding stretches in the 

principal directions are then given by  

 

 1 11 2 22 3 1 22 1, 2 1, 1E E         . (4.9) 

 

Because the geometries of the specimen and deformation are symmetric, the fibre 

stretch ratios can be computed as 

 

 
2 2 o 2 2 o 2 2

4 1 2 1 2

1
cos 60 sin 60 3

2
Fa Fb F I             , (4.10) 

 

which means the stretch ratios of the two fibre families are identical. We note that this is 

true for both the uniaxial and biaixial experiments discussed in this chapter [81]. The 

stretches 2 , 3  and F  are plotted against the stretch in the loading direction 1  in 

Figure 4.2(c-e). It is clear that the fibres are under contraction ( 1F  ) during the 

experiment. The deformation observed here is consistent with the results observed in 
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other experiments [119, 123]. Then the strain energy W is derived directly from the 

11 11 vs. S E  curve as: 

 

  
11

11 11 11
0

E

W E S dE  . (4.11) 

 

The strain energy W is plotted against 1 3I   (here 
2 2 2

1 1 2 3I      ) in Figure 4.2(f) 

and the data points computed from the fitted cubic polynomials can be well fitted by a 

linear equation,  10.0628 3W I   (unit: MPa, here 
2 0.991R   implies a very good 

fitting). This means that the incompressible neo-Hookean model is adequate to simulate 

the mechanical behaviour of the matrix when the fibres are under contraction. The shear 

modulus of the matrix can be obtained from the fitting result as 0.1256m   MPa.  

 

The linear relation between W and 1 3I   does not depend on the choice of the fitting 

functions. For example, if the experimental results are fitted by quadratic polynomials, 

the relation between W and 1 3I   can still be well fitted by a linear equation 

(
2 0.974R  ) and the corresponding shear modulus is 0.1212m   MPa, which is 

consistent with the value obtained from the cubic polynomial fitting functions (the 

difference is less than 4%). The reason is that the energy result is usually less sensitive 

compared to the stress-strain results. Because of the measurement noise, the measured 

strain and stress values at the initial stage of the uniaxial tension are less reliable. 

However, the effect of the measurement noise is reduced significantly when an 

integration procedure (e.g. Eq. (4.11)) is adopted to compute the strain energy W. 
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(a) Axial (PK2) stress 11S  vs. Lagrangian strain 11E , experimental data (ο) and the fitted 

cubic polynomial curve.  

 

 

 

(b) Axial (PK2) stress 11S  vs. Lagrangian strain 22E , experimental data (ο) and the 

fitted cubic polynomial curve. 
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(c) Circumferential stretch 2  vs. axial stretch 1 , computed from the fitted polynomial 

functions. 

 

 

 

(d) Radial stretch 3  vs. axial stretch 1 , computed from the fitted polynomial 

functions. 
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(e) Fibre stretch F  vs. axial stretch 1 , computed from the fitted polynomial functions 

 

 

 

(f) Strain energy W vs. 1 3I  , data points (ο) computed from the fitted polynomial 

function. The relation between W and 1 3I   is fitted by a linear function (the solid line). 

 

Figure 4.2 Curve fitting results of the experimental data of the uniaxial tensile test of 

HAF along the axial direction reported in Bass et al. [81]  
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4.3.2 Fibre-stretch dependent stiffness of the matrix 

 

To investigate fibre-matrix interaction, we need to study the strain energy of the HAF 

with collagen fibres under different stretch ratios. It can be done by examining the strain 

energies of the biaxial experimental results in Bass et al. [81]. In a biaxial test, the 

normal strain in the circumferential axis 22E  is constrained to be constant ( 22E = 0.0, 

0.0125,  0.025, +0.0375, respectively), and the tensile load is applied along the axial 

direction. The corresponding stretch ratio in the circumferential direction 
( )

2

i  is 

computed based on Eq. (4.9) and listed in Table 4.2. Because the geometry is symmetric, 

and the 1 2,x x  and 3x  axes are still the principal directions of the deformation (here we 

still assume that the mechanical properties of these two fibre families are identical), Eq. 

(4.10) holds in the biaxial experiments. 

 

 

Table 4.2 Ranges of 4I  in biaxial experiments in Bass et al. [81] 

 

Since the stretch ratio in the 3x  axis direction can be calculated based on the 

incompressibility assumption, the deformation state in the biaxial test can be 

represented as  ( )

1 2, i  , and the corresponding strain energy can be written as 

 ( )

1 2, iW   . The HAF at the original (undeformed) configuration is assumed to be 

stress free, therefore the strain energy  ( )

1 2, iW    can be determined from the stress-

strain curves of the biaxial and uniaxial tests.  

 

( )

2

iE  ( )

2

i  Max 
1  Min 

1  Max 
4I  Min 

4I  

0.0375  1.0368  1.0592  0.9421  1.0868  1.0198  

0.025  1.0247  1.0863  0.9664  1.0825  1.021 

0.0125  1.0124  1.1045  0.9899  1.0738  1.0138  

0.0  1.0  1.118  1.0  1.0625  1.0  

0.0125  0.9874  1.1314  1.0392  1.0513  1.0013  

0.025  0.9746  1.1384  1.077  1.0365  1.0025  
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If 
( )

2 1i  , the stretch along the circumferential direction is fixed as 1.0 from the 

beginning and then the load is applied along the axial direction. The strain energy can 

be computed directly from the 11 11 vs. S E  curve (Figure 4.3(c)) of the biaxial tests using 

Eq. (4.11). If 
( )

2 1i  , a uniaxial tensile load is first applied along the circumferential 

direction until the stretch in this direction reaches 
( )

2

i . The associated strain energy can 

be obtained from the 22 22 vs. S E  curve of the corresponding uniaxial test (Figure 4.3(a)). 

After that, the circumferential stretch is fixed as 
( )

2

i  and the tensile load is applied 

along the axial direction. The associated strain energy of this part can be computed from 

the 11 11 vs. S E  curve of the biaxial tests (Figure 4.3(c)).  

 

Similarly, if 
( )

2 1i  , a uniaxial tensile load has to be applied along the axial direction 

until the compression ratio in the circumferential direction reaches 
( )

2

i . The strain 

energy needed can be computed from the 11 11 vs. S E  curve of the corresponding 

uniaxial test (Figure 4.2(a)). After that, the stretch in the circumferential direction is 

fixed as 
( )

2

i , and the tensile load in the axial direction is increased. The strain energy 

required can be obtained from the 11 11 vs. S E  curve of the biaxial tests (Figure 4.3(c)).  

 

From above, it is clear that the biaxial testing results must be consistent with the 

uniaxial testing results. Take 
(1)

2 1.0368   (i.e., 
(1)

22 0.0375E  ) for example. From the 

curve fitting results of the uniaxial test along the circumferential direction, the uniaxial 

stress deformation state is observed as 11 0.0749E   , 22 0.0375E  , 22 0.1219S  , and 

11 33 0S S  . This deformation state is the starting point of the biaxial test, hence we 

enforce that the fitted cubic curve passes through this point. The corresponding fitting 

results of the biaxial series of 22 0.0375E   listed in Table 4.1 are interpreted as follows:  

 

 

     

   

 

2 3

11 11 11 11

2

22 11 11

3

11

1.923 0.0749 7.374 0.0749 190.6 0.0749

0.1219 1.419 0.0749 21.39 0.0749

93.94 0.0749

S E E E

S E E

E

     

    

 

 (4.12) 
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The unit for stress here is MPa. It is obvious that the curves above are compatible with 

the calculated uniaxial stress deformation. Other series of biaxial tests are fitted in a 

similar way so that they are consistent with the fitting results of the two uniaxial tests. 

The fitting curves are all shown in Figure 4.3. We note that in Bass et al. [81] the 

original experimental data points in biaxial tests are compatible with those of uniaxial 

tests. 

 

 

(a) The axial (PK2) stress 22S  vs. the Lagrangian strain 22E , experimental data (ο) 

and the fitted cubic polynomial curve for the uniaxial tensile testing along the 

circumferential direction. 

 

(b) the axial (PK2) stress 22S  vs. the Lagrangian strain 11E , experimental data (ο) 

and the fitted cubic polynomial curve for the uniaxial tensile testing along the 

circumferential direction. 
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(c) The axial (PK2) stress 11S  vs. the Lagrangian strain 11E , experimental data and 

the fitted cubic polynomial curves for the biaxial testing. 
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(d) the axial (PK2) stress 22S  vs. the Lagrangian strain 11E , experimental data and 

the fitted cubic polynomial curves for the biaxial testing. 

 

Figure 4.3 Curve fitting results of the experimental data of the uniaxial tensile test of 

HAF along the circumferential direction and the biaxial test reported in Bass et al. [81]. 

For (c) and (d), there are six series of biaxial testing data with different 22E : 22E = 

0.0375 (Δ), 0.025 (+), 0.0125 (x), 0.0 (◊), -0.0125 (□) and -0.025 (○).  
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Based on Eq. (4.10), the ranges of 4I  (square of the fibre stretch ratio) can be calculated 

for each series of biaxial tests (Table 4.2). For the first series of biaxial test 

(
(1)

2 1.0368  ), when 4 1.03I  , the corresponding stretch in the axial direction ( 1 ) is 

determined by Eq. (4.10). The associated strain energy and 1 3I   are then obtained. 

Similarly, for other series of biaxial tests, the deformation states with 4 1.03I   are 

determined and the corresponding strain energies are computed in Table 4.3. The strain 

energy W vs. 1 3I   is plotted in Figure 4.4(a) and can be well fitted by a linear function. 

Based on Eq. (4.3), Eq. (4.5) and the experimental result, the fitting result is interpreted 

as (note we have 6 4I I  here) 

 

       1 4 1 4

1
, 3 2

2

e

m fibreW W I I I W I    . (4.13) 

 

Here 
e

m  is the effective shear modulus of the matrix, which is still treated as a neo-

Hookean material. When 4 1.03I  , the fitting result shows that 
e

m  = 1.0022 MPa. In 

the previous section, when the fibres are under contraction (i.e., 4 1.0I  ), the shear 

modulus of the matrix is only 0.1256m   MPa. The effective matrix stiffness 

increases significantly (about 8 times larger) when the fibres are stretched to 

4 1.0149F I   .  

 

Follow the same procedure, we can obtain the effective matrix stiffness when 4I = 1.04, 

1.05, 1.06, and 1.07, respectively (Table 4.4). The fitting results show that the matrix 

can be well described by the incompressible neo-Hookean model (Figure 4.4), and the 

effective matrix stiffness depends on the fibre stretch (ratio). From Table 4.4, it can be 

observed that the larger the fibre stretch ratio, the larger the effective stiffness of the 

matrix (with the only exception of 4I = 1.06, in which the effective stiffness of the 

matrix is slightly smaller than that with 4I  = 1.05. This exception may come from the 

measurement noise). However, based on Eq. (4.3), the uncoupled models assume the 

effective matrix stiffness as a constant, and the observed fibre stretch dependence of the 

effective matrix stiffness cannot be explained by the classical uncoupled models. 
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( )

2

i  1  W (MPa) 1 3I   

1.0368  1.0592  0.00232 0.00937 

1.0247  1.0863  0.00110 0.00184 

1.0124  1.1045  0.00186 0.00360 

1.0  1.118  0.00554  0.01286  

0.9874  1.1314  0.01340 0.02828 

0.9746  1.1384  0.02411 0.04884 

 

Table 4.3 Strain energies in the biaxial experiments in Bass et al. [81] when 4 1.03I  . 

 

 

4I  
e

m  (MPa) Data fitting results (Unit: MPa) 

1.0  0.1256  1  0.0628 3W I   

1.03  1.0022  1  0.5011 3 0.0007W I    

1.04  1.155  1  0.5775 3 0.0004W I    

1.05  1.2208  1  0.6104 3 0.0012W I    

1.06  1.19  1  0.595 3 0.0034W I    

1.07  1.398  1  0.699 3 0.0039W I    

 

Table 4.4 Effective shear modulus of the matrix 
e

m  in the biaxial experiments in Bass 

et al. [81] and the W vs. 1 3I   curve fitting results. 
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(c) 4I = 1.05 
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(e) 4I = 1.07 

 

 

(f) The effective matrix shear modulus 
e

m  vs. 4I  

Figure 4.4 The strain energy W vs.  1 3I   for the biaxial testing in Bass et al. [81] at 

certain fibre stretch values and the effective matrix shear moduli. The data points (ο) are 

computed from the fitted polynomial function, and they are fitted by linear functions 

(the solid lines), and the dashed segments between the data points in (a)-(e) show 

roughly the tangent effective stiffness of the matrix.  
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4.4 Deformation predicted by FE simulation of uncoupled models 

 

In the previous section, it is shown that the strain energy obtained from uniaxial and 

biaxial experimental results cannot be explained by the classical uncoupled models. In 

this section, the FE simulation results of typical uncoupled models will be employed to 

show that the uncoupled models cannot capture the deformation characteristics of the 

HAF correctly when it is under simple uniaxial tension along the circumferential 

direction. When the uncoupled models are adopted to model the mechanical behaviour 

of the HAF, the stress-strain result of the uniaxial tensile test along the axial direction is 

first used to obtain the shear modulus of the matrix, which is similar to the procedure in 

the previous section. The stress-strain curve of the uniaxial test along the 

circumferential direction is then employed to estimate the parameters in the function 

 4fibreW I , which is the strain energy contribution from the fibre. Although the 

uncoupled model can fit the stress-strain curves of both uniaxial tensile tests, one 

important aspect, the deformation in the transverse directions, is usually ignored (it is 

noted that the transverse deformation is not recorded in most HAF uniaxial tensile 

experiments available in the literature due to either limitations in the facilities or being 

ignored by experimentalists). In the HAF uniaxial tensile test, the deformation in the 

transverse direction is directly associated with the relative angle change between the 

two fibre families. For example, for the uniaxial tensile test along the circumferential 

direction, the angle between the two fibre families (named as “fibre-fibre angle”)   is 

0 0180 2 60     in the undeformed configuration, 0  is the fibre angle. In the 

deformed configuration, we have 

 

 2 0

1

2arctan tan
2

 




 
  

 
. (4.14) 

 

For an uncoupled model with a polynomial format  4fibreW I , when the nominal tensile 

strain reaches 20% in the uniaxial tensile test along the circumferential direction, the FE 

simulation result shows that the fibre-fibre angle   will decrease from 
o60  to 

o27  

(Figure 5 in [7]), while the experiments only record a change of about o42  [106, 124]. 

According to Eq. (4.14), this excessive fibre-fibre angle change implies unrealistic large 

transverse deformation in the axial direction. Similar excessive transverse deformation 
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is also observed when an uncoupled model with an exponential format  4fibreW I  is 

applied to simulate the uniaxial tension of the arterial tissue (see Figure 9 in [85]. It is 

noted that arterial tissue has a similar microstructure with two fibre families and the 

fibre-fibre angle is also 
o60  in the undeformed configuration).  

 

 

Figure 4.5 Angle between two fibre families (Figure 5 from [7]) 

 

The source of this type of incorrect deformation prediction is that uncoupled models 

assume constant effective matrix stiffness and fail to model the increase of the effective 

matrix stiffness when the fibres are under stretch, as illustrated in the previous section. 

With a less stiff matrix, the fibres can rotate more easily in the matrix ground substance 

and their directions are closer to the loading direction to carry the load. Therefore this 

excess rotation leads to the prediction of larger fibre-fibre angle change, larger 

transverse deformation and lower fibre stretch.   

 

4.5 Constitutive models with fibre-matrix interaction and physical interpretation 

 

In classical uncoupled models, as suggested by Eq. (4.2) and Eq. (4.3), the fibres are 

actually treated as nonlinear springs and they only contribute to the stiffness along the 

fibre directions, while the deformation in the matrix phase is homogeneous and identical 

to the “overall” deformation of the composite. Because of the wavy nature of the 

collagen fibres in soft tissues, when the fibre stretch increases, the stiffness of the fibre 

increases, which means that the stiffness of the soft tissue along the fibre direction 

increases. In the uncoupled models, the effective matrix stiffness 
e

m  will not change 

when the fibre stretch changes, as stated in Eq. (4.3). However, the strain energy based 

analysis of the biaxial testing results shows clearly that the effective matrix stiffness 
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also increases when the fibre stretch increases. As illustrated in the previous section, the 

constant effective matrix stiffness assumption will also lead to incorrect deformation 

prediction in the FE simulations. Hence the fibre stretch dependence of the effective 

matrix stiffness (i.e., the fibre-matrix interaction) has to be modelled for the HAF. In 

this section, several typical constitutive models of soft tissues with fibre-matrix 

interaction are investigated and the associated physical interpretations are discussed in 

detail. 

 

4.5.1 Constitutive models with phenomenological fibre-matrix interaction strain 

energy 

 

Physically, the fibres are not just nonlinear springs, and they should be modelled as a 

separate solid phase, especially if the collagen fibre network in the tissue is sufficiently 

dense. If the fibres are treated as a solid phase, based on composite theory, the 

deformation distribution in the composite is no longer homogeneous and the strain 

energy stored in the composite is always larger than the estimation given by Eq. (4.2), 

which is based on the assumption of homogeneous deformation [14]. In some 

phenomenological constitutive models of soft tissues, the difference between the real 

strain energy and the estimation based on the homogeneous deformation distribution 

assumption is termed as “fibre-matrix interaction strain energy” [7, 106, 119].  

 

It is noted that physically all strain energy is stored either in the matrix phase or the 

fibre phase. The fibre-matrix interaction strain energy is an artificial concept and it 

mathematically represents the difference between the real strain energy and the 

estimation based on the homogeneous deformation distribution assumption. However, 

the real deformation distribution in the composite is complex and it is generally 

impossible to derive the real strain energy analytically. Hence, in a phenomenological 

model with fibre-matrix interaction, the fibre-matrix interaction energy term is usually 

constructed based on experimental data, the observations of the strain energy of the 

composite under simple deformation states, and some estimations based on the 

micromechanics of the composites. For example, when the composite with 

unidirectional fibre reinforcement is stretched along the fibre direction, the deformation 

distribution in the composite is homogeneous [6] and the fibre-matrix interaction energy 

should be zero. This phenomenon implies that the fibre-matrix interaction energy is 
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related to the fibre-matrix shear interaction and sometimes it is named as “fibre-matrix 

shear interaction energy”.  

 

A proper fibre-matrix interaction energy term will usually increase the energy required 

to rotate the fibres in the matrix ground substance, that is, it makes the fibres more 

difficult to rotate in the matrix ground substance. Therefore the incorrect deformation 

prediction by the uncoupled model can be prevented [7]. The advantage of this 

phenomenological approach is that it allows the flexibility to choose different formula 

for the fibre-matrix interaction. However, the main disadvantage is that the fibre-matrix 

interaction energy functions used in these models are usually based on data fitting and 

they do not carry strict physical interpretations. The fibre-matrix interaction strain 

energy fitted from one type of experimental data may lead to incorrect results in other 

types of experiments. For example, the fibre-matrix interaction strain energy function 

proposed in Wu and Yao [106] fitted from the HAF uniaxial tensile test along the 

circumferential direction leads to negative interaction energy when the HAF is under 

uniaxial tensile test along the axial direction.  

 

4.5.2 Composites-based constitutive model for soft tissues 

 

To correctly predict the effect of fibre-matrix interaction in a general deformation state, 

the constitutive model should use micromechanics of the composite based on the 

composite’s microstructure to estimate the strain energy of the composite. In classical 

linear elastic composite theories, the effective moduli of a composite with unidirectional 

fibre reinforcement have been studied extensively and various formulae were proposed 

to predict the overall behaviour of the composite. Among them, the semi-analytical 

Halpin-Tsai equations fit experimental results very well [28]. The Halpin-Tsai equations 

have recently been extended to the finite deformation regime [6] and it is consistent 

with micromechanics based models [90, 97]. In Guo et al. [6]’s composites-based soft 

tissue model, the matrix is still treated as an incompressible neo-Hookean matrix 

described by Eq. (4.5) (but 1I  here should be interpreted as 1

mI , the first invariant of the 

deformation tensor mC  in the matrix, because the inhomogeneous distribution of the 

deformation in the composite is considered in this model). Collagen fibres are modelled 

by a generalised neo-Hookean material with the following strain energy function: 
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      1 4 4 1

1
, 3

2

F F f f

mW W I I f I I   , (4.15) 

 

where  4f I  is the stiffness ratio between the fibres and the matrix (which implies that 

the stiffness of the fibres depends on the stretch ratio). Here 1 trf

fI  C , where fC  is 

the deformation tensor in the fibres. Note that in general the deformation distribution in 

the composite is not homogeneous, i.e., f m C C C  (here C  represents the 

homogenised deformation tensor of the composite). In Guo et al. [6], a simple 

exponential equation is proposed for  4f I :  

 

    4 1 2 3 4exp 1f I a a a I     , (4.16) 

 

where 1a , 2a  and 3a  are all material parameters. Assuming the volume fraction of the 

fibre is v f  (the fibres are considered as solid here), based on micromechanics, the strain 

energy function of the soft tissue can be estimated as: 

 

         1 2

4 1 4 4 4 4

1 1
3 v v 2 3

2 2
m m m fW g f I I f I g f I I I                (4.17) 

 

where the volume fraction of the matrix v 1 vm f  ;  4g f I    is associated with the 

effective transverse shear stiffness of the composite c  as follows [6]: 

 

  
     
     

4

4

4

1 v 1 v

1 v 1 v

f fc

m f f

f I
g f I

f I





  
   

  
. (4.18) 

 

Comparing Eq. (4.17) with Eq. (4.13), the composites-based model predicts the 

effective matrix stiffness of the HAF as  

 

  4

e

m c mg f I       , (4.19) 

 

which is fibre stretch dependent. This means that the composites-based model can 

model the fibre stretch dependent effective matrix stiffness. The biaxial test simulation 
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results of the composites-based model follow the same trends as the experimental 

results of Bass et al. [81]. Eq. (4.19) and Eq. (4.18) indicate that the effective matrix 

stiffness depends on the volume fraction of the fibres. Recent experimental results show 

that the HAF has approximately 60% collagen per dry weight [125]. Considering other 

factors such as the swelling of collagen fibres (which leads to larger volume), the 

density of the fibre and the matrix ground substance, the estimated volume fraction of 

the fibres in the HAF is in the range of 50%-70%. When the fibre is under stretch, the 

fibre/matrix stiffness ratio  4f I  is usually very large and the relative increase of the 

effective matrix stiffness is estimated as 

 

  4

1 v
3 6

1 v

f

f

g f I


    
, (4.20) 

 

which is less than the increase suggested in Table 4.4 (for example, when 4I  = 1.07, we 

have  4g f I    =
e

m m   =1.398/0.1212 = 11.53, which implies that the volume 

fraction of the collagen fibres v f   0.84). The reasons for this mismatch include: (i) the 

effective matrix stiffness obtained by data fitting in Table 4.4 is higher than the reality 

because it predicts a too small (or even negative) contribution of the strain energy from 

the fibres; and (ii) there might be other factor(s) which contribute to the fibre stretch 

dependence of the effective matrix stiffness (e.g., the fibre orientation dispersion 

discussed below). Nevertheless, based on our investigation, the composite effect can 

explain a major part of the observed increase of the effective matrix stiffness when the 

fibres are under stretch. 

 

4.5.3 Constitutive models of soft tissues considering fibre orientation dispersion 

 

Up to now, the collagen fibres are assumed to be unidirectional aligned in the soft 

tissues. This is an ideal assumption because there is always some dispersion of the fibre 

orientations in many soft tissues. Gasser et al. [85] proposed a hyperelastic model to 

consider the distributed collagen fibre orientations in arterial layers, in which the strain 

energy function W is written as: 

 

     2
1

1 2 1 4

2

1
3 exp 1 3 1 1

2 2
m

k
W I k I I

k
             

, (4.21) 
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where m  is the shear modulus of the ground matrix. The material parameters 1k  and 

2k  are to be determined from the mechanical behaviour of the collagen fibres. 

Parameter  0,1 3   characterises the distribution of the collagen fibres. When   = 0, 

the collagen fibres are aligned. If   = 1/3, the fibres are evenly distributed and the 

composite is isotropic. This is an extension of the soft tissue model with aligned 

collagen fibres [83] by replacing 4I  with  4 1 4
ˆ 1 3I I I     to take into account the 

fibre orientation dispersion. If Eq. (4.21) is compared with Eq.(4.13), the first 

impression is that Eq. (4.21) also implies a constant effective transverse shear stiffness 

of the composite. However, a more careful observation shows that the second term on 

the right hand side of Eq. (4.21) depends on 1I  and 4I ; while in Eq.(4.13), fibreW  is only 

a function of 4I . Using a Taylor series expansion, based on a particular value of 
(0)

1I , 

the strain energy function W in Eq. (4.21) can be approximated as follows: 

 

 

   

     

2
(0) (0)

1 4 2 4 1

2
(0) (0) (0)1 1

1 4 1 2 4

2 2

1 ˆ ˆ1 exp 1 3
2

ˆ ˆ1 3 exp 1 ,
2 2

mW k I k I I

k k
k I I k I

k k

 



             

                 

 (4.22) 

 

where  (0) (0)

4 1 4
ˆ 1 3I I I     is a function of 4I  only (that is, it is independent of 1I ). 

Now the second term on the right hand side of Eq. (4.22) can be written as a function of 

4I  only, and the effective transverse shear stiffness of the composite is 

 

  
2

(0) (0)

1 4 2 4

1 ˆ ˆ1 exp 1
2

e

m m k I k I             . (4.23) 

 

The behaviour of 
e

m  depends on the value of  . When   = 0 (perfectly aligned), 
e

m  

is a constant and the model itself is reduced to a classical uncoupled model. If   = 1/3 

(isotropic composite), 
e

m  is also a constant because 
(0) (0)

4 1
ˆ 3I I  is reduced to a 

constant. When 0 <   < 1/3, 
e

m  depends on 4I , and the larger 4I
 
is, the larger 

e

m  will 

be. Hence we know that the collagen fibre orientation distribution can also contribute to 

the fibre stretch dependence of the effective matrix stiffness of the soft tissue. The 
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approximation in Eq. (4.22) only works when 1I  is close enough to 
(0)

1I , therefore Eq. 

(4.23) can be regarded as the tangent stiffness of the composite at 
(0)

1 1I I . We can then 

find that the tangent stiffness 
e

m  also depends on the value of 1I . The larger 1I , the 

larger 
e

m . If we connect the data points in the  1vs. 3W I   plots in Figure 4.4 with 

dashed lines, the segments between the data points show roughly the tangent effective 

stiffness of the soft tissue. In Figure 4.4, it is shown that the tangent stiffness of the 

composite increases when 1I  increases, which agrees well with Eq. (4.23). Although the 

model (i.e., Eq. (4.21)) is an extension of a phenomenological uncoupled model, the 

inclusion of the fibre orientation dispersion is based on the micromechanics analysis. 

The fibre-matrix interaction effect from this model can capture the deformation 

characteristics of soft tissues and a uniaxial tension example is shown in Figure 10 in 

[85]. 

 

Recently, Caner et al. [89] used the microplane model to simulate the collagen fibre 

orientation dispersion in the HAF by means of numerical integration. Although there is 

no explicit strain energy function defined in this model, similar dependence of the 

tangent effective stiffness of the composite on 1I  and 4I  can be derived based on the 

integration scheme. The FE simulation results show that this microplane model can 

predict the fibre-fibre angle change of the HAF in the uniaxial test along the 

circumferential direction (see Figure 7 in [89]). Because the real distribution of the fibre 

orientation dispersion in the HAF is not measured, the real proportion of its contribution 

to the fibre-matrix interaction is unknown. However, in Caner et al. [89], when a small 

fibre orientation dispersion is assumed, the FE simulation results show that the fibre 

orientation dispersion effect alone (that is, without the composite effect) can explain the 

fibre-matrix interaction effect in the uniaxial tensile tests. This suggests that the fibre 

orientation dispersion effect can claim the extra increase of the effective matrix stiffness 

which is beyond the composite effect as identified previously. 
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4.6 Discussion 

 

4.6.1 Physical interpretation of the fibre-matrix interaction 

 

The constitutive models analysed above show that both the composite effect and the 

potential fibre orientation dispersion contribute to the fibre stretch dependence of the 

effective matrix stiffness. Other microstructural characters, however, are not well 

modelled and their effects on this issue are unclear. For example, the shape of the zig-

zag waviness of the collagen fibres is not modelled in detail. Only a rough assumption 

is made that the strain energy contribution of the collagen fibres can be ignored when 

they are under contraction. The potential fibre-fibre interaction is ignored as well in all 

the constitutive models discussed in the previous section because it is not well 

understood.  

 

The quantitative analysis above shows that the combination of the composite effect and 

the fibre orientation dispersion effect is sufficient to explain the fibre-matrix interaction 

effect identified in the experiments. This implies that probably it is fine to ignore other 

microstructural character. Therefore, a more comprehensive and micromechanics based 

model, which considers both the composite effect and the fibre orientation dispersion, is 

required to predict the fibre-matrix interaction observed here. 

 

4.6.2 Value of fibre-matrix interaction energy 

 

Comparing the models considering fibre-matrix interaction with the classical uncoupled 

models, the strain energy contribution from the “fibre-matrix interaction” can be 

expressed as   1 3 2e

m m I   . If the total strain energy of the soft tissue is 

decomposed into three parts (like in the phenomenological models): the energy 

contributions from the matrix, the fibres, and the fibre-matrix interaction, respectively 

[7], in general deformation state, the value of the strain energy associated with the fibre-

matrix interaction is much smaller than the contribution from the fibres because the 

fibres are much stiffer than the matrix. Based on this argument, the fibre-matrix 

interaction is ignored in many constitutive models.  
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However, as discussed in section 4.4, the mechanical consequence of the fibre-matrix 

interaction strain energy is significant because it increases the effective matrix stiffness 

considerably and prevents the excessive rotation of the fibres in the matrix ground 

substance. The strain energy based analysis of the experimental data shows that the 

fibre-matrix interaction energy   1 3 2e

m m I    is comparable to the strain energy 

contribution from the matrix. Therefore the strain energy associated with the fibre-

matrix interaction may considerably affect the mechanical responses of the soft tissue 

and it should not be ignored even though the value of the associated strain energy may 

be much smaller than the strain energy contribution from the fibres. 

 

4.6.3 Data fitting based approach for HAF modelling 

 

Humphrey et al. [126] proposed a phenomenological method to determine the strain 

energy function W directly from the combined finite extension and torsion test for 

transversely isotropic papillary muscle with the assumption that  1 4,W W I I  (that is, 

W is independent of 2I  and 5I ). The uniaxial and biaxial tests in Bass et al. [81], 

however, are not sufficient to fully determine the general strain energy function of the 

orthotropic HAF soft tissue. For orthotropic HAF, it is not difficult to construct a strain 

energy function to fit all the uniaxial and biaxial testing results, but it is difficult to have 

such a function valid for other general deformation states. For example, we may define 

W as  11 22,W E E . From the uniaxial and biaxial experimental results, each deformation 

state  11 22,E E  links to 11W E    11S , 22W E    22S  and  the value of W can be 

computed. Hence the strain energy function W can be constructed by piecewise 

(quadratic) interpolation. Obviously this function can reproduce the uniaxial and biaxial 

results exactly. But its ability to predict the mechanical response of the HAF under other 

deformation state (e.g., shear deformation) is questionable because it is solely based on 

data fitting without any physical interpretation. Hence in a good constitutive model for 

soft tissues, the strain energy function should be constructed using micromechanics 

analysis rather than direct data fitting. 

 

4.7 Concluding remarks 

 

(1) The experimental data of the uniaxial and biaxial tests of the HAF in Bass et al. [81] 
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is carefully fitted by polynomial curves so that the fitted results are consistent and 

can be used to compute the strain energy of any uniaxial or biaxial deformation 

state which occurred in the experiments. In the uniaxial test of the HAF along the 

axial direction, the collagen fibres are all under contraction and their contribution to 

the strain energy is assumed negligible. The strain energy computed from the fitted 

polynomial curves can then be employed to investigate the mechanical behaviour of 

the ground matrix. The obtained result shows that the matrix can be simulated well 

by an incompressible neo-Hookean model when the fibres are under contraction.  

 

(2) The classical uncoupled models treat the collagen fibres as nonlinear springs, and 

the potential fibre-matrix interaction is ignored. These models predict that the 

mechanical behaviour of the matrix is independent of the fibre stretch. 

 

(3) Using the experimental data of a series of biaxial tests, we find that when the fibres 

are stretched, the response of the ground matrix can still be described by the 

incompressible neo-Hookean model, but the effective stiffness of the matrix 

depends on the fibre stretch ratio. This stiffness can be more than 10 times larger 

than the one obtained with collagen fibres under contraction. This phenomenon can 

only be explained by the fibre-matrix interaction.  

 

(4) It is found that the inhomogeneous distribution of the deformation (which comes 

naturally from the inhomogeneity of the composites) can explain part of the fibre-

stretch dependence. The potential fibre orientation dispersion also contributes to the 

fibre-stretch dependence.    

 

(5) The simulation results of the uniaxial test of the HAF along the circumferential 

direction shows that the fibre-matrix interaction strain energy can affect 

significantly the mechanical behaviour of the soft tissue. Hence it should not be 

ignored in constitutive models. 

 

(6) The uniaxial and biaxial tests are not sufficient to fully determine the strain energy 

function of the orthotropic HAF. A comprehensive micromechanics-based model 

which considers both the composite effect and the fibre orientation dispersion is 

required to predict the fibre-matrix interaction found in this chapter.  
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Chapter 5 Conclusions 

 

 

To model the mechanical behaviours of the incompressible particle-reinforced neo-

Hookean composite (IPRNC), in which both the matrix and the particle reinforcement 

are incompressible neo-Hookean materials, under finite deformation, three-dimensional 

RVE models are created for FE simulations. Four different particle volume fractions 

(i.e., 0.05, 0.1, 0.2, 0.3c  ) are investigated, and for each sphere volume fraction, four 

different RVE samples with periodic microstructures are generated. There are 27 non-

overlapping identical spheres randomly distributed in each cubic unit RVE. After the 

isotropy of the random distributions of particles in the 16 RVE models is examined, 

periodic meshes are generated for the RVE models so that the periodic boundary 

conditions can be applied during the FE simulations. The mesh convergence study 

shows that a standard mesh with about 80,000 elements is sufficient obtain accurate 

result.  

 

Simulations of uniaxial tension and compression along different directions are 

performed for every RVE model to double check the isotropy of the RVE models’s 

mechanical responses directly. The simulation results of the uniaxial tension and 

compression are consistent, which implies that the small-size RVE models used are 

sufficient to obtain accurate responses of the IPRNC. A clear proportional relation 

between the computed strain energy data and 1 3I   is observed, which suggests that the 

mechanical response of the IPRNC can be well predicted by an incompressible neo-

Hookean model.  

 

To investigate the effect of the stiffness ratio between the particle and the matrix, four 

different particle/matrix stiffness ratios are studied in the FE simulations: r m      

(i.e., rigid particles), 100, 10, 0.5. Four types of finite deformations (i.e., uniaxial 

tension and compression along coordinate axial directions and random directions, 

simple shear, and general biaxial deformation) are simulated. All the simulation results 

(i.e., RVE with any particle volume fraction, any particle/matrix stiffness ratio and any 
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loading case) show that the average strain energy W  is proportional to 
1 3I  , which 

suggests that the overall behaviour of the IPRNC can be modelled by an incompressible 

neo-Hookean model. The effective shear moduli c  of the IPRNCs are obtained by 

fitting the strain energy data from the numerical simulation results. Because the 

dispersion in the values of the obtained moduli is remarkably small in all cases, the 

numerical results can be considered as a very close approximation to the “exact” 

effective shear moduli of the IPRNC. They are compared with three theoretical models: 

the self-consistent estimate, SCE [53], the strain amplification estimate for composites 

with rigid particles, SAE [62], and the classical linear elastic three phase model, TPM 

[18]. It is found that the TPM provide very accurate approximation to the numerical 

results (maximum relative difference less than 5.1%) though it is developed for linear 

elastic PRC. Even though the SCE and the SAE are proposed for neo-Hookean 

composites, they overestimate the effective shear modulus of the IPRNC when the 

particle volume fraction 0.1c  . 

 

We note that mesh of the matrix necking zone between close particles is very 

challenging and severe deformation localisation may happen when the stiffness contrast 

between the particle and the matrix is large. Hence convergence is a big issue in our 

numerical simulation even for RVE models with very refined meshes (e.g., with more 

than 200,000 elements). For example, it is only possible to reach moderate deformation 

state for some cases (e.g., 1 3.06I  , or 14% tension for the IPRNC with 

 , 0.3r c    . For much less critical case like the IPRNC with  0.5, 0.3r c   , 

large deformation can be reached (i.e, 313% tension or 86% compression) compared to 

other conditions discussed in the previous sections. The numerical results show clearly 

that up to the deformations the FE simulations can reach (that is, until there is a 

convergence problem), all the numerical results of W  and 1 3I   can be fitted almost 

exactly using the linear relation suggested by the incompressible neo-Hookean model. 

Therefore it is safe to conclude that the mechanical behaviour of the IPRNC studied 

here can be well modelled by another incompressible neo-Hookean model within the 

limit of current FE software ABAQUS.  

 

In chapter 4, the significance of fibre-matrix interaction in fibre-reinforced composite 

under finite deformation is investigated. The experimental data from Bass [81] provided 

the uniaxial and biaxial data of Human Annulus Fibrosus (HAF), which can be fitted 
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and applied to work out the strain energy of the corresponding deformation states. The 

collagen fibres are under contraction in the uniaxial tests along the axial direction, so 

the contribution to the strain energy from fibres could be ignored. The strain energy 

calculated from the fitted polynomial curves was then adopted to analyse the 

mechanical performance of the ground matrix. The results indicated that the 

incompressible neo-Hookean model was capable of simulating the ground matrix when 

the collagen fibres were under contraction.  

The potential fibre-matrix interaction is neglected in the classical uncoupled models 

because the collagen fibres are treated as nonlinear springs. According to their 

prediction, there is no relation between the mechanical behaviours of the matrix and the 

fibre stretch ratio. By investigating series of biaxial experimental data, it is found that 

the ground matrix can be described by the incompressible neo-Hookean model, but the 

effective stiffness of the matrix depends on the fibre stretch ratio. This obtained 

stiffness could be more than 10 times larger than the one with collagen fibres under 

contraction. This phenomenon can only be explained by the fibre-matrix interaction. 

Part of the fibre stretch dependence is due to the inhomogeneous distribution of the 

deformation and the inhomogeneity of the composites. The potential fibre orientation 

dispersion also contributes to the fibre-stretch dependence. The experimental data of the 

uniaxial tests of the HAF long the circumferential direction illustrated that the strain 

energy contributed by fibre-matrix interaction can affect significantly the mechanical 

properties of the soft tissue. Hence it should not be ignored in constitutive models. 

Uniaxial and biaxial tests are insufficient to well determine the strain energy function of 

the heterogeneous HAF, so a comprehensive micromechanics-based model considering 

both composite effect and fibre orientation dispersion is demanded to predict the fibre-

matrix interaction analysed in this paper. 
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Chapter 6 Future Work 

 

 

In chapter 3, three-dimensional RVE models are developed to simulate the mechanical 

behaviour of incompressible particle-reinforced neo-Hookean composites (IPRNC). The 

potential extensions of this research work include: 

 

1. Theoretical analysis and modelling of the mechanical behaviour of IPRNC: Based on 

the observation of the stress/strain field in the IPRNC models in the FE simulation, it 

might be possible to propose some approximation format of the elasticity field in 

IPRNC. Christensen and Lo’s [18] three phase model can be extended to finite 

deformation regime and we may learn from Imam et al.’s [54] result to derive an 

approximate format of the elasticity field, based on which the effective shear modulus 

of the IPRNC can be obtained by an averaging procedure. 

 

2. Effects of size distribution and shape of particles: In the current RVE, the particles 

are identical spheres. Non-spherical particles of various sizes can be embedded in the 

unit cube to investigate the effects of size distribution and shape of particles in IPRNC. 

In that case, it is important to study the RVE size required to obtain accurate results of 

the composite. 

 

3. Composites consisting of other material phases: In this research work, we only 

considered a neo-Hookean matrix in which neo-Hookean (or rigid) particles were 

embedded. Actually similar RVE models can be employed to simulate the mechanical 

behaviours of composites with constituents of other materials. For example, for 

composite consisting Mooney-Rivlin matrix embedded with rigid particles, the 

mechanical behaviour of the composite can be fitted by an Ogden model (or even 

another Mooney-Rivlin model). The RVE models can be used to study the relations 

between the Odgen model’s parameters and the properties of the matrix, as well as the 

particle volume fraction.  
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4. Strength, fracture, damage of IPRNC: Because the stress/strain field is obtained in the 

FE simulations, the numerical result can be adopted to study the strength, fracture and 

damage properties of the IPRNC. Usually the critical points with maximum stress 

measure are first identified, and related criteria can be established to analyse the 

strength of the composite. Simulation of the fracture and damage process of the 

composite is also possible if the fracture or damage can be modelled properly in the FE 

program. 

 

5. Porous neo-Hookean media: The same RVE models can be used to simulate the 

mechanical behaviour of porous neo-Hookean media by setting the particles as voids. 

Now the material becomes compressible because of the existence of the voids. 

Hydrostatic loading and general triaxial deformation simulations are required to obtain 

the mechanical behaviours of the porous material under general deformation.  

 

6. Composites with compressible phases: After the porous neo-Hookean media is 

investigated, general PRC with compressible phases can be studied by numerical 

homogenisation based on the RVE models developed in this research work. Similarly, 

hydrostatic loading and general triaxial deformation simulations will be performed to 

investigate the composite’s mechanical behaviours. 

 

7. Composites with other microstructures: Although the RVE models developed in the 

thesis only represents PRC with a particular microstructure (i.e., with identical 

randomly distributed spherical particles), composite with other microstructure can be 

modelled in a similar way. For example, the mechanical responses of FRC can also be 

investigated by corresponding RVE models with proper microstructure.  

 

In chapter 4, the significance of the fibre-matrix interaction in HAF is identified and 

discussed. The potential physical sources of the interaction are investigated in detail. It 

is found that both the fibre-matrix shear interaction and the fibre orientation distribution 

contribute to the fibre-matrix interaction. However, there is no constitutive model in the 

literature which considers both effects. Therefore, the following research directions are 

possible for us to extend current study here: 

 

1. Development a constitutive model considering both the fibre-matrix shear interaction 

and fibre orientation distribution. This can be performed in two approaches. In the first 
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approach, the fibre orientation distribution can be introduced into the current models 

with fibre-matrix shear interaction considered (e.g., Guo et al.’s [6] composites-based 

model). A simple integration scheme can be employed to consider the fibre orientation 

distribution. In the second approach, the fibre-matrix shear interaction mechanism can 

be introduced into the current models with fibre orientation distribution considered (e.g., 

Caner et al.’s [89] microplane model). This can be done by using a coupled model with 

fibre-matrix shear interaction in each microplane’s constitutive relation. The models 

developed can then be used to re-produce the uniaxial and biaxial experimental results 

in [81]. 

  

2. Numerical approach to model zig-zag (curved) fibres: In all FRC models discussed in 

this study for soft tissue, the fibres are assumed as straight. However, in the real soft 

tissue, the collagen fibres are usually in a zig-zag shape [122]. To model the soft tissue 

embedded with zig-zag shape collagen fibres accurately, precise RVE models can be 

developed to simulate the mechanical behaviours of soft tissue under general finite 

deformation. The challenges here include how to construct RVE models with periodic 

microstructure and how to define periodic boundary conditions. 

 

3. Theoretical approximations for soft tissue with zig-zag fibres: The numerical results 

obtained from the numerical approach can be used to construct some theoretical closed-

form approximation for the soft tissue. The model can be further validated by 

experimental data available in the literature. It should be noted that the material may not 

be transversely isotropic anymore if the fibres are not straight. This will potentially 

make the model very complex. In that case, the strain components in the principal 

coordinate system of HAF (i.e., the axial circumferential and radial directions as the 

axes of the coordinate system) can be used to describe the strain energy function. The 

model will look like a Fung’s type model, but the terms can carry clear physical 

meanings. 

 

4. Effect of fibre-fibre interaction: Because of the complexity of the fibre-fibre 

interaction, almost all models in the literature ignore the effect of fibre-fibre interaction. 

The potential approach to study the fibre-fibre interaction is probably through numerical 

simulation. RVE models with a number of fibres can be developed and the FE 

simulations may suggest some mechanisms of the fibre-fibre interaction. 
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Appendix A: Geometries of 16 RVE models 

 

The geometry of every RVE model is presented in Appendix A, and there are 16 models 

in total. In the table below each model, the centres of spheres is listed.  

 Volume ratio (V): c = 0.05 

 Diameter: d = 0.1524 

 

 

 Inclusions X Y Z  Inclusions X Y Z 

1.1 -0.0146 0.4002 0.1303 15.1 -0.0183 0.7561 0.8366 

1.2 0.9854 0.4002 0.1303 15.2 0.9817 0.7561 0.8366 

2.1 0.5484 0.5096 0.3082 16.1 1.0109 0.1064 0.8450 

3.1 0.2957 0.5154 0.3648 16.2 0.0109 0.1064 0.8450 

4.1 0.5580 0.6386 0.8932 17.1 0.3441 0.6161 0.5493 

5.1 0.7916 0.2378 0.5169 18.1 0.6496 0.3458 0.2093 

6.1 0.3596 0.2858 0.1812 19.1 0.4419 0.0059 0.8930 

7.1 0.2673 0.8218 0.7623 19.2 0.4419 1.0059 0.8930 

8.1 0.2304 0.4118 0.5250 20.1 0.1349 0.1900 0.1793 

9.1 0.4484 0.9060 0.3381 21.1 0.8540 0.1520 0.2960 

10.1 0.4638 0.6048 0.1107 22.1 0.6253 -0.0115 0.1151 

11.1 0.5261 0.3234 0.9946 22.2 0.6253 0.9885 0.1151 

11.2 0.5261 0.3234 -0.0054 23.1 0.7407 0.8820 0.7805 

12.1 0.5216 0.1181 0.2626 24.1 0.6767 0.5261 0.5232 

13.1 0.5148 0.7563 0.7529 25.1 0.7598 0.7281 0.5968 

14.1 0.3115 0.1688 0.7166 26.1 0.1981 0.6988 0.0984 

        27.1 0.2112 0.8587 0.4061 

 

V0.05Model1 

  

app:ds:centre
app:ds:of
app:ds:sphere
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.2506 0.2755 0.7300 14.1 0.3559 0.8568 0.6820 

2.1 0.3626 0.1240 0.4255 15.1 0.4871 0.1285 0.2167 

3.1 0.6532 0.5281 0.8988 16.1 0.4010 0.9088 1.0186 

4.1 0.5206 0.2898 0.6761 16.2 0.4010 0.9088 0.0186 

5.1 0.5264 0.1168 0.9028 17.1 0.6252 0.3542 0.1179 

6.1 0.8477 0.1302 0.7460 18.1 0.7670 0.4779 0.6836 

7.1 1.0046 0.1927 0.2421 19.1 0.4260 0.4491 0.3320 

7.2 0.0045 0.1927 0.2421 20.1 0.3126 0.3788 0.1271 

8.1 0.9945 0.7470 0.2158 21.1 0.1778 0.5692 0.4284 

8.2 -0.0055 0.7470 0.2158 22.1 0.2918 0.1487 0.8989 

9.1 0.4849 0.6195 0.4702 23.1 0.8137 0.2514 0.1258 

10.1 0.1633 0.8172 0.7161 24.1 -0.0033 0.6140 0.8174 

11.1 0.6971 0.9934 0.2113 24.2 0.9967 0.6140 0.8174 

11.2 0.6971 -0.0066 0.2113 25.1 -0.0030 0.2140 0.5701 

12.1 0.1698 0.5569 0.6886 25.2 0.9970 0.2140 0.5701 

13.1 1.0133 0.3804 0.8016 26.1 0.2077 0.8460 0.3247 

13.2 0.0133 0.3804 0.8016 27.1 0.6798 0.8896 0.4199 

 

V0.05Model2 
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 Inclusions X Y Z Inclusions X Y Z 

1.1 0.7947 0.1437 0.1744 15.1 0.6178 0.4609 0.0120 

2.1 0.2014 0.1684 0.3174 15.2 0.6178 0.4609 1.0120 

3.1 0.6887 0.2293 0.4049 16.1 0.9969 0.4498 0.1540 

4.1 0.3019 0.2686 0.7080 16.2 -0.0031 0.4498 0.1540 

5.1 0.3188 0.8516 0.2202 17.1 0.8865 0.2332 0.4656 

6.1 0.1735 0.2332 0.1050 18.1 1.0035 0.7107 0.5339 

7.1 0.2560 0.5138 0.8978 18.2 0.0035 0.7107 0.5339 

8.1 0.8114 0.3290 -0.0085 19.1 0.8046 0.5052 0.3657 

8.2 0.8114 0.3290 0.9915 20.1 0.5079 0.1100 0.3824 

9.1 0.8226 0.3885 0.2120 21.1 0.4110 0.8070 0.0129 

10.1 0.7055 0.1656 0.6524 21.2 0.4110 0.8070 1.0129 

11.1 0.5182 0.4970 0.2769 22.1 0.9002 0.3903 0.7320 

12.1 0.9835 0.8521 0.7758 23.1 0.1676 0.2252 0.9022 

12.2 -0.0165 0.8521 0.7758 24.1 0.2340 0.5794 0.3630 

13.1 0.5384 0.0189 0.7688 25.1 0.6918 0.6552 0.8141 

13.2 0.5384 1.0190 0.7688 26.1 0.1172 0.7751 0.2797 

14.1 0.4360 0.1966 0.8799 27.1 0.6433 0.0152 0.1357 

        27.2 0.6433 1.0152 0.1357 

 

V0.05Model3 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.5406 0.6704 0.2520 16.1 0.5999 0.4784 0.6049 

2.1 0.5125 0.3244 0.8562 17.1 0.9918 0.7528 0.7016 

3.1 0.3802 0.5127 0.7907 17.2 -0.0082 0.7528 0.7016 

4.1 0.4330 0.5734 0.5704 18.1 -0.0146 0.5781 0.8609 

5.1 0.6371 0.8459 0.2326 18.2 0.9854 0.5781 0.8609 

6.1 0.8826 -0.0134 0.8302 19.1 0.2504 0.8414 0.7993 

6.2 0.8826 0.9866 0.8302 20.1 0.7253 0.7069 0.5684 

7.1 0.5219 0.1394 0.4918 21.1 0.1090 0.4025 0.2353 

8.1 0.6604 0.8245 0.7977 22.1 0.6022 0.5499 0.8502 

9.1 0.2196 0.8300 0.6136 23.1 0.4777 0.9797 0.8032 

10.1 0.1709 0.1385 0.8046 23.2 0.4777 -0.0203 0.8032 

11.1 0.0206 0.7155 0.2962 24.1 0.3115 0.9890 0.1770 

11.2 1.0206 0.7155 0.2962 24.2 0.3115 -0.0110 0.1770 

12.1 0.7993 0.4706 0.5311 25.1 0.4512 0.4432 0.1489 

13.1 0.8191 0.2780 0.8985 26.1 0.8565 0.4755 0.1775 

14.1 0.3719 0.1580 0.6426 27.1 0.5375 0.1555 1.0131 

15.1 0.1211 0.5655 0.5466 27.2 0.5375 0.1555 0.0131 

 

V0.05Model4 
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 Volume ratio (V): c = 0.1 

 Diameter: d = 0.1920 

 

 

 

 

 

 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.6389 1.0303 0.5508 15.1 0.3915 0.0058 0.1737 

1.2 0.6389 0.0303 0.5508 15.2 0.3915 1.0058 0.1737 

2.1 0.5955 0.5582 0.3644 16.1 -0.0136 0.5936 0.2439 

3.1 0.1893 0.8184 0.3936 16.2 0.9864 0.5936 0.2439 

4.1 0.8198 0.2680 0.5901 17.1 0.7956 -0.0128 0.8629 

5.1 0.1629 0.3460 1.0053 17.2 0.7956 0.9872 0.8629 

5.2 0.1629 0.3460 0.0053 18.1 0.2829 0.4966 0.3821 

6.1 0.1931 0.5695 0.7129 19.1 1.0382 0.6310 0.5207 

7.1 0.8630 0.9835 0.3118 19.2 0.0382 0.6310 0.5207 

7.2 0.8630 -0.0165 0.3118 20.1 0.4383 0.7922 0.6866 

8.1 0.2625 0.5569 -0.0408 21.1 0.7217 0.7489 0.5247 

8.2 0.2625 0.5569 0.9592 22.1 0.4208 0.3431 0.5647 

9.1 0.6212 0.5293 0.1252 23.1 0.1968 0.2396 0.2459 

10.1 0.8296 0.2579 1.0106 24.1 0.9646 0.3077 0.8295 

10.2 0.8296 0.2579 0.0106 24.2 -0.0354 0.3077 0.8295 

11.1 0.7834 0.4117 0.3675 25.1 0.7694 0.7314 0.2985 

12.1 0.2135 0.1952 0.7622 26.1 0.5514 0.6426 0.8809 

13.1 0.9952 0.7985 0.8418 27.1 0.7698 0.7738 -0.0275 

13.2 -0.0048 0.7985 0.8418 27.2 0.7698 0.7738 0.9725 

14.1 0.5521 0.8121 0.3428         

 

V0.1Model1 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.1223 0.6212 0.9706 16.1 0.5927 -0.0079 0.2922 

1.2 0.1223 0.6212 -0.0294 16.2 0.5927 0.9921 0.2922 

2.1 0.1867 0.8811 0.4251 17.1 0.2538 0.2848 0.1875 

3.1 0.6821 0.2421 0.2909 18.1 0.1405 0.6086 0.3578 

4.1 0.2318 0.7299 0.1695 19.1 0.8657 0.4377 0.0365 

5.1 0.7982 0.5257 0.8064 19.2 0.8657 0.4377 1.0365 

6.1 0.4009 0.7289 0.5891 20.1 0.7006 0.7321 0.7041 

7.1 0.1842 0.5620 0.6410 21.1 0.4914 0.7526 0.3602 

8.1 0.3817 0.4848 0.5495 22.1 0.6517 0.5332 0.9795 

9.1 0.6853 0.1267 0.8680 22.2 0.6517 0.5332 -0.0205 

10.1 0.7145 0.5692 0.4224 23.1 0.3953 0.1157 1.0334 

11.1 1.0267 0.1588 0.4518 23.2 0.3953 0.1157 0.0334 

11.2 0.0267 0.1588 0.4518 24.1 0.4538 0.6520 0.1520 

12.1 0.4370 0.3016 0.7994 25.1 0.1721 0.9626 0.7023 

13.1 0.6898 0.7073 0.2374 25.2 0.1721 -0.0374 0.7023 

14.1 0.4098 0.1887 0.5666 26.1 0.4779 0.2614 0.1814 

15.1 0.8399 0.8572 0.0307 27.1 0.9802 0.6401 0.5358 

15.2 0.8399 0.8572 1.0307 27.2 -0.0198 0.6401 0.5358 

 

V0.1Model2 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.8509 0.3821 0.3649 15.1 0.6981 -0.0135 0.2152 

2.1 0.2739 0.4680 0.4664 15.2 0.6981 0.9865 0.2152 

3.1 0.6346 0.1908 0.4781 16.1 0.8557 0.1598 0.7453 

4.1 0.5679 0.3653 -0.0200 17.1 0.7878 0.6540 0.2766 

4.2 0.5679 0.3653 0.9800 18.1 0.2691 0.6493 0.8806 

5.1 0.3162 0.4938 0.1508 19.1 0.3470 0.2019 0.1505 

6.1 0.3909 0.8447 0.5136 20.1 0.8495 0.7424 0.6474 

7.1 0.4741 0.1853 0.6735 21.1 0.4514 0.3353 0.3705 

8.1 0.9895 0.4997 0.6788 22.1 0.1497 0.9656 0.5586 

8.2 -0.0105 0.4997 0.6788 22.2 0.1497 -0.0344 0.5586 

9.1 0.2881 0.6815 0.2696 23.1 0.9966 0.6542 0.1482 

10.1 0.1223 0.8367 0.2038 23.2 -0.0034 0.6542 0.1482 

11.1 0.8699 0.2153 0.5276 24.1 0.2502 0.1764 0.5438 

12.1 0.5267 0.5426 0.2107 25.1 0.1208 0.8117 0.7150 

13.1 0.5507 0.5676 0.7659 26.1 0.8499 0.9696 0.5566 

14.1 0.1153 0.2132 0.3051 26.2 0.8499 -0.0304 0.5566 

        27.1 0.4598 0.6209 0.4369 

 

V0.1Model3 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.3019 0.3545 0.2770 13.1 0.5286 0.8726 0.3644 

2.1 0.8232 0.6028 0.2145 14.1 0.6215 0.4825 1.0010 

3.1 0.7910 0.7479 0.6542 14.2 0.6215 0.4825 0.0009 

4.1 0.5438 0.1400 0.4498 15.1 0.1749 0.6356 0.2130 

5.1 0.9899 0.2882 0.3663 16.1 0.2307 0.2178 0.8287 

5.2 -0.0102 0.2882 0.3663 17.1 0.8313 0.8902 0.4377 

6.1 1.0223 0.7465 0.6894 18.1 0.8895 0.2093 0.7507 

6.2 0.0223 0.7465 0.6894 19.1 0.8379 0.7545 -0.0113 

7.1 0.5936 0.7152 0.9753 19.2 0.8379 0.7545 0.9887 

7.2 0.5936 0.7152 -0.0247 20.1 0.4963 0.3329 0.8494 

8.1 0.4407 0.6207 0.5885 21.1 0.7235 0.5309 0.7310 

9.1 1.0262 0.6628 0.4200 22.1 0.2065 0.9859 0.8189 

9.2 0.0261 0.6628 0.4200 22.2 0.2065 -0.0141 0.8189 

10.1 0.4193 0.0291 0.1473 23.1 0.8397 0.5062 0.5058 

10.2 0.4193 1.0291 0.1473 24.1 0.6544 0.2420 0.2235 

11.1 0.1290 0.0117 0.3168 25.1 0.5237 0.8847 0.6267 

11.2 0.1290 1.0117 0.3168 26.1 0.2564 0.8027 0.9956 

12.1 -0.0054 0.5017 0.7631 26.2 0.2564 0.8027 -0.0044 

12.2 0.9946 0.5017 0.7631 27.1 0.5174 0.6567 0.2362 

 

V0.1Model4 
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 Volume ratio (V): c = 0.2 

 Diameter: d = 0.2418 

 

 

 

 

 

 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.3401 0.6266 0.5142 14.1 0.1276 0.7130 0.2340 

2.1 0.6094 0.5218 0.7802 15.1 0.0376 0.2103 0.1907 

3.1 0.7995 0.6845 0.3503 15.2 1.0376 0.2103 0.1907 

4.1 0.5239 0.2475 0.5966 16.1 0.2343 0.6342 0.7993 

5.1 -0.0430 0.7781 0.7315 17.1 0.3745 -0.0434 0.1490 

5.2 0.9570 0.7781 0.7315 17.2 0.3745 0.9566 0.1490 

6.1 0.4422 0.7254 0.0141 18.1 0.0158 0.5303 0.4952 

6.2 0.4422 0.7254 1.0141 18.2 1.0158 0.5303 0.4952 

7.1 0.8665 0.6409 0.9662 19.1 0.2636 0.9759 0.7178 

7.2 0.8665 0.6409 -0.0338 19.2 0.2636 -0.0241 0.7178 

8.1 0.3176 -0.0321 0.4120 20.1 0.7398 0.1600 0.3858 

8.2 0.3176 0.9679 0.4120 21.1 0.5789 0.4519 0.1249 

9.1 0.2194 0.2102 0.9747 22.1 0.0179 0.4296 0.7499 

9.2 0.2194 0.2102 -0.0253 22.2 1.0179 0.4296 0.7499 

10.1 0.0230 0.1696 0.5993 23.1 0.8496 0.4176 0.1979 

10.2 1.0230 0.1696 0.5993 24.1 0.5750 0.8176 0.4558 

11.1 0.8027 -0.0121 0.6548 25.1 0.5416 0.9564 0.8073 

11.2 0.8027 0.9879 0.6548 25.2 0.5416 -0.0436 0.8073 

12.1 0.3512 0.3198 0.2723 26.1 0.7800 0.2758 0.7442 

13.1 0.7164 0.1351 -0.0169 27.1 0.7940 -0.0420 0.2154 

13.2 0.7164 0.1351 0.9831 27.2 0.7940 0.9580 0.2154 

 

V0.2Model1 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.4807 0.3235 0.2830 15.1 1.0441 0.3663 0.7356 

2.1 0.4756 0.1706 -0.0367 15.2 0.0441 0.3663 0.7356 

2.2 0.4756 0.1706 0.9633 16.1 0.6613 0.9780 0.7461 

3.1 0.7948 0.4090 0.9721 16.2 0.6613 -0.0220 0.7461 

3.2 0.7948 0.4090 -0.0279 17.1 0.3534 0.3830 0.5318 

4.1 0.9609 0.2110 0.5311 18.1 0.4532 0.5994 0.1264 

4.2 -0.0391 0.2110 0.5311 19.1 0.6159 0.4179 0.6930 

5.1 0.5999 0.1579 0.4623 20.1 0.2514 0.7778 0.8214 

6.1 0.0225 0.5494 0.2271 21.1 0.8377 0.9573 0.2387 

6.2 1.0225 0.5494 0.2271 21.2 0.8377 -0.0427 0.2387 

7.1 0.2115 0.6650 0.4454 22.1 0.7468 0.5096 0.4134 

8.1 0.5333 0.9573 0.2615 23.1 0.2749 -0.0204 0.4718 

8.2 0.5333 -0.0427 0.2615 23.2 0.2749 0.9796 0.4718 

9.1 0.8482 0.7112 0.6357 24.1 0.3381 0.0435 0.7581 

10.1 0.2217 0.8461 0.1420 24.2 0.3381 1.0435 0.7581 

11.1 0.4148 0.5998 0.6979 25.1 0.8477 0.1680 0.8617 

12.1 0.8687 0.2697 0.2564 26.1 0.5268 0.6638 0.4534 

13.1 0.2595 0.3166 0.1302 27.1 1.0213 0.6347 0.8454 

14.1 0.8040 0.7010 0.1273 27.2 0.0213 0.6347 0.8454 

 

V0.2Model2 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.7750 0.4547 0.9673 14.1 1.0513 0.3337 0.4814 

1.2 0.7750 0.4547 -0.0327 14.2 0.0513 0.3337 0.4814 

2.1 0.3159 0.8016 0.9490 15.1 0.3728 1.0104 0.5127 

2.2 0.3159 0.8016 -0.0510 15.2 0.3728 0.0104 0.5127 

3.1 0.8376 0.9490 0.1704 16.1 0.3655 0.5083 0.7500 

3.2 0.8376 -0.0510 0.1704 17.1 1.0252 0.7362 0.8490 

4.1 0.7179 0.7663 0.9700 17.2 0.0252 0.7362 0.8490 

4.2 0.7179 0.7663 -0.0300 18.1 -0.0225 0.2865 0.1763 

5.1 0.9723 0.1512 0.8168 18.2 0.9775 0.2865 0.1763 

5.2 -0.0277 0.1512 0.8168 19.1 0.5452 0.3671 0.2524 

6.1 0.7753 0.5594 0.2123 20.1 0.6952 0.1822 0.8339 

7.1 0.5091 0.9646 0.1856 21.1 0.4058 0.6488 0.2630 

7.2 0.5091 -0.0354 0.1856 22.1 0.4067 0.8033 0.6862 

8.1 0.1722 0.7349 0.4391 23.1 0.1888 0.9607 0.2490 

9.1 0.6751 0.9721 0.4628 23.2 0.1888 -0.0393 0.2490 

9.2 0.6751 -0.0279 0.4628 24.1 -0.0335 0.4835 0.7734 

10.1 0.6206 0.3348 0.5932 24.2 0.9665 0.4835 0.7734 

11.1 0.8365 0.6719 0.5666 25.1 0.2854 0.3969 0.3712 

12.1 0.3130 0.3887 1.0431 26.1 0.4420 0.1538 0.9511 

12.2 0.3130 0.3887 0.0431 26.2 0.4420 0.1538 -0.0489 

13.1 0.2535 0.1331 0.7596 27.1 0.0308 0.6980 0.1980 

        27.2 1.0308 0.6980 0.1980 

 

V0.2Model3 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.7257 0.4311 0.4849 16.1 0.2068 0.8562 0.7424 

2.1 0.4629 0.7966 -0.0013 17.1 0.4890 0.6703 0.2539 

2.2 0.4629 0.7966 0.9987 18.1 0.4473 0.5001 0.9889 

3.1 1.0168 0.4365 0.3335 18.2 0.4473 0.5001 -0.0111 

3.2 0.0168 0.4365 0.3335 19.1 -0.0304 0.2202 0.4991 

4.1 0.8435 0.7140 0.7100 19.2 0.9696 0.2202 0.4991 

5.1 0.5389 -0.0239 0.4770 20.1 -0.0300 0.1629 0.8502 

5.2 0.5389 0.9761 0.4770 20.2 0.9700 0.1629 0.8502 

6.1 0.7259 0.5338 1.0074 21.1 0.2233 0.3527 0.5033 

6.2 0.7259 0.5338 0.0074 22.1 0.6250 0.0079 0.7966 

7.1 0.3638 0.3131 0.2775 22.2 0.6250 1.0079 0.7966 

8.1 0.1355 0.7852 0.1974 23.1 0.1834 -0.0464 0.4370 

9.1 0.8019 0.8482 0.3747 23.2 0.1834 0.9536 0.4370 

10.1 0.8647 0.3966 0.7393 24.1 0.3467 1.0315 0.1859 

11.1 0.6406 0.2380 0.6507 24.2 0.3467 0.0315 0.1859 

12.1 0.5222 0.5775 0.6785 25.1 0.2569 0.6975 0.4401 

13.1 0.2631 0.5683 0.7537 26.1 0.9809 0.1891 0.1940 

14.1 0.2325 0.2209 0.8168 26.2 -0.0191 0.1891 0.1940 

15.1 0.7288 0.1649 1.0384 27.1 0.7004 0.1692 0.3246 

15.2 0.7288 0.1649 0.0384         

 

V0.2Model4 
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 Volume ratio (V): c = 0.3 

 Diameter: d = 0.2768 

 

 

 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.1818 0.4655 0.5683 14.1 0.8258 0.1951 0.8044 

2.1 0.6597 0.0175 -0.0129 15.1 0.2383 0.7936 0.3719 

2.2 0.6597 1.0176 -0.0129 16.1 0.7510 0.3982 0.0685 

2.3 0.6597 1.0176 0.9871 16.2 0.7510 0.3982 1.0686 

2.4 0.6597 0.0175 0.9871 17.1 0.4442 0.4562 1.0696 

3.1 0.7795 0.4496 0.6706 17.2 0.4442 0.4562 0.0696 

4.1 0.1691 1.0838 0.7609 18.1 0.6541 0.2844 0.4079 

4.2 0.1691 0.0837 0.7609 19.1 0.0520 0.3823 0.3214 

5.1 0.4512 0.7572 0.6612 19.2 1.0520 0.3823 0.3214 

6.1 0.0359 0.4522 1.0012 20.1 0.7328 0.7126 0.9454 

6.2 1.0359 0.4522 1.0012 20.2 0.7328 0.7126 -0.0546 

6.3 1.0359 0.4522 0.0012 21.1 0.7907 0.5491 0.3716 

6.4 0.0359 0.4522 0.0012 22.1 0.9195 0.7179 0.1730 

7.1 0.4757 0.4244 0.7488 22.2 -0.0805 0.7179 0.1730 

8.1 0.2573 0.7103 0.9711 23.1 0.3511 0.0281 0.5381 

8.2 0.2573 0.7103 -0.0289 23.2 0.3511 1.0281 0.5381 

9.1 0.5514 0.7512 0.3265 24.1 0.7039 -0.0379 0.6764 

10.1 0.2304 0.0108 0.1630 24.2 0.7039 0.9621 0.6764 

10.2 0.2304 1.0108 0.1630 25.1 0.9403 0.1958 0.5343 

11.1 -0.0339 0.7977 0.6599 25.2 -0.0597 0.1958 0.5343 

11.2 0.9661 0.7977 0.6599 26.1 0.3550 0.1984 0.9575 

12.1 0.8093 -0.0797 0.3804 26.2 0.3550 0.1984 -0.0425 

12.2 0.8093 0.9203 0.3804 27.1 0.9284 0.1570 0.1405 

13.1 0.3712 0.2621 0.3309 27.2 -0.0716 0.1570 0.1405 

 

V0.3Model1 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.5721 0.1779 0.0697 15.1 0.5897 0.6123 0.9679 

1.2 0.5721 0.1779 1.0697 15.2 0.5897 0.6123 -0.0321 

2.1 0.9488 0.5317 0.4028 16.1 0.0008 0.4010 1.0079 

2.2 -0.0512 0.5317 0.4028 16.2 1.0008 0.4010 1.0079 

3.1 0.4860 0.2705 0.3943 16.3 1.0008 0.4010 0.0079 

4.1 0.8323 0.1896 0.8523 16.4 0.0008 0.4010 0.0079 

5.1 0.4311 -0.0157 0.3851 17.1 0.1838 0.0518 0.1688 

5.2 0.4311 0.9843 0.3851 17.2 0.1838 1.0518 0.1688 

6.1 0.3266 0.5520 0.5043 18.1 0.4179 0.6417 0.2355 

7.1 -0.0229 0.2389 0.3595 19.1 0.0760 0.7978 0.8293 

7.2 0.9771 0.2389 0.3595 19.2 1.0760 0.7978 0.8293 

8.1 0.1849 0.6220 1.0580 20.1 0.6226 0.3389 0.6597 

8.2 0.1849 0.6220 0.0580 21.1 0.3803 0.8527 -0.0803 

9.1 0.8336 0.5289 0.7576 21.2 0.3803 0.8527 0.9197 

10.1 0.2856 0.1556 0.7994 22.1 0.3578 0.3820 -0.0256 

11.1 0.7523 1.0633 0.4208 22.2 0.3578 0.3820 0.9744 

11.2 0.7523 0.0632 0.4208 23.1 0.1950 0.2949 0.5515 

12.1 0.9581 0.8221 0.3181 24.1 0.7070 0.4492 0.2408 

12.2 -0.0419 0.8221 0.3181 25.1 0.6045 0.6769 0.5678 

13.1 0.7505 0.8372 0.7923 26.1 0.5097 -0.0406 0.6659 

14.1 0.1811 0.9483 0.6011 26.2 0.5097 0.9594 0.6659 

14.2 0.1811 -0.0517 0.6011 27.1 0.6852 0.8494 0.1765 

 

V0.3Model2 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 0.3589 0.0240 0.4600 14.1 -0.0035 0.3898 0.5604 

1.2 0.3589 1.0240 0.4600 14.2 0.9965 0.3898 0.5604 

2.1 0.7039 0.6107 0.2601 15.1 0.5536 0.1704 1.0126 

3.1 0.5097 0.5037 0.9692 15.2 0.5536 0.1704 0.0126 

3.2 0.5097 0.5037 -0.0308 16.1 0.8188 0.7141 0.9850 

4.1 1.0467 0.6531 0.7478 16.2 0.8188 0.7141 -0.0150 

4.2 0.0467 0.6531 0.7478 17.1 0.7883 0.3628 1.0829 

5.1 0.2378 -0.0104 0.1916 17.2 0.7883 0.3628 0.0829 

5.2 0.2378 0.9896 0.1916 18.1 0.3295 0.6868 0.3940 

6.1 0.7755 0.4947 0.7346 19.1 0.3486 0.7837 0.7546 

7.1 0.5104 0.3778 0.2985 20.1 0.3655 0.4377 0.5735 

8.1 -0.0106 0.5530 0.1815 21.1 0.2041 1.0470 0.8493 

8.2 0.9894 0.5530 0.1815 21.2 0.2041 0.0470 0.8493 

9.1 0.9884 -0.0055 0.5517 22.1 0.9428 0.1688 0.2436 

9.2 -0.0116 -0.0055 0.5517 22.2 -0.0572 0.1688 0.2436 

9.3 -0.0116 0.9945 0.5517 23.1 0.7024 0.9298 0.3798 

9.4 0.9884 0.9945 0.5517 23.2 0.7024 -0.0702 0.3798 

10.1 0.1768 0.3290 1.0279 24.1 0.5338 0.8319 0.0398 

10.2 0.1768 0.3290 0.0279 24.2 0.5338 0.8319 1.0398 

11.1 0.7103 0.2351 0.5581 25.1 0.9247 0.2270 0.8012 

12.1 0.2506 0.7226 0.0394 25.2 -0.0753 0.2270 0.8012 

12.2 0.2506 0.7226 1.0394 26.1 0.9372 0.7302 0.4204 

13.1 0.7255 -0.0383 0.8302 26.2 -0.0628 0.7302 0.4204 

13.2 0.7255 0.9617 0.8302 27.1 0.1874 0.3554 0.3351 

 

V0.3Model3 
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 Inclusions X Y Z  Inclusions X Y Z 

1.1 -0.0255 0.2956 0.8035 15.1 0.6454 0.3362 0.7743 

1.2 0.9745 0.2956 0.8035 16.1 0.3478 -0.0678 0.7727 

2.1 1.0581 0.2722 0.3597 16.2 0.3478 0.9322 0.7727 

2.2 0.0581 0.2722 0.3597 17.1 0.4906 -0.0332 0.2301 

3.1 0.6919 0.2502 0.3031 17.2 0.4906 0.9668 0.2301 

4.1 0.8175 0.0210 0.4922 18.1 1.0188 0.5547 0.2450 

4.2 0.8175 1.0210 0.4922 18.2 0.0188 0.5547 0.2450 

5.1 0.2305 0.1879 -0.0537 19.1 0.8300 0.4460 0.5585 

5.2 0.2305 0.1879 0.9463 20.1 0.8300 0.0245 0.1637 

6.1 0.6461 0.7672 0.9235 20.2 0.8300 1.0245 0.1637 

6.2 0.6461 0.7672 -0.0765 21.1 0.3449 0.6070 0.2741 

7.1 0.1585 0.8207 0.3458 22.1 0.2019 0.5059 -0.0219 

8.1 0.3682 0.2102 0.3655 22.2 0.2019 0.5059 0.9781 

9.1 0.6323 0.6930 0.5671 23.1 0.3828 0.5993 0.7561 

10.1 0.1906 0.4241 0.6069 24.1 0.5360 0.0795 0.5874 

11.1 0.7450 0.6612 0.2992 24.2 0.5360 1.0795 0.5874 

12.1 0.4950 0.4800 1.0514 25.1 0.5290 0.1573 1.0104 

12.2 0.4950 0.4800 0.0514 25.2 0.5290 0.1573 0.0104 

13.1 0.0309 0.7286 0.6370 26.1 0.1857 0.0491 0.5318 

13.2 1.0309 0.7286 0.6370 26.2 0.1857 1.0491 0.5318 

14.1 0.1811 0.7971 0.9860 27.1 0.8385 0.3522 1.0722 

14.2 0.1811 0.7971 -0.0140 27.2 0.8385 0.3522 0.0722 

 

V0.3Model4 
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Appendix B: Boundary conditions 

 

A typical *.inp file is presented below, which is the input file of a uniaxial tension 

simulation with stiffness ratio of 10 for finite element analysis. 

**-------------------------------------------------------------- 

*Heading 

** Job name: test Model name: Analysis1 

**Preprint, echo=NO, model=NO, history=NO, contact=NO 

**Part, name=RVE 

**-------------------------------------------------------------- 

**NODES 

**-------------------------------------------------------------- 

*Node, nset=AllNodes, input=Allnodes.txt 

**Dummy Nodes 

*Node 

      1000001,        1.10,          0.5,          0.5 

*Node 

      1000002,          0.5,        1.10,          0.5 

*Node 

      1000003,          0.5,          0.5,        1.10 

*Nset, nset=refpoint4 

 1000001, 

*Nset, nset=refpoint5 

 1000002, 

*Nset, nset=refpoint6 

 1000003, 

**-------------------------------------------------------------- 

**ELEMENTS 

**-------------------------------------------------------------- 

*Element, type=C3D10MH, elset=Matrix, input=EleMatrix.txt 

*Element, type=C3D10MH, elset=Particle, input=ElePart.txt 

**-------------------------------------------------------------- 

**Node set definitions 

**-------------------------------------------------------------- 

**Node sets: surface (edges not included) 

*nset, nset=Xinf, UNSORTED 

*include, input=Surf1.txt 

*nset, nset=Xsup, UNSORTED 

*include, input=Surf2.txt 
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*nset, nset=Yinf, UNSORTED 

*include, input=Surf3.txt 

*nset, nset=Ysup, UNSORTED 

*include, input=Surf4.txt 

*nset, nset=Zinf, UNSORTED 

*include, input=Surf5.txt 

*nset, nset=Zsup, UNSORTED 

*include, input=Surf6.txt 

**Node sets: edge (corners not included) 

**------------------------------------------- 

*nset, nset=Xaxis1, UNSORTED 

*include, input=Edge1.txt 

*nset, nset=Xaxis2, UNSORTED 

*include, input=Edge2.txt 

*nset, nset=Xaxis3, UNSORTED 

*include, input=Edge3.txt 

*nset, nset=Xaxis4, UNSORTED 

*include, input=Edge4.txt 

*nset, nset=Yaxis1, UNSORTED 

*include, input=Edge5.txt 

*nset, nset=Yaxis2, UNSORTED 

*include, input=Edge6.txt 

*nset, nset=Yaxis3, UNSORTED 

*include, input=Edge7.txt 

*nset, nset=Yaxis4, UNSORTED 

*include, input=Edge8.txt 

*nset, nset=Zaxis1, UNSORTED 

*include, input=Edge9.txt 

*nset, nset=Zaxis2, UNSORTED 

*include, input=Edge10.txt 

*nset, nset=Zaxis3, UNSORTED 

*include, input=Edge11.txt 

*nset, nset=Zaxis4, UNSORTED 

*include, input=Edge12.txt 

**------------------------------------------- 

**Node sets: corner 

*nset, nset=Corner1, UNSORTED 

*include, input=corner1.txt 

*nset, nset=Corner2, UNSORTED 

*include, input=corner2.txt 

*nset, nset=Corner3, UNSORTED 

*include, input=corner3.txt 
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*nset, nset=Corner4, UNSORTED 

*include, input=corner4.txt 

*nset, nset=Corner5, UNSORTED 

*include, input=corner5.txt 

*nset, nset=Corner6, UNSORTED 

*include, input=corner6.txt 

*nset, nset=Corner7, UNSORTED 

*include, input=corner7.txt 

*nset, nset=Corner8, UNSORTED 

*include, input=corner8.txt 

**--------------------------------------------------------------- 

**MATERIALS  

**--------------------------------------------------------------- 

** Section: Material1_Section 

*Solid Section, elset=Matrix, material=Material1 

*Material, name=Material1 

*Hyperelastic, neo hooke 

 0.5, 0.0 

** Section: Material2_Section 

*Solid Section, elset=Particle, material=Material2 

*Material, name=Material2 

*Hyperelastic, neo hooke 

 5., 0.0 

**---------------------------------------------------------------  

** PBC constraints: Equations 

**---------------------------------------------------------------  

*include, input=EqCorners.txt 

*include, input=EqEdges.txt 

*include, input=EqSurfaces.txt 

**---------------------------------------------------------------  

** STEPS: Step-1 

**---------------------------------------------------------------  

*Step, name=Step-1, nlgeom=YES 

*Static 

0.05, 1., 1e-03, 0.05 

**---------------------------------------------------------------  

** BOUNDARY CONDITIONS 

**---------------------------------------------------------------  

** Name: BC-1 Type: Displacement/Rotation 

*Boundary 

Corner1, 1, 3 

Refpoint4, 2, 3 
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Refpoint5, 3, 3 

Refpoint4, 1, 1, 1.0 

**--------------------------------------------------------------- 

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Node Output 

RF, U 

*Element Output, directions=YES 

EVOL, IVOL, LE, NE, S 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

*End Step 
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Appendix C: Brief introduction of Bass’s experiments [81] 

 

In order to evaluate the theory described in section 4.2, experimental results are needed 

to verify the theoretical analysis. As a matter of fact, experiments carried on biological 

tissues must follow extremely strict protocols, and require many precise devices and 

special laboratory, so it is impossible and impractical to repeat the experiments by 

ourselves.  

 

As mentioned in Chapter 4, the experimental data adopted from Bass et al [81] are in 

vitro experiment results of uniaxial and biaxial tension of Human Annulus Fibrosus 

(HAF). In this experiment, specimens from five different human spines were processed 

and prepared beforehand. In order to make sure that the spines from donors were normal 

and physiological healthy, certain examinations had been carried out before and after 

harvest. Bones connected by the annulus were conserved for the sake of maximizing the 

specimen height and mimicking the physical load state. The original annulus thickness 

of each specimen was measured and average thickness was calculated and applied in the 

later analysis. Summary of the specimens’ preparation steps is presented below: 

 

1. Harvest, freeze and X-ray the human spines; 

2. Separate and section the vertebrae and remove attached soft tissue; 

3. Cut thin slices from the front side of the rest of the disc; 

4. Cut these slices again in the vertical direction to the previous cutting interface; 

5. Remove redundant bones and tissues to obtain the final specimens; 

6. Select qualified specimens for the experiments. 

 

The schematic procedure of preparing specimens is shown in Figure C1 (Figure 1 in 

Bass et al.[81]). During the experiment, the specimens were immersed in physiological 

saline. The schematic diagram of the biaxial testing devices is shown in Figure C2 

(Figure 2 in Bass et al.[81]). Prerequisite loading cycles were necessary for each 

specimen to eliminate the pseudo-strain and identify a relatively stable initial condition. 

Two specimens among the five were applied uniaxial tensile loading along the axial 

directions; for the rest of the specimens, biaxial tensile tests were carried out. Each 

sample was preloaded with a series of strains ( 22E = 0.0,  0.0125,  0.025, +0.0375, 
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respectively) on the circumferential directions, and tensile force was measured as the 

specimen was stretched along the axial direction. Here the circumferential direction is 

the 2-direction and tensile direction is the 1-direction, which are presented in Figure C1. 

The specimens were left still for fifteen minutes during every preload strain case, which 

helped it back to the equilibrium state. 

 

 

Figure C1 Schematic diagram of specimens’ preparation steps 

 

With the help of commercial software Image J (http://rsbweb.nih.gov/ij/), the uniaxial 

and biaxial tests data were digitalized from the figures shown in the paper and strain 

energy of the ground matrix with collagen fibres under different stretch ratios, which are 

later adopted to compare with the FE simulation results to verify the existence of fibre-

matrix interaction.  

  

http://rsbweb.nih.gov/ij/
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Figure C2 Schematic diagram of biaxial testing device 
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