
 

  

 

 

 

 

 

 

The spatial resolutions of stereo and motion perception 

and their neural basis 

 

 

Fredrik Allenmark 

 

 

 

 

Doctor of Philosophy 

Institute of Neuroscience 

Newcastle University 

December 2011



i 

 

 

 

Abstract 

 

Depth perception requires finding matching features between the two eye’s images to 

estimate binocular disparity. This process has been successfully modelled using local cross-

correlation. The model is based on the known physiology of primary visual cortex (V1) and 

has explained many aspects of stereo vision including why spatial stereoresolution is low 

compared to the resolution for luminance patterns, suggesting that the limit on spatial 

stereoresolution is set in V1. We predicted that this model would perform better at 

detecting square-wave disparity gratings, consisting of regions of locally constant disparity, 

than sine-waves which are slanted almost everywhere. We confirmed this through 

computational modelling and performed psychophysical experiments to test whether human 

performance followed the predictions of the model. We found that humans perform equally 

well with both waveforms. This contradicted the model’s predictions raising the question of 

whether spatial stereoresolution may not be limited in V1 after all or whether changing the 

model to include more of the known physiology may make it consistent with human 

performance. We incorporated the known size-disparity correlation into the model, giving 

disparity detectors with larger preferred disparities larger correlation windows, and found 

that this modified model explained the new human results. This provides further evidence 

that spatial stereoresolution is limited in V1. Based on previous evidence that MT neurons 

respond well to transparent motion in different depth planes we predicted that the spatial 

resolution of joint motion/disparity perception would be limited by the significantly larger 

MT receptive field sizes and therefore be much lower than the resolution for pure disparity. 

We tested this using a new joint motion/disparity grating, designed to require the detection 

of conjunctions between motion and disparity. We found little difference between the 

resolutions for disparity and joint gratings, contradicting our predictions and suggesting 

that a different area than MT was used.  
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Chapter 1.  Introduction 

This thesis is about a the spatial resolutions of the human abilities to see in depth and to 

perceive motion and about modelling what happens in early areas of the visual system in 

order to understand what it is that sets the limit of these resolutions. The visual system is 

generally thought of as having a hierarchical structure with lower and higher visual areas 

and where receptive field sizes grow larger when moving higher up in the hierarchy. The 

hierarchy starts with the retina which projects mainly to the lateral geniculate nucleus 

(LGN) but also to the pretectum which is important for papillary reflexes and to the 

superior colliculus which has a role in the guidance of eye movements. The LGN serves as 

a relay between the retina and primary visual cortex (V1). A property of LGN cells that is 

relevant to the topic of this thesis is that each individual LGN cells only receives input from 

one eye. V1 is the first visual area where binocular cells, that is cells that receive 

information from both eyes, are found. That is why area V1 is of particular interest in the 

study of spatial stereoresolution, the resolution with which we can perceive patterns of 

variation in depth. An important hypothesis splits the visual system into two visual streams, 

the dorsal and the ventral streams. These streams are sometimes called the “where” and 

“what” streams since the dorsal stream has been believed to be more involved in 

representation of object locations and the ventral stream more with form recognition and 

object representation. Area V2 is part of both the dorsal and the ventral stream. In depth 

perception this area is thought to have a role in perception of relative depth, but it also has 

other functions. After area V2 the ventral stream includes area V4 and the inferotemporal 

cortex which is thought to have a role in object recognition. The dorsal stream includes area 

MT which receives projections both directly from V1 and from the dorsal part of V2. Cells 

in area MT are strongly sensitive to object motion and also to depth. Cells in area V1 are 

also sensitive to motion but differ from area MT cells in that when motion in two different 

directions are combined in such a way that we perceive a total motion in a third direction 

V1 cells are only selective for the component directions while area MT cells are selective 

for the combined direction of motion that we perceive. Area MT projects to area MST 

which is involved in the perception of optic flow, i.e. the changes in the visual image that 
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occur as a consequence of our motion through the environment. Since higher areas than MT 

have such a more complex and specialized role in motion processing and area V1 cells in 

general responds inconsistently with human perception to combined motion consisting of 

component motions in two or more directions, area MT seems like an ideal candidate for a 

basic motion processing area. In Chapter 4 we will consider the hypothesis that area MT 

may be where the limit on motion resolution and joint depth/motion resolution is set. 

 

Because of their difference in position the two eyes receive slightly different images of the 

surrounding world. The visual system is able to estimate the distances to different objects 

that we are looking at from these differences (binocular disparities). This process is 

comparatively well understood in terms of knowledge about the underlying physiology, 

computational models and data from psychophysical experiments. Therefore, in the field of 

stereovision, we are in a particularly good position to compare computational models to 

human performance. In particular models that use local cross-correlation to find matches 

between the two eye’s images have been successfully used to explain the low human spatial 

stereoresolution for sinusoidal disparity gratings (Banks, Gepshtein and Landy 2004; 

Filippini and Banks 2009). This class of models is based on the known physiology of 

primary visual cortex (Nienborg, Bridge, Parker and Cumming 2004) and in particular the 

size of the correlation window corresponds to the receptive field size of V1 cells. The use 

of windowed cross-correlation implies that the model has an initial encoding of disparity as 

a set of frontoparallel patches. As a consequence these models would be predicted to 

perform better at detecting square-wave disparity gratings, which are built from segments 

of constant disparity than sine-waves.  

 

Motivated by the prediction made in the above paragraph, the first subproject presented in 

this thesis looked at comparing the detectability of sinusoidal and square-wave disparity 

gratings, for the local cross-correlation model and in human subjects. It was found that the 

model performed better for the square-waves than for the sine-waves at high disparity 

amplitudes, in contrast to the human subjects who performed equally well with both wave-

forms at all frequencies and amplitudes. This presented a challenge to the local cross-

correlation model and to the idea that spatial stereoresolution is set in primary visual cortex. 

Before trying to introduce processing done at later stages in the visual system into the 
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model however it seemed natural to first try to include more of the known physiological 

detail of V1 cells. In particular the known size-disparity correlation (Tyler 1973; Smallman 

and MacLeod 1994; Prince, Cumming and Parker 2002) seemed a promising candidate for 

an addition to the model that might help reduce the difference between performance on 

square-waves and sine-waves, since introducing a size-disparity correlation into the model 

would make the high amplitude square-waves on average be detected by cells with larger 

receptive field sizes compared to sine-waves with the same amplitude and this would be 

expected lead to a reduction of performance on high frequency high amplitude square-

waves compared to sine-waves with the same frequency and amplitude. 

 

Motivated by this intuition the next subproject looked at a local cross-correlation model 

incorporating a size-disparity correlation and tested this model with the same stimulus and 

task used in the first subproject. The modified model performed consistently with the 

human results found in the first subproject. This provided further evidence that spatial 

stereoresolution is limited in area V1. The modified model also performed consistently with 

human results on the frequency dependence of the upper depth limit (Tyler 1973). This 

suggests that the disparity gradient limit may be a consequence of the size-disparity 

correlation as was originally suggested by Tyler (1973).  

 

The final subproject was motivated by a prediction made based on previous evidence that 

cells in MT respond well to transparent motion in different depth planes (Bradley, Qian and 

Andersen 1995) and the much larger receptive field sizes in MT compared to V1 (Gattass 

and Gross 1981). The prediction was that the spatial resolution for perception of joint 

motion/disparity perception should limited by the large MT receptive field sizes and 

therefore be much worse that the resolution for pure disparity perception which is thought 

to be limited by V1 receptive field sizes. This hypothesis was tested in psychophysical 

experiments using pure disparity gratings, pure motion gratings and joint motion/disparity 

gratings, designed to require the detection of conjunctions between motion and disparity. 

The results supported at most a much smaller difference in receptive field size between 

cells used for joint motion/disparity perception and cells used for pure disparity perception 

than what would be predicted based on the difference in receptive field sizes between V1 

and MT. The receptive fields for cells used in motion perception were found to be 
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significantly smaller than for either the pure disparity or the joint motion disparity, meaning 

that the pure motion task was also unlikely to be performed by area MT. 

1.1 Thesis structure 

Section 1.2 reviews previous literature on stereo vision and motion perception. 

 

Chapter 2 describes the psychophysical experiments and modelling using the original cross-

correlation model designed to test the hypothesis that square-wave disparity gratings should 

be easier to detect than sine-wave gratings. 

 

Chapter 3 describes the modelling using the modified cross-correlation model with the size-

disparity correlation. 

 

Chapter 4 describes the experiments designed to compare the spatial resolution pure 

disparity gratings, pure motion gratings and joint motion/disparity gratings. 

 

Chapter 5 contains conclusions, a discussion of limitations of the work presented here and 

ideas on how it could be taken further. 

 

1.2 Literature review 

1.2.1 Psychophysics 

In this section some important research on human visual perception will be reviewed with 

the focus on depth perception and in particular those features of depth perception that will 

play an important role in this thesis. 

1.2.1.1 Frequency analysis 

Campbell and Robson (1968) provided evidence that, for contrast gratings, there exist 

independent channels sensitive to different ranges of spatial frequencies. They measured 

the contrast at which subjects found a contrast grating to be barely detectable for sine-wave 

and square-wave contrast gratings with a range of frequencies. They found that, for 

frequencies higher than 0.8 cycles/degree, the ratios between the detection thresholds for 
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the square-waves and those for the sine-waves were all close to the value of 4/  which 

would be predicted if the visibility of a square-wave grating depended primarily on the 

amplitude of the first harmonic. They also measured the lowest contrast at which square-

wave gratings first became distinguishable from sine-wave gratings and found that this 

happened when the third harmonic of the square-waves reached their own threshold.  

Graham and Nachmias  (1971) provided further evidence for the existence of multiple 

frequency channels. They measured the lower contrast threshold for detection of gratings 

with frequency f, gratings with frequency 3f and combinations of the two for values of f in 

the range from 0.9 to 6.3 cycles/degree. The combined gratings consisted of gratings with 

frequencies f and 3f added either with such a relative phase that the peaks of the f 

component were added to the peaks of the 3f component or with such a phase that the peaks 

were subtracted from each other. They found that for the combined gratings, the detection 

threshold was always close to the threshold of one of the component gratings, regardless of 

the relative phase used as well as the ratio between the contrasts of the f and 3f 

components. 

 

The first results of a similar nature in the disparity domain were reported by Tyler (1975). 

Tyler demonstrated that the frequency of a disparity grating appears shifted after adaptation 

to another disparity grating with slightly different frequency, and that this effect only 

occurs if the adapting grating has a similar orientation to the test grating. He interpreted this 

as “evidence for channels tuned to stimulus size at the hypercyclopean level of processing, 

independently of any tuning prior to that level.” 

 

Schumer & Ganz (1979) used the same methodology as Graham and Nachmias to test 

whether there exists spatial frequency channels in the disparity domain.  Like Graham & 

Nachmias they found that the results were independent of the relative phase used and that 

the thresholds for the combined gratings were close to the threshold of one of the 

component gratings most of the time. However, the thresholds for combined gratings where 

both components were close to their individual threshold were found to be somewhat lower 

than either of the individual thresholds. They argued that this may be explained in part by 

probability summation and in part by less than complete independence between the 

different frequency channels. They also did adaptation experiments were they had subjects 
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adapt to sine-wave disparity gratings of different frequencies and measured lower 

amplitude detection thresholds for sine-wave gratings of different frequencies before and 

after adaptation. They found that adaptation caused elevation of thresholds, where the 

elevation was highest close to the adapting frequency and fell off for larger and smaller 

frequencies. They argued that this may be seen as further evidence for multiple spatial 

frequency channels since if the same mechanisms were used to detect gratings of all 

different frequencies, then one would expect no frequency dependence of the threshold 

elevation caused by adaptation. The curves of elevation as a function of frequency had half-

amplitude bandwidth in the range from 2 to 3 octaves. 

 

Cobo-Lewis and Yeh  (1994) provided further evidence for channels tuned to different 

spatial frequencies of disparity corrugations. They measured detection thresholds for sine-

wave corrugations in random dot stimuli with added notched noise maskers, where the 

frequency of the signal was logarithmically centred between two intervals of narrowband 

filtered noise.  They found that thresholds improved with increasing distance between the 

signal’s frequency and the frequencies of the masking noise for several different signal 

frequencies. They found masking curves in the same bandwidth range reported by Schumer 

& Ganz  (1979), but also narrower ones, with the narrowest being 1.1 octaves. They argued 

that this difference could be explained if the adaptation effect was nonlinear, in such a way 

that threshold increases slower than linearly with increasing intensity of the adapting 

stimuli.  

 

More recently, Grove and Regan (2002) measured frequency discrimination thresholds for 

sine-wave disparity gratings with and without adaptation. They found that adaptation to a 

sine-wave grating at the frequency of the test grating did not result in any increase in 

discrimination threshold, but that adaptation to gratings with frequencies offset in both 

directions did produce an increase. They argued that these results could be understood if 

spatial frequency channels at neighbouring frequencies to the one most closely tuned to the 

frequency of the stimulus are used in discrimination tasks. Neighbouring channels would be 

expected to be more sensitive to changes in frequency if the tuning curves of the channels 

are relatively flat near the preferred frequency.  



7 

 

1.2.1.2 Disparity gradient 

Burt and Julesz (1980) reported that the largest disparity at which fusion is possible is 

determined by a disparity gradient limit. They used a stimulus made up of rows of repeated 

patterns consisting of two horizontally and vertically separated dot pairs with different 

disparities. The disparities were the same in each row, but the separation between dot pairs 

was decreased, thereby increasing the disparity gradient, with increasing row number. The 

subjects were asked to report at which row fusion was no longer possible. This was 

repeated with stimuli with different disparities and different orientations for the separation 

between dot pairs as well as for different viewing distances and subjects always reported 

being unable to fuse for disparity gradients larger than a limit close to one. 

 

One field of study where a disparity gradient limit would be expected to have an effect is 

the study of stereo transparency, where many studies have used random dot stereograms 

where different dots in the same region belong to surfaces at different depths. Such stimuli 

necessarily contain local disparity gradients, which increase with increasing relative 

disparity between the different surfaces as well as with the density of the surfaces. Several 

studies using such stimuli have found that the perception of transparency is impaired by 

increasing the relative disparity as well as the dot density (Akerstrom and Todd 1988; 

Gepshtein and Cooperman 1998; Tsirlin, Allison and Wilcox 2008). One study found that 

increasing the relative disparity had no effect on transparent surface segregation (Wallace 

and Mamassian 2004) but Tsirlin et al. (2008) argued that the most likely cause of this is 

that the disparities and the density used in that study were lower than the ones used in the 

other studies and below the limit were performance starts to drop. These results could 

potentially be explained by a disparity gradient limit, although none of the studies 

mentioned specifically set out to test that hypothesis. 

 

One study of stereo transparency which specifically addressed the question of what effect 

the disparity gradient limit has on the perception of transparency was performed by McKee 

and Verghese  (2002). They asked test subjects to judge which of two dot patterns, 

presented in two separate time intervals, that contained a target consisting of four obliquely 

oriented dots hidden among pairs of noise dots with the same orientation as the target. The 

noise dots were located either in the same plane as the target dots, with the different pairs 
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distributed over two different depth planes on each side of the target or with the different 

dots in each pair placed in different depth planes allowing manipulation of disparity 

gradient without changing the relative disparity between the planes by changing the 

separation of dots within a pair. They found that separating the noise dots into different 

planes improved performance on the task and that the improvement decreased with 

increasing disparity gradient but remained significant up to disparity gradients of about 

four.  They also tested how the perceived relative depth between the two planes depended 

on the disparity gradient, by asking subjects to compare to a reference, and found that, with 

the same relative disparity but increasing disparity gradient, the perceived relative depth 

decreased with increasing disparity gradient. They interpreted this as evidence that 

improvement of task performance with the introduction of different depth planes was 

dependent on the ability to clearly perceive transparency. 

 

A challenge to the idea that there is a disparity gradient limit on the ability to perceive 

disparity corrugations came from Lankheet and Lennie  (1996). They did experiments with 

dynamic RDS containing moving and static sine-gratings at different amplitudes and 

frequencies and with different levels of noise added to the disparities. They measured noise 

thresholds for detection of the gratings. For the static gratings they concluded that 

“Detection of binocular correlation depends on both spatial frequency and amplitude of 

disparity modulations, and cannot be reduced to a description in terms of gradient limits.” 

However, the data of Lankheet and Lennie has received a different interpretation. Ziegler, 

Hess and Kingdom (2000) tested the ability of test subjects to discriminate between 

disparity gratings, based on random dot type stimuli with Gabor micropatterns instead of 

dots, at two different oblique orientations. They used sine-wave, square-wave and 

trapezoidal gratings. They argued that using trapezoidal gratings allowed them to vary 

frequency and disparity gradient independently by manipulating the ramp width. They 

measured upper disparity amplitude thresholds at a range of frequencies as well as ramp 

widths for the trapezoidal gratings. For the sine-waves they found similar results to 

Lankheet and Lennie (1996). They found that their data could be explained reasonably well 

by a model based on applying a disparity gradient limit after low-pass spatial filtering in the 

disparity domain. 
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1.2.1.3 Disparity gratings 

There have been several studies using sinusoidal disparity gratings. Tyler (1974) was the 

first to use random dot stereograms of sinusoidal disparity gratings. Tyler used random dot 

stereograms containing horizontal sine-wave gratings of increasing frequency in the vertical 

direction and decreasing amplitude in the horizontal direction. Subjects were asked to 

indicate the borders where the grating appeared as a flat surface rather than a sine-wave. He 

found that the highest frequency at which the gratings could be perceived was around 4 

cycles per degree and that the largest peak-to-peak disparities at which the grating could be 

perceived decreased with increasing frequency and could be reasonably well described by 

the equation           where      is the peak-to-peak disparity, f is a frequency and k 

is a constant that differed between different subjects. 

 

Bradshaw & Rogers (1999) showed that the lowest disparity amplitude at which sinusoidal 

disparity gratings can be perceived is lower for horizontal gratings than for vertical gratings 

at low spatial frequencies. They measured lower amplitude thresholds for sinusoidal 

disparity corrugations and found that the frequency where the lowest threshold was 

obtained was higher for vertical than for horizontal gratings and that thresholds were 

significantly higher for the vertical gratings for frequencies below 0.9 cpd.  Serrano-

Pedraza has shown that, at least with some subjects, this anisotropy appears when using 

sine-wave corrugations but not when using square-wave corrugations (Serrano-Pedraza and 

Read 2010). 

 

Glennerster (1996) used square-wave disparity gratings in an experiment intended to test 

whether a coarse-to-fine algorithm or a co-operative algorithm provides a better model  of 

human depth perception. The experiment involved comparing the exposure times necessary 

to perceive three different patterns in depth on a zero disparity or uncorrelated background, 

and it was argued that the two different algorithms make different predictions about what 

kind of pattern it should be easier to perceive. In particular the coarse-to-fine algorithm 

predicts that a high-frequency square-wave should require a longer exposure time than the 

two other pattern that had different average depth from the background. The predictions of 

the cooperative algorithm are instead based on smoothness which was the same for the 

square-wave and one of the other patterns, but different for the third. The results of this 
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experiment supported the coarse-to-fine algorithm. This was further supported another 

experiment were the frequency of the square-wave was varied and it was found that shorter 

exposures were required at lower frequencies. A study by Parker and Yang also concluded 

that a coarse-to-fine algorithm may be used in human stereo vision. They did experiments 

with random dot patterns with two planes in depth and examined the conditions under 

which one surface at the average disparity was perceived rather than two transparent 

surfaces. The inference that a coarse-to-fine strategy may be used was based on the finding 

that a larger disparity difference between the planes was required to see transparency rather 

than disparity averaging when the average disparity of the planes was offset from the plane 

of fixation. They took this to imply that coarser filters are used to detected larger disparities 

and that therefore “the neural apparatus is available to implement a coarse to fine strategy 

in stereo matching”. 

 

 

1.2.2 Neuronal mechanisms 

In this section some of the most important research on the mechanisms responsible for 

depth perception and motion perception will be reviewed. 

1.2.2.1 Energy Model 

Ohzawa et al. (1990) measured the activity of cells in the visual cortex of cats while 

presenting dark and light bars at different positions on the two retinas and showed that a 

subset of complex cells are especially suited as binocular disparity detectors, having a fine 

disparity selectivity that is constant over the receptive field, and responding only to the 

correct contrast polarity. They developed a model of these cells where a complex cell 

received input from two pairs of simple cells, with a 90 phase shift between the pairs and 

where the output of each simple cell was half-wave rectified and squared before being 

summed together. This model was shown to produce similar results to real complex cells, 

when tested with bright and black bars in different positions. This so called energy model 

has been very influential, several computational models has been based on it and its 

properties have been subject to mathematical analysis (Qian 1994; Fleet, Wagner and 

Heeger 1996; Zhu and Qian 1996; Qian and Zhu 1997; Anzai, Ohzawa and Freeman 1999; 
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Tsai and Victor 2003). There has also been suggestions of minor changes to bring it closer 

to explaining all physiological data (Read, Parker and Cumming 2002; Haefner and 

Cumming 2008). 

1.2.2.2 Cross-correlation based models 

Banks, Gepshtein & Landy  (2004) compared the predictions of a model of disparity 

detection, based on crosscorrelation between the images on the two retinas, to the results of 

psychophysical experiments with sinusoidal disparity modulations.  They showed subjects 

random dot patterns containing sinusoidal corrugations at      orientation from horizontal 

and asked subjects to judge which orientation was being presented in each trial.  They used 

an adaptive staircase procedure to obtain upper frequency thresholds. They found that, with 

disparity amplitude held constant, frequency thresholds rose with increasing dot density up 

to a maximum which depended on the disparity amplitude, and that the thresholds were 

close to the Nyquist limit up to a certain dot density where performance levelled off.  They 

further found that performance levelled off at higher frequencies when the experiment was 

repeated with gratings with lower disparity amplitude. They interpreted this as evidence 

that resolution had been limited by the disparity gradient in their first experiment.  They 

also explored the effect of optical blur by introducing extra blur using diffusing screens.  

 

They found that performance levelled off at lower frequencies at higher levels of blur. They 

concluded that the luminance spatial frequency content of the stimulus is one factor that 

limits spatial stereoresolution, similar to what had been found in a previous study by Hess 

et al. (1999). They also presented the stimulus at different retinal eccentricities and found 

that performance levelled off at lower frequencies when the stimulus was presented at 

higher eccentricities. They argued that this was due to optical low pass spatial filtering and 

larger receptive fields in the periphery.  

 

To test whether spatial stereoresolution was limited by the binocular matching process 

Banks, Gepshtein and Landy used an algorithm based on cross-correlation between the 

images on the two retinas to model binocular matching. They used the same images that 

were used in their psychophysics experiments, convolved them with the point-spread 

function of the well focused eye (Campbell and Gubisch 1966) to simulate optical blur and 
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computed windowed cross-correlation between the left and the right images. A square 

window was moved along a vertical line in the left eyes image and for each vertical 

position a window of the same size in the right eyes image was moved along all horizontal 

positions at the same vertical position and the cross-correlation of the contents of the 

window was computed for each combination of positions, resulting in a plot of correlation 

as a function of disparity and vertical position. The effects of window size, dot density and 

blur were examined, and it was found that resolution could be improved by decreasing the 

window size down to a certain limit that decreased with increasing dot density up to a 

certain limit determined by the level of blur. By testing the algorithm on corrugations with 

different disparity amplitudes it was found that the estimation of disparity became worse as 

the disparity gradient increased and that “The algorithm finds the highest correlations in the 

parts of the stimulus that are frontoparallel” (Banks, Gepshtein and Landy 2004). A similar 

result had been found in the physiological experiments of Nienborg et al. (2004) who 

measured the responses of V1 cells to sinusoidal disparity corrugations and found that the 

responses were as would be expected if the optimum disparity was constant across the 

receptive field of the cells. 

  

The same model described above, except now using Gaussian windows, was compared 

further to human performance using a set of stimuli designed to test the effect of disparity 

gradient on performance (Banks, Gepshtein and Rose 2005; Filippini and Banks 2009). The 

same set of stimuli was used to test human subjects in psychophysics experiments and to 

test the model. The stimuli used were random dot stereograms of sawtooth disparity 

gratings of different frequency, phase, amplitude and parity (i.e. with the slats of the sawtooth 

waveform slanted either top-back or top-forward) containing different proportions of signal 

dots and noise dots.  The task for both the human subjects and the model was to judge the 

parity of the gratings and for each combination of amplitude and frequency coherence 

thresholds were measured using the method of constant stimuli. The output of the model 

was correlated to a set of templates, and the model reported the parity to be that of the best 

matching template. The thresholds for both human subjects and the model was found to rise 

with increasing disparity gradient and the results for different frequencies overlapped 

reasonably well when plotting thresholds as a function of disparity gradient but not when 

plotting thresholds as a function of amplitude, indicating that disparity gradient and not 
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disparity amplitude was the main limiting factor on performance. The psychophysics 

experiments were repeated at two different viewing distances with similar results, showing 

that performance depended on the disparity gradient on the retina rather than the slant in the 

stimulus. The model was tested with three different window sizes with similar results 

except that thresholds were somewhat higher with the smallest window size. The main 

differences between the model and human performance were that the thresholds were 

somewhat lower in general for the model and that the rise of thresholds with disparity 

gradient was somewhat steeper for the human subjects. Banks et al. argued that the latter 

difference may be related to the fact that human disparity estimation is worse for large 

absolute disparities (Blakemore 1970), while the model had been designed to handle large 

disparities as well as it handles small ones.   

 

 Filippini and Banks (2009) also used the same model, with the Gaussian window and the 

template matching, to test quantitatively how well the model predicted human performance 

near the stereoresolution limit.  The stimuli used were the same that were used by Banks et 

al. (2004). They found that the stereoresolution of the model was close to the Nyquist limit 

up to a limiting dot density where performance levelled off and that the highest attainable 

stereoresolution increased with decreasing window size. For large window sizes the highest 

attainable stereoresolution was found to be close to inversely proportional to the window 

size but it levelled off at smaller windowsizes. The highest stereoresolution that could be 

reached by decreasing the window size was higher for smaller levels of blur.  The 

modelling data also showed that the dependence of stereoresolution on the level of blur was 

closest to that found in human data (Banks, Gepshtein and Landy 2004) when a window 

size of 6 arcmin was used. 

 

1.2.2.3 Motion 

Resolution for motion perception has also been studied and has been found to be slightly 

better than what is generally found for disparity (Anderson and Burr 1987; Georgeson and 

Scott-Samuel 2000) with an estimate of 2 arcmin for the smallest receptive field size of any 

motion detector unit (Anderson and Burr 1987; Anderson and Burr 1989). However, to the 
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authors’ best knowledge, resolution for disparity and motion perception have never been 

studied and compared in the same subjects.  

 

The Pulfrich effect (Morgan and Thompson 1975) is an illusion that has played an 

important role in the study of joint motion/disparity perception. The original Pulfrich effect 

can be demonstrated by viewing a pendulum swinging in a frontoparallel plane while 

introducing an interocular delay, for example by placing a dark filter in front of one eye. 

The pendulum then appears to follow an elliptical path in depth. The original Pulfrich effect 

can be explained as arising because the interocular delay introduces a disparity. This 

happens because the pendulum moves during the time occupied by the interocular delay 

and will therefore be at different positions in the images reaching the brain from the left and 

the right eyes.  

 

Qian and Andersen modelled the integration of motion and disparity with a model based on 

the stereo energy model (Ohzawa, DeAngelis and Freeman 1990) and the motion energy 

model (Adelson and Bergen 1985) and showed that their model could account for the 

classical Pulfrich effect and a number of generalized Pulfrich phenomena (Qian and 

Andersen 1997). However, in the model of Qian and Andersen, individual model neurons 

encoded motion and disparity jointly, in the sense of having space-time inseparable 

receptive fields.  

 

Disparity and motion are encoded separately in a large portion of V1 cells with only a small 

portion having joint encoding (Read and Cumming 2005b). Therefore, the Qian and 

Andersen model, and similar models that explain the Pulfrich effects based on joint 

encoding, assume that a large portion of all disparity-selective V1 neurons are ignored 

when viewing Pulfrich stimuli. Inspired by this, Read and Cumming showed that a model 

with separate encoding can also explain the Pulfrich phenomena with an appropriately 

chosen read-out rule. Qian and Freeman (2009) reproduced the results of Read and 

Cumming with a more physiologically detailed model and showed that, under the 

additional physiologically based assumptions made in this model, a population of cells that 

are tuned to a range of motions and a range of disparities combinatorially (referred to as 

joint encoding by Qian and Freeman) are required to explain the full range of Pulfrich 
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effects. The ability to detect correlation between disparity and motion has been studied 

before (Bradley, Chang and Andersen 1998) but not the resolution of this ability. In chapter 

4 we study for the first time the resolution for detection of joint motion/disparity gratings.  
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Chapter 2.  Detectability of sine- versus square-wave disparity 

gratings: a challenge for current models of depth perception 

2.1 Introduction 

Stereopsis, the ability to estimate 3D depth based on binocular vision, is one of the best 

understood aspects of human perception. 150 years of psychophysical experiments have 

documented in detail how binocular disparities between the eyes result in a depth percept 

(Howard and Rogers 1995), while in the last two decades, physiological experiments have 

mapped how disparities drive the firing rates of individual neurons in visual cortex (Roe, 

Parker, Born and DeAngelis 2007). Stereo vision has thus emerged as a paradigm for 

relating perceptual experience to neuronal activity.  

 

A recent, highly successful example has been the development of a computational model 

explaining the spatial resolution of stereopsis in terms of the properties of neurons in 

primary visual cortex (Banks, Gepshtein and Landy 2004; Nienborg, Bridge, Parker et al. 

2004; Filippini and Banks 2009). Stereo spatial resolution is traditionally assessed using 

sinusoidal “disparity gratings”, corrugated surfaces which go back and forth in depth 

(Figure 1A). The upper frequency limit at which such disparity gratings can be perceived 

has been found to be around 3-4 cycles per degree (Tyler 1974; Bradshaw and Rogers 

1999; Banks, Gepshtein and Landy 2004; Filippini and Banks 2009), much lower than the 

corresponding limit for luminance gratings, which can be as high as 50-60 cpd under 

optimal luminance conditions (Campbell and Green 1965). In a linked pair of papers 

(Banks, Gepshtein and Landy 2004; Nienborg, Bridge, Parker et al. 2004), Banks, 

Cumming and colleagues explained this limit in terms of the receptive field size of 

disparity-selective neurons in primary visual cortex (V1).  

 

Their analysis was based on the stereo energy model, in which disparity is encoded by a 

local cross-correlation between the two eyes’ images (Ohzawa, DeAngelis and Freeman 

1990; Ohzawa, DeAngelis and Freeman 1997; Banks, Gepshtein and Landy 2004; 
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Nienborg, Bridge, Parker et al. 2004; Filippini and Banks 2009). In this model, interocular 

correlation is measured locally within a finite window corresponding to the neuronal 

receptive field, and the stereoresolution limit is determined by the smallest window-size 

available. When the frequency is high enough that the disparity changes significantly 

within this window, the effective interocular correlation is reduced and the signal is lost in 

the noise (compare Figure 2B to Figure 2A). It is this which eventually limits the ability to 

resolve the grating. Banks, Cumming and colleagues showed that the stereoresolution of 

human and monkey observers was remarkably consistent with the size of receptive fields in 

V1. Thus, the local cross-correlation model is a noteworthy example of how perceptual 

abilities can be successfully related to the properties of nerve cells recorded in cerebral 

cortex.  

 

An important feature of this model is that the initial encoding of disparity is piecewise-

frontoparallel. That is, the model neurons respond best when the disparity within their 

receptive field is constant. This explains why the resolution for disparity gratings is so 

much lower than for luminance gratings. V1 receptive fields typically have several different 

ON or OFF subregions which respond to different luminance polarities. The limiting period 

for luminance gratings reflects the size of these subregions, not the receptive field as a 

whole. In contrast, in the stereo domain, V1 receptive fields appear to prefer uniform 

disparity (Nienborg, Bridge, Parker et al. 2004). 

 

Sine-wave disparity gratings (Figure 1A) are always a sub-optimal stimulus for this 

population, since their disparity is never even locally constant. Square-wave disparity 

gratings, on the other hand, consist of regions of locally constant disparity (Figure 1B). 

When the grating’s period exceeds the window-size used for local cross-correlation, the 

disparity within the window is constant. Neurons with the optimal tuning (black ellipses in 

Figure 2) should thus experience an interocular correlation of near unity. Critically, this 

statement is true independent of the grating’s amplitude (compare Figure 2C with Figure 

2A, blue curves). In contrast, for sine-wave gratings, the range of different disparities 

falling in a window depends on the amplitude of the grating (compare Figure 2C with 

Figure 2A, red curves and green shaded regions). 
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From this qualitative argument, we expected that the piecewise-frontoparallel model should 

find it easier to detect square-wave disparity gratings than sine-wave gratings, especially at 

high frequencies and/or amplitudes. If this prediction were borne out in human observers, 

this would be a powerful confirmation of the model. In this chapter, then, we first carry out 

computer simulations to establish whether the piecewise-frontoparallel model really does 

respond better to square-wave than sine-wave disparity gratings, and whether this is 

sensitive to the precise way in which the model is implemented. We next carry out 

psychophysical experiments to compare human performance to the predictions of the 

piecewise-frontoparallel model.  

 

 

Figure 1: Physical surfaces implied by (A) sine-wave and (B) square-wave disparity 

gratings 
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Figure 2: Sketch of sine- and square-gratings and a receptive field. The red and blue 

curves show the profile of (respectively) sine- and square-wave disparity gratings, 

with disparity varying as a function of vertical position in the visual field. The 4 

panels show gratings with low (AC) and high (BD) spatial frequencies, and with small 

(AB) and large (CD) amplitudes. The black ellipse shows the receptive field of a model 

neuron tuned to the largest disparity in the grating. At low frequencies (AC), the 

period of the grating is large compared to the correlation window (black lines), and 

the grating can be resolved. At high frequencies (BD), the period is small compared to 

the window, and the grating cannot be perceived. At low frequencies (AC), the 

square-wave presents only a single disparity within the local correlation window. This 

is not so for the sine-wave. For low amplitudes, the range of disparities within the 

receptive field is small (green shaded region in A), but as the amplitude increases, this 

range increases (green shaded region in C), even for low-frequency sine waves.  

 

2.2 Methods 

2.2.1  Psychophysics 

2.2.1.1 Experimental Setup 

The experiments were performed using a mirror stereoscope. The stimuli were displayed on 

the left and right halves of a single LCD-monitor with a physical display size of 41x25.5 

cm and a resolution of 1440x900 pixels. The size of the images was 350x350 pixels. With 

the viewing distance of 308 cm, the images subtended 1.8°x1.8° and each pixel subtended 
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0.3 arcmin. The mirrors were aligned to make the vergence distance 308 cm. The monitor 

was linearized (gamma-corrected) using a Minolta LS-100 photometer. White pixels were 

240 cd/m
2
 and black pixels were 0.26 cd/m

2
. 

2.2.1.2 Stimuli 

Stimuli were presented using Matlab (The Mathworks, Natick, MA, USA; 

www.mathworks.com) with the Psychophysics Toolbox (Brainard 1997; Pelli 1997). The 

grating stimuli used were random-dot stereograms depicting horizontally-oriented depth 

corrugations with either sine-wave or square-wave profiles (Figure 1). We varied the 

amplitude, frequency and phase of the gratings. Amplitude is defined as half the peak-to-

trough range of the waveform, (max-min)/2, except in the section Frequency analysis, 

where the amplitude of the fundamental is specified. The dots were 2x2 pixels, 0.6x0.6 

arcmin, and were white on a black background. Anti-aliasing, implemented in-house in our 

own Matlab code, was used to place dots at sub-pixel locations. The long viewing distance 

(308 cm) and small pixel size (0.3 arcmin, less than the retinal cone spacing) were used to 

ensure that the range of disparities and frequencies perceived by human observers was not 

limited by the resolution of the display. For the highest grating frequencies used in this 

study (5.7 cpd), sine- and square-wave profiles could be readily perceived and 

distinguished from one another when the stimuli were viewed up close in anaglyph, 

although they became invisible as the observer walked further away. This demonstrates that 

the limits on grating detectability were contained in the observer’s visual system, not the 

physical display.  

 

2.2.1.3 Task  

A two-interval forced-choice task was used, where one temporal interval contained a 

disparity grating and the other contained disparity noise (described below). The task was to 

report, by a button press, which interval contained the disparity grating. For three subjects 

the length of the temporal intervals was 500 ms, with a 100 ms blank between the intervals. 

A fourth subject was allowed to view each of the intervals for as long as he wanted before 

making a choice. Experimental trials were organized in blocks, most of which consisted of 

240-280 trials, where the frequency of the gratings was kept constant in each block. The 

http://www.mathworks.com/
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two waveforms and the different phases were always interleaved in blocks of experimental 

trials and in most cases different amplitudes were interleaved as well.  

 

On each trial, the disparity noise image was generated by assigning each dot a disparity 

drawn at random from the same distribution as the disparity grating presented in the other 

interval. Thus, in trials where the grating was a square-wave with amplitude A, the 

disparity noise dots had disparity +A or -A with equal probability. On sine-wave trials, they 

had a disparity in the range [-A,+A] . In the grating stimuli, all dots at a given vertical 

position had the same disparity, but in the noise stimuli, disparity was picked without 

reference to vertical position, so dots in the same row would have different disparities. 

2.2.1.4 Observers 

The 4 observers were the two authors, one additional experienced psychophysical observer 

and one inexperienced observer.  

2.2.1.5 Data analysis 

A truncated probability density function of a gamma distribution was fit to the data for each 

frequency. This was simply a descriptive function without any theoretical significance. The 

Matlab function FIT, using non-linear least squares, was used to do the fitting.  

2.2.2 Model 

2.2.2.1 Stimuli and task 

The same stimuli that were used in the psychophysics were also used in the modeling. The 

model had the same task as the human subjects: in each trial it was presented with two 

image-pairs, one containing a grating and one containing a noise pattern and it had to judge 

which one contained the grating.  

 

2.2.2.2 Preprocessing 

The model used here was based on the piecewise-frontoparallel local cross-correlation 

based model of Banks et al. (2004). The left- and right-eye images were first preprocessed 

to simulate the effects of the eye’s optics, and then passed to a cross-correlator. 
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The preprocessing consisted of convolving the images with the point-spread function of the 

well-focused eye: 

                               

where 

               
  
       

        
 
 

and a=0.583, s1=0.443 arcmin and s2=2.04 arcmin (Geisler and Davila 1985; Filippini and 

Banks 2009). The images were then scaled to make the distance between rows and columns 

0.6 arcmin. This was done to make sure the resolution of the images was no higher than the 

spacing between cones at the fovea (Geisler and Davila 1985; Filippini and Banks 2009; 

Rossi and Roorda 2009).  

 

2.2.2.3 Cross-correlator 

The preprocessed images were then passed to the cross-correlator. A window was moved 

along a vertical line in one eye’s image. For each vertical position of that window, a second 

window in the other image at the same vertical position was moved across an interval of 

horizontal positions centered on the horizontal position of the first window. For each 

combination of window-positions the correlation between the content of the windows was 

recorded. The correlation was defined as: 

 

        
          

                     
 

where    and    are the contents of the windows in the left and the right image multiplied 

by the window function and cov is the covariance. The window functions used to obtain the 

main results presented here were Gaussians centered on the current window position (that 

is, (x/2,y) in one eye and (-x/2,y) in the other) and cut off two standard deviations from 

the centre in each direction. The output from the cross-correlator was a two-dimensional 

image of correlation as a function of the horizontal disparity, x, between the windows as 

well as the vertical position of the windows, y (see Figure 3). The disparities used were in 

the range from -25 to 25 arcmin with a step of 0.6 arcmin (1 pixel in the scaled images). 

The step in the y-position was also 1 pixel in the scaled images. 
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Figure 3: Examples of output from the cross-correlator for one sine-wave and one 

square-wave grating, both with a frequency of 1.9 cpd. A Gaussian window with 2*σ = 

6 arcmin was used. 

 

2.2.2.4 Decision rule 1: Autocorrelation 

Two different methods were used to make a decision on which interval contained the 

gratings based on the correlation images. The first was based on autocorrelation, and the 

second on template matching. The method based on autocorrelation started by finding the 

maximum correlation across all horizontal window positions, x, for each vertical window 

position, y, and recording the difference in horizontal position between the two windows as 

an estimate of the horizontal disparity at that vertical position: 

                        .  

 

The autocorrelation of the resulting curve of estimated disparity as a function of vertical 

position, xest(y) was then calculated as: 

    
                                
   

           
 

where   is the mean and   is the standard deviation of      . Two examples of what the 

auto-correlograms looked like are given in Figure 4. Finally both a sine-wave and a 

triangular wave, which are the auto-correlation functions of a sine-wave and a square-wave 

respectively, with the same frequency used in the stimulus were fit to the auto-correlogram 

and the r
2
-value of the best fit was recorded. For each pair of a wave and a noise pattern, 
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making up a single trial, the image pair which got the highest r
2
-value was guessed to 

contain the grating.  

 

Figure 4:  Examples of estimated disparity curves and their autocorrelograms for one 

square-wave and one sine-wave both with a frequency of 1.9 cpd. A Gaussian window 

with 2σ = 6 arcmin was used. The estimated disparity curve for the sine-grating is 

quantized because the model only included detectors tuned to integer pixel disparities. 

 

Figure 5: Example of autocorrelation for the corresponding noise patterns to one 

square- and one sine-wave. A Gaussian window with 2*σ = 6 arcmin was used. 
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2.2.2.5 Decision rule 2: Template matching 

This method used a set of templates of the correlator output for the disparity gratings 

(grating templates) as well as a set of templates of the correlator output for the two types of 

noise patterns (noise templates). The set of grating templates covered all frequencies, 

amplitudes and phases used in the simulations as well as both wave forms. The set of noise 

templates covered all the amplitudes (the noise patterns were by their nature independent of 

frequency and phase). For each interval, the grating template and the noise template with 

the highest correlation to the correlator output were chosen. The correlations were 

calculated as follows: 

   
                               

                                  
 
 

 

where    is the correlator output,    is one of the templates,     and     are the means 

over all disparities    and all y-positions of the correlator output and template    

respectively. All sums were performed over disparity and y-position. The interval for which 

the difference between the correlation to the grating template and the correlation to the 

noise template was the highest was guessed to contain the grating.  

 

For each grating profile (sine- vs square-wave), frequency, amplitude and phase, the 

corresponding template was generated by presenting 100 different random dot stereograms 

to the cross-correlator, after the same preprocessing steps used in the main model.  The 

resulting set of 100 correlation images were then used to calculate the average for each 

pixel (see Figure 6). The phase of the disparity gratings was varied in steps of 10° when 

generating the templates and when testing the model the phase was randomly chosen at 

each trial to be one of the 36 different phases represented in the set of templates. The 

template amplitudes were 0.3, 1.3, 2.5, 5.1, 7.6, 10.1, 15.2 and 20.2 arcmin. The template 

frequencies were 1.9, 2.5, 3.2, 3.8, 4.4, 5.1, 5.7, 6.3, 7.0 and 7.6 cpd. Thus, there were 5760 

grating templates and 16 noise templates. 

 

We have also examined a somewhat different template matching rule, where the correlator 

output was matched only to templates of the same frequency, where no noise templates 
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were used and where the matching was based on sums of squared differences instead of 

correlation. This decision rule performed slightly worse in general but the results were 

qualitatively very similar to the results with the decision rule described in this section. 

 

Figure 6: Examples of templates for sine-waves (left) and square-waves (right) with a 

frequency of 1.9 cpd. 

2.3 Results 

We begin by examining the behavior of the two correlation-based models, and then 

compare this to the performance of our human observers. 

2.3.1 Model 

2.3.1.1 Decision rule 1: Autocorrelation 

 

Figure 7 shows the results for the model with decision rule 1 (autocorrelation). The boxed 

panel summarizes the results by plotting maximum performance over all amplitudes against 

frequency. In this and all further graphs the error bars show 95% confidence intervals, the 

red curves show data for sine-waves and the blue curves show data for square-waves. 

When the maximum performance over all amplitudes is plotted against frequency there is 

very little difference between the curves for the two different waveforms (boxed panel (K) 

in Figure 7). However, when we examine how performance depends on disparity amplitude 

(Figure 7A-J), a key difference emerges between the two waveforms. At the smallest 

amplitude tested, performance is near chance, but rapidly rises to its peak value. For sine-
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wave disparity gratings, performance then declines again as the disparity amplitude 

increases further. For the square-wave gratings, in contrast, performance remains at its peak 

value as the amplitude increases.  

 

This is readily explicable. The model is built from local correlation detectors tuned to 

constant disparity. They respond well if disparity remains roughly constant over their 

window, and they do not respond well when there are steep disparity gradients. For sine-

wave gratings, increasing the disparity amplitude also increases the disparity gradient at 

every point (except the turning-points), reducing performance. This reduction of 

performance with increasing disparity gradient was also found by Banks et al. (Banks, 

Gepshtein and Landy 2004; Filippini and Banks 2009) and was predicted by Kanade and 

Okutomi for a slightly different cross-correlation model (Kanade and Okutomi 1994). For 

square-wave gratings, the disparity gradient is zero everywhere except at the 

discontinuities, and this remains true as the amplitude increases. Thus, performance 

remains high, as long as the amplitude does not go outside the range of disparities to which 

the model is sensitive. The reason why performance is low for the lowest amplitude is 

because this amplitude, 0.3 arcmin, is lower than the step in the range of correlation 

detectors which is 0.6 arcmin, The closest detectors are therefore at 0 and 0.6 arcmin, 

which are equally far from 0.3 arcmin and they will therefore be close to equally strongly 

activated by this disparity. The autocorrelation-based rule only uses the detector with the 

strongest response at each y-position and the detector for 0.6 arcmin can only be the most 

strongly activated one when the entire window or very close to the entire window is seeing 

0.3 arcmin. This can only happen for the squarewaves, and it is only for the lowest 

frequency that it happens for a large enough range of y-values to allow detection. 

Given that the model is built to respond to locally-constant disparity, it is perhaps 

surprising that at low amplitudes (above 0.6 arcmin) it performs as well with sine-waves as 

for square-waves. Figure 3 shows that the peak cross-correlator output reached for sine-

wave gratings does fluctuate across the cycle, being – unsurprisingly – lower where the 

disparity gradient is higher. However, recall that our model estimates disparity from the 

correlation-detector reporting the largest response. Thus, so long as the peak is above the 

background noise, the correct disparity will still be identified. In addition, the decision rule 

(here, based on the auto-correlation of the estimated disparity profile) can still correctly 



28 

 

identify which interval contains the grating, even if the estimated disparity is not accurate 

everywhere.  

 

We have examined the behavior of this model with different window sizes. Quantitatively, 

as the window size increases, performance naturally starts dropping at lower frequencies. 

Banks et al. found that decreasing the window size improves performance up to a limit 

which depends on the level of blur (Banks, Gepshtein and Landy 2004; Filippini and Banks 

2009). For optical levels of blur they found the limiting window size to be about 6 arcmin, 

the value used in Figure 7. Window size does not affect the qualitative behavior of the 

model. In particular, we continue to find that (1) maximum performance as a function of 

frequency remains the same for both sine- and square-wave gratings (see the boxed panel in 

Figure 7); and (2) performance declines as a function of amplitude for sine-wave gratings, 

but remains at its peak value for square-wave gratings (see Figure 7). 

 

Figure 7: Performance as a function of amplitude and frequency for the model with 

the decision rule based on autocorrelation and a window with 2*σ = 6 arcmin. The 

boxed plot (K) shows the maximum performance over all amplitudes for each 

frequency. 
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2.3.1.2 Decision rule 2: Template matching 

It is important to be clear whether these features of the model performance reflect the low-

level, correlation-based encoding of disparity, or whether they are specific to the particular 

decision rule chosen. In this section, we therefore present results from a more elaborate 

decision rule. This rule is based on matching the output of the correlation-detector to any 

one stimulus, to a set of stored template responses to grating patterns. The template set 

includes responses to both sine- and square-wave gratings, and the decision rule uses 

whichever matches. 

 

The results for this decision rule are shown in Figure 8, in the same format as in the 

previous section. The modeling results with the decision rule based on template matching 

are qualitatively very similar to the results with the autocorrelation based decision rule. The 

main differences seem to be that, for a given window size, performance starts dropping at 

slightly lower frequencies and that for the lowest frequencies performance for the sine-

waves remains high up to the highest amplitude tested. The reason for the higher 

performance for high amplitude sine-waves may be that the template matching rule requires 

accurate disparity detection at a smaller percentage of y-positions to identify a grating; high 

correlation in small regions close to the peaks of the sine-waves (see Figure 13) may be 

enough since the relevant template has the same pattern. The drop in performance for the 

lowest amplitude happens only to a lesser degree for the template matching rule than for the 

autocorrelation based rule. This is because the template matching rule uses the outputs from 

all the correlation detectors and not just the one that has the strongest response at each y-

position. However, critically, both decision rules show the same key features highlighted at 

the end of the previous section. In particular, as disparity amplitude increases, performance 

remains high for the square-wave gratings and declines for the sine-wave. The alternative 

template-matching approach mentioned in the Methods also showed this behavior (results 

not shown). Thus, this key behavior is not dependent on any particular decision rule. As 

explained in the previous section, we attribute it to the properties of the initial disparity 

encoding performed by correlation-detectors tuned to uniform disparity. 
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Figure 8: Performance as a function of amplitude and frequency for the model with 

the decision rule based on template matching and a window with 2σ = 6 arcmin. The 

boxed plot (H) shows the maximum performance over all amplitudes for each 

frequency.

 

2.3.2 Psychophysics 

We now examine the performance of human subjects, in order to compare it with the 

predictions of the model. Figure 9 shows the data for four subjects. The boxed panels 

summarize the results by plotting the maximum performance over all amplitudes for each 

frequency. 

 

In striking agreement with the predictions of the correlation-based model of Banks and 

colleagues, we find that the best performance reached at a given frequency is the same for 

both waveforms. The boxed panels (FLRX) in Figure 9 show this best performance 

obtained at any disparity amplitude, plotted as a function of the frequency. None of our 4 

subjects shows any significant difference in best performance between sine- and square-

wave gratings.  
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However, when we examine the graphs showing performance against disparity amplitude 

for individual frequencies, we find a significant departure from the model predictions. After 

initially rising to a peak value, performance then declines as disparity amplitude increases 

further. The model shows this decline only for sine-wave, not for square-wave gratings. 

However, for humans, the rate of decline is extremely similar for both sine-wave and 

square-wave gratings. Where significant differences do exist (e.g. subject PFA, discussed in 

more detail below), performance is better for the sine grating, not the square-wave as 

predicted by the model.  

 

Ultimately, of course, the performance of any realistic system must decline, as the disparity 

of the stimulus moves beyond the range to which its detectors respond. This effect was not 

included within our model (previous section), which contained an equal number of 

detectors for all disparities used. However, we do not believe that this omission can account 

for the difference between model and human performance we observe. We could force the 

model’s performance down for large-amplitude square-wave gratings by reducing the range 

of disparity detectors. However, the resulting reduction in performance would not be 

specific to square-wave gratings, but also affect sine gratings. It thus could not reconcile the 

model with human performance. It would also be unrealistic, because the disparity 

amplitudes used here are very small, well below Dmax (Glennerster 1998; Read and Eagle 

2000) and perfectly detectable in other contexts. This is clear from our own data. Disparity 

amplitudes which our subjects find easy at low frequencies become impossible at higher 

frequencies. For example, at a frequency of 1.9 cpd, subject ISP performs at virtually 100% 

out to amplitudes as large as 10 arcmin, the largest examined. Yet at a frequency of 5.1 cpd, 

he is at chance for this amplitude, for both sine and square-wave gratings. This cannot be 

because he lacks neuronal mechanisms capable of encoding disparities of 10 arcmin, since 

he perceived 10 arcmin perfectly at the lower frequency. Equally, it cannot be because 5.1 

cpd is too high a frequency compared to the window-size of his correlation-detectors, 

because he reaches 80% correct for both grating profiles when the amplitude is smaller, 2-3 

arcmin. His poor performance can only be due to the particular combination of frequency 

and amplitude.  
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Figure 9: Performance as a function of amplitude and frequency for each subject. The 

squares and circles are data points and the lines are fits. The boxed plots (FLRX) 

show, for each frequency, the maximum performance obtained at any amplitude. 

 

2.3.3 Frequency analysis 

This suggests that the correlation-based model may fail to capture some aspects of human 

depth perception. We now examine another influential approach to human perception, the 

Fourier or frequency-based analysis pioneered in the luminance domain by Campbell & 

Robson (1968), and later applied to disparity (Tyler 1975; Schumer and Ganz 1979; Cobo-

Lewis and Yeh 1994; Grove and Regan 2002). 

 

 In Fourier analysis, a square-wave grating can be decomposed into a sum of sine-wave 

gratings: a sine-wave of the same period as the square-wave but with 4/ its peak-to-trough 

range, plus successive lower-amplitude sine-waves.  As the grating period decreases to the 

limit of detectable frequencies, a point is reached where the fundamental frequency is still 

above threshold, but the third harmonic is already below threshold. Sine- and square-wave 

gratings thus become indistinguishable. Most of our data falls within this domain, since for 

most subjects the highest frequency tested was just at the threshold of discriminability, 
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whereas the lowest frequency tested was more than one-third of this value. This means that 

even at the lowest frequency tested, the third harmonic distinguishing the square-wave from 

the sine-wave grating would be nearly undetectable if presented alone. Thus if the linear 

theory is correct, if we plot performance as a function of the amplitude of the fundamental, 

instead of the whole-waveform amplitude used so far in this chapter, performance should 

become the same for square-wave and sine-wave gratings.  

 

This is examined in Figure 10. This figure shows the same data as Figure 9, but now plotted 

as a function of the amplitude of the fundamental. The sine (red) data is thus unchanged, 

while the square (blue) data and fits are shifted to the right by a factor of 4/. To assess 

whether this manipulation brings performance for the two waveforms closer together, we 

used the curves fitted to each set of data. For each frequency, we computed the integral of 

the absolute difference between the curves for the sine-waves and the square-waves, first 

for the original data and then for the adjusted data. If this integral was smaller for the 

adjusted data, this indicated that the shift to fundamental amplitude had brought the results 

closer together. This is indicated with a + symbol at the bottom-left of the panels in Figure 

10; a – symbol indicates that the shift to fundamental amplitude brought the fits further 

apart. Bootstrap resampling was used to estimate the significance of any change. The 

asterisks in Figure 10 indicate p<0.05 (two-tailed test), while NS indicate that the 

adjustment had no significant effect either way. 

 

For subject PFA, who performed the most repetitions per condition, plotting performance 

as a function of fundamental amplitude brings the curves closer together at every 

frequency. Plotted as a function of peak-to-trough amplitude (Figure 9), PFA often 

performed slightly better for the sine-waves. When the data is adjusted so performance is a 

function of the fundamental amplitude (Figure 10), this effect is almost totally abolished, 

and the two sets of data overlap almost perfectly. However, this improvement was 

significant for only frequency, 2.5cpd. For the other subjects, there is little evidence of any 

systematic effect one way or the other. Thus, our results provide little support for the linear 

Fourier analysis of disparity. Subjects perform very similarly for high-frequency sine-wave 

and square-wave gratings, but their performance does not seem to be set by the amplitude 

of the fundamental.  
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Figure 10: Performance as a function of amplitude and frequency for each subject, 

with the square-wave data plotted against the amplitude of the fundamental 

frequency component of the waves. The symbols at the bottom left of each panel show 

whether this has improved (+) or worsened (-) agreement between the sine- and 

square-wave results, and whether this is significant at the 5% level (*) or not (NS). 

 

2.3.4 Disparity gradient limit 

Several previous studies have suggested that stereopsis may be limited by the disparity 

gradient, rather than disparity per se (Tyler 1975; Burt and Julesz 1980; Kanade and 

Okutomi 1994; McKee and Verghese 2002; Banks, Gepshtein and Landy 2004; Filippini 

and Banks 2009). To examine this, in Figure 11 we plot the performance of all subjects on 

sine-wave gratings of all frequencies plotted against the amplitude of the gratings (ACEG) 

as well as the maximum disparity gradient in the gratings (the product of frequency and 

amplitude, BDFH). In order to test whether plotting against disparity gradient brings the 

curves closer together we used the fits after extending them to end at the same point and 

cutting them to only include the portion of the curve after the peak. The standard deviation 

of the set of y-positions that the different curves passed through was computed at each x-

position and the mean of this standard deviation over all x-positions was used as a measure 

of how closely the curves were superimposed. Bootstrap resampling was used to estimate 
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the significance of any difference between the two ways of plotting the data. The curves 

were found to be significantly more superimposed (p<0.05) when plotting against disparity 

gradient for three out of four subjects (PFA, OO and ISP). For the fourth subject no 

significant difference either way was found.  Thus, our data are consistent with the idea that 

performance at high amplitudes is limited by the highest perceivable disparity gradient.  

 

 

Figure 11: Performance plotted against amplitude (ACEG) and maximum disparity 

gradient (BDFH) for sine-waves of all frequencies, for each of the 4 subjects.
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Figure 12 shows the same plots for the model with the auto-correlation decision rule 

(similar results were obtained for the model with the template-matching decision rule, not 

shown). Again, performance on sine-waves of different frequencies is plotted against either 

the amplitude (A) or the maximum disparity gradient (B) of the grating. To test whether the 

model results superimposed better when plotted against disparity gradient we used the parts 

of the curves from the peak to the last data point for the lowest frequency. As for the human 

data, the standard deviation of the set of y-positions that the different curves passed through 

was computed at each x-position and the mean of this standard deviation over all x-

positions was used as a measure of how closely the curves were superimposed. Bootstrap 

resampling was used to estimate the significance of any difference between the two ways of 

plotting the data. No significant difference was found for the results with either of the 

decision rules. Thus, for the model results, the curves do not superimpose any better when 

the data is plotted against disparity gradient. Rather, the performance of the model depends 

separately on frequency and amplitude, and not simply on disparity gradient (amplitude  

frequency). This is not surprising given that the model has no mechanisms which 

specifically detect disparity gradient. The observed dependence of frequency and amplitude 

may be because the correlation output from the first stage of the model has the highest 

correlation in the regions close to the flat parts of the sine-wave (see Figure 13). Thus, 

performance may be limited by the size of the regions that are flat enough to generate high 

correlation, rather than by the maximum disparity gradient in the stimulus.  

 

 

Figure 12: Performance plotted against amplitude (left) and maximum disparity 

gradient (right) for sine-waves of all frequencies for the model with the decision rule 

based on autocorrelation 
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2.4 Discussion 

In recent years, many models of human stereopsis have proposed that the initial encoding 

of disparity occurs in primary visual cortex, V1, by disparity-selective neurons whose 

major properties are captured by the stereo energy model (Ohzawa, DeAngelis and 

Freeman 1990; Qian 1994; Qian and Zhu 1997; Cumming and DeAngelis 2001; Read 

2005). The neurophysiological evidence suggests that V1 neurons respond optimally to 

disparity which is constant across their receptive field (Nienborg, Bridge, Parker et al. 

2004). In higher brain areas, neurons are found which respond best to particular patterns of 

varying disparity (Janssen, Vogels and Orban 1999; Sakata, Taira, Kusunoki, Murata, 

Tsutsui, Tanaka, Shein and Miyashita 1999; Sugihara, Murakami, Shenoy, Andersen and 

Komatsu 2002; Nguyenkim and DeAngelis 2003). However, current models propose that 

these higher-level neurons are built by combining the outputs of uniform-disparity V1 

neurons (Thomas, Cumming and Parker 2002; Bredfeldt and Cumming 2006; Bredfeldt, 

Read and Cumming 2009). Thus, Banks and colleagues (Banks, Gepshtein and Landy 

2004; Filippini and Banks 2009)  have argued that the initial piecewise-frontoparallel 

encoding of disparity imposes a fundamental limit on stereo resolution. In this view, the 

high-frequency limit for perceiving disparity gratings is imposed right down in V1, by the 

receptive field size of disparity-selective neurons. 

 

This piecewise-frontoparallel theory of disparity encoding is quite different from the 

Fourier or frequency-based analysis pioneered in the luminance domain by Campbell & 

Robson (Campbell and Robson 1968), and later extended to disparity (Tyler 1975; Schumer 

and Ganz 1979; Cobo-Lewis and Yeh 1994; Grove and Regan 2002). In that picture, the 

quantity of interest (disparity or luminance) is initially encoded by a set of frequency 

channels. The basic “unit” in which the quantity is represented is the sine-wave (or a local 

version of it, like a Gabor), not a constant-value patch as in the piecewise-frontoparallel 

theory. In linear Fourier theory, square-wave and sine-wave gratings with the same 

fundamental amplitudes should become equally detectable at high frequencies, once the 

third harmonic of the square-wave has passed above the frequency threshold. In contrast, if 

the piecewise-frontoparallel theory is correct, it should be easier to perceive a square-wave 
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disparity grating than a sine-wave grating, because the square-wave grating consists of 

locally frontoparallel regions of disparity, and so should drive V1 neurons more strongly. It 

is of course possible that there are frequency channels which are built by combining the 

outputs of uniform-disparity V1 neurons. If so, the initial fronto-parallel representation of 

disparity will still set limits on performance, even though the later processing needed to 

construct the frequency channels may limit performance further. 

 

We tested the behavior of the piecewise-frontoparallel model by running simulations. We 

verified that the model does indeed find it easier to detect square-wave gratings, which are 

piecewise-frontoparallel, than sine-wave gratings, which everywhere have a non-zero 

disparity gradient. In particular, for square-wave gratings the model was able to perform 

well out to high amplitudes (limited only by the range of preferred disparities included 

within the model neuronal population), whereas for sine-wave gratings, performance 

declined at high amplitudes. This behavior is what we expected given the structure of the 

model, cf Figure 2. We confirmed that it does not depend critically on the particular details 

of the model implementation; for example, we obtained the same behavior with two quite 

different decision rules. Rather, it reflects the initial stage of local cross-correlation. Figure 

13 shows the output of this stage for both sine- and square-wave gratings, at low and high 

amplitudes, for a relatively low frequency, 1.9 cpd. At low amplitudes, the piecewise-

frontoparallel model can successfully track the disparity of both grating profiles (Figure 

13AB). In contrast, at high amplitudes (Figure 13CD), only the very peaks of the sine-wave 

grating remain visible (where the disparity gradient is briefly zero), while the square-wave 

grating remains just as clear as at low amplitude. Thus, our simulations confirm our 

intuitions about the behavior of models based on piecewise-frontoparallel disparity 

encoding. 

 

However, to our surprise, our psychophysical results were quite different. There was no 

evidence that performance was ever significantly better for square-waves than sine-wave 

gratings. Like the model, the maximum performance possible at a given frequency was 

indistinguishable for the two wave-forms. However, after initially rising to a peak, human 

performance declines as a function of amplitude for both sine- and square-waves. This is 

quite different from the behavior of the piecewise-frontoparallel model, where performance 
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declines only for sine-wave gratings and remains high for the square-wave gratings out to 

large amplitudes. The decline in the performance of human observers occurs for disparity 

amplitudes which are clearly detectable at lower frequencies. This shows that the poor 

performance is caused by the frequency of disparity alternation, not the intrinsic 

detectability of the disparities present in the stimulus.    

 

Thus like Banks and colleagues, we find that the piecewise-frontoparallel model based on 

local cross-correlation does an excellent job of capturing human performance on sine-wave 

gratings.  However, the discrepancy with square-wave gratings indicates that the model is 

incomplete as a model of human stereo vision. 

 

A limitation of this model is that it only includes the initial encoding of disparity in V1, not 

the higher-level neurons which respond to varying disparity (Janssen, Vogels and Orban 

1999; Sakata, Taira, Kusunoki et al. 1999; Sugihara, Murakami, Shenoy et al. 2002; 

Nguyenkim and DeAngelis 2003). Prominent among these are the class of disparity-edge 

detectors in V2 (von der Heydt, Zhou and Friedman 2000; Bredfeldt and Cumming 2006). 

There is considerable psychophysical evidence suggesting that “edges” or discontinuities in 

disparity are particularly salient for stereo vision (Andrews, Glennerster and Parker 2001; 

Gillam, Blackburn and Brooks 2007; Serrano-Pedraza, Phillipson and Read in press), 

presumably reflecting the activation of these neuronal disparity-edge detectors. Square-

wave gratings contain sharp disparity edges, whereas sine-wave gratings do not. This is 

probably why disparity thresholds are consistently better for square-wave than for sine-

wave gratings at low frequencies (below 2cpd)  (Serrano-Pedraza and Read 2009). Thus, 

the model’s failure to include known mechanisms of edge-detection should, if anything, 

bring square-wave performance closer to sine-wave. This deficiency, therefore, also cannot 

explain the discrepancy between model and human results.  

 

Our psychophysical results did not provide compelling evidence that disparity is encoded 

within a set of independent frequency channels. A linear frequency analysis would suggest 

that, at high frequencies, performance on the two types of grating should become more 

similar when the amplitude of the grating was expressed as the amplitude of the 

fundamental, rather than as half the peak-to-trough distance. This was the case for only one 
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of our four subjects. In contrast, our results were more clearly consistent with previous 

work indicating that disparity gradient is critical to perception (Tyler 1975; Burt and Julesz 

1980; McKee and Verghese 2002).  

 

If neither the piecewise-frontoparallel model, nor a linear frequency analysis, seems 

capable of fully explaining our results, how should we proceed in order to achieve an 

accurate model of human stereo depth perception? It may be necessary to invoke further 

processing happening after the cross-correlation stage. Alternatively, it may be possible to 

modify the cross-correlation model so as to reconcile it with our results. For example, our 

current model contains equal numbers of sensors with different disparity tuning, whereas 

V1 neurons are tuned predominantly to near-zero disparities (Prince, Cumming and Parker 

2002). It also assumes that the “window” size used for cross-correlation is constant, 

whereas V1 neurons tuned to larger disparities tend to have larger receptive fields (Prince, 

Cumming and Parker 2002), reflecting the size/disparity correlation deduced from 

psychophysical results (Tyler 1975; Smallman and MacLeod 1994; McKee and Verghese 

2002; Tsirlin, Allison and Wilcox 2008). Incorporating such sophistications into our model 

may help it account for human performance with sine-wave and square-wave gratings. 
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Figure 13: Examples of output from the cross-correlator for square-waves and sine-

waves at low and high amplitudes. The quality of the correlation image remains high 

for the high-amplitude square-wave but drops for the sine-wave, with high correlation 

only near the peaks. These results are for a frequency of 1.9 cpd and a Gaussian 

window with 2σ = 6  

arcmin.  

 

2.5 Conclusion 

Piecewise-frontoparallel local cross-correlation successfully captures many aspects of 

human stereo vision. However, at least as currently implemented, it predicts that humans 

should be better at detecting square-wave disparity gratings than sine-wave gratings, when 

the frequency and amplitude of the gratings are high. In fact, humans perform almost 

equally well on both grating profiles. In particular, human performance declines as a 

function of amplitude for both square- and sine-wave gratings, whereas the model predicts 

a region where performance is independent of amplitude for square-wave gratings. We 

conclude that the model needs to be refined in order to capture this aspect of human depth 

perception and we examine how to do this in the next chapter. 
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Chapter 3.  Spatial stereoresolution for depth corrugations may be set 

in primary visual cortex 

3.1 Introduction 

 

In the previous chapter we saw that human subjects perform equally well at detecting 

sinusoidal and square-wave disparity gratings. We attempted to model this using a local 

cross-correlation model closely based on the correlation model used in the modeling work 

by Banks et al. (Banks, Gepshtein and Landy 2004; Filippini and Banks 2009). We found 

that this model captured human performance on sinusoidal gratings well but predicted to 

high performance for high amplitude square-wave gratings. We concluded that the model 

would need to be modified in order to explain the new human results. In the discussion we 

suggested a few modifications that could be made to the model that would make it more 

physiologically realistic and which might potentially also help account for the human 

results on sine- vs. square-waves. Among these suggestions we mentioned a modified 

model incorporating a size/disparity correlation. In this chapter, we examine precisely such 

a modified version of the model, where larger disparities are detected using larger 

correlation windows. There is considerable psychophysical evidence for such a 

size/disparity correlation (Tyler 1973; Tyler 1974; Tyler 1975; Smallman and MacLeod 

1994; McKee and Verghese 2002; Tsirlin, Allison and Wilcox 2008),  and some 

physiological evidence has also been found in favour of it (Prince, Cumming and Parker 

2002). We show that this new version of the model can capture human performance on both 

sine- and square-wave depth corrugations. 
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3.2 Methods 

3.2.1 Model 

3.2.1.1 Stimuli and task 

The stimuli and task are as in the previous chapter. Briefly, the stimuli used were random-

dot stereograms depicting horizontal sine-wave and square-wave disparity gratings (i.e. 

modulations in disparity as a function of vertical position in the image). For humans, the 

disparity gratings are readily visible at low grating frequencies, but as the frequency 

increases, it becomes impossible to detect the distinct bars of the corrugation, and the dots 

either appear to be distributed throughout the space between the front and back limits of the 

stereogram or they appear to be distributed over two planes at the front and back limits, 

depending on the waveform and amplitude of the grating. Disparity gratings at frequencies 

beyond the limit of stereoresolution thus remain readily distinguishable from planes of 

constant disparity or from binocularly uncorrelated dot patterns, but the surface structure 

cannot be perceived.  Accordingly, to probe stereoresolution, we asked subjects to 

distinguish disparity gratings from disparity noise patterns containing the same range of 

disparities. Each trial consisted of two intervals. Observers were shown one stereogram 

depicting a sine- or square-wave grating and one stereogram of the corresponding noise 

pattern, and had to judge which stereogram contained the grating.  

 

In the psychophysics experiments described in the previous chapter, sine- and square-wave 

gratings were interleaved so that human observers did not know which sort of grating to 

look for on any given trial. Disparity grating amplitude and phase were also randomly 

interleaved, but different frequencies were run in blocks. The computer simulations 

reflected the human experiments as closely as possible, so the model observer had no prior 

knowledge of grating waveform, amplitude or phase. The images presented to the model 

were preprocessed by blurring and scaling to simulate the optics of the human eye, as in the 

model of Banks et al. (Banks, Gepshtein and Landy 2004; Filippini and Banks 2009) and in 

the previous chapters. 
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3.2.1.2 Encoding disparity using cross-correlation 

After the preprocessing, the images were presented to a population of cross-correlators 

tuned to different vertical locations along the grating and to different disparities between 

left and right eyes. Each cross-correlator had two windows, one in each eye’s image. Both 

windows for a given cross-correlator had the same vertical position. In our model, the left-

eye window was always at the same horizontal position. The right-eye window was in one 

of a range of horizontal positions on either side of the left-eye window. The correlation 

between contents of the two windows was calculated and recorded for every combination 

of window-positions. The definition of correlation that was used was: 
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Equation 1 

 

where wL  and wR  are the pixel-values in the left and the right image, multiplied by the 

window function, and cov is the covariance. We used Gaussian window functions that were 

cut off at two standard deviations from the centre. That is, if the left window is centered on 

position (x,y) and IL(i,j) represents the left eye’s image at position (i,j), then 

Lw is the set of values )}]/2y)-(j-x)-j)exp([-(i(i,{I 222

L   for all (i,j) satisfying |i-x|<2 

and |j-y|<2, and  

Rw is the set of values )}]/2y)-(j-x)-x-j)exp([-(i(i,{I 222

R   for all (i,j) satisfying |i-

x|<2 and |j-y|<2. 

 

We refer to the standard deviation  as the size of the window for that cross-correlator. The 

function C(y,x) represents a population of neuronal units tuned to different disparities x 

and vertical image positions y. The preferred disparities used were in the range from -13 to 

13 arcmin with a step of 0.6 arcmin (1 pixel in the scaled images), except in the section on 

“Size-disparity correlation and the disparity gradient limit”, where we included window 

disparities up to 140 arcmin, again with a step size of 0.6 arcmin, in order to examine 
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performance down to lower frequencies. The step size in the range of y-positions was also 1 

pixel in the scaled images.  

 

The innovative feature here is that cross-correlators tuned to larger disparities, i.e. with 

larger separations between the centers of their left-eye and right-eye windows, had larger 

windows. Psychophysical evidence for a different sort of size-disparity correlation was 

provided by Smallman and MacLeod (1994). These authors investigated the optimal 

disparity at which subjects could perform a front back discrimination task with stereograms 

based on narrow-band filtered noise. They obtained linear fits between optimal disparity 

and the center spatial frequency of the noise on a loglog scale. Assuming that cells 

processing higher luminance frequencies have smaller receptive fields, this provides 

evidence for a correlation between disparity tuning and receptive field size. It has been 

pointed out however that there is a possibility that the correlation Smallman and MacLeod 

obtained could also arise a direct consequence of properties of the stimulus rather than 

telling us anything new about human depth perception (Prince and Eagle 1999). This is 

because both Dmin and Dmax depend on the center spatial frequency, because fine luminance 

detail (high frequencies) is required for detection of small disparities while a higher central 

frequency (less fine detail) means less potential for false matches. We have based the form 

of the size-disparity correlation we use in our model on Smallman and Macleods results. 

The fits they obtained for the data from their two different subjects had loglog slopes of 

approximately -1 and -0.5, corresponding respectively to a linear and a quadratic 

relationship between size and disparity. Motivated by this, we have examined a second 

order polynomial as well as a linear function as the relationships between window size and 

preferred disparity in our model: 
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where σ is the standard deviation of the Gaussian window and x  is the disparity of the 

window, both measured in arcmin. We have also explored an exponential size disparity 

relationship. Although the very long run-time of the simulations made it impossible to 

perform systematic optimization, or to fit the model results to the data of individual 

subjects, the size/disparity relationships given in Equation 2 and Equation 3 gave the best 

match to human performance of those we examined. 

 

The cross-correlator output can be visualised as a two-dimensional image showing 

correlation as a function of the horizontal disparity, x, between the windows as well as the 

vertical position of the windows, y (see Figure 3). This cross-correlation performs the 

initial encoding of disparity within the model. Physiologically, we envisage this as 

occurring in primary visual cortex. The cross-correlation calculated for a given window 

position, size and disparity represents, in idealised form, the combined activity of several 

disparity-selective neurons in primary visual cortex, all tuned to the same retinal position 

and disparity. Each row in Figure 3 represents the activity of a group of V1 neurons tuned 

to the same retinal location but to a range of horizontal disparities. The black lines indicate 

how the vertical extent of the window increases with the horizontal disparity to which they 

are tuned. 

 

Figure 14: Examples of output from the cross-correlator for one sine-wave and one 

square-wave disparity grating, both with a frequency of 1.3 cpd. A Gaussian window 

with σ = 3+0.032*(∆x) 2 arcmin was used. The black lines shows the extent of the 

correlation window, taken to be the 1SD contour of the Gaussian. 

 



47 

 

3.2.1.3 Making a perceptual judgment 

In order to compare our model to human observers, we needed to take the correlator output 

from each interval, and use it to make a judgment regarding which interval contained the 

grating. Physiologically, this process presumably occurs in extra-striate areas, but little is 

known about how it is achieved. We therefore have little to go on in modelling this process 

other than some plausible assumptions. In this chapter, we shall ultimately conclude that 

spatial stereoresolution is fundamentally limited by the initial encoding of disparity in V1, 

not by the nature of this perceptual read-out process. It is therefore important to 

demonstrate that our results are qualitatively the same independent of the precise 

assumptions made regarding read-out. To this end, we have examined three different 

decision models incorporating specific decision rules, aiming to span a range of possible 

approaches and assumptions.  

 

Figure 15: Examples of templates for sine-waves (left) and square-waves (right) with a 

frequency of 1.3 cpd. The upper row shows the mean and the lower row shows the 

standard deviation for cross-correlators tuned to vertical position y and disparity x, 

estimated from 100 different random-dot disparity gratings. Figure 3 showed 

analogous results for a single grating. 
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The results presented in section 3.3.2 are based on the assumption that the model observer 

knows the frequency of the grating it is trying to detect, though not the disparity amplitude, 

waveform (sine vs square) or phase. This is realistic since frequency was blocked in the 

psychophysical experiments whose results we are trying to reproduce, while amplitude, 

waveform and phase were interleaved. Avoiding the need to search for frequency speeds up 

the simulations, but is not critical to our results. In section 3.3.4, we show that very similar 

results are produced by a model which does not know the frequency.  

 

This method used a set of templates of the correlator output, representing the brain’s prior 

knowledge of the average V1 activity caused by different stimuli. This is closely based on 

the approach taken by Tsai & Victor (Tsai and Victor 2003). We assume that the brain 

knows (or is able to reconstruct) the activity expected in response to all the different stimuli 

used in our experiment, both gratings and noise, based on prior experience. This 

assumption is discussed further in the Discussion. 

 

The template for each type of stimulus was generated by making 100 different random dot 

stereograms, preprocessing them with the same preprocessing steps that were used in the 

main model, and then passing them to the cross-correlator. The mean and standard 

deviation for each position y and disparity x were then calculated based on the resulting 

set of 100 correlation images (see Figure 15). This process was repeated for gratings of 

different frequencies, amplitudes, phases and waveforms (sine vs square). The phase of the 

disparity gratings was varied in steps of 10°. When testing the model, the phase was 

randomly chosen at each trial to be one of the 36 different phases represented in the set of 

templates. The disparity amplitudes were 0.3, 1.3, 2.5, 5.1, 7.6, and 10.1 arcmin.  Thus 

there were 432 grating templates per frequency, reflecting 36 phases  6 amplitudes  2  

grating waveforms.  Noise templates were by their nature independent of frequency and 

phase, so there were 12 noise templates in total, reflecting 6 amplitudes  2 waveforms.   

 

To simulate an experiment, we assumed that the frequency was known, so the model was 

using the 432 grating templates for the correct stimulus frequency, as well as the 12 noise 

templates. In each interval, the correlator output from this stimulus was compared to each 
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of the 432 grating templates, by calculating the Pearson correlation coefficient between the 

correlator output and each different grating template (Read 2010). The quality of the match 

to the best-fitting grating was taken to be 




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Equation 4 

where C is the correlator output, nT  is the n
th

 grating template, C and 
nT  are the means 

over all disparities x  and all y-positions of the correlator output and template nT  

respectively, and the sums are over all x  and all y. The maximum is taken over all values 

of n, from 1 to 432.  

 

We then calculated the difference (Mgrating-Mnoise) for each interval, and judged the grating 

to be in the interval for which this difference was greater.  

3.3 Results 

3.3.1 Cross-correlation can be obtained from energy-model units 

The cross-correlation coefficient used in here as well as by Banks et al. differs in a number 

of ways from the cross-correlation implemented by the energy model. First, it is normalized 

to lie between 1 (for perfect interocular correlation) and -1 (for anti-correlated stimuli). 

Second, it operates on the retinal images directly, not the images after filtering by a 

bandpass receptive field. Finally, the multiplication of the two images is performed first, 

followed by integration over space, unlike the energy model where the images are 

integrated over space first and the results are then multiplied together. This has the 

consequence that the cross-correlation model used here depends more critically on the exact 

relative positioning of visual features in the two images compared to an energy model unit 

of the same window-size, and that its disparity tuning is finer and independent of window 

size. Given that we are claiming our results show that disparity resolution is limited by 

activity in primary visual cortex, it is important to be clear how the idealized cross-

correlation computed in our model relates to more realistic models of individual neurons. 
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To this end, we begin the Results section by showing that the output of a Banks-style cross-

correlator can be approximated by suitably combining the responses of many complex cells 

tuned to different orientations and frequencies.  

 

In the standard energy model the response of a stereo energy unit is described by the 

equation: 

 )S+(S+)S+(S = E 2
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and IL is the left eye’s image, the wavenumbers kx and ky together specify the spatial 

frequency and orientation of the cells receptive field, xL and yL specify the position of the 

center of the left eye’s receptive field, фL is the phase of the receptive field, and σ is the 

standard deviation of the Gaussian envelope of the receptive field. SR1 and SR2 are defined 

analogously. We assume that, due to adaptation at lower levels of the visual system, the 

image is defined relative to the overall mean luminance, so that averaged across the whole 

image,       0,, yxdxdyIyxdxdyI RL . 

 

Let us assume there are also monocular complex cells which compute 

 L = SL1
2
+SL2

2
 and R = SR1

2
+SR2

2
. 

 The response of the energy model unit can be split into a binocular part B and monocular 

parts L and R: 

RLBE    

where 

2211 22 RLRL SSSSB    

Now we compute the total response of all cells at this location which have phase disparity 

zero and position disparity x, summing over cells tuned to a range of spatial frequencies 

and orientations. In Appendix 1, we show that integrating B in this way over all spatial 
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frequencies and orientations gives us 

    
 

    
  













 














 
 yxI

yyxxx
yxI

yyxx
ydxdB RL ,

2
exp,

2
exp2

2

22

2

22

int


 

Approximating the integrals with a sum over pixels, and using LW to represent the image 

after multiplication by the window function, this is  

   
ji

ww jiRjiLB
,

int ,,2 .  

This is simply the covariance of the weighted image-patches, plus a term reflecting the 

average pixel-value within the window: 

  wwww RLRLnB  ,cov2int  

where n is the total number of pixels included in the sum. Similarly, integrating the 

monocular terms over all spatial frequencies and orientations, we obtain 

  2

int ,cov www LLLnL   and   2

int ,cov www RRRnR   

Now we use the monocular terms to normalise the binocular term (Tsai and Victor 2003; 

Read and Cumming 2006; Read 2010):  
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The normalisation ensures that Cint remains between +1 (for units tuned to the stimulus 

disparity, where Lw=Rw) and -1 (for anti-correlated stimuli, where Lw=-Rw).  

 

For random-dot patterns where the correlation window is large compared to the dot-size, 

the average pixel-value within each eye’s window will be very nearly the same as the 

average pixel-value across the whole eye’s image, which is zero by definition. For such 

images, Cint reduces immediately to C as defined in Equation 1. For natural scenes or other 

images where the luminance undergoes large-scale changes across the image, this would 

not be the case, and Cint would not be zero for binocularly uncorrelated images. Real 

neurons have not been studied with such images, so it is not possible to say whether Cint or 

C as defined in Equation 1 would be more appropriate in that case. 
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This analysis shows that the key features of the Banks model – units sensitive to the precise 

location of features within the window, isotropic windows, disparity tuning curves whose 

width is independent of window size – can be produced within a more physiologically-

realistic model, simply by combining the outputs of energy-model units tuned to many 

spatial frequencies and orientations. Essentially, the Banks model is a computational short-

cut which enables us to approximate the properties of a much larger population of energy-

model units at vastly reduced computational cost. This is somewhat analogous to how the 

energy-model itself uses a quadrature pair of units with 0 and /2 phase to approximate the 

output of a large number of subunits tuned to a range of phases. This derivation gives us 

confidence that the encoding stage of our model, while clearly highly idealised, is 

nevertheless consistent with the physiology of early visual cortex. 

 

One important limitation of the analysis performed in this section is that this analytical 

proof only works if sigma does not depend on (luminance) spatial frequency or orientation. 

This limitation is discussed further in section 3.4.5 where various other limitation of the 

model are also discussed. It is quite possible that the equivalence between combined energy 

model units and local cross-correlation may still hold to good approximation even with a 

certain dependence between window size and spatial frequency, at least there is no 

immediately obvious reason why this could not be the case. In section 5.2 there is a brief 

discussion of how this could be tested with simulations. 

 

We now move on to examine how the model performs when its outputs are used to perform 

our psychophysical task, under various different decision models. 

3.3.2 Size-disparity correlation makes sine- and square-wave gratings equally 

detectable 

Figure 16 shows the results of the model. Panels A-H show the model’s performance 

(percent correct judgments) as a function of disparity amplitude for different grating 

frequencies and the final panel shows the maximum performance, i.e. that at the optimal 

disparity amplitude for each frequency, as a function of frequency. Red circles show results 

for sine-wave gratings; blue squares those for square-wave gratings. Throughout, error bars 

show 95% confidence intervals. Critically, the results are now very similar for both sine- 
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and square-wave disparity gratings – like human observers and unlike the original model 

(Figure 16). Like human observers, as disparity amplitude increases beyond its optimal 

value, performance for both grating waveforms decays back to chance.  

 

Similar figures are given in section 3.3.4 and section 3.3.5 for alternative decision models 

(Figure 18 and Figure 20). Unsurprisingly, there are quantitative differences between the 

results from different decision models, especially in the percent correct at the lowest 

disparity amplitude. This amplitude, 0.3 arcmin, is below the step size of 0.6 arcmin in the 

range of correlation detectors, and the decision models vary in how efficient they are at 

extracting information at this sub-step-size disparity. Similarly, the decision models vary 

somewhat in the frequency at which peak performance first starts to decline. We know in 

principle how to match human performance on both of these. Capturing sensitivity to small 

disparity amplitudes would require the right minimum spacing in the population of cross-

correlators, plus the addition of noise to limit the ability to discriminate tiny disparities. 

Capturing the correct frequency at which performance declines would require us to tweak 

the minimum window-size, i.e. the value of the first term in Equation 3, as done by Banks 

et al (Banks, Gepshtein and Landy 2004; Filippini and Banks 2009). Given the long 

simulation run-time and the fact that these issues are solved in principle, we have not here 

attempted to chase down these parameters further.  

 

In Figure 20, showing results for a decision model based on auto-correlation, there are a 

couple of frequencies where performance starts dropping for the sine-waves at slightly 

lower amplitudes than for the square-waves. Interestingly, 2 of our 4 human observers also 

displayed this tendency (Figure 9 in chapter 2), while neither humans nor model ever 

displayed an earlier drop for square-waves than for sine-waves.  
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Figure 16: Model performance on the grating detection task as a function of 

amplitude and frequency. The last plot (I) shows the maximum performance over all 

amplitudes for each frequency. This is for the model with the template matching 

decision model with known frequency and a quadratic size-disparity relationship 

(Equation 2). 

 

3.3.3 Form of the size-disparity correlation is not critical 

The results in Figure 16 assumed a quadratic relationship between a correlator’s window-

size and its preferred disparity. The psychophysical data suggests there may be noticeable 

inter-subject variation in the relationship between spatial scale and disparity correlation, 

with Smallman & McLeod’s two subjects showing linear and quadratic relationships 

respectively. However, all our subjects showed near-identical performance on sine- and 

square-wave gratings (Allenmark and Read 2010). We therefore wanted to check that the 

precise form assumed for the size-disparity correlation was not critical for our results. To 

this end, we also tested the model with a linear size/disparity correlation (Equation 3). The 
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results (Figure 17) are similar to those obtained with the second order polynomial 

size/disparity correlation (Equation 2), and in particular the key result holds: differences 

between the sine-wave and square-wave results remain negligible. This suggests that 

several different forms of the size/disparity correlation may be consistent with the human 

data in the previous chapter.  

 

Figure 17: As for Figure 16 but with a linear size-disparity relationship (Equation 3). 

 

3.3.4 Decision model using template matching with unknown frequency 

This method was the same as that described in section 3.2.1.3 on making a perceptual 

judgement, except that Mgrating was calculated for templates of all frequencies, including 

two frequencies (1.9 cycles/degree and 7.6 cycles/degree) for which no results are shown 

(because the model performed either perfectly or at chance), not just the 432 with the 

correct stimulus frequency. The results are shown in Figure 18. 
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Figure 18: Model performance on the grating detection task as a function of 

amplitude and frequency. The boxed plot (I) shows the maximum performance over 

all amplitudes for each frequency. This is for the model with the template matching 

decision model with unknown frequency and a quadratic size-disparity relationship 

(Equation 2 in the main document). 

3.3.5 Decision model using autocorrelation  

Here we show results from a decision model which does not use template-matching at all, 

but detects the grating from the autocorrelation of the disparity map. In this decision model, 

we start by estimating disparity at each point on a vertical line down the image. We do this 

by finding the peak correlation on each row of the correlation images that were the output 

from the cross-correlator. The disparity at which the peak correlation was found at each 

row was recorded as an estimate of the horizontal disparity at the corresponding vertical 

position:  

 )),(max(arg)( xyCyxest   
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Equation 5 

The result was a curve of estimated disparity as a function of vertical position (see Figure 

19AB). The next step was to calculate the autocorrelation of this curve as: 
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Equation 6 

where   is the mean and   is the standard deviation of estx , the sum is over all vertical 

positions i and n is the lag. Figure 19CD shows two examples of auto-correlograms. The 

last step was to fit a sine-wave and a triangular wave, the auto-correlation function of a 

square-wave, with the same frequency used in the stimulus to the auto-correlogram and 

record the r
2
-value of the best fit. Only the frequency of the gratings was given to the 

model. The amplitude was acquired by choosing the amplitude which gave the best fit and 

the model did not need to know the phase since the autocorrelation function is largely 

independent of phase. Letting the model know the frequency of the gratings was motivated 

because we had kept the frequency constant in each block of trials in the psychophysics 

experiments. The decision on which of the two image pairs given to the model in any trial 

contained the grating was then made by choosing the image pair which gave the highest r
2
-

value.  

 

Figure 19: Examples of estimated disparity curves and their autocorrelograms for one 

square-wave and one sine-wave both with a frequency of 1.3 cpd. A Gaussian window 

with 2*σ = 6+0.063*(∆x)
2
 arcmin was used. The estimated disparity curve for the sine-
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grating is quantized because the model only included detectors tuned to integer 

disparities (in pixels). 

 

Figure 20: Model performance on the grating detection task as a function of 

amplitude and frequency. The boxed plot (I) shows the maximum performance over 

all amplitudes for each frequency. This is for the model with the autocorrelation 

based decision model and a quadratic size-disparity relationship (Equation 2). 

 

3.3.6 Model with size-disparity correlation explains disparity gradient limit for sine and 

square-wave gratings 

Many previous studies have suggested that human depth perception is limited in the 

disparity gradients it can detect (Tyler 1975; Burt and Julesz 1980; Kanade and Okutomi 

1994; McKee and Verghese 2002; Banks, Gepshtein and Landy 2004; Filippini and Banks 

2009). For example, Tyler found that, for sinusoidal disparity gratings, the highest disparity 

amplitude which can be perceived is inversely proportional to grating frequency (i.e. lies on 
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a line with a slope of minus one in log-log coordinates (Tyler 1975); black symbols in 

Figure 21), as if perception is limited by the maximum gradient present in the grating. This 

observation does not require a size-disparity correlation; for example, Filippini & Banks 

(Filippini and Banks 2009) successfully reproduced it with their local cross-correlation 

model which incorporates no relationship between size and disparity tuning of detectors 

(Figure 21A). However, Tyler also found the same relationship between upper depth limit 

and frequency in square-wave disparity gratings. He argued that this does imply a size-

disparity correlation. No computational model has yet reproduced this observation. To 

examine this, we re-ran our simulations using a larger range of correlation detectors, 

including detectors tuned to disparities up to 140 arc min. This enabled us to probe the 

model’s upper depth limit even at frequencies <1 cpd, where performance remains perfect 

up to tens of arc min. 

 

The coloured symbols in Figure 21 shows the upper limit of disparity amplitude, defined as 

the maximum amplitude for which performance exceeds 80% on our grating detection task, 

as a function of grating frequency. For comparison, Tyler’s results are replotted in black. 

Figure 21A shows our results with the original, constant window-size model. For sinusoidal 

disparity gratings, the upper limit falls as a power-law with frequency, replicating the 

finding of Filippini & Banks. However, the model fails completely for square-wave 

gratings. No results are shown since the model has no upper depth limit for square-wave 

gratings; performance remains optimal at all amplitudes up to Panum’s fusional limit, with 

no trade-off between upper depth limit and frequency. This is inconsistent with Tyler’s data 

showing that, for human subjects, the upper depth limit for square-waves falls with 

increasing frequency in the same way as it does for sine-waves (Tyler 1975), as well as 

with our own data (Allenmark and Read 2010).  

 

Figure 21B shows the results of the new model using a linear size/disparity correlation 

(Equation 3). For both square-wave and sine-wave gratings, the upper depth limit is 

inversely proportional to frequency, in agreement with the human data. However, in the 

model results the sine- and square-wave curves overlap almost perfectly while they are 

offset by a constant amount in Tyler’s data. Tyler’s data were obtained using a different 

stimulus, line stereograms rather than random dot stereograms, and while similar results 
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have also been obtained with random dot stereograms for sine-waves (Tyler 1974), to our 

best knowledge the frequency dependence of the upper depth limit for square-waves has 

only been measured with line stereograms, making it hard to say whether this difference 

reflects a real problem with the model or if it is just a consequence of using a different 

stimulus. In the human data presented in the previous chapter, some subjects seem to show 

a difference in the same direction as Tyler, though smaller, while others show almost no 

difference. But there we only looked at high frequencies and the experiments were not 

designed specifically to test the upper disparity limit. Clearly, more data on the upper 

disparity limit for sine- vs. square-wave disparity gratings in random dot stereograms 

would be needed to test whether the lack of an offset between the sine- and square-wave 

results reflects a remaining problem with the model.  

 

Figure 21C shows the results of the new model using a quadratic size/disparity correlation 

(Equation 2). The results for sine-waves and square-waves are again very similar, but now 

the upper depth limit rises less steeply as frequency is reduced, or put another way, the 

highest frequency detectable for a given amplitude decreases at an accelerating rate as the 

amplitude increases.   

 

Figure 21: The maximum amplitude at which sine- and square-wave disparity 

gratings can be detected with >80% accuracy, as a function of frequency. The black 

squares and circles show human data for square- and sine-waves replotted from Tyler 

(Tyler 1975). The red circles show model results on sine-waves and the blue squares 

show model results on square-waves. A: Results with the old constant window-size 

model. No square-wave results are shown because the constant window-size model 

does not have an upper depth limit for square-waves. B: Model results using a linear 

size/disparity correlation in the encoding population (Equation 3). C: Model results 

using the same decision model but a quadratic size/disparity correlation (Equation 2). 
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3.4 Discussion 

The idea of primary visual cortex as a cyclopean retina goes back to Julesz (1971). 

Recently, the suggestion has emerged that certain key aspects of human depth perception, 

notably the low spatial resolution for stereo depth, are set by the initial encoding of 

disparity in primary visual cortex (V1). This suggestion has been quantified with models 

closely based on known physiology, in which disparity is encoded via a local cross-

correlation of the two eye’s images, within a finite window (Kanade and Okutomi 1994; 

Banks, Gepshtein and Landy 2004; Filippini and Banks 2009). In chapter 2 we identified a 

problem with the current implementation of this model. The model predicts a difference 

between the detectability of sine- vs square-wave gratings which is not observed in humans. 

The model predicts that, for sine-wave gratings, performance should decline from its peak 

value as disparity amplitude increases, while for square-wave gratings, performance should 

remain high. In humans, performance declines for both types of gratings. Clearly, the 

model needed to be altered to account for these observations.  

 

This then raised the question of what sort of modifications were needed. Potentially, the 

discrepancies might reflect the model’s failure to include more elaborate disparity 

processing in extra-striate cortex. For example, some extra-striate areas contain neurons 

that are tuned to disparity-defined edges, slant and curvature (Janssen, Vogels and Orban 

1999; Sakata, Taira, Kusunoki et al. 1999; von der Heydt, Zhou and Friedman 2000; 

Sugihara, Murakami, Shenoy et al. 2002; Nguyenkim and DeAngelis 2003; Bredfeldt and 

Cumming 2006). These are not included in the model. If such extra-striate mechanisms turn 

out to play a critical role in setting spatial stereoresolution, this would undermine the claim 

that stereoresolution is limited by the initial encoding of disparity performed in striate 

cortex. However, current models also ignore many known features of primary visual cortex, 

partly for practical reasons (simulation runtimes rapidly become unmanageable if one 

attempts to include all known variations) and partly for theoretical ones (insight is gained 

by abstracting out the key features which are responsible for a particular behaviour). Thus, 

it seemed to us that the first line of inquiry should be to explore whether a more realistic 
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representation of the initial disparity encoding stage could reconcile the model with human 

behaviour.  

 

One obvious property neglected by the current model is the tuning of neurons in early 

visual cortex to luminance spatial frequency and orientation. Rather, as we have shown in 

the first section of the Results, the model’s idealised, isotropic cross-correlators represents 

the combined output of many such tuned neurons (as for example in (Read and Cumming 

2006)). For the broad-band random-dot patterns used here, we believe that this 

simplification is adequate, and unlikely to affect the model’s performance on the particular 

tasks under consideration. We therefore chose to address, instead, another property ignored 

by current models, namely the size/disparity correlation. Much previous psychophysical 

work has indicated a correlation between the spatial scales over which disparity is 

extracted, and the amplitude of the disparity itself (Tyler 1975; Smallman and MacLeod 

1994; McKee and Verghese 2002; Tsirlin, Allison and Wilcox 2008). Physiologically, this 

implies that a population of neurons tuned to low spatial frequencies would encode 

disparities over a larger range than a population with tuned to high spatial frequencies. 

There is some physiological evidence supporting this (Prince, Cumming and Parker 2002). 

In the correlation model, spatial frequencies are not explicitly represented, but the 

integration implicitly includes all spatial frequencies with the same weighting (a limitation 

we discuss further below). Thus it is difficult to incorporate a relationship between disparity 

and spatial frequency tuning. However, it is easy to incorporate a relationship between 

disparity and receptive field size.  We believed that such a size/disparity correlation could 

potentially account for the poor human performance on square-wave gratings. Our 

reasoning was that square-wave gratings present a greater magnitude of disparity, averaged 

across a cycle, than sine-wave gratings of the same amplitude. Thus, their disparity should 

be encoded by cross-correlators with larger average window-size than sine-wave gratings. 

When the window-size associated with the largest disparity in the grating is comparable to 

or larger than half the spatial period of the grating this effect will tend to reduce 

performance on square-wave gratings relative to sines, although the piecewise-

frontoparallel nature of square-wave gratings will tend to enhance performance relative to 

sines. We wondered whether, with an appropriate relationship between window-size and 
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disparity magnitude, these two effects could cancel out and thus account for the very 

similar human performance on both types of gratings. 

 

Here, we have shown that our intuition was correct. Introducing a size/disparity correlation 

into the initial stage of disparity encoding, such that larger disparities are detected using 

larger correlation windows, solves both of the problems we identified with earlier version 

of the model. We have investigated various decision models, and shown that the model’s 

performance does not depend critically on the particular decision model used. Rather, it 

reflects the information available at the initial encoding stage, for the reasons we now 

discuss.  

3.4.1 Why a size-disparity correlation reconciles the model with human performance 

on square-wave gratings 

Correlation-based models are built of disparity detectors which respond maximally, i.e. 

with correlation output 1, to uniform stimulus disparity at their preferred value. Stimulus 

disparities away from the preferred value cause a decline in the reported correlation output. 

In this type of model, the rate of the decline is ultimately limited by the point-spread 

function of the eye, with an SD of around 2 arcmin.  

 

In the old, fixed-window-size model, the quality of the correlator output declines with 

increasing amplitude for the sine-waves, but not for the square-waves. Figure 22 shows 

examples of the old model’s correlator output for sine- and square-waves with low and 

high amplitude, for a frequency of 3.8 cpd. The white lines show which disparity was 

actually presented at each vertical position. The black lines show the extent of a correlation 

window, which for purposes of discussion we will take to be the 1SD contour of the 

Gaussian. For the low amplitude gratings (Figure 22AB), the correlator output is of high 

quality for both waveforms. It is maximal at the front and back surfaces of each waveform, 

where the range of stimulus disparities within the correlation window is smallest. In this 

example, the grating half-period is 7 arcmin, so for the square-wave, detectors positioned at 

the center of the grating’s front and back surfaces experience uniform stimulus disparity 

everywhere within their 6-arcmin correlation window. Detectors tuned to the stimulus 

disparity will therefore respond close to their maximum possible value of 1. Even at the 
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edges of the square-wave the window will only experience two disparities, each covering 

half the window, allowing the correlation to be relatively high (close to 0.5) for detectors 

tuned to either of these two disparities. For the sine-wave, the stimulus disparity is 

constantly varying. However, detectors positioned at the peak and trough of the gratings 

experience only a small (0.8-arcmin) range in disparity within their correlation window, so 

the response is still high at the front and back surfaces. Even detectors at the centre of the 

grating (zero disparity) experience a range of only 2.4-arcmin disparity, and so give a clear, 

though reduced, response.  

 

For the high-amplitude sine-wave grating, Figure 22C, the situation is very different. 

Detectors at the centre of the grating now experience a 14-arcmin range of stimulus 

disparities. There is thus almost no visible response to the slanting regions of the grating 

which can be distinguished from chance responses to particular random dot patterns within 

the stimulus. Detectors centred on the peaks and troughs of the sine-wave experience a 

lower disparity range of 4.8 arcmin, and periodic blobs of higher activation are still just 

visible here. Thus overall, the high-amplitude sine-wave grating is barely visible in the 

correlator output. For the high-amplitude square-wave, Figure 22D, little is changed 

compared to the low-amplitude case, Figure 22B. Detectors in the center of the grating’s 

front and back surfaces still experience uniform disparity, and so their response is 

undiminished. Detectors at the edges of the square-waves still only experience two 

disparities. That these are now further apart makes no difference, each disparity is still seen 

by half the window allowing correlations of about 0.5 even close to the edges. This is why 

the old model performed so much better with high-amplitude square-waves than with sines 

(Figure 7 and Figure 8). 
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Figure 22: Examples of output from the cross-correlator for the old model at a 

frequency of 3.8 cpd. The top row shows output for a sine-wave (A) and a square-

wave (B) with low amplitude (4 pixels = 1.3 arcmin) while the bottom row show output 

for a sine-wave (C) and a square-wave (D) with high amplitude (24 pixels = 7.6 

arcmin). Notice that the quality of the correlator output remains high for the high 

amplitude square-wave (D) while only the regions close to the peaks are visible in the 

output for the high amplitude sine-wave (C).  

 

How does the size/disparity correlation change matters? Figure 23AB shows correlator 

output for our new model, for high amplitude sine- and square-waves at 3.8 cpd, the same 

frequency that was used in Figure 22. For the low amplitude gratings, the correlator output 

remains almost exactly the same as shown in Figure 22AB, since the window-size remains 

close to that used in the fixed- window-size model. For high-amplitude gratings on the 

other hand, considerably larger windows will be used to detect the large disparities, as 

indicated by the black lines. For sine-wave gratings, this has relatively little effect. 

Detectors at the peaks and troughs of the grating now have a window-size of 2=10 arcmin. 

The range of disparity they experience within their correlation window is therefore larger, 

at 10.7 arcmin as compared to 4.8 in Figure 22C. The correlation output in Figure 23A is 

therefore somewhat reduced compared to the old model, Figure 22C (note slightly different 

colorscale), but the grating is still visible in the periodic “blobs” of higher correlation. For 

the square-wave, on the other hand, the increase in window-size has a more serious effect. 
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The window now exceeds the grating half-period, meaning that correlation detectors at the 

middle of the front or back surfaces no longer sample only their preferred disparity, but also 

some disparities 15 arcmin away from their preferred value. Detectors at different vertical 

positions now vary only in the proportion of dots which are at their preferred disparity. 

Accordingly, not only are the “blobs” marking each front and back surface now lower in 

amplitude, but critically, they are no longer separated by clear regions of low activation 

(compare Figure 23B vs Figure 22D).  

 

This is very damaging to the model’s performance. Recall that, in order to assess spatial 

resolution, observers were asked to discriminate stimuli in which disparities were arranged 

as a periodic function of position (gratings) from those in which the same disparities were 

scattered at random (noise). Figure 23CDEF shows the mean correlator output for both 

types of stimuli: that is, the grating templates for this frequency and amplitude (Figure 

23CD), and the noise templates for this amplitude (Figure 23EF). The model’s task, then, is 

essentially to decide whether the output to a given stimulus, Figure 23A and B, is a better 

match to the grating templates in Figure 23CD or to the noise templates in Figure 23EF. 

These are distinguished only by their periodicity. 

 

For the square-wave grating, the periodicity was perfectly clear with the fixed-window-size 

model (Figure 22CD), and is much less obvious with the size-disparity correlation model 

(Figure 23AB), thanks to the larger window sizes at the relevant disparities. In the new 

model, both the sine-wave and the square-wave output is now hard to distinguish from the 

noise patterns. This is why all our decision rules gave similar results for both square-wave 

and sine-wave gratings. For the frequency and amplitude used in this example, the template 

matching decision rule with known frequency performed at about 80% correct for both. 

 

In order to gain a better understanding of what happens when the model fails we have also 

approached this question in a different way. The best matching template for the grating 

interval was recorded at each trial using both sine-waves and square-waves and two 

different combinations of frequency and amplitude: 2.5 cpd and 4 arcmin where the model 

performed at 100% correct and 6.3 cpd and 4 arcmin where the model performed at roughly 

80% correct. This was done for 100 trials of each of these combinations. At the lower 
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frequency the model always picked the right template. At the higher frequency the model 

always picked a template with the right waveform and amplitude but only got the phase 

right roughly 15% of the time. However, it picked a phase within 30° of the correct one 

roughly 60% of the time and a phase within 80° of the correct one roughly 95% of the time. 

It seems then that what happens when the task starts to get harder is that the model’s 

estimate of the phase of the grating gradually gets worse. This makes sense intuitively 

when looking at Figure 23. The responses of the model to gratings of different wave-form 

look quite different even at a high frequency. The same is true of the model’s responses to 

gratings of different amplitude. However, as the correlator output starts to get more similar 

to the noise templates, which of course are independent of phase, it naturally also starts to 

become more similar for gratings with different phases. 

 

The grating and noise templates shown in Figure 23CDEF also allow us to make a 

prediction about how the model would perform on a discrimination task where it has to 

discriminate between sine- and square wave disparity gratings. Since both the high 

frequency grating templates and the noise templates look quite different for the sine- and 

the square-waves it seems likely that the model would be able to discriminate between sine- 

and square-wave gratings up to any frequency. At high frequencies the gratings would of 

course become indistinguishable from noise, but if the two types of noise are 

distinguishable from each other, which is suggested by the dissimilar sine- and square-wave 

noise templates, then this would not be a problem. This is also supported by the results 

presented in the previous paragraph, where the model always picked a template with the 

correct waveform for the grating interval, even when it was only performing at 80% and 

starting to get the phase of the template wrong. However, this ability of the model to 

discriminate sine- and square-wave gratings at any frequency is quite different from what 

would be predicted by the frequency analysis view discussed in section 1.2.1.1. The 

frequency analysis view predicts that sine-waves and square-waves should become 

indistinguishable when the second harmonic of the square-waves is no longer individually 

detectable which of course means that sine- and square-wave gratings should be 

indistinguishable at high frequencies. It therefore seems like the model is clearly 

inconsistent with the frequency analysis point of view (as applied to the disparity domain). 

Based on my experience with the stimuli it seems like it is possible for humans to 
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distinguish the two types of noise stimuli as well. This would of course need to be 

confirmed by further experiments before any more certain conclusions can be drawn, but if 

it is true it would mean that human perception is consistent with the behavior of the model 

and inconsistent with the frequency analysis point of view.  

 

Figure 23: The top row shows examples of output from the cross-correlator for the 

new model at a frequency of 3.8 cpd for sine-waves (A) and square-waves (B). The 

middle row shows grating templates at the same frequency for sine-waves (C) and 

square-waves (D). The bottom row shows noise templates for sine-waves (E) and 

square-waves (F). The correlator output matches the grating templates better than the 

noise templates. 

3.4.2 Initial encoding not decision rule is critical 

Although we have concentrated on the template-matching decision model when explaining 

why the size-disparity correlation has the effect it does, qualitatively similar results were 

obtained from all four decision models examined. We conclude that stereoresolution is 

limited by the initial encoding of disparity, not by the particular read-out we have adopted. 

Similar conclusions were reached by Banks (Banks, Gepshtein and Landy 2004; Filippini 

and Banks 2009) and Harris et al (Harris, McKee and Smallman 1997).  
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3.4.3 Size-disparity correlation and the disparity gradient limit 

Previous studies have suggested that our perception of depth patterns containing a large 

range of disparities may be limited by disparity gradient rather than the large disparities as 

such (Burt and Julesz 1980; Kanade and Okutomi 1994; McKee and Verghese 2002; 

Banks, Gepshtein and Landy 2004; Filippini and Banks 2009). In particular a study by 

Tyler (Tyler 1975) found that the maximum depth limit, the disparity amplitude at which 

depth differences are no longer perceived in sinusoidal and square-wave disparity gratings, 

depends on corrugation frequency in a way that approximately corresponds to a straight 

line with slope -1 in log-log coordinates. Banks et al. (Filippini and Banks 2009) had 

previously shown that a constant window size local cross-correlation model performed in a 

qualitatively similar way when tested with sinusoidal disparity gratings. Here, we have 

replicated this finding and shown that when a size/disparity correlation is incorporated into 

the model it performs in the same way for square-wave disparity gratings, consistent with 

Tyler’s results. The model achieves this despite lacking any sensors tuned to non-zero 

disparity gradients. Banks et al. suggested that the disparity gradient limit was a by-product 

of using local cross-correlation to estimate disparity (Banks, Gepshtein and Landy 2004; 

Filippini and Banks 2009). However, as Tyler (1975) recognized, this alone cannot explain 

why the frequency dependence of the upper depth limit exists for square-waves as well as 

for sine-wave gratings.  We have found that incorporating a size/disparity correlation into a 

correlation-based model makes it perform consistently for random-dot patterns depicting 

both square-wave and sine-wave disparity gratings. This supports Tyler’s conclusion 

(1975) that the disparity gradient limit reflects a size/disparity correlation, rather than being 

solely a by-product of local cross-correlation.  

3.4.4 Relationship to previous models 

Models of stereopsis based on cross-correlation of local patches of the two eyes’ images 

have a long history (Hannah 1974; Panton 1978; Kanade and Okutomi 1994; Steingrube, 

Gehrig and Franke 2009). They are widely used in computer vision as a fast and relatively 

reliable approach of achieving stereo correspondence. They have often been used to model 

human vision (Cormack, Stevenson and Schor 1991; Harris, McKee and Smallman 1997; 

Banks, Gepshtein and Landy 2004; Filippini and Banks 2009). Local cross-correlation is 

closely related to the “stereo energy” computation performed by cells in primary visual 
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cortex (Ohzawa, DeAngelis and Freeman 1990; Fleet, Jepson and Jenkin 1991; Qian and 

Zhu 1997; Qian and Mikaelian 2000), although cells spectrally filter the local image 

patches before cross-correlating them. Models based on stereo energy units have also been 

used as models of human vision (Qian 1994; Fleet, Wagner and Heeger 1996; Qian and 

Zhu 1997; Tsai and Victor 2003; Read and Cumming 2006; Read and Cumming 2007). All 

these implementations have recognized that useful disparity estimates require the outputs of 

many stereo energy units to be combined in some way. For example, models have 

estimated disparity by combining the outputs of stereo energy units with different spatial 

locations (Qian and Zhu 1997; Read and Cumming 2004), or different spatial frequencies 

and/or orientations (Fleet, Wagner and Heeger 1996; Read 2002; Read and Cumming 

2006).   As we have shown in this chapter, combining stereo energy units tuned to many 

different spatial frequencies and orientations can produce something which is formally 

identical to local cross-correlation of the unfiltered image. 

 

Stereo energy units based on phase disparity (Deangelis, Ohzawa and Freeman 1991; Fleet, 

Jepson and Jenkin 1991) naturally incorporate a size-disparity correlation. In this type of 

disparity encoding, the unit’s preferred disparity x is roughly /2f, where  is its 

preferred phase and f its preferred spatial frequency. If the largest phase disparity and 

bandwidth are the same for all spatial scales, then the largest preferred disparity is inversely 

proportional to frequency and thus proportional to size. Tsai & Victor (Tsai and Victor 

2003) used stereo energy units with phase disparity which therefore incorporated a size-

disparity correlation. They showed that this model, with template-matching, was able to 

account for stereoacuity as a function of frequency in sine-wave luminance gratings (NB 

these are luminance gratings at a constant depth, not random-dot patterns depicting 

sinusoidal depth modulation as have been used in this thesis). Our model uses position 

disparity, in which size-disparity correlation does not arise naturally, but has been built in 

by design. This leads to an important difference between the two implementations. Our 

size-disparity correlation links disparity to the size of the window across which disparities 

are sought, but not to spatial frequency. Our correlation-based model includes information 

from all spatial frequencies, independent of window size. Thus, the meaning of “size-

disparity correlation” is somewhat different in the two cases.  
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3.4.5 Limitations of the model 

Our model suffers from many limitations, most of which were forced on us by the difficulty 

of running simulations with large numbers of neurons. Most previous studies have either 

used stimuli with a uniform disparity profile, meaning that it suffices to model neurons at 

only one location in the visual field (Tsai and Victor 2003; Read and Cumming 2006; Read 

2010), or have modelled neurons at several locations but with only one spatial frequency 

and orientation (Qian 1994). In order for the model to detect gratings that vary in depth, we 

needed to compute responses in many locations in the visual field. It would have been very 

costly also to model the responses of stereo energy units tuned to many different spatial 

frequencies and orientations. We therefore used the cross-correlation technique (Qian 1994; 

Harris, McKee and Smallman 1997; Banks, Gepshtein and Landy 2004; Filippini and 

Banks 2009) as a convenient short-cut to approximate the responses of many stereo energy 

units tuned to all possible frequencies and orientations. 

 

Our analysis showing how local cross-correlation can be implemented exactly by stereo 

energy units is clearly idealized. Most notably, we integrated the response over all spatial 

frequencies, while keeping the receptive field size constant. Extending the integration to 

infinite spatial frequency is obviously unrealistic, although in practice will not greatly 

affect the results, since unrealistically high spatial frequencies will be removed from the 

images by the optical blurring and pre-processing. Keeping the receptive field size constant 

is a more serious limitation. Of course, primary visual cortex contains cells with a range of 

receptive field sizes. We have included only one window-size (receptive field size) at each 

preferred disparity. Once again, this was for reasons of computational economy. We regard 

the window-size within our model as representing the smallest receptive field sizes which 

contribute significantly to disparity detection. Ideally, we would have included a range of 

window-sizes at every disparity, with the smallest window-size at each disparity increasing 

as a function of disparity. However, since stereoresolution is limited by the smallest 

windows present, we would not expect this to alter our results substantially. 

 

Keeping the receptive field size constant corresponds to postulating that bandwidth declines 

with spatial frequency, as it does in the macaque (Devalois, Albrecht and Thorell 1982). 

Assuming Gabor receptive fields, a Gaussian envelope with standard deviation 3 arcmin 
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implies a bandwidth of 0.5 octaves at 15cpd; at 5cpd the bandwidth ranges from 1.5 octaves 

(sine phase) to 2.0 octaves (cosine phase), while at 0.5cpd the bandwidth is 1.8 octaves for 

sine phase (cosine-phase cells are low-pass). These values are consistent with those 

reported in macaque (Devalois, Albrecht and Thorell 1982). At a given frequency, the 

bandwidth will be narrower for large RFs than for small ones.  

 

As mentioned in the previous section, for each window-size, our correlation-based model 

includes information from all (luminance) spatial frequencies. In our model there is 

therefore no dependence between (luminance) spatial frequency and window-size. This is a 

consequence of the mathematical trick we have used to integrate over frequencies. In fact, 

several lines of evidence suggest that larger disparities are detected predominantly by 

mechanisms tuned to lower spatial frequencies in the luminance domain (Kulikowski 1978; 

Schor and Wood 1983; Smallman and MacLeod 1994). Thus, it would be more realistic to 

include a weight term in the integration over luminance spatial frequency, weighting the 

integral towards lower frequencies at the larger disparities/window-sizes, and towards 

higher frequencies at the smaller disparities/window-sizes. 

 

We have not included any neuronal noise within our model, nor have we attempted to 

reproduce human stereoacuity for gratings: the smallest disparity amplitude detectable at 

each frequency. In principle, it would be simple to add this. Stereoacuity is limited by the 

spacing of disparity detectors, and by neuronal and stimulus-dependent noise (random 

correlations between non-corresponding parts of the dot pattern, for example). 

 

We have only modeled the detection of horizontally-oriented disparity gratings. Humans 

find these easier to detect than vertically-oriented gratings (Bradshaw and Rogers 1999; 

Bradshaw, Hibbard, Parton, Rose and Langley 2006; Serrano-Pedraza and Read 2010; van 

der Willigen, Harmening, Vossen and Wagner 2010). It is currently unclear what model 

features would be required to match this feature of stereo vision. However, a clue may be 

that the disparity tuning surfaces of real cortical neurons are extended horizontally and are 

relatively narrow vertically (Cumming 2002). In any stereo algorithm, the choice of 

window-size represents a trade-off between resolution and accuracy. Large windows collect 

support over a wider region of the image, enabling greater accuracy and robustness against 
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false matches. However, they also lose the ability to track rapid changes in depth. For this 

reason, disparity steps are detected most accurately by windows which are elongated 

parallel to the edge and narrow orthogonal to the edge (Kanade and Okutomi 1994). Thus, 

the horizontally-elongated disparity tuning surfaces of real neurons would be expected to 

give greater sensitivity to changes in depth along a vertical direction in the image, as 

observed in humans. Further modelling work is required to examine whether models which 

incorporate this known anisotropy in V1 neurons can reproduce the anisotropy in human 

depth perception.  

 

A great deal is now known about how disparity is encoded within V1. Much less is known 

about how this activity is read out in higher areas to result in depth perception and 

judgments on tasks such as our grating detection (Parker 2007). Thus, our model is 

necessarily much more speculative here. Is it realistic to assume that our brains have access 

to “templates” representing the expected V1 output for different stimuli? Physiologically, 

these templates could be represented as the synaptic weights between V1 and “grating 

detector” units in a higher visual area (see (Read 2010) for a more detailed account). While 

neurons specifically tuned for disparity gratings have not been reported, “grating detector” 

units would also respond preferentially to disparity curvature and slant, and such neurons 

are known to exist in areas IT and MT (Janssen, Vogels and Orban 1999; Nguyenkim and 

DeAngelis 2003). Alternatively, such neurons might be constructed as required. In areas 

such as LIP, neurons quickly adapt their responses to the particular task requirements at 

hand (Snyder, Batista and Andersen 2000). In this view, participants may be able to 

construct adequate templates simply from the few disparity gratings they are shown as 

demonstration stimuli.  

 

3.5 Conclusions 

Local cross-correlation within a fixed window has been postulated as a model of human 

stereo vision. This model accounts for stereoresolution when depth is modulated 

sinusoidally, but gives incorrect predictions for square-waves. We have shown that 

introducing a size/disparity correlation, such that larger disparities are detected within 

coarser windows, reconciles the local cross-correlation model with human stereoresolution 
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on both square- and sine-wave disparity gratings. This supports the original conclusion of 

Banks et al. (2004) that the limit on spatial stereoresolution is set by the smallest receptive 

field size of V1 neurons, which respond best to locally frontoparallel surfaces (Banks, 

Gepshtein and Landy 2004; Filippini and Banks 2009). There is thus no need to invoke 

further limits imposed by cells in extrastriate cortex tuned to more complicated aspects of 

disparity such as slant and curvature. Such cells can be created by combining the outputs of 

V1 neurons with different preferred disparities, but in this view, they inherit a fundamental 

limit on stereoresolution, set in primary visual cortex.   

 

  



75 

 

 

 

Chapter 4.  Conjunctions between motion and disparity are encoded 

with the same spatial resolution as disparity alone 

4.1 Introduction 

In chapter 2 we measured human spatial resolution for disparity-defined depth and, 

consistent with previous results (Tyler 1974; Bradshaw and Rogers 1999; Banks, Gepshtein 

and Landy 2004; Filippini and Banks 2009), we found it to be much worse than for 

luminance information. This is believed to be because spatial resolution for disparity is 

limited by the overall sizes of receptive fields in primary visual cortex, whereas spatial 

resolution for luminance is limited by the size of their ON/OFF subregions (Banks, 

Gepshtein and Landy 2004; Nienborg, Bridge, Parker et al. 2004; Filippini and Banks 

2009). Thus, information about the fine detail of disparity, potentially available within the 

photoreceptor activations, is lost at an information bottle-neck in V1. In the previous 

chapter we modeled disparity-selective cells in V1 using a local cross-correlation model 

and showed that this model can account for human performance on the detection of 

disparity gratings of different waveforms. This result lended further support to the idea of a 

disparity processing bottle-neck in V1. We wondered if other information bottle-necks at 

subsequent levels of cortical processing could be revealed by their effect on perception. To 

this end, we examined the spatial resolution with which humans can detect conjunctions 

between horizontal motion and disparity.  

 

Disparity and motion are linked in natural viewing because objects closer to and farther 

than the plane of fixation appear to move in opposite directions when you move your head. 

Because this link is generated by observer self-motion, it applies across the entire visual 

field. Thus, conjunctions between motion and disparity arising from self-motion should not 

need to be encoded with very fine resolution. Cells which respond well to specific 

conjunctions of motion and disparity have been found in cortical area MT (Bradley, Qian 

and Andersen 1995; DeAngelis and Uka 2003), where receptive fields are around 10 times 

larger than those in V1 (Gattass and Gross 1981). If conjunctions between motion and 
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disparity are detected by specialized MT cells, we expect such conjunctions to be encoded 

with much lower resolution than disparity alone.  

 

To examine this, we designed a task which requires the observer to detect conjunctions 

between motion and disparity. We introduced a “joint motion/disparity grating”, a random-

dot pattern in which the pairing between horizontal motion and disparity alternated as a 

function of vertical position. That is, in alternate horizontal strips, near dots moved left 

while far dots moved right, or near dots moved right while far dots moved left (Figure 

24A). This is different from either a pure disparity grating built from moving dots, Figure 

24B, or a pure motion grating built from two depth planes, Figure 24C, both of which we 

also used for comparison. In each case, we asked subjects to discriminate the “signal” 

grating from “noise”, shown in Figure 24D. Figure 25 represents the stimuli in 

disparity/velocity space. To a system which detects only disparity, or to one which detects 

only motion, the joint motion/disparity grating is indistinguishable from noise. Thus, this 

task requires mechanisms which extract both motion and disparity and the correlations 

between them (Qian and Andersen 1997; Anzai, Ohzawa and Freeman 2001; Read and 

Cumming 2005c; Qian and Freeman 2009). 

 

In the same subjects, we probed the spatial resolution for each of these three types of 

gratings, using correlation thresholds to equalize task difficulty, and obtain an unbiased 

estimate of spatial resolution. Using a signal-detection theory model, we extracted 

estimates of the receptive field size and internal noise with which the brain detects each 

type of grating. 

 

 

Figure 24: Sketches of the different types of stimuli used. Notice that in every case the 

same speeds and disparities were present. The “pure disparity” grating is built from 

moving dots; there are leftward and rightward dots everywhere in the stimulus, but 

the depth of the dots alternates as a function of vertical position. Similarly the “pure 
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motion” grating contains two transparent depth planes, but the direction of motion of 

dots in the two planes alternates. 

 

 

Figure 25. The task in our grating discrimination experiment, sketched in 

disparity/velocity space. In the gratings, the dot disparities and velocities alternate as 

a function of vertical position in the image. The noise contains the same velocities and 

disparities, but without the spatial structure. 

 

4.2 Methods 

4.2.1 Equipment  

The experiments were performed in a dark room. Stimuli were projected on a projection 

screen (300 x 200 cm, Stewart Filmscreen 150, www.stewartfilm.com, supplied by Virtalis, 

Manchester), which the observers viewed from a distance of 160 cm. The subject’s head 

was stabilized using a chin rest (UHCOTech HeadSpot). Two projectors, projecting 

through polarizing filters, were used to separate the two eye’s images. The interocular 

cross-talk was less than 2%. White had a luminance of 4 cd/m
2
 and black had a luminance 

of 0.07 cd/m
2
. The projected image was 71 x 53 cm subtending 25° x 19°. The stimuli were 

presented in the central region of the image and had a size of 500 x 500 pixels (9° x 9°). 

The dot size was 2 x 2 pixels (2.1 x 2.1 arcmin).  
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4.2.2 Stimuli 

Stimuli were presented using Matlab (The Mathworks, Natick, MA, USA; 

www.mathworks.com) with the Psychophysics Toolbox (Brainard 1997; Pelli 1997; 

Kleiner, Brainard and Pelli 2007). The stimuli used were random-dot stereograms with 

equal numbers of dots moving to the left and to the right with equal speed, depicting either 

a grating or a noise-pattern. Three different kinds of gratings were used. The first type of 

grating had two transparent depth planes and was made up of horizontal strips of equal 

width, where in each strip all dots moving to the left were in one depth plane and all dots 

moving to the right were in the other and where the direction of movement in the different 

depth planes was alternated between adjacent strips (see Figure 24A). The second type of 

grating was a horizontal square-wave in depth made up of equal numbers of dots moving in 

both directions (see Figure 24B). The third type of grating consisted of two transparent 

planes in depth with horizontal strips, where all dots in a single strip moved in the same 

direction and the direction of motion alternated between adjacent strips (see Figure 24C). 

The noise patterns consisted of two transparent depth planes with an equal number of dots 

moving in both directions in both planes (see Figure 24D). Any individual monocular 

frame of any stimulus was simply a structureless random-dot pattern with 150 dots per 

degree
2
. 

A problem with comparing resolution for different grating types is that one task may be 

harder than another. For example, detecting a joint motion/disparity grating requires 

information from two visual modalities to be combined, and thus arguably requires a more 

challenging judgment than, say, detecting a motion grating. This could lead to erroneous 

conclusions regarding resolution. For example, consider the toy example sketched in Figure 

26. Figure 26A shows the internal signal for two hypothetical tasks, red and blue. These 

both have the same resolution, in that the signal is maximal for DC (0), and falls to zero at 

the same frequency. However, the red task is “harder”, in that, at any frequency, its signal 

is lower than the blue signal by a constant factor. Now suppose there is some non-linearity 

converting this signal into perceptual judgments. In particular, there is a “floor” (when the 

signal falls below this level, perceptual performance on the relevant task is chance) and a 

“ceiling” (when the signal falls above this level, performance is perfect). Figure 26B shows 

the resulting performance. Performance falls at much lower frequencies for the red task, 

http://www.mathworks.com/
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despite the fact that the dependence of the underlying signal on frequency is the same in 

both cases. 

 

 

Figure 26: Cartoon of a possible relationship between internal signal and performance 

for two different tasks, represented in red and blue, which could lead to erroneous 

conclusions about spatial resolution. See text for details. 

 

To avoid this problem, we used decorrelation to reduce the strength of the internal signal 

available for each task. This removed the ceiling effect, at least: if the internal signal was 

above ceiling, so that performance was perfect, we simply decreased correlation until the 

performance fell to 82%. In this way, we ensured that the difficulty of each task was equal. 

For motion, “decorrelation” means reducing motion coherence; for disparity, it means 

reducing interocular correlation. Thus for the pure motion gratings, we measured the 

motion coherence threshold at each frequency.  The motion coherence was varied by, at 

each frame, giving each dot a probability p of being randomly repositioned rather than 

displaced in its direction of motion. The coherence level is defined as 1-p, such that for 

example a coherence level of 0.6 means that at any frame each dot had a 40% probability of 

being randomly repositioned.   

 

For the pure disparity gratings, we measured the interocular correlation threshold at each 
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frequency. The interocular correlation was varied by, in the first frame of the stimulus, 

giving each dot a probability p of being positioned randomly in both eyes, instead of 

randomly in one eye and then offset horizontally by the desired disparity in the other eye. 

In subsequent frames, interocularly uncorrelated dots moved smoothly with the specified 

motion until they vanished off the edge of the stimulus.  For the joint motion/disparity 

gratings, we measured both correlation and coherence thresholds. 

 

4.2.3 Observers 

10 observers participated in the experiments: one of the authors and nine inexperienced 

observers. Observer CB was unable to perform the interocular correlation threshold parts of 

experiment two.  

4.2.4 Tasks 

To obtain the speed and disparity amplitude for which the subjects could best detect the 

joint motion/disparity gratings at high frequencies (experiment 1) we used a one interval 

task as well as a two interval task. Amplitude is defined as half the peak-to-trough range of 

the waveform, (max-min)/2. For the one interval task, in each trial either a grating or a 

noise pattern was presented and the task was to report, by a button press, whether a grating 

had been presented or not. The subjects were allowed to view the stimuli for as long as they 

desired before making a decision. For the two interval task, one interval contained a grating 

and the other a noise pattern, and the task was to report, by a button press, which interval 

contained the grating. The interval length was 750 ms with a 200 ms blank between 

intervals. Subject PFA was tested with the one interval task and all other subjects with the 

two interval task. Once the optimal speed and disparity amplitude had been determined for 

a subject, that speed and disparity amplitude was used in all further testing of that subject.  

To obtain coherence and interocular correlation thresholds once the optimal speed and 

amplitude had been determined we used adaptive QUEST staircases (Watson and Pelli 

1983) converging to 82% correct with a two-interval forced choice task where one interval 

contained a grating and the other interval contained a noise pattern and the task was to 

report, by a button press, which interval contained the grating. The interval length was 

either 500 or 750 ms with a 200 ms blank between intervals. The 500 ms interval length 
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was used for subject PFA, who is an author and an experienced psychophysical observer, 

and the 750 ms interval length was used for all other subjects. Each staircase was repeated 

three times in the same session. 

4.3 Results 

4.3.1 Experiment 1: Obtaining optimal stimulus parameters for each subject 

In this chapter, we wanted to detect the finest resolution with which motion and disparity 

information is represented.  Obtaining 4 correlation/coherence thresholds at many different 

spatial frequencies was a long and demanding experiment, and it was not feasible to also 

examine dependence on speed and disparity amplitude at each frequency. We therefore 

began by measuring each subject’s performance as a function of speed and disparity only 

for a single, high frequency. In this way we aimed to identify a pair of values where the 

subject is able to perform well.  

 

Figure 27 shows performance on the joint motion/disparity grating detection task as a 

function of disparity amplitude and speed for all subjects, for perfectly correlated stimuli. 

In each case there is a region of high performance surrounded by a region where 

performance was lower. The amplitudes and speeds used in experiment 2 were chosen for 

each subject individually in order to be approximately in the center of the region of high 

performance for that subject (white crosses in Figure 27). Table 1 shows the values used for 

each subject in the subsequent experiments.  
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Figure 27: Performance on the 100%-correlated joint motion/disparity grating as a 

function of speed and disparity amplitude for all subjects. The white crosses show the 

values used in the subsequent experiments (see also Table 1). The proportion correct 

shown is based on 30 trials per combination of speed and amplitude for all subjects 

except subjects AD, GY and PFA who performed 40 trials per combination. 
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 AA AD AMC CB EP GY JH  NS PFA SA 

Speed 

(degrees/s) 

4.3 2.1 6.4 4.3 2.1 4.3 2.1 4.3 4.3 4.3 

Disparity 

amplitude 

(arcmin) 

6.4 2.1 4.3 6.4 2.1 3.3 4.3 2.1 3.3 4.3 

Table 1: Speed of dot motion and disparity amplitude used in experiment 2 chosen 

based on the results of experiment 1 

 

4.3.2 Experiment 2 

We now proceeded to measure coherence and correlation thresholds for the three different 

types of gratings. Figure 28 shows the motion coherence thresholds measured at different 

frequencies for both the motion/disparity gratings and the pure motion gratings. The error-

bars show 1 standard error based on the three repetitions of each staircase.  At low 

frequencies, subjects are able to perform the tasks at relatively low coherence; as the 

frequency increases, subjects require progressively more coherence in order to be able to 

reach threshold. All subjects can detect motion gratings even at very low coherences, down 

to 20% at the lowest frequencies. For some subjects there is little difference between the 

thresholds for the two types of gratings at low frequencies; PFA, for example, is equally 

good at detecting both sorts of grating. However, for some subjects, such as AMC in Figure 

28, the coherence thresholds are far higher for the joint motion/disparity grating, even at the 

very lowest frequencies. This indicates that for this subject, detecting joint motion/disparity 

gratings is a genuinely harder task than detecting motion gratings, irrespective of their 

respective spatial resolutions. Thus, without the use of a coherence threshold, one could 

seriously misestimate the relative resolution in this subject (see Figure 26). 

  

At higher frequencies the thresholds become increasingly different for all subjects. The 

pure motion gratings can be detected up to frequencies where the joint motion/disparity 

gratings are invisible, even at 100% motion coherence.  
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Figure 28: Motion coherence threshold as a function of frequency for the 

motion/disparity and pure motion gratings for all subjects. The speed and disparity 

amplitudes used for the gratings were set individually for each subject; values in 

Table 1.  

 

Figure 29 shows the interocular correlation thresholds measured at different frequencies for 

both the motion/disparity gratings and the pure disparity gratings. Here, there is much less 

difference between the thresholds for the two different types of the gratings at low 

frequencies. For some subjects, this remains true at high frequencies, while for others, such 

as JH, there is a large difference at the highest frequencies. 
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Figure 29: Interocular correlation threshold as a function of frequency for the 

motion/disparity and pure disparity gratings for all subjects. 

 

In the figures above, we have presented two different types of threshold for the joint 

motion/disparity gratings: interocular correlation and motion coherence thresholds. Figure 

30 compares these two threshold measurements. For some subjects, the thresholds are 

comparable in the two cases, but where there is a systematic difference such that the 

thresholds all differ in the same direction at least up to some frequency close to the highest 

one tested (as for subject PFA in Figure 30) it is the interocular correlation thresholds that 

are higher. This suggests that despite their conceptual similarity, the two manipulations are 

not equivalent perceptually, with reduction in interocular correlation having a more 

disruptive effect than reduction in motion coherence.  
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Figure 30: Interocular correlation thresholds and motion coherence thresholds for the 

motion/disparity gratings 

 

4.3.3 Data analysis 

In order to turn these measurements of coherence and correlation thresholds into a 

quantitative estimate of receptive field size, we used a model based on signal detection 

theory. We assumed that, for 100% correlated stimuli, the internal signal was proportional 

to the RMS of the unit-amplitude grating waveform after convolution by a Gaussian with 

standard deviation σ. Recent work has suggested this is a good model for the detection of 

disparity gratings (Serrano-Pedraza and Read 2010). This signal could be computed by a 

population of energy-model-like disparity-selective cells with Gaussian receptive field 

envelopes of diameter 2σ. Figure 31 shows how the RMS of the convolution between the 

Gaussian and the square-wave varies as a function of the ratio between the SD of the 

Gaussian and the wavelength λ=1/f of the square-wave. We write this function RMS(σ/λ). 

This function depends only on σ normalized by λ and not on σ and λ independently of each 

other, which is why this curve can be fit to threshold data at any frequency. 
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Figure 31: The resulting curves (black) when a square-wave (blue) is convolved with a 

Gaussian (red) for a lower frequency square-wave (A) and a higher frequency square-

wave (B) of the same amplitude, and a plot of the RMS of these resulting curves for a 

range of ratios between the SD of the Gaussian and the wavelength of the square-wave 

(C).  

 

Reducing interocular correlation or motion coherence must reduce this internal signal. As 

we have seen, interocular correlation thresholds were in general higher than motion 

coherence thresholds for the joint motion/disparity task at low frequencies. This suggests 

that, at least for some observers, a decrease in interocular correlation increases task 

difficulty more than the same decrease in motion coherence. At 100% the interocular 

correlation and motion coherence versions of the stimulus were exactly the same and at 0% 

of either coherence or correlation there was no signal, so there could only be a difference in 

difficulty at intermediate values of correlation/coherence. We therefore chose to model the 

different effects of changing interocular correlation and motion coherence by assuming that 

the signal depended on the correlation/coherence level raised to some power, , allowing 

different values of  for the correlation and coherence. We refer to  as the “decorrelation 

parameter”, since it describes how seriously the available signal is degraded by 

decoherence/decorrelation. =1 means that the signal degrades linearly with 

decoherence/decorrelation; >1 gives faster degradation. With these assumptions, the 

internal signal available for performing the task is 

           σ    

We then used signal detection theory to predict performance on the task. Since a two 

interval task was used, the signal detection theory prediction is that: 

               
   

   
   

where PC is the proportion of correct answers, erf is the error function, sig is the signal and 

N is the internal noise. At the 82% threshold, this yields: 
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      σ   

   
  

from which we obtain: 

       
       

    σ   

               
 

   

 

Equation 7 

However, we can notice an odd property of this equation. The right hand side can clearly 

drop below one at large frequencies but the left hand side is an inverse 

correlation/coherence threshold which cannot be smaller than one. Therefore one might 

think that in order to get the best possible fits to the data, the right hand side of the equation 

should flat-line when it reaches one. However, it is not the case that the psychophysical 

threshold reaches one and then stays at one at higher frequencies. Clearly the performance 

of a subject will keep getting worse as the frequency is increased further, such that the 

performance no longer reaches the threshold level of 82% correct even at the highest 

possible level of correlation/coherence. This further decrease in performance would not be 

captured by the flat-lining model which assumes that the level of performance remains 

constant after the threshold reaches one. The model described by Equation 7 on the other 

hand does capture this further decrease in performance even if it does so in a way that it is 

hard to make sense of. When the quality of the fits are evaluated this model but not the flat-

lining model will introduce an extra penalty when it has gone past the point where the 

threshold reaches one and into the region where performance is below threshold level even 

at the highest possible level of correlation/coherence at a frequency where the threshold in 

the human data is lower than one (i.e. where it is possible to obtain a threshold). This seems 

quite reasonable and may arguably be a reason to prefer Equation 7 over the flat-lining 

version. Therefore Equation 7 will be used in this chapter. However, since there is still 

something odd about letting the curves that are supposed to model inverse 

correlation/coherence thresholds drop below one, the analysis has also been performed with 

the flat-lining model and these results are presented in Appendix 2.  

 

A scaled version of the RMS curve from Figure 31 can be fitted to the coherence and 

correlation thresholds from Figure 28 and Figure 29 by finding appropriate values of σ, N 
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and  , giving us estimates of the receptive field diameter (2) and internal noise levels (N) 

relevant to each task. Within a subject, the RF and noise parameters for the two different 

sets of data on the joint motion/disparity task, i.e. the interocular correlation thresholds and 

the motion coherence thresholds, were assumed to be the same. Similarly, within each 

subject, the decorrelation parameter was kept the same for both motion coherence data sets, 

and for both interocular correlation data sets. Therefore there were, for each subject, eight 

parameters in total: RF diameters and noise parameters for the motion, disparity and joint 

motion/disparity data and decorrelation-parameters for the interocular correlation and 

motion coherence thresholds. We fitted these parameters to the experimentally measured 

values of Cthresh, by minimizing the sum of squared errors over all four fits plus an 

additional term             for each of the two decorrelation parameters. The additional 

term was included to keep either decorrelation parameter from growing too small/large. We 

used resampling to obtain error bars on the parameters by repeating the fitting 10,000 times, 

each time simulating a new repetition of each staircase by running a new staircase with a 

simulated observer with the experimentally measured threshold. 

We can also use Equation 7 to estimate fmax, the highest grating frequency at which the task 

could be performed. At this frequency, performance is only threshold even when the 

stimulus is perfectly coherent/correlated, i.e. Cthresh(fmax)=1. Thus fmax is given by the 

solution of  

        σ                  

 

Figure 32 and Figure 33 show the inverted coherence and correlation thresholds along with 

the fits. The fits are generally good, validating the assumptions used in producing our 

model. The percentage of variance explained was at least 70% and at average 85% for the 

motion fits, at least 78% and at average 90% for the disparity fits and at least 40% and at 

average 84% for the joint fits. Note that each parameter affects more than one curve, so fits 

are not necessarily optimal for any individual curve. 
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Figure 32:  Inverted motion coherence thresholds as a function of frequency for the 

pure motion gratings (green) and joint motion/disparity gratings (blue) and model fits 

(see text) for all subjects.  
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Figure 33: Inverted interocular correlation thresholds as a function of frequency for 

the pure disparity gratings (red) and joint motion/disparity gratings (blue) and model 

fits (see text) for all subjects.  

 

Table 2 and Figure 34 show the parameters that gave the best fits for each subject. The 

receptive field sizes limiting detection are estimated at around 6 arcmin for the pure motion 

task and 8 arcmin for the pure disparity, similar though slightly larger than the 6 arcmin 

previously estimated by Banks et al (Banks, Gepshtein and Landy 2004; Filippini and 

Banks 2009).  Figure 35 shows the RF diameters and noise parameters from Figure 34AB 

after normalizing them to be 1 for the pure motion data. We see immediately that the RF 

diameter and neuronal noise estimated for the pure motion task are both smaller than for 

either the pure disparity or the joint motion/disparity task. This statement holds for all 

subjects individually, apart from subject AD where the motion fit is poor (see Figure 32B). 

At a population level, the RF diameter for pure motion is significantly smaller than for pure 

disparity (p<0.05, paired t-test, n=9, comparing motion to disparity, i.e. triangles vs circles in 

Figure 34A) and for joint motion/disparity (p<0.01, paired t-test, n=10, comparing motion to 

joint, i.e. triangles vs squares in Figure 34A). Similarly, the noise affecting pure motion 
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judgements is significantly smaller than for pure disparity (p<0.01, paired t-test, n=9, 

comparing Nmotion to Ndisparity, i.e. triangles vs circles in Figure 34B) or for joint 

motion/disparity (p<0.01, paired t-test, n=10, comparing Nmotion to Njoint, i.e. triangles vs 

squares in Figure 34B). These two effects, smaller receptive fields and lower noise, 

combine to make motion gratings detectable up to higher frequencies than gratings defined 

by disparity. All subjects including AD can detect motion gratings up to higher frequencies 

than either pure disparity or joint motion/disparity gratings (    
           

         
 , 

    
           

     
 ). Thus, our results show clearly that motion is encoded with higher 

resolution than disparity information, and also that it is affected by less neuronal noise.  

 

In contrast, there is no such clear difference between spatial resolution for pure disparity as 

compared to resolution for conjunctions between motion and disparity. Pure disparity 

gratings remain detectable up to slightly higher frequencies than joint motion/disparity 

gratings (3.3 cpd vs 2.5 cpd), but this does not seem to reflect a difference in receptive field 

size. The relative RF diameters estimated for the joint and for the pure disparity gratings 

show no consistent difference across our population. At the population level, the mean RF 

diameter is larger for the joint motion/disparity task than for the pure disparity task, but this 

difference is not significant either for the raw RFs (Figure 34, p=0.07, paired t-test, n=9) or 

after normalising by the motion RFs (Figure 35, p=0.15, paired t-test, n=9). In contrast, the 

estimated noise level is larger for the joint than for the pure disparity wherever there is a 

significant difference (5/9 subjects), and this difference is significant on the population 

level both for the raw noise parameters (Figure 34, p<0.05, paired t-test, n=9) and after 

normalising by the motion noise parameters (Figure 35, p<0.05, paired t-test, n=9). Thus, 

our analysis suggests that pure disparity and joint motion/disparity gratings are encoded 

with the same spatial resolution. The pure disparity encoding is, however, subject to lower 

effective noise, meaning that pure disparity gratings can be detected up to somewhat higher 

frequencies than joint motion/disparity gratings despite the similar RF sizes. 
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Figure 34: The parameters that gave the best fits to the data. The filled symbols on the 

right show the averages across subjects. Error-bars on individual subjects’ results 

show the 95% confidence intervals obtained by resampling, as described in the text; 

error-bars on the population averages show 1 standard error of the results from 

individual subjects.  

 

 

Figure 35: The data from Figure 34AB, normalized to be one for the pure motion 

data. The filled symbols on the right show the averages across subjects. Error-bars on 

individual subjects’ results show the 95% confidence intervals  on these ratios, 

obtained by resampling as described in the text; error-bars on the population 

averages show 1 standard error of the ratios from individual subjects. 
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 Subject AA AD AMC CB EP GY JH NS PFA SA Mean SD 

F
it

te
d

 p
ar

am
et

er
s 

Motion RF diameter 

(arcmin) 

7.9 11.8 6.3 9.3 3.8 4.3 4.9 3.9 5.8 3.0 6.1 2.80 

Disparity RF 

diameter (arcmin) 

9.2 9.9 7.5  6.8 6.3 9.2 8.1 7.9 5.7 7.8 1.42 

Joint RF diameter 

(arcmin) 

10.1 14.2 7.1 23.2 5.5 9.1 12.0 7.1 8.5 10.0 10.7 5.07 

Nmotion 0.22 0.17 0.22 0.16 0.42 0.24 0.27 0.25 0.21 0.51 0.26 0.11 

Ndisparity 0.49 0.40 0.52  0.43 0.40 0.34 0.40 0.26 0.60 0.42 0.10 

Njoint 0.60 0.42 0.59 0.48 0.52 0.40 0.47 0.53 0.24 0.58 0.47 0.11 

decoh 1.0 0.83 1.0 1.0 0.48 0.85 1.0 0.78 0.97 0.43 0.83 0.22 

decorr 1.0 1.0 1.0  1.1 1.0 1.0 1.0 1.3 1.0 1.04 0.10 

D
er

iv
ed

 q
u

an
ti

ti
es

 

disparity/motion 1.16 0.83 1.19  1.79 1.46 1.88 2.06 1.36 1.94 1.46 *  

joint/motion 1.29 1.2 1.14 2.5 1.45 2.13 2.48 1.82 
1.48 3.41 1.77* 

 

Ndisparity/Nmotion 2.23 2.28 2.34  1.04 1.63 1.26 1.60 1.20 1.16 1.59*  

Njoint/Nmotion 2.76 2.38 2.66 2.99 1.24 1.63 1.72 2.10 1.14 1.13 1.86*  

    
      

 (cycles per 

degree) 

4.22 3.03 5.28 3.94 6.68 7.47 6.32 8.10 5.78 7.55 5.84 1.70 

    
         

 (cycles 

per degree) 

2.49 2.65 2.95  3.64 4.14 3.05 3.20 3.97 3.45 3.28 0.57 

    
     

 (cycles per 

degree) 

1.88 1.78 2.77 1.00 4.00 2.83 1.94 3.04 3.73 2.01 2.50 0.94 

 

 

Table 2. Fit parameters and derived quantities for all subjects. Asterisks * indicate 

ratios significantly greater than 1 (t-test on the log-ratios, p<0.01). “Mean” is the 

arithmetic mean except for the 4 rows showing ratios, where it is the geometric mean. 

 

4.4 Discussion 

In this chapter, we have examined spatial resolution for disparity judgments with moving 

dots, motion direction judgments with disparate dots, and a novel disparity/motion 

conjunction task. The joint motion/disparity grating used in this task cannot be detected by 

pure disparity sensors or by pure motion sensors alone. If viewed with one eye, removing 

disparity information, the signal interval containing the grating appears identical to the 
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noise interval: at all locations in the image, there are dots streaming both leftward and 

rightward with no spatial structure. If a single frame is viewed in isolation, removing 

motion information, again both intervals are identical, since they both depict two 

transparent planes of dots at both near and far disparities. To detect the joint grating 

requires the observer to extract not only the local motion and disparity in the stimulus, but 

also the conjunctions between them.  

 

The existing literature suggests that cortical area MT would be ideally suited for this task. 

MT contains many neurons which are sensitive both to motion and disparity. MT neurons 

are typically suppressed by motion in opposite directions within the same depth plane 

(Snowden, Treue, Erickson and Andersen 1991; Qian and Andersen 1994), as in our noise 

stimulus. However, they respond well to transparent motion in opposite directions in two 

different depth planes, as in our grating (Bradley, Qian and Andersen 1995). Indeed, the 

transparent motion/disparity random-dot patterns from which we built our joint 

motion/disparity gratings were originally introduced to study MT neurons (Bradley, Qian 

and Andersen 1995; Bradley, Chang and Andersen 1998; Dodd, Krug, Cumming and 

Parker 2001). Thus, MT neurons should respond more strongly to the signal interval 

containing the joint motion/disparity than to the noise interval.  

 

If observers perform the task using this difference in the activity of MT, we can make a 

strong prediction about the resulting spatial resolution. The physiological literature suggests 

that MT neurons respond best when the conjunction between motion and disparity (e.g. 

left-near/far-right) is the same all over the receptive field. There is evidence that motion 

integration in pattern-selective MT cells occurs at a scale that is smaller than the entire 

receptive field, such that the cells are only pattern-selective if the components that make up 

the moving plaid overlap and not if they are presented in different parts of the receptive 

field (Majaj, Carandini and Movshon 2007). However, there is no evidence that MT 

neurons have subunits tuned to opposite directions and disparities, as would be required to 

detect motion boundaries. Therefore, if MT is involved in performing our joint 

motion/disparity task, we would expect the spatial resolution to be low, reflecting the large 

size of MT receptive fields which are typically around 4° at small eccentricities, (Raiguel, 

Van Hulle, Xiao, Marcar and Orban 1995). Specifically, it should be much poorer than for 



96 

 

pure disparity gratings, where spatial resolution reflects the much smaller receptive fields 

found in V1 (Banks, Gepshtein and Landy 2004; Nienborg, Bridge, Parker et al. 2004; 

Filippini and Banks 2009; Allenmark and Read 2010; Allenmark and Read 2011).  

 

Our results comprehensively disprove this prediction. Our results for pure motion and 

disparity gratings are similar to previous results (Anderson and Burr 1987; Bradshaw and 

Rogers 1999; Georgeson and Scott-Samuel 2000; Banks, Gepshtein and Landy 2004; 

Allenmark and Read 2010), although these workers used disparity gratings built from static 

dots and motion gratings without disparity. We find that subjects are able to detect pure 

motion and disparity gratings up to frequencies an order of magnitude lower than for 

luminance. We find that motion gratings can be detected up to significantly higher 

frequencies than disparity (mean fmax = 5.8 cpd for motion and only 3.3 cpd for disparity). 

Our analysis suggests that this is partly because receptive fields for motion are smaller than 

those for disparity (6 arcmin vs 8 arcmin), and partly because motion judgments are subject 

to less internal noise (effective noise higher for disparity than for motion by a factor of 1.6). 

However, contrary to the prediction, joint motion/disparity gratings could be detected up to 

frequencies only slightly lower than disparity itself, at mean fmax 2.5 cpd. Our analysis 

suggests that conjunctions between motion and disparity are detected with the same spatial 

resolution as disparity itself, with the limit set by sensors around 8 arcmin in diameter. The 

slightly lower frequency limit for joint motion/disparity gratings reflects slightly higher 

effective noise. Thus, spatial resolution for motion/disparity conjunctions is limited by 

spatial resolution for each component in isolation. The effective resolution is therefore that 

of disparity, the lower-resolution component. Importantly, resolution is not limited further 

by whatever mechanism detects the conjunction. The physiological arguments laid out 

above therefore strongly imply that this mechanism is not located in MT. 

 

Indeed, the fine resolution reported for motion gratings already implies that area MT may 

not be limiting perception here. Physiological studies of area MT in the macaque have 

failed to find cells selective for the position or orientation of motion boundaries (Marcar, 

Xiao, Raiguel, Maes and Orban 1995). Similarly, human brain imaging studies have not 

found any evidence that area MT is involved in the perception of  motion boundaries 

(Orban, Dupont, De Bruyn, Vogels, Vandenberghe and Mortelmans 1995; Reppas, Niyogi, 
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Dale, Sereno and Tootell 1997), instead identifying a different area, with no clear 

counterpart in the monkey visual system, as being involved in the processing of motion 

defined contours (Orban, Dupont, De Bruyn et al. 1995). Since the pure motion gratings 

could be detected by looking for motion boundaries, and the joint motion-disparity task 

could involve looking for motion boundaries in a specific depth plane, the apparent lack of 

involvement of area MT in the processing of motion boundaries suggests that a different 

area may have been used to perform the task and the area found in the fMRI experiments of 

Orban et. al. seems like a reasonable candidate since this area was found to be involved 

specifically in the perception of motion boundaries. 

 

Recently, there has been much debate over whether the ability to detect conjunctions 

between motion and disparity requires V1 neurons which are specifically tuned to both 

motion and disparity (Qian and Andersen 1997; Anzai, Ohzawa and Freeman 2001; Qian 

and Freeman 2009), or whether V1 neurons which are tuned solely to motion or solely to 

disparity can also contribute, if correlations between their activity are read out subsequently 

(Read and Cumming 2005a; Read and Cumming 2005b; Neri and Levi 2008). Around 14% 

of disparity-selective cells in macaque V1 are also selective for direction of motion (Read 

and Cumming 2005b) and these cells could support performance on the present task. If 

these cells were solely responsible, it is perhaps slightly surprising that the level of internal 

noise deduced for the joint task was only 1.12 higher than for the pure disparity task, given 

the physiological data implying around 7 times as many pure disparity cells as jointly-tuned 

cells in early visual cortex. Perhaps performance was supported also by cells selective to 

motion or disparity alone. Such cells would, individually, be blind to the difference 

between the joint grating and the noise stimulus, but the presence of the grating could be 

revealed by correlations in their activity (Read and Cumming 2005c). The emerging 

consensus seems to be that both mechanisms contribute (Neri and Levi 2008), and our 

results are consistent with that. 

 

Our estimates of receptive field size suggest that the resolution for motion, disparity and for 

conjunctions between the two are all limited by V1 receptive field sizes. In other words, 

there is no subsequent information bottle-neck affecting joint motion and disparity; 

information available in V1 is accurately passed on to perception. This is perhaps 
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surprising. If conjunctions between motion and disparity were used primarily to deduce 

self-motion from motion parallax, for example, a very coarse encoding would suffice, since 

in that case all objects nearer than fixation move in one direction, while all objects further 

than fixation move the other. Similarly in many visual scenes it would suffice to have an 

accurate spatial map of motion, or of disparity, alone. The joint motion/disparity detection 

required for our task is not required to perceive scenes with rapid local variations in both 

motion and depth, say a crowded street with many people at different distances moving in 

different directions. Such a scene could be accurately represented by extracting motion 

alone and disparity alone, and then overlaying the representations of the two quantities. Our 

results imply the additional ability to represent different motions and disparities at the same 

point in space. This more subtle ability benefits scenes with transparency, e.g. a flock of 

birds in flight, or the branches of a tree moving in the wind, or a shoal of fish under the 

reflective surface of the water. Our remarkable ability to resolve fine conjunctions between 

motion and disparity information may reflect the importance of such scenes during our 

evolution.   
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Chapter 5.  Conclusions and future directions 

5.1 Conclusions 

The psychophysical results on detection of sine-wave vs. square-wave disparity gratings in 

chapter 2 presented a challenge to local cross-correlation models of disparity detection and 

therefore also questioned the conclusions that have been drawn based on modeling work 

using such models. In particular it called into question the conclusion reached by Banks et 

al. (Banks, Gepshtein and Landy 2004; Filippini and Banks 2009) that spatial 

stereoresolution is set in area V1.  

 

In chapter 3 it was found that this challenge could be met by a local cross-correlation model 

that incorporated the known size-disparity correlation. This provides further support to the 

theory that spatial stereoresolution is set in area V1. In addition to explaining the new 

results presented in chapter 2 this modified correlation model also explains old human 

results on the frequency dependence of the upper depth limit (Tyler 1973) for both square-

waves and sine-wave disparity gratings while the old model without a size-disparity 

correlation could only explain the results for sinusoidal gratings.. This supports Tyler’s 

suggestion that the disparity gradient limit is a consequence of the size-disparity 

correlation.  

 

The small difference between the resolution for joint motion/disparity perception and pure 

disparity perception found in chapter 4 is inconsistent with what would be predicted if the 

resolution for the joint motion/disparity perception was limited by the large receptive field 

sizes in area MT. This suggests that information on joint motion/disparity available in area 

V1 is read out in an area other than MT with little or no loss in resolution. This information 

could be readout from V1 cells tuned to both motion and disparity, it could be based on 

detection of correlations in the activity of cells tuned only to motion and cells tuned only to 

disparity or it could be a combination of both. As mentioned in the discussion section of 

Chapter 4 recent evidence (Neri and Levi 2008) suggests that it is a combination of both. 

However, the most important conclusion that can be drawn from the results presented in 
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Chapter 4 is that the readout cannot be done by cells in higher areas that integrate over 

many V1 cells tuned to different positions but with the same motion direction and/or 

disparity tuning. Since the readout must involve cells in higher areas somehow, and these 

tend to have larger receptive fields, it seems likely that cells that have subunits with 

different disparity and/or motion direction tuning must be involved. Such cells could get 

their receptive field properties by combining the output from many V1 cells with different 

disparity and/or motion tuning at different positions. This question of how to read out the 

joint motion/disparity information from area V1 without loss of resolution is part of a more 

general problem of how conjunctions between any two visual properties can be detected by 

neurons at a higher level of the visual system without a loss of resolution due to the larger 

receptive field size of such a higher level neuron. It seems likely that this is done in a 

similar way in many different cases and a solution to this problem in the joint 

disparity/motion perception case would therefore potentially be of quite general interest.  

 

5.2 Future directions 

The psychophysical data presented in chapter 2 (Figure 9) suggests that the upper depth 

limit may in general be slightly higher for sine-waves than for square-waves. However, this 

difference in upper depth limit is not entirely consistent across subjects and frequencies and 

the data is in principle also consistent with there being no real difference at all in upper 

depth limit between the two waveforms. Previous work by Tyler (1973) where the upper 

depth limit as a function of spatial frequency was measured for sinusoidal and square-wave 

disparity gratings using line stereograms supported a difference in upper depth limit 

between the two waveforms that was independent of frequency and larger than what is 

suggested by the data presented in chapter 2. Based on this, a natural way of extending the 

work presented in chapter 2 would be to perform experiments with the same type of stimuli 

and task used in the experiments described in chapter 2 but designed specifically to 

measure the upper depth limit and to include lower frequencies instead of just looking at 

what happens close to the upper frequency limit where subjects stop being able to do the 

task at any disparity amplitude. This would provide the answer to the question raised in 

section 3.3.6 of whether the difference in upper depth limit between the two waveforms 

found by Tyler may be partially or completely an effect of using line stereograms and may 
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be reduced or disappear with random dot stereograms. The answer to that question would 

be of particular interest since the results of the simulations with the modified model 

presented in section 3.3.6, which were obtained using random dot stereograms, had the 

same frequency dependence as Tyler’s human results but did not show the lower upper 

depth limit for square-wave gratings compared to sinusoidal gratings.  

 

The modeling work presented in chapter 3 used a local cross-correlation model, while the 

current model that best captures the known physiology of disparity-selective V1 cells is the 

stereo energy model. In section 3.3.1 it was shown that the local cross-correlation model 

used can be thought of as the combined output from energy model units tuned to different 

(luminance) spatial frequencies and orientations. However, as was discussed in section 

3.4.5, the local cross-correlation model is clearly an idealization, most importantly because 

it assumes integration over an infinite range of spatial frequencies. It would therefore be 

interesting to confirm that similar results can be obtained using energy model units. 

Repeating all the simulations presented in chapter 3 with energy model units tuned to a 

range of different spatial frequencies and orientations would be extremely time consuming, 

but it would be possible to repeat a small part of the simulations using energy model units 

and confirm that the results come out the same, and this together with the theoretical proof 

presented in section 3.3.1 would be sufficient to strongly support the assumption that a 

simulation with local cross-correlation model used provides a good approximation to a 

more detailed simulation based on energy model units.  

 

Another approximation made in the modified local cross-correlation model with the size 

disparity correlation was that only one window-size was included for each preferred 

disparity. As discussed in section 3.4.5, including only the smallest available RF-size in the 

modeling should be an acceptable approximation, since spatial stereoresolution is limited 

by the smallest RF-size and it was necessary to make this approximation because 

simulations with the full range of window-sizes would have been too time consuming. 

However, again it would be possible to repeat a small part of the simulations with a more 

realistic model, having a range of different window-sizes for each preferred disparity, and 

check that the results come out the same.  
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In section 3.3.1 it was mentioned that the proof of the equivalence between the combined 

response of many energy model units with different frequency and orientation and local 

cross-correlation requires on the assumption that window size is independent of 

(luminance) spatial frequency. However, this equivalence may still hold approximately 

with a certain dependence between window size and frequency. This is likely to be hard to 

prove or disprove analytically, but it could be testing with simulations. This could be done 

by simulating the responses of energy model units, tuned to the same position and with the 

same receptive field size, but tuned to different frequencies and orientations, to a few 

simple patterns of disparity. Then the responses of these energy model units could be 

combined while giving different weight to units tuned to different frequencies, thereby 

introducing a dependence between RF size and spatial frequency while avoiding the 

obvious difficulties involved in combining response of units with different RF size. The 

combined  responses could then be compared to the responses of a local cross-correlator 

with the same RF/window size to the same stimuli. This could be repeated for a few 

different RF/window sizes using different patterns of weights in the combination across 

frequencies for each RF/window size in order to simulate a realistic dependence between 

RF size and spatial frequency tuning. 

 

All the psychophysical experiments and simulations presented in chapters 2 and 3 were 

performed with horizontal gratings. Previous psychophysical experiments have shown that 

vertical sine-wave disparity gratings are harder to detect than horizontal ones (Bradshaw 

and Rogers 1999; Bradshaw, Hibbard, Parton et al. 2006) and that this difference in 

detectability is much smaller for square-wave gratings (Serrano-Pedraza and Read 2010). 

As suggested in section 3.4.5 it may be possible to model this orientation dependence of the 

detectability of disparity gratings by giving the model neurons windows with greater 

horizontally than vertical elongation such as what has been found in the receptive fields of 

real V1 neurons (Cumming 2002). This would favor detectability of horizontal gratings, 

since for these spatial stereoresolution depends on the smaller vertical elongation of the 

window, while it depends on the larger horizontal elongation for vertical gratings. 

However, it is not clear why such a model would predict the much larger difference for the 

sinusoidal compared to the square-wave gratings. It is therefore possible that a full 

explanation of the stereo anisotropy would require better models of processing in higher 
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visual areas. In particular Serrano-Pedraza and Read (2010) suggest that the explanation 

may be “multiple spatial frequency channels for detecting horizontally oriented 

modulations in horizontal disparity, but only one for vertically oriented modulations”. 

 

In section 3.4.1 it was discussed how the correlation model that was used in Chapter 3 

seems highly likely to perform in a way that is inconsistent with the frequency analysis 

point of view that is discussed in section 1.2.1.1. This intuition could of course be 

confirmed by simulating a discrimination experiment, where the model has to discriminate 

between the two types of noise pattern. If the model is indeed able to perform this 

discrimination it would be interesting to perform such a discrimination experiment with 

human subjects. If human subjects can perform the discrimination as well this would lend 

further support to the model and serve as strong evidence against the frequency analysis 

point of view (in the disparity domain). If the discrimination cannot be performed by 

human subjects, this would be consistent with the frequency analysis point of view and 

would present a major problem for the model. 

 

The modelling performed in chapter 4 used a relatively abstract model. This was sufficient 

for the purpose of estimating the difference in receptive field size for the different kind of 

stimuli. However, there are more detailed computational models of area MT such as the one 

by Qian et al (Qian, Andersen and Adelson 1994). A natural addition to the work presented 

in chapter 4 would therefore be to confirm that this more detailed model predicts a much 

lower resolution than what was found in our experiments, as suggested by our more 

abstract modelling. Finally using fMRI experiments comparing neural activity in different 

areas with the joint motion/disparity gratings and the noise stimulus used in chapter 4 may 

be a good way of making further progress in answering the question of which brain areas 

are involved in joint motion/disparity perception. The brain area, mentioned in section 4.4, 

which in previous fMRI experiments have been found to be involved in processing of 

kinetic boundaries (Orban, Dupont, De Bruyn et al. 1995) may be of particular interest in 

such an fMRI experiment. 

 

There is psychophysical evidence showing that what appears as frontoparallel can be 

affected by a slanted reference plane, such that surfaces parallel to the reference plane 
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appear frontoparallel (Mitchison and Westheimer 1984). Various processes in stereo vision 

have been found to be influence by the presence of such a reference plane (Glennerster and 

McKee 1999). This suggests that it may not be the actual slant in the sine-wave disparity 

gratings that make them harder to detect as the amplitude is increased but perhaps rather the 

local slant relative to the average slant of the entire grating. If this is the case then it should 

not make much of a difference whether the entire grating is slanted or frontoparallel. This 

idea is not inconsistent with the model that has been presented in this thesis. However, the 

psychophysics and modelling presented in this thesis has only dealt with the case where the 

average slant is zero. In order to incorporate the idea that the “meaning of frontoparallel” 

can change a more general model may need to adapt to the average slant of the stimulus 

and seek correlations in a plane with such a slant. 
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Appendix 1. Computing the binocular term of an energy model unit 

The binocular term in the response of a single energy-model complex cell is: 
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This cell is tuned to a spatial frequency and orientation specified by the wavenumbers kx 

and ky, and has receptive fields centered at (xL,yL) and (xR,yR), with phases L and R 

respectively. We now compute the total response of many such cells tuned to many spatial 

frequencies and orientations, but all with the same receptive field centers and phases:  
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Doing the innermost integral first, we obtain:
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where  = R-L is the phase disparity of the cells.

 

Using this result in the equation for the 

integral of B gives us: 
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Appendix 2. Flat-lining model of coherence/correlation thresholds 

In this appendix the results of an analysis of the threshold data presented in chapter 4 is 

presented that is identical to what is described in section 4.3.3 except that the equation for 

Cthresh
-1

 has been changed so that the value can never drop below 1: 

       
           

    σ   

               
 

   

    

The results are qualitatively very similar to the results presented in Chapter 4. The 

estimated RF diameter is the smallest for motion and the largest for joint motion/disparity 

and the difference between the RF diameters for the joint motion/disparity and pure 

disparity is much smaller than what would be predicted if joint motion/disparity was 

processed by cells in area MT. The main conclusions of Chapter therefore still hold if this 

alternative model is used. The main difference to the results obtained in Chapter 4 is that 

the estimated RF sizes are slightly larger and therefore differ a bit more from previously 

obtained estimates for pure motion and pure disparity. 
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Figure 36: Inverted motion coherence thresholds as a function of frequency for the 

pure motion gratings (green) and joint motion/disparity gratings (blue) and model fits 

for all subjects.  

 

 

 

 

Figure 37: Inverted interocular correlation thresholds as a function of frequency for 

the pure disparity gratings (red) and joint motion/disparity gratings (blue) and model 

fits for all subjects. 
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 Subject AA AD AMC CB EP GY JH NS PFA SA Mean SD 

F
it

te
d

 p
ar

am
et

er
s 

Motion RF diameter 

(arcmin) 

9.8 19.5 7.6 11.5 3.8 5.3 6.3 4.4 5.9 3.4 7.8 4.90 

Disparity RF 

diameter (arcmin) 

9.5 15.2 7.7  6.8 6.3 9.2 8.1 8.1 6.0 8.5 2.77 

Joint RF diameter 

(arcmin) 

11.7 14.5 7.1 23.3 5.5 10.6 12.0 7.3 8.6 11.5 11.2 5.05 

Nmotion 0.20 0.12 0.21 0.15 0.42 0.21 0.25 0.23 0.21 0.47 0.25 0.11 

Ndisparity 0.48 0.30 0.51  0.43 0.40 0.34 0.40 0.26 0.57 0.41 0.10 

Njoint 0.58 0.33 0.59 0.48 0.52 0.38 0.47 0.51 0.25 0.53 0.46 0.11 

decoh 1.0 0.97 1.0 1.0 0.56 0.87 1.0 0.81 0.98 0.48 0.87 0.19 

decorr 1.0 1.2 1.0  1.2 1.0 1.0 1.0 1.4 1.1 1.1 0.14 

D
er

iv
ed

 q
u

an
ti

ti
es

 

disparity/motion 0.97 0.78 1.01  1.79 1.19 1.46 1.84 1.37 1.76 1.35 *  

joint/motion 1.19 0.74 0.93 2.0 1.45 2.0 1.9 1.66 
1.46 3.38 1.67* 

 

Ndisparity/Nmotion 2.4 2.5 2.43  1.02 1.90 1.36 1.74 1.24 1.21 1.76*  

Njoint/Nmotion 2.9 2.75 2.81 3.2 1.24 1.81 1.88 2.21 1.19 1.13 2.11*  

    
      

 (cycles per 

degree) 

3.51 2.71  4.45 3.26 6.14 6.25 5.09 7.49 5.71 7.04 5.17 1.64 

    
         

 (cycles 

per degree) 

2.44 1.96 2.87  3.63 4.15 3.05 3.20 3.90 3.43 3.18 0.70 

    
     

 (cycles per 

degree) 

1.71 1.46 2.77 1.00 3.96 2.51 1.95 3.04 3.73 1.87 2.40 0.98 

Table 3: Fit parameters and derived quantities for all subjects. Asterisks * indicate 

ratios significantly greater than 1 (t-test on the log-ratios, p<0.05). “Mean” is the 

arithmetic mean except for the 4 rows showing ratios, where it is the geometric mean. 
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