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Summary 

Aim: To evaluate the effect of various environmental (clinical) conditions on the 

physical and chemical characteristics of Mineral Trioxide Aggregate (MTA).  

Methodology: Initially preparation of specimens was standardised. Moreover, a novel 

mixing technique, trituration of encapsulated MTA, was developed. The effects of acid 

and blood contamination on various characteristics of MTA including compressive 

strength, surface microhardness, push-out bond strength and total porosity were then 

evaluated. Furthermore, by using X-ray diffraction analysis the hydration process of 

blood contaminated MTA was studied. In addition, the microstructure of contaminated 

MTA specimens was compared with control groups.  

Results: Methods of mixing and placing MTA significantly affected the hydration 

process and consequently the physical properties of the material. The lowest and 

greatest compressive strength, Vickers surface microhardness, and push-out strength 

values of MTA were found after exposure to pH levels of 4.4 and 7.4, respectively. In 

addition, scanning electron microscopy revealed a lack of needle-like crystals when the 

material was in contact with more acidic solutions. The hydration state of specimens 

partially mixed with blood was more complete than those mixed entirely with blood and 

less than specimens that were hydrated only with water.  

Conclusion: In experimental investigations, use of controlled mixing and placement 

techniques when using MTA is essential in order to standardise specimen preparation. 

Delaying the placement of the final coronal restoration in clinical situations when MTA 

is contaminated is recommended so that the material can acquire sufficient physical 

properties to withstand the acid-etch procedure and the condensation pressures that 

occur during the placement of a restoration and/or produced through indirect 

masticatory forces.  
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1. Introduction 

The ultimate goal of endodontic treatment is to conserve the integrity of the masticatory 

system by saving teeth at risk of developing pulp inflammation and those with established 

pulp and periradicular disease. Prevention of pulp inflammation through elimination of caries 

and restoration of teeth is the primary aim of Operative Dentistry. However, several treatment 

modalities within the scope of Endodontics, such as direct pulp capping and pulpotomy are 

used to eliminate infected dentine and pulp tissue in order to preserve the integrity of the 

remaining uninfected tissues. Such treatments are  

On the other hand, when pulp inflammation is irreversible and the pulp is non-savable 

-

preferred option when attempting to retain teeth, the aim being to eliminate infection from the 

pulpodentinal complex, which is achieved by debridement and disinfection of the root canal 

system. Filling the root canal system and restoring the tooth prevents re-infection by re-

establishing the surface integrity of the body to prevent microbial ingress.  

1.1. Vital pulp treatments 

Management of an exposed vital pulp in an adult tooth, particularly when root formation is 

incomplete, is a controversial topic in Endodontics and a broad range of treatments including 

direct pulp capping and pulpotomy are available (Pitt Ford et al. 1996, Ward 2002). The 

materials used in direct pulp capping and pulpotomy are placed adjacent to pulp tissue. 

Therefore, they must be non-toxic (Saidon et al. 2003) and of low solubility (El-Araby & Al-

Jabab 2005). A pulp capping material should also have sufficient compressive strength to 

tolerate pressures resulting from the condensation of restorative materials (Shazad & 



9 

 

Kennedy 1994). The ability of a pulp capping material to set in a wet environment is also 

important (Karabucak et al. 2005) as well as its ability to control bleeding during treatment 

(Tunca et al. 2007). Such a material should also prevent bacterial leakage, which is known to 

be the main aetiological factor in post-treatment disease (Fuks 2002).  

1.2. Root canal treatment 

As a consequence of extensive caries and/or a traumatic injury the dental pulp may become 

irreversibly inflamed and/or infected with the result that conserving the pulp tissue is not 

feasible. Root canal treatment includes removal of the infected pulp and the micro-organisms 

that inhabit the canal system followed by the placement of a root filling. Such treatments are 

not always straightforward and a number of complications can impede thorough shaping, 

cleaning and filling of the root canal system. In some instances, because of these 

complications, periapical disease may persist or emerge following treatment (Wu et al. 2006).  

1.2.1. Post-treatment disease 

Ideally post-treatment disease caused by intra-canal infection should be treated by revision of 

the primary root canal treatment. However, for pragmatic reason such cases are often treated 

using a surgical approach, which is the appropriate approach for extra-radicular infection, 

foreign body reactions and cysts (Wu et al. 2006). The outcome of endodontic surgery is 

largely dependent on the elimination of the antigenic source through the removal of infection 

or on the ability to trap micro-organisms within the tooth. It is generally accepted that the 

root-end cavity in a resected root should be prepared and then sealed with an appropriate 

root-end filling material (Theodosopoulou & Niederman 2005) to prevent the passage of the 

antigenic source from the contaminated root canal into the periapical tissue (Kim & 

Kratchman 2006). In addition, an ideal root-end filling material should be non-toxic, of low 
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solubility and be dimensionally stable (Andreasen & Pitt Ford 1994). Numerous root-end 

filling materials have been used, such as reinforced zinc oxide-eugenol cements, amalgam, 

composite resins, and glass-ionomer cement (Pereira et al. 2004). None of them have been 

considered to fulfill the requirements of an ideal root-end filling material (Harrison 1992).  

1.2.2. Incomplete root formation  

In some instances, incomplete development of the root apex may result in a wide root canal 

with thin and delicate dentine walls and an open apex that creates a major challenge during 

conventional root canal treatment. Pulp necrosis in a tooth with incomplete root formation 

can result from trauma at a young age. Conventional root canal treatment including cleaning, 

shaping and filling of such root canals can be problematic.  

1.2.2.1.Apexification 

Various methods and different materials have been suggested to deal with teeth having 

immature apices; 

defined by the American Association of Endodontists (2003) as:  

apex or the continued apical development of an incomplete root in 

 

The most essential requirements of a material in this situation are to be non-toxic 

osteoconductive and antibacterial (Shabahang & Torabinejad 2000),. Another important 

necessity is the capacity of the material to seal the apical part of root canal system (Morse et 

al. 1990). In addition, because of the lack of root formation control of bleeding and effective 

drying of the root canal system is a challenge with the result that a material that can set in an 

aqueous environment will be more efficacious (Simon et al. 2007). 
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1.2.2.2.Regenerative endodontics 

The aim of regenerative endodontics in treatment of teeth with incomplete root formation and 

necrotic pulp is to replace the irreversibly inflamed pulp tissue with newly regenerated tissue 

in an attempt to stimulate root maturation (Murray et al. 2007). This novel procedure of 

revitalization, introduced by Banchs & Trope (2004), involves chemical disinfection of the 

root canal system through profuse irrigation using sodium hypochlorite and the placement of 

a tri-antibiotic paste inside the root canal system without mechanical instrumentation. The tri-

antibiotic paste was described by Hoshino et al. (1996) as an effective medicament against 

the multi-bacterial root canal infection. At the second appointment a blood clot is induced 

inside the canal to act as a matrix for regeneration and then the coronal access cavity is sealed 

to prevent bacterial penetration and to allow regeneration in a bacteria free environment 

(Banchs & Trope 2004). More recently, the use of platelet-rich plasma rather than blood clot 

has been suggested (Hiremath et al. 2008).  

The material used to provide the bacteria tight seal in this context is important (Bose et al. 

2009, Torabinejad & Turman 2011) as it should ideally have the ability to up-regulate 

signaling molecules and provoke regeneration (Huang 2008, Thomson & Kahler 2010). 

Moreover, since it is not practical to avoid blood contamination the sealing ability and basic 

physical properties of the material should not be jeopardized by moisture and/or blood 

exposure. 

1.2.3. Root perforation 

To prevent infection and/or re-infection of periodontal tissues, root canal treatment 

procedures should remain within the root canal system. One of the iatrogenic accidents that 

results in an unintended communication between the root canal system and periodontium is a 

perforation, which can be categorized according to its anatomical location (Fuss & Trope 
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1996). Perforations can result in an inflammatory reaction within the periodontal tissues 

through infection that can then lead to bone loss. Adequate illumination and magnification 

(de Carvalho & Zuolo 2000), choosing a non end-cutting bur during access cavity 

preparation (Riitano 2005) and use of ultrasonic instruments to remove dentine interferences 

to obtain clear and unhindered access to each orifice (Plotino et al. 2007) can reduce the 

possibility of perforating the pulp chamber floor during access cavity preparation. Moreover, 

various root canal length measurement methods (Nekoofar et al. 2006) and preparation 

techniques (Abou-Rass et al. 1980, Torabinejad 1994, Dummer et al. 1998) have been 

described to reduce the possibility of apical, lateral and strip root perforations. Despite the 

ability of these techniques to prevent iatrogenic perforation, it has been reported as the 

second greatest cause of post-treatment disease (Ingle et al. 2007).  

Dealing with perforations is challenging. Ideally, a perforation should be repaired 

immediately following its creation (Fuss & Trope 1996). Various materials have been 

suggested to repair these defects with the outcome dependent on the biocompatibility of the 

chosen material and its sealing ability (Bryan et al. 1999). Ideally, the material should be 

osteoconductive and be able to provide an environment for cementum re-growth (Alhadainy 

1994). In addition, since in some instances control of bleeding is difficult, the use of a 

material that can set in an aqueous environment is advantageous (Alhadainy 1994, Gulsahi et 

al. 2007).  

1.2.4. Root resorption 

Root resorption is a pathological process that involves specific clastic cell activity resulting in 

destruction of the mineral and organic structures of cementum and dentine (Heithersay 1994).  

The aetiology of this entity is not known but it is a destructive process that can develop 

gradually or more rapidly, with some types of resorption being self-limiting (Benenati 1997). 
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Various treatment approaches have been suggested for resorption based on its anatomical 

position, morphology, histopathological findings and severity, as well as its extent and speed 

of progression. As a common goal of these treatment modalities clastic cells should be 

eliminated and the defect sealed by an appropriate material (Bakland 1992) against future 

antigenic leakage (Panzarini et al. 2007). Since thorough eradication of clastic cells is not 

practical, progression of the disease may also be controlled by release of calcium ions from 

such materials (Ozdemir et al. 2008). This ionic release, by changing the pH, may block 

clastic activity and prevent progression and/or recurrence of resorptive defects (Rehman et al. 

1996, Sari & Sonmez 2006). In cases of pathological root perforation as a consequence of 

extensive resorption the repair material should also be non-toxic (Hsien et al. 2003) and be 

able to seal the defect effectively.  

1.3. Mineral Trioxide Aggregate  

1.3.1. Advantages 

In all of the procedures mentioned above, the selected material is placed in contact with 

connective tissues. Therefore, its biocompatibility is a most critical requirement. In addition, 

the materials should ideally be non-toxic, set in a wet environment, be unaffected by blood 

contamination, provide a good seal against bacteria and fluids, release calcium hydroxide, 

induce or conduct bone deposition, have antibacterial properties and have reasonable 

compressive strength and hardness in order to withstand functional loads and the compaction 

forces that might apply when restorative materials are used subsequently.  

Mineral trioxide aggregate (MTA), which was developed by Torabinejad and co-workers at 

Loma Linda University, CA, USA (Lee et al. 1993), has been shown to cause low levels of 

inflammation (Torabinejad et al. 1995c), be less cytotoxic than conventional materials 
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(Keiser et al. 2000, Ribeiro et al. 2006) and can be used safely in contact with pulp and 

periodontal tissues (Abedi & Ingle 1995, Torabinejad & Chivian 1999). In addition, Tunca et 

al. (2007) reported that MTA induced vasoconstriction that may facilitate haemorrhage 

control. 

Thus, MTA appears to be a most promising material for use in all of the aforementioned 

challenging endodontic modalities (Mente et al. 2010a, Mente et al. 2010b, Parirokh & 

Torabinejad 2010b, Tang et al. 2010). Initially MTA was available commercially as 

ProRoot?  MTA (Dentsply Tulsa Dental, Tulsa, OK, USA); however, another MTA-based 

cement has been launched commercially as MTA Angelus (Angelus Dental Industries Ltd, 

Londrina, Brazil). Both manufacturers produce two types of MTA (grey and tooth coloured); 

the initial grey formulation was thought to stain teeth (Antunes Bortoluzzi et al. 2007), hence 

the development of the tooth coloured variety. More recently, a range of other MTA-based 

and related materials have been developed and marketed, e.g. Biodentine?  (Septodont, Saint-

Maur-des-) RVVps, France), CEM-cement?  (BioniqueDent, Tehran, Iran) and Biosealer?  

(Isasan, Rovello Porro, Italy). 

According to the US patent 5,415,547, the principle component of MTA is Portland cement 

(Torabinejad & Dean 1995). Numerous authors have examined similarities between several 

types of MTA and Portland cement (Estrela et al. 2000, Asgary et al. 2004, Camilleri et al. 

2005b, Dammaschke et al. 2005) and demonstrated that both tooth coloured and grey MTA 

have a similar chemical constitution to Portland cement except for the addition of bismuth 

oxide to make them radiopaque (Hwang et al. 2009). Saidon et al. (2003) reported that MTA 

and Portland cement were both biologically tolerated and had similar biocompatibility; 

several further studies have confirmed these findings (Ribeiro et al. 2005, de Morais et al. 

2006, Ribeiro et al. 2006). 
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MTA was introduced initially for the repair of root perforations (Lee et al. 1993, Mente et al. 

2010b) and was subsequently recommended as a root-end filling material following root-end 

resection (Torabinejad et al. 1993, Torabinejad et al. 1995a). It has also been suggested for 

use in vital pulp treatments (Pitt Ford et al. 1996, Mente et al. 2010a). Since hard tissue 

induction is one of its exceptional properties it has been recommended for use as an apical 

barrier in treatment of immature teeth with non-vital pulps and open apices (Bakland 2000, 

Mente et al. 2009). Schwartz (1999) reported the use of MTA for repair of resorptive root 

defects.  

Compared to other materials that have been used in similar clinical applications, MTA has 

been shown to have a high degree of biocompatibility (Geurtsen 2001, Ribeiro et al. 2005), 

low degree of cytotoxicity (Keiser et al. 2000, Ribeiro et al. 2006), good marginal adaptation 

(Xavier et al. 2005), antibacterial effects (Al-Hezaimi et al. 2006) and good sealing ability 

(De Bruyne et al. 2006). However, to date the number of clinical trials undertaken using 

MTA is limited (Theodosopoulou & Niederman 2005, Nair et al. 2008, Christiansen et al. 

2009). 

1.3.2. Disadvantages 

Despite its unique combination of properties and great potential, the prolonged setting time of 

the original MTA material is a major disadvantage (Antunes Bortoluzzi et al. 2006) as are its 

poor handling characteristics (Levenstein 2002). After mixing MTA with water by hand the 

sandy mixture, which is difficult to manipulate (Kogan 

et al. 2006).  On occasions, even when MTA powder is mixed with the recommended amount 

of water it can become too dry and have poor handling characteristics; unfortunately, adding 

more water may reduce its resistance to movement and result in even more difficult handling 

(Kogan et al. 2006, Felekoglu et al. 2007, Jafarnia et al. 2009). 
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In addition, since MTA requires water to initiate and complete the setting reaction, placing a 

wet cotton pellet next to MTA has been suggested following its use (Torabinejad 2004). 

Therefore, it is recommended that other filling materials are not placed adjacent to it at the 

same appointment, a problem that obviously increases the number of appointments required 

to complete treatment.  

In surgical endodontics after placement of MTA in a root-end cavity, it may be lost from the 

preparation when the surgical site is irrigated (Kogan et al. 2006). In addition, MTA may 

sometimes remain unset at subsequent appointments to suggest incomplete hydration of the 

material (Torabinejad et al. 1995b). Different physiological conditions may also interfere 

with the hydration of MTA and its microhardness (Lee et al. 2004). Low compressive 

strength (Harrington 2005), low viscosity (Clark 2007), shrinkage (Kogan et al. 2006) and 

poor chemical bonding to dentine (Yan et al. 2006) are other potential disadvantages of the 

material. 

1.4. Gaps in knowledge 

Following the development of MTA by Torabinejad and co-workers (Lee et al. 1993, 

Torabinejad et al. 1993) research tended to focus on its advantageous biological properties, 

clinical applications of MTA and sealing ability rather than on basic physical and chemical 

properties. Indeed, few early independent studies reported on the physical and chemical 

properties of the material. Furthermore, the hydration process of MTA was not evaluated 

fully. Over time, investigators began to investigate these important properties (Lee et al. 

2004, Camilleri et al. 2005a, Dammaschke et al. 2005, Danesh et al. 2006, Islam et al. 

2006a, Camilleri 2007, Camilleri 2008b, Gandolfi et al. 2009, Gandolfi et al. 2010b, AlAnezi 

et al. 2011, Cutajar et al. 2011). In such studies, to achieve valid and consistent results, 

variables that may affect the properties and performance of the materials tested should be 
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controlled. However, various confounding variables, such as water content, mixing 

methodology and spatulation pressure were uncontrolled and not reported in these previous 

studies with the result that their conclusions could be compromised.  

When testing materials it is also imperative to adhere to standards that govern their 

evaluation. Unfortunately, MTA is not a typical dental, cement-like material and testing its 

physical and chemical properties requires a wider consideration of the appropriate standards. 

Some studies have focused on testing MTA using standards based on dental cements 

(Torabinejad et al. 1995b, Fridland & Rosado 2005), e.g. specification for dental root canal 

filling materials (ISO 6876) and for dental zinc oxide eugenol cements and zinc oxide non-

eugenol cement (ANSI/ADA No.30). However, since MTA is a Portland-cement-like 

material Camilleri et al. (2006) and Danesh et al. (2006) used Portland cement standards, 

which are applicable in the construction industry, e.g. composition, specification and 

conformity criteria for common cements (EN 197-1) and specification for physical testing of 

Portland cement (BS 4550 Section 3). 

Obviously, clinical applications of MTA are not similar to industrial applications of Portland 

cement. Moreover, MTA is neither a restorative material nor an endodontic sealer; rather it is 

a unique material and does not easily meet the criteria of the available standards. Thus, it 

 

Characterization of MTA under standardized and controlled conditions should lead to an 

improved understanding of its behaviour and the optimisation of its use in clinical practice. 

However, although MTA has been suggested for use in a variety of clinical applications there 

is limited information available on the effect of various environmental factors on the physical 

properties of MTA. In particular, little is known about the effect of mixing technique, 

including spatulation pressure, ultrasonic agitation, cement to water ratio and acid or blood 
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contamination on its chemical and physical characteristics. In addition, the effects of other 

restorative materials that may be placed in direct contact with MTA, such as glass ionomer, 

have not been studied comprehensively (Parirokh & Torabinejad 2010a). 

In order to overcome its various disadvantages, to improve its physical and chemical 

properties and propose a specific standard for MTA, it is essential that knowledge of the 

physical properties and chemical characteristics of MTA is enhanced. In addition, since in 

most of its clinical applications it would be exposed to blood and/or tissue fluids, the effects 

of various clinical situations on the characteristics of MTA should be studied. Hydration, 

setting and hardening process should also be investigated to enhance understanding and 

provide base-line data to develop the material further. 

1.5. Overall aim 

The overall aim of this work is to evaluate several physical and chemical characteristics of 

ProRoot?  MTA (Dentsply Tulsa Dental,) while exposed to acidic preparations or blood, the 

type of contamination that is likely to occur in the clinical environment. However, prior to the 

main studies a substantial body of work was undertaken to standardise the methodology 

relating to specimen preparation in order to ensure the control and/or elimination of 

confounding variables such as mixing and placement techniques as well as powder to water 

ratios. 

1.6. Structure of thesis 

In Chapter 1, the "Introduction", the background to the development and use of MTA are 

described as well as deficiencies in knowledge. By highlighting the disadvantages of MTA 

the reasons for undertaking this series of studies and their importance are justified.  
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appraisal of more than 300 articles that describe various aspects of MTA, including its 

biological, physical and chemical properties. Where possible these properties have been 

related to its clinical applications.  

In Chapter 3 the aims of the studies are described, whilst the experimental studies undertaken 

in fulfillment of this PhD are reported in Chapters 4 to 5. Chapter 4 contains four separate 

fundamental studies undertaken to improve the background knowledge of how MTA 

(ProRoot?  MTA, Dentsply Tulsa Dental) should be mixed and how specimens should be 

prepared. These preliminary studies allowed a consistent methodology (standard) for the 

main investigations that followed. In addition, the lack of consistency in the water content of 

ProRoot?  MTA (Dentsply Tulsa Dental) ampoules is reported, which led to the development 

of a novel mixing technique by encapsulating MTA. Moreover, the effect of mixing and 

placement methodology and various water-to-cement ratios on selected properties of MTA 

were evaluated.  

In Chapter 5, the effect of contamination on selected properties of MTA is reported. In these 

studies,  were subjected to various experimental conditions that included 

contamination with two types of acid or blood in an attempt to simulate several challenges 

that occur in the clinical situation and their effect on the physical and chemical properties of 

MTA.  

Chapter 6, the final chapter, contains conclusions and areas for further research. 
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2. Mineral Trioxide Aggregate  a review of the literature  

2.1. Introduction 

Mineral Trioxide Aggregate (MTA) was developed by Torabinejad and co-workers at Loma 

Linda University, CA, USA in an attempt to fulfill the ideal criteria of a root perforation 

repair material (Lee et al. 1993). The materia -end 

(Torabinejad et al. 1993). MTA was initially approved for use in vital pulp 

treatments by the United States Food and Drug Administration in 1997 (USFDA 1997). Its 

use in other clinical applications such as repair of root perforations and/or as an apical plug 

during apexification was approved later (USFDA 1998a). Subsequently, the United States 

Food and Drug Administration supported the safety and effectiveness of MTA for use as a 

root-end filling material (USFDA 1998b).  

MTA is a type of hydraulic cement that requires water to set.  In simple terms, hydraulic 

cements are finely ground materials (powders) that when mixed with water gradually or 

instantly set and harden in air or in water; the reaction resulting in the formation of hydrated 

compounds whose strength increases with time. MTA consists of fine hydrophilic particles 

that on contact with water sets to a hard composition through the creation of a colloidal gel 

(Pitt Ford et al. 1995, Lee et al. 2004, Camilleri et al. 2005a). 

2.2. Clinical applications 

Mineral trioxide aggregate (MTA) has shown potential as an endodontic material in several 

in vivo, in vitro and ex vivo studies (Mitchell et al. 1999, Torabinejad & Chivian 1999, 

Moretton et al. 2000, Schmitt et al. 2001) and because of its many potential advantages, it is 

being used increasingly in a wide range of clinical treatments. It was first developed and 
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introduced in endodontics for the repair of root perforations (Lee et al. 1993). Subsequently, 

it has been widely used in surgical endodontics as a root-end filling material (Torabinejad et 

al. 1993, Aqrabawi 2000). It has also been used in vital pulp treatments, including direct pulp 

capping and pulpotomy of pulps in immature teeth (apexogenesis) (Abedi & Ingle 1995, 

Torabinejad & Chivian 1999). In addition, as hard tissue induction is one of its exceptional 

properties, it has been suggested as an apical barrier in treatment of teeth with open apices 

and necrotic pulps (apexification) (Shabahang & Torabinejad 2000, Witherspoon & Ham 

2001). 

MTA also provides an effective seal against penetration of bacteria and their by-products 

(Tselnik et al. 2004) and thus has been recommended as a temporary filling material (Schmitt 

et al. 2001) and as a coronal plug after filling of the root canal system (Mah et al. 2003, 

Tselnik et al. 2004). Moreover, it is recommended for the non-surgical repair of invasive 

cervical root resorption (Schwartz et al. 1999). Yildirim & Gencoglu (2009) reported new 

hard tissue formation in two horizontal root fracture lines after a 5-year follow-up and 

suggested the use of MTA in the treatment of such cases. In addition, Gomes-Filho et al. 

(2009) reported that a sealer based on MTA  stimulated mineralization and thus advocated its 

use as a root canal sealer. The use of MTA has also been suggested in regenerative 

endodontics for treatment of immature permanent teeth with periapical disease (Banchs & 

Trope 2004, Thibodeau & Trope 2007, Petrino et al. 2010, Thomson & Kahler 2010, 

Torabinejad & Turman 2011). 

2.3. Commercially available products 

The first commercial MTA product was launched as ProRoot?  MTA (Dentsply Tulsa 

Dental). The initial product was a grey-coloured material but as this initial formulation was 

thought to stain teeth (Antunes Bortoluzzi et al. 2007) a tooth coloured version was 
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subsequently developed. A second commercially available cement was later launched as 

MTA Angelus?  (Angelus Dental Industries Ltd, Londrina, Brazil) with both grey and tooth 

coloured versions being available.  

Since the commencement of this PhD a number of other MTA-like materials such as 

Biodentine?  (Septodont, Saint-Maur-des-) RVVps, France), CEM?  cement (BioniqueDent, 

Tehran, Iran), Biosealer?  (Isasan, Rovello Porro, Italy) and DiaRoot?  BioAggregate 

(Innovative BioCeramix, Vancouver, Canada) have been marketed. The manufacturers of 

these new products claim that the handling and biological properties of their products are 

better than those of MTA. This thesis, however, will focus on ProRoot?  MTA (Dentsply 

Tulsa Dental), which was available at the outset of the project.  

2.4. Chemical constituents 

According to the US patent number 5,415,547, the principle component of MTA is Portland 

cement (Torabinejad & Dean 1995). Portland cement was invented in 1824 by a British 

bricklayer, Joseph Aspdin who burned crushed limestone and clay in his kitchen stove and 

produced a hydraulic cement that hardened following mixing with water (Bates 1926). The 

of Portland off the British coast (Ryan 1929).  

Today Portland cement is produced by crushing, grinding and blending raw materials 

(limestone and clay or shale) followed by heating the resulted powder in a rotary kiln up to a 

temperature of approximately 1400-1500o C to partially fuse them (Taylor 1997) and thus 

produce clinker nodules. To modify the properties of the final product, clinker nodules are 

then cooled and ground with 3-6% calcium sulphate (CaSO4). The clinker has a composition 

of calcium oxide (CaO) 50 75%, silicon dioxide (SiO2) 15 25%, aluminum oxide (Al2O3) 1-

5% and iron oxide (Fe2O3) 1-3% (Taylor 1997) and contains four main phase fractions 
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silicate (3CaO.SiO2)

(2CaO_SiO2) tricalcium aluminate (3CaO.Al2O3) and 

tetracalcium aluminoferrite (4CaO.Al2O3.Fe2O3) (Aranda 2001, Bensted 2002).  

Camilleri (2007) chemically analysed Portland cement and MTA powders and reported low 

levels of the aluminate phase in the latter and concluded that MTA powder was very likely 

manufactured in a laboratory rather than in an industrial rotary kiln. 

For simplification in cement chemistry a single letter can be used to express the name of 

common oxides, such as: C=CaO, S=SiO2, A=Al2O3, F=Fe2O3, H=H2O, = SO3 and =CO2. 

In addition, chemical formulae may be abbreviated in the same way, for example: 3CaO.SiO2 

or tricalcium silicate can be abbreviated to C3S (Table 1, page 26). This system can be also 

used in a chemical equation, for example:  

3CaO + SiO2  3CaO.SiO2  

or  

3C + S C3S 

Several authors have examined similarities between different types of MTA and Portland 

cement. Using fluorescence spectrometry Estrela et al. (2000) compared the chemical 

constituents of grey ProRoot?  MTA (Dentsply Tulsa Dental) and Portland cement. The 

results of their study revealed that with the exception of the presence of bismuth in ProRoot?  

MTA (Dentsply Tulsa Dental), the other chemical ingredients of these two materials were 

similar. As a result of a comparative chemical study using inductively coupled plasma 

emission spectrometry (ICP-ES) Funteas et al. (2003) reported that the absence of bismuth in 

Portland cement was the only dissimilarity between the chemical elements of grey ProRoot?  

MTA (Dentsply Tulsa Dental) and Portland cement. Asgary et al. (2004) compared tooth 

coloured ProRoot?  MTA (Dentsply Tulsa Dental) and two types of white Portland cement 
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using SEM and X-ray microanalysis. In their study a smaller range of particle sizes was 

observed in samples of tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) compared to 

white Portland cements. As a result a finer texture has also been observed in tooth coloured 

ProRoot?  MTA (Dentsply Tulsa Dental) products. According to Estrela et al. (2000), Funteas 

et al. (2003) and Asgary et al. (2004) both tooth coloured and grey ProRoot?  MTA (Dentsply 

Tulsa Dental) have a similar chemical constituents to their Portland cement counterparts, 

except for the presence of bismuth that is intentionally added to make MTA radiopaque; this 

information was confirmed subsequently by Camilleri et al. (2005b). 

The chemical composition of powder and set forms of grey MTA Angelus? �(Angelus) has 

been compared to grey ProRoot?  MTA (Dentsply Tulsa Dental), tooth coloured  ProRoot?  

MTA (Dentsply Tulsa Dental) and white and grey Portland cement (Song et al. 2006) using 

X-ray diffraction analysis. In agreement with other studies it was revealed that Portland 

cement varied from both commercially available MTA products by the lack of bismuth ions. 

Hwang et al. (2009) compared chemical and certain physical properties of Portland cement 

and tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) using energy dispersive X-ray 

analysis. In accordance with previous studies the chemical resemblance of Portland cement 

and MTA, apart from the absent of bismuth oxide, was confirmed. Moreover, the presence of 

large jagged particles that were dispersed irregularly between small particles was illustrated 

in both MTA and Portland cement, although the number of large particles was more 

prominent in the latter (Dammaschke et al. 2005). The multifaceted chemistry of Portland 

cement and its dental version, MTA, has been the subject of many studies but is not yet 

determined fully, although an accepted simplification is that they generally consists of four 

major hydraulic phases: tricalcium silicate (3CaO.SiO2), dicalcium silicate (2CaO.SiO2), 

tricalcium aluminate (3CaO.Al2O3) and tetracalcium aluminoferrite (4CaO.Al2O3.Fe2O3) 
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(Table 1, page 26). A very low level of aluminum and magnesium and absence of iron in 

tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) compared to grey ProRoot?  MTA 

(Dentsply Tulsa Dental) has been reported by Camilleri et al. (2005b) and confirmed by 

Asgary et al. (2006). The absence of iron compound in tooth coloured ProRoot?  MTA 

(Dentsply Tulsa Dental) was described as the reason of its colour difference to the original 

(grey) ProRoot?   MTA (Dentsply Tulsa Dental) (Asgary et al. 2006, Camilleri 2008c).   

Common name Chemical Name Composition Symbol 

Alite Tricalcium silicate 3CaO.SiO2 C3S 

Belite Dicalcium silicate 2CaO.SiO2 C2S 

Aluminate Tricalcium aluminate 3CaO.Al2O3 C3A 

Ferrite  Tetracalcium aluminoferrite 4CaO.Al2O3.Fe2O3 C4AF 

Gypsum  Calcium sulphate CaSO4  

Bismite Bismuth Oxide Bi2O3  

Table 1: Major components of Mineral Trioxide Aggregate (MTA) 

 

These constituent elements hydrate at different rates to influence the setting time, hardening, 

workability, strength and other physical properties of the material. Calcium sulphate (CaSO4) 

and bismuth oxide (Bi2O3) are also added to control flash setting and make it radiopaque, 

respectively. In other words, the physical and chemical properties of these cements are 

governed by the way in which the phases react with water, which can be modified by altering 

the composition of each phase or by adding other elements/materials. Camilleri (2008b) 

demonstrated that the aluminate phase and sulphate levels of un-hydrated tooth coloured 

ProRoot?  MTA (Dentsply Tulsa Dental) compared with the white Portland cement were low 

and therefore suggested that it was manufactured in a laboratory rather than in an industrial 

rotary kiln. The aluminate phase in Portland cement is essential for sufficient clinkering 

(fusing by burning) of the raw materials in a kiln (Taylor 1997).  
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2.4.1. Hydration 

The chemical reaction between water molecules and cement particles is called hydration. 

During the hydration process, water molecules are absorbed by the anhydrous cement 

particles to produce a gel matrix that encompass the cement grains and results in the 

formation of a plastic paste followed by the release of hydrates into solution (Taylor 1997). 

The density of ionic hydrates gradually increases and following saturation, the ionic 

constituents precipitate out as a solid phase and the material begins to harden (Boumiz et al. 

1996). With progress of the hydration process over time, stiffening (loss of workability) of 

the cement occurs, which is referred to as the initial set (Walker et al. 2006). 

The cement then acquires discernible resistance to fracture from either compressive or tensile 

stresses (Boumiz et al. 1996). A certain degree of hardness, sufficient to bear a given light 

weight without indentation, is referred to as the final set  (solidification) (Camilleri 2007). 

With continued hydration of the cement over time, its compressive strength increases and it 

becomes harder (Lee et al. 2004). 

2.4.2. Calcium silicates (C3S & C2S)  

Most of the binding power, early strength and biological reactions of Portland cement and 

MTA are attributed to the hydration of its major constituent, the calcium silicates, including 

tricalcium silicate and dicalcium silicate (Bensted 2002). As a result of the hydration process, 

calcium hydroxide is formed and released (Fridland & Rosado 2003). In addition, the main 

binding agent of the cement, a gel of calcium silicate hydrates (C-S-H), is formed 

simultaneously (Taylor 1997, Camilleri 2007).   
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2.4.2.1.Tricalcium silicate (3CaO.SiO2 or C3S) 

Tricalcium silicate or Alite (C3S) is the main component of all normal Portland cements 

(Camilleri et al. 2005b) and all types of MTA (Islam et al. 2006b). Hydration of Alite begins 

in the early stages of the reaction and continues for approximately one month when hydration 

is nearly complete (Bensted 2002). Since it reacts quickly with water; Alite is considered as 

the most important constituent for initial strength development. The tricalcium silicate phase 

also provides the long-term mechanical strength of the cement. The main products of the 

hydration reaction of the Alite phase are a C-S-H gel and a soluble calcium hydroxide that 

precipitate after saturation.  

2.4.2.2.Dicalcium silicate (2CaO.SiO2 or C2S) 

Dicalcium silicate or Belite (C2S) reacts slowly with water, thus, its contribution to early 

strength development is less than Alite (Bensted 2002); however, delayed strength 

development is attributable to this phase (Eglinton 1987).  The hydration of this phase also 

results in the formation of calcium hydroxide that is released in an aqueous environment 

(Fridland & Rosado 2005). The proportion of dicalcium silicate in MTA is higher than in 

Portland cement (Camilleri 2008b), which may result in a longer hydration process and a 

greater release of calcium hydroxide (Camilleri 2010).   

2.4.3. Tricalcium aluminate (3CaO.Al2O3 or C3A) 

Pure tricalcium aluminate or aluminate reacts rapidly with water and exhibits flash setting 

(Taylor 1997). Therefore, the hydration of tricalcium aluminate is more rapid than that of the 

other phases with the result it influences the early setting process of the cement (Gemelli et 

al. 2004) and contributes to its early strength (Bensted 2002). By increasing the aluminate 

content rapid-hardening or high early strength can be produced (Stutzman 2004). Following 
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the initiation of the hydration process and in the presence of calcium hydroxide, asymmetrical 

flakes of calcium aluminate hydrate (C-A-H) with poor crystalline formation develop on the 

surface of the cement particles (Hewlett & Lea 1997). Consequently, as a result of a reaction 

between calcium sulphate dihydrate (gypsum) and C-A-H the compound ettringite (hydrated 

calcium sulphoaluminate) is formed that results in a network of needle-like crystals that 

contribute to early stiffening and strength. These ettringite crystals absorb more water to 

provide an effective barrier against rapid hydration of the cement by delaying formation of 

more C-A-H and thus regulate the hydration process (Camilleri 2007). The formation of 

ettringite from aluminate and the sulphate phases requires calcium ions that are provided by 

the calcium hydroxide produced during the hydration of the calcium silicate phases 

(Camilleri 2008a). Incomplete hydration of the cement restricts the formation of calcium 

hydroxide and consequently in a failure to produce ettringite (Camilleri 2008b). The absence 

of the aluminate phase has been reported in several recently developed MTA-like materials, 

which is claimed to be associated with improvements in their biological properties (De-Deus 

et al. 2009a). 

2.4.4. Calcium sulphate dihydrate (CaSO4-2H2O) 

Calcium sulphate dihydrate (gypsum) is an essential constituent of Portland cement and 

MTA. Gypsum regulates the rate of hydration and retards the initial stiffening of the cement, 

thereby, increasing the initial setting time of the cement, in contrast to the aluminate phase 

(Black et al. 2006, Camilleri 2008d). In the initial phases of the hydration process, sulphur 

ions are gradually absorbed on the surface of the C-S-H gel and results in hardening of the 

cement (Dammaschke et al. 2005). Formation of ettringite crystals also depends on the 

presence of gypsum (Gandolfi et al. 2010b). Dammaschke et al. (2005) reported that the 
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amount of sulphur in ettringite crystals originating from the (SO4)2- groups of gypsum 

increases as a result of the setting reaction. 

2.4.5. Tetracalcium aluminoferrite (Ca2AlFeO5) 

Tetracalcium aluminoferrite (Ca2AlFeO5) or ferrite reacts rapidly with water in the initial 

stages of hydration; however, this reaction reduces with time (Bensted 2002). The rate of its 

hydration is related to the aluminum/ferric composition ratio and is regulated by Gypsum. As 

a result of the reaction between hydrated ferrite and Gypsum, close to the aluminate surface, 

prismatic crystals of ettringite may form (Taylor 1997). The dark colour of grey Portland 

cement and grey MTA is a result of ferrite (Bensted 2002, Asgary et al. 2005). White 

Portland cement and tooth coloured MTA are made by increasing the ratio of AL2O3 to Fe2O3 

(Taylor 1997, Dammaschke et al. 2005). A fluxing agent is used to remove the ferrite phase 

during the clinkering process. The lack of this phase in tooth coloured MTA has been 

confirmed by Song et al. (2006).   

2.4.6. Bismuth oxide (Bi2O3) 

An important property of dental materials is radiopacity, by which they can be distinguished 

from surrounding tooth tissues and bone on radiographs (Torabinejad et al. 1995b, Tagger & 

Katz 2004). In the first prototype of MTA, bismuth oxide powder (wt 25%) was added to 

Portland cement (wt 75%) to make it radiopaque (Torabinejad et al. 1995b).  It has been 

shown that bismuth oxide may interact with the hydration process of MTA by producing 

calcium silicate bismuth hydrate (Camilleri 2007, Camilleri 2010). Coomaraswamy et al. 

(2007) evaluated the effect of the ratio of bismuth oxide on the physical properties of 

Portland cement. They demonstrated that a higher content of bismuth oxide resulted in a 

cement with greater porosity and lower compressive strength. The use of other radiopacifiers 



31 

 

to overcome the suggested detrimental effects of bismuth oxide has been suggested 

(Coomaraswamy et al. 2008 , Camilleri 2010, Camilleri & Gandolfi 2010).  

2.4.7. Presence of arsenic  

A particular concentration of arsenic is harmful for human health and may cause cancer 

(Chen et al. 2010). Therefore, the presence of arsenic in various types of Portland cement and 

MTA has been of concern. However, Duarte et al. (2005) demonstrated that the 

concentration of arsenic in both Portland cement and MTA was less than the Food & 

Agriculture Organisation and World Health Organisaton (FAO/WHO) recommended harmful 

dosage and concluded that Portland cement could be used clinically. This conclusion was 

strongly criticized by Primus (2006) who emphasised the unhygienic manufacturing process 

used to produce Portland cement compared to the more controlled conditions used to produce 

ProRoot
?

 MTA (Dentsply Tulsa Dental). Bramante et al. (2008) and De-Deus et al. (2009b) 

confirmed that the levels of arsenic in various types of MTA and Portland cement were lower 

than the harmful concentration. Primus (2009) has raised doubts about the validity of the 

methodology used by Duarte et al. (2005) and Bramante et al. (2008) to trace arsenic. Further 

controlled studies are needed to determine the precise amount of the various types of arsenic 

in the hydraulic cements that have been suggested for use in endodontic treatments. .  

2.4.8. Presence of phosphorus 

The presence of phosphorus that can explain the bioactivity of MTA is a matter of debate 

(Gandolfi et al. 2010b). In a preliminary laboratory study using X-ray energy dispersive 

spectrometry in conjunction with scanning electron microscopy Torabinejad et al. (1995b) 

indicated that the main elements present in MTA were calcium and phosphorus. However, in 

other studies phosphorus in grey and tooth coloured  ProRoot
?

 MTA (Dentsply Tulsa 
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Dental) has not been detected (Asgary et al. 2004, Camilleri et al. 2005a, Asgary et al. 2006, 

Gandolfi et al. 2010a). This significant inconsistency might have occurred because of a 

modification to the chemical composition of the initial prototype of MTA, which was used in 

preliminary studies but not in the product that was eventually marketed (Asgary et al. 2005). 

On the other hand, Camilleri et al. (2005a) suggested that unintentional exposure of MTA to 

phosphate solutions during laboratory testing was the reason of this discrepancy. Sarkar et al. 

(2005) demonstrated that MTA in contact with a synthetic tissue fluid containing phosphate 

buffered saline produced precipitates similar to hydroxyapatite. Accordingly, Gandolfi et al. 

(2010a, 2010b) demonstrated the absence of phosphorus in MTA and Portland cement 

powder and indicated that the source of phosphorus in hydroxyapatite crystals was not from 

the MTA powder itself.  

2.5. Biocompatibility 

Biocompatibility is a characteristic of a material that indicates its ability to produce 

appropriate inflammatory and/or immunological responses, whilst in contact with host tissue 

in a specific application (Peppas & Langer 1994). In addition to a non-significant 

immunological reaction, a biocompatible material does not cause any genotoxic, mutagenic 

or cytotoxic effects (Schmalz 1998).  

Various methodologies have been used to evaluate the biocompatibility of dental materials 

including: 

 In vitro mutagenicity tests; 

 Genotoxicity examinations; 

 In vitro cytotoxicity assays; 

 Evaluation of bioactivity by measurement of cytokines and biological markers as a 

result of exposure to the extracts of materials; 
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 Assessment of local toxicity reactions and healing processes following subcutaneous 

and/or intraosseous implantation of materials in laboratory animals. 

Subjected to various basic and advanced biocompatibility tests, Portland cement and its 

derivative, Mineral Trioxide Aggregate (MTA), have been reported to be highly 

biocompatibility; indeed, MTA has been described as a bioactive endodontic material 

(Torabinejad et al. 1995d, Keiser et al. 2000, Asrari & Lobner 2003, Gandolfi et al. 2008, 

Silva et al. 2008, Jafarnia et al. 2009, Dammaschke et al. 2010a, Hasheminia et al. 2010, Ko 

et al. 2010, Zeferino et al. 2010).  

2.5.1. Mutagenicity and Genotoxicity 

Potential mutagenicity of MTA, IRM (Dentsply Caulk, Milford, DE, USA) and Super EBA 

(Harry J. Bosworth Co., Skokie, IL, USA) was studied by employing the 

with the conclusion that IRM, Super EBA, and MTA were not 

mutagenic (Kettering & Torabinejad 1995).  

Causing genetic damage, such as breakage of chromosomes, gene mutation and cellular 

transformation, are some of the indicators of the carcinogenicity of a material (Shelby 1988). 

Therefore, before application of a new material in humans, in vitro, ex vivo and in vivo 

genotoxicity tests are needed to evaluate its potential carcinogenic effects (Barlow et al. 

2006). Genotoxic effects of various concentrations of Portland cement and MTA Angelus 

were evaluated by the single-cell gel (comet) assay and trypan blue exclusion test in mouse 

lymphoma cells by Ribeiro et al. (2005) who concluded that Portland cement and MTA did 

not cause genotoxic effects. Barz et al (2006) evaluated the concentration-related genotoxic 

effect of MTA Angelus and two types of Portland cement on peripheral lymphocytes using an 

alkaline single cell gel (comet) assay. They concluded that exposure of cultured human 

peripheral lymphocytes to various concentrations of MTA or Portland cement (dissolved in 
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phosphate buffered serum) ranging from 1 to 1000 ? g mL-1 for 1 h at 37oC did not cause 

significant DNA defects (Braz et al. 2006). The potential genotoxic effects of various types 

of MTA have also been evaluated on cell cultures of V79 Chinese hamster fibroblasts 

(Camargo et al. 2009), MG63 human osteosarcoma cell line (Ding et al. 2010) and murine 

fibroblasts (Zeferino et al. 2010) and in accordance with previous findings it was confirmed 

that MTA did not cause DNA damage.  

2.5.2. Cytotoxicity 

In a pioneer study Torabinejad et al. (1995c) compared the cytotoxicity of freshly mixed and 

set experimental materials including amalgam, Super EBA, IRM, and MTA on mouse L929 

fibroblasts using the agar overlay and radiochromium methodologies. According to the 

results of the agar overlay technique, cytotoxicity of fresh and set MTA, ranked second after 

amalgam since the average zone of lysis for fresh and set experimental materials in a 

downward order was IRM, Super EBA, MTA and amalgam. Additionally, the percentage of 

radioactive chromium release, as an indicator of cellular lysis, following 24 h incubation with 

radiochromium-labeled mouse L929 fibroblasts in descending order was IRM, Super EBA, 

amalgam and MTA. This means that the degree of cytotoxicity of fresh and set MTA was the 

least followed by amalgam, Super EBA and IRM (Torabinejad et al. 1995c).  

Osorio et al. (1998) assessed the cytotoxic effects of original Mineral Trioxide Aggregate 

(ProRoot?  MTA), amalgam, Ketac Silver, Gallium GF2 and Super-EBA on cell culture of 

human gingival fibroblasts and L-929 mouse fibroblast using the MTT assay as an indicator 

of mitochondrial succinate dehydrogenase activity (cell metabolism) and the crystal violet 

assay for calculation of cell numbers. The results of their study revealed that among all tested 

materials MTA was not cytotoxic as it did not affect mitochondrial enzyme activity and did 

not impair cell proliferation in the L-929 mouse fibroblasts culture. However, in cultures of 
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human gingival fibroblasts the material caused a small but significant reduction in cell 

proliferation (Osorio et al. 1998).  

In another study, using human periodontal ligament cell cultures, Keiser et al. (2000) 

compared the cytotoxicity of freshly mixed amalgam, Super EBA and MTA. In addition, to 

evaluating the cytotoxicity of set materials, they incubated the experimental materials for 24 

h at 37o C and fully saturated humidity. Then, various concentrations of the extracts of each 

experimental material were exposed to cell cultures. The results indicated that the toxicity of 

freshly mixed MTA was lower than Super EBA and amalgam. In addition, compared to 

Super EBA and amalgam, high concentrations of set MTA were the least cytotoxic (Keiser et 

al. 2000).  

The effect of Portland cement and two various types of MTA, ProRoot?  MTA (Dentsply 

Tulsa Dental) and MTA Angelus, on mitochondrial enzyme activity of human ECV 

endothelial cell lines were evaluated using an MTT assay (De-Deus et al. 2005) with no 

significant difference being reported. Indeed, the cytotoxic effect of all tested materials 

declined with time (De-Deus et al. 2005). 

Souza et al. (2006) compared the cytotoxic effect of gutta-percha and set specimens of 

SuperEBA, N-Rickert, amalgam, glass ionomer and MTA and concluded that all the 

materials were cytotoxic, however, MTA was ranked as the least cytotoxic.  

The cytotoxicity of ProRoot?  MTA (Dentsply Tulsa Dental) and MTA Angelus was 

compared with SuperEBA and Vitrebond using rat pulp cells (RPC-C2A) and human lung 

fibroblasts (MRC-5) with the conclusion that both MTA materials caused the least cytotoxic 

effect and could be regarded as biologically inert materials (Koulaouzidou et al. 2008).  

Badr (2010) compared the cytotoxicity of MTA, amalgam and bone cement using human 

periodontal ligament fibroblast tissue culture and reported that the cytotoxicity of amalgam 
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was greater than bone cement and MTA. Cytotoxicity of MTA was similar to bone cement, 

the latter being used clinically in orthopaedic surgery in which biocompatibility is crucial to 

achieve successful outcomes (Badr 2010).  

2.5.3. Bioactivity 

In general, materials that have been suggested for the repair of hard tissue defects (bone, 

dentine and cementum) are categorised into two main groups: bioinert or bioactive. Bioinert 

materials do not encourage the formation of hard tissues and do not bond biologically to 

them. Bioactive materials stimulate the formation of hard tissues and therefore facilitate a 

biological link with bone and form a mechanically strong biomaterial-tissue interface.  

Bioactive materials that are used for repair of hard tissues are also divided into two main 

categories: inductive or conductive. The hard tissue-conductive materials are able to support 

the formation of new hard tissues on their surfaces following application into and/or close to 

existing hard tissues. Bioactive materials that contain hydroxyapatite are usually considered 

as hard tissue-conductive biomaterials since it can provide a matrix for the formation of hard 

tissues. 

Inductive biomaterials are able to provoke formation of new hard tissue (LeGeros 2008) 

regardless of the anatomical location of the application. This phenomenon was reported by 

Urist (1965) who demonstrated the induction of bone formation following implantation of 

demineralized bone matrix (DBM) in non-osseous tissues (Reddi 2003, LeGeros 2008). The 

osteoinductive property of demineralized bone matrix is due to bone osteogenic and 

morphogenetic proteins (BMPs) (Vandersteenhoven & Spector 1983, Urist et al. 1984, Lee et 

al. 2010).  

Mineral Trioxide Aggregate is considered as a bioactive material with possible 

osteoinductive properties since it has been shown that MTA up-regulates bone 
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morphogenetic protein-2 (BMP-2) expression (Maeda et al. 2010). In addition, in several in 

vitro studies up-regulation of various cytokines and biologic markers such as osteopontin 

(Nakayama et al. 2005, Kuratate et al. 2008), osteocalcin (Koh et al. 1997, Thomson et al. 

2003), bone sialoprotein (Min et al. 2008, Yang et al. 2010), BMP-2 (Ham et al. 2005, 

Maeda et al. 2010) and alkaline phosphatase (Bonson et al. 2004, Paranjpe et al. 2010) as a 

result of the presence of MTA in various cell cultures has been reported. Bonson et al. (2004) 

exposed cell cultures of gingival and periodontal ligament fibroblasts to various root-end 

filling materials including ProRoot?  MTA (Dentsply Tulsa Dental) and indicated that only 

MTA was capable of modifying differentiation of both fibroblast populations, resulting in 

significantly increased levels of alkaline phosphatase activity. Activity of alkaline 

phosphatase is regarded as an indicator of bone formation. Moreover, the potential property 

of MTA to promote differentiation of dentinoblasts from clonogenic cells of the dental pulp 

has been demonstrated by Zhao et al. (2011). 

2.5.4. Animal studies 

Torabinejad et al. (1995c) compared bone tissue reaction to implanted MTA and Super EBA 

in guinea pigs. Two Teflon cups, filled with each material, were implanted surgically in the 

mandibles of the animals and the tissue reactions to each material were evaluated by 

recording the presence of inflammation and the main types of inflammatory cells as well as 

the thickness of fibrous connective tissue adjacent to each implanted material. Within the 

parameters of that study both experimental materials were considered as biocompatible 

materials; however, because of the limitations of the study no statistical analysis was 

reported. In another study, the periradicular tissue response in dogs to MTA and amalgam 

when used as a root-end filling material were evaluated by Torabinejad et al. (1995a). 

Compared to amalgam, more fibrous capsule formation and less inflammatory response were 
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reported adjacent to MTA. In addition, deposition of cementum, as an indicator of proper 

healing, on the surface of MTA was a common finding (Torabinejad et al. 1995a). Favorable 

inflammatory reactions to implanted MTA in tibia and mandible of guinea pigs was also 

reported (Torabinejad et al. 1998) suggesting the biocompatibility of MTA. The root-end 

induction capability of MTA in dogs was demonstrated by Shabahang et al. (1999) 

suggesting its use as an apical plug in teeth with open apices and necrotic pulps. Dentine 

bridge formation following pulpotomy by MTA and Portland cement was reported in dogs 

(Holland et al. 2001) confirming the tissue compatibility of MTA.   

The potential healing effect and formation of dentinal bridges following direct pulp capping 

with MTA in cats were also demonstrated by Hasheminia et al. (2010). They reported that 

treatment of exposed pulp tissue by lasers before direct pulp capping with MTA had no 

significant effect on the healing process or on the formation of dentine bridges (Hasheminia 

et al. 2010). The superior healing process following direct pulp capping with MTA has also 

been reported in rats (Dammaschke et al. 2010b). 

2.5.5. Human studies 

The number of high quality, well-designed and large scale randomized controlled clinical 

trials with long term follow-up to confirm the outcome of MTA in its clinical applications are 

very limited (Steffen & van Waes 2009, Tang et al. 2010).  

Following approval of MTA by U.S. Food and Drug Administration (FDA) in 1988, 

Schwartz et al. (1999) reported elimination of clinical symptoms and conduction of bone 

healing in five cases that MTA were used in various applications including repair of a root 

perforation. Torabinejad & Chivian (1999) reported several cases with favourable outcome 

while MTA were used as the root repair material. In a preliminary clinical trial Eidelman et 

al. (2001) compared the outcome of dressing the exposed pulp of forty five pulpotomised 
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primary molars with formocresol or MTA and reported that at the 17 months postoperative 

follow-up none of the MTA-treated teeth had signs of pathosis. The authors concluded that 

MTA was a suitable replacement for formocresol in pulpotomy treatment of primary teeth. 

Favourable outcomes of pulpotomy in primary teeth by MTA was also reported by Agamy et 

al. (2004), Farsi et al. (2005) and Holan et al. (2005). In a multicentre, multioperator, 

prospective, randomized, controlled clinical trial (Zealand et al. 2010) a 100% success rate 

for pulpotomies in primary teeth by grey MTA was reported at the 6 months follow-up. In a 

prospective clinical study by Barrieshi-Nusair & Qudeimat (2006) thirty-one first permanent 

molars with cariously exposed pulp tissue were subjected to partial pulpotomy and then 

capped by grey MTA. The outcome of the intervention was evaluated clinically and 

radiographically at 24 months and a success rate of 64% was reported (Barrieshi-Nusair & 

Qudeimat 2006), however, since no control group was employed it was not possible to 

determine the superiority of MTA over other methods. In another study by Nair et al. (2008) 

the response of healthy human pulp tissue to direct pulp capping with MTA at various time 

intervals was evaluated histologically and compared to a control group where the healthy 

pulp tissue was directly capped by Dycal (Dentsply Caulk, Milford, DE, USA) a hard setting 

calcium hydroxide liner. The absence of inflammation and formation of a hard tissue barrier 

were significant differences found in the MTA group compared to control group in which the 

presence of inflammation and less consistent formation of the hard tissue barrier was a 

common finding (Nair et al. 2008).  

The application of MTA as a root-end filling material was compared to IRM in a randomised 

controlled trial and a high success rate of both materials was reported following a 24 month 

follow up (Chong et al. 2003). In another randomised clinical trial with a shorter follow-up 

time, the success rate of MTA versus gutta-percha when applied as the root-end filling 
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material was compared and a significantly higher success rate for MTA was reported at 12 

months (Christiansen et al. 2009).  

2.6. Physical properties  

2.6.1. Particle size 

MTA powder is composed of fine particles that during the hydration process absorb water 

molecules and produced a stiff gel composed mainly of calcium silicate hydrate (CSH). 

Consequently, following formation and precipitation of several crystalline structures, the 

MTA slurry becomes harder and a solid but porous material forms (Fridland & Rosado 

2003). In general, the kinetics of the hydration process and the rheology of this hydraulic 

cement are influenced mainly by the size of the particles (Dammaschke et al. 2005, 

. RP DED\ DVKL�6SnQJEHUJ . Therefore, to predict the rheological properties, setting 

reaction and hydration behaviour of various types of MTA, assessment of their particle size 

distribution, as a fundamental characteristic, is important. 

There are various methods for evaluating the particle size distribution of materials including 

sieving, laser diffraction, flow particle image analysis, electrical zone sensing, X-ray 

gravitational sedimentation (XRS) and scanning electron microscopy (SEM). Dammaschke et 

al. (2005) compared the particle size of tooth coloured MTA with two various types of 

Portland cement using SEM. They demonstrated that ProRoot?  MTA (Dentsply Tulsa 

Dental) had a homogeneous morphology with an equal particle size, whereas a wide range of 

particle size distribution was observed in both types of the Portland cements tested 

(Dammaschke et al. 2005). In another study using SEM, a wide range of particle sizes was 

observed in Portland cement compared to tooth coloured  ProRoot?  MTA (Dentsply Tulsa 

Dental) where homogenous particle sizes were observed (Hwang et al. 2009). For better 
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understanding of the particle size and shape of various types of MTA, Komabayashi & 

SSl QJEHUJ�(2008) employed a flow particle image analyzer and reported that MTA Angelus 

particles had a broad size distribution and were less homogeneous than ProRoot?  MTA 

(Dentsply Tulsa Dental).  

2.6.2. Setting time 

MTA requires water to initiate and complete the setting reaction. The speed of setting and 

characteristically, is a time-consuming process (Hewlett 2004). Setting has been defined as 

stiffening without considerable increases in compressive strength (Hewlett 2004). Both 

processes are consequences of cement hydration and are indicative of this process (Eglinton 

1987). The setting times of hydraulic cements depend on their composition, particle size, pH, 

water/cement ratio, presence of various admixtures and the mixing technique (Hewlett 2004).  

Various methods have been used to record cement setting times (Hewlett 2004), which are 

based on recommendations from various organisations dealing with standards. The method 

that is recommended by the International Organization for Standardization (ISO) to measure 

setting time of root canal sealing materials (ISO 6876:2001) is similar to the recommendation 

of the American Society for Testing and Materials (ASTM C266-03). The latter describes the 

standards techniques  necessary to determine both initial and final setting times of 

hydraulic-cement pastes using Gillmore needles (ASTM C266-03). 

Torabinejad et al. (1995b) examined the setting time of the initial prototype of MTA using 

one needle from the Gillmore apparatus and reported a setting time of 165 minutes. However, 

it was not made clear whether this time was the initial or final set and which needle of the 

Gillmore apparatus was used.  
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The initial and final setting times of tooth coloured and grey ProRoot?  MTA (Dentsply Tulsa 

Dental) were determined according to ASTM C266-03 by Chng et al. (2005). They reported 

that the initial and final setting times of tooth coloured  MTA were 45 and 140 minutes 

respectively, which were significantly quicker than the initial and final setting times of grey 

MTA that were 70 and 175 minutes respectively (Chng et al. 2005).  

Huang et al. (2008) used the Gillmore apparatus and reported the final setting time of tooth 

coloured  ProRoot?  MTA (Dentsply Tulsa Dental) was 151 minutes. Islam et al. (2006a) used 

the Gillmore apparatus and reported the initial setting times of tooth coloured  and grey 

ProRoot?  MTA (Dentsply Tulsa Dental) to be 40 and 70 minutes, respectively and the final 

setting times to be 140 and 175 minutes, respectively; they concluded that tooth coloured 

ProRoot?  MTA (Dentsply Tulsa Dental) set more quickly than grey MTA. 

Kogan et al. (2006) measured the setting time of grey MTA while mixed with sterile water 

using the Vicat apparatus and reported that it  was 50 minutes. In another study using the 

Vicat apparatus, the setting time of grey MTA was reported as 202 minutes (Ber et al. 2007). 

An obvious discrepancy in the reported values is seen in the results of studies that used the 

Vicat apparatus to determine time of setting compared with those using the Gillmore 

apparatus. As a consequence the results from these two different techniques cannot be 

compared.   

The prolonged setting time of MTA is considered to be a significant disadvantage in clinical 

situations (Abdullah et al. 2002, Ber et al. 2007).  Indeed, it is generally recommended that 

other filling materials should not be placed adjacent to MTA at the same appointment, which 

increases the number of appointments and the clinical time required (Simon et al. 2007). In 

addition, when used as a root-end filling material, care must be taken to prevent MTA from 

being displaced due to its extended setting time (Huffman et al. 2009, Shokouhinejad et al. 
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2010) and to decrease the possibility of the MTA slurry being rinsed out during irrigation of 

the surgical site. The manufacturer of MTA Angelus has suggested that the reduction in 

particle size in their product � RP DED\ DVKL�6SnQJEHUJ  and the reduced amount of 

gypsum (Bortoluzzi et al. 2006) results in a more rapid setting time. 

In Portland cement chemistry it has been shown that admixtures of calcium chloride (CaCl2) 

result in a reduced setting time. Not surprisingly, the effect of various additives has been 

investigated to determine their effect on the setting properties of MTA (Ber et al. 2007, 

Wiltbank et al. 2007, Bortoluzzi et al. 2009, Reyes-Carmona et al. 2009, Reyes-Carmona et 

al. 2010a). The addition of 10% calcium chloride (CaCl2) significantly reduced the initial and 

final setting time of tooth coloured MTA (Bortoluzzi et al. 2009). It has been also shown that 

an admixture of 1% methylcellulose and 2% calcium chloride equal to 2% of the sample 

weight resulted in one third faster setting time of the MTA slurry (Ber et al. 2007). Abdullah 

et al. (2002) demonstrated that accelerating the setting time of Portland cement as a result of 

admixing with calcium chloride did not interfere with its biocompatibility and may have 

potential to promote bone healing.  

2.6.3. Setting expansion 

One of the main advantages of MTA is its sealing ability that can be explained by its 

expansion during the setting process (Gandolfi et al. 2009, Hawley et al. 2010). However, at 

the margins of a cavity being filled with an MTA-like material, the setting expansion may 

produce micro-cracks in the tooth structure (Shipper et al. 2004). In a laboratory study, Storm 

et al. (2008) monitored the linear expansion of grey and tooth coloured MTA as a function of 

time while the MTA material was covered by Hanks balance salt solution (HBSS) or water 

and reported that the linear setting expansion of grey MTA was significantly greater than that 

of tooth coloured MTA. In another laboratory study, Hawley et al. (2010) evaluated the effect 
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of various water to powder ratios on setting expansion and confirmed that the setting 

expansion of grey MTA was significantly more than tooth coloured  MTA, although they did 

not find any correlation between various water to powder ratios and the setting expansion of 

MTA. The effect of various soaking media on the setting expansion of MTA was evaluated 

by (Gandolfi et al. 2009) who demonstrated that in the presence of foetal bovine serum and 

phosphate buffered serum the expansion of MTA was reduced significantly. The importance 

of expansion during the setting of MTA is unclear and requires further evaluation.   

2.6.4. Sealing ability 

The leakage of the MTA-tooth interface while used in various clinical applications has been 

investigated comprehensively (Bates et al. 1996, Tang et al. 2002, Al-Hezaimi et al. 2005, 

De Bruyne et al. 2006, Martin et al. 2007, Ferk Luketic et al. 2008, Brito-Junior et al. 2009, 

Torabinejad & Parirokh 2010, Yildirim et al. 2010). Leakage of MTA has been compared 

with other various materials using dye leakage (Torabinejad et al. 1993, Torabinejad et al. 

1994a, Fischer et al. 1998, Aqrabawi 2000, Daoudi & Saunders 2002, Islam et al. 2005, 

Pichardo et al. 2006, Hashem & Hassanien 2008, Orosco et al. 2008, Lolayekar et al. 2009), 

bacterial penetration (Torabinejad et al. 1995e, Fischer et al. 1998, Hachmeister et al. 2002, 

Maltezos et al. 2006), fluid filtration (Bates et al. 1996), endotoxin leakage (Tang et al. 

2002), dentine penetration (Vogt et al. 2006) and/or electrochemical analysis (Martell & 

Chandler 2002). In addition, in several studies the influence of a variety of factors on the 

microleakage of MTA was evaluated including blood contamination (Torabinejad et al. 

1994a), thickness of MTA (Valois & Costa 2004), various admixtures (Shahi et al. 2007), 

environmental pH (Camilleri & Pitt Ford 2008), size of the cavity and thickness of the 

dentinal wall (Yildirim et al. 2010). The results of most of these leakage investigations 

revealed that in comparison to other materials MTA produced a good seal. However, there is 
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insufficient evidence to correlate the sealing ability of a material to clinical outcomes (Pitt 

Ford 1983, Torabinejad et al. 1994b, Oliver & Abbott 2001, de Chevigny et al. 2008, Ng et 

al. 2008a, Ng et al. 2008b, Ng et al. 2011).  

2.6.5. Marginal adaptation  

A highly adapted interface between tooth structure and biomaterials is one of the basic 

requirements of endodontic materials (Safavi et al. 1988, Costa et al. 2009, Bidar et al. 

2010); however, no correlation has been found between sealing ability and marginal 

adaptation of various root-repair and root-end filling materials (Stabholz et al. 1985, Xavier 

et al. 2005, Costa et al. 2008). Moreover, the correlation between marginal adaptation and 

sealing ability and a desirable treatment outcome has not been established (Torabinejad et al. 

1994b, Ng et al. 2008a, Ng et al. 2008b). In addition, the experimental laboratory model used 

may influence the results and must be controlled precisely.  For example, to avoid the 

possible formation of artifacts and dentine microfractures during SEM investigations, the use 

of replicas has been recommended (Stabholz et al. 1985, Gondim et al. 2002, Gondim et al. 

2003). Furthermore, Shipper et al. (2004) demonstrated that when using a low vacuum SEM 

technique and humid samples fewer gaps were observed. Several studies have demonstrated 

good marginal adaptation for MTA compared to other suggested root-repair and/or root-end 

filling materials such as IRM, Super EBA, glass ionomer and amalgam (Torabinejad et al. 

1995f, Shipper et al. 2004, Camilleri & Pitt Ford 2008, Costa et al. 2009, Badr 2010). The 

effect of pretreatment with calcium hydroxide (Bidar et al. 2010), finishing (Gondim et al. 

2005), methods of cavity preparation (Gondim et al. 2003) and occlusal loading (Peters & 

Peters 2002) on the marginal adaptation of MTA have been investigated and its superior 

adaptation confirmed.  
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2.6.6. Push-out force 

It has been suggested that the two exceptional properties of MTA, biocompatibility and 

sealing ability, have originated from the physicochemical reactions between MTA and 

dentine (Sarkar et al. 2005), that results in an adhesion reaction between them (Reyes-

Carmona et al. 2010a). The bond strength can be evaluated by employing push-out test 

methods (Reyes-Carmona et al. 2010b) that provide a value for this adhesion (Gancedo-

Caravia & Garcia-Barbero 2006). In a laboratory study, Sluyk et al. (1998) evaluated the 

push-out force of MTA and showed that the bond strength of MTA increased gradually over 

time, suggesting that the placement of the permanent restoration over MTA should be 

delayed. In another study, it was shown that humidity significantly improved the bond 

strength between MTA and dentine (Gancedo-Caravia & Garcia-Barbero 2006). Loxley et al. 

(2003) evaluated the effect of various intracanal oxidizing agents on the push-out force of 

MTA, Super EBA and IRM and demonstrated that MTA was significantly more resistant to 

displacement than Super EBA or IRM. They concluded that this confirmed the suitability of 

MTA for the repair of perforations on the floor of the pulp chamber and as a direct pulp 

capping material.   

2.6.7. Microhardness 

One of the universal and non-destructive methods for investigating the quality of materials is 

the microhardness test (Cross et al. 2000, Munack et al. 2001, Lee et al. 2004, Ramp et al. 

2006, Saghiri et al. 2009, Moshaverinia et al. 2010). According to the British Standard 

Institution (BS EN 843-4 2005) the microhardness test is based on static micro-indentation 

into the surface of a test material by loads of less than 1 kgf followed by the measurement of 

the dimensions of the indentation. Variations of the test use differently shaped indenters such 
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as the Knoop elongated diamond pyramid and the Vickers diamond pyramid (Quinn & Quinn 

1997).  

As the hydration process of hydraulic cements progresses the crystalline microstructures that 

form and mature result in a gradual increase in the microhardness of the resultant cement 

(Torabinejad et al. 1995b, Igarashi et al. 1996, Camilleri 2007, Camilleri 2008c, Camilleri 

2008b). Therefore, for assessment of the progress and quality of the hydration process, as 

well as evaluation of the microstructural gradient of MTA materials, microhardness tests can 

be used (Lee et al. 2004, Saghiri et al. 2009). These tests are also powerful for investigation 

of the mechanical response of MTA in both optimal and compromised environments 

(Igarashi et al. 1996), e.g. acid, blood.  

The effect of various storage environments on the Knoop microhardness of MTA was 

evaluated by Lee et al. (2004) and the detrimental effect of acidic pH was revealed. Danesh et 

al. (2006) compared the Vickers microhardness of MTA and two different types of Portland 

cement and reported that the mean microhardness value of ProRoot?  MTA (Dentsply Tulsa 

Dental) was significantly greater than both types of Portland cements. The effect of various 

solvents including carbonic acid, EDTA and chlorhexidine on the Vickers surface 

microhardness of tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) was evaluated at 

different time intervals and demonstrated that exposure to carbonic acid significantly reduced 

its Vickers microhardness; however, exposure to EDTA had no significant effect on surface 

microhardness (Nandini et al. 2010). The latter result was not in accordance with findings of 

Lee et al. (2007) who demonstrated the detrimental effect of EDTA on several properties of 

MTA including Knoop microhardness. The storage of MTA powder at 4oC, compared to 

25oC and 40oC, was reported to significantly decrease the Vickers surface microhardness of 
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the resultant cement suggesting that storage temperature influenced surface hardness (Saghiri 

et al. 2010a). 

2.6.8. Flexural strength  

Walker et al. (2006) evaluated the effect of the hydration process on the flexural strength of 

MTA using the three-point bend test and demonstrated that compared to other impaired 

hydrated specimens, double-sided hydration of MTA resulted in a significantly higher 

flexural strength value. The mean flexural strength value for the control group that were 

hydrated double-sided and incubated for 24 hours at 37o C ZDV�UHSRUWHG�DV�?�0 3D�

(Walker et al. 2006). In another study the effect of storage in various endodontic solutions 

such as EDTA, chlorhexidine, sodium hypochlorite and BioPure MTAD on certain physical 

properties of ProRoot?  MTA (Dentsply Tulsa Dental) including the flexural strength was 

evaluated and revealed that its flexural strength when stored under distilled water was 

significantly higher than other tested solutions (Aggarwal et al. 2009). In the latter study the 

mean value of the flexural strength of control specimens that were stored in distilled water for 

7 days at 37o &�ZDV�UHSRUWHG�WR�EH�? (Aggarwal et al. 2009).  

From a practical point of view, performing a three-point bend test for measurement of 

flexural strength of a material with a low value of flexural strength such as MTA is 

complicated as the specimens may easily break during casting, handling and removal from 

the split moulds (Trost 2005).  

2.6.9. Compressive strength 

Compressive strength is the highest vertical compressive load that a material can tolerate 

before failure and is calculated by dividing the load at fracture by the area of the cross section 

of the test specimen; it is reported in SI units of stress - Pa (1 Pa=1 N/m2) (van der Varst et 
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al. 1993). Thus, compressive strength is regarded as one of the main physical characteristics 

of hydraulic cements that is correlated to its stage of hydration (Boumiz et al. 1996, Kogan et 

al. 2006).  

In the laboratory environment the compressive strength of dental materials is measured using 

a universal testing machine that applies a compressive load vertical to the long axis of the test 

specimen and records the load at rupture. In a pioneer study, Torabinejad et al. (1995b) 

compared the compressive strength of the initial prototype of MTA, super-EBA and IRM at 

24 h and 21 days after mixing and demonstrated that the compressive strength of all cements 

increased after 3 weeks. The strength of Super-EBA was significantly higher than that of 

IRM and MTA. In another study, the compressive strength of MTA and Portland cement was 

compared at 3 and 28 days following hydration when it was shown that the compressive 

strength of both cements increased over time and that the compressive strength of MTA was 

greater than that of the Portland cement at 28 days (Islam et al. 2006a).  

In an attempt to decrease the setting time of MTA, Kogan et al. (2006) evaluated the effect of 

various admixtures on the setting time of MTA and demonstrated that the addition of 5% 

calcium chloride decreased the setting time as well as its compressive strength. They 

concluded that the compressive strength of MTA could be affected by the nature of the liquid 

mixed with the powder (Kogan et al. 2006).  

2.6.10. Solubility 

In all of the suggested clinical applications of MTA (see section 2.2) resistance to solubility is 

a prerequisite characteristic of the ideal material. Torabinejad et al. (1995b) compared the 

solubility of MTA, IRM, Super-EBA and amalgam at various time intervals. The changes in 

mean weight loss at 1, 7 and 28 days for MTA, Super-EBA and amalgam were not 

significantly different (Torabinejad et al. 1995b). In another study it was found that by 
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decreasing the powder to water ratio the solubility of MTA increased (Fridland & Rosado 

2003). Danesh et al. (2006) compared the solubility of MTA and two types of Portland 

cement and determined that ProRoot?  MTA (Dentsply Tulsa Dental) was of lower solubility. 

In contrast, Bodanezi et al. (2008) indicated that MTA was more soluble than Portland 

cement while stored in an aqueous environment.   

2.6.11. pH 

Some of the major advantages of MTA, such as antibacterial activity and conduction of hard 

tissue, can be best rationalised as a result of its alkalinity (Fridland & Rosado 2003). In a 

laboratory study Torabinejad et al. (1995b) measured the pH value of the initial prototype of 

MTA and reported that its pH when freshly mixed MTA was 10.2, which rose to 12.5 after 3 

h. Chng et al. (2005) and Islam et al (2006a) demonstrated that the pH value of tooth 

coloured MTA rose to 13.0 at 60 minutes after mixing, which was attributed to the 

continuous formation of calcium hydroxide during the hydration process (Fridland & Rosado 

2003, Fridland & Rosado 2005). The pH value of tooth coloured MTA was reported to be 

higher than grey MTA (Chng et al. 2005, Islam et al. 2006a). The pH of tooth coloured and 

ordinary Portland cement was shown to be more alkaline than their corresponding MTA and 

also reached the peak pH values more rapidly than corresponding MTA materials.  

2.6.12. Porosity 

In general, porosity is defined as the volume fraction of a material that can contain gas and/or 

liquid and is calculated by dividing the total volume of the pores by the total volume of a 

specimen (Hu & Stroeven 2005). 

Following mixing of MTA powder and water a porous semi-solid gel of calcium silicate 

forms that by precipitation of ettringite crystals gradually becomes hard. The resultant solid 
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MTA, that resembles hardened Portland cement, contains microscopic air bubbles, unbound 

trapped water, and an interconnected network of micropores and channels (Fridland & 

Rosado 2003, Islam et al. 2006a). The formation of this intricate network of microchannels 

and micropores then facilitates further hydration of the cement. The gradual and long-term 

release of calcium hydroxide, the bioactive byproduct of MTA hydration, as a result of the 

ongoing hydration process has been demonstrated by Fridland & Rosado (2003, 2005). 

Therefore, the formation of this interconnected network of micropores is necessary for the 

continuous hydration of MTA. With further crystalisation of MTA the initial connectivity of 

the microchannels decreases and results in the formation of closed pores that may hold 

trapped water. Therefore, hardened cement contains a large number of closed pores that are 

not connected (Camilleri 2007, Camilleri 2011a) resulting in the cement having low 

permeability (Feldman 1990, Lu et al. 2006). Evaluation of the porosity of MTA is important 

as it can provide information on the physical properties of the material (Fridland & Rosado 

2003).  

2.6.13. Radiopacity 

One of the essential requirements of a dental material is radioapcity (Devito et al. 2004) in 

order to distinguish it from the adjacent hard tissues such as dentine, cementum and alveolar 

bone (Torabinejad et al. 1995b, Tagger & Katz 2004). According to ANSI/ADA 

Specification No. 57 (2006) an endodontic (root canal) sealing material should be at least the 

equivalent of 2 mm aluminium more radiopaque than adjacent hard tissue to allow 

monitoring of its potential dissolution, and to identify the presence of voids (Coutinho-Filho 

et al. 2008, Tanomaru-Filho et al. 2008). Shah et al. (1996) suggested a minimum radiopacity 

of the equivalent of 3 mm aluminium for root-end filling materials, which is greater than the 

suggested radiopacity of root canal sealers.  



52 

 

One of the main differences in the chemical constituents of MTA and Portland cement is the 

presence of bismuth oxide, which is added to make MTA radiopaque (Torabinejad & Dean 

1995). Pure Portland cement would not be sufficiently radiopaque to be distinguished from 

adjacent anatomical hard tissues (Bortoluzzi et al. 2006). The equivalent thickness of 

DOXP LQXP � IRU�KXP DQ�GHQWLQH�ZDV�UHSRUWHG�DV�?�P P � FRP SDUHG�WR�0 7$ � WKDW�ZDV�

reported as beiQJ�HTXLYDOHQW�WR�D�WKLFNQHVV�RI�? (Laghios et al. 2000). Amalgam 

ZLWK�DQ�HTXLYDOHQW�DOXP LQXP � WKLFNQHVV�RI�?�KDG�WKH�JUHDWHVW�UDGLRSDFLW\ � DP RQJ�

the 13 root-end filling materials evaluated by Laghios et al. (2000). The equivalent 

aluminiXP � WKLFNQHVV�RI�0 7$ � ZDV�UHSRUWHG�WR�EH�?�P P � E\ � ' DQHVK� et al. (2006), a 

significantly greater radiopacity than specimens of Portland cement.  
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3. Aims & objectives of the study 

The main aim of this work was to evaluate the effect of various environmental (clinical) 

conditions on the physical and chemical characteristics of MTA in the hope that such 

information would inform those clinicians who used the material whilst also gaining new 

information about the physical properties of the existing materials. The key research 

questions were: 

What was the effect of acid solutions used during restorative techniques on the physical 

properties of MTA? 

The null hypothesis being that acid contamination of MTA had no detrimental effect on its 

physical properties. 

What was the effect of blood contamination on the physical and chemical properties of MTA? 

The null hypothesis being that blood contamination of MTA had no detrimental effect on its 

physical or chemical properties. 

During the planning stage and before the main studies a series of laboratory studies were 

undertaken to standardise specimen preparation. This extensive preliminary work was 

essential in developing a standard methodology for use in the main studies and to gain an 

understanding of the material and how it reacted to various mixing and placement techniques. 

These studies were essential because few, if any, previous studies mentioned this critical 

information and because pilot studies had revealed inconsistency in the material when mixed 

 

Preliminary studies: In Chapter 4 (page 58) the background to this preliminary work, the 

methodologies used together with the results and conclusions are described. Initially, to 

eliminate any potential effect of confounding variables, the amounts of powder and water 
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supplied in ProRoot?  MTA (Dentsply Tulsa Dental) packages were measured precisely. In 

the second preliminary study, in an attempt to standardise potential confounding variables 

during mixing of MTA, the effect of passive water absorption and pressure on selected 

properties of MTA was evaluated. In the next phase of the preliminary studies, a novel 

mixing technique, mixing of encapsulated MTA, was developed to standardize further the 

mixing methodology. In addition, the potential effect of this innovative mixing technique on 

surface hardness and compressive strength of MTA was evaluated.  

Next, in an attempt to achieve consistent slurries of MTA following placement the 

application of ultrasonic energy was investigated and its effects on certain physical properties 

of MTA evaluated. Finally, the effect of the powder to water ratio on selected physical 

and placement technique.  

By employing the findings of these preliminary studies in the main studies (Chapter 5, page 

121) the effects of acid and blood contamination on various characteristics of MTA could be 

evaluated using standard mixing and placement techniques that eliminated potential 

confounding variables that had likely influenced the results of work undertaken by many 

previous authors.  

Main studies: In most of the clinical applications using MTA the material is in contact with 

inflamed tissue that might have an acidic pH. Thus, the effect of various forms of acid on the 

physical properties of MTA including compressive strength, surface microhardness, push-out 

force and microstructure were evaluated. Initially, butyric acid, a by-product of anaerobic 

bacterial metabolism (Zeikus 1980, Tonetti et al. 1991) was used to simulate a potential 

clinical situation associated with periradicular infections. Another route for acid 

contamination of MTA is when a clinician restores a tooth using acid gel to etch the enamel 
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and dentine. During the use of such gels it is impossible to protect the MTA surface from 

exposure to the phosphoric acid they contain. Therefore, the effect of phosphoric acid gel on 

the selected physical properties of MTA was also evaluated. 

During many of the application of MTA the material comes into contact with tissue fluid and 

blood. Therefore, in the final part of the study the effect of blood contamination on selected 

physical and chemical properties of MTA were evaluated.  



57 

 

 

 

 

 

 

CHAPTER 4 

 

STANDARDISATION OF  

SPECIMENS 

 

 



58 

 

4. Standardisation of sample preparation - the preliminary studies  

4.1. Background 

In an experimental study, an independent variable is deliberately manipulated by the 

researcher and the effect of this intervention on the dependent variables is studied (Avis 

1994). Any other confounding variables that could affect this experience must be controlled 

precisely and eliminated (Wunsch 2008). Lack of consistency in controlled variables may 

critically compromise the validity of the results (Fowkes & Fulton 1991). In the present work, 

to standardise the methodology of the laboratory tests on MTA, a series of studies was 

required to understand better the confounding variables that would likely have an impact on 

the several dependent variables studied. 

4.1.1. Study 1 - Weight of water in ampoules 

In each package (box) of grey ProRoot?  MTA Original (Dentsply Tulsa Dental) and tooth 

coloured ProRoot?  MTA (Dentsply Tulsa Dental) there are five sachets (pouches) containing 

MTA powder and six plastic ampoules containing water. The manufacturer claims that each 

sachet contains 1 g of MTA powder and that the amount of water inside each ampoule is 

equal to 0.35 g. This information is written on the sides of each package (Figure 1, page 58).  

 

Figure 1: Wording on a box of ProRoot?  MTA  
The volume of water in each ampoule is stated clearly (see arrow). 

The first preliminary study undertaken was initiated as a result of a noticeable variation in the 

volume of water in the ampoules supplied within the ProRoot?  MTA (Dentsply Tulsa Dental) 
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packages. Since the powder to water ratio is a key factor affecting the ultimate physical and 

chemical properties of the material (Fridland & Rosado 2003) it was essential to determine 

whether specimens of MTA for the main studies could be prepared when mixing the powder 

with the water from the ampoules or whether individual measures of water had to be used. 

Thus, the amount of water and MTA powder supplied in the packages of both original and 

tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) were measured precisely. 

4.1.2. Study 2  Manual mixing technique: saturation followed by application of 

pressure 

The physical and chemical properties of several dental materials, including MTA, can be 

affected by mixing technique. Many dental materials are available as two components that are 

When one component in the system is a liquid, the achievement of a homogenous mixture 

becomes less predictable (Powers & Wataha 

recommendations predetermined amounts of powder and water should be spatulated on a 

glass slab to produce slurries. In the laboratory situation standardisation of spatulation 

pressure and technique when making hundreds of specimens is not feasible. Therefore, in the 

second preliminary study, in an attempt to eliminate this inconsistency in spatulation pressure 

and mixing technique, premeasured weights of distilled water were added to the appropriate 

amount of powder and left until it was absorbed fully  without spatulation. This powder 

saturation hydration methodology has the potential to produce a more consistent and 

repeatable method of water incorporation. In tandem with this saturation mixing technique 

the standardisation of pressure on the resultant slurry was also considered as another 

confounding variable and addressed in the same study; the pressure following saturation 

mixing was an attempt to simulate the pressure normally exerted during spatulation. 
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In most previous studies (Torabinejad et al. 1993, Hachmeister et al. 2002, Fridland & 

Rosado 2003, Lawley et al. 2004, Lee et al. 2004, Fridland & Rosado 2005, Walker et al. 

2006) spatulation pressure was an uncontrolled variable that could have affected the 

properties and performance of the resultant MTA cement.  

Torabinejad et al. (1993) reported that the characteristics of hardened MTA were related to 

the powder to water ratio, the humidity around the material and the amount of air trapped in 

the mixture. To allow MTA to harden sufficiently moisture must be present during the 

hydration process (Torabinejad et al. 1995b). Based on various clinical applications, moisture 

may be available from adjacent periodontal or pulpal tissues and/or from a damp cotton or 

sponge pellet that should be placed near the unset material (Walker et al. 2006). It is probable 

that the degree of spatulation pressure may change the molecular distance between water 

molecules and the particles of MTA powder and influence the space available for the 

hydration reaction. This in turn may influence the optimum water to powder ratio (Bordallo 

et al. 2006) and may also have an effect on entrapped air and consequently on the number of 

air inclusions in the hydraulic cement (Bentz 1997). In summary, it is possible that if the 

mixing of MTA is not controlled then the physical and biological properties of the hardened 

material will vary. Therefore, the aim of the second preliminary study was to evaluate the 

effect of application of various amounts of pressure on MTA slurries following the powder 

saturation hydration method on several physical properties of MTA: surface microhardness, 

microstructure and compressive strength.  

These initial and early preliminary studies informed the first main study on contamination of 

MTA with acid (section 5.1, page 121). However, during the course of the acid contamination 

study parallel work on the mixing of MTA was ongoing. This resulted in a further refinement 
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in specimen preparation that was then used in the remainder of the studies on contamination 

with blood (section 5.1.6, page 155). 

4.1.3. Study 3  Mechanical mixing technique  mixing of encapsulated MTA 

One of the most popular methods of mixing materials such as amalgam or glass ionomer is 

mechanical encapsulated mixing. For amalgam, the individual components of the material 

were at first placed manually into a mixing device (Curry 1945). Then, in an attempt to 

enhance consistency further, premeasured amounts of amalgam powder and mercury were 

placed inside a capsule containing two compartments that were then mechanically mixed 

(Lazarus 1951, Harcourt & Lautenschlager 1970). In due course, various dental materials 

including, glass ionomer (Mitchell et al. 1998), self-cured composite resin (Tani & Ida 1978), 

mixtures of gutta-percha and sealer (Nawal et al. 2011), eucoapercha (Campbell & Thorpe 

1990), zinc phosphate (Branco & Hegdahl 1983) and calcium hydroxide cements (Schmid 

1998) became available in capsules containing pre-set proportions of their components that 

were then mechanically mixed prior to use.  The capsule often contained a small rod-like 

pestle, which improved the mechanical mixing (Darvell 1981). This system of encapsulation 

and mechanically mixed has the potential to produce a consistently uniform, void or pore-free 

mixture (Powers & Wataha 2008).  

In all reported studies to date MTA was mixed manually according to the m

instructions (Parirokh & Torabinejad 2010b). Such a technique results in an uncontrolled 

mixing time and spatulation pressure with potential to produce a set material that has an 

inconsistent range of physical properties. In addition to the saturation method, which was 

described above, and in order to achieve even more consistency when mixing MTA it could 

be hypothesised that encapsulated pre-set proportions of MTA could confer advantages to the 

practitioner and the material. 
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As amalgamators are available in most dental clinics it was thought that the use of such a 

mixing technique would be effective and rapid, since it is a familiar and efficient mixing 

technique and can be used in both laboratory and clinical environments. Therefore, in the 

next preliminary study a novel technique was developed whereby mixing of MTA was 

standardised by encapsulated mixing 1 g of MTA powder with 0.33 g of liquid in a plastic 

mixing capsule containing a plastic pestle, at 4500 revolutions/min for 30 s using an 

amalgamator (GB patent No 0919270.9). 

4.1.4. Study 4  Placement technique - application of ultrasonic agitation  

Following the development of a standard mixing technique for MTA using either the 

saturation or encapsulated methods further work was undertaken on a standard placement 

technique that was aimed at producing a consistent sample of MTA during specimen 

preparation. This work looked specifically at the application of ultrasonic energy to samples 

following placement of MTA slurries into moulds. Vibration has a dispersion effect on the 

particles of cement materials, which frequently cluster together (Bensted 2002). Indeed, 

ultrasonic energy has been used to enhance the mechanical properties of various restorative 

materials, including compressive strength (Kleverlaan et al. 2004, Barata et al. 2008), tensile 

bond strength (Algera et al. 2005, Fagundes et al. 2006), hardness (Towler et al. 2001) and 

fill density (Yeung et al. 2006). Ultrasonic energy may also increase the total reactive surface 

area, improve particle interaction and decrease setting time (Kleverlaan et al. 2004, Algera et 

al. 2005). In addition, by changing rheological properties it can improve the placement and 

handling characteristics of materials (Witherspoon & Ham 2001, Lawley et al. 2004, 

Schmidlin et al. 2005), as well as marginal adaptation to the cavity wall (Schmidlin et al. 

2005).  
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Aminoshariae et al. (2003) compared two placement techniques for MTA, concluding that 

hand compaction of MTA provided less porosity, better adaptation and fewer voids than 

ultrasonic vibration. Hachmeister et al. (2002), in an attempt to improve the sealing ability of 

MTA in an immature root canal model, emphasised the importance of the delivery system 

rather than the material itself. Roberts et al. (2008) highlighted the use of ultrasonic vibration 

for MTA placement. 

Since previous work appeared to be inconclusive, in this preliminary study, the effect of 

ultrasonic energy following two different mixing techniques on several physical properties of 

MTA was evaluated.   

4.1.5. Study 5 - Powder to water ratio 

The physical and chemical characteristic of hydraulic cements including MTA may be 

affected by variation in the powder to water ratio (Groves 1981, Hanehara et al. 2001, 

Fridland & Rosado 2003, Fridland & Rosado 2005, Islam et al. 2006a). Adhering to a 

consistent powder to water ratio is important as deviation may produce inconsistent setting 

and reduced physical properties (Hawley et al. 2010). Fridland & Rosado (2003) investigated 

the effect of various powder to water ratios on certain characteristic of MTA and showed that 

decreasing the powder to water ratio resulted in decreased solubility and porosity of the 

resultant hardened MTA. Given the development of the new encapsulated mixing method and 

the ultrasonic agitation of the resultant slurries during specimen placement it was thought 

essential to investigate further the effect of powder to water ratio. This was particularly 

relevant given that no previous work had been published on these parameters when linked to 

the novel methods of specimen production outlined above. 

Thus, in this section of the preliminary studies the effect of various powder to water ratios on 

compressive strength, surface hardness and setting time of MTA were investigated. 
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In addition, for a better understanding of the hydration process of MTA material when mixed 

with various amount of water, the crystalline phase structure of tooth coloured ProRoot?  

MTA (Dentsply Tulsa Dental) while mixed with various amount of water was studied using 

X-ray diffraction (XRD) analysis. Moreover, for comparison reason and to identify and 

evaluate the by-products of the hydration process of MTA, the phase composition of the un-

hydrated MTA (powder) was also evaluated.  

- ne of the powerful methods for the characterization of 

crystalline structure of materials (Figure 2, page 65). The key to this technique is that the 

diffraction pattern (angle and intensity) of each particular crystalline structure as a result of 

X-ray exposure is a unique pattern. Therefore, by comparing the diffraction pattern with 

reference standards it is possible to identify the crystalline structure of a material as the same 

substance always gives the same diffraction pattern (that is like a fingerprint of a substance). 

In polycrystalline materials, each crystalline structure produces its characteristic diffraction 

pattern, which is independent of the other crystalline formations. 
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Figure 2: An X-ray diffractometer ( .  

In the following section the aims and methodologies of each preliminary study along with the 

results are presented separately. The section ends with a holistic discussion and conclusion 

that summarises the findings and how they influenced specimen preparation during the main 

experimental work on acid and blood contamination (Chapter 5). 
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4.2. Powder and water content of ProRoot?  MTA packages 

4.2.1. Aim 

To measure the weight of powder and water in packages of ProRoot?  MTA (Dentsply Tulsa 

Dental).  

4.2.2. Materials & Methods 

4.2.2.1.Specimens 

The total of 50 sachets of MTA powder and 58 ampoules of water were collected from five 

sealed packages of ProRoot?  MTA Original (Dentsply Tulsa Dental) with LOT number of 

05003087 (grey) and five sealed packages of ProRoot?  MTA (Dentsply Tulsa Dental) with 

LOT number 09001920 (tooth coloured) respectively. The date of each package was checked 

to ensure they were within their expiry date. The samples were kept at a controlled laboratory 

temperature (20oC) for 24 h before measurement. 

4.2.2.2.Weight measurements  

An analytical laboratory balance (Precisa 80A-200M, Zurich, Switzerland) was used. The 

accuracy of the laboratory digital scale was confirmed by using predetermined standard 

weights. 

For measurement of the water content of each ampoule, the analytical balance was stabilized 

at zero. Then the weight of each ampoule with the water inside was measured and recorded to 

an accuracy of three decimal places at 20oC. Subsequently, the tip of each ampoule was 

removed using a surgical scalpel and water was released into a glass container, which had 

also been kept at 20oC for 24 h. Then, the weight of water was measured to an accuracy of 

three decimal places at 20oC. Subsequently the weights of each empty plastic container and 

the removed tip were also determined. To calculate the definitive amount of water inside the 
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ampoules, the weight of each empty plastic container and its tip were subtracted from the 

weight of the ampoules before opening, i.e. with water inside. The value obtained was 

considered as the definitive amount of water inside each ampoule. The difference between the 

definitive water and measured water was calculated as the amount of water that could not be 

released from the plastic ampoule.  

The MTA powder content of each sachet was then measured using the same principle. The 

analytical balance was stabilized at zero before the weight of each sachet with the powder 

inside was measured and recorded to an accuracy of three decimal places at room temperature 

(20oC). Then, the border of each sachet was removed using a scissors and then MTA powder 

was poured into a pre-weighed glass container. Then the net weight of the powder within 

each sachet was measured to an accuracy of three decimal places at 20oC. Subsequently the 

weight of each empty sachet and its cut edge were also determined. To calculate the 

definitive amount of powder inside the each sachet, the weight of each empty sachet and the 

cut edge were subtracted from the total weight of sachet before opening. The value obtained 

was considered as the definitive amount of powder inside each sachet. The difference 

between the definitive powder weight and measured powder weight was calculated as the 

amount of powder that could not be released from the sachet. 

4.2.3. Results 

The results of measurement of weight of water in ampoules are summarized in Table 2 (page 

68). The average measured and definitive weights of water in the ampoules were 0.211 g 

 than the amount of water claimed (Figure 1, page 58) to be inside the 

ampoules. 
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Weight of water Average Range Standard deviation 

Measured 0.211 g 0.140 g - 0.270 g 0.40 

Definitive 0.223 g 0.149 g - 0.290 g 0.40 

Table 2: The measured and definitive weights (g) of water inside the ampoules supplied in the ProRoot?  

MTA packages.  

The average measured and definitive weights of powder in the sachets were 1.004 g (range: 

1.001, 1.009 0.003) and 1.006 1.004g, 1.010  0.005) respectively. 

By rounding these values to two decimal places, they are identical to the amount of powder 

claimed to be inside the sachets. 

4.2.1. Conclusions 

The results identified a major problem with the weight of water in the ampoules supplied in 

the MTA packages. Therefore, ampoules supplied by the manufacturer (Dentsply Tulsa 

Dental) should not be used to dispense the water used in research studies involving MTA. 

Rather the water component should be weighed accurately prior to mixing. Thus, in all 

studies of this thesis, the water used to produce MTA slurries was weighed individually; the 

ampoules were not used. 
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4.3. Effect of application of various amounts of pressure on MTA slurry following the 

powder saturation hydration method on selected physical properties of MTA 

4.3.1. Aim 

To evaluate the effect of application of various amounts of pressure on MTA slurries 

following the powder saturation hydration method on several physical properties of MTA. 

4.3.2. Materials and Methods 

The material investigated was tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) with 

LOT number 03081235. 

4.3.2.1.Compressive strength  

Each sachet containing 1 g of MTA powder was mixed with a 0.33 g aliquot of distilled 

water. The distilled water was added to the powder and left until it was absorbed (saturation 

technique). The material was then placed with minimal pressure using the tip of a dental 

spatula into customized open-ended polycarbonate cylindrical moulds having an internal 

diameter of 4 mm and height of 6 mm (in accordance with ISO 4049:2000 & ISO 9917-

1:2003), which were lying upright on a glass slab. Five groups of 10 specimens were 

prepared and the material within each mould was then subjected to pressures of 0.06, 0.44, 

1.68, 3.22 or 4.46 MPa respectively by varying the weight applied to the open surface. The 

pressure on each specimen was applied for 1 minute using a custom-made device containing 

a stainless steel piston with an internal diameter that was similar to the polycarbonate 

cylindrical moulds (Figure 3, page 70). The samples were thus subjected to a vertical force 

that was translated into a transverse and equally distributed pressure that pressed the MTA 

evenly into the cylindrical mould. A wet cotton pellet was then placed onto the tube 
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containing the MTA and sealed in container with fully saturated humidity for 4 days at room 

WHP SHUDWXUH�?&  

 

Figure 3: Custom-made device for application of controlled pressure on test specimens. 

The compressive strength test was conducted using a universal testing machine (Lloyd LR 

MK1 machine; Lloyd Instruments, Fareham, UK). A flat steel rod was used at a crosshead 

speed of 1 mm min  whilst specimens were mounted vertically so that the compressive load 

was applied along the long axis of each specimen (Figure 4, page 70). 

 

Figure 4: A tooth coloured ProRoot?  MTA specimen during the compressive test using the universal 

testing machine. 
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The failure load was recorded and the compressive strength calculated using Equation 1 

(page 71). The compressive strength of all specimens was recorded in MPa. The data 

obtained from the compressive strength tests were subjected to statistical analysis using one-

way ANOVA for overall comparison and by Tukey's post hoc test for individual 

comparisons.  

 

 

Equation 1: CS is compressive strength (MPa), P is the force (N) applied and d (mm) is the diameter of 

the specimen. 

4.3.2.2.Surface microhardness 

The same specimen preparation procedure was employed for testing surface microhardness 

(see section 4.3.2.1, page 69). Cylindrical specimens of 6 mm in diameter and 12 mm in 

height were prepared in polycarbonate cylindrical moulds. The same custom-made device 

(Figure 3, page 70) was used to apply pressure to the samples. Six groups of 10 specimens 

were prepared using pressures of 0.06, 0.44, 1.68, 3.22, 4.46 or 8.88 MPa. A wet cotton pellet 

placed onto each specimen, which was then sealed in a container with fully saturated 

humidity for 4 GD\ V�DW�URRP � WHP SHUDWXUH�?&   

After 4 days, both surfaces of the specimens were wet polished at room temperature using 

minimum hand pressure and silicon carbide-based sandpapers of varying particle size 

TM - -M-iteTM TM -grit; 3M, St Paul, MN, 

USA) to provide smooth surfaces for ease of indentation testing. The polished specimens 

were cleaned gently under light pressure using distilled water to remove surface debris. To 

prevent dissolution or water sorption the surfaces were dried gently by air spray. The Vickers 
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hardness test of each specimen was performed using a microhardness tester (MVK G1, 

Mitutoyo Corp., Tokyo, Japan) and a square-based pyramid-shaped diamond indenter with a 

full load of 50 g for 5 s at room temperature that produced a quadrangular depression with 

two equal orthogonal diagonals in the polished surface of the cement. The angle between the 

RSSRVLWH�IDFHV�RI�WKH�GLDP RQG�LQGHQWHU�ZDV�?�) LYH�LQGHQWDWLRQV�ZHUH�P DGH�RQ�WKH�

polished surface of each specimen at discrete locations no closer than 1 mm to adjacent 

indentations or the specimen periphery. The diagonal of the resulting indention was measured 

immediately under the microscope and the Vickers hardness value displayed on the digital 

readout of the microhardness tester. Based on the Equation 2 (page 72), the Vickers hardness 

(HV) is calculated. 

 

 

Equation 2: Hv i

the impression made by the indenter. 

The mean of the hardness values obtained was calculated to determine the hardness value for 

each specimen. Differences between the experimental groups were analysed by one-way 

ANOVA for overall comparison and by Tukey's post hoc test for individual comparisons.  

4.3.2.3.Internal surface microstructure 

For the morphological evaluations, new specimens were prepared using the same pressures of 

0.06, 0.44, 1.68, 3.22 or 4.46 MPa and the same storage conditions. To analyse the 

microstructure of the inner surfaces, the specimens were sectioned in two using a disposable 

surgical scalpel blade No. 15. The surfaces were sputter-coated with gold using a Polaron 

Sputter Coater (Quorum Technologies, Newhaven, UK) and specimens were visualised with 
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an EBT1 (Electron Beam Technology) Scanning Electron Microscope (S.E.M. Tech Ltd, 

Woodbridge, UK). The micrograph images from the SEM analysis showing the qualitative 

internal microstructure of the set MTA prepared with different pressures were evaluated in 

terms of the presence of microchannels and type of crystal formation. 

4.3.3. Results 

4.3.3.1.Compressive strength 

The results of the compressive strength testing are shown in Figure 5 (page 73). Maximum 

compressive strengths occurred at a pressure of 0.06 and 1.68 MPa. The lowest compressive 

strength was associated with a pressure of 0.44 MPa. Despite the obvious variations there was 

no significant difference between the groups. 

 

Figure 5: Mean compressive strength values (MPa) of specimens subjected to various pressures. No 

significant differences were apparent between the groups. 

4.3.3.2.Surface microhardness 

The results of the microhardness testing are shown in Figure 6 (page 74). Little difference 

occurred in mean surface hardness values up to a pressure of 3.22 MPa. However, a pressure 

of 8.88 MPa produced specimens with significantly lower values in terms of surface hardness 

than the other groups (p<0.001). A pressure of 3.22 MPa conferred the maximum hardness 
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value; however, it was not significantly different from the other groups except the 8.88 MPa 

group (p<0.001). 

 

Figure 6: Mean Vickers surface microhardness (HV) values of specimens subjected to various amounts of 

pressure. The 8.88 MPa pressure produced specimens with significantly lower Vickers surface 

microhardness (HV) values than the other groups (P < 0.001). 

4.3.3.3.Internal surface microstructure 

The internal microstructure of all specimens that were prepared with various pressures 

revealed microchannels, depressions caused by air bubbles, pores, asymmetrical crystalline 

formation in the form of laminated cross-stratified structures, and bundles of jagged needle-

like formations in a homogeneous matrix that resembled an epitaxial growth pattern (Figure 

7-Figure 11, pages 75-77). It was not possible to score each characteristic and thus compare 

them quantitatively between groups. However, the SEM images demonstrated that the 

application of higher pressures resulted in fewer voids created by entrapped air. In addition, 

fewer microchannels could be seen in specimens prepared with application of higher 

pressures (Figure 12, page 77). More typical crystalline structures were observed in 

specimens prepared with application of lower amounts of pressure that tended to appear 

around microchannels (Figure 8 & Figure 9, page 75,76). 
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Figure 7: Scanning electron microscope image of specimen subjected to 3.22 MPa.  A cross-section of a 

microchannel can be seen (a), together with laminated (b) and needle-like (c) crystalline formations and a 

depression from an air bubble (d). 

 

Figure 8: Scanning electron microscope image of a specimen subjected to a pressure of 0.06 MPa showing 

a cross-section of a microchannel (a), and a crystalline formation in the form of a laminated cross-

stratified structure (b). 
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Figure 9: Scanning electron microscope image of a specimen subjected to a 0.06 MPa pressure. Bundles of 

jagged needle-like formations can be seen (a). 

 

 

Figure 10: Scanning electron microscope image of a specimen subjected to a 1.67 MPa pressure. Cross-

sections of bundles of jagged needle like formations (a) can be seen together with a laminated crystalline 

structure (b). This structure resembles an epitaxially growth pattern. 
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Figure 11: Scanning electron microscope image of a specimen subjected to a 0.06 MPa pressure. 

Depressions from an air bubble (a) can be seen.  

 

Figure 12: Scanning electron microscope image of a specimen subjected to a 4.46 MPa pressure. Greater 

pressure resulted in fewer voids and microchannels. Some unidentified debris can be seen (arrow). 

4.3.4. Conclusions 

Application of pressure during the mixing of MTA may affect the strength and hardness of 

the material. Based on the findings of this study, when greater pressures were applied to 
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MTA following saturation of the powder its surface hardness reduced significantly. 

Conversely, its maximum compressive strength occurred with the minimum pressure. This 

may occur because a greater pressure may reduce the intermolecular distance that results in 

less space for the ingress of water to hydrate the material adequately. Therefore, in 

experimental investigations, use of controlled pressure when mixing ProRoot?  MTA 

(Dentsply Tulsa Dental) is essential in order to standardise specimen preparation. 
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4.4. Effect of placement technique on certain physical properties of MTA 

4.4.1. Aim 

To evaluate the effect ultrasonic agitation (during the placement of MTA slurries) following 

two different mixing techniques on surface microhardness, compressive strength and setting 

time of MTA. The mixing methods were the novel technique of encapsulated mixing MTA 

and the saturation of MTA powder with predetermined amount of water followed by 

application of 3.22 MPa pressure. 

4.4.2. Materials & Methods 

The materials investigated were: 

 ProRoot?  MTA Original (Dentsply Tulsa Dental) with LOT number of 05003087 

(grey)  

 ProRoot?  MTA Tooth coloured (Dentsply Tulsa Dental) with LOT number of 083006  

4.4.2.1.Compressive strength 

Eighty custom-made polytetrafluoroethylene (PTFE) cylindrical moulds (internal dimensions 

� �P P � KHLJKW�DQG�?�P P � GLDP HWHU�ZHUH�SUHSDUHG�7KH\ � ZHUH�LQLWLDOO\ � GLYLGHG�LQWR�

two groups of 40 samples each. Moulds in each group were then randomly divided into four 

groups of 10, with each subgroup to be filled with one of the two types of grey or tooth 

coloured MTA slurries prepared by the following four methods: 

 Group 1: an aliquot of 0.33 g distilled water was gradually added to one gram of each 

type of MTA powder in the PTFE cylindrical container on a glass slab and left until it 

had absorbed (saturation method). It was then subjected to a constant pressure of 3.22 

MPa as described in section 4.3.2.1 (page 73) to provide consistency in the MTA 
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slurry preparation. Resultant slurries were then transferred to the silicon experimental 

moulds with minimal pressure.  

 

4.1.3 (page 61). One g of each 

type of MTA powder (grey and/or tooth coloured) and 0.33 g of double distilled water 

mechanically mixing in a plastic capsule containing a plastic pestle, at 4500 

revolutions/min for 30 s using an amalgamator (PromixTM, Dentsply Caulk, York, 

PA, USA). The resultant slurries were then transferred to the PTFE experimental 

moulds with minimal pressure.   

 Groups 3 and 4: samples were prepared as described in Groups 1 and 2 respectively; 

however, following placement of the MTA slurries in the PTFE experimental moulds 

with minimal pressure, MTA slurries were subjected to ultrasonic energy using a 

BUC-1 Spartan tip (Obtura Spartan, Fenton, MO, USA) attached to a Suprasson?  P5 

Booster (Satelec, Acteon Group, 0 pULJQDF, France) (Figure 13, page 80). 

 

Figure 13: MTA slurry being treated with ultrasonic vibration. 

Excess MTA slurry was removed from each specimen by gently wiping the mould over the 

glass slab, this aided in keeping the samples parallel (Figure 14, page 81); they were then 

incubated in fully saturated humidity at 37oC for 4 days.  
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Figure 14: MTA specimen after surface wiping, thus ensuring parallelism of surfaces. 

The hydrated MTA samples were then removed by cutting vertically through the wall of the 

moulds using a disposable surgical scalpel blade No.15, whilst taking care not to damage the 

MTA samples (Figure 15, page 81). 

  

Figure 15: MTA sample being removed from the casing of the PTFE mould. 

Following removal from the moulds, all samples of MTA were visually inspected to ensure 

they had no voids or flaws before being subjected to the compressive strength test. Then the 

end surfaces were polished with 1200-grit fine-grain sandpaper (3M, St Paul, MN, USA) to 

GLP HQVLRQV�RI�?�P P � height DQG�?�P P � GLDP HWHU�LQ�DFFRUGDQFH�ZLWK�,62 -

1:2003 standards (Figure 16, page 81). 

 

Figure 16: The dimensions of specimens were rechecked prior to the compressive test. 
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The compressive strength of each specimen was then determined using a universal testing 

machine (Lloyd LR MK1 machine; Lloyd Instruments, Fareham, UK) as described in section 

4.3.2.1 (page 69) (Figure 4, page 70). 

 

 

Figure 17: Allocation of the experimental groups for each type of MTA (grey or tooth coloured) 

according to specimen preparation technique (mixing and placement). 

4.4.2.2.Surface microhardness 

The same specimen preparation procedure was employed for testing the surface 

microhardness. After 4 days all samples were removed from the incubator and subjected to 

the Vickers surface microhardness test as described in section 4.3.2.2 (page 71). After 

microhardness testing, all samples were replaced immediately into the incubator.  After a 

further 28 days samples were removed from the incubator and subjected to the surface 

microhardness test using the same methodology. The mean Vickers surface microhardness 

value and standard errors were calculated for each group and subjected to a two way analysis 
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of variance. All analysis was performed using the Statistical Package of Social Science 

version 16 (SPSS Inc., Chicago, IL, USA). 

4.4.2.3.Setting time 

Eighty silicon experimental moulds (Dentsply DeTrey, Konstanz, Germany) were prepared 

with an inner diameter of 10 mm and height of 2 mm. They were initially divided into four 

groups of 40 samples each. Moulds in each group were then randomly divided into four 

groups of 10, with each subgroup being filled with one of the two types of MTA slurry 

prepared by four different methods (Figure 17, page 82) that were employed for testing the 

compressive strength (see section 4.4.2.1, page 79). 

The initial and final setting times of all samples were measured (in accordance with ASTM 

international standard C 266  07) at 37oC inside an incubator using a Gillmore apparatus 

CT-5 (ELE International Inc. Loveland, CO, USA). The apparatus consisted of two needles, 

one to evaluate the initial set, the other the final set. The initial-set needle weight was 113.4 g 

and had a 2.12 mm diameter tip. The final-set needle weighed 453.6 g and had a 1.06 mm tip. 

The initial-set needle was applied lightly to the surface of each sample. This procedure was 

repeated each 60 seconds until the needle did not create a complete circular depression. This 

was verified by attempting two further unsuccessful indentations. The elapsed time, in 

minutes, between the start of contact between MTA and water and unsuccessful indentation, 

was recorded as the initial setting time. To measure the final setting time, the same procedure 

was followed every 10 minutes by applying the final-set Gillmore needle to the specimen 

surface. The final setting time was recorded when the needle did not mark the specimen 

surface with a complete circular depression. This was verified by two additional unsuccessful 

attempts and the final setting time recorded. The data were then analysed statistically using 
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two-way ANOVA for overall comparison followed by Tukey's post hoc test for individual 

comparisons. All analysis was performed using the SPSS version 16 (SPSS Inc.) 

4.4.3. Results 

4.4.3.1.Compressive strength 

The results are summarised in Table 3 (page 84).  

Table 3: 

Mean 

value, 

standar

d errors 

and 

95% 

confide

nce 

interval 

of 

compressive strength values (MPa) for each experimental group categorised according to the mixing and 

placement techniques used.  

No significant differences were found between the various experimental groups except 

between specimens of tooth coloured MTA mechanically mixed and agitated by ultrasonics 

and specimens of grey MTA that were mixed by the saturation and pressure methodology 

without application of ultrasonic agitation (p <0.001). The highest mean compressive strength 

value was observed in the specimens of group 4, tooth coloured MTA, which were 

mechanically mixed followed by application of ultrasonic agitation (Figure 18 page 85). 

MTA type Mixing Placement Groups Mean Std. Error 

95% Confidence 

Interval 

Lower Bound Upper Bound 

Tooth coloured 

Saturation & 

Pressure 

No Ultrasonic G1 88.773 6.803 75.199 102.347 

Ultrasonic G2 91.776 6.803 78.202 105.350 

Encapsulated 

mixing 

No Ultrasonic G3 89.743 7.171 75.435 104.052 

Ultrasonic G4 101.708 7.171 87.399 116.016 

Grey 

Saturation & 

Pressure 

No Ultrasonic G1 65.195 7.171 50.887 79.504 

Ultrasonic G2 74.533 6.803 60.959 88.108 

Encapsulated 

mixing 

No Ultrasonic G3 83.619 6.803 70.045 97.193 

Ultrasonic G4 85.206 7.171 70.897 99.515 
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Figure 18: Error bar graph representing the effect of ultrasonic application on compressive strength 

values (MPa). A significant difference was observed between mean values of the compressive strength 

(MPa) of specimens of tooth coloured MTA group 4 and grey MTA group 1 (p <0.001).  

 

4.4.3.2. Surface microhardness 

The results are summarised in Table 4 (page 89). At 28 days of incubation, regardless of the 

type of MTA and/or techniques that were used for preparation of specimens, the surface 

microhardness values were significantly greater for all experimental groups compared to the 

4 day values (p <0.00001) (Figure 19, page 86).  
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Figure 19: Error bar graph representing Vickers surface microhardness (HV) mean values and 95% 

confidence intervals at different incubation time intervals regardless of the type of MTA and/or 

techniques that were used for preparation of specimens. The surface microhardness (HV) values were 

significantly greater for all experimental groups at 28 days compared to 4 days incubation time (p 

<0.00001). (VSH4=Vickers surface microhardness (HV) at 4 days/ VSH28= Vickers surface 

microhardness (VH) at 28 days). 

 

For tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental), the application of ultrasonic 

energy produced significantly higher surface microhardness values irrespective of the 

incubation time and/or the mixing techniques (saturation & pressure and/or encapsulated 

mixing) (p <0.0001) (Table 4, page 89). For grey ProRoot?  MTA (Dentsply Tulsa Dental) the 

application of ultrasonic vibration resulted in significantly higher values for surface 

microhardness at 4 days (p <0.0001), however, at 28 days no significant difference existed 

between the specimens of the experimental groups (Figure 20, page 87 and  

Table 4, page 89). 
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Figure 20: Error bar graph representing the effect of ultrasonic application and mixing techniques on the 

Vickers surface microhardness (VH) values of tooth coloured and grey MTA (VSH4=Vickers surface 

microhardness (VH) at 4 days/ VSH28=Vickers surface microhardness (VH) at 28 days). 

 

Comparing the two types of MTA, irrespective of the mixing and placement techniques, a 

significant difference (p<0.0001) was observed in surface microhardness at both 4 and 28 

days. Tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) produced the highest Vickers 

surface microhardness value (Figure 21, page 88). 
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Figure 21: Error bar graph comparing the Vickers surface microhardness values (VH) of two types of 

ProRoot?  MTA (Dentsply Tulsa), grey and tooth coloured, regardless of the mixing and placement 

techniques at 4 days and 28 days. (VSH4=Vickers surface microhardness (VH) at 4 days/ VSH28=Vickers 

surface microhardness (VH) at 28 days). 

 

Mixing techniques regardless of the type of MTA and/or placement technique did not 

produce any significant difference in Vickers surface hardness values at any of incubation 

times (Figure 22, page 89).  
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Figure 22: Error bar graph of mixing technique regardless of the types of MTA and/or placement 

techniques revealing no significant difference in Vickers surface hardness values (VH). (VSH4=Vickers 

surface microhardness (VH) at 4 days/ VSH28=Vickers surface microhardness (VH) at 28 days). 

 
Table 4: Mean value, standard errors and 95% confidence intervals of Vickers surface microhardness 

(VH) values for each experimental group following 4 and 28 days of incubation. The groups were 

categorized according to the specimen preparation and placement techniques used, (for more details see 

Figure 17, page 82). 

 MTA type Mixing Placement Group Mean 
Std. 

Error 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

VSMH 

after 4 

Days 

Tooth 

coloured 

Saturation & Pressure 

No Ultrasonic G1 53.423 1.264 50.933 55.914 

Ultrasonic G2 74.203 1.286 71.670 76.737 

Encapsulated mixing 

No Ultrasonic G3 65.180 1.264 62.689 67.671 

Ultrasonic G4 78.703 1.244 76.253 81.153 

Grey 

Saturation & Pressure 

No Ultrasonic G1 43.813 1.264 41.323 46.304 

Ultrasonic G2 50.650 1.264 48.159 53.141 

Encapsulated mixing 

No Ultrasonic G3 40.460 1.264 37.969 42.951 

Ultrasonic G4 51.917 1.264 49.426 54.407 

VSMH 

after 28 

Days 

Tooth 

coloured 

Saturation & Pressure 

No Ultrasonic G1 69.977 1.841 66.349 73.604 

Ultrasonic G2 92.155 1.873 88.466 95.845 

Encapsulated mixing 

No Ultrasonic G3 64.780 1.841 61.153 68.407 

Ultrasonic G4 89.469 1.811 85.901 93.038 

Grey 

Saturation & Pressure 

No Ultrasonic G1 59.467 1.841 55.839 63.094 

Ultrasonic G2 58.510 1.841 54.883 62.137 

Encapsulated mixing 

No Ultrasonic G3 59.680 1.841 56.053 63.307 

Ultrasonic G4 63.063 1.841 59.436 66.691 
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4.4.3.3.Setting time 

The mean, standard error and 95% confidence interval values are shown in Table 5. In 

general, within each group, the mean values of the initial setting times were significantly 

shorter (P<0.00001) than their corresponding values for final setting times (Figure 23, page 

92).  

4.4.3.3.1. Initial setting time 

The mean initial setting times for the different types of MTA revealed that tooth coloured 

ProRoot?  MTA (Dentsply Tulsa Dental) had a significantly shorter setting time (P<0.00001) 

than grey ProRoot? � MTA (Dentsply Tulsa Dental) regardless of the mixing and placement 

techniques that were used for specimens preparation (Figure 23, page 92). The use of 

ultrasonic agitation following mixing by saturation and pressure led to a significantly more 

rapid setting time (P<0.00001) for both types of ProRoot?  MTA (Dentsply Tulsa Dental). 

Ultrasonic application following slurry preparation by encapsulated mixing with tooth 

coloured ProRoot?  MTA (Dentsply Tulsa Dental) led to a significant decrease in setting time 

(P<0.00001), which was not noted for grey ProRoot?  MTA (Dentsply Tulsa Dental).  
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 MTA type Mixing  Placement Mean Std. 

Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Initial Setting Time Tooth coloured Saturation  & Pressure No Ultrasonic 94.00 3.090 87.840 100.160 

Ultrasonic 61.00 3.090 54.840 67.160 

Encapsulated mixing No Ultrasonic 128.50 3.090 122.340 134.660 

Ultrasonic 89.00 3.090 82.840 95.160 

Grey Saturation  & Pressure No Ultrasonic 130.0 3.090 123.840 136.160 

Ultrasonic 66.00 3.090 59.840 72.160 

Encapsulated mixing No Ultrasonic 235.50 3.090 229.340 241.660 

Ultrasonic 224.00 3.090 217.840 230.160 

Final Setting Time Tooth coloured Saturation  & Pressure No Ultrasonic 292.00 6.033 279.974 304.026 

Ultrasonic 240.00 6.033 227.974 252.026 

Encapsulated mixing No Ultrasonic 319.00 6.033 306.974 331.026 

Ultrasonic 306.50 6.033 294.474 318.526 

Grey Saturation  & Pressure No Ultrasonic 444.00 6.033 431.974 456.026 

Ultrasonic 392.00 6.033 379.974 404.026 

Encapsulated mixing No Ultrasonic 428.00 6.033 415.974 440.026 

Ultrasonic 441.00 6.033 428.974 453.026 

Table 5: The mean initial and final setting time (min) values, standard error and 95% confidence 

intervals of the various experimental groups (for more details of group allocation see, page 82). 

Comparing tooth coloured  and grey ProRoot
?

 MTA (Dentsply Tulsa Dental), within each 

group, except for slurries prepared by ultrasonic activation following saturation and pressure, 

toothcoloured ProRoot
?  

MTA (Dentsply Tulsa Dental) had significantly shorter mean initial 

setting times (P<0.00001) when compared to grey ProRoot?  MTA (Dentsply Tulsa Dental) 

(Table 5, page 91). 
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Figure 23: Error bar graph comparing initial and final setting times (min) of two types of ProRoot?  MTA 

(Dentsply Tulsa Dental), grey and tooth coloured, regardless of the mixing and placement techniques. 

 

 

Figure 24: Mean values of the initial (Ini) and final (Fin) setting time (min) RI�WRRWK�FRORXUHG�3UR5 RRW? �

MTA specimens (Dentsply Tulsa Dental) (for more details of groups allocation see Figure 17, page 82). 

 

 

 

 



93 

 

4.4.3.3.2. Final setting time 

Comparing tooth coloured and grey ProRoot?  MTA (Dentsply Tulsa Dental), regardless of 

the mixing and placement techniques, tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) 

had a significantly (P<0.00001) shorter mean final setting time than grey ProRoot?  MTA 

(Dentsply Tulsa Dental) (Figure 23, page 92).  

The use of ultrasonic agitation following mixing by saturation and pressure led to a 

significantly more rapid final setting time (P<0.00001) for both types of ProRoot?  MTA 

(Dentsply Tulsa Dental).  

Ultrasonic application following slurry preparation by encapsulated mixing did not produce 

any significant change in the final setting time of both tooth coloured and grey ProRoot?  

MTA (Dentsply Tulsa Dental).  

Comparing tooth coloured and grey ProRoot?  MTA (Dentsply Tulsa Dental), within each 

group, tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) had significantly shorter mean 

initial setting times (P<0.00001) when compared to the corresponding grey ProRoot?  MTA 

groups (Dentsply Tulsa Dental) (Table 5, page 91).  

 

 

Figure 25: Mean values of the initial (Ini) and final (Fin) setting times (min) of grey ProRoot?  MTA 

(Dentsply Tulsa Dental) specimens in the various experimental groups (for more details of group 

allocation see Figure 17 (page 82). 
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4.4.4. Conclusions 

Methods of mixing and placement of MTA significantly affected the hydration process and 

consequently the physical properties of the material. Therefore, a consistent mixing and 

placement methodology should be employed. Overall, application of ultrasonic vibration 

following either the manual mixing technique (saturation and pressure) and/or mechanical 

mixing technique (mechanically mixing of encapsulated MTA) resulted in the most 

favourable physical properties of the MTA specimens. 
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4.5. Effect of various powder to water ratios on selected physical properties of MTA 

4.5.1. Aim 

To evaluate the effect of various powder to water ratios on compressive strength, surface 

hardness and setting time of various types of MTA.  

4.5.2. Materials & Methods 

The materials investigated were 

 ProRoot?  MTA Original  (Dentsply Tulsa Dental) with LOT number of 05003087 

(grey)  

 ProRoot?  MTA Tooth coloured (Dentsply Tulsa Dental) with LOT number of 

083006; (tooth coloured )  

4.5.2.1.Compressive strength 

One hundred and twenty custom-made polytetrafluoroethylene (PTFE) cylindrical moulds 

(internal dimensLRQV�? � P P � KHLJKW�DQG�?�P P � GLDP HWHU�ZHUH�SUHSDUHG� (ISO 9917-

1:2003).  

They were randomly divided into six groups of 20 with each group being filled with either 

grey or tooth coloured MTA slurries prepared using the following three different water to 

powder ratios. 

Groups 1 and 4- MTA mix had a powder to water to ratio of 3.5 

Groups 2 and 5- MTA mix had a powder to water ratio of 3.0 

Groups 3 and 6- MTA mix had a powder to water ratio of 2.5 

In groups 1-3 grey MTA and in groups 4-6 tooth coloured MTA were used respectively. 

Mixing was standardized by encapsulating one gram of corresponding type of MTA and 

0.29g, 0.33g and 0.40g (in accordance with the group being tested) of distilled water (Table 
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6, page 96) in an empty plastic capsule with a plastic pestle to facilitate mechanically mixing. 

These were sealed and loaded into a Promix TM amalgamator (Dentsply Caulk) and 

mechanically mixed at 4500 revolutions/min for 30 s as described in section 4.1.3 (page 61). 

Groups Powder (g) Water (g) Powder to water ratio 

1 1.00 0.40 2.5 

2 1.00 0.33 3.0 

3 1.00 0.29 3.5 

Table 6: The amount of cement and water required for the different cement to water ratios. 

The PTFE cylindrical moulds were filled with the resultant MTA slurry using a spatula with 

minimal pressure and then to standardise the specimens, all samples were agitated with 

ultrasonic energy using a BUC-1 Spartan tip (Obtura Spartan) attached to a SupUDVVRQ�? � 3

Booster (Satelec, Acteon Group) as described in section 4.4.2.1 (page 79). The specimens 

were then incubated at 37oC and fully saturated humidity for 4 or 28 days respectively.  After 

their allocated time the moulds were removed and the MTA specimens extracted by cutting 

vertically through the wall of the moulds using a No.15 disposable surgical scalpel blade, 

whilst taking great care not to touch the MTA samples (Figure 15, page 81). The final height 

was measured and their parallelism checked with a micrometer (Figure 16, page 81). 

A universal testing machine, (Lloyd LR MK1 machine; Lloyd Instruments) was used to 

perform the compressive strength testing as described in section 4.3.2.1 (page 69) (Figure 4, 

page 70). As the data was normally distributed statistical analysis was carried out using two-

way ANOVA for overall comparisons and Tukey's post hoc test for individual comparisons. 

All analyses were performed using the Statistical Package for the Social Sciences version 16 

(SPSS Inc.) 
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4.5.2.2.Surface microhardness 

Three groups of 10 samples for each type of MTA (60 specimens in total) were prepared with 

various cement to water ratios as described in section Compressive strength 4.5.2.1 (page 95) 

and incubated for 4 days at 37oC and fully saturated humidity. After 4 days all samples were 

removed from the incubator and subjected to the Vickers surface microhardness test in 

accordance with the European and British Standard (BS EN 843-4:2005) using a 

microhardness tester (MVK G1, Mitutoyo Corp.) as described in section 4.3.2.2 (page 71). 

After microhardness testing, all samples were covered immediately and then incubated at 

37oC in a fully saturated humidity. After 28 days the samples were again removed from the 

incubator and subjected to the surface microhardness test using the same methodology. The 

mean Vickers surface microhardness values were calculated for each group. All the results 

were subjected to a two way analysis of variance test. All analysis was performed using the 

Statistical Package for the Social Sciences version 16 (SPSS Inc.). 

4.5.2.3.Setting time 

One hundred and twenty silicon moulds (Dentsply DeTrey, Konstanz, Germany) were 

prepared with an inner diameter of 10.00 mm and height of 2.00 mm. They were initially 

divided into three groups as follows: 

Group 1: Powder/Water = 3.5/1 

Group 2: Powder /Water = 3.0/1 

Group 3: Powder /Water = 2.5/1 

Moulds in each group were divided into two groups of 10, each subgroup being filled with 

one of the types of ProRoot?  MTA that were mixed and placed using the methodology 

described in section 4.5.2.1 (page 95). The initial and final setting times of all samples were 

measured (in accordance with ASTM international standard C 266  07) at 37oC as described 
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in section 4.4.2.3 (page 83) using a Gillmore apparatus CT-5 (ELE International Inc.). All the 

results were subjected to a two way analysis of variance using the Statistical Package for the 

Social Sciences version 16 (SPSS Inc.). 

4.5.2.4.Phase composition 

A sample from each group of the hydrated tooth coloured ProRoot?  MTA that were produced 

by mechanical mixing of encapsulated MTA with various amounts of water as described in 

section 4.5.2.1 (Table 6, page 26) were subjected to X-ray diffraction analysis. Three 

aluminum sample holders (Panalytical, Almelo, Netherlands) with a round depression in the 

centre (20 mm diameter & 2 mm depth) were randomly selected (Figure 26(A), page 98). The 

circular depression of each XRD sample holder (Panalytical, Netherlands) was filled by the 

corresponding MTA slurry with minimal pressure (Figure 26(B), page 98).  

 

Figure 26: (A) An aluminium XRD sample holder (Panalytical, Almelo, Netherlands) with a round 

depression in the centre (20 mm diameter & 2 mm depth). (B) The depression of one sample holder was 

filled with MTA slurry using minimal pressure followed by the application of ultrasonic agitation.  

To standardise the placement technique, the MTA slurry was then subjected to ultrasonic 

energy using a BUC-1 Spartan tip (Obtura Spartan, Fenton, MO, USA) attached to a 

6XSUDVVRQ? � 3�%RRVWHU Satelec, France). The ultrasonic tip was moved throughout the MTA 

slurry without touching either the wall or floor of the sample holder, whilst being activated 

for 30 s at power scale 5. The assemblies were then incubated at 37oC in fully saturated 

humidity for 4 days. The specimen surface was then polished with 1200-grit fine-grain 
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sandpaper (3M, St Paul, MN, USA) to ensure the surface of the sample was level with the 

holder surface.  

Phase compositions of each sample were then determined using an X-ray diffractometer 

 (Figure 2, page 65). X-ray diffraction 

patterns were recorded using Ni filtered CuK  radiation (40Kv and 40mA). Scans were 

undertaken in the range 10-80o 2 . All patterns were matched using the ICDD database 

(International Centre for Diffraction Data, Pennsylvania, USA). For comparison, the powder 

of tooth coloured ProRoot?  MTA was also subjected to XRD analysis. For this, an extra 

sample holder (Panalytical, Netherlands) was filled with unhydrated powder of tooth 

coloured ProRoot?  MTA and then a flat spatula was used to press and level the powder into 

sample holders to provide a smooth flat surface; then it was placed inside the X-ray 

 and subjected to XRD 

analysis. 

4.5.3. Results 

4.5.3.1.Compressive strength 

The results are summarized in (page 102). Irrespective of the other variables, the mean 

compressive strength values at 30 days were significantly greater than at 4 days (p <0.00001) 

(Figure 27, page 100). The only exception was observed in group 1 (grey MTA) in which the 

powder to water ratios was 2.5. In this group the mean compressive strength values calculated 

at 4 days and 30 days incubation time were not significantly different (Figure 28, page 101). 
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Figure 27: Error bar graph representing mean compressive strength (MPa) values and 95% confidence 

intervals at different incubation time intervals regardless of the type of MTA and/or the powder to water 

ratio used for preparation of specimens.  

There was no significant difference between the mean compressive strength values of the 

various powder to water ratios at 4 days for either types of MTA. However, at 30 days, the 

mean values for compressive strength of the specimens of grey MTA (Group 1) was 

significantly lower than the other groups (p <0.00001). In addition, for tooth coloured MTA 

at 30 days the mean compressive strength values of group three (powder to water ratio of 3.5) 

were significantly greater than the other two groups (p <0.00001) (Figure 28, page 101). 
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Figure 28: Error bar graph representing the effect of various powder to water ratios on compressive 

strength (MPa). The mean compressive strength (MPa) values calculated at 4 days and 30 days were not 

significantly different. At 4 days for both types of MTA there was no significant difference between mean 

compressive strength (MPa) values. At 30 days the compressive strength (MPa) of group one (P/W ratio: 

2.5) of grey MTA was significantly lower than the other groups (p <0.00001). For tooth coloured MTA at 

30 days the mean compressive strength (MPa) values of group three (P/W ratio: 3.5) were significantly 

greater than other two groups (p <0.00001). 

 

Comparing mean compressive strength value of each group (in relation to various powder to 

water ratios), no significant difference was observed between the types of MTA, at each 

incubation time interval (Figure 28, page 101) except between the mean compressive strength 

values of group 2 (powder to water ratio of 3.0) at 4 days (p <0.0001). 
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Table 7: Mean value, standard errors and 95% confidence interval of compressive strength (MPa) values 

of each experimental group categorised according to incubation time, MTA type and powder to water 

ratios used for specimen preparation. 

 

4.5.3.2. Surface microhardness 

The results are summarised in Table 8 (page 104). At 28 days, regardless of the powder to 

water ratio, the Vickers surface microhardness values were significantly greater for all 

experimental groups compared to 4 days (p <0.00001), except for group 2 that used grey 

MTA in which the powder to water ratio was 3.0 (Figure 29, page 103).  

 MTA type 
P/W 

ratio 
Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Compressive strength 4 days 

Tooth coloured 

3.5 66.504 6.854 52.716 80.293 

3.0 70.956 5.734 59.420 82.492 

2.5 46.361 5.468 35.362 57.361 

Grey 

3.5 47.914 6.045 35.754 60.074 

3.0 43.310 6.045 31.150 55.470 

2.5 39.585 6.854 25.796 53.373 

Compressive strength 30 

days 

Tooth coloured 

3.5  147.391 10.842 125.580 169.203 

3.0 98.187 9.071 79.938 116.435 

2.5 93.965 8.649 76.566 111.364 

Grey 

3.5 119.299 9.562 100.063 138.535 

3.0 119.296 9.562 100.061 138.532 

2.5 64.332 10.842 42.521 86.143 
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Figure 29: Error bar graph representing the effect of various water to powder ratios on the Vickers 

surface microhardness values (VH) of grey and tooth coloured ProRoot?  MTA at two different 

incubation time intervals: mean values (VH) and 95% confidence intervals are presented. The surface 

microhardness (VH) values were significantly greater for all experimental groups at 28 days compared to 

4 days (p <0.00001) except for group 2 (P/W ratio: 3.0) of grey MTA. The mean Vickers surface 

microhardness (VH) values of the group 2 (P/W ratio: 3.0) of both types of MTA at both intervals was 

significantly greater than group 1 (P/W ratio: 2.5) and 3 (P/W ratio: 3.5) (p <0.00001) (VSH4=Vickers 

surface microhardness (VH) at 4 days/ VSH28=Vickers surface microhardness (VH) at 28 days). 

The mean Vickers surface microhardness (VH) values of group 2 (powder to water ratio - 

3.0) of both types of MTA at both incubation time intervals was significantly greater than 

group 1 and 3 (p <0.00001) in which the powder to water ratios were 2.5 and 3.5 respectively 

(Figure 29, page 103). 
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 MTA P/W Ratio Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

VSH4 

Tooth Coloured 

2.5 48.32 .893 46.56 50.08 

3 64.31 .893 62.56 66.07 

3.5 57.60 .893 55.85 59.36 

Grey 

2.5 33.35 .893 31.61 35.11 

3 53.89 .893 52.13 55.65 

3.5 36.75 .893 34.99 38.51 

VS28 

Tooth Coloured 

2.5 55.06 1.542 52.02 58.09 

3 87.88 1.542 84.84 90.91 

3.5 66.83 1.542 63.79 69.86 

Grey 

2.5 47.11 1.542 44.07 50.14 

3 58.45 1.542 55.41 61.48 

3.5 48.53 1.542 45.50 51.56 

Table 8: Mean value, standard errors and 95% confidence intervals of the Vickers surface microhardness 

(VH) values of each experimental group following 4 and 28 days. The groups were allocated according to 

various powder to water ratio (P/W Ratio) and types of MTA. 

4.5.3.3.Setting time 

The results are summarised in Table 9 (page 106). In general, within each group, the mean 

values of the initial setting time were significantly shorter than the mean values of final 

setting time (Figure 30, page 105) regardless of the powder to water ratios and the type of 

MTA that were used (p<0.000001).  

4.5.3.3.1. Initial final setting time 

Concerning the effect of powder to water ratio on the initial setting time of grey ProRoot?  

MTA, the mean initial setting time value of the specimens of group 1 (P/W ratio: 2.5) was 

significantly longer than the other two groups (p<0.000001). The same pattern was observed 

for the tooth coloured ProRoot?  MTA in which the mean initial setting time value of the 

specimens of group 1 (P/W ratio: 2.5) was significantly longer than the other two groups 
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(p<0.000001). Comparing each corresponding group of grey and tooth coloured ProRoot?  

MTA, within each group, there was no significant difference between the mean initial setting 

time values (Figure 30, page 105) (p=0.412).  

 

Figure 30: Error bar graph representing the effect of various water to powder ratios on the initial and 

final setting times (min) of grey and tooth coloured ProRoot?  MTA. The mean value and 95% confidence 

intervals are presented.  

4.5.3.3.2. Final setting time  

Concerning the effect of powder to water ratio on the final setting time of grey ProRoot?  

MTA, the final setting time of the specimens of group 3 (P/W ratio: 3.5) was significantly 

shorter than the other two groups (p<0.000001). There was no significant difference between 

the final setting time of specimens of group 1 and 2 in which the powder to water ratio was 

2.5 and 3.0 respectively (p=0.2058).  

For tooth coloured 3UR5 RRW?  MTA a significant difference was observed between the mean 

final setting time values of all three groups (p<0.000001). The final setting time of specimens 



106 

 

of group 3 (P/W ratio: 3.5) was significantly shorter than other groups, whilst the final setting 

time of specimens in group 1 (P/W ratio: 2.5) was significantly longer than the specimens of 

other two groups (p<0.000001).  

 

Dependent Variable MTA 
P/W 

Ratio 

Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Initial setting time 

Tooth coloured 

3.5 68.90 6.66 55.54 82.26 

3 80.00 6.66 66.64 93.36 

2.5 156.00 6.66 142.62 169.36 

Grey 

3.5 53.00 6.66 39.64 66.36 

3 73.00 6.66 59.64 86.36 

2.5 158.00 6.66 144.64 171.36 

Final setting time 

Tooth coloured 

3.5 321.40 10.30 300.73 342.07 

3 400.00 10.30 379.33 420.67 

2.5 558.00 10.30 537.3 578.67 

Grey 

3.5 444.00 10.30 423.33 464.67 

3 547.00 10.30 526.33 567.67 

2.5 573.50 10.30 552.83 594.17 

Table 9: Mean value, standard errors and 95% confidence interval of initial and final setting times (min) 

of each experimental group. The groups were allocated according to various powder to water ratios (P/W 

Ratio) and types of MTA. 

4.5.3.4. Phase composition 

X-ray diffraction analysis of the unhydrated tooth coloured ProRoot?  MTA revealed the 

-Bi2O3, ICDD 00-027-0053), and tri-calcium silicate 

(Ca3SiO5, ICDD 00-055-0738). Di-calcium silicate (Ca2SiO4 ICDD 00-024-0037) was also 

determined but due to peak overlap was difficult to identify. The addition of water resulted in 

the formation of a calcium hydroxide phase (Ca(OH)2 ICDD ICDD 00-044-1481) and 

calcium carbonate (ICDD 01-072-1652) with the corresponding decrease in the reflections 

associated with tricalcium silicate. 



107 

 

Analysis of the un-hydrated ProRoot?  MTA demonstrated -

Bi2O3 indicated by the strong reflections at 26.98, 33.3

were contributed by Ca3SiO5, indicated by the peaks at 32.26, 34.42 and 32.78. Addition of 

water to the samples resulted in the formation of Ca(OH)2 and a corresponding decrease in 

the Ca3SiO4 reflection, which is consistent with the reaction: 

2(3CaO.SiO2) + 6H2 2.3H2O + 3Ca(OH)2 

Comparison of the three different water to cement ratios (Figure 31, page 107) revealed no 

difference between the three samples. The phases present and their relative concentrations 

were the same with the addition of water resulting in the formation of calcium hydroxide and 

calcium carbonate in all cases. 

 

Figure 31: X-ray powder diffraction patterns of tooth coloured ProRoot?  MTA showing the effect of 

water to cement ratio: unhydrated ProRoot?  tooth coloured  MTA (a), w/c ratio 2.0 (b), w/c ratio 3.0 (c), 

w/c ratio 3.5  (d).  Main phases present highlighted with symbols: ( -Bi2O3 3SiO5 

Ca(OH)2.  
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4.5.4. Conclusion 

Using various powder to water ratios can affect the physical properties of MTA. However, no 

significant change was observed in XRD results in terms of the phase composition of MTA. 

To achieve the optimum physical properties of MTA specimens employing the powder to 

water ratio of 3.0, which is recommended by the manufacturer, was confirmed.  

4.6. Overall discussion  preparation of standardised specimens  

Elimination of confounding variables by standardisation of controlled variables is one of the 

most important requirements of a valid experimental study. Therefore, the water and powder 

contents of ProRoot?  MTA (Dentsply Tulsa Dental) packages were measured precisely in 

order to determine whether the weight of the water and powder were accurate and consistent 

and whether the product could be used directly from the packaging or not. 

The results revealed that the amount of MTA powder in both grey and tooth coloured types of 

ProRoot?  MTA (Dentsply Tulsa Dental) was consistent and as expected, however, an 

inconsistency was observed in the amount of water in the ampoules of both the tooth 

coloured and grey products (Table 2, page 68). This lack of consistency may have occurred 

as a result of poor quality control by the manufacturer or because of the migration of water 

molecules through the low-density polyethylene material of the ampoules (McCall et al. 

1984). The storage conditions of the packages may influence the rate of water loss from the 

low-density polyethylene material � 0 OOHU et al. 2001). For example, storage of the ampoules 

in dry conditions would be expected to increase water loss. Indeed, it is recommended by the 

manufacturer to store the packages in dry conditions to provide better conditions for the 

sachets of powder, which must not become contaminated by moisture.  

kage, it is stated clearly that:  
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The results of Section 4.5.3.2 (page 102) is in accordance with this recommendation (Figure 

29, page 103).  

The setting of Portland cement and MTA takes place in two stages. After mixing with water 

the hydration reaction of calcium silicates begins and results in the formation of a gel 

consisting of calcium silicate hydrates, which liberates calcium hydroxide (Taylor 1997, 

Camilleri 2008b). The calcium hydroxide then gradually reacts with the minerals to form 

other hydrated compounds. The calcium silicates contribute most to the binding power and 

strength of the material. It is also the main binding agent of crystalline calcium hydroxide that 

leaches most readily from the gel (Eglinton 1987). The bioactive hydration product of MTA 

is calcium hydroxide (Camilleri 2007, Camilleri 2008b), which is released during and after 

completion of the hydration process. The characteristic of the resultant set material is likely 

to be dependent on various factors including water to powder ratio, temperature, 

environmental humidity and pH, entrapped air and water and the rate of packing (Roy & 

Gouda 1975, Ishikawa et al. 1994, Torabinejad et al. 1995b, Fridland & Rosado 2003, 

Lawley et al. 2004, Felekoglu et al. 2007). 

The compressive strength of Portland cement is affected directly by the powder to water ratio 

(Papadakis et al. 2002). Walker et al. (2006) evaluated the effect of setting conditions (time 

and hydration) on flexural strength of MTA and showed that sufficient water was essential to 

optimize the flexural strength of the hardened material. Fridland & Rosado (2003) studied the 

effect of various water-to-powder ratios of MTA on its solubility and porosity. They reported 

that an increased water-to-powder ratio resulted in higher solubility, porosity and release of 

calcium hydroxide. However, the presence of excess water in the mixture might cause 
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difficulty in handling and placement of the material. According to the results of Section 

4.4.2.14.5.3.1 (page 99) of the present study adding more water produced lower compressive 

strength values in the longer term; however, in the short term no significant difference was 

observed between the specimens that were prepared using various powder to water ratios 

(Figure 28, page 101). The results of Section 4.5.3.2 (page 102) revealed that a powder to 

water ratio of 3.0 resulted in the greatest surface microhardness compared to the other groups 

that were prepared with a lower (2.5) or higher (3.5) powder to water ratio respectively. 

Mixture of one gram of powder with 0.33 gram of powder, which is recommended by 

manufacturer, is in accordance with the powder to water ratio of 3.0. The results of Section 

4.4.2.34.5.3.3 (page 104) confirmed that the admixture of more water to MTA powder 

resulted in longer initial and final setting times. A significantly shorter setting time was 

observed in the specimens of group 3 in which the powder to water ratio was 3.5 

(P<0.00001), although from the clinical point of view this difference may not be relevant. 

According to the results of Section 4.5.3.4 (page 106) the hydration of all three groups that 

were mixed with different powder to water ratios (Table 6, page 96) resulted in the formation 

of the main phases of MTA, including calcium hydroxide (Figure 31, page 107). Therefore, 

considering the findings of Section 4.5.3 (page 99) within the range of powder to water ratio 

that were used, the ratio recommended by the manufacturer (3.0) can be supported and used 

for specimen preparation in the remainder of the study. Certainly mixing the inconsistent and 

underweight amount of water that is supplied in the ProRoot?  MTA (Dentsply Tulsa Dental) 

packages with 1 g of MTA powder would result in an inconsistent powder to water ratio and 

in unpredictable and uncontrolled mechanical and chemical properties of the material. It may 

also be one of the reasons that the material does not set or solidify occasionally after its 

placement, which is the indicator of an incomplete hydration process (Torabinejad & Chivian 
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1999). In addition, in most of the laboratory and clinical research studies on MTA reported to 

date, specimens were prepared by mixing all the water in an ampoule with 1 g of MTA. As a 

result, the water to powder ratio, that is one of the most significant variables, might be 

unintentionally inconsistent. Obviously, supplying the precise and accurate amount of water 

is essential for a product such as ProRoot?  MTA (Dentsply Tulsa Dental). According to the 

optimised powder to water ratio, which is 3.0, it is recommended that users calculate the 

amount of water themselves rather than relying on the water supplied in an ampoule, which is 

unreliable (Table 6, page 96). In the short term, the manufacturer should evaluate the batch 

weighing system in order to ensure the correct amount of water is supplied. In the longer 

term, the development of a different delivery system, such as encapsulated MTA is 

suggested. Encapsulation of pre-set proportions of MTA powder and water appears 

advantageous as it enables the powder to liquid ratio and the mixing technique to be 

regularised by the manufacturer. In turn, this reduces the variability that might occur when 

the material is dispensed and mixed conventionally.  

MTA has been recommended for a wide range of clinical applications, although many 

properties of the material have not been investigated. For example, the effect of pressure 

during placement on its physical properties is unknown. Hydraulic cements are finely ground 

materials that when mixed with water gradually or instantaneously set and harden either in air 

or in water. The reaction results in the formation of hydrated compounds whose strength 

increases with time. The characteristics of the resultant set material are likely to be dependent 

on various factors including water to powder ratio, temperature, environmental humidity and 

pH, entrapped air and water and the rate of packing (Torabinejad et al. 1995b, Lawley et al. 

2004, Lee et al. 2004, Fridland & Rosado 2005). 
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Because of the various clinical applications of MTA, such as direct pulp capping, sufficient 

strength is necessary to withstand compaction pressures applied to restorative materials. 

Compressive strength and surface hardness are indicators of the setting process and strength 

of the hydraulic cements (Bentz 1997) and formed the basis of some of the present 

preliminary investigations. In addition, in an attempt to evaluate the effect of pressure on the 

microstructure of MTA, a SEM evaluation was carried out.   

Compressive strength, surface microhardness and setting time of hydraulic cements are not 

just a measure of a solitary property. They are influenced substantially by other fundamental 

properties of the material such as crystal structure stability (Taylor 1997, Hewlett 2004). 

Thus, they can be used as indicators of the hydration and setting process of the hydraulic 

cements (Lee et al. 2004, Camilleri 2007). They can also indicate the effect of various setting 

conditions on the overall strength of the cement (Danesh et al. 2006, Saghiri et al. 2010a). 

Evaluation of the ultrastructural morphology can also provide valuable information about the 

hydration process of MTA under various conditions (Camilleri 2011b). The effect of pressure 

during mixing on the physical properties of MTA has not been reported previously. However, 

one of the operator variable factors when mixing the powder of hydraulic cements with water 

is the pressure that is applied during spatulation.  

Because of the lack of standardisation for MTA in the field of dentistry, some studies 

followed the standards of endodontic sealers (Chng et al. 2005) with samples being prepared 

on the basis of the standards developed for restorative materials (Torabinejad et al. 1995b, 

Fridland & Rosado 2003, Danesh et al. 2006). In fact, MTA is not a restorative material nor 

is it an endodontic sealer. It would seem to be essential that MTA, being a new and unique 

material with various clinical applications, should have its own standard. The standard testing 
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techniques for Portland cement are not always applicable for MTA, even though they have 

been used occasionally (Chng et al. 2005, Dammaschke et al. 2005, Danesh et al. 2006). 

In most of the laboratory and clinical studies on MTA, it was stated that specimens were 

prepared in accordance with the manufacturer's instruction . However, in the manufacturer's 

instruction there is no information about the optimum pressure or the spatulation time of 

MTA. Therefore, spatulation pressure was an uncontrolled variable in most experimental 

studies reported to date (Torabinejad et al. 1995b, Eidelman et al. 2001, Aminoshariae et al. 

2003, Dammaschke et al. 2005, Walker et al. 2006, Yeung et al. 2006). Because of this lack 

of standardisation and use of uncontrolled hand placement methods, the results obtained in 

these studies may be inconsistent. Conversely, temperature, gradual incorporation of water, 

methods of drying, humidity, water to powder ratio, size of samples, time, humidity and other 

environmental conditions have been considered (Camilleri et al. 2005a, Dammaschke et al. 

2005, Danesh et al. 2006, Walker et al. 2006). 

In the present study to eliminate the effect of time taken during mixing as a confounding 

variable, an application time of 1 min was adopted based on preliminary studies. In order to 

apply even and equally distributed pressure on the specimens, a custom device was designed 

and constructed (Figure 3, page 70) so that the diameter of the piston matched the internal 

diameter of cylindrical polycarbonate moulds. In this way the entire MTA surface was under 

pressure and upward seeping of material prevented. 

Based on the findings of Section 4.3.3 (page 73), when greater pressures were applied to 

MTA its surface hardness reduced significantly (Figure 6, page 74). In addition, maximum 

compressive strength occurred with minimum pressure (Figure 5, page 73). Therefore, in 

laboratory studies standardisation of mixing methodology is essential; saturation of MTA 
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powder with predetermined amounts of water followed by application of minimal pressure is 

likely result in a relatively strong material. 

In a laboratory study on ProRoot?  MTA (Dentsply Tulsa Dental) and two Portland cements 

(Danesh et al. 2006) an ultrasonic vibration intensity of 6000 min  was used, to avoid air 

entrapment and to control confounding variables when samples were prepared for 

measurement of Vickers microhardness. But in the same study samples that were prepared for 

radiopacity and solubility were neither vibrated nor condensed with a controlled pressure 

even though the molecular distance might affect solubility and radiopacity. In an attempt to 

improve the placement and seal of MTA in immature root canals, Lawley et al. (2004) used 

ultrasonics. They compared this method with conventional hand compaction, but failed to 

control the mixing methodology and the pressure applied. Clearly, use of standard mixing 

methodology and controlled pressure for all future studies is suggested. 

In the present study it was anticipated that application of a greater pressure would result in a 

harder material, although the result showed that when the amount of pressure was more than 

3.22 MPa surface hardness was reduced (Figure 5, page 73). This may occur because of 

insufficient intermolecular space for the ingress of water to hydrate the material adequately. 

In addition, SEM images demonstrated that application of higher pressures were associated 

with fewer voids that could result in a less than optimal volume of intermolecular space with 

a negative effect on the hydration process. Thus, applying a greater pressure in an attempt to 

achieve a harder material appears futile. The results also revealed that application of various 

amounts of pressure following the saturation of the MTA powder with predetermined amount 

of water during the preparation of samples did not have a significant impact on compressive 

strength. Compressive strength is the capacity of a material to withstand axially directed 

pressure generating compressive stress as a result of compression force. It could be 
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hypothesized that with the application of higher pressures, the formation of microchannels 

was limited as a result of the material being more compact. This may also reduce the amount 

and the rate of water diffusion through the material that is likely to impair the setting reaction 

and result in reduced compressive strength and surface hardness. The role of water molecules 

during the setting reaction is crucial. It does not only mix with powder, but it also chemically 

binds with various phases of the cement and has a direct effect on the setting process 

(Camilleri et al. 2005a, Santos et al. 2005, Walker et al. 2006). In other words, MTA hardens 

and gains strength as it hydrates; this process occurs rapidly at first and then slows down with 

time. When MTA powder is mixed with water, a special network of microchannels is created 

(Figure 7 & Figure 8 page 75 & 75). The continuity of microchannels is disrupted during the 

setting process (Fridland & Rosado 2005). Therefore, the hardened cement has pores and 

broken microchannels. The role of microchannels and pores during the hydration reaction is 

important; they provide pathways for the water to diffuse into the material and thus take part 

in the slow hydration process of the cement, when water becomes bound into the structure 

(Fridland & Rosado 2003, Fridland & Rosado 2005). In this study, specimens mixed with 

lower pressures had more typical crystalline structures around microchannels (Figure 8, page 

75). This might be related to better water diffusion and therefore a greater degree of hydration 

leading to well developed crystalline structures in the form of laminated cross-stratified and 

bundles of jagged needle-like formations (Figure 9, page 76). In other words, application of a 

higher pressure may compress the powder molecules closer together to produce a drop in 

surface hardness and a reduction in crystalline formation due to lack of sufficient space for 

water molecules. Future analytical studies are suggested to correlate crystalline morphology 

and phase composition of the hydrated cement.  Thus, in summary, according to the result of 
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this preliminary study samples of MTA should be prepared with low and controlled 

(consistent) pressure. 

To achieve optimum properties, the hydraulic cement particles should be thoroughly mixed 

with water. The method chosen for mixing a material is fundamental to produce effective 

contact between powder particles and liquid and a set material with optimum physical, 

chemical and biological properties (Nomoto & McCabe 2001). The hydration process is a 

complex phenomenon that if modified might influence the biological, chemical and physical 

properties of the resulting product (Camilleri 2007). 

To determine the most consistent mixing and placement technique for MTA specimen 

preparation; the effect of two different mixing methods followed by the application of 

ultrasonic agitation during the placement of MTA slurry on certain physical properties of 

MTA including surface microhardness, compressive strength and setting time were evaluated 

(section 4.4, page 79). The employed mixing methodologies were the novel technique of 

mechanically mixing encapsulated MTA and the saturation of MTA powder with 

predetermined amount of water followed by application of 3.22 MPa pressure. This amount 

of pressure was demonstrated as the optimum pressure that resulted in the most favorable 

physical properties of the resultant hard MTA material (section 4.3.3, page 73). In terms of 

the effect of the various mixing and placement techniques used (Figure 17, page 82) on the 

physical properties of MTA; the results of section 4.4.3.1 (page 84) demonstrated that the 

highest mean compressive strength value was observed in the specimens of group 4 (tooth 

coloured MTA) that were mixed mechanically using encapsulated MTA followed by the 

application of ultrasonic agitation (=101.70 MPa); the lowest mean compressive strength 

value was observed in specimens of group 1 (grey MTA) prepared by saturation and pressure 

(=65.195 MPa) (p <0.0001). The results of Section 4.4.3.2 (page 85) revealed that for tooth 
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coloured ProRoot?  MTA (Dentsply Tulsa Dental), the application of ultrasonic energy 

resulted in significantly higher surface microhardness values in all experimental groups (p 

<0.0001). The same effect of ultrasonic agitation was observed for grey ProRoot?  MTA at 4 

days. The results of Section 4.4.3.3.2 (page 93) illustrated that the use of ultrasonic agitation 

following mixing by saturation and pressure led to a significantly more rapid final setting 

time (P<0.00001) for both types of ProRoot?  MTA (Dentsply Tulsa Dental). Ultrasonic 

application following encapsulated mixing did not produce any significant change in the final 

setting time of both tooth coloured and grey ProRoot?  MTA (Dentsply Tulsa Dental). These 

findings can be explained by the increased interaction of water and powder particles of MTA 

that were produced by the application of ultrasonic agitation. To achieve optimum properties, 

the hydraulic cement particles should be thoroughly mixed with water (Tymkowicz & Steffes 

1997). The method chosen for mixing and treatment of cement is fundamental to produce 

effective contact between powder particles and liquid and a set material with optimum 

physical and chemical properties (Nomoto & McCabe 2001, Ilie & Hickel 2007). 

Aminoshariae et al. (2003) compared the effect of ultrasonic and hand compaction on the 

adaptation of MTA to experimental polypropylene containers as well as the occurrence of 

voids within the material. They concluded that ultrasonic techniques resulted in more voids 

than hand compaction. The presence of voids might not be a disadvantage for the MTA 

hydration process as they might provide pathways for the water to diffuse into the material 

(Fridland & Rosado 2003, Fridland & Rosado 2005). The results of Section 4.3.3.3 (page 74) 

illustrated that more typical crystalline structures were observed in specimens prepared with 

lower pressures that tended to appear around microchannels (Figure 8, page 75). However, 

higher pressures resulted in fewer voids and reduced compressive strength and surface 
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hardness values. These findings confirm the concept that more porosity may result in a better 

hydration and improved physical properties.  

The results of Section 4.4.3 (page 84) demonstrated that the application of ultrasonic 

agitation produced better physical properties for MTA. This could also be explained by the 

dispersion effect of the ultrasonic energy on the material particles that might provide 

sufficient space for water molecules and better water diffusion producing a greater degree of 

hydration and subsequently a higher compressive strength, enhanced surface microhardness 

and shorter setting time. Total reactive surface area and particle interaction are increased by 

ultrasonic energy and might decrease setting time (Kleverlaan et al. 2004, Algera et al. 2005). 

In addition, ultrasonic vibration, by changing the rheological properties of a material, might 

also improve their handling characteristics (Witherspoon & Ham 2001, Lawley et al. 2004, 

Schmidlin et al. 2005). The same phenomenon may occur as a result of encapsulated mixing 

of MTA powder and water to enhance the hydration process and ease of handling. In terms of 

consistency, the materials mechanically mixed using the encapsulated mixing methodology 

were subjectively found to be consistently creamier and of a less grainy quality that made 

handling more controllable. To quantify these handling characteristics, further rheological 

investigations are recommended.  

Yeung et al. (2006) in their ex-vivo study compared the fill density of MTA in simulated 

straight and curved canals using hand compaction and indirect ultrasonic vibration. They 

reported a heavier and denser filling in the latter group, suggesting the beneficial effects of 

ultrasonic vibration on MTA that is in accordance with the results of Section 4.4.3 (page 84) 

of the present study. In addition, the advantages of the application of ultrasonic vibration 

were reported by Lawley et al. (2004). They evaluated the effect of ultrasonic energy on 

MTA in relation to bacterial penetration in an apexification model and found that it improved 
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the seal after 45 days significantly. In the studies of Aminoshariae et al. (2003) and Yeung et 

al. (2006), the amount of pressure applied during the compaction of the material was an 

uncontrolled variable. The results of Section 4.3.3 (page 73) demonstrated that application of 

higher pressures during mixing of MTA produced lower surface microhardness values, 

suggesting that application of the higher pressures affects the hydration process, strength and 

surface microhardness of the material. Optimum physical properties were reported at a 

pressure of 3.22 MPa (Section 4.3.3, page 73), which was the selected pressure used in the 

present study for the saturation and pressure technique.  

4.7. Conclusion 

In an attempt to eliminate confounding variables and achieve standard MTA specimens 

during the main experimental studies a consistent powder to water ratio of 3.00 and a 

coherent mixing and placement methodology should be employed. In terms of the 

consistency and control of the variables evaluated there was no significant advantage for any 

particular mixing and placement methodology. When saturation and pressure was used the 

best physical properties were observed at 3.22 MPa. Therefore, this amount of pressure was 

employed in the main studies when the manual technique for mixing was used. In addition, 

application of ultrasonic energy following either the manual mixing (saturation and pressure) 

and/or mechanical mixing (encapsulated MTA) resulted in the optimum physical and 

chemical properties of MTA specimens. Therefore, in section 5.1.6 (page 155) of the main 

study (contamination with blood), ultrasonic agitation was used for the standard placement of 

MTA slurries. However, since during the course of the acid contamination study (section 5.1 

page 121) parallel work on the mixing of MTA was ongoing, application of ultrasonic 

agitation was not used.  
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5. Effect of contamination on selected properties of MTA 

In this chapter the effects of contamination with two types of acid and whole, fresh human 

Ethical approval was granted by a panel from the School of Dentistry, Cardiff University 

Ethical Committee and the ethical board of the local research review committee in the 

Faculty of Dentistry, Tehran University of Medical Sciences, Iran. 

5.1. Acid contamination 

5.1.1. Introduction 

MTA appears to be a most promising material for use in a variety of complicated clinical 

applications, in which it is placed adjacent to the connective tissues in order to conduct hard 

tissue formation and/or act as a barrier against bacterial microleakage (section 2.2, page 21). 

In the most of these applications, MTA could be placed in an environment where 

inflammation is present and where a low pH is possible (Eidelman et al. 2001). Thus, MTA 

could be affected by the presence of tissue fluid (Torabinejad et al. 1995b, Camilleri et al. 

2005b) that has been shown, in an infected area, to be acidic (Malmed 2004, Nekoofar et al. 

2009). Therefore, it is hypothesized that variations in the pH value of host tissues because of 

pre-existing pathosis at the time of MTA placement could change its physical and chemical 

properties. For example, an acid pH in the environment may impede MTA setting (Walker et 

al. 2006), and reduce its strength and hardness (Yeung et al. 2006). Lee et al. (2004) 

immersed MTA specimens in various pH solutions and stored them for 7 days and reported 

the mean Knoop microhardness values of MTA specimens. They indicated that specimens 

stored at pH 5 were weaker than those stored at higher pH. However, although in clinical 
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situations MTA might be exposed to an acidic environment, extended immersion in acid does 

not simulate clinical conditions. Thus, to investigate further the response of MTA to acid 

under more relevant conditions, a study was designed to evaluate the push-out force between 

MTA and intraradicular dentine, as well as the compressive strength and surface 

microhardness of tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) following exposure 

to a range of acidic environments during hydration. Furthermore, the morphological 

microstructural features of samples were studied by SEM.  

The exposure of MTA to acidic pH does not only occur in altered biological conditions but 

also during restorative procedures. However, there is limited information about the effect of 

various restorative treatments on the physical properties of MTA. In particular, there is no 

information about the effect of tooth conditioning processes, including exposure to 

phosphoric acid, on the physical properties and crystalline structure of MTA, which are 

reflections of the hydration process (Taylor 1997, Wei et al. 2003). The effect of phosphoric 

acid, which is used to increase the retention and sealability of composite resin restorations 

(Gorucu et al. 2011), on the properties of pulp capping and root repair materials is a 

fundamental problem and one that could affect their durability and effectiveness. Fuss et al. 

(1990) evaluated the effect of the acid-etch technique on glass ionomer cements when used as 

a lining material and reported that a 15s etch had no detrimental effect. In a similar study, the 

surface structure of glass ionomer was evaluated under scanning electron microscopy (SEM) 

and no significant loss of cement was reported after acid-etching procedures (Smith & Martin 

1990). However, no information is available on MTA. The purpose of this part of study was 

to evaluate the influence of acid-etch procedures 4, 24 or 96 h after mixing on surface 

microhardness, compressive strength and the surface crystalline structure of tooth coloured 

ProRoot?  MTA (Dentsply Tulsa Dental). 
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5.1.2. Aim  

To evaluate the effect of two types of acid, butyric acid (to simulate exposure to 

inflammation) and phosphoric acid gel (to simulate etching prior to placement of resin 

restorations), on certain properties of MTA including compressive strength, surface 

microhardness, push-out force and microstructure.  

5.1.3. Materials & Methods 

5.1.3.1.Materials 

The material investigated was the tooth coloured formula of ProRoot?  MTA (Dentsply Tulsa 

Dental) with LOT number of 083006. 

Two types of acid were used; butyric acid (Sigma-Aldrich, Gillingham, UK) and phosphoric 

acid 37% (3M ESPE Co., St Paul, MN, USA). The butyric acid was buffered at either pH 4.4, 

5.4, 6.4 or 7.4 respectively, using sodium bicarbonate (Sigma-Aldrich). 

5.1.3.2.Methods 

5.1.3.2.1. Compressive strength (effect of butyric acid) 

Forty customised polycarbonate cylindrical moulds having an internal diameter of 4 mm and 

height of 6 mm were filled with a slurry of tooth coloured ProRoot?  MTA (Dentsply Tulsa 

Dental). Mixing and placement of the MTA slurry was standardised by mixing 1 g of MTA 

powder with 0.33 g of distilled water under a standard pressure of 3.22 MPa as described in 

section 4.3 (page 69). The filled moulds were then randomly allocated to four groups each of 

ten specimens and placed within glass vials. The bottom of each vial contained a piece of 

gauze that had been soaked in butyric acid buffered at either pH 4.4, 5.4, 6.4 or 7.4, 

respectively. The latter group acted as the control group. Based on pilot experimentation, the 

acid-soaked pieces of gauze were replaced with fresh acid-soaked gauze every 24 h to ensure 

a consistent pH during the experimental period. The openings of the glass vials were then 
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covered by moist gauze and sealed to ensure the presence of sufficient humidity inside the 

vials. After 4 days, the MTA specimens were removed from the moulds and subjected to the 

compressive strength test using the methodology described in section 4.3.2.1 (page 69). The 

compressive strength of all specimens was recorded in MPa. The data obtained from the 

compressive strength tests were subjected to statistical analysis using one-way ANOVA for 

overall comparison and by Tukey's post hoc test for individual comparisons.  

5.1.3.2.2. Compressive strength (effect of phosphoric acid gel) 

Ninety customised stainless steel cylindrical moulds having an internal diameter of 4 mm and 

height of 6 mm were filled incrementally with tooth coloured ProRoot?  MTA (Dentsply 

Tulsa Dental) slurry using the methodology described in section 4.3.2 (page 69) and 

incubated at 37oC in a fully saturated humidity. After 4 h, 30 samples were randomly selected 

and divided into two groups of 15. In the first group, the surface of one end of each specimen 

was exposed to 37% phosphoric acid (3M ESPE Co., St Paul, MN, USA) for 15 s then rinsed 

using tap water for 15 s and dried gently using a stream of air for 15 s. The second group of 

15 specimens was used as the control group and was not exposed to acid. This procedure was 

repeated 24 and 96 h after mixing on a further 30 samples at each time period respectively. 

The compressive strength test was conducted on each specimen just after acid exposure and 

on the corresponding control specimens using a universal testing machine (Instron, 3345, 

Norwood, MA, USA) as described in section 4.3.2.1 (page 69). The compressive strength of

all specimens was recorded in mega Pascal (MPa). The data obtained for compressive 

strength of all six groups were found to be non-parametrically distributed. Therefore, 

differences between groups were analysed using the Kruskall Wallis test. 

5.1.3.2.3. Surface microhardness (effect of butyric acid) 
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Forty customised polycarbonate cylindrical moulds having an internal diameter of 6 mm and 

height of 12 mm were filled with tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) 

slurry. Mixing and placement of MTA slurry was standardised by mixing 1 g of MTA 

powder with 0.33 g of distilled water under a standard pressure of 3.22 MPa as described in 

section 4.3.2 (page 69). The filled moulds were then randomly allocated to four groups each 

of ten specimens and placed within glass vials. The bottom of each vial contained a piece of 

gauze that had been soaked in butyric acid buffered at either pH 4.4, 5.4, 6.4 or 7.4, 

respectively. The latter group acted as the control group. Based on pilot experimentation, the 

acid-soaked pieces of gauze were replaced with fresh acid-soaked gauze every 24 h to ensure 

a consistent pH during the experimental period. The openings of the glass vials were then 

covered by moist gauze and sealed to ensure the presence of sufficient humidity inside the 

vials. After 4 days, the MTA specimens were removed from the moulds and the surfaces of 

each specimen, which were exposed to acid, were subjected to the Vickers surface 

microhardness test as described in section 4.3.2.2 (page 71). The mean Vickers surface 

microhardness value, standard deviations and standard errors were calculated for each group 

and subjected to a one way analysis of variance .  

5.1.3.2.4. Surface microhardness (effect of phosphoric acid gel) 

Forty five customised polycarbonate cylindrical moulds having an internal diameter of 6 mm 

and height of 12 mm were filled with tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental) 

slurry as described in section 4.3.2 (page 69) and incubated at 37oC and fully saturated 

humidity. After 4 h, fifteen samples were randomly selected and the surface of one end of 

each sample was covered with 37% phosphoric acid (3M ESPE) for 15 s then rinsed using tap 

water for 15 s and dried gently using a stream of air for 15 s. The opposite surface of each 

sample was used as the control and was not subjected to acid exposure. Both surfaces of the 
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specimens were then subjected to the Vickers surface microhardness test using a Mitutoyo 

microhardness tester MVK G1 (Mitutoyo Corp., Tokyo, Japan) as described in section 4.3.2.2 

(page 71) and the mean Vickers surface microhardness values calculated. The same acid 

exposure procedures and surface microhardness tests were repeated on specimens 24 and 96 

h following mixing on a further 15 samples at each time interval. Differences between the 

Vickers surface microhardness values obtained from the surfaces that were exposed to the 

acid-etch procedure at different time periods and control surfaces was compared statistically 

using one-way ANOVA for overall comparison followed by a post hoc for 

individual comparisons. 

5.1.3.2.5. Push-out force (effect of butyric acid) 

Freshly extracted human teeth including mandibular single-rooted premolars or maxillary 

anterior incisors that were either intact or contained only small carious lesions were selected 

and stored in 0.5% chloramine-T at 4 oC for up to 1 month before use. Mid-root dentine was 

sectioned horizontally into slices with a thickness of 1.0 mm. A diamond saw microtome 

�6�P LFURWRP H�/ HLFD�1 X?ORFK�* HUP DQ\ � ZDV�XVHG�WR�REWDLQ�URRW�GHQWLQ e slices. 

The lumen of the root dentine disks were instrumented with Gates Glidden burs (Dentsply 

Tulsa Dental), sizes 2 to 5, to achieve a standardised diameter of 1.3 mm. Eighty standard 

root dentine slices were then filled with tooth coloured ProRoot?  MTA slurry (Dentsply 

Tulsa Dental) using the methodology described in section 4.4.2 (page 79). Mixing and 

placement of the MTA slurries were standardised by mixing 1 g of MTA powder with 0.33 g 

of distilled water (saturation method) followed by the application of the ultrasonic energy 

using a BUC-1 tip (Obtura Spartan) attached to a 6XSUDVVRQ? � 3�%RRVWHU�6DWHOHF The 

specimens were then divided randomly into four groups (n = 20). In group A, the specimens 

were wrapped in pieces of gauze soaked in phosphate buffered saline solution (pH = 7.4). In 
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groups B, C, and D, specimens were wrapped in pieces of gauze soaked in butyric acid 

buffered at pH values of 6.4, 5.4, or 4.4, respectively. Following 4 days of incubation at 37oC 

in fully saturated humidity all test and control specimens were subjected to the push-out force 

test. The push-out force were measured using a universal testing machine (Z050; Zwick/Roell 

Group, Ulm, Germany). The samples were placed on a metal slab with a central hole to allow 

the free motion of the plunger. The compressive load was applied by exerting a downward 

pressure on the surface of the MTA using a 1.00 mm diameter cylindrical stainless steel 

plunger at a speed of 1 mm/min (Figure 32, page 127). The plunger had a clearance of 

approximately 0.2 mm from the margin of the dentinal wall to insure contact with MTA only. 

The maximum load applied to MTA at the time of dislodgement was recorded in Newtons. In 

order to express the bond strength in MPa, the values were divided by the adhesion area of 

the root filling calculated by the following equation: 

A=2 U�î K  

where A is the area of the root canal, r is the root canal radius and h is the thickness of the 

root-dentine slice in millimetres. The data were analysed using one-way analysis of variance 

followed by the Tamhane post hoc test. 

  

Figure 32: A cylindrical stainless steel plunger attached to the load cell of the universal testing machine 

loading on MTA inside a root section. 
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The slices were then examined under a light microscope at X40 magnification to determine 

the nature of the bond failure. Each sample was categorised into one of three failure modes 

(Figure 33, page 128): adhesive failure at the MTA and dentine interface, cohesive failure 

within MTA, or mixed failure. 

 

Figure 33: Various failure modes. (A) Adhesive failure; note the clean canal wall. (B) Cohesive failure 

within MTA. (C) Mixed failure; note the MTA residual inside the canal. 

5.1.3.2.6. Push-out force (effect of phosphoric acid gel) 

Forty standard root dentine slices with 1.00 mm thickness and 1.3 mm internal diameter were 

prepared and then filled with a slurry of tooth coloured ProRoot?  MTA (Dentsply Tulsa 

Dental) as described previously (5.1.3.2.5, page 126). The assemblies were then incubated at 

37oC in a fully saturated humidity. After 24 h, 20 specimens were randomly selected and

divided into two groups of 10. In the first group, one surface of each specimen was randomly 

selected and the dentine surface was subjected to the acid etch procedure using 37% 

phosphoric acid (3M ESPE) for 15 s. During the acid-etch procedure the margins of the MTA 

material were also deliberately exposed to acid gel, however, the whole surface of the MTA 

material did not cover. The dentine disk assembly, containing MTA material, was then rinsed 

using tab water for 15 s and dried gently using a stream of air for 15 s. The second group of 

10 specimens was used as the control group and was not exposed to acid. The push-out force 

test was then conducted on each assembly just after acid etch procedure and on the control 
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specimens respectively using a universal testing machine (Z050) as described in section 

5.1.3.2.5 (page 126). The same acid etch procedure, rinsing, drying and push-out force 

measurement, were repeated after 96 h incubation period on a further 20 samples.  

The push-out force of each specimen was recorded in mega Pascal (MPa) and the data were 

then subjected to two way ANOVA analysis using SPSS to examine the difference between 

the mean push-out force values of each experimental group. The nature of the failure of each 

specimen was also examined under a light microscope at X40 magnification and the failure 

mode recorded accordingly.  

5.1.3.2.7. Microstructure (effect of butyric acid) 

For the microstructural morphological evaluations by SEM, eight specimens (two for each 

group) were prepared. Mixing and placement of MTA slurry was standardised by mixing 1 g 

of MTA powder with 0.33 g of distilled water under a standard pressure of 3.22 MPa as 

described in section 5.1.3.2.3 (page 124). To analyse the internal microstructure, the 

specimens were sectioned into two halves using a No. 15 disposable surgical scalpel blade to 

initiate a crack. The surfaces were sputter-coated with gold using a Polaron Sputter Coater 

(Quorum Technologies, Newhaven, UK) and specimens were analysed with an EBT1 

(Electron Beam Technology) scanning electron microscope (S.E.M Tech Ltd, Woodbridge, 

UK). The micrograph images from the SEM analysis showing the qualitative internal 

microstructure of the set MTA were evaluated at the same depth within the specimens in 

terms of the presence of microchannels and type of crystal formation. 

5.1.3.2.8. Microstructure (effect of phosphoric acid gel)  

For the morphological evaluation, new specimens were prepared as described in section 

5.1.3.2.1 (page 123) and stored under the same conditions. After 4, 24 and 96 h, samples 

were divided randomly into two groups of five. The surfaces of specimens in the test groups 
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were exposed to 37% phosphoric acid (3M ESPE Co.) for 15 s then rinsed using tap water for 

15 s and then dried gently using a stream of air for 15 s. Specimens in the control group were 

not exposed to acid. The surfaces were sputter-coated with gold and analysed using an EBT1 

Scanning Electron Microscope as described in section 5.1.3.2.7 (page 129). Gold sputter 

coating in the vacuum chamber was not possible on specimens removed after 4 h due to the 

amount of moisture in the samples; therefore, morphological evaluation by SEM after 4 h 

was impossible. The micrograph images from the SEM analysis of the two acid-exposed and 

control groups after 24 and 96 h were compared in terms of the surface morphology and type 

of crystal formation. 

5.1.4. Results  

5.1.4.1.Effect of butyric acid on compressive strength 

The results of the compressive strength testing are shown in Table 10 (page 131). There was 

a significant difference between the mean compressive strength values of all experimental 

groups (p<0.000001) except between the specimens of the experimental groups that were 

exposed to pH 6.4 and 7.4. The lowest and the greatest mean compressive strength values 

were observed in the specimens exposed to pH 4.4 (29.66 ? ) and 7.4 (� ) 

respectively.  
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Table 10: Means, standard deviations, 95% confidence intervals, minimum and maximum values of the 

compressive strength (MPa) of experimental groups that were exposed to butyric acid with various pH 

values.  

Mean compressive strength values of 43.47 ? �DQG� 58.82 ? �ZHUH�REVHUYHG  following 

exposure to pH 6.4 and 5.4, respectively. In general, lower the compressive strength values of 

the material were associated with a more acidic environment (Figure 34, page 131).  

 

Figure 34: Error bar graph representing the mean compressive strength (MPa) values ? 95 % confidence 

interval of tooth coloured ProRoot?  MTA exposed to butyric acid buffered at various pH values. 

Significantly lower compressive strength (MPa) values were associated with lower pH (p <0.00001). 

 

pH Mean Standard Deviation 95% Confidence Interval for Mean Minimum Maximum 

Lower Bound Upper Bound 

4.4 29.6680 6.52542 25.0000 34.3360 18.45 38.45 

5.4 43.4780 6.12015 39.0999 47.8561 32.07 52.46 

6.4 58.8265 7.37706 53.5493 64.1037 44.62 71.42 

7.4 62.9940  10.15211 55.7316 70.2564 52.68 82.24 
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5.1.4.2.Effect of phosphoric acid on compressive strength  

The results of the compressive strength testing are shown in (Figure 35, page 132). The 

lowest compressive strength (mean=6.438 MPa, SD=2.360) was observed in specimens 

exposed to acid after 4 h. There was a statistically significant difference between compressive 

strength values of experimental specimens after 4 h compared with those groups exposed to 

acid for 24 and 96 h (P < 0.0001). However, there was no significant difference between 

specimens exposed to acid for 24 or 96 h respectively. Significant differences in compressive 

strength values between test and control groups occurred only after 4 h (P < 0.0001). 

 

Figure 35: Mean compressive strength (MPa) of intact and acid-exposed specimens after 4, 24 and 96 h. 

 

5.1.4.3. Effect of butyric acid on surface microhardness 

The results of the microhardness testing are shown in (Figure 36, page 133). The greatest 

P HDQ�VXUIDFH�KDUGQHVV�YDOXHV�?�ZHUH�REVHUYHG�IROORZLQJ�H[ SRVXUH�WR�S+

ZLWK�WKH�YDOXHV�GHFUHDVLQJ�WR�?�IROORZLQJ�H[ SRVXUH�WR�S+ � 7KH�GLIIHUHQFH�
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between these values at the 95% CI (33.39 44.30) was significant (P < 0.0001). Mean 

VXUIDFH�P LFURKDUGQHVV�YDOXHV�RI�?�DQG�?�ZHUH�REVHUYHG�IROORZLQJ�

post hoc tests revealed that the difference 

between the values of specimens exposed to pH 6.4 and pH 5.4 at the 95% CI (-2.78 to 8.75) 

was not significant. However, the difference between the Vickers microhardness values of 

other groups was statistically significant (P < 0.001). 

 

 

Figure 36: Effect of butyric acid on surface microhardness. The greatest mean surface microhardness 

� 9 � YDOXHV�?�DQG�WKH�ORZHVW�P LFURKDUGQHVV�9 + � YDOXHV�?�ZHUH�REVHUYHG�DIWHU�

exposure to pH 7.4 and pH 4.4, respectively (P < 0.0001). 

 

5.1.4.4. Effect of phosphoric acid on surface microhardness 

The results of the surface microhardness test are shown in (Figure 37, page 134). In the group 

exposed to acid, the lowest Vickers surface microhardness value (mean = 17.269, SD = 

6.382) was observed after 4 h. There was a significant difference between specimens etched 

after 4, 24 and 96 h respectively (P < 0.0001). There was a statistically significant difference 

in Vickers surface microhardness values between test and control groups after 4, 24 and 96 h 
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respectively (P < 0.0001). The surface microhardness values of the test group were lower 

than the control group at all time intervals (Figure 37, page 134). In the control group, there 

was a significant difference in Vickers surface microhardness values between specimens after 

4 h compared with the other control groups (P < 0.0001). However, there was no significant 

difference between control specimens after 24 and 96 h respectively. 

 

Figure 37: Mean Vickers surface microhardness (VH) of intact and phosphoric acid gel-exposed surfaces 

after 4, 24 and 96 h. 

 

5.1.4.5.Effect of butyric acid on push-out force 

The results are summarised in Figure 38 (page 135). The greatest mean push-out force (7.28 

? �0 3D�ZDV�REVHUYHG�DIWHU�H[ SRVXUH�WR�D�S+ � RI�7KH�YDOXHV�GHFUHDVHG�WR�?

MPa after exposure to a pH of 4.4. There were significant differences between the groups (p 

< 0.001). The Tamhane post hoc test revealed that the mean push-out force values of 

specimens exposed to pH 4.4 and 5.4 were significantly lower than the others (p<0.001). No 

significant difference was found between the values for specimens exposed to pH levels of 
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6.4 and 7.4. Inspection of the samples revealed the bond failure to be predominantly adhesive 

for all groups. 

 

Figure 38: The effect of butyric acid at various pH values on the push-out force (MPa) between MTA and 
dentine. 

5.1.4.6.Effect of phosphoric acid on push-out force  

The results are summarised in Table 11 (page 135). Regardless of the exposure to the 

phosphoric acid gel, the mean push-out force values calculated following 96 h incubation 

were significantly greater than the push-out force values calculated at 24 h (p< 0.0001).  

Incubation Time Acid gel Mean 

95% Confidence Interval 

Lower Bound Upper Bound 

24 hours 

No etch 2.668 2.047 3.289 

Etch 1.444 .823 2.065 

96 hours 

No etch 7.082 6.461 7.703 

Etch 6.693 6.072 7.314 

Table 11: Mean values and 95% confidence intervals of the push-out force (MPa) of tooth coloured 

ProRoot?  MTA subsequent to acid etch with phosphoric acid performed following various incubation 

periods.  
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The acid etch procedure did not significantly affect the push-out force values of tooth 

coloured ProRoot?  MTA measured following 24 h and/or 96 h incubation time. No 

significant difference was observed between the mean push-out force values of the etched 

and un-etched specimens at either incubation period.  

 

Figure 39: Error bar graph representing the mean push-out force (MPa) values of etched and un-etched 

tooth coloured ProRoot?  MTA specimens at 24 h and 96 h with 95% confidence interval. No significant 

difference was observed between etched and control groups. Regardless of acid etching the push-out force 

(MPa) of specimens was significantly greater at 96 h (p< 0.0001).   

In terms of failure mode, inspection of the samples revealed the bond failure to be 

predominantly adhesive for both etched and control groups at both incubation times.  

5.1.4.7.Effect of butyric acid on surface microstructure  

The internal microstructure of specimens exposed to pH 7.4 environments revealed 

distinctive structures such as asymmetrical crystalline formations in the form of laminated 
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cross-stratified structures (Figure 40, page 137), bundles of jagged needle like formations 

(Figure 40, page 137), microchannels (Figure 41, page 138), depressions caused by air 

bubbles (Figure 42, page 138) and pores. Development of these crystalline structures except 

the needle like crystals were observed in all specimens exposed to various acidic 

environments and in general it was not possible to score each characteristic and thus compare 

them quantitatively between groups. However, specimens kept in contact with butyric acid at 

pH 7.4 had distinctive needle like crystalline structures embedded within a more uniform 

matrix partially covered by colloidal gel that may have been involved in the bonding of the 

various phases of the cement (Figure 40, page 137). Specimens exposed to more acidic pH 

had extensive porosity (Figure 43, page 139). In addition, lack of needle like formations in 

specimens exposed to more acidic pH was noticeable (Figure 44, page 139).  

 

 

Figure 40: Scanning electron microscopy image of a specimen exposed to pH 7.4. A cross section of a 

microchannel (a), needle like (b) and laminated (c) crystalline formation can be seen. 
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Figure 41: Scanning electron microscopy image of a specimen exposed to pH 7.4. Cross sections of two 

microchannels can be seen. 

 

 

Figure 42: Scanning electron microscopy image of a specimen exposed to pH 6.4. Depressions caused by 

air bubbles can be seen. 
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Figure 43: Scanning electron microscopy image of a specimen exposed to pH 4.4. Extensive porosity can 

be seen. 

 

 

Figure 44: Scanning electron microscopy image of a specimen exposed to pH 5.4. Asymmetrical 

crystalline formations in the form of laminated cross-stratified structures (a) near the cross section of a 

microchannel can be seen (b). Lack of needle like formations is noticeable. 

5.1.4.8. Effect of phosphoric acid gel on surface microstructure  

The SEM examinations revealed distinct morphological differences between the intact 

(Figure 45, Figure 47 & Figure 48, pages 141, 142 & 142) and acid-exposed MTA surfaces 
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(Figure 49 to Figure 53, pages 143-145). No morphologically dissimilarity was observed 

within the test and control groups at 24 and 96 h after mixing (Figure 47 & Figure 48, pages 

142, 142). The surface microstructure of the non acid-exposed MTA (control groups) after 

both time periods were similar and revealed an amorphous poorly crystallized superficial gel 

structure at x36 magnification. The presence of needle-like crystals was a common finding in 

the control groups at higher magnification after 24 and 96 h (Figure 47 & Figure 48, pages 

142, 142). A plain poorly crystallized superficial gel structure containing globular aggregate 

particles was observed in the control group. After acid exposure at 24 or 96 h, a selective loss 

of matrix from around the crystalline structures were observed at various magnifications that 

removing substantial amounts of the cement (Figure 49 to Figure 53, pages 143-145). No 

needle-like crystals were observed over the surfaces exposed to acid. Loss of the needle-like 

crystals was a significant morphological difference between acid gel exposed and intact 

(control) surfaces. In addition, acid gel exposure after 24 and 96 h created notable crystalline 

structures such as plate-shaped and laminated crystals on the MTA surface (Figure 53, page 

145).  
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Figure 45: Intact surface of mineral trioxide aggregate in the control groups after 24 h. An amorphous 

poorly crystallized superficial gel structure and the cross-section of some microchannels (a) can be seen. 

 

Figure 46: Surface of acid-exposed mineral trioxide aggregate after 96 h. An amorphous poorly 

crystallized superficial gel structure and the cross-section of several microchannels (a) can be seen. 
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Figure 47: Intact surface of mineral trioxide aggregate from the control groups after 24 h. Irregular 

needle-like crystals that cover globular formations (a) and cross-sections of several microchannels (b) can 

be seen. 

 

Figure 48: Intact surface of mineral trioxide aggregate from the control group after 96 h. Irregular 

needle-like crystals that cover globular formations (a), cross-sections of some microchannels (b) and a 

microchannel running transversely (c) can be seen. 
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Figure 49: Acid exposed surface of mineral trioxide aggregate after 24 h. A relatively uniform 

 

 

 

Figure 50: Acid exposed surface of mineral trioxide aggregate after 24 h. Selective loss of matrix from 

the cement can be seen. No needle-like crystals were observed. 
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Figure 51: Acid exposed surface of mineral trioxide aggregate after 96 h. Selective loss of matrix from 

the cement can be seen. No needle-like crystals were observed. 

 

Figure 52: Acid exposed surface of mineral trioxide aggregate (MTA) after 96 h. Selective elimination of 

matrix can be seen. Laminated and plate-shaped crystals are notable and visible on the MTA surface. No 

needle-like crystals were observed. 
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Figure 53: Acid exposed surface of mineral trioxide aggregate (MTA) after 96 h. Selective elimination of 

matrix with minimal loss of the cement can be seen. Laminated and plate-shaped crystals were a notable 

feature on the MTA surface. No needle-like crystals were observed. 

5.1.5. Discussion 

Mineral trioxide aggregate has been shown to release soluble fractions (mainly calcium 

hydroxide) in both the short and long-term (Lee et al. 2004, Camilleri 2007) sufficient to 

maintain the pH of the surrounding environment at a high level (pH 11 12) (Saghiri et al. 

2009). Duarte et al. (2003) confirmed that MTA released calcium ions as a result of hydration 

of calcium oxide, the main component of MTA and Portland cement. Torabinejad et al. 

(1995b) reported the pH value of MTA to be between 10.5 and 12.9. The biological 

properties of MTA, e.g. the ability to induce changes in cellular activity of osteoblasts, have 

been attributed to its alkalinity (Fridland & Rosado 2003). 

Santos et al. (2005) noted that the pH of MTA increased to a peak of 10.39 within the first 24 

h after mixing followed by a decrease to 7.72 within 360 h. However, since different 

methodologies were used for pH measurement in these studies it is not possible to compare 

their results directly.  
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It is recommended that MTA be allowed to set untouched for 72 h or longer to decrease the 

chance of MTA displacement (Sluyk et al. 1998). In the present study, the samples were kept 

in a humid environment for 96 h to allow optimum setting. 

Within the human body under normal physiologic conditions, any minor change in pH is 

controlled by the carbonic acid-bicarbonate buffer system and the other pH regulatory 

systems active in connective tissue (Wray 1988); periodontal tissue is no exception (Azuma 

2006). However, in certain clinical applications, MTA is placed in an environment where 

inflammation may be present and the surface of the unset material will be exposed to a low 

pH environment (Nekoofar et al. 2009), e.g. when used as a root-end filling material, as an 

apical barrier in teeth with open apices or for repair of root perforations (Torabinejad & 

Chivian 1999). Placement of MTA in an inflamed low pH environment may influence its 

physical and chemical properties. Lee et al.  (2004) studied the effect of pH on the hydration 

process of MTA. They immersed and stored MTA samples in solutions of pH 5, 7 and 7.4 for 

7 days and reported that microhardness at low pH was reduced. However, immersion of the 

material in acid does not simulate clinical conditions as most often only one surface of the 

MTA will be exposed to an acidic environment. Therefore, to simulate clinical condition in a 

more relevant way, in the present study only one surface of the specimens were exposed to 

acid. Furthermore, in situations where the initiating and perpetuating factors of an 

inflammatory process are removed by appropriate treatment, it is possible that the pH of the 

environment returns to normal in a shorter time period than the 7 days used by Lee et al. 

(2004). In the present study a shorter incubation period of four days was used. Various types 

of acid have dissimilar effects on the physical and chemical characteristics of Portland 

cement (Taylor 1997) and might also have different effects on MTA. The type of acid used 

by Lee et al. (2004) was not stated. In the present study butyric acid, a by-product of 
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anaerobic bacterial metabolism (Zeikus 1980, Barker 1981, Tonetti et al. 1991, Tsuda et al. 

2010) was used to simulate the clinical conditions within periradicular infections.  

Lota et al. (2000) demonstrated that considerable changes in the microstructure of hydrated 

cements occurred in the presence of polyacrylic acid when compared with a control paste. 

Rai et al. (2004) reported that hydration of Portland cement was considerably retarded when 

malic acid was added. In the presence of tartaric acid, the silicate hydration-phase of Portland 

cement was retarded strongly (Rai et al. 2006). In contrast, Singh et al. (1986a) revealed that 

lactic acid accelerated the hydration of Portland cement by increasing the crystalline 

character of calcium hydroxide resulting in advanced growth of the hydration products. 

Different concentrations of citric acid have been shown to have dissimilar effects on Portland 

cement (Singh et al. 1986b). Singh et al. (1986b) indicated that 0.1% citric acid accelerated 

the hydration process of Portland cement whereas concentrations >0.1% retarded hydration.  

The compressive strength and microhardness of a material are not the measures of two single 

properties. They are influenced substantially by other fundamental properties of the material 

such as yield strength, tensile strength, modulus of elasticity (Bentz 1997) and crystal 

structure stability (Gilman 1997) .Thus, they can be used as indicators of the setting process 

and the overall strength or resistance to deformation when compared with baseline 

information. They can also indicate the effect of various setting conditions on the overall 

strength of a material (Blake 1985). 

There are two universal types of microhardness test, Vickers and Knoop. The main difference 

is attributed to the shape of the diamond indenter. The shape of the Vickers diamond indenter 

is a square pyramid whereas the shape of the Knoop diamond indenter is an elongated 

pyramid shape. Gong et al. (2002), when measuring silicon nitride ceramic samples, showed 

that Knoop hardness values were generally lower than the corresponding values for Vickers 
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hardness. However, there is a strong correlation between these two values that may be related 

to elastic recovery occurring at the indentation. Measurement of the Vickers microhardness 

formed the basis of some parts of the present investigation. Danesh et al. (2006) reported that 

the Vickers microhardness of MTA was 39.99. Lee et al. (2004) noted that the microhardness 

of MTA using the Knoop scale was 51.20. The results of the present study indicated that the 

Vickers microhardness of MTA was affected significantly by low pH environments. At pH 

7.4, the surface microhardness of MTA was 53.19 with the Vickers scale. This value 

decreased significantly following exposure to pH 6.4, 5.4 and 4.4. This finding is in 

accordance with Lee et al. (2004) who reported that weaker specimens resulted from 

immersion and storage in a low pH environment.  

It has been reported that on occasion MTA fails to set, requiring replacement at a further 

appointment (Torabinejad & Chivian 1999, Shabahang & Torabinejad 2000). One reason for 

this lack of hydration might be the acidic pH of inflamed tissues in contact with the material, 

including the presence of various acids secreted by bacteria in an infected site (Seltzer & 

Naidorf 1985, Lardner 2001, Costa et al. 2003, Nekoofar et al. 2009). The results of section 

5.1.4.1 (page 130) revealed that the more acidic environment the MTA specimens were 

exposed to the lower were the compressive strength values (Figure 34, page 131). These 

findings are in accordance with the results reported by Lee et al. (2004) and support the 

observation that MTA does not harden as well in a low pH environment. Moreover, in the 

SEM analysis, a greater degree of porosity was seen in samples that were exposed to low pH 

environments, although it was not possible to grade precisely and objectively the degree of 

porosity within the context of the SEM examination. 

Roy et al. (2001) compared the sealing ability of different root-end filling materials whilst 

exposed to acidic pH. In their study, MTA was placed on a matrix of Calcium Phosphate 
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Cement (CPC) that was claimed to release water and thus have the potential to enhance the 

hydration of MTA. They reported that the sealing ability of Super EBA, MTA and MTA with 

CPC matrix was not affected by low pH. 

It has been suggested that the two exceptional properties of MTA, biocompatibility and 

sealing ability, originate from the physicochemical reactions between MTA and dentine 

(Sarkar et al. 2005). Investigation of the push-out force of MTA will reveal the value of 

bonding between them. There are various methods for evaluating the adhesion of a dental 

material to dentine including tensile, shear, and push-out force tests. Loxley et al (2003) 

evaluated the effect of various intra-canal oxidizing agents on the push-out force of MTA, 

Super EBA (Harry J. Bosworth Co., Skokie, IL, USA), and IRM (Dentsply Caulk, Milford, 

DE, USA). MTA was significantly less resistant to displacement than Super EBA or IRM. In 

the present study, the push-out test method was used to test the bond strength between MTA 

and dentine while exposed to solutions of butyric acid with several pH values. 

In the presence of tissue fluid, hydration of MTA powder results in the development of 

hydroxyapatite crystals and formation of a hybrid layer between dentine and MTA (Sarkar et 

al. 2005). This reaction can be simulated by mixing MTA powder with disodium hydrogen 

phosphate, a phosphate-containing solution (Lotfi et al. 2009). The composition and 

morphology of the hydroxyapatite crystals is related to various factors, including the 

environmental pH (Qu & Wei 2008). The ideal pH for this reaction is 7.00 (Sarkar et al. 

2005). The ensuing hydroxyapatite crystals cover the MTA, fill the microscopic gap between 

MTA and dentine, and create a chemical bondi; subsequently, because of the precipitation of 

calcium phosphate, the environmental pH rises to 11.00 (Sarkar et al. 2005). Torabinejad et 

al. (1995b) reported the pH value of MTA itself to be between 10.5 and 12.9. On hydration, 

MTA can release calcium hydroxide (Fridland & Rosado 2003). The formation of calcium 
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hydroxide and the precipitation of calcium phosphate can explain the ability of MTA to 

maintain the pH of the surrounding environment at a high level (Fridland & Rosado 2003, 

Fridland & Rosado 2005). It may also explain some of its biological properties such as the 

ability to increase osteoblast activity and the induction of hard-tissue formation (Camilleri 

2008b). 

In some clinical situations, MTA might be exposed to an inflamed environment with a low 

pH (Nekoofar et al. 2009). The application of MTA in a low pH situation may influence its 

physical and chemical properties (Lee et al. 2004). The results of the present study (section 

5.1.4.3, page 130, section 5.1.4.3, page 132 5.1.4.1and section 5.1.4.5, page 134 ) revealed 

that the lowest and greatest compressive strength (MPa), surface hardness (VH), and push-out 

force (MPa) values of MTA were found after exposure to pH levels of 4.4 and 7.4, 

respectively. Scanning electron microscopy evidence also suggests the development of a 

porous surface and lack of needle-like crystals when the material is in contact with more 

acidic solutions. Furthermore, Saghiri et al. (2008) reported that the time needed for leakage 

to occur was significantly shorter in samples stored at lower pH values. Watts et al (2007) 

reported that the compressive strength of both tooth coloured and grey MTA decreased 

significantly when mixed with local anaesthetic solution and exposed to an environment of 

pH of 5.0. However, there was no significant difference in compressive strength of both tooth 

coloured and grey MTA when mixed with water and exposed to a pH of 5.0 or 7.4. They 

suggested the use of sterile water as the mixing liquid rather than local anaesthetic solution.  

In addition, various types of acid may have different effects on the physical and chemical 

properties of MTA. The type of acid was not stated by Lee et al (2004) and Watts et al 

(2007), and this lack of information may be one of the reasons for the different findings. The 

results (5.1.4.5, page 134) showed that the mean push-out force of MTA to intra-radicular 
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dentine decreased significantly after exposure to pH levels of 4.4 and 5.4 compared with pH 

levels of 6.4 and 7.4. These results could be caused by alterations in the physical and 

chemical properties of MTA in such a low pH environment. Moreover, the formation of 

hydroxyapatite crystals and subsequently the formation of a hybrid layer at the MTA-dentine 

interfacial gap are likely to be disrupted in an acidic environment. In the present study, the 

bond failures observed in all experimental groups were predominantly at the MTA-dentine 

gap (adhesive type). This result is in accordance with Vanderweele et al. (2006) who reported 

that MTA-dentine bond failures were usually adhesive. The adhesive mode of failure may 

have occurred as a result of the short storage time before evaluation of the push-out force, 

which was 4 days in the present study and 7 days in the study by Vanderweele et al. (2006). 

Hachmeister et al. (2002) suggested that the formation of chemical bonding leads to 

enhanced attachment of dentine to MTA over time. Sarkar et al. (2005) showed that teeth 

filled with MTA and stored in synthetic tissue fluid for 2 months produced an adherent 

interfacial layer at the dentine wall that resembled hydroxyapatite in composition. They also 

reported that in the presence of humidity the tensile strength of the bond between dentine and 

MTA substantially increased at 3 days with a further moderate increase at 21 days (Sarkar et 

al. 2005). Further long-term studies are suggested to evaluate the effect of aging on the 

MTA-dentine bond strength. 

Hachmeister et al. (2002) evaluated the retention characteristics of MTA when placed as an 

apical barrier with and without prior use of non-setting calcium hydroxide. They revealed that 

by increasing the thickness of the MTA plug and thus increasing the contact area between 

MTA and dentine, resistance to dislodgement regardless of the use of calcium hydroxide 

increased significantly. Therefore, according to the findings of the present study and 

Hachmeister et al. (2002) when exposure to an acidic environment is unavoidable, an 
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application of a thicker layer of MTA may be beneficial. In addition, before the placement of 

MTA in an infected and/or inflamed low pH environment, the application of non-setting 

calcium hydroxide to neutralize the pH is suggested. Under the conditions of this study, the 

force needed for the displacement of MTA from root dentine to occur was significantly lower 

in samples stored at lower pH values. 

In the present study, the effects of an acid-etch procedure on the surface microhardness, 

compressive strength, push-out force and surface morphology of tooth coloured ProRoot?  

MTA (Dentsply Tulsa Dental) was investigated. The result of section 5.1.4.3 (page 132), 

section 5.1.4.1 (page 130) 5.1.4.7 (page 136) showed that exposure of MTA to a low pH 

environment may influence its physical properties. Because of the prolonged hydration and 

setting process of MTA and lack of knowledge about the effect of restoration procedures 

during this time, the effect of phosphoric acid on MTA was investigated 4, 24 and 96 h after 

mixing. There is anecdotal evidence that some operators tend to place the final coronal 

restoration in the same appointment as the MTA. However, the effect of various restoration 

procedures on the chemical and mechanical characteristics of MTA and the appropriate time 

of restoration after mixing of MTA are important issues that have not been evaluated 

adequately. Yan et al. (2006) evaluated the bond strength of MTA to dentine in different 

environments and demonstrated that there was no statistically significant difference between 

the strength of the bond even when the dentine had been exposed previously to sodium 

hypochlorite and chlorhexidine. Tunc et al. (2008) evaluated the adhesive properties of MTA 

and restorative materials by investigating the shear bond strength of two resin composites 

used with two different bonding systems to tooth coloured ProRoot?  MTA (Dentsply Tulsa 

Dental). They recommended that composite resins used with a total-etch, one bottle adhesive 

system was an appropriate final restoration in contact with MTA.  



153 

 

The results of the section 5.1.4.2 (page 132) demonstrated that acid etch applied 4 h after 

mixing MTA with water, significantly reduced its resultant compressive strength compared 

with the controls. However, after 24 and 96 h, these differences were not significant. 

Therefore, to reduce the potential adverse effects of the acid on the compressive strength of 

MTA, it could be suggested that it is only necessary to postpone the acid-etch procedure and 

the restoration of a tooth for 24 h. This finding is not in accordance with the results of section 

5.1.4.1 (page 130) that showed the adverse effect of butyric acid on the compressive strength 

of MTA. This inconsistency can be explained by the duration of the acid exposure. In section 

5.1.4.1 (page 130) the specimens were exposed to butyric acid for 96 h, however in section 

5.1.4.2 (page 132) the specimens were exposed to phosphoric acid for just 15 s, the normal 

time for an etching purpose. 

On the other hand, the acid-etch procedure reduced significantly the surface microhardness of 

MTA when applied either 4, 24 and/or 96 h after mixing 5.1.4.4, page 133), which is in 

accordance with the findings of section 5.1.4.3 (page 132) that revealed that MTA did not 

harden as well in a low pH environment. In addition, according to the results of section 

5.1.3.2.6 (page 128) the push-out force of MTA increased significantly following increased 

incubation periods in both etched and control groups. However, at 24 h and 96 h the acid etch 

procedure did not affect the push-out force of MTA. Therefore, in clinical applications such 

as repair of furcation perforations, direct pulp capping and/or pulpotomy MTA might 

dislocate under indirect masticatory forces. Thus, postponing the final restoration for a period 

longer than 24 h would appear to be sensible. At 24 and 96 h following mixing, the 

superficial gel-like amorphous structure and needle-like crystals were missing in the etched 

samples when they were observed under SEM. This selective loss of matrix from around the 
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crystalline structures with minimal loss of the cement resulted in a relatively uniform 

satisfactory surface for bonding resin materials. Due to the humidity of the specimens, it was 

not possible to evaluate the specimens after 4 h of mixing. To overcome this limitation, the 

use of an environmental SEM that does not require a vacuum (Bergmans et al. 2005) may be 

advantageous.  

Taken together the results would suggest that delaying tooth restoration for at least 96 h or 

longer is desirable. There was also a trend for increased compressive strength, surface 

microhardness and push-out force over time in both test and control groups; therefore by 

delaying the placement of the final coronal restoration the material can acquire sufficient 

compressive strength and push-out force to withstand acid-etch procedures and/or 

condensation pressures used during the placement of a restoration. Bodanezi et al. (2008) 

evaluated the short- and long-term solubility of MTA-Angelus (Angelus; Londrina, PR, 

Brazil) and suggested that at least 72 h was necessary to achieve the desirable sealability. 

Their conclusion was based on the finding that during the first 72 h after mixing, the degree 

of solubility of the material was high. Vanderweele et al. (2006) recommended that MTA 

should be allowed to set untouched for 72 h or longer to decrease the chance of material 

displacement. Sluyk et al. (1998) also reported that for achieving the desirable sealability, 

MTA should be untouched for 3 days when used to repair root perforations.  

According to the findings of the SEM evaluation, the surface morphology of MTA after acid-

etch procedures created a selective loss of matrix from around the crystalline structures that 

removing substantial amounts of the cement (Figure 49-Figure 53, pages 143-145). This 

differential etching pattern is an essential characteristic for achieving a satisfactory bond to 
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resin restorations and is one of the requirements when selecting a material for the composite 

(Sheth et al. 1989, Fuss et al. 1990). Accordingly, it 

would appear that the combined MTA-composite restoration could provide a reliable 

chemical bond to dentine, as well as have the potential for micromechanical bonding of the 

composite to MTA surfaces (Sarkar et al. 2005, Yan et al. 2006, Tunc et al. 2008). Despite 

the fact that the type and duration of acid exposure was not the same as in this study, the 

Lee et al. (2004) as 

well as the exclusive removal of the needle-like crystals. In addition, in the present study, the 

acid-etch procedures after 24 and 96 h created notable structures such as plate-shaped and 

laminated crystals on the MTA surface (Figure 49-Figure 53, pages 143-145). This finding is 

in accordance with the results of section 5.1.4.7 (page 136) although in that section MTA 

samples were exposed to butyric acid for 4 days and not phosphoric acid. The significance of 

these morphological changes is unclear. Lack of sufficient information about the hydration of 

MTA makes the interpretation of the SEM findings difficult. However, removal of the 

superficial gel-like amorphous structure, lack of needle-like crystals throughout the etched 

samples and exposure of remarkable crystalline structures were common findings in the 

etched samples. Further studies are suggested to determine the significance of these changes 

in terms of bonding to composite resins. 

5.1.6. Conclusion  

The lowest and greatest compressive strength, Vickers surface microhardness, and push-out 

force values of MTA were found after exposure to pH levels of 4.4 and 7.4, respectively. In 

addition, scanning electron microscopy revealed a lack of needle-like crystals when the 

material was in contact with more acidic solutions, which can explain the adverse physical 

properties that result as a consequence of acid exposure. Therefore, when exposure to an 
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acidic environment is unavoidable, an application of a thicker layer of MTA may be 

beneficial. Moreover, before the placement of MTA in an infected and/or inflamed low pH 

environment, the application of non-setting calcium hydroxide to neutralize the acidity is 

suggested. Additionally, since there was a trend for increased compressive strength, surface 

microhardness and push-out force over time in both etched and control groups; it can 

recommended that by delaying the placement of the final coronal restoration the material can 

acquire sufficient compressive strength and push-out force to withstand the acid-etch 

procedure, condensation pressures used during the placement of a restoration and/or indirect 

masticatory forces.  

5.2. Blood contamination  

5.2.1. Introduction  

Blood may contaminate or even be incorporated into MTA during placement and have a 

detrimental effect on its physical properties. An ideal root repair and root-end filling material 

should not be affected by contamination of physiological solutions such as blood and/or 

saliva (Dorn & Gartner 1990, Gartner & Dorn 1992). Torabinejad et al. (1994a) evaluated the 

effect of blood contamination on MTA in an ex-vivo study by comparing the leakage of 

amalgam, Super EBA, IRM and the primary experimental prototype of MTA when applied to 

root-end cavities that were contaminated by blood immediately after root resection. They 

reported that there was no significant difference between dye leakage in contaminated and 

uncontaminated groups and that MTA leaked significantly less than the other materials. In 

another laboratory study, Martell & Chandler (2002) compared electrochemical and dye 

leakage of Super-EBA, IRM and MTA in root-end cavities after immersion for 24 hours in 

defibrinated horse blood. The authors concluded that MTA was associated with less leakage 
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than the other materials. In an animal study the same materials along with a zinc oxide and 

eugenol base material were passively exposed to blood in root-end cavities of mandibular 

premolar teeth in dogs (Bernabe et al. 2005). The materials used in their study, including 

MTA, all had similar effects on the healing process, except for ZOE that resulted in a 

significantly worse outcome.  

To investigate MTA crystal formation in a simulated clinical situation; Tingey et al. (2008) 

analysed the surface characteristics of MTA when set in the presence of bovine serum. They 

demonstrated that bovine serum affected the dynamics of MTA crystal nucleation and lattice 

growth suggesting potential effects on the cellular response to the material. Due to biosafety 

issues and difficulties in obtaining fresh human blood, Tingey et al. (2008) emulated the 

exposure of MTA to human tissue fluid by exposing samples to foetal bovine serum, 

however, bovine serum could be considered to provide a poor alternative to human serum 

and/or whole human blood and it may not entirely replicate clinical conditions in humans.  

In a laboratory bacterial leakage study Montellano et al. (2006) evaluated the effect of blood 

and/or saliva contamination on bacterial penetration of root-end cavities that were filled by 

tooth coloured MTA after root-end resection. Saliva contaminated specimens demonstrated 

significantly more bacterial penetration than the uncontaminated group. However, 

contamination or absence of blood had no significant effect on bacterial penetration of root-

end cavities that were filled with MTA. Conversely, Vanderweele et al. (2006), when 

evaluating the retention characteristics of MTA in simulated furcation perforations, reported 

that in the blood contaminated group MTA had significantly less resistance to displacement 

compared to the uncontaminated group at 7 days. Therefore, they recommended that blood 

should be removed before the placement of MTA. In contrast, Arens & Torabinejad (1996) 

recommended that perforation sites should not be dried before the placement of MTA. In 
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addition, Sluyk et al. (1998) reported that the presence of moisture in a perforation site 

resulted in good adaptation of MTA to the perforation walls. Furthermore, they recommended 

a moistened matrix be positioned in the perforation defect before placement of MTA for ease 

of MTA condensation and to prevent over-extrusion of the material. However, Al-Daafas & 

Al-Nazhan (2007) found the use of an internal matrix beneath MTA, preventing its direct 

contact with the tissues, produced an adverse healing response and reduced connective tissue 

attachment and bone formation in the site of the perforation.  

Porosity is one of the physical properties of MTA that has not been evaluated 

comprehensively. In a laboratory study, using the Archimedes principle, Fridland & Rosado 

(2003) evaluated the effect of various water to powder ratios on the initial porosity of MTA 

and demonstrated that by increasing the water ratio, porosity increased. By using SEM, in 

section 5.1.4.7 (page 136) a correlation between increased porosity and detrimental physical 

properties of MTA at various pHs has been suggested, however, SEM is a subjective method 

for porosity evaluation.  

In general, porosity is defined as the volume fraction of a material that can contain gas and/or 

liquid and it is calculated by dividing the total volume of the pores by the total volume of a 

specimen. During the hydration process, MTA particles absorb water and amorphous calcium 

silicate gel is produced (Camilleri 2008b, Camilleri 2010). By progression of the hydration 

process, calcium hydroxide and calcium silicate crystals precipitate and produce an 

interconnected network of pores and microchannels (Dammaschke et al. 2005, Danesh et al. 

2006). Formation of this network is critical for diffusion of water and development of 

crystalline structures (Kogan et al. 2006). Due to continued deposition of crystal precipitates, 

the initial connectivity of the microchannels decreases and form closed pores that may hold 

trapped water. Therefore, hardened MTA contains a high number of closed pores that are not 
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connected (Fridland & Rosado 2003). Pores in a material can be classified as closed/isolated 

or through/connected (Malcolm et al. 2007). Evaluation of porosity of hydraulic cements  is 

important as it can provide information on the physical properties of the material (Feldman 

1990).  

-

method, gas or liquid perfusion and microcomputed tomography (micro-CT). The values 

calculated by each method are dependent on the methodology and do not yield similar values. 

Information can be obtained by utilizing a particular technique, however, none of them 

individually can provide comprehensive information about the porosity of a material and each 

has their own limitations. Micro-CT is a useful tool to distinguish between closed and 

connected pores of hydraulic cements compared to perfusion techniques in which closed 

pores could be compressed and broken (Ghasemi Mobarakeh et al. 2007, Malcolm et al. 

2007). Micro-CT is a non intrusive methodology and therefore, the topography and 

connectivity of the pores and microchannel network can be evaluated without destruction of 

specimens. Zakizadeh et al. (2008) compared porosity of MTA, Fuji-Plus and Geristore using 

micro-CT and concluded that MTA was less porous than other materials, although no 

quantification analysis was employed. By quantification of MTA porosity it should be 

possible to evaluate the effect of blood contamination on MTA, a factor that has not been 

reported previously.  

The aims of the studies within this section of the thesis were to evaluate the effect of whole 

fresh human (WFH) blood contamination on the certain physical and chemical properties of 

tooth coloured ProRoot?  MTA (Dentsply Tulsa Dental): including compressive strength, 

surface microhardness, push-out force, porosity using computed microtomography and 

quantification analysis, surface microstructure, phase composition and elemental analysis. 
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WFH blood was used to contaminate MTA samples, rather than the various human blood 

substitutes that have been used in similar studies. In addition, the materials were also mixed 

solely with whole blood, in place of water, to determine if incorporation of this potential 

contaminant would affect their properties. 

5.2.2. Materials & Methods  

5.2.2.1.Materials  

Fresh whole blood was collected from a healthy consented volunteer by a trained individual 

(Figure 54, page 160) in accordance with Helsinki ethical principles for medical research 

involving human subjects (2001) and approved by a panel from the School of Dentistry, 

Cardiff University Ethical Committee and the ethical board of the local research review 

committee in the Faculty of Dentistry, Tehran University of Medical Sciences, Iran. The 

material investigated was the tooth coloured formula of ProRoot?  MTA (Dentsply Tulsa 

Dental) with LOT number of 083006. 

 

 

Figure 54: Fresh whole blood was collected from a healthy consented volunteer by a trained individual in 

accordance with Helsinki ethical principles for medical research involving human subjects (2001).  

5.2.2.2.Methods 

5.2.2.2.1. Compressive strength 
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Eighty custom-made polytetrafluoroethylene (PTFE) cylindrical moulds (internal dimensions 

��P P � height DQG�?�P P � GLDP HWHU�ZHUH�UDQGRP O\ � DOORFDWHG�WR�IRXU�JURXSV�SULRU�WR�

filling with MTA slurries.  

The groups consisted of:  

Group 1: MTA mixed with distilled water and exposed to distilled water (control group);  

Group 2: MTA mixed with distilled water and exposed to WFH blood; 

Group 3: MTA mixed with WFH blood diluted with distilled water (50% v/v) and exposed to 

WFH blood; 

Group 4: MTA mixed entirely with WFH blood and exposed to WFH blood.  

Mixing of MTA was standardised by encapsulated mixing 1 g of MTA powder with 0.33 g of 

the appropriate liquid in the plastic mixing capsule as described in section 4.3.2.1 (page 69). 

The PTFE cylindrical moulds were then filled with the resultant MTA slurry using a spatula 

with minimal pressure and then subjected to ultrasonic energy as described in section 4.3.2.1 

(page 69). In the test groups (2, 3 and 4), before placement of the MTA slurry, inside each 

mould was filled by WFH blood that was aspirated following 20 s. As a result, the inner walls 

of moulds were coated with WFH blood prior to placement of the MTA slurry (Figure 55, 

page 162).  Each specimen was then placed in a 1.5 mL Eppendorf tube, which contained the 

appropriate liquid medium used to expose the lower surface of MTA specimen. A moist 

cotton pellet was then placed above the specimen before sealing the Eppendorf tube to 

provide a fully saturated humid environment prior to being incubated at 37oC for a short (4 

days) and long (30 days) period of time.  

After 4 and 30 days of incubation, ten specimens of each four groups were randomly selected 

and subjected to the compressive strength test, using a universal testing machine (Lloyd LR 

MK1, UK), as described in section 4.3.2.1 (page 69). 
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Figure 55: In the test groups, before placement of the MTA slurry, the inner walls of moulds were coated 

with WFH blood.  

The mean compressive strength values, confidence intervals and standard deviations were 

calculated for each group and, as the data was normally distributed, analysed using two-way 

ANOVA for overall comparisons and Tukey's post hoc test for individual comparisons. All 

analyses were performed using the statistical package of social science version 16 (SPSS 

Inc.). 

5.2.2.2.2. Surface microhardness 

Thirty custom-made borosilicate glass cylindrical moulds (internal dimensions 12 ? �P P �

height and 6 ? �P P � GLDP HWHU�Z HUH�UDQGRP O\ � DOORFDWHG�WR� three groups, prior to filling 

with MTA slurry.  

The groups consisted of:  

Group 1: MTA mixed with distilled water and exposed to distilled water (control group);  

Group 2: MTA mixed with distilled water and exposed to WFH blood; 

Group 3: MTA mixed entirely with WFH blood and exposed to WFH blood.  
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Mixing of MTA was standardized by encapsulated mixing 1 g of MTA powder with 0.33 g of 

appropriate liquid in the plastic mixing capsule as described previously (section 4.3.2.2, page 

71). The borosilicate cylindrical moulds were then filled with the resultant MTA slurry using 

a spatula with minimal pressure and then subjected to ultrasonic energy as described 

previously (section 4.3.2.2, page 71). In the test groups (2 and 3), before placement of the 

MTA slurry, the inner walls of moulds were coated with WFH blood. Each specimen was 

then placed in a 1.5 mL Eppendorf tube, which contained the appropriate liquid medium used 

to expose the lower surface of MTA specimen. A moist cotton pellet was then placed above      

Eighty standard root dentine slices with 1.00 mm thickness and 1.3 mm internal diameter 

were prepared using the methodology described in section 5.1.3.2.5 (page 126). The 

specimens were then allocated randomly into four groups as described in section 5.2.2.2.1 

(page 160) to be filled with the corresponding MTA slurry.  

The groups consisted of:  

Group 1: MTA mixed with distilled water and exposed to distilled water (control group);  

Group 2:  MTA mixed with distilled water and exposed to WFH blood; 

Group 3: MTA mixed with WFH blood diluted with distilled water (50% v/v) and exposed to 

WFH blood; 

Group 4: MTA mixed entirely with WFH blood and exposed to WFH blood.  

Mixing of MTA was standardised by encapsulated mixing 1 g of MTA powder with 0.33 g of 

corresponding liquid in the plastic mixing capsule as described in section 4.4.2 (page 79). 

The MTA slurries were then introduced incrementally with no pressure into the lumens of the 

root-dentine slices. Placement of MTA slurries were standardised by the application of the 

ultrasonic energy using a BUC-1 Spartan tip (Obtura Spartan) attached to a 6XSUDVVRQ? � 3
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Booster (Satelec) as described in section 4.4.2 (page 79). Following 4 and 30 days of 

incubation DW�?&  in a fully saturated humid atmosphere; 10 specimens of each group were 

randomly selected and subjected to the push-out force test using a universal testing machine

as described in section 5.1.3.2.5 (page 126). 

The push-out forces were measured using a universal testing machine (Z050; Zwick/Roell 

Group, Ulm, Germany) and recorded in mega Pascal (MPa). The data were then subjected to 

one way ANOVA analysis using the Statistical Package of Social Science version 16 (SPSS 

Inc.) to examine the difference between the mean push-out force values of each experimental 

group followed by the Tamhane post hoc test. The nature of the bond failure of each 

specimen was also examined under a light microscope at X40 magnification and the failure 

mode recorded accordingly.  

 

 

5.2.2.2.3. Porosity 

Thirty two samples were prepared and allocated into four groups by the methodology 

described in section 5.2.2.2.1 (page 160).  

After 4 and 30 days, four specimens of each four groups were randomly selected and scanned 

using a desktop x-ray microtomograph (SkyScan 1072, SkyScan, Aartselaar, Belgium). The 

side of the specimen that was closest to the wet cotton pellet was fixed on a specimen holder 

Gillingham, UK) and loaded centrally on 

the sampling plate within the machine. Specimens were scanned using the rotation range of 

��H[ SRVXUH�WLP H�RI  V�DW�. Y�? $ � DQG times magnification. The beam-

hardening artefact was reduced by using a 1-mm aluminium filter. Median filtration, 

geometrical correction, and flat field correction were applied during acquisition to minimize 
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noise. An average frame of 1 was chosen as a space for the acquisition of the serial cross-

sections DQG�D�?�URWDWLRQ�VWHS To reduce amplify noise the gain was adjusted to 1. A 

typical cycle of data collection for reconstruction contained image acquisition from 200 to 

280 views. After the acquisition of the projection images the reconstruction was performed 

using NRecon volumetric reconstruction software (Version 1.5.1.4, SkyScan). The 

reconstructed cross-sections had a 1024 x 1024 pixels format, 16-bits and the image pixel 

size of the specimen was 12.� � �  

The 3D data sets obtained were then analyzed using CT-Analyzer image analysis software 

(Version 1.10.1.0, SkyScan). The region of interest (ROI) was defined as a circle surrounding 

the specimen and the images were interpolated. The ROI was vertically limited by the radius 

and the cross-sections with a volume outside of this range were excluded. In addition, 

also 

excluded. After selection of the ROI, the half tone images were transformed to binary images 

with two-brightness gradations only: black and white (Figure 56, page 165).   

 

Figure 56: A half tone image (left) of a section of one of the specimens of group 1. The transformed binary 

image (right) of the same section.   
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A pixel intensity histogram was then created from the binary images (Figure 57, page 166) 

representing the intensity value that optimally distinguished pores from the solid phase.  

 

Figure 57: A pixel intensity histogram. The selected area in white  represents the solid phase. The values 

between 0-44 represent pores.  

In this situation, each 3D pixel (voxel) acquires a value between 0 and 255 corresponding to 

pores and solid material, respectively (Figure 57, page 166). For quantitative analysis the 

threshold was set at the minimum between two peaks of the histogram using the auto-

threshold option of the software (Figure 57, page 166). Smoothing, despeckle, and ROI 

shrink-wrap, were then performed and the 3D total porosity percentage was measured. 

5.2.2.2.4. SEM/EDX 

Sixteen additional specimens were prepared and allocated to four groups using the same 

methodology described in section 5.2.2.2.1 (page 160) and incubated at 37oC in fully 

saturated humidity for 4 days.  

For the morphological evaluations and to analyse the microstructure of the inner surfaces, 

two specimens of each group were selected randomly and sectioned in two using a disposable 

surgical scalpel blade No. 15. The surfaces were sputter-coated with gold using a Polaron 

Sputter Coater (Quorum Technologies) and specimens were visualised with an EBT1 

(Electron Beam Technology) Scanning Electron Microscope (S.E.M. Tech). The micrograph 

images from the SEM analysis showing the qualitative internal microstructure of the 

specimens of each group were evaluated in terms of the presence of various types of crystal 
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formations. The locations of the images were selected at random from the internal surface of 

the broken specimen and are considered to be representative of the material. 

In addition, the surface characteristics of two additional specimens of each group were 

examined and subjected to elemental analysis. The two randomly selected specimen of each 

group were also sectioned using a disposable surgical scalpel blade No. 15 and mounted on 

aluminium stubs using adhesive carbon discs and analysed uncoated using a scanning 

electron microscope (SEM, Carl Zeiss EVO 40, Oberkochen, Germany) fitted with an energy 

dispersive X-ray detector (EDX, Oxford Instruments, Oxford, UK). The locations of the 

images were selected at random from the internal surface of the broken specimen and are 

considered to be representative of the material. 

 

5.2.2.2.5. Phase composition (XRD) 

MTA slurries were prepared according to the following three groups.  

Group 1: MTA mixed solely with distilled water  

Group 2: MTA mixed with WFH blood diluted with distilled water (50% v/v)  

Group 3: MTA mixed solely with WFH blood 

Mixing of MTA was standardized by encapsulated mixing 1 g of MTA powder with 0.33 g of 

appropriate liquid in the plastic mixing capsule as described in section 4.3.2 (page 69). The 

resulting MTA slurries were placed with minimal pressure in the circular depression of an 

XRD sample holder (Panalytical, Almelo, the Netherlands). To standardise the placement 

technique MTA slurries were then subjected to ultrasonic energy as described in section 4.3.2 

(page 69). The ultrasonic tip was moved throughout the MTA slurry without touching either 

the wall or floor of the sample holder. Specimens were then incubated at 37oC in fully 

saturated humidity for 4 days. Phase compositions of MTA specimens from each group were 
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determined using an x-

Netherlands). The specimen surfaces were polished with 1200-grit fine-grain sandpaper (3M, 

St Paul, MN, USA) to ensure the surface of the sample was level with the holder surface. X-

ray diffraction patterns were then recorded using Ni filtered CuK  radiation (40Kv and 

40mA). Scans were undertaken in the range 10-80o 2 . All patterns were matched using the 

ICDD database (International Centre for Diffraction Data, Pennsylvania, USA). For 

comparison a specimen of unhydrated MTA powder was also subjected to X-ray diffraction 

analysis as group 4.   

5.2.3. Results  

5.2.3.1.Compressive strength 

A summary of the results of the compressive strength tests are shown in Figure 58 & Figure 

59 (pages 169 & 170).  

After 4 days: A trend was observed between the degree of blood contamination and 

compressive strength of MTA (Figure 59, page 170). The more that blood was incorporated 

into the MTA slurries, the lower the mean compressive strength values were recorded. There 

was a statistically significant difference between the mean compressive strength of all groups 

(p<0.00001). The lowest mean compressive strength value was recorded for MTA specimens 

RI�JURXS�ZKLFK�ZHUH�HQWLUHO\ � P L[ HG�ZLWK�DQG�H[ SRVHG�WR�: ) + � EORRG�?�0 3D

while the highest mean compressive strength value was recorded for the control specimens of 

group 1 which were only mixed and exposed to distilled wateU�?�0 3D   

After 30 days: A trend between the degree of blood contamination and reduction in mean 

compressive strength of MTA specimens was seen for all groups except for those of group 3 

(Figure 58, page 169). There was a statistically significant difference between the mean 

compressive strength values of specimens mixed only with distilled water (groups 1 and 2) 



169 

 

and those mixed with either diluted (group 3) or WFH blood (group 4) (p<0.00001). The 

lowest mean compressive strength value was recorded for MTA specimens of group 4 which 

were entirely mixed with and e[ SRVHG�WR�: ) + � EORRG�?�0 3D�ZKLOH�WKH�KLJKHVW�

mean compressive strength value was recorded IRU�WKH�VSHFLP HQV�RI�JURXS�? �

20.016 MPa). There was no significant difference between specimens of groups 1 and 2 (both 

mixed with water) and between specimens of groups 3 and 4 (mixed with diluted or WFH 

blood, respectively), irrespective of their exposure fluids. In general, except for group 3, the 

longer incubation time resulted in a greater compressive strength. There was a statistically 

significant difference between the mean compressive strength values of groups 1, 2 and 4 

over the two experimental incubation time periods (p<0.00001). 

 

 
 

Figure 58: Error bar graph representing the mean compressive strength (MPa) values ? 95 % confidence 
interval of various tooth coloured ProRoot?  MTA groups: 

W/W= group 1: Mixed with water and exposed to water 
W/B= group 2:  Mixed with water and exposed to blood; 

50W50B/B= group 3: Mixed with diluted blood and exposed to blood; 
B/B= group 4: Mixed entirely with blood and exposed to blood. 
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Figure 59: Compressive strength (MPa) of various tooth coloured ProRoot?  MTA groups obtained after 4 
and 30 days incubation period. For the description of each group see the legend of Figure 58.  

5.2.3.2. Surface microhardness 

The results are summarised in Figure 60 (page 171).  

After 4 days: The mean Vickers surface microhardness value of the specimens of  control 

JURXS�Z DV�? This was significantly greater than the mean surface microhardness 

value of the specimens of other experimental groups (p< 0.00001). No significant difference 

was observed between mean surface microhardness value of group 2 and 3 in which MTA 

slurries were exposed to WFH blood following mixing of MTA powder with water or blood 

respectively (p < 0.00001).   

After 6 months: The microhardness values of the samples after 6 months had a similar pattern 

to those values obtained after four days. The control group, in which tooth coloured MTA 

powder was mixed with water and exposed to water, had significantly greater microhardness 

values than the experimental groups (p < 0.00001).  

In general there was no significant difference between the microhardness values after 4 days 

and 6 months within the experimental groups. In accordance with the results obtained after 4 
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days, significant difference was observed between the mean surface microhardness values of 

the specimens of the control group in which MTA powder mixed and exposed to water and 

specimens of group 2 and 3 in which MTA slurries were exposed to WFH blood following 

mixing of MTA powder with water or blood respectively (p < 0.00001). 

 

Figure 60: Error bar graph representing the mean Vickers surface hardness (VH) values  ? 95 % 
confidence interval of various tooth coloured ProRoot?  MTA groups: 

 W/W= group 1: Mixed with water and exposed to water 
W/B= group 2: Mixed with water and exposed to blood; 

B/B= group 3: Mixed entirely with blood and exposed to blood. 
The numbers in bracket correspond the incubation period (days).  

 

5.2.3.3.Push-out force  

The results are summarised in Figure 61 (page 172).  

After 4 days: There was a significant difference between the mean push-out force values of 

the control group and the experimental groups (p<0.00001). The greatest mean push-out force 

��ZDV�VHHQ�LQ�VSHFLP HQV�RI�WKH�FRQWURO�JURXS�JURXS�LQ�ZKLFK�0 7$ � SRZGHU�ZDV�
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mixed with water and exposed to water. No difference was observed between the other 

experimental groups.  

After 30 days: Compared to groups 3 & 4, the significantly greatest mean push-out force 

YDOXH�ZDV�REVHUYHG�LQ�JURXS�?�DQG�JURXS�?�UHVSHFWLYHO\ � S�+ RZHYHU�QR�

significant difference was observed between group 1 and 2 or between groups 3 and 4. 

In general, the mean push-out force values of the specimens of group 1 & 2 significantly 

increased over time (p<0.00001). However, specimens in groups 3 and 4 did not gain more 

push-out force after 30 days of incubation. No difference was observed in the mean push-out 

force values of the specimens of groups 3 and 4. 

 

Figure 61: Error bar graph representing the mean push-out force (MPa) ? 95 % confidence interval of 
various tooth coloured ProRoot?  MTA groups: 

Group 1 (W/W): Mixed with water and exposed to water 
Group 2 (W/B): Mixed with water and exposed to blood; 

Group 3 (WB/B): Mixed with diluted blood and exposed to blood; 
Group 4 (B/B): Mixed entirely with blood and exposed to blood. 

The numbers in bracket correspond the incubation period (days).  

5.2.3.4. Porosity 

The results are summarised in Figure 62 (page 173).  

Effect of blood after 4 days: Significantly higher percentages of total porosity were observed 

LQ�JURXSV�?�DQG�?�FRP SDUHG�WR�JURXSV 2.894� 0.713) 
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and 2 (3.� �S�1 R�VLJQLILFDQW�GLIIHUHQFHV�ZHUH�REVHUYHG�EHWZHHQ�WKH�

percentages of total porosity of groups 1 and 2 nor between groups 3 and 4.  

After 30 days: Significantly higher percentages of total porosity were observed in groups 3 

� ����?�S�+ RZHYHU�QR�GLIIHUHQFH�ZDV�REVHUYHG�

between the percentages of total porosity between the specimens of groups 3 and 4. 

6LJQLILFDQWO\ � ORZHU�SHUFHQWDJHV�RI�WRWDO�SRURVLW\ � ?�ZHUH�REVHUYHG�LQ�WKH�

specimens of group 1 in which MTA powder was mixed with water and exposed to water 

(p<0.0001). 

Effect of time: A significant reduction was seen in the specimens of group one (p<0.00001) 

when comparing the percentage of total porosity at 4 and 30 days. However, in the other 

experimental groups this reduction did not occur and no difference was observed between the 

percentages of total porosity after 4 days and 30 days respectively. In the group 2 the 

SHUFHQWDJH�WRWDO�SRURVLW\ � DIWHU�GD\ V�?�ZDV�ORZHU�WKDQ�DIWHU  4 days 

� �DOWKRXJK�WKH�GLIIHUHQFH�ZDV�QRW�VLJQLILFDQW  

 

Figure 62: Error bar graph representing the percentages of total porosity ? 95 % confidence interval of 
the various tooth coloured ProRoot?  MTA groups: 

Group 1 (W/W): Mixed with water and exposed to water; 
Group 2 (W/B): Mixed with water and exposed to blood; 

Group 3 (WB/B): Mixed with diluted blood and exposed to blood; 
Group 4 (B/B): Mixed entirely with blood and exposed to blood. 

The numbers in bracket correspond the incubation period (days).  
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5.2.3.5.SEM & EDX 

In the control groups, samples revealed notable crystalline characteristics when compared to 

experimental groups, including a wide variety of distinctive crystalline formations around 

cross-sections of micro-channels (Figure 63, page 175). Such formations included plate-like 

crystals with well-defined edges, which were embedded in a porous and rough crystalline 

matrix. In addition, angular and laminar crystals were present along with two main forms of 

acicular crystals that are characteristic of hydrated calcium sulphoaluminate (ettringite) 

(Gemelli et al. 2004). These characteristic formations include jagged or spiky ball-like 

clusters and bundles of longer spanning structures that interlinked with other crystals (Figure 

63 & Figure 65, pages 175 & 177). All experimental blood contaminated groups had more 

globular formations rather than the angular crystals seen in the control groups. The surfaces 

of all experimental samples had a noticeably different appearance than control specimens 

(Figure 64, page 176). In the experimental groups there was a clear lack of angular crystal 

formations and an absence of both the jagged clusters and longer forms of the interlinking 

acicular ettringite crystals (Figure 64, page 176). However, in samples mixed with water and 

exposed to blood it was possible to see a more angular matrix than the other experimental 

groups. SEM & EDX analysis of group 1 (control group) revealed a homogeneous 

amorphous layer containing small microchannels (1- -

Figure 65, page 

177). At higher magnification, clusters of fine acicular (needle-like) crystals were seen. EDX 

analysis revealed higher sulphur and aluminium concentration in acicular clusters relative to 

the background matrix, which demonstrated a higher level of calcium, oxygen, silicon and 

magnesium in addition to trace quantities of iron. 
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Figure 63: Scanning electron microscope image of a control sample of MTA mixed with and exposed to 
distilled water. Large laminated plate-like crystals with well-defined edges (A) were embedded in a rough 
crystalline matrix containing micro-channels (B). Acicular crystals were seen in clusters of spiky ball 
formations (C) as well as longer spanning forms (D) radiating from the rough matrix. Three levels of 
magnification are shown with the highest at the bottom. 
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Figure 64: Scanning electron microscope images demonstrating MTA surfaces from experimental groups. 
Absence of both of acicular crystal formations, jagged clusters and long spanning shapes were observed 
in all experimental groups (i, ii & iii). A globular matrix (E) with less angular crystal formations (F) was 
seen in experimental groups (ii & iii). Large crystals with rounded edges embedded in globular matrix 
(F). The large number of depressions from air bubbles present throughout the bulk (G).  

Group 1 (i) MTA mixed with water and exposed to WFH blood; 
Group 2 (ii) MTA mixed with WFH blood diluted with distilled water (50% v/v) and exposed to blood; 

 Group 3 (iii) MTA mixed with WFH blood and exposed to WFH blood. 

G 
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Figure 65: Scanning electron microscopy image of uncontaminated hydrated tooth coloured 
ProRoot? MTA (a) showing small microchannels (i) amongst distinct structures shown to have high levels 
of bismuth oxide by energy-dispersive X-ray (EDX) analysis (ii). Higher magnification SEM of 
uncontaminated hydrated WMTA (b) demonstrating the presence of acicular crystals (iii) on an 
amorphous background matrix (iv). EDX analysis showed the acicular crystals (iii) to have a higher level 
of sulphur and aluminium than the background matrix (iv), characteristic of ettringite (hexacalcium 
aluminate trisulphate hydrate).  

5.2.3.6.Phase composition (XRD) 

The results are illustrated in the Figure 66 (page 178). 

-Bi2O3, ICDD 00-027-0053) 

indicated by the main peaks at 27.38, 33.07 and 33.23o  and tricalcium silicate (Ca3SiO5, 

ICDD 00-055-0738) indicated by the peaks at 32.13, 32.56 and 34.30o 

tricalcium silicate and bismuth oxide were lower in groups 1 and 2 than in groups 3 and 4. 

Groups 1 and 2 showed reflections at 18.10, 28.69 and 34.10o 
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hydroxide (Ca(OH)2, ICDD 00-044-1481). The calcium hydroxide phase is absent in group 3 

and in the unhydrated MTA powder.  

 

Figure 66: X-ray diffraction patterns showing the main compound present: unhydrated MTA powder (a), 

group 3 (b), group 2 (c), group 4 (a) -Bi2O3

Ca3SiO5 2. The calcium hydroxide phase is absent in group 3 (b) and the unhydrated 

MTA powder (a).  

5.2.4. Discussion 

In the course of use, MTA is frequently in close contact with blood and this fluid may even 

mix with the body of the cement due to the specific clinical conditions. Therefore, it is 

imperative to investigate the setting reaction of the material in an environment where blood is 

present and explore any potential changes to the crystalline microstructure and surface 

microhardness because of this contamination. 

In section 5.2.2.2.1 (page 160), the compressive strength of MTA was used as a measure of 

the hydration process.  According to ISO 9917-1 (2003) standards, the use of a split-mould 

design, made of stainless steel or a material that will not be affected by the cement has been 
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advised. There have been a variety of methods used to form cylindrical MTA specimens for 

compression testing. In the present study, PTFE plastic cylindrical moulds were used to form 

6x4 mm diameter MTA samples. In other investigations of MTA compressive strength, one-

piece plastic cylindrical moulds (Kogan et al. 2006) or plastic split moulds (Holt et al. 2007) 

have been used. Due to the expansion of MTA during its hydration Holt et al. (2007) reported 

difficulties during the removal of specimens from moulds without exerting excessive force on 

the material prior to testing. Holt et al. (2007) used a two-part split-mould design to create 

MTA samples for compression testing and reported that samples required moderate force to 

allow removal, which resulted in fracture failure of some samples prior to testing. In the 

present work two types of moulds have been used including one-piece polycarbonate 

cylindrical moulds (section 4.3.2.1, page 69) and stainless-steel split-moulds (Torabinejad et 

al. 1995b). In addition, in a pilot study prior to the present study, single-piece borosilicate 

glass moulds were used to form MTA samples, which required a high push-out force to 

remove them for testing and resulted in multiple sample fractures. Therefore, in section 

5.2.2.2.1 (page 160) a new method of MTA sample formation was developed that involved 

careful removal of two opposing sections of the cylindrical mould walls to reduce retention of 

the MTA samples. This novel method minimised the forces on MTA samples prior to 

compression testing that may otherwise have introduced confounding variables. 

In the majority of endodontic applications, MTA slurry comes into contact with blood and in 

the extreme may become mixed with blood during placement. The results of the present study 

revealed that both these events adversely alter the compressive strength and surface 

microhardness of MTA. Moreover, it decreased the push-out force of MTA that could result 

in dislocation of MTA prior to its hardening. Furthermore, the porosity of MTA was high 

when contaminated with blood and did not reduce after 30 days to reflect its incomplete 
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hydration. XRD analysis confirmed this hypothesis since calcium hydroxide one of the main 

by-products of the hydration process did not form in contaminated groups. In addition, in the 

blood contaminated groups the absence of acicular crystals, characteristic of hydrated 

calcium sulphoaluminate (ettringite) (Gemelli et al. 2004, Stutzman 2004), which have a 

potential role in forming inter-crystal bonds (Ismail et al. 2002) was demonstrated by SEM 

(section 5.2.3.5, page 174). Accordingly, it can be suggested that blood contamination is a 

likely cause for encountering unset MTA at a subsequent evaluation appointment.  

 

unhardened MTA is encountered at the second appointment the MTA material should be 

 

However, in surgical applications MTA cannot be examined for setting, which could 

potentially result in unfavourable clinical outcomes. For better understanding of the clinical 

behaviour of the material, particularly when it cannot be examined at a later appointment, 

investigations into the effect of blood contamination on the physical properties of MTA are 

required.  

In this studies, in an attempt to replicate the clinical situation in which blood becomes 

incorporated into MTA, the effects of WFH blood contamination on certain physical 

properties of tooth coloured Pro Root MTA were investigated. WFH blood was chosen to 

contaminate MTA rather than substitutes such as defibrinated horse blood (Martell & 

Chandler 2002), simulated human plasma fluid (Coleman et al. 2007), phosphate buffered 

saline (PBS) (Bozeman et al. 2006, Gandolfi et al. 2009) or foetal bovine serum (FBS) 

(Tingey et al. 2008). The advantage of using fresh, human blood is that it more closely 

replicates the human clinical situation. However, experiments involving WFH blood present 
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difficulties such as ethical considerations, biohazard issues and obtaining sufficient volumes 

of blood over a prolonged period of time without the addition of anticoagulant agents.  

A pilot experiment was initially carried out to confirm the feasibility of the chosen method 

before commencing the study on the relatively large scale planned. For this pilot 

investigation, human blood was sourced from the National Blood Transfusion Service, a 

choice made on the basis of low cross-infection risk and ease of availability. This initial 

experiment was unsuccessful as the mixing of MTA powder with the supplied blood resulted 

in slurries that did not set to the usual consistency and the surface was too soft to be 

investigated. It was also possible to penetrate the entire depth of the samples with a dental 

probe. Therefore, in this situation performing compressive strength, surface microhardness 

and other physical tests were considered unpractical. This unexpected outcome was 

investigated by conducting the same experiment successfully with fresh blood with the 

method described for the main research experiments.  It was, therefore, deduced that the 

incomplete hydration of MTA resulted from the addition of a citrate anticoagulant by the 

Blood Transfusion Service to the blood sample that was centrifuged to obtain the serum used. 

This addition is a standard practice by the Blood Transfusion Service (James 2005). This 

speculation is in accordance with the results of section 5.1.4 (page 130) that demonstrated the 

detrimental effects of low pH on the physical properties of MTA.  

In the experimental groups of the present study, to exaggerate blood contamination of MTA, 

as occurs in some clinical applications, tooth coloured MTA powders were first mixed with, 

then exposed to WFH blood. In another experimental group, MTA powder was mixed with 

WFH blood diluted with distilled water (50% v/v) and then exposed to WFH blood. The latter 

situation most probably might happen while MTA is used for the repair of perforation, 

apexification and/or as a root-end filling following apical root resection. In the other 
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experimental groups the powder of tooth coloured ProRoot?  MTA was mixed with distilled 

water and exposed to WFH blood to most closely simulate the clinical conditions where just 

the surface is exposed to blood, such as in direct pulp capping and/or pulpotomy. In the 

control groups MTA powder was mixed with and exposed to distilled water. According to the 

results the more blood becomes incorporated into MTA, the more the compressive strength, 

surface microhardness and push-out force of the material are reduced.  

Haemoglobin or whole animal blood has been used in Portland cement as an air entrainment 

admixture to increase porosity (Remadnia et al. 2009). Jasiczak & Zielinski (2006) mixed 

powdered red blood cells taken from pigs and cows with Portland cement and demonstrated 

that even small amounts of the red blood cell powder resulted in reduced compressive 

strength and prolonged setting time of the cement. These findings have been explained by the 

air entrainment properties of blood proteins that affected the porous microstructure of 

cements (Remadnia et al. 2009). The air entrainment effects of blood on cement (Jasiczak & 

Zielinski 2006) and the resultant increased porosity (Remadnia et al. 2009) most likely 

explains the results of the present study, which demonstrated a decreased compressive 

strength of blood contaminated MTA and increased porosity as a result of blood 

contamination. These findings are in accordance with Hesaraki et al. (2006) who showed an 

increased porosity of calcium phosphate cement when mixed with an air-entrainment 

admixture.  

The results of section 5.2.3.4 (page 172) revealed that the porosity of blood contaminated 

MTA was greater than the porosity of the control group most likely as a result of air 

entrainment of the blood. Greater blood incorporation into MTA resulted in greater porosity 

and lower compressive strength, surface microhardness and less push-out force. In the longer 

term, the physical characteristics of specimens that were mixed solely with blood did not 
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improve in comparison to the control group where compressive strength, surface 

microhardness and push-out force did increase over time. Those specimens that their surface 

were contaminated by WFH blood but not mixed with blood did also gain in terms of their 

physical properties over time. 

At the microstructural level, the blood-contaminated groups exhibited a different morphology 

of crystals. Evaluation of the SEM images revealed a distinct lack of acicular crystals in all 

groups exposed to or mixed with WFH blood, when compared to control samples (5.2.3.5, 

page 174). Ismail et al. (2002) suggested that the bonds between particles of hydrated 

Portland cement are created by a dense meshwork of acicular crystals that radiate from the 

cement particles. Stutzman (2004) evaluated the microstructure of hydraulic cement using 

SEM and X-ray microanalysis and concluded that the interlinking crystal phase was 

composed of tricalcium aluminate and/or tetracalcium aluminoferrite. Therefore, in the 

present study, the reduced physical properties of MTA in the groups contaminated with blood 

is most likely explained by the lack of interlinking acicular crystals. The characteristic lack of 

interlinking acicular crystals has also been observed following MTA exposure to acidic 

conditions (section 5.1.4.7, page 136), which may replicate the clinical environment of 

infected tissues that have a lower pH than normal (Nekoofar et al. 2009). In section 5.2.3.5 

(page 174), a similar lack of acicular crystals was observed despite the fact that the pH of 

healthy blood is slightly alkaline (pH 7.4). Future studies should attempt to determine the 

importance of the tricalcium aluminate and/or tetracalcium aluminoferrite crystal phases.  

In addition to microstructural changes, uneven hemispherical expansion of MTA samples out 

of the ends of the cylindrical moulds was noted in all blood-contaminated groups (Figure 67, 

page 184). The most notable expansions were seen in the specimens mixed solely with and 

exposed to WFH blood. Unfortunately, due to the uneven hemispherical expansion of MTA, 
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precise dimensional measurements were unpractical. Storm et al. (2008) have also described 

the expansion of MTA when allowed to hydrate in a salt solution, which was used to simulate 

the in vivo environment. 

 

Figure 67: Uneven hemispherical expansion of MTA out of the end of a cylindrical mould that was 

exposed to WFH blood is shown by the arrow.  

Gandolfi et al. (2009) examined the expansion of MTA when exposed to water, PBS and a 

mixture of PBS and FBS to replicate the tissue fluids encountered clinically. They found 

expansion of MTA exposed to the PBS and FBS mixture was less than that of PBS or the 

water control. They speculated that the proteins in tissue fluids adsorb onto the surface of 

MTA and block porosities, thus retarding the hydration processes and resulting in increased 

expansion. The effect of blood contamination on dye leakage of an initial prototype of MTA 

was investigated in an ex vivo endodontic surgery model, which concluded that blood 

contamination had no significant effect on dye leakage (Torabinejad et al. 1994b). The 

beneficial reduction in dye leakage (Torabinejad et al. 1994b) and bacterial penetration 

(Montellano et al. 2006) of blood contaminated samples of MTA may possibly be explained 

by the expansion of samples when exposed to blood proteins. In addition, Reyes-Carmona et 
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al. (2009) described the formation of an interfacial hydroxyapatite layer with tag-like 

structures at the junction of MTA and dentine following immersion of MTA samples in PBS, 

suggesting better adaptation. In sections 5.1.4.5 & 5.1.4.6 (pages 134 & 135) MTA samples 

were exposed to solutions at various pHs and a significantly lower push-out force was 

observed in specimens subjected to an acidic environment. In the present study on blood 

contamination, the same effect on push-out force was observed. This is in accordance with 

finding of VanderWeele et al. (2006) who reported that blood contaminated MTA decreased 

push-out force compared to controls. Therefore, it can be confirmed that the expansion 

observed in specimens of blood contaminated MTA was not associated with an increase in 

push-out force values. This may seem counter intuitive, but presumably the reduction of 

push-out force is a complex issue that is related to the inherent strength of the material as 

well as the nature of the interface between the material and dentine.  

 

Figure 68: Scanning electron microscope image showing cotton fibres (F) on the surface of, and being 
incorporated into (G) MTA. 

 

As an incidental SEM finding, incorporation of cotton fibres into the surface of 

uncontaminated MTA from the moist cotton pellet used to provide the humid environment 

G 
F 
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was observed (Figure 68, page 185). Therefore, for future studies and clinical applications, 

the use of an absorbable and non-fibrous material to maintain humidity during MTA setting is 

recommended. 

In section 5.2.3.2 (page 170) the effect of blood contamination on the surface microhardness 

of MTA was studied. The surface microhardness of the material may provide an indication of 

the degree to which the material has undergone hydration during the initial setting reaction 

(Lee et al. 2004) and over time since the test is non-destructive  (Igarashi et al. 1996). In this 

study, the surface microhardness of MTA was evaluated after four days and six months. 

There was no significant difference between the microhardness values after 4 days and 6 

months within the specimens of each experimental group. However, at both incubation times 

the mean surface microhardness values of the specimens of the control group were 

significantly higher than other experimental groups in which MTA slurries were exposed to 

WFH blood following mixing of MTA powder with water or blood respectively (p < 

0.00001). Thus, the results demonstrate that blood contamination has a detrimental effect on 

the surface microhardness of MTA.  

In the study by Tingey et al. (2008) the bovine serum used was first frozen by the 

manufacturer and then thawed for use. According to the manufacturer there is the potential 

problem of flocculence on thawing due to denaturation of serum lipoproteins 

(http://tools.invitrogen.com/content/sfs/brochures/B-066802-Sera_Bro.pdf). Regular mixing 

during thawing is recommended and the possible need for centrifugation and refiltration is 

emphasised. Therefore, it is possible to hypothesise that the use of frozen and thawed blood 

products may have an effect on its biochemistry with the potential for differences between 

such products and fresh blood in terms of their interaction with MTA. Tingey et al. (2008) 

allowed 24 hours incubation of the MTA samples before the examination of the surface 
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microstructure.  It is likely that the hydration of MTA was not complete at this time. In the 

present studies, the samples were incubated for four days before the initial testing.  This time 

period is in accordance with Vanderweele et al. (2006) and Song et al. (2006) who suggested 

that MTA should be left for at least 72-96 hours to decrease the likelihood of displacement 

and increase surface microhardness and compressive strength.  Bodanezi et al. (2008) also 

reported that the solubility of MTA decreased after 72 hours. In addition, Sluyk et al. (1998) 

concluded that for achieving the desirable sealability MTA should be untouched for at least 3 

days when used to repair root perforations.  

All of the experimental groups in contact with blood had a reduced hardness in comparison to 

the control groups. Therefore, it is possible to make a supported recommendation that 

clinicians should attempt to control bleeding when placing MTA in any clinical situation. In 

support of this finding, Tingey et al. (2008) reported that the presence of serum affected the 

setting reaction of MTA after examining the surface microstructure of MTA samples.  

Other studies have reported that the setting of MTA is adversely affected by a number of 

environmental factors. These include an acidic pH (Lee et al. 2004, Saghiri et al. 2008) and 

an alkaline environment (Saghiri et al. 2010b). However, the most important issue to 

acknowledge is whether the adverse effect on the properties of MTA demonstrated by this 

study and others has a detrimental consequence for the material after placement and its 

subsequent longevity.  Clearly, further research is necessary in this area. 

In this study X-ray diffraction analysis was also used to determine the effect of blood 

contamination on the early stages of the hydration process of MTA. During the initial stage of 

the hydration process Ca2+ and OH- ions are released from tricalcium silicate (C3S) into the 

surrounding environment which, at supersaturation levels, forms calcium hydroxide 

(portlandite) precipitate and amorphous CSH (calcium silicate hydrate) gel (Camilleri 2007). 
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In the presence of sulphur and aluminium ions crystals of ettringite (hexacalcium aluminate 

trisulphate hydrate) are also formed (Camilleri 2008b). The sulphur and aluminium ions 

originate from the dissolution of gypsum and aluminate, respectively (Lee et al. 2007, 

Gandolfi et al. 2010b). The setting and strength of hydraulic cements have been attributed to 

the formation of CSH and ettringite on nucleation sites of calcium hydroxide (CH) crystals 

(Lee et al. 2007). Therefore, the formation of CH in the early stage is crucial for the 

progression of the hydration process (Banfill 1986). The antibacterial properties of MTA 

have been explained by the alkaline environment formed by the release of hydroxide ions 

(Zhang et al. 2009). Additionally, induction of hard tissue has been suggested to be a result of 

the presence of calcium ions (Shabahang et al. 1999).  

MTA hydration in the presence of solutions containing phosphate ions, such as tissue fluid or 

blood, resulted in the precipitation of hydroxyapatite (HA) crystals (Sarkar et al. 2005), 

which has also been accredited for the bioactivity of MTA (Reyes-Carmona et al. 2009). In 

the present study, XRD analysis of MTA specimens exposed to blood did not demonstrate the 

presence of HA crystals, which may be due to the relatively short exposure period used when 

compared to longer term exposures described in other studies (Bozeman et al. 2006, Parirokh 

et al. 2009, Reyes-Carmona et al. 2009).  

Analysis of specimens mixed with distilled water (group 1) revealed the presence of bismuth 

oxide, tricalcium silicate and calcium hydroxide. These results are consistent with those 

found by Camilleri (2008b) even though the incubation time and preparation technique were 

not identical.  

 

Accordingly, the proposed hydration mechanism is: 

2(3CaO.SiO2) + 6H2 2.3H2O + 3Ca(OH)2 
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expressed in cement nomenclature as:  

2C3  

Diffractograms of unhydrated MTA powder (group 4) and specimens mixed wholly with 

WHF blood (group 3) demonstrated a lack of reflections at 18.10, 28.69 and 34.10 o

symbols in Figure 66, page 178), corresponding to CH, indicating that the hydration process 

had been impeded. In addition, the intensity of reflections corresponding to C3  

in Figure 66, page 178) were relatively higher than group 1 and 2, indicating that the 

transition of C3S to crystalline CH was incomplete in group 3. However, the formation of 

amorphous CSH should not be discounted as in XRD analysis only crystalline formations are 

detectable. Additionally, the absence of this amorphous content could reflect the short 

hydration time (Camilleri 2008b). Therefore, for the future studies evaluation of the 

specimens after longer incubation times is suggested.  

The CH phase was also seen in the diffractogram of specimens mixed with WFH blood 

diluted with distilled water (group 2). Camilleri (2007) showed that CSH takes up bismuth 

oxide during the hydration process. Accordingly, in the present study the lower intensity of 

 Figure 66, page 178) shown in group 3, compared to the 

unhydrated specimens, suggests that CSH gel is being formed and taking up bismuth oxide. 

However, the lower intensity of bismuth oxide in groups 1 and 2, when compared to that of 

group 3, assumes the impeded hydration of the specimens in the latter group that were mixed 

entirely with WFH blood. 

For elemental analysis of acicular crystals that were absent in blood contaminated specimens 

and for better understanding of the effect of WFH blood contamination on the hydration 

process of MTA slurries, EDX analysis was also employed. SEM analysis revealed several 

morphological differences between groups. Clusters of fine acicular crystals were only seen 
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in specimens mixed with distilled water (group 1) and not in specimens partially or wholly 

mixed with blood (groups 2 and 3, respectively). Spot analysis of the acicular crystals by 

EDX indicated that they were rich in sulphur and aluminium as compared to the background 

matrix (Fig. 2), suggestive of ettringite crystals. 

Despite the similar appearance of the diffractograms of groups 1 and 2, the lack of acicular 

crystals in specimens that were partially or entirely mixed with blood (groups 2 and 3, 

respectively) can be explained by the inhibited hydration process due to the lower water 

concentration in these groups. Therefore, the SEM and XRD findings demonstrated the 

hydration state of specimens partially mixed with blood (group 2) to be more complete than 

those mixed entirely with blood (group 3) and less than that of the fully hydrated specimens 

(group 1), which is in agreement with the results for the compressive strength, surface 

microhardness and push-out force of blood contaminated MTA. The lower hydration reaction 

of blood contaminated specimens are likely to be the result of blood protein adhesion to 

crystal nucleation sites resulting in hydration inhibition (Gandolfi et al. 2009). 

The specimens partially mixed with blood were created to best simulate the clinical 

applications of MTA, such as in direct pulp capping or repair of root perforations, in which 

MTA slurries often become partially mixed with blood during and after its placement. In 

addition, group 3 was included to represent the severe blood contamination that may also be 

experienced clinically when acute inflammation is present. Coleman et al. (2007) 

investigated the effect of simulated body fluid (SBF), the ionic composition of which 

approximates to that of human plasma (Kokubo & Takadama 2006), on set white Portland 

cement (WPC) and reported the absence of CH and ettringite as a result of WPC being in 

contact with SBF for 7 days at 37oC. They attributed the absence of calcium hydroxide to the 

dissolution of the hydroxyl ions associated with hydroxyapatite formation (Coleman et al. 
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2007). In the present study, to better replicate the clinical situation, whole fresh human blood 

was used to contaminate MTA rather than SBF, despite the technical and ethical difficulties 

involved. Due to the differing methodologies used, direct comparison of the present findings 

with those of Coleman et al (2007) are not possible. 

5.2.5. Conclusion 

The hydration state of specimens partially mixed with blood was more complete than those 

mixed entirely with blood and less than specimens that were hydrated only with water. At the 

microstructure level, lack of formation of the crystalline calcium hydroxide in the early stage 

of the hydration process and the absent of acicular crystals, characteristic of ettringite 

crystals, in blood-contaminated specimens was a common finding. This can explain the 

reduction in compressive strength and surface microhardness. The further blood becomes 

incorporated into MTA, the more the compressive strength, surface microhardness, push-out 

force of the material are reduced. In addition, its porosity is increased. Therefore, in clinical 

situations in which blood becomes incorporated into MTA, its physical properties are likely 

to be compromised. Therefore, it might be suggested that when using MTA, attempts should 

be made to control bleeding. When only the surface of MTA is exposed to blood, its physical 

properties may improve over the time. However, when it is partially or solely mixed with 

blood it cannot hydrate properly and its physical properties were compromised substantially.  
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CONCLUSIONS 



193 

 

6. Conclusions 

 The hydration state of specimens partially mixed with blood was more complete than 

those mixed entirely with blood and less than specimens hydrated only with water; 

 The scanning electron microscopy analysis revealed a lack of needle-like crystals 

when the material was in contact with more acidic solutions; 

 The force needed for the displacement of MTA from root dentine to occur was 

significantly lower in samples stored at lower pH values; 

 There was a trend for increased compressive strength, surface microhardness and 

push-out force over time in both etched and control groups; 

 At the microstructural level, lack of formation of crystalline calcium hydroxide in the 

early stages of the hydration process and the absence of acicular crystals, 

characteristic of ettringite crystals, in blood-contaminated specimens was a common 

finding;  

 Incomplete hydration due to blood contamination can explain the reduction in 

compressive strength and surface microhardness;  

 The further blood becomes incorporated into MTA, the more the compressive 

strength, surface microhardness, push-out force of the material are reduced. In 

addition, its porosity is increased.  

 A major problem with the weight of water in the ampoules supplied in the MTA 

packages was identified. The amount of water in the ampoules was inconsistent and 

less than the 0.35 g claimed by the manufacturer;  

 Methods of mixing and placement of MTA significantly affected the hydration 

process and consequently the physical properties of the material; 
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 Application of pressure during the mixing of MTA affects the strength and hardness 

of the material. When saturation and pressure was used for the mixing of MTA 

powder and water, the best physical properties were observed when a pressure of  

3.22 MPa was applied following the saturation of the powder; 

 When greater pressures were applied to MTA following saturation of the powder its 

surface hardness reduced significantly; conversely, its maximum compressive 

strength occurred with minimum pressure; 

 Application of ultrasonic vibration following either the manual mixing technique 

(saturation and pressure) and/or mechanical mixing technique (encapsulated MTA) 

resulted in the most favourable physical properties of the MTA specimens; 

 To achieve the optimum physical properties of ProRoot?  MTA (Dentsply Tulsa 

Dental) specimens prepared with a powder to water ratio of 3.0, as recommended by 

the manufacturer, was confirmed;  

 The lowest and greatest compressive strength, Vickers surface microhardness, and 

push-out force values of MTA were found after exposure to pH levels of 4.4 and 7.4, 

respectively; 

 

Recommendations 

 In clinical situations in which blood becomes incorporated into MTA, its physical 

properties are likely to be compromised. Thus, when using MTA, attempts should be 

made to control bleeding. 

 Delaying the placement of the final coronal restoration is recommended so that the 

material can acquire sufficient compressive strength and push-out force to withstand 
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the acid-etch procedure, the condensation pressures used during the placement of a 

restoration and/or indirect masticatory forces; 

 In the clinical situation, when exposure to an acidic environment is unavoidable, an 

application of a thicker layer of MTA may be beneficial; 

 In an infected and/or inflamed low pH environment, non-setting calcium hydroxide 

should be used initially to neutralize the acidity of the tissues; 

 The ampoules supplied by the manufacturer of ProRoot?  MTA (Dentsply Tulsa) 

should not be used to dispense the water used in research studies involving MTA. 

Rather, the water used to produce MTA specimens in future research studies should be weighed individually 

prior to mixing; 

 The manufacturers are advised to change the batch weighing system in order to 

supply the correct amount of water; 

 Development of different delivery systems for MTA packages are suggested; 

 In future experimental investigations, in order to achieve consistency and standardise 

specimen preparation the use of controlled pressure when mixing MTA is essential. In 

addition, the use of the encapsulated pre-set proportions of MTA (GB patent No 

0919270.9) offer an additional advantage; 

 In an attempt to eliminate confounding variables and achieve standard MTA 

specimens during future experimental studies a consistent powder to water ratio of 

3.00 and a coherent mixing and placement methodology should be employed; 
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 Suggestions for further studies 

 Further research into the significance of blood contamination on the outcome of MTA 

applications in the form of a clinical trial would be beneficial; 

 Further study is needed to evaluate the correlation between the porosity and other 

physical properties of MTA including compressive strength and surface 

microhardness; 

 Further study is required to evaluate the effect of blood contamination on the 

expansion of MTA and its correlation with the sealing ability of the material; 

 Further study on the effect of blood contamination on setting time is also suggested; 

 Further studies are suggested to evaluate the effect of various encapsulated mixing 

times on the physical and chemical properties of MTA while using the novel 

technique of encapsulated MTA; 

 Further study is suggested to evaluate the effect of pH on the total porosity of MTA. 
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