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Abstract

Gene functional annotations are an essential part of knowledge discovery in the
analysis of large datasets, with the Gene Ontology [Ashburner et al., 2000] as the
de facto standard for such annotations. A considerable number of approaches for
quantifying functional similarity between gene products based on the semantic sim-
ilarity between their annotations have been developed, but little guidance exists as
to which of these measures are the most appropriate for different purposes. This was
addressed here by comparing the performances of a number of similarity measures
and associated parameters. This comparison provided some interesting new insights
as well as confirming emerging trends from the literature.

There is also a pressing need for novel ways of applying these measures to fa-
cilitate the functional analysis of lists of gene products. We developed a novel
algorithm, FuSiGroups, to group GO terms based on their semantic similarity and
genes based on their functional similarity. This two-fold grouping results in groups
of not only functionally similar genes but also an associated set of related GO terms
that characterise a single functional aspect relating the genes in the group, which
facilitates analysis by creating more coherent groups. Each gene can belong to multi-
ple groups, so the groups more accurately reflect the complexity of biological reality
than clusters generated using traditional approaches.

FuSiGroups was tested on a number of scenarios and in each case, successfully
generated biologically relevant groups, identifying the key functional aspects of the
dataset. The algorithm also managed to eliminate genes that were functionally
unrelated to the bulk of the dataset and distinguish between different biological
pathways. Although dataset size is currently a limiting factor, with smaller datasets
performing the best, FuSiGroups has been demonstrated as a promising approach
for the functional analysis of gene products.
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Chapter 1

Introduction

Over the last half-century, there has been a tremendous evolution in the way that

gene function is studied. In the early days of molecular genetics, the elucidation

of gene function was primarily reliant on characterising mutant phenotypes, with

studies targeting individual genes, or a small number of related genes, at a time.

With the advent of DNA sequencing techniques, new approaches for evaluating and

relating gene function were required as the number of known genes grew so quickly

that manual study alone was no longer practical. From Sanger sequencing [Sanger

et al., 1977b], the approach by which the first full DNA-based genome, bacteriophage

ΦX174 [Sanger et al., 1977a], was sequenced, to modern day high-throughput or

“next-generation” sequencing strategies (see Shendure and Ji [2008] for a review),

which allow the sequencing of whole genomes in a matter of days, the range and

speed of DNA sequencing is ever increasing, and with it, the amount of genomic data

available. There are now over a hundred sequenced eukaryotic genomes, around half

of which are vertebrate genomes [Flicek et al., 2011], while the full genomes of over

a thousand prokaryotes are available [Lagesen et al., 2010].

This wealth of genomic data brought with it a range of new challenges regarding

its storage, maintenance and exploitation. From the need to address these problems

emerged the new multidisciplinary field of bioinformatics, merging aspects of molec-

ular biology, computer science and information technology. While bioinformatics is

concerned not just with genomics but with all computational aspects of molecular

biology and biochemistry, including proteomics, systems biology and evolutionary

modelling, the assembly and annotation of genomes remains an important part of

the field.

One of the great challenges in functional genomics is the concurrent analysis of

large amounts of data to identify groups of functionally related genes. Much of the
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available information is in a format suitable for human rather than computational

processing, but the volume of data, thousands and thousands of gene products,

makes human analysis highly impractical. Over the last decade and a half, great

efforts have been made to transform human readable information into information

that can be processed by a computer, as well as finding new ways of exploiting this

data to transform information content into knowledge.

Ontologies were one way of representing existing knowledge in a structured for-

mat that quickly received a lot of attention [Stevens et al., 2000] and a number of

different formats and domains of molecular biology were explored. One project that

particularly stands out is the Gene Ontology (GO) [Ashburner et al., 2000] (see

Section 2.1), a structured, unified and species-independent vocabulary of molecular

functions, cellular components and biological processes. Over the last few years, the

GO has become the de facto standard for functional gene annotations.

The availability of this kind of structured information that is accessible to both

humans and computers in turn gave rise to efforts to exploit this information in novel

ways. Lord et al. [2003a] first proposed the use of semantic similarity to compare gene

products1 on the basis of existing knowledge, rather than their biological properties

like sequence and expression profiles. Since then, a number of approaches to calculate

the semantic similarity between ontological terms and, by extension, the functional

similarity between the entities (genes and gene products) the terms annotate, have

either been adopted from other fields, such as natural language processing or been

developed specifically for the GO. Other efforts have explored different applications

for these similarity measures.

One area of particular interest is the grouping of gene products based on func-

tional similarity. In many cases, functional annotation is used to improve clustering

based on gene expression similarity by combining expression and functional similari-

ties or using functional similarity for non-random cluster seeding. The disadvantage

of most clustering approaches is that they allow each gene product to be a member

of only one cluster. This rigid classification is unable to fully reflect the complexity

of biological reality in which each gene product can have several different functions

and be part of a number of processes, often in different parts of the cell [Khatri and

Drǎghici, 2005; Tari et al., 2009]. A more flexible form of grouping could address

this issue.

Additionally, it is possible for gene products to be functionally similar in the

1The term gene product can refer to both proteins and RNA. In the dataset used in this work,
all gene products are proteins. Additionally, the terms gene product and gene may occasionally be
used interchangeably, which is appropriate in the context of the identifiers used here.

2



absence of any other form of quantifiable biological similarity, so exploring functional

grouping in its own right is also of interest. In fact, Romero-Zaliz et al. [2008] argue

that incorporating prior knowledge in expression clustering may lead to bias in the

analysis from incomplete or unevenly specific annotations and that it may be more

appropriate to use functional annotation for independent validation of clustering

results instead.

Even in the absence of the argument for analysis bias, the independent explo-

ration of functional similarity among a set of gene products can be of interest in

many scenarios. Determining the common functional aspects in a list of genes de-

rived from a large-scale experiment is usually the first step to the interpretation

of the biological significance of the experimental results. Basic approaches such as

statistical over-representation of annotation terms, although commonly used, are un-

able to capture the richness and complexity of the relationships among these terms,

as expressed in the ontological structure [Grossmann et al., 2007]. This explains the

need for the more computationally intensive but more sophisticated semantic sim-

ilarity approaches, which are able to capture the ontological relationships between

annotation terms. The functional similarity between gene products, derived from

the semantic similarity between GO terms, can then be used not only to charac-

terise the functional relationships between these gene products but also to judge the

impact of different annotations within each group of related gene products.

Probably the most comprehensive tool for this type of analysis currently in exis-

tence is DAVID (Database for Annotation, Visualization and Integrated Discovery)

[Huang et al., 2007], a tool that allows the functional classification of either genes

or annotations in so-called “biological modules”. However even the dimensional re-

duction from the many-to-many relationships between genes and their annotations

provided by DAVID can still be insufficient. DAVID groups represent either func-

tionally related genes or annotations, depending on which aspect of the classification

tool is used, but never both. For a given group of related genes, all annotation terms

associated with any of the genes in the group are also associated with that group,

and there is a ranking system to indicate their level of relatedness to the group.

Considering the number of heterogeneous data sources, rather than just the Gene

Ontology, available for DAVID functional analysis, this can still result in a complex

and time-consuming analysis to elucidate the key functional aspects that link a set

of groups. It might therefore be more desirable to be able to consider both related

genes and annotation terms at the same time.
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1.1 Problem definition

1.1 Problem definition

1.1.1 Research question

The novel contribution to the field provided by this investigation is twofold. Firstly,

the performances of several GO-specific semantic similarity approaches (Schlicker

et al. [2006], Wang et al. [2007], Couto et al. [2005]) will be compared to and validated

against each other on the same dataset. So far each of these approaches has only been

compared to the three methods by Resnik [1995], Lin [1998] and Jiang and Conrath

[1997], all of which were developed in a natural language context rather than for the

Gene Ontology, which means they are being compared with algorithms designed for a

different type of data source. Different functional similarity approaches that combine

the semantic similarities between GO terms into a single score to characterise the

similarity between gene products based on their GO term annotations, as well as

several associated parameters such as type of annotations, will also be included in

the comparison.

Secondly, we will develop and refine a new grouping algorithm, FuSiGroups,

based on semantic similarity derived from GO annotations, as well as functional

similarity between gene products, to identify groups of functionally similar gene

products. It is expected that groups created using this algorithm will reveal ad-

ditional functional relationships (i.e. similar molecular functions or belonging to

a common biological pathway) between genes that cannot be detected using only

traditional approaches such as gene expression similarity. In addition, these groups

reduce the complexity of the many-to-many relationships between GO terms and

gene products into clearly defined groups reflecting a single functional aspect of the

genes they contain. This dimensional reduction of the data will allow easier analysis

without loss of information.

The algorithm’s output will be evaluated against clusters obtained by standard

hierarchical clustering using semantic similarity as the similarity metric. The seman-

tic groups and clusters will be compared to clusters obtained from gene expression

studies to evaluate the relationship between functional (semantic) similarity and

gene expression similarity.

The dataset used is the well-studied Saccharomyces cerevisiae gene expression

dataset by Eisen et al. [1998]. The metrics used will be those proposed by Wang

et al., Schlicker et al., Resnik and Lin, as well as Couto et al.’s disjunctive ancestor

approach, which will be applied to the Schlicker, Resnik and Lin algorithms2.

2For simplicity, the approaches considered in this study will from now on be referred to by the
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1.1 Problem definition

1.1.2 Aims and objectives

Based on the research hypothesis in Section 1.1.1, this project has two overall ob-

jectives. Firstly, a number of semantic and functional similarity approaches and as-

sociated parameters will be compared. Secondly, a novel grouping algorithm based

on semantic similarity will be developed and evaluated.

With regards to the first objective, the research question only explicitly states

the different semantic similarity measures that will be compared. However, as will

be discussed in more detail Chapter 2, semantic similarity is the similarity between

two GO terms. As gene products are generally annotated with more than one GO

term, the functional similarity between two gene products is a combination of the

semantic similarities of the GO terms that annotate them. There are a number of

ways to combine semantic similarity scores and there is currently no consensus in

the literature as to which is the best or most appropriate method.

In fact, in many published studies making use of semantic and functional simi-

larities, similarity measures and associated parameters are chosen without any real

justification as to whether these choices are the most appropriate. Resnik’s similar-

ity measure might be used because it was the first measure to be applied in the GO,

or Lin’s measure because it is bounded between 0 and 1, even though both mea-

sures have known drawbacks (see Section 2.2) and without any reference to a study

demonstrating that one measure or another is the most appropriate in a given con-

text. The same applies to the different approaches of combining semantic similarity

scores into a functional similarity score. Therefore a number of semantic similarity

approaches and two functional similarity scores will also be studied here.

As will be discussed in the next two chapters, there are a number of additional

factors that need to be considered in the calculation of semantic and functional

similarities and on which there is no consensus. They are the combination or lack

thereof of ontological scores, the choice of ancestors in the similarity calculation and

the type of annotations. Briefly, the GO consists of three parallel ontologies covering

the areas of biological process, cellular component and molecular function. Some

works base the functional similarity between gene products on only one of these

ontologies while others combine their results into one score.

Most of the semantic similarity approaches compared here consider in some way

the ancestor or ancestors common to two GO terms in the hierarchical structure

of the ontology. While the detailed meaning of this will be discussed in the next

chapter, it should be noted here that the most common approach is to consider only

(primary) author’s name, e.g. Schlicker’s approach instead of Schlicker et al. [2006]’s approach.
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1.1 Problem definition

the most detailed ancestor of two terms. There is some disagreement in the field as

to whether ignoring all but the most detailed ancestor leads to a significant loss of

information, which is why Couto et al. proposed an alternative approach that takes

into consideration multiple ancestors. These two approaches, single and multiple

ancestors, will be compared.

Thirdly, annotations of gene products with GO terms are detailed with an ev-

idence code to indicate how the annotation was derived, for example from direct

experimental evidence or inferred through similarity analysis. Specifically, one ev-

idence code, IEA, which refers to uncurated, electronically derived annotation, is

often excluded from similarity calculations, even though the vast majority of GO

annotations are of this kind and despite a growing body of evidence that the resulting

loss of annotation richness may very well outweigh any improvement in annotation

precision. There also appears to often be a misplaced confidence in the accuracy

of manually curated annotations, despite the GO’s express warning that annotation

codes should not be used as an indicator of annotation quality. The effect of includ-

ing and excluding electronic annotation on semantic and functional similarity will

be compared.

The second major objective of this work is the development of a grouping algo-

rithm that makes use of both semantic and functional similarity to group together

functionally similar gene products by the specific functional aspects that they share.

This approach differs from standard clustering in two respects. Firstly, most tradi-

tional clustering approaches confine each gene product to a single cluster, which is

a strong over-simplification of biological reality, where each gene product can have

multiple functions and be part of several processes. Secondly, clustering is generally

based on only one form of similarity, so while functionally similar gene products will

be clustered together, it is still up to the user to determine which functional aspect

or aspects they share by considering all their annotations. Even the most similar

existing approach, DAVID [Huang et al., 2007], only provides either groups of gene

products or groups of annotation terms. For each of DAVID’s clusters, all anno-

tations (for groups of gene products) or gene products (for groups of annotations)

associated with that group are given to the user, with only a score to indicate how

closely related they are to the group.

Our algorithm will address both these issues by generating groups that each

represent one functional aspect common to the gene products in this group and

allowing each gene product to be grouped into any group reflecting its various func-

tional aspects. This way, there may be several groups with the same gene content,

indicating that these genes share a number of functional aspects, or groups with par-
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tial content overlap, showing how the non-overlapping genes from the two groups

are functionally distinct. The groups also reflect the complex relationships that link

gene products across different processes and different parts of the cell. The new

perspective provided by the FuSiGroups algorithm is expected to lead to interesting

new insights into these functional relationships.

For a given dataset, the algorithm is expected to generate biologically relevant

groups and identify the main functional aspects common to the genes in that dataset.

Additionally, it is expected to eliminate gene products that are functionally unre-

lated to the majority of the dataset by not including them in any of the groups.

Through comparison with gene expression clustering, it will be determined whether

functional grouping reflects gene expression similarity. The algorithm’s ability to

detect other forms of biological similarity, such as pathway membership, will also

be tested. A number of different datasets will be used in the evaluation in order to

comprehensively address these different objectives of the algorithm and demonstrate

its potential in a range of situations.

1.2 Contributions to knowledge

The contributions to knowledge of this work can be divided into two broad cate-

gories, namely the evaluation of similarity measures and the FuSiGroups algorithm.

More specifically, they are:

• Objective evaluation of a number of semantic and functional similarity mea-
sures and associated parameters

– A number of semantic and functional similarity measures and associated
parameters were evaluated against each other.

– Three different types of biological similarity were used in order to reduce
risk of bias of annotation similarity for or against one type of biological
similarity.

– Although no definitive answer as to which measures and parameters are
“the best” - an answer that is unlikely to even exist in a field as diverse
and complex as functional annotation - a set of recommendations were
produced that can provide further guidance for researchers considering
which approach would be most appropriate for their own work.

• Design and testing of FuSiGroups, a novel grouping algorithm

– The algorithm groups both related GO terms and related gene products,
resulting in functionally coherent groups reflecting a single functional
aspect that relates the genes in the group. This is an optimisation over
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1.3 Thesis disposition

current approaches, which only provide either groups of gene products or
groups of annotation terms.

– FuSiGroups groups provide a dimensional reduction from the complex
and diverse gene to GO term associations of functional annotations, but
without the loss of precision that might be expected from such a reduc-
tion, as all the original associations are still present. Similarities and
differences between groups can easily be visualised

– The algorithm successfully identified the main functional aspects of a
number of datasets. It also identified by exclusion a number of random
genes unassociated with the datasets. The algorithm is sufficiently sen-
sitive to distinguish between two unrelated pathways but not between
closely related clusters of gene products.

1.3 Thesis disposition

The rest of this thesis is organised as follows:

Chapter 2 covers the background to the work covered in this thesis. It gives a

brief introduction to the Gene Ontology, then provides a survey of semantic

and functional similarity approaches used in conjunction with the GO. This

also covers the kind of applications in which these measures are used, including

existing implementations.

Chapter 3 describes the different elements that are considered in this work, includ-

ing the selection of semantic and functional similarity approaches and other

parameters. The FuSiGroups grouping algorithm is described. The chapter

also covers in detail the evaluation strategy that will be used for the different

elements of the project. Finally, a number of implementation considerations

will be discussed.

Chapter 4 discusses the results of an experimental comparison of the different se-

mantic and functional similarity approaches and associated parameters. Con-

clusions are drawn as to which measures and parameters perform the best and

will be carried forward for use in the rest of the thesis.

Chapter 5 shows how the semantic and functional thresholds for the FuSiGroups

algorithm are derived. This includes a discussion of the difficulty in deter-

mining the semantic thresholds, as well as how the derived thresholds for the

different approaches compare in the context of the distributions of similarity

values for each approach.
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1.3 Thesis disposition

Chapter 6 discusses the overall trends of the FuSiGroups results for the measures

and parameters selected in Chapter 4 and at the different thresholds derived in

Chapter 5. In particular, the grouping results are analysed for any noticeable

bias in the algorithm, such as a favouring of deeper or shallower annotations, or

disproportionate number of groups for a given ontological aspect compared to

the number of annotations of that type. Conclusions are then drawn regarding

the performance of the different measures with the FuSiGroups algorithm.

Chapter 7 looks in more detail at the FuSiGroups results for the full Eisen dataset

for one combination of approaches and thresholds in order to establish whether

the key functional aspects of the dataset have been identified. An initial limi-

tation of the algorithm was found in an overly high level of overlap in content

and definitions between many groups. This is addressed through the introduc-

tion of the concept of “supergroups”. The comparison of functional groups,

semantic clusters and expression clusters is discussed.

Chapter 8 considers the detailed grouping results of three smaller datasets to more

directly address the different scenarios in which FuSiGroups is useful. These

include the identification of the main functional aspects of each dataset, the

elimination of unrelated gene products and the ability to reflect other forms

of biological similarity. The potential of the algorithm to accurately capture

complex biological relationships, as well as its limitations are successfully iden-

tified.

Chapter 9 draws the previous five chapters together and discusses the overall im-

plications of the results and the potential of the algorithm. Recommendations

on the use of semantic and functional similarity approaches are given, and an

analysis pathway for FuSiGroups results is detailed. The chapter also provides

an outlook on future work, then draws the final conclusions on the entire work.
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Chapter 2

Semantic and functional similarity

Semantics is the study of meaning or, more precisely, “(the study or analysis of)

the relationships between linguistic symbols and their meanings” [Oxford English

Dictionary, 1989]. Consequently, comparing two terms semantically means compar-

ing their meaning or “knowledge content”, rather than comparing the two terms

themselves [Lord et al., 2003a].

In order to compare two concepts semantically, one needs a frame of reference

in which to do the comparison. A good example of such a context is a hierarchical

structure like a taxonomy or an ontology in which the concepts can be represented

as the nodes of a tree and the relationships between them as the edges that link the

nodes. Over the last twenty years, a number of ways to quantify semantic similarity

have been developed. Some of these consider the edges of a hierarchy (e.g. distance-

based measures), while others consider its nodes (e.g. information content-based

measures) [Lin, 1998].

In the context of this work, the term “semantic similarity” refers to the similarity

between ontological concepts, such as Gene Ontology (GO) terms. Gene products are

annotated with GO terms (described in Section 2.1.2). Using the semantic similarity

between these annotation GO terms, similarity between the annotated gene products

can also be quantified. This is referred to as “functional similarity”. We differentiate

between semantic and functional similarity as the former is a quantification of the

relationship between ontological concepts based on ontological structure, whereas

the latter is the quantification of the relationship between gene products based on

their annotation. This quantification is often but not always based on semantic

similarity.

The following sections give an overview of the Gene Ontology and the semantic

and functional similarity approaches most commonly used in conjunction with the
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2.1 The Gene Ontology

GO. Approaches developed outside this purview and only applied in different con-

texts are not considered. The field of semantic similarity has expanded greatly in

the last few years, for example in conjunction with semantic web and document re-

trieval, and giving an overview of every aspect of the field would exceed the present

scope.

The approaches described here are subdivided using the classification suggested

by Pesquita et al. [2009] in their recent review of the field. Tables 2.1, 2.2 and 2.3

are adapted from this paper.

2.1 The Gene Ontology

The Gene Ontology (GO) [Ashburner et al., 2000] was created in 1998 by the Gene

Ontology Consortium in an effort to address the need for a controlled, structured

and unified vocabulary for genome annotation. The Gene Ontology Consortium is

a collaborative project whose founding members are the model organism databases

Flybase [Tweedie et al., 2009], Mouse Genome Informatics (MGI) [Blake et al., 2011]

and the Saccharomyces Genome Database (SGD) [Cherry et al., 1998]. In the last

ten years, the list of member projects has more than quintupled and now includes,

among others, dictyBase [Fey et al., 2009], Gene Ontology Annotation @ EBI (GOA)

[Barrell et al., 2009], Gramene [Jaiswal et al., 2006], Rat Genome Database (RGD)

[Twigger et al., 2006], Reactome [Croft et al., 2011], The Arabidopsis Information

Resource (TAIR) [Swarbreck et al., 2008], WormBase [Harris et al., 2010] and Ze-

brafish Information Network (ZFIN) [Bradford et al., 2011].

In addition, the GO consortium has a number of “associates”. The distinction

between member and associate lies primarily in the level of the contribution to the

GO, as well as direct funding for GO-related activities.

While GO is by no means the only project of this nature, it is probably the most

comprehensive resource in existence to date, and has been adopted as a key source

of genome annotation by the scientific community.

2.1.1 Structure of the Gene Ontology

The GO consists of three orthogonal structured vocabularies or “sub-ontologies”,

namely:

• molecular function (MF), i.e. the activity, at molecular level, of a gene product;

• biological process (BP), i.e. the larger overall process that a gene product is
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2.1 The Gene Ontology

involved in;

• cellular component (CC), i.e. the component of the cell that a gene product
acts in.

Each of these taxonomies is structured as a directed acyclic graph (DAG). This

means that any parent term can have multiple children and any child term can

have multiple parents, but there can be no circular relationships. The majority of

links between terms are of one of two link types, namely “IS A” and “PART OF”,

although the links “REGULATES”, “NEGATIVELY REGULATES” and “POSI-

TIVELY REGULATES” have been introduced in recent years. For more details on

the structure of the GO, see Ashburner et al. [2001].

On April 29th 2011, the GO contained a total of 34086 terms. Of these terms,

20717 are part of the BP-ontology, 2824 part of CC and 9036 part of MF. Not

included in these numbers are 1509 obsolete terms. It is worth noting that by

far the smallest ontology is that of cellular component. This is unsurprising as

the number of distinct cellular locations, even across different types of tissues and

different species, is limited compared to the diversity of biological processes. A little

more surprising might be the fact that the biological process ontology counts more

than twice the number of terms of molecular function. This may be due in part

to the current state of knowledge in molecular biology, as it is easier to attribute

a certain gene product to a more general pathway than to elucidate its specific

function. In addition, biological processes are highly diverse, whereas the functions

of gene products remain similar across multiple processes.

2.1.2 Gene Ontology annotation

The GO itself does not contain any species-specific information. Instead, its terms

are used to annotate gene products from different species. GO annotations are

characterised by evidence codes which indicate the nature of the annotation. These

evidence codes are subdivided into two classification, curated and un-curated. There

are four kinds of curated classifications1:

• experimental evidence codes: annotations based on experimental data cited

directly in the literature. Include inferences from direct assay (IDA), inference

from mutant phenotype (IMP), inference from expression pattern (IEP) etc.;

1For full details of GO evidence codes, see the evidence code guide on the GO website at
http://www.geneontology.org/GO.evidence.shtml (accessed 27/04/2011)
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2.1 The Gene Ontology

• computational analysis evidence codes: annotations inferred from bioinfor-

matics analysis, e.g. sequence or structural similarity (ISS), genomic context

(IGC);

• author statement evidence codes: annotations for which there is no direct ex-

perimental data cited in the literature but where this information is referenced

and can be traced;

• curator statement evidence codes: annotations for which there is no direct

evidence but which can be reasonably inferred from indirect evidence, e.g. for

a gene product with experimentally verified molecular function “specific RNA

polymerase II transcription factor activity” (GO:0003704) but no validated

cellular location, a cellular location of “nucleus” (GO:0005634) can reasonably

be inferred.

Un-curated annotations (IEA - Inferred from Electronic Annotation) are inferred

similarly to computational analysis ones, e.g. from sequence similarity or automated

transfers of records from other databases. They are not verified by a human before

being added to the database, although in the case of mappings from other databases,

the mappings between GO terms and other concepts are often manually curated (see

Section 3.1.4 for further details and an example).

It is important to note that evidence codes do not reflect the quality of the

annotations. Some studies maintain that only curated annotations should be used

in, for example, the context of semantic similarity analysis, whereas other studies

have found that inclusion and exclusion of un-curated annotations has no significant

effects on semantic similarity.

2.1.3 What the GO is not

GO terms focus exclusively on the three aspects listed above. They do not cover

information such as which cell type or body part a gene product is expressed in, or

during which development or disease stage it is expressed. Other ontologies have

been developed for these purposes. Many of these ontologies can found at the “Open

Biomedical Ontologies” website [Smith et al., 2007].

All terms are as species-independent as possible. Certain terms, such as “chloro-

plast”, are necessarily specific to a certain type of organism but still not directly

specific to a given species.

As detailed in Ashburner et al. [2001], the GO is neither intended as a man-

dated standard, nor is its simple existence sufficient for the unification of biological
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2.2 Similarity between GO terms

databases. The success of GO is due to the quality of the contributions from its

members, which in turn lead to its adoption as a de facto standard. The ontology

and GO annotations constantly evolve and become more comprehensive. As the

coverage of GO grows, so does the linkage between the different resources that use

GO, as the shared nomenclature facilitates the crossing of domain boundaries.

2.2 Similarity between GO terms

Pesquita et al. [2009] distinguish between three types of semantic similarity ap-

proaches: edge-based, node-based and hybrid. This classification reflects the pri-

mary ontological element used by a given approach to calculate semantic similarity.

Both node- and edge-based approaches can subdivided further depending on the

way the respective ontological element is used. The semantic similarity approaches

presented in this section are summarised in Table 2.1.

In the classification used by Pesquita et al. [2009], it is possible for confusion to

arise between the node-based subdivision “depth” and the edge-based subdivision

“distance”. Both concepts refer to the path between two ontological concepts, in the

case of “depth” usually a term and the root node, but while a node-based path counts

the number of nodes between the terms, an edge-based path counts the number of

edges. The edge-path between two terms should be one element smaller than the

equivalent node-path, provided that both end terms are included in the count.

2.2.1 Node-based approaches

Node-based approaches use the information contained in a graph’s nodes to quan-

tify the similarity between two terms without taking into consideration the edges

that connect the nodes. The majority of node-based approaches use the concept of

“information content” (IC), which requires the use of information external to the

ontology, in the similarity computation. There are only very few node-based se-

mantic similarity approaches that use only the internal node-structure of the GO,

including information derived from node depth and density, in order to compute

semantic similarity between concepts.

First introduced by Resnik [1995], the concept of information content is based

on the idea that the deeper in the hierarchy a term is, the more informative it is (i.e.

the higher its information content) and the closer to the root, the less informative

it is. The information content of each term in a hierarchy is calculated through the

probability of occurrence of that term in a corpus or body of knowledge, i.e. the
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2.2 Similarity between GO terms

Measure Approach Notes
Resnik [1995] Node-based IC(MICA)
Lin [1998] Node-based IC(MICA) & IC(terms)
Jiang and Conrath [1997] Node-based IC(MICA) & IC(terms)
Couto et al. [2005] Node-based Disjoint common ancestors
Schlicker et al. [2006] Node-based IC(MICA) & IC(terms)
Wu et al. [2005] Node-based Largest shared path from LCA to

root
Bodenreider et al. [2005] Node-based Cosine similarity with IDF

weighting
del Pozo et al. [2008] Node-based Cosine similarity, then depth of

LCA
Herrmann et al. [2009] Node-based Corpus-free variant of IC
Chiang et al. [2006] Node-based Shared path with IC weighting
Chiang et al. [2008] unclear Shortest path and depth of MICA
Rada et al. [1989] Edge-based Shared path
Cheng et al. [2004]] Edge-based Shared path with depth-based

edge weighting factor
Yu et al. [2005] Edge-based Shared path and distance to LCA
Wu et al. [2006] Edge-based Shared path and distance to leaf

nodes and LCA
Jakonienė et al. [2006] Edge-based Shared path with weighting based

on edge type
Yuan and Zhou [2008] Edge-based Shortest path between terms
Wang et al. [2007] Hybrid Shared ancestors with edge

weighting
Othman et al. [2008] Hybrid IC/depth/number of children;

distance

Table 2.1: Overview of the semantic similarity approaches presented in Section 2.2
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2.2 Similarity between GO terms

information content of a term c is

IC(c) = −ln p(c) (2.1)

where p(c) is the probability of concept c occurring in the taxonomy.

Concept frequencies in a taxonomy are derived from occurrence frequencies of

a concept and its children in a corpus. In his research, Resnik used “WordNet”

[Fellbaum, 1998] as the taxonomy and the “Brown Corpus of American English”

[Francis and Kucera, 1982] as the corpus. The occurrence of a child term counts

towards all the occurrences of all its parents. This is logical as some term β, which

is a child of α, occurring in a hierarchy implies that α is occurring as well. This is

called the “true path rule” [Ashburner et al., 2001].

The probability of a concept c occurring in a taxonomy is

p(c) =
freq(c)

N
(2.2)

where

• freq(c) =
∑

n∈concepts(c) total(n)

• concepts(c) is the set of concepts that are descendants of c;

• total(n) is the number of occurrences of term n in the corpus;

• N is the total number of terms in the corpus.

The use of occurrence frequencies can be considered a disadvantage of IC-based

measures as variations in the underlying corpus lead to changes in similarity results.

This makes it difficult to compare results from experiments based on different cor-

pora, such as the annotations of different species and older or newer versions of the

data.

In information content-based measures, the link between two ontological terms c1

and c2 is established through the ancestor terms they share. As c1 and c2 may have

more than one common ancestor, the most meaningful of those ancestors is usually

considered. This is generally the “first” or “lowest common ancestor” (LCA), and

also the ancestor with the smallest p(c) (or largest −ln p(c)). In Lord et al. [2003a],

this is defined as the “probability of the minimum subsumer”. Another term for this

ancestor is “most informative common ancestor” (MICA) [Pesquita et al., 2008],

which is how this concept will be referred to from now on in this thesis. It should be

noted that LCA will be distinguished here from MICA insofar that it is theoretically

possible for an ancestor term a to be the LCA of two terms but not their MICA,
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if the IC of a is lower than that of another ancestor term b, but its distance from

the root is greater than or equal to that of b. For this reason, LCA will be used

when referring to the distance from the root, while MICA will be used for all IC

references.

Similarity between concepts c1 and c2 according to Resnik [1995] is given by

simResnik(c1, c2) = max
c∈S(c1,c2)

[−ln p(c)] (2.3)

where S(c1, c2) is the set of terms that subsume both c1 and c2.

All other IC-based semantic similarity approaches developed after Resnik are

variations on the same theme. While Resnik’s approach only uses the IC of the

MICA to quantify the semantic similarity between two terms, other approaches take

into account the IC of the terms whose similarity is calculated as well.

Resnik tested his approach against human similarity judgement data and con-

cluded that it performed “encouragingly well”[Resnik, 1995], and also “significantly

better than the traditional edge counting approach”[Resnik, 1995]. The main draw-

back of Resnik’s approach is that it only captures the position of the common ances-

tor within the hierarchy but not its distance from the query terms. This means that

two terms directly connected to their most informative common ancestor would have

the same similarity as two other terms with the same MICA but that are several

levels removed from it in the hierarchy.

An IC-based approach by Lin [1998] addresses this problem by considering the IC

of the query terms as well as that of the common ancestor. Taking into consideration

the information content of the terms that are being compared as well as that of their

shared parent, this approach defines the similarity between concepts c1 and c2 as

simLin(c1, c2) =
2 ·maxc∈S(c1,c2)[−ln p(c)]

[−ln p(c1)] + [−ln p(c2)]
(2.4)

This approach could be considered as a normalised version of Resnik’s approach

because Lin’s similarity coefficient lies between 0 and 1, unlike Resnik’s value, which

can vary between 0 and infinity2 [Resnik, 1995]. Lin used the same test set as Resnik

to test his similarity score. He found that his approach led to a marginally higher

correlation with human judgements than Resnik’s measure [Lin, 1998].

While addressing the drawback of Resnik’s method of not reflecting the distance

between two terms and their common ancestor, the Lin approach has its own disad-

vantage in that the similarity is displaced from the graph and does not reflect the

2Practically, Resnik’s upper limit is −ln 1

N
, where N is the total number of terms in the corpus
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overall position of the three elements in the hierarchy. This means that two very

shallow terms can have the same level of semantic similarity as two very deep terms,

provided the two pairs are equally close to their respective common ancestor.

This same problem also applies to the approach by Jiang and Conrath [1997], who

combined the elements used in Lin’s approach into an IC-based distance measure.

The semantic distance between two nodes is the inverse of the semantic similarity.

For a measure bounded between 0 and 1, this translates to similarity = 1−distance

[Othman et al., 2008]. Semantic distance according to Jiang and Conrath [1997]

however is calculated as

distJiang(c1, c2) = [−ln p(c1)] + [−ln p(c2)]− 2× [−ln p(c)] (2.5)

This measure therefore ranges from 0 if c1 and c2 are identical to 2 × maxIC

for two leaf nodes which only have the root of the ontology as a common ancestor.

maxIC is the maximum information content for a given ontology, which corresponds

to an annotation frequency of 1 as a term with an annotation frequency of 0 would

not have any information content, both conceptually and mathematically as ln 0

is undefined. Jiang and Conrath’s semantic distance can be transformed into a

similarity measure using

simJiang(c1, c2) =
1

distJiang(c1, c2) + 1
(2.6)

where the addition of one to the distance is necessary to avoid infinity values [Couto

et al., 2007]. Alternatively, the semantic distance could be normalised by division

with 2 × maxIC, which would bring it into the [0,1] range, then the converted to

similarity by subtracting it from 1.

In its original form, the Jiang approach was actually a hybrid approach including

edge weighting factors whose influence can be controlled by two further weighting

factors. Virtually all GO applications of this measure set these parameters to ex-

clude the weighting factors, which reduces the distance measure to the node-based

approach described here. For more details on the full measure, see the work by

Othman et al. [2008] described in Section 2.2.3.

The validation of Jiang and Conrath’s approach used a noun portion of WordNet

containing about 60000 nodes. Unlike Resnik and Lin, Jiang and Conrath did not use

the entire Brown Corpus of American English to estimate the frequencies of concepts.

Instead, they used SemCor [Miller et al., 1993], a subset of around 100 passages

from the Brown Corpus. Their results confirmed that Resnik’s information content
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approach produces better results than Rada et al. [1989]’s edge-based approach.

Both methods performed less well than Jiang and Conrath’s approach.

In their 2003 Bioinformatics paper, Lord et al. [2003a] proposed to investigate the

relationships between gene products using semantic similarity rather than sequence

similarity. They considered the three IC-based approaches described so far, although

only the Resnik approach was used as it was the simplest of the three. In the same

year, the authors also published a conference paper [Lord et al., 2003b] in which

all three approaches were compared. These two papers marked the beginning of

the use of semantic similarity in the context of the Gene Ontology. Since then, a

number of node-based semantic similarity measures have been developed specifically

for the Gene Ontology in order to address various drawbacks of the “original three”

measures used by Lord et al.

Schlicker et al. [2006] proposed relevance similarity simRel, a measure that tackles

both Resnik’s flaw of disregarding the distance between two terms and their common

ancestor and Lin’s drawback of being displaced from the graph structure. Using the

same information content concept as the other measures so far, relevance similarity

is defined as

simRel(c1, c2) =

(

2 ·maxc∈S(c1,c2)[−ln p(c)]

[−ln p(c1)] + [−ln p(c2)]

)

· (1− p(c)) (2.7)

Couto et al. [2005] argued that considering only the MICA of the query terms

ignores important ontological information. They presented GraSM (GRAph-based

Similarity Measure), a method that considers all disjunctive ancestors (ancestors

that can be reached by at least one distinct path) of the query terms. The IC

of all the disjunctive ancestors is averaged and used instead of the MICA’s IC in

any IC-based approach. GraSM is technically not a semantic similarity measure in

its own right but is included here because it is used in conjunction with IC-based

approaches.

Taking a different approach than other researchers in the field, Chiang et al.

[2006] created an algorithm for their GeneLibrarian tool which computes semantic

similarity between GO terms as a sequence alignment measure where the path from

a term to the root is the sequence and information content is used to weight each

GO term. The same group also proposed another measure [Chiang et al., 2008]

for another system, Similar Genes Discovery System (SGDS). This second measure

is a function of the length of the shortest path between two terms and the depth

of their common ancestor. It is unclear whether this method should be classed as

node-based, edge-based or hybrid as the authors give no indication whether they
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count the nodes or the edges to determine path length and term depth.

Not all node-based semantic similarity measures make use of information content

to quantify the similarity between ontology terms. Using annotation data but not

information content, Bodenreider et al. [2005] proposed to compute the similarity

between GO terms using cosine similarity [Baeza-Yates and Ribeiro-Neto, 1999] (see

Section 3.2.1 for details on cosine similarity) in a vector space model, in which each

GO term is represented as a vector of the genes it annotates. The GO term vectors

are weighted to balance the effect of genes that are annotated with many GO terms

and the weighting method used is inverse document frequency (IDF) (see Section

3.2.1 for details on IDF). The weight for a given GO term is defined as the log of

the total number of distinct genes in the database divided by the number of genes

annotated to the GO term in question. This is similar to, although not the same as,

the concept of information content.

Bodenreider et al. [2005] also used statistical analysis of co-occurrence and association-

rule mining to find relations between GO terms. The overall purpose of their study

was to find associations between GO terms from different branches of the GO. This

cannot be done using most other semantic similarity approaches as these rely on GO

structure-related elements such as the common ancestor of two terms

The cosine similarity approach was also taken by del Pozo et al. [2008]. In

their work, the similarity between GO terms is effectively calculated twice. First,

the similarity between terms is calculated using cosine similarity, based on the GO

terms’ annotations to InterPro [Mulder et al., 2003] entries. From the resulting

similarity matrix of GO terms, a “Functional Tree” is built using spectral clustering

[Ng et al., 2001]. The similarity, or rather “Functional Distance” between GO terms

is then defined as the height of their LCA in the functional tree. Pesquita et al.

[2009] classed this measure as edge-based. Based on the definitions in del Pozo

et al. [2008], the approach is presented here as part of the node-based approaches

rather than the edge-based ones, since the first level of GO term similarity takes into

account only the terms themselves, while the second level is based on a hierarchical

clustering tree rather than the GO graph and the “height” concept is derived as part

of the clustering algorithm rather than through the counting of edges.

Finally, some approaches use only the internal graph structure of the GO, exclud-

ing all external information. One such measure was proposed by Wu et al. [2005].

Although Pesquita et al. [2009] classed this approach as an edge-based approach, the

present analysis found no indication that anything other than the nodes of the GO

graph were used. The confusion may be due to the language used in the paper, as

the similarity between GO terms is calculated based on the “shared path” between
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two terms, which usually implies edge-counting. The definition of path in this paper

however makes it clear that it is the terms rather than the edges that connect them

that are counted. Specifically, Wu et al. [2005] define the similarity between two GO

terms c1 and c2 as the maximum number of common terms in any path from c1 to

the root and any path from c2 to the root. This can be rephrased as the maximum

number of terms from the LCA of c1 and c2 to the root.

Herrmann et al. [2009] proposed a variant of information content which also

does not use frequency counts from an external corpus but is based entirely on the

structure of the GO. Their measure, precision3 pre(c) of an ontological concept c, is

defined as

pre(c) = −
log

Od(c)
O·Oa(c)

log O · Omax
a

(2.8)

where O is the total number of terms in the ontology4, Od(c) the number of

(distinct) descendant terms of c, Oa(c) the number of ancestor terms of c and Omax
d

the largest possible number of ancestor terms of any leaf node in the ontology. The

similarity between two terms c1 and c2 is then defined as the precision of their most

precise common ancestor,

simsimCT (c1, c2) = max
c∈S(c1,c2)

pre(c) (2.9)

The authors use their precision measure as part of a functional annotation-based

clustering algorithm for gene products. The paper does not provide an evaluation

of the measure and despite its advantage of being corpus-independent, the measure

is not used anywhere else in the literature to date.

2.2.2 Edge-based approaches

As their name implies, edge-based semantic similarity approaches quantify the sim-

ilarity between two GO terms based on the edges in the graph path from one term

to the other. They can be subdivided further into approaches that consider the

distance between two terms and approaches that consider the path shared by two

terms. Most edge-based semantic similarity approaches applied in the GO use ei-

ther the terms’ shared path to evaluate similarity or a combination of shared path

3In the original paper, precision is defined as p. This was changed here to avoid confusion with
the probability of occurrence p defined in Equation 2.2

4N was used in the original paper but replaced here in order to avoid confusion with N , the
total number of terms in the corpus, in Equation 2.2
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and distance, except for the approach by Jakonienė et al. [2006], which uses only

distances.

Rada et al. [1989] proposed the first distance-based semantic similarity measure.

This simplest form of edge-based similarity counts the edges of the path between

two terms. If there is more than one path, the average of the paths is taken. This

kind of approach is not appropriate for use in the GO as it assumes that all edges

carry the same weight, i.e. represent the same difference in meaning. This is not the

case in the GO where some edges connect terms that have a very similar meaning

whereas others are far more loosely related. The relationship “Golgi apparatus”

(GO:0005794) IS A “intracellular membrane-bounded organelle” (GO:0043231) is

intuitively closer than the relationship “membrane” (GO:0016020) IS A “cell part”

(GO:0044464), even though the two pairs of concepts are linked by the same type

of edge.

In addition, edge-counting approaches require an evenly distributed hierarchy,

which is also not the case in the GO. As the GO evolves with current research

trends, some areas are far deeper (longer paths from root to leaf nodes) than oth-

ers even though leaf nodes with shorter paths to the root can be equally specific

in their meaning. Maximum root to leaf distance varies from 2 to 15 edges in the

BP ontology and from 2 to 12 edges in the CC and MF ontologies. For example,

in the 2011-03 release of GO, the leaf term “nuclear outer membrane organization”

(GO:0071764) has a maximum depth of 5, while the leaf term “nuclear inner mem-

brane organization” (GO:0071765) has a maximum depth of 9.

The first edge-based approach used in the context of the GO was developed by

Cheng et al. [2004]. They used the shared path, counting the edges, from the LCA

of two terms to the root of the ontology. They addressed the issue of increasing

specificity for deeper terms by weighting each edge with a weighting factor based

on the edge’s depth, as well as addressing the varying levels of depth of different

parts of the ontology by defining a normalising factor based on the local depth of

the ontology. The similarity between two terms was then defined as the sum of the

weighted edges of the longest path between their common ancestor and the root,

multiplied by the normalisation factor.

Yu et al. [2005] used two edge-based measures, referred to as “taxonomy similar-

ity”, in their work on gene function prediction, namely PK-TS proposed by Pekar

and Staab [2002] and SB-TS proposed by the authors themselves and inspired by

PK-TS. The former of these two measures was originally developed in a linguistics

context and calculates the similarity between two terms c1 and c2 by dividing the

distance of the shortest path between their LCA c and the root by the sum of dis-
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tances between c1 and c, c2 and c, and c and the root, again using the shortest path

in each case. In their interpretation of this approach, Yu et al. [2005] changed the

distances used to the longest path. They also proposed their own approach, which

does not take into account a common ancestor, but divides the distance of c1 to the

root by the distance of c2 to the root, if c1 is above c2 in the hierarchy, or vice versa

if c2 is above c1. If c1 and c2 are not part of the same branch of the ontology, their

similarity is set to 0.

“Relative Specificity Similarity” (RSS) is a multi-component semantic similarity

approach by Wu et al. [2006], considering the distance between the common ancestor

of two terms and the root, the distances between the terms and their leaf node de-

scendants and the distance between the terms and their common ancestor. The RSS

approach could ostensibly be classed as hybrid, rather than an edge-based approach,

as it claims to incorporate the node-based approach by Wu et al. [2005], mentioned

in Section 2.2.1. However, where the original node-based approach considers the

maximum number of terms between the LCA of two terms and the root, the LCA

to root distance component of RSS, called α, subtracts 1 from the number of terms,

which equates to counting the maximum number of edges between the LCA and the

root. RSS has two further components, β and γ. β represents the largest shortest

path (counting edges) between term c1 and all its descendant leaf nodes and term c2

and all its descendant leaf nodes. γ is the sum of the distances of each query term to

the LCA, which is effectively the shortest distance between the two terms c1 and c2.

The three components are then combined into the RSS formula, which also includes

the maximum distance from the ontology root to the deepest leaf node.

Jakonienė et al. [2006] proposed a measure based the number of edges between

two terms. They defined three types of paths: u, the number of “IS A” edges needed

to go up in the hierarchy, d, the number of “IS A” edges needed to go down, and

o, the number of edges of other types. The three paths are weighted by division

with their respective weighting factor ppathtype. The three values are combined in an

exponential function.

For their CDGMiner tool, Yuan and Zhou [2008] defined a semantic similarity

measure called go2go, which defines the semantic similarity between two GO terms

as the multiplicative inverse of 1 plus the shortest path between the two terms. In

their first paper, the authors do not specify whether the distance between two terms

is obtained by counting nodes or edges. Yuan et al. [2010] then add that the distance

between two directly connected terms is 1, suggesting that edges rather than nodes

are counted. This assumption is also supported by the fact that 1 is added to the

shortest path, as a path of n edges connects n+1 nodes. While the purpose of both
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papers is the identification of disease genes from functional information and the

calculation of semantic similarity between GO terms is the same on both occasions,

the remainder of the overall approaches detailed in the two papers present a number

differences and result in the implementation of two distinct tools, rather than the

second paper presenting an optimisation of the first approach.

2.2.3 Hybrid approaches

A couple of semantic similarity measures combine edge- and node-based approaches,

although this is not a very common practice. The semantic similarity measure

developed by Wang et al. [2007] uses all aspects of the GO structure, but no external

information. Each GO term has a “semantic value” (SV), which is defined as the

aggregate contribution of all terms in the subgraph between that term and the

root. The semantic contribution or “S-value” of each term is based on the semantic

contribution of its child terms within that subgraph, multiplied by an experimentally

determined semantic contribution factor, which varies depending on the type of edge

that connects the terms. Semantic similarity between two terms is defined as

simWang(c1, c2) =

∑

t∈Tc1
∩Tc2

(Sc1(t) + Sc2(t))

SV (c1) + SV (c2)
(2.10)

where Tc1 and Tc2 are the subgraphs between c1 and the root and c2 and the root

respectively and S(t) is the S-value of term t. The S-values for a given term t

are different in subgraphs induced by different terms as they are the result of the

S-values of the terms they subsume in a given subgraph.

The measure proposed by Othman et al. [2008] made use of the GO structure as

well as external information. This hybrid approach is effectively the same as Jiang

and Conrath’s semantic distance approach but unlike the usual interpretation of the

Jiang approach, this one makes use of the two additional factors of term depth and

local network density included in the original version of the Jiang approach. The

term depth factor, reflecting the distance of a term from the root, is governed by

an exponent parameter α. The local network density of a term, which is related to

the number of children that descend from that term, is controlled by a parameter

β. α = 0 and β = 1 are the values generally used in the interpretation of the Jiang

approach as they remove the effect of their respective factors by setting them to 1.

The conceptual distance between a term c and its descendant c1, based on the

shortest path between them, is calculated as the sum of, for each term in the path,

the product of the depth of the term, its local network density and the difference
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in information content with its descendant. The two additional factors therefore

act as weights of the relationship between each term in the path and its child. The

conceptual distance between two terms c1 and c2 is then defined as the sum of the

conceptual distance of each term to their LCA. If the term depth and local network

density are set to 1, this distance calculation is reduced to the one in Equation 2.5.

In their work, Othman et al. set α and β to 0.5 and 0.3, respectively, although no

detail was given as to how these values were chosen. The normalised conceptual

distance, or rather the corresponding similarity, was used to generate the initial

population for a genetic algorithm designed to improve the large-scale retrieval of

semantically similar GO terms.

2.3 Similarity between gene products

As previously discussed, this work distinguishes between semantic and functional

similarity. Functional similarity approaches can be divided into two categories:

group-wise and pair-wise measures. Group-wise approaches consider the annota-

tions of a gene product as a whole, whereas pair-wise approaches, as implied in their

name, consider pairs of annotations. Group-wise approaches therefore do not use

semantic similarity as semantic similarity is computed between pairs of GO terms,

although some group-wise approaches do employ information content in order to

weight the contribution of individual terms to the annotation set. A brief overview

of group-wise approaches is given here, even though they are of less interest in the

context of a project that focusses on semantic similarity-based functional similarity.

2.3.1 Group-wise approaches

Group-wise functional similarity approaches can be sub-divided into three groups,

namely set-based approaches, vector-based approaches and graph-based approaches,

depending on how the terms annotated to gene products are considered. An overview

of all approaches discussed in this section is given in Table 2.2.

Set-based approaches

The simplest approach to establish the similarity between two gene products based

on their functional annotations is to apply set-based similarity techniques, such as

Jaccard’s index [Jaccard, 1908] or the Dice coefficient [Dice, 1945], to the sets of GO

terms attributed to these gene products. Whilst relatively inexpensive in terms of

computing power, purely set-based approaches are very rarely used in this context,
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Measure Approach Similarity measure Weighting
Lee et al. [2004] Graph-based Term overlap None
Mistry and Pavlidis
[2008]

Graph-based Normalised term
overlap

None

Martin et al. [2004] Graph-based Czekanowski-Dice None
Gentleman [2005] Graph-based Jaccard None
Gentleman [2005] Graph-based Shared path None
Pesquita et al. [2008] Graph-based Jaccard IC
Lin et al. [2004] Graph-based Intersection Annotation set proba-

bility
Yu et al. [2007] Graph-based LCA Annotation set proba-

bility
Ye et al. [2005] Graph-based normalised LCA None
Sheehan et al. [2008] Graph-based IC-based (Resnik,

Lin)
Annotation set proba-
bility

Jain and Bader [2010] Graph-based LCA Term-to-leave sub-
graph IC

Chabalier et al. [2007] Vector-based Cosine similarity IDF
Huang et al. [2007] Vector-based Kappa-statistic None
Benabderrahmane et al.
[2010]

Vector-based Cosine similarity combination of evi-
dence code and IDF

Table 2.2: Overview of the group-wise functional similarity approaches presented in Section
2.3.1

at least not on their own. This is due to the very subtle differences that can exist

between adjacent levels in biomedical ontologies. Two gene products annotated with

terms that are not identical but are very close in the ontology would be scored at a

much lower similarity using direct set matching than using a more complex approach

taking into account ontological structure.

Graph-based approaches

Graph-based approaches consider the sub-graph formed by annotation terms, thus

including also indirect annotations rather than just direct annotations in the simi-

larity calculations. They are by far the most commonly used group-wise functional

similarity approaches used in the GO.

Although set-based similarity techniques are not used in the GO for compar-

ing sets of annotations, they are used in conjunction with graph-based approaches,

treating GO term induced subgraphs as sets. The earliest example of this in the GO

was by Lee et al. [2004], who defined the similarity between two gene products as

the intersection of their sets of GO terms. The sets of GO terms include all parent

terms of the direct annotation term, i.e. the subgraphs from term to root induced

by each term. Mistry and Pavlidis [2008] refer to Lee et al.’s measure as “Term
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Overlap” (TO). They present a normalised version of TO (NTO) in which the term

overlap similarity is divided by the size of the smaller of the two GO term sets.

Martin et al. [2004] used a slightly more sophisticated distance measure, the

Czekanowski-Dice formula, which is the cardinality of the symmetrical distance be-

tween two term sets divided by the sum of the cardinalities of their union and

intersection. A similar approach was proposed by Gentleman [2005], whose simUI

measure divides the cardinality of the intersection of two induced subgraphs by the

cardinality of their union. This is effectively Jaccard’s index. In the same work, Gen-

tleman also proposed another measure, simLP, which is not based on set similarity.

simLP is defined as the longest common path found in two subgraphs. A fifth set

similarity-based approach of induced subgraphs, simGIC, was defined by Pesquita

et al. [2007]. They combined the Jaccard index with information content by replac-

ing the cardinalities of intersection and union by the sums of the information content

of all the terms in the intersection and union of two term sets.

Not all graph-based functional similarity approaches applied to GO annotation

make use of set similarity concepts. Lin et al. [2004] proposed to establish the shared

subtree, called the “intersection tree”, for all pairs of proteins in a population,

then calculate the similarity between each protein pair as the frequency of their

intersection tree in the overall population. The “total ancestry measure” by Yu

et al. [2007] is effectively a normalised version of this as it defines the functional

similarity between two proteins as the number of protein pairs in a population with

exactly the same set of LCAs as the proteins in question, divided by the total

number of protein pairs in the population. Although the two measures differ in

their conceptual definitions, the actual calculations are essentially the same.

The approach suggested by Ye et al. [2005] focusses on the depth of the shared

part of the induced subgraphs of two gene products. Similarity is calculated by

dividing the difference between depth of the deepest common term and the minimum

depth of the ontology (always 1) with the difference between maximum and minimum

depth of the ontology.

Sheehan et al. [2008] propose the SSA algorithm, a rule-based system that ex-

tends information content similarity between GO terms, particularly Resnik’s and

Lin’s measures, to a framework for describing the similarity between sets of anno-

tations. Based on the GO graph structure and the relationships between terms, the

SSA algorithm derives a set of “contextual terms” that describe the annotations

of two gene products. This term set, called “nearest common annotation” (NCA),

is used as the LCA of the gene products’ annotations and based on the instances

of the term set in a corpus of annotations, the similarity between gene products is

27



2.3 Similarity between gene products

calculated according to the same principle as Resnik’s or Lin’s similarity between

GO terms.

The measure by Cho et al. [2007] was classed as a separate graph-based functional

similarity measure by Pesquita et al. [2009]. This measure is however essentially

Resnik’s information content semantic similarity measure, combined with maximum

functional similarity (see Section 2.3.2). The only difference in this new measure is

in the way the calculation is defined. Rather than calculating the similarity between

each pair of GO terms, then combining the pairwise semantic similarities into a

functional similarity score, Cho et al. use the smallest GO term “annotation size” of

all GO terms shared between two gene products. Annotation size is defined as the

number of proteins annotated to a GO term or any of its child terms. The smallest

annotation size is divided by the annotation size of the root and the similarity

between two gene products is the negative log of this ratio. The measure is mentioned

here due to its inclusion in Pesquita et al.’s review but is not considered as a graph-

based functional similarity measure.

Similarly, Jain and Bader [2010] also define functional similarity between two

gene products as the maximum information content of the lowest common ancestor

of their annotation terms. In this work, the authors transform the GO into a set

of subgraphs but unlike other works, where a subgraph is generally the part of the

ontology between a term and the root, these subgraphs reach from a high-level term

to the leaves of the ontology. The subgraphs are defined so there is minimal overlap

between them. Multiple subgraphs form a meta-graph based on the position of their

respective root nodes in the original GO hierarchy. The information content for

each GO term within a subgraph is calculated using only the terms and annotation

frequencies within that subgraph. The higher-level terms that are not part of a

subgraph have their information content calculated based on occurrence probabilities

from all the subgraphs they subsume. Through this system, gene products that are

annotated with terms from the same subgraph have higher similarity than terms

from different subgraphs.

Vector-based approaches

Vector-based approaches generally represent the gene product annotations as multi-

dimensional vectors, where each dimension represents one possible GO term. Vectors

can be binary, with the presence or absence of each term in a given set of annotations

denoted by 1 or 0 respectively. Alternatively, vectors can be weighted, making

the contribution of each term to the vector more nuanced. While vector-based
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approaches have been used in the GO context, they are far less common than graph-

and information theory-based methods. This is mostly because they are highly

computationally intensive, yet just like set-based approaches, fail to capture the

information contained in the ontological structure. Efforts to date include Chabalier

et al. [2007]’s cosine similarity-based functional similarity, Huang et al. [2007]’s kappa

statistics approach used in DAVID and, most recently, Benabderrahmane et al.

[2010]’s variant on weighted cosine similarity.

Chabalier et al. used the same approach described by Bodenreider et al. [2005],

but calculated the similarity between gene products based on vectors of GO terms

rather than the other way round. The authors also used IDF to weight the contri-

bution of each GO term to a gene’s annotation vector. Pesquita et al. [2009] equate

this to weighting using information content, which is not entirely appropriate as the

probability of occurrence in IC is based on the total number of annotations of a term

or any of its children divided by the total number of annotations in the corpus, while

IDF is based on the number of occurrences of term t divided by the total number of

distinct genes.

A new GO-specific weighting approach was defined by Benabderrahmane et al.

[2010]. In their approach, each dimension of each vector consists of both a coefficient

that is the product of a weight that reflects the evidence code of that annotation and

the IDF for that term, and a base vector. In the calculation of functional similarity

between two gene products using cosine similarity, the dot product between the two

base vectors for a given dimension reflect the ratio of the depth of the two terms’

common ancestor and the sum of the depths of the two terms.

Huang et al. [2007] proposed to quantify the similarity between gene products

using kappa statistics [Cohen, 1960], a chance-corrected measure of co-occurrence.

They also represented the gene products as vectors of their annotations but included

not only GO terms but also annotations from a number of other sources, such

as KEGG pathways [Kanehisa and Goto, 2000], UniProt sequence features [The

UniProt Consortium, 2008] and InterPro domains [Mulder et al., 2003]. Each gene

product-term association is binary, with no weighting. The DAVID tool also uses

the reverse approach (annotations represented as vectors of the gene products they

annotated) to calculate the similarity between annotation terms.

2.3.2 Pair-wise approaches

Pair-wise approaches can be classified by the number of pairs they consider, i.e.

some consider all possible pairs of GO terms from a set of annotations, whereas
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others consider only the best pairs. For each approach, the chosen pairs are then

combined into a single score through one of a number of techniques including average,

maximum and sum. Pair-wise approaches can be used in conjunction with any type

of semantic similarity measure. Table 2.3 presents an overview of all the pair-wise

approaches discussed here.

First used by Pairs Measure Notes
Lord et al. [2003a] All pairs Average
Sevilla et al. [2005] All pairs Maximum
Lei and Dai [2006] All pairs Sum
Azuaje et al. [2005] Best pairs Average Average of bidirectional

summed scores
Couto et al. [2005] Best pairs Average Average of directional aver-

ages
Schlicker et al. [2006] Best pairs Average funSim combination of on-

tological scores
Tao et al. [2007] Best pairs Average Reciprocal best matches

only and minimum similar-
ity threshold

Lei and Dai [2006] Best pairs Sum

Table 2.3: Overview of the pair-wise functional similarity approaches presented in Section
2.3.2

All pairs

Some pair-wise approaches use all possible pairs of GO terms from two annotation

sets in order to compute the gene products’ overall similarity.

The simplest pair-wise functional similarity approach is the straightforward av-

erage (AVG). As implied in the name, it simply averages the semantic similarity

between all GO term pairs that make up the set of annotations of the two gene

products g1 and g2 [Lord et al., 2003a]:

simAV G(g1, g2) = avgc1∈GO(g1),c2∈GO(g2)(sim(c1, c2)) (2.11)

where GO(g1) and GO(g2) are the sets of GO terms annotated to g1 and g2,

respectively.

The main drawback of this approach is that because it treats all GO term pairs

equally, it produces inappropriate results for gene products that share several unre-

lated functional aspects. For example, two genes A and B that are annotated with

the same two unrelated GO terms x and y would only have a similarity of 50% as

sim(x, y) 6= 100%.
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Another way of calculating the functional similarity between gene products is to

only consider the GO term pair with the largest semantic similarity (MAX) [Sevilla

et al., 2005], i.e.

simMAX(g1, g2) = maxc1∈GO(g1),c2∈GO(g2)(sim(c1, c2)) (2.12)

This approach is useful to highlight whether two gene products share a func-

tional aspect, but it does not represent the global functional similarity between gene

products as it ignores all annotations except for the most similar one. Two genes A

and B which share one term x but also have other non-related annotations would

have a similarity of 100% regardless of these other GO terms.

There is one instance in the literature [Lei and Dai, 2006] where the functional

similarity is computed as the sum of all the pair-wise GO term similarities.

simSUM(g1, g2) =
∑

c1∈GO(g1),c2∈GO(g2)

sim(c1, c2) (2.13)

This technique performed worse than either AVG or MAX. It is never used

elsewhere in GO semantic and functional similarity.

Best pairs

Rather than considering all possible permutations of a set of GO terms, it is usually

more advisable to consider only the best pairs. This eliminates situations like the one

mentioned in relation to the AVG approach, where two identical sets of annotations

lead to a lower annotation score because the terms within each set are semantically

unrelated.

Most commonly, the similarity between the best pairs is averaged, a functional

similarity approach called “best match average” (BMA) approach [Couto et al.,

2005]. This approach takes the highest similarity between each term in GO(g1) and

all the terms in GO(g2),

score(g1 → g2) =
∑

c1∈GO(g1),c2∈GO(g2)

max(sim(c1, c2)) (2.14)

and vice versa, then averages them.

There are two different ways of performing this averaging process. Probably the

most common approach calculates the average for each direction, then averages the

two directed scores [Couto et al., 2005].
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simBMA(g1, g2) =
1

2
×

(

score(g1 → g2)

m
+

score(g2 → g1)

n

)

(2.15)

where m is the number of GO terms in GO(g1) and n is the number of GO terms

in GO(g2).

Some users however add all the maximum similarity scores in both directions,

then average the total [Azuaje et al., 2005].

simBMA(g1, g2) =
score(g1 → g2) + score(g2 → g1)

m+ n
(2.16)

The issue with this approach is that it treats the number of annotations for each

gene product equally even though one gene product may have far more GO terms

annotated to it than the other. The first approach provides a more realistic score

in the sense that each directional score is averaged only in relation to the number

of elements it is made up of. Overall, the BMA approach provides a good balance

between the AVG and MAX approaches and most realistically reflects the functional

similarity between gene products.

A variant of BMA was proposed by Tao et al. [2007], who only consider reciprocal

best matches between two sets of GO terms. If the best match for a term a in GO(g1)

is a term b in GO(g2), it will only be considered if the best match for b is a in the

reciprocal comparison. In addition, the authors also used a minimum similarity

threshold, so even reciprocally matched pairs were only considered if their similarity

was higher than a given threshold. The similarity between acceptable matched pairs

was summed, as in standard BMA, then multiplied by two, which is the same as

summing the scores both ways. The overall score was then divided by the sum of

the sizes of the two GO term sets.

The same work that used the SUM approach for all pairs [Lei and Dai, 2006]

also used this approach in conjunction with best pairs.

2.3.3 FunSim

Many studies that use functional similarity consider only one of the three GO as-

pects, or consider each aspect individually. Although all of the above functional

similarity measures can be applied to the full set of annotations directly, Schlicker

et al. [2006] proposed an approach whereby three functional similarity scores are

obtained for each gene product pair, one for each of the three aspects of the GO.

These scores are then aggregated into the final functional similarity, funSim.
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funSim =
1

3
·

[(

simBP

max(simBP )

)2

+

(

simMF

max(simMF )

)2

+

(

simCC

max(simCC)

)2]

(2.17)

where max(sim) is the maximum possible similarity for an aspect. The ad-

vantage of using funSim is that by squaring the contribution made by each GO

aspect, this contribution is made even stronger for high scores and even weaker for

low scores.

2.4 Evaluating semantic and functional similarity

In this thesis, a distinction is made between works that evaluate semantic and func-

tional similarity approaches and works that make use of these approaches to answer a

biological question. The former will be discussed in this section, while the latter will

be covered in Section 2.5. In particular, not all semantic and functional similarity

approaches described in this chapter were rigorously evaluated against other forms

of biological similarity, so not all of them will be covered here. Only the examples

of evaluation most relevant to the work presented in this thesis will be discussed.

One key issue with the evaluation of semantic similarity approaches is that there

is no benchmark for measuring functional similarity. There are a number of other

kinds of biological similarity against which functional similarity can be evaluated,

although they all have both advantages and disadvantages. One of the most com-

monly used approaches is sequence similarity. Indeed, it has been demonstrated

that in many cases, sequence similarity also implies functional similarity. There are

however also a not insignificant number of examples of convergent evolution where

functional homologues (i.e. gene products with the same or highly similar function)

have little or no sequence similarity, as well as examples of divergent evolution,

where sequence homologues (i.e. gene products with high sequence similarity, e.g.

from gene duplications) have little or no functional similarity.

Another popular evaluation approach is to use gene expression similarity as a

benchmark for functional similarity. As with sequence similarity, similarity in gene

expression in many cases implies functional similarity but equally, there are situa-

tions where functionally similar gene products have expression profiles that bear no

resemblance to each other.

The same problem applies to almost all approaches for evaluating functional

similarity, with the possible exception of human judgement. This approach however
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has the double disadvantage of lacking objectivity as it requires expert knowledge

and of being limited to small datasets as manually evaluating hundreds or even

thousands of gene product pairs is not practical. All other approaches applied to

date reflect functional similarity up to a point but all include a significant element of

false positive and false negative generation. This is why there is a need for functional

similarity in the first place. If another form of biological similarity perfectly matched

functional similarity, the latter would not be of interest.

A further difficulty in functional similarity evaluation is that it is very hard to

make comparisons across studies. Information content-based measures in particular

are dependent on the corpus used to calculate the results. While non-IC measures do

not suffer from this drawback, they are still susceptible to changes in the ontology, so

two studies using exactly the same dataset and parameters may differ in their results

if based on two different GO releases. For this reason, it is essential to state exact

details of all parameters used, including GO release, included or excluded evidence

codes, dataset, measures and any other study-specific variables.

In their assessment, Lord et al. [2003a] validated the semantic similarity mea-

sures for Resnik, Lin and Jiang, with AVG functional similarity, against sequence

similarity scores. They found a very significant degree of correlation between the

two types of similarity, particularly for the molecular function aspect. They used

the SWISS-PROT-Human database for the estimation of concept frequencies. GO’s

three aspects were considered individually and all ontological edges between concepts

were treated as “IS A” links. The authors found that none of the three methods

significantly outperformed the others. There were differences in individual perfor-

mances, e.g. for the molecular function aspect, the Resnik approach obtained the

highest correlation with sequence similarity, but the approach performed worst for

the other two ontological aspects, while the Jiang approach scored the lowest cor-

relation for MF. It was also found that the different aspects of GO are largely

independent of each other.

Other evaluation studies using sequence similarity as a benchmark include Pesquita

et al. [2008] and Mistry and Pavlidis [2008]. Both included the original measures

studied by Lord, but Pesquita et al. added MAX, BMA and GraSM with BMA

functional similarity, as well as the graph-based approaches simGIC and simUI,

while Mistry and Pavlidis also added MAX functional similarity, and kappa, cosine,

weighted cosine, Term Overlap (TO) and NTO similarity measures. Corpora were

UniProt [The UniProt Consortium, 2008] and NCBI Gene [Pruitt et al., 2006] for

mouse genes, respectively. Pesquita’s study found that simGIC performed highest

overall, with Resnik’s measure the best out of the IC-based measures. Mistry’s
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work found the best correlation between sequence and functional similarity for TO

and Resnik with MAX. The study also included a comparison of different measures

against each other in which TO and Resnik/MAX also had the highest correlation

with each other.

Wang et al. [2004] investigated the relationship between semantic similarity and

gene expression using the same approaches as Lord et al. The data for this work was

derived from microarray experiments, with the Saccharomyces Genome Database

[Cherry et al., 1998] used as the corpus to estimate term frequencies. Functional

similarity values were averaged across five expression correlation intervals. Signifi-

cant correlation was found between GO-based similarity and gene expression for all

three approaches and for all three aspects of the GO, but as for Lord, none of the

approaches outperformed the others.

Similar experiments, using the same semantic similarity approaches but MAX

functional similarity and also considering correlation with gene expression, were

carried out by Sevilla et al. [2005]. This group used data from mouse gene expression

experiments. Unlike any of the previous groups, they concluded that the Resnik

approach significantly outperformed both Lin and Jiang. This interpretation was

given with the justification that the latter two are relative measures, which may give

misleading results if the gene product annotations are too general and do not exploit

the full depth of knowledge available in the GO.

In both of these, as well as any subsequent gene expression-based studies, expres-

sion correlation values were averaged across intervals of semantic similarity. Only

Sevilla et al. [2005] commented on the pair-by-pair results, which were found to show

poor correlation.

Couto et al. [2005] investigated the relationship between semantic similarity and

protein families, using UniProt as corpus and the same semantic similarity measures

as Lord, but BMA functional similarity, as well as adding their own GraSM ancestor

choice. They found a good degree of correlation, with Jiang’s method performing

strongest in their measurements, and Lin’s approach mostly outperforming Resnik.

They also found that GraSM outperformed the single ancestor approach.

Schlicker et al. [2006] included both sequence similarity and family similarity in

their evaluation and concluded that their simRel measure outperforms Resnik and

Lin.

Other forms of similarity used to date include protein-protein interactions and

clustering with human judgement. The latter was used by Wang et al. [2007] to

validate their hybrid semantic similarity approach. They used a set of manually cu-

rated pathways from the SGD and based on each pathway, stipulated which protein
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pairs should be more or less similar than others, then compared this to the similarity

calculated based on their approach and on Resnik’s approach, and the hierarchical

clusterings produced for each of these sets of similarity values. Their conclusion

was that their own measure was more consistent with the human perspective than

Resnik’s.

Guo et al. [2006] used protein interactions derived from human regulatory path-

ways in KEGG [Kanehisa and Goto, 2000] to compare two graph-based functional

similarity measures (simUI and simLP) and three IC-based semantic similarity mea-

sures (Resnik, Lin, Jiang) with MAX functional similarity. They used receiver op-

erating characteristics (ROC) analysis [Fawcett, 2006] (see Section 3.2.1 for more

details) to evaluate performance and found that Resnik’s measure once again per-

formed best.

In order to address the difficulty of finding a gold standard for evaluating func-

tional similarity, Xu et al. [2008] used both protein-protein interaction and gene

expression data to evaluate the performance of a number of measures, including

those by Schlicker et al., Tao et al. and Wang et al., as well as Resnik’s measure

with MAX and AVG. They used ROC curves on a dataset of protein-protein inter-

actions in yeast to evaluate the performance of the different measures and calculated

the correlation between gene expression and functional similarity based on Sevilla

et al.’s approach of averaging across set intervals. In both comparisons, the MAX

approach for Resnik outperformed the other approaches.

2.5 Applications of semantic and functional simi-

larity

Unlike the studies described in the previous section, where the primary goal of the

work is the evaluation of semantic and functional similarity measures against some

other form of biological similarity, the majority of work involving semantic and func-

tional similarity uses these approaches as tools to address biological questions. The

most common areas of application include gene expression analysis, where functional

similarity has been used for missing value estimation and data classification using

a priori knowledge, prediction and evaluation of protein-protein interactions, and

prediction of gene function, to name but a few. There are now too many different

applications of semantic and functional similarity to give a comprehensive overview,

so only the most relevant examples are discussed here.

By far the most common application of functional similarity is the analysis of
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gene expression data. Functional similarity is not the only approach used to char-

acterise clusters derived from expression similarity with functional annotation, but

it is becoming increasingly common. In particular, the inclusion of existing knowl-

edge in the actual clustering algorithm to improve its accuracy is now a ubiquitous

practice. It has been suggested that some caution may be advised with this type of

approach, in particular in organisms where functional annotation is not comprehen-

sive or of poor quality, in which case independent validation of clustering results with

functional annotation would be more appropriate than its inclusion in the results

generation [Romero-Zaliz et al., 2008].

One of the first clustering algorithms to incorporate a priori knowledge in the

form of functional annotation and using functional similarity was that by Speer

et al. [2004], who proposed a memetic co-clustering algorithm. Subsequent works

focus primarily on different types of clustering algorithms and different forms of se-

mantic and functional similarity. They include efforts by Brameier and Wiuf [2007]

(SOM-based co-clustering approach), Ovaska et al. [2008] (semantic similarity-based

combination of expression data and GO annotations using hierarchical clustering and

heat map visualisation), Dotan-Cohen et al. [2009] (integration of semantic similar-

ity into a hierarchical clustering algorithm), Schön et al. [2010] (optimisation with

semantic similarity of the classification of gene pairs based on the difference in their

expression values), Kustra and Zagdanski [2010] (combination of expression data and

GO-derived information to improve clustering) and Kang et al. [2010] (SICAGO, a

SemI-supervised Clustering Analysis using semantic distance between gene pairs in

Gene Ontology). Most recently, Azuaje et al. [2011] applied their approach that inte-

grates gene expression and functional knowledge in order to identify new treatment

responses of endothelial progenitor cells.

The incorporation of prior knowledge into expression clustering algorithms is

however not the only use of functional similarity in gene expression. Both Tuikkala

et al. [2006] and Pourhashem et al. [2010] proposed approaches that use semantic

similarity to aid missing value estimation. The former incorporated semantic sim-

ilarity with a k-nearest neighbour algorithm, while the latter applied it to fuzzy

clustering.

Efforts using semantic and functional similarity to assess the validity or func-

tional coherence of clusters generated by traditional techniques were proposed by

Bolshakova et al. [2005] (cluster validity assessment), Chagoyen et al. [2008] (protein

set coherence) and Richards et al. [2010] (functional coherence of gene sets). The

latter included an unusual use of information content in that they define the dis-

tance between parent-child GO terms as the difference of their respective information
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contents.

Further applications of semantic similarity in gene expression analysis include

the construction of gene regulatory networks using a combination of expression data

and functional annotation by Jing et al. [2010] and Papachristoudis et al. [2010]’s

combination of semantic and statistical knowledge to improve marker gene selection

in microarray experiments. Wolting et al. [2006] proposed an approach to analyse

sets of proteins using functional similarity-based clustering.

Another area in which functional similarity is now commonly applied is the

study of protein-protein interactions (PPIs) and domain-domain interactions (DDIs).

Ramı́rez et al. [2007] proposed to assess the quality and potential bias of different

PPI datasets using various parameters including functional similarity, while Schlicker

et al. [2007a] analysed predicted and experimental DDIs and PPIs to assess the qual-

ity of confidence ranking of predictions and also derived confidence score thresholds

to class predictions as low or high quality. Jain and Bader [2010]’s TCSS (Topo-

logical Clustering Semantic Similarity) approach also uses GO for PPI confidence

assessment and Pandey et al. [2010] investigate the relationship between functional

coherence and topological proximity in PPI and DDI networks. An approach that

uses prior knowledge to mine PPI networks to identify functional modules was pro-

posed by Jing and Ng [2010]. Wang et al. [2010b] used a semantic similarity-based

framework for the analysis of protein-protein interaction networks. Dotan-Cohen

et al. [2009] analysed PPIs, co-expression and genetic interactions to derive patterns

of interactions between biological processes and improve both the coverage and the

accuracy of protein function predictions.

In fact, functional predictions represent a further area in which functional sim-

ilarity has been applied more recently, as the quality of functional annotation has

improved. Louie et al. [2009] created a statistical model of protein sequence simi-

larity and function similarity based on experimentally validated functions to predict

functional similarity between two proteins based on their sequence similarity, while

Altenhoff and Dessimoz [2009] used functional and phylogenetic measures to assess

the quality of ortholog inference. Hawkins et al. [2010] proposed the construction of

functional similarity networks to get high-confidence function predictions and Tedder

et al. [2010] tested an approach for gene function prediction using semantic similar-

ity clustering by k-nearest neighbour and enrichment analysis. Fontana et al. [2009]

proposed ARGOT (Annotation Retrieval of Gene Ontology Terms), an approach for

functional annotation inference of protein sequences that combines the clustering of

GO terms based on semantic similarity with a weighting scheme based on shared

biological features with the sequence to be annotated. Also prediction-related but
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for different entities, Roubelakis et al. [2009] incorporated functional analysis in a

tool for miRNA target prediction.

However not all uses of functional similarity are limited to these three large

areas. Cao et al. [2004] integrated semantic similarity in a semantic search algorithm

linking heterogeneous biological databases. In their MedSim algorithm, Schlicker

et al. [2010] proposed a novel approach for ranking candidate genes for a particular

disease based on functional comparisons in GO and other ontologies. Hakes et al.

[2007] used functional similarity as one of several parameters to compare pairs of gene

duplicates from small-scale and large-scale gene duplications to determine whether

there are quantifiable differences between the two types of duplication. Similarly, Li

et al. [2010] studied the functional redundancy between duplicated genes in yeast

using functional similarity approaches.

2.5.1 Existing tools

There are a number of tools available that calculate semantic similarity between

GO terms or functional similarity between gene products. Some of these tools also

make use of the similarity scores they produce as part of a larger analysis goal. The

majority of available tools are web-based, although a couple are stand-alone tools

or add-on packages for existing tool suites such as R [R Development Core Team,

2010].

The first publicly available tool for calculating semantic similarity between GO

terms and functional similarity between genes was FuSSiMeg5 (FUnctional Seman-

tic SImilarity MEasure between Gene-products), a web-based tool by Couto et al.

[2003]. This very basic tool allowed calculation of the similarity between only two

terms or genes, using the measure by Resnik, Lin or Jiang, with single ancestor or

GraSM. The tool is no longer supported and has been replaced by the more sophis-

ticated, also web-based ProteInOn6 (PROTEin INteractionas and ONtology) [Faria

et al., 2007]. This new tool not only includes two further measures, simUI and

simGIC, but also allows the exclusion of electronic annotations, computes the simi-

larities between up to 1000 elements and provides retrieval functionality for common

ancestors, interacting proteins and assigned annotations.

An even more versatile web-based tool is FunSimMat7 (FUNctional SIMilarity

MATrix) by Schlicker and Albrecht [2007]. In addition to providing even more se-

mantic and functional similarity measures than ProteInOn, FunSimMat has a range

5http://xldb.fc.ul.pt/biotools/rebil/ssm/, last accessed 26/02/2011
6http://xldb.di.fc.ul.pt/biotools/proteinon/, last accessed 12/03/2011
7http://funsimmat.bioinf.mpi-inf.mpg.de/index.php, last accessed 29/04/2011
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of comparison options between individual and lists of GO terms and genes. More re-

cently, the tool also provides an option for ranking and comparing candidate disease

genes to OMIM [McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins

University (Baltimore, MD) and National Center for Biotechnology Information, Na-

tional Library of Medicine (Bethesda, MD), 2011] diseases [Schlicker and Albrecht,

2010; Schlicker et al., 2010]. The authors of FunSimMat also maintain another tool,

GOTaxExplorer8 [Schlicker et al., 2007b], a part-web-based, part-standalone tool

for selecting and comparing lists of GO terms, genes and Pfam [Finn et al., 2010]

families.

Other web-based tools include Du et al. [2009]’s G-Sesame, which provides vari-

ous options for semantic and functional comparisons of pairs and lists of GO terms

and genes, as well as a knowledge discovery module for clustering functionally sim-

ilar genes. GOToolBox by Martin et al. [2004] is a more general-purpose GO-based

analysis tool for gene datasets, which only provides an option for functional similar-

ity calculations based on the Czekanowski-Dice formula (see Section 2.3.1) and does

not implement any semantic similarity approaches.

Not all tools for calculating semantic and functional similarity are web-based.

There are, for example, a number of packages for the statistical computation envi-

ronment R [R Development Core Team, 2010]. They include SemSim [Guo, 2007],

csbl.go [Ovaska et al., 2008] and GOSemSim [Yu et al., 2010]. All three of these

packages implement a number of semantic and functional similarity measures in-

cluding, in all cases, Resnik, Lin, Jiang and Schlicker, as well as various others, with

csbl.go providing the most approaches. All three packages also provide some form

of similarity-based clustering. SimTrek by Wang et al. [2010a] on the other hand is

a Cytoscape [Shannon et al., 2003] plug-in that allows the calculation and display

of similarity between GO terms or genes for several different measures.

In addition to these tools that calculate the semantic or functional similarity

between GO terms or gene products and then make that similarity available to the

user, there are also tools that make use of these measure without explicitly providing

pair-wise similarity values. Examples of these include DAVID [Huang et al., 2007],

GOmir [Roubelakis et al., 2009] and SICAGO (SemI-supervised Clustering Analysis

using GO) [Kang et al., 2010]. The first of these is a web-based resource for the

functional analysis of gene lists. It makes use of kappa-statistics and vector-based

similarity to functionally cluster either a list of genes or the functional terms anno-

tated to a list of genes. SICAGO is a stand-alone piece of software for clustering gene

pairs based on the correlation between GO semantic distance and gene expression

8http://gotax.bioinf.mpi-inf.mpg.de/index.php, last accessed 29/04/2011
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similarity, for a number of semantic similarity measures. GOmir, also a stand-alone

tool, incorporates functional analysis in a process to predict or verify targets for

miRNA interactions.

2.6 Summary

Semantic and functional similarity approaches, both those designed specifically for

use with the Gene Ontology and those proposed in a different context, are abundant

and cover a wide range of applications. There is currently no consensus as to which

measure is “the best”. Some attempts at comparative analysis have shown Resnik’s

measure to perform better than other information content approaches in a number

of contexts. Information content-based measures, despite their obvious drawback of

being dependent on an underlying body of knowledge, are very popular and probably

the most commonly used. Applications of semantic and functional similarity have

been proposed in a variety of bioinformatics contexts and novel applications are

published on a regular basis.

In the next chapter, the selection of approaches to be used for the rest of this

thesis will be discussed. A novel algorithm, FuSiGroups, using both semantic and

functional similarity to group GO terms and gene products into groups reflecting

distinct functional aspects, will be presented. An evaluation strategy for the dif-

ferent parts of the project will be proposed and a few important implementation

consideration will be discussed.
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Chapter 3

The study domain

The goal of this study is two-fold. First of all, a number of carefully selected semantic

and functional similarity approaches are compared to each other, using different pa-

rameters, in order to evaluate their respective performances and determine whether

one or more approaches perform better than others, and under which conditions.

Secondly, a newly developed grouping algorithm is tested using the best semantic

and functional similarity approaches and associated parameters.

This chapter consists of three parts. In the first section, the reasons for the

selection of the different semantic and functional similarity measures are discussed.

Other considerations, such as annotation types and dataset are also discussed. Fi-

nally, the new grouping algorithm is introduced. The second section details the

evaluation strategy for the two aspects listed above. The third section describes the

implementation of the algorithm and a number of experimental considerations such

as appropriate database formats and practicalities to be considered in the dataset

selection.

3.1 Study design

3.1.1 Semantic similarity approaches

In Chapter 2, a wide selection of different semantic and functional similarity ap-

proaches used in relation to the GO were discussed to provide an overview of the

current state of the area. Experimentally comparing all of these approaches is be-

yond the scope of the current research. Therefore it was necessary to make a selection

among the approaches identified. The starting point for the selection was a paper by

Lord et al. [2003a], who were the first to propose the use of semantic similarity ap-

proaches in the context of the GO. They used three semantic similarity approaches,
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by Resnik [1995], Lin [1998] and Jiang and Conrath [1997] for this role. All three

approaches had originally been developed for use in a natural language context.

All three approaches are based on the concept of information content (IC), i.e.

they use annotation frequencies to determine how informative each term in an ontol-

ogy is. The similarity between terms is computed based on different combinations of

the IC of common ancestors and IC of the terms themselves. As discussed in Section

2.2.1, IC-based approaches have a major disadvantage, in that similarity results are

dependent on the annotation data used; using a different corpus of annotation data,

such as an updated version, gives different results. This makes it difficult to replicate

results or preserve consistency across different data sources.

In addition, each of the three approaches studied by Lord et al. has individual

disadvantages, as discussed in Section 2.2.1. Resnik’s approach reflects the distance

between the common ancestor of two terms and the root, i.e. the ancestor’s position

in the hierarchy, but not the distance between the terms and their ancestor. Lin’s

method on the other hand reflects the distance between the terms and their ancestor

but not the relative position of any of these in the ontology, i.e. terms close to the

root can have the same level of similarity as leaf terms. The same problem applies

to the measure by Jiang and Conrath. Both drawbacks were addressed by Schlicker

et al. [2006], who combined Resnik’s and Lin’s measures in a new measure, simrel.

The paper by Lord et al. was used as the starting point for the selection of se-

mantic similarity measures, both because it was the first paper to address semantic

similarity in the GO and because most subsequently developed semantic similarity

approaches are evaluated against one or all of the approaches discussed by Lord.

Thus these approaches appear to be the obvious choices for use in this study. How-

ever, it was decided to exclude Jiang and Conrath from the study, as it has the

same drawback as Lin, which meant it would not add a new dimension to the work.

Furthermore, the drawbacks of both the Lin and Resnik methods are addressed by

Schlicker et al., but the Jiang and Conrath method was not mentioned in that study.

It was therefore deemed most sensible to study Resnik, Lin and Schlicker’s methods

as all of these approaches are related but exclude the Jiang and Conrath method.

Unlike Lin’s and Schlicker’s approaches, which are normalised measures and

therefore give results between 0 and 1, Resnik’s measure is bounded between 0 and

ln(N)1, where N is the size of the corpus. In order to make results based on Resnik

more comparable, it is possible to normalise each result by dividing it by maxIC,

the maximum possible information content for a given analysis [Couto et al., 2007].

1ln(N) = ln( 1

N

−1
) = −ln( 1

N
)
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In practical terms, maxIC is derived for a hypothetical term with an occurrence

frequency of 1.

All these approaches use the most informative common ancestor (MICA) of two

terms to calculate their similarity. Couto et al. [2005] argue that using only the

MICA ignores a lot of the informative content of the ontological structure and they

proposed “GraSM”, an algorithm that utilises all the common disjunctive ancestors

of a pair of terms, i.e. all the ancestors that can be reached by at least one distinct

path. Since this algorithm can be applied to any of the three chosen approaches, it

was decided to incorporate this alternative in the study.

Due to the disadvantage of using information content based measures, discussed

in Section 2.2.1, it was decided that the study should include one non-IC measure.

The precision measure by Herrmann et al. [2009], the only non-IC node-based ap-

proach found to be used with the GO, was not published until September 2009,

over a year after the selection of the measures to be included in this study. Poten-

tial non-IC approaches therefore had to be either edge-based or hybrid. The main

disadvantage of edge-based approaches, that they treat all edges as the same and

also treat all terms on a given depth level as equally informative, was considered

too great a drawback to select a purely edge-based approach. A hybrid measure,

using information from both nodes and edges, was therefore the best choice. As the

approach by Othman et al. [2008] uses IC as part of a hybrid approach, its use would

not address the stated aim of including a non-IC measure. The remaining choice

was the approach proposed by Wang et al. [2007], which was therefore selected.

As discussed in Section 2.2.3, Wang’s approach assigns each GO term a semantic

value that is an aggregate of the contributions of all the GO terms and the edges

between them in the induced subgraph from a term to the ontology root. The

edges that connect the terms are weighted according to their type. While Wang’s

measure does not suffer from a dependency on corpus data, the empirical nature of

the edge weights may potentially be considered a disadvantage. It should also be

noted that Wang’s approach suffers from a similar drawback as Lin’s in that very

similar shallow terms can have high semantic similarity despite potentially being

quite uninformative.

3.1.2 Functional similarity approaches

Semantic similarity measures are used to quantify the relationship between two

ontology terms. Gene products are usually annotated with multiple terms from

each GO sub-ontology, in order to capture the multiple facets of their function. It is
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therefore necessary to have strategies which evaluate the overall functional similarity

of two gene products based on the set of GO terms annotated to them. As discussed

in Section 2.3, functional similarity approaches can address these sets of GO terms

as a whole (group-wise approaches) or as individual terms (pair-wise approaches).

Since group-wise approaches do not require the semantic similarity between GO term

pairs and an important aspect of this study is the comparison of different semantic

similarity measures, group-wise approaches are not relevant here. There are three

pair-wise approaches to be considered.

The most obvious approach is to simply average the semantic similarities of all

possible GO term pairs in the two annotation sets [Lord et al., 2003a]. Although the

simplest, the average (AVG), or all-with-all, approach is also the least discriminating

as it treats all term pairs equally. This means that two gene products annotated with

the same two terms A and B, which characterise two very different functional aspects

and therefore have low semantic similarity, would have at best an average level of

functional similarity as the similarity calculation would be skewed by sim(A,B).

This would lead to two gene products being ranked as less similar than they really

are. Two isoenzymes, for example, that are both active in two distinct cellular

compartments, such as Golgi apparatus and mitochondria, would have identical

annotations but would have at best average similarity as the semantic similarity

between the two CC terms would be very low.

Another approach, which avoids the obvious problem of the all-with-all approach,

is to consider only the GO term pair with the largest similarity [Sevilla et al., 2005].

While this approach, MAX, is useful for identifying the most important shared

aspect of a pair of gene products, it does also have its disadvantages. Firstly, by

considering only the most similar aspect shared by two gene products, it disregards

all their other annotations, regardless of how similar or different they might be. It

can also result in two gene products being ranked as more similar than they really

are, if they are both annotated with the same or two highly similar uninformative GO

terms, e.g. two gene products annotated with the term “cytoplasm” (GO:0005737,

annotated to more than 100000 gene products) would have very high similarity with

respect to the CC ontology without necessarily having any common function.

The third pair-wise approach, the best match average (BMA) approach [Couto

et al., 2005; Azuaje et al., 2005], addresses the drawbacks of both AVG and MAX.

BMA considers the pair with the highest similarity for each subset (goA, GOB),

where goA is a GO term annotated to gene product A and GOB is the set of GO

term annotated to gene product B and vice versa, then averages these maximum

similarities. The selection of the GO term pair with the highest similarity for each
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subset addresses the disadvantage of AVG by disregarding pairs of GO terms which

are completely unrelated if there is a pair with a higher similarity involving one

of the two terms. The selection and averaging of multiple similarities addresses

MAX’s issue of disregarding two gene products’ full annotation sets in favour of a

single term pair, thus preserving the information richness of the annotation and not

unduly prioritising a single term pair. As discussed in Section 2.3.2, there are two

ways of calculating BMA, namely by either first averaging the similarities for each

direction (A → B and B → A), then averaging the two resulting scores [Couto

et al., 2005], or averaging all the scores directly [Azuaje et al., 2005]. Only the first

approach will be considered in this work, as it respects the varying sizes of gene

product annotations.

Out of these three pair-wise approaches, AVG is probably the least appropriate.

MAX on the other hand, despite its obvious disadvantage, can be very useful if the

goal of a study is to identify gene products which have a given aspect in common, in

order to then study their unrelated aspects or discover if other aspects of similarity

can be inferred. For this reason, the MAX approach will be included in the present

study as well as the BMA approach, which is the most appropriate to characterise

the overall functional similarity between two gene products.

3.1.3 Ontological aspects

In addition to the various semantic and functional similarity approaches available,

there are a number of other considerations that need to be taken into account in a

study of semantic similarity. One of these considerations is which ontological aspect

or aspects to use. The GO consists of three orthogonal ontologies, molecular func-

tion (MF), biological process (BP) and cellular compartment (CC), and the majority

of gene products are annotated with at least one term from each sub-ontology. Most

semantic similarity studies only consider one of the three ontologies or consider all

three but as three separate scores. If all three scores are considered together, the

overall functional similarity is usually established using one of the functional simi-

larity approaches discussed above, unless a group-wise approach is used. Regardless

of which functional similarity measure is used and its individual drawbacks, any of

these approaches, if applied equally to all three GO aspects, can lead to a misleading

overall functional similarity. Two gene products might, for example, have very high

similarity in the MF ontology, as they share a common function, but be involved

in different biological processes in different cellular compartments, thus giving an

overall average to low functional similarity score. In order to address this, Schlicker
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et al. [2006] developed a combination measure, funSim (see Section 2.3.3), which

averages the squares of the three functional aspects, or any combination of two

aspects. This way, the effect of lower scores is reduced compared to higher scores.

Shortly after the development of funSim, Schlicker et al. [2007b] also developed

another approach, called rFunSim, which is the square root of funSim. Their jus-

tification for this development is that funSim can generate counter-intuitively low

results. They also demonstrated that the calibration error, the absolute difference

between predicted confidence and actual reliability [Sing et al., 2005], is smaller for

the rFunSim score than for funSim. This means that simply taking the square

root of funSim improves the performance of the score.

In this study, the performance of individual ontology scores will be compared to

the rFunSim score to see if one approach performs better than the others.

3.1.4 Evidence codes

Another consideration when studying semantic similarity approaches is the nature

of the annotation. As discussed in Section 2.1.2, each GO annotation is associated

with an evidence code in order to describe how the annotation was derived. The

GO guidance notes2 state that no evidence code can be used to assess the quality of

the annotation, as some methods of classification within an evidence code category

produce more accurate or specific annotations than others. Nonetheless, some re-

searchers prefer to use only specific evidence codes, such as “TAS” (Traceable Author

Statement) or “IDA” (Inferred from Direct Assay), while others exclude certain an-

notations, particularly electronic annotations (evidence code “IEA” - Inferred from

Electronic Annotation). On one hand, electronic annotation is considered to be less

reliable than manually curated annotation but on the other hand, it accounts for

over 50% of all annotations in the GO (1.6 million electronic annotations out of 2.6

million total annotations in GO release 072010), although only about 40% of the

species in the GO have any electronic annotation. Even though ignoring electronic

annotation may increase the reliability of the annotation, it considerably reduces

the richness of the annotation for certain species.

The dataset exploited in the current study consists entirely of yeast (S. cere-

visiae) genes (see Section 3.1.5), which in the GO release 072010 has 41678 elec-

tronic annotations out of a total of 89841 annotations. In yeast, all non-electronic

annotations are derived in one of four possible ways:

• Mapping of SWISS-Prot keywords. SwissProt keywords are mapped manually

2http://www.geneontology.org/GO.evidence.shtml, accessed 17/08/2010
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to GO terms in a project started by MGI and now maintained by the GOA

team at EBI [Camon et al., 2003]. Any database entry that has one or more

SWISS-Prot keywords assigned to it can therefore be annotated with GO terms

via the mapping file. Annotation with SwissProt keywords is done manually

and is generally considered to be of high quality.3

• Mapping of InterPro domains. InterPro domains are mapped manually to GO

terms by the InterPro team at EBI [Camon et al., 2003]. The mapping is

then used to automatically annotate any database entry associated with one

or more InterPro domains with the corresponding GO terms.4

• Mapping based on Swiss-Prot Subcellular Location vocabulary annotation.

A subcellular location vocabulary developed by the UniProt consortium was

mapped manually to GO terms by the GOA curators at EBI. Any UniProtKB

entry with SPSL annotation can thus be annotated with the appropriate GO

terms.5

• Mapping using Enzyme Commission identifiers. Any database entry that has

an EC number assigned can be annotated with a corresponding GO term

[Camon et al., 2003], which is determined using the EC cross-references in the

GO molecular function ontology, as described in Hill et al. [2001].6

With the exception of the fourth approach, each of these is based on a manually

curated mapping file, so yeast electronic annotation can reasonably be expected to

have a similar level of accuracy as any of the non-electronic annotations. Of course,

this does not necessarily apply to other species. In the present study however, the

use of both full and non-electronic annotation datasets can be justified, in order to

compare the performances of semantic and functional similarity methods for either

dataset.

3http://www.yeastgenome.org/cgi-bin/reference/reference.pl?dbid=S000124038, accessed
17/08/2010

4http://www.yeastgenome.org/cgi-bin/reference/reference.pl?dbid=S000124036, accessed
17/08/2010

5http://www.yeastgenome.org/cgi-bin/reference/reference.pl?dbid=S000125578, accessed
17/08/2010

6http://www.yeastgenome.org/cgi-bin/reference/reference.pl?dbid=S000124037, accessed
17/08/2010
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3.1.5 The dataset

Choice of organism

The fungus Saccharomyces cerevisiae (or “Baker’s yeast”) is a species of budding

yeast, a family of simple unicellular eukaryotic organisms. It can be obtained cheaply

in large quantities, is non-pathogenic and easy to keep in a laboratory and has a

short generation time (doubling takes 1.5 - 2 hours at 30 ◦C). All of these facts

make yeast a perfect model organism for the study of eukaryotic genomes. The

S.cerevisiae genome was the first eukaryotic genome to be fully sequenced, com-

pletion of sequencing having been announced on 24 April 1996 [National Human

Genome Research Institute, 1996; Dujon, 1996].

The yeast genome consists of about 12.4 million base pairs, distributed across 16

chromosomes. This genome is around three times larger than the E. coli genome (4.6

million base pairs) and 250 times smaller than the human genome (3.4 billion base

pairs). Yet despite this large size difference between the human and yeast genomes

in terms of base pairs, the difference in number of genes is only about 3-fold, with

the yeast genome containing around 6700 protein-coding genes7 compared to around

21200 in humans8.

The much smaller gene number to genome size ratio in yeast is due to its more

economical genome organisation. There is very little non-coding DNA, with only

239 known introns. 4-5% of yeast genes are discontinuous, the rest consist of unin-

terrupted sequences of coding DNA. There are also very few genome-wide repeats,

accounting for only 3.4% of the genome. A comparison of genome features between

yeast and human is given in Table 3.1.

The yeast genome project lists 6569 predicted Open Reading Frames (ORFs),

which include “verified” and “uncharacterised” as well as “dubious” frames. Of

these, 5749 (verified and uncharacterised only) are currently classified to be ORFs

for protein encoding genes whose expression has been confirmed.

As the yeast genome is the longest studied eukaryotic genome, a wealth of anno-

tation data is available for it. This makes yeast an excellent candidate genome for

a study of gene product annotation.

The Eisen dataset

In 1998, Michael B. Eisen and colleagues published a paper entitled “Cluster analysis

and display of genome-wide expression patterns” [Eisen et al., 1998]. In this paper,

7Genome assembly EF 2, Feb 2010
8Genome assembly GRCh37, Feb 2009
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Yeast Human
Genome size 12.4M bp 3.4G bp
No. of chromosomes (diploid) 32 46
No. of genes 6700 21200
No. of introns 239 300000
Genome-wide repeats 3.4% of genome 44% of genome

Table 3.1: Comparison of S. cerevisiae and human genome features

the authors proposed to use standard statistical algorithms to cluster the results of

genome-wide microarray experiments, in order to discover gene expression patterns.

In order to demonstrate their approach, they used two distinct datasets (one human,

one yeast).

The S.cerevisiae dataset in question became widely known as the “Eisen dataset”

and has since been used by many researchers, including several of the works cited in

Chapter 2, including Wang et al. [2004]; Yu et al. [2007]; Xu et al. [2008]; Jing et al.

[2010]. As a result, a wealth or analysis data for the Eisen dataset is available. This

makes it a particularly suitable dataset for evaluating novel functional analysis ap-

proaches as the original authors’ findings have been re-evaluated and thus validated

many times, as well as improved on with advances in existing knowledge.

The Eisen dataset is actually a collection of four studies on diauxic shift [DeRisi

et al., 1997], mitotic cell division cycle [Spellman et al., 1998], sporulation [Chu

et al., 1998] and temperature shock processes (unpublished results). These expres-

sion studies covered all ORFs available at the time. The Eisen dataset itself consists

of 2466 ORFs, which is all the ORFs for which function annotations were available

in 1998.

Although a much larger proportion of the yeast genome is now functionally char-

acterised, it is still desirable to focus on the 2466 ORFs analysed by Eisen et al.

as these represent the best-studied genes in the yeast genome. It also allows a full

comparison of the results obtained in this project with the results of Eisen et al.’s

study and any other subsequent studies on the same dataset.

3.1.6 The grouping algorithm

We propose FuSiGroups, a novel approach to group functionally similar gene prod-

ucts into groups based on semantically similar GO terms. Before describing the

actual algorithm, it is necessary to define a number of concepts:
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Definitions

Definition 1. Group definition - a set of related GO terms that represent the func-

tional aspect of the group.

Definition 2. Group content - a set of related gene products that share the functional

aspect represented by the group definition.

Definition 3. Group name - the lowest common ancestor of all the GO terms in

the group definition.

Definition 4. Semantic threshold (ST) - an empirically determined semantic sim-

ilarity value which represents the minimum level of similarity any two GO terms

must have in order to occur in the same group definition.

Definition 5. Functional threshold (FT) - an empirically determined functional

similarity value which represents the minimum level of similarity any two gene prod-

ucts must have in order to qualify for membership in the same group content.

Definition 6. Meaningful group - a group that contains 4 or more gene products.

Let n be the number of gene products g in groupContentG of group G. G is a

meaningful group if n ≥ 4.

Algorithm description

The GO terms form the group definition and represent a set of concepts that the

gene products in the group have in common. The gene products represent the group

content. Each group has a group name, which is an ancestor term of all the GO

terms in the definition, and which characterises the functional aspect represented by

the group.

Both group definition and group content are based on the concept of maximally

complete graphs or cliques [Valiente, 2002], i.e. all GO terms of the definition and

gene products of the content represent nodes that have to be connected to all other

nodes in the group by an edge. In this context, an edge is defined as the semantic

similarity between two GO terms being equal to or greater than a given Semantic

Threshold (ST), or the functional similarity between two gene products being equal

to or greater than a given Functional Threshold (FT).

The rationale for basing the groups on a clique model is that it allows elements to

be in multiple groups at the same time, provided they are connected to all elements

in each group. This is different from the traditional clustering approaches used

in bioinformatics, which are more related to connected components, i.e. models
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where each element of a group does not have to be directly related to all other

elements but can be intransitively related via other elements, i.e. by paths of two or

more edges. In clustering approaches, each element is usually only allowed to be in

exactly one cluster at a time. This is generally sufficient in applications such as the

clustering of gene products based on expression profiles, as this type of data only

considers a single dimension of a gene product’s function. Functional similarity on

the other hand is by its nature multidimensional, as it characterises the multiple

different functions that most gene products fulfil, in the different processes they

are involved in. Most gene products can have elements of functional similarity with

different non-overlapping sets of other gene products. Grouping gene products based

on these multiple facets of their functions allows for better understanding of these

functions and the relationships between gene products.

An exception to the single cluster membership is fuzzy clustering, a fuzzy logic-

based type of approach which assigns each element a cluster membership indicating

the similarity of that element to each cluster, so that each element can belong to

multiple clusters [Bezdek, 1981]. Although not as widely used in bioinformatics as

hierarchical and k-means clustering, fuzzy clustering approaches have been shown

to perform well and even better than traditional clustering approaches [Gasch and

Eisen, 2002; Kim and Choi, 2005; Do and Choi, 2007]. However, fuzzy clustering

algorithms such as fuzzy c-means [Bezdek, 1981] have the disadvantage that the

number of clusters in the solution needs to be pre-specified before the algorithm

is run. This is undesirable in a knowledge-discovery process as pre-specifying the

number of solution clusters forces the user to form preconceptions about the data

and its underlying structure and can prevent a full investigation.

The FuSiGroups algorithm addresses some of the drawbacks of traditional clus-

tering approaches when applied to functional similarity data. Although the algo-

rithm makes use of the clique model, it does not include any existing algorithms

addressing the clique problem as these are generally NP-complete and therefore

costly to run in terms of time and computational resources [Valiente, 2002].

Conceptual model

The grouping process is performed as follows: semantic similarity between all pos-

sible pairs of GO terms annotated to a given set of gene products is calculated

according to a given approach, e.g. Lin, Resnik or Schlicker. Based on these seman-

tic similarities, functional similarity between all pairs of gene products in the set is

calculated using one of BMA, MAX or AVG.
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The first stage of the grouping process creates the group definition. For each

available GO term, a group is created and GO terms with semantic similarity to the

central term above the ST are added to the group. Then the connections between

all the GO terms in the group are checked against the ST and any GO terms that

do not conform to the maximally complete graph rule (i.e. have similarity smaller

than ST to some of the other terms) are removed from the group, starting with the

least connected GO term. If there is more than one term with the highest level of

disconnectedness, the first term in the list is removed without consideration of other

criteria, such as term depth or average similarity to other terms in group.

When all the groups have been created, any groups with definitions that are

subsets of other group definitions are removed to avoid redundancy. Finally, each

group is named with the lowest common ancestor (LCA) of the GO terms that make

up its definition. We differentiate here between a set of terms’ LCA and their MICA.

Although in most cases LCA and MICA are going to be the same, the LCA is the

term in the set of common ancestors with the highest distance to the root rather

than the highest information content. In the case of multiple ancestors with the

same distance, one is chosen at random. The naming of the group using the LCA is

for simplicity of processing by the user as it shows the overall ontological aspect of

the group. The naming completes the first stage of the grouping process.

The second stage of the grouping process creates the group content. Each gene

product in the list to be analysed is added to any group that has a term annotated

to this gene product in its definition. When all gene products have been processed,

each group’s content is checked for violation of the maximally complete graph rule

against the FT. Gene products that do not conform to the rule are removed from the

group, starting with the least connected gene product, until a maximally complete

graph is reached. Again, removal of a term in the case of more than one term with

the same highest level of disconnectedness is done by removing the first term in the

list of equally disconnected terms.

Due to the nature of the grouping process, not all gene products in a given

list are necessarily included in at least one group. In addition, many groups may

only contain one or two gene products. These are considered to be non-informative

groups. We define an informative or meaningful group as a group containing at least

four gene products (see Definition 6). This means that groups containing exactly

one, two or three gene products will be excluded from the analysis. The exclusion of

groups with only one gene product is an obvious step as the purpose of FuSiGroups

is to investigate the functional relationships between gene products and a single-gene

product group does not show any functional relationships.
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The cut-off of four gene products was chosen because it was considered unlikely

for groups of two or three gene products to reveal any unexpected or novel rela-

tionships not found by other means such as directly looking up functional similarity

scores. In addition, considering the total number of groups generally generated

by the FuSiGroups algorithm (see Table 6.2), it was deemed acceptable to exclude

groups with only two or three gene products in order to simplify the analysis process.

This is particularly valid as it can be reasonably expected that most groups with

only two or three gene products will bring together gene products of very high simi-

larity, such as sub-units of a protein or protein complex, where functional similarity

is known and therefore does not bring novel insights.

This minimum group size is consistent with that defined by Huang et al. [2007],

who stated that in order to be a cluster seed, a gene had to be closely related to at

least three other genes. The same definition is not applied to the group definition,

as groups with only one term in their definition may still group together a set of

interesting gene products.

It should also be noted that groups with one, two or three gene products are

still created by the algorithm and stored in the same way as the other groups.

They are merely excluded from the analysis process because they are considered

uninformative. Should the re-inclusion of these small groups appear of interest at

any point during the course of the analysis, this is of course always possible.

Pseudocode

The pseudocode for the grouping algorithm is given in Table 3.2.
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initialise list allGOTerms

initialise list allGenes

initialise list allGroups

Group definition
FOR ALL t ∈ allGOTerms DO

create group G for t
add G to allGroups

FOR ALL g ∈ allGOTerms− t DO
IF sim(t, g) ≥ ST THEN

add g to groupDefG
END IF

END FOR
WHILE completeness rule ! = TRUE DO

create list{nodes that violate completeness rule with d}
FOR ALL d ∈ groupDefG DO

FOR ALL f ∈ groupDefG DO
IF sim(d, f) < ST THEN

add f to list{nodes that violate completeness rule with d}
END IF

END FOR
END FOR
IFlist{nodes that violate completeness rule with d} is empty THEN
completeness rule = TRUE

END IF
ELSE

remove node with largest number of rule violations
END ELSE

END WHILE
END FOR
FOR ALL G1 ∈ allGroups DO

WHILE ! removeG1 || ! done DO
FOR ALL G2 ∈ allGroups−G1 DO

IF G1 ⊂ G2 THEN
remove G1 from allGroups

removeG1 = TRUE
END IF

END FOR
done = TRUE

END WHILE
END FOR

RETURN allGroups
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Group content
FOR ALL g ∈ allGenes DO

FOR ALL G ∈ allGroups DO
IFt ∈ annotationg && t ∈ groupDefG THEN
add g to groupContentG

END IF
END FOR

END FOR
FOR ALL G ∈ allGroups DO

WHILE completeness rule ! = TRUE DO
FOR ALL g1 ∈ groupContentG DO

FOR ALL g2 ∈ groupContentG DO
IF sim(g1, g2) < FT THEN

add g2 to list{nodes that violate completeness rule with g1}
END IF

END FOR
END FOR
IFlist{nodes that violate completeness rule with d} is empty THEN
completeness rule = TRUE

END IF
ELSE

remove node with largest number of rule violations
END ELSE

END WHILE
END FOR

RETURN allGroups

Table 3.2: Pseudocode for the grouping algorithm

Summary

In this section, the novel FuSiGroups algorithm was introduced. The algorithm first

creates group definitions of GO terms based on their semantic similarity, using a se-

mantic threshold ST to ensure that all terms in a group’s definition are sufficiently

similar to all other terms in the group. Then gene products annotated with the terms

in a group’s definition are added to that group, before the functional similarity be-

tween all pairs of gene products in a group is matched against a functional threshold

FT to make sure that all gene products in that group are related. In the next sec-

tion, the strategy to evaluate the FuSiGroups algorithm is presented, including the

process of how to determine optimal semantic and functional thresholds.
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3.2 Evaluation strategy

3.2.1 Semantic and functional similarity approaches

As discussed in Section 2.4, it is very difficult to evaluate semantic and functional

similarity approaches as there are no established benchmarks. Evaluation against

any other form of biological similarity requires assumptions to be made about func-

tional similarity. For this reason, it is recommended to use multiple standards against

which to evaluate the measures [Xu et al., 2008]. Receiver operating characteristic

(ROC) [Fawcett, 2006] curves have been chosen to determine which semantic and

functional similarity approaches and annotation types are best suited to characterise

the similarity between gene products.

ROC curves

ROC curves show the trade-off between sensitivity (or true positives) and speci-

ficity (or true negatives) of a binary classification system (e.g. true-false) at varying

thresholds of the associated discrimination measure. They can be used to visualise

and evaluate the performance of different classifiers. [Fawcett, 2006] Originally de-

veloped during World War II to improve the identification of enemy radar signals,

ROC curves are now commonly used in signal detection, psychophysics, medical di-

agnostics, machine learning and data mining. [Green and Swets, 1966; Swets, 1988;

Lasko et al., 2005]

In any test involving a discrete classifier (true/false, healthy/diseased, related/unrelated,

etc.), the accuracy of a test in splitting a population into two classes corresponding

to the two discrete results can be measured using the concepts defined in Table

3.3. For the actual ROC curve, sensitivity SN is plotted against false positive rate

1−SP , with each point on the curve representing the TP −FP (true positive-false

positive) trade-off at a given threshold.

An example of the different ROC curves is shown in Figure 3.1. In the case

of a perfect classification measure, the ROC curve would rise in a straight vertical

line from the bottom left to the top left corner, and then go across to the top right

corner in a straight horizontal line (black dotted line in Figure 3.1). The diagonal

(bottom left to top right, blue dashed line in Figure 3.1), also called the “line of

no discrimination”, corresponds to a “random guess” situation, whereas a curve

running below the diagonal would correspond to a “worse than random” method

(yellow dashed-dotted line in Figure 3.1). Curves between the diagonal and perfect

classifications (solid red and green lines in Figure 3.1) are generally considered as
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Name Symbol Definition

True Positive TP correct acceptance

True Negative TN correct rejection

False Positive FP false acceptance

False Negative FN false rejection

Positive dataset P TP + FN

Negative dataset N TN + FP

Sensitivity SN TP
TP+FN

Specificty SP TN
TN+FP

False positive rate 1− SP FP
TN+FP

Accuracy ACC TP+TN
P+N

Table 3.3: Common concepts in ROC curve analysis
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Figure 3.1: Example of different possible ROC curves
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“good”, although quality requirements vary with usage.

While ROC curves are in themselves a great way of visually evaluating the effec-

tiveness of one measure and comparing the results obtained from different measures,

it is usually desirable to have a single index to quantify the performance of each

measure. This is particularly the case if there are only small variations between a

set of curves. A number of such indexes are available for ROC curves. See Swets

[1988]; Lasko et al. [2005]; Fawcett [2006] for details. The most commonly used mea-

sure is the “Area Under the Curve” (AUC) [Hanley and McNeil, 1982]. The AUC

of a classifier represents the likelihood that for a given classifier, a randomly chosen

positive obtains a better rank than a randomly chosen negative. This is equivalent

to the Wilcoxon test of ranks [Hanley and McNeil, 1982].

The AUC of a perfect result is 1, the AUC of the line of no discrimination is

0.5. An AUC of less than 0.5 indicates a failed test. AUCs between 0.5 and 1 are

generally considered to be “good”, with larger AUCs being preferable. As with the

overall interpretation of a ROC curve, the quality of an AUC is dependent on the

context of its use.

In the present analysis, three different types of true positive datasets are used.

They are derived from gene expression data, protein interaction data and phenotype

data, respectively.

Gene expression data

For the gene expression data, the true positive dataset was created by clustering

the centered and normalised Eisen expression data using agglomerative hierarchical

clustering with Pearson’s correlation and average linkage. The resulting tree was

then cut at a very low level (height = 0.1 for a tree with height range [0,1]). Genes

which at that level were clustered together were considered to be very closely related

and therefore, gene pairs were created from these tight clusters. Many of these

clusters contained only two genes, creating obvious pairs. In the few larger clusters,

all distinct combinations of pairs were created. Pairs are non-directional, i.e. (A,B)

= (B,A). Of the resulting 1359 distinct gene pairs, 1260 were randomly selected to

form the positive dataset. The reason for the reduction in size of the dataset was to

introduce an element of random selection into the data.

A true negative dataset of equal size was created by pairing each of the 37

left-most genes in the hierarchical tree with each of the 37 right-most genes in the

tree. It was deemed that the difference in expression levels reflected in the tree was

sufficient at the two extremes of the tree to ensure that any two genes from these
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two ends would not be significantly related from a gene expression standpoint. Of

the resulting 1369 gene pairs, 1260 were again selected randomly to form the true

negative dataset.

Protein interaction data

For the protein interaction data, all available yeast protein interaction data was

downloaded from the SGD FTP site9 (April 2010). The complete dataset was filtered

using the following sequence of criteria:

1. Interaction type - physical interactions only. The dataset consists of physical

and genetic interactions, but only direct physical interactions between proteins

were considered for this dataset

2. Experiment type - affinity capture - mass spectrometry only. Of all the avail-

able experiment types, mass spectrometry was considered the most reliable.

For dataset consistency, only one experiment type was chosen.

3. Curation - manual curation only. Manually curated interaction data was con-

sidered to be more reliable than interaction pairs derived from high-throughput

experiments.

4. Bait/hit protein - proteins present in the Eisen dataset. Only interactions for

which both the bait and hit protein can be found in the Eisen dataset were

selected as functional similarity had only been calculated for the Eisen dataset.

These selection steps resulted in 1961 distinct protein pairs of which 1745 were

randomly selected for the true positive dataset.

The true negative dataset, also consisting of 1745 protein pairs, was created

through random selection of pairs from the Eisen dataset. All selected pairs were

checked against the full (pre-filtering) interaction dataset to ensure that no known

interaction, physical or genetic, existed for each pair. According to Guo et al. [2006],

it is very unlikely that a randomly selected pair of proteins has unknown interactions.

Phenotype data

For the phenotype data, all available yeast phenotype data [Engel et al., 2010] was

downloaded from the SGD FTP site (April 2010). Only data entries which cor-

responded to ORFs present in the Eisen dataset were used. This corresponded to

9http://downloads.yeastgenome.org/, accessed April 2010
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27921 distinct data entries for 2438 ORFs. For the sake of consistency, it was decided

that all phenotypes used should be derived from the same mutation type. The most

common mutation type in the dataset (76.57% of entries) was “null”, i.e. complete

loss of function either through a point mutation or deletion of part or all of a gene.

As the phenotype data was derived from experiments using different yeast strains,

only phenotypes for the most common strain, “S288C” (80.57% of entries), were

used.

In order to quantify phenotype-based similarity between gene products, a vector

space model (VSM) was used [Baeza-Yates and Ribeiro-Neto, 1999]. Each gene

product g is represented as a vector of all phenotypes,

g = (p1, p2, . . . , pn),

where pi is the numeric value of phenotype i for g, e.g. pi = 0 if there is no association

between phenotype i and gene product g.

For the purpose of this similarity calculation, a distinct “phenotype” consists

of the actual phenotype description as well as any chemical and other experimen-

tal condition associated with that phenotype, for example “resistance to chemi-

cals: decreased - ethanol (10%)” consists of the phenotype “resistance to chemicals:

decreased” and the chemical “ethanol (10%)”, and is distinct from “resistance to

chemicals: decreased - methyl methanesulfonate (0.2%)”, consisting of the same

phenotype but the chemical “methyl methanesulfonate (0.2%)”. This combination

of phenotype description and experimental conditions is particularly important for

phenotypes such as “resistance to chemicals: decreased”, which are associated with

a wide range of different chemicals, or phenotypes that are associated with different

temperature or growth medium conditions, as the experimental conditions provide

detail about the very different forms of a given phenotype.

As different phenotypes occur with different frequencies, it is advisable to weight

their contribution to the vector, giving

g = (w1, w2, . . . , wn)

For this purpose, “Inverse Document Frequency” (idf) is used, so that

wp = idfp = log N
np

where wp is the weight of phenotype p, N is the total number of gene products and np

is the number of gene products annotated with phenotype p. idf is commonly used

in VSM-based information retrieval and is in fact similar in concept to information

content in semantic similarity.
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The similarity between a pair of gene product vectors g1 and g2, sim(g1, g2) is

calculated as the cosine of the angle between these two vectors:

sim(g1, g2) =
g1 • g2

‖g1‖‖g2‖
=

∑N

i=1(wig1 · wig2)
√

∑N

i=1(w
2
ig1
)
√
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2
ig2
)

where g1•g2 is the dot product of vectors g1 and g2 and ‖g1‖‖g2‖ is the product of

the magnitude or norm of g1 and g2. This approach is known as “cosine similarity”

or “cosine normalisation” [Baeza-Yates and Ribeiro-Neto, 1999; Chabalier et al.,

2007].

However, initial test runs suggested that even after weighting, certain phenotypes

were so common that their contribution was meaningless. In addition, many gene

products were associated only with one phenotype, in many cases a generic one

such as “viable” or “inviable”. For these reasons, an additional filtering step was

inserted prior to the creation of the gene product vectors. Only gene products

associated with at least three phenotypes were included in the calculation and any

phenotype annotated to more than 250 gene products even as “phenotype - chemical

- condition” combination was excluded as being insufficiently meaningful. Note that

these phenotypes were excluded completely, not just in the respective combinations.

Additionally, gene products associated with fewer than three phenotypes were

excluded from the similarity calculation. The reason for this is to avoid pairs of

gene products with apparently high similarity that in fact only have a very common

phenotype in common, without actually having any significant functional similarity.

The previous filtering step had already removed many of the gene products with the

targeted annotation frequencies.

It should be noted that some gene products may have a lower similarity than

would be expected. This is due to the fact that the data in the SGD phenotype

dataset is not always consistent, with entries such as “37 deg”, “37 deg C”, “37

degrees” etc associated with the same phenotype description. These inconsistencies,

although easily spotted and interpreted by a human, are classed as different by

the direct string matching algorithm used in this approach, resulting in different

phenotype combinations for what should in reality be one phenotype combination.

After calculating phenotype similarity between all pairs of gene products under

these restrictions, 2876 pairs with a similarity of 1 were obtained. Of these, 2000

were randomly selected to form the true positive dataset. The corresponding true

negative dataset was created by randomly selecting 2000 gene product pairs with a

phenotype similarity of 0.
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Data processing

Each of the three datasets was uploaded to the “R software environment for statis-

tical computing” (hereafter referred to simply as R) [R Development Core Team,

2010]. All data processing for ROC curves and AUC calculations was done using

the ROCR library [Sing et al., 2005].

In order to allow comparison both within each dataset (bootstrapping analysis)

and across the three datasets, each dataset was randomly resampled into ten subsets

of 500 true positive and 500 true negative observations each. Resampling was done

without replacement within each subset but entries could be used in multiple subsets.

Each subset then generated a slightly different ROC curve. By averaging these curves

both horizontally and vertically, it is possible to obtain a measure of variance for

each dataset, which in turn makes the comparisons between datasets more accurate.

ROC curves were generated and AUCs computed for all combinations of ap-

proaches and for the following scores: “MF only”, “BP only”, “CC only”, “funSim”,

“rFunSim”. It is important to note that as rFunSim is the square root of funSim,

the ROC curves for the two scores for a given dataset have the same AUC, i.e. their

ROC curves have the same shape. The thresholds for each data point on the curve

are however different, i.e. a given data point on the ROC curve for rFunSim has a

threshold that is the square root of the threshold for that same data point on the

equivalent funSim curve.

This property of the ROC curves also allows comparisons to be drawn between

thresholds for different similarity approaches. Functional similarity for Resnik for

a given dataset is not the same as for example functional similarity for Lin. By

comparing the shape of the ROC curves, approximations can be made about cor-

responding thresholds, e.g. functional similarity according to Resnik of 0.3 might

have the same level of accuracy as functional similarity according to Lin of 0.8.

Full results of these experiments will be discussed in Chapter 4. The semantic and

functional similarity approaches, and other associated parameters, that are found to

perform the best will be carried forward for use in the FuSiGroups algorithm. This

reduction in the number of approaches is necessary to keep the subsequent analysis

to a manageable size.
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3.2.2 Threshold determination

Overall strategy

Once the best semantic and functional similarity approaches and other associated pa-

rameters have been selected, they will be tested in conjunction with the FuSiGroups

algorithm. As the FuSiGroups algorithm includes two variable thresholds, the “se-

mantic threshold” (ST) and the “functional threshold” (FT), it is first of all necessary

to determine the optimal threshold ranges for each approach.

In addition to the ROC capabilities described above, R’s ROCR library can also

generate accuracy graphs (see Table 3.3 for definition of accuracy). An accuracy

graph shows the predictive ability of each cut-off, i.e. the ability of a given approach

to distinguish between true positives and true negatives at each point of its range

of values. An example of an accuracy graph is given in Figure 3.2. Note that the

graph’s y-axis, representing the accuracy, ranges from 0.5 to 0.8 (or 50% to 80%

accuracy). Accuracies of less than 0.5 are not usually found as they would represent

a worse than random approach.
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Figure 3.2: Example of different possible accuracy curves

In order to determine a good range of thresholds, the following concepts are

defined:
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Definition 7. Minimum threshold - semantic or functional similarity value that

achieves the highest accuracy for a given approach. Let accuracy = f(similarity) ⇔

similarity = f−1(accuracy). Minimum threshold = f−1(max(accuracy)).

Definition 8. Maximum threshold - semantic or functional similarity value that

is greater than the minimum threshold and corresponds to an accuracy, rounded

to the nearest 0.05, of the maximum accuracy minus 15% of the range of accu-

racy values for a given approach. Let accuracy = f(similarity) ⇔ similarity =

f−1(accuracy) and let r = max(accuracy) − min(accuracy). Maximum threshold

= f−1(max(accuracy)− (r ∗ 0.15)).

The definition of the minimum threshold is based on the assumption that it is

more desirable to exclude some true positives from the groups generated by the

FuSiGroups algorithm than to include false positives and the maximum accuracy

represents the best possible trade-off between true positives and true negatives for

a given approach. The maximum threshold definition was derived from the need to

minimise the number of false positives while at the same time obtaining a threshold

that is distinct from the minimum threshold. 15% of the range of accuracy values

was determined as the point fulfilling these criteria from the analysis of a number

of different datasets. The rounding to the nearest 0.05 was included for ease of

analysis. The actual accuracy values for the thresholds calculated in this work are

derived in Chapter 5.

Functional thresholds

The thresholds for the functional similarity approaches can be derived directly from

the functional similarity data. The 30 (3 times 10) sub-datasets from the resam-

pling described in Section 3.2.1 are analysed in parallel and 30 accuracy curves are

obtained which can be assimilated into a single curve using vertical threshold aver-

aging. Unfortunately, while it is possible to obtain a single curve on a graph, this

approach does not allow the extraction of a single similarity value for the minimum

and maximum thresholds as the underlying data is not averaged. Although deriv-

ing the thresholds visually from the curve would be a possibility, the quality of the

curves was judged to be too low for this approach. The problem can however be

solved by aggregating the 30 subsets into one big dataset. This results in a single

accuracy curve identical to the vertically averaged individual curves, i.e. there is no

loss of precision from the 30 sub-datasets, but with specific x and y values available

for each point on the curve. As there is no difference in the actual curves derived

from either approach but the aggregate dataset gives more scientifically accurate
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data points than visual analysis, the aggregate dataset was chosen for the present

analysis.

For each selected functional similarity approach, the cut-off (x-value) correspond-

ing to the highest accuracy data point (y-value) is selected to obtain the minimum

functional threshold. Then the data point with the largest cut-off corresponding

to an accuracy of 15% of the accuracy range is selected to obtain the maximum

functional threshold. For the two curves in Figure 3.2 for example, the accuracy

values lie between about 0.5 and 0.8, i.e. a range of 0.3, so 15% of the range is 0.05,

leading to an accuracy of 0.75.

Semantic thresholds

Semantic thresholds are not as easy to establish as functional thresholds as they

cannot be derived directly from the data. The semantic threshold determines the

appropriate level of semantic similarity between the GO terms that make up a

group’s definition. The true positive and true negative datasets constructed for the

functional similarity analysis are based on gene products, related to a range of GO

terms. At present, there is no equivalent dataset of GO terms qualified as similar

or related based on a given property that is not semantic similarity. At best, such

a dataset could be generated by a human curator using expert understanding, a

laborious task for a dataset of sufficient size (1000+ term pairs). However, such a

dataset would still be based on semantic relatedness rather than an independently

verifiable property.

For this reason, semantic thresholds need to be determined using an indirect

approach. The “MAX” functional similarity approach selects the GO term pair

with the highest semantic similarity from a set of term pairs. This single most

similar term pair is the closest that the gene products in the positive and negative

datasets can be related to the GO terms on which their functional similarity is based.

On the assumption that two biologically related gene products are most likely to

be annotated with highly similar GO terms, while two unrelated gene products are

most likely to be annotated with equally unrelated GO terms, the “MAX” functional

similarity scores for the individual sub-ontologies are used to establish the semantic

thresholds for each approach.

FuSiGroups uses only one semantic threshold for all GO term pairs but there are

three GO ontologies, i.e. three sets of minimum and maximum thresholds can be

deduced. There are two ways of addressing this issue. One option is to deduce three

sets of thresholds using the method described for the functional thresholds, then to
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average the three thresholds into a single one. This approach is justifiable, as it is

fairly common that two gene products have highly similar annotations in one or two

ontological categories, but not in the other(s). An average of the three thresholds

would therefore present a balanced overall threshold. A second option is to use a

similar process to the one used to reduce the 30 sub-datasets into a single dataset.

The datasets for the three ontological scores are aggregated into a single very large

dataset which, after performing the usual analysis on it, generates a single accuracy

curve. The minimum and maximum semantic thresholds can then be deduced from

this curve in the same way as the functional thresholds.

The threshold determinations will be discussed in Chapter 5. Once the semantic

and functional thresholds have been determined, combinations of a range of semantic

and functional thresholds can be run for the best performing semantic and functional

similarity approaches. The resulting groups can then be analysed using the strategy

described in the next section.

3.2.3 FuSiGroups grouping results

Grouping trends

The analysis of the grouping results will be divided into two parts. The first part,

which will be discussed in Chapter 6, considers, for different approaches and thresh-

olds, the overall trends of the results, such as group sizes, definition sizes and the

distribution of the groups across the three GO ontologies, among others. The pur-

pose of this is to establish an overview of the grouping results generated by the

FuSiGroups algorithm, in particular in relation to the performance of the individ-

ual semantic and functional similarity approaches, at their respective minimum and

maximum thresholds. The combination of semantic and functional similarity ap-

proaches and ST and FT that gives the most promising results at this stage will be

used for the second stage of the groups analysis.

Groups analysis

The problems surrounding the evaluation of functional similarity have been discussed

at lengths in Sections 2.4 and 3.2.1. They apply equally to applications of functional

similarity such as the FuSiGroups algorithm. Any attempt to evaluate the groups

generated by the algorithm against another form of biological similarity inherently

makes assumptions about the content and nature of the groups. As in previous

cases, a multi-stage strategy is adopted to evaluate the content of the groups.
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First of all, the largest groups and most common group names are considered

in order to establish whether they provide any interesting insight about common

functions of the genes in the dataset. In a large dataset, such as the Eisen dataset,

this step may not provide useful results as the dataset may be too diverse and noisy

but in the interest of thoroughness, this step should not be omitted.

As the Eisen dataset was originally used for the study of functional relatedness

based on gene expression similarity, it would be interesting to relate the grouping

results back to the gene expression clusters identified by Eisen et al. [1998]. Since

there is no direct equivalent between functional and expression similarity, it would be

neither useful nor appropriate to simply compare FuSiGroups groups to expression

clusters. For this reason, the Eisen dataset is also clustered based on functional

similarity in order to compare functional and expression clusters. The similarity

between clusters derived from the Eisen expression data and clusters derived from

the corresponding functional similarity data is evaluated at different clustering levels

using external cluster validation techniques, such as purity, F-measure, normalised

entropy and mutual information [Handl et al., 2005; Jakonienė et al., 2006]. In these

measures, the expression clusters are used as classes for the functional clusters and

vice versa. The expression clusters can then be compared to the functional groups

via the intermediate of the functional clusters.

Finally, three smaller subsets of the Eisen dataset, a proteasome dataset, a ri-

bosome dataset and a dataset of two biochemical superpathways, will be created

in order to perform a more detailed analysis of the content of the resulting groups.

The reason for selecting smaller subsets is that the FuSiGroups algorithm, applied

to a dataset the size of the Eisen dataset, produces anything from a few hundred to

a few thousand groups (depending on thresholds and other variables). Even after

elimination of “meaningless” groups, i.e. groups with too few gene products, the

number of groups is too numerous to perform a detailed analysis of each group. All

meaningful groups in each sub-dataset will be analysed in detail and in relation to

existing literature in order to establish whether the inclusion of the genes in the

group is appropriate, both in relation to the other genes and in relation to the func-

tional aspect described in the group definition. All steps of the groups’ analysis will

be discussed in Chapter 8.

3.3 Implementation considerations

In this section, a few details regarding the implementation of the FuSiGroups algo-

rithm as well as practical aspects of the dataset used and the experiments that were
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performed are discussed. As the implementation is at this stage for proof-of-concept

purposes only, no coding details will be discussed and no consideration will be given

to runtime and memory use optimisations. The development of FuSiGroups was

carried out using an evolutionary prototyping approach with constant refinements

in both design and implementation before the version of the FuSiGroups algorithm

described in Section 3.1.6 was obtained.

3.3.1 FuSiGroups

The FuSiGroups algorithm was implemented using the Java programming language

and a MySQL database. Java was chosen as the programming language because

it is platform independent and versatile, and interfaces well with MySQL. MySQL

was chosen as it is non-proprietary and also because it is the only database type in

which the full GO database is available. A smaller version (latest-lite) of the GO

database, excluding UniProtKB electronic annotations, is available in OBO XML

and RDF XML formats. The most complete version of the database was chosen in

order to allow completely free choice of annotation and species parameters for the

programme.

Database considerations

The complete Gene Ontology database, including annotations (but excluding se-

quence information), was downloaded from the GO FTP site in April 2009 (go 200904-

assocdb-tables.tar.gz). The use of a local copy of the Gene Ontology is preferable

and, in fact, necessary for two reasons. Firstly, the GO is updated on a weekly basis

and even small changes in annotations or the ontological structure can have an ef-

fect on semantic and functional similarity results. In order to keep results consistent

across tests and experiments run at different times, it is therefore desirable to use a

local copy of the database which is stable. Furthermore, connection to a database

mirror such as that provided by EBI is limited to one connection at a time as this

is a shared resource. Although the database queries in the FuSiGroups implementa-

tion are designed to retrieve information efficiently, they still require more resources

than EBI’s acceptable usage policy will allow, resulting in disconnection from the

database and temporary blocking of the client machine’s IP address.

Similarity approach considerations

As most of the approaches listed in Section 3.1 only differ in the way they use infor-

mation content, the majority of the implementation was done in a generic format,
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with only the final calculation step for each approach requiring some individual code.

For the IC-based approaches, frequency and probability of occurrence values for each

GO term were batch-retrieved and stored in main memory to minimise database ac-

cess as frequent database access can cause bottle-neck issues. For large datasets,

the trade-off with this approach is a large memory requirement but most modern

desktop machines have sufficient RAM to handle this kind of computational task.

The Wang et al. [2007] approach required some minor variations in the imple-

mentation in order to accommodate its differences from IC-based approaches. In

particular, this approach gives each ontological edge a weight, with the weights de-

pending on the nature of the edge. The authors only provide weighting factors for

“is a” and “part of”, as these were the only two types of edges available in the early

version of the GO. Between GO releases 2008-0110 and 2008-0411, the GO included

three further types of edges, “negatively regulates”, “positively regulates”, “regu-

lates”. While the absence of weighting factors for these three edge types from the

original version of the Wang approach is clearly due to the fact that these types did

not exist yet, the authors never updated their approach to allow for these new edges.

The latest version of the G-SESAME tool12 [Du et al., 2009], which was developed

by the same team as the Wang approach, still only requires weighting factors for

the two original edge types. In the absence of any guidance on how to weight the

new edge types, it was decided to give these three additional edges the same weight

as the “part of” edge, rather than exclude them from the calculation as this might

lead to unconnected branches in the tree. Overall, it is expected that the impact of

the three new edge types should be low as together, they only represent 7.5% of all

relationships in the GO release used here (2009-04), compared to 8.6% of “part of”

relationships and 83.9% of “is a” relationships. The weights recommended by Wang

et al., namely 0.8 for “is a” edges and 0.6 for other edge types, were used.

The correctness of the implementation of Wang’s approach could be verified by

comparing results obtained from the FuSiGroups implementation to results obtained

from the G-SESAME tool. Results obtained for a test-run in July 2008, using GO

release 2007-10, were found to be identical, bar rounding differences at 3 significant

figures. This same method of direct implementation verification was not possible

for any of the other approaches, as none of other semantic similarity tools available

10Database ensembl go 49 on the Ensembl’s [Flicek et al., 2011] public MySQL server, ensem-
bldb.ensembl.org

11Database ensembl go 50 on the Ensembl’s [Flicek et al., 2011] public MySQL server, ensem-
bldb.ensembl.org

12http://bioinformatics.clemson.edu/G-SESAME/, using GO release 2011-02, accessed on
16/03/2011
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online state which GO release the computations are based on or provide details on

what corpus was used. Some tools also use only a specific type of identifier such

as UniProt identifiers, which are unavailable for yeast in GO, or only cover certain

species, which makes using them for testing purposes impractical.

The GraSM algorithm was implemented according to the pseudocode suggested

by the authors in Couto et al. [2007]. Again, direct comparison of results obtained

from FuSiGroups to results from the authors’ own tools (FuSSiMeG [Couto et al.,

2003] and ProteInOn [Faria et al., 2007]) was not possible as essential information

such as GO release is not given in the paper.

Programme input

There are two sets of input required to run FuSiGroups. The first is the list of gene

products to be included in the run, in a plain text file with one gene product per

line. Identifiers need to be of the type listed in GO in the “xref key” field of the

“dbxref” table, e.g. “S000001234” for yeast or “FBgn0000490” for fruit fly. The

second set of input is a list of parameters, namely genus and species of the gene

products to be tested; the semantic similarity approach (Lin, Resnik, Schlicker or

Wang); whether to use GraSM or not; the functional similarity approach (BMA or

MAX); whether to use all or only non-electronic annotation; and the semantic and

functional thresholds.

It is also possible to specify whether to calculate semantic and functional sim-

ilarities from scratch or load pre-calculated similarities from a database. This is

the recommended approach if a number of different thresholds are to be tested as

calculation of similarities for a dataset the size of the Eisen dataset (approx. 2500

gene products) takes a couple of hours whereas reading in existing similarities from

a database, then performing the groupings generally takes about quarter of an hour

for a dataset of this size.

Multi-species comparisons are not supported at present. The proof-of-concept

implementation does not include a user interface, so parameters have to be entered

directly into the code of the programme’s “main” method.

Hardware requirements

The FuSiGroups programme was run on a desktop computer with a Linux operating

system (Ubuntu 10.04 LTS - Lucid Lynx). Due to the amount of data held in

memory at any time, the programme requires an above-average amount of RAM.

2.5GB were allocated to the programme although of course different dataset sizes
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require different amounts of memory. A larger dataset may even require more RAM.

3.3.2 Dataset

Data sources

Two versions of the Eisen dataset were downloaded, from two different locations.

The first version was an online supplement to Eisen et al. [1998]’s paper found on the

Stanford Genomic Resources website13. Available were the tab-delimited and Excel

versions of the data used to generate figure 2 of the Eisen paper, including the sys-

tematic and full names for each gene and the expression ratios of all 2466 gene prod-

ucts for 79 experimental conditions, as well as the enhanced version of the published

image and a key to the columns of the figures (experimental conditions). The second

version was downloaded from the “KEIA” (Knowledge Extraction, Integration and

Applications) research group website of the Université de Nice Sophia-Antipolis14.

Available files included a tab-delimited version of the expression ratios of 2465 gene

products for 79 experimental conditions, using primary SGD IDs as identifiers, the

79 experimental conditions, the under- and over-expressed cutoff thresholds for each

condition (computed using the group’s NorDi algorithm [Martinez et al., 2007]), the

discretised expression measures for all genes and finally a list of the 2465 genes with

737 columns of gene annotations, pathway information, transcriptional regulators,

phenotypes, PubMed IDs and the discretised expression measures.

The reason for downloading two versions of the dataset was that the dataset

downloaded from the Stanford website (published in conjunction with the original

paper) uses the ORF’s systematic name (or “feature name”) as identifier for each

gene product whereas the second version of the dataset uses SGD identifiers. The

annotation data in the downloaded version of the GO database only contains SGD

IDs, so no other identifiers can be used in the program without including an initial

ID matching step. Mapping between different types of identifiers can be difficult as

there is not always a one-to-one mapping, especially if one identifier refers to a gene

and another to a protein (several proteins can derive from one gene). Checking the

“KEIA” dataset, which also provides more meta data, against Eisen et al.’s version

(considered more reliable) was an additional step to ensure the consistency of the

dataset.

13http://genome-www.stanford.edu/clustering/
14http://keia.i3s.unice.fr/?Datasets:Eisen et al. dataset
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Reconciling inconsistencies

Initial comparison between the two datasets showed that the Eisen version had one

more entry than the KEIA version. The mapping between SGD IDs and system-

atic identifiers was downloaded from the SGD database using their batch download

tools15. Then the two datasets were compared manually by visually matching, for

each row in the dataset, the identifier and first two expression values of each version

against the SGD mapping.

In 14 cases, SGDIDs from the KEIA dataset could not be mapped to a systematic

name from the Eisen dataset and vice versa. In these situations, the mapping was

done using the expression values. Table 3.4 summarises the discrepancies between

the two datasets and how they were resolved.

In the majority of cases, the SGDID in the KEIA version was associated with

an updated systematic name, e.g. due to a change in an ORF following a new

release of the yeast genome. If the description associated with a systematic name in

the Eisen version matched the description associated with a different SGDID in the

yeast genome database, the SGDID from the KEIA version was used.

The additional data entry in the Eisen dataset was found to be due to the

ORF YER108C having been merged with YER109C at some point between the

publication of the Eisen dataset and the generation of the KEIA version. Rather

than simply removing the deprecated ORF, the KEIA group averaged the expression

values for the two ORFs and associated the resulting values with the SGDID for

YER109C. While the label was retained for this study, the expression values were

replaced with the original values for YER109C.

Annotations

All annotation information used in the FuSiGroups software was taken from the GO

database rather than from SGD in order to achieve the maximum amount of consis-

tency (i.e. in order to avoid using annotation information from different releases).

If a gene product did not have any annotation in one (or two) ontological aspects,

the root term for that ontological aspect was assigned as annotation to the gene

product in question in order to allow computation of semantic similarity for that

aspect. This is an appropriate course of action as any gene product has some kind

of molecular function, is active in some cellular compartment and is part of some

biological process, even if the details of any of these have not yet been characterised.

Although all ORFs in the Eisen dataset were originally chosen by the authors

15http://www.yeastgenome.org/cgi-bin/batchDownload
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Eisen version KEIA version Explanation and Resolution
1 YHR047C

(systematic
name for
S000001089,
gene name:
AAP1)

S000007267
(alias of gene
name: AAP1)

Confusion of identifier in KEIA version due to gene name alias. Re-
placement not justified, use S000001089 in KEIA version.

2 YOR235W
(dubious ORF
unlikely to en-
code a protein)

S000007294
(small nucleo-
lar RNA)

The two elements are located very closely together on chromosome
XV, with an overlap of about 80 bases. The replacement is justified
due to the dubious nature of YOR235W.

3 YPL144W
(systematic
name for
S000006065)

S000007441
(small nucleo-
lar RNA)

The two elements are not related in any way but are located adjacently
on chromosome XVI. The replacement is not justified as YPL144W is
a verified ORF for a proteasome chaperone;s use S000006065 in KEIA
version.

4a YJL102W
(systematic
name for
S000003638)

S000001683
(SGDID for
YKL200C)

The two elements in 4a and 4b both have nothing in common. The
case is treated as a mix-up of two SGDIDs. Exchange SGDIDs in
KEIA dataset.

4b YKL200C
(systematic
name for
S000001683)

S000003638
(SGDID for
YJL102W)

5 YCL007C (du-
bious ORF un-
likely to encode
a protein)

S000028508
(SGDID for
YCL005W-A)

YCL007C overlaps verified ORF YCL005W-A. Both ORFs have alias
CWH36. Replacement justified.

6 YAR044W
(alias for
YAR042W )

S000000081
(SGDID for
YAR042W )

Replacement justified.

7 YBR090C-
A (alias for
YBR089C-A )

S000002157
(SGDID for
YBR089C-A)

Replacement justified.

8 YJL206C
(systematic
name for
S000003741)

S000003742
(SGDID for
YJL205C)

According to SGD, gene name for YJL206C is uncharacterised. Ac-
cording to Eisen version, gene name for YJL206C is NCE101, which in
SGD is listed as the gene name for S000003742. Replacement justified.

9 YHR039C S000002100
(SGDID for
YHR039C-A )

According to SGD, gene name for YHR039C is MSC7. According to
Eisen version, gene name for YHR039C is VMA10, which in SGD is
listed as the gene name for S000002100. Replacement justified.

10 YER060W S000002958
( SGDID for
YER060W-A)

According to SGD, gene name for YER0060W is FCY21. According
to Eisen version, gene name for YJL206C is FCY22, which in SGD is
listed as the gene name for S000002958. Replacement justified.

11 YHR001W S000003529
(SGDID for
YHR001W-A)

According to SGD, gene name for YHR001W is OSH7. According to
Eisen version, gene name for YJL206C is QCR10, which in SGD is
listed as the gene name for S000003529. Replacement justified.

12 YHR005C S000003530
(SGDID for
YHR005C-A)

According to SGD, gene name for YHR005C is GPA1. According to
Eisen version, gene name for YJL206C is MRS11, which in SGD is
listed as an alias for S000003530. Replacement justified.

13 YCR028C S000007222
(SGDID for
YCR028C-A)

According to SGD, gene name for YCR028C is FEN2. According
to Eisen version, gene name for YJL206C is RIM1, which in SGD is
listed as the gene name for S000007222. Replacement justified.

14 YER108C
& YER109C
(Two merged
ORFs)

S000000911
(SGDID for
YER109C)

Expression values for S000000911 correspond to the average of the
expression values for YER108C & YER109C. Expression values in
KEIA dataset replaced with expression values for YER109C.

Table 3.4: Dataset inconsistencies. Column 1 shows the systematic name from the Eisen
version, column 2 shows the SGDID listed for the corresponding expression values in the KEIA
version. Column 3 briefly describes how the conflict was resolved. “Replacement justified”
means that the choice of SGDID made my the KEIA group is considered to be appropriate.
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because annotation was available for each of them at the time of the original study,

one ORF, “S000001683” was found to not have any annotation whatsoever in the

GO release used in the present analysis. This ORF was therefore removed from the

dataset, as it was not considered useful or informative.

In order to compute semantic and functional similarities, each direct annotation

of a GO term to a gene product recorded in the GO is used once and only once,

regardless of how many times that annotation is characterised in the database, with

different evidence codes or references. This convention is used for the gene products

in the dataset and for the set of all annotated gene products of a species used

as the corpus for the calculation of information content. If only non-electronic

annotations are considered, the same convention still applies for all non-electronic

annotation. If a gene product was annotated with the same GO term three times,

with one association characterised with the evidence code “IEA”, the other two with

other, distinct evidence codes, the gene product would have this annotation. A gene

product with two “IEA”-characterised annotations of the same GO term on the

other hand would not have that annotation considered in an experiment excluding

electronic annotation.

Less than one percent of gene-GO term associations in the GO are qualified with

“is not”. This means that the gene product in question should specifically not be

associated with that particular GO term. This information is included in the GO

in two forms, namely through the binary field “is not” in the “association” table, in

which a value of 1 signifies dissociation between the gene product and GO term, and

in the “association qualifier” table. In order to avoid these exclusion relationships

being counted towards association counts, any database query specifically selects

only associations where “is not” is set to 0.

3.3.3 Experiments

Table 3.5 lists all the combinations of variables for which functional similarity was

computed. After selecting the best combinations of variables (see Chapter 4) and

optimum threshold ranges (see Chapter 5), the grouping algorithm was used for each

of the selected measures at the determined thresholds.

3.4 Summary

In this chapter, design considerations for the study in general and the FuSiGroups

software in particular, as well as a number of implementation considerations were
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Sem. sim. Func. sim. Annotation Ancestors

Lin

BMA
all

LCA
GraSM

nonIEA
LCA

GraSM

MAX
all

LCA
GraSM

nonIEA
LCA

GraSM

Resnik

BMA
all

LCA
GraSM

nonIEA
LCA

GraSM

MAX
all

LCA
GraSM

nonIEA
LCA

GraSM

Schlicker

BMA
all

LCA
GraSM

nonIEA
LCA

GraSM

MAX
all

LCA
GraSM

nonIEA
LCA

GraSM

Wang
BMA

all NA
nonIEA NA

MAX
all NA

nonIEA NA

Table 3.5: All combinations of approaches and other factors for which functional similarity
values were computed.
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discussed. This included justifications for why some measures and parameters were

included and others excluded from the study, and a detailed description of the algo-

rithm. The implementation considerations specifically addressed several aspects that

are often omitted from publications on functional similarity, making the replication

of results difficult.

The chapter also included an outline of the evaluation strategy for the different

aspects of the project, including how to compare the different approaches and pa-

rameters, how to experimentally derive the thresholds for the algorithm and how to

validate the grouping results. In the next chapter, the different semantic and func-

tional similarity approaches and other associated variables are going to be compared

in order to select the combinations of variables with the best overall performance,

which will then be used for the rest of this work.
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Chapter 4

Semantic and functional similarity

approaches

As discussed in previous chapters, a key problem in semantic and functional similar-

ity research is that new approaches are usually only evaluated against the “original

three”, Resnik [1995]; Lin [1998]; Jiang and Conrath [1997], which they are always

found to outperform. As part of this study, an experimental comparison of several

semantic similarity approaches developed for the GO context [Schlicker et al., 2006;

Wang et al., 2007; Couto et al., 2005] was undertaken. Different approaches to cal-

culate the functional similarity between gene products annotated with multiple GO

terms were also compared.

The evaluation was performed for three different biological properties - gene

expression, protein interaction and phenotype. The datasets were generated as de-

scribed in Section 3.2.1. An aggregate dataset was created by combining the three

individual datasets into one dataset of 30 times 1000 observations (500 true positives

and 500 true negatives). ROC curves and the associated AUC index were used to

compare the performance of the different measures for the aggregate dataset as well

as for each dataset separately. All datasets were analysed using R’s ROCR library

[Sing et al., 2005].

In this chapter, the performances of the different measures are compared. Re-

sults are primarily presented for the aggregate dataset and differences in behaviour

compared to the individual datasets are discussed. At the end of the comparisons,

the approaches and parameters that perform the best overall will be selected for use

with the FuSiGroups algorithm.

78



4.1 ROC curves

4.1 ROC curves

Although it is often difficult to tell which ROC curve shows the best performance

if several curves are very close, it is still important to get a general overview of

the curves before looking at an index such as the AUC to evaluate overall perfor-

mance. The following ROC curves were all obtained using ROCR’s plot() function

on performance objects obtained using the same library’s performance(“tpr”, “fpr”)

function.

As the complete dataset is an aggregate of three datasets, each of which in turn

consist of 10 subsets, each individual subset generates one separate ROC curve. In

order to study the overall trend for a given combination of semantic and functional

similarity approaches and ancestor and annotation choices, the ROC curves of the in-

dividual subsets are averaged using threshold averaging. An example of ROC curves

before and after threshold averaging is shown in Figure 4.1. No thresholds are shown

on the unaveraged curves to avoid cluttering. The averaged curve has thresholds

shown at intervals of 0.1, as well as error bars showing one standard deviation in

each direction. Three “bands” can clearly be distinguished on the graph with the

unaveraged curves. The top band corresponds to the gene expression dataset, the

middle band to the protein interaction dataset and the bottom band to the phe-

notype data. The differing levels of ROC curves give a general indication of the

level of relatedness of the similarity aspect of the respective datasets and functional

similarity, e.g. gene product pairs with high expression similarity are more likely to

have equally high functional similarity than pairs with high phenotype similarity.

In fact, these ROC curves imply an almost perfect match between expression and

functional similarity, an excellent match between protein interaction and functional

similarity and a fair correspondence between phenotype and functional similarity.

Despite these differences, even the phenotype dataset is still sufficiently far above

the diagonal line to be acceptable.

For space reasons, only a sample set of ROC curves that can be derived from

the full dataset are shown here. Figure 4.2 shows the ROC curve for “BMA-all

annotation-MICA-rFunSim” for all four semantic similarity approaches and for the

aggregate as well as individual datasets. For the aggregate dataset, the ROC curves

for Lin and Schlicker have the most evenly distributed thresholds of the four curves,

whereas most of the thresholds for Resnik are clustered in the bottom left corner and

a lot of the thresholds for Wang are clustered in the top right corner. For Resnik’s

approach, this suggests the numbers of both true and false positives are low at high

thresholds. In fact, due to the normalisation step necessary to bring similarities in
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Figure 4.1: ROC curves for “Schlicker-BMA-all-MICA-rFunsim” before and after threshold
averaging. No thresholds are shown for the unaveraged curves to avoid cluttering. Thresholds
on the averaged curve at intervals of 0.1 and are given with error bars of one standard deviation
in each direction. The three bands of unaveraged curves correspond to, from top to bottom,
the gene expression dataset, the protein interaction dataset and the phenotype dataset.

Resnik’s approach between 0 and 1, the majority of similarities are below 0.5, which

explains the distribution of the thresholds. For Wang’s approach, the threshold

distributions mean that even the majority of true negative gene product pairs have

a fairly high similarity.

In terms of performance, the order of approaches from best to worst appears

to be Resnik, Schlicker, Lin, Wang, except for the gene expression dataset, where

Resnik’s approach can be observed to the right of the other approaches, i.e. per-

forming slightly worse. It is however very difficult to conclusively determine which

approaches perform better than others. These four graphs are a good example of

the difficulty of judging the relative performances of different qualifiers solely on the

basis of their ROC curves. In order to determine in each case which of the scores has

the overall best performances, it is necessary to compare them using a single-figure

index such as the AUC (area under the curve) measure.

The rest of this section includes only ROC curves for the full dataset. The

corresponding curves for the original datasets can be found in Appendix A.

Figure 4.3 shows the individual ontology scores and aggregate rFunSim score

for each semantic similarity approach. While MF clearly performs worst for each

approach, there are always at least two ROC curves which are very close together

and even cross at one or more points such as rFunSim and BP for Lin and rFunSim

and CC for Resnik. This again illustrates the need for an objective measure to really
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Figure 4.2: ROC curves for all approaches for “BMA-all-MICA-rFunSim” and for the ag-
gregate dataset and the three individual datasets.

81



4.1 ROC curves

evaluate performances. This trend is relatively consistent across the three individual

datasets as well.
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Figure 4.3: ROC curves for individual ontology and rFunSim scores for all approaches with
“BMA-MICA’

Figure 4.4 shows the ROC curves for BMA and MAX for each approach for “all

annotation-MICA-rFunSim”. While the overall shapes of the two curves are always

relatively similar, it is noteworthy that for Lin and Wang, the first threshold (1.0) on

the ROC curve for MAX does not appear until an average true positive rate between

0.4 and 0.6. This means that technically, the ROC curve does not start until that

point, although the graph drawing tool used (ROCR’s plot() function) places the
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4.1 ROC curves

point of origin of each curve at the point (0,0) and then draws a straight line to

the first actual threshold. In the present case, the first threshold is still close to the

origin of the X-axis (average false positive rate). However, in other cases, where the

first threshold point is displaced along both axes, it is necessary to analyse the ROC

curve and AUC together in order to take this trend into account.

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

00.2

0.4

0.6

0.8

1

00.20.4

0.6

0.8

1

BMA

MAX

Lin

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

0.2

0.4

0.60.81

0

0.2

0.4

0.6

0.81

BMA

MAX

Resnik

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.2

0.4

0.6

0.8

1

00.2
0.4

0.6

0.8

1

BMA

MAX

Schlicker

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

00.2
0.4

0.6

0.8

1

00.20.4

0.6

0.8

1

BMA

MAX

Wang

Figure 4.4: ROC curves for all approaches for BMA and MAX with “all-MICA-rFunSim”

In Figure 4.5, the use of the MICA and the GraSM algorithm as ancestor selec-

tions are compared for “all annotation-BMA-rFunSim” and for all IC-based semantic

similarity approaches. The approach by Wang et al. is included for reference pur-

poses only as the ancestor choice does not apply to it. For the IC-based approaches,
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it is immediately clear that the thresholds for GraSM are not as evenly distributed

along the curve as those for MICA. This is to be expected as using multiple dis-

junctive ancestors to compute the semantic similarity between two terms leads to

a lower similarity, compared to using only the most informative common ancestor.

All pairs of ROC curves are relatively close together, with only the two cases for

Resnik’s approach showing enough difference to support the conclusion that MICA

overall performs better than GraSM. The curves for Lin and Schlicker are too close

and require analysis of the respective AUC indexes to draw any conclusions. The

same trend is observed in the three datasets if they are considered individually.
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Figure 4.5: ROC curves for all IC-based approaches for MICA and GraSM with “all-BMA-
rFunSim”. Wang’s approach is included for comparison only.
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Finally, Figure 4.6 show the ROC curves for the full and non-electronic annota-

tion dataset for all four approaches, using “BMA-MICA-rFunSim”. Although AUCs

need to be analysed to confirm this, it appears that with the exception of Wang’s ap-

proach, the full annotation dataset usually performs better than the non-electronic

dataset. This trend is particularly pronounced in Resnik’s approach. The same

observation can be made for the protein interaction and phenotype datasets. In

the gene expression dataset on the other hand, the non-electronic annotation data

appears to perform marginally better than the full dataset, although the curves are

overall too close to draw a definitive conclusion.
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Figure 4.6: ROC curves for all approaches for “BMA-MICA-rFunSim” with full and non-
electronic annotation
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4.2 AUC results

After this quick overview of the general trends of the ROC curves for this dataset,

the next section covers a more in-depth analysis of the AUC scores.

4.2 AUC results

Using ROCR’s performance(auc) function, AUCs for each subset were computed.

The AUCs for each score were obtained by averaging the AUCs of the 10 individual

subsets for that score. Overall AUCs are shown in Table 4.1 for the full dataset and

Appendix A for the individual datasets (Tables A.1, A.16 and A.31).

Variables AUCs
Sem. sim. Func. sim. Dataset Ancestors MF BP CC rFunSim

Lin BMA all MICA 0.762 0.858 0.826 0.865
Lin BMA all GraSM 0.765 0.842 0.816 0.858
Lin BMA nonIEA MICA 0.751 0.800 0.857 0.850
Lin BMA nonIEA GraSM 0.750 0.850 0.811 0.853
Lin MAX all MICA 0.761 0.819 0.753 0.863
Lin MAX all GraSM 0.775 0.783 0.794 0.839
Lin MAX nonIEA MICA 0.759 0.838 0.786 0.857
Lin MAX nonIEA GraSM 0.756 0.821 0.811 0.850

Resnik BMA all MICA 0.778 0.820 0.871 0.878
Resnik BMA all GraSM 0.767 0.806 0.860 0.862
Resnik BMA nonIEA MICA 0.736 0.868 0.811 0.864
Resnik BMA nonIEA GraSM 0.738 0.799 0.873 0.855
Resnik MAX all MICA 0.778 0.754 0.873 0.864
Resnik MAX all GraSM 0.779 0.734 0.872 0.854
Resnik MAX nonIEA MICA 0.744 0.757 0.871 0.858
Resnik MAX nonIEA GraSM 0.745 0.744 0.881 0.849
Schlicker BMA all MICA 0.768 0.860 0.839 0.872
Schlicker BMA all GraSM 0.772 0.842 0.833 0.864
Schlicker BMA nonIEA MICA 0.748 0.849 0.841 0.862
Schlicker BMA nonIEA GraSM 0.748 0.849 0.848 0.865
Schlicker MAX all MICA 0.784 0.822 0.851 0.873
Schlicker MAX all GraSM 0.771 0.782 0.841 0.838
Schlicker MAX nonIEA MICA 0.753 0.833 0.840 0.864
Schlicker MAX nonIEA GraSM 0.752 0.820 0.858 0.857
Wang BMA all NA 0.750 0.846 0.802 0.848
Wang BMA nonIEA NA 0.787 0.771 0.856 0.848
Wang MAX all NA 0.756 0.815 0.743 0.853
Wang MAX nonIEA NA 0.798 0.842 0.766 0.856

Table 4.1: AUCs for all experiments in the aggregate dataset

The AUCs confirm the trend already seen in Figure 4.2, with the gene expression
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dataset showing the best performance overall, the phenotype dataset the worst per-

formance, with the protein interaction dataset in between and the aggregate dataset

showing a very similar trend. The average AUC for rFunSim is 0.858 for the ag-

gregate dataset, 0.980 for expression, 0.877 for protein interaction and 0.716 for the

phenotype dataset.

This suggests that out of the three aspects selected for the comparison of the

different semantic and functional similarity approaches, phenotype-based similarity

between gene products is least comparable to annotation similarity. There are a

number of possible explanations for this. It is possible that the phenotype annota-

tion is simply of a lower quality, thus making for a poorer dataset. A more plausible

explanation is however that similar phenotypes can be obtained in so many differ-

ent ways that simple phenotype similarity does not automatically imply functional

similarity. This is particularly true for very common phenotypes, which may appear

to associate genes that do not in fact have any common functional aspects.

Very high gene expression similarity, especially in a dataset with as many sam-

ples as the Eisen dataset, is generally a good indicator of a functional relationship

between two genes as it means their expression is affected in the same way by the

same external stimuli. This is reflected in the very high AUC values obtained for all

measures for the expression dataset alone. The intermediate position of protein in-

teraction similarity between gene expression and phenotype similarity can equally be

explained through the nature of protein interaction. Although an observed interac-

tion between two proteins implies some shared functional aspect and co-localisation

in the cell during the interaction, many proteins have more than one function and

may have different activities in different parts of the cell. Therefore a documented

interaction is not automatically a guarantee for full functional similarity across all

of the proteins’ functional aspects, which is the most likely explanation for the good

but not perfect AUCs obtained for the protein interaction dataset.

A quick overview of the AUCs in Table 4.1 makes it obvious that in most cases,

rFunSim has higher AUCs than any of the other scores, suggesting that the aggregate

score performs better than the individual ontologies. Exceptions to this are listed

in Table 4.2.

The MF ontology score never performs better than rFunSim. The BP score only

outperforms rFunSim for “Resnik-BMA-nonIEA-MICA”. The CC score is the only

score that performs better than rFunSim in a number of cases, although the cases

suggest no obvious pattern, such as CC always outperforms rFunSim for dataset

X or ancestor selection Y. There is also no single combination of variables where

rFunSim is outperformed in all cases.
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Ontology Sem. sim. Func. sim. Dataset Ancestors
BP Resnik BMA nonIEA MICA

CC

Lin BMA nonIEA MICA
Resnik BMA nonIEA GraSM
Resnik MAX all MICA
Resnik MAX all GraSM
Resnik MAX nonIEA MICA
Resnik MAX nonIEA GraSM
Schlicker MAX all GraSM
Schlicker MAX nonIEA GraSM
Wang BMA nonIEA NA

Table 4.2: Cases in which individual scores outperform aggregate scores

While the overall better performance of rFunSim compared to the single onto-

logical scores can be deduced by looking at the AUC values in Table 4.1, it is not

immediately obvious whether the difference between the four scores is statistically

significant. For this reason, a single-factor analysis of variance (ANOVA) of the four

sets of scores was performed using the Microsoft Excel data analysis tools. This

analysis confirmed that the difference between the scores is statistically significant,

with a p-value of 1.6E−22.

As rFunSim performs better than any of the single ontological scores in over

88% of the cases (74 out of 84 comparisons), the analysis hereafter will be based on

the rFunSim scores. In order to determine which semantic and functional similarity

approaches and dataset and ancestor selections performed best, a two-step analysis

was performed. First, the AUC values for different combinations of variables were

submitted to an ANOVA test in order to determine whether the differences between

the AUC scores are significant from a statistical point of view. Secondly, the perfor-

mances for a given set of combinations are ranked (with 1 for the highest AUC, 2 for

the second highest etc). Then the ranks are added across columns and the results

sorted from lowest to highest. The measure or combination of variables with the

lowest summed ranks is considered to have the best overall performance. The sum

of ranks was chosen rather than average of ranks to clearly differentiate between

individual ranks and the global rank of each measure.

Cases where ranks differ strongly from the general trend (e.g. an approach that

usually ranks highest performs worst) are marked in red in the results tables in the

rest of this chapter and discussed. A result is considered to “differ strongly” from

the general trend if its rank is greater or smaller by one standard deviation rounded

to zero decimal places than at least one other rank in the same row. In situations

88



4.2 AUC results

where this applies to two different ranks, the more contradictory one is discussed,

e.g. if the overall worst performing approach out of four is ranked 2nd, 3rd and 4th

for three different measures (standard deviation = 1), the ranks of 2 and 4 differ

by more than one standard deviation from each other but the rank of 4 is more

in agreement with the overall ranking of the approach, so the rank of 2 would be

discussed.

4.2.1 Statistical analysis

All statistical analysis was performed using the Microsoft Excel data analysis tool

kit. Although some of the analysis was performed for pairs of variables (e.g. BMA

vs MAX), ANOVA was used in all cases rather than using t-tests in some cases and

ANOVA in others. For all analyses, a significance level α = 0.05 was used. The

first set of analyses consisted of a number of single-factor ANOVAs summarised in

Table 4.3. The reason for performing ANOVA on several combinations of semantic

similarity measures is due to the fact that there are only half as many observations

for Wang’s approach as for the others, since Wang is not subject to the ancestor

variable. This means that for the first row in Table 4.3 for example, the sample size

for Wang was half the sample size of the other approaches, whereas it was the same

for the analyses in the second and third rows.

Category Variables p-value
Semantic similarity Lin, Resnik, Schlicker, Wang - all values 0.17
Semantic similarity Lin, Resnik, Schlicker, Wang - MICA values only 0.01
Semantic similarity Lin, Resnik, Schlicker, Wang - GraSM values only 0.72
Semantic similarity Lin, Resnik, Schlicker 0.28
Functional simialrity BMA vs MAX 0.16
Dataset all vs nonIEA 0.40
Ancestors MICA vs GraSM (excl Wang) 4.4E−3

Table 4.3: p-values from single-factor ANOVA, for several combinations of variables.

From the p-values in Table 4.3, it is clear that in most cases, the differences

across the full set of AUC values are insufficient to draw meaningful conclusions

of the type “approach X always performs the best”. The only real exception is

the ancestor category, which has a p-value of 4.4E−3, which is much lower than

the significance level of 0.05. It can therefore be concluded that the AUC values

obtained if the MICA ancestor was used are significantly different from the AUC

values if the GraSM algorithm was used. As the MICA AUCs are higher (average

= 0.864) than the GraSM AUC values (average = 0.854), this allows the conclusion
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4.2 AUC results

that the use of MICA leads to better results than the use of GraSM. For this reason,

the next set of analyses was performed on the MICA AUCs only.

Additionally, the results in Table 4.3 show that if only MICA-derived AUCs are

considered, there are significant differences between the AUCs for the four semantic

similarity approaches. As this is the result of a single-factor ANOVA, the other

two sets of variables (functional similarity and dataset) were not considered and all

AUCs for a given semantic similarity approach were treated equally.

As different sets of variables should not just be considered independently, a pair

of two-factor ANOVAs with replication were performed. “with replication” means

that if the two factors under consideration were for example semantic similarity

and functional similarity, the AUCs obtained for each semantic similarity measure

for different datasets were considered as part of the same “sample” rather than as

individual ones. The results of these analyses are summarised in Table 4.4.

First factor second factor p-value first factor p-value second factor p-value interaction
Semantic similarity Functional similarity 0.03 1.00 0.39
Semantic similarity Dataset 4.9−2 0.02 0.28

Table 4.4: p-values from two-factor ANOVA, for several combinations of variables.

The results of the two-factor ANOVAs show that there is no significant difference

between the AUCs for semantic and functional similarity, nor is there any significant

difference in the interaction of the two factors, i.e. no combination of semantic and

functional similarity approaches leads to a significantly different set of AUCs. The

same is the case for the interaction of semantic similarity and dataset variables. Indi-

vidually however, both factors obtained p-values that are lower than the significance

level of 0.05. This means that there are significant differences between the AUCs for

different semantic similarity approaches for a given dataset and vice versa. As the

AUCs for the full dataset are on average slightly higher (average = 0.865) than the

AUCs for the non-electronic dataset (average = 0.857), this allows the conclusion

that using the full dataset leads to overall slightly better performance than using

the non-electronic one.

A final set of single-factor ANOVAs was therefore performed on the AUCs for all

semantic similarity approaches and both functional similarity approaches, using only

the full dataset and the MICA ancestor approach. If the factor under consideration

was functional similarity, the resulting p-value was 0.76, i.e. there is no significant

difference between the AUCs obtained for BMA and for MAX. If semantic similarity

was used as the factor, a p-value of 0.05 was obtained, suggesting that the difference

between the AUCs for the various semantic similarity approaches is statistically
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significant.

4.3 Semantic similarity approaches

In this section, the four semantic similarity approaches by Resnik, Lin, Schlicker

and Wang are compared under a number of different sets of variables to see if one

or more of the approaches consistently performs better than the others. The Wang

approach can only be included in a comparison if the ancestor parameter is kept

constant as this approach is not subject to different types of ancestor selection.

4.3.1 Ancestor

BMA MAX
all nonIEA all nonIEA

MICA Total StDev
Resnik 1 1 2 2 6 1
Schlicker 2 2 1 1 6 1

Lin 3 3 3 3 12 0
Wang 4 4 4 4 16 0

Table 4.5: Semantic similarity approaches for MICA

Table 4.5 shows that the approaches by Resnik and Schlicker perform equally

well, with Resnik performing better for functional similarity approach BMA, while

Schlicker performs better for functional similarity approach MAX. Semantic simi-

larity using Lin or Wang consistently rank in third and fourth place, respectively.

BMA MAX
all nonIEA all nonIEA

GraSM Total StDev
Schlicker 1 1 4 1 7 2
Resnik 2 2 1 4 9 1
Lin 3 3 3 3 12 0

Wang 4 4 2 2 12 1

Table 4.6: Semantic similarity approaches for GraSM

When the ancestor choice is “GraSM” (shown in Table 4.6), the ranking is slightly

different. The approach by Schlicker performs better than any other approach in

most cases except for “MAX-all”, where it actually performs the worst. A similar

situation exists for Resnik’s approach, which performs well in most cases except for
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“MAX-nonIEA”, where it performs worst. Lin’s approach is consistently ranked

third. The approach by Wang performs worst for BMA but is ranked second under

MAX, due to the two poorer performances by Resnik and Schlicker.

BMA MAX
all nonIEA all nonIEA

MICA GraSM MICA GraSM MICA GraSM MICA GraSM Total StDev
Schlicker 2 1 2 1 1 3 1 1 12 1
Resnik 1 2 1 2 2 1 2 3 14 1
Lin 3 3 3 3 3 2 3 2 22 0

Table 4.7: Semantic similarity approaches, all combinations. The Wang approach has to be
excluded from this comparison because the ancestor parameter varies across the comparison.

If Wang’s approach is not considered, as in Table 4.7, which shows the rankings

for Lin, Resnik and Schlicker for all possible combinations of functional similarity,

annotation and ancestor choice, Schlicker’s approach ranks highest overall, Resnik’s

second and Lin’s third. Exceptions are found only for the previously discussed two

cases, which in turn give Lin two higher rankings.

4.3.2 Annotations

BMA MAX
all

MICA GraSM MICA GraSM Total StDev
Resnik 1 2 2 1 6 1
Schlicker 2 1 1 3 7 1

Lin 3 3 3 2 11 1

Table 4.8: Semantic similarity approaches, full dataset

If only results from the full annotation dataset (Table 4.8) are considered, Resnik’s

approach ranks highest as this includes the exceptionally poor ranking for Schlicker’s

approach. Lin’s approach ranks worst overall. For the dataset of non-electronic an-

notation (Table 4.9) on the other hand, Schlicker performs best overall, whereas this

comparison includes the exceptionally poor performance of Resnik’s approach. Lin’s

approach again ranks the lowest.

4.3.3 Functional similarity approaches

For the BMA functional similarity approach, Schlicker and Resnik perform equally

well, while Lin’s approach performs consistently the worst. With MAX, Schlicker

performs overall better than Resnik. This comparison again includes the two cases
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BMA MAX
nonIEA

MICA GraSM MICA GraSM Total StDev
Schlicker 2 1 1 1 5 1
Resnik 1 2 2 3 8 1
Lin 3 3 3 2 11 1

Table 4.9: Semantic similarity approaches, non-IEA

BMA
all nonIEA

MICA GraSM MICA GraSM Total StDev
Schlicker 2 1 2 1 6 1
Resnik 1 2 1 2 6 1
Lin 3 3 3 3 12 0

Table 4.10: Semantic similarity approaches, BMA only

of exceptionally poor performances from Schlicker and Resnik already observed in

other tables. Despite these cases, Lin’s approach again ranks worst overall.

MAX
all nonIEA

MICA GraSM MICA GraSM Total StDev
Schlicker 1 3 1 1 6 1
Resnik 2 1 2 3 8 1
Lin 3 2 3 2 10 1

Table 4.11: Semantic similarity approaches, MAX only

4.3.4 Summary

Overall, Schlicker and Resnik perform almost equally well, with only a slightly better

performance by the Schlicker approach. Lin’s approach ranks consistently lower than

the other two IC-based methods, although it performs better than Wang’s approach,

if the type of comparison allows the inclusion of the latter.

This trend is also found for the protein interaction and the phenotype datasets.

In the gene expression dataset on the other hand, Resnik’s method performs consis-

tently worst, usually with Schlicker’s method ranking highest and Lin second. If the

ancestor choice is the constant factor, Lin even performs best for MICA and Wang

for GraSM, although this latter ranking may be an artefact of the overall lower per-

formance of the IC-based methods with GraSM, that makes the Wang approach,
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which is independent of ancestor selection, appear to perform better when in fact

its performance does not change.

In the next few sections, comparisons for all possible combinations of functional

similarity, ancestor and annotation choices will be performed, either for all four

semantic similarity approaches or, where this is not appropriate, for the three IC-

based approaches.

4.4 Ancestors

For the combinations of parameters in Table 4.12 and Table 4.13, it is appropriate

to include the approach by Wang in the comparison as the one parameter that

does not apply to the Wang approach, ancestor choice, is kept as a constant. In

this comparison, the full annotation dataset outperforms the non-electronic dataset

if only the most common ancestor is used, while the BMA functional similarity

performs worse than MAX due to the very poor performance of “BMA-all” for

Wang’s measure and its exceptionally good performance on “MAX-nonIEA”. Table

4.13 shows that, unlike the results obtained with MICA, the results for GraSM

show a better performance for BMA than for MAX. In addition, the two functional

similarity approaches show opposite performance trends when the type of dataset is

considered. BMA performs better on the full dataset whereas MAX performs better

with non-electronic data.

Lin Resnik Schlicker Wang Total StDev
MAX all MICA 2 2 1 2 7 1
BMA all MICA 1 1 2 4 8 1
MAX nonIEA MICA 3 4 3 1 11 1
BMA nonIEA MICA 4 3 4 3 14 1

Table 4.12: All annotation-MICA vs. non-IEA-MICA

Overall, it appears that while the IC-based measures perform better on the full

dataset than the non-electronic one, Wang’s performance is more related to the

choice of functional similarity as the hybrid approach performs better for MAX

than for BMA, regardless of the dataset. In addition, for each functional similarity

approach, Wang’s measure performs better with the non-electronic annotation data

than with all annotations. This trend can be explained by the way the approach

works. First of all, the better performance on the non-electronic data can be ex-

plained by the average depth of this dataset, which is around 7.7, compared to the

dataset of all annotations, which is about 6.9. The deeper in the hierarchy two
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terms are, the more likely it is that parts of their respective sub-graphs from term to

root differ. As the full dataset contains more annotations with fairly shallow terms,

the known drawback of Wang’s approach can result in misleadingly high similarities

between these shallower terms. This explains why, for either functional similarity ap-

proach, the non-electronic dataset performs better than the full annotation dataset.

In addition, these misleadingly high similarities can bias the BMA approach and

lead to a higher overall score between two gene products than might reasonably be

expected. The MAX approach on the other hand performs better because the truly

similar deeper terms will be those with the overall highest similarities.

Lin Resnik Schlicker Wang Total StDev
BMA all GraSM 1 1 2 4 8 1
BMA nonIEA GraSM 2 2 1 3 8 1
MAX nonIEA GraSM 3 4 3 1 11 1
MAX all GraSM 4 3 4 2 13 1

Table 4.13: All annotation-GraSM vs. non-IEA-GraSM.

Considering that the Wang approach produced two outliers when compared to

the MICA data (Table 4.12), compared to four outliers for the present comparison

(Table 4.13), this may suggest that it is more appropriate to compare the Wang

approach to the IC-based approaches using MICA than using GraSM.

As in Section 4.3, the protein interaction and phenotype datasets follow the

results for the aggregate dataset fairly closely and there are only a few minor ex-

ceptions in the individual rankings. The gene expression dataset on the other hand

once again opposes the general trend by performing better with the non-electronic

dataset than with full annotations. In all cases, the performance of the functional

similarity approaches is too variable to allow any conclusions to be drawn.

4.5 Annotations

When only results for the full annotation dataset are considered (Table 4.14), MICA

always performs better than GraSM in terms of ancestor choice and BMA performs

better than MAX, for both ancestor choices. The individual semantic similarity

approaches show trends that are fairly consistent with the overall trend, with all

minor variations within the defined limits.

Results for the non-electronic dataset (Table 4.15) show a different trend than

those for the full dataset. “MAX-MICA” performs best of all, while “MAX-GraSM”

performs worst of all. For BMA, GraSM performs better than MICA. In addition,
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Lin Resnik Schlicker Total StDev
BMA all MICA 1 1 2 4 1
MAX all MICA 2 2 1 5 1
BMA all GraSM 3 3 3 9 0
MAX all GraSM 4 4 4 12 0

Table 4.14: All annotation - MICA vs. GraSM

Resnik’s approach shows several outliers when compared to the overall trend. More

specifically, Resnik shows the same trend for the non-electronic dataset as for the full

dataset, suggesting that the kind of annotation used does not affect this approach

as much as Lin and Schlicker.

Lin Resnik Schlicker Total StDev
MAX nonIEA MICA 1 2 2 5 1
BMA nonIEA GraSM 2 3 1 6 1
BMA nonIEA MICA 4 1 3 8 2
MAX nonIEA GraSM 3 4 4 11 1

Table 4.15: Non-IEA - MICA vs. GraSM

Overall, approaches using MICA can be said to outperform approaches with

GraSM, while there is no overall conclusion for the functional similarity approaches.

In the gene expression and phenotype datasets on the other hand, BMA always

performs better than MAX, while MICA performs better than GraSM on the full

dataset and vice versa if only non-electronic annotation is used. The protein in-

teraction dataset shows less clear trends. Although the single ancestor approaches

generally outperforms the disjoint ancestor approach, the performance of the func-

tional similarity approaches is too varied to draw any conclusions.

4.6 Functional similarity approaches

If only the results for functional similarity calculated using BMA are considered

(Table 4.16), the full dataset performs better than the non-electronic dataset, but

while MICA outperforms GraSM on the full dataset, the reverse occurs for the non-

electronic data. In addition, there are two outliers to the overall trend.

For functional similarity using the MAX approach (Table 4.17), MICA performs

overall better than GraSM but while the full dataset outperforms the non-electronic

dataset for MICA, the reverse is true for GraSM. The overall trend for combinations

of either dataset with MICA are the same for both functional similarity approaches,

but they are different when it comes to GraSM.
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Lin Resnik Schlicker Total StDev
BMA all MICA 1 1 1 3 0
BMA all GraSM 2 3 3 8 1
BMA nonIEA GraSM 3 4 2 9 1
BMA nonIEA MICA 4 2 4 10 1

Table 4.16: BMA only

Lin Resnik Schlicker Total StDev
MAX all MICA 1 1 1 3 0
MAX nonIEA MICA 2 2 2 6 0
MAX nonIEA GraSM 3 4 3 10 1
MAX all GraSM 4 3 4 11 1

Table 4.17: MAX only

In the gene expression dataset on its own, non-electronic annotation always per-

forms better than the full annotation, for both functional similarity approaches.

GraSM performs best in conjunction with non-electronic annotation, while the op-

posite is true for MICA. In the other two individual datasets, full annotation always

performs best with BMA and MICA outperforms GraSM, while with MAX, full

annotation outperforms non-electronic annotation if MICA is used. Of the three in-

dividual dataset, the behaviour seen in the protein interaction dataset most closely

matches the aggregate dataset.

4.7 Summary

From these comparisons, it is clear that Resnik’s and Schlicker’s approaches perform

better overall than the approaches by Lin and Wang. In fact, the only times that

either of the latter two rank higher than third or fourth place respectively is in one

of the two cases when the former two perform exceptionally badly, namely “MAX-

nonIEA-GraSM” for Resnik and “MAX-all-GraSM” for Schlicker. In terms of the

individual datasets, the protein interaction and phenotype datasets provide very

similar trends, in that Resnik’s and Schlicker’s approaches have the best performance

although their respective rankings vary. Lin’s and Wang’s approaches rank worst in

both cases. The gene expression dataset agrees with Schlicker’s high performance

but has a very poor performance for Resnik. Nonetheless, the approaches to be

carried forward into the next part of the analysis will be Resnik and Schlicker as

they perform best in the highest number of cases.

In terms of variable choices, the full annotation dataset usually performs better
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than the non-electronic dataset, while the MICA usually performs better than the

GraSM algorithm, except for the gene expression dataset. In some cases, the better

performance of MICA is tied to the annotation dataset. In that respect, the full

annotation dataset generally performs better than the non-electronic dataset, except

in conjunction with “MAX-GraSM”. This combination will be eliminated by carrying

forward MICA as ancestor choice and the full dataset for annotation.

The results are somewhat less clear-cut for the two functional similarity ap-

proaches. BMA usually performs better than MAX on the full dataset whereas

MAX usually performs better than BMA on the non-electronic dataset. There is

however a high enough level of variability in all the datasets so that no clear con-

clusion can be drawn. In some cases, BMA appears to perform best overall, while

MAX has a better performance in others. For this reason, both approaches will be

carried forward.

In the next chapter, the selection of thresholds for the grouping algorithm will

be discussed before results for the grouping algorithm itself are presented.
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Chapter 5

Threshold determination

In the previous chapter, the most appropriate semantic and functional similarity

approaches and other variables were determined. The semantic similarity approaches

that performed the best overall were those by Resnik [1995] and Schlicker et al.

[2006], while neither the “BMA” nor the “MAX” functional similarity approach

consistently performed better than the other. The best results were obtained from

the aggregate rFunSim score rather than for the individual ontological scores. In

most cases, the full annotation performed better than the non-electronic annotation

data and the single ancestor selection gave overall better results than the GraSM

algorithm using disjoint ancestors.

However, before these selected approaches can be applied in the FuSiGroups

algorithm, it is necessary to determine the minimum and maximum semantic and

functional thresholds to be used for each combination of variables.

Determining a set of appropriate semantic and functional thresholds for each

approach is essential in order to generate optimum groups. The strategy for deter-

mining grouping thresholds was described in Section 3.2.2. In short, accuracy curves

were generated using ROCR’s acc parameter for the performance() method. For the

minimum threshold, the highest accuracy value for a given curve was determined

using the max() method on the Y-axis values of the graph. From the index or coor-

dinate in the list of datapoints of the highest Y-value, the corresponding threshold

on the X-axis was then determined. Each threshold was rounded to two significant

figures as there is no evidence to suggest that a higher level of accuracy is necessary.

The maximum threshold was defined as the largest similarity value corresponding

to an accuracy that is smaller than the maximum accuracy by 15% of the range of

accuracy values. The reason for using the largest similarity value is that due to the

quasi-parabolic nature of the accuracy curve, each accuracy value below maximum
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corresponds to at least two similarity values, one on each “side” of the curve. Since

the minimum threshold corresponds to the point of maximum accuracy, the maxi-

mum threshold needs to be a larger value and therefore needs to be the largest of the

two or more, in the case of a very irregular curve, similarity values corresponding to

the required accuracy.

For the data presented here, the maximum thresholds correspond to accuracies

of 70% for the semantic similarity approaches and 75% for the functional similarity

approaches. As can be determined from Figures 5.1, 5.3, 5.6 and 5.8, and from

Tables 5.1, 5.3, 5.6 and 5.8, the ranges for all curves are between 0.26 and 0.3, and

therefore 15% of those ranges would be 0.04 and 0.05, respectively. By subtracting

these values from the maximum accuracies and rounding the result to the nearest

0.05, accuracies of 70% and 75% were obtained.

For the maximum threshold, the selection procedure of the cut-off value was

slightly less direct than for the minimum threshold. The set of accuracy values

corresponding to thresholds greater than the minimum threshold and ranging from

0.748 to 0.752 (or 0.698 to 0.702, respectively) were selected as the performance()

method would not necessarily generate Y-values of 0.75 (or 0.70) exactly. It was

therefore not possible to pick the exact accuracy and find its matching threshold, as

with the minimum threshold. From the range of Y-values, the value closest to the

specified accuracy was selected and its respective X-value, rounded to two significant

figures, was used as the maximum threshold. In the majority of cases, the difference

between the threshold values corresponding to the accuracies closest to the specified

accuracy level was no greater than 0.01, i.e. rounding to two significant figures would

generate the same threshold for any of these values. For this reason, the potential

unavailability of an accuracy of exactly 0.75 (or 0.70) has no significant impact on

the selection of the maximum threshold.

5.1 Semantic thresholds

The semantic thresholds for each approach were determined using the individual

ontology scores (rather than the composite rFunsim) for a set of gene product pairs.

The ontological scores were calculated using the “MAX” functional similarity ap-

proach so that each score represents the closest GO term pair of that ontological

aspect for a pair of gene products. In the absence of a benchmark dataset of true

positive GO term pairs and true negative GO term pairs, this approach is the closest

approximation to such a benchmark. It is based on the assumption that two highly

similar gene products are annotated with highly similar GO terms, whereas two very
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dissimilar gene products are annotated with very dissimilar GO terms. Since there

are three ontological aspects in the GO but only one single semantic threshold across

all aspects, the three sub-datasets for a given approach are aggregated into a large

dataset in order to generate a single accuracy curve from which to deduce a single

set of semantic thresholds.

5.1.1 Resnik

The accuracy curve for Resnik’s semantic thresholds is shown in Figure 5.1. As

discussed in Section 3.2.2, the minimum and maximum semantic thresholds are too

close together to establish a range of thresholds if an accuracy of 75% is used. In

fact, a closer look at the actual values reveals that the highest accuracy value is

0.7595667 and corresponds to the point in the graph immediately preceding the

drop to 0.7161556. This would result in identical minimum and maximum semantic

thresholds, which is why the accuracy for the maximum threshold was redefined to

70%.
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Figure 5.1: Accuracy curve for the semantic thresholds for Resnik

From the data underlying the accuracy curve, the point of maximum accuracy

and the corresponding threshold can be deduced. The result is shown in Table 5.1:

Accuracy Cutoff Minimum ST
0.760 0.281 0.28

Table 5.1: Minimum ST for Resnik

By selecting data points with a cutoff greater than the minimum ST and an

101



5.1 Semantic thresholds

accuracy between 0.698 to 0.702, the maximum semantic threshold can also be

deduced, as shown in Table 5.2.

Accuracy Cutoff Rounded Maximum ST
0.701 0.397 0.40

0.40
0.701 0.397 0.40
0.701 0.398 0.40
0.697 0.402 0.40

Table 5.2: Maximum ST for Resnik

Figure 5.2 shows the ROC curve for the same dataset, with the range of semantic

thresholds displayed. The thresholds are clustered around the highest left-most part

of the curve, which represents the optimum trade-off in identification of true positives

and true negatives.
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Figure 5.2: ROC curve showing the semantic thresholds for Resnik

5.1.2 Schlicker

Figure 5.3 shows the accuracy curve for Schlicker’s semantic thresholds. Unlike the

ST accuracy curve for Resnik, Schlicker’s accuracy rises gradually along almost all

cutoffs, then drops suddenly at very high thresholds.

Due to the constant rise in accuracy found in semantic similarity according to

Schlicker, the minimum semantic threshold is very high, as shown in Table 5.3:

The sharp drop following the curve’s peak means that the minimum and maxi-

mum thresholds are extremely close together, as seen in Table 5.4.
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Figure 5.3: Accuracy curve for the semantic thresholds for Schlicker

Accuracy Cutoff Minimum ST
0.762 0.927 0.93

Table 5.3: Minimum ST for Schlicker

Accuracy Cutoff Rounded Maximum ST
0.704 0.948 0.95

0.95
0.704 0.949 0.95
0.697 0.949 0.95
0.696 0.950 0.95

Table 5.4: Maximum ST for Schlicker

Figure 5.4 clearly shows that the minimum and maximum thresholds for Schlicker

are located at the highest left-most part of the ROC curve. It should be noted that

in TP/TN trade-off terms, the thresholds of 0.93 and 0.94 are so close together that

they are indistinguishable at the resolution used in Figure 5.4.

The semantic thresholds for Resnik and Schlicker are clearly very different.

While Resnik’s thresholds are lower and cover a greater range of similarity values,

Schlicker’s thresholds are very high and the minimum and maximum thresholds are

very close together. Figure 5.5 shows the distribution of semantic similarity values

for both approaches for all possible GO term pairs of terms annotated to the Eisen

dataset. Similarity is only calculated between terms from the same sub-ontology as

terms that are not from the same sub-ontology do not have any common ancestors

and therefore have a similarity of 0. Nonetheless, similarities of 0 (or so close to 0

that any rounding reduces them to 0) are clearly very frequent. The percentage of

similarity values equal to 0, smaller than the minimum ST, greater than the maxi-
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Figure 5.4: ROC curve showing the semantic thresholds for Schlicker

mum ST and lying within the range of STs are all shown in Table 5.5. For Resnik,

similarities of 0 make up almost 50% of all values, while the percentage for Schlicker

is around 33%. For both approaches, the majority of similarity values (94% and

99% respectively) are lower than the minimum semantic threshold. This is not as

surprising as it may seem, especially considering the distributions in Figure 5.5 and

what they represent. Clearly, a very large number of similarity values are very low,

which can be expected in an all-against-all comparison of a set of terms as diverse

as GO term annotations.

The large difference in the respective ranges of the semantic thresholds for the

two approaches also makes more sense if Figure 5.5 is considered. Although Schlicker

has a very high proportion of term pairs without any similarity, the distribution of

similarity values greater than 0.1 is much more even than that of Resnik’s results.

However, it is also clear from both the histograms and Table 5.5 that the percentage

of similarity values within the semantic threshold range is much lower for Schlicker

than it is for Resnik. Even though the two sets of thresholds were derived experi-

mentally based on a set of pre-defined criteria, their use may reveal that they are

not equally suitable to the FuSiGroups algorithm.

5.2 Functional thresholds

Determining functional thresholds is a lot simpler than determining semantic thresh-

olds as the true postive/true negative datasets described in Chapter 3 represent pairs
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Figure 5.5: Semantic similarity distributions for Resnik and Schlicker for all GO terms found
in the annotation of the Eisen dataset. As there are a great number of GO term pairs with
a similarity of 0, histograms for all thresholds and for thresholds greater than 0.1 are shown
so that thresholds with lower frequencies can be seen. Note that the histograms for all values
and the histograms for values greater than 0.1 have different Y-axes.

Range Resnik Schlicker
similarity = 0 49.27% 33.73%

similarity < minST 94.05% 99.79%
similarity > maxST 2.14% 0.19%

minST ≤ similarity ≤ maxST 3.80% 0.02%

Table 5.5: Percentage of GO term pairs within different ranges of semantic similarity values,
for both Resnik and Schlicker
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5.2 Functional thresholds

of gene products. Therefore, accuracy curves based on rFunSim are going to directly

represent the accuracy of each approach for the datasets.

5.2.1 Resnik - BMA & MAX

The accuracy curves for functional similarity for both the BMA and the MAX func-

tional similarity approaches based on Resnik’s semantic similarity are shown in Fig-

ure 5.6. The curve for BMA (red) is taller and narrower than the MAX curve (green)

and it also covers a lower range of thresholds. This is reflected in the distribution

of functional similarity values for the full Eisen dataset (Figure 5.10): while Resnik-

BMA spans a smaller range of values at higher frequencies, Resnik-MAX spans a

wider range with a lower peak in frequencies.

Cutoff

A
cc

ur
ac

y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80 BMA

MAX

FT accuracy curve for Resnik

Figure 5.6: Accuracy curves for the functional thresholds for Resnik, for both BMA and
MAX

From the accuracy curves and the underlying data, the thresholds corresponding

to the point of maximum accuracy can be deduced. The corresponding functional

similarity value represented the minimum functional threshold (FT) for the respec-

tive approach (Table 5.6).

While the maximum semantic threshold was defined as the largest cut-off corre-

sponding to an accuracy of 70%, the maximum functional threshold is defined for

an accuracy of 75% as the accuracies for functional similarity are generally higher
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5.2 Functional thresholds

Approach Accuracy Cutoff Minimum FT
BMA 0.802 0.172 0.17
MAX 0.791 0.256 0.26

Table 5.6: Minimum FTs for Resnik

than for semantic similarity. Table 5.7 shows the accuracies closest to 75% (if no

accuracy value of exactly 0.75 is available) for both Resnik-BMA and Resnik-MAX.

The corresponding cut-offs are shown at both the level of precision calculated by

the FuSiGroups software and rounded to two decimal places (the precision used for

analysis purposes). Once rounded, all the thresholds are the same and give the value

of the maximum FT.

Approach Accuracy Cutoff Rounded Maximum FT

BMA

0.750 0.252 0.25

0.25
0.750 0.252 0.25
0.750 0.252 0.25
0.750 0.252 0.25

MAX

0.768 0.408 0.41

0.41
0.768 0.409 0.41
0.708 0.409 0.41
0.706 0.410 0.41

Table 5.7: Maximum FTs for Resnik

Highlighting the range between the minimum and maximum FTs on the respec-

tive ROC curves (Figure 5.7) shows that the thresholds are in the top left-most

section of the curve, i.e. the area representing the best trade-off between true pos-

itives and true negatives. It can also be noted that the thresholds for BMA are

slightly more clustered than the thresholds for MAX. In fact, the maximum FT for

MAX is at the lowest point of all the values shown on the curve. In addition, the

red curve seems to suggest that BMA performs marginally better than MAX (see

Chapter 4).

5.2.2 Schlicker - BMA & MAX

The accuracy curves for BMA (blue) and MAX (yellow) functional similarity using

Schlicker, shown in Figure 5.8, have the same origin and similar end points but the

bodies of the two curves are offset in relation to each other. More specifically, the

curve for BMA rises more sharply than the MAX curve and it is only slightly asym-

metric, i.e. it falls at a similar rate as it rises. The curve for MAX on the other hand
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Figure 5.7: ROC curves showing the functional thresholds for Resnik, both for BMA and
MAX. A selection of functional similarity values between the minimum and maximum FTs
are included to illustrate their distribution on the ROC curve.

rises far more slowly, then drops fairly sharply after its highest point. The similarity

in start and end points as well as the shapes of the two curves are reflected by the

distribution of the functional similarity values on the full Eisen dataset for the two

methods (Figure 5.10). Both approaches have at least some values at both extrem-

ities of the functional similarity range ([0,1]). The histogram for Schlicker-BMA

is left-skewed with higher individual frequencies while the histogram for Schlicker-

MAX shows a more even distribution across the range of possible values, with lower

individual frequencies.

The functional thresholds for both approaches using Schlicker’s semantic simi-

larity were determined using the same approach as for Resnik. The minimum FTs

are given in Table 5.8.

Approach Accuracy Cutoff Minimum FT
BMA 0.795 0.422 0.42
MAX 0.796 0.664 0.66

Table 5.8: Minimum FTs for Schlicker

The maximum FTs, also determined in the usual fashion and for an accuracy of

75%, are listed in Table 5.9.

Once again, the thresholds occupy the highest left-most part of the ROC curves

for the respective approaches (Figure 5.9). The two curves are very close, suggesting

similar performance qualities for the two approaches, and while the actual values
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Figure 5.8: Accuracy curves for the functional thresholds for Schlicker, for both BMA and
MAX

Approach Accuracy Cutoff Rounded Maximum FT

BMA

0.750 0.582 0.58

0.58
0.750 0.582 0.58
0.750 0.583 0.58
0.750 0.583 0.58

MAX

0.750 0.879 0.88

0.88
0.750 0.879 0.88
0.750 0.880 0.88
0.750 0.881 0.88

Table 5.9: Maximum FTs for Schlicker

of minimum and maximum FTs are different, the locations of the points are closely

matched on the two curves.

Due to the different natures of the two semantic similarity (Resnik & Schlicker)

approaches and the two functional similarity (BMA & MAX) approaches, the dis-

tributions of the results of these approaches are quite different from each other

(see Figure 5.10). Both functional similarity approaches using Resnik for seman-

tic similarity cover a much smaller range of functional similarity values than the

same approaches using Schlicker for semantic similarity. This is due to the fact that

Resnik’s approach is based solely on the most informative common ancestor (MICA)

of two GO terms which has a lower information content than the query terms. In
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Figure 5.9: ROC curves showing the functional thresholds for Schlicker, both for BMA and
MAX. Note that due to the nature of the step function used to display the sets of thresholds
on the curve, the range for the MAX curve (yellow) ends at 0.86 rather than 0.88

order to bring results from Resnik’s approach into the range [0,1], they need to be

normalised by division with maxIC1.

Schlicker’s approach on the other hand is already normalised because its calcu-

lation includes the division of the ICMICA by the sum of the information content of

the two query terms. In addition, Schlicker’s approach is weighted by multiplication

with 1− ln(p(MICA))2, increasing the higher similarities for more specific common

ancestors and lowering the similarities for more generic common ancestors.

In terms of functional similarity patterns, the distributions for both semantic

similarity approaches with BMA are more left-skewed than the two approaches with

MAX. Similarities calculated using MAX would generally be expected to be higher

than similarities calculated using BMA since MAX uses only the single most similar

pair of GO terms for a given ontology while BMA uses the best match for each GO

term, then averages them.

The percentage of functional similarity values in an all-against-all comparison of

the Eisen dataset falling into the different ranges of “below minFT”, “above maxFT”

and “between minFT and maxFT” are shown in Table 5.10. As with the distribution

of semantic similarity values, the majority of values lies below the minimum FT. The

fraction of values between and above the FTs is however greater than for the STs,

particularly for Schlicker.

1maxIC = −ln( 1

N
), where N is the total number of terms in the corpus

2p(MICA) is the probability of occurrence of the most informative common ancestor
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Figure 5.10: Functional similarity distributions for Resnik and Schlicker. Note that the scale
of the Y-axes for Resnik and Schlicker are not the same.

Resnik Schlicker
Range BMA MAX BMA MAX

similarity < minST 85.93% 82.48% 88.38% 85.07%
similarity > maxST 3.07% 2.27% 2.62% 2.43%

minST ≤ similarity ≤ maxST 11.00% 15.25% 8.99% 12.50%

Table 5.10: Percentage of gene product pairs within different ranges of functional similarity
values, for both BMA and MAX in conjunction with Resnik and Schlicker. The percentage of
gene product pairs with a similarity of 0 is not shown as it represents only a small fraction of
the overall distribution.
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5.3 Summary

5.3 Summary

In this chapter, semantic and functional thresholds for the different semantic and

functional similarity approaches were derived using the true positive/true negative

datasets described in Section 3.2.1. The same strategy was used for determining

both types of thresholds, although the semantic thresholds had to be derived indi-

rectly from a gene product dataset, as no benchmark dataset for semantic similarity

between GO terms exists. Consistent with the distribution of similarity values,

thresholds for Resnik are always slightly lower than thresholds derived for Schlicker.

The experimentally derived thresholds can now be used in the FuSiGroups algo-

rithm in order to generate groups of functionally related genes. In the next three

chapters, the results of these groupings with different parameters will be analysed,

first from a high-level perspective, in terms of the general trends found in each set

of groups (Chapter 6), then in greater detail, looking at some groups and smaller

datasets in greater details (Chapters 7 and 8).
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Chapter 6

Grouping trends

The purpose of the FuSiGroups algorithm is the generation of groups of functionally

related gene products. Each group has a definition of one or more semantically

similar GO terms. This definition characterises the functional aspect on which the

gene products in the group are related. The level of similarity between the GO

terms in the definition and between the gene products in the group are determined

by the thresholds derived in the previous chapter. Although both types of thresholds

cover a range of similarity values, the testing of the grouping algorithm will only

be performed on combinations of minimum and maximum thresholds in order to

avoid excessive repetition. Table 6.1 shows all the combinations of parameters for

which the algorithm was run. As each ST-FT combination uniquely identifies a

given experiment, this notation will be used from here on to refer to experiments,

rather than the full name of the approaches, i.e. ST40-FT26 would refer to an

experiment using the Resnik semantic similarity approach with MAX functional

similarity, semantic threshold of 0.40 and functional threshold of 0.26.

In the subsequent analysis of grouping results, unless otherwise specified, any

reference to number of groups will refer to meaningful groups, as opposed to total

number of groups for a given combination of thresholds. As a reminder, a meaningful

group is a group with four or more gene products, as defined in Definition 6 in Section

3.1.6.

The first part of the analysis, in this chapter, focusses on the high-level trends

of the results such as number of groups generated, group sizes and definition sizes.

Chapters 7 and 8 will then focus on the contents and definitions of a set of rele-

vant examples in greater detail in order to evaluate the results generated by the

FuSiGroups approach and compare them to both functional and expression cluster-

ing.

113



6.1 Number of groups

Semantic sim. Functional sim. ST FT

Resnik

BMA
0.28

0.17
0.25

0.40
0.17
0.25

MAX
0.28

0.26
0.41

0.40
0.26
0.41

Schlicker

BMA
0.93

0.42
0.58

0.95
0.42
0.58

MAX
0.93

0.66
0.88

0.95
0.66
0.88

Table 6.1: Combinations of experimental parameters for which the FuSiGroups algorithm
was run.

6.1 Number of groups

The first factor that should be analysed in a high-level context is the number of

groups generated for a given set of parameters. Table 6.2 shows the total number

of groups and the number of meaningful groups for each set of thresholds. It is

noteworthy that while the total number of groups remains the same for a given

semantic threshold, the number of meaningful groups varies with each functional

threshold. This is because the total number of groups is exclusively determined by

the group definition, which is only dependent on the ST. The number of meaningful

groups on the other hand is defined by group size, i.e. group content, which is

dependent on the FT. The higher the FT, the closer the genes in a group have to

be related and therefore the fewer meaningful groups there are as more groups have

too few genes to be considered meaningful.

One exception to the same total number of groups per ST occurs in the case

of the maximum FT for Schlicker-MAX (FT = 0.88). In this particular case, for

both minimum and maximum ST, the total number of groups is lower than the

total number of groups found for the minimum FT (FT = 0.66). The 38 and 41

groups that disappear in the two cases are groups that at minimum FT have a size

of 1 (data not shown). In each case, the single gene is one for which the functional

similarity with itself is lower than the maximum FT. When the group content is
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6.1 Number of groups

checked against the maximum completeness rule set by the functional threshold, the

one gene is found to be in violation of the rule and is removed. The resulting empty

group is discarded when the results are saved.

ST No. groups FT No. “meaningful” groups

0.28 481
0.17 397
0.25 387

0.40 740
0.17 564
0.25 539

0.28 481
0.26 401
0.41 401

0.40 740
0.26 572
0.41 567

0.93 2564
0.42 972
0.58 789

0.95 2693
0.42 963
0.58 782

0.93
2564 0.66 1001
2526* 0.88 757

0.95
2693 0.66 999
2652* 0.88 749

Table 6.2: Total number of groups and number of meaningful groups for each combination
of semantic and functional thresholds. The total number of groups is the same for a given
semantic threshold, regardless of the associated functional threshold, as the number of groups
is decided by the group definition, which is dependent only on the ST. Note that for maxFT for
Schlicker-MAX (FT=0.88), the total number of groups is slightly lower than the normal total
number of groups for that threshold (smaller numbers marked with *). The total number of
groups is lower here than for the minimum FT because several groups at minFT, all of group
size = 1, contained a gene whose similarity with itself was less than maxFT. The gene was
therefore removed at maxFT for violating the maximum completeness rule, resulting in an
empty group, which was discarded.

There is a very notable difference in the number of groups lost from total to

meaningful groups between groups generated from Resnik’s approach and groups

generated using Schlicker’s approach. For Resnik’s approach, groups with four or

more gene products represent roughly around 80% of total groups. For Schlicker’s

approach, they generally represent around 35% of total groups. In addition, the

drop, for Resnik, is overall greater for the maximum ST (between 75% and 80% of

total groups) than for the minimum ST (between 80% and 83% of total groups),

with little or no effect observed for varying FT values. For Schlicker, the different

STs have less of an effect than the difference between minimum and maximum FTs.

In fact, the percentage of meaningful groups for the minimum FTs usually lies closer

to 40%, while the percentage for the maximum FTs can be lower than 30% of total
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groups.

In relation to Resnik’s thresholds, these findings suggest that while a higher ST

means a larger number of groups, these groups have a tighter definition and therefore

fewer gene products will match the definition. This in turn leads to fewer groups with

enough gene products to be counted as meaningful groups. For Schlicker, the small

difference between the minimum and maximum STs is the most likely explanation

for the very minor change in number of meaningful groups for different STs. The

difference between minimum and maximum FT on the other hand is greater for

Schlicker than for Resnik, matching the wider range of similarity values for Schlicker

compared to Resnik (Figure 5.10). A higher FT is therefore more likely to have an

effect on group size and, by extension, number of meaningful groups for Schlicker

than for Resnik.

Average size
ST FT Max.size all groups meaningful groups

0.28
0.17 177 43.67 52.52
0.25 112 20.76 25.35

0.40
0.17 170 22.41 28.85
0.25 108 12.14 15.98

0.28
0.26 261 58.45 69.77
0.41 75 22.56 26.71

0.40
0.26 175 33.31 42.58
0.41 75 13.94 17.65

0.93
0.42 214 6.21 13.77
0.58 121 4.28 10.33

0.95
0.42 211 5.70 13.09
0.58 121 3.98 9.86

0.93
0.66 311 7.15 15.80
0.88 191 4.63 11.83

0.95
0.66 306 6.44 14.68
0.88 173 4.23 11.09

Table 6.3: Maximum and average group sizes for all threshold combinations. Average group
sizes are calculated for both all groups and meaningful groups only.

The great difference in number of both total groups and meaningful groups be-

tween groupings based on Schlicker and groupings based on Resnik could be an indi-

cation that the semantic thresholds determined for Schlicker are too high. Based on

the parameters defined for the determination of semantic and functional thresholds,

it might have been possible to define a lower minimum ST for Schlicker. The accu-

racy curve in Figure 5.3 has a plateau around a cut-off value of 0.75 that appears to

correspond to accuracy values that are fairly close to maximum accuracy. However,
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6.2 Group content

a series of groupings based on randomly selected semantic thresholds for Schlicker

revealed that the number of groups generated only drops below 1000 groups at an

ST of about 0.45. In light of this, it was decided that even a less rigorously defined

minimum ST would not considerably change the grouping results.

6.2 Group content

6.2.1 Group sizes

Since the number of meaningful groups goes down as the FT increases, it would make

sense for the overall group size to also decrease as the FT increases, since fewer genes

will have the necessary level of similarity. This trend is indeed observable from the

data for a given approach (see Table 6.3), i.e. the maximum group size is lower

for ST28-FT25 than it is for ST28-FT17. However, this does not extend across

different functional similarity approaches, i.e. the largest group for ST28-FT26 (a

set of thresholds associated with the MAX approach) is larger than the largest group

for ST28-FT25 (associated with the BMA approach). The same is of course also

true for average group sizes, when all groups are used to calculate the average group

size and when only the meaningful groups are used.

While the maximum group sizes would in general not allow any conclusion with

regard to which semantic similarity approach was used, there is a very clear differ-

ence between average group sizes for groups based on Resnik and groups based on

Schlicker. If Resnik’s approach is used, average group size is substantially bigger

than if Schlicker’s approach is used. This is the case for average group sizes across

all groups and across only meaningful groups. The reason for this trend is that a

larger proportion of groups based on Schlicker’s approach have small group sizes

compared to the groups based on Resnik’s approach. This in turn suggests that

either the thresholds derived for Schlicker create groups that are too tight, or that

the thresholds derived for Resnik create groups that are not tight enough.

Both semantic and functional thresholds can affect the tightness of the groupings

in this respect, as a too tight ST generates an excessively restrictive group definition

while an insufficiently high ST can generate a too general group definition. The

FT in turn affects the similarity of the genes within the group, determining how

tightly related they are. Considering the percentage of pairs of GO terms and pairs

of gene product that are greater than the respective thresholds (Tables 5.5 and

5.10), it is clear that Resnik’s thresholds allow a greater percentage of pairs of both

types to potentially be included in their respective part of the groups. Schlicker’s
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6.2 Group content

thresholds on the other hand allow a smaller percentage of pairs to potentially be

used, particularly for the GO term pairs, where only around 0.2% of pairs have a

similarity greater than either ST.

BP CC MF
ST FT total groups meaningful total groups meaningful total groups meaningful

0.28
0.17

247
231

165
109

69
57

0.25 227 106 54

0.40
0.17

347
306

194
124

199
134

0.25 293 121 125

0.28
0.26

247
234

165
109

69
58

0.41 234 109 58

0.40
0.26

347
310

194
124

199
138

0.41 307 124 136

0.93
0.42

1130
496

437
228

997
248

0.58 382 197 210

0.95
0.42

1204
487

450
230

1039
246

0.58 374 200 208

0.93
0.66 1130 514 437 229 997 258
0.88 1123* 357 429* 191 974* 209

0.95
0.66 1204 512 450 230 1039 257
0.88 1195* 352 442* 193 1015* 204

Table 6.4: Total number of groups and number of meaningful groups for each ontological
aspect for each threshold. The number of total groups for a given semantic threshold again
generally remains the same at different functional thresholds, except for the numbers marked
with *, in the case of the maximum FT for Schlicker-MAX. See Table 6.2 for a full explanation.

6.2.2 Groups by ontology

The same trends observed for the entire groupings can also be observed if the results

are separated according to the GO’s three sub-ontologies. Table 6.4 shows the total

number of groups for each ontology and the number of meaningful groups. As with

the full grouping, the total number of groups for each ontology is generally the same

for a given ST, regardless of FT, except for the maximum FT for Schlicker-MAX.

The number of meaningful groups for Resnik is always a greater percentage of the

total groups at minimum ST than at maximum ST, while the number of meaningful

groups for Schlicker is again more affected by the rise from minimum to maximum

FT.

However, the specific numbers of total and meaningful groups vary quite con-

siderably with the different ontologies, with the groups by no means being evenly

distributed across the three ontologies. In all cases, the largest number of groups

(both total and meaningful) belong to the BP ontology. For the other two ontolo-

gies, there is no similar overall trend. If Resnik’s similarity measure is used, MF
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has significantly fewer groups than CC at minimum ST while group numbers are

about the same for the two ontologies at maximum ST, both in terms of total and

meaningful groups. For Schlicker, there are far more MF groups than CC groups in

terms of total number of groups. In terms of meaningful groups on the other hand,

the two ontologies have very similar numbers of groups, i.e. there are far more MF

groups with three or fewer gene products than there are CC groups.

The consistently high proportion of BP groups is a reflection of the proportion

of BP terms in the total annotations of the Eisen dataset and the proportion of

BP terms in the set of distinct terms in these annotations. The exact numbers of

total annotations and distinct terms are given in Table 6.5. In fact, with Schlicker’s

measure, the number of total groups closely reflects the proportions of distinct GO

terms from each ontology found in the annotation of the dataset. Since the number

of total groups is primarily dependent on the ST, this may be a strong indicator that

the STs determined for Schlicker are too high to generate good group definitions.

No of annotations No of distinct GO terms
BP 12611 1444
CC 8567 518
MF 8815 1139

Total 29993 3101

Table 6.5: Eisen annotations by ontology. Both total annotations (distinct gene-GO term
tuples) and distinct GO terms are shown. Annotations found in GO release for 04-2009.

In the grouping process, each distinct GO term in the annotations of the dataset

initially receives its own group to which related GO terms are added. Then any

groups whose definition is a subset of another group’s definition are removed in

order to avoid duplication in definitions. Clearly, far fewer groups are affected by

this removal process if Schlicker’s measure is used than for Resnik. In terms of

definition sizes, the largest group definition for any group generated using Schlicker

consists of 5 GO terms for ST93 and 4 GO terms for ST95. For groups based on

Resnik’s similarity measure, the largest group definitions are 141 GO terms for ST28

and 57 GO terms for ST40. In addition, the number of group definitions of size 1 lie

around 77% (minST) and 86% (maxST) of total groups respectively for Schlicker,

whereas for Resnik, these groups represent 19% and 26% of total groups respectively.

Group definitions are not subject to the same minimum size requirement as the group

content and definitions of only one GO term can clearly show the functional concept

on the basis of which the genes in the group are related. However, definitions of

more than one GO term carry more information and an overly large proportion of

groups with single-term definitions, as found for Schlicker, may not be desirable.
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Comparing Tables 6.4 and 6.5, the number of total groups for each ontology

for Resnik bears little resemblance with either the frequency or the distribution of

annotations across the three ontologies. Although the total number of groups for BP

is much higher than the total number of groups for either of the other two ontologies,

it is much lower than the number of distinct GO terms found in the Eisen dataset

annotations. For CC and MF, the total number of groups are much lower than

for BP. Total number of groups for MF is either much lower than total number of

groups for CC, in the case of the minimum ST, or about the same, in the case of

the maximum ST.

The explanation for this behaviour lies mostly with the way Resnik’s method

works, rather than in the distribution of the annotations across the three ontologies,

as it does with the behaviour of groups for Schlicker. As discussed in Section 3.1,

Resnik’s measure considers the location of the common ancestor of two terms within

the hierarchy but not the distance between these terms and the ancestor. For each of

the three ontologies, the longest path between the root and one of the terms present

in the dataset annotation lies at 15 edges. The average depths for each ontology

lie at 8.26 for BP, 10.18 for CC and 6.40 for MF, i.e. MF has overall the most

shallow annotations while CC has overall the deepest. CC therefore has both the

least number of terms and the deepest terms, making it more likely for two terms to

be further apart, i.e. have a shallower ancestor and thus lower similarity between the

terms. MF on the other hand has more terms and has overall less depth than CC, so

that it is more likely that any two GO terms are more closely related and that the

depth of their common ancestor is less shallow compared to the overall depth of the

ontology. The resulting higher semantic similarity values mean that there are fewer

groups compared to the number of total possible groups (or total number of GO

terms) for MF, as more terms can be grouped together in a single definition. For

CC on the other hand, lower semantic similarity values may result in more groups

as terms are not sufficiently related to be grouped into the same definition at higher

STs.

In terms of meaningful groups for each ontology, the same trends as discussed

earlier for the full set of groups apply. If Resnik’s approach is used, the number of

groups of insufficient size is greater at maximum ST than at minimum ST, while the

number of groups of insufficient size for Schlicker is greater at maximum FT than

at minimum FT, with little effect from different STs.
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Group sizes by ontology

No new trends can be determined from the maximum and average group sizes for

each ontology, listed in Table 6.6. As with the average sizes for the full sets of

groups, the average group sizes for both all and meaningful groups are considerably

larger for groups derived using Resnik’s measure than for Schlicker’s measure. There

is also no clear trend for one ontology consistently having larger groups sizes than

another. The BP ontology has the greatest number of overall maximum group sizes

for a given threshold, but there is no observable pattern in the thresholds where this

is the case. It is more likely that BP has the largest group sizes because it also has

the greatest number of groups, making it more likely that the largest group for a

threshold will be a BP group.

BP CC MF
Average size Average size Average size

ST FT Max. size all groups meaningful Max. size all groups meaningful Max.size all groups meaningful

0.28
0.17 177 55.17 58.88 175 28.38 42.00 172 39.01 46.88
0.25 99 25.55 27.64 108 14.99 22.27 112 17.41 21.76

0.40
0.17 91 27.21 30.63 129 17.89 26.94 170 18.46 26.57
0.25 48 13.58 15.75 73 11.04 16.55 108 10.69 15.98

0.28
0.26 261 76.21 80.36 195 33.85 50.28 249 53.74 63.64
0.41 75 28.08 29.56 73 15.95 23.18 75 18.62 21.86

0.40
0.26 151 45.42 50.65 175 21.52 32.60 174 23.69 33.42
0.41 54 15.94 17.80 71 12.04 17.77 75 12.29 17.18

0.93
0.42 214 6.49 12.72 185 8.24 14.04 170 5.01 15.61
0.58 120 4.27 9.43 121 5.68 10.31 121 3.68 11.98

0.95
0.42 211 5.81 12.01 185 7.90 13.63 170 4.61 14.71
0.58 88 3.88 8.95 121 5.45 9.93 121 3.45 11.41

0.93
0.66 311 8.07 15.76 191 8.24 13.98 283 5.63 17.48
0.88 177 4.63 11.15 171 5.72 10.56 191 4.16 14.17

0.95
0.66 306 7.14 14.61 191 7.89 13.59 174 5.01 15.80
0.88 173 4.16 10.41 171 5.45 10.13 171 3.78 13.18

Table 6.6: Maximum and average group sizes for each ontological aspect for each threshold.
The average group size is calculated across both all groups and meaningful groups only.

6.2.3 Number of genes

Until now, genes have only been discussed in terms of group size but not in terms

of the number of genes that are grouped at least once for each set of thresholds. As

mentioned in Section 3.1.6, not all genes from a dataset will necessarily be grouped

by the FuSiGroups algorithm. This is particularly true in the case of larger datasets,

which have a greater likelihood of containing genes that are not functionally related

to any of the other genes in the dataset.

The fact that not all genes are grouped is not a flaw of the grouping process. If

traditional hierarchical clustering were used to find related genes, either based on

functional similarity or expression similarity, most trees would also contain genes
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that are clustered alone unless the tree is cut at a very high level. This is indeed

the case if the Eisen dataset is clustered using the original expression data and the

parameters described in Eisen et al. [1998]. The resulting cluster tree is not 100%

identical to the tree obtained by the original authors because even minor differences

and improvements in the clustering algorithm can change the result of the clustering.

The major trends however can be found and if the key clusters identified by Eisen

et al. are considered, they are generally found at a level of between 0.3 and 0.5. At

these levels, the number of genes clustered with at least one other gene and at least

three other genes, the same size as our meaningful group size, are listed in Table

6.7.

Distance in tree No of genes for s>1 No of genes for s>3
0.3 1109 589
0.4 1848 1154
0.5 2274 1723

Table 6.7: Number of clustered genes in clusters of size greater than 1 and size greater than
3, at three levels of distance in the cluster tree. Clusters of size 1 are never included as the
number of genes including those clustered alone is always equal to the number of genes in the
dataset.

Table 6.8 shows the number of distinct genes in all groups for each set of thresh-

olds, the number in meaningful groups, the percentage of the total number of genes

this represents and the difference in genes between all and meaningful groups. A

comparison between the number of genes grouped at least once and the number

of genes clustered with other genes in Table 6.7 shows that the grouping process

generally includes more genes in the solution than the clustering process. This is

particularly the case at minimum FTs, which obviously allow a higher number of

genes to be grouped since the genes are not required to be as closely related as with

maximum FTs. In Table 6.7, at a tree height of 0.3 for example, only 589 genes

are found in clusters of more than three members whereas the number of genes in

meaningful groups in Table 6.8 always exceeds 1500.

The “Difference” column in Table 6.8 reveals that the number of genes found

only in groups of insufficient size is generally lower if Resnik’s measure is used.

Additionally, the loss of genes is greater if the BMA functional similarity approach

is used, compared to the MAX approach. Aside from these observations, no further

trends can be detected from this data.
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6.3 Group definitions

Number of genes
ST FT All groups Meaningful groups Difference

0.28
0.17 2226 90.30% 2208 89.57% 18
0.25 1586 64.34% 1502 60.93% 84

0.40
0.17 2342 95.01% 2318 94.04% 24
0.25 1896 76.92% 1762 71.48% 134

0.28
0.26 2416 98.01% 2413 97.89% 3
0.41 1659 67.30% 1614 65.48% 45

0.40
0.26 2442 99.07% 2441 99.03% 1
0.41 2049 83.12% 1972 80.00% 77

0.93
0.42 2391 97.00% 2283 92.62% 108
0.58 2247 91.16% 1771 71.85% 476

0.95
0.42 2395 97.16% 2284 92.66% 111
0.58 2259 91.64% 1766 71.64% 493

0.93
0.66 2411 97.81% 2340 94.93% 71
0.88 2118 85.92% 1661 67.38% 457

0.95
0.66 2412 97.85% 2345 95.13% 67
0.88 2136 86.65% 1666 67.59% 470

Table 6.8: Number of genes grouped at least once for all groups and for meaningful groups.
Percentage of total genes in dataset (2465) and difference between all groups and meaningful
groups are also shown.

6.3 Group definitions

6.3.1 Definition size

Group definitions, i.e. the GO terms associated with each group, have already

been briefly mentioned, in Section 6.2.2, but it is worth considering them in a little

more detail. Table 6.9 shows the maximum and average definitions sizes for all sets

of thresholds. From this table, the previously mentioned difference in definition

sizes between groups based on Resnik’s approach and groups based on Schlicker is

immediately obvious, with the average group size for Schlicker never exceeding 1.5.

For groups based on Resnik’s approach, the average group definition sizes suggest

that while the majority of groups may not have definition sizes close to the maximum

definition size, there should be a number of groups with larger definitions. As stated

above, groups with a single GO term as their definition represent 19% (minST) or

26% (maxST) of all groups for Resnik, a much smaller proportion than for groups

based on Schlicker.

Group definitions for maxST are invariably smaller than group definitions for

minST, since fewer GO term pairs meet the similarity criteria to be grouped together

at higher STs.
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Average size Average size
ST Max.size all groups FT meaningful groups

0.28 141 27.34
0.17 32.86
0.25 33.64

0.40 57 9.39
0.17 11.92
0.25 12.35

0.28 141 27.34
0.26 32.55
0.41

0.40 57 9.39
0.26 11.79
0.41 11.84

0.93 5 1.27
0.42 1.50
0.58

0.95 4 1.16
0.42 1.32
0.58 1.31

0.93 5 1.27
0.66 1.50
0.88 1.49

0.95 4 1.16
0.66 1.32
0.88 1.31

Table 6.9: Maximum and average group definition sizes for all threshold combinations. Av-
erage group sizes are calculated for both all groups and meaningful groups only. Since group
definitions are only based on the semantic similarity between GO terms, not on the functional
similarity between gene products, they are only affected by changes in the ST (same maximum
and total average size for all FTs at a given ST). Average definition size for meaningful groups
does however vary at different FTs as group content is dependent on the FT.

124



6.3 Group definitions

For Resnik’s approach, the average definition size for meaningful groups for a

given ST is usually slightly higher at maxFT than at minFT. This suggests that

groups that contain not too strongly related genes do not have large definitions.

Since these groups lose some of their content at higher FTs and no longer count

as meaningful groups, the corresponding loss of small definitions from the average

definition size would lead to an average that is slightly less skewed towards smaller

definitions, even with a smaller maximum definition size. The same trend is not seen

in Schlicker groups, although this may be due to the overall much smaller definitions

rather than the true absence of the effect.

6.3.2 Group size vs. definition size

For both semantic similarity approaches, the average definition size is slightly higher

if only meaningful groups are considered. This suggests that there might be a corre-

lation between group size and group definition size. Figure 6.1 shows the correlation

between the number of gene products in a group (group size) and the number of GO

terms in the group’s definition (definition size), for ST28-FT17. The scatter plot

shows that there is some dependence between group and definition sizes if both vari-

ables are very small (approx. group size < 25, definition size < 12). This explains

the apparent correlation seen in the increase in average definition size for meaningful

groups. Overall however, there is no clear relationship between group and definition

size, with some of the largest groups having very small definitions, while some the

larger definitions belong to relatively small groups. The data certainly does not

allow any automatic conclusion on definition size based on group size or vice versa.

The log version of the scatter plot shows a slightly stronger linear relationship be-

tween group and definition size. However it also makes the spread of group sizes for

the smallest definition sizes more obvious.

For space reasons, the correlation between group and definition size is only shown

for ST28-FT17. The correlation coefficients for all threshold combinations, shown

in Table 6.10, were calculated using the Pearson correlation coefficient and R’s cor()

function. The correlation coefficient for the data represented in Figure 6.1 is 0.553.

It supports the conclusion already derived from the scatter plot that there is no

true relationship between group size and definition size. Overall, the correlation

coefficients for groups based on Resnik’s approach follow a similar trend, with some

stronger and some weaker than the coefficient for ST28-FT17. Even the highest

coefficient (0.7, for ST40-FT17) does not reach the level generally considered to

represent a strong relationship (r ≥ 0.8). For Schlicker’s approach, the correlation
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Figure 6.1: Correlation between group and definition size for ST28-FT17, for all groups.
The left plot shows the direct correlations, while the right plot shows the correlation on a
logarithmic scale.

coefficients are even lower than for Resnik. This is due to the very small definition

sizes of these groups, which in no way reflect the range of corresponding group sizes

(see Table 6.3).

6.3.3 Definitions by ontology

The trends discussed so far for all group definitions can also be found if definitions

are considered by ontology (Table 6.11). Group definitions are much larger for

Resnik groups than for Schlicker groups; group definitions are smaller at maxST

than at minST; average definition size for meaningful groups for a given ST goes up

marginally at maxFT compared to minFT for Resnik and average size for meaningful

groups is slightly larger than average size for all groups, for both approaches.

In addition, with Resnik’s approach, the average definitions sizes (both for all

groups and also for meaningful groups only) for each ontology very roughly reflect

the proportions of distinct GO terms of each ontology in the annotation. BP, which

has the highest proportion of distinct GO terms, also has the largest average group

definitions, while CC, with the lowest proportion of GO terms, also has the smallest

average definitions and MF’s definition sizes lie between the other two.

The same does not apply to maximum group sizes, where MF groups exceed

BP groups at both minST and maxST, while CC always has the lowest maximum

definition size of the three. Analysis of the groups with the largest definitions shows
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ST FT r

0.28
0.17 0.55
0.25 0.42

0.40
0.17 0.62
0.25 0.53

0.28
0.26 0.55
0.41 0.48

0.40
0.26 0.70
0.41 0.51

0.93
0.42 0.17
0.58 0.17

0.95
0.42 0.14
0.58 0.14

0.93
0.66 0.16
0.88 0.12

0.95
0.66 0.14
0.88 0.10

Table 6.10: Correlation coefficients (r) for group size vs. definition size for each set of
thresholds. The coefficients were calculated using Pearson correlation and R’s cor() function.

BP CC MF
Average size Average size Average size

ST FT Max. size all groups meaningful Max. size all groups meaningful Max.size all groups meaningful

0.28
0.17

132 40.46
43.16

57 7.88
11.36

141 26.88
32.19

0.25 43.88 11.63 33.81

0.40
0.17

50 12.85
14.39

28 4.30
6.10

57 8.32
11.67

0.25 14.89 6.21 12.33

0.28
0.26

132 40.46
42.64

57 7.88
11.36

141 26.88
31.69

0.41 42.64 11.36 31.69

0.40
0.26

50 12.85
14.24

28 4.30
6.10

57 8.32
11.41

0.41 14.33 6.10 11.46

0.93
0.42

5 1.36
1.59

4 1.24
1.39

4 1.18
1.43

0.58 1.59 1.39 1.44

0.95
0.42

4 1.22
1.41

4 1.15
1.25

3 1.10
1.22

0.58 1.39 1.27 1.23

0.93
0.66

5 1.36
1.58

4 1.24
1.39

4 1.18
1.43

0.88 1.61 1.37 1.41

0.95
0.66

4 1.22
1.40

4 1.15
1.25

3 1.10
1.23

0.88 1.41 1.24 1.21

Table 6.11: Maximum and average group definition sizes for each ontological aspect for each
threshold. The average group size is calculated across both all groups and meaningful groups
only.
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that at minST, there is only one MF group with a definition larger than the largest

BP group. The greater maximum size of the largest MF group is therefore most

likely a coincidence rather than an indicator of a trend. At maxST, there is an

approximately equal representation of MF and BP among the groups with the largest

definitions, which suggests that BP terms may be more susceptible to the higher ST,

i.e. BP term pairs may, on average, have slightly lower semantic similarity. Neither

of these trends are observable for groups based on Schlicker because of the overall

smaller definitions, which mask any other potential effect.

6.3.4 Number of GO terms

In the same way as not all gene products are necessarily included in a grouping (see

Table 6.8), not all GO terms that are annotated to the gene products in the dataset

are used in group definitions. Table 6.12 shows how many out of the Eisen dataset’s

3101 distinct GO terms are used at each set of thresholds. The GO terms that

are missing in the “All groups” column represent terms for which similarity with

themselves is lower than the ST for that grouping. As a result, these terms violate

the maximum completeness rule of any definition they are in, even in a single-term

definition and are therefore always removed.

The further loss of GO terms when only meaningful groups are considered is

due to some GO terms only occurring in the definitions of groups considered as not

meaningful due to the number of gene products associated with them. In this case,

groups based on Schlicker’s approach show a much greater loss in GO terms than

groups based on Resnik. This finding is in line with the amount of actual groups lost

as not meaningful for Schlicker compared to Resnik (see Table 6.2). As a result, fewer

than half of the original annotations are found in meaningful groups for Schlicker,

while even the worst loss for Resnik still only represents around 88% of the original

terms. Although this reduction in descriptive richness may not automatically cause

problems for Schlicker’s groups, it is of course desirable to have as many of the

annotated GO terms in the group definitions as possible.

6.3.5 Definition size vs. term depth

A final point that needs to be considered in relation to group definition size is

whether there is any relationship between the number of terms in a definition and the

depth of these terms. A strong correlation (positive or negative) between definition

size and term depth would suggest bias in the data, with deep terms occurring
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Number of GO terms
ST FT All groups Meaningful groups

0.28
0.17

3067
2975

0.25 2953

0.40
0.17

2976
2779

0.25 2737

0.28
0.26

3067
2982

0.41 2982

0.40
0.26

2976
2791

0.41 2781

0.93
0.42

3067
1326

0.58 1083

0.95
0.42

3058
1221

0.58 990

0.93
0.66

3067
1363

0.88 1044

0.95
0.66

3058
1263

0.88 947

Table 6.12: Number of GO terms used at least once in the group definitions for all groups
and for meaningful groups. The total number of GO terms in the annotation of the Eisen
dataset is 3101. The total number of distinct GO terms in group definitions is less than 3101
because there are always a few GO terms whose similarity with themselves is less than the ST
for that grouping.
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primarily in either small definitions (negative correlation) or in large definitions

(positive correlation).

ST r

0.28 0.21
0.40 0.28
0.93 0.06
0.95 0.03

Table 6.13: Correlation coefficients (r) for definition size vs. average depth of GO terms
in the definition, for each semantic threshold. The coefficients were calculated using Pearson
correlation and R’s cor() function. Correlation coefficients are independent of FT as the group
definitions only depend on ST.

Table 6.13 shows the correlation coefficients (calculated as before in R, using

Pearson’s correlation) for definition size and average depth of the terms in the defi-

nition. The average depth was calculated using the maximum depth for each term

(longest path between the term and the ontology root) in the definition. As a re-

minder, each term in the GO can be related to the root via multiple paths, which

may traverse different numbers of nodes. Unless otherwise stated, any reference to

“distance from root” of a GO term is to the maximum distance. For all the terms

annotated to the Eisen dataset, the difference between minimum and maximum dis-

tance to the root ranges from 0 (about 39% of terms) to 11 (one case). The average

difference lies at 1.98.

Based on the coefficients found for each ST, there is no obvious correlation be-

tween definition size and term depth and therefore no bias in the way the GO terms

are grouped into definitions. In conjunction with the correlation coefficients found

for group size vs. definition size (Table 6.10), the conclusion is that the underly-

ing structure of the GO does not directly influence the semantic similarity between

GO terms, the resulting functional similarity between gene products and the groups

which are created using the two types of measures.

6.4 Summary

In this chapter, a number of overall trends of grouping results for different thresholds

were considered. One recurring feature that stands out is the effect of Schlicker’s se-

mantic thresholds on the grouping results. The high thresholds and small difference

between minimum and maximum ST led to a much larger number of groups than

those obtained using Resnik’s measure, much smaller average group sizes, a much

greater proportion of groups of insufficient size and very small group definitions.
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All of these elements bring into question the suitability of these semantic thresh-

olds. As briefly discussed in Section 6.1, lowering the minimum ST for Schlicker was

considered but initial tests showed little promise of improvement.

Although Schlicker’s measure objectively addresses a drawback in Resnik’s mea-

sure, it performed less well than the older measure in the present context. While

using a different true-positive/true-negative dataset might have generated a different

and better set of thresholds, this was not feasible within the scope of this project

as it would have required a lot of time and very high levels of expert knowledge of

all areas of molecular biology covered by the GO. The analysis of grouping results

from here will therefore be limited to Resnik’s approach.

While this chapter focussed on the groups generated by the FuSiGroups algo-

rithm from a very high-level perspective, the next two chapters will focus on the

actual content and definitions of some of the groups. In addition to the full Eisen

dataset, subsets of the data will be analysed in detail.
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Chapter 7

The complete Eisen dataset

Until now, the results generated by the FuSiGroups algorithm have only been anal-

ysed in very general terms such as the number of groups obtained for a given set of

thresholds, group sizes and number of genes grouped. In this and the next chapter,

the definition and content of groups will be analysed in order to determine whether

the FuSiGroups algorithm does indeed meet its target functionality of grouping to-

gether gene products based on meaningful functional relationships, providing an

objective view of such complex biological data containing valuable novel insights.

Chapter 7 focusses on the full Eisen dataset, while Chapter 8 will provide detailed

investigations into several smaller, less noisy datasets to address a number of specific

questions.

At the end of Chapter 6, it was concluded that the semantic thresholds deter-

mined for Schlicker’s approach are less suitable for use with FuSiGroups than those

determined for Resnik. For this reason, all analysis in this chapter uses groups based

on Resnik’s semantic similarity approach.

In addition, in order to avoid repetition, it would be helpful to select only one

combination of the ST and FT parameters on which to perform a more detailed

analysis of groupings. It was shown previously that for Resnik, the BMA functional

similarity approach performs better than the MAX functional similarity approach

(Section 4.1, Figure 4.4). Considering this finding, the grouping results for the BMA

approach will be used in this analysis. The main analysis will be performed on the

grouping results using minimum ST and FT since these correspond to the highest

accuracies in their respective datasets. Comparisons with results for maximum ST

and FT will be made as necessary.

Unless stated otherwise, all groups have been created using the parameters listed

in Table 7.1.
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Variable Value
Semantic similarity Resnik
Functional similarity BMA
Annotations all annotations
Ancestor selection MICA
Semantic threshold 0.28
Functional threshold 0.17

Table 7.1: FuSiGroups parameters for groups analysed in Chapter 7.

7.1 Largest groups and most common aspects

There are two angles from which a closer analysis of grouping results could be started,

namely the largest groups or the most common functional aspects represented by

the groups. In a smaller dataset, the most common functional aspects should be the

most sensible starting point, as they are most likely to reveal immediate information

about the groups. In a dataset the size of the Eisen dataset on the other hand, this

does not necessarily hold true, as the most common functional aspects may be too

generic to contain any useful information.

In Chapter 6, it was established that the grouping result for the parameters in

Table 7.1 consists of 481 groups, 397 of which contain at least 4 gene products (Table

6.2) and that the largest group contains 177 gene products (Table 6.3). Figure 7.1

shows the distribution of group sizes for meaningful groups1. As they are not going

to be considered in the analysis, the smaller group sizes are not included in the

histogram in order to keep the size of the histogram’s Y axis as readable as possible.

The frequencies for groups of size 1, 2 and 3 are 35, 31 and 18, respectively.

Although the study of the distribution of group sizes would seem to be more

appropriate in the previous chapter, this information was not considered until now

as it was felt inappropriate and overly repetitive to perform this analysis for all

sets of thresholds. It is included here in order to provide context for the largest

groups, such as what fraction of the full set of groups they represent and how their

sizes compare to the majority of the groups. From the histogram, it is clear that

the majority of groups (almost 85% of meaningful groups) have sizes in the interval

[4, 80], although there are a couple of spikes in the number of groups at size 90 and

103, as well as a scattering of groups of sizes greater than 105 gene products.

Tables 7.2 and 7.3 show the most common group names, representing the most

common functional aspects, and the largest groups, respectively. As a reminder,

1As a reminder, “meaningful groups” have previously been defined as groups which contain at
least 4 genes.
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Figure 7.1: Distribution of group sizes for ST28-FT17, for meaningful groups. Groups of
smaller size are not included in order to reduce the size of the histogram’s Y axis. The
frequencies for groups of size 1, 2 and 3 are 35, 31 and 18, respectively.
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Group size
Name Ontology No. of groups Maximum Average Minimum
biopolymer modification (GO:0043412) BP 16 58 46.94 34
catabolic process (GO:0009056) BP 15 62 61.00 59
organic acid metabolic process
(GO:0006082)

BP 11 72 62.55 48

cellular localization (GO:0051641) BP 11 104 97.09 64
endomembrane system (GO:0012505) CC 8 80 73.63 69
nucleobase, nucleoside and nucleotide
metabolic process (GO:0055086)

BP 7 38 35.29 34

cell cycle (GO:0007049) BP 7 66 63.29 62
DNA metabolic process (GO:0006259) BP 7 89 73.57 55
mitochondrial part (GO:0044429) CC 7 88 75.43 66
response to stress (GO:0006950) BP 6 90 89.67 88
nitrogen compound metabolic process
(GO:0006807)

BP 6 72 71.67 71

carbohydrate metabolic process
(GO:0005975)

BP 6 39 24.17 20

reproduction (GO:0000003) BP 6 49 37.83 25
translation (GO:0006412) BP 6 167 165.67 165
macromolecular complex subunit organi-
zation (GO:0043933)

BP 6 65 60.00 43

cytoskeleton (GO:0005856) CC 6 55 53.50 52
negative regulation of biological process
(GO:0048519)

BP 5 68 63.60 50

lipid metabolic process (GO:0006629) BP 5 57 50.40 35

Table 7.2: Most common group names for ST28-FT17. Group names occuring a minimum
of 5 times are shown, representing at total of 29.31% of all groups (or 35.52% of meaningful
groups).
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a group’s name is the lowest common ancestor of all the GO terms in the group

definition, where lowest refers to the maximum distance of the term from the root.

If more than one ancestor term has the same maximum distance from the root, the

first term in the list of equally deep ancestors is used. A comparison of the two

tables shows that the only overlap between them is for the group name “translation

(GO:0006412)”. All groups with this name are found among the largest groups.

There are no molecular function groups in Table 7.2. This is not surprising as the

functions of a set of proteins are likely to be more diverse than the set of processes

these proteins are involved in, i.e. a number of different molecular functions make

up a single biological process. A set of proteins that are part of the same biological

process may therefore be subdivided into several distinctly named groups based

on their functions because these functions differ enough for the overall functional

similarity to be below the FT. The related BP- and CC-based groups however have

the same or very similar names as the proteins are all part of the same process and

act in the same cell part.

The explanation for the fact that only three out of the 18 most used group names

are cellular component groups is slightly different. Although gene products grouped

together because they are functionally similar are highly likely to be found in the

same location, there are far fewer CC GO terms than BP terms, both in the number

of distinct GO terms and in terms of annotations (see Table 6.5). It therefore follows

that the majority of commonly used group names are of type BP rather than CC.

Overall, names in Table 7.2 reflect general cellular processes, such as metabolism

(e.g. organic acid metabolic process, nitrogen compound metabolic process etc) and

cell cycle. This is unsurprising considering the nature of the Eisen dataset. The genes

in the dataset were selected based on the availability of functional annotations in

1998 [Eisen et al., 1998], not on the basis of any biological properties and therefore,

they cover all aspects of the yeast genome. The experimental conditions on which

Eisen et al. based their cluster analysis highlight genes involved in the affected

processes but the full dataset is entirely unfiltered.

This effect is also observable in Table 7.3, among the largest groups obtained

for ST28-FT17. The largest groups cover broad aspects of cell function, such as

transcription and translation, and high-level locations such as cytosol and ribosome.

All of these concepts cover a large number of genes, thus resulting in the largest

groups.

This confirms the earlier assertion that considering the most common group

names or largest groups may not be a useful approach for analysing a large dataset.

In a smaller dataset, in which the genes may be related to a given theme, e.g. a
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common pathway or set of pathways, this approach may reveal useful information.

In a dataset like the Eisen dataset on the other hand, a more targeted approach,

i.e. an analysis approach with a specific gene or function set in mind, would be

more appropriate. This is not necessarily a drawback when approaching the data to

address discrete biological hypotheses. Eisen et al. clustered genes from a set of gene

expression studies involving diauxic shift, cell cycle, sporulation and temperature

shock. Suitable starting points for the analysis of this dataset could therefore be

genes of interest in one of these processes or functional aspects of these processes.

This option will be addressed below.

An interesting observation is that many of the groups in Table 7.3 have the

same name. There are for example four groups with the name “transcription, DNA-

dependent (GO:0006351)” (marked with ∗ in Table 7.3), including the two largest

groups. Between them, they contain 209 distinct genes of which 88 (42%) are found

in all groups. 32 (15%) genes are unique to one of the groups, while a further 74

genes are found in three out of the four groups. The groups’ definitions also have

some overlap, although it is not quite as pronounced. 14 out of 61 distinct GO terms

are present in all definitions while only 3 terms are unique to one definition.

This level of overlap is even more pronounced in the six groups with the name

“translation” (marked with ∓), which have 168 distinct genes between them and all

six groups contain 165 of these. Of the three genes not found in all groups, one is in

two groups and two are unique to one group. From a group definition point of view,

the situation is slightly different. Only one of 46 distinct GO terms is common to

all six group definitions; this is GO:0006412, i.e. translation and 8 terms are unique

to one of the definitions.

This trend of high levels of overlaps can be observed in any set of groups with the

same group name. More broadly, most of the group names in Table 7.3 fall into two

categories, namely transcription-related groups (14 groups) and translation-related

groups (13 groups). Three groups (1474, 1478 and 1070) do not fit into either of these

categories. All groups in either of the two categories have a considerable overlap in

their gene content. Although no gene in the transcription-related groups is present

in all 14 groups, 20 genes out of a total of 364 distinct genes are present in 13 groups

and 154 genes (42%) are present in at least 8 groups. Only 75 genes are present in

just one group.

The overlap is even stronger for the translation-related groups. Here, 26 genes

out of a total of 288 occur in all 13 groups, while 164 genes (57%) are found in 7

or more groups, whereas there are only 10 genes that are unique to a single group.

In the translation category, there are two sub-categories with even stronger overlap:
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Group ID Group name Ontology Group size
1193 ∗ transcription, DNA-dependent (GO:0006351) BP 177
1350 ∗ transcription, DNA-dependent (GO:0006351) BP 177
1367 ribosome (GO:0005840) CC 175
1196 structural molecule activity (GO:0005198) MF 172
1220 regulation of nucleobase, nucleoside, nucleotide

and nucleic acid metabolic process (GO:0019219)
BP 169

1357 ± nucleoplasm (GO:0005654) CC 169
1365 regulation of nucleobase, nucleoside, nucleotide

and nucleic acid metabolic process (GO:0019219)
BP 168

1391 transcription regulator activity (GO:0030528) MF 168
1042 ∓ translation (GO:0006412) BP 167
1036 ∓ translation (GO:0006412) BP 166
1041 ∓ translation (GO:0006412) BP 166
1095 ∓ translation (GO:0006412) BP 165
1373 ∓ translation (GO:0006412) BP 165
1375 ∓ translation (GO:0006412) BP 165
1083 ∗ transcription, DNA-dependent (GO:0006351) BP 161
1460 † DNA binding (GO:0003677) MF 150
1463 † DNA binding (GO:0003677) MF 150
1014 ± nucleoplasm (GO:0005654) CC 149
1073 ± nucleoplasm (GO:0005654) CC 144
1474 transporter activity (GO:0005215) MF 143

1232 ± nucleoplasm (GO:0005654) CC 138
1371 cytosol (GO:0005829) CC 129
1478 ‡ protein binding (GO:0005515) MF 123
1070 ‡ protein binding (GO:0005515) MF 121
1085 ∗ transcription, DNA-dependent (GO:0006351) BP 121
1069 ⋄ RNA processing (GO:0006396) BP 118
1142 ⋄ RNA processing (GO:0006396) BP 118
1348 ⋄ RNA processing (GO:0006396) BP 118
1156 ribonucleoprotein complex biogenesis

(GO:0022613)
BP 116

1290 chromosome (GO:0005694) CC 116

Table 7.3: Largest groups for ST28-FT17. A cut-off of s ≥ 116 was chosen as there is a
clearly visible gap in Figure 7.1 between this and the next-lowest group size. Groups with the
same name are marked with a symbol for easier identification.

138



7.2 Supergroups

the 6 groups with name “translation” as well as groups 1367, 1196 and 1371 all

share 113 of their 195 distinct genes, with only 7 genes unique to a single group.

The remaining four groups (1069, 1142, 1348 and 1156) share 111 of their 123 genes

and only 5 genes are found in only one group.

These findings suggest that the FuSiGroups algorithm may not be rigorous

enough in avoiding duplication, as there is clearly a considerable level of overlap

between groups, both in terms of content and definitions. In fact, the only step

of the algorithm that really addresses duplication is the removal of groups whose

definition is a subset of another group’s definition. No similar step is applied to the

group content. This is because the algorithm was originally designed based on the

assumption that thresholds (semantic and functional) would be sufficient to create

fairly discrete groups. Overlap in content was also expected, as related gene products

are often related on multiple features, either in the same sub-ontology or in different

ontologies, e.g. two gene products that are related based on their function are likely

to also be related based on their location, or due to the process they take part in.

It is therefore reasonable to expect a number of groups with roughly the same gene

products but different definitions. The fact that there is also a lot of overlap among

group definitions suggests that a more stringent grouping process may be required.

In order to visualise the extent of the overlaps, a matrix of groups against genes

and one of groups against GO terms were created using Microsoft Excel. A sample

screen shot of the groups/gene matrix is shown in Figure 7.2. Unfortunately, the

matrix is too large to reproduce here. The screen shot does however demonstrate

the extent of the overlap even on a small section of the matrix.

7.2 Supergroups

In order to address this overlap issue, an algorithm for creating supergroups was

designed.

Definition 9. Supergroup - a group that is created through the merging of two or

more groups. A supergroup is not subject to the maximum-completeness rule.

This algorithm merges groups with a high level of overlap into supergroups. This

may lead to supergroups that violate the original maximum-completeness rule for

group definitions or group content, as the GO terms or genes in the supergroup may

no longer all have the required level of similarity with each other. In cases where

a number of groups have a suitable level of overlap, this compromise was however

deemed acceptable in order to reduce excessive overlap. A suitable level of overlap
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Figure 7.2: Screenshot of group alignment matrix for ST28-FT17. Note that the image has
been rotated 90◦ anti-clockwise. The image shows 30% of the total width of the matrix and
8% of its height, at a zoom setting of 25%. The top three rows of the matrix list each group’s
ontology, size and ID number. The first five columns list the location of each gene in different
hierarchical trees and the ID numbers of different clusters associated with these trees (see
later). The actual gene IDs (SGD IDs) are in column 6. The matrix is colour-coded according
to the GO ontologies for ease of interpretation: BP groups are red, CC green and MF purple.
The solid orange rows represent genes that are not found in any groups.
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was defined as a cosine similarity equal to or greater than 0.5 for both definition and

content. Cosine similarity was discussed in the context of the phenotype dataset, in

Section 3.2.1.

The similarity level of 0.5 was chosen by visual analysis of pairwise definition

and content similarities between all pairs of groups that have any overlap in both

categories (2535 distinct pairs). Most pairs of groups show either very high levels of

overlap in both categories, or very low levels of overlap. Only a few groups have a

high level of overlap in one category but not in the other, with a notable prevalence

of pairs with high content overlap but low definition overlap (347 pairs) compared to

pairs with high definition overlap but low content overlap (78 pairs). The option of

using two distinct similarity levels for definition and content overlap was considered,

but due to time constraints and the ad hoc nature of this additional algorithm, it

was decided to proceed with a single threshold for both types of overlap.

The merging algorithm was designed as follows: first the overlap between all

pairs of groups is calculated, both for their definitions and their content. Then,

each group is matched with all the groups with which it has the required level

of overlap. Immediately merging groups at this point would of course inevitably

lead to duplicate supergroups, as a group A, which overlaps with another group B,

would become a supergroup, but B, overlapping with A, would become a distinct,

yet identical supergroup. For this reason, the algorithm first checks every set of

matched groups against all other sets and removes duplicates, so that each set of

identical groups is only merged into a supergroup once. Sets of matched groups are

also checked to ensure that they are not subsets of others, and subsets are removed.

Finally, prior to merging, the algorithm checks that the new supergroup would have

a group content of at least four gene products in order to avoid generating non-

meaningful supergroups.

Initial tests indicated that the supergroups had almost as much overlap in terms

of their content as their original constituent groups. For this reason, the checking

of sets of matched groups against each other was extended to consider the level of

overlap between sets, and further merge closely related matched sets. The level of

overlap was this time set to 0.8. Specifically, this meant that if there are two sets

of related groups, {A,B,C,D,E} and {A,B,C,E, F}, respectively, which have an

overlap of 0.8 or more, they are merged into a single set.
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initialise list allGroups
initialise list matchedSets
initialise list mergedGroups
FoR ALL G ∈ allGroups DO

FOR ALL T ∈ allGroups−G DO
calculate overlapdef(G,T )
calculate overlapcont(G,T )
IF overlapdef (G,T ) ≥ 0.5 && overlapcont(G,T ) ≥ 0.5 THEN

add T to list(groupsthatoverlapwithG)
END IF

END FOR
add list(groupsthatoverlapwithG) to matchedSets

END FOR
FOR ALL setG ∈ matchedSets DO

FOR ALL setT ∈ matchedSets − setG DO
IFsetG == setT ‖ setT ⊂ setG ‖ (setG ∩ setT ) ≥ 0.8 THEN

FOR ALL t ∈ setT DO
IF t /∈ setG THEN

add t to setG
END IF
remove setT from matchedSets

END FOR
END IF

END FOR
END FOR
FOR ALL setG ∈ matchedSets DO

merge all groups in setG into supergroupG
IF supergroupGcont ≥ 4 THEN

add supergroupG to mergedGroups
END IF

END FOR
RETURN mergedGroups

Table 7.4: Pseudocode for the supergroups algorithm

7.2.1 Pseudocode

7.2.2 Merging results

Of the 481 groups originally obtained for the parameters used in this chapter, 244

groups were merged into 54 supergroups, leaving 237 unmerged original groups. Out

of the 244 merged groups the majority were merged into a supergroup once, with

only 10 groups merged twice and no groups more than twice. The supergroups range

in size from 23 to 235 gene products and in definition size from 4 to 161 GO terms.

The supergroups and unmerged original groups were visualised in a new colour-
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coded matrix, similar to the one in Figure 7.2. While this visualisation showed that

the supergroups had clearly alleviated the degree of overlap between groups, there

still remained some overlap between supergroups, as well as between supergroups

and unmerged original groups. Studying the cosine similarity between the original

groups that were merged into the supergroups that have the most extreme levels of

overlap showed that in almost all cases, those original groups that were not merged

had very low levels of definition similarity but high levels of content similarity.

If more time had been available, further refinements of the merging algorithm,

such as more extensive testing of different similarity levels, would have been useful.

It was however decided that the improvement in overlap levels obtained from the

algorithm in its present state was sufficient to proceed with further analysis and

evaluation of the FuSiGroups algorithm.

7.3 Grouping vs. clustering

7.3.1 Expression clustering

The Eisen dataset was originally put together to test the use of cluster analysis in the

discovery of genome-wide expression patterns. It would therefore be interesting to

compare the clusters of genes with similar expression profiles to the groups of genes

with high functional similarity, especially as correlation between high gene expression

similarity and high functional similarity has been demonstrated in a number of

studies [Wang et al., 2004; Sevilla et al., 2005].

In their analysis, Eisen et al. identified ten strong clusters of genes with very

similar expression profiles. The paper only lists the content of nine of these (133

genes), the tenth cluster being too large (126 genes) to be displayed in full. Although

this is of course the most interesting information in terms of the purpose of that

paper, the present analysis would benefit from the complete cluster tree. The full

clustering is available as supplementary materials to the paper but only in image

(GIF) format and is therefore not machine-analysable. For this reason, it was decided

to recalculate the clustering using the same parameters as those documented in the

original Eisen paper.

There are three elements involved in the calculation of a cluster analysis, namely

the choice of similarity measure, choice of clustering method and choice of link-

age method. Eisen et al. used a variation of the Pearson correlation coefficient

called uncentered Pearson’s correlation to quantify the similarity between each pair

of genes. Uncentered Pearson’s correlation is the same as standard Pearson’s cor-
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relation, except that the mean of the observations for each gene is assumed to be

0. The clustering algorithm used by the authors was an agglomerative hierarchical

clustering algorithm.

Linkage method

Unfortunately, there is some confusion in the literature as to which linkage method

was used. In the Eisen paper itself, the authors state that they used an algorithm

“[. . . ] based closely on the average-linkage method of Sokal and Michener [. . . ]” but

then proceed to describe an approach that is closer to centroid linkage. The cited

source, Sokal and Michener [1958], covers a number of linkage methods, including

average and centroid linkage. It is commonly cited as the first description of UPGMA

(Unweighted Pair-Group Method using arithmatic Averages) [Lance and Williams,

1967; Sneath and Sokal, 1973]. It is harder to find a definitive attribution for a first

description of UPGMC (Unweighted Pair-Group Method using Centroids), although

Lance and Williams [1967] do indeed ascribe it to Sokal and Michener [1958]. Sneath

and Sokal [1973] only cite the 1958 paper for UPGMA, but do not provide a source

for UPGMC.

More recently, at least two much-quoted reviews contradict each other with re-

spect to the linkage method used by Eisen et al.. Jiang et al. [2004] state that

“Eisen et al. [20] applied an agglomerative algorithm called UPGMA (Unweighted

Pair Group Method with Arithmetic Mean) [. . . ]”. D’haeseleer [2005], who refers to

the former for a survey of clustering methods used specifically with gene expression,

states on the other hand that “Eisen et al.5 applied hierarchical clustering (using

uncentered correlation distance and centroid linkage)”. These two contradictory

statements added to the difficulty of establishing definitively which type of linkage

was used to create the clusterings in the Eisen paper.

Clustering process

It was therefore decided to generate hierarchical clusterings for both average and

centroid linkage. R’s hclust() function [R Development Core Team, 2010] was used

for this purpose. Although Eisen et al. developed the tool package of Cluster and

Treeview, R was chosen as it provides a number of useful functionalities such as

the cutting of dendrograms at different levels and exporting of the entire cluster-

ing by location of each gene in the tree and cluster. R is also used for all other

statistical analyses in this work, so no adaptation of data formats is required. In ad-

dition, Cluster has gone through several revisions since the publication of the Eisen
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data and only an exactly identical implementation of the clustering algorithm would

produce the exact same results as in the paper, including the same tree ordering.

Therefore any implementation of an agglomerative hierarchical clustering algorithm

is appropriate here.

As R’s cor() function [R Development Core Team, 2010] only implements stan-

dard Pearson’s correlation but not the uncentered Pearson’s correlation, the mean

of the observations for each gene was set to 0 using R’s scale() function [R Devel-

opment Core Team, 2010]. A comparison of the correlation matrices obtained for

the dataset with and without this transformation does however show that the dif-

ference in correlation is minimal, with the largest difference in the order of 2.2E−16,

so the transformation may not have been essential. hclust() operates on a dis-

tance rather than a similarity matrix, so before passing the correlation matrix to

the function, Pearson’s correlation was transformed into Pearson’s distance using

distance = 1− correlation.

When comparing the two dendrograms obtained for average and centroid-based

clustering, it is immediately clear that the tree for centroid linkage is much “messier”

than the tree for average linkage. This is due to a known issue in R: while monotone

linkage methods such as average, single and complete linkage are guaranteed to

produce dendrograms without crossing branches, this safe-guard does not exist for

linkage approaches like centroid. In small datasets, this is generally not an issue but

in a tree with 2465 nodes, this can result in an unreadable tree. When zooming into

individual branches of the centroid-based tree, it was impossible to identify any but

the nearest neighbours of a gene as the branches quickly become indistinguishable.

In addition, the cutree() function, used to cut a dendrogram into a specified number

of clusters or at a given height, was unable to recognise the hclust() object generated

for centroid linkage as being in the appropriate format.

Cluster extraction

A clustering tree can be cut at different heights in order to give clusters of different

size and strength. The height of the tree reflects the distance between the objects

in the tree and varies for different clustering methods. The height of the tree for

average clustering ranges from 0 to about 1.1 while the height for centroid clustering

ranges from 0 to just over 0.5.

A particularly difficult question in all hierarchical cluster analysis is the choice of

the right level at which to cut the tree as any dataset, no matter how random, will

generate clustering solutions. There are no hard and fast rules on how to determine
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the right tree height. In fact, the strongest clusters generally belong to a range of

heights, with some clusters at an overall greater height being stronger than other

clusters at a lower height. The Eisen paper does not list a specific tree height

to which the ten strongest clusters correspond. In the recreated clustering of the

dataset, the clusters identified by Eisen et al. range from h < 0.2 to h = 0.6 for

average linkage and in the range of 0.1 < h < 0.3 for centroid linkage. Cluster

membership and tree height are harder to establish for the centroid-based tree as

it is impossible to determine whether genes that are not adjacent in the tree might

still be in the same cluster.

The usual approach for determining which are the best clusters is a mixture of

statistical analysis, e.g. p-values for each cluster using bootstrapping, external val-

idation against an existing classification, if one is available, and experience. Figure

7.3 shows the dendrogram for the Eisen dataset, with all clusters that have an ap-

proximately unbiased p-value (AU) greater than or equal to 95% highlighted in the

red boxes. The AU values were computed by multi-scale bootstrap resampling, using

R’s pvclust() function [Suzuki and Shimodaira, 2009]. Clusters with an AU value of

95% or more are considered to be significant by both the pvclust() documentation

and the Bioconductor manual [Girke, 2010] and therefore this assumption was also

used here.

When the clusters with an AU value of 95% or more were compared for the

two clusterings, 258 such clusters were identified for average linkage, compared to

157 for centroid linkage. In each case, roughly 68% of these clusters contained only

two genes. Few clusters exceeded 3 to 5 genes, with the largest cluster for average

containing 10 genes. Two centroid-derived clusters were larger than this largest

cluster, at 12 and 19 genes respectively. Only Eisen cluster “H”2 (8 histone genes)

was completely identified in both clusterings. All other Eisen clusters were only

present in part in the set of most significant clusters.

In the light of these findings, with neither type of clustering clearly closer to the

clustering presented in the Eisen paper, it was decided to base further analysis on

the average-linkage clustering. Although the description of the linkage process in the

Eisen paper suggests that the authors most likely used centroid linkage, the difficul-

ties with processing the centroid linkage dendrogram in R and the impossibility of

extracting the full clustering at different tree heights further support this decision.

Any clusterings referred to hereafter were therefore performed using average linkage.

2The ten groups identified in Eisen et al. [1998] are referred to in this work by the letter which
identifies them in Figure 2 of the original paper.
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Figure 7.3: Dendrogram of clustered Eisen dataset, using average linkage. The red boxes
represent the clusters with an AU value of 95% or greater.

7.3.2 Comparing expression and semantic clustering

The absence of a single “right” solution in cluster analysis poses a problem in the

comparison of expression clusters and functional groups. In order to make an appro-

priate comparison, it would be necessary to have clusters based on a distance measure

that corresponds to the FT used to generate the groups. Since the FuSiGroups algo-

rithm is based on a completely different concept than hierarchical clustering, quality

measures such as F-measure or mutual information are unsuitable as they require

both datasets to be of the same type. For this reason, it was decided to insert an

additional step in the analysis and cluster the gene products in the Eisen dataset

using their functional distance as the distance measure. Functional distance (FD) is

defined as the opposite of functional similarity, i.e. FD = 1−functional similarity

[Couto et al., 2003]. This should then allow the identification of the expression tree

height that most closely corresponds to FT = 0.17 (FD = 1− 0.17 = 0.83).

Although this second clustering will be based on functional similarity, it will be

referred to hereafter as semantic clustering rather than functional clustering in order

to make a clear distinction from expression clustering, as this is also used to identify

clusters of functionally similar genes [Eisen et al., 1998], albeit based on a different
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similarity measure. The semantic clustering was performed with R’s hclust() func-

tion and average linkage was again used. The distance matrix of functional distances

that is passed to hclust() was generated from FuSiGroups and read into R rather

than being generated from experimental data, as was the case for the expression

dataset. As there is no data preceding the distance matrix for semantic clustering,

it is not possible to perform multi-scale boostrapping using pvclust() as this function

requires a dataset of observations, such as genes and samples, rather than a distance

matrix.

Comparative approach

First, it was considered using a set of commonly used external quality measures

(purity, F-measure, normalised entropy and mutual information) [Handl et al., 2005;

Jakonienė et al., 2006] to evaluate how well semantic clusters compare to expression

clusters and identify the expression threshold that most closely matches the semantic

clusters for threshold 0.83. The thresholds for expression clustering ranged from 0

to 1.1 (the highest level of the tree exceeds 1, see Figure 7.3), with increments of 0.1.

The thresholds for semantic clustering ranged from 0 to 1, also at increments of 0.1.

In addition, the thresholds 0.75 and 0.83, corresponding to minFT and maxFT for

Resnik, were used. The expression clusters were used as classes for the evaluation

of the semantic clusters. The measures were also calculated for the reverse scenario,

with the semantic clusters as classes for the expression clusters.

Of the four measures, purity, F-measure and mutual information should be max-

imised, while normalised entropy should be minimised. A good result in all four

categories indicates an excellent match between classes and clusters. If the expres-

sion clusters are used as classes, the matches are near perfect at very low thresholds

(0-0.3) in both datasets. This is unsurprising as there are very few clustered genes

at these levels. The majority of genes are on their own or, at most, clustered in

pairs. The match between semantic and expression clusters is therefore almost per-

fect. The same occurs if the semantic clusters are used as classes for the expression

clusters.

Up to a semantic clustering threshold of 0.5, purity has a near-perfect score

with any level of expression clusters, if these are the classes. This is because purity

reflects the average precision of the clusters with respect to their best matching

classes. For Resnik-BMA, very few gene pairs have a functional similarity greater

than 0.5 (see Figure 5.10), so up to a functional distance of 0.5, very few genes are

clustered together. Each cluster is therefore going to very closely match a cluster in
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the expression set. In the reverse situation, with the semantic clusters as classes, the

same effect occurs for the F-measure, which measures the accuracy of classes with

respect to their best matching groups. Similar deceptively good scores are obtained

for different measures at very low thresholds, as well as the maximum thresholds

for each approach, where all genes are clustered together into a single cluster, which

therefore represents a perfect match for at least one of the measure. This is due to

the limitations of the measures. At intermediate thresholds for both sets of clusters,

the clustered genes vary widely, thus giving fairly poor scores.

As there is clearly no tree height in the expression dendrogram that gives clusters

that match semantic clusters at a threshold of 0.83 particularly well, it was decided

to choose the expression threshold at which the number of clusters and the largest

cluster sizes were most similar to the semantic clusters. At a threshold of 0.83, the

semantic dendrogram consists of 80 clusters, of which the largest contains 410 genes.

At the next lowest threshold, 0.8, this rises to 137 clusters with a maximum size of

223. The closest match in numbers and size of clusters in the expression dataset is

at threshold 0.7, where there are 119 clusters, with a maximum size of 394 genes.

For comparison, at a threshold of 0.6, there are 269 clusters with a maximum size

of 354 and at 0.8, there are 37 clusters with a maximum size of 559 genes. Using

the criteria of cluster numbers and size, clusters at level 0.7 are clearly the closest

match to semantic clusters at 0.83.

Cluster matching

In order to compare the semantic and expression clusters, the locations of each gene

in the respective dendrograms and the corresponding cluster IDs were aligned for

expression clusters at threshold 0.7 and semantic clusters at threshold of 0.83. The

alignments were included with the coloured matrix of genes and groups shown in

Figure 7.2. They are the five columns that were previously undescribed. The first

column in the figure contains the location of each gene in the expression dendrogram,

the second column the location in the semantic dendrogram. The third column holds

the expression cluster IDs, the fourth column the semantic cluster IDs and the fifth

column the semantic cluster IDs for threshold 0.8. This last clustering was included

to compare the change in cluster numbers between the two thresholds.

At a very high level, it is immediately clear that there is very little consistent

overlap between the two types of clusterings. The genes in the largest expression

clusters are spread out all over the semantic dendrogram and vice versa. Although

there is some overlap between them, it is not consistent. There are cases where
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several genes from one cluster match a single cluster of the other type, but they

are generally not in adjacent locations in the tree. This finding is consistent with

studies of the correlation between expression and functional similarity, which found

only very low levels of correlation if the data was considered on a pair-by-pair basis

[Wang et al., 2004; Sevilla et al., 2005; Xu et al., 2008]. High correlations were only

obtained if similarities were averaged across set intervals, as discussed in Section 2.4.

The same holds true when comparing clusters and groups. Sorting the visual-

isation matrix by expression tree location breaks up most of the groups, with the

coloured cells representing a gene’s group membership spread out across the length

of the gene list. Blocks of consecutively located genes are only found in a few of the

largest groups. These blocks however do not contain all the genes from these groups

and there are sections of individual or pairs of genes far removed from the central

block or blocks.

The overlap between semantic clusters and groups is better. When sorting

the matrix by semantic tree location, many groups show a great deal of overlap

with semantic clusters, with only individual genes responsible for gaps in otherwise

solid blocks. Nonetheless, even in this alignment, there are genes that, while being

grouped together, are far apart in the clustering dendrogram.

As group validation based on existing classifications is difficult, it was decided

to focus on individual sets of genes to test the power of the FuSiGroups algorithm.

For this purpose, three sets of genes were selected, namely genes involved in the

proteasome, ribosomal genes and a collection of genes belonging to two different

sets of metabolic pathways.

7.4 Summary

In this chapter, the results obtained from the FuSiGroups algorithm with the pa-

rameters in Table 7.1 for the full Eisen dataset were presented and analysed. It was

found that the largest groups and most commonly represented functional aspects

corresponded to general cellular processes, as would be expected in a dataset like

the Eisen dataset, which contains genes from across the entire yeast genome. The

level of overlap observed between many of the groups lead to the introduction of

the concept of supergroups, in order to reduce duplication across groups. Groups

with sufficient overlap in both definition and content were merged into supergroups,

which considerably reduced the level of overlap.

A comparison of the grouping results to expression and semantic clustering was

also performed. Overlap between both types of clustering, and between either type
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of clustering and grouping was found to be limited and inconsistent, suggesting that

the existing classifications would be a poor choice of benchmark against which to

evaluate FuSiGroups groups.

In the next chapter, three smaller datasets will be used to evaluate the biological

relevance of FuSiGroups groups.
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Biological evaluation

From Chapter 7, it is clear that a large dataset like the Eisen dataset, grouped using

FuSiGroups, creates an equally large, hard to analyse set of grouping results. In

order to evaluate the biological potential of the FuSiGroups algorithm, three smaller,

less noisy sub-datasets of the Eisen dataset were selected and their grouping results

were analysed separately in order to address specific questions about FuSiGroups’

functionality, such as

• Is FuSiGroups able to identify the main functional aspects of a dataset?

• Does FuSiGroups produce biologically relevant groups?

• Is FuSiGroups able to identify gene products that are functionally unrelated
to the majority of the gene products in a dataset?

• To what extent does functional grouping reflect other forms of biological re-
latedness?

– Do the groups reflect the structure of gene expression clusters?

– Do the groups identify distinct biological pathways?

In addition to these questions, this evaluation also helps to identify any issues

with the FuSiGroups algorithm, as well as any other related issues that are not

directly addressed by any of the above questions. For each of the three datasets,

the process of selecting the genes and how it relates to the evaluation questions will

be described. Then a summary of the grouping results and how they address the

various questions is given, with a discussion of specific examples to illustrate the

findings.

Parameters for all groupings, unless explicitly stated otherwise, will be the same

as those used in Chapter 7, listed in Table 7.1.
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8.1 Proteasome

8.1 Proteasome

8.1.1 Gene selection

The proteasome, or 26S proteasome, is a multisubunit enzyme complex that is highly

conserved among all eukaryotic species. Its function is to digest unneeded or dam-

aged proteins tagged with the regulatory protein Ubiquitin. As can be seen in Figure

8.1, the full proteasome consists of a symmetrical core complex, the 20S core parti-

cle, which contains the proteolytic active sites, and a 19S regulatory cap particle on

each end. For further details on the structure and function of the proteasome, see

Coux et al. [1996]; Wolf and Hilt [2004]; Feldmann [2005].

Figure 8.1: Diagram of the 26S proteasome. The image is taken from KEGG pathway map
sce03050 [Kanehisa and Goto, 2000].
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The pathway resource KEGG [Kanehisa and Goto, 2000] lists 35 genes as part

of the proteasome. 32 of these genes are present in the Eisen dataset. One of

the ten strong clusters identified by Eisen et al., cluster “C” (Figure 8.2, red box),

consists of 27 genes involved in protein degradation. 26 of the 27 genes are found

among proteasome genes listed in KEGG. The one exception is UFD1, a protein that

forms part of a complex involved in the recognition of polyubiquitinated proteins for

presentation to the 26S proteasome [Braun et al., 2002]. A further four proteasome

genes can be found immediately adjacent to cluster C but were not included in the

cluster (Figure 8.2, green boxes). The authors do not state how the clusters were

identified and it is notable that the two genes at the top of the cluster, RPN5 and

RPN8, are part of a different branch of the dendrogram than the core of the cluster,

yet the three other genes of that branch, which are not part of the proteasome, were

not included. Had that full branch been included, it would also have been possible

to include the first two genes below the cluster, which are proteasome genes.

The clustering performed as part of this analysis resulted in a similar but not

identical proteasome-based cluster. Depending on the level at which the tree is

partitioned, 23 to 25 of Eisen cluster C’s 27 genes are included in the recalculated

cluster. RPN5 and RPN8 are not included within the cluster as they are located in

a completely different part of the tree but between two and four of the proteasome

genes not in C are in the replicated cluster. Several non-proteasome genes found

adjacent to cluster C are also in the replicated clusters, as well as up to four non-

proteasome genes not found near C.

For the sake of simplicity, the tree cutting thresholds were chosen at intervals

of 0.1. In this case, the smallest cluster that included all of the cluster C genes

except for RPN5 and RPN8 was found at a tree height of 0.5. This cluster includes

25 cluster C genes, 4 further proteasome genes, 5 non-proteasome genes found near

cluster C and 4 other genes that are neither part of the proteasome nor found near

cluster C. It was decided to include all of these genes in the proteasome sub-dataset.

Also included were the 4 other proteasome genes found in the Eisen dataset but not

within the recreated cluster (RPN1, RPN5, RPN8, RPT2), leading to a total of 42

genes.

The reason for including all the proteasome genes found in the Eisen dataset was

to test FuSiGroups’ ability to group together biologically related genes. If RPN1,

RPN5, RPN8 and RPT2 are found to be grouped with the other proteasome genes,

this would show an improvement of functional grouping over expression and seman-

tic clustering, both of which separate these genes from the rest of the proteasome

genes. Similarly, the inclusion in the dataset of non-proteasome genes clustered
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Figure 8.2: Eisen cluster C. The image was produced from the supplementary materials
images provided with the paper. The heatmap located between the dendrogram and the gene
list was removed. The red box shows the cluster identified by the authors. The green boxes
indicate genes that are part of the proteasome but were not included in the cluster. The
gene list is in reverse compared to the list published in the paper, as is the case with all the
images, i.e. the first image corresponds to the bottom of the paper figure and the last image
corresponds to the top. It should also be noted that in the paper, the last gene in this figure
(first gene in the published figure), RPN11, has a different description in the paper than it
does in the full image.
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with proteasome genes in a gene expression context tests the algorithm’s ability to

identify functionally unrelated genes by not grouping them.

The full list of genes, ordered by their location in the expression dendrogram,

is given in Table 8.1. Also included in this table is the location of each gene in

the semantic dendrogram. While the ordering of the genes within the dendrogram

is completely different to the ordering in the expression dendrogram, most of the

proteasome genes (28 out of 32) are clustered in the range of 1882 to 1909. The four

proteasome genes not found in this range are also clustered together, in location 858

to 861. All non-proteasome genes, including UFD1, are found at unrelated locations

in the dendrogram. This may be an indication that semantic clustering is slightly

better for identifying functionally related genes than expression clustering, or at

least for differentiating between genes from a common pathway and genes not in

that pathway.

The 42 genes of the proteasome dataset are annotated with 117 distinct GO

terms. This translates into a total of 468 gene-GO term pairs, as each gene has

multiple annotations and each GO term can be annotated to multiple genes.

8.1.2 Grouping

In the FuSiGroups grouping of the full dataset, the 42 genes listed in Table 8.1 are

never all grouped together. There is also no group that contains only genes from

this subset. 3 genes, UMP1, PRO3 and GSH2, are not found in any group at all. In

the full grouping, there are exactly 100 groups (98 meaningful groups1) containing

at least one of the subset genes. If supergroups are considered, this changes to 14

supergroups and 15 unmerged groups (13 meaningful groups). The groups containing

the most genes from the subset are supergroups 112 and 149, named “proteasome

complex” and supergroup 114, named “catabolic process”. The subset genes make

up 18 out of 28, 18 out of 27, and 22 out of 64 total genes, respectively. Of the

remaining groups, the best matches are group 1243, named “proteolysis”, with 22

out of 63 genes and group 1296, called “peptidase activity”, with 27 out of 74 total

genes.

If the subset of 42 genes is run separately on the FuSiGroups prototype, the

result consists of a total of 49 distinct groups or 5 supergroups and 38 unmerged

groups. This is a significant dimensional reduction from the original 117 GO terms

and 468 individual annotations. In terms of meaningful groups, there are 17 groups

1As a reminder, a “meaningful group” is defined as a group containing at least 4 gene products,
as stated in Section 3.1.6 and consistent with the minimum cluster size defined by Huang et al.
[2007]
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Expr.
tree

Sem.
tree

SGD ID Gene
name

Full name

1598 2359 S000003568 BET4 ‡ Alpha subunit of Type II geranylgeranyltransferase required for vesicular transport
between the endoplasmic reticulum and the Golgi

1599 1649 S000004494 RAD52 ‡ Protein that stimulates strand exchange by facilitating Rad51p binding to single-
stranded DNA

1600 2143 S000000825 PRO3 † Delta 1-pyrroline-5-carboxylate reductase, catalyzes the last step in proline biosyn-
thesis

1601 1909 S000000562 PRD1 † Zinc metalloendopeptidase, found in the cytoplasm and intermembrane space of
mitochondria

1602 1901 S000001337 RPN2 ∓† Subunit of the 26S proteasome, substrate of the N-acetyltransferase Nat1p
1603 1848 S000002918 SMT3 † Ubiquitin-like protein of the SUMO family, conjugated to lysine residues of target

proteins
1604 1718 S000005409 GSH2 ‡ Glutathione synthetase, catalyzes the ATP-dependent synthesis of glutathione

(GSH) from gamma-glutamylcysteine and glycine
1605 1823 S000004624 UBC7 †

(as QRI8)
Ubiquitin conjugating enzyme, involved in the ER-associated protein degradation
pathway

1606 1890 S000005889 PRE10 Alpha 7 subunit of the 20S proteasome
1607 91 S000003589 PEP8 † Vacuolar protein sorting protein that forms part of the multimeric membrane-

associated retromer complex along with Vps35p, Vps29p, Vps17p, and Vps5p
1608 1918 S000003878 STE24 † Highly conserved zinc metalloprotease that functions in two steps of a-factor mat-

uration, C-terminal CAAX proteolysis and the first step of N-terminal proteolytic
processing

1609 1744 S000000377 UMP1 ∓† Short-lived chaperone required for correct maturation of the 20S proteasome
1610 1892 S000000137 PRE7 Beta 6 subunit of the 20S proteasome
1611 1889 S000004557 PRE8 ∓‡ Alpha 2 subunit of the 20S proteasome
1612 1906 S000002802 RPT3 One of six ATPases of the 19S regulatory particle of the 26S proteasome involved

in the degradation of ubiquitinated substrates
1613 1887 S000005683 PUP1 Beta 2 subunit of the 20S proteasome
1614 1905 S000001628 RPT1 One of six ATPases of the 19S regulatory particle of the 26S proteasome involved

in the degradation of ubiquitinated substrates
1615 1908 S000003016 RPT6 One of six ATPases of the 19S regulatory particle of the 26S proteasome involved

in the degradation of ubiquitinated substrates
1616 1898 S000001243 RPN10 Non-ATPase base subunit of the 19S regulatory particle (RP) of the 26S protea-

some
1617 1885 S000003538 PRE3 Beta 1 subunit of the 20S proteasome, responsible for cleavage after acidic residues

in peptides
1618 1882 S000006307 PRE2 Beta 5 subunit of the 20S proteasome, responsible for the chymotryptic activity

of the proteasome
1619 1903 S000005785 RPT4 One of six ATPases of the 19S regulatory particle of the 26S proteasome involved

in the degradation of ubiquitinated substrates
1620 861 S000002255 RPN6 Essential, non-ATPase regulatory subunit of the 26S proteasome lid required for

the assembly and activity of the 26S proteasome
1621 1902 S000001946 PRE4 Beta 7 subunit of the 20S proteasome
1622 1899 S000001948 RPN12 Subunit of the 19S regulatory particle of the 26S proteasome lid
1623 860 S000002835 RPN9 Non-ATPase regulatory subunit of the 26S proteasome, has similarity to putative

proteasomal subunits in other species
1624 1900 S000002979 SCL1 Alpha 1 subunit of the 20S proteasome involved in the degradation of ubiquitinated

substrates
1625 1888 S000005398 PRE6 Alpha 4 subunit of the 20S proteasome
1626 1904 S000005643 RPT5 One of six ATPases of the 19S regulatory particle of the 26S proteasome involved

in the degradation of ubiquitinated substrates
1627 553 S000003280 UFD1 ∗ Protein that interacts with Cdc48p and Npl4p, involved in recognition of polyu-

biquitinated proteins and their presentation to the 26S proteasome for degradation
1628 1895 S000000823 RPN3 Essential, non-ATPase regulatory subunit of the 26S proteasome lid, similar to the

p58 subunit of the human 26S proteasome
1629 859 S000006312 RPN7 Essential, non-ATPase regulatory subunit of the 26S proteasome, similar to an-

other S. cerevisiae regulatory subunit, Rpn5p, as well as to mammalian proteasome
subunits

1630 1893 S000000896 PUP3 ∓† Beta 3 subunit of the 20S proteasome involved in ubiquitin-dependent catabolism
1631 1897 S000001900 RPN11 Metalloprotease subunit of the 19S regulatory particle of the 26S proteasome lid
1632 1884 S000003485 PUP2 Alpha 5 subunit of the 20S proteasome involved in ubiquitin-dependent catabolism
1633 1891 S000004931 PRE5 Alpha 6 subunit of the 20S proteasome
1634 1883 S000000814 PRE1 Beta 4 subunit of the 20S proteasome
1635 1886 S000003367 PRE9 Alpha 3 subunit of the 20S proteasome, the only nonessential 20S subunit
1977 1894 S000005787 RPN8 Essential, non-ATPase regulatory subunit of the 26S proteasome
1978 1907 S000002165 RPT2 ∓† One of six ATPases of the 19S regulatory particle of the 26S proteasome involved

in the degradation of ubiquitinated substrates
1979 858 S000002306 RPN5 Essential, non-ATPase regulatory subunit of the 26S proteasome lid, similar to

mammalian p55 subunit and to another S. cerevisiae regulatory subunit, Rpn7p
2319 1896 S000001069 RPN1 ∓‡ Non-ATPase base subunit of the 19S regulatory particle of the 26S proteasome

Table 8.1: The proteasome subset. The first column shows the location of each gene in the
expression tree, the second column its location in the semantic tree. Genes in italics are not
found in Eisen cluster C; ∗ - gene in cluster C but not in proteasome; ∓ - gene in proteasome
but not in cluster C; † - gene near cluster C in Figure 8.2; ‡ - gene not near cluster C in Figure
8.2.
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meeting minimum size requirement among the total 49 groups and 8 among the 38

unmerged groups, which further reduces the complexity of the analysis without loss

of information. Every gene in the dataset is grouped at least twice, although six

of the genes are only found in groups with fewer than four genes. These genes are

GSH2, BET4, RAD52, SMT3, PRO3 and PEP8, i.e. only genes that are neither part

of the proteasome nor code for proteins with any other known proteolytic activity.

This is already a strong indicator that FuSiGroups is capable of identifying genes

that have no functional relationship with the majority of the dataset.

Figure 8.3: Supergroups and unmerged groups for the proteasome dataset, ordered left
to right by size and top to bottom by three categories, then by the location of the genes
in the semantic dendrogram for each category. The three categories are genes coding 1.
proteins included in the proteasome according to KEGG, 2. other proteolytic enzymes, 3.
proteins without known proteolytic properties. BP groups are represented in red, CC groups
in green and MF groups in purple. Supergroups are in a lighter tone of the same colour as
the corresponding type of unmerged groups. There are no MF supergroups. All group sizes
are included in order to demonstrate that some of the genes are never grouped with any other
gene. The first row shows the group size, the second row the ontological type of the group
and the third row lists the group’s ID number. The first column lists the location of each gene
in the expression tree, the second column its location in the semantic tree. The third column
shows the gene’s SGD ID and fourth column the gene name.

Figure 8.3 shows all the supergroups and unmerged groups, including groups

with fewer than four genes. These groups were included so that the afore-mentioned

six genes, located in the bottom six rows, can be included without their respective
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rows being marked as blank. The smaller groups were however excluded from the

list of group names in Table 8.2.

Group ID Group name Ontology Group size
101 protein metabolic process (GO:0019538) BP 31
1032 cytosol (GO:0005829) CC 30
1047 peptidase activity (GO:0008233) MF 29
102 proteasome complex (GO:0000502) CC 18
104 proteasome complex (GO:0000502) CC 18
103 regulation of protein metabolic process (GO:0051246) BP 6
1036 cellular process (GO:0009987) BP 6
1025 nucleoside-triphosphatase activity (GO:0017111) MF 6
1042 ATP binding (GO:0005524) MF 6
1038 cellular macromolecular complex assembly (GO:0034622) BP 5
1015 reproduction (GO:0000003) BP 4
1048 response to stress (GO:0006950) BP 4
105 cell part (GO:0044464) CC 4

Table 8.2: Names of all the meaningful groups and supergroups shown in Figure 8.3, sorted
by decreasing size. Three-digit group IDs indicate supergroups, four-digit IDs normal groups.

Although some of the group names in Table 8.2 are fairly high-level, such as

“protein metabolic process” or “cell part”, most of the names in the list are repre-

sentative of the functional aspects expected to be associated with proteasome genes.

Only one group name, reproduction (group 1015), stands out as having no obvious

connection to proteasome function. The reason for the presence of this group will

be discussed in the next section.

From the analysis of content and definitions of the 13 groups listed in Table 8.2, a

number of recurring themes can be identified. A summary of all the groups is given

in Table 8.3, providing details about whether each group is biologically relevant

in the context of the proteasome dataset, whether it is affected by any annotation

issues and whether any potential algorithmic refinements can be identified from it.

A full analysis of each individual group can found in Appendix B.1.

Annotation issues

The analysis of the groups shows that overall, the FuSiGroups algorithm performs

well and produces groups of functionally similar genes representing the major func-

tional aspects of the proteasome. The fact that the 32 genes associated with the

proteasome according to KEGG are never all found in the same group together is

due to variations in their individual annotations. These either lead to exclusion of

some genes due to insufficient levels of functional similarity with other genes or to

exclusion due to the absence of any appropriate definition term in a gene’s anno-
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Group ID Biologically
relevant?

Annotation issues Potential algorithmic improvements

101 Yes ∗PRE2 Refinement of definition based on
group content

1032 Yes ∗PRE2, UMP1
1047 Yes ∗RPN5, RPN6,

RPN7, RPN9
102 Yes
104 Yes
103 Yes PRE4, SCL1
1036 No PRE1, PRE2,

PRE3, PUP2,
RPT4, UFD1

1025 Yes
1042 Yes
1038 Yes Refinement of definition based on

group content
105 Yes RPN1 Refinement of definition based on

group content
1015 No PRE1, PRE2,

PRE3, PUP2
1048 Yes PRE1, PRE3, PUP2 Refinement of definition based on

group content

Table 8.3: Summary of all meaningful groups for the proteasome dataset, with respect to
the key issues identified in the analysis. Entries in the “Annotation issues” column preceded
by ∗ indicate that the issues in question led to the absence of these genes from the group when
they could reasonably have been expected to be included in the group. Groups in italics were
found to be biologically irrelevant in the context of the proteasome datset.
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tations. This is one of the drawbacks of functional similarity itself, rather than an

issue with the FuSiGroups algorithm.

More specifically, a number of annotation issues were identified, ranging from

the complete absence of functional annotation in certain categories for some genes

to obviously incorrect annotations in others. The most pertinent examples of this

will be discussed here.

Two of the thirteen groups in Table 8.3 were found to not be biologically relevant

with respect to the proteasome dataset. One of these groups, group 1015, has already

been noted for its unexpected group name in Table 8.2. The reason for this group’s

lack of relevance is the same as for group 1036 and as this group has more affected

genes, this one will be discussed here.

Group 1036’s definition is a collection of GO terms which, although semantically

similar, are biologically quite diverse. Two of the terms refer to sporulation, one

to cell differentiation and one to cell death. None of these processes are directly

associated with proteasome function. Their presence in the proteasome dataset is

the result of a number of dubious annotations of the genes in the group.

The most notable case of this, both in this group and in the sub-dataset is

PRE2, which is annotated with five BP terms that are inconsistent with proteasome

function. Four of these are reproduction-related terms despite there being no direct

evidence of PRE2’s involvement in reproductive processes. All five annotations

are qualified with the “RCA” (inferred from Reviewed Computational Analysis)

evidence code and all are no longer present in the latest version (2011-01) of the

GO. Four of the five annotations are unique to PRE2 in the proteasome dataset,

which strongly affects PRE2’s functional similarity with other genes, leading to its

exclusion from groups such as 102 and 1032, where its presence would have been

biologically appropriate.

The same problem affects the other five genes in group 1036, although to a

lesser extent. PRE1, PRE3 and PUP2 are all annotated with one of PRE2’s four

reproduction-related terms, ascospore formation. In this case, the associations are

qualified as “TAS” (Traceable Author Statement), an evidence code often falsely

regarded as a guarantee for high-quality annotation. The associated reference,

Hochstrasser [1996], does however not provide any evidence for the involvement of

these genes in ascospore formation. It only states “Required for sporulation [. . . ]”

as a comment in a list of proteasome genes, without reference or further discussion of

this statement. In the latest version of the GO, this annotation has been withdrawn

and replaced with the term’s parent sporulation resulting in formation of a cellular

spore, evidence code RCA, referenced with Huttonhower and Troyanskaya [2009].
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For genes PUP2, RPT4 and UFD1, the potentially questionable annotation is the

term cell death. The associations are qualified with the RCA evidence code based on

the same source as PRE2’s RCA annotations, Huttonhower and Troyanskaya [2009],

from which the majority of RCA annotations in SGD are derived, and all three are

absent from the latest version of GO.

While group 1036 is the best example of the effect of potentially questionable

annotations, other groups are affected by these examples. They include group 1015,

which is also rendered biologically not relevant in the context of the proteasome

through these annotations. Other groups are also affected, although to a lesser

extent.

Although the most striking, dubious annotations are not the only annotation

issue identified during the analysis of the proteasome groups. A number of genes,

UMP1, RPN5, RPN6, RPN7 and RPN9 suffer from poor annotation which leads

to their exclusion from a number of groups, either because none of their annotation

terms match the definition of a key group or even because it incorrectly lowers their

functional similarity to some of the other genes in the dataset. The latter applies to

UMP1, which does not have any MF annotation despite being relatively well studied

[Li et al., 2007]. The four RPN genes listed here suffer from the former issue. Even

though their MF annotation is as poor as that for UMP1, with no annotation for

RPN5 and only a very high-level term, structural molecule activity (GO:0005198),

for the other three, the rest of their annotations match the majority of the other

proteasome subunits very closely. This means that their functional similarity is

sufficiently high for them to be included in non-MF groups but they do not have

any suitable annotations to qualify them for inclusion in MF groups.

Potential algorithmic improvements

With respect to the grouping algorithm, a number of groups have a definition that

is not entirely representative of the group’s content, i.e. not all GO terms in the

definition are found in the annotations of the genes in the group. The reason for

this is that while the terms in the definition may be sufficiently semantically similar

to be grouped together, the same does not apply to all the genes they annotate.

This may lead to group names that are more general than they need to be for the

genes in the group. A minor modification of the grouping algorithm, checking the

group definition against the annotations of the gene products in the group after the

group content has been finalised and removing any unrepresented terms from the

definition, would improve the grouping results.
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The group that best illustrates this situation is group 1038, cellular macromolec-

ular complex assembly (GO:0034622). Two of this group’s three definition terms

are not associated with any of the genes in the group. In the proteasome dataset,

they are in fact only annotated to RAD52, which is not involved with proteasome

function and therefore has low functional similarity with the majority of the genes

in the dataset. If this group’s definition was re-checked against the content’s an-

notations, the two terms annotated to RAD52 would be removed, leaving the term

proteasome assembly (GO:00432480), which perfectly captures the functional aspect

represented by this group.

Group overlap

Although it was not encountered in this set of results, there is a possibility of inap-

propriate overlap between groups, particularly supergroups. In fact, there are only

two groups of the same functional type that are entirely identical, namely MF group

1025, nucleoside-triphosphatase activity (GO:0017111) and MF group 1042, ATP

binding (GO:0005524). The overlap between these two groups is not only appropri-

ate but a perfect example of distinct but related functional aspects of a set of genes.

All six genes in the two groups are ATPase subunits found in the 19S regulatory

particle of the proteasome. ATPase activity is a form of nucleoside-triphosphatase

activity and both these GO terms are present in group 1025’s definition. In addition,

ATPase activity necessitates the binding of ATP, which is why group 1042’s content

is identical to group 1025’s. At the same time, the merger of the two groups into

a supergroup would have been inappropriate as the concepts represented by each

group are completely different from an ontological perspective, as reflected by the

fact that their only common ancestor is the root of the MF ontology.

Overall, the proteasome dataset actually provides a good illustration of the dif-

ferent scenarios that can lead to the creation of supergroups. Figure 8.4 shows the

five supergroups created for the proteasome dataset and the groups they originate

from. As the proteasome dataset is fairly small, all the supergroups are derived from

the merger of two groups and all original groups are merged no more than once. It

is of course possible to merge more than two groups or to merge a group more than

once, as described in Section 7.2.

Some groups, such as groups 1043 and 1045, which form supergroup 104, have

identical content but have slightly different definitions. In the present case, the two

definitions differ in one of their three respective terms, which means they meet the

merging criteria.
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8.1 Proteasome

Figure 8.4: Illustration of original groups that were merged into supergroups. Conventions
and ordering the same as in Figure 8.3.
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8.2 Ribosomal genes

The most different groups that were merged are 1026 and 1027, which result in

supergroup 102. They have a content overlap of six out of their respective twelve

terms, while their definition overlap is two terms out of three, with a shared group

name. The level of difference in group content and the fact that the non-overlapping

definition terms are “proteasome regulatory particle, lid subcomplex” and “protea-

some regulatory particle, base subcomplex”, two terms referring to different parts of

the proteasome, might suggest that a merger is biologically inappropriate for these

two groups. The two overlapping terms however are less location-specific, so in the

light of the full definition, the merger appears appropriate. As long as an algorithm

like the merging process has to be based on predefined criteria, borderline cases such

as this, which can only really be resolved using human judgement, will occur. It

may therefore be of interest to consider the original two groups separately as well.

The remaining three sets of pre- and post-merging groups are all groups in which

content-wise, one of the merged groups is a subset of the other. In each case, there

is also some difference between the definitions, but with a term overlap of at least

50%.

8.2 Ribosomal genes

8.2.1 Gene selection

In the previous section, the ability of the FuSiGroups algorithm to group together

genes from the same pathway and exclude unrelated genes has been demonstrated.

Usually, one would not expect the type of dataset that requires grouping to be as

well-defined as the proteasome dataset. For this reason, a more diverse dataset was

chosen to test whether the resulting groups could identify the original expression

clusters in the dataset.

In the Eisen paper, one cluster was not defined in the same way as the other

nine. Cluster “I”, the largest of the ten clusters, contains 112 ribosomal protein

genes, seven translation initiation or elongation factors, three tRNA synthetases,

and three genes of apparently unrelated function. Due to its size, the individual

genes in the cluster are not listed and it is marked simply with the functional term

“protein synthesis”. As the paper does not provide exact details on how the clusters

were selected, it is difficult to determine the exact content of cluster I even from

the supplementary figures, particularly in the light of the cluster boundary issues

discussed in relation to Figure 8.2. There is however little doubt that this protein

synthesis cluster is a very strong cluster, with many strongly co-expressed genes.
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8.2 Ribosomal genes

Figure 8.5: Expression dendrogram locations 840 to 1100. The blue boxes show the clusters
which make up the ribosome dataset. Gene names were excluded from the figure as they are
unreadable at this resolution.

When searching our re-clustered dendrogram for genes containing the term “ri-

bosom”2 in their name, the most continuous set of locations in which these genes

are found lies between locations 840 and 1100. There are two smaller fairly coherent

blocks, but with mitochondrial ribosomal proteins. The largest block is therefore

most likely to contain Eisen cluster I. As it was virtually impossible to determine

exactly which genes were included in cluster I and as the size of cluster I would make

detailed analysis of the grouping laborious, it was decided to select several different

clusters from across the entire region and gather them into a single dataset. This

also allows the question of how closely FuSiGroups reflects other forms of biological

relatedness to be addressed with respect to gene expression clusters. In total, four

clusters were selected, with a total of 49 genes. Figure 8.5 shows the distribution of

the clusters across the region of the tree.

Ribosomes are hugely complex cellular components that translate mRNA into

proteins. Eukaryotic ribosomes are composed of roughly two-thirds ribosomal RNA

(rRNA) and one third protein. The protein component is divided into the small 40S

ribosomal subunit, which contains about 33 proteins and the large 60S ribosomal

2This spelling is deliberate as a search for this term will include gene names containing the word
“ribosomal” as well “ribosome”
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8.2 Ribosomal genes

subunit containing 49 different proteins. The small subunit contains one rRNA, the

18S rRNA, while the large subunit is based around three rRNAs, the 5S rRNA, the

28S rRNA and the 5.8rRNA.[Alberts et al., 2002]

The KEGG pathway resource associates 159 distinct entities with the ribosome

pathway in yeast. 15 of these refer to rRNAs, 4 to mitochondrial ribosomal proteins.

None of the rRNAs are included in the Eisen dataset. Of the 144 proteins in the

list, 128 are present in the Eisen dataset. 3 of these are mitochondrial ribosomal

proteins, the remaining 125 are normal ribosomal proteins. 122 of the 125 ribosomal

proteins can be found in the identified expression tree range. The ribosome dataset

selected for further analysis contains 21 of these, including 20 ribosomal proteins

and one protein essential for ribosomal large subunit biogenesis (RLP24).

In addition to these 21 genes, the ribosome dataset contains 28 other genes,

making a total of 49 genes. Five of these are translation initiation or elongation

factors, nine are in some way involved in ribosome assembly, eight have some kind

of RNA synthesis activity and six genes are not obviously related to any of these

processes. The full list of genes is given in Table 8.4.

There are 147 distinct GO terms associated with the 49 genes in the ribosome

subset, forming 521 distinct gene-GO term annotation pairs.

8.2.2 Grouping

As with the proteasome dataset, the genes from the ribosome dataset are never all

grouped together in the full grouping, nor are there any groups that only contain

genes from the dataset, except for groups of size 1. In total, ribosome dataset genes

are found in 72 distinct groups, or 10 supergroups and 28 unmerged groups. In

both cases, all but one group are meaningful groups. Three genes, SQT1, PSE1 and

YNL247W, do not occur in any of these groups. The largest set of ribosome genes

grouped together are 21 or 22 genes in groups such as “translation” or “ribosome”,

although these genes represent only around 10% of the total group content.

When grouped separately, the ribosome dataset is grouped into 59 groups, or 4

supergroups and 45 unmerged groups. As with the proteasome dataset, this is a

considerable dimensional reduction compared to the 147 GO terms and 521 anno-

tations of the dataset. 26 of the total 59 groups are meaningful groups, and the

same applies to 13 of the 45 unmerged groups. Four genes, SHM1, PSE1, SAH1

and IMD2, are not grouped into any meaningful groups. Figure 8.6 shows all su-

pergroups and unmerged groups for the ribosome dataset, including non-meaningful

groups, while Table 8.5 lists all the meaningful supergroups and unmerged groups,
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Expr.
tree

Sem.
tree

SGD ID Gene
name

Full name

863 814 S000000322 TEF2 ∓ Translational elongation factor EF-1 alpha
864 2133 S000000467 SHM1 ‡ Mitochondrial serine hydroxymethyltransferase, converts serine to glycine plus 5,10

methylenetetrahydrofolate
865 943 S000001663 RPL17A ∗ Protein component of the large (60S) ribosomal subunit, nearly identical to

Rpl17Bp and has similarity to E. coli L22 and rat L17 ribosomal proteins
866 983 S000000252 RPS11B ∗ Protein component of the small (40S) ribosomal subunit
867 926 S000000993 RPL14B ∗ Protein component of the large (60S) ribosomal subunit, nearly identical to

Rpl14Ap and has similarity to rat L14 ribosomal protein
868 923 S000000183 RPL23A ∗ Protein component of the large (60S) ribosomal subunit, identical to Rpl23Bp and

has similarity to E. coli L14 and rat L23 ribosomal proteins
869 1005 S000000393 RPS9B ∗ Protein component of the small (40S) ribosomal subunit
870 941 S000000395 RPL21A ∗ Protein component of the large (60S) ribosomal subunit, nearly identical to

Rpl21Bp and has similarity to rat L21 ribosomal protein
871 986 S000001025 RPL8A ∗ Ribosomal protein L4 of the large (60S) ribosomal subunit, nearly identical to

Rpl8Bp and has similarity to rat L7a ribosomal protein
872 987 S000002858 RPS18A ∗ Protein component of the small (40S) ribosomal subunit
974 962 S000004317 RPL38 ∗ Protein component of the large (60S) ribosomal subunit, has similarity to rat L38

ribosomal protein
975 974 S000003317 RPL11B ∗ Protein component of the large (60S) ribosomal subunit, nearly identical to

Rpl11Ap
976 975 S000006306 RPL11A ∗ Protein component of the large (60S) ribosomal subunit, nearly identical to

Rpl11Bp
977 995 S000003157 RPS26A ∗ Protein component of the small (40S) ribosomal subunit
978 1022 S000002999 RPL24A ∗ Ribosomal protein L30 of the large (60S) ribosomal subunit, nearly identical to

Rpl24Bp and has similarity to rat L24 ribosomal protein
979 1012 S000004433 RPS1A ∗ Ribosomal protein 10 (rp10) of the small (40S) subunit
980 1014 S000004528 RPS1B ∗ Ribosomal protein 10 (rp10) of the small (40S) subunit
981 970 S000004065 RPL10 ∗ Protein component of the large (60S) ribosomal subunit, responsible for joining

the 40S and 60S subunits
982 992 S000005122 RPS3 ∗ Protein component of the small (40S) ribosomal subunit, has

apurinic/apyrimidinic (AP) endonuclease activity
983 990 S000005246 RPS19B ∗ Protein component of the small (40S) ribosomal subunit, required for assembly

and maturation of pre-40 S particles
984 996 S000000933 RPS26B ∗ Protein component of the small (40S) ribosomal subunit
985 931 S000001314 RPL34B ∗ Protein component of the large (60S) ribosomal subunit, nearly identical to

Rpl34Ap and has similarity to rat L34 ribosomal protein
1006 88 S000004925 PSE1 ‡ Karyopherin/importin that interacts with the nuclear pore complex
1007 1763 S000005191 YNL247W

†

Cysteinyl-tRNA synthetase

1008 2021 S000000845 SAH1 ‡ S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine
which is formed after donation of the activated methyl group of S-adenosyl-L-
methionine (AdoMet) to an acceptor

1009 1782 S000000325 GRS1 † Cytoplasmic and mitochondrial glycyl-tRNA synthase that ligates glycine to the
cognate anticodon bearing tRNA

1010 535 S000001106 SSZ1 ± Hsp70 protein that interacts with Zuo1p (a DnaJ homolog) to form a ribosome-
associated complex that binds the ribosome via the Zuo1p subunit

1011 819 S000004239 YEF3 ∓ Translational elongation factor 3, stimulates the binding of aminoacyl-tRNA (AA-
tRNA) to ribosomes by releasing EF-1 alpha from the ribosomal complex

1012 1795 S000004830 GUA1 ‡ GMP synthase, an enzyme that catalyzes the second step in the biosynthesis of
GMP from inosine 5’-phosphate (IMP)

1013 813 S000001564 TEF4 ∓ Translation elongation factor EF-1 gamma
1014 450 S000004284 GSP1 † Ran GTPase, GTP binding protein (mammalian Ranp homolog) involved in the

maintenance of nuclear organization, RNA processing and transport
1015 2091 S000001259 IMD2 ‡ Inosine monophosphate dehydrogenase, catalyzes the first step of GMP biosynthe-

sis, expression is induced by mycophenolic acid resulting in resistance to the drug,
expression is repressed by nutrient limitation

1016 824 S000001767 TIF1 ∓ Translation initiation factor eIF4A, identical to Tif2p
1017 823 S000003674 TIF2 ∓ Translation initiation factor eIF4A, identical to Tif1p
1066 1079 S000000451 ENP1 ±† Protein associated with U3 and U14 snoRNAs, required for pre-rRNA processing

and 40S ribosomal subunit synthesis
1067 1102 S000001451 SQT1 ± Essential protein involved in a late step of 60S ribosomal subunit assembly or

modification
1068 1093 S000001732 DBP7 ± Putative ATP-dependent RNA helicase of the DEAD-box family involved in ribo-

somal biogenesis
1069 2225 S000000135 URA7 ‡ Major CTP synthase isozyme (see also URA8), catalyzes the ATP-dependent

transfer of the amide nitrogen from glutamine to UTP, forming CTP, the final
step in de novo biosynthesis of pyrimidines

Continued on next page
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Continued from previous page
Expr.
tree

Sem.
tree

SGD ID Gene
name

Full name

1070 1204 S000003088 PRP43 † RNA helicase in the DEAH-box family, functions in both RNA polymerase I and
polymerase II transcript metabolism, involved in release of the lariat-intron from
the spliceosome

1071 1284 S000005192 RPA49 † RNA polymerase I subunit A49
1072 297 S000001213 NMD3 ± Protein involved in nuclear export of the large ribosomal subunit
1073 1075 S000003391 NSR1 ±† Nucleolar protein that binds nuclear localization sequences, required for pre-rRNA

processing and ribosome biogenesis
1074 1081 S000004187 NOP56 † Essential evolutionarily-conserved nucleolar protein component of the box C/D

snoRNP complexes that direct 2’-O-methylation of pre-rRNA during its matura-
tion

1075 1085 S000005837 NOP58 † Protein involved in pre-rRNA processing, 18S rRNA synthesis, and snoRNA syn-
thesis

1076 1105 S000000023 MAK16 ± Essential nuclear protein, constituent of 66S pre-ribosomal particles
1077 1104 S000001492 MRT4 ± Protein involved in mRNA turnover and ribosome assembly, localizes to the nu-

cleolus
1078 1076 S000003999 RLP24 ∗± Essential protein with similarity to Rpl24Ap and Rpl24Bp, associated with pre-60S

ribosomal subunits and required for ribosomal large subunit biogenesis
1079 1082 S000003934 SOF1 ± Essential protein required for biogenesis of 40S (small) ribosomal subunit
1080 1273 S000005057 RPC19 † RNA polymerase subunit, common to RNA polymerases I and III

Table 8.4: The ribosome subset. ∗ - gene in KEGG ribosome pathway; ∓ translation initation
or elongation factors; ± - involved with ribosome assembly or function but not ribosomal
protein; † - RNA synthesis activity (inc. RNA polymerase); ‡ - not obviously related to any
of the other functions.

ordered by decreasing group size.

Two things immediately stand out in Figure 8.6. First of all, the three largest

groups are all identical in content. The names of two of these groups, in Table 8.5,

are also identical. There is also in general more duplication between groups than

in the previous dataset. This is the result of the greater diversity of the ribosome

dataset. The similarity in gene content of different groups in fact highlights the

different functional aspects shared by a set of genes. A very good example of this

is supergroups 102 and 104, which share 19 of their 19 and 20 respective genes.

Although group 102’s name is too generic to give any indication of the detailed

functional aspect it represents, this group reflects the RNA aspects of ribosome

biogenesis, while group 104 reflects the protein aspects of the same process. Another

good example of this kind includes groups 1036 and 1050, which are identical in

content and represent two distinct but related molecular functions.

Secondly, there is little obvious separation of group content according to the

clusters in the expression tree. The first few groups do not contain any genes from

the right-most cluster in Figure 8.5 (locations 1066 to 1080) and a few other groups

do not contain any genes from other clusters but there is no clear trend of groups

reflecting the original clusters. There is also no indication that genes from one

particular cluster are always or never grouped with genes from another cluster. This

finding is consistent with other work that suggests that while there is a high level

of correlation between functional similarity and gene expression similarity if the
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8.2 Ribosomal genes

Figure 8.6: Supergroups and unmerged groups for the ribosome dataset, ordered left to right
by size and top to bottom by their location in the expression tree. Conventions are the same
as in Figure 8.3.
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two concepts are considered across intervals of similarity, there is little consistent

correlation if the comparison is done on a gene pair by gene pair basis.

Other datasources are however more closely reflected in some of the groups. All

the genes from this subdataset that are associated with the ribosome in KEGG are

grouped together in group 1045, structural constituent of ribosome, and all but one,

whose annotation does not include any of the definition terms, are found in 1044,

cytosol.

Group ID Group name Ontology Group size
103 translation (GO:0006412) BP 24
1009 translation (GO:0006412) BP 24
1056 ribosome (GO:0005840) CC 24
1045 structural constituent of ribosome (GO:0003735) MF 21
1044 cytosol (GO:0005829) CC 20
102 cellular process (GO:0009987) BP 20
104 ribosome biogenesis (GO:0042254) BP 19
1025 preribosome (GO:0030684) CC 13
1013 nucleolus (GO:0005730) CC 11
1051 RNA binding (GO:0003723) MF 10
1016 nucleolus (GO:0005730) CC 9
1036 purine ribonucleotide binding (GO:0032555) MF 8
1050 hydrolase activity, acting on acid anhydrides (GO:0016817) MF 8
1035 intracellular transport (GO:0046907) BP 6
1039 translation factor activity, nucleic acid binding (GO:0008135) MF 5
101 amino acid metabolic process (GO:0006520) BP 4
1052 ligase activity (GO:0016874) MF 4

Table 8.5: Names of all the meaningful groups and supergroups shown in Figure 8.6, sorted
by decreasing size. Three-digit group IDs indicate supergroups, four-digit IDs normal groups.

Based on Table 8.5, group names vary from very high-level categories, such as

cellular process, to quite detailed terms, like nucleolus. There are no group names

that are obviously inconsistent with ribosomal functions. This initial conclusion is

confirmed by detailed analysis of the grouping results, summarised in Table 8.6.

While none of the groups contain unexpected genes, a number of groups have genes

missing that could have been reasonably expected to be in the group, because these

genes have insufficiently high functional similarity with some or all of the genes in

the group. The reason for this is that the ribosome dataset is quite functionally

diverse, leading to lower overall levels of functional similarity.

The functional diversity of the ribosome dataset also translates into fairly diverse

group definitions. This in turn leads to a slightly larger proportion of groups (6 out

of 17) whose definition does not fully represent the group content (see Table 8.6),

compared to the proteasome dataset (4 out of 13). In some cases, this even raises

the question whether the semantic threshold might be too low and that a slightly

higher ST might be appropriate. A particularly good example of this is supergroup
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Group ID Biologically
relevant?

Annotation issues Potential algorithmic improvements

103 Yes Refinement of definition based on
group content

1009 Yes
1056 Yes
1045 Yes
1044 Yes Refinement of definition based on

group content
102 Yes Refinement of definition based on

group content
104 Yes Refinement of definition based on

group content
1025 Yes
1013 Yes
1051 Yes
1016 Yes RPA49, RPC19
1036 Yes
1050 Yes
1035 Yes Refinement of definition based on

group content
1039 Yes
101 Yes Refinement of definition based on

group content
1052 Yes

Table 8.6: Summary of all meaningful groups for the ribosome dataset. All groups were
found to be biologically relevant in the context of the ribosome dataset. The same potential
algorithmic improvements already identified in the previous dataset was found again. The
ribosome groups are affected by notably fewer annotation issues than the proteasome dataset.
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104, named ribosome biogenesis, which has 16 definition terms that cover a range

of diverse aspects of ribosome biogenesis. However, while using the maximum ST

would lead to a larger number of groups with higher specificity, almost two thirds

of the groups covering any of the aspects of ribosome biogenesis contain fewer than

4 genes and would therefore be excluded from the analysis.

No further potential algorithmic improvements were identified with respect to

the ribosome dataset. A full analysis of each group in Table 8.5 can be found in

Appendix B.2.

Annotation issues

Unlike the proteasome dataset, the ribosome dataset has no major annotation issues.

The only minor issue in the ribosome dataset was identified from the exclusion of

RPA49 and RPC19 from group 1016, which is identical in content to group 1013

except for the two genes in question. The two groups also share the same name,

which is also the one term common in their respective two-term definitions. RPA49

and RPC19 are included in group 1013 because they are annotated with that group’s

distinct definition term, DNA-directed RNA polymerase I complex, although neither

gene is annotated with the term nucleolus. This is the reason for their exclusion from

group 1016, in which DNA-directed RNA polymerase I complex has been replaced

with the term box C/D snoRNP complex. In the latest version of the GO (2011-01),

the two genes in question have been annotated with the term nucleolus, under the

IEA evidence code. If this version of the GO was used, they would therefore be

included in the group. In fact, this would qualify groups 1013 and 1016 for merging

into a supergroup.

8.3 Pathway identification

8.3.1 Gene selection

In previous sections, the capacity of the FuSiGroups algorithm to reflect the func-

tional similarity of genes with similar expression profiles was tested. This section is

going to focus on a different form of classification, namely genes that are considered

to be part of a common pathway.

For this purpose, two “superpathways” were selected from SGD’s pathways

database3. They were the “superpathway of TCA cycle and glyoxylate cycle” and

3Downloaded from the SGD’s FTP at http://downloads.yeastgenome.org/literature curation/
on 01/06/2010
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“phosphatidic acid and phospholipid biosynthesis”. The former includes, as the

name suggests, the TCA cycle and the glyoxylate cycle, while the latter includes

phosphatidic acid biosynthesis, phospholipid biosynthesis (Kennedy pathway) and

phospholipid biosynthesis.

Choosing two sets of metabolic pathways allows study of the sensitivity of FuSiGroups

to distinguish between genes from related pathways and from different sets. The cit-

ric acid or TCA cycle and the glyoxylate cycle are two highly similar pathways which

have a number of reactions and enzymes in common but take place in different parts

of the cell [Berg et al., 2002; Regev-Rudzki et al., 2005]. The TCA cycle, found

in all cells that operate under aerobic conditions, consists of a series of biochemical

reactions that play a crucial part in the process of turning fuel molecules into energy.

In eukaryotic cells these reactions take place in the matrix of the mitochondria. The

glyoxylate cycle fulfils a similar role, but is only found in certain bacteria, plants

and fungi. It bypasses the two decarboxylation steps of the TCA cycle and uses an

additional acetyl CoA molecule per cycle. The reactions do not take place in the

mitochondria but in the cytosol. Figure 8.7 shows the full superpathway.

Due to the considerable overlap between the two pathways, it can be expected

that FuSiGroups will generate BP and possibly MF groups containing genes from

both pathways. CC groups on the other hand should only contain genes from one

pathway, including those shared between the two, but not genes from both pathways

that are unique to one of the pathways.

The three component pathways of the phosphatidic acid and phospholipid biosyn-

thesis superpathway are involved in the synthesis of phospholipids, a major com-

ponent of cell membranes [Berg et al., 2002; Carman and Henry, 1989]. Related

pathways that are not included under this superpathway in the SGD database are

phospholipid biosynthesis II (Kennedy pathway), CDP-diacylglycerol biosynthesis

and phosphatidylinositol biosynthesis. These pathways are however associated with

the superpathway in question in the online biochemcial pathways resource on the

SGD website, while the actual phosphatidic acid biosynthesis pathway is in fact

excluded from the superpathway despite its inclusion in the superpathway name

(see Figure 8.8). There is no apparent reason for the difference between the two

resources, so it was decided to adopt the classification used in SGD’s downloadable

literature curated database, not only because this resource is machine processable,

but also because it is more up-to-date than the online pathway, which has still not

been manually curated at the time of writing.

Although the phosphatidic acid and phospholipid biosynthesis superpathway is

split into multiple subpathways, these pathways are not truly stand-alone pathways,
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Figure 8.7: Superpathway of TCA cycle and glyoxylate cycle, taken from the SGD biochem-
cial pathways resource.
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Figure 8.8: Superpathway of phosphatidic acid and phospholipid biosynthesis, taken from
the SGD biochemcial pathways resource. It should be noted that this superpathway represen-
tation includes some subpathways not specifically listed for this superpathway in the download-
able SGD pathway database. These include phosphatidylinositol biosynthesis, phospholipid
biosynthesis II (Kennedy pathway) and CDP-diacylglycerol biosynthesis, while phosphatidic
acid biosynthesis is in fact covered by the superpathway of phosphatidate biosynthesis, with
only the final product of the pathway, phosphatidate, included here as the starting point to
the superpathway. The reason for these differences is that the two resources, despite both
being provided by SGD, are created in different way. It should also be noted that unlike the
pathway in Figure 8.7, this pathway has not yet undergone manual curation.
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nor are they even as different as the TCA and glyoxylate cycle, which occur in

different parts of the cell. Rather, the phospholipid subpathways are a series of

biochemical reactions which feed into each other or run in parallel, creating the

same product from different substrates. For this reason, it is expected that most

groups will not differentiate between the subpathways.

There is no documented direct link between the two superpathways, i.e. no part

of either superpathway feeds into the other. Indirectly, the pathways are linked

within the complex network of biochemical reactions in the cell, with by-products of

one pathway feeding into other pathways. This should however not have any noise

effect on the grouping and it is expected that there should be no or very few groups

containing genes from both sets of pathways. The ontological branch most likely to

generate groups with overlap between the superpathways is CC, due to the fact that

in yeast phospholipid biosynthesis occurs not only in the endoplasmic reticulum, as

it does in mammals, but also in mitochondria [Cobon et al., 1974; Kuchler et al.,

1986], the organelle in which the TCA cycle takes place.

All the genes from the full Eisen dataset associated with the two superpathways

were selected for inclusion in the pathways dataset. The genes, 34 in total, are listed

in Table 8.7. The genes represent 10 of 11 genes listed by SGD for the glyoxylate

cycle, 21 of 22 genes for the TCA cycle, 1 of 6 genes for phosphatidic acid biosyn-

thesis, 2 of 3 for phospholipid biosynthesis (Kennedy pathway) and 7 out of 7 for

phospholipid biosynthesis. 7 genes are shared between the TCA cycle and glyoxylate

cycle.

In KEGG, these genes can be found in three pathway listings, namely the TCA

cycle (sce00020), Glyoxylate and dicarboxylate metabolism (sce00630) and Glyc-

erophospholipid metabolism (sce00564). The allocation of genes to pathways is done

slightly differently in KEGG, so that these three pathways contain genes found in the

Eisen dataset that were not included in the pathway dataset here. The discrepancies

are listed in Table 8.8. KEGG also includes phospholipid biosynthesis II (Kennedy

pathway) and phosphatidylinositol biosynthesis in the greater glycerophospholipid

metabolism.

The pathways dataset has 456 distinct annotations (gene-GO term pairs), with

169 distinct GO terms.

In the selection of the datasets discussed in Section 8.1 and Section 8.2, the

genes’ location in the expression cluster dendrogram was an important part of the

selection process. The genes in the pathways dataset are fairly evenly spread out

across both the expression dendrogram and the semantic cluster dendrogram, as the

locations listed in Table 8.7 show. There are a few sets of two to five genes in each
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Expr.
tree

Sem.
tree

SGD ID Gene
name

Full name

8 2295 S000000598 CIT2 ±∓ Citrate synthase, catalyzes the condensation of acetyl coenzyme A and oxaloac-
etate to form citrate, peroxisomal isozyme involved in glyoxylate cycle

186 2011 S000003476 LSC2 ∓ Beta subunit of succinyl-CoA ligase, which is a mitochondrial enzyme of the TCA
cycle that catalyzes the nucleotide-dependent conversion of succinyl-CoA to suc-
cinate

201 2129 S000001876 LPD1 ∓ Dihydrolipoamide dehydrogenase, the lipoamide dehydrogenase component (E3)
of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multi-enzyme
complexes

206 2162 S000001631 SDH1 ∓ Flavoprotein subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p, Sdh4p),
which couples the oxidation of succinate to the transfer of electrons to ubiquinone

333 478 S000002236 MDH3 ±∓ Peroxisomal malate dehydrogenase, catalyzes interconversion of malate and ox-
aloacetate

406 2120 S000005486 MDH2 ±∓ Cytoplasmic malate dehydrogenase, one of three isozymes that catalyze intercon-
version of malate and oxaloacetate

409 2075 S000006183 FUM1 ∓ Fumarase, converts fumaric acid to L-malic acid in the TCA cycle
410 2112 S000004982 IDH1 ∓ Subunit of mitochondrial NAD(+)-dependent isocitrate dehydrogenase, which cat-

alyzes the oxidation of isocitrate to alpha-ketoglutarate in the TCA cycle
411 2113 S000005662 IDH2 ∓ Subunit of mitochondrial NAD(+)-dependent isocitrate dehydrogenase, which cat-

alyzes the oxidation of isocitrate to alpha-ketoglutarate in the TCA cycle
442 2297 S000005061 MLS1 ± Malate synthase, enzyme of the glyoxylate cycle, involved in utilization of non-

fermentable carbon sources
443 2063 S000000867 ICL1 ± Isocitrate lyase, catalyzes the formation of succinate and glyoxylate from isocitrate,

a key reaction of the glyoxylate cycle
663 2298 S000001470 DAL7 ± Malate synthase, role in allantoin degradation unknown
1224 2010 S000005668 LSC1 ∓ Alpha subunit of succinyl-CoA ligase, which is a mitochondrial enzyme of the

TCA cycle that catalyzes the nucleotide-dependent conversion of succinyl-CoA to
succinate

1232 2296 S000005284 CIT1 ±∓ Citrate synthase, catalyzes the condensation of acetyl coenzyme A and oxaloac-
etate to form citrate

1245 2130 S000001387 KGD1 ∓ Component of the mitochondrial alpha-ketoglutarate dehydrogenase complex,
which catalyzes a key step in the tricarboxylic acid (TCA) cycle, the oxidative
decarboxylation of alpha-ketoglutarate to form succinyl-CoA

1262 2087 S000004295 ACO1 ±∓ Aconitase, required for the tricarboxylic acid (TCA) cycle and also independently
required for mitochondrial genome maintenance

1267 2159 S000002585 SDH4 ∓ Membrane anchor subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p,
Sdh4p), which couples the oxidation of succinate to the transfer of electrons to
ubiquinone

1269 2119 S000001568 MDH1 ±∓ Mitochondrial malate dehydrogenase, catalyzes interconversion of malate and ox-
aloacetate

1270 2161 S000003964 SDH2 ∓ Iron-sulfur protein subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p,
Sdh4p), which couples the oxidation of succinate to the transfer of electrons to
ubiquinone

1273 2160 S000001624 SDH3 ∓ Cytochrome b subunit of succinate dehydrogenase (Sdh1p, Sdh2p, Sdh3p, Sdh4p),
which couples the oxidation of succinate to the transfer of electrons to ubiquinone

1752 2288 S000002555 KGD2 ∓ Dihydrolipoyl transsuccinylase, component of the mitochondrial alpha-
ketoglutarate dehydrogenase complex, which catalyzes the oxidative decar-
boxylation of alpha-ketoglutarate to succinyl-CoA in the TCA cycle

2049 2294 S000006205 CIT3 ±∓ Dual specificity mitochondrial citrate and methylcitrate synthase
2264 1760 S000000422 PYC2 ∓ Pyruvate carboxylase isoform, cytoplasmic enzyme that converts pyruvate to ox-

aloacetate
2265 1761 S000003030 PYC1 ∓ Pyruvate carboxylase isoform, cytoplasmic enzyme that converts pyruvate to ox-

aloacetate
134 2397 S000003389 CHO2 † Phosphatidylethanolamine methyltransferase (PEMT), catalyzes the first step in

the conversion of phosphatidylethanolamine to phosphatidylcholine during the
methylation pathway of phosphatidylcholine biosynthesis

426 2390 S000002301 CRD1 † Cardiolipin synthase
432 2396 S000003834 OPI3 † Phospholipid methyltransferase (methylene-fatty-acyl-phospholipid synthase),

catalyzes the last two steps in phosphatidylcholine biosynthesis
620 2354 S000000510 PGS1 † Phosphatidylglycerolphosphate synthase, catalyzes the synthesis of phosphatidyl-

glycerolphosphate from CDP-diacylglycerol and sn-glycerol 3-phosphate in the first
committed and rate-limiting step of cardiolipin biosynthesis

1098 2065 S000003402 PSD2 † Phosphatidylserine decarboxylase of the Golgi and vacuolar membranes, converts
phosphatidylserine to phosphatidylethanolamine

1099 2391 S000000828 CHO1 † Phosphatidylserine synthase, functions in phospholipid biosynthesis
1512 2064 S000005113 PSD1 † Phosphatidylserine decarboxylase of the mitochondrial inner membrane, converts

phosphatidylserine to phosphatidylethanolamine
Continued on next page
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Continued from previous page
Expr.
tree

Sem.
tree

SGD ID Gene
name

Full name

1858 412 S000003434 PCT1 ‡ Cholinephosphate cytidylyltransferase, also known as CTP:phosphocholine cytidy-
lyltransferase, rate-determining enzyme of the CDP-choline pathway for phos-
phatidylcholine synthesis, inhibited by Sec14p, activated upon lipid-binding

2088 2394 S000005074 CPT1 ‡ Cholinephosphotransferase, required for phosphatidylcholine biosynthesis and for
inositol-dependent regulation of EPT1 transcription

2119 2380 S000002210 SLC1 ∗ 1-acyl-sn-gylcerol-3-phosphate acyltransferase, catalyzes the acylation of lysophos-
phatidic acid to form phosphatidic acid, a key intermediate in lipid metabolism

Table 8.7: The pathways subset. ± - glyoxylate cycle; ∓ - TCA cycle, aerobic respiration; † -
phospholipid biosynthesis; ‡ - phospholipid biosynthesis (Kennedy pathway); ∗ - phosphatidic
acid biosynthesis

Genename SGD pathway KEGG pathway
ERG10 mevalonate pathway Glyoxylate and dicarboxylate metabolism (sce00630)
IDP1 superpathway of glutamate biosynthesis TCA cycle (sce00020)
IDP2 superpathway of glutamate biosynthesis TCA cycle (sce00020)
IDP3 superpathway of glutamate biosynthesis TCA cycle (sce00020)
LAT1 pyruvate dehydrogenase complex TCA cycle (sce00020)
PCK1 gluconeogenesis TCA cycle (sce00020)
PDA1 pyruvate dehydrogenase complex TCA cycle (sce00020)
PDB1 pyruvate dehydrogenase complex TCA cycle (sce00020)
EPT1 phospholipid biosynthesis II (Kennedy pathway) Glycerophospholipid metabolism (sce00564)
MUQ1 phospholipid biosynthesis II (Kennedy pathway) Glycerophospholipid metabolism (sce00564)
PIS1 phosphatidylinositol biosynthesis Glycerophospholipid metabolism (sce00564)
PLB1 not associated with a pathway in SGD Glycerophospholipid metabolism (sce00564)
OPI3 phospholipid biosynthesis not associated with a pathway in KEGG

Table 8.8: Discrepancies between gene allocations to different pathways in SGD and KEGG,
for genes that are found in the Eisen dataset.

tree that are located in adjacent or very close positions but there is no big cluster

nor is there a single particularly coherent subpathway. Tree locations will therefore

be included in this dataset for reference only.

8.3.2 Grouping

In the grouping of the full Eisen dataset, the genes of the pathways dataset are never

all grouped together, although this is of course to be expected due to the nature

of the dataset. The largest grouped set consists of 15 TCA cycle genes but this

represents only around a third of the group’s full content. There are also no groups

which contain only genes from the pathways subset, except for two non-meaningful

CC groups, oxoglutarate dehydrogenase complex and tricarboxylic acid cycle enzyme

complex. Three genes, ICL1, PGS1 and PCT1 are never grouped. Overall, genes

from the pathways dataset are found in 65 original groups, 61 of which contain

four or more genes, or 8 supergroups and 20 unmerged groups, 16 of which meet

minimum content requirements.

When grouped separately, the pathways dataset produces the 6 supergroups and

47 unmerged groups, of which 18 contain four or more genes, shown in Figure 8.9.
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This is a considerable reduction in volume from 169 distinct GO terms and 456 anno-

tations. Prior to merging, there were 60 groups, 31 of which were meaningful. From

Figure 8.9, it is immediately clear that with the exception of two groups, there is

no overlap between the genes from the TCA cycle and glyoxylate superpathway and

the genes from the phospholipids pathways. The two exceptions are CC supergroup

103 and MF group 1033. On closer analysis, both of these groups are revealed to be

biologically appropriate and the genes in the group do indeed all share the cellular

location or molecular function reflected by the respective groups.

Figure 8.9: Supergroups and unmerged groups for the pathways dataset, ordered left to right
by size and top to bottom by the pathway, then by their location in the expression tree, with
the following pathway order: glyoxylate cycle genes, genes active in both glyoxylate and TCA
cycle, TCA cycle genes, phospholipid biosynthesis genes, phosphatidic acid biosynthesis genes
and Kennedy pathway genes. In order to illustrate the mapping of the genes in the groups
to their original pathways (shown in Figures 8.7 and 8.8), the gene names of glyoxylate cycle
specific genes are given in yellow, those of TCA cycle specific genes in blue and those of genes
shared by the two pathways are in green, while the genes from the phospholipids pathways
are coloured in red. Other colour conventions are the same as in Figure 8.3.

As in the previous two datasets, the largest groups in Figure 8.9 are clearly very

similar. This is confirmed through the group names in Table 8.9, which shows that

the two largest supergroups do indeed have the same fairly generic name. They

are BP supergroups 104, and 105. Supergroup 102, although slightly smaller, also

shares this generic name.

The potential algorithmic improvement identified in Sections 8.1 and 8.2 is also

relevant for the pathway groups, as summarised in Table 8.10 and is as prevalent as

in the other two dataset. No new potential algorithmic improvements were identified

as part of this analysis.

None of the group names in Table 8.9 are obviously inconsistent with the func-
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Group ID Group name Ontology Group size
104 cellular metabolic process (GO:0044248) BP 22
105 cellular metabolic process (GO:0044237) BP 22
1025 generation of precursor metabolites and energy (GO:0006091) BP 20
1029 coenzyme metabolic process (GO:0006732) BP 20
102 cellular metabolic process (GO:0044237) BP 17
101 mitochondrial part (GO:0044429) CC 14
103 intracellular membrane-bounded organelle (GO:0043231) CC 13
1001 oxidation reduction (GO:0055114) BP 12
1058 oxidoreductase activity (GO:0016491) MF 11
106 lipid metabolic process (GO:0006629) BP 10
1005 cellular lipid metabolic process (GO:0044255) BP 10
1043 carbohydrate metabolic process (GO:0005975) BP 10
1056 transferase activity, transferring acyl groups (GO:0016746) MF 7
1011 transition metal ion binding (GO:0046914) MF 6
1051 cofactor binding (GO:0048037) MF 6
1020 cellular aldehyde metabolic process (GO:0006081) BP 5
1035 cytosol (GO:0005829) CC 5
1053 phosphorus metabolic process (GO:0006793) BP 5
1060 transferase activity, transferring phosphorus-containing groups (GO:0016772) MF 5
1007 purine nucleotide binding (GO:0017076) MF 4
1026 ligase activity (GO:0016874) MF 4
1033 lyase activity (GO:0016829) MF 4
1039 endoplasmic reticulum (GO:0005783) CC 4
1045 microbody (GO:0042579) CC 4

Table 8.9: Names of all the meaningful groups and supergroups shown in Figure 8.9, sorted
by decreasing size. Three-digit group IDs indicate supergroups, four-digit IDs normal groups.

tional aspects expected to be associated with the genes in the dataset. Some names,

such as cellular metabolic process, are too high-level to allow a definite conclusion

to be drawn about the biological relevance of the terms in the group definition. A

detailed analysis of each group, available in Appendix B.3, confirmed that all the

groups are biologically relevant in the context of the pathways dataset.

A few groups, notably supergroups 104, 105 and 102, did however have such

diverse definitions that, although they were biologically correct, they provided only

limited insight into the functional aspects shared by their content genes. The same

does not apply to all large groups, as the definitions of groups 1025 and 1029 are

much less diverse and more insightful. If the maximum semantic threshold is used,

the groups with very diverse definitions are not found and the largest groups are

roughly the same as groups 1025 and 1029 in this analysis.

In terms of the stated goal for the pathways dataset, namely testing FuSiGroups’

ability to distinguish between different pathways, the results analysis is positive.

Aside from two valid groups which contain genes from both superpathways, all

groups contain genes from only one of the two superpathways shown in Figures 8.7

and 8.8. In order to illustrate the mapping of the genes in the groups back to the

original pathways, the gene names in Figure 8.9 are colour-coded based on their

pathways membership, such as yellow for glyoxylate cycle-specific genes and blue
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Group ID Biologically
relevant?

Annotation issues Potential algorithmic improvements

104 Yes Refinement of definition based on
group content

105 Yes
1025 Yes MLS1, DAL7 Refinement of definition based on

group content
1029 Yes MLS1, DAL7 Refinement of definition based on

group content
102 Yes
101 Yes Refinement of definition based on

group content
103 Yes Refinement of definition based on

group content
1001 Yes ACO1
1058 Yes
106 Yes Refinement of definition based on

group content
1005 Yes
1043 Yes
1056 Yes Refinement of definition based on

group content
1011 Yes Refinement of definition based on

group content
1051 Yes
1020 Yes ∗ACO1, MDH2,

MDH1, CIT1, CIT3
1035 Yes
1053 Yes ACO1
1060 Yes
1007 Yes Refinement of definition based on

group content
1026 Yes
1033 Yes
1039 Yes
1045 Yes

Table 8.10: Summary of the analysis of all meaningful groups in the pathways dataset. As
in previous cases, ∗ indicates that the annotation issue in question led to the exclusion of the
genes from a group. No new potential algorithmic refinements were identified for this dataset.
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for TCA cycle-specific genes.

The groups that contain only genes from the phosphatidic acid and phospholipid

biosynthesis pathway do not distinguish between the individual subpathways. This

is unsurprising as it was established earlier that these subpathways are not so much

stand-alone pathways as different elements of a large pathway, as can be seen in

Figure 8.8.

The TCA cycle and glyoxylate cycle on the other hand are two distinct pathways,

not least because of the different cellular locations that they take place in. In terms

of the sequence of reactions in the pathway, as can be seen in Figure 8.7, TCA cycle

is represented by the full outer circle, while the glyoxylate cycle consists of the upper

part of the circle and the reactions represented in the line going across the circle,

thus bypassing the lower part of the circle.

Among the pathways groups, there are two groups, group 1020 and group 1045,

which contain only genes associated with the glyoxylate cycle. These include three

and two genes that are unique to the glyoxylate cycle and two genes that are common

to both pathways. The names of these groups, as well as their full definitions, identify

them as groups that should indeed only contain glyoxylate cycle-specific genes. The

same also applies to groups like group 105 and group 102, which contain only genes

from the TCA cycle.

There are no groups that contain all the genes from either the glyoxylate cycle

or the TCA cycle, nor are there any groups that contain all the genes from the

superpathway. The explanation for this is that some of the genes, particularly ICL1,

PYC1 and PYC2, have insufficiently high functional similarity with some of the other

genes in the superpathway. It should be noted that from an ontological point of view,

it would be impossible for the terms tricarboxylic acid cycle and glyoxylate cycle to

appear in the same group definition as these terms are part of different branches of

the BP ontology, despite referring to extremely similar pathways.

Annotation issues

There are four genes in the pathways dataset for which annotation issues were iden-

tified during the results analysis. The most obvious one of these is ACO1, for which

several inappropriate annotations were found in relation to several groups. These

include an annotation with the BP term oxidation reduction, qualified with the

RCA evidence code, despite the fact that aconitase activity is not a redox reaction

[Beinert et al., 1996], as well as the term phosphorus metabolic process, another

RCA annotation, which is also inconsistent with aconitase activity. Both of these
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annotations are no longer found in the latest version of the Gene Ontology. In addi-

tion to these inappropriate annotations, ACO1 also lacks annotation with the term

glyoxylate cycle, despite evidence that it is involved in this process. This lack of

annotation led to the exclusion of ACO1 from group 1020. The same problem was

found for MDH2. Neither gene has acquired this annotation in more recent versions

of the GO.

The absence of annotation with the term glyoxylate cycle was also found for

genes MDH1, CIT1 and CIT3. These are listed as being shared between the TCA

cycle and the glyoxylate cycle. Upon closer examination however, it becomes clear

that these three genes are in fact TCA cycle-specific. In this case, the absence of the

annotation term was therefore appropriate and it is the association of these genes

with the glyoxylate cycle in KEGG and SGD that might be considered questionable.

The two glyoxylate cycle-specific genes MLS1 and DAL7 were both found to

be annotated with the term tricarboxylic acid cycle under the IEA evidence code.

This annotation, which is most likely the result of “guilt by association” with one of

the genes shared between the two pathways, is almost certainly inappropriate but

it is still present in the latest version of the GO. It is also the only reason for the

inclusion of these two genes in groups 1025 and 1029. In this case, an inappropriate

annotation led to an appropriate inclusion of two genes in a group.

8.4 Summary

In this chapter, the results obtained from the FuSiGroups algorithm for three smaller

sub-datasets of the Eisen dataset were presented and analysed. Specifically, the

ability of FuSiGroups to address a number of specific scenarios was considered. For

all three datasets, FuSiGroups correctly identified the main functional aspects of the

dataset and apart from a couple of minor exceptions, all groups were found to be

biologically relevant. Results for both the proteasome and ribosome datasets showed

that the algorithm is able to identify genes that are functionally unrelated to the

bulk of the dataset by not including them in any meaningful groups. FuSiGroups

groups were found to be consistent with pathway subdivisions, but the algorithm

did not consistently reflect the clusters obtained from gene expression analysis of

the same genes.

A number of limitations to the FuSiGroups algorithm in particular and semantic

and functional similarity in general were identified. These included the accuracy of

the semantic threshold, the need to revisit each group definition after group content

allocation in order to ensure that the definition fully represents the content genes
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and the ability of semantic and functional similarity to accurately capture complex

biological relationships.

In the next chapter, the implications of the results presented in this and the

four previous chapters will be discussed. An outlook on possible refinements and

additions to this work in general and FuSiGroups in particular will also be given.
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Chapter 9

Discussion & Conclusion

In Chapters 4 through 8, the results from the different parts of this project were

analysed. In this chapter, the meaning and implications of these results will be

discussed, both in relation to the project and in the context of the wider research

area of functional annotation similarity.

9.1 Semantic and functional similarity approaches

One of the goals of this project was to compare a number of semantic and functional

similarity approaches, as well as the associated parameters of ontological score com-

bination, ancestor choice and type of annotation data, in order to establish which

ones performed the best. The test dataset was an aggregate dataset consisting of

gene product pairs with known similarity (or dissimilarity) in either gene expression,

protein interaction or phenotype.

9.1.1 Semantic similarity

Three information content-based semantic similarity measures, by Resnik [1995]; Lin

[1998]; Schlicker et al. [2006], and one hybrid measure, making use of both the nodes

and the edges of the GO graph, by Wang et al. [2007], were selected. Resnik’s and

Schlicker’s approaches performed the best, with such marginal differences between

their performances that it is difficult to establish a clear “best” approach. Lin’s

and Wang’s approaches generally perform less well, with Wang clearly showing the

overall worst performance.
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9.1.2 Functional similarity

The BMA [Sevilla et al., 2005] and MAX [Couto et al., 2005] approaches were chosen

for the comparison of functional similarity approaches. Neither approach clearly

outperforms the other. BMA appears to perform marginally better overall but the

difference between the two is so minor that no clear conclusion can be drawn

9.1.3 Other parameters

Individual vs. combined scores

The performance of the aggregate rFunSim [Schlicker et al., 2007b] score was com-

pared to that of the individual scores for the three GO ontologies. The reason for

this comparison was that a lot of studies use only individual ontological scores rather

than comparing gene products based on a single score including all three ontologies.

rFunSim was found to outperform individual ontology scores in the majority of cases.

The greatest improvement in performance was found compared to the MF ontology,

where AUC indices were generally much higher for rFunSim. The largest number

of cases where rFunSim performed worse than an ontological score related to CC,

although the difference in AUC was always minimal. The most likely explanation

for this is that CC is the smallest of the three ontologies and it is therefore easier to

obtain a high level of similarity for CC than a high level of similarity overall.

Ancestor choice

The effect of using Couto et al.’s GraSM algorithm for disjunctive ancestor choice

instead of the more common most informative common ancestor (MICA) was also

considered. Although GraSM might objectively be expected to provide an improve-

ment over MICA as it makes better use of the ontological structure, it was actually

found to generally perform worse than the single ancestor approach.

Annotation

Finally, the performance of the different approaches was compared for all annotation

data and annotation data excluding electronic annotation. In this analysis, using

all annotations led to an overall better performance.
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9.1.4 Recommendations

Based on the performance analysis of the different approaches and parameters, the

Resnik and Schlicker semantic similarity approaches were selected to be used in

FuSiGroups. For functional similarity, both BMA and MAX were selected, while

the choices for annotation and ancestor were full annotation and MICA, respectively.

The combined rFunSim score was selected over individual ontological scores.

It should however be noted that while these choices were clearly the most ap-

propriate in relation to this work, different choices may be more appropriate under

certain circumstances. One example of this is the use of functional annotation.

While the better performance of full annotation over non-electronic annotation is

not surprising in a yeast dataset, where electronic annotation is fairly high-quality

and very abundant, the same may not be true for other species, particularly for a

species which has little electronic annotation. It is therefore essential to have a good

understanding of the annotation sources for the data being analysed.

Depending on the type of work, it may also be more suitable to use an indi-

vidual ontological score, despite the significantly better performance of rFunSim in

this comparison. A particularly relevant example would be a study of subcellular

locations of gene products, in which case limited functional similarity to the CC

score would be more appropriate than the combined score.

9.2 FuSiGroups

The second big aspect of this project was the development of a grouping algorithm

based on the semantic similarity between GO terms and the functional similarity

between the gene products they annotate. The analysis and evaluation of this algo-

rithm was covered in Chapters 5 to 8. First, the experimental parameters for the

algorithm, the semantic and functional thresholds, were determined. Then the re-

sults of the algorithm for a selection of different variables, such as different semantic

and functional similarity measures, were analysed on a high level to establish whether

any interesting patterns could be found and the groups for one set of variables were

compared to other forms of clustering. Finally, the algorithm’s performance was

evaluated on three smaller datasets to establish whether it generates biologically

relevant results.
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9.2.1 Grouping trends

An entire chapter of this thesis, Chapter 6, was devoted to the study of the overall

trends of the grouping results for the two semantic and two functional similarity

approaches previously found to perform the best out of all the approaches under

consideration, at their empirical minimum and maximum semantic and functional

thresholds. While this may seem like an unnecessary step before the analysis of the

actual groups, considering overall trends such as the number of groups produced by a

given set of parameters or the sizes of the group definitions is in fact an essential part

of evaluating the performance of the algorithm. This is particularly true as analysing

the individual groups for each set of parameters would be extremely laborious and

repetitive.

By analysing a number of factors, including the number of total and meaningful

groups, the maximum and average group sizes and the maximum and average group

definition sizes, it was possible to establish that the semantic thresholds derived

for Schlicker’s approach were most likely inappropriately high. Indicators for this

were the much larger number of groups generated for Schlicker compared to Resnik

and the associated much smaller group definition sizes. Due to the nature of the

algorithm, where group definitions that are subsets of other definitions are removed,

a large number of groups with very small definitions indicates that very few groups

have been discarded, which in turn suggests that the similarity threshold responsible

for group definitions only allows very few GO terms to be grouped together. Through

the study of the grouping trends, it was therefore possible to eliminate Schlicker’s

approach from the more detailed analysis and focus on Resnik’s approach, which

was most likely to generate useful results.

Another factor that could be established from the analysis of grouping trends was

the lack of correlation between group sizes and definition sizes, as well as between

definition sizes and the ontological depth of the definition terms. A strong correla-

tion in either category would have been an indicator of bias in the algorithm. In the

former case, it would have indicated that the number of GO terms in a definition

affects the number of genes in the group, which would mean that groups with many

genes can only exist due to functionally diverse definitions, rather than because these

genes are genuinely related based on a focussed functional aspect. A correlation be-

tween definition size and ontological depth would have suggested a strong bias in

the semantic similarity approach in question, with deeper (for a positive correlation)

or shallower (for a negative correlation) terms scoring disproportionately high sim-

ilarity scores. This in turn would mean that more terms of that ontological depth
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would be grouped together, leading to larger definitions. Since no such correlation

was found, the absence of bias in the semantic similarity approaches was confirmed.

9.2.2 Grouping vs. clustering

A large part of the analysis was initially targeted to be a comparison of expres-

sion clusters, semantic clusters and functional groups. It soon turned out however

that there was little consistent overlap between these three types of groupings. Ex-

ternal cluster validation techniques performed poorly across a range of clustering

thresholds, for both expression and semantic clusters.

Both the full Eisen dataset and the smaller datasets showed little consistency

between FuSiGroups groups and clusters of either type. One exception to this is

the proteasome dataset, in which the genes are mostly clustered together in both

the expression and the semantic tree. The expression clustering is obviously very

consistent here as that is how the dataset was selected, but the semantic clustering

is also surprisingly good, although not quite as good as the grouping. The same

also applies to the expression clustering in the ribosome dataset, as the ribosome

dataset was selected from a number of distinct but closely related expression clusters.

The semantic clustering of this dataset, as well as both types of clustering in the

pathways dataset, are on the other hand pretty much “all over the place”. Only

small sets of two to five genes were found in the same area of a clustering tree and

there was little consistency across the two trees, so a set of genes clustered together

in one tree would not be clustered in the other tree.

These findings are consistent with studies of the correlation between functional

and expression similarity [Sevilla et al., 2005; Wang et al., 2004; Xu et al., 2008],

which generally find correlation between the two types of similarity only if similarities

are averaged across intervals, but not if pair by pair correlation is used. As all forms

of grouping used in this study are based on the similarity between pairs of gene

products, it is not entirely unsurprising to find that clustering approaches based on

the different measures do not compare well.

9.2.3 Grouping results

FuSiGroups does not perform particularly well with very large datasets as they con-

tain lots of noise. As a result, groups may not actually be particularly functionally

coherent. This is clearly illustrated in the fact that the genes from each of the three

smaller evaluation datasets always show poor grouping results in the full dataset de-

spite clearly generating good functional groups if considered individually. In terms
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of scale, test datasets ranged from 2465 genes for the large dataset to 34, 42 and

49 genes for the small datasets. Analysis of one or more intermediate size datasets

(100-500 genes) would have been useful to study at what point the effect of noise

begins to affect the quality of the groups but this was not possible due to time

constraints.

The three smaller datasets, discussed in Chapter 8, were chosen to address a

number of questions, including FuSiGroups’ ability of identify the main functional

aspects of a dataset, generate biologically relevant groups, identify unrelated “noise”

genes in a dataset and how groups compare to other forms of biological classifications

such as expression clusters or pathways. Based on the analysis of the grouping results

for the three datasets, all of these questions were successfully addressed.

For each dataset, the key functional aspects were identified (Tables 8.2, 8.5, 8.9)

correctly. Only in the proteasome dataset were any functional aspects not related

to the central part of the dataset translated into a group. The reason for these

inappropriate groups was a set of poor annotations. In a few cases, the group

name, defined as the lowest common ancestor of all the terms in a group definition,

was very high level and did not provide any obvious insight as to the functional

aspect represented by that group, but if the entire group definition was taken into

consideration, this issue could be resolved. Additionally, all groups, aside from the

few proteasome groups already mentioned, were found to be biologically relevant.

This means that it is appropriate, based on current understanding from published

research, for the genes in the group to be grouped together under the functional

aspect reflected by the group definition.

Both the proteasome and the ribosome datasets contained a number of genes

that were not directly related to the majority of genes in the dataset. In both cases,

FuSiGroups successfully “identified” these genes in the sense that they were only

grouped in groups with fewer than four genes, so-called non-meaningful groups.

FuSiGroups also managed to successfully separate the two superpathways in the

pathways dataset, with only two groups containing genes from both sets of pathways.

In both cases, the “cross-over” groups were found to reflect a function or location

which is indeed applicable to genes from both superpathways. Within the TCA cycle

and glyoxylate cycle superpathway, there was some separation of genes by individual

pathway, as well as a number of groups containing genes from both patwhays. From

the analysis of the groups, it was found that in many cases, the annotation of

the genes unique to one of the two pathways was too similar to that of the genes

common to both to produce a clear differentiation between the two pathways. No

differentiation was found between the three sub-pathways of the phosphatidic acid
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and phospholipid biosynthesis superpathway. This result can be explained by the

close relationship between these subpathways.

Very little successful differentiation was found between the four clusters that

make up the ribosome dataset. The majority of the groups contained genes from

multiple clusters, with only two of the analysed groups containing genes from just

one cluster, although not all the genes from that cluster. The most successful differ-

entiation was between the closest three clusters and the fourth, less related cluster,

although again, not all genes from the closest three clusters were grouped together.

As correlation between functional and expression similarity was found to only be

significant for averaged similarity of one type across intervals of the other in other

studies, such as Wang et al. [2004] and Sevilla et al. [2005], this result is not un-

expected. It is also consistent with the comparison of grouping and clustering for

the full Eisen dataset, discussed in Chapter 7 and Section 9.2.2 above. It might

have been of interest to study the performance of FuSiGroups on a fourth dataset,

consisting of gene products from two or three clusters from distinct sections of the

expression tree, but this was impossible due to time constraints.

Based on these findings, the ideal use for FuSiGroups would be on smaller

datasets, such as individual clusters of genes from high-throughput experiments.

From these, it could highlight the main functions common to most of the genes and

eliminate genes that are functionally unrelated to the rest of the cluster.

Another feature that was repeatedly found in the detailed analysis was inappro-

priate annotations of gene products, particularly annotations with the RCA evidence

code. This does however require detailed analysis of groups, so FuSiGroups would

not be appropriate for deliberate large-scale investigations of wrong annotations. It

could however help to identify poor annotations of individual datasets in an ad hoc

fashion.

The analysis of group definitions showed that in some cases, definitions can be

very diverse, too diverse in fact to identify a clear functional aspect from them. This

brings into question the appropriateness of the value for Resnik’s minimum semantic

threshold, which was used for most of the evaluation. Comparison to the results at

Resnik’s maximum semantic threshold showed that the higher threshold generally

reduced the diversity of the definition, although in some cases, the narrower group

definitions led to more non-meaningful groups. From the analysis of grouping trends

in Chapter 6, it was shown that Schlicker’s semantic thresholds were probably too

high as they led to a much higher number of groups than Resnik’s measure, as well

as much smaller group definitions at an average size of less than two GO terms.

From these two aspects of the analysis, it is possible to conclude that the ap-
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proach for determining semantic thresholds may not be as successful as the equiv-

alent approach for the functional thresholds. Much lower variation in the effect of

the functional thresholds of Resnik and Schlicker was found in the sense that there

was much less difference in average group sizes between Resnik and Schlicker than

there was in average definition size. From the detailed groups analysis, no cases

were identified that would suggest that the FT might be inappropriate.

9.2.4 FuSiGroups compared to other approaches

The key difference between FuSiGroups and other approaches is that it makes use

of both the similarity between annotation terms and the similarity between gene

products. The closest comparable tool currently available is DAVID [Huang et al.,

2007], which does however have a number of crucial differences. First of all, DAVID’s

fuzzy functional clustering algorithm, although very similar to FuSiGroups, works

only in one direction. Either gene products are clustered based on their functional

similarity or annotation terms are clustered based on their similarity.

In the case of gene functional clustering, the annotations common to a set of func-

tionally similar groups are presented all together, ranked using enrichment analysis,

and not separated by categories. In FuSiGroups on the other hand, the GO terms

in a given group of gene products are also all related. Each group represents one

functional aspect, so there may be multiple groups with the same or similar gene

products, reflecting multiple functional aspects these genes share. Several examples

of this were found in the three evaluation datasets in Chapter 8.

For DAVID’s functional annotation clustering, the same overall situation applies.

In a given cluster of similar annotation terms, all gene products in the dataset

associated with any of the clustered terms are returned, regardless of whether they

are functionally similar. FuSiGroups on the other hand ensures that all the gene

products associated with a given group definition are also functionally similar.

FuSiGroups effectively represents the two dimensions of term and gene product

similarity at the same time. It could be argued that this is only relevant for a specific

sub-set of the applications of DAVID as it might be desirable to only consider the

similarity in one direction. There are however a number of existing approaches, not

least DAVID, that fulfil this purpose.

Additionally, DAVID makes use of multiple forms of functional annotation, not

just GO. Although this may at first glance seem to be an advantage compared to

only using GO, since more information is provided, there appears to be no study

evaluating whether it is appropriate to use a large number of different data sources
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and treat them equally. A particular concern here is data circularity as some types

of annotations are derived from others. While the selection of the data sources in

DAVID is a user choice and can therefore be adjusted to address the needs of a

given analysis, an understanding of the detailed connections between different types

of data sources may not be part of the user’s expertise. Using only the GO, rather

than a wide variety of annotation sources, in a functional analysis is therefore not

necessarily a disadvantage, until a more detailed analysis of the interaction and

interdependence of different sources, and the effect of these on functional similarity,

have been carried out.

9.2.5 Analysis pathway

In Section 7.1, it was mentioned that there are two angles from which an analysis

of FuSiGroups results could be started, namely from the largest groups or the most

common group names, i.e. the most commonly represented functional aspects. The

following is the analysis pathway used for the analysis in Chapter 8 and which was

established as the most efficient approach to analyse the grouping results. It should

be noted that this is not the only possible approach.

For each dataset, the coloured group-gene matrix, such as that in Figure 8.3, was

created first, and the matrix sorted according to the most appropriate parameters.

Left to right, the most appropriate sort is considered to be decreasing group size.

Top to bottom, the sorting criteria were more varied. If the dataset is derived from

one or more clusters, it might be appropriate to sort the genes by their location

in the original cluster tree. This was the approach taken for the ribosome dataset.

In the pathways dataset, the genes were sorted according to their membership in

different pathways, while in the proteasome dataset, the genes were sorted first by

one of three categories (KEGG proteasome genes, other proteolytic enzymes and

unrelated genes), then by semantic dendrogram location within each category. The

nature of the dataset should dictate the most appropriate parameter, or a number

of options can be tested.

The group-gene matrix shows the overall coherence of the groups, as well as the

level of duplication between the groups, if any. From the matrix and the list of group

names, groups of interest can be identified for further detailed analysis.

For each group of interest, the first analysis step involves looking at the group

definition. This can reveal whether a group might be too functionally diverse to

be truly useful, but it can also provide a better insight into the functional aspect

represented by the group than the group name alone does. Analysing the group
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definition also includes considering how many of the group’s genes are annotated

to each term. Through this, the relationship between the definition terms and the

group genes is established.

Next, the genes themselves are considered. It is established if any of them are

annotated with more than one definition term. If this is the case for multiple genes,

it may indicate a particularly strong functional similarity between the genes. When

considering the genes, some level of understanding of these genes is required to

judge whether the grouping of these genes is surprising or not. If there are genes

whose grouping is unexpected, in particular in relation to the functional aspect of

the group, it is advisable to consider the type of relationship between the genes and

the GO terms in terms of evidence codes. From these, the source of the annotation

can be derived and studied to discover whether the annotation and, by extension,

the inclusion of this gene in the group, is appropriate.

The third step in the analysis involves finding any genes that could have been

included in the group based on their annotations but were not. This is a necessary

step as there are cases when genes are too functionally diverse to have appropriate

levels of functional similarity to be grouped together by FuSiGroups, yet it may still

be interesting to know about these genes.

It could be argued that this part of the pathways demonstrates that FuSiGroups

is not an improvement over DAVID, where similar annotation terms are clustered

together and all genes associated with these annotations are also associated with the

cluster. It is then up to the user to determine which genes are of interest and which

are not. FuSiGroups however has the advantage of first grouping related terms and

genes and it is only in the course of the analysis that further genes associated with

the definition terms but not included in the group are considered, rather than having

to perform the exclusion step manually, based on judgement. Instead of an a priori

information overload, additional information can be sought out if this is deemed

appropriate during the analysis.

9.3 Future work

While the work described in this thesis addresses the research question posed in Sec-

tion 1.1 and demonstrates the feasibility and appropriateness of functional grouping,

it raises a number of additional questions that it would be interesting to address.
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9.3.1 Algorithmic work

First of all, one potential algorithmic refinement was identified from the evaluation

in Chapter 8. Currently, certain group definitions contain terms that are not found

in the annotations of the genes in that group. This situation can be relatively easily

addressed by adding an additional step to the grouping algorithm that double-checks

the GO terms in the group definition against the annotations of the genes in the

group after group content allocation. GO terms not found in the annotations of the

group content can then be removed, increasing the functional coherence of the group

definition.

This refinement may indirectly reduce the occurrence of high-level group names

as many groups found to be affected by this situation also had very high-level group

names. The removal of irrelevant definition terms may result in a more specific group

name if the removed terms were less semantically similar to the other definition terms

than these are to each other. Additionally, this change in group definitions may also

affect the number of supergroups as it might reduce the overlap between some group

definitions below the merging threshold. Preliminary incorporation of the refinement

into the algorithm showed that it has no major effect on the results but does indeed

lead to more specific group names.

A second algorithmic modification that was not identified during the results anal-

ysis but that might nonetheless be of interest is the use of three semantic thresholds,

one for each aspect of the GO, instead of a single one. Since the semantic thresholds

for both Resnik and Schlicker were identified as limitations to the optimal function

of FuSiGroups, using three different thresholds is a potential option for addressing

this issue.

9.3.2 Data sources

There are several additional aspects that it would be interesting to test the FuSiGroups

algorithm on, in particular after the modifications proposed in Section 9.3.1. Of par-

ticular interest would be using a newer version of the GO, as it was found that most

annotation issues identified in the evaluation had been addressed since the release of

GO used in this work (2009-04). One or more datasets of intermediate size, between

100 and 500 gene products could address the question at which dataset size the

noise from unrelated gene products and generic, high-level annotations becomes too

strong to draw meaningful conclusions from the grouping results.

As all testing of the FuSiGroups algorithm so far was done using a well-studied

yeast dataset, or subsets thereof, it would also be of interest to study a dataset
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from a different species in order to establish whether this has a substantial effect

on performance. Ideally, datasets from at least one well-studied species and one

less well-studied one should be used to also assess if a less comprehensive level

of functional annotation is a considerable drawback. In addition to testing the

FuSiGroups algorithm itself on different species, it would also be useful to study

the effect these different species have on the performance of the different semantic

and functional similarity approaches, as well as on the semantic and functional

thresholds. Similar results to those obtained here, particularly for another well-

studied organism such as C. elegans or mouse, would demonstrate the robustness

of these measures and their indifference to the variable nature of a dataset. This

is an important consideration as information content semantic similarity measures,

such as the majority of the measures used in this work, are dependent on annotation

frequencies in the corpus underlying a given analysis.

Different ontologies

The recent proliferation of biological ontologies raises the question whether it might

be of interest to include other ontologies in the FuSiGroups analysis. This would

first of all require the identification of appropriate ontologies and a study of the way

they are used in annotation. Measures such as Resnik’s and Schlicker’s may only be

suitable for use with multiple ontologies if the annotation can be treated in the same

way as GO annotation. Extensions or modifications of existing approaches might be

necessary to accommodate the use of multiple ontologies. Interesting starting points

for this might be the work by Bodenreider et al. [2005] and Huang et al. [2007], as

both these approaches allow the use of multiple data sources.

9.3.3 Semantic and functional similarity

In Section 2.2, a wider range of semantic similarity approaches than those studied in

this thesis were discussed. It would be interesting to extend the comparison of the

performance of different semantic similarity approaches to include more node-based

approaches. This applies particularly to the recent approach by Herrmann et al.

[2009], published after the selection of approaches to be included in this work had

been completed, and which defines a form of information content that is independent

of annotation frequencies, the biggest barrier to efficient cross-species or cross-data

source functional similarity comparisons.

Equally, it might be useful to include certain of the edge-based semantic similarity

approaches in the comparison, to see how they compare in particular to Wang’s

197



9.4 Conclusion

hybrid measure, which performed badly compared to the IC-based measures, but

also to the node-based measures in general.

Finally, only pair-wise functional similarity measures that use the semantic sim-

ilarity between GO terms were considered here due to the nature of the FuSiGroups

algorithm. For the part of this work that compares the performance of different

approaches however, it might be interesting to include also some of the group-wise

functional similarity approaches discussed in Section 2.3.

9.3.4 Benchmark dataset

The semantic thresholds were identified as one of the limitations of the FuSiGroups

algorithm, since issues were identified with these thresholds for both Resnik and

Schlicker. As no similar issues were found to affect the respective functional thresh-

olds, it was concluded that while the overall approach, using true positive and true

negative datasets, was appropriate, the specific approach used for the semantic sim-

ilarity, namely considering the similarity for MAX for each ontological aspect, did

not work as well as expected. The evaluation of semantic similarity measures is a

known issue in the field [Pesquita et al., 2009], as there is no objective benchmark

against which the similarity between GO terms can be evaluated. Designing and

testing such a benchmark dataset, a laborious task deemed too time-consuming to

be included in this project, would therefore be of great use to the entire field of

semantic similarity in the Gene Ontology.

9.4 Conclusion

During the course of this thesis, the questions laid out in Section 1.1 were addressed.

The work consisted of two larger aspects, the comparison of a number of semantic

and functional similarity approaches and other parameters, and the design, proof-of-

concept implementation and testing of a novel grouping algorithm which makes use

of semantic and functional similarity approaches to find shared functional aspects

of a set of gene products. Both these objectives were addressed successfully in this

work.

• The evaluation of semantic and functional similarity approaches and a num-

ber of associated parameters was in parts in agreement with literature findings,

while it differed in others. Most notably, the semantic similarity approach by

Wang et al. [2007] was found to perform worse than Resnik’s approach, con-

trary to the findings by the original authors. The comparison also showed that
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the full dataset performed slightly better than the non-electronic one, adding

to a growing body of evidence that supports this trend. In many respects, the

results showed what is already known from the literature, namely that there

are no absolute conclusions possible in current functional similarity research.

In fact, absolute conclusions will most likely never be possible. Contradicting

findings can at best be reduced to a consensus for one result over another, as

the body of evidence favouring one finding over another increases.

• Semantic and functional similarity were combined in a novel way, in a group-

ing algorithm that operates on two levels, semantic similarity between GO

terms and functional similarity between gene products. The novel approach

groups gene products by distinct functional aspects rather than leaving it up

to the user to manually make sense of multi-dimensional data. This facilitates

analysis as the relating functional aspects between gene products are explicitly

stated, rather than having to be extracted from underlying data sources.

• The algorithm can assign gene products to multiple groups, reflecting the

multi-faceted and complex nature of their biological interactions with other

gene products.

• The results of the proof-of-concept implementation of the FuSiGroups algo-

rithm showed that, aside from the minor modifications detailed in Section 9.3.1,

the algorithm performs well. The key functional aspects for each dataset were

successfully identified, as were functionally unrelated genes, and the results

were biologically relevant, as discussed in Chapter 8.

• Limitations in performance are primarily due to the nature of functional an-

notation, which is constantly evolving and which therefore greatly varies in

detail, coverage and quality from gene product to gene product. Most no-

tably, two groups resulted from misannotations that bore no resemblance to

any of the known functions of the genes they were annotated to and which

have been removed in more recent version of the GO. Therefore the analysis

of the algorithm’s results requires some knowledge of the gene products under

investigation, or at least a general understanding of the quality of the anno-

tations for the dataset in question, such as the extent and depth of coverage,

and the sources of electronic mappings.

• The difficulty of benchmarking semantic similarity measures without using

other forms of biological similarity that inherently bias the interpretation of
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what semantic similarity is in turn makes it difficult to directly evaluate se-

mantic similarity approaches and semantic similarity-related concepts such as

the semantic thresholds. This has a noticeable effect on the grouping results,

where the overall quality of the semantic component was lower than that of

the more easily evaluated functional component.

Taking into account these limitations, the FuSiGroups algorithm shows very

promising results in a range of different scenarios. Further evaluation, as detailed in

Section 9.3, would be desirable but the stated aims of this work have been success-

fully achieved. The FuSiGroups algorithm generates biologically meaningful and

accurate results that are easy to analyse without compromising on detail and in-

formation richness, making it a useful tool for any molecular biologist wishing to

perform functional analysis on a list of genes.
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Appendix A

This appendix contains the summaries of the analyses of the performances of the

different semantic and functional similarity approaches for the three individual

datasets. Each section follows the same approach as that taken in Chapter 4 for the

aggregate dataset, although the information in the tables and figures is in a more

summarised form.

A.1 Gene expression dataset

As a reminder, the gene expression dataset was generated from the Eisen gene ex-

pression data and consists of a positive dataset of 1260 gene products and a negative

dataset of equal size. The positive dataset consists of pairs of gene products that

were clustered together using hierarchical clustering as described in Section 7.3, at

a cut-off of 0.1. The negative dataset consists of pairs where one gene product is

among the 37 right-most gene products in the tree and the other gene product is

among the 37 left-most gene products. The resampled dataset of 10 times 500 true

positives and 500 true negatives was processed using the ROCR package in R, in

the same manner as described in Chapter 4 for the aggregate dataset.

A.1.1 ROC curves

Figures A.1 to A.4 show a selection of ROC curves for the gene expression dataset. It

is immediately clear that all the gene expression ROC curves are closer to the perfect

curve than the aggregate dataset. This suggests that gene expression similarity is

either a very close match to functional similarity or that the true positive part of

the gene expression dataset consists of very closely related gene products.

From Figure 4.2 (Gene expression dataset, top right), it was derived earlier that

all the approaches are very close in their performance, with the exception of Resnik’s

approach, where the curve differs the most from the others.
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A.1 Gene expression dataset
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Figure A.1: ROC curves for individual ontology and rFunSim scores for all approaches with
“BMA-MICA’
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Figure A.2: ROC curves for all approaches for BMA and MAX with “all-MICA-rFunSim”
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A.1 Gene expression dataset

For the individual ontology scores compared to rFunSim (Figure A.1), there is

always one score that performs significantly worse than the others. In most cases,

this score corresponds to MF, except for Resnik, when it is BP. rFunSim generally

performs very strongly although in some cases this is clearer than in others.

Figure A.2 shows the trends for BMA and MAX on “all-MICA-rFunSim”. Each

pair of curves are very close and the AUC values will be required to make any

judgement about the overall performance of the functional similarity approaches.

It is however notable that once again, the ROC curves for MAX for both Lin and

Wang have the first threshold not on or near the origin of the curve, but in fact

between 0.8 and 1.0 on the Y-axis.

Figure A.3 compares the ROC curves for all the IC-based measures for MICA

and GraSM. Wang’s approach is shown in a different colour and for reference only

as this approach is not affected by ancestor selection. Although all the curve pairs

are very close, it appears that the red line, representing MICA, generally shows a

slightly better performance than GraSM.

Finally, Figure A.4 shows the comparison between full annotation and non-

electronic annotation for all approaches and for “BMA-MICA-rFunSim”. As with

most ROC curves for the gene expression dataset, the curves are generally very close.

In most cases however, the green curve, representing the non-electronic dataset, ap-

pears to be slightly higher than the red curve of the full annotation data. Nonethe-

less, comparison of the AUC indexes is necessary for a conclusive answer.

A.1.2 AUC results

AUCs were computed as previously described. Overall AUCs are shown in Table

A.1.

A quick overview of the AUCs makes it obvious that in most cases, rFunSim

again has higher AUCs than any of the other scores, suggesting that the aggregate

score performs better than the individual ontologies. Exceptions to this are listed

in Table A.2.

The CC ontology score outperforms the aggregate score most often, in 7 out of

28 cases (25% of cases). There is no discernible pattern in the exceptions and no

single combination of variables where rFunSim is outperformed in all three cases

although for “Schlicker-MAX-all-GraSM”, both MF and CC outperform rFunSim.
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A.1 Gene expression dataset
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Figure A.3: ROC curves for all approaches for MICA and GraSM with “all-BMA-rFunSim”
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A.1 Gene expression dataset
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Figure A.4: ROC curves for all approaches for “BMA-MICA-rFunSim” with full and non-
electronic annotation
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A.1 Gene expression dataset

Variables AUCs
Sem. sim. Func. sim. Dataset Ancestors MF BP CC rFunSim

Lin BMA all MICA 0.947 0.967 0.964 0.987
Lin BMA all GraSM 0.959 0.946 0.965 0.980
Lin BMA nonIEA MICA 0.969 0.940 0.982 0.988
Lin BMA nonIEA GraSM 0.971 0.982 0.973 0.981
Lin MAX all MICA 0.929 0.923 0.826 0.976
Lin MAX all GraSM 0.972 0.835 0.878 0.956
Lin MAX nonIEA MICA 0.977 0.956 0.905 0.990
Lin MAX nonIEA GraSM 0.979 0.941 0.971 0.982

Resnik BMA all MICA 0.967 0.889 0.960 0.975
Resnik BMA all GraSM 0.963 0.861 0.955 0.973
Resnik BMA nonIEA MICA 0.951 0.981 0.883 0.979
Resnik BMA nonIEA GraSM 0.961 0.868 0.986 0.980
Resnik MAX all MICA 0.957 0.756 0.978 0.973
Resnik MAX all GraSM 0.966 0.720 0.991 0.979
Resnik MAX nonIEA MICA 0.958 0.758 0.979 0.970
Resnik MAX nonIEA GraSM 0.965 0.761 0.988 0.977
Schlicker BMA all MICA 0.960 0.969 0.963 0.985
Schlicker BMA all GraSM 0.970 0.945 0.962 0.981
Schlicker BMA nonIEA MICA 0.973 0.981 0.981 0.990
Schlicker BMA nonIEA GraSM 0.978 0.980 0.991 0.991
Schlicker MAX all MICA 0.973 0.902 0.986 0.991
Schlicker MAX all GraSM 0.958 0.827 0.982 0.954
Schlicker MAX nonIEA MICA 0.975 0.938 0.976 0.990
Schlicker MAX nonIEA GraSM 0.977 0.944 0.992 0.991
Wang BMA all NA 0.942 0.958 0.956 0.985
Wang BMA nonIEA NA 0.968 0.909 0.978 0.986
Wang MAX all NA 0.929 0.923 0.825 0.976
Wang MAX nonIEA NA 0.972 0.960 0.900 0.988

Table A.1: AUCs for all experiments in the expression dataset
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A.1 Gene expression dataset

Ontology Sem. sim. Func. sim. Dataset Ancestors

MF
Lin MAX all MICA
Schlicker MAX all GraSM

BP
Lin BMA nonIEA GraSM
Resnik BMA nonIEA MICA

CC

Resnik BMA nonIEA GraSM
Resnik MAX all MICA
Resnik MAX all GraSM
Resnik MAX nonIEA MICA
Resnik MAX nonIEA GraSM
Schlicker BMA nonIEA GraSM
Schlicker MAX all GraSM
Schlicker MAX nonIEA GraSM

Table A.2: Cases in which individual scores outperform aggregate scores

A.1.3 Semantic similarity approaches

The gene expression dataset shows some remarkable differences from the aggregate

dataset in the performance of the semantic similarity approaches. Overall, Schlicker

et al.’s approach still performs the best, but Resnik’s approach performs the worst.

The Wang measure ranks overall third when compared under MICA but highest

when compared under GraSM.

The one exception to Resnik’s poor performance is for “MAX-all-GraSM”, when

Resnik performs best while Schlicker performs worst. “MAX-all-GraSM” is also the

case where the Schlicker measure performs better for MF and CC than for rFunSim.

From Table A.1, it can be seen that the score the BP ontology alone is particularly

poor for Schlicker in this case, which explains the poorer performance of rFunSim

compared to MF and CC alone, since rFunSim is an aggregate of the individual

scores. When considering the actual AUC values, it is clear that the reversal of

the common trend is not due to a better performance by Resnik but to a poorer

performance of the Schlicker approach.

BMA MAX
all nonIEA all nonIEA

MICA Total StDev
Lin 1 2 2 1 6 1

Schlicker 3 1 1 2 7 1
Wang 2 3 3 3 11 1
Resnik 4 4 4 4 16 0

Table A.3: Semantic similarity approaches for MICA
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A.1 Gene expression dataset

BMA MAX
all nonIEA all nonIEA

GraSM Total StDev
Wang 1 2 2 2 7 1

Schlicker 2 1 4 1 8 1
Lin 3 3 3 3 12 0

Resnik 4 4 1 4 13 2

Table A.4: Semantic similarity approaches for GraSM

BMA MAX
all nonIEA all nonIEA

MICA GraSM MICA GraSM MICA GraSM MICA GraSM Total StDev
Schlicker 2 1 1 1 1 3 2 1 12 1

Lin 1 2 2 2 2 2 1 2 14 0
Resnik 3 3 3 3 3 1 3 3 22 1

Table A.5: Semantic similarity approaches, all combinations

BMA MAX
all

MICA GraSM MICA GraSM Total StDev
Schlicker 2 1 1 3 7 1

Lin 1 2 2 2 7 1
Resnik 3 3 3 1 10 1

Table A.6: Semantic similarity approaches, full dataset

BMA MAX
nonIEA

MICA GraSM MICA GraSM Total StDev
Schlicker 1 1 2 1 5 1

Lin 2 2 1 2 7 1
Resnik 3 3 3 3 12 0

Table A.7: Semantic similarity approaches, non-IEA

BMA
all nonIEA

MICA GraSM MICA GraSM Total StDev
Schlicker 2 1 1 1 5 1

Lin 1 2 2 2 7 1
Resnik 3 3 3 3 12 0

Table A.8: Semantic similarity approaches, BMA only
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A.1 Gene expression dataset

MAX
all nonIEA

MICA GraSM MICA GraSM Total StDev
Schlicker 1 3 2 1 7 1

Lin 2 2 1 2 7 1
Resnik 3 1 3 3 10 1

Table A.9: Semantic similarity approaches, MAX only

A.1.4 Annotation

Differences between the full dataset and the gene expression dataset can also be seen

in respect to the annotation data used. While the full annotation data performs

better for the aggregate dataset, the non-electronic annotation performs better in

all cases for the gene expression dataset.

However, there are two notable exceptions, where an individual approach dif-

fers from the overall trend. For Schlicker’s approach and MICA, the full annota-

tion dataset is ranked highest overall in conjunction with MAX (Table A.10). For

Resnik’s approach and MAX, the highest performance is obtained for “all-GraSM”.

Lin Resnik Schlicker Wang Total StDev
BMA nonIEA MICA 2 1 2 2 7 1
MAX nonIEA MICA 1 4 3 1 9 2
MAX all MICA 4 3 1 4 12 1
BMA all MICA 3 2 4 3 12 1

Table A.10: All annotation-MICA vs. non-IEA-MICA

Lin Resnik Schlicker Wang Total StDev
MAX nonIEA GraSM 1 3 1 1 6 1
BMA nonIEA GraSM 2 1 2 2 7 1
BMA all GraSM 3 4 3 3 13 1
MAX all GraSM 4 2 4 4 14 1

Table A.11: All annotation-GraSM vs. non-IEA-GraSM

A.1.5 Ancestors

For the gene expression dataset, the GraSM algorithm generally performs better

with the non-electronic annotation data, whereas using the MICA generates a bet-

ter performance with the full annotation data. This again differs from the overall

trend of the aggregate dataset, where MICA usually outperforms GraSM. The main

229



A.1 Gene expression dataset

disagreement with the overall trend is for Lin’s approach, which ranks MICA higher

than GraSM, regardless of the dataset.

Lin Resnik Schlicker Total StDev
BMA all MICA 1 2 2 5 1
BMA all GraSM 2 3 3 8 1
MAX all MICA 3 4 1 8 2
MAX all GraSM 4 1 4 9 2

Table A.12: All annotation - MICA vs. GraSM

Lin Resnik Schlicker Total StDev
BMA nonIEA GraSM 4 1 1 6 2
BMA nonIEA MICA 2 2 3 7 1
MAX nonIEA GraSM 3 3 2 8 1
MAX nonIEA MICA 1 4 4 9 2

Table A.13: Non-IEA - MICA vs. GraSM

A.1.6 Functional similarity approaches

The overall performance for the two functional similarity approaches is less clear-cut

than any of the other parameters. BMA appears to perform better than MAX, if the

MICA and non-electronic annotation are used, whereas MAX performs better for

MICA and full annotation. These two trends are entirely reversed with the GraSM

algorithm. In addition, Resnik’s rankings disagree with the overall trend for MICA

insofar that BMA always outperforms MAX for this approach.

For a given choice of annotation (either only all data or only non-electronic data),

BMA also always performs better than MAX, although whether “BMA-MICA” or

“BMA-GraSM” is ranked highest depends on the dataset.

Lin Resnik Schlicker Total StDev
BMA nonIEA GraSM 3 1 1 5 1
BMA nonIEA MICA 1 2 2 5 1
BMA all MICA 2 3 3 8 1
BMA all GraSM 4 4 4 12 0

Table A.14: BMA only
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Lin Resnik Schlicker Total StDev
MAX nonIEA GraSM 2 2 1 5 1
MAX nonIEA MICA 1 4 3 8 2
MAX all MICA 3 3 2 8 1
MAX all GraSM 4 1 4 9 2

Table A.15: MAX only

A.1.7 Conclusions

Most of the ROC curves shown for the gene expression dataset are very close and

without analysing the AUC indices, it is difficult to draw any definite conclusions. It

is clear from the AUC data that the general trends for the gene expression dataset are

very different from the aggregate dataset. In terms of semantic similarity approaches,

Schlicker’s approach performs the best, and Resnik’s approach performs the worst

on the gene expression dataset. Lin ranks equal to Wang’s approach overall, as

they are each once ranked highest and third respectively, depending on whether the

ancestor choice is MICA or GraSM.

Performance is better with the non-electronic annotation data than with all

annotations, which is in direct contradiction with the aggregate dataset’s trend.

The MICA, which always performs best in the aggregate dataset, only performs

better than GraSM on the full annotation data whereas the reverse is true for non-

electronic annotations. Although the BMA functional similarity approach performs

better in many cases, there are cases where MAX performs better, so no overall

conclusion can be drawn for this.

A.2 Protein interaction dataset

The dataset of all recorded protein-protein interactions in yeast was downloaded

from the SGD website. From these, the subset of interactions that were determined

by mass spectroscopy affinity measure and manually curated were selected. Of

these, about 1900 pairs of gene products were actually found in the Eisen dataset.

Of the final 1900, 1745 were randomly selected for the positive dataset. The negative

dataset was made up of an equal number of randomly selected gene product pairs

that were not present at all in the full interaction dataset.
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Figure A.5: ROC curves for individual ontology and rFunSim scores for all approaches with
“BMA-MICA’
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Figure A.6: ROC curves for all approaches for BMA and MAX with “all-MICA-rFunSim”
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A.2.1 ROC curves

The ROC curves for the protein interaction dataset, shown in Figures A.5 to A.8, are

fairly similar in overall trend to the curves for the aggregate dataset. This suggests

that while protein interaction is a very good match to functional similarity, the two

concepts are not as closely related as gene expression and functional similarity. This

could be due either to biological reality or to the nature of the dataset; since the

protein interaction dataset is based on manually curated, but unquantified interac-

tion pairs, it is possible that some of the true positives have a lower similarity than

the true positives in the gene expression dataset.

Comparison of the four semantic similarity approaches previously showed (Figure

4.2, Protein interaction dataset, bottom left) that for “BMA-all-MICA-rFunSim”,

Wang’s approach definitely performs the worst, while Lin’s approach is also worse

than Resnik and Schlicker for large parts of the graph.

Out of the individual and aggregate scores (Figure A.5), MF definitely performs

worst for all approaches, with a ROC curve that is significantly lower than any of

the others. rFunSim appears to generally perform best, although some of the curves

are too close to provide a conclusive result without consulting the AUC indexes.

The differences between the curves are even less clear for the comparisons between

BMA and MAX (Figure A.6), where especially Resnik and Schlicker are simply too

close to call. For Lin and Wang, BMA (red curve) appears to be performing better at

higher thresholds, whereas MAX (green curve) shows a better performance further

to the right (lower thresholds). Again, AUC indexes are required for conclusive

results. As in the previous two sections, the MAX curves for Lin and Wang do not

have the first threshold coinciding with the curve’s origin but at around 0.4 on the

Y-axis.

For the comparison of MICA and GraSM (Figure A.7), MICA appears to gener-

ally perform slightly better than GraSM although there is no large difference between

the curves.

Finally, Figure A.8 shows the ROC curves for full and non-electronic annotation

data. For all the IC-based measures, the full dataset (red curve) appears to be

performing slightly better than the non-electronic dataset (green curve). The curves

for the Wang approach are too close to draw any conclusions on the performance of

the two datasets.
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Figure A.7: ROC curves for all approaches for MICA and GraSM with “all-BMA-rFunSim”
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Figure A.8: ROC curves for all approaches for “BMA-MICA-rFunSim” with full and non-
electronic annotation
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A.2.2 AUC results

Table A.16 shows the AUCs for all combinations of semantic and functional similarity

and the dataset and ancestor choices for the protein interaction dataset. Again,

rFunSim performs better than the individual ontology scores in most cases. The only

exception, listed in Table A.17, is the CC score for “Schlicker-MAX-all-GraSM”.

Variables AUCs
Sem. sim. Func. sim. Dataset Ancestors MF BP CC rFunSim

Lin BMA all LCA 0.721 0.876 0.855 0.884
Lin BMA all GraSM 0.719 0.856 0.845 0.869
Lin BMA nonIEA LCA 0.722 0.826 0.866 0.867
Lin BMA nonIEA GraSM 0.718 0.852 0.817 0.863
Lin MAX all LCA 0.727 0.843 0.776 0.882
Lin MAX all GraSM 0.725 0.826 0.836 0.854
Lin MAX nonIEA LCA 0.732 0.859 0.816 0.882
Lin MAX nonIEA GraSM 0.724 0.829 0.808 0.864

Resnik BMA all LCA 0.736 0.878 0.878 0.899
Resnik BMA all GraSM 0.718 0.869 0.867 0.882
Resnik BMA nonIEA LCA 0.702 0.857 0.862 0.879
Resnik BMA nonIEA GraSM 0.6975 0.850 0.849 0.864
Resnik MAX all LCA 0.7425 0.868 0.880 0.901
Resnik MAX all GraSM 0.736 0.850 0.868 0.884
Resnik MAX nonIEA LCA 0.712 0.861 0.868 0.890
Resnik MAX nonIEA GraSM 0.706 0.832 0.857 0.870
Schlicker BMA all LCA 0.719 0.878 0.875 0.893
Schlicker BMA all GraSM 0.720 0.862 0.870 0.878
Schlicker BMA nonIEA LCA 0.709 0.850 0.867 0.881
Schlicker BMA nonIEA GraSM 0.706 0.855 0.848 0.874
Schlicker MAX all LCA 0.741 0.874 0.884 0.899
Schlicker MAX all GraSM 0.723 0.838 0.865 0.863
Schlicker MAX nonIEA LCA 0.718 0.869 0.862 0.892
Schlicker MAX nonIEA GraSM 0.711 0.834 0.849 0.870
Wang BMA all NA 0.708 0.854 0.838 0.862
Wang BMA nonIEA NA 0.729 0.825 0.851 0.859
Wang MAX all NA 0.726 0.828 0.764 0.870
Wang MAX nonIEA NA 0.746 0.849 0.812 0.878

Table A.16: AUCs for all experiments in the protein interaction dataset

A.2.3 Semantic similarity approaches

With respect to the semantic similarity approaches, the protein interaction dataset

shows fairly similar trends to the overall dataset. The approaches by Resnik and
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Ontology Sem. sim. Func. sim. Dataset Ancestors
CC Schlicker MAX all GraSM

Table A.17: Cases in which individual scores outperform aggregate scores

Schlicker perform best, although Resnik actually performs the same as Schlicker,

while Schlicker performs better than Resnik for the aggregate dataset. It should

be noted that Resnik always performs best for the full dataset but Schlicker always

performs best for the non-electronic dataset. If the common ancestor is selected

using MICA, Lin’s approach outperforms Wang. For GraSM, Wang performs better

than Lin; in fact, Wang is ranked highest for “MAX-nonIEA” in this case. Overall

however, Wang’s approach performs no better than Lin.

BMA MAX
all nonIEA all nonIEA

MICA Total StDev
Resnik 1 2 1 2 6 1
Schlicker 2 1 2 1 6 1

Lin 3 3 3 3 12 0
Wang 4 4 4 4 16 0

Table A.18: Semantic similarity approaches for MICA

BMA MAX
all nonIEA all nonIEA

GraSM Total StDev
Resnik 1 2 1 3 7 1
Schlicker 2 1 3 2 8 1
Wang 4 4 2 1 11 2
Lin 3 3 4 4 14 1

Table A.19: Semantic similarity approaches for GraSM

A.2.4 Annotation

For the annotation data, the full dataset performs better overall than the non-

electronic dataset. Main exceptions to this include Lin’s approach in conjunction

with MAX and MICA, where the non-electronic dataset ranks better than the full

one. The same applies to the Wang approach. Lin’s rankings most closely resemble

Schlicker’s on the full dataset whereas they are identical to Resnik’s on the non-

electronic dataset.
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BMA MAX
all nonIEA all nonIEA

MICA GraSM MICA GraSM MICA GraSM MICA GraSM Total StDev
Resnik 1 1 2 2 1 1 2 2 12 1
Schlicker 2 2 1 1 2 2 1 1 12 1

Lin 3 3 3 3 3 3 3 3 24 0

Table A.20: Semantic similarity approaches, all combinations

BMA MAX
all

MICA GraSM MICA GraSM Total StDev
Resnik 1 1 1 1 4 0
Schlicker 2 2 2 2 8 0

Lin 3 3 3 3 12 0

Table A.21: Semantic similarity approaches, full dataset

BMA MAX
nonIEA

MICA GraSM MICA GraSM Total StDev
Schlicker 1 1 1 1 4 0
Resnik 2 2 2 2 8 0
Lin 3 3 3 3 12 0

Table A.22: Semantic similarity approaches, non-IEA

BMA
all nonIEA

MICA GraSM MICA GraSM Total StDev
Resnik 1 1 2 2 6 1
Schlicker 2 2 1 1 6 1

Lin 3 3 3 3 12 0

Table A.23: Semantic similarity approaches, BMA only

MAX
all nonIEA

MICA GraSM MICA GraSM Total StDev
Resnik 1 1 2 2 6 1
Schlicker 2 2 1 1 6 1

Lin 3 3 3 3 12 0

Table A.24: Semantic similarity approaches, MAX only
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Lin Resnik Schlicker Wang Total StDev
MAX all MICA 3 1 1 2 7 1
BMA all MICA 1 2 2 3 8 1
MAX nonIEA MICA 2 3 3 1 9 1
BMA nonIEA MICA 4 4 4 4 16 0

Table A.25: All annotation-MICA vs. non-IEA-MICA

Lin Resnik Schlicker Wang Total StDev
BMA all GraSM 1 2 1 3 7 1
MAX nonIEA GraSM 2 3 3 1 9 1
MAX all GraSM 4 1 4 2 11 2
BMA nonIEA GraSM 3 4 2 4 13 1

Table A.26: All annotation-GraSM vs. non-IEA-GraSM

A.2.5 Ancestors

In terms of ancestor selection, the single ancestor selection always performs better

than the disjoint ancestor selection. This trend is consistent with that found for the

aggregate dataset. Although for both annotation datasets, no single case is different

enough to merit discussion, it should be noted that Resnik and Schlicker et al. show

the same behaviour for MICA whereas they differ for GraSM.

Lin Resnik Schlicker Total StDev
MAX all MICA 2 1 1 4 1
BMA all MICA 1 2 2 5 1
BMA all GraSM 3 4 3 10 1
MAX all GraSM 4 3 4 11 1

Table A.27: All annotation - MICA vs. GraSM

A.2.6 Functional similarity approaches

For the full annotation dataset, MAX overall performs better than BMA,except

for “all-GraSM”, when BMA performs best. For the non-electronic dataset, MAX

performs overall better than BMA in all cases. Two approaches disagree with this

ranking in relation to GraSM: for Resnik, MAX performs best for “all-GraSM”,

unlike the other approaches, whereas for Schlicker, BMA performs better overall

than MAX if GraSM is used. Wang’s approach on the other hand always performs

best in conjunction with MAX.
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Lin Resnik Schlicker Total StDev
MAX nonIEA MICA 1 1 1 3 0
BMA nonIEA MICA 2 2 2 6 0
MAX nonIEA GraSM 3 3 4 10 1
BMA nonIEA GraSM 4 4 3 11 1

Table A.28: Non-IEA - MICA vs. GraSM

Lin Resnik Schlicker Total StDev
BMA all MICA 1 1 1 3 0
BMA all GraSM 2 2 3 7 1
BMA nonIEA MICA 3 3 2 8 1
BMA nonIEA GraSM 4 4 4 12 0

Table A.29: BMA only

A.2.7 Conclusions

Like the previous two cases, the ROC curves for the protein interaction dataset for

most sets of variables are very close although not quite as close as for the gene

expression dataset. Nonetheless, the use of the AUC indexes is necessary in most

cases to identify which variable results in the best performance. As for the aggregate

dataset, the semantic similarity approaches by Schlicker et al. and Resnik perform

better than those by Lin and Wang et al., although the individual rankings of the

two best approaches differ. In terms of ancestor selection, MICA always performs

better than GraSM, while the full dataset performs better than the non-electronic

one, except for “MAX-GraSM”. Finally, MAX performs better than BMA, except

with “all-GraSM”.

A.3 Phenotypes dataset

The full yeast phenotype dataset was downloaded from the SGD database. The

similarity between gene products based on the phenotypes they are associated with

was calculated using a vector space model with cosine normalisation (incl. Ref).

Lin Resnik Schlicker Total StDev
MAX all MICA 2 1 1 4 1
MAX nonIEA MICA 1 2 2 5 1
MAX nonIEA GraSM 3 4 3 10 1
MAX all GraSM 4 3 4 11 1

Table A.30: MAX only
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Before calculation, the following restrictions were made:

- Phenotype data resulting from knockouts (null phenotype) only

- All experiment types

- Strain background “288C” only

- Excluding overly common phenotypes (associated with more than 250 gene prod-

ucts), such “viable”, “inviable” etc. as they were deemed to be too uninformative

due to their frequency

- Only gene products associated with more than 2 phenotypes (many of the gene

products associated with only 1 or 2 phenotypes were already eliminated by the

previous limitation point)

After the similarity between all pairs of the remaining gene products had been cal-

culated, 2000 gene products with a phenotype similarity of 100% were selected as

the positive dataset. A negative dataset of equal size was randomly selected from

all gene product pairs with phenotype similarity of 0.

A.3.1 ROC curves

The ROC curves for the phenotype dataset are visibly lower than the ROC curves

for any of the other datasets although they are still at an acceptable level above the

“random-guess” line. This is most likely due to the nature of the phenotype dataset.

As mentioned before, some phenotypes are fairly generic and can result from the

non-expression of many genes, so although the most common and non-informative

phenotypes have been removed, 100% phenotype-based similarity between two gene

products is still no guarantee for a true high functional similarity.

Previously, Figure 4.2 (Phenotype dataset, bottom right) showed the most clear

separation of all the ROC curves for all four semantic similarity approaches, out

of the three individual and the aggregate datasets. Without recourse to the AUC

values, it can be stated with high confidence that Resnik’s approach performs best for

this dataset and for “BMA-all-MICA-rFunSim”, followed by Schlicker’s approach.

Lin’s approach ranks a close third while Wang’s approach clearly performs worst.

The case of the annotation comparison is somewhat clearer (Figure A.12), al-

though most of the curves are still very close. The three IC-based methods appear

to perform slightly better with the full annotation dataset. The two curves for the

Wang approach are too close to draw conclusions without the AUC analysis.

For the ontology versus aggregate scores (Figure A.9), the MF score appears to

perform worst for all approaches, although this is not as clear as for the protein

interaction dataset. For all approaches apart from Resnik, the BP and rFunSim
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Figure A.9: ROC curves for individual ontology and rFunSim scores for all approaches with
“BMA-MICA’
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Figure A.10: ROC curves for all approaches for BMA and MAX with “all-MICA-rFunSim”
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Figure A.11: ROC curves for all approaches for MICA and GraSM with “all-BMA-rFunSim”
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Figure A.12: ROC curves for all approaches for “BMA-MICA-rFunSim” with full and non-
electronic annotation
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scores are very close and their respective curves cross. For Resnik’s approach on the

other hand, the CC score seems to outperform rFunSim along a large part of the

curve.

Figure A.10 shows that except for Resnik’s approach, the curves for BMA and

MAX are generally very close, too close for conclusive results. For Resnik on the

other hand, BMA clearly performs much better than MAX. Again the MAX curves

for Lin and Wang have their first threshold away from the origin, although the

difference is much less pronounced than in the previous cases.

As far as the comparison between MICA and GraSM is concerned (Figure A.11),

only Resnik’s approach shows a discernible difference between the two curves, with

MICA performing better than GraSM. For Lin and Schlicker, the two curves cross

at least once but neither displays a visibly higher performance.

A.3.2 AUC results

Table A.31 shows the AUCs for all variable combinations for the phenotype data.

It is notable that the phenotype AUCs are the lowest of all the AUCs for any

dataset, with an average AUC for rFunSim of 0.716, compared to 0.858 for the

aggregate dataset, 0.980 for expression and 0.877 for protein interaction. This result

suggests that out of the three aspects selected for the comparison of the different

semantic and functional similarity approaches, phenotype-based similarity between

gene products is least comparable to annotation similarity. There are a number of

possible explanations for this. It is possible that the phenotype annotation is simply

of a lower quality, thus making for a poorer dataset. A more plausible explanation

is however that similar phenotypes can be obtained in so many different ways that

simple phenotype similarity does not automatically imply functional similarity. This

is particularly true for very common phenotypes, which may appear to associate

genes that do not in fact have any common functional aspects.

Nonetheless, the AUCs, particularly those obtained for rFunSim, suggest that

phenotype similarity has some relation to functional similarity as even the worst

AUC in Table A.31 (0.553, for “MF-Resnik-BMA-nonIEA-LCA”) is better than

a random-guess result. In fact, the highest AUC in the table (0.800, for “CC-

Resnik-MAX-nonIEA-GraSM”) is close to the levels of AUCs found for some of the

individual ontological scores in the protein interaction and aggregate datasets.

For the phenotype dataset, rFunSim is outperformed by individual scores about

20% of the time (17 out of 84 cases), the worst performance out of the three datasets.

Again, there are no overall trends, such as the same approach outperforming for all
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Variables AUCs
Sem. sim. Func. sim. Dataset Ancestors MF BP CC rFunSim

Lin BMA all MICA 0.617 0.732 0.660 0.725
Lin BMA all GraSM 0.617 0.723 0.638 0.725
Lin BMA nonIEA MICA 0.561 0.632 0.723 0.696
Lin BMA nonIEA GraSM 0.561 0.716 0.642 0.717
Lin MAX all MICA 0.627 0.691 0.658 0.731
Lin MAX all GraSM 0.627 0.687 0.667 0.706
Lin MAX nonIEA MICA 0.568 0.698 0.637 0.698
Lin MAX nonIEA GraSM 0.563 0.692 0.652 0.705

Resnik BMA all MICA 0.630 0.691 0.777 0.761
Resnik BMA all GraSM 0.620 0.687 0.757 0.732
Resnik BMA nonIEA MICA 0.553 0.766 0.687 0.733
Resnik BMA nonIEA GraSM 0.557 0.679 0.783 0.721
Resnik MAX all MICA 0.635 0.639 0.760 0.718
Resnik MAX all GraSM 0.635 0.633 0.758 0.698
Resnik MAX nonIEA MICA 0.562 0.653 0.766 0.714
Resnik MAX nonIEA GraSM 0.563 0.640 0.798 0.701
Schlicker BMA all MICA 0.626 0.732 0.677 0.737
Schlicker BMA all GraSM 0.626 0.719 0.667 0.733
Schlicker BMA nonIEA MICA 0.561 0.718 0.676 0.717
Schlicker BMA nonIEA GraSM 0.560 0.712 0.706 0.729
Schlicker MAX all MICA 0.637 0.690 0.682 0.729
Schlicker MAX all GraSM 0.631 0.681 0.676 0.697
Schlicker MAX nonIEA MICA 0.567 0.692 0.681 0.709
Schlicker MAX nonIEA GraSM 0.566 0.681 0.733 0.709
Wang BMA all NA 0.6015 0.726 0.610 0.697
Wang BMA nonIEA NA 0.663 0.580 0.740 0.699
Wang MAX all NA 0.612 0.692 0.641 0.714
Wang MAX nonIEA NA 0.674 0.718 0.586 0.702

Table A.31: AUCs for all experiments in the phenotype dataset
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Ontology Sem. sim. Func. sim. Dataset Ancestors

BP

Lin BMA all MICA
Lin BMA nonIEA GraSM
Lin MAX nonIEA MICA
Resnik BMA nonIEA MICA
Schlicker BMA nonIEA MICA
Wang BMA all NA
Wang MAX nonIEA NA

CC

Lin BMA nonIEA MICA
Resnik BMA all MICA
Resnik BMA all GraSM
Resnik BMA nonIEA GraSM
Resnik MAX all MICA
Resnik MAX all GraSM
Resnik MAX nonIEA MICA
Resnik MAX nonIEA GraSM
Schlicker MAX nonIEA GraSM
Wang BMA nonIEA NA

Table A.32: Cases in which individual scores outperform aggregate scores

three ontological scores or the same combination of variables outperforming for all

semantic similarity approaches.

A.3.3 Semantic similarity approaches

The phenotype dataset shows overall the same trend as the aggregate dataset with

regard to the semantic similarity approaches. Schlicker’s approach performs best,

with Resnik’s ranked second and Lin and Wang third and fourth respectively. Resnik

generally performs better with MICA and Schlicker with GraSM, except for “MAX-

all” in Resnik’s case, when Resnik actually performs worse than Lin and “MAX-

nonIEA” in Schlicker’s case, when Schlicker perform’s worst overall and Wang tops

the ranking.

BMA MAX
all nonIEA all nonIEA

MICA Total StDev
Resnik 1 1 3 1 6 1
Schlicker 2 2 2 2 8 0

Lin 3 4 1 4 12 1
Wang 4 3 4 3 14 1

Table A.33: Semantic similarity approaches for MICA
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BMA MAX
all nonIEA all nonIEA

GraSM Total StDev
Schlicker 1 1 1 4 7 2

Lin 3 3 2 2 10 1
Resnik 2 2 4 3 11 1
Wang 4 4 3 1 12 1

Table A.34: Semantic similarity approaches for GraSM

BMA MAX
all nonIEA all nonIEA

MICA GraSM MICA GraSM MICA GraSM MICA GraSM Total StDev
Schlicker 2 1 2 1 2 1 2 3 14 1
Resnik 1 2 1 2 3 3 1 2 15 1
Lin 3 3 3 3 1 2 3 1 19 1

Table A.35: Semantic similarity approaches, all combinations

BMA MAX
all

MICA GraSM MICA GraSM Total StDev
Schlicker 2 1 2 1 6 1

Lin 3 3 1 2 9 1
Resnik 1 2 3 3 9 1

Table A.36: Semantic similarity approaches, full dataset

BMA MAX
nonIEA

MICA GraSM MICA GraSM Total StDev
Resnik 1 2 1 2 6 1
Schlicker 2 1 2 3 8 1

Lin 3 3 3 1 10 1

Table A.37: Semantic similarity approaches, non-IEA

BMA
all nonIEA

MICA GraSM MICA GraSM Total StDev
Resnik 1 2 1 2 6 1
Schlicker 2 1 2 1 6 1

Lin 3 3 3 3 12 0

Table A.38: Semantic similarity approaches, BMA only
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MAX
all nonIEA

MICA GraSM MICA GraSM Total StDev
Lin 1 2 3 1 7 1

Schlicker 2 1 2 3 8 1
Resnik 3 3 1 2 9 1

Table A.39: Semantic similarity approaches, MAX only

A.3.4 Annotation

As with the aggregate and protein interaction datasets, the full annotation data

gives better results than the non-electronic dataset, except for “MAX-GraSM”. Mi-

nor exceptions include Resnik’s approach, which, with MICA, performs better for

BMA, regardless of dataset, and Wang’s approach, which does the same for MAX.

If the functional similarity approach is the constant, Resnik’s approach also always

performs best for MICA, regardless of annotation.

Lin Resnik Schlicker Wang Total StDev
MAX all MICA 1 3 2 1 7 1
BMA all MICA 2 1 1 4 8 1
BMA nonIEA MICA 4 2 3 3 12 1
MAX nonIEA MICA 3 4 4 2 13 1

Table A.40: All annotation-MICA vs. non-IEA-MICA

Lin Resnik Schlicker Wang Total StDev
BMA all GraSM 1 1 1 4 7 2
BMA nonIEA GraSM 2 2 2 3 9 1
MAX all GraSM 3 4 4 1 12 1
MAX nonIEA GraSM 4 3 3 2 12 1

Table A.41: All annotation-GraSM vs. non-IEA-GraSM

A.3.5 Ancestors

In terms of ancestor selection, the MICA performs better than the GraSM algorithm

on the full annotation dataset, while for the non-electronic dataset, the reverse is

true. This trend is particularly noticeable in Lin’s approach, which performs better

with GraSM on the non-electronic dataset. Resnik’s approach on the other hand

performs better with MICA, regardless of dataset.
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Lin Resnik Schlicker Total StDev
BMA all MICA 3 1 1 5 1
BMA all GraSM 2 2 2 6 0
MAX all MICA 1 3 3 7 1
MAX all GraSM 4 4 4 12 0

Table A.42: All annotation - MICA vs. GraSM

Lin Resnik Schlicker Total StDev
BMA nonIEA GraSM 1 2 1 4 1
BMA nonIEA MICA 4 1 2 7 2
MAX nonIEA GraSM 2 4 3 9 1
MAX nonIEA MICA 3 3 4 10 1

Table A.43: Non-IEA - MICA vs. GraSM

A.3.6 Functional similarity approaches

Overall, BMA performs better than MAX. The only exception occurs for “MICA-

all” and only if Wang’s approach is included in the comparison, as Wang’s approach

always performs better in conjunction with MAX. As mentioned above, Resnik’s

approach always performs best with BMA.

Lin Resnik Schlicker Total StDev
BMA all MICA 2 1 1 4 1
BMA all GraSM 1 3 2 6 1
BMA nonIEA MICA 4 2 4 10 1
BMA nonIEA GraSM 3 4 3 10 1

Table A.44: BMA only

A.3.7 Conclusions

Although the phenotype dataset clearly performs the worst out of the three dataset

in terms of providing clear true and false positive datasets, the ROC curves are still

good enough to draw conclusions about the overall behaviour of the various variables

and many of the trends found are similar to those of one of the other two datasets.

In summary, Schlicker and Resnik perform the best out of the four semantic

similarity approaches, the same trend as found for the aggregate dataset. The full

annotation dataset performs better than the non-electronic one, except in conjunc-

tion with “MAX-GraSM”. In terms of ancestor selection, MICA performs better

in conjunction with the full annotation data, GraSM better in conjunction with
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Lin Resnik Schlicker Total StDev
MAX all MICA 1 1 1 3 0
MAX nonIEA GraSM 3 3 2 8 1
MAX nonIEA MICA 4 2 3 9 1
MAX all GraSM 2 4 4 10 1

Table A.45: MAX only

the non-electronic annotation data. BMA performs better than MAX, except for

“all-MICA” and then only if Wang’s approach is included.
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Appendix B

In this appendix, a group-by-group analysis for each of the three evaluation datasets

discussed in Chapter 8 is given. Figures and tables from the evaluation chapter were

not replicated for space reasons.

B.1 Proteasome analysis

The proteasome dataset, discussed in Section 8.1, consists of 42 genes which were

grouped into 5 supergroups and 38 original unmerged groups, of which 8 meet min-

imum size requirements. The grouping results are summarised in Figure 8.3 and

Table 8.2.

The largest group in the resultset, supergroup 101, called “protein metabolic

process”, contains 31 genes, 30 of which are part of the official KEGG proteasome

definition. Only one gene, PRD1, is included in the group but not the official

proteasome definition. The two excluded genes are PRE2 and UMP1.

The inclusion of PRD1 and exclusion of PRE2 and UMP1 is a perfect illustration

of the short comings of semantic and functional similarity. PRD1 is a zinc metalloen-

dopeptidase active in the cytoplasm and the intermembrane space of mitochondria

[Hrycyna and Clarke, 1993; Büchler et al., 1994]. Due to its location and prote-

olytic function, it shares several key annotations such as proteolysis (GO:0006508),

peptidase activity (GO:0008233), hydrolase activity (GO:0016787) and cytoplasm

(GO:0005737) with most proteasome genes. In addition, its only BP annotation is

proteolysis. This leads to overall high functional similarity scores between this gene

and proteasome genes. In fact, even functional similarity between PRD1 and PRE2

exceeds the FT.

The exact opposite of this problem exists for PRE2, the beta 5 subunit of the

20S proteasome. In the version of the GO used in this work (2009-04), the gene in

question has four reproduction-related BP annotations, all labelled with the evidence
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code “RCA” (inferred from Reviewed Computational Analysis) [Ashburner et al.,

2000]. Three of these annotations are shared with no other genes in the dataset, so

some of the functional similarity scores between PRE2 and other proteasome genes

are lower than the FT, leading to PRE2’s exclusion from the group. It should be

noted that there is no indication in the functional description of PRE2 that it is

involved in reproductive processes. These annotations are also absent in the latest

version (2011-01) of the GO, suggesting that they have been removed as incorrect

in one of the intervening versions.

Finally, UMP1, a short-lived chaperone required for correct maturation of the

20S proteasome, suffers from a different form of poor annotation. Although not

directly part of the proteasome complex, KEGG still lists it as part of the proteasome

pathway. First described by Ramos et al. [1998], UMP1 is referred to as “the best

characterized” proteasome assembly factor by Li et al. [2007]. Yet despite clearly

being addressed in more than one study, UMP1 has no MF annotation, removing one

of three dimensions from its overall functional similarity score with any other gene

product. In fact, UMP1 is absent from any of the very large groups in Figure 8.3 and

it is also in an isolated location in the semantic tree. It is however, both in Eisen’s

version and in our clustering, clustered with the majority of proteasome genes in the

expression tree, which is consistent with its role as a proteasome assembly factor.

The second-largest group in Figure 8.3 and Table 8.2 is an unmerged CC group

called cytosol and it contains the same genes as the previous group except for PRD1.

The reason for this exclusion is that while PRD1 has the required level of functional

similarity to be in the group, it is not in fact annotated with either of this group’s

definition terms, which are cytosol (GO:0005829) and proteasome storage granule

(GO:0034515). UMP1 and PRE2 are excluded from this group for the same reason

as described above for group 102.

The third group in the list is peptidase activity, an unmerged MF group. Unlike

the first two groups, it contains PRE2 but excludes RPN5, RPN6, RPN7 and RPN9.

Non-proteasome genes PRD1 and STE24 are also included. The exclusion of the

four proteasome lid (see Figure 8.1) components from this group is again due to

poor annotation. Each of the four genes either has only one single MF annotation,

or none, compared with the average of four for the 29 genes in the group. The one

annotation is also very high level, with RPN6, RPN7 and RPN9 being annotated

with structural molecule activity (GO:0005198), a direct descendant of the root node

and RPN5 has no real MF annotation except the root term, molecular function. The

fact that these genes are included in some of the other groups is an indicator of how

closely the rest of their annotations match the average annotation profile of the
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other proteasome genes. The reason for their exclusion from group 1047 is not

an insufficiently high functional similarity, but the absence of any annotation that

matches the group definition. In the other two ontological domains, where their

annotation is more comprehensive, they meet the inclusion criteria for functional

groups. The separation of these four genes from the main group of proteasome

genes can also be observed in the semantic tree (see second column in Table 8.1,

where they are found in the same cluster but far away from the main proteasome

cluster.

The explanation for the inclusion of PRD1 in group 1047 is the same as for its

inclusion in supergroup 102. A similar explanation applies for STE24, described

as a highly conserved zinc metalloprotease that functions in two steps of a-factor

maturation, C-terminal CAAX proteolysis and the first step of N-terminal prote-

olytic processing [Tam et al., 2001]. As is the case for PRD1, STE24 has a number

of annotations referring to its proteolytic function that qualify it for inclusion in

this group. In fact, the presence of these two genes in the dataset affects the group

definition of group 1047 to the extent that two of the group’s five definition terms

are exclusive to these two genes and not part of any proteasome annotations. These

terms are metallopeptidase activity (GO:0008237) and metalloendopeptidase activ-

ity (GO:0004222). This is a further indication that it is always advisable to consider

both group content and group definition, rather than to blindly rely on the accuracy

of the algorithm.

The next two groups are supergroups 102 and 104 which are both named protea-

some complex. Their definitions overlap by one term out of four, namely proteasome

complex, while in terms of content, they share four out of their 18 respective genes.

From the definitions, it is clear that group 104 is based on the proteasome core com-

plex (distinct definition terms: proteasome core complex, alpha-subunit complex

(GO:0019773), proteasome core complex, beta-subunit complex (GO:0019774) and

proteasome core complex (GO:0005839)) and group 102 is based on the 19S regula-

tory particle (distinct definition terms: proteasome regulatory particle, base subcom-

plex (GO:0008540), proteasome regulatory particle, lid subcomplex (GO:0008541)

and proteasome regulatory particle (GO:0005838)). The genes the two groups share

are PRE1, PRN1, RPN2, RPN3 and RPN10.

Based on its definition, group 104 should not contain any RPN genes as these

are all part of the regulatory complex (see Figure 8.1). PRE1 on the other hand, the

gene coding the β-4 subunit of the core complex, would not be expected in group

102. While the most likely explanation for this overlap is the overall similarity

in annotation of the genes that should be in the group and the incorrectly grouped
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genes, which leads to a functional similarity score that is higher than the FT, thereby

allowing these genes into the group. It could also be argued that in the absence of

the more general shared definition term of proteasome complex, this overlap in

group content would not have occurred, as there would then have been no definition

terms allowing PRE1 to be added to group 102 or the RPN genes to group 104.

The semantic similarity between the proteasome complex and any of the other six

terms concerned is always 0.54, so a much higher ST would have been necessary

to eliminate the common term from the definitions. This ST would in fact have

to be higher than the maximum FT derived for Resnik. Another consideration is

whether the inappropriate terms might have been more appropriately separated in

the original groups than in the supergroups. Analysing the group definitions of

the original groups for supergroup 102 (groups 1026 and 1027) and supergroup 104

(groups 1043 and 1045) (see Figure 8.4) showed that in both cases, the original

group definitions already contained the more general term proteasome complex.

The merging of the original groups into supergroups did therefore not generate less

appropriate groups.

Supergroup 103, the product of the merging of groups 1002 and 1023, is a BP

group called “regulation of protein metabolic pathway (GO:0051246)” containing five

proteasome genes, RPN1, RPN2, RPN3, PRE4 and SCL1, and one non-proteasome

gene, UBC7. Since proteolysis, the key function of the proteasome, is a protein

metabolic process and considering the function of the 19S regulatory particle, it is

unsurprising to find the genes RPN1, RPN2 and RPN3 in this group. The same

applies to UBC7 which, while not a proteasome subunit, is one of a number of

ubiquitin-conjugation enzymes found in yeast. Without tagging with ubiquitin,

proteins cannot be processed by the proteasome, so the ubiquitination mechanism

is indeed a regulatory mechanism of proteasome-mediated proteolysis. It should

however be noted that these three RPN genes are the only subunits of the regulatory

particle that have an annotation related to the regulatory aspect of their function.

The presence of genes PRE4 and SCL1, which both code for subunits of the

proteasome core complex, is more difficult to explain biologically. In terms of anno-

tation, their presence in the group is due to the term “negative regulation of protein

metabolic process” (GO:0051248), with which both genes are annotated. There is

no aspect of their function that would confer them a regulatory role not shared by

other core complex subunits. The evidence code for this association is the “RCA”

code already associated with biologically inconsistent annotation in one of the other

groups and this annotation is also no longer present in the latest version of the GO.

Group 105 is therefore another example of potentially incorrect annotations affecting
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the accuracy of the groups.

The next group in Table 8.2 is BP group 1036, called “cellular process” (GO:000987).

This extremely generic (direct child of the branch root) name is the result of a very

diverse definition consisting of three reproduction-related terms, cell differentiation

(GO:0030154), sporulation resulting in formation of a cellular spore (GO:0030435)

and ascospore formation (GO:0030437), and the term cell death (GO:0008219). The

genes in the group are PRE1, PRE2, PRE3, PUP2, RPT4 and UFD1, i.e. four core

complex subunits, one regulatory particle subunit and one gene that is not directly

part of the proteasome. PRE2’s questionable reproduction-related annotations have

already been discussed in relation to another group. The same problem applies to

the cell death annotation found for PUP2, RPT4 and UFD1. In all three cases,

the association is qualified with the RCA evidence code. Although all the major

biological processes in a cell are of course interlinked, there is no evidence available

that directly links these genes to cell death. The reference cited for all these associa-

tions is the same as that given for the afore-mentioned PRE2 annotations, as well as

most other RCA-based annotations in SGD, namely Huttonhower and Troyanskaya

[2009].

In the version of GO used here, PRE1, PRE3 and PUP2 are all annotated with

the term ascospore formation, under the evidence code TAS (Traceable Author

Statement). The associated reference, Hochstrasser [1996], however does not provide

any evidence for the involvement of these genes in ascospore formation. It only states

“Required for sporulation [. . . ]” as a comment in a list of proteasome genes, without

reference or further discussion of this statement. In the latest version of the GO,

this annotation has been withdrawn. Instead, the three genes are annotated with

the term’s parent sporulation resulting in formation of a cellular spore, and the

evidence code RCA is referenced with Huttonhower and Troyanskaya [2009]. In

addition, it has been shown [Heinemeyer et al., 1991] that for certain mutations of

PRE1, one mutant phenotype includes the absence of sporulation, suggesting this

subunit’s involvement in the process. The actual role of PRE1 in this process has

however not been described.

Considering the nature of the annotations at that gave rise to this group, the

biological relevance of the group is questionable. In particular, the association of

the cell death and reproduction annotations is due to the chosen ST. At ST40, these

two aspects are assigned to different groups as the semantic similarity between cell

death (GO:0008219) and the other three terms is 0.34, which is below the maximum

ST.

The next two groups in Table 8.2 are groups 1025, nucleoside-triphosphate activ-
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ity, and 1042, ATP binding. These two MF groups contain the same six genes (see

Figure 8.3), RPT1, RPT2, RPT3, RPT4, RPT5 and RPT1. These genes each code

for one of the 19S regulatory particle’s six ATPase subunits, located in the particle’s

base unit, as shown in Figure 8.1. It is unsurprising that the two groups have identi-

cal content as an ATPase has to bind to ATP, although the reverse is not necessarily

true. In fact, the proteasome dataset contains one further gene annotated with the

term ATP binding, GSH2, which catalyses an ATP-dependent synthetic process but

which is not an ATPase. GSH2 was not included in group 1042 as its functional

similarity with the group’s six genes is well below the minimum FT.

The reason groups 1025 and 1042 were not merged into a supergroup despite

their identical content is due to their complete lack of definition overlap. In most

cases where two groups contain the same genes, there is at least some level of overlap

between their annotations. The two molecular functions covered in these two groups

are however completely different on an ontological level, even though they refer to

similar concepts. The semantic similarity of the definition terms from group 1025

(nucleoside-triphosphatase activity and ATPase activity) and ATP binding (single-

term definition) is 0 as their only common ancestor is the MF root.

BP group 1038, cellular macromolecular complex assembly, contains the five

genes UMP1, RPN2, RPN6, RPN9 and PRE4. The group’s definition consists of

the three terms proteasome assembly (GO:00432480), DNA recombinase assembly

(GO:0000730) and meiotic DNA recombinase assembly (GO:0000707). Only the first

of these three terms is annotated to the group’s five genes. The other two terms

are annotated to only one gene in the proteasome dataset, namely RAD52. The

inclusion of RAD52’s annotations in the definition, but exclusion of the gene from

the group content is due to the ST and the FT values. While the semantic similarity

between proteasome assembly and each of the two other GO terms is 0.41, i.e. higher

than even the maximum ST, the functional similarity between RAD52 and most of

the other genes is below the minimum FT, except for UMP1, with which it has a

similarity of 0.18. This slightly higher functional similarity between RAD52 and

UMP1 is due to some shared annotation not related to the proteasome pathway, but

because of the maximal completeness rule requiring above FT similarity between all

pairs of genes in a group, RAD52 is not included in group 1038.

Of the group’s five genes, UMP1 and RPN6 most obviously deserve the pro-

teasome assembly annotation, as their full descriptive names include this aspect of

their functionality (see Table 8.1). In all five genes, the annotation with proteasome

assembly is however qualified with an experimental evidence code of either IGI or

IMP (see Section 2.1.2 for details) and a reference to a paper specifically describing

259



B.1 Proteasome analysis

that gene’s role in proteasome assembly. The references for UMP1 [Ramos et al.,

1998; Li et al., 2007] were already cited earlier in this section. PRE4 and RPN2,

the most recently documented, were studied together [Marques et al., 2007], while

RPN6 [Santamaria et al., 2003] and RPN9 [Takeuchi et al., 1999] each had their role

in proteasome assembly studied separately. From the literature, it is clear that the

five genes in this group are indeed involved in proteasome assembly and should be

grouped together. The inclusion of the two other GO terms in the group’s definition

suggests that a re-evaluation of the semantic thresholds may be necessary in order

to avoid such inclusion. In addition, it would be useful to add an additional step to

the algorithm to recheck each group’s definition after all gene products are added,

in order to ensure that the definition matches the group’s content.

The final three groups in Table 8.2 which have not yet been discussed include

one CC supergroup and two normal BP groups, each containing four genes. Group

105 is the previously mentioned result of the merger of groups 1029, 1035 and 1040.

The CC supergroup, named cell part, contains the genes RPN1, UFD1, UBC7 and

STE24, of which only the first is a proteasome subunit. In terms of definition, the

supergroup consists of seven GO terms, three of which relate to the endoplasmic

reticulum (ER), one to an ATPase complex, one to the nuclear inner membrane and

two to a retromer complex. When comparing the definition terms to the annotations

of the four genes, it is immediately clear that none of the four genes are annotated

with either of the retromer complex terms. The only gene in the proteasome dataset

which has this annotation is PEP8. Functional similarity between PEP8 and all

genes in the group is lower than the minimum FT, which is why PEP8 is not included

in the group. This group is therefore another good example of why the algorithm

would benefit from a further step checking group content against definitions. It also

means that although the merging of groups 1029, 1035 and 1040 into a supergroup

was appropriate from a computational point of view, it did not improve the group’s

biological meaning. Group 1040 on its own was in fact a more suitable group, as it

contained all the supergroup’s definition terms, except for the two retromer complex

terms and nuclear inner membrane, as well as its four genes.

The definition term “Cdc48p-Npl4p-Ufd1p AAA ATPase complex” is a child

term of endoplasmic reticulum membrane, so does belong in a group based on ER-

related cellular locations. Three of the four genes have clearly documented associa-

tions with the ER and its sub-components (UFD1 [Schuberth and Buchberger, 2005],

UBC7 [Biederer et al., 1997], STE24 [Tam et al., 2001]). The annotation of RPN1

with endoplasmic reticulum is also quantified with a direct assay evidence code. The

associated reference [Kumar et al., 2002] is to a high-throughput experiment which
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identified the cellular locations of several thousand yeast genes. While it is not the

purpose of this work to question the validity of individual gene annotations, in the

absence of a more gene-specific annotation and considering that RPN1 is the only

proteasome subunit with an ER-associated annotation, the biological relevance of

the inclusion of RPN1 in this group is unclear.

The last two groups, group 1015 (reproduction) and group 1048 (response to

stress), are both BP groups and differ in their content only by one gene. The

three genes PRE1, PRE3 and PUP2 are included in both groups, with group 1015

additionally including PRE2 and group 1048 UMP1. Based on its definition and gene

content, it is clear that group 1015 is the result of the questionable reproduction-

related annotation of PRE1, PRE3 and PUP2 (ascospore formation), as well as

PRE2 (reproduction, ascospore formation and reproductive cellular process), which

was already discussed in the context of groups 102 and 1036.

Group 1048 on the other hand reflects an important function of the proteasome.

In response to cellular stress such as heat shock, which causes an increase in misfolded

or unfolded proteins, the activity of the ubiquitination and proteasome pathways is

increased in order to facilitate the removal of the damaged proteins [Coux et al.,

1996]. As is the case for other groups, there is some difference in the definition of

group 1048 between the stress response terms annotated to the genes in the group

and all the terms in the definition. In this case, only two out of the group’s ten

definition terms are actually associated with its content. The remaining eight terms

come from the annotations of the genes RAD52 (seven terms) and GSH2 (one term),

neither of which are included in the group due to their low functional similarity with

the group’s genes. The RAD52 annotations are all based on DNA repair processes,

which is why they have sufficient semantic similarity with “response to stress” as

DNA damage and the repair processes described by these GO terms are generally

the result of external stress factors.

The term contributing to the definition through UMP1’s annotations is “response

to DNA damage stimulus”. The induction of UMP1 expression by a number of DNA

damaging agents is a documented fact [Mieczkowski et al., 2000]. The stress response

annotation of PRE1, PRE3 and PUP2 on the other hand, whilst qualified with the

TAS evidence code, is based on the same paper [Hochstrasser, 1996] as these genes’

ascospore formation annotation. As with the latter, this annotation is no longer

present in the latest version of the GO. However, while this may bring the validity

of the specific annotation of the three proteasome subunits into question, there is

little doubt that the overall function represented by this group is still appropriate

in the context of the proteasome.
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The remaining groups shown in Figure 8.3 contain three or fewer genes and will

not be discussed here. It is notable that six of the 42 genes in the proteasome

dataset, PEP8, RAD52, GSH2, SMT3, PRO3 and BET4, were not included in any

of the 13 groups discussed in this section. A few of the discussed groups included

some of these genes’ annotations in their definition but the genes themselves were

never grouped as their functional similarity to all the other genes in the groups in

question was never sufficiently high. The only time these genes are grouped are

in the non-meaningful groups and only in three of the 30 groups in this category

are these genes grouped with another gene rather than on their own. There is

nothing in their annotations that suggests that any of these six genes are involved

in the proteasome pathway. The grouping results presented here indicate that the

FuSiGroups algorithm successfully excluded these unrelated genes while identifying

the main functions of the remaining 36 genes.

B.2 Ribosome analysis

The ribosome dataset, discussed in Section 8.2, consists of 49 genes which were

grouped into 4 supergroups and 45 original unmerged groups, of which 13 meet

minimum size requirements. The grouping results are summarised in Figure 8.6 and

Table 8.5.

Supergroup 103 and group 1009 have the same name and content but differ sig-

nificantly in their definitions. Group 1009 only has two definition terms, translation

(GO:0006412) and translational elongation (GO:0006414), the latter of which is not

found in supergroup 103’s 10-term definition. All definition terms from these two

groups in question are only annotated to a few of the groups’ genes, except for the

term translation, which is annotated to every single one of these 24 genes.

The genes that are annotated with definition terms other than translation are

RPS9B, TEF4, TIF1, TIF2, YEF3 and YNL247W in supergroup 103 and TEF4

and YEF3 in group 1009. Only the first of these, RPS9B, is a ribosomal protein.

The other five include four of the dataset’s five translation initiation and elonga-

tion factors, and one aminoacyl-tRNA synthetase. Since each of the six genes is

also annotated with the term translation, they would have been grouped into a

translation-based group even with a higher ST which might have eliminated the

other definition terms.

The most unexpected gene to be included in either of these groups is YNL247W.

This gene codes for a protein that attaches tRNAs to their corresponding amino

acids. While this process is a prerequisite for translation, it is not necessarily di-
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rectly involved with overall ribosome function. The annotation of YNL247W with

“translation” is derived from electronic annotation. On the other hand, the anno-

tation with “ribosome”, on which its inclusion in group 1056 is based, is qualified

with the experimental evidence IDA, supported by Fleischer et al. [2006]. Since

group 1056 has exactly the same gene content as the two BP groups currently under

discussion, the same arguments are likely to apply to the inclusion of each gene in

all groups.

More unexpected than the inclusion of YNL247W in groups 103, 1009 and 1056

is the exclusion from these groups of genes such as RPS19B, RLP24 and TEF2, a

ribosomal protein, a non-ribosomal protein listed in the KEGG ribosome pathway

and a translation elongation factor. These genes are all annotated with both trans-

lation and ribosome and are related to the other genes included in the groups. Also

annotated with translation but not with ribosome are GRS1 and SSZ1, coding for

another aminoacyl-tRNA synthetase and an HSP70 protein, respectively. Yet de-

spite being biologically related to the genes in the groups and despite some similar

annotations, none of these fives genes are included in any of the groups in question.

Genes RPS19B and RLP24 are however included in group 1045, structural con-

stituent of ribosome (GO:0003735), while genes TEF4, TIF1, TIF2, YEF3 and

YNL247W are excluded from this group. This means that all genes in the ribo-

some dataset which are also listed in the KEGG pathway are included in this group.

The appropriateness of the inclusion of RLP24 in group 1045 is not entirely clear.

On the one hand, it is of course listed as part of the pathway in KEGG. On the

other hand, group 1045 is a single-term definition group, i.e. structural constituent of

ribosome is the only GO term associated with the group. The annotation of RLP24

with this term is based solely on electronic annotation, while annotations relating

to ribosome assembly are supported by published evidence. Although the findings

in Chapter 4 showed that the inclusion of electronic annotation makes functional

similarity measures perform better than their exclusion, individual electronic anno-

tations may not be entirely appropriate. The electronic annotations in question here

are still present in the latest version of the GO.

RLP24 is not present in group 1044, cytosol (GO:0005829), which consists of

all of the dataset’s 20 ribosomal proteins. Only two of this group’s four definition

terms are actually found in the annotations of its gene content, namely cytosolic large

ribosomal subunit and cytosolic small ribosomal subunit. Its two other definition

terms, cytosol and cytosolic ribosome, are annotated to genes not found in the group.

The reason for the exclusion of RLP24 from group 1044 is due to its annotation with

cytoplasm, a parent term of cytosol, rather than cytosol itself. An annotation with
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cytsol might be appropriate here as there is clearly a physical interaction between

the protein coded by RLP24 and ribosomal proteins, which would suggest that the

protein should also be found in the cytosol.

In light of the existing annotation however, groups 1044 and 1045 can be con-

sidered as near-perfect matches. Group 1045 reflects the data as considered by a

different data source, in this case KEGG, while group 1044 brings together the most

closely related genes in the dataset. The presence of terms in group 1044’s definition

that are not represented in its genes’ annotations can be addressed with a minor

modification of the grouping algorithm, as suggested in Section 8.1.2.

The remaining groups for the ribosome dataset are much less consistent than

these first five groups. The next group in Table 8.5, BP supergroup 102, is named

with the generic term cellular process (GO:0009987). The group contains one ex-

tra gene (YNL247W) not found in in the content-wise identical group 104 but the

other 15 genes are common to both groups. The original groups from which these

supergroups were created are groups 1004, 1006, 1038, 1043, 1049 and 1059 for su-

pergroup 102, and groups 1032, 1043 and 1049 for supergroup 104. The reason that

supergroup 104 was not absorbed into supergroup 102 is that although they share

two of their original groups, the overlap between the sets is overall insufficient. In

addition, there is no overlap at all between the definition of group 1032 and groups

1004, 1006, 1038 and 1059, which is why these groups were never part of the same

set of mergeable groups.

Group 102’s definition is slightly more focussed on the RNA aspects of ribosome

biogenesis, while group 104’s definition covers more of the protein aspects. This is

reflected in the difference in group content between the two groups. Group 102 con-

tains an aminoacyl-tRNA synthetase (YNL247W) not found in group 104. Overall

however, the same conclusion applies to group 102 as to group 104, namely that

there are no unexpected genes in the group but a number of genes that would have

fitted into the group based on their annotation were excluded due to their level of

functional similarity with other genes.

All the genes in BP supergroup 104, called ribosome biogenesis (GO:0042254)

are in some way involved in the process of ribosome biogenesis. There are however

a number of genes which might be expected to be included in this group as it has

definition terms which are not part of the annotations of any of its content genes.

In total, there are 14 genes which, based on their annotation, could be part of either

or both of these groups. Their absence from the groups is due to the very diverse

nature of the proteins involved in ribosome biogenesis, which in turn means a wide

range of GO term annotations and hence an insufficiently high level of functional
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similarity between some of the genes. The main reason for the wide range of genes

that could belong to the group based on their annotation is due to the size of

the group’s definition. Although all the terms in the definition are related to the

process of ribosome biogenesis, their number suggests a slightly higher ST might be

appropriate. This would lead to more groups with more specific definitions consisting

of fewer terms, a fact that is observable to a certain extent if the maximum ST is

used. However, while the specificity of the groups is greater at this level, almost

two thirds of the groups covering any of the aspects of ribosome biogenesis found in

group 104 contain fewer than 4 genes.

The next group in Table 8.5, group 1025, a CC group named preribosome

(GO:0030684), groups together all the genes from the dataset which have a doc-

umented association with this early complex created during ribosome biogenesis.

The group contains many of the genes also found in the previous two sets of groups,

although some of the ribosomal proteins are absent, as they may not be added to

the ribosome until the final stages of its assembly.

Group 1013, also a CC group, named nucleolus (GO:0005730), covers another

cellular location of the early stages of ribosome biogenesis. The group contains 11

of the 12 genes associated with one of its two definition terms. The only gene not

included in this group when it might reasonably be expected to be included is NSR1,

a gene coding for a nucleolar protein. NSR1’s exclusion from the group is due to

its level of functional similarity with only one other gene, RLP24, which at 0.168 is

only marginally below the FT.

In addition to the various nucleolar proteins involved in ribosome biogenesis that

are included in group 1013, the group also contains two RNA polymerase subunits,

RPA49 and RPC19. Their inclusion is due to the presence of the term “DNA-

directed RNA polymerase I complex” (GO:0005736) in the group definition. RNA

polymerase I primarily produces rRNA [Alberts et al., 2002], so this association of

RNA polymerase subunits and other ribosome creation-related proteins is biologi-

cally valid. The association of the two GO terms of group 1013’s definition only

occurs at the minimum ST as their semantic similarity value is 0.38. There is no

nucleolus-based group at all at the maximum ST because the semantic similarity

of the term “nucleolus” with itself is also 0.38, so any group with this term in its

definition would violate the maximum completeness rule with itself.

The two RNA polymerase subunits are absent from group 1016, which is also

called nucleolus and is identical in content to group 1013 apart from those two

genes. The difference in content is due to the replacement of the definition term

“DNA-directed RNA polymerase I complex” with “box C/D snoRNP complex”
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(GO:0031428), an evidence-based annotation term of genes NOP56 and NOP58. In

the GO release used here, RPA49 and RPC19 are not annotated with the term

nucleolus so are excluded from group 1016. If the latest version of the GO were

used, they would be included in the group as both genes are now annotated with

the term under the IEA evidence code, in which case groups 1013 and 1016 would

qualify for merging into a supergroup.

Group 1051 is only the second MF group in Table 8.5. This group, named

RNA binding (GO:0003723), consists of ten genes, six of which code for ribosomal

components and four for proteins involved in ribosome assembly. There are a further

five genes whose annotations would have qualified them for inclusion in the group

but who did not meet the minimum FT. Since a large part of a ribosome consists

of rRNA, RNA binding would be an expected functional aspect of genes associated

with the ribosome. Although the annotation of the ribosomal components genes with

RNA binding terms is only electronic and not evidence-based, it has been derived

from at least two sources for each gene-GO term pair in the latest version of the

GO.

Of the six groups in Table 8.5 which have not yet been discussed, groups 1036 and

1050, and groups 101 and 1052 have the same gene content. The first two of these

groups, MF groups 1036 (purine ribonucleotide binding (GO:0032555)) and 1050

(hydrolase activity, acting on acid anhydrides (GO:0016817)), cover two distinct

but conceptually related functional aspects. Any ribonucleotide hydrolase activity

requires the binding of the appropriate compound by the hydrolase enzyme [Berg

et al., 2002]. While conceptually linked, the sets of functions covered in the two

groups have an overall semantic similarity of 0 because they belong to different

branches (catalytic activity and binding) of the sub-ontology, i.e. their only common

ancestor is the MF ontology root.

There are three further genes, GRS1, GUA1 and YNL247W, which are annotated

with ATP binding but not included in group 1036. However none of these genes have

any hyrdolase activity-related annotation, which may explain why their functional

similarity with all or some of the genes in the group is too low to pass the FT.

The other pair of groups with identical content of the final six groups from

Table 8.5 are the BP supergroup 101 (amino acid metabolic process (GO:0006520))

and MF group 1052 (ligase activity (GO:0016874)). Supergroup 101 was created

by merging original groups 1024 and 1031, of size 4 and 2, respectively. The only

element from group 1031 not found in group 1024 is one definition term, which is

however not actually annotated to any of the groups’ genes. In fact, five out of 1031’s

six definition terms and four of 1024’s nine terms are not annotated to their content.
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In the supergroup, this translates to five out of ten terms. The six definition terms

of group 1052 are all found in the annotations of the group’s genes.

Both groups contain genes which, whilst clearly having enough similarity to be

grouped together based on two different types of annotation, code for two different

types of synthases. GRS1 and YNL247W code for aminoacyl-tRNA synthases, while

GUA1 and URA7 are ribonucleotide synthases which catalyse the biosynthesis of

GMP and CTP, respectively. Each of the two group names reflects the overall

nature of these functions and processes. In the case of the MF group, any kind of

synthesis activity involves the joining of two substances, hence the shared ancestor

term of ligase activity. For the BP group, both types of synthesis involve amino

acids, glutamine for both ribonucleotide synthases, glycine and cysteine for the two

aminoacyl-tRNA synthases, hence the shared ancestor term of amino acid metabolic

process.

The two final groups in Table 8.5 that have not yet been discussed are group

1035, a BP group and group 1039, an MF group. Group 1035, named intracellular

transport (GO:0046907), has a seven-term definition of which only two terms are

actually annotated to the group’s content. The two relevant definition terms are

rRNA export from nucleus and ribosomal large subunit export from nucleus, which,

if they were the only terms in the definitions, would have given a group name

of nuclear export. Five of the group’s six genes are ribosomal subunit proteins

associated with rRNA export from the nucleus [Ferreira-Cerca et al., 2005]. The

sixth gene is NMD3, which codes for a protein involved in the nuclear export of the

large ribosomal subunit. Although functional similarity between all six genes is of

course higher than the minimum FT, the functional similarity between NMD3 and

the other genes in lower than between the five genes associated with rRNA export.

This group is a rare example where the use of the maximum FT would in fact

generate an even more appropriate group as NMD3 would be excluded, leaving only

genes involved in rRNA export. Nonetheless, this does not mean that the inclusion

of NMD3 in group 1035 is biologically inappropriate as all genes in the group are

involved in some way in ribosome formation, as well as in nuclear export.

Finally, group 1039, called translation factor activity, nucleic acid binding (GO:0008135),

which is the direct parent of the group’s two definition terms, translation initiation

factor activity and translation elongation factor activity. The group’s content con-

sists of the five translation initiation and elongation factors found in the ribosome

dataset. The similarity between the elements of this group, both in content and

definition, is so high that raising either the ST or the FT to maximum would not

change the group.
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The remaining groups for the ribosome dataset all contain fewer than four genes,

as can be seen in Figure 8.6. It is notable that of the ribosomal proteins, only two

are ever grouped in non-meaningful group, suggesting a high level of consistency in

the annotation of these proteins. It is also notable that with the exception of the

groups 101 and 1052, none of the six genes that are not obviously related to some

aspect of ribosome function are grouped with the other genes in the dataset. While

the grouping in the discussed groups made biological sense, this suggests that the

FuSiGroups algorithm is sufficiently sensitive to filter out noise from overly generic

terms such as cytoplasm, the most common annotation term in the dataset. As

in Section 8.1, the algorithm also managed to identify the main functional aspects

represented in the bulk of the dataset.

B.3 Pathways analysis

The pathways dataset, discussed in Section 8.3, consists of 34 genes which were

grouped into 6 supergroups and 47 original unmerged groups, of which 18 contain

four or more genes. Two of the groups contain genes from both superpathways. The

grouping results are summarised in Figure 8.9 and Table 8.9.

The three largest supergroups, 104, 105 and 102 have the same name and very

similar content, although they are not identical. All three supergroups share some of

the original groups they were derived from. All three supergroups contain the origi-

nal group 1021, while groups 104 and 105 share group 1019, and 102 and 104 share

group 1034. In all cases, insufficent overlap in content and definition of the distinct

original groups is the the reason for their presence in two or more supergroups.

Group 104 contains two of the three genes unique to the glyoxylate cycle, MLS1

and ICL1, but not the third one, DAL7. Group 105 on the other hand does not

contain ICL1 but does contain DAL7. Both groups contain only one of the two

isoforms of the pyruvate carboxylase unique to the TCA cycle, PYC2, but not the

other isoform, PYC1. This is because the functional similarity of PYC1 with many

of the other pathway’s unique genes is below the functional threshold, so it was not

included in any of the original groups that gave rise to the supergroups. In fact,

PYC1 and PYC2’s functional similarity with many of the TCA cycle genes is lower

than the functional threshold, which is reflected in the exclusion of these two genes

from all the non-supergroups which contain most of the other TCA cycle genes.

This is due to the enzymes’ role in the creation of oxaloacetate, which feeds into the

TCA cycle but is not part of the actual cycle [Berg et al., 2002]. The only group

for which this absence is not the case is supergroup 102, which contains both PYC1

268



B.3 Pathways analysis

and PYC2, as well as most of the other glyoxylate and TCA cycle genes. Aside from

the addition of PYC1, group 102’s content is very similar to that of group 104, with

the exception of genes SDH1, SDH2, SDH3, SDH4, LCS1 and LCS2.

Overall, group 104 covers most of the superpathway genes. Its definition is

however quite diverse and covers a range of biological processes which are not all

directly related to the TCA cycle. While this is partly the result of the merging

of three group definitions into the supergroup definition, the original definitions

were already equally diverse, suggesting once again that the semantic threshold is

insufficiently high. The exact same problem exists for groups 102 and 105, which

have almost equally diverse group definitions. However unlike group 104, which

has one definition term not found at all in the annotations of its content genes, all

definition terms in groups 102 and 105 are annotated to at least one of the groups’

genes. The same type of diverse group definitions are not found at maximum ST,

where the largest groups are similar to groups 1025 and 1029 in Table 8.9.

The diversity of these definitions is due to the fact that a large number of the

GO terms in the pathways dataset are only annotated to one or two genes, reflecting

the various other pathways the different steps of the TCA cycle feed into. While the

resulting groups are not biologically incorrect, their definitions do not provide any

meaningful insight into the common functional aspects of the genes in the groups

beyond the fact that some or all of the genes are also involved in other metabolic

processes.

The problem of overly diverse definitions does not exist in groups 1025 and

1029, which despite having largely the same gene content, share only one of their

seven and five respective definition terms. Both groups contain all TCA cycle and

glyoxylcate cycle genes except for ICL1, LPD1, PYC1 and PYC2. In the case

of group 1025, the genes are grouped under the banner of generation of precursor

metabolites and energy (GO:0006091), while group 1029 covers the area of coenzyme

metabolic process (GO:0006732).

Both groups cover processes which genes from the two pathways are indeed in-

volved in. They are both essential in the cell’s energy production, as well as gener-

ating intermediates for various biosynthetic processes. Both pathways also involve

several coenzymes, such as acetyl CoA and NADH. The inclusion of all the genes in

the group is therefore biologically appropriate in this context and the exclusion of

four is genes due only to the insufficient level of overall functional similarity between

these genes and some of the groups’ genes.

It should however be noted that of all the terms in the two group definitions, the

only one that accounts for the inclusion of the two glyoxylate cycle-specific genes
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MLS1 and DAL7 is tricarboxylic acid cycle (GO:0006099). For both genes, this

annotation is qualified with the “IEA” evidence code. As neither of these genes is

actually involved in the TCA cycle, the validity of this annotation is questionable.

Therefore, while the inclusion of the two genes in group 1025 and 1029 is appropriate,

the reason for their inclusion may not be.

The next four groups in Table 8.9, supergroups 101 and 103 and groups 1001 and

1058, do not suffer from this problem. Supergroups 101, called mitochondrial part

(GO:0044429), contains in its definition the term mitochondrial outer membrane

(GO:0005741), which is not annotated to any of the genes in the group. In fact, this

term is annotated to CHO1, a gene from the phospholipid biosynthesis pathway.

There are also two further genes from this pathway, CRD1 and PSD1, that are

annotated with mitochondria-related GO terms, although their overall functional

similarity with the genes from the other superpathway is insufficient for inclusion in

the group. The group does not contain all TCA cycle genes, due to the fact that

several of these genes are only annotated with the more general term mitochondrion,

which is too general to be included in the group definitions. The resulting exclusion

from the group of certain genes means that the groups have a higher specificity in

terms of the cellular locations they represent but a lower accuracy in terms of their

content.

As mentioned at the beginning of this section, two groups contain genes from

both superpathways in the dataset. One of these groups is CC supergroup 103,

intracellular membrane-bounded organelle (GO:0043231). This group contains 11

TCA cycle genes and two phospholipid biosynthesis genes. Its name is more high-

level than most of its actual definition terms of which all but one, nuclear envelope,

are mitochondrion-related. However nuclear envelope is not annotated to any of the

group’s genes, so the group definition effectively relates only to mitochondrial sub

parts. The presence of cross-superpathway CC groups relating to mitochondria had

already been predicted in Section 8.3.1.

There are two reason why only 13 of 22 potential genes are included in the

group. First of all, the term mitochondrion, the one term annotated to all 22 genes,

is absent from the group definition because it is not sufficiently semantically similar

to the rest of the definition terms. This makes five genes ineligible for inclusion in

the group. The same problem applies to another GO term, mitochondrial matrix,

affecting further three genes. Secondly, several of these genes do not have sufficient

functional similarity to the other genes to be included in the group. For these

reasons, it is not possible to obtain a comprehensive group with all or most of the

mitochondrion-based genes, despite mitochondrion-related cellular locations being a
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key common aspect of many genes in the dataset.

BP group 1001 and MF group 1058, which have the same gene content except for

one gene not present in group 1058, contain only genes from the TCA cycle. Even

though the two groups belong to different ontologies, their names refer to two aspects

of the same concept, namely the process of oxidation reduction (GO:0055114) and

the corresponding function of oxidoreductase activity(GO:0016491).

The only difference in content between the two groups is the gene ACO1, which

is present in the BP group due to its annotation with the term oxidation reduction

but absent from the MF group due to the lack of any appropriate annotation. In

fact, the BP annotation of ACO1 is qualified with the RCA evidence code, based

on Huttonhower and Troyanskaya [2008], and can no longer be found in the latest

version of the GO. This is consistent with the chemical process of aconitase activity,

which is not a redox reaction [Beinert et al., 1996]. Group 1058 is therefore more

representative of the functionality of its content than group 1001.

The next two groups in Figure 8.9, BP supergroup 106 and BP group 1005, con-

tain the same ten genes, namely all the genes from the phosphatidic acid and phos-

pholipid biosynthesis superpathway. This is reflected in their respective names, lipid

metabolic process (GO:0006629) and cellular lipid metabolic process (GO:0044255),

the former of which is a direct parent term of the latter and represents the most

generic way of describing the superpathway. All genes in the group are annotated

with the more specific term phospholipid biosynthetic process (GO:0008654) but the

presence of other process terms in the annotations leads to a more high-level group

name. The reason for the presence of the two groups despite their identical content

is insufficient overlap in definition between group 1005 and the constituent groups

of supergroup 106.

It should be noted that one term in group 106’s definition, fatty acid beta-

oxidation, is not annotated to any of the group’s genes. This term is annotated

to one of the TCA cycle genes, MDH3. In terms of overall functional similarity

however, this gene is far too different from the phospholipid biosynthesis genes to

be included in a group with them.

BP group 1043, carbohydrate metabolic process (GO:0005975), contains ten

genes from the TCA and glyoxylate cycles, including two glyoxylate cycle-specific

genes, two TCA cycle-specifc genes and six shared genes. All five terms from the

group definition are found in the genes’ annotations, while two genes, DAL7 and

PYC2, that are annotated with one or more definition terms are excluded from the

group due to insufficient overall functional similarity to other group members. The

group’s definition includes the terms glyoxylate cycle, glycolysis and gluconeogene-
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sis but not the term tricarboxylic acid cycle. It would in fact be impossible for the

terms glyoxylate cycle and tricarboxylic acid cycle to be found in the same group

definition as they have a semantic similarity of 0.08, on account of the fact that

they are located in different branches of the BP ontological tree, despite being very

similar processes.

The presence of the terms glycolysis and gluconeogenesis in group 1043’s defini-

tion is the reason for the inclusion of non-glyoxylate cycle genes KGD1 and PYC1

in the group. Although from a biological perspective, the TCA cycle should be

more similar to any of the three other terms than glyoxylate cycle to glycolysis or

gluconeogenesis, the location of all the terms in the GO tree makes this impossible

in semantic terms. The similarity between glyoxylate cycle and the other two terms

is in fact so high that they are also found together in group definitions at maximum

ST. While neither the grouping of the definition GO terms nor of the genes is biolog-

ically incorrect, the combination of this definition and content into group 1043 is not

entirely accurate as it could incorrectly imply a functional relationship between the

glyoxylate cycle-specific genes and the pathways of glycolysis and gluconeogenesis.

The next group in Table 8.9, MF group 1056, covers the functional aspect of

transferase activity, transferring acyl groups (GO:0016746), a high-level name for a

number of crucial reactions in both the TCA and glyoxylate cycle, namely the trans-

fer of an acyl group, usually from acetyl-CoA, to another molecule. The individual

group definition terms reflect the number of reactions which include an acyl group

transfer. One definition term, 1-acylglycerol-3-phosphate O-acyltransferase activity,

is not annotated to any of the group genes. It is annotated to the phosphatidic

acid biosynthesis gene SLC1. This gene was excluded due to insufficient functional

similarity with some, though not all, of the group’s genes. All the other genes in the

dataset which have any kind of acyl group transfer function are however included in

the group.

MF groups 1011 and 1051 both cover forms of binding activity, transition metal

ion binding (GO:0046914) and cofactor binding (GO:0048037), respectively. The

former includes iron, zinc and manganese ion binding, as well as heme binding, as

child term of iron ion binding. Not included, due to insufficient semantic similarity,

are the terms magnesium ion binding and metal ion binding. Their absence does not

affect the group content as the genes annotated with these terms are also annotated

with terms present in the definition. Due to insufficient functional similarity, the

genes annotated with zinc ion binding, PYC1 and PYC2 are not in the group.

The second group’s definition includes thiamin pyrophosphate, FAD, lipoic acid and

quinone binding. All genes annotated with one of these terms are included in the
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group.

BP group 1020, named cellular aldehyde metabolic process (GO:0006081), con-

tains only genes from the glyoxylate cycle, specifically the three glyoxylate cycle-

specific genes and two of the seven shared genes. The group’s definition consists

of only two terms, the group name and glyoxylate cycle, the former of which is a

parent term of the latter and found only in the annotations of DAL7. Interesting

is the absence of annotation with glyoxylate cycle of the five genes MDH1, MDH2,

ACO1, CIT1 and CIT3, even in the form of electronic annotation, and especially

considering that the three glyoxylate cycle-specific genes are all annotated with the

term tricarboxylic acid cycle. While a questionable “guilt by association” annota-

tion exists for these three genes, the reverse has not occurred for the genes absent

from the group. It could be argued that MDH1 should not have a glyoxylate cycle

annotation because its full descriptive name, mitochondrial malate dehydrogenase,

implies that the protein it codes for is limited to the TCA cycle. A similar justifi-

cation also exists for CIT1 and CIT3, two isoforms of citrate synthase active in the

mitochondrial reaction, while CIT2 catalyses the same reaction in the glyoxylate

cycle [Graybill et al., 2007]. This of course brings into question the appropriateness

of including MDH1, CIT1 and CIT3 in the glyoxylate cycle at all as these three

genes are clearly only active in the mitochondrial TCA cycle. No justification can

be provided for the absence of ACO1 and MDH2 from group 1020.

A similar problem does not exist for CC group 1045, named microbody (GO:0042579)

on the basis of its definition terms peroxisome,peroxisomal matrix and glyoxysome.

This group contains four of the ten glyoxylate cycle genes. Unlike the previous

group, the absence of each of the other six genes from the group and their lack of

annotation with any of the group definition terms can be explained. Several of the

reactions of the glyoxylate cycle, such as the transformation of citrate into isocitrate

via cis-aconitate, followed by isocitrate to glyoxylate, as well as in part the trans-

formation of malate into oxaloacetate, actually take place in the cytosol rather than

the peroxisome [Feldmann, 2005]. The genes involved in these reactions are ACO1,

ICL1 and MDH2, which is in fact described as cytoplasmic malate dehydrogenase,

unlike its isoenzyme MDH3, described as peroxisomal malate dehydrogenase and

included in the group. The justification for the absence of MDH1, CIT1 and CIT3

is the same as for the previous group.

The group following group 1020 in Table 8.9 is CC group 1035, cytosol (GO:0005829).

This single-term definition group contains five TCA cycle genes, ACO1, FUM1,

MDH2, PYC1 and PYC2. These five genes are the only ones in the dataset anno-

tated with the term cytosol. For ACO1 and FUM1, this annotation reflects the dual
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localisation of the two enzymes in both cytosol and mitochondria [Regev-Rudzki

et al., 2009]. It has already been established in previous groups that MDH2 is

a cytoplasmic isoform of malate dehydrogenase. Finally, unlike most eukaryotic

organisms, in which the synthesis of oxaloacetate from pyruvate occurs in the mi-

tochondria, yeast’s pyruvate carboxylases PYC1 and PYC2 are active only in the

cytosol [Pronk et al., 1996].

BP group 1053, called phosphorus metabolic process (GO:0006793), is based on

two definition terms, its name term and mitochondrial electron transport, succinate

to ubiquinone (GO:0006121). The former is annotated to one of the group’s five

genes, ACO1, while the latter is part of the annotation of all four succinate dehy-

drogenase subunits. The annotation of these four subunits is consistent with their

function [Oyedotun and Lemire, 2004], whereas there is no evidence that aconitase

activity involves the manipulation of a phosphorus atom or compound containing

phosphorus. The association between ACO1 and phosphorus metabolic process is

based on the RCA evidence code, citing the paper by Huttonhower and Troyanskaya

[2008]. It is no longer present in the latest version of the GO, suggesting that ACO1

should not be present in this group and that the group should in fact contain the four

succinate dehydrogenase subunits, under the single-term definition of mitochondrial

electron transport, succinate to ubiquinone.

Group 1060 is a MF group containing only genes from the phospholipid biosyn-

thesis superpathway. Under the name of transferase activity, transferring phosphorus-

containing groups (GO:0016772) are covered a range of very specific enzymatic ac-

tivities. Each enzyme in the group catalyses a reaction which involves a phosphorus-

containing residue. All the genes from the same superpathway not included in the

group on the other hand involve acyl or methyl group transfers or decarboxylase

activity and their inclusion in this group would therefore not be appropriate.

The remaining four undiscussed groups in Table 8.9, three MF groups and one

CC group, all contain four genes. The first two of these groups, group 1007, purine

nucleotide binding (GO:0017076) and group 1026, ligase activity (GO:0016874), de-

scribe two different functional aspects of the same four genes. Ligase activity, the

joining of two substances, requires energy from ATP or another triphosphate so it

would be expected that a protein with some kind of ligase activity would also have

an active site for triphosphate binding. The reverse is however not true since many

different reactions require energy in the form of ATP. In fact, there are three genes

in the dataset annotated with one of group 1007’s definition terms that do not have

ligase activity. These are two dehydrogenases, LPD1 and SDH1, and a synthase

from the phospholipid biosynthesis pathway, PGS1. The two dehydrogenases are
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annotated with the term FAD binding, which is not annotated to any other term

in the group, while PGS1 has ATP binding functionality. Group 1026 on the other

hand contains all the genes that are annotated with any of its definition terms. The

four genes that the two groups contain are the two subunits of succinyl-CoA ligase,

LSC1 and LSC2, and the two isoforms of pyruvate carboxylase, PCY1 and PCY2.

This leaves MF group 1033 and CC group 1039 to be discussed. The former

of these two, called lyase activity (GO:0016829), is one of the two groups contain-

ing genes from both superpathways. In addition to the three TCA or glyoxylate

cycle genes ACO1, FUM1 and ICL1, the group also contains the phosphatidylser-

ine decarboxylase PSD1. Based on the definition terms, it could also contain the

non-mitochondrial form of this decarboxylase, PSD2, but the functional similarity

between this gene and ACO1 is below the minimum FT, leading to the gene’s ex-

clusion from the group. This is a good example of the drawback of the exclusion

process of genes from groups based on the FT: both ACO1 and PSD2 have appro-

priate levels of functional similarity with all the other members of the group except

each other. In a situation like this the grouping algorithm simply excludes the first

element in the list of elements that violate the maximum completeness rule from

the group. In the greater context of the function reflected by the group, neither

gene would have been more or less appropriate in the group than the other. The

definition of a secondary threshold, lower than the primary ST or FT, to deal with

cases such as this one was considered but such a threshold would have been even

harder to determine than the primary threshold and would have made the algorithm

unnecessarily complex.

It is not surprising to find genes from both superpathways in an MF group

such as this one. Lyase activity is an umbrella term for a set of different chemical

reactions: any cleavage of a carbon-carbon, carbon-oxygen or carbon-nitrogen bond

by a process other than hydrolysis or oxidation is classed as lyase activity. Apart

from the four genes in the group and PSD2, none of the other genes in the dataset

are lyases, which is reflected in their annotation.

Finally, CC group 1039, named endoplasmic reticulum (GO:0005783), contains

four genes from the phospholipid biosynthesis superpathway. The four genes in the

group all code for proteins known to be active in the endoplasmic reticulum [Daum

et al., 1998; Kuchler et al., 1986], one of the main cellular locations, aside from the

mitochondria, in which phospholipid biosynthesis takes place.

All groups in Figure 8.9 not discussed so far contain fewer than four genes and will

therefore not be considered here. It should however be noted that due to the rela-

tively small number of genes from the phosphatidic acid and phospholipid biosynthe-
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sis pathway, several of these groups containing some of these genes do in fact reflect

functional aspects seen only in two or three of the genes, such as methyltransferase

activity for genes CHO2 and OPI3.

Overall, the FuSiGroups algorithm was successful in separating the genes from

the two superpathways, except for cases where the genes shared a common functional

aspect. Previously identified issues with the algorithm such as repetitive supergroups

and definition terms not found in the annotations of a group’s content were also

found in this dataset.
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