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SUMMARY  
 

Staphylococcus aureus is one of the leading causes of hospital acquired infections. The ability 
of S. aureus to acquire resistance to a diverse range of antimicrobial compounds, results in 
limited treatment options, particularly in methicillin-resistant S. aureus. A mechanism by 
which S. aureus develops reduced susceptibility to antimicrobials is through the formation of 
small colony variants (SCVs). Reduced antimicrobial susceptibility in S. aureus SCVs is not 
related to ‘classical’ mechanisms of resistance, but occurs as a direct result of the 
development of the SCV phenotype. S. aureus SCVs are frequently associated with defects in 
the bacterial electron transport chain and these defects are responsible for the characteristics 
associated with the SCV phenotype. 
 
This study aimed to investigate and characterise the selection of S. aureus SCVs in the 
presence of various antibiotics and also to examine their biofilm forming capabilities.   Four 
members of the aminoglycoside family of antibiotics were shown to select for S. aureus 
SCVs. In addition, a broad range (X 0.25 MIC – X 4 MIC) of aminoglycoside concentrations 
were shown to select for S. aureus SCVs. Characterisation of these isolates revealed that 
differences in auxotrophy, biochemical profiles, carotenoid production, haemolysis, levels of 
intracellular ATP, mutation frequency and reversion rate were present. Members of the 
tetracycline family of antibiotics were also shown to select for S. aureus SCVs. Tetracycline 
selected S. aureus SCVs show attenuated catalase, coagulase and heamolysis activity and 
reduced production of extracellular DNase and lipase and reduced susceptibility to various 
antimicrobial agents. As SCVs have been linked to persistent and recurrent infections their 
ability to form biofilms was also investigated. A range of S. aureus SCVs isolated from 
various backgrounds were shown to form greater biofilms in comparison to parent strains, 
which was attributed to increased production of polysaccharide intracellular adhesin. In 
addition S. aureus SCV biofilms displayed a more pronounced reduction in antimicrobial 
susceptibility, which was attributed to a reduction in antimicrobial penetration through SCV 
biofilms. 
 
Limited discovery of novel antibiotics in recent years and the observation that S. aureus SCVs 
can be selected for by various antimicrobial compounds highlights the need for novel 
antimicrobial compounds. Accordingly, an investigation into the susceptibility of S. aureus to 
various plant compounds was undertaken. Both S. aureus SCVs and parent strains showed 
susceptibility to five plant antimicrobials tested, of which SCVs were more susceptible to 
cinnamon bark, green tea and oregano. Resistance to these plant antimicrobials could not be 
induced and synergistic relationships between certain plant antimicrobials and antibiotics 
were demonstrated. Finally, formation of SCVs in bacterial species other than S. aureus was 
examined. Gentamicin induced SCV selection in Escherichia coli, Pseudomonas aeruginosa 
and S. epidermidis as well as chloroamphenicol and ciprofloxacin in E. coli and tetracycline 
in S. epidermidis. SCVs from these bacterial species shared common characteristics 
associated with the SCV phenotype including altered growth and biochemical profiles, 
auxotrophy for compounds involved in electron transport, reduction in expression of 
virulence factors and reduced antimicrobial susceptibility. Additionally all SCVs showed an 
increased capacity to form biofilms. 
 
The ability of certain antibiotics to select for SCVs and their increased capacity to form 
biofilms suggest that SCV are an important adaptation to aid survival and persistence in times 
of stress. Reduced susceptibility to commonly used antibiotics in SCVs signifies that the 
development of new antimicrobial compounds is required. Harnessing naturally occurring 
plant antimicrobials and their synergistic relationship with antibiotics may offer a novel 
approach to treating antibiotic resistant infections whilst overcoming antibiotic selection for 
SCVs. 
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CHAPTER 1: GENERAL INTRODUCTION  

1.1 Staphylococcus aureus  
The term ‘staphylococcus’ (from the Greek ‘staphyle’ meaning bunch of grapes) was 

originally coined by Sir Alexander Ogston to describe the grape like clusters of 

bacteria found in the pus of acute abbesses (Newsom, 2008; Ogston, 1882). To date 

there are 35 recognised species of Staphylococcus all of which are Gram-positive, 

non-motile, non-spore forming and grow optimally under aerobic conditions 

(Peacock, 2005). The majority of species grow at a temperature range of 18-40°C and 

have a high salt tolerance, defined as the ability to grown in the presence of 10 % w/v 

sodium chloride.  

 

Shortly after the discovery of the Staphylococcus genus, Anton J Rosenbach isolated a 

strain of staphylococci and named it Staphylococcus aureus due to the pigmented 

appearance of its colonies. S. aureus is a coccoid shaped bacterium that occurs singly, 

in pairs, short chains or grape like clusters (Figure 1.1). Approximately 20-30 % of 

the general human population are carriers of the bacterium, which is commonly found 

on the skin and mucous membranes (particularly the nose; Kluytmans et al., 1997). 

The golden pigment of some S. aureus on rich medium is due to the presence of 

carotenoids which are thought to protect cells from oxidants, produced by the immune 

system (Liu et al., 2005). The production of catalase and coagulase are two important 

characteristics that allow differentiation from other bacterial genera and species. 

Catalase production differentiates S. aureus from Streptococcus species and coagulase 

production allows differentiation from coagulase negative staphylococci (CoNS) such 

as S. epidermidis.  

1.1.1 Features of the S. aureus genome  

S. aureus strains Mu50 and N315 were the first to be sequenced and published in 2001 

(Kuroda et al., 2001). As of Summer 2011, the genomes of 25 different S. aureus strains have 

been sequenced (National Centre for Biotechnological Information, 2011). All the sequenced 

genomes are between 2.7 and 3 million base pairs (bp) in size and have a low G+C content 

(between 32.7 and 32.9 %). Their genomes contain a single circular chromosome which  
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A)

B)

 

 

 

Figure 1.1 Arrangement and morphology of S. aureus cells A) - Scanning electron 

micrograph of S. aureus exhibiting typical cocci morphology with the presence of 

irregular grape-like clusters. B) - Transmission electron micrograph showing S. 

aureus daughter cells which have divide and are yet to split apart.  A) Scale bar 

represents 10 µm, magnification X 4000. B) Scale bar represents 1 µm, magnification 

X 31,000. 
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encodes approximately 2700 coding sequences as well as structural and regulatory 

RNAs (Holden & Lindsay, 2008). Bacterial genomes are composed of a core genome, 

comprising of genes essential for growth and functionality coupled with an auxiliary 

set of genes (Frost et al., 2005). The S. aureus genome comprises approximately 75% 

genes involved in processes such as central metabolism and other housekeeping 

functions (Lindsay & Holden, 2004). This gene set is highly conserved between 

strains and makes up the core genome. The auxiliary gene set is composed of genes 

associated with virulence and drug resistance, which are frequently carried on mobile 

genetic elements (MGEs; Holden & Lindsay, 2008). MGEs consist of bacteriophages, 

genomic islands, plasmids and transposons all of which can move between the 

genomes of bacteria via the process of horizontal gene transfer (HGT). Analysis of 

closely related orthologues indicates that the genetic background of S. aureus has 

been vertically transmitted from a common ancestor that subsequently diverged to 

Bacillus and Staphylococcus species (Ito et al., 2003).  

1.1.2 S. aureus infections  

S. aureus commonly colonises humans as a commensal; however under certain 

conditions S. aureus behaves as an opportunistic pathogen and is the frequently the 

causative agent of various human diseases. As such it is of the most intensively 

studied bacterial species (Plata et al., 2009). S. aureus infections have been linked to a 

diverse range of medical conditions including skin, soft-tissue, respiratory, bone, 

joint, and endovascular disorders (Lowy, 1998) and are associated with prolonged 

hospital stay, increased morbidity and mortality, as well as increased healthcare costs 

(Que & Moreillon, 2010).  Pathogenesis requires the combination of various virulence 

factors including; secreted proteins, cell surface-bound proteins and cell surface 

components (Tenover & Gorwitz, 2000). These factors are regulated by a network of 

interacting genetic and environmental factors.  

1.2 Antibiotic resistance  

1.2.1 Origins of antibiotic resistance  

Antibiotics have revolutionised medicine in many respects; their introduction as a 

means to combat bacterial infection is regarded as one of the most important events in 

medical history (Davies & Davies, 2010; Overbye & Barrett, 2005). The discovery of 

penicillin by Sir Alexander Fleming in 1928 marked the birth of the antibiotic era. 
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Following the clinical success of penicillin, the development of chloramphenicol, 

tetracycline, erythromycin, rifampicin and vancomycin was achieved between 1940 

and 1960 (Yoneyama & Katsumata, 2006). However, resistance to two of the first 

commonly used antibiotics (penicillin and streptomycin) was reported in clinical 

isolates a few years after their introduction (Barber & Rozwadowskadowzenko, 1948; 

Waksman et al., 1945). Before the introduction of penicillin in the 1940s as a 

therapeutic agent, a bacterial penicillinase was identified (Abraham & Chain, 1940) 

revealing that bacterial resistance mechanisms were components of natural microbial 

populations rather than purely a consequence of human medical intervention (Bentley 

et al., 2002; D'Costa et al., 2006). Resistance elements are predicted to have been 

circulating in bacterial populations for millennia rather than emerging since the advent 

of the antibiotic era (Wright, 2007). This is strengthened by the fact that the majority 

of antibiotics originate from soil dwelling actinomycetes and resistance elements for 

self-protection are often clustered in antibiotic biosynthetic operons (Bentley et al., 

2002; Cundliffe et al., 2001). Accordingly the mechanisms of resistance to many 

antibiotics in clinical isolates have their origins in the environmental resistome 

(Alonso et al., 2001). 

 

Bacteria have the ability to adapt and adjust to changes in their environment and have 

subsequently developed protective mechanisms to reduce their susceptibility to 

antibiotics (Hogberg et al., 2010). Although this reduced susceptibility can be 

achieved via spontaneous mutation and alteration of the target gene, the majority of 

antibiotic resistance genes are acquired through HGT. Antibiotic resistance genes are 

commonly carried on mobile genetic elements such as bacteriophages, plasmids and 

transposons, allowing them to be transferred among bacteria. HGT has facilitated the 

spread of antibiotic resistance genes via gene exchange processes such as conjugation, 

transduction and transformation. The liberal widespread use of antibiotics (between 

100,000 and 200,000 tonnes per annum worldwide) has provided the requisite 

conditions to mobilise resistance genes that circulate in the environmental, into 

pathogenic bacteria (Wise, 2002; Wright, 2007). Consequently resistance to every 

antibiotic ever used in clinical practice has now been reported (Payne et al., 2007). 
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1.2.2 The cost of antibiotic resistance  

A recent conservative estimate on the cost of antibiotic resistance to member states of 

the European Union (EU) was €1.5 billion with approximately 25,000 patients in the 

EU dying each year from infections caused by multi drug resistant pathogens (So et 

al., 2010). In both Europe and the USA the most problematic pathogens associated 

with antibiotic resistance and nosocomial infections are; Enterococcus faecium, S. 

aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa 

and Enterobacter species which have been termed the ESKAPE pathogens (Rice, 

2008). Rice (2008) reported that this collection of pathogens are of exceptional 

importance as they represent paradigms of pathogenesis, transmission, and resistance. 

Currently rational and prudent use of antibiotics coupled with strict and meticulous 

hygiene policies are employed to combat the threat posed by antibiotic resistance 

(World Health Organisation, 2001). However these policies alone cannot solve the 

problem of antibiotic resistance and development of novel antibiotics is crucial for the 

future of healthcare systems across the world (Hogberg et al., 2010)  

1.2.3 Antibiotic resistance in S. aureus and the spread of methicillin-resistant  
S. aureus  

Before the antibiotic era, prognosis for patients with staphylococcal infections was 

poor. For example, a study in a Boston hospital in 1941 reported that the mortality 

rate of patients with S. aureus bacteremia was 82% (Skinner & Keefer, 1941). The 

introduction of penicillin in the 1940s greatly improved the prognosis and decreased 

mortality rates for patients that had succumb to staphylococcal infections. Soon after 

the introduction of penicillin, approximately 60% of S. aureus hospital isolates in the 

UK were reported as penicillin resistant (Barber & Rozwadowskadowzenko, 1948). 

Penicillin resistant strains carried a gene (blaZ) encoding a ß-lactamase, which 

inactivates penicillin through hydrolysis of the ß-lactam ring (Projan & Ruzin, 2006). 

The 1950s saw the spread of virulent penicillinase-producing strains that disseminated 

through hospitals (Shanson, 1981). This was followed by the development of 

semisynthetic penicillins such as methicillin, which resisted the action of ß-lactamase 

enzymes due to the presence of an acyl side chain, preventing hydrolysis (Gilmore et 

al., 2008; Kirby & Bulger, 1964; Rolinson et al., 1960). Similarly to penicillin, the 

introduction of methicillin was closely followed by the development of resistance. 

The first case of methicillin-resistance in S. aureus was reported in Britain in 1961, 
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(Barber, 1961) but resistance remained at low frequencies through the 1960s 

(approximately 1% of hospital isolates in the UK) and therefore methicillin was 

viewed as clinically effective (Parker & Hewitt, 1970). Outbreaks of methicillin-

resistant S. aureus (MRSA) began to be observed in hospitals in the 1960s (Barrett et 

al., 1968; Benner & Kayser, 1968; Colley et al., 1965) and the late 1960s and 1970s 

saw the spread of MRSA across international borders (Lowy, 2003). This was 

followed by a decline in the prevalence of MRSA in the late 1970s and 1980s due to 

the implementation of infection control policies and the introduction of gentamicin 

(Ayliffe, 1997).  

 

In the following decades epidemic strains of MRSA disseminated worldwide and 

various individual MRSA strains became prevalent in geographically distinct areas of 

the globe (Chambers & Deleo, 2009). Outbreaks of MRSA are of great concern as the 

prognosis for infected patients is worse than those infected with methicillin-sensitive 

S. aureus (MSSA). Meta analysis of S. aureus cases over a 20 year period, showed a 

significant increase in mortality was associated with MRSA bacteremia (Cosgrove et 

al., 2003). Differences in mortality have been attributed to the lower availability of 

bactericidal drugs to treat MRSA and the underlying healthcare problems in the old 

and sick rather than enhanced virulence of MRSA strains (Lowy, 2003). Furthermore, 

the cost of treating MRSA patients is twice that of treating patients with MSSA 

infections (Capitano et al., 2003), which is attributed to the increasing costs of 

vancomycin as well as implementing patient isolation practices within hospitals 

(Gilmore et al., 2008). MRSA is still prevalent and a major concern in hospitals today 

and is responsible for 19,000 deaths a year in the US (Klevens et al., 2007). This 

accounts for more deaths than the combined number of deaths from patients suffering 

from acquired immunodeficiency syndrome (AIDS) and tuberculosis (Boucher & 

Corey, 2008). 

 

The glycopeptide, vancomycin is the antimicrobial of choice for treatment of MRSA patients. 

Those who cannot tolerate vancomycin can be treated with fluroquinolones, trimethoprim 

sulfamexazole or clindamycin (Lowy, 1998). However S. aureus can also become resistant to 

these antimicrobial agents through various mechanisms (Table 1.1). In recent years other 

novel antibiotics such as linezolid and daptomycin have suffered a similar fate with resistance 

being reported soon after their introduction (Figure 1.2).  



 7 

Reporting of 
bacterial pencillinase  
(Abraham & Chain 

1940)  

1970 19801940

First clinical use of 
penicillin (Chain et al.,

1940)

1950

Widespread penicillin 
resistance in S. aureus

(Barber & Rozwadowska-
Dowzendo 1948)

1960

MRSA isolated in the UK 
(Barber1961)

Introduction of 
methicillin

1990

Introduction of gentamicin and 
subsequent decline in MRSA 

infections (Ayliffe 1997)

2000

Vancomycin intermediate        
S. aureus  (VISA)                               

isolated in Japan (Hiramatsu 
1998)

First use of novel 
oxazolidinone class of 

antibiotic - linezolid

2010

Linezolid resistance 
reported in clinical                     
MRSA isolate (US) 

(Tsiodras et al., 2001)

Daptomycin 
resistance in clinical  

MRSA (US)          
(Mangili et al., 2005)

Daptomycin 
approved for use 

in US

MRSA 
widespread 

 

Figure 1.2 The development of antibiotics and progression of antibiotic resistance in S. aureus  
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Table 1.1 Mode of action of antibiotics and mechanism of resistance in S. aureus. Adapted from al - Masaudi et al., (1991), Jensen & 

Lyon  (2009) and Woodford (2005) 

 
Antibiotic Mechanism of action Resistance mechanism(s) Gene(s) Genomic Location 

Aminoglycosides Protein synthesis – inhibit 
translocation 

 

AMEs – inactivation of antibiotic 
 

aac, aph, 
ant 

 
 

Chromosome, plasmids 
and transposons 

ß-lactams (Penicillin) 
 
 
 

 Semisynthetic ß-
lactams (Methicillin) 

Peptidoglycan synthesis –
inhibits cell wall synthesis 

enzymes 
 

Peptidoglycan synthesis – 
inhibits cell wall synthesis 

enzymes 
 

Enzymatic hydrolysis of ß-lactam 
ring 

 
 

Modified PBP2a with reduced 
affinity for ß-lactams 

 

blaZ 
 
 
 

mecA 

Plasmid and transposons 
 
 
 

Chromosome  
 

Chloramphenicol Protein synthesis – inhibit 
transpeptidation  

Chloramphenicol aceltyransferase 
– inactivation of antibiotic 

 

cat Plasmid 

Daptomycin Cell membrane depolarisation 
via leakage of potassium and 

other cellular components 
 

Not completely understood – 
mutations in RNA polymerase ß-

subunit implicated 
 

rpoB Chromosome 

Quinolones DNA synthesis – inhibit DNA 
gyrase 

 

Alteration in QRDR, reducing 
affinity of enzyme-DNA complex 

for fluroquinolones 

grlA/B,  Chromosome 

Fusidic acid Protein synthesis – forms a 
stable complex with elongation 

Decreased affinity of the G factor 
for the antibiotic. Impermability 

fusA, fusB Chromosome and 
plasmid  
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factor G and ribosome 
inhibiting translocation 

 

and efflux also implicated 
 

Glycopeptides Cell wall synthesis – prevent 
incorporation of late 

peptidoglycan precursors into 
the peptidoglycan matrix 

VISA – thickening of cell wall 
 

VRSA -  alteration in composition 
of precursors resulting in reduced 

affinity for vancomycin 
 

- 
 
 

vanA 
 

 
 
 
 

Plasmid 

Macrolides, 
Lincosamides and 
Streptogramin B 

Protein synthesis – stimulates 
dissociation of peptidly-tRNA 

during elongation 
 

Methylation of adenine on 23S 
component – reduced affinity for 

antibiotics 
 

ermA, ermB, 
ermC 

 
 
 

Plasmid and transposons 

Mupirocin Protein synthesis – inhibits 
isoleucyl-tRNA synthestase 
preventing incorporation of 

isoleucine into nascent peptides 
 

Alteration of target site 
 

Acquisition of novel isoleucyl-
tRNA synthestase 

ileS 
 
 

mupA 

Chromosome 
 
 

Plasmid 

Oxazolidinones Protein synthesis – prevent 
formation of the 70S ribosomal 

initiation complex 
 

Alteration of domain V component 
of the 23S rRNA 

23S rRNA Chromosome 

Rifampicin RNA polymerase – binds to ß-
subunit of DNA dependant 

RNA polymerase 
 

Alteration of target site rpoB Chromosome 

Tetracycline 
 

Protein synthesis – inhibit 
binding of aminoacyl-tRNAs  

Tetracycline efflux proteins – 
energy dependent efflux of 

tet(K), tet(L) 
 

Chromosome and 
plasmid 
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tetracycline 
 

Ribosomal protection protein – 
promotes release of bound 

tetracycline 
 

 
 

tetA(M)           

 
 

Transposons 

Trimethoprim Tetrahydrofolic acid synthesis – 
competes with DHFR inhibiting 
reduction of dihydrofolate acid 

to tetrahydrofolic acid 

Chromosomal mutations, reduced 
affinity for trimethoprim 

 
Acquisition of unique DHFR with 
reduced affinity for trimethoprim 

dfrB 
 

dfrA,  

Chromosome 
 

Plasmid 

 
 

AMEs - aminoglycoside modifying enzymes; DHFR - dihydrofolate reductase; PBP - penicillin binding protein; QRDR - quinolone resistance 

determining region;  VISA - vancomycin intermediate S. aureus; VRSA -  vancomycin resistant S. aureus  
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1.2.4 Mechanism of methicillin-resistance in S. aureus  

Methicillin was the first synthetic penicillin to be developed and is resistant to 

hydrolysis by ß-lactamase enzymes (Kirby & Bulger, 1964; Rolinson et al., 1960). 

Methicillin binds to penicillin binding proteins (PBP) in sensitive S. aureus strains 

and inhibits cross linking of peptidoglycan, resulting in cell lysis (Wise & Park, 

1965). S. aureus possess several PBPs that are responsible for catalysing cross-linking 

reactions between peptidoglycan polymers, one of the final steps in bacterial cell wall 

assembly (Chambers, 1988). MRSA strains posses an additional PBP called PBP2a 

(also known as PBP’) which confers resistance to methicillin and all other ß-lactam 

antibiotics (Brown & Reynolds, 1980; Georgopapadakou et al., 1982). PBP2a has a 

low affinity for ß-lactam antibiotics (Hartman & Tomasz, 1984) and thus can continue 

to catalyse the formation of cross-bridges in bacterial cell wall peptidoglycan in the 

presence of ß-lactams (Berger-Bachi & Rohrer, 2002; Hartman & Tomasz, 1984). 

PBP2a is thought to have initially evolved by recombination of two genes: an 

inducible type I penicillinase gene and a PBP gene of E. coli, resulting in a β-lactam-

inducible MRSA PBP (Song et al., 1987). The genetic basis of this resistance is the 

mecA gene which encodes PBP2a. mec DNA is known to be present in S. aureus 

(Sjostrom et al., 1975), however additional DNA is present in MRSA strains (Beck et 

al., 1986; Hiramatsu et al., 2001). mecA is believed to have originated in the animal 

related staphylococcal species S. fleurettii, the sequence of which is nearly identical to 

the mecA region found in MRSA strains (Tsubakishita et al., 2010).  mecA is found on 

a mobile genetic island (GI) termed the staphylococcal cassette chromosome, mec 

(SCCmec) and is a well-developed vehicle for transmission of genes among 

staphylococcal species (Ito et al., 1999; Katayama et al., 2003).  

1.2.5 Staphylococcal chromosome cassette mec 

SCCmec is a 21 – 67 kb fragment of DNA that integrates into the S. aureus 

chromosome at a unique site (attBscc), near the origin of replication (Chambers & 

Deleo, 2009; Hiramatsu et al., 2001). attBscc is highly conserved among clinical 

strains of S. aureus and is found within an opening reading frame of unknown 

function (orfX; Ito et al., 1999). The integration off SCCmec near the origin of 

replication may provide an advantage allowing the instant utilisation of imported 

antibiotic resistance genes (Ito et al., 2003). SCCmec is a variable genetic element, 
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but contains conserved elements such as the mec operon (composed of mecA and its 

regulatory genes) and the cassette chromosome recombinase complex ccr (Holden et 

al., 2004; Ito et al., 2001). The ccr genes encode recombinases crucial for excision of 

the cassette from the chromosome and subsequent integration in the correct 

orientation (Katayama et al., 2000). Different types of SCCmec have been classified 

according to the class of the mec gene complex and the type of ccr complex that they 

contain (Table 1.2). Currently three distinct ccr genes have been identified; ccrA, ccrB 

and ccrC which are regarded as phylogenetically diverse as they share less than 50% 

DNA sequence similarity (Ito et al., 2009).  

 

The regions of SCCmec which border the ccr and mec complexes are know as 

junkyard (J) regions and are divided into three regions. J1 ranges from the 

chromosome right junction to the ccr genes, and J2 ranges from the ccr genes to mec 

complex (Ito et al., 2003). Finally, the J3 region is located between the mec complex 

and the left extremity of SCCmec. Various insertion sequences (IS), transposons, and 

plasmids have been found in SCCmec, including Tn554, IS1272, IS431, pUB110, 

pT181, and p1258; many of which carry resistance to other classes of antimicrobial 

agents (Table 1.2).  

1.2.6 Community-acquired MRSA 

Although MRSA is widely regarded as a nosocomial problem there are increasing 

reports of outbreaks and transmission in the community. Community-acquired MRSA 

(CA-MRSA) infections refer to those caused outside the hospital setting and are 

prevalent in previously healthy individuals. CA-MRSA is commonly associated with 

skin and soft tissue infections (such as furunculosis) but has also been associated with 

severe necrotising pneumonias (Zetola et al., 2005). Such infections have been 

associated with certain groups of society including injected drug users (Huang et al., 

2008), men who have sex with men (Diep et al., 2008) and people who engage in 

contact sport (Lindenmayer et al., 1998). CA-MRSA strains differ from hospital 

acquired strains as they show susceptibility to many antibiotics. This is due to the fact 

that they carry the type IV SCCmec element which carries no additional resistance 

genes (Said-Salim et al., 2003). The presence of additional virulence genes is thought 

to contribute to the pathogenicity of CA-MRSA. Genome sequencing of CA-MRSA 
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Table 1.2 Classification of SCCmec types in MRSA. (Chambers & Deleo, 2009; Deurenberg & Stobberingh, 2008; Ito et al., 2001; Ito et 

al., 2003; Ito et al., 2009) 

 

SCCmec Type Size (kb) ccr genes  mec complex Additional resistance 

elements  

SCCmec I 34 ccrA1, ccrB1 Class B  

SCCmec II 53 ccrA2, ccrB2 Class A puB110, Tn554 

SCCmec III 67 ccrA3, ccrB3 Class A pI258, pT181, Tn554, ΨTn554 

SCCmec IV 21-24 ccrA2, ccrB2 Class B  

SCCmec V 28 ccrC Class C  

SCCmec VI 24 ccrA4, ccrB4 Class B  

SCCmec VII 41-49 ccrC Class C  

SCCmec VIII 32 ccrA4, ccrB4 Class A Tn554 

 

Five (A–E) different classes of mec elements have been defined, of which three (A–C) are common in SCCmec. pUB110 carriers the ant (4’) 

gene providing resistance to several aminoglycosides. Tn554 encodes ermA providing constitutive and inducible macrolide–lincosomide–

streptogramin B (MLS) resistance. Additional resistances to cadmium, mercury and tetracycline are observed in SCCmec III via ΨTn554, pI258 

and pT181 respectively.  
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strain MW2 revealed the presence of additional virulence genes, including the 

presence of additional toxins such as the Panton-Valentine leukocidin (PVL) toxin 

(Baba et al., 2002). The increasing prevalence of community-acquired MRSA coupled 

with the substantial morbidity and mortality associated with these infections suggests 

that CA-MRSA has the potential to cause serious issues in public health (Yamamoto 

et al., 2010).  

1.2.7 Searching for novel antibiotics targets 

The dramatic increase in the emergence of antibiotic resistance coupled with the 

current difficulties facing the pharmaceutical industry means there is a pressing need 

for the development of new approaches to antibiotic discovery.  One such approach 

encompasses a new generation of screening methods. Screening novel antibiotics 

against an Escherichia coli strain that possesses resistance to commonly used 

antibiotics preselects any hits to be of a potential novel class of antimicrobial agent 

(Gullo et al., 2006). Secondly, the utilisation of techniques such as in vivo expression 

technology (IVET) and signature tagged mutagenesis (STM) may prove useful in 

novel candidates through identifying genes that are essential for the infection process 

(Alksne & Projan, 2000; Chiang et al., 1999). Yoneyama & Katsumata (2006) point 

out that the expression profiles of pathogens during infection in vivo vary greatly in 

comparison to those recreated in rich media in vitro. Therefore the use of techniques 

that can potentially identify these targets may provide novel targets for antibiotic 

development. 

 

Utilising the wealth of knowledge generated from microbial genome sequencing 

projects offers great potential in generating leads for novel antibiotics. Analysis of 

pathogen genome sequences allows for the identification of conserved enzymes that 

are essential for bacterial growth and replication (Fischbach & Walsh, 2009). A study 

by Rosamond & Allsop (2000) analysed the genomes of several respiratory pathogens 

for essential conserved genes, not present in humans. Through detailed bioinformatic 

analysis three possible candidates were selected as potential targets for the 

development of novel respiratory tract antibiotics. Finally identification of novel 

ecological niches inhabited by antibiotic producing bacteria may yield previously 

unidentified bioactive compounds (Wright & Sutherland, 2007). Abyssomicin C 

(which inhibits bacterial p-aminobenzoic acid biosynthesis) has been isolated from a 
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recently identified marine actinomycete bacterium (Bister et al., 2004). Other sources 

of novel antibiotic producing bacteria include bacterial symbionts of insects 

(Kaltenpoth et al., 2005) and arthropods (Gebhardt et al., 2002). Re-examining the 

soil dwelling actinomycetes may hold potential in the discovery of novel antibiotics as 

it has been predicted that ~ 2% of the antibiotics produced by Streptomyces have been 

identified (Baltz, 2005). Potential new targets for novel antibiotics include peptide 

deformylase (PDF) (Yuan et al., 2001), bacterial fatty acid synthesis (Payne et al., 

2001), the non-mevalonate pathway (Yoneyama & Katsumata, 2006) and signalling 

networks (two component systems and quorum sensing pathways) (Barrett & Hoch, 

1998). 

1.3 Molecular typing of MRSA 
Molecular typing of MRSA strains is an important tool in tracing outbreaks and cases 

of transmission. Various molecular epidemiological techniques have been employed 

to type and track isolates including; macrorestriction of chromosomal DNA 

(generated via restriction enzyme digestion) and profiling via pulse field gel 

electrophoresis (PFGE), nucleotide polymorphisms in the mecA gene and Tn554 

insertion patterns  (Oliveira et al., 2002). The need for more rapid methods has seen 

the development of several polymerase chain reaction (PCR) based methods including 

coagulase gene typing, random amplified polymorphic DNA (RAPD) and repetitive 

element sequence-based PCR (rep-PCR; Weller 2000). 

1.3.1 Pulse field gel electrophoresis  

Restriction enzymes (such as SmaI) are used in PFGE to digest bacterial genomes; 

strain-specific banding patterns are then generated using a specialised form of 

electrophoresis (Tenover et al., 1997). PFGE is considered to be a highly 

discriminatory typing method for studying outbreaks and hospital-to-hospital 

transmission of MRSA isolates (Deurenberg et al., 2007). This technique has been 

used to investigate the spread of clones through European countries (Deplano et al., 

2000) as well as to trace the source, transmission, and spread of nosocomial infections 

(Ichiyama et al., 1991). PFGE is reproducible and highly discriminatory typing 

method, but criticisms of the technique include its speed and the lack of a common 

nomenclature (Deurenberg et al., 2007; van Belkum et al., 1998).  
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1.3.2 Random amplified polymorphic DNA 

RAPD uses low stringency PCR with short arbitrary primers to amplify portions of 

genomic DNA followed by the separation of resulting fragments by electrophoresis 

(Williams et al., 1990). RAPD has been used to investigate a nosocomial outbreak of 

a non-phage typeable MRSA strain (Tambic et al., 1997) and the use of multiple 

primers has been demonstrated to improve discriminatory power (Cheeseman et al., 

2007).   Although RAPD is considered simpler and less time consuming, comparison 

with PFGE reveals that RAPD is less discriminatory (Saulnier et al., 1993).  

1.3.3 Multilocus sequencing  

MLST was first applied to Neisseria meningitidis in order to overcome the problems 

associated with traditional and molecular typing methods (Maiden et al., 1998). 

MLST differs from PFGE as it is a sequence-based technique and exploits the 

differences in the nucleotide sequence of several house keeping genes. Fragments         

(~ 450 bp) of these house keeping genes are sequenced and a single polymorphism 

results in the assignment of a new allele number. The combination of the seven alleles 

generates an allelic profile, which translates into a single sequence type (ST; Enright 

& Spratt, 1999). The discriminatory power of MLST was validated through 

comparison with PFGE profiles and the power of MLST as an epidemiological 

monitoring tool has been facilitated by an easily accessible online database which is 

expanded as novel STs are identified (Urwin & Maiden, 2003). MLST has been 

successfully applied to S. aureus using the seven housekeeping genes; carbamate 

kinase (arcC), shikimate dehydrogenase (aroE), glycerol kinase (glp), guanylate 

kinase (gmk), phosphate acetyltransferase (pta), triosephosphate isomerase (tpi), and 

acetyl coenzyme A acetyltransferase (yqiL)  (Enright et al., 2000). MLST has proved 

instrumental in analysing and tracing the origins and evolutionary history of MRSA 

(Enright et al., 2002; Oliveira et al., 2002).  

1.4 Small colony variants  
The first incidence of small colony variants (SCVs) was reported in 1910 when an 

irregular form of Eberthella typhosa (now known as Salmonella enterica) was 

observed (Jacobsen, 1910; Proctor, 2001). SCVs have been observed in several 

bacteria species and have been extensively studies in S. aureus.  
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1.4.1 S. aureus small colony variants  

S. aureus SCVs are slow growing, morphological variants that exist as a 

staphylococcal subpopulation and often arise after exposure to antimicrobial 

chemotherapeutics (Proctor et al., 2006). The phenotypic trait of slow growth leads to 

the development of microcolonies which are approximately 10 times smaller than 

wildtype S. aureus colonies (Proctor et al., 1995). S. aureus SCVs also demonstrate a 

number of other characteristics that are atypical for S. aureus including reduced α-

toxin production, delayed coagulase activity, the production of non pigmented 

colonies and deficiencies in certain biochemical reactions (Balwit et al., 1994; Proctor 

et al., 1995; von Eiff et al., 2000). S. aureus SCVs have been associated with 

persistent and recurrent infections and SCVs with defects in the components of the 

bacterial electron transport chain (ETC) and the biosynthesis of thymidine have been 

consistently recovered.  

1.4.1.1 Electron transport deficient SCVs  

Electron transport chain deficient SCV isolates are commonly auxotrophic for haemin 

and menadione (McNamara & Proctor, 2000; Proctor et al., 1995; Proctor & Peters, 

1998). Both play crucial roles in bacterial electron transport (Figure 1.3). Haemin is 

required for the biosynthesis of cytochromes which accepts electrons from 

menaquinone and completes the ETC. Menadione is isoprenylated to form 

menaquinone and is the acceptor of electrons from nicotinamide adenine dinucelotide 

(NADH) and flavin adenine dinucelotide (FADH2; von Eiff et al., 2001b). Haemin 

and menaquinone are both used in aerobic electron transport and mutations in their 

biosynthetic genes results in a disrupted ETC and blockage of oxidative respiration. 

Haemin and menaquinone are synthesised by the heme and men operons respectively 

(Tien & White, 1968), and mutations in genes of these operons result in the SCV 

phenotype (Bates et al., 2003; von Eiff et al., 1997b).  

1.4.1.2 Haemin and menadione auxotrophy  

S. aureus hemB mutants display typical characteristics associated with the SCV 

phenotype including micro colonies, reduced coagulase activity and reduced 

susceptibility to aminoglycosides. However, these characteristics can be reversed by 

growing hemB mutants in the presence of haemin, or by complementing the mutant 

with intact hemB (von Eiff et al., 1997b). Mutation of the menD gene (encoding 2-

succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylate synthase) also results in 
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mutants displaying characteristics associated with the SCV phenotype (Bates et al., 

2003; Kohler et al., 2008). Without oxidative respiration SCVs can only produce ATP 

through fermentation, which is significantly less efficient, resulting in ATP shortage 

in SCVs. ATP is required for various essential cellular functions including cell wall 

biosynthesis, the generation the electrochemical gradient and carotenoid biosynthesis 

(Figure 1.3). As a result of reduced ATP production SCVs display slower growth 

(hence smaller colonies), reduced uptake of aminoglycosides and cationic peptide 

transport and decreased pigment formation.  

 

Analysis of SCVs recovered from the clinical environment has identified further 

mutations in the heme and men operons. Haemin auxotrophy has been linked to 

mutations in hemH which is involved in the final step in haemin biosynthesis (Schaaff 

et al., 2003). The genetic basis for clinically isolated menadione auxotrophy in 

clinically isolated SCVs has also been demonstrated. DNA sequencing of the nine 

genes involved in menadione biosynthesis from osteomyelitis isolates revealed 

mutations in the gene encoding naphthoate synthase menB (Lannergard et al., 2008). 

In both studies, supplementation with haemin or menadione resulted in reversion to 

the wildtype phenotype. 

1.4.1.3 Thymidine dependent SCVs (TD-SCVs) 

TD-SCVs are frequently recovered from cystic fibrosis (CF) patients that have 

received long term treatment with trimethoprim sulphamethoxazole (SXT; Gilligan et 

al., 1987; Kahl et al., 1998). TD-SCVs share characteristics with electron transport 

deficient SCVs, such as reduced α-toxin production and lack of pigmentation (Kahl et 

al., 1998). TD-SCVs frequently display reduced susceptibility to SXT and show 

increased persistence in CF patients in comparison to wildtype strains (Kahl et al., 

2003b). In terms of their morphology TD-SCVS exhibit two distinct phenotypes when 

grown on Columbia sheep blood agar; either a ‘fried egg’ morphology (translucent 

edges surrounding a smaller, elevated pigmented centre) or pinpoint colonies 

(approximately 10 times smaller than wildtype S. aureus; Kahl et al., 2005). 

Transmission electron microscopy (TEM) revealed abnormal cell size and 

morphology (Figure 1.4). TD-SCVs are up to 8 times larger than wildtype cells due to 

‘swollen cells’ with uncompleted cross walls (Kahl et al., 2003a). Thymidine 

auxotrophy in TD-SCVs is due to mutations in thyA (which encodes thymidylate  
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Figure 1.3 Relationship between electron transport, ATP production and 

characteristics associated with the SCV phenotype in S. aureus (adapted from 

Proctor et al., 2006) Reduced ATP production results in reduced cell wall and protein 

bioysythesis resulting in reduced growth rate and production of microcolonies. ATP is 

also required for carotenoid biosynthesis, hence SCVs produce non-pigmented 

colonies. Reduced antibiotic susceptibility to aminoglycosides and cationic peptides is 

observed due to a reduction in electrochemical gradient, required for the uptake of 

these compounds.  
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Figure 1.4 TEM images of SCVS exhibiting ‘fried egg’ morphology (A, B and C), 

pinpoint SCVs (D and E) and wildtype S. aureus (F) Incomplete cell walls, 

irregular cell size and empty cells are represented by the arrows in A-E. Regular cell 

wall separation can be seen in wildtype S. aureus (F). Images reproduced from Kahl 

et al. (2003a).  

 

 

 

 

 

 

 

 

 

 



 21 

synthase in S. aureus) and this mutation is also responsible for reduced SXT 

susceptibility (Besier et al., 2007). SXT interferes with tetrahydrofolic acid which acts 

as a co-factor for thymidylate synthase (Besier et al., 2007). Thymidylate synthase 

plays a role in DNA synthesis, catalysing the synthesis of deoxythymidine 

monophosphate (dTMP) from deoxyuridine monophosphate (dUMP). Analysis of 

clinical TD-SCVs and a thyA knock-out mutant revealed that a series of different 

mutations in thyA are responsible for the TD-SCV phenotype. Mutations in thyA 

permits TD-SCVs to bypass the SXT inhibited pathway. Thymidine is still required 

by TD-SCVs as it is essential for DNA synthesis. In order to compensate for the lack 

of thymidine, TD-SCVs increase expression of nupC, which is responsible for the 

transport of nucleotides into the cell (Chatterjee et al., 2008; Saxild et al., 1996).  If 

large amounts of thymidine are present TD-SCVs can revert to the wildtype form 

(Kahl et al., 1998) accounting for the phenotypic switching observed in TD-SCVs.  

 

Mutations in thyA have also been linked to hypermutability in TD-SCVs (Besier et al., 

2008a). Clinical TD-SCVs isolates were analysed for mutations in the methyl-directed 

mismatch repair (MMR) system. The MMR system is composed of a series of genes 

(mutS, mutL, mutH, and uvrD,) which are responsible for DNA repair in S. aureus 

(Miller, 1996). Hypermutability is associated with a truncation in mutL in TD-SCVs. 

This leads to replication errors (due to a defective DNA mismatch repair system), that 

combined with the selective pressure of SXT favour the emergence of mutations in the 

thyA gene and the formation of the TD-SCV phenotype (Besier et al., 2008a). Another 

characteristic associated with TD-SCVs is enhanced post-stationary phase survival 

(Chatterjee et al., 2007). Thymidine auxotrophy in TD-SCVs results in a delay in 

tricarboxylic acid (TCA) cycle function, preventing entry into the death phase. 

Chatterjee et al., (2007) further established that TD-SCVs utilise contrasting 

metabolic pathways during stationary phase in comparison to hemB mutants.  

 

Although TD-SCVs are frequently isolated from CF patients, patients suffering from 

other medical conditions are known to harbour TD-SCVs (Besier et al., 2008b). In all 

cases, patients were suffering from various chronic infections and had been 

administered long term SXT treatment. Similarly to TD-SCVs isolated from CF 

patients, sequence analysis showed mutations in thyA were responsible for the SCV 

phenotype. Besier et al. (2008) also showed that dTMP (a metabolite of thymidine) 
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was found in the majority of specimens analysed. The level of dTMP is crucial to the 

phenotypic appearance of S. aureus SCVs as high concentrations result in reversion to 

the wildtype phenotype (Zander et al., 2008).  

1.4.1.4 CO2 Auxotrophy   

Auxotrophy for CO2 has been reported in S. aureus SCVs (Hale, 1951; Thomas, 

1955). Growth in the presence of CO2 restores pigment and α-toxin activity (Thomas, 

1955), similar to the supplementation with auxotrophic compounds observed in ETC 

deficient SCVs. Recently a Spanish hospital reported the isolation of CO2-dependent 

SCVs of S. aureus in which auxotrophy for CO2 was confirmed by growth in 5% CO2 

for 18 hours (Gomez-Gonzalez et al., 2010). SCVs were isolated from a range of 

patients suffering from infections such as catheter-related bacteremia, and wound and 

respiratory infections. The authors concluded that they were unaware of any 

alterations in bacterial metabolism that may cause this type of variant or the genetic 

mechanism for reversion to a rapidly growing form. Auxotrophy for CO2 is rarely 

reported in S. aureus SCVs, however the isolation of CO2 auxotrophs suggests that 

specific atmospheric requirements may be needed to isolate and characterise these 

variants (Pinto & Merlino, 2011). 

1.4.2 SCV formation 

The mechanisms behind the formation/generation of SCVs are yet to be fully 

understood. Regulatory as well as genetic events might be involved, especially since 

many SCVs are unstable and form revertants growing as large colonies. Schaaff et al., 

(2003) have examined whether an increased mutation rate favours the formation of 

SCVs by comparing E.coli wildtype with mutS - mutants (part of the damage-directed 

MMR crucial for proofreading during DNA replication; Horst et al., 1999). Results 

showed that the emergence of spontaneous SCVs was 556-fold higher in the mutS - 

mutants than in the wildtype strain, concluding that a high mutation rates favours the 

emergence of SCVs. These finding are similar to those observed in TD-SCVs (see 

section 1.4.1.3), suggesting that mutations may play a role in the formation of SCVs. 

The widely reported ability of antimicrobials such as aminoglycosides to select for 

SCVs (Balwit et al., 1994; Musher et al., 1977) suggests that certain antimicrobials 

may induce SCV formation. Recently, aminoglycoside-induced SCV formation has 
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been linked to the activity of an alternative sigma factor in S. aureus (see section 

1.4.8.2).  

1.4.3 Infections associated with S. aureus SCVs  

A range of human infections have been associated with S. aureus SCVs (Table 1.3), 

many of which have been linked to persistent and recurrent outbreaks. In humans 

cystic fibrosis and osteomyelitis infections have been frequently attributed to the 

presence of S. aureus SCVs, as well as bovine mastitis in dairy cattle (von Eiff et al., 

1997; Kahl et al., 1998; Atalla et al., 2008).  

1.4.3.1 Cystic fibrosis  

TD-SCVs are frequently recovered from CF patients and has been linked to treatment 

with SXT (see section 1.4.1.3). SCVs have the ability to replace wildtype strains in 

the CF environment and demonstrated increased levels of persistence (Kahl et al., 

2003b). Transcriptional analysis of TD-SCVs showed low levels of expression of the 

accessory gene regulatory (agr; which acts as a genetic control for various virulence 

factors) and increased expression of genes regulated by the alternative sigma factor, 

σ
B (Moisan et al., 2006). Altered transcriptional profiles may serve as an optimised 

adaptation to the CF lung, facilitating increased persistence in comparison to wildtype 

strains (Proctor et al., 2006). 

1.4.3.2 Osteomyelitis  

S. aureus SCVs have also been isolated from patients being treated for osteomyelitis, 

which is often treated with beads that provide a slow release of an antimicrobial (von 

Eiff  et al., 2001b). SCVs isolated from osteomyelitis patients frequently display, 

auxotrophy for haemin and/or menadione and up to a 32 fold greater gentamicin 

minimum inhibitory concentration (MIC; von Eiff et al., 1997a). Analysis of patient 

case history revealed that patients infected with S. aureus SCVs were more likely to 

undergo relapses of osteomyelitis, strengthening the link between SCVs and recurrent 

infection. As gentamicin treatment for S. aureus SCV infection is no longer effective 

in osteomyelitis patients, treatment with hydroxyapatite cement (HAC) loaded with 

vancomycin has been trialled in animals (Joosten et al., 2005). HAC/vancomycin-  
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Table 1.3 Isolation of S. aureus small colony variants from human infections  
 

Source information  Auxotrophy  SCV associated observations Reference 

Patients treated with penicillin CO2 - Sherris, (1952) 

Sepsis and osteomyelitis patients Menadione and thymidine  Reduced aminoglycoside susceptibility Acar et al., (1978) 

Septic arthritis patient  Menadione  Reduced aminoglycoside susceptibility Spearman et al., (1996) 

Osteomyelitis patients treated with 

gentamicin beds 

Haemin and/or menadione  Clonal PFGE profiles, SCVs associated with 

recurrent infections  

von Eiff et al., (1997a) 

CF patients  Haemin, thymidine, 

and/or menadione 

Clonal PFGE profiles, resistance to antifolate 

agents  

Kahl et al., (1998) 

Sepsis in an AIDS patient  Thymidine and 

menadione  

Reduced antibiotic susceptibility, delay in 

identification resulting in patient mortality  

Seifert et al.,  (1999) 

Persistent wound infection treated 

with clindamycin  

Haemin and menadione  Misidentified as CoNS Abele-Horn et al., (2000) 

Patient with Darier’s disease  Haemin  Reduced antibiotic susceptibility, increased 

intracellular persistence  

von Eiff et al., (2001a) 

Recurrent ventriculoperitoneal shunt-

related meningitis   

Haemin  Clonal PFGE profiles, misidentified as CoNS by 

automated identification systems  

Spanu et al., (2005) 

Prosthetic joint infection  - Clonal PFGE profiles, SCV infection resulted in 

removal of prosthetic device  

Sendi et al., (2006) 

 
AIDS – acquired immunodeficiency syndrome; CoNS – coagulase negative staphylococci; CF – cystic fibrosis; PFGE – pulse field gel electrophores
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treated animals showed eradication of infection and furthermore HAC/vancomycin 

treatment did not induce SCV formation. 

1.4.3.3 Bovine mastitis  

Bovine mastitis is commonly associated with dairy cattle and is defined as 

‘inflammation of the mammary gland’ (Bradley, 2002). Although limited studies are 

available, the presence of S. aureus displaying the SCV phenotype has been detected 

in S. aureus positive milk samples produced by cows suffering from chronic mastitis 

(Atalla et al., 2008). Persistent infection in bovine mastitis may be due to the ability 

of SCVs to persist for longer periods in bovine mammary epithelial cells, creating a 

reservoir of bacteria for persistent or relapsing infections (Atalla et al., 2010a). 

Antibody-mediated (AMIR) and cell-mediated immune responses (CMIR) display 

marked differences in cows infected with SCVs in comparison to those infected with 

wildtype S. aureus (Atalla et al., 2010b). A lack of immune activation in the host is 

thought to aid SCV persistence in cows with chronic mastitis. 

1.4.4 Identification and susceptibility testing of SCVs  

As S. aureus SCVs display many characteristics that are abnormal for wildtype strains 

they pose difficulties in identification and isolation in the laboratory (Figure 1.5). The 

production of non-pigmented, non-hemolytic colonies on solid agar may lead to          

S. aureus not being detected. Additionally, SCVs can be missed as they are easily 

overgrown by wildtype S. aureus due to a much slower dividing rate of SCVs (180 

minutes for SCVs and 20 minutes for wildtype; von Eiff  et al., 2001b). Lack of 

coagulase production and reduced haemolytic activity mean staphylococcal SCVs and 

are often misidentified as CoNS (McNamara & Proctor, 2000; Seaman et al., 2007). A 

study evaluating commonly used media for recovery of S. aureus showed that SCVs 

often failed to produce the phenotypic characteristics required in order to obtain a 

positive S. aureus culture result (Kipp et al., 2005). In order to avoid misidentification 

the extension of conventional culture techniques is desirable. It was concluded that 

laboratories should be specifically looking for SCVs in samples from patients who 

have received long-term therapy or when an infectious disease has been unusually 

persistent. Suspected SCVs that provide abnormal standardised testing results should 

be confirmed as S. aureus by testing the species-specific genes (von Eiff, 2008). A 

non-conventional diagnostic approach using a 16S rRNA-directed in situ 
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hybridisation technique has been shown to be successful in correctly identifying SCVs 

as S. aureus (Kipp et al., 2003).  

1.4.5 Reduced antimicrobial susceptibility in SCVs 

Reduced antimicrobial susceptibility in SCVs does not result from the classical 

mechanisms of antimicrobial resistance such as production of β-lactamases (to 

inactivate β-lactam based antibiotics) or efflux pumps (to pump antimicrobials out 

from the cell; al Masaudi et al. 1999). The mechanism of reduced susceptibility 

relates to characteristics associated with the SCV phenotype. For example, reduced 

aminoglycoside susceptibility is related to the lack of a functional electron transport 

chain (Figure 1.3). The uptake of positively charged aminoglycoside molecules 

requires the presence of a differential charge to be present across the bacterial 

membrane (Kohanski et al., 2010). In aerobically growing bacteria this is present due 

to the presence of an electrochemical gradient (due to an active ETC). In SCVs 

however, interruption of the ETC reduces the electrochemical gradient across the 

bacterial membrane, decreasing the uptake of aminoglycosides (Proctor, 2006). 

Interruption of the ETC is also responsible for reduced susceptibility to cell wall 

specific antibiotics as limits on ATP production reduce cell wall biosynthesis which is 

associated with a four fold increase in the MIC of cell wall specific antibiotics 

(McNamara & Proctor, 2000). Finally, the survival of S. aureus SCVs within host 

cells reduces the effectiveness of antibiotics that have a limited ability to penetrate 

eukaryotic cells, such as ß-lactams and vancomycin (Darouiche & Hamill, 1994).  

 

Various antimicrobial agents can select for SCVs which result in reduced 

susceptibility to these selecting compounds through unique mechanisms. Pan et al., 

(2002) discovered that exposure of S. aureus to sparfloxacin and a ciprofloxacin 

derivative gave rise to SCVs which exhibited reduced susceptibility to 

fluroquinolones. In order to identify a genetic basis for the mutations that gave rise to 

reduced fluroquinolone susceptibility the quinolone resistance-determining region 

(QRDR) of the gyrA, gyrB, grlA, or grlB genes were sequenced. No alterations in the 

sequence of the QRDRs were detected. The reduced fluroquinolone susceptibility may 

be related to depletion of intracellular ATP levels which is known to protect against 

quinolone killing via reducing gyrase-mediated DNA cleavage (Li & Liu, 1998).  
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Triclosan, a synthetic bisphenol antimicrobial agent, has also been shown to select for 

S. aureus SCVs (Seaman et al., 2007). The target of triclosan is enoyl reductase 

(encoded by fabI) responsible for bacterial fatty acid bioysythesis (Sivaraman et al., 

2004). Mutations in fabI have been shown to result in reduced triclosan susceptibility 

in S. aureus (Fan et al., 2002).  Sequencing of fabI in S. aureus SCVs however 

revealed 100% sequence similarity with wildtype susceptible fabI sequences, 

suggesting a novel mechanism for reduced triclosan susceptibility. Despite the 

aforementioned examples, there are examples where reduced antimicrobial 

susceptibility is in S. aureus SCVs is due to mutations in the target gene. Norstrom et 

al., (2007) identified novel mutations in fusA (translation elongation factor) and rplF 

(ribosomal protein L6) in SCVs selected for in the presence of fusidic acid. These 

mutations gave rise to reduced fusidic acid susceptibility through altering the 

structural conformations of translation elongation factor EF-G on the ribosome. 

1.4.6 Construction of mutants representing the SCV phenotype  

Several mutants have been artificially generated in order to provide insights into the 

SCV phenotype. von Eiff et al. (1997b) constructed a stable S. aureus SCV by 

interrupting the hemB gene with an erythromycin cassette. The resulting mutants 

displayed a classic SCV phenotype with reduced coagulase and pigment production, 

reduced susceptibility to aminoglycosides and increased intracellular persistence. The 

same methodology has been used to interrupt the S. aureus menD gene, resulting in a 

stable menadione auxotrophic SCV (Bates et al., 2003). Both mutants have been used 

to further the understanding of the SCV phenotype and to demonstrate the link 

between deficiencies in electron transport and SCV characteristics.  

1.4.6.1 Microarray and protein profiling analysis of  hemB- and menD- mutants   

Microarrays allow the production of a ‘gene expression profile’ or ‘signature’ for a 

particular organism under certain environmental conditions and provide high levels of 

data output to investigate bacterial metabolism (Ehrenreich, 2006; Lucchini et al., 

2001). Seggewiss et al., (2006) performed a comparative, genome-wide transcriptome 

analysis of the S. aureus hemB- mutant. A difference in the expression of 170 genes 

was recorded with 122 genes significantly up-regulated in the hemB- mutant in 

comparison to the parent strain. Glycolytic and fermentation pathways were 

upregulated in the hemB- mutant due to deficiencies in the ETC. Similar expression  



 28 

 

Selection for SCVs

Wildtype SCVs 
• agr expression - production of 

virulence factors (toxins, invasins)

• Recognition by host immune system 

• Decreased agr expression – reduced 
toxin production

• Lack of immune system            
recognition 

Reversion to wildtype 

Intracellular persistence and lack 
of immune response

Infection and immune                                     
response

Identification Misidentified or undetected

• Rapid growth rate

• Large pigmented colonies

• Coagulase positive 

• Straightforward standardised testing

• Reduced growth rate

• Non pigmented microcolonies

• Coagulase negative

• Difficulties in standardised testing 

 

Figure 1.5 Cycling of the SCV phenotype and identification issues Antibiotic treatment of S. aureus infections can select for SCVs. Reduced 

expression of virulence factors may lead clinicians to believe antibiotic therapy has eradicated infection and antibiotic therapy ceases. Removal 

of the antibiotic selective pressure that maintains SCV phenotype, permits reversion to the virulent wildtype form 
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profiles have been generated from microarray analysis of SCV menD- mutants, 

although genes involved in nitrate respiration and fermentation pathways were further 

upregulated in the menD- mutant (Kohler et al., 2008). 

 

Phenotype microarray (PM) technology consists of preconfigured well arrays in 

which each well tests a different cellular phenotype (Bochner et al., 2001). Individual 

wells are continuously monitored and results are combined with bioinformatic 

software to allow high throughput screening of cellular phenotypes. PM technology 

has been applied to hemB- and menD- SCV mutants to screen over 1,500 phenotypes 

(von Eiff et al., 2006). Analysis showed that both mutants were defective in utilizing a 

variety of carbon sources. The menD- mutant was found to be more metabolically 

restricted than the hemB- mutant as more metabolic pathways in   S. aureus utilise 

menaquinone than haemin. An absolute protein quantification approach by 

Kriegeskorte et al., (2011) showed an agreement with previous microarray studies; 

1019 cytoplasmic proteins in S. aureus were identified of which 154 were 

differentially regulated in SCVs. Proteins involved in the TCA cycle were down 

regulated as well as certain virulence markers. Notably, differences in the expression 

of proteins involved in glycolysis were observed between SCV isolates, suggesting 

that variation exists in SCVs isolated from different environments.  

1.4.6.2 Virulence and persistence of hemB- and menD- mutants in animal 
models  

Incorporating SCVs into several established animal models has provided insights into   

S. aureus SCV host/pathogen interactions. Both hemB- and menD- mutants have been 

investigated in a rabbit model of endocarditis to study virulence and rates of infection 

(Bates et al., 2003). The capacity to induce experimental endocarditis was similar in 

the two mutants when compared to the wildtype parent strain.  This was surprising as 

SCVs produced reduced amounts of α-toxin and exhibit reduced rates of growth. The 

menD- mutant accumulated at lower densities than the hemB- mutant and parent 

strains, which may be related to its slower growth rate of the menD- mutant. The 

nematode Caenorhabditis elegans has also been used to study host/pathogen 

interactions of both the hemB- and menD- mutants. In contrast to the rabbit model of 

endocarditis, both mutants (as well as clinically derived SCVs) were shown to be less 

virulent in nematodes than parental strains (Sifri et al., 2006). Reduced exoprotein 
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production due to the loss of a functional electron transport chain was suggested to be 

responsible for the reduced virulence of SCVs. Finally, the hemB- mutant also been 

examined in a murine model of septic arthritis (Jonsson et al., 2003). In contrast to 

other animal model results that concluded that the hemB- mutant was more virulent in 

comparison to parent strains. Mice inoculated with the hemB- mutant developed more 

severe clinical arthritis which was linked to higher protease production and decreased 

adhesive properties of the hemB- mutant, enhancing invasiveness. Although the 

animal models discussed show varying degrees of virulence it is clear that SCVs are 

associated with altered virulence profiles. Alterations in the expression of virulence 

factors are considered key to increased intracellular persistence of S. aureus SCVs, 

allowing the ability to cause persistence and recurrent infections. 

1.4.7 Intracellular persistence  

SCVs have the potential to persist in the presence of antimicrobials via methods that 

extend beyond classical mechanisms (see section 1.4.5). One such method is 

encompassing the intracellular environment known as the ‘intracellular milieu’. 

Bacteria have to meet several criteria in order to be able to survive intracellulary, 

including; not killing the host cell by inducing apoptosis, resisting intracellular host 

defences, not activating the host immune system and the ability to replicate in the host 

cytoplasm (Sendi & Proctor, 2009). Assays have demonstrated that SCVs fulfil these 

criteria by persisting intracellulary in endothelial cells (Balwit et al., 1994; von Eiff et 

al., 1997b), and persisting in keratinocytes in a patient suffering from Darier’s disease 

(a inherited rare cutaneous disease; von Eiff et al., 2001a; Copper & Burge 2003). 

SCVs isolated from the Darier’s disease patient were shown to persist >100 fold more 

in comparison to the normal phenotype.  

 

The intracellular milieu itself can trigger the emergence of SCVs in S. aureus (Vesga 

et al., 1996). Intracellular bacteria were shown to develop the SCV phenotype at a 

much greater rate than bacteria not exposed to an intracellular environment in bovine 

endothelial cells. Tuchscherr et al., (2010) showed that during infection in endothelial 

cells SCVs exhibit increased expression of fibronectin-binding proteins (FnBPs; 

aiding host cell invasion) and avoid activation of the host cell immune system. The 

latter is linked to the down regulation of virulence factors such as haemolysins, which 

when produced by S. aureus induce inflammation and tissue destruction. The lack of 
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expression of virulence factors, and reduction of damage to host cells in SCVs can be 

correlated to low levels of RNAIII and agr which act as genetic controls to various 

virulence factors (Proctor et al., 2006). The study by Tuchscherr et al., further 

illustrated that SCVs were able to persist in endothelial cells for prolonged periods of 

time (in comparison to wildtype S. aureus), which was attributed to differences in 

gene expression.  

 

Another recent study by Tuchscherr et al., (2011a) highlighted the importance of the 

SCV phenotype when S. aureus is exposed to intracellular conditions. Over the course 

of infection in various in vivo and in vitro models, the S. aureus phenotype gradually 

changed to favour the SCV phenotype. However, SCVs recovered were shown to be 

extremely unstable, reverting to the wildtype form following subculture. These studies 

suggest that S. aureus has the ability to adopt different phenotypes, adapting to hide or 

attack host cells in certain conditions. The switch to the SCV phenotype appears to 

serve as an adaptation for persistence in S. aureus and the intracellular milieu may act 

as reservoir for recurrent infections as patients infected with SCVs can experience 

disease free periods, lasting several years only for the infection to re-emerge years 

later (Proctor & Peters, 1998; Tuchscherr et al., 2011a).  

1.4.8 Global regulators of S. aureus with relevance to the SCV phenotype  

1.4.8.1 Accessory gene regulator (agr) 

The agr system consists of two divergently transcribed loci which are controlled by 

two promoters (Peng et al., 1988). These neighbouring promoters (P2 and P3) 

regulate the transcription of two transcripts RNAII and RNAIII, respectively (Novick 

et al., 1993). The P2 transcript contains four genes agrB, D, C, and A, of which agrB 

and agrD together produce an autoinducing peptide (AIP; Novick et al., 1995). AIP 

increases transcription from the agr promoters P2 and P3 corresponding to an increase 

in transcription of the effector molecule RNA III. agr is responsible for the regulation 

of 138 genes in S. aureus of which approximately 20 are putative virulence 

determinants (Dunman et al., 2001). These include cell wall associated factors (that 

facilitate attachment to the host) and secreted exotoxins that aid in the invasion 

process. Due to this role in the regulation of virulence factors, agr plays an important 

role in the infection process. During the initial stages of infection agr activity is low 
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and adhesion factors are expressed, but as infection progresses agr activity increases 

inducing the production of exotoxins (Otto, 2001).  

 

Due to the absence of certain virulence factors in SCVs, the role of agr in SCVs has 

been investigated. Analysis of thymidine auxotrophic SCVs isolated from CF patients 

and SCV isolates from bovine mastitis has revealed that levels of agr expression are 

reduced or almost absent in SCVs (Atalla et al., 2008; Kahl et al., 2005). agr controls 

the expression of α-hemolysin, which correlates to the lack of α-hemolysin frequently 

observed in SCVs. The expression of the exoprotein coagulase is also regulated by the 

agr locus (Atalla et al., 2011) and reduced expression of agr correlates with the lack 

of or complete absence of coagulase activity observed in SCVs.  

1.4.8.2 Sigma B  

Alternative sigma factors in bacteria are involved in regulating gene expression in 

response to environmental signals such as changes in temperature or pH shifts 

(Hecker et al., 2007; Kullik et al., 1998).  Three alternative sigma factors have been 

identified in S. aureus; sigma A (Deora & Misra, 1996) sigma B (Wu et al., 1996) and 

sigma H (Morikawa et al., 2003), all of which are closely related to their respective 

forms in Bacillus subtilis. Regulation of σB is modulated by rsbU, rsbV, rsbW gene 

products which sit in a chromosomal cluster along with sigB (Bronner et al., 2004). 

Under non stress conditions RsbW acts as an anti-sigma factor and holds σB in an 

inactive complex (Pane-Farre et al., 2006). Under stress conditions RsbV is 

dephosphorylated by RsbU and forms a RsbV–RsbW complex. This permits the 

release of free σB, which binds to RNA polymerase to form an active σ
B-holoenzyme 

(Bronner et al., 2004). Microarray based analysis has shown that σB influences the 

expression of 251 genes, 198 of which are positively influenced (Bischoff et al., 

2004). Cell envelope biosynthesis, signalling pathways and various virulence factors 

were among some of the diverse cellular processes influenced by σB. Numerous 

studies have examined σB activity in S. aureus SCVs. A collection of TD-SCVs 

isolated from CF patients exhibited decreased σB activity in comparison to isogenic 

wildtype strains (Kahl et al., 2005). σB activity in these strains however was restored 

upon supplementation with thymidine suggesting that regulatory mechanisms are 

responsible for the various alterations observed. In contrast, another study showed 
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SCVs isolated from CF patients exhibited increased σB activity in compassion to 

parent strains (Moisan et al., 2006). Increased σB activity was correlated to 

persistence in eukaryotic host cells which was impaired in a σB deficient mutant. 

Mitchell et al. (2008) demonstrated that this may be related to increased expression of 

FnBPs, (which are positively influenced by σB) which permits increased adhesion of 

S. aureus to host tissues.  

 

Recently σB has been implicated in the emergence of SCVs following exposure to 

aminoglycosides (Mitchell et al., 2010a). Sub-inhibitory concentrations of gentamicin 

and tobramycin significantly increased the frequency SCV formation in S. aureus 

strains with σB+ background, where-as fewer SCVs were recovered from a  σB- 

constructed mutant (Mitchell et al., 2010a). Quantitative PCR (qPCR) also 

demonstrated that sub-inhibitory concentration of gentamicin and tobramycin induced 

σB activity. Exposure to 4-hydroxy-2-heptylquinoline-N-oxide (HQNO; an 

antistaphylococcal exoproduct produced by P. aeruginosa; Machan et al., 1992) has 

also been shown to select for S. aureus SCVs via a σB dependent mechanism. 

Exposure to HQNO resulted in a concomitant activation σB of and repression of agr 

(Mitchell et al., 2010b). Additionally, elevated σB levels were responsible for 

increased FnBP expression and increased biofilm formation.  

1.5 SCVs in bacterial species other than S. aureus  
Although S. aureus SCVs are the most extensively studied, SCVs have been isolated 

from a broad range of Gram-negative and Gram-positive bacteria including 

Pseudomonas aeruginosa (Haussler et al., 1999b; Haussler et al., 2003b), E. coli 

(Lewis et al., 1991), CoNS such as S. epidermidis, and S. capitis (von Eiff et al., 

1999) E. faecalis (Wellinghausen et al., 2009) and Burkholderia pseudomallei 

(Haussler et al., 1999a). Notably, the majority of these species are of significant 

medical importance in conditions such as cystic fibrosis (CF), nosocomial infections 

and device related infections. Research bias in favour of clinically-important species 

many account for the reporting of SCVs in the aforementioned groups and little is 

know about SCVs in the environment. Despite this bias, there is paucity of 

publications on SCVs in species other than S. aureus. SCVs of these species share 

some of the characteristics associated with S. aureus SCVs, including auxotrophy 
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(Funada et al., 1978; Wellinghausen et al., 2009), reduced susceptibility to 

aminoglycosides (Gerber & Craig, 1982; Haussler et al., 1999a), and altered 

biochemical profiles (Langford et al., 1989; Voureka, 1951). 
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1.6 Project aims  

 
• Investigate the ability of various aminoglycosides to select for S. aureus SCVs across a 

range of concentrations.  

 

• Characterise aminoglycoside selected SCV isolates to determine if variation is present 

among SCV isolates and if any variation is influenced by the concentration of selecting 

aminoglycosides. 

 

• Investigate if the tetracycline group of antibiotics can select for S. aureus SCVs and to 

characterise any tetracycline selected SCVs.  

 

• Examine biofilm formation in S. aureus SCVs and compare biofilm formation with parent 

strains.  

 

• Examine biofilm susceptibility to antimicrobials and the effects of antimicrobial agents 

on biofilm mass and cells within biofilms. 

 

• Identify if a difference in antimicrobial susceptibility of biofilms formed by S. aureus 

SCV and parent strains is present. If a relationship is present, elucidate a mechanism for 

difference in susceptibility. 

 

• Investigate the anti-staphylococcal effects of various plant compounds produced by the 

CASE sponsor, Cultech Ltd, and compare SCV and parent susceptibilities.  

 

• Investigate if resistance to these compounds can be induced and if they have a synergistic 

relationship with clinically used antibiotics.  

 

• Identify if antibiotics can select for bacterial species other than S. aureus and characterise 

any antibiotic selected SCVs using species specific assays. 

 

• Examine biofilm formation in SCVs of other bacterial species. 
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2 CHAPTER 2: AMINOGLYCOSIDE SELECTION FOR 
STAPHYLOCOCCUS AUREUS SMALL COLONY VARIANTS  

2.1 Introduction  

2.1.1 Aminoglycoside classification and mode of action 

Gentamicin, neomycin, streptomycin and tobramycin are all examples of amino 

sugars that are members of the aminoglycoside family. Aminoglycosides have a 

backbone structure which is made up of an aminocyclitol ring saturated with amine 

and hydroxyl substitutions (Shakil et al., 2008). Aminoglycosides can be 

distinguished on the basis this aminocyclitol ring. For example, streptomycin contains 

streptidine as its aminocyclitol unit (Figure 2.1), where as gentamicin, kanamycin and 

neomycin are 2-deoxystreptamine containing aminoglycosides (Magnet & Blanchard, 

2004).  

 

Aminoglycosides exhibit activity against a range of clinically important pathogens 

including Escherichia coli, Salmonella spp., Shigella spp., Pseudomonas spp., 

Staphylococcus aureus and some streptococci (Vakulenko & Mobashery, 2003). 

Aminoglycosides display good synergetic activity with other antibiotic classes (such 

as β-lactams) and are therefore used in the treatment of a range of bacterial infections 

including meningitis, pneumonia, tuberculosis and even plague (Nakamura et al., 

2000; Shakil et al., 2008). Aminoglycosides bind to the 16S rRNA, at the tRNA 

acceptor A site and interfere with protein synthesis (Magnet & Blanchard, 2004). The 

exact mechanism of action of aminoglycosides is uncertain and multiple mechanisms 

may be involved. It has been suggested that the binding of aminoglycosides induces 

the misreading of messenger RNA producing defective proteins, but aminoglycosides 

may also interfere with initiation complexes (Wirmer & Westhof, 2006). 

Aminoglycoside uptake in Gram-positive bacteria takes place in two distinct phases. 

Firstly, energy-independent binding of aminoglycosides to phospholipids and teichoic 

acids occurs. This is followed by an energy-dependent transport across the 

cytoplasmic membrane, provided a sufficient membrane potential (∆Ψ) is present 

(Taber et al., 1987).  
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Gentamicin Neomycin

Kanamycin Streptomycin

Streptidine 

2-deoxystreptamine 

 

 

Figure 2.1 Chemical structure of aminoglycosides used in this study. Adapted 

from Klostermeier et al., (2004).  
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2.1.2 Aminoglycoside resistance  

Streptomycin was the first aminoglycoside to be discovered following its isolation 

from the actinomycete Streptomyces griseus in 1944 and was shown to be active 

against Mycobacterium tuberculosis (Schatz & Waksman, 1944{Schatz, 1944 #773)}. 

The antibiotic was later shown to be clinically effective in the treatment of 

tuberculosis (Hinshaw et al., 1946). Resistance however was reported just two years 

later (Youmans et al., 1946). Currently resistance to aminoglycosides can be acquired 

by four different mechanisms: i) alteration of the target; ii) interference with transport 

of the antibiotic; iii) enzymatic inhibition of the antibiotic; iv) substitution of the 

target (Veyssier & Bryskier, 2005).   

2.1.2.1 Aminoglycoside resistance in S. aureus  

Aminoglycoside resistance is common in staphylococci and has been surveyed by the 

SENTRY Antimicrobial Surveillance Programme (Schmitz et al., 1999). Nineteen 

European hospitals were surveyed and found that 23% of S. aureus isolates were 

resistant to gentamicin, 29% to tobramycin, 31% to kanamycin and 21% to 

streptomycin.  High level aminoglycoside resistance in S. aureus can be conferred by 

mutations in the 30S domain of the bacterial ribosome, leading to altered 

aminoglycoside binding (Schito, 2006). However, the most common mode of 

resistance is through aminoglycoside modifying enzymes (AMEs) which inactivate 

many aminoglycosides of therapeutic importance (Jensen & Lyon, 2009). AMEs can 

be grouped into three categories according to their mode of action on the 

aminoglycoside substrate; acetyltransferase (AAC), phosphotransferase (APH) and 

nucleotidyltransferase (ANT; Woodford, 2005). Aminoglycosides are chemically 

modified by AMEs (through covalent modification of specific amino or hydroxyl 

functions), which results in poor binding to the ribosome (Mingeot-Leclercq et al., 

1999).  AMEs are often located on plasmids, transposons and integrons permitting 

lateral transfer of aminoglycoside resistance among certain bacterial populations 

(Shakil et al., 2008).   

2.1.2.2 Reduced aminoglycoside susceptibility in S. aureus small colony variants  

Small colony variants (SCVs) however do not follow these ‘classical mechanisms’ of 

resistance. Reduced susceptibility to aminoglycosides in SCVs is due to a failure to 

accumulate aminoglycosides intracellulary (Miller et al., 1980). As SCVs are 
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defective in electron transport, SCVs display a reduced ∆Ψ. Reduced ∆Ψ across the 

bacterial membrane results in a lowered uptake of positively charge compounds such 

as aminoglycosides (Proctor & Peters, 1998). Monitoring ∆Ψ in S. aureus parent and 

SCV strains Baumert et al. (2002) showed that following the accumulation of glucose, 

∆Ψ in SCVs dropped rapidly. The reduction in ∆Ψ was directly linked to a 10-30 fold 

reduction in aminoglycoside susceptibility. Low level or complete absence of ∆Ψ in 

anaerobic bacteria confers intrinsic resistance to aminoglycosides (Bryan et al., 1979) 

highlighting the importance of ∆Ψ for aminoglycoside susceptibility.  

2.1.3 Aminoglycoside selection for S. aureus SCVs 

Various classes of antimicrobial agents have been demonstrated to select for S. aureus 

SCVs most notably aminoglycosides and trimethoprim-sulfamethoxazole (SXT) 

(Gilligan et al., 1987; Kahl et al., 1998). Other antibiotics such as fusidic acid 

(Norstrom et al., 2007), members of the fluroquinolones (pazufloxacin and 

sparfloxacin; Mitsuyama et al., 1997; Pan et al., 2002) and biocides such as triclosan 

(Seaman et al., 2007) have all been shown to induce SCV formation. Extracellular 

products produced by other bacteria have also been implicated in the formation of S. 

aureus SCVs. 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) and pyocyanin 

produced by P. aeruginosa both interfere with the S. aureus electron transport chain 

(ETC) and have been demonstrated to select for SCVs in vitro (Biswas et al., 2009; 

Hoffman et al., 2006).   

 

Aminoglycosides are the most commonly reported antimicrobial to be associated with 

the selection of S. aureus SCVs, with cases of both in vivo and in vitro selection for 

SCVs being documented. In the clinical setting SCVs are often recovered from 

patients who are being treated for osteomyelitis (von Eiff et al., 1997), which is often 

treated by surgical placement of gentamicin beads in bones where infection is present. 

The use of gentamicin beads provides a steady release of antimicrobial to the site of 

infection over the course of weeks or months if required (Evans & Nelson, 1993). It is 

hypothesised that the slow release of low levels of gentamicin into the infected area is 

an efficient way to select for SCVs (von Eiff et al., 1998). Several studies have 

demonstrated aminoglycosides can readily select for SCVs in vitro (Balwit et al., 

1994; Kaplan & Dye, 1976; Musher et al., 1977). SCVs selected for by 

aminoglycosides in vitro share characteristics with those isolated from patients 
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receiving aminoglycoside treatment. Aminoglycoside selected SCVs are frequently 

auxotrophic for haemin and menadione (Balwit et al., 1994; von Eiff et al., 1997), 

which relates to defects in the ETC and ATP generation (see section 1.4.1.1). 

 

2.1.3.1 Molecular mechanisms for aminoglycoside induced SCV selection 

The formation of SCVs in S. aureus has been postulated to involve underlying 

regulatory and genetic mechanisms. Schaaff et al. (2003) demonstrated that mutations 

are involved in the emergence of aminoglycoside selected SCVs. Sequencing of the 

haemin operon of a gentamicin selected, stable haemin auxotroph revealed the 

presence of a deletion in the hemH gene. Mutation in hemH leads to the inactivation 

of last step of haemin biosynthesis and is responsible for the auxotrophy for haemin 

displayed. Global regulators have also been demonstrated to play a role in SCV 

formation. Recently the alternative transcription sigma factor, sigma B (σB) has been 

implicated in the formation of SCVs (Mitchell et al., 2010a). S. aureus strains with a 

σ
B+ and σB- background were exposed to subinhibitory concentrations of gentamicin 

and gene expression was monitored. Emergence of SCVs was promoted in the 

presence of aminoglycosides in the σ
B+ strain; however SCVs were not detected from 

the σB- strain. Additionally the presence of aminoglycosides in the exponential phase 

of growth significantly increased the expression of σB and correlated with the 

emergence of SCVs.    
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2.1.4 Aims  

Although aminoglycosides such as gentamicin are known to select for S. aureus 

SCVs, little is known about the effect of different aminoglycosides and different 

concentrations on SCV selection. Differences in auxotrophy have been reported in 

aminoglycoside selected SCVs, no study has conducted analysis on variations that 

may exist in SCVs selected from different aminoglycoside concentrations. Therefore 

the aims of this study were to: 

 

• Examine the ability of gentamicin, kanamycin, neomycin and streptomycin to 

select for S. aureus SCVs 

• Examine the effect of aminoglycoside concentration on growth rate  

• Determine SCV selection frequencies in the presence of various aminoglycoside 

concentrations 

• Confirm SCV isolates are S. aureus via species specific multiplex PCR 

• Characterise SCV isolates on the basis of auxotrophy, ATP concentration, 

heamolysis, carotenoid biosynthesis, and reversion rate 

• Examine and compare mutation frequency in SCV isolates 
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2.2 Materials and methods 

2.2.1 Bacterial strains  

S. aureus American Type Culture Collection (ATCC) strain 25923 and epidemic 

methicillin-resistant S. aureus (EMRSA) strain 15 were included in this study in order 

to represent well characterised MSSA and MRSA strains respectively. Both strains 

are susceptible to a range of aminoglycosides according to published CLSI guidelines. 

Strains were maintained at -80°C in Mueller Hinton (MH) broth supplemented with     

8% dimethyl sulfoxide (DMSO) and re-isolated on MH agar plates when required.  

2.2.2 Preparation of aminoglycoside stock solutions  

Gentamicin, kanamycin, neomycin and streptomycin were all obtained from Sigma 

Aldrich (UK). Manufactures potencies were used to determine amounts of each 

aminoglycoside powder required to produce a 10,000 mg/L solution. All powders 

were dissolved in sterile deionised water, dissolved thoroughly (through vortex 

mixing) and filter sterilised with a 0.2 µm filter (Minisart, UK). Reduced strength 

stock solutions were made where required in deionised water and all stock solutions 

were stored at 4°C for a maximum of 14 days.  

2.2.3 Determination of minimum inhibitory concentrations  

Minimum inhibitory concentrations (MICs) were determined according to Clinical 

Laboratory Standard Institute (CLSI) guidelines (CLSI, 2006). Cation adjusted 

Mueller Hinton (CAMHB) was used for MIC determination and stock solutions of 

CaCl2 and MgCl2 were prepared and added to MH broth to ensure each batch 

contained the correct concentrations of CaCl2 (20 mg/L) and MgCl2 (10 mg/L). 

Individual S. aureus colonies (3-4) were inoculated into CAMHB and incubated at 

37°C with shaking at 150 rpm. Cultures were grown to the end of logarithmic phase 

and cell densities were adjusted to match the turbidity of a 0.5 McFarland standard at 

625 nm. The range of antimicrobial concentrations to be tested was decided and 

concentrations were made in CAMHB at double the required concentration to allow 

for dilution by the inoculum.  Microtitre well plates (Fisher, UK) were inoculated with 

100 µL of required antimicrobial concentrations and 100µL of inoculum to provide a 

test inoculum of 5 X 105 CFU/mL. Microtitre plates were incubated at 37°C without 

shaking and the MIC was recorded as the lowest concentration that inhibited visible 

growth after 18 hours.  



 43 

2.2.4 Determination of minimum bactericidal concentrations  

Minimum bactericidal concentrations (MBC) were determined according to CLSI 

guidelines (CLSI, 1999) with recommendations from Peterson & Shanholtzer (1992). 

All non-turbid wells from MIC experiments were further examined to determine 

MBCs. Wells were stirred gently with a pipette tip and 100 µL aspirated onto the 

surface of an antimicrobial free MH agar plate. In order to avoid carryover of 

antimicrobial agents, samples were dispensed onto the centre of a MH agar plate and 

streaked down the centre to allow the broth to be absorbed into the agar. The 

inoculum was then spread over the plate with a sterile glass rod. Plates were then 

incubated at 37°C and examined for growth after 24 and 48 hours. Following 

incubation, plates were analysed for growth and the number of colony forming units 

(CFU) recorded. The MBC was recorded as the lowest concentration that provided a 

99.9% reduction from the initial inoculum.  

2.2.5 SCV selection assays  

Aminoglycosides were prepared in CAMHB at concentrations of X 0.25 MIC, X 0.5 

MIC, MIC, X 2 MIC and X 4 MIC and dispensed into wells of a microtitre well plate. 

S. aureus strains ATCC 25923 and EMRSA 15 were grown in CAMHB as described 

previously (section 2.2.3), and dispensed into wells contain aminoglycosides to 

achieve a starting inoculum of 5 X 105 CFU/mL. Aminoglycoside concentrations 

were prepared to double the final concentration to allow for dilution by the inoculum 

and control wells containing aminoglycoside free CAMHB were also included. 

Microtitre plates were incubated for 24 hours at 37°C without shaking. Following 

incubation, wells were analysed for the presence of SCVs by aspirating 100 µL of 

individual well contents onto MH agar containing the defined MIC for the 

aminoglycosides tested. Agar plates were inverted and incubated for 48 hours at 37°C. 

Additionally serial dilutions of wells were prepared in phosphate buffered saline and 

plated onto aminoglycoside free MH agar to calculate the number of wild type CFU. 

Suspect SCVs were subjected to coagulase analysis using Staphylase test kit (Oxoid 

Ltd, UK). Several colonies of suspected SCVs were smeared onto a test circle on a 

reaction card. A drop of test reagent was added and colonies mixed into reagent using 

a sterile wire loop. The presence of agglutination indicated the colonies being tested 

were coagulase positive, whereas the absence of agglutination was recorded as 

coagulase negative. Microcolonies that were coagulase negative were recorded as 
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SCVs and the SCV formation frequency was calculated as the number of SCVs per 

CFU counts on aminoglycoside free MH agar.   

2.2.6 S. aureus growth characteristics in the presence of aminoglycosides  

Growth dynamics in a range of aminoglycoside concentrations were examined using a 

Bioscreen C analyser (ThermoFisher UK). Aminoglycoside concentrations and           

S. aureus cells were prepared as described previously (section 2.2.3) and inoculated 

into honeycomb bioscreen plates (Growth Curves Ltd, Finland). Plates were incubated 

for 48 hours at 37°C with shaking for 5 seconds before every optical density 

measurement at intermediate intensity. Optical density was read using the wideband 

filter (450 – 580 nm) every 10 minutes. Aminoglycoside free CAMHB was used to 

obtain growth curves in the absence of aminoglycosides which served as controls.  

2.2.7 DNA extraction 

S. aureus DNA was extracted using the GenElute Bacterial Genomic DNA Kit (Sigma 

Aldrich, UK). Overnight S. aureus parent and SCV cultures were pelleted by 

centrifuging at 10,000 rpm in microfuge tubes. 200µL of lysis buffer (consisting of 

200 U/mL lysostaphin and 2 x 106 U/mL lysozyme) was used to resuspend pellets, 

which were subsequently incubated for 30 minutes at 37°C. Proteinase K solution   

(20 µL) was then added followed by addition of 200 µL of manufacturers specific 

lysis solution. Samples were vortexed thoroughly in order to create a homogenous 

mixture and incubated at 55°C for 10 minutes. DNA binding columns were optimised 

for binding using ethanol, followed by the addition of the previously prepared lysate. 

Samples were centrifuged at 8,000 rpm for 1 minute, followed by 2 additional 

washing steps before eluting bound DNA by the addition of 200 µL manufactures 

elution solution. Finally sample were centrifuged for 1 minute at 10,000 rpm and the 

remaining elute (regarded as pure genomic DNA) stored at 4ºC until required.  

2.2.8 Species confirmation  

As S. aureus SCVs are frequently difficult to identify a modified version of the 

quadriplex PCR protocol developed by Zhang et al. (2004) was employed to confirm 

that SCV isolates were in fact S. aureus. PCR targeted 16S rRNA (Staphylococcus 

genus specific), nuc (S. aureus species specific), and mecA (a determinant of 

methicillin resistance) using the primers in Table 2.1.  
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All PCR reagents were supplied by Qiagen (UK). PCR was carried out in 25 µL 

reactions with 2 µL template DNA (approximately 50 ng/µL) being added to a 23 µL 

PCR mixture consisting of; sterile polished deionised water, 1 X Coralload buffer, 1 X 

Q solution, 1.5 mM MgCl2, 0.12 µM each 16S rRNA and mecA primers, 0.04 µM 

each nuc primer, 200 µM dNTPs, and 1 unit Taq DNA polymerase. PCR was 

conducted in a Flexigene Thermal Cycler (Techne Ltd., UK) with the following cycle; 

5 min at 94°C, followed by 10 cycles of 94°C for 40 seconds, 68°C for 40 seconds, 

and 72°C for 1 min and 25 cycles of 94°C for 1 min, 58°C for 1 min, and 72°C for 2 

min, and a  final hold at 72°C for 10 min. PCR products (12 µL) were run on 2% w/v 

agarose (Sigma Aldrich, UK) gels and were visualised with ethidium bromide (0.5 

µg/mL final concentration in TAE buffer; 40 mM Tris-acetate, 1 mM EDTA) for 30 

minutes. Molecular standards were run on gels using Hyperladder I (Invitrogen, UK).  

2.2.9 Analysis of SCV isolates  

For the purpose of following experiments, where required SCV and parent strains 

were grown in MH broth at 37°C with shaking at 150 rpm. Parents were incubated for 

24 hours whereas SCVs were incubated for 48 hours to allow sufficient growth.  

2.2.9.1 Biochemical analysis 

API STAPH strips (Biomerieux, France) were used to analysis the ability of SCV 

isolates to ferment certain carbohydrates and to examine enzyme production. A direct 

colony suspension of SCV and parent cells was prepared in API STAPH suspension 

medium (Biomerieux, France) and 100 µL added to all tubes. Anaerobic conditions 

were created by the overlaying of mineral oil to ADH and URE tests. Parent test strips 

were incubated at 37°C for 24 hours where as the incubation period was extended to 

48 hours for SCV isolates. Positive/negative results were read based on colour 

changes outlined by the API STAPH guide. The catalogue of the enzymatic reactions 

tested and resulting colour changes are listed in Appendix 1.   

2.2.9.2 Haemolytic assay of growth medium  

Haemolytic activity of parent and SCV strains was analysed using the method of 

Brouillette et al., (2004). Optical density of cultures was measured at 650 nm and 

recorded. Cultures were then centrifuged at 10,000 rpm for 5 minutes and the 

supernatant collected. 1 mL of supernatant was incubated with 5 mL of sheep red 
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Table 2.1 Primers used in multiplex PCR for species confirmation of SCVs  

 

Primer 
 

Sequence (3’- 5’) 

Staph756F AACTCTGTTATTAGGGAAGAACA 

Staph750R CCACCTTCCTCCGGTTTGTCACC 

MecA1 GTAGAAATGACTGAACGTCCGATAA 

MecA2 CCAATTCCACATTGTTTCGGTCTA 

Nuc1 GCGATTGATGGTGATACGGTT 

Nuc2 AGCCAAGCCTTGACGAAC TAAAGC 

 

 

Lyophilised primers were obtained from MWG Eurofins (Germany). 100 pmol stocks 

were obtained by the addition of nuclease free H2O.  
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blood cells (Oxoid, UK) for 1 h at 37 °C to allow lysis. Red blood cell debris was 

pelleted by centrifugation and released haemoglobin was measured at 540 nm. 

Haemolytic activity was estimated based on the ratio of OD540/OD650. 

2.2.9.3 Reversion rates 

Rates of reversion were calculated using the method of Seaman et al., (2007). Ten 

SCV colonies were suspended in 3 mL of 0.9% NaCl and used to inoculate an 

antibiotic free MH agar plate. After 48 hours growth at 37°C the number of wildtype 

colonies was counted and the frequency of reversion was determined as the number of 

wildtype CFU per SCV.  

2.2.9.4 Carotenoid production 

Carotenoid production was quantified using a methanol extraction protocol 

(Morikawa et al., 2001). Cells were pelleted by centrifuged at 10,000 rpm for 5 

minutes and washed once with PBS. Cells were resuspended in 200 µl methanol and 

heated at 55°C for 3 minutes. The supernatant was removed from the cell debris after 

spinning for 1 minute at 13,000 rpm and methanol added to yield a final volume of 1 

mL. Absorption spectra of the methanol extracts were measured in a quartz cuvette 

and the absorbance at 465 nm was recorded.  

2.2.9.5 Quantification of intracellular ATP  

In order to compare levels of ATP between SCVs and parents an enzyme based 

luciferase assay was employed. The BacTiter-Glo™ Microbial Cell Viability Assay 

(Promega, UK) quantifies ATP using mono-oxygenation of luciferin to produce a 

light signal which can be detected using a luminometer. Cultures were adjusted to 1 X 

107 CFU/mL and 100 µL added to individual wells of 96 microtitre well plates. 

BacTiter-Glo reagent (100 µL) was added to each well and gently shaken for 5 

minutes at room temperature. Control wells contained no bacteria and were used to 

determine background luminescence. Luminescence was detected using relative light 

units (RLU) with a LUMIstar OPTIMA plate reader (BMG, UK). RLU/ATP was 

determined from a standard curve using dilutions of ATP standard (Promega, UK) and 

the concentration of ATP per mL was calculated. 
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2.2.9.6 Auxotrophy profiles  

SCVs are commonly auxotrophic for haemin, menadione and thymidine (individually 

or a combination), therefore the auxotrophy profiles of various SCV isolates were 

examined. Stock solutions (1,000 mg/L) of haemin, menadione and thymidine (Sigma 

Aldrich, UK) were prepared by dissolving powders in DMSO (haemin) or sterile 

deionised H2O (menadione and thymidine). Stock solutions were stored at 4°C for a 

maximum of 14 days. Lawns of SCVs were prepared by spreading 100µL of 

overnight culture onto the surface of a MH agar plate. Sterile filter paper discs plated 

in the centre of the plate and 10 µL of haemin, menadione or thymidine stock 

solutions added to filter discs and plates were incubated for 48 hours. SCVs were 

confirmed as auxotrophic if a zone of wildtype like growth (i.e. large colonies, 

restoration of pigment) was present surrounding the filter disc.  

2.2.9.7 Mutation frequency to rifampicin resistance   

For the measurement of mutation frequency to rifampicin resistance of SCV and 

parent strains the method of Besier et al., (2008a) was applied. Cultures were pelleted 

by centrifugation at 10,000 rpm for 5 min and resuspended in 1 mL MH broth. A 100 

µL sample of this suspension was plated onto MH agar plates as well as MH agar 

containing rifampin at a concentration of 100 mg/L. After 48 hours incubation at 

37°C, CFU were counted and mutation frequencies determined by dividing the 

number of CFU on rifampicin-supplemented agar by the number of CFU on 

rifampicin-free agar. Colonies growing on rifampicin containing plates were streaked 

onto another rifampicin containing in order to prove the stability of the mutants. 

2.2.9.8 Statistical analysis  

Minitab statistical software 16 was used to investigate significant difference between 

parent and SCV isolates. Provided the data met the requirement of being normally 

distributed and showed equal variance, data was subject to 2 sampled t tests with 95% 

confidence intervals. If the assumptions of the t test were violated the Mann-Whitney 

test (non-parametric( with 95% confidence intervals was applied.  
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2.3 Results  

2.3.1 MIC and MBCs 

S. aureus strains ATCC 25923 and EMRSA 15 were tested for their susceptibilities to 

the aminoglycosides gentamicin, kanamycin, neomycin and streptomycin. Both 

strains were found to be sensitive to all aminoglycosides tested (Table 2.2). MIC 

values for the four aminoglycosides tested were 2-4 times greater for EMRSA 15 in 

comparison to ATCC 25923. ATCC 25923 MBCs for gentamicin, kanamycin and 

neomycin were 2 times greater than MIC values where as the MBC for streptomycin 

was 4 times greater than the MIC. During MBC testing however SCVs were 

frequently detected and values shown in Table 2.2. These represent 99.9% elimination 

of wildtype and do not account for the selection of SCVs.     

2.3.2 Minimum small colony variant prevention concentration (MSCVPC)  

As SCVS were frequently detected at concentrations deemed bactericidal for wildtype             

S. aureus the term minimum concentration that prevents formation of SCVs during 

routine MIC and MBC testing (MSCVPC) was implemented. During MBC testing, 

plates regularly contained a mixture of wildtype and SCV colonies (Figure 2.2). As 

the antibiotic concentration was increased wildtype colonies were completely 

eradicated leaving only SCV colonies. CLSI guidelines stipulate that a 99.9% 

reduction from the ‘original’ inoculum is required to achieve MBC criteria. 

Consequently the MBC was recorded as the lowest concentrations at which 99.9% of 

wildtype were eliminated and MSCVPC was introduced to cover the concentration at 

which SCVs were not detected. The MSCVPC varied for each aminoglycoside but 

was always within the range of being equal to 2 times greater than the MBC (Table 

2.2).  

2.3.3 SCV selection frequencies  

All four aminoglycosides were successful in isolating SCVs although differences in 

frequencies after exposure to different concentrations and between strains were 

observed (Table 2.3). Notably the presence of subinhibitory concentrations (X 0.25 

and X 0.5 MIC) of all aminoglycosides significantly increased the recovery of SCVs 

in comparison to untreated control conditions (P = < 0.01). SCVs were recovered 

from control conditions that were plated on kanamycin and streptomycin in both  
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Table 2.2 Aminoglycoside MICs, MBCs and MSCVPC (mg/L) for S. aureus 

ATCC 25923 and EMRSA 15 determined by broth microdilution 

 

 

 

 

Modal MIC, MBC and MSCVPC values are presented. Modal values were obtained 

from three independent replicates and three independent biological replicates. 

 

 

 

 

 

 

 

 

 

 MIC MBC  MSCVPC MIC  MBC  MSCVPC 

Gentamicin 0.25 0.5 1 1 2 4 

Neomycin 0.5 1 2 2 5 10 

Kanamycin 2 4 8 4 12 20 

Streptomycin 2 8 8 4 20 30 

                                             ATCC 25923                                  EMRSA  15 
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A) B) C)

 

Figure 2.2 Characteristics associated with S. aureus SCVs recovered following aminoglycoside exposure A) - Presence of parent and SCV 

colonies (arrow) recovered following MBC testing; B) - Restoration of wildtype growth and pigmentation around a filter disc impregnated with 

haemin indicating haemin auxotrophy; C) - Agglutination positive S. aureus (top) and agglutination negative S. aureus SCVs (bottom). The 

differences in colony size, pigmentation and coagulase activity demonstrate the difficulties in identifying S. aureus SCVs using traditional 

methods.   
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strains and from only EMRSA 15 in the case of neomycin. Interestingly 

concentrations of aminoglycosides that are inhibitory (exceeded MIC) to ATCC 

25923 and EMRSA 15 were also found to select for SCVs. Exposure of EMRSA 15 

to all tested combinations across the range of aminoglycoside gave rise to SCVs, 

expect for X 4 MIC gentamicin (Table 2.3). In contrast SCVs were not detected from 

ATCC 25923 after to exposure to any aminoglycosides at X 4 MIC concentration. 

Exposure to X 4 MIC for EMRSA 15 proved to be the most efficient concentration in 

selecting for SCVs for neomycin, kanamycin and streptomycin.  

2.3.4 Identification of SCVs as S. aureus using multiplex PCR 

Amplification of 16S rRNA and nuc genes was successfully employed to ensure that 

all SCVs were S. aureus and not contaminants (Figure 2.3). SCV isolates recovered 

following exposure to various aminoglycoside concentrations show the presence of 

16S rRNA (756 bp) and nuc (279 bp), which can also be observed in the parent strain 

(Figure 2.3). Additionally the presence of mecA (310bp) can be observed in SCV 

isolates recovered from EMRSA 15, permitting discrimination between MRSA and 

MSSA strains.    

2.3.5 Reversion rates  

The rate at which SCVs reverted to the parent form varied according to the 

aminoglycoside concentration applied. SCV isolated at X 2 and X 4 MIC of the four 

aminoglycosides tested were deemed as stable isolates as no revertants were detected 

(Table 2.4). SCVs isolated from X 0.25 MIC of all aminoglycosides showed high 

rates of reversion, and reversion rates were significantly higher than reversion rates at 

X 0.5 MIC (P = < 0.05). As aminoglycoside concentrations increased, the frequency 

at which revertants from both strains were detected decreased. For example the 

reversion frequency of EMRSA 15 SCV isolated from X 0.5 MIC neomycin exposure 

(2.2 X 10-4) was significantly higher than the reversion frequency of EMRSA 15 SCV 

isolated from MIC neomycin exposure (8.4 X 10-5; P = < 0.05). Comparison of SCVs 

selected from different aminoglycosides revealed no significant difference in 

reversion rates.  
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Table 2.3 SCV selection frequencies (expressed as SCVs per CFU) after 24 hours exposure to increasing concentrations of 

aminoglycosides  

 

 Control 

25923           E15 

X 0.25 MIC 

25923         E15 

X 0.5 MIC 

25923         E15 

MIC 

25923         E15 

X 2 MIC 

25923         E15 

X 4 MIC 

25923         E15 

Gentamicin  
ND ND 2.1 X 10-4 8.7 X 10-4 3.5 X 10-2 2.5 X 10-3 6.2 X 10-2 2.1 X 10-2 2.1 x 10-1 2.5 X 10-1 ND ND 

Neomycin 
ND 1.1 X 10-6 8.3 X 10-4 3.2 X 10-5 2.6 X 10-3 3.9 X10-3 1.7 X 10-2 4.2 X 10-2 2.6 X 10-1 8.5 X 10-1 ND 2.5 X 102 

Kanamycin 
2.7 X 10-6 6.2 X 10-6 5.1 X10-5 2.1 X 10-5 2.1 X 10-2 7.6 X 10-3 8.4 X 10-2 1.6 X 10-2 5.4 X 10-1 5.9 X 10-1 ND 3.2 X 102 

Streptomycin  
1.5 X 10-6 7.3 X 10-5 4.2 X 10-4 8.9 X 10-5 5.9 X 10-3 5.7 X 10-3 5.3 X 10-3 7.5 X 10-3 2.3 X 10-1 4.2 X 10-2 ND 4.8 X 102 

 

25923 – ATCC 2923; E15 – EMRSA 15; ND – SCVs not detected 
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Figure 2.3 Multiplex PCR of SCV isolates recovered from various concentrations of gentamicin L - Hyperladder 1; A1 – ATCC 253923 WT; A2 - 

ATCC 25923 SCV X 0.25 G; A3 - ATCC 25923 SCV X 0.5 G; A4 - ATCC 25923 SCV MIC G; A5 - ATCC 25923 SCV X 2 MIC G; B1 – EMRSA 15 WT; 

B2 – EMRSA 15 SCV X 0.25 G; B3 – EMRSA 15 SCV X 0.5 G; B4 – EMRSA 15 SCV MIC G; B5 – EMRSA 15 SCV X 2 MIC G. Multiplex PCR 

confirmed SCV isolates as S. aureus. The presence of the additional band in EMRSA 15 SCV isolates is attributed to the presence of mecA (310bp). 

 

 



 55 

 

Table 2.4 Reversion frequencies (expressed as CFU per SCV) of SCV isolated from increasing aminoglycoside concentrations  

 

 

 X 0.25 MIC 

25923         E15 

X 0.5 MIC 

25923         E15 

MIC 

25923         E15 

X 2 MIC 

25923         E15 

X 4 MIC 

25923         E15 

Gentamicin  5.8 X 10-2 3.5 X 10-2 2.2 X 10-3 2.7 X 10-4 1.2 X 10-6 4.1X 10-5 S S NT NT 

Neomycin 3.1 X 10-1 7.1 X 10-1 6.1 X 10-4 2.2 X10-4 5.7 X 10-5 8.4 X 10-5 S S NT S 

Kanamycin 4.2 X10-2 5.3 X 10-2 5.1 X 10-3 4.1 X 10-4 4.2 X 10-6 5.4 X 10-6 S S NT S 

Streptomycin  6.3 X 10-2 5.6 X 10-2 4.6 X 10-3 5.2 X 10-4 3.6 X 10-5 2.6 X 10-5 S S NT S 

 

25923 – ATCC 2923; E15 – EMRSA 15; S – stable isolates (no revertants detected); NT – not tested. Large rapidly growing pigmented colonies were 

recorded as revertants.   
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2.3.6 Growth rates in the presence of aminoglycosides  

Parent strains ATCC 25923 and EMRSA 15 displayed typical S. aureus growth rates 

when grown in unmodified MH broth (Figure 2.4). The presence of X 0.25 MIC 

gentamicin and kanamycin significantly increased the lag phase in strain ATCC 

25923 (P = < 0.001). The same conditions in strain EMRSA 15 however resulted in 

growth profiles similar to unmodified conditions. As S. aureus strains were exposed 

to increasing concentrations of aminoglycosides lag phase duration increased in a 

concentration dependant manner (Figure 2.4). For example, exposure to X 0.5 MIC 

gentamicin concentration resulted in an average 9 hour lag phase duration where as 

exposure to X 2 MIC gentamicin concentration resulted in an average lag phase 

duration of 16.5 hours. Exposure of ATCC 25923 to X 2 MIC gentamicin and 

kanamycin resulted growth profiles with a significantly lower growth rate in 

comparison to other concentrations (P = < 0.05), similar to the growth rate of SCVs. 

Sampling of wells following the completion of growth rates analysis confirmed the 

presence of a S. aureus SCVs population in gentamicin and kanamycin concentrations 

of X 2 MIC for ATCC 253923. Although concentrations of X 4 MIC gentamicin and 

kanamycin resulted in no change in optical density, sampling of EMRSA 15 exposed 

to X 4 MIC kanamycin revealed the presence of a SCV population. SCVs were not 

detected for ATCC 25923 exposed to X 4 MIC for gentamicin and kanamycin and 

EMRSA 15 at X 4 MIC gentamicin. This is in agreement with MSCVPC obtained 

previously, as X 4 MIC values are equal to MSCVPC values.  

2.3.7 Biochemical profiles  

Contrasting biochemical profiles between parent and SCV isolates were observed for 

both strains, and biochemical profiles of EMRSA 15 and corresponding SCV isolates 

are shown in Table 2.5. Parent strains displayed the ability to ferment a range of 

carbohydrates as well as production of alkaline phosphatase, arginine dihydrolase and 

urease enzymes. All SCV isolates were unable to ferment mannitol where as SCVs 

selected from higher aminoglycosides concentrations were unable to ferment lactose, 

maltose and sucrose (Table 2.5). Furthermore, loss of enzymatic activity was also 

observed in several SCV isolates. Alkaline phosphatase activity was not detected in 

SCVs isolated from X 2 MIC gentamicin and kanamycin and X 4 MIC kanamycin. 
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Figure 2.4 Growth rates of ATCC 25923 and EMRSA 15 in varying concentrations of gentamicin and kanamycin A1) - ATCC 25923 gentamicin;             

A2) - ATCC 25923 kanamycin; B1) - EMRSA 15 gentamicin; B2) - EMRSA 15 kanamycin. Generally increasing aminoglycoside concentration results in an 

increase in lag phase duration and a reduction in final optical density. Data is the mean of three independent replicates.   
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Table 2.5 Biochemical profiles of EMRSA 15 and corresponding SCVs selected for in the presence of different concentrations of gentamicin and 

kanamycin 

 

 

Differences between SCV and parents are shaded in grey. G - Gentamicin; K – Kanamycin; + - Positive (enzyme activity, fermentation of carbohydrate); - = 

Negative (lack of enzyme activity, inability to ferment carbohydrates); NT – not detected. Test abbreviations are shown in Appendix 1. 

  G              K       G              K       G              K       G              K       G              K  
GLU + + + + + + + + + NT + 
FRU + + + + + + + + + NT + 
MNE + + + + + + + + + NT + 
MAL + + + + + - + - - NT - 
LAC + + + + + + + - - NT - 
TRE + + + + + + + + + NT + 
MAN + - - - - - - - - NT - 
XLT - - - - - - - - - NT - 
MEL - - - - - - - - - NT - 
NIT + + + + + + + + + NT + 
PAL + + + + + + + - - NT - 
VP + + + + + + + + + NT + 

RAF - - - - - - - - - NT - 
XYL - - - - - - - - - NT - 
SAC + + + - + - + - - NT - 
MDG - - - - - - - - - NT - 
NAG + + + + + + + + + NT + 
ADH + + + + + + + + + NT + 
URE + + + + + + + + + NT - 

Parent  SCV X 0.25 MIC SCV X 0.5 MIC SCV X MIC SCV X 2 MIC SCV X 4 
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A lack of urease activity was also observed in SCV isolated from X 4 MIC 

kanamycin. 

2.3.8 Carotenoid production  

Methanol extraction of carotenoids revealed similar absorbance values corresponding 

to similar levels of carotenoids in parent strains (ATCC 25923 = 0.20 ± 0.01, EMRSA 

15 = 0.22 ± 0.007). All SCV isolates produced lower amounts of carotenoid in 

comparison and differences in the amount of carotenoid produced by SCV isolates 

was observed according to the concentration of the selecting aminoglycoside (Figure 

2.5). SCVs isolates from both strains following exposure to MIC, X 2 MIC and X 4 

MICs of gentamicin and kanamycin were significantly reduced in comparison to 

parent strains (P = < 0.001). Complete absence of carotenoid was observed in 

EMRSA 15 SCVs recovered from exposure to X 2 MIC gentamicin and X 2 and X 4 

MIC kanamycin (Figure 2.5).  

2.3.9 Intracellular ATP concentrations  

Similar intracellular ATP concentrations were recorded for parent strains (Figure 2.6). 

Overall SCV isolates contained lower intracellular ATP levels in comparison to parent 

strains (Figure 2.6). ATP concentrations decreased as the concentration of the selected 

aminoglycoside increased. Average ATP concentrations of SCV isolates from both 

strains following exposure to MIC,  X 2 MIC and X 4 MIC gentamicin and 

kanamycin concentrations were significantly reduced in comparison to parent strains 

(P = < 0.001).  

2.3.10 Auxotrophy profiles  

Auxotrophy was confirmed if SCVs appeared as fast growing pigmented colonies 

around filter discs impregnated with haemin, menadione or thymidine. Auxotrophy 

was detected in 26/40 (65 %) isolates examined in this study (Figure 2.7). Haemin 

auxotrophy was the most frequently auxotrophy detected with 12/40 (30%) of 

isolates. Auxotrophy for a combination of haemin and menadione was the second 

most frequent auxotrophy detected with 10/40 isolates (25%) displaying this 

auxotrophy profile. The remaining isolates in which auxotrophy was identified were 

menadione auxotrophs (5/40; 10%). Auxotrophy for thymidine was not detected in 

any of the SCV isolates tested.  
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Figure 2.5 Carotenoid production in SCVs isolated following exposure to different aminoglycoside concentrations A) - ATCC 25923; B) - 

EMRSA 15. Carotenoid production was completely absent in SCV isolated from higher aminoglycoside concentrations. Results are the means of 

three independent replicates and three biological replicates. Error bars represent standard error. 
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Figure 2.6 Intracellular ATP concentrations of SCVs isolated following exposure to different aminoglycoside concentrations A) - ATCC 25923; B) - 

EMRSA 15. SCVs isolated following exposure to MIC, X 2 and X 4 MIC aminoglycoside concentrations contained significantly lower levels of intracellular 

ATP in comparison to parent strains. Results are the means of three independent replicates and three biological replicates. Error bars represent standard error 
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Gentamicin

Kanamycin

Neomycin

Streptomycin 

 

Hemin Menadione Hemin + Menadione No auxotrophy detected 

 

 

Figure 2.7 Auxotrophy profiles of SCV isolates following exposure to different 

concentrations of four aminoglycosides A complete absence of thymidine 

auxotrophy was observed. Number of isolates examined; gentamicin n = 8, 

kanamycin n = 11, neomycin n = 10 and   streptomycin n = 11. 
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2.3.11 Mutation frequency to rifampicin resistance  

Differences in mutation frequency were observed between SCV isolates and parent 

strains. SCV isolate isolated from exposure to X 0.25, X 0.5 and X MIC gentamicin 

and kanamycin concentrations displayed mutation frequencies significantly greater 

than parent strains (P = < 0.05; Table 2.6). ATCC  25923 SCV isolates recovered 

from exposure to X 2 MIC gentamicin and EMRSA 15 SCV isolates recovered from 

exposure to X 2 MIC gentamicin and  X 2 and X 4 MIC kanamycin concentrations 

displayed significantly higher mutation rates than SCV isolates recovered following 

exposure to lower aminoglycoside concentrations and corresponding parent strains            

(P = < 0.05). In SCV isolates where the mutation frequency to rifampicin resistance 

was > 10-7 isolates were termed as hypermutators due to their high mutation 

frequencies (Table 2.6). 
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Table 2.6 Mutation frequency to rifampicin resistance of SCV isolates and 

corresponding parent strains  

 

Gentamicin isolates  

 

Isolate ATCC 25923 EMRSA 15  
Parent  2.1 X 10-10  1.5 X 10-10 

SCV X 0.25  1.9 X 10-9 1.8 X 109 
SCV X 0.5 8.9 X 10-9  7.2 X 10-9 

SCV X MIC 2.1 X 10-9 6.7 X 10-8 
SCV X 2 MIC 8.5  X 10-6 8.1 X 10-6 

 

 

Kanamycin isolates  

 

Isolate ATCC 25923 EMRSA 15  
Parent  2.1 X 10-10 1.5 X10-10 

SCV X 0.25  7.8 X 10-9 1.2 X 10-9 
SCV X 0.5 5.9 X 10-9 7.8 X 10-9 

SCV X MIC 5.4 X 10-9 2.1 X 10-8 
SCV X 2 MIC 2.2 X 10-6 6.1 X 10-6 
SCV X 4 MIC - 2.6 X 10-6 

 

 

Mutation frequencies are the mean of three independent replicates. Isolates were 

regarded as strong hypermutators if mutation frequency was greater that 10-7 and are 

shown in bold.  
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2.4 Discussion 

Aminoglycosides (particularly gentamicin) have been demonstrated to select for 

SCVs of S. aureus, as well as other bacterial species, including E. coli (Lewis et al., 

1991) and Pseudomonas aeruginosa (Langford et al., 1989). This study highlights the 

ability of gentamicin, neomycin, kanamycin and streptomycin to select for                    

S. aureus SCVs at various concentrations. To our knowledge this is the first study that 

has compared SCV selection and corresponding isolates following exposure to 

various aminoglycosides across a broad range of concentrations.  

 

One of the important implications of this work relates to aminoglycoside 

susceptibility testing of S. aureus. CLSI guidelines stipulate that MICs are defined as 

‘the lowest concentration of antimicrobial agent that inhibits growth of the organism 

in microdilution wells as detected by the untrained eye’ (CLSI, 2006). In well plate 

susceptibility testing this is based on the absence of turbidity following incubation. 

The results of this study clearly highlight certain shortcomings of this form of 

susceptibility testing as concentrations exceeding aminoglycoside MICs, resulted in 

the growth of S. aureus through the formation of SCVs. CLSI guidelines state that an 

incubation time of 16-20 hours should be adhered to before reading MICs. However, 

in this study increases in absorbance were frequently detected following 15 or more 

hours incubation which may not be sufficient to be detected by laboratory personal 

when recording MICs by eye. Aminoglycoside susceptibility testing for S. aureus and 

other bacterial species should therefore take into consideration the formation/selection 

of SCVs. Increasing the incubation time to 48 hours will allow changes in optical 

density (caused by the growth of SCVs) to be recorded. Furthermore, SCVs were 

often recovered from aminoglycoside concentrations that exceeded concentrations 

that were bactericidal for parent S. aureus. We therefore implemented the term 

‘minimum SCV prevention concentration’. The application of the MSCVPC may 

have applications in susceptibility testing as it ensures the elimination of the whole 

population regardless of whether the test compound has led to the selection of SCVs.  

 

The phenotypic appearance of aminoglycoside selected SCVs on solid agar also 

presents identification difficulties. Contrasting colony size and the lack of 

pigmentation observed in SCVs may result in the conclusion that S. aureus is not 
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present. Mannitol salt agar is a selective, differential medium that has been used for 

the isolation of S. aureus (Sharp & Searcy, 2006). The observation that SCV isolates 

in this study failed to ferment mannitol and observations of other mannitol 

fermentation deficient SCVs (Atalla et al., 2008) suggests that SCVs will not be able 

to grow on mannitol salt agar and may go undetected. Furthermore rapid identification 

tests such as the presence of coagulase (to differentiate between S. aureus and CoNS) 

are subject to limitations when testing SCVs due to their lack of coagulase activity. In 

this study molecular identification was used to successfully confirmed SCV isolates as          

S. aureus. Molecular identification overcomes the failings of phenotypic testing 

concerning the identification of SCVs. The use of multiplex PCR also allows the 

identification of the presence of resistance determinants (such as mecA) which may be 

an important consideration when considering treatment of S. aureus infections. If an 

SCV infection is suspected applying molecular identification can provide important 

evidence regarding the causative agent.   

 

In total 40 different isolates were recovered following the application of various 

aminoglycoside selection conditions. Various differences were observed between 

these isolates. Contrast in levels of intracellular ATP between SCV isolates and 

parents was observed. No correlation between the concentration of the selecting 

aminoglycoside and the resulting auxotrophy was observed. Reduced ATP production 

in SCVs is related to defects in electron transport (Proctor et al., 2006). In this study 

we were able to identify auxotrophy for haemin, menadione or a combination of both 

in 65% of isolates. Haemin and menadione have crucial roles in electron transport as 

discussed previously (see section 1.4.1.2). The reduced levels of ATP in SCVs can be 

linked to auxotrophy for these compounds. In the remaining SCV isolates in which it 

was not possible to determine auxotrophy profiles defects in other complexes or 

components of the electron transport chain may be responsible for the SCV 

phenotype. Possible candidates include defects in unsaturated fatty acid biosynthesis 

or in the F0F1-ATPase. Unsaturated fatty acid biosynthesis is required to form the 

isoprenoid tail that is added to form menaquinone (Collins & Jones, 1981; Kaplan & 

Dye, 1976), so a defect in the production of this lipid would disrupt formation of the 

electron transport chain. Mutations or inhibition of the F0F1-ATPase (which is 

required for ATP generation) have also been suggested to produce the SCV phenotype 

(McNamara & Proctor, 2000). Mutations in the genes involved in the biosynthesis of 
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the F0F1-ATPase can generate SCVs in E. coli (Jensen & Michelsen, 1992), therefore 

the same may be apparent in S. aureus.  

 

Differences in intracellular ATP concentrations were apparent between isolates and a 

correlation between the selecting aminoglycoside concentration and levels of ATP 

observed.  SCVs selected at higher aminoglycosides concentrations had lower levels 

of intracellular ATP in comparison to those isolated at lower concentrations. As the 

electron transport chain is SCVs is not fully operational, an upregulation of glycolytic 

and fermentative pathways is required in order to generate ATP (Kohler et al., 2003). 

However in order to utilise other carbohydrates, a fully functional tricarboxylic acid 

cycle (TCA cycle) is required. Differences in carbohydrate utilisation were observed 

in the SCVs isolated in this study, which has been reported previously using 

phenotypic microarray profiling (von Eiff et al., 2006). The failure to ferment 

carbohydrates can be related to accumulation of NADH, which occurs as a result of 

defects in electron transport (Proctor, 2006). The differences in biochemical profiles 

between the isolates in this study may therefore by related to more pronounced defects 

in TCA cycle function. For example isolates that have lost the ability to ferment 

multiple carbon sources may show a further, down regulation of enzymes involved in 

TCA cycle blocking the fermentation of certain carbohydrates (Proctor, 2006). 

Another plausible explanation is that reduction in cellular ATP indirectly blocks the 

uptake of complex carbohydrates and also indirectly blocks the steps of the 

phosphotransferase systems inhibiting the utilisation of lactose, mannitol, maltose and 

sucrose (Reizer et al., 1988). Further pronounced deficiencies in ATP availability may 

explain why SCVs isolated following exposure to higher aminoglycoside 

concentrations may show further deficiencies in carbohydrate utilisation.    

 

The deficiencies in ATP production appear to correlate with deficiencies in carotenoid 

production. SCVs isolated at higher aminoglycoside concentrations showed 

undetectable carotenoid production, whereas as isolate recovered from a lower 

aminoglycoside concentration showed carotenoid production similar to parent strains. 

In order to drive carotenoid biosynthesis and produce pigment, S. aureus, must 

expend energy and process ATP as well as a functional ETC to function (Proctor, 

2000). The lower ATP levels observed in S. aureus SCVs results in the variation in 

carotenoid production observed in this study. Although the presence of pigmentation 
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in S. aureus protects cells from oxidative stress (Clauditz et al., 2006), SCVs may 

expend the limited available energy for essential cellular process such as cell wall 

biosynthesis at the cost of pigment production.  

 

Several isolates showed high levels of mutational resistance towards rifampicin and 

were deemed hypermutators. These isolates were recovered from the higher 

aminoglycoside concentrations tested. Hypermutability is considered to be a key force 

in driving bacterial evolution and bacteria displaying the associated increases in 

mutation frequency are recovered from cystic fibrosis (CF) patients (Oliver et al., 

2000). CF patients infected with hypermutable isolates can suffer from increased 

infection duration and isolates often display raised levels of antibiotic resistance 

(Macia et al., 2005; Mena et al., 2007). The hypermutator phenotype has been linked 

to defects in the methyl-directed mismatch repair (MMR) system (Oliver et al., 2002), 

allowing for adaptation (through increasing mutation frequency) whilst reducing the 

risk of accumulating deleterious mutations (Jolivet-Gougeon et al., 2011). The 

hypermutator phenotype in SCV isolates observed in this study may aid persistence 

and long term survival. SCV isolates recovered from higher aminoglycosides 

concentrations in this study also show reduced energy levels. Coupled with the 

observation that the hypermutator phenotype permits a fitness disadvantage (Jolivet-

Gougeon et al., 2011), SCV isolates are severely impaired. The hypermutator 

phenotype may provide a survival mechanism through the SCV phenotype allowing 

long term persistence and the development of antibiotic resistance.  

 

The alternative sigma factor, σB is an important regulator in S. aureus influencing the 

expression of many genes including various virulence factors (Bischoff et al., 2004), 

many of which show altered levels of expression in SCVs (Kohler et al., 2003). σB 

has been implicated in the formation of SCVs following aminoglycoside exposure 

(Mitchell et al., 2010a) and sustained σB activity in S. aureus SCV isolates has been 

associated with ‘locking’ SCVs into a constant state of colonisation (Mitchell et al., 

2008). It is feasible that expression of σ
B varies between the aminoglycoside select 

SCV isolates examined in this study. Several isolates from higher aminoglycoside 

concentrations showed a lack of reversion to the wildtype form. However SCVs 

isolate from lower aminoglycoside concentrations were associated with higher 

reversion frequencies. σB expression therefore may directly correlate to the 
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concentration of the selecting aminoglycoside and isolates selected for in the presence 

of higher aminoglycoside concentrations may display a sustained rate of increased σ
B 

expression maintaining the SCV phenotype.  

 

This study highlights the ability of a range of aminoglycosides to select for SCVs and 

that formation of the SCV phenotype provides a survival mechanism to bypass the 

inhibitory effects of aminoglycosides. Through analysis of various isolates it is 

proposed that aminoglycoside selection directly impacts on energy availability and σB 

expression. Differences in energy levels results in differences in carotenoid 

biosynthesis and carbohydrate utilisation. σB expression may correlate with 

aminoglycoside in a concentration dependant manner and serve as a governing global 

regulator influencing SCV characteristics. The observation of hypermutability 

suggests that the SCV phenotype in various isolates may be further geared towards 

survival and persistent in order to over overcome environmental stress. On the outset 

the variants are observed as slow growing variants with attenuated virulence where as 

in real terms they have the characteristics for persistence and antibiotic resistance. 

With this in mind the analogy ‘a wolf in sheep’s clothing’ is useful in characterising 

the SCV phenotype. 
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2.5 Conclusions  

• Increasing aminoglycoside concentrations increase the duration of lag time in             

S. aureus and prolonged incubation can result in the growth of S. aureus through 

the formation of SCVs 

• Examining SCV selection in the presence of aminoglycosides revealed that 

aminoglycoside susceptibility testing of S. aureus may be hindered through the 

formation of S. aureus SCVs, resulting in the implementation of a ‘minimum SCV 

prevention concentration’  

• Multiplex PCR targeting S. aureus specific genes is a useful tool in overcoming 

the uncertainty surrounding SCV identification and can be used to confirm SCVs 

as S. aureus  

• S. aureus SCVs can be selected for following exposure to kanamycin, gentamicin, 

neomycin and streptomycin at a range of concentrations including those that 

exceeding MBC 

• Auxotrophy for haemin and menadione is responsible for the disruption of the 

electron transport chain and the SCV phenotype in the majority of aminoglycoside 

selected SCVs  

• Variation in carbohydrate utilisation, carotenoid production and levels of 

intracellular ATP are apparent in SCVs selected in the presence of 

aminoglycosides   

• SCV isolates selected at higher aminoglycoside concentrations can be classified as 

hypermutators and these isolates also show a high level of stability  
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3 CHAPTER 3: TETRACYCLINE SELECTION FOR 
STAPHYLOCOCCUS AUREUS SMALL COLONY VARIANTS  

3.1 Introduction  

3.1.1 History of tetracycline  

The tetracycline group of antibiotics, discovered in the 1940s exhibit antimicrobial 

activity against a broad range of Gram-negative and positive microorganisms (Chopra 

& Roberts, 2001). Chlortetracycline was the first member of the family to be isolated 

(from Streptomyces aureofaciens) and is classed as a first generation tetracycline 

along side oxytetracycline and tetracycline (Roberts, 1996). These compounds were 

discovered by systematic sampling of fermentation products of spore forming soil 

bacteria and were rapidly introduced into clinical practice (Thaker et al., 2010). This 

was followed by the development of minocycline and doxycycline constituting the 

second generation tetracyclines, followed by the development of the glycylcyclines 

e.g. tigecycline (third generation tetracyclines; Chopra & Roberts, 2001). Second and 

third generation tetracyclines are the products of semi-synthesis, i.e. synthetic organic 

manipulation of natural product antibiotic scaffolds (Thaker et al., 2010).  

 

Several aspects of the tetracyclines make them excellent therapeutic agents; they 

exhibit good oral absorption and low toxicity, are relatively inexpensive and most 

importantly they are active against common pathogens (Schnappinger & Hillen, 

1996). Tetracyclines have been used for the clinical treatment of a wide range of 

infections including respiratory tract infections and sexually transmitted diseases, as 

well in the management of acne (Zhanel et al., 2004).  

3.1.2 Mode of action 

The antimicrobial activity of tetracyclines is achieved via inhibition of bacterial 

protein synthesis. Several tetracycline binding sites on the ribosome are present, but 

the key binding appears to be in the region of the tRNA acceptor site (Anokhina et al., 

2004). ‘Typical’ tetracyclines (such as tetracycline and doxycycline) bind to the 

bacterial 30S ribosomal subunit and exert bacteriostatic activity via preventing the 

attachment of aminoacyl t-RNA to the ribosomal receptor site (Roberts, 1996). 

‘Atypical’ tetracyclines exhibit bactericidal activity (Chopra, 1994) and studies in E. 

coli demonstrated that they are poor inhibitors of protein synthesis and are thought to 
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target the cytoplasmic membrane interfering with membrane permeability (Oliva et 

al., 1992).   

3.1.3 Mechanisms of resistance  

The use of tetracyclines has declined in recent decades due to the emergence of 

resistant strains of bacteria (Griffin et al., 2010). The first incidence of tetracycline 

resistance was reported in Shigella dysenteriae in 1953 (Roberts, 1996). Four different 

mechanisms of bacterial resistance to the tetracyclines have been identified (Figure 

3.1). These include: 1) protection of the antibiotic target i.e. the ribosome; 2) 

reduction of tetracycline intracellular concentration via efflux; 3) inactivation of the 

tetracycline molecule by modifying enzymes; and 4) target modification 

(Schnappinger & Hillen, 1996). Tetracycline resistance is normally due to the 

acquisition of new genes often associated with either a mobile plasmid or transposon 

(Roberts, 1996). Tetracycline resistance genes are diverse in sequence and recent 

analysis reported that 1,189 tetracycline genes have been reported in more than 84 

genera and 354 species of Gram-positive and Gram-negative bacteria (Liu & Pop, 

2009). 

3.1.3.1 Ribosomal protection proteins  

Ribosomal protection proteins (RPPs) were first identified in streptococci, in which 

the TetM protein was shown to provide resistance to tetracycline (Burdett, 1986). 

RPPs are soluble cytoplasmic proteins that display sequence similarity with the 

elongation factors involved in protein synthesis (Zakeri & Wright, 2008).  RPPs are 

thought to interact with the protein at the base of the ribosome disrupting the primary 

tetracycline binding site, causing tetracycline molecules to be released from the 

ribosome (Burdett, 1996; Roberts, 2005). There are various different RPPs spanning 

Gram positive and Gram negative bacterial genera, where Tet(O) and Tet(M) are the 

most prevalent and the best studied classes (Zakeri & Wright, 2008). RPPs are 

approximately 72.5 kDa in size and the genes encoding them are divided into three 

groups based on the amino acid sequence of encoded proteins (Connell et al., 2003; 

Taylor & Chau, 1996). Group-1 includes tet(M), tet(O), tet(S), tet(W), tet(32), and 

tet(36), whereas Group-2 includes tetB(P). Finally Group-3 is contains a smaller 

number and includes tet(Q) and tet(T) (Thaker et al., 2010).  
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Figure 3.1 Bacterial mechanisms employed for resistance to the tetracycline class 

of antibiotics. Efflux, ribosomal protection proteins are widespread in bacteria, 

mediated through horizontal gene transfer whereas target mutation and inactivation 

have been sparsely reported. Adapted from Zakeri & Wright (2008) and Thacker et 

al., (2010) 
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3.1.3.2 Efflux mediated resistance  

Efflux mediated resistance reduces the concentration of tetracycline in the cytoplasm 

via the tet efflux genes coding for 46 kDa membrane associated proteins that export 

tetracycline out of the cell (Chopra & Roberts, 2001). Efflux predominantly occurs 

via proteins that are members of the major facilitator superfamily (MFS) group of 

membrane transporters (Paulsen et al., 1996). Energy-dependent removal of 

tetracyclines involves the exchange of a proton for a tetracycline-cation complex via 

these membrane associated transporters (Butaye et al., 2003). Since the original 

reports of efflux mediate tetracycline resistance in E. coli (McMurry et al., 1980), 

several other classes of tet efflux genes have been described. The first group includes 

tet(A)–(E), (G), (H), (J), and (Z) as well as tet(30) (Roberts, 2005). Classes A, B, D, 

and H are associated with non-conjugative transposons or transposon-like elements 

where as classes C, E, and G are often found on plasmids (Roberts, 1996). The other 

group of the tet efflux genes (including tet(K) and tet(M)) are distributed among 

Gram-positive bacteria including Bacillus and Staphylococcus species. The substrate 

spectrum of the Tet efflux proteins present in bacteria commonly includes 

tetracycline, oxytetracycline, chlortetracycline and doxycycline, but not minocycline 

and glycylcyclines (Schnappinger & Hillen, 1996).  

3.1.3.3 Enzymatic inactivation  

The first tetracycline inactivating enzyme to be discovered was tet(X) from a strain of 

Bacteroides fragilis, although it did not convey resistance in its host (Speer et al., 

1991). The tet(X) gene product is a 44-kDa cytoplasmic protein that chemically 

modifies tetracycline (Chopra & Roberts, 2001). Tet(X) is monooxygenase enzyme 

that acts on first and second generation tetracyclines, but it is also active against the 

recently approved third generation tetracycline; tigecycline (Moore et al., 2005; Yang 

et al., 2004). To date tet(X) has not be found amongst clinically-derived bacterial 

strains (Moore et al., 2005), however the fact that it was originally found on a mobile 

genetic element (Speer et al., 1991) suggests that it can be passed between bacteria 

via horizontal gene transfer. Two other genes tet(34) and tet(36) have been proposed 

as tetracycline inactivators, but their exact mechanism of tetracycline inactivation is 

not fully understood (Thaker et al., 2010).  
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3.1.3.4 Target modification  

Target modification is the least prevalent of all tetracycline resistance mechanisms. 

Studies using tetracycline resistant propionibacteria (Propionibacterium acnes) 

revealed that single base mutations in the 16S rRNA sequence were responsible for 

tetracycline resistance (Ross et al., 1998). Several studies have also shown that 

substitutions in the primary binding site of the 16S rRNA of Helicobacter pylori can 

mediate tetracycline resistance (Gerrits et al., 2002; Trieber & Taylor, 2002).  

3.1.3.5 Tetracycline resistance in S. aureus 

Two mechanisms of tetracycline resistance have been identified in S. aureus. Active 

efflux via tet(K) and tet(L) and ribosomal protection mediated via tet(M) (Fluit et al., 

2005). Both tet(K) and tet(L) confer resistance to tetracycline and chlortetracycline, 

but in the majority of cases tetracycline efflux in S. aureus is mediated by tet(K), 

which is commonly carried on the 4.4 kb plasmid pT181 (Guay et al., 1993; 

Werckenthin et al., 1996). The conjugative transposon Tn5801 carries tet(M) which 

mediates tetracycline and minocycline resistance through ribosomal protection 

(Kuroda et al., 2001). A survey regarding the distribution of S. aureus tetracycline 

resistance mechanisms in various European hospitals concluded that tet(K) and tet(M) 

were the most prevalent resistance mechanisms (Fluit et al., 2005). 

3.1.4 Tigecycline  

Tigecycline belongs to a recently developed derivative of the tetracycline class of 

antibiotics know as the glycylclines (Stein & Craig, 2006). Tigecycline is a structural 

derivative of minocycline, differing from it by the long side chain at the 9 position of 

carbon atom of the D ring of the tetracyclic nucleus (Seputiene et al., 2010). The 

molecular basis of tigecycline action is similar to the tetracyclines, binding to the 

ribosome 30S subunit and preventing attachment of aminoacylated tRNAs to the 

ribosomal A site (Bauer et al., 2004). Tigecycline however posseses an advantage 

over the first and second generation tetracyclines as it can overcome the previously 

described mechanisms of tetracycline resistance. Ribosomal protection resistance is 

overcome as tigecycline remains bound to ribosomes that have been modified by 

tet(M) (Petersen et al., 1999). Secondly the long side chain of tigecycline makes the 

molecule a poor substrate for tetracycline efflux pumps (Someya et al., 1995).  
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A broad spectrum of human pathogens including penicillin resistant S. pneumonia, 

vancomycin-resistant enterococci, methicillin-resistant S. aureus (MRSA) and 

vancomycin-intermediate S. aureus are all widely susceptible (Noskin, 2005). 

Tigecycline is primarily bacteriostatic with time dependent activity against MRSA 

and other Gram-positive pathogens (Stryjewski & Corey, 2009). Although tigecycline 

resistance has been reported in medically important pathogens such as Enterococcus 

faecalis and (Werner et al., 2008) and Acinetobacter baumannii  (Navon-Venezia et 

al., 2007) tigecycline resistance is yet to be reported in clinical isolates of S. aureus. 

However in vitro studies have shown increased expression of a member of the 

multidrug and toxin extrusion (MATE) family of efflux pumps (mepA) can result in 

reduced tigecycline susceptibility (McAleese et al., 2005).  
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3.1.5 Aims 

Various antimicrobial agents are known to select for S. aureus SCVs; however no 

study has examined the ability of the tetracycline class of antibiotics to do so. 

Therefore the aims of this study were to:   

• Determine if members of the tetracycline class of antibiotics can select for              

S. aureus SCVs and compare selection frequencies between various strains 

• Characterise any SCVs on the basis of auxotrophy, growth rate, MIC profiles and 

S. aureus specific enzymes 

• Compare morphology differences of SCVs and parent stains using transmission 

electron microscopy 

• Determine whether SCVs display clonality with parent strains through random 

amplified polymorphic DNA analysis   

• Sequence the S. aureus 16S rRNA of any SCVs to identify mutations that may be 

responsible for reduced tetracycline susceptibility  
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3.2 Materials and methods 

3.2.1 Bacterial strains 

In this study four S. aureus strains that demonstrated susceptibility to a range of 

tetracyclines were included. S. aureus American Type Culture Collection (ATCC) 

strain 25923 and National Collection of Type Cultures (NCTC) strain 6571 were 

chosen as they represent well characterised methicillin-sensitive reference stains. 

Epidemic methicillin-resistant S. aureus (EMRSA) strain 15 and N315 were chosen to 

represent well studied clinical MRSA strains. Strains were maintained at -80°C in 

Mueller Hinton (MH) broth supplemented with 8 % dimethyl sulfoxide (DMSO) and 

re-isolated on MH agar plates when required. 

3.2.2 Preparation of tetracycline stock solutions 

Doxycycline, tetracycline and oxytetracycline were obtained from Sigma Aldrich 

(UK). Antibiotic stocks (10,000 mg/L) were prepared by adding 100 mg of the 

required antibiotic to 10 mL of sterile deionised water. Solutions were dissolved 

thoroughly by vortex mixing and where required 1 M NaOH was added dropwise to 

aid dissolving. Solutions were filter sterilised by passing them through 0.2 µm filters 

(Minisart, UK), and diluted to reduced strength stock solutions in sterile deionised 

water. Stocks solutions were maintained at 4°C for a maximum of 14 days.  

3.2.3 Determination of minimum inhibitory concentrations  

Minimum inhibitory concentrations (MICs) were determined as described previously 

(section 2.2.3). 

3.2.4 Tetracycline SCV selection assays  

Overnight S. aureus cultures grown in cation adjusted Mueller Hinton broth 

(CAMHB) were diluted to achieve a starting density of 5 X 105 CFU/mL and used to 

inoculate individual universal tubes containing fresh CAMHB containing a range of 

doxycycline, tetracycline and oxytetracycline concentrations based on previously 

defined MIC values (section 3.2.3). Tetracycline exposed cultures were incubated at 

37°C with shaking at 150 rpm. After 6 hours incubation, dilutions were prepared in 

sterile phosphate buffered saline (PBS) and 100 µL dispensed onto MH agar plates 

containing 2 mg/L doxycycline, 2 mg/L tetracycline or 4 mg/L oxytetracycline. 

Solutions were spread over the surface of agar plates using a sterile cotton swab. 

Additionally dilutions of wells were plated onto tetracycline free MH agar to calculate 
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the number of wild type CFU. Agar plates were inverted and incubated for 48 hours at 

37°C. Following incubation, plates were examined and SCVs were recorded as 

presence of non-pigmented microcolonies. The frequency of SCV formation was 

determined as the number of SCVs per total CFU counts on tetracycline free MH 

agar.  

3.2.5 Characterisation of SCV isolates  

S. aureus parent and SCV strains were grown in CAMHB, with SCV cultures being 

supplemented with 1 mg/L tetracycline to prevent reversion to the parent phenotype. 

Overnight parent cultures were prepared by inoculating individual colonies in 

CAMHB followed by incubation at 37°C with shaking at 150 rpm for 18-24 hours. 

SCVs were incubated for additional time (36 – 48 hours) to allow similar cell 

densities to be achieved.  

3.2.5.1 Auxotrophy 

Auxotrophy for haemin, menadione and thymidine in SCV isolates was determined as 

described previously (section 2.2.9.6).  

3.2.5.2 Catalase production  

Addition of 1% w/v hydrogen peroxide (H2O2) (Sigma-Aldrich, Poole, UK) to 

overnight S. aureus parent and SCV cultures was used to detect catalase production. 

Catalase activity was recorded using a 3 point scale. Immediate and rapid bubbling 

following addition of H2O2 was recorded as strong catalase production, bubbling 

observed after longer than 15 seconds was recorded as weak and lack of bubbling was 

recorded as absence of catalase production.  

3.2.5.3 Coagulase production 

Parent and SCV isolates were examined for coagulase activity using the Staphylase 

test kit (Oxoid Ltd, UK) as described previously (section 2.2.5). An absence of 

agglutination was recorded as coagulase negative. Strong agglutination was recorded 

as strong coagulase production and weak agglutination as weak coagulase activity.  

3.2.5.4 DNase production 

DNase agar was prepared by adding 39 g of dehydrate DNase culture media (Oxoid, 

UK) to 1 L of deionised water. Overnight cultures of S. aureus parent and SCV strains 

were adjusted to a density of 1 x 107 CFU/mL and of this suspension 10 µL drops 
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were spotted onto the surface of a DNase agar plate. Following incubation for 24-48 

hours at 37°C, plates were flooded with 1 M hydrochloric acid (HCl) and left for 5 

minutes at room temperature. The addition of HCl causes the hydrolysis of DNA 

resulting in the agar turning opaque. In the presence of DNase enzymes, DNA is 

digested and no DNA is available to be hydrolysed. Therefore clear zones indicated a 

presence of DNase enzymes. Excess hydrochloric acid was removed from the plate 

and zones of clearing were measured digitally using IMAGE J (NIH).  

3.2.5.5 Haemolysis and lipase activity   

MH agar was supplemented with 5% defibrinated sheep blood (Oxoid, UK) to 

examine haemolysis activity. Plates were inoculated with densities stated previously 

and incubated under the same conditions (section 3.2.5.4). Haemolysis activity was 

detected by the production of zones of clearing surrounding bacterial growth. 

Heamolysis activity was quantified on the degree of clearing observed, ranging from 

absent to weak to strong. To examine production of extracellular lipases MH agar was 

supplemented with 10% w/v egg yolk (Sigma Aldrich, UK). Following incubation, 

the diameter of zones of clearing (indicating hydrolysis of lipids) were measured 

digitally using IMAGE J. 

3.2.5.6 Growth rate analysis  

Parent and SCV cultures were adjusted to achieve a starting density of 5 X 105 

CFU/mL in 250 mL conical flasks containing 50 mL MH broth. Flasks were 

incubated at 37°C with shaking at 150 rpm. At set time points 1 mL samples were 

taken and OD630 measured. Following completion of growth rate experiments, flasks 

were aseptically sampled and serial dilutions in PBS made. Final viable counts were 

performed by drop counting on MH agar.    

3.2.5.7 Transmission electron microscopy  

Cells in logarithmic growth phase were fixed by the addition of 1.5% v/v 

glutaraldehyde (TAAB, UK), which was incubated for 12 hours at 37°C. Following 

fixation cells were washed twice in double distilled water (5 minutes each wash) and 

subsequently dehydrated with graded concentrations of ethanol (50%, 70%, 90% and 

100%) with each dehydration step lasting 15 minutes. Following dehydration cells 

were embedded in LR White embedding resin (London Resin Company, UK) and cut 

into sections. Ultrathin sections were stained firstly with 4% w/v aqueous uranyl 
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acetate (5 minutes), water washed and air dried. Cells were then counterstained with 

lead acetate (30 seconds), water washed and air dried. Sections were viewed with a 

CM12 transmission electron microscope (FEI, USA) with images recorded using a 

SIS MegaView III digital camera. 

3.2.5.8 DNA extraction  

DNA extraction from parent and SCV isolates was performed as described previously 

(section 2.2.7) 

3.2.5.9 Random amplified polymorphic DNA PCR (RAPD-PCR) 

All PCR reagents were supplied by Qiagen (UK). RAPD-PCR was carried out as 

described previously by (Mahenthiralingam et al., 1996). Primers 208 (5′-

ACGGCCGACC-3′) 268 (5′-AGGCCGCTTA-3′) 272 (5′-AGCGGGCCAA-3′) 

(MWG Biotech, UK) were used as they have be found to produce good discriminatory 

patterns in S. aureus (Cheeseman et al., 2007). RAPD-PCR was carried out in 25 µL 

reactions consisting of 2 µL template DNA (approximately 50 ng/µL) being added to 

a 23 µL PCR mixture consisting of; sterile polished deionised water, 1 X Coralload 

buffer, 1 X Q solution, 3 mM MgCl2, 1.6 µM each RAPD primer, 200 µM dNTPs, 

and 1 unit Taq DNA polymerase. PCR was conducted in a Flexigene Thermal Cycler 

(Techne Ltd., UK) with the following cycle; 5 min at 94°C, followed by 4 cycles of 

36°C for 5 min, 72°C for 5 min and 94°C for 5 min and a further 30 cycles of 94°C 

for 1 min, 36°C for 1 min and 72°C for 5 min and a final hold at 72°C for 5 minutes. 

PCR products (12 µL) were run on 1.5 % w/v agarose (Sigma Aldrich, UK) gels and 

were visualised with ethidium bromide (0.5 µg/mL final concentration in TAE buffer; 

40 mM Tris-acetate, 1 mM EDTA) for 45 minutes. Molecular standards were run on 

all gels using molecular weight maker Hyperladder I (Invitrogen, UK).  

3.2.5.10 16S rRNA amplification  

Primers rRNS-1 (5’-AGAGTTTGATCCTGGCTCAG-3’) and rRNS-2                                                           

(5’-AAGGAGGTGATCCA(A/G)CCGCA-3’; MWG Biotech, UK) were used to 

amplify the S. aureus 16S rRNA gene of parent and SCV isolates. PCR was carried 

out in 25 µL reactions consisting of: 1 X PCR buffer, 1 X Q Solution, 3 mM MgCl2, 

100 µM dNTPs mixture, 0.4 µM primer, 1 U of Taq DNA polymerase and 2 µL of 

template DNA. PCR was conducted with the following cycle; 5 min at 94°C, followed 
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by 35 cycles of 94 ºC for 30 seconds, 30 seconds at 50ºC, 60 seconds at 72ºC for and 

a final hold at 72ºC for 5 min.  

3.2.5.11 Sequencing 

Prior to sequencing, amplified products were treated and cleaned with Montage PCR 

Centrifugal Filter Devices (Millipore, UK), using various centrifugation steps to 

purify PCR products. PCR products were sequenced with six additional primers listed 

in Table 3.1. Sequencing reactions were performed using the ABI PRISM BigDye 

Terminator v3.1 cycle sequencing kit and run on an ABI 3130×1 Genetic Analyzer.  

Sequences were viewed using Chromas lite v2.01 (Technelysium Pty Ltd). Following 

sequence determination 16S rRNA sequences of SCV and parent strains were 

compared using BioEdit Sequence Alignment Editor (Hall, 1999). 

3.2.6 Statistical analysis  

Analysis of significant differences between characteristics of SCV isolates and parent 

strains were performed as described previously (section 2.2.9.8).  
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Table 3.1 S. aureus 16S rRNA sequence primers (Werner et al., 2008) 

 

Primer Sequence (3’- 5’) 
rRNS-357F CTCCTACGGGAGGCAGCAG 
rRNS-704F GTAGCGGTGAAATGCGTAGA 
rRNS-1114F GCAACGAGCGCAACCC 
rRNS-neu1R CCTACTGCTGCCTCCCGTAG 
rRNS-685R TCTACGCATTTCACCGCTAC 
rRNS-1100R GGGTTGCGCTCGTTG 
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3.3 Results  

3.3.1 Tetracycline selection for SCVs  

Doxycycline, tetracycline and oxytetracycline all selected for S. aureus SCVs (Figure 

3.2). SCVs were recorded as non-pigmented, microcolonies that were approximately 

5-10 times smaller in comparison to parent colonies. SCVs were termed according to 

the antibiotic that selected for them. For example N315 DOX was a SCV derived 

from N315 following exposure to doxycycline. SCVs were detected in control 

experiments (where no antibiotic was added to broth before agar plating) but 

frequencies were significantly lower in comparison to conditions where antibiotics 

were present (P = < 0.01). SCV selection frequencies were highest following exposure 

of cultures to X 0.5 MIC for all 4 strains tested across the panel of tetracyclines 

examined.  

3.3.2 Characterisation of tetracycline selected SCVs 

3.3.2.1 Auxotrophy and SCV characteristics   

SCVs auxotrophic for haemin and menadione were frequently observed in 

tetracycline selected SCVs (Table 3.2). Auxotrophy was for haemin, menadione or 

thymidine was not detected in 25% of the SCVs analysed. All SCVs showed reduced 

catalase, coagulase and haemolysis activity in comparison to their parent counterparts 

with certain SCVs showing a complete absence of catalase, coagulase and/or 

heamolysis activity. To confirm auxotrophy requirements SCV cultures were 

supplemented with either haemin or menadione and examined for restoration of parent 

characteristics. In all cases SCVs reverted to the parent phenotype and produced 

catalase, coagulase, and haemolysis activity comparable with that activity recorded in 

parent strains.  

3.3.2.2 Cellular morphology  

Differences in cellular morphology were observed between parent and SCV strains 

(Figure 3.3). Transmission electron micrographs showed SCV cell walls to be 

significantly thicker in comparison to parent cell walls (P = < 0.01). Individual parent 

cells showed regular patterns of division with a clear regularly shaped septum. SCVs 

frequently displayed an irregular shaped septum, with a curved appearance in contrast 

to the straight septum shown in parent cells. 
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Figure 3.2 SCV formation frequencies after exposure to various concentrations 

of tetracycline antibiotics A) - Doxycycline; B) - Tetracycline; C) - Oxytetracycline. 

Control conditions had no prior exposure to tetracycline. SCV formation frequencies 

were determined as the number of SCVs per total CFU counts on antibiotic free 

MHA. Results are the means of three independent replicates and three biological 

replicates. Error bars represent standard error. 

Control 

X 0.25 MIC

X 0.5 MIC

MIC

B) 

A) 

C) 
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Table 3.2 Characteristics of SCVs isolated after exposure to various tetracyclines 
 
 

Strain Auxotrophy  Catalase Coagulase Haemolysis 
ATCC 25923 NT + + + +  + 

 ATCC 25923 SCV DOX Haemin - - - 
ATCC 25923 SCV TET ND + + - 
ATCC 25923 SCV OXY Haemin + + - 

NCTC 6571 NT + +  + + ++ 
NCTC 6571 SCV DOX Haemin + + + 
NCTC 6571 SCV TET Menadione  - - - 
NCTC 6571 SCV OXY Menadione - - - 

N315 NT + + + + ++ 
N315 SCV DOX ND + + + 
N315 SCV TET Haemin - - + 
N315 SCV OXY ND - + - 

EMRSA 15 NT + + + + ++ 
EMRSA 15 SCV DOX Menadione  + - - 
EMRSA 15 SCV TET Haemin - - + 
EMRSA 15 SCV OXY Haemin + + - 

 
 
++ - Strong catalase/coagulase/haemolysis activity; + - Weak catalase/coagulase/ haemolysis activity; - = Absence of catalase/coagulase/ 

haemolysis activity; DOX - doxycycline; TET - tetracycline; OXY - oxytetracycline; ND - not detected; NT =- not tested 
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Figure 3.3 Transmission electron micrographs of SCV selected in the presence of tetracycline and parent cells A) - Parent individual cocci 

showing regular cell wall and septum, B) - Individual SCV showing increased cell wall thickness, C) - SCVs showing irregular septum 

formation. All images magnification X 31,000. 

A) B) C) 
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3.3.2.3 DNase and lipase activity  

A measurement of extracellular DNase activity was obtained by measuring zones of 

DNA hydrolysis (Figure 3.4). All SCV isolates from all three tetracycline antibiotic 

produced significantly less DNase in comparison to parent strains (P = < 0.01). The 

average zone of DNA hydrolysis in parent strains was 18.75 mm where as the SCV 

average was over 4 times smaller at 4.24 mm (Figure 3.4). SCVs also produced 

significantly less extracellular lipase activity than parent strains (P = < 0.01). Zones of 

clearing on MH agar containing egg yolk were an average of 11.7 mm in diameter for 

parent strains were as SCV isolates produced average diameter zones of lipase activity 

of 1.04 mm (Figure 3.4). A complete absence of lipase activity was observed in 3 out 

of the 12 SCV isolates examined. 

3.3.2.4 Growth rate analysis  

Growth rate analysis revealed changes in parent and tetracycline selected SCV growth 

profiles. As shown in Figure 3.5 the SCVs of ATCC 25923 and EMRSA 15 in the 

presence of doxycycline, tetracycline and oxytetracycline all exhibited increases in the 

duration of the lag phase of growth. The duration of lag phase in parent strains was 

approximately 1.5 hours in comparison to an average of 14 hours for the 6 

representative SCVs shown in Figure 3.5. Furthermore SCVs also reached lower 

maximum cell densities reflected by the lower optical density values (Figure 3.5). 

Viable counts revealed that on average SCVs reached a maximum cell density of 2.7 

X 108 CFU/mL. In comparison both parent strains reached higher average cell 

densities of 5 X 109 CFU/mL.  

3.3.2.5 Susceptibility profiles 

MICs of parent and SCV isolates were obtained for all tetracycline antibiotics 

examined as well as for a fluroquinolone (ciprofloxacin), an aminoglycoside 

(gentamicin) and a ß lactam (oxacillin) according to CLSI guidelines (Table 3.3). 

SCV isolates exhibited an increase in MIC for all 3 members of the tetracycline class 

of antibiotics regardless of the tetracycline antibiotic used for selection. For example 

ATCC 25323 DOX (selected for in the presence of doxycycline) exhibited an 8 fold 

increase in doxycycline susceptibility, as well as a 4 fold increase in tetracycline and 

oxytetracycline susceptibility (Table 3.3). SCVs also showed reduced susceptibility to 

gentamicin and oxacillin. Gentamicin MICs for SCV isolates were 2-8 fold higher 
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Figure 3.4 DNase and lipase activity in SCVs and corresponding parent strains  

A) - DNase zones represent hydrolysis of DNA and extracellular DNase activity;            

B) - Lipase activity zones representing breakdown of lipids. Results are the means of 

three independent replicates and three biological replicates. Error bars represent 

standard error. 
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Figure 3.5 Tetracycline selected SCVs and parent growth dynamics A) - ATCC 

25923 and SCV derivatives B) - EMRSA 15 and SCV derivatives. SCVs exhibited 

extended lag phases and reached lower maximum cell densities in comparison to 

parent strains. Results are the means of three independent replicates and three 

biological replicates. Error bars represent standard error. 

A) 

B) 

Wildtype 

DOX SCV 

TET SCV 

OXY SCV 
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Table 3.3 MIC (mg/L) for SCV isolated in the presence of various tetracycline antibiotics and their corresponding parent strains  
 
 
 

 
 
 
CIP - Ciprofloxacin; DOX - Doxycycline; GEN - Gentamicin; OXA - Oxacillin; OXY - Oxytetracycline; TET - Tetracycline; NT - not tested. 

Modal MIC values are presented. Modal values were obtained from three independent replicates and three independent biological replicates. 

Strain DOX TET OXA CIP GEN OXA 
ATCC 25923 0.25 0.5 1 0.75 0.25 0.5 

 ATCC 25923 SCV DOX 2 2 4 0.5 1 2 
ATCC 25923 SCV TET 1.5 2 3 0.75 1.5 1 
ATCC 25923 SCV OXY 2 2 4 0.75 1 1 

NCTC 6571 0.5 0.5 2 0.5 0.125 0.5 
NCTC 6571 SCV DOX 2 1.5 5 0.5 1 1.5 
NCTC 6571 SCV TET 2 2 4 0.75 0.75 1 
NCTC 6571 SCV OXY 2 2 4 0.5 1 1 

N315 0.5 1 2 0.75 0.5 NT 
N315 SCV DOX 2 2 5 0.75 1.5 NT 
N315 SCV TET 2 2.5 5 0.75 2 NT 
N315 SCV OXY 2 2 4 0.5 2 NT 

EMRSA 15 0.25 0.5 1 0.75 1 NT 
EMRSA 15 SCV DOX 2 2 3 0.5 2 NT 
EMRSA 15 SCV TET 1.5 1.5 4 0.75 2 NT 
EMRSA 15 SCV OXY 2 2 4 0.75 3 NT 
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Figure 3.6 Typical SCV and parent RAPD profiles L - Hyperladder 1; 1 – ATCC 

25923; 2 – ATCC 25923 SCV DOX; 3 – ATCC 25923 SCV OXY; 4 – ATCC 25923 

SCV TET. RAPD analysis of SCVs selected in the presence of various tetracyclines 

showed SCVs displayed identical profiles in comparison to parent strains with three 

different primer sets.  
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than parent MICs and 2-4 fold increase in SCV susceptibility to oxacillin 

susceptibility was also recorded. MICs for the DNA replication inhibitor 

ciprofloxacin showed no consistent variation in comparison of parent and SCV 

isolates. Although though increases in MIC for all SCV isolates were detected in 5 out 

of the 6 antibiotics tested none of the increases were large enough to classify them as 

resistant according to CLSI guidelines.  

3.3.2.6 RAPD profiles  

RAPD fingerprints for SCVs isolated from different tetracycline antibiotics were 

identical to parent fingerprints generated from all three primer sets (Figure 3.6). The 

same banding patterns were also observed between SCV isolates (from the same 

parent strain) recovered from different selection backgrounds.    

3.3.2.7 16S rRNA sequence analysis 

Sequence analysis of the 16S rRNA showed a 99.9 % sequence similarity between                      

S. aureus parent strains. Sequence compassion of S. aureus parents and SCVs selected 

in the presence of tetracycline however revealed no difference in 16S rRNA sequence. 
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3.4 Discussion  
 
Exposure of wildtype cultures to doxycycline, tetracycline and oxytetracycline 

resulted in the selection of SCVs in both MSSA and MRSA strains. SCVs isolated 

displayed morphological characteristics that correlate with other studies that report 

SCV as non-pigmented microcolonies that take 24-48 hours to appear on solid agar 

(Pan et al., 2002; Seaman et al., 2007). The appearance of these atypical phenotypes 

(in comparison to wildtype strains) was attributed to defects in the S. aureus electron 

transport chain (ETC).  

 

Auxotrophy for haemin and menadione was regularly detected (75 % of total isolates) 

in the tetracycline selected SCVs isolated this study. Auxotrophy for haemin and 

menadione has been widely reported in S. aureus SCVs as well as SCVs isolated from 

several other bacterial species (Colwell, 1946; Sasarman et al., 1970). Haemin and 

menadione are both crucial components of the bacterial ETC. Haemin is required for 

the synthesis of cytochromes and menadione is isoprenylated to form menaquinone 

and is the acceptor of electrons from nicotinamide adenine dinucelotide (NADH) and 

flavin adenine dinucelotide (FADH2) (von Eiff et al., 2001b; Bates et al., 2003). The 

inability to produce menaquinone and haemin in the SCVs selected for by 

tetracyclines results in a disrupted ETC resulting in reduced ATP levels. The 

reduction in cellular ATP levels results in the characteristic non-pigmented 

microcolonies observed. The production of pigment in S. aureus requires energy to 

drive carotenoid biosynthesis, whilst ATP is essential to driver cellular process such 

as protein and cell wall synthesis (Proctor et al., 2006). The attenuated production of 

catalase, coagulase, DNase and lipase production agrees with previous research which 

shows that SCVs produce lower amounts of extracellular accessory proteins (Proctor 

et al., 2006; Seaman et al., 2007). Many of these proteins are under the control of the 

accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) which 

has been shown to be downregulated in SCVs (Kahl et al., 2005). The reduction in 

various extracellular accessory proteins suggests the expression of global regulators is 

also altered in tetracycline selected SCVs. The selection of SCVs following exposure 

to tetracyclines may act as a survival mechanism in which the switching to the SCV 

phenotype renders the loss of certain functions but most importantly permits survival 

and persistence.   
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All SCVs were also examined for the presence of thymidine auxotrophy. Thymidine 

auxotrophy has been reported in S. aureus SCVs and has been associated with SCVs 

recovered from cystic fibrosis patients (CF) (Kahl et al., 1998). Thymidine 

auxotrophic SCVs share characteristics with haemin and menadione auxotrophs but a 

link between thymidine auxotrophy and exposure to trimethoprim sulphamethoxazole 

(SXT) is apparent (Gilligan et al., 1987). SXT is commonly used to treat CF and 

thymidine auxotrophic SCVs are commonly recovered from CF patients. Exposure to 

SXT results in mutations in thyA which encodes thymidylate synthase in S. aureus 

(Besier et al., 2007). The failure to detect thymidine auxotrophs in this and previous 

studies (Chapter 2) suggests that thymidine auxotrophy is not accountable for the 

SCV phenotype following exposure to aminoglycosides and tetracycline. However 

analysis of isolates from different sources (such as clinical derived specimens) may 

yield thymidine auxotrophs. In several of the SCVs isolated, no auxotrophy profile 

was detected. Various studies have reported the isolation of SCVs where no 

auxotrophy profile can be detected including SCVs selected in the presence of 

linezolid, sparfloxacin and triclosan (Gao et al., 2010; Pan et al., 2002; Seaman et al., 

2007). Possible candidates for the site of auxotrophy are unsaturated fatty acid 

biosynthesis or in the F0F1-ATPase as discussed previously (section 2.4).  

 

SCVs commonly display reduced susceptibility to a variety of antimicrobial 

compounds as a direct result of the SCV phenotype. The SCVs isolated in this study 

showed reduced susceptibility to tetracyclines as well as gentamicin and oxacillin in 

comparison to parent strains. It is well documented that SCVs are less susceptible to 

aminoglycosides antibiotics such as gentamicin (Proctor et al., 1998). The presence of 

an electrochemical gradient across the bacterial membrane is essential for the uptake 

of positively charged molecules such as aminoglycosides (Balwit et al., 1994). As 

SCVs have a reduced electrochemical gradient, less uptake of these positively charged 

molecules occurs, resulting in reduced susceptibility. The reduced susceptibility to ß-

lactam antibiotics observed is has been related to the slow growth rate of SCVs 

reducing the effectiveness of these cell wall active antibiotics (Schnitzer et al., 1943; 

Youmans et al., 1945). Although tetracycline selected SCVs produced atypical 

growth profiles, following the extension of lag phase only subtle differences were 

observed in growth rate, which suggests others mechanisms are responsible for 
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reduced oxacillin susceptibility. The thickening of the SCV cell wall observed in 

electron micrographs may be responsible for reduced susceptibility to oxacillin. Cell 

wall thickening has been observed in S. aureus strains displayed reduced 

susceptibility to vancomycin (Cui et al., 2003) and has also been shown to be 

responsible for reducing susceptibility to ß-lactam antibiotics (Morikawa et al., 2001). 

Thickening of the cell wall may impact on the penetration of cell wall specific 

antibiotics (such as oxacillin), which must cross the cell wall in order to reach their 

cellular target (Lambert, 2002). No difference in susceptibility between SCV and 

parent strains to the DNA gyrase/topoisomerase inhibitor ciprofloxacin was observed. 

Similarly to the reduced susceptibility to ß-lactam antibiotics, it would be 

hypothesised that a slower growth rate would result in reduced susceptibility to 

ciprofloxacin due to lower rates of DNA synthesis. The similarities in growth rate and 

ciprofloxacin susceptibility suggest that DNA synthesis in the exponential phase is 

proceeding at similar levels in parent and SCV strains.   

 

RAPD has been applied to study and track the epidemiology of S. aureus in both 

clinical and environmental settings (Lee, 2003; VandenBergh et al., 1999). RAPD 

was successfully applied to SCV isolates which had been selected for in the presence 

of various tetracyclines. SCV isolates displayed fingerprint patterns that were 

identical to their parent counter parts and identical fingerprints of SCV isolated from 

different tetracyclines were also observed confirming the clonality of the tetracycline 

selected SCV isolates. Although RAPD is not as powerful as other molecular 

techniques for studying epidemiology (such as pulse field gel electrophoresis; PFGE) 

the homology observed between SCV isolates and parent strains confirms clonality is 

associated with tetracycline selected SCVs. 

 

In order to identify the genetic basis for the mutations that give rise to the SCV 

phenotype investigators have sequenced genes that may be potential targets for 

mutations. Norstrom et al., (2007) have shown that fusidic acid can select for SCVs 

via mutations in fusA and rplF (ribosomal protection protein). Fusidic acid targets 

protein synthesis through preventing the release of translation elongation factor EF-G 

(Bodley et al., 1969). Mutations in fusA reduce the affinity of fusidic acid for its target 

where as mutations in rplF results in alteration (directly or indirectly) of the structural 

conformations of EF-G on the ribosome (Norstrom et al., 2007). These mutations 
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represent novel mechanism for fusidic acid that give rise to the SCV phenotype. In 

this study we sequenced the 16S rRNA sequence of parent and SCV S. aureus isolates 

in order to identify mutations that may be responsible for the tetracycline selected 

SCV phenotype. However no alterations in the DNA sequences were detected. 

Studies have reported an absence of mutation(s) in the gene(s) targeted by the 

selecting antibiotic that results in SCVs. An outcome of this is no known genetic basis 

for the SCV phenotype. For example Mitsuyama et al., (1997) demonstrated that 

pazufloxacin (a broad spectrum fluoroquinolone) selected for S. aureus SCVs but no 

mutations were detecting in the quinolone resistance determining regions of either 

DNA gyrase of topoisomerase IV. Therefore the authors suggest that the 

fluoroquinolone resistance may follow a similar mechanism of resistance to 

aminoglycosides in SCVs i.e. reduced uptake due to reduced electrochemical gradient 

across the bacterial membrane. The mechanisms of reduced tetracycline susceptibility 

in SCVs may follow the similar mechanism. Uptake of tetracycline in susceptibile E. 

coli involves both energy dependent and energy independent systems (McMurry & 

Levy, 1978). Furthermore the uptake of tetracycline in E. coli has been partially 

attributed to the presence of a proton motive force (Smith & Chopra, 1984). As SCVs 

are deficient in the generation of a proton motive force (due to electron transport 

chain interruption), this may be responsible for a reduction in tetracycline uptake in 

tetracycline selected SCVs, reducing their susceptibility in comparison to parent 

strains.  

 

The findings in this chapter illustrate the ability of several members of the tetracycline 

class of antibiotics to select for SCVs in vivo. Although several other antibacterial 

compounds have been shown to select for SCVs this is the first case to our knowledge 

where tetracyclines have been demonstrated to select for the SCV phenotype. The 

SCVs isolated shared similar characteristics with those that have been reported in 

various other studies. The ability of tetracycline to select for SCVs raises concerns 

regarding the clinical use(s) of tetracycline. Although large reductions in 

antimicrobial susceptibility were not observed, the selection of SCVs is unfavourable 

due to their ability to hide inside host cells, which can serve a reservoir for chronic 

and therapy-refractive infections (Tuchscherr et al., 2011b).  
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3.5 Conclusions 

• Doxycycline, tetracycline and oxytetracycline can select for S. aureus SCVs at a 

range of concentrations. 

• Exposure to X 0.5 MIC results in the highest SCV formation frequencies in the 

three tetracyclines analysed.  

• Tetracycline selected SCVs display increased cell wall thickness and irregular 

septum formation.  

• Auxotrophy for haemin and menadione was widely observed in SCV isolates 

correlating to defects in electron transport. 

• Tetracycline selected SCVs show attenuated catalase, coagulase and heamolysis 

activity and reduced production of extracellular enzymes.   

• Tetracycline selected SCVs showed reduced susceptibility to a range of 

tetracycline, gentamicin and oxacillin. 

• Reduced tetracycline susceptibility in SCVs is not related to mutations in 16S 

rRNA. 

• Tetracycline selected SCVs and parents produced identical RAPD profiles 

indicating clonality. 

 
 



 99 

4 CHAPTER 4: BIOFILM FORMATION IN STAPHYLOCOCCUS 
AUREUS SMALL COLONY VARIANTS  

4.1 Introduction  

4.1.1 Biofilms 

Bacteria have the ability to produce a protective hydrated matrix of polysaccharide 

and protein, forming a slimy layer known as a biofilm (Stewart et al., 2001). A 

biofilm can be further defined as an ‘assemblage of microbial cells that is irreversibly 

associated (not removed by gentle rinsing) with a surface and enclosed in a matrix of 

primarily polysaccharide material’ (Donlan, 2002). This polysaccharide is composed 

of extracellular polymeric substances (EPS) and consists of a variety of different 

biopolymers which immobilise biofilm cells, keeping them within close proximity of 

one another (Flemming & Wingender, 2010). Various bacterial infections in the 

modern world are thought to involve biofilm formation (Costerton et al., 1999), 

underlying the importance of this area in the clinical setting. Biofilms constitute a 

protected mode of growth that allows survival in a hostile environment and therefore 

treatment of biofilm related infections depends on long term, high-dose antibiotic 

therapies and may require the removal of indwelling devices (Fux et al., 2005).  

4.1.2 Staphylococcal biofilms 

Staphylococcus aureus and S. epidermidis biofilms are among the most commonly 

encountered organisms in the clinical setting and are responsible for a large 

proportion of biofilm-mediated device-related infections (O'Gara & Humphreys, 

2001). Staphylococci can form biofilms on frequently used medical devices such as 

catheters (Marrie & Costerton, 1984b), pacemakers (Marrie & Costerton, 1984a) and 

prosthetic knee and hip joints (Rohde et al., 2007). Staphylococcal biofilms represent 

a focus of infection which may allow clusters of cells to detach from the biofilm, 

resulting in bloodstream infection and metastatic spread (Fitzpatrick et al., 2005).  

4.1.2.1 Staphylococcal biofilm formation 

Staphylococcal biofilm formation is a two step process, attachment of cells to a 

surface, followed by accumulation of cells to form a multilayered cell cluster (Gotz, 

2002). Figure 4.1 shows that adhesion to a surface is the crucial transition stage from 

free-floating planktonic cells to a biofilm and involves the interplay of several 
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adhesion molecules enabling the physico-chemical interactions between the cells and 

the surface (Kong et al., 2006). The transition from planktonic to multicellular 

lifestyle requires the co-ordinated expression of a variety of specialised extracellular 

and cellular components (Valle et al., 2003). 

4.1.2.2 Molecules contribution to adhesion  

Adhesion to a surface in staphylococci is mulifactoral. Interactions between the 

bacterial surface, substrate surface and the surrounding environment all play a role 

(Wang et al., 1995). Nutrient flow, pH and hydrodynamic flow are all examples of 

environmental factors that contribute to the adhesion process, although the 

physiochemical properties of the bacterial and substrate surface determine the non 

specific interactions that determine attraction or repulsion (Higashi & Sullam, 2006).  

 

Although various environmental factors are play a role, bacterial surface proteins are 

crucial for initial adhesion. Many surface proteins are produced in staphylococci and a 

large proportion belong to the microbial surface components recognising adhesive 

matrix molecules (MSCRAMM) family (Higashi & Sullam, 2006), the majority of 

which are anchored to cell wall peptidoglycan (Patti et al., 1994). Fibronectin-binding 

proteins (FnBPs), a collagen-binding protein, Cna, and clumping factor (Clf) are all 

adhesins belonging to MSCRAMM family (Foster & Hook, 1998). These components 

bind to the extracellular matrix of host tissues and mediate initial attachment.                   

S. aureus also produces secreted proteins to facilitate adhesion. One such example is 

extracellular adherence protein (EAP; Palma et al., 1999) which is required for the 

adherence of S. aureus to eukaryotic cells and also facilitates internalisation (Haggar 

et al., 2003). Although a variety of different surface proteins exist they all share the 

same principal role; bacterial adhesion. This adhesion is crucial for the first step in 

biofilm biogenesis to allow the subsequent steps of biofilm formation to proceed.  

4.1.2.3 Molecules responsible for exopolysaccharide production  

Following adhesion the next stage in staphylococcal biofilm formation is the synthesis 

of exopolysaccharide, which aids aggregation and cellular adhesion. The principle 

exopolysaccharide produced by staphylococci is polysaccharide intracellular adhesin 

(PIA) (Mack et al., 1996) which is considered essential in mediating cellular 

accumulation (Figure 4.1) and biofilm development (Gotz, 2002). PIA, also termed 
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polymeric N-acetyl glucosamine (PNAG), is composed of 2 polysaccharide fractions, 

polysaccharide I (~ 80%) and polysaccharide II (~20%; Mack et al., 1996). 

Polysaccharide I is composed of linear ß 1, 6-linked N-acetylglucosamine residues 

containing up to 15% de-N-acetylated amino groups and substitution with succinate 

and phosphate residues introducing simultaneously positive and negative charges into 

the polysaccharide (Cramton et al., 2001a; Cucarella et al., 2001; Mack et al., 1996). 

Polysaccharide II is structurally related to polysaccharide I but has a lower content of 

non N-acetylated D-glucosminyl residues (Gotz, 2002).  

4.1.2.4 PIA production and the intracellular adhesin locus  

PIA production is under the control of the intracellular adhesin (ica) operon (Figure 

4.2), which was first identified in S. epidermidis (Heilmann et al., 1996). Using 

transposon mutagenesis Heilmann et al., (1996) isolated a biofilm-negative mutant 

with an insertional inactivation of the icaABC gene cluster which had lost the ability 

to form biofilms on a polystyrene surface. Complementation with an                       

icaABC-carrying plasmid restored the mutant’s biofilm forming capacity and the 

expression of PIA. The ica operon was later identified in S. aureus and sequence 

comparison with the S. epidermidis ica genes revealed 59 to 78% amino acid identity 

(Cramton et al., 1999). The ica operon consists of PIA biosynthesis genes (icaADBC) 

and a regulator (icaR) (Higashi & Sullam, 2006). icaR is located upstream of 

icaADBC (Figure 4.2) and is a member of the tetR family of transcriptional regulators 

that is divergently transcribed and functions as a negative regulatory protein (Conlon 

et al., 2002). IcaR binds the ica operon promoter region close to the IcaA start codon 

and exerts its repressor activity by obscuring the binding site of the ica promoter 

(Jefferson et al., 2003; Jefferson et al., 2004). IcaADBC encode the biosynthetic 

genes that are responsible for PIA biosynthesis; icaA encodes a transmembrane 

protein that synthesises N-acetyl-glucosamine oligomers (Gerke et al., 1998). The 

surface-attached protein icaB is then responsible for deacetylation of the N-

acetylglucosamine polymer (Vuong et al., 2004b). IcaC is involved in translocation 

and externalisation of the growing polysaccharide to the cell surface (O'Gara, 2007) 

and icaD is thought to function as a chaperone, directing the correct folding and 

membrane of insertion of IcaA (Gotz, 2002).  
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Figure 4.1 Formation of S. aureus biofilms Planktonic cells firstly attach to a 

surface substrate, followed by cell proliferation. As cell numbers increase, PIA is 

produced in increasing amounts encapsulating the bacteria in slime like matrix. With 

time a large community of cells forms a mature biofilm from which individual cells 

may detach to initiate formation of other biofilms. Adapted from Vuong & Otto 

(2002).   
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Figure 4.2 Organisation of ica locus in S. aureus Oligomers derived from UDP N-

acetylglucosamine are synthesised by icaA, which are then modified with longer 

oligomers produced by icaD. Deacetylation of the poly-N-acetylglucosamine 

molecule is carried out by icaB and icaC is finally responsible for translocation of the 

completed PIA to the cell surface. Adapted from Gerke et al.,(1998) and Gotz (2002). 
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4.1.2.5 Other molecules involved in biofilm formation 

As well as PIA, other ica-independent molecules are known to impact on 

staphylococcal biofilm formation. The biofilm associated protein (Bap) was first 

identified by Cucarella et al., (2001) using transposon mutagenesis. The mutant strain 

displayed a significant decrease in attachment to inert surfaces, intercellular adhesion, 

and biofilm formation. Bap is a multidomain surface-associated protein that promotes 

both primary attachment to surfaces and intracellular adhesion (Lasa & Penades, 

2006). Bap negative strains produce lower levels of PIA; however a PIA producing S. 

aureus strain complemented with Bap produced PIA in significantly greater quantities 

(Cucarella et al., 2001). Staphylococcal isolates that contain Bap are strong biofilm 

producers (despite not containing the ica operon) indicating Bap mediates a 

alternative mechanism of biofilm development, to the regular PIA-dependent 

mechanism (Tormo et al., 2005a).  

4.1.2.6 Influence of environmental stimuli and global regulators on 
staphylococcal biofilm formation 

The role of environmental stimuli and their impact on biofilm formation has been the 

subject of much research. Certain environmental stimuli can induce changes in global 

gene expression which can promote biofilm formation. The diverse environmental 

conditions encountered by staphylococci therefore have a direct impact on the extent 

to which strains can form biofilms (Table 4.1). The accessory gene regulator (agr) 

effects the regulation of various virulence genes in S. aureus and plays a role in 

quorum sensing. Agr is an example of a two component system consisting of a sensor 

protein that subsequently activates a response regulator protein (Higashi & Sullam, 

2006). Agr mutants display increased capacity to form biofilms, which appears to be 

independent of PIA production (Vuong et al., 2000). Increased biofilm formation is 

attributed to the inability of cells to detach from the mature biofilm, as agr plays a 

role in the detachment process (Kong et al., 2006; Vuong et al., 2004a). Other global 

regulators also affect biofilm formation in staphylococci, most notably the 

staphylococcal accessory regulator (sarA; Tormo et al., 2005b; Valle et al., 2003)  

and the alternative sigma factor, σB (Knobloch et al., 2004). sarA mutants showed 

down-regulation of the ica operon transcription and subsequent decrease in PIA 

production (Valle et al., 2003). Valle et al. (2003) suggesting that sarA enhances ica 

operon transcription and suppresses transcription of a protein involved in the turnover 
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of PIA. S. epidermidis mutants with mutations in σB show an upregulation of icaR (the 

repressor of the ica locus), resulting in reduced PIA synthesis (Knobloch et al., 2004).   

4.1.2.7 Antimicrobial resistance in staphylococcal biofilms 

Formation of biofilms leads to a reduction in antimicrobial susceptibility in 

staphylococci (Amorena et al., 1999). Even antimicrobial-sensitive bacteria that do 

not have a known genetic basis for resistance demonstrate reduced susceptibility 

when they form a biofilm (Stewart & Costerton, 2001), a trait that which appears to 

be multi-factorial. One mechanism is the failure of an agent to penetrate the full depth 

of the biofilm. Components of the biofilm (such as the exopolysaccharide matrix) can 

limit the transport of antimicrobial agents to the cells within the biofilm (Mah & 

O'Toole, 2001). Farber et al., (1990) for example has demonstrated that addition of S. 

epidermidis PIA to microdilution susceptibility plates increased the MIC of 

glycopeptide antimicrobials, as these large molecules are poorly absorbed. The 

presence of an exopolysaccharide matrix can create a permeability barrier, meaning 

the antimicrobial cannot penetrate the biofilm (Stewart, 1996).  

 

Secondly, the growth rate of cells within a biofilm is substantially reduced in 

comparison with planktonic cells as cells growing in biofilms are commonly nutrient-

depleted (Mah & O'Toole, 2001). Reduced growth rates lead to reduced susceptibility 

to antimicrobials designed to target fast growing bacteria (Tuomanen et al., 1986). 

Eng et al., (1991) demonstrated that bacteria exposed to nutrient limitation showed 

reduced antimicrobial susceptibility to a range of antimicrobial classes. The reduced 

metabolic activity of cells embedded in the biofilms mimic this nutrient depleted state 

correlating with reduced antimicrobial susceptibility in biofilms (Dunne, 2002) 

Finally, it has been hypothesised that cells present in a biofilm may induce a specific 

‘biofilm phenotype’. This ‘biofilm phenotype’ has been likened to a spore-like state 

entered into by some of the bacteria resulting in reduced susceptibility to antibiotics 

and disinfectants (Stewart & Costerton, 2001). Reduced antimicrobial susceptibility to 

ß-lactams, quinolones and glycopeptides has been observed in biofilms formed by S. 

aureus (Chuard et al., 1997). Specifically a recent study by Singh et al. (2010a) has 

highlighted the poor penetration of certain antimicrobial agents through 

staphylococcal biofilms. ß-lactam antibiotics (oxacillin and cefotaxime) and a  
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Table 4.1 Effect of environmental stimuli on biofilm formation in staphylococci 

  

Factor  Effect Reference  

Anaerobic conditions Stimulate ica transcription, 

increasing PIA production 

 

(Cramton et al., 2001b) 

Ethanol  Reduced transcription of the 

icaR repressor 

 

(Conlon et al., 2002) 

Supplementation with 

carbohydrates 

Increased adherence to surfaces 

 

 

(Mack et al., 1992) 

Iron limitation Increased PIA production  (Deighton & Borland, 

1993) 

Sodium chloride  Increased biofilm formation, ica 

independent mechanism 

 

(Lim et al., 2004) 

Subinhibitory 

antibiotic 

concentrations  

 

Increased ica expression and 

PIA production 

(Rachid et al., 2000) 

High temperature  Increased ica expression and 

PIA production 

(Rachid et al., 2000) 
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glycopeptide (vancomycin) show a significantly reduced penetration through S. 

aureus and S. epidermidis biofilms. Biofilms produced by S. aureus may also protect 

against clearance by host immune systems. Presence of PIA and biofilm formation 

has been shown to protect cells from phagocytosis and killing by polymorphonuclear 

leukocytes (Vuong et al., 2004c). Other studies have shown that although leukocytes 

can penetrate the biofilm matrix they are unable to penetrate bacterial cells and 

promote phagocytosis due to unfavourable conditions (Leid et al., 2002).  

4.1.3 Biofilm formation in small colony variants  

As S. aureus SCVs are frequently recovered from patients with infections typically 

associated with biofilm formation (endocarditis, soft tissue infections and 

osteomyelitis) there is a suggestion that SCVs and biofilms may have a similar 

underlying physiology (Higashi & Sullam, 2006). Several studies have shown that 

SCVs from different bacterial species are capable of forming biofilms (Al Laham et 

al., 2007; Haussler et al., 2003b; Sendi et al., 2006; Singh et al., 2010b). For example 

P. aeruginosa SCVs isolated from cystic fibrosis (CF) patients have been shown to 

display a marked increase in biofilm forming capacity (Haussler et al., 2003b). SCVs 

also displayed increased binding to an eukaryotic cell line and increased pilli 

mediated twitching motility which may play a role in adaptation the CF environment. 

In staphylococci SCVs biofilm formation has been attributed to various mechanisms.  

 

Vaudaux et al. (2002) demonstrated that S. aureus SCVs increase surface display of 

the MSCRAMMs, in particular, fibronectin binding proteins FnBPs. Increased 

transcript levels of clumping factor A (clfA) and fibronectin protein (fbn) were 

responsible for the increased production of these adhesins, and increased adhesion to 

fibronectin coated surfaces. Mitchell et al., (2008) also demonstrated increased 

expression of FnBPs in SCVs and an increased capacity to bind fibronectin. 

Furthermore the authors showed the importance of the alternative sigma factor σB, on 

the expression of FnBPs, suggesting that sustained σ
B activity in S. aureus SCVs 

locks SCVs into a constant state of colonisation.  

 

Increased capacity to form biofilms has also been attributed to PIA dependent 

mechanisms in S. epidermidis SCVs (Al Laham et al., 2007). The study demonstrated 

that increased production of PIA (and augmented expression of the ica operon) is 
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responsible for increased adhesion to surfaces and increased biofilm forming capacity 

in SCVs. Reduced antimicrobial susceptibility has also been investigated in SCVs. S. 

aureus SCVs exhibit more pronounced reductions in antimicrobial susceptibility than 

parent strains when adhering to a fibronectin surface (Chuard et al., 1997). SCVs 

were highly resistant to the bactericidal action of vancomycin and oxacillin whereas 

the parent strain showed a reduction in viable cell numbers.  
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4.1.4 Aims  

Several studies have examined the ability of SCVs to form biofilms however a limited 

number of studies are available regarding biofilm formation in S. aureus SCVs as well 

as the susceptibility of SCV biofilms to antimicrobial agents. The aims of this study 

were to: 

 

• Assess the ability of S. aureus parent and SCV isolates to produce polysaccharide 

using a simple agar screen. 

• Quantify biofilm formation to provide a comparison of biofilm formation in 

parent and SCV isolates.  

• Examine antimicrobial susceptibility of parent and SCV biofilms to a range of 

antimicrobial agents.  

• Examine the mechanism for any difference in antibiotic susceptibility between 

parent and SCV biofilms.  
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4.2 Materials and methods 

4.2.1 Bacterial strains  

Methicillin-sensitive S. aureus (MSSA) strains ATCC 25923 and NCTC 6571 and 

methicillin-resistant S. aureus (MRSA) strains COL, EMRSA 15, EMRSA 16 and 

N315 and their SCVs were all examined for their ability to form biofilms. 

Additionally S. aureus strains Sa 6538 (biofilm positive) and Sa 5374 (biofilm 

negative; Tote et al., 2008) were used as positive and negative controls respectively. 

SCVs previously selected for in the presence of gentamicin (SCVGEN) and tetracycline 

(SCVTET) were subject to multiplex PCR (as described previously) to confirm SCVs 

were S. aureus. Strains were maintained at -80°C in Mueller Hinton (MH) broth 

supplemented with 8% dimethyl sulfoxide (DMSO) and re-isolated on MH agar plates 

when required. 

4.2.2 Congo red agar screen 

Before biofilm quantification was assessed a simple morphological screen was 

performed using Congo red agar to detect polysaccharide production in S. aureus 

(Freeman et al., 1989). Congo red agar was prepared by adding 50 g sucrose and 10 g 

of purified agar to 1 L of brain heart infusion broth (Oxoid, UK). After autoclaving 

the agar was cooled to 55°C and a filter sterilised solution of Congo red (Sigma, UK; 

0.8 g in 10 mL) added. Several individual S. aureus colonies were used to inoculate 

Congo red agar plates which were incubated at 37°C. After 48 hours incubation plates 

were examined for the presence of black crystalline colonies indicative of 

polysaccharide production. Absence of polysaccharide production was recorded 

following the appearance of pink colonies with occasional darkening at the centre of 

the colony.   

4.2.3 Quantification of biofilms  

Biofilms formed by S. aureus strains were quantified using the method of Tote et al., 

(2008). This assays uses the cationic dye dimethyl methylene blue (DMMB) to 

quantify biofilms as it binds specifically to S. aureus PIA. 

4.2.3.1 Preparation of dimethyl methylene blue working solution  

DMMB (32mg) powder (Sigma, UK) was dissolved in 25 mL of ethanol and filter 

sterilised. Two formic acid buffer (FAB) were prepare; FAB1 was prepared by adding 

4.77 g guanidine hydrochloride (Sigma, UK) and 0.5 g sodium formate (Sigma, UK) 
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to 237 mL of ultrapure water, followed by the addition of 0.5 mL formic acid (Sigma, 

UK) and 12.5 mL ethanol to create a final working volume of 250 mL. FAB 2 was 

prepared by adding 4.77 g guanidine hydrochloride and 0.5 g sodium formate to 49.5 

mL of ultrapure water followed by the addition of 0.5 mL formic acid. The final 

DMMB working solution was prepared by adding FAB 1 and FAB 2 to 12.5 mL of 

the filtered DMMB solution which was stored at room temperature and protected 

from light.  

4.2.3.2 Preparation of decomplexation solution  

Decomplexation solution (DECO) was prepared by adding 50 mL of 1- propanol 

(Sigma, UK) to 500 mL of 50 mM sodium acetate buffer. This was used to dissolve 

380 g of guanidine hydrochloride to achieve a final concentration of 4 M.  

4.2.3.3 Biofilm growth  

Several individual S. aureus colonies were inoculated into MH broth supplemented 

with 0.5% glucose and incubated at 37°C with shaking at 150 rpm, until reaching a 

start inoculum of 1 x 106 CFU/mL. Bacterial suspensions (100 µL) were added to 

individual wells of 96 well flat bottom microtitre plates (Fisher, UK) with replicates 

for each strain. Plates were incubated on a horizontal shaking platform for 72 hours at 

37°C. Growth medium was discarded every 24 hours and fresh medium added to 

avoid the build up of toxic metabolites.  

4.2.3.4 Quantification of biofilms  

Following 72 hours incubation, growth medium was discarded and adhering biofilms 

were washed twice with phosphate buffered saline (PBS). DMMB working solution 

(200 µL) was added to each individual well and incubated at room temperature for 30 

minutes whilst protected from light. DMMB was then discarded by centrifuging well 

plates for 20 minutes at 6000 rpm. Wells were then washed with 200 µL of ultrapure 

water to remove any unbound DMMB, before adding 250 µL of DECO solution. 

Plates were incubated at room temperature for 30 minutes and optical density was 

measured at OD630 using a DYNEX Technologies MRX® Microplate Absorbance 

Reader with RevelationTM application programme.  
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4.2.4 Adhesion to silicone  

Adhesion of S. aureus to silicone was assessed using the method of Williams et al., 

(1997). Silicone catheter discs were prepared by cutting silicone sheets to equal 

dimensions (0.5 cm2). Discs were sterilised by overnight submersion in 90% ethanol, 

followed by 2 hour incubation at room temperature to allow the evaporation of excess 

ethanol. Overnight S. aureus cultures grown in MH broth were adjusted to 1 X 105 

CFU/mL and catheter discs were placed in the suspension. Discs were incubated 

statically at 37°C for 7 days hours to allow attachment of the bacteria. The discs were 

aseptically transferred (ensuring adhering cells were not disrupted) to fresh MH broth 

every 48 hours to prevent build-up of toxic metabolites. After 7 days incubation discs 

were washed gently in PBS and transferred to fresh MH broth. In order to enumerate 

bacteria, discs were sonicated for 5 minutes and vortexed for a further 1 minute to 

remove adherent bacteria. Serial dilutions were performed in PBS and viable counts 

performed on the resulting suspensions, using drop counts.  

4.2.5 Cell-surface hydrophobicity  

Cell-surface hydrophobicity has been implicating in enhancing the ability of the SCVs 

of P. aeruginosa to form biofilms and to influence cell clumping. This was 

investigated in S. aureus using a microbial adhesion to hydrocarbons assay (Perez et 

al., 1998). Overnight cultures of S. aureus strains grown in MH broth, were pelleted 

by centrifugation at 10,000 rpm for 5 min and subsequently washed twice with PBS. 

Cells were adjusted to an optical density of 0.5 at OD600 and 2 mL mixed with 400 µl 

xylene and vortexed for 2 min. After 30 min incubation at room temperature, the 

aqueous phase was collected carefully and its OD600 was determined. The OD600 of the 

aqueous phase relative to the initial suspension was taken as a measure of cell-surface 

hydrophobicity (H%), which was calculated with the formula: 

 

H%  = [(OD0  OD)/OD0] × 100 

 

Where OD0 and OD are the optical density before and after extraction with xylene. 

4.2.6 Scanning electron microscopy  

Biofilms were prepared on Thermanox glass coverslips (Fisher Scientific, UK). 

Coverslips were aseptically transferred to S. aureus strains growing in MH broth. 

Coverslips were incubated statically at 37°C for 7 days, with growth medium being 
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changed every 48 hours. Biofilms formed on coverslips were fixed by the addition of 

1.5% v/v glutaraldehyde (TAAB, UK), which was incubated for 12 hours at 37°C. 

Following fixation biofilms were washed twice in double distilled water (5 minutes 

each wash) and subsequently  dehydrated with graded concentrations of ethanol (50%, 

70%, 90% and 100%) with each dehydration step lasting 5 minutes. Samples were 

then treated with three 5 mins applications of hexamethyldisilazane and sputter coated 

with gold. Samples were then viewed with JEOL 840A scanning electron microscope 

(JEOL Ltd, UK) with images recorded on SIS Imaging Software.  

4.2.7 Activity of antimicrobial agents against S. aureus biofilms  

S. aureus strains ATCC 25923 and EMRSA 15 and corresponding SCVs were chosen 

to investigate the effect of antimicrobial agents on biofilms. A modification of the 

DMMB assay was applied to determine the effect if antimicrobials on biofilms (Tote 

et al., 2009). Biofilms were grown as described previously (section 4.2.3.3) and 

culture medium carefully removed with a pipette, ensuring biofilms were not 

disrupted. Ciprofloxacin, chloramphenicol, gentamicin, tetracycline, rifampicin 

(Sigma, UK) and triclosan (Ciba, Germany) were prepared at the following 

concentrations – X 16 MBC; X 8 MBC; X 4 MBC; X 2 MBC; MBC, and MIC. 50 µL 

of the antimicrobial and 50 µL of MH broth were added to individual wells with 

established biofilms. Due to the dilution with MH broth double the required 

antimicrobial concentrations were prepared initially. Ultrapure water was used to 

replace antimicrobials for the formation of untreated control biofilms. Plates were 

subsequently incubated on a horizontal shaking platform for 48 hours at 37°C and 

biofilms quantified as described previously (section 4.2.3.4). Differences in 

absorbance were used to quantify the % reduction in antimicrobial treated biofilms in 

comparison with untreated controls.   

4.2.8 Preparation of colony biofilms and susceptibility to antimicrobial agents 

The method of Anderl et al., (2000) was used to form colony biofilms which were 

assessed for susceptibility to various antimicrobial agents. S. aureus strains were 

grown in MH broth and adjusted to ~ 1 x 107 CFU/mL and 10 µl of this suspension 

was used to seed black polycarbonate membrane filters (Fisher, UK; 13 mm diameter, 

pore size 0.4 µm). Filters were inverted and placed onto MH agar and incubated at 

37 °C for 4 days. Membrane-supported biofilms were transferred to fresh culture 
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medium every 48 hours. Following incubation, biofilms were washed with PBS to 

remove non-adherent cells. Adherent bacteria were enumerated by suspending 

membranes in 1 mL PBS and vortexing at high speed for 2 min. PBS was used to 

perform serial dilutions on the resulting suspension and dilutions were plated onto 

MH agar and incubated for 48 hours at 37°C. To examine the effect of the 

antimicrobial agents on biofilms formed. Colony biofilms were prepared as stated 

previously and following incubation transferred to MH agar containing ciprofloxacin, 

chloramphenicol, gentamicin, tetracycline, triclosan and rifampicin at concentrations 

ranging from 0 – 256 mg/L. Plates were incubated at 37 °C for 48 hours and 

antibiotic-treated biofilms were enumerated as stated above for control biofilms.  

4.2.9 Antimicrobial penetration through biofilms 

The method of Singh et al., (2010a) was used to measure the penetration of the six 

antimicrobial agents examined previously through S. aureus ATCC 25923 and 

EMRSA 15 and corresponding SCVs biofilms. This method uses zones of inhibition 

to measure the penetration of antimicrobial agents through biofilms (Figure 4.3). 

Colony biofilms were prepared as described previously (section 4.2.8) and transferred 

to MH agar plates inoculated with S. aureus ATCC 25923 in order to provide 

confluent lawn growth. A 6 mm diameter nitrocellulose membrane (Fisher, UK; pore 

size 0.4 µm) was placed  on the surface of each biofilm along with an antibiotic disc 

(ciprofloxacin 5 µg, chloramphenicol 30 µg, gentamicin 10 µg, rifampicin 5 µg, 

tetracycline 30 µg, (Oxoid, UK) and triclosan 10 µg). Each disc was moistened with 

24 µL of sterile polished water to prevent antibiotic movement through biofilms via 

capillary action. Control conditions were prepared replicating previous conditions 

with sterile membrane filters being excluded so no biofilms were present. Plates were 

incubated at 37 °C for 48 hours and the zone of inhibition measured digitally using 

IMAGE J (NIH). Inhibition zones produced by control conditions were taken to 

represent 100% penetration through S. aureus biofilms. 

4.2.10 Statistical analysis  

Analysis of significant differences between biofilm formation and antimicrobial 

susceptibility of SCV and parent biofilms was performed using the statistical analysis 

described previously (section 2.2.9.8).  
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Figure 4.3 Schematic displaying experimental setup to examine antibiotic 

penetration through S. aureus biofilms Adapted from Singh et al., (2010a). 
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4.3 Results  

4.3.1 Congo red agar screen 

Eight S. aureus strains and their SCV derivatives (selected for in the presence of 

gentamicin or tetracycline) were investigated for their ability to form biofilms using 

an agar screen. All parent strains grown on Congo red agar produced a black 

crystalline morphology, except the biofilm negative Sa 5374 strain which produced 

pink colonies. Black crystalline colonies indicated the ability to produce 

polysaccharide and were recorded as biofilm positive. All SCV strains (including 

SCVs isolated from Sa 5374) produced a black crystalline morphology. The positivity 

of Sa 5374 SCVs was surprising, although subsequent repeats confirmed Sa5374 

SCVs produce polysaccharide. SCV colonies were distinctly smaller than parental 

colonies but produced the black crystalline morphology associated with 

polysaccharide production.    

4.3.2 DMMB biofilm quantification and adhesion to silicone 

A DMMB microtitre well plate assay was applied to the same panel of strains using 

optical density measurements to correspond to biofilm production. Biofilm formation 

was observed in all parent strains (except the negative control; Sa 5374) and all SCVs 

including Sa 5374 (Figure 4.4). Excluding the negative control no significant 

difference was observed in biofilm formation between MRSA and MSSA strains (P = 

> 0.05). Across all strains tested biofilm formation was significantly increased in 

SCVs compared to parents (P < 0.01; Figure 4.4). As the DMMB assay used directly 

quantifies PIA production these results confirms the presences of increased PIA in 

SCV biofilms. Similar results were also observed using silicon catheter disc biofilm 

quantification assay (Figure 4.4). Significantly greater numbers of SCV viable cells 

were recovered from silicone discs in comparison to parent strains (P = < 0.01). 

Consistently lower numbers of Sa 5374 parent viable cells (~ 1 x 102 CFU/mL) were 

recovered from silicone discs compared to corresponding SCVs (~106 CFU/mL). 

4.3.3 Cell-surface hydrophobicity  

In order to confirm that the difference in biofilm formation between SCV and parent 

strains was related to differences in PIA production rather than cell surface 

hydrophobicity, their ability to adhere to hydrocarbons was observed. No significant 

difference in cell-surface hydrophobicity values were observed for SCV and parent  
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Figure 4.4 Biofilm formation in S. aureus SCV and parent strains A) - Biofilm formation assessed by DMMB assay; B) – Bacterial counts 

recovered from silicone catheter discs assessed by viable count. SCVs formed greater biofilms and consistently higher numbers of SCVs were 

recovered from silicone catheter discs in comparison to parent strains. Results are means values of three independent replicates and three 

independent biological replicates. Error bars represent standard error.  
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strains (P = > 0.05); mean H% = 65.2 (±3.2) in SCV strains and 67.7 (±4.8) in parent 

strains.  

4.3.4 Scanning electron micrograph analysis of biofilms   

Dense multilayered biofilms were observed in SCVs adhered to Thermanox 

coverslips (Figure 4.5 C). Although clustering and aggregation of cells was observed 

in parent biofilms, an absence of multilayer clusters of cells is apparent (Figure 4.5 

A). SEM images at increased magnification (Figure 4.5 B and D) demonstrate the 

presence of extracellular polysaccharide in SCV biofilms which appears absent in 

biofilms formed by parent strains. The SCV cellular cluster (Figure 4.5 D) is clearly 

covered in a ‘slimy’ extracellular polysaccharide substance whereas parent biofilms 

lack this substance (Figure 4.5 B).  

4.3.5 Susceptibility of biofilms to antimicrobial agents 

The effect of antimicrobial treatment on established biofilms was evaluated using the   

DMMB method. Six different antimicrobial agents were applied at various 

concentrations to S. aureus parent ATCC 25923 and EMRSA 15 biofilms, and 

biofilms formed by their corresponding SCVs. Both parent and SCV biofilms showed 

reduced susceptibility to concentrations of antimicrobial agents that normally 

inhibited planktonic cells (Tables 4.2 and 4.3). Application of MIC and MBC 

concentrations to both parent and SCV biofilms resulted in no reduction of established 

biofilms in both strains. Furthermore treatment with X 2 MBC concentrations of all 

six antimicrobials tested resulted in no reduction of EMRSA 15 parent and SCV 

biofilms.  

 

Comparison of the effects of antimicrobial agents on SCV and parent biofilms SCV 

biofilms revealed SCV biofilms were significantly less susceptible to all six 

antimicrobial compounds tested (P = < 0.01). Application of X 2 MBC of 

ciprofloxacin, triclosan and rifampicin to ATCC 25923 parent biofilms resulted in 

reduction in biofilms in comparison to control; however the same concentrations 

produced no reduction in ATCC 25923 SCV biofilms (Table 4.2). Similar results 

were observed in EMRSA 15 biofilms. Application of X 4 MBC ciprofloxacin, 

tetracycline and rifampicin resulted in a reduction of EMRSA 15 parent biofilms, but 

the same concentrations produced no effect on SCV biofilms (Table 4.3).  
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Figure 4.5 Scanning electron micrographs of S. aureus SCV and parent biofilms 

formed on Thermanox coverslips Images A and B show wildtype biofilms, and 

SCV biofilms are displayed in images C and D. Images A and C x 2000 

magnification, scale bar represents 10 microns. Images B and D x 4000 magnification, 

scale bar represents 1 micron.  
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Table 4.2 Effect of antimicrobial agents on biofilm formation in  S. aureus ATCC 25923 SCVs and corresponding parent strain  

 
 X 2 MBC X 4 MBC X 8 MBC X 16 MBC 

 P SCVGEN SCVTET P SCVGEN SCVTET P SCVGEN SCVTET P SCVGEN SCVTET 

Ciprofloxacin 

 

11 ± 1 0 0 11 ± 1 0 8 ± 1 27 ± 2 18 ± 2 24 ± 3 79 ± 5 47 ± 4 55 ± 3 

Chloramphenicol 

 

0 0 0 0 0 0 18 ± 3 0 0 29 ± 2 0 0 

Gentamicin 

 

0 0 0 4  ± 1 0 0 14 ± 3 0 0 32 ± 4 0 0 

Tetracycline 

 

0 0 0 17 ± 3 7 ± 1 11 ± 2 38 ± 5 0 0 68 ± 2 39 ± 4 41 ± 3 

Triclosan 

 

15 ± 2 0 0 24 ± 2 0 0 49 ± 4 6 ± 1 8 ± 1 79 ± 6 21 ± 2 19 ± 2 

Rifampicin 

 

17 ± 3 0 0 28 ± 3 14 ± 4 18 ± 2 41 ± 2 25 ± 4 32 ± 2 87 ± 4 69 ± 3 74 ± 2 

 
 
MIC and MBC concentrations showed no activity against S. aureus SCV 25923 and parent biofilms. Data shown is % reduction from control 

conditions (untreated biofilms) and is the mean of eight replicates and two independent biological replicates.  
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Table 4.3 Effect of antimicrobial agents on biofilm formation in  S. aureus EMRSA 15 SCVs and corresponding parent strain  

 
 X 4 MBC X 8 MBC X 16 MBC 

 P SCVGEN SCVTET P SCVGEN SCVTET P SCVGEN SCVTET 

Ciprofloxacin 

 

9 ± 2 0 0 33 ± 4 15 ± 2 9 ± 1 67 ± 3 41 ± 2 37 ± 4 

Chloramphenicol 

 

0 0 0 19 ± 2 0 0 39 ± 4 0 0 

Gentamicin 

 

0 0 0 17 ± 1 0 0 31 ± 2 0 0 

Tetracycline 

 

11 ± 1 0 0 35 ± 2 0 0 59 ± 4 38 ± 3 27 ± 2 

Triclosan 

 

0 0 0 29 ± 2 14 ± 1 0 66 ± 2 31 ± 4 21 ± 1 

Rifampicin 

 

15 ± 2 0 0 41 ± 5 31 ± 3 24 ± 3 85 ± 3 67 ± 6 57 ± 2 

 
MIC, MBC and X 2 MBC concentrations showed no activity against S. aureus EMRSA 15 SCV and parent biofilms. Data shown is % reduction 

from control conditions (untreated biofilms) and is the mean of eight replicates and two independent biological replicates.  
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Concentrations of X 16 MBC ciprofloxacin, tetracycline, triclosan and rifampicin and 

triclosan produced the greatest reduction (73 ± 3.625 %) in biofilm formed by parent 

strains. Application of the same antimicrobial concentrations to SCV biofilms resulted in 

a reduction, however the reduction (43 ± 3 %) was significantly lower in comparison to 

parent biofilms (P = < 0.01). The highest concentrations of chloramphenicol and 

gentamicin examined produced a 33 ± 3 % reduction in parent biofilms. The same 

concentrations however resulted in no reduction of SCV biofilms. No single antimicrobial 

agent completely eradicated parent and SCV biofilms at all concentrations examined. 

Rifampicin was the most active antimicrobial in reduction of both SCV (67 ± 3.25 %) and 

parent (86 ± 3.5 %) biofilms in both strains examined (Tables 4.2 and 4.3).  

4.3.6 Effect of antimicrobial agents on colony biofilms  

A colony biofilm assay was implemented to determine the total viable bacterial burden 

within a biofilm and to allow the detection of any SCV disseminating from parent 

biofilms. The six antimicrobial agents tested previously were tested against parent and 

SCV isolates. Initial observations showed that significantly higher numbers of SCVs (~ 1 

x 107 CFU/mL) were recovered from colony biofilms formed by both strains in 

comparison to parent colony biofilms (~ 1 x 105 CFU/mL; P = < 0.01). Ciprofloxacin, 

rifampicin, tetracycline and triclosan all reduced viable cell counts in ATCC 25923 and 

EMRSA 15 parent biofilms, although no antimicrobial concentration tested completely 

eliminated viable cells (Figure 4.6 and Figure 4.7). Viable cell counts showed that the 

highest concentrations of the four antimicrobials tested achieved an average 3.8 log10 

reduction in CFU/mL in comparison to controls.  

 

Chloramphenicol and gentamicin were less active against parent biofilm with the highest 

concentrations examined achieving a mean 1.35 log10 reduction in viable cell counts. 

Similarly to parent strains, chloramphenicol and gentamicin showed the lowest reduction 

in SCV viable cell counts (1.175 log10 reduction). Ciprofloxacin and rifampicin showed 

the greatest reduction in viable counts of SCVs in both strains. The highest concentration 

of ciprofloxacin produced an average 2.75 log10
 reduction, where as treatment with the 

highest rifampicin concentration resulted in average 4.15 log10
 reduction in SCV viable 

cell counts (Figures 4.6 and 4.7). Although higher numbers of SCVs were recovered from  
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Figure 4.6 Effect of exposure to six antimicrobials on colony biofilms formed by S. aureus ATCC 25923 SCVs and corresponding parent 

strain Exposure to various concentrations of ciprofloxacin, gentamicin, tetracycline and triclosan yielded SCVs in 25923 colony biofilms 

represented by #. Results are means values of eight independent replicates and two independent biological replicates. Error bars represent 

standard error. 
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Figure 4.7 Effect of exposure to six antimicrobials on colony biofilms formed by S. aureus EMRSA 15 SCVs and corresponding parent 

strain Exposure to various concentrations of ciprofloxacin, gentamicin, tetracycline and triclosan yielded SCVs in EMRSA 15 colony biofilms 

represented by #. Results are means values of eight independent replicates and two independent biological replicates. Error bars represent 

standard error. 
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Table 4.4 Penetration of antimicrobial agents through S. aureus ATCC 25923 and EMRSA 15 SCV and parent biofilms 

 

Antimicrobial Concentration (µg) Control inhibition  

zone (mm) 

25923 parent biofilm 

zone diameter 

25923 SCVGEN biofilm 

zone diameter 

253923 SCVTET biofilm 

zone diameter 

Ciprofloxacin  5 27 ± 1.05 25 ± 0.45 24 ± 0.64 24 ± 1.46 

Chloramphenicol 30 24 ± 0.55 <13  <13 <13 

Gentamicin 10 22 ± 0.71 <13 <13 <13 

Rifampicin  5 32 ± 1.22 29 ± 1.02    28 ± 1.27  27 ± 1.15 

Tetracycline  30 28 ± 0.64 25 ± 0.74   12 ± 0.76  15 ± 0.52 

Triclosan 10 32 ± 1.88 28 ± 1.09   19 ± 1.51  22 ± 1.01 

 

Antimicrobial Concentration (µg) Control inhibition  

zone (mm) 

EMRSA 15 Parent EMRA 15 SCVGEN EMRSA 15 SCVTET 

Ciprofloxacin  5 27 ± 1.05 24 ± 1.63 22 ± 1.38 23 ± 0.67 

Chloramphenicol 30 24 ± 0.55 <13  <13 <13 

Gentamicin 10 22 ± 0.71 <13 <13 <13 

Rifampicin  5 32 ± 1.22 27 ± 1.25 28 ± 0.87 26 ± 0.74 

Tetracycline  30 28 ± 0.64 25 ± 1.17 19 ± 0.87 17 ± 0.83 

Triclosan 10 32 ± 1.88 26 21 ± 1.59 18 ± 1.12 

 

Limit of detection was 13 mm due to the presence of the membrane filter that biofilms were grown on.  Results are means values of three 

independent replicates. 
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biofilms, the reductions achieved by ciprofloxacin, rifampicin, tetracycline and 

triclosan were significantly lower in SCV biofilms in comparison to parents (P = < 

0.05). SCVs were not detected in any of the control biofilms and were only detected 

in the presence of higher antimicrobial concentrations of ciprofloxacin, gentamicin, 

tetracycline and triclosan (Figures 4.6 and 4.7).  For example in parent biofilms 

treated with gentamicin no SCVs were observed upon treatment with concentrations 

of 0-16 mg/L, but SCVs were subsequently detected at 32, 64 and 128 mg/L 

concentrations in ATCC 25923 biofilms. No SCVs were detected in biofilms treated 

with chloramphenicol and rifampicin.  

4.3.7 Antimicrobial penetration of biofilms 

As differences in the efficiency of antimicrobials at reducing biofilms and viable cell 

counts were observed the penetration of antibiotics through biofilms was examined 

using the method of Singh et al., (2010a). The penetration of chloramphenicol and 

gentamicin through SCV and parent biofilms of both strains was significantly reduced 

in comparison to control conditions (Table 4.4; P < 0.05). No significant difference 

was observed in the penetration of ciprofloxacin, rifampicin, tetracycline and triclosan 

through parent biofilms formed by ATCC 25923 and EMRSA 15 (P = > 0.05). 

Ciprofloxacin and rifampicin also showed no significant reduction in the penetration 

of SCV biofilms formed by both strains (P = > 0.05; Table 4.4). In contrast to parents 

the penetration of tetracycline and triclosan through SCV biofilms was significantly 

reduced (P = < 0.01).   
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4.4  Discussion 

S. aureus is well known for its ability to form biofilms on a range of materials 

including indwelling catheters (Marrie & Costerton, 1984b) and prosthetic devices 

(Litzler et al., 2007; Rohde et al., 2007). This study has identified the ability of 

several S. aureus parent and SCV strains to form biofilms using a simple agar screen. 

In addition quantification of biofilms was achieved using DMMB biofilm assay 

developed by Tote et al., (2008). Although biofilm formation in staphylococci 

involves various steps and stages the accumulation of cellular aggregates and the 

ability to form biofilms is dependent on the production of exopolysaccharide 

(Heilmann et al., 1996). In staphylococci this is dependent on the production of PIA 

which is regulated by the icaADBC genes (making up the ica operon). This study 

demonstrates that SCVs produced significantly greater biofilms in comparison to 

parent strains. As the DMMB assay directly quantifies PIA and SCVs showed no 

difference in cell surface hydrophobicity these results suggest that PIA production in 

increased is SCVs and hence they exhibit an increased capacity to form biofilms.  

 

Anaerobic conditions are known to increase the expression of PIA in S. aureus, which 

has been attributed to increased ica gene transcription (Cramton et al., 2001b). As the 

SCV phenotype draws parallels with S. aureus when it is grown anaerobically (Balwit 

et al., 1994), increased ica transcription may be responsible for the increased PIA 

production in SCVs observed in this study. Inhibition of the TCA cycle has been 

shown to impact on PIA production in S. epidermidis (Vuong et al., 2005). 

Subsequently this has been suggested as the mechanism for increased PIA production 

in a S. epidermidis SCV constructed mutant (Al Laham et al., 2007) and menadione 

auxotrophic S aureus SCV (Singh et al., 2010a). As part of this study a lack of 

utilisation of carbohydrates was observed (Chapter 2). This suggests inhibition of the 

TCA cycle may also play a role in increased PIA production in the SCVs studied for 

biofilm formation.  

 

SCVs display important differences in their expression profile in comparison to parent 

strains (Seggewiss et al., 2006) and therefore it is feasible that variation in gene 

expression may relate to differences in biofilm production. Perhaps the most attractive 

candidate to explain the difference between biofilm formation in parent and SCV 
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strains is the staphylococcal accessory regulator (sarA). Studies have shown that sarA 

can influence the expression of the ica operon (Beenken et al., 2004; Valle et al., 

2003). In S. aureus sarA mutants ica transcription is decreased, decreasing PIA 

production. S. aureus SCVs (recovered following aminoglycoside exposure) however, 

show increased expression levels of sarA (Mitchell et al., 2010a). Alterations in the 

expression of sarA may be therefore responsible for increased ica transcript and 

subsequent increased PIA production.   

 

Antimicrobial susceptibility of S. aureus biofilms is notably reduced in comparison 

with planktonic cells (Amorena et al., 1999). This has been attributed to several 

factors including the presence of exopolysaccharide matrix and a reduced growth rate 

(Mah & O'Toole, 2001). Coupled with resistance mechanisms such as biofilm 

exopolysaccharide and slow growth rate of cells growing within biofilms, S. aureus 

biofilms provide a unique mechanism for colonisation and reduced antimicrobial 

susceptibility. In this study, SCV and parent biofilms displayed reduced susceptibility 

to ciprofloxacin, chloramphenicol, gentamicin, tetracycline, triclosan and rifampicin 

at concentrations normally bactericidal to planktonic cells. Antimicrobial 

susceptibility testing showed antimicrobial agents to have significantly smaller 

inhibitory effect on SCV biofilms in comparison to biofilms formed by parent strains. 

These results agree with previous studies that have shown SCV biofilms to exhibit 

reduced susceptibility to antimicrobials in comparison with parents (Chuard et al., 

1997; Williams et al., 1997).  

 

Antibiotic penetration was shown to be an important factor in the reduction of biofilm 

mass and cell quantity by antimicrobial agents. Chloramphenicol and gentamicin 

showed a significant reduction in penetration of parent and SCV biofilms correlating 

with the lowest overall reduction in biofilm mass and viable cell count. A difference 

in the penetration of antimicrobial agents was observed between parent and SCV 

strains; no significant reduction in penetration of tetracycline and triclosan penetration 

was observed in parent biofilms however the opposite was apparent in SCV biofilms. 

The differences in responses between SCV and parents may be explained by the 

difference in PIA production observed, which is known to reduce the activity of 

various antimicrobials (Souli & Giamarellou, 1998). Increased PIA production in 

SCVs may limit the diffusion and/or inactivate the antibiotics examined, accounting 
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for the differences observed between SCV and parent strains. Furthermore SEMs in 

this study show a difference in biofilm structure formed by SCV and parent strains. 

The multilayered complexity of SCV biofilms may contribute to reduced antibiotic 

penetration and the observed reduction in antimicrobial susceptibility observed. 

Rifampicin proved to be the best agent in reducing biofilm mass and also reducing 

viable counts in both SCV and parent biofilms. Previous studies have shown that 

rifampicin can penetrate biofilms formed by S. epidermidis (Zheng & Stewart, 2002) 

and that PIA does not inhibit rifampicin activity (Souli & Giamarellou, 1998). 

Biofilms formed by both parent and SCV strains showed no significant effect on the 

penetration of rifampicin which may account for the activity of rifampicin against 

parent and SCV biofilms observed in this study.  

 

Although differences in the susceptibility of SCV and parent biofilms to antimicrobial 

agents was observed, no single antimicrobial agent eradicated biofilms or completely 

eliminated viable cells. The remaining cells encountered may represent the formation 

of biofilm-specific, drug-resistant or drug-tolerant physiologies, including the 

presence of persister cells (Stewart & Costerton, 2001). Persisters represent a 

subpopulation of bacteria that exhibit the ability to survive at lethal concentrations of 

antimicrobials without any clear resistance mechanism (Lewis, 2005). A recent study 

has shown large numbers of persisters to be present in S. aureus biofilms that confer 

resistance to various antimicrobials (Singh et al., 2009). Persisters may explain the 

ability of parent biofilms to withstand elevated concentrations of antimicrobials tested 

in this study. 

 

Although this study did not actively assay for persisters, SCVs were isolated from 

parent biofilms. The presence of SCVs in biofilms has been observed in P. aeruginosa 

(Haussler et al., 2003b) and S. pneumonia (Allegrucci & Sauer, 2007) which as well 

as persisters may contribute to the reduced antimicrobial susceptibility of biofilms. 

Singh et al., (2009) have suggested that SCVs contribute significantly to reduced 

susceptibility in S. aureus biofilms. Although we did not observe the presence of 

SCVs in biofilms that were not treated with antimicrobial agents their presence would 

clearly result in further reduced antimicrobial susceptibility. S. aureus SCVs display 

reduced susceptibility to cell wall specific antibiotics and aminoglycosides as a direct 

result of interruption of the electron transport chain and slow growth characteristics 
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(McNamara & Proctor, 2000). As SCVs already exhibit reduced susceptibility in their 

planktonic state this would suggest that in a biofilm, this reduced susceptibility would 

be further amplified. A biofilm formed completely of SCVs would exhibit further 

reduced susceptibility in comparison to a biofilm composed solely of parent/wildtype 

cells. This may also contribute to the reduced susceptibility of SCV biofilms to 

antimicrobial agents observed in this study.  

 
The enhanced biofilm forming capacity of SCVs may correlate to their ability to cause 

persistent and recurrent infections. The ability of SCVs to form biofilms on materials 

such as silicone (frequently used in catheter; Jones et al., 2006) may provide an 

increased opportunity to cause disease and persist in the hospital setting. SCVs have 

been isolated from CF pulmonary infections, osteomyelitis, and prosthetic device 

related infections (Proctor et al., 2006) all of which have been linked to the presence 

of biofilms (Costerton et al., 1999). This suggests that SCVs may play a significant 

role in biofilm related infections. Currently no antimicrobial drug has been found that 

completely eradicates adherent microbial populations, meaning biofilm infections are 

rarely resolved and usually persist until the removal of the effected medical device 

(Cos et al., 2010). Novel approaches to combat biofilm associated infections 

including antibiotic lock therapy, inhibition of quorum sensing, and degradation of 

biofilms by genetically engineered phage are prospective treatment options (Agarwal 

et al., 2010). The enhanced resistance of SCVs may in turn contribute to the adverse 

therapeutic outcome in these infections (Singh et al., 2009). 
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4.5  Conclusions  

 

• The Congo red agar screen is a useful method to screen polysaccharide production 

in S. aureus SCVs. 

• S. aureus SCVs have an increased capacity to form biofilms in comparison to 

parent strains 

• No difference in cell surface hydrophobicity between SCV and parent strains 

suggest increased PIA production is the mechanism for increased biofilm 

formation in SCVs.  

• S. aureus biofilms are less susceptible to ciprofloxacin, chloramphenicol, 

gentamicin, tetracycline, triclosan and rifampicin than planktonic forms.  

• SCVs are present in S. aureus biofilms following treatment with antimicrobial 

agents.  

• SCV biofilms display further reductions in antimicrobial susceptibility which can 

be attributed to reduced antibiotic penetration through biofilms. 
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5 CHAPTER 5: SUSCEPTIBILITY , RESISTANCE INDUCTION 
AND SYNERGISTIC EFFECTS OF VARIOUS PLANT 
ANTIMICROBIALS AGAINST STAPHYLOCOCCUS AUREUS 
SMALL COLONY VARIANTS  

5.1 Introduction 

5.1.1 Issues surrounding antibiotic discovery 

Following the development of the sulphonamides in the 1930s and penicillin in the 

1940s many new classes of antibiotics have been developed, however in the past 30 

years only two new classes of antibiotics (the oxazolidinones and lipopeptides) have 

been developed (Norrby et al., 2005; Silver, 2011). Various challenges to antibacterial 

drug discovery have kept the output of new classes of antibacterial agents extremely 

low. These difficulties have further exacerbated the current crisis of increasing 

antibiotic resistance in clinically-relevant bacteria. One of the key problems regarding 

the discovery of novel antibacterial agents is that the majority of targets which allow 

selective toxicity have already been exploited (Moellering, 2011). Furthermore, the 

difficulty and the time taken to develop novel agents mean a huge financial 

investment by the pharmaceutical industry. Payne et al., (2007) estimate that for each 

individual agent, from the initial target identification to the file to launch procedure 

takes an average of 14 years. In addition the expenses associated with the 

pharmaceutical research and development of each individual agent is $400 - $800 

million (DiMasi et al., 2003). This has resulted in several large global pharmaceutical 

companies (GlaxoSmithKline, Eli Lilly and Proctor and Gamble,) reducing their 

investment in or completely deserting antibiotic discovery (Overbye & Barrett, 2005).  

 

Further issues have arisen regarding the regulations which govern antibiotic 

development, and the bodies that control the approval of new antibiotics agents have 

received criticism. The Food and Drugs Administration (FDA) in the US has been 

accused of ‘shifting the goalposts’ in antibiotic approval after changing the approval 

criteria for antibiotics (Lancet, 2006). In addition, the lack of clinical trial guidelines, 

difficulties in recruiting sufficient subjects for clinical trials and the ambiguity 

surrounding the acceptability of model based evidence provide further hindrances 

(Spellberg et al., 2008). Consequently it is not surprising that the number of novel 

agents in the antibiotic pipeline are far and few between.  
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5.1.2 Plant products as antimicrobials  

The rapid decline in the development of novel antimicrobial has resulted in alternative 

approaches to antimicrobial development being sought. Natural products offer 

potential for the development of new antibacterial drugs and a new avenue to 

overcome the productivity crisis facing those engaged in drug discovery and 

development (Newman et al., 2003). Plants are rich in a wide variety of secondary 

metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, many of which 

display antimicrobial properties in vivo (Cowan, 1999). Approximately 420,000 plant 

species are present on earth (Vuorela et al., 2004), with only 5% of known plants 

being systematically investigated for the presence of bioactive compounds (Verpoorte 

et al., 2000). Therefore plants may represent a huge reservoir of potential new 

compounds, which remains untapped. 

5.1.3 Essential oils  

Essential oils (EOs) are aromatic oily liquids obtained from a variety of different plant 

materials including bark, flowers, leaves and roots (Burt, 2004). The main 

constituents of EOs are mono- and sesquiterpenes (including carbohydrates, alcohols 

and ethers) which are responsible for the fragrant and biological properties of 

aromatic plants (Kalemba & Kunicka, 2003). They are frequently liquid, volatile, 

rarely coloured, and soluble in organic solvents (Bakkali et al., 2008). EOs are used in 

the food industry as flavour additives and for the preservation of foodstuffs (Bouhdid 

et al., 2010) and EOs and their components have been deemed safe for use in food 

and beverages by the FDA (USFDA, 2009). Previous years have seen a revival in the 

use of EOs in protecting livestock and food from disease, due to their spectrum of 

antibacterial activity (Dorman & Deans, 2000). It is well documented that EOs posses 

antibacterial, (Deans & Ritchie, 1987; Holley & Patel, 2005), antimycotic (Azzouz & 

Bullerman, 1982) and antiparasitic activity (Pandey et al., 2000).  

 

Although the exact antimicrobial effects of EOs have not been determined, it is 

accepted that the action is dependent on the lipophilic character of their hydrocarbon 

skeleton and the hydrophobic character of their functional groups (Kalemba & 

Kunicka, 2003). As EOs are composed of several different chemical compounds, their 

antibacterial activity is not attributed to one specific mechanism and there are several 

known targets in the bacterial cell. EOs are known to cause degradation of the 
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bacterial cell wall (Helander et al., 1998), damage the cytoplasmic membrane 

(Sikkema et al., 1994) and damage membrane proteins (Ultee et al., 1999).  

 

Gram positive and Gram negative bacteria display differences in susceptibility to EOs 

due to differences in there cellular composition. The outer membrane (OM) of Gram 

negative bacteria contains lipopolysaccharide (LPS) molecules, providing the bacteria 

with a hydrophilic surface (Nikaido, 1994), which in turn serves as a penetration 

barrier to hydrophobic EOs. Pseudomonas aeruginosa for example displays intrinsic 

resistance to a variety of EOs due to the hydrophilic nature of it’s OM.  

5.1.3.1 Oregano – Origanum vulgare  

Oregano EO is composed of two main antibacterial components; thymol and 

carvacrol, the precursors of which are the monoterpene hydrocarbon molecules, γ-

terpinene and p-cymene (Nostro et al., 2004). Thymol and carvacrol are phenolic 

compounds known to posses bacteriostatic or bactericidal activity depending on the 

concentration (Dorman & Deans, 2000). Thymol is structurally very similar to 

carvacrol, the major difference being a different location of the hydroxyl group on the 

phenolic ring (Burt, 2004). Carvacrol is the major component of oregano EO fraction 

(60 – 74%) (Ultee et al., 1999) with thymol concentrations ranging from 0 - 33% 

(Faleiro et al., 2005). The compositions can vary greatly depending upon the 

geographical region, variety and age of the plant, the method of drying and the 

method of extraction of the oil (Jerković et al., 2001).  

  

Several studies have shown a wide range of human pathogens to be susceptible to 

oregano oil, including Candida albicans, Escherichia coli Staphylococcus aureus, and 

Salmonella typhimurium (Dorman & Deans, 2000; Friedman et al., 2002; Hammer et 

al., 1999). Oregano EO, thymol and carvacrol have all been shown to disrupt the 

bacterial cell membrane, causing increased permeability to the nuclear stain ethidium 

bromide (Lambert et al., 2001). Studies in Bacillus cereus have also shown carvacrol 

to interact with the cell membrane, dissolving the phospholipid bilayer, increasing 

membrane fluidity (Ultee et al., 2000; Ultee et al., 2002). Interaction with the lipid 

bilayer of the cytoplasmic membrane results in leakage of cellular material such as 

ions, ATP and nucleic acid (Helander et al., 1998; Trombetta et al., 2005).  
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5.1.3.2 Cinnamon – Cinnamomum zeylanicum (Synonym: Cinnamomum verum) 

Many species of cinnamon yield volatile oils on distillation (Chericoni et al., 2005). 

Variability in the composition of EOs from the same Cinnamomum species is 

common and is related to the geographical source of plant (Cheng et al., 2004). 

Cinnamomum zeylanicum is one of the worlds most commonly exported species of 

cinnamon and its primary constituents are cinnamaldehyde from the bark oil, eugenol 

from the leaf oil, and camphor from the root-bark oil (Wijesekera & Chichester, 

1978). Cinnamaldehyde, an aromatic aldehyde is the main component of bark extract 

(Ali  et al., 2005) and has been demonstrated to display strong antibacterial activity 

against a range of bacterial pathogens including Helicobacter pylori (Ali  et al., 2005), 

P. aeruginosa and  S. aureus (Bouhdid et al., 2010). Eugenol is also present in bark 

oil (but at lower concentrations) and has a similar range of activity to 

cinnamaldehyde, with activity against human pathogens such as E. coli, Listeria 

monocytogenes (Friedman et al., 2002), S. aureus and Klebsiella pneumonia 

(Prabuseenivasan et al., 2006).  

 

Cinnamaldehyde induces changes in the membrane but does not result in the 

disintegration of OM (Helander et al., 1998). Treatment of exponentially growing B. 

cereus cells with cinnamaldehyde results in filamentation and strong inhibition of cell 

separation (Kwon et al., 2003). Further studies have shown that cinnamaldehyde 

inhibits FtsZ which is responsible for the regulation of bacterial cell division 

(Domadia et al., 2007).  

5.1.3.3 Ginger (Zingiber officinale) 

Ginger is used in pharmaceutical, cosmetic, and food and beverage industries and it’s 

EO has applications as an analgesic, anti-inflammatory, and antirheumatic (de Melo et 

al., 2011). Ginger oil contains considerable concentrations of phenolic compounds 

including eugenol, gingerol and zingerone (Singh et al., 2008). The antibacterial 

activity of ginger EO is related to these phenolic compounds and although an exact 

mechanism of action has not been established it is likely to involve the synergistic 

action of all constituents. 

5.1.4 Green tea (Camellia sinensis) 

Camellia sinensis belongs to the ‘non-fermented’ class of tea in which the leaves are 

dried and steamed in the manufacturing process (Cabrera et al., 2006). The chemical 
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composition of green tea is complex and contains a diverse array of amino acids, 

carbohydrates, vitamins, minerals and pigments (Friedman, 2007). The polyphenol 

fractions have been widely investigated for their antimicrobial properties, of which 

the simplest compounds are catechins. Approximately 10% of green tea is made up of 

catechins, of which 4 main compounds are present; epicatechin (EC), epigallocatechin 

(EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) (Hamilton 

Miller, 1995). Green tea catechins exert antimicrobial activity against human 

pathogens such as S. aureus, S. epidermidis, Vibrio cholerae (Toda et al., 1989), 

Clostridium spp. (Ahn et al., 1991) and P. aeruginosa (Yi  et al., 2010). Similarly to 

EOs, several cellular targets have been proposed for green tea. Targets include the 

FabI and FabG reductase steps in the E. coli fatty acid elongation cycle (Zhang & 

Rock, 2004) and DNA gyrase (Gradisar et al., 2007). Certain green tea catechins 

(EGC and EGCC) can also inhibit bacterial efflux pumps Tet (K) (Roccaro et al., 

2004) and NorA (Gibbons et al., 2004), which reduced susceptibility to tetracycline 

and norofloxacin respectively. Green tea has also been shown to reverse methicillin 

resistance in methicillin-resistance S. aureus (MRSA), inhibiting the synthesis of 

penicillin binding protein 2’ (PBP2’; Yam et al., 1998).  

5.1.5 Candicidin  

Candicidin is a unique antimicrobial produced and formulated by Cultech Ltd., 

composed of a variety of EOs including; oregano, clove leaf oil, ginger oil and 

wormwood oil. The main antibacterial component of clove leaf oil derived from 

Eugenia carophyllus is eugenol (Farag et al., 1989) which shows activity against 

various pathogenic bacteria (Sanla-Ead et al., 2011). Clove oil possesses antioxidant 

properties and shows potential as a natural preservative or as a source of natural 

antioxidants for use in pharmaceutical applications (Chaieb et al., 2007). Wormwood 

oil is derived from Artemisia absinthium, and has antibacterial activity against 

pathogens such as K. pneumonia (Viljoen et al., 2006). The monoterpene ketone 

thujone is considered as the main ‘active ingredient’ (Lachenmeier, 2010) however 

limited information regarding its antibacterial application are available.  
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5.1.6 Synergy between plant antimicrobials and antibiotics 

Formulations of different antibacterial compounds that complement each others’ 

action offers a strategy to overcome the problem of antibiotic resistance 

(Hemaiswarya et al., 2008). For example, the combination of a ß-lactam antibiotic 

together with ß-lactamase inhibitor will render the ß-lactamase enzyme redundant 

allowing the antibiotic to remain active. Synergy is the term used to described when 

the combined effect of two compounds is greater than the sum of the effects of each 

compound alone (Berenbaum, 1978; Rand et al., 1993). Several examples in the 

literature have demonstrated successful combinations of plant antimicrobials with 

many different classes of antibiotics. Shiota et al. (2000) demonstrated that extract 

from the petals of Rosa canina (rose red) significantly increased the ß-lactam 

susceptibility of MRSA strains. Erybraedin and eryzerin isolated from the roots of 

Erythrina zeyheri (member of the Fabaceae plant family, found in South Africa) 

decreased the susceptibility of vancomycin resistant enterococci (VRE) to 

vancomycin (Sato et al., 2004). Furthermore, certain plant compounds have shown 

synergy with multiple antibiotics such as Punica granatum (pomegranate) which 

displayed a synergistic relationship with chloramphenicol, gentamicin, tetracycline, 

and oxacillin against MRSA (Braga et al., 2005).  
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5.1.7 Aims  

Cultech Ltd. produces various naturally derived compounds which are available in the 

form of EOs and emulsified powders. This study is the first to examine the action of 

naturally-derived plant EOs and plant compounds against S. aureus SCVs. As S. 

aureus SCVs are difficult to treat in the clinical setting and can be selected for in the 

presence of various antibiotics (Chapters 2 and 3), naturally derived compounds may 

offer an alternative method for treatment of SCV related infections. 

 

• Examine the susceptibility of a range of S. aureus parent and SCV strains to 

various EOs and green tea using a disc diffusion method. 

• Apply the CLSI broth dilution method(s) to obtain MIC and MBC values for plant 

antimicrobial powders against S. aureus parent and SCV strains.  

• Investigative time kill dynamics to validate plant antimicrobial MBC values. 

• Examine the ability of S. aureus parent and SCV strains to develop resistance to 

plant antimicrobial compounds. 

• Investigate synergistic relationships that may exist between plant antimicrobials 

and various classes of conventional antibiotics.  
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5.2 Material and methods 

5.2.1 Essential oils and powders  

Cinnamon bark, oregano and ginger oils and green tea (Cultech Ltd.) were examined 

for there antibacterial activity against S. aureus SCV and parent strains using a disc 

diffusion method. Emulsified powders of cinnamon bark and oregano oil as well as 

candicidin and green tea (Cultech Ltd.) were used for microdilution susceptibility 

testing. The major known antibacterial constituents of EOs and the emulsified 

powders used in this study are shown in Table 5.1. Stock solutions (100,000 mg/L) of 

the powders candicidin, cinnamon, green tea and oregano were prepared by dissolving 

1 gram of each powder in 10 mL of sterile deionised water. Suspensions were 

vortexed thoroughly for 5 min followed by centrifuged for 10 min at 10, 000 rpm. 

Dilutions of stocks were prepared in sterile deionised water and stock stored at 4°C 

for a maximum of 7 days. 

5.2.2 Bacterial strains  

Several reference methicillin sensitive S. aureus (MSSA) strains and well 

characterised MRSA strains were used to investigate the anti-staphylococcal effects of 

plant antimicrobials (Table 5.2). SCVs derived from these strains following antibiotic 

exposure, as well as laboratory constructed SCVs and a SCV human isolates were 

also examined (Table 5.3).  Strains were maintained at -80°C in Mueller Hinton (MH) 

broth supplemented with 8 % dimethyl sulfoxide (DMSO) and re-isolated on MH agar 

plates. 

5.2.3 Disc diffusion  

Disc diffusion method was carried out following guidelines from the British Society 

of Antimicrobial Chemotherapy (BSAC) standardised disc susceptibility testing 

method (Andrews & Susceptibility, 2009). Individual S. aureus colonies (3-4) were 

inoculated into cation adjusted Mueller Hinton broth (CAMHB) and incubated at 

37°C with shaking at 150 rpm.  Cultures were grown to the end of logarithmic phase 

and cell densities were adjusted to match the turbidity of a 0.5 McFarland standard at 

625 nm. Occasionally SCV strains failed to reach the densities required by the 

McFarland standard, in which case densities of parent strains were adjusted 

accordingly to ensure similar inoculum concentrations. A sterile cotton swab was 

dipped into the suspension and spread evenly over the surface of MH agar plate. This 
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procedure was shown to consistently produce semi confluent lawns recommend by the 

BSAC for susceptibility testing. Sterile filter discs (5mm diameter) were applied to 

the centre of the agar onto which 5 µL of plant antimicrobial stock solutions (100,000 

mg/L) were dispensed. Plates were allowed to dry for 10 minutes before being 

incubated (24 hours for parent and 48 hours for SCVs) at 37°C. Following incubation 

inhibition zones were measured digitally using IMAGE J (NIH). 

5.2.4 Determination of minimum inhibitory concentrations  

Minimum inhibitory concentrations (MICs) were determined according to Clinical 

Laboratory Standard Institute (CLSI) guidelines as described previously (section 

2.2.3). As no information regarding the susceptibility of S. aureus SCVs to plant 

antimicrobials was available, a wide range of plant antimicrobial concentrations were 

tested. Stocks of plant antimicrobials were used to prepare concentrations double the 

required concentration to allow for dilution by the inoculum.  

5.2.5 Determination of minimum bactericidal concentrations  

Non turbid wells from MIC experiments were used to determine MBCs as described 

previously (section 2.2.4).  

5.2.6 Time kill assays  

Time kill assays were performed for two reasons. Firstly, to confirm that 

concentrations obtain from well plate based MBC assays reached the required 

reduction in inoculum and secondly to assess the rate at which bactericidal activity 

was achieved. Overnight cultures of S. aureus parent and SCVs strains were prepared 

in CAMH broth and then inoculated into 50 mL of CAMHB (in 250 mL narrow neck 

conical flasks) to achieve a starting density of 5 x 105 CFU/mL. Required volumes of 

plant antimicrobial agents were then added so flasks contained bactericidal 

concentrations of plant antimicrobials and incubated at 37°C with shaking at 150 rpm. 

Samples were taken every 2 hours for 10 hours. Serial dilutions were performed in 

phosphate buffered saline (PBS) and dilutions were plated onto MH agar. Plates were 

incubated at 37°C and colonies were enumerated after 48 hours.  



 141 

 

Table 5.1 Composition of the major antibacterial components of plant antimicrobials used in this investigation  

 

Essential oil/powder Antibacterial composition 
Candicidin powder 7.6 % (v/v) oregano oil 

3.6 % (v/v) clove leaf oil 
3.6 % (v/v) ginger oil 

3.6 % (v/v) wormwood oil 
 

Oregano oil 74.3 % (v/v) carvacrol 
0.35 % (v/v) thymol 

 
Oregano powder 

 
25 % (w/v) oregano oil emulsified with tapioca starch 

Cinnamon bark oil 70 % (v/v) cinnamaldehyde 
4.5 % (v/v) eugenol 

 
Cinnamon bark powder 

 
33 % (w/v) cinnamon bark oil emulsified with tapioca starch 

Green tea powder 
 

45 % EGCG 

Ginger oil 
 

84 % (v/v) gingerol 
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Table 5.2 MSSA and MRSA strains used in this study  
 
 

Strain Description Resistance(s)  Source/Reference 
ATCC 25923 S. aureus reference strain - ATCC 
NCTC 6571 S. aureus reference strain - NCTC 
MRSA COL Genome sequence early MRSA strain originally isolated in 

1960s 
TET, OX Dyke et al., 1966 (Dyke et al., 

1966); Gill et al., 2005 (Gill et al., 
2005) 

EMRSA 15 Epidemic MRSA type 15 – isolated in 1991, prevalent in 
UK hospitals  

OX Richardson & Reith, 1993 

OMB 299  Revertant of SCV isolated from wound infection  ERY University Hospital Münster, 
Germany  

N315 Genome sequenced MRSA strain isolated in 1982 ERY, NEO, OX Kuroda et al., 2001(Kuroda et al., 
2001) 

 
 

ATCC – American Type Culture Collection; NCTC – National Collection of Type Cultures; ERY- Erythromycin; NEO – Neomycin; OX – 

oxacillin; TET - Tetracycline  
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Table 5.3 S. aureus SCV strains used in this study  

 
Strain Description Auxotrophy   Source/Reference 

ATCC 25923 
SCVGEN 

SCV derived from ATCC 25923 following gentamicin 
exposure  

Hemin This study 

ATCC 25923 
SCVKAN 

SCV derived from ATCC 25923 following kanamycin 
exposure 

N/D This study  

NCTC 6571 
SCVGEN 

SCV derived from NCTC 6571 following gentamicin 
exposure 

Menadione This study 

NCTC 6571 
SCVTET 

SCV derived from NCTC 6571 following tetracycline 
exposure 

Menadione This study  

MRSA COL hemB Laboratory generated SCV mutant of MRSA COL  Hemin vonEiff et al., 1997  
MRSA COL menD Laboratory generated SCV mutant of MRSA COL  Menadione Bates et al., 2003  

EMRSA 15 
SCVGEN 

SCV derived from EMRSA15 following gentamicin 
exposure  

Menadione  This study 

EMRSA 15 
SCVNEO 

SCV derived from EMRSA15 following neomycin 
exposure 

N/D This study 

OMB 299 SCV SCV isolated from wound infection  Hemin University Hospital Münster, Germany 
N315 SCVGEN SCV derived from N315 following gentamicin exposure N/D This study 
N315 SCVTET SCV derived from N315 following tetracycline exposure Haemin This study 

 
 
N/D – No auxotrophy detected.  SCVs recovered following antibiotic exposure were previously confirmed as S. aureus via multiplex PCR.  
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5.2.7 Short-term resistance training by exposure to a single sub-lethal 
concentration of plant antimicrobials (Cooper et al., 2010) 

S. aureus strains ATCC 25923 and MRSA COL and their respective SCVs ATCC 

25923 SCVGEN and MRSA COL hemB were examined to test if resistance to the plant 

antimicrobials could be induced. 250 mL conical flask containing X 0.5 MIC (in 50 

mL CAMHB) candicidin, cinnamon bark, green tea and oregano powders were 

prepared. Starting densities of 5 x 105 CFU/mL were prepared by appropriate 

dilutions of overnight parent and SCV cultures. Flasks were incubated at 37°C with 

shaking at 150 rpm. On 10 successive days, similarly prepared flasks were inoculated 

with 40 µL from each preceding day’s culture. The MIC for each strain was 

determined every day preceding subculture to assess any change in susceptibility after 

continuous exposure.  

5.2.8 Effect of plant antimicrobials on antibiotic susceptibility of S. aureus  

The chequerboard method was used to determine the interactive effects between plant 

antimicrobials and antibiotics (White et al., 1996). The range of plant antimicrobial 

and antibiotic concentrations to be examined was determined in accordance with 

previously defined MIC values.  

 

Suspensions of cinnamon, green tea and oregano were prepared at four times the 

required final concentration in CAMHB, in order to allow for dilution by inoculum 

and antibiotic. Increasing concentrations of the plant antimicrobial suspensions (50 

µL volumes of each) were dispensed into each column of a microtitre plate, 

increasing from right to left (Figure 5.1). Increasing antibiotic solutions (50 µL 

volumes of each) were dispensed into each row, increasing in concentration from top 

to bottom. Optically adjusted S. aureus parent and SCV inoclua (1 x 106 CFU/mL) 

were prepared as described previously (section 2.2.3) and 100 µL inoculated into each 

individual well. This resulted in final total volume of 200 µL containing 5 x105 

CFU/mL. Control wells were prepared by replacing the plant antimicrobial and 

antibiotic with 100 µL of CAMHB. Microtitre plates were incubated statically at 37°C 

for a total of 24 hours for parent strains. The incubation period was extended to 48 

hours for SCV strains. Following incubation fractional inhibitory concentrations 

(FICs) and FIC indices (FICi) were calculated using the following formula, in order to 

determine the interactions between plant antimicrobial and antibiotics. 
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FICi = FIC (Plant antimicrobial) + FIC (Antibiotic)  

 

Where:  

     MIC of plant antimicrobial in combination  

FIC (Plant antimicrobial)   =                     MIC of plant antimicrobial alone  

 

FIC (Antibiotic)              =                   MIC of antibiotic in combination 

        MIC of antibiotic alone 

 

Synergism was defined by a FICi ≤ 0.5. Indifference was defined as an FIC index of   

> 0.5 but of < 4. Antagonism was defined as an FIC index of >4 (White et al., 1996). 

 
 
S. aureus N315 and its corresponding SCV N315 SCVGEN are resistant to 

erythromycin, neomycin and oxacillin so these strains were chosen to investigate 

synergy with the plant antimicrobials in this study. S. aureus MRSA COL and its 

corresponding SCV MRSA COL hemB are resistant to oxacillin and tetracycline and 

therefore these strains were also selected to investigate synergy.  

 

5.2.9 Statistical analysis  

Analysis of significant differences between susceptibilities of SCV isolates and parent 

strains was performed using the statistical analysis described previously (section 

2.2.9.8).   
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Figure 5.1 Layout of plant antimicrobial and antibiotic solutions in 

chequerboard plates 
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5.3 Results 

5.3.1 Anti-staphylococcal effects of EOs and green tea  

5.3.1.4 Disc diffusion  

The antimicrobial action of candicidin, cinnamon bark, ginger grass, green tea and 

oregano oil against S. aureus SCVs and their parent strains was assessed using a 

simple disc diffusion method. Cinnamon bark oil, ginger grass, green tea and oregano 

oil antimicrobials produced inhibition zones in all SCVs and their respective parent 

strains examined (Figure 5.2). Candicidin showed no activity against all isolates 

examined. Oregano oil produced the largest inhibition zones in SCV and parent 

strains (mean 36 mm), followed by cinnamon bark oil (30 mm), green tea ( 17 mm) 

and ginger grass oil (11 mm). No significant difference was observed in diameter of 

inhibition zones produced by all plant antimicrobials in MRSA and MSSA strains (P 

= > 0.05). Mean inhibition zones produced by cinnamon bark oil (Figure 5.2 A), 

green tea (Figure 5.2 C) and oregano oil (Figure 5.2 D) were significantly greater in 

SCVs in comparison to inhibition zones in parent strains (P = < 0.05). No significant 

differences in the diameter of inhibition zones produced by ginger grass oil were 

detected between SCV and parent strains (P = > 0.05).  

5.3.1.5 Microdilution susceptibility   

Emulsified forms of candicidin, cinnamon bark oil, green tea and oregano oil were 

employed for microdilution testing against the same panel S. aureus SCV and parent 

strains. Although no guidelines to determine sensitivity and resistance for plant 

antimicrobials are available, all SCV and parent strains showed susceptibility to the 

concentrations examined (Table 5.4). Across the four compounds tested, per 

milligram green tea produced the lowest MICs (50 – 250 mg/L) in all S. aureus SCV 

and parent strains. Candicidin produced the highest MICs across all stains (2250 – 

3000 mg/L; Table 5.4). Comparison of MICs between SCV and parent strains 

demonstrated that SCVs were more sensitive than their parents to cinnamon bark, 

green tea and oregano which agreed with previous disc diffusion results. A trend in 

susceptibility of SCVs compared to parent strains to candicidin was not observed. 

MBCs correlated with previously determined MICs, with green tea producing the 

lowest mean MBCs followed by oregano and cinnamon bark respectively (Table 5.4). 

MBCs of cinnamon bark, green tea and oregano were lower in SCVs in comparison to 
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Figure 5.2 Antibacterial effects of various plant antimicrobials on S. aureus SCVs and their parent strains A) - Cinnamon bark oil          

B) - Ginger grass oil C) - Green tea D) - Oregano oil. Inhibition zones are the results of three independent replicates and three independent 

biological replicates. Error bars represent the standard error of the mean 
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Table 5.4 Plant antimicrobial MICs and MBCs (mg/L) of S. aureus SCVs and their parent strains  

Strain Candicidin 
MIC                  MBC 

Cinnamon Bark 
MIC                  MBC 

Green Tea 
MIC                 MBC 

Oregano 
MIC                 MBC 

ATCC 25923 3000 5500 2000 3250 175 1250 1250 2000 

ATCC 25923 SCVGEN 3250 6000 1250 2000 75 750 750 1500 

ATCC 25923 SCVKAN 3000 6250 1000 2500 75 750 750 1250 

NCTC 6571 2750 5000 2250 2750 150 1500 1500 2500 

NCTC 6571 SCVGEN 3000 5500 1750 2250 75 1000 1000 1500 

NCTC 6571 SCVTET 3250 6000 1750 2500 50 750 750 1250 

MRSA COL 2500 5750 2000 3250 250 1750 1750 2750 

MRSA COL hemB 2500 5750 1250 1750 125 1000 1000 1500 

MRSA COL menD 2500 6000 1000 1500 150 1000 1000 1750 

EMRSA 15 2250 5750 3000 3750 200 1500 1500 2250 

EMRSA 15 SCVGEN 2500 6000 2250 3000 125 1000 1000 1500 

EMRSA 15 SCVNEO 2500 5250 2500 3250 150 750 750 1250 

OMB 299 3250 6250 2500 3000 175 1750 1750 2500 

OMB 299 SCV 3000 6000 1750 2250 125 1500 1500 1750 

N315 3500 6000 3000 4000 150 1500 1500 2250 

N315 SCVGEN 3250 6250 2000 2750 125 1250 1250 1500 

N315 SCVTET 3500 6250 2250 2750 125 1000 1000 1250 

 
 

Modal MIC and MBC values are presented. Modal values were obtained from three independent replicates and three independent biological 

replicates. 
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parent strains. Although green tea showed the lowest MIC and MBC values across 

the panel of strains examined, average MBCs were eight fold greater than MICs. 

Average MBCs for cinnamon bark, oregano and candicidin were 1.3, 1.5 and 2 

times greater than MIC values.  

5.3.1.6  Time kill assays   

Four plant antimicrobials (as above) were tested against S. aureus ATCC 25923 and 

MRSA COL and their corresponding parent SCVs to determine the rate at which 

plant antimicrobials achieved bactericidal activity using time kill assays (Figure 5.3). 

All previously determined MBCs (derived from the microtitre method above) 

achieved the required 99.9 % reduction (from the starting inoculum) required by the 

CLSI to be classed as bactericidal. Differences in the time required for bactericidal 

activity to be achieved varied between plant antimicrobials and difference between 

SCV and parent strains were also observed for certain compounds (Figure 5.3). 

Although all compounds examined achieved bactericidal activity within 10 hours, 

oregano (Figure 5.3 D) showed a substantially greater kill rate, reaching the 99.9 % 

reduction level in 4 hours for both SCV and parent strains. Green tea achieved the 

second most rapid time kill of between six and eight hours for SCV and parent strains 

respectively (Figure 5.3 C). Candicidin took 10 hours to achieve elimination of both 

SCV and parent strains. Differences in the time taken for green tea to exert the 

required reduction from the initial inoculum were apparent between SCV and parent 

strains. ATCC 25923 SCVGEN and MRSA COL hemB reached the bactericidal 

threshold within 6 hours where as both respective parent strains took a further 2 hours 

to reach the same reduction. Similar contrasting time kill kinetics were apparent when 

exposing SCV and parent cultures to cinnamon bark (eight hours for SCV and ten 

hours for parents). Uniform time kill kinetics were observed for candicidin between 

SCV and parent strains, which both reached the required reduction in 10 hours. 

Strains were also analysed for their responses to exposure to plant antimicrobials at 

previously defined MICs. All four plant antimicrobials over the 10 hour period 

showed no increase in viable cell count from the starting inoculum density. No 

increase in viable count is comparable with the original MIC determination. 
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Figure 5.3 Time kill curves of plant antimicrobials against S. aureus SCVs ATCC 25923 SCVGEN and MRSA COL hemB and their 

corresponding parent strains  A) – Candicidin; B) - Cinnamon Bark; C) - Green tea; D) – Oregano. Dotted line represents limit of detection. 
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5.3.1.7 Synergy between plant antimicrobials and antibiotics  

Synergistic relationships between three plant extracts (cinnamon, green tea and 

oregano) and four conventional antibiotics (erythromycin, neomycin, tetracycline and 

oxacillin) were examined in two S. aureus and SCV strains (Tables 5.5 and 5.6). 

Various synergistic relationships were observed with green tea displaying the largest 

number of synergistic relationship (three antibiotics). In the combinations in which 

synergy was reported the same trends were observed in SCV and parent strains. 

Cinnamon and oxacillin consistently showed a synergistic relationship achieving a FICi 

< 0.05 in both N315 and MRSA COL parent and SCV strains. All plant antimicrobial-

antibiotic indifferences observed in SCVs were also reported in corresponding parent 

strains. Green tea showed a synergistic relationship with both neomycin and oxacillin in 

N315 SCV its parent strain and with tetracycline and oxacillin in MRSA COL hem B 

and its parent strain. No antagonistic combinations (FICi > 4) were observed in all of 

the plant antimicrobial-antibiotic combinations tested (Tables 5.5 and 5.6). 

5.3.2 Resistance induction  

Two strains of S. aureus (one SCV and one parent of each) were exposed to sub lethal 

(X 0.5 MIC) concentrations of candicidin, cinnamon bark, green tea and oregano for 10 

days (Figure 5.4). An alteration of MIC of both SCV and their respective parent strains 

to all four plant antimicrobials was observed. MICs of all four strains tested displayed 

increasing MICs after exposure to candicidin, cinnamon bark and green tea. This was 

with the exception of MRSA COL exposed to green tea and oregano the MIC of which 

remained the same after 10 days continuous exposure (Figure 5.4). Exposure of SCVs 

and parent strains to green tea and candicidin produced small changes in MIC (0.26 and 

0.15 fold increase respectively) after 10 days. Exposure of ATCC 25923 parent and 

SCV strains to cinnamon saw a two fold increase in MIC. The two fold increase was 

apparent in the MRSA COL hemB mutant; however the parent strain showed a lower 

1.375 fold increase. Inversely exposure to oregano resulted in an increase in 

susceptibility in ATCC 25923 SCVGEN and parent strains as well as the MRSA COL 

hemB mutant.     
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Table 5.5 The effects of plant antimicrobials on erythromycin, neomycin and 

oxacillin susceptibility of S. aureus N315 SCVGEN and its corresponding parent 

strain expressed as FICi  

N315 SCVGEN 

 

Combination tested 

MICs (mg/L) 

 Plant Anti.      Antibiotic 

     

   FICi           Relationship  

Cinnamon  and 

erythromycin 

2000 64 1.39 Indifference a 

Cinnamon  and neomycin 2000 128 1.85 Indifference a 

Cinnamon and oxacillin 2000 64 0.20 Synergy b 

Green tea and erythromycin 125 64 2.15 Indifference a  

Green tea and neomycin 125 128 0.15 Synergy b 

Green tea and oxacillin 125 64 0.36 Synergy b 

Oregano and erythromycin 1250 64 2.8 Indifferencea  

Oregano and neomycin 1250 128 1.9 Indifferencea 

Oregano and oxacillin 1250 64 0.21 Synergy b 

 

N315 Parent  

 

Combination tested 

MICs (mg/L) 

 Plant Anti.      Antibiotic 

     

   FICi           Relationship  

Cinnamon  and 

erythromycin 

3000 64 1.25 Indifference a  

Cinnamon  and neomycin 3000 128 1.57 Indifference a 

Cinnamon and oxacillin 3000 64 0.41 Synergy b 

Green tea and erythromycin 150 64 2.5 Indifference a 

Green tea and neomycin 150 128 0.37 Synergy b 

Green tea and oxacillin 150 64 0.25 Synergy b 

Oregano and erythromycin 1500 64 1.72 Indifference a  

Oregano and neomycin 1500 128 2.1 Indifference a 

Oregano and oxacillin 1500 64 0.33 Synergy b 

 

Indifference (a) was defined as an FIC index of   > 0.5 but of < 4. Synergism (b) was defined by 

a FICi ≤ 0.5. Antagonism was defined as an FIC index of >4 (White et al., 1996). 
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Table 5.6 The effects of plant antimicrobials on oxacillin and tetracycline 

susceptibility of S. aureus COL hemB and its corresponding parent strain 

expressed as FICi  

 

MRSA COL hem B 

 

Combination tested 

MIC’s (mg/L) 

 Plant Anti.      Antibiotic 

     

   FICi           Relationship  

Cinnamon and oxacillin 1250 128 0.32 Synergy b 

Cinnamon and tetracycline 1250 64 1.57 Indifference a 

Green tea and tetracycline 125 64 0.32 Synergy b 

Green tea and oxacillin 125 128 0.22 Synergy b 

Oregano and tetracycline 1000 64 1.96 Indifference a 

Oregano and oxacillin 1000 128 0.17 Synergy b 

 

MRSA COL Parent  

 

Combination tested 

MIC’s (mg/L) 

 Plant Anti.      Antibiotic 

     

   FICi           Relationship  

Cinnamon and oxacillin 2000 128 0.27 Synergy b 

Cinnamon and tetracycline 2000 64 1.25 Indifference a 

Green tea and tetracycline 250 64 0.25 Synergy b 

Green tea and oxacillin 250 128 0.27 Synergy b 

Oregano and tetracycline 1750 64 2.15 Indifference a 

Oregano and oxacillin 1750 128 0.24 Synergy b 

 

Indifference (a) was defined as an FIC index of   > 0.5 but of < 4. Synergism (b) was defined by 

a FICi ≤ 0.5. Antagonism was defined as an FIC index of >4 (White et al., 1996). 
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Figure 5.4 Susceptibility of S. aureus SCVs ATCC 25923GEN and MRSA COL hemB and their corresponding parent strains 

following continuous exposure to plant antimicrobials A) - Candicidin B) - Cinnamon Bark C) - Green tea D) - Oregano  
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5.4 Discussion  
Disc diffusion has been implemented to assess the antimicrobial susceptibility of 

several different bacterial species to various EOs (Burt & Reinders, 2003; Kalemba & 

Kunicka, 2003). In this study disc diffusion was applied to a collection of S. aureus 

SCV and parent strains, and inhibitions zones measurements were successfully 

obtained for all plant antimicrobials except candicidin. EOs contain a mixture of 

several different components and their antibacterial effect is poorly understood 

(Holley & Patel, 2005). Consequently efforts have focused on identifying the 

individual components of EOs to develop an understanding of antibacterial activity.  

 

Oregano oil produced the largest mean inhibition zones in comparisons to the other 

EOs examined. The main component of the oregano oil used in this study was 

carvacrol, with the active compound making up 74.3% of the total composition. 

Carvacrol is responsible for the antibacterial activity of various EOs (thyme, savory as 

well as oregano) and has been shown to disrupt bacterial cell membranes (Lambert et 

al., 2001). The disruption of the cell membrane causes the leakage of cellular 

constituents resulting in bacterial death. SCVs were shown to be more susceptible to 

oregano compared to parent strains in both the disc diffusion and broth dilution 

method. This may be related to the differences in membrane potential (∆Ψ) and ATP 

availability. Studies in B. cereus have shown that exposure to carvacrol results in 

depletion of the intracellular ATP pool, however this was not attributed to leakage of 

ATP through the membrane (Ultee et al., 1999). Ultee et al. (1999) also showed that 

carvacrol induces membrane damage but concluded that ATP is not lost through this 

damage but is affected due the effect of carvacrol on ∆Ψ. SCVs have a reduced ∆Ψ as 

a direct consequence of their phenotype (Balwit et al., 1994), thus it can be postulated 

that carvacrol increases lethality in SCVs, as levels of ATP diminish at quicker rate in 

comparison to parent strains.  

 

The main component of the cinnamon bark used in study was cinnamaldehyde (70 % 

of total composition). All SCV and parent strains examined were shown to be 

susceptibile to preparations of cinnamon bark, with SCVs producing larger inhibition 

zones and lower MIC and MBC values. Although cinnamaldehyde acts on the 

bacterial membrane, unlike carvacrol treated cells, cells treated with cinnamaldehyde 



 157 

do not show depletion of intracellular ATP or disintegration of the membrane 

(Helander et al., 1998). Cinnamaldehyde has been shown to inhibits FtsZ which is 

responsible for the regulation of bacterial cell division (Domadia et al., 2007) 

therefore it is surprising that SCVs show increased susceptibility to cinnamon. SCVs 

exhibited reduced rates of cell wall synthesis and an increase in cell wall thickness in 

comparison to parent strains, which results in reduced susceptibly to antibiotics that 

target cell wall synthesis. Slower rates of cell division would suggest that SCVs 

would exhibit reduced susceptibility to antimicrobials targeting the cell division 

process. Other cellular components may therefore be the target of cinnamaldehyde.  

 

Green tea exerts strong antibacterial activity against a range of bacterial pathogens, 

which is related to its composition of polyphenolic catechins, one of which is EGCG 

(Friedman, 2007). Several different targets for the antibacterial activity of green tea 

catechins have been published. Examples include the FabG and FabI reductase steps 

in the E. coli fatty acid elongation cycle (Zhang & Rock, 2004), cell division 

machinery (West et al., 2001) and DNA gyrase (Gradisar et al., 2007).  Similar to the 

effects of cinnamon and oregano SCVs were also more susceptible to green tea. As 

the exact mechanism of activity of green tea is yet to be eluded, the difference in 

susceptibility between SCV and parent strains in difficult to postulate. If green tea 

targets cell division or DNA gyrase, increased susceptibility in SCVs is striking as 

SCVs would be expected to be more susceptibile, due to the slower growth rate 

observed in many SCVs.   

 

Combined use of antibiotics with plant antimicrobial compounds may offer a strategy 

to overcome the problem of increasing antibiotic resistance through synergism; where 

the combined effect of two compounds is greater than the sum of the effects of each 

compound alone (Berenbaum, 1978; Rand et al., 1993). Many studies have proven the 

synergistic action of EO fractions from different plants with synthetic drugs as well as 

antifungal agents (Hemaiswarya et al., 2008). This study has identified synergistic 

relationships between several antibiotics and plant antimicrobials. Green tea displayed 

the highest number of synergistic relationships in both SCV and parent strains; 

include synergy with neomycin, oxacillin and tetracycline. The synergistic 

relationship between green tea and oxacillin has been explained by Zhao et al. (2001). 

EGCG of green tea directly binds to peptidoglycan on the cell wall interfering with 
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the integrity of the cell wall. The action of green tea directly facilitates the action of 

cell wall specific antibiotics, such as oxacillin.  

 

Tetracycline resistance in S. aureus is often related to active efflux of tetracycline thus 

reducing the accumulation of tetracycline molecules within the cell. One example of 

this efflux pump is the Tet(K) efflux pump, which is widespread in staphylococcal 

species. Synergy between the EGCG and tetracycline has been observed via the 

inhibition of the Tet(K) efflux pump, drastically decreasing the MIC of tetracycline 

(Roccaro et al., 2004).  The strain tested for green tea and tetracycline synergy in this 

study (MRSA COL) also possess the tetracycline efflux pump Tet(K) , confirming the 

inhibition of tetracycline efflux by green tea (Liu & Pop, 2009). Synergy between 

green tea and neomycin was also observed in S. aureus N315 SCV and the parent 

strain. Resistance to various aminoglycosides in S. aureus N315 is due to the 

presences of nucleotidyltransferases, enzymes that modifies the antibiotics rendering 

them inactive (Kuroda et al., 2001). The mode of synergy may involve green tea 

catechins, such as EGCG, inhibiting the activity or production of these modifying 

enzymes. EGCG can inhibit antibiotic modifying enzymes (Zhao et al., 2003) and in 

this case may inhibit activity of aminoglycoside modifying enzymes (AMEs), 

allowing an active aminoglycosides to exert antibacterial activity. The observation 

that green tea has a synergistic relationship with three separate antibiotic classes 

makes it an attractive candidate for further investigation. This is supported by 

evidence that the components of green tea have antibacterial activity against various 

human pathogens (Anand et al., 2006; Gordon & Wareham, 2010; Osterburg et al., 

2009) and are also active against S. aureus SCVs. SCVs display reduced susceptibility 

to cell wall specific antibiotics (such as ß-lactams) and protein synthesis inhibitors 

(aminoglycosides) as a direct result of their phenotype. Although the mechanisms 

surrounding the synergistic relationships may not be directly applicable to combating 

the reduced susceptibility mechanisms in SCVs, the susceptibility of SCVs to green 

tea may have potential in treatment of SCV infections.  

 

Among the other plant antimicrobials examined cinnamon and oregano both showed 

synergy with oxacillin. The literature provides several examples of other plant 

antimicrobials that present synergy with ß-lactam antibiotics. For example, baicalin (a 

flavonoid used in traditional Chinese medicine) has been shown to inhibit ß-lactamase 
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activity (Liu et al., 2000). Oxacillin is an example of a ß-lactam antibiotic that is 

resistant to the action of ß-lactamase enzymes, where the ß-lactam ring is protected 

from hydrolysis. Therefore if cinnamon and oregano are not involved in enzymatic 

inactivation, they may disrupt the integrity of the cell wall facilitating the action of ß-

lactam antibiotics in a similar manner to green tea.  

 

Bacterial resistance to antibiotics and biocides is well documented and patterns of 

resistance are closely observed by clinicians and healthcare workers. The European 

Committee on Antimicrobial Susceptibility Testing (EUCAST) state that a clinically 

resistant organism is one in which the level of antimicrobial susceptibility has a high 

likelihood of clinical failure (EUCAST, 2009). Organisations such as EUCAST and 

the CLSI publish breakpoints that can be used in order to interpret whether an 

organism is susceptible or resistant to a certain antibiotic. Such guidelines are 

unavailable for plant antimicrobial compounds, mainly due to their lack of use in the 

clinical setting. The breakpoints stipulated by the CLSI usually specify an four to 

eight fold difference in MIC between sensitive and resistance organisms. For example 

S. aureus strains that are classified as susceptible to tetracycline have an MIC < 4 

mg/L where as strains classified as resistance have a MIC > 16 mg/L. Increases in 

MIC for candicidin, cinnamon, and green tea were detected although the largest 

increases across the panel of four strains was a doubling in the MIC against cinnamon 

of S. aureus ATCC 25923. Therefore none of the S. aureus strains examined in this 

study would meet the criteria for a ‘resistant’ classification.  

 

Classical mechanisms of resistance to antibiotics include enzymatic inactivation, 

efflux or modification of the target site (Almasaudi et al., 1991). Although these 

mechanisms may be applied to combat the antibacterial effects of plant 

antimicrobials, studies have shown a lack of resistance to plant antimicrobials such as 

garlic and honey (Cooper et al., 2010; Wood, 2009). It is likely that the bacterial 

resistance encountered today is due, in part, to the overuse of antibiotics in clinical 

and agricultural setting. The lack of resistance to plant antimicrobials may be partly 

due to the lack of implementation in treating bacterial infections and consequently the 

opportunity for bacteria to develop and evolve resistance mechanisms has not arisen. 

Another explanation may be the combination effects exerted by the different 

components of plant antimicrobials. EOs contain several groups of chemical 
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compounds resulting in multi-factorial antibacterial activity and therefore have several 

targets in the bacterial cell (Burt, 2004).  For instance, the main component of the 

cinnamon used in this study is cinnamaldehyde; however eugenol is also present at 

lower concentrations. The multi-target nature of plant antimicrobial compounds 

suggests resistance is less likely to occur in comparison to exposure to an individual 

antimicrobial agent.     

 

The problem of bacterial resistance to clinically important antibiotics has resulted in 

national and local surveillance networks being established to monitor antibiotic 

resistance trends (Nwosu, 2001). At present, plant antimicrobials are not used as 

systemic antibiotics due to their low level of activity, especially against Gram-

negative bacteria. The reported MIC is often orders of magnitude higher than those of 

common broad-spectrum antibiotics from bacteria or fungi (Tegos et al., 2002). The 

MICs of the plant antimicrobials assessed in this study are substantially higher than 

MICs for conventional antibiotics, although this study demonstrates that inhibition of 

aureus SCV and parent strains can be achieved. Additionally throughout the course of 

susceptibility testing it was observed that none of the plant antimicrobials examined 

selected for SCVs in parent strains. This is another advantageous characteristic of the 

plant antimicrobials examined as SCV selection can lead to persistent and recurrent 

infections. Whether or not these concentrations are achievable in the treatment of 

infections requires further investigation. An attractive option is the use of plant 

compounds as a topical agent for the treatment wounds or burns. Manuka honey is a 

plant derived antimicrobial that offer potentials in this particular application (Cooper 

& Molan, 1999; Cooper et al., 1999; Dunford et al., 2000). Plant antimicrobials may 

also be implemented in the decolonisation of patients who are known carriers of 

MRSA to prevent dissemination and spread of nosocomial infection (Caelli et al., 

2000; Dryden et al., 2004). Coupled with the lack of resistance and the synergistic 

combinations with several commonly used antibiotics, plant antimicrobials offer an 

attractive avenue for antimicrobial chemotherapy. More research is required to 

understand the complete molecular mechanism of the drug action in the presence and 

absence of the natural compounds, as well as the stability, selectivity and 

bioavailability of these natural products (Hemaiswarya et al., 2008). 
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5.5 Conclusions  

• S. aureus SCV and parent strains are susceptible to candicidin, cinnamon bark, 

ginger, green tea and oregano as confirmed by a combination of disc diffusion and 

microdilution methods. 

• S. aureus SCVs exhibit larger zones of inhibition and/or lower MIC and MBCs of 

candicidin, cinnamon bark, green tea and oregano.   

• Resistance to candicidin, cinnamon bark, green tea and oregano could not be 

induced in SCV or parent strains following short term exposure to MIC. 

• Cinnamon and oregano combined with oxacillin produces a synergistic 

relationship against S. aureus SCV and parent strains. 

• Green tea combined with neomycin, oxacillin and tetracycline produces a 

synergistic relationship S. aureus SCV and parent strains. 



 162 

6 CHAPTER 6: SMALL COLONY VARIANTS IN SPECIES OTHER 
THAN STAPHYLOCOCCUS AUREUS  

6.1 Introduction  

6.1.1 Small colony variants of bacterial species other than S. aureus  

SCVs have been extensively studied in Staphylococcus aureus, however SCVs have 

been isolated from a variety of other bacterial species have been isolated (Table 6.1). 

These species include important Gram-negative pathogens such as Pseudomonas 

aeruginosa and Gram-positive pathogens such as Enterococcus faecalis and 

Streptococcus pneumonia.  

6.1.1.1 Escherichia coli  

E. coli is rod shaped facultatively anaerobic bacterium that is a normal component of 

the intestinal flora of humans. Although E. coli is generally viewed as a commensal, 

certain strains have acquired virulence factors that allow colonisation of novel niches 

and the ability to cause disease in otherwise healthy hosts (Kaper et al., 2004). 

Different pathovars of E. coli have been described including enteropathogenic E. coli 

(EPEC), enterohaemorrhagic E. coli (EHEC), and uropathogenic E. coli (UPEC) 

(Croxen & Finlay, 2010). EPEC and EHEC cause disease in the small bowel and large 

bowel, respectively, where as UPEC colonises the bladder causing cystitis which can 

lead to kidney failure if left untreated. Comparison of a benign laboratory strain (K12) 

and an enterohaemorrhagic strain (O157:H7) identified the presence of 4.1 Mb 

sequence highly conserved between strains, regarded as the backbone of the E. coli 

chromosome (Hayashi et al., 2001). Genome analysis concluded that O157:H7 

diversified from a common lineage via the acquisition of foreign DNA, much of 

which encodes virulence related functions accounting for the difference in 

pathogenicity between strains.  

 

SCVs of E. coli have been isolated from patients suffering from prosthetic joint 

infections and chronic urinary tracts infections (Roggenkamp et al., 1998; Tappe et 

al., 2006). Analysis of isolates revealed they show E. coli SCV share characteristics 

associated with the conventional SCV phenotype observed in S. aureus including the  
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Table 6.1 Small colony variants isolated from various bacterial species  

 

CF - cystic fibrosis; PGFE – pulse field gel electrophoresis; MLST - multilocus sequence typing; SCV - small colony variant; WT - wildtype  

Species Source of isolation   Observations associated with SCV phenotype Reference 

Brucella abortus  Mouse model of infection  Slow growth rate, increased persistence in mouse model  Jacob et al., (2006) 

Burkholderia cepacia  Lung transplant in CF 
patient  

Increased serum resistance  Haussler et al., (2003a) 

Burkholderia 
pseudomallei 

In vitro exposure to 
ceftazidime, ciprofloxacin 

and gentamicin 

Identical biochemical, PFGE and electron microscopy 
profiles; reduced susceptibility to various antimicrobials  

Haussler et al., (1999a) 

Brucella melitensis  Bacterial endocarditis 
(blood culture) 

Reduced streptomycin susceptibility through 
development of SCV phenotype  

Hall & Spink (1947) 

Cryptococcus 
neoformans  

Chronic meningitis Negative result for cryptococcal antigen; implications in 
identification   

To et al., (2006) 

Enterococcus faecalis Amyloid arthropathy in 
chickens 

Identical PFGE and MLST profiles to WT; increased 
virulence and persistence 

Petersen et al., (2008) 

Enterococcus faecalis Chronic aortic valve 
endocarditis 

Identical PFGE profile to WT; auxotrophy for haemin; 
abnormal cell wall and cell size  

 (2009) Wellinghausen et al.,  

Neisseria gonorrhoea Gonorrhoea patient  Reversion to WT following subsequent culture  Morton & Shoemaker (1945) 

Salmonella enterica 
serovar Typhimurium 

Prolonged intracellular 
fibroblast infection 

Increased intracellular persistence; reduced virulence in 
mice model; reduced susceptibility to aminoglycosides  

Cano et al., (2003) 

Streptococcus 
pneumoniae  

Isolated from S. pneumonia 
biofilms during initial 

attachment phase 

Increased adherence, aggregation and biofilm formation  Allegrucci & Sauer (2007) 
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production of microcolonies, slow growth, reduced aminoglycoside susceptibility and 

auxotrophy. In cases of infection with E. coli SCVs, infection duration and persistence 

are increased (Roggenkamp et al., 1998; Sendi et al., 2010) which has been 

documented in patients with S. aureus SCV infection (Kahl et al., 1998; von Eiff et 

al., 1997a). Laboratory studies have shown that antimicrobial agents such as 

gentamicin can select for E. coli SCVs (Lewis et al., 1991). These variants showed 

similar characteristics associated with the SCV phenotype and auxotrophy for haemin 

was attributed to mutations in hemB.  

6.1.1.2 Pseudomonas aeruginosa  

P. aeruginosa is a rod shaped motile bacterium. On solid agar colonies often appear 

as green-blue in colour, characterised by the production of the pigments pyocyanin 

and pyoverdin (Pier & Ramphal, 2010). Genome sequencing of several P. aeruginosa 

strains has revealed the presence of a large genome (6.2 – 6.6 Mb) that permits 

nutritional versatility and environmental adaptability (Stover et al., 2000; Winstanley 

et al., 2009). A large proportion of genes in P. aeruginosa encode environmental 

sensors and transcriptional regulators that aid adaptational response to environmental 

fluctuations (Stover et al., 2000). P. aeruginosa is responsible for various community 

acquired infections (ear infections and keratitis), and is also the causative agent of 

nosocomial infections of the respiratory tract, urinary tract and burns (Rossolini & 

Mantengoli, 2005). Intrinsic resistance to a range of antimicrobial agents (quinolones, 

chloramphenicol, tetracycline, trimethoprim and sulphonamides) due the presence of 

multidrug efflux systems (Poole, 2001) results in limited treatment options for P. 

aeruginosa infections.                               

 

SCVs of P. aeruginosa have been isolated from in vitro exposure to aminoglycosides 

as well as experimental models of infection (Gerber & Craig, 1982; Gerber et al., 

1982). Common characteristics of SCVs included reduced uptake of aminoglycosides, 

reversion to the wildtype phenotype and changes in biochemical profiles. Chronic 

pulmonary infections in CF patients are also a source of P. aeruginosa SCVs. The 

link between the prevalence of SCVs in CF patients has been linked to the use of 

ventilator administered antimicrobials, which may induce the SCV phenotype 

(Haussler et al., 1999b). These isolates showed reduced susceptibility to 

antipseudomonal agents and are associated with reduced lung function in comparison 
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with patients infected with wildtype P. aeruginosa strains. P. aeruginosa SCVs also 

display many characteristics corresponding to niche adaptation with the lungs of CF 

patients. These characteristics include increased biofilm formation and increased 

association with a eukaryotic cell line (Haussler et al., 2003b). Auxotrophy for 

compounds such as haemin, menadione and thymidine has not been previously 

reported in P. aeruginosa SCVs.  

6.1.1.3 Staphylococcus epidermidis  

S. epidermidis is a member of the coagulase negative staphylococci (CoNS), which 

are differentiated from S. aureus by an inability to coagulate rabbit plasma (i.e. 

coagulase negative). S. epidermidis shares a core set of 1,681 open reading frames 

with S. aureus but lacks many of the genomic islands that encode virulence factors 

such as toxins (Gill et al., 2005). Recently the importance of S. epidermidis as an 

opportunistic pathogen has been recognised. Its natural niche on the human skin 

permits access through implanted devices resulting in S. epidermis being the most 

common source of infections associated with indwelling medical devices (Rogers et 

al., 2009). This opportunistic pathogen is one of most frequently recovered 

microorganisms in the hospital environment, showing high levels of incidence in 

nosocomial bloodstream infections, cardiovascular infections, and infections of the 

eye, ear, nose, and throat (Vuong & Otto, 2002). The affinity of S. epidermidis for 

foreign materials commonly used in modern medicine has further contributed to the 

increased incidence in nosocomial infections (Huebner & Goldmann, 1999). 

Antibiotic resistance is also prevalent in S. epidermidis and other coagulase negative 

CoNS. Recent surveillance studies in North America and the UK reported a high rate 

of ciprofloxacin, erythromycin penicillin, and oxacillin resistance (Hope et al., 2008; 

Streit et al., 2004). 

 

SCVs of S. epidermidis have been isolated from pacemaker-related infections (von 

Eiff  et al., 1999), and SCVs of other CoNS species including S. capitis and S. 

lugdunensis have been isolated from prosthesis related infections (Seifert et al., 2005; 

von Eiff et al., 1999). Prosthetic device related infections caused by S. epidermidis 

SCVs respond poorly to antimicrobial chemotherapy, often resulting in the removal of 

the prosthesis. Similarly to S. aureus SCVs, identification of CoNS SCVs is a 

challenge due to their abnormal colony phenotypes, slow growth rate and altered 
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biochemical characteristics; amplification and sequence analysis of 16S rRNA is vital 

for accurate species identification (von Eiff et al., 1999). Recently a link has been 

postulated between CoNS SCVs and patients suffering from myalgic 

encephalomyelitis (known as chronic fatigue syndrome; CFS). CFS is a condition 

characterised by long periods of fatigue, short term memory loss and musculoskeletal 

pain (Fukuda et al., 1994). Increased carriage of CoNS on skin and the presence of 

atypical macrococci in blood cultures from CFS patients (unresponsive to antibiotic 

treatment) allude to the involvement of a SCV phenotype (Onyango et al., 2008; 

Tarello, 2001). The presence of a SCV phenotype may explain the persistence and 

duration of the disease as SCVs frequently persist within host cells and abate the 

immune response.   

 

The construction of a stable S. epidermidis hemB laboratory mutant (via allelic 

replacement) has aided the study of SCVs of this species. Stable S. epidermidis SCVs 

have permitted developments regarding the understanding of pharmcodynamic 

responses to antistaphylococcal agents (Wu et al., 2009). This approach has 

demonstrated that SCVs of S. epidermidis show reduced susceptibility to vancomycin 

in comparison to wildtype strains due to enhanced adhesion properties. Furthermore, 

increased capacity to form biofilms in S. epidermidis hemB mutants has been reported 

(Al Laham et al., 2007). Increased expression of icaA resulted in increased production 

of polysaccharide intracellular adhesin and the formation of large clusters of cells.   
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6.1.2 Aims  

SCVs of E. coli, P. aeruginosa and S. epidermidis have been isolated and 

characterised, however the majority of cases have been isolated from the clinical 

environment. The following work aimed to investigate whether various antimicrobial 

agents could select for SCVs in vitro and characterise these isolates to determine if an 

overlap was present between lab and clinically derived isolates through the following 

aims: 

 

• Examine the ability of several antimicrobial agents to select for SCVs in                  

E. coli, P. aeruginosa  and S. epidermidis. 

• Characterise any SCVs using species specific assays. 

• Determine antimicrobial susceptibility profiles of SCV isolates. 

• Analyse biofilm formation in SCV isolates.  

• Generate RAPD profiles for SCV isolates and compare parent RAPD profiles. 
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6.2 Materials and methods 

6.2.1 Bacterial strains and growth medium   

E. coli ATCC 25922 and NCTC 10418, P. aeruginosa ATCC 27853 and PAO1 and                   

S. epidermidis LTN (obtained from Heath Hospital, Cardiff) were all maintained on 

Mueller Hinton (MH) agar and grown in MH broth at 37°C with shaking (150 rpm) 

unless otherwise stated. All growth medium was obtained from Oxoid (UK), with the 

exception of purified agar which was obtained from Difco (UK). Additional 

components required for certain agar assays were obtained from Sigma (UK).  

6.2.2 Preparation of antimicrobial agents  

Ampicillin, ciprofloxacin, chloramphenicol, gentamicin, tetracycline were obtained 

from Sigma Aldrich (UK) and triclosan from Ciba Speciality Chemicals (Germany). 

Ciprofloxacin, chloramphenicol, gentamicin and tetracycline powders were dissolved 

in sterile deionised water. Saturated NaHCO3
 solution was used to dissolve ampicillin 

and triclosan was dissolved in dimethyl sulfoxide. Reduced strength stocks were made 

where required in deionised water and all stock solutions were stored at 4°C for a 

maximum of 4 days.  

6.2.3 Determination of minimum inhibitory concentrations  

MICs were determined using Clinical Laboratory and Standards Institute (CLSI) 

guidelines as described previously (section 2.2.3).  

6.2.4 SCV selection assays  

Following the determination of MICs, strains that showed susceptibility were exposed 

to antimicrobial agents to examine their ability to select for SCVs in vitro. E. coli, P. 

aeruginosa and S. epidermidis cultures were prepared by inoculating 3-4 individual 

colonies into cation adjusted Mueller Hinton broth CAMHB and incubating at 37°C 

with shaking at 150 rpm. Cultures were grown to mid exponential phase and 

antimicrobial agents added at concentrations determined as the MIC in previous 

susceptibility testing (section 6.2.3). Following incubation for a further 6 hours, 100 

µL of culture was spread over the surface of a MH agar plate (containing X 2 MIC the 

selecting antimicrobial agent), using a sterile glass rod. Plates were incubated for 48 

hours at 37°C. The presence of colonies with altered phenotypic appearances were 

suspected as SCVs and chosen for further analysis.   
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6.2.5 Characterisation of SCVs  

6.2.5.1 Growth rate analysis 

Overnight cultures of E. coli, P. aeruginosa and S. epidermidis parent and SCV 

strains were used to inoculate 250 mL conical flasks containing 50 mL of MH broth at 

a starting density 1 X 105 CFU/mL. Flasks were incubated at 37°C with shaking (150 

rpm) for 48 hours. Optical density was measured at 580 nm and used to calculate lag 

time and growth rate. Lag time was recorded as the time taken for to the culture to 

reach the beginning of exponential growth from initial inoculation. Growth rate was 

calculated using the formula lnNT – lnNO/ TIME. Viable counts were obtained 

following the end of growth rate experiments by performing relevant serial dilutions 

in phosphate buffered saline (PBS) and enumerating cells on MH agar.  

6.2.5.2 Auxotrophy  

Auxotrophy profiles of E. coli, P. aeruginosa and S. epidermidis SCVs were 

determined as described previously (section 2.2.9.6).  

6.2.5.3 Antimicrobial susceptibility testing of SCVs 

Initially susceptibility testing was planned to be investigated via microdilution 

methods using CLSI guidelines. However the production of cellular aggregates and 

biofilms were frequently observed during microtitre susceptibility testing lead to 

inconsistencies and errors in observations. Therefore the British Society for 

Antimicrobial Chemotherapy (BSAC) standardised disc susceptibility testing method 

(section 5.2.3) was applied which improved result interpretation and consistency. Disc 

impregnated with antimicrobial agents were all obtained from Oxoid (UK). The 

antimicrobial discs used were 10 µg ampicillin, 30 µg chloramphenicol, 5 µg 

ciprofloxacin, 10 µg gentamicin, 30 µg tetracycline.  

6.2.5.4 S. epidermidis DNA extraction 

DNA extraction from S. epidermidis isolates was performed as described previously 

for S. aureus (section 2.2.7).  

6.2.5.5 E. coli and P. aeruginosa DNA extraction 

DNA was extracted using the GenElute Bacterial Genomic DNA Kit (Sigma Aldrich, 

UK), according to manufactures instructions. Overnight cultures were centrifuged at 

10,000 rpm in microfuge tubes to pellet cells. 180 µL of lysis buffer was used to 
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resuspend pellets and create a homogenous mixture. This was followed by the 

addition of 20 µL of Proteinase K, which was subsequently incubated for 30 minutes 

at 55°C. Manufactures specific lysis C solution (200 µL) was then added and 

incubated for a further 10 minutes at 55°C. DNA binding columns were optimised for 

binding using ethanol followed by the addition of the previously prepared lysate. 

Samples were centrifuged at 8,000 rpm for 1 minute, followed by 2 additional 

washing steps before eluting bound DNA by the addition of 200 µL manufactures 

elution solution. Finally, samples were centrifuged for 1 minute at 10,000 rpm and the 

remaining eluate (regarded as pure genomic DNA) was stored at 4ºC until required.  

6.2.5.6 Biofilm formation assay 

SCVs isolated from E. coli, P. aeruginosa and S. epidermidis were analysed for the 

ability to form biofilms using a standardised multiwell microtitre plate assay (O'Toole 

et al., 1999). Overnight cultures of SCV and parent strains were adjusted to 1 x 106 

CFU/mL in fresh medium (Luria Broth for E. coli and P. aeruginosa and tryptone soy 

broth for S. epidermidis) supplemented with 0.5 % glucose and 200 µL was dispensed 

into wells of 96 microtitre well plates (Fisher, UK). Microtitre plates were incubated 

at 37°C for 48 hours and subsequently stained with 0.1 % safranin (dissolved in H2O 

and filter sterilised). Biofilms were stained for 15 minutes at room temperature before 

being washed twice with PBS to remove unattached cells and residual dye. To elute 

safranin from biofilms 200 µL of solvent was added to individual wells (95% ethanol 

for P. aeruginosa and S. epidermidis and 80% ethanol, 20% acetone for E. coli) and 

incubated at room temperature for 30 minutes. Subsequently optical density was 

measured at OD490 using a DYNEX Technologies MRX® Microplate Absorbance 

Reader with RevelationTM application programme.   

6.2.5.7 Cell-surface hydrophobicity  

The microbial adhesion to hydrocarbons assay described previously (section 4.2.5) 

was used for determine cell-surface hydrophobicity.  

6.2.5.8 Random amplified polymorphic DNA analysis  

RAPD was carried out as described previously (section 3.2.5.9) with the inclusion of 

the additional primers 228 (5’-GCTGGGCCGA-3’) and 270 (5’-TGCGCGCGGG-3’).  
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6.2.6 Characterisation of P. aeruginosa SCVs  

P. aeruginosa is a motile organism therefore various motility assays were employed 

to compare flagella and pili activity in SCV and parent strains.  

6.2.6.1 Swarming assay (Rashid & Kornberg, 2000) 

Swarming plates (0.5% purified agar, 8 g/L nutrient broth, 5 g/L glucose) were 

prepared and allowed to dry overnight before being used. SCV and parent strains were 

adjusted to 1 X 106 CFU/mL in PBS and 5 uL inoculated onto the centre of swarming 

agar plates. Plates were incubated at 30°C for 48 hours and the furthest branching 

point from the initial point of inoculation measured.   

6.2.6.2 Swimming (Rashid & Kornberg, 2000) 

SCV and parent strains were adjusted to 1 X 106 CFU/mL in PBS and used to 

inoculate tryptone swim plates (10 g/L tryptone, 5 g/L NaCl, 0.3 % purified agar). 

Tryptone swim plates were inoculated with the use of a sterile toothpick and 

incubated at 30°C for 48 hours. Swimming motility was assessed by examining the 

circular turbid zone formed by the bacterial cells migrating away from the initial point 

of inoculum.  

6.2.6.3 Twitching (Darzins, 1993; Deziel et al., 2001) 

SCV and parent strains were adjusted to 1 X 106 CFU/mL in PBS and used to 

inoculate thin (3 mm) LB agar plates. Using a sterile toothpick cells were stabbed into 

the agar so the toothpick reached the Petri dish surface. Bacterial growth at the 

interface between the plastic surface and the agar was measured by removing agar and 

staining with 1 % crystal violet. Twitching motility was determined by measuring the 

diameter of the crystal violet stained area.  

6.2.6.4 Pyocyanin assay (Schaber et al., 2004) 

SCV and parent strains were grown in glycerol alanine minimal (GA) medium (1 % 

glycerol, 6 g/L L-alanine, 2 g/L MgSO4, 0.1 g/L K2HPO4, and 0.018 g/L FeSO4) to 

investigate pyocyanin production. Overnight SCV and parent cultures were 

centrifuged at 10,000 rpm for 5 minutes and the supernatant collected. Individual 

strain supernatants (5 mL) were mixed with 5 mL chloroform and left at room 

temperature for 5 minutes to allow separation. To the lower organic layer 1.5 ml             

0.2 M hydrochloric acid was added and the pyocyanin-rich organic layer was 
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separated. The absorbance of the extracted layer was measured at OD520 to quantify 

pyocyanin production.  

6.2.6.5 Elastin Congo red assay   

To quantify elastolytic activity the method of Schad et al., (1987) was applied. 

Supernatants of SCV and parent strains grown in LB were collected as described 

previously (section 6.2.6.4) and 100 µL added to 2 ml of 10 mM NaHPO4 containing 

30 mg elastin Congo red (Sigma Aldrich, UK). The mixture was incubated at 37 °C 

for 14 hours, centrifuged at 10,000 rpm for 5 minutes and released Congo red 

measured at 495 nm. 

6.2.7 Characterisation of E. coli SCVs  

6.2.7.1 Biochemical analysis  

API 20E strips (Biomerieux, France) were used to compare biochemical profiles 

between E. coli SCV and parent isolates. A direct colony suspension of SCV and 

parent cells was prepared in API suspension medium (Biomerieux, France), and 200 

µL used to inoculate CIT, GEL and VP reactions (in order to fill both tube and 

cupule) with 100 µl being added to all remaining tubes. Anaerobic conditions were 

created by the overlaying of mineral oil to ADH, LDC, ODC, H2S and URE tests. 

Wildtype test strips were incubated at 37°C for 24 hours where as the incubation 

period was extended to 48 hours for SCV isolates. Following incubation various tests 

required the addition of reagents which can be found in the Appendix. The catalogue 

of the enzymatic reactions tested and resulting colour changes are seen in Appendix 1.   

6.2.7.2 Swimming motility 

Swimming agar used for P. aeruginosa (section 6.2.6.2) was used to assay swimming 

motility in E. coli SCVs and parents.  

6.2.8 Characterisation of S. epidermidis SCVs  

6.2.8.1 Catalase production 

Catalase production was determined by the addition of 10 uL hydrogen peroxide 

(Sigma, UK) to glass slides containing a homogenous mixture of several                              

S. epidermidis colonies. The production of bubbles was indicative of catalase activity.  
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6.2.8.2 Biochemical analysis  

API Staph strips (Biomerieux, France) were used as described previously (section 

2.2.9.1). 

6.2.9 Statistical analysis  

Analysis of significant differences between characteristics of SCV isolates and parent 

strains were performed as described previously (section 2.2.9.8).  
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6.3 Results  

6.3.1 SCV selection 

E. coli ATCC 25922 and NCTC 10418 strains showed susceptibility to ampicillin, 

ciprofloxacin, chloramphenicol, gentamicin, tetracycline and triclosan and thus all 

were analysed for their ability to select for SCVs (Table 6.2). P. aeruginosa ATCC 

27853 and PAO1 however displayed resistance (MIC > 32 mg/L) to ampicillin, 

chloramphenicol, tetracycline and triclosan. Both strains were sensitive to gentamicin 

and ciprofloxacin which were used in SCV selection assays (Table 6.2). Finally,              

S. epidermidis LTN showed susceptibility to chloramphenicol, gentamicin and 

tetracycline, which were employed in SCV selection assays.  

 

SCVs were successfully isolated from E. coli, P. aeruginosa and S. epidermidis. 

Gentamicin was the only antimicrobial agent that selected for SCVs in all three 

species. Furthermore, SCVs were recovered after exposure of E. coli to ciprofloxacin 

and chloramphenicol and S. epidermidis with tetracycline. Exposure to ampicillin, and 

triclosan did not result in the detection of SCVs from any of the species examined. 

Although the species examined exhibit morphological differences on solid agar, when 

observing SCVs, colonies with a smaller diameter (in comparison to parent strains) 

were consistently observed in all three species (Figure 6.1). E. coli and P. aeruginosa 

SCV colonies also appeared less mucoid. SCV were named to reflect the selecting 

antimicrobial. For example P. aeruginosa PAO1 SCVGEN was selected for after 

exposure of strain PAO1 in the presence of gentamicin.  

6.3.2 Auxotrophy profiles 

Auxotrophy for haemin, menadione and thymidine was tested for in SCVs isolated 

from E. coli, P. aeruginosa and S. epidermidis (Table 6.3). Autotrophy for haemin 

was detected in all E. coli SCVs recovered from both ATCC 25922 and NCTC 10418. 

Menadione auxotrophy was observed in S. epidermidis LTN SCVs. Auxotrophy was 

not detected in any of the gentamicin selected SCVs isolated from P. aeruginosa 

ATCC 25922 or PAO1. Furthermore, no auxotrophy was detected in SCVs isolated 

following exposure to ciprofloxacin and no SCVs isolated showed auxotrophy for 

thymidine.  
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Table 6.2 Minimum inhibitory concentrations of E. coli, P. aeruginosa and S. epidermidis parent strains  
 
 
 

 Ampicillin Chloramphenicol  Ciprofloxacin Gentamicin Tetracycline Triclosan 

E. coli 

ATCC 25922 

1 2 0.125 0.25 0.5 0.125 

E. coli 

NCTC 10418 

2 4 0.25 0.25 1 0.125 

P. aeruginosa 

ATCC 27853 

> 32 > 32 0.5 1 > 32 > 32 

P. aeruginosa  

PAO1 

> 32 > 32 1 2 > 32 > 32 

S. epidermidis 

 LTN 

> 32 4 > 32 0.5 1 4 

 
 
Modal MIC values are presented. Modal values were obtained from three independent replicates and three independent biological replicates. 
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Figure 6.1 Morphological differences between wildtype and SCV strains A1) - E. coli ATCC 25922; A2) - E. coli ATCC 25922 SCVGEN;                  

B1) - S. epidermidis LTN; B2) - S. epidermidis LTN SCVGEN; C1) - P. aeruginosa PAO1; C2) - P. aeruginosa PAO1 SCVGEN. Colony 

diameters are reduced in all SCVs. Additionally a loss of a mucoid appearance in E. coli ATCC 25922 SCVGEN and loss of pyocyanin 

production in P. aeruginosa PAO1 SCVGEN is also apparent.  
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6.3.3 Growth profiles 

All SCVs isolated produced dissimilar growth profiles to parent strains (Table 6.3). A 

significant decrease in growth rate and an increase in the duration of lag time was 

observed in all SCV in comparison with parent strains (P = < 0.01) For example, lag 

time duration for E. coli was 1.64 hours, in comparison to an average 4.43 hour lag 

time observed in SCV isolates (Table 6.3). Similar extension of lag times was 

observed in P. aeruginosa and S. epidermidis SCVs. The longest increased in lag time 

was observed in E. coli SCVs selected for in the presence of ciprofloxacin. Reduced 

maximum cell density was consistently observed amongst SCVs from all species. 

Wildtype strains consistently reached > 109 CFU/mL where as all SCV strains 

produced significantly lower final cell density in comparison (P = < 0.01).  

6.3.4 Antibiotic susceptibilities  

The BSAC disc diffusion method was used to examine the susceptibility of E. coli, P. 

aeruginosa and S. epidermidis SCV and parent strains. E. coli SCVs (selected for in 

the presence of chloroamphenicol, ciprofloxacin and gentamicin) produced 

significantly smaller zones of inhibition for all 5 antibiotics tested (Figure 6.2), 

including those targeting cell wall synthesis (ampicillin), DNA replication 

(ciprofloxacin) and protein synthesis (chloramphenicol, gentamicin and tetracycline) 

(P = < 0.05).  E. coli SCVs selected in the presence of ciprofloxacin (E. coli SCVCIP) 

displayed the most pronounced degree of reduced susceptibility, producing the 

smallest inhibition zones for every antimicrobial agent examined.  

 

Due to the intrinsic resistance of P. aeruginosa to various antimicrobial agents, 

susceptibility profiles were only determined for gentamicin and ciprofloxacin.            

P. aeruginosa SCVGEN produced significantly smaller zone of inhibition for 

gentamicin (P < 0.01). Mean zones of inhibition for ciprofloxacin were smaller but 

not statistically significantly (Figure 6.2). S. epidermidis SCVs showed a significant 

reduction in the diameter of inhibition zones for gentamicin (P = < 0.01).                     

S. epidermidis LTN SCVTET produced significantly smaller zones of inhibition when 

exposed to the antibiotic that had selected for them (tetracycline). 
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Table 6.3 Auxotrophy profiles and growth characteristics of E. coli, P. aeruginosa, S. epidermidis SCV and parent strains  
 

Strain/isolate Auxotrophy  Lag time duration 

(hours) 

Growth rate  Maximum cell density 

(CFU/mL) 

E. coli ATCC 25922 N/T 1.70 0.88 5.2 X 109 

E. coli ATCC 25922 SCVCHL Haemin 4.08 0.27 5.8 X 108 

E. coli ATCC 25922 SCVCIP N/D 4.80 0.20 7.2 X 107 

E. coli ATCC 25922 SCVGEN Haemin 4.13 0.24 5.0 X 108 

E. coli NCTC 10418 N/T  1.58 0.85 3.2 X 109 

E. coli NCTC 10418 SCVCHL Haemin 4.23 0.31 1.5 X 108 

E. coli NCTC 10418 SCVCIP N/D 4.87 0.22 9.5 X 107 

E. coli NCTC 10418 SCVGEN Haemin 4.53 0.27 2.6 x 108 

P. aeruginosa ATCC 27853 N/T 2.15 0.81 5.1 x 109 

P. aeruginosa ATCC 27853 SCVGEN N/D 5.91 0.36 3.6 x 107 

P. aeruginosa PAO1 WT N/T 2.06 0.77 2.8 X 109 

P. aeruginosa PAO1 SCVGEN N/D 5.68 0.41 6.3 X 107 

S. epidermidis  LTN N/T 2.20 0.81 7.5 X 109 

S. epidermidis LTN SCVGEN Menadione  5.21 0.34 2.2 X 108 

S. epidermidis LTN SCVTET Menadione  5.46 0.30 4.3 X 108 

 
N/D – not detected; N/T – not tested 
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Figure 6.2 Inhibition zones of E. coli, P. aeruginosa, S. epidermidis SCV and parent strains measured by disc diffusion Results represent 

the mean of three independent replicates and three independent biological replicate. Error bars represent standard error  
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6.3.5 Biofilm formation and cell-surface hydrophobicity  

E. coli, P. aeruginosa and S. epidermidis all formed biofilms using the multiwell 

biofilm assay. S. epidermidis produced the greatest biofilm mass, where as E. coli and 

P. aeruginosa produced biofilm at similar levels (Figure 6.3). SCVs of E. coli, P. 

aeruginosa and S. epidermidis showed increased biofilm formation in comparison to 

parent strains regardless of the selecting antibiotic (P = < 0.01; Figure 6.3). No 

significant difference in cell-surface hydrophobicity was observed between S. 

epidermidis parent and SCV isolates (P = > 0.05; Figure 6.3). SCV isolates of E. coli 

and P. aeruginosa however displayed a significant increase in cell surface 

hydrophobicity in comparison with parent strains (P = < 0.01).  

6.3.6 RAPD profiles  

RAPD primers 228 and 272 produced reproducible complex banding patterns for both 

E. coli and S. epidermidis. SCV isolates for both species showed identical RAPD 

profile regardless of the selecting agents, indicating clonality (Figures 6.4 and 6.5).            

P. aeruginosa RAPD profiles lacked the banding complexity seen in E. coli and S. 

epidermidis however parent and SCV isolates produced identical RAPD profiles with 

primers 268 and 270 (Figure 6.5).   

6.3.7 Characterisation of P. aeruginosa SCV isolates  

Various agar based motility assays were applied to P. aeruginosa SCVGEN isolates to 

examine flagella and type IV pili activity. Twitching motility was measured by crystal 

violet staining growth at the interface between the plastic surface of a Petri dish and 

the agar. P. aeruginosa SCVs isolated from PAO1 and ATCC 25923 strains showed a 

significant increase in the diameter of this zone correlating to an increase in twitching 

motility (P = < 0.01; Figure 6.6). Using the swarming motility assay parent strains 

demonstrated far reaching irregular branching patterns. In contrast SCV strains failed 

to produce the complexity of branching patterns observed and a significant reduction 

in branching diameter was observed (P = < 0.01; Figure 6.6). Similarly SCV isolates 

were also deficient in swimming motility producing smaller diameter concentric rings 

(P = < 0.01; Figure 6.6) in comparison to parent strains. Elastase activity was 

measured via the release of Congo red from Congo red bound elastin. SCVs produced 

significantly lower elastolytic activity in comparison to parent strains (P = < 0.05; 

Figure 6.6). On agar plates P. aeruginosa SCV isolates appeared deficient in
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Figure 6.3 Biofilm formation (A) and cell-surface hydrophobicity (B) in E. coli, P. aeruginosa, S. epidermidis SCV and parent strains 

Results represent the mean of three independent replicates and three independent biological replicate. Error bars represent standard error  
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Figure 6.4 E. coli SCV and parent RAPD profiles L - Hyperladder 1; 1 - E. coli ATCC 25922; 2 - E. coli ATCC 25922 SCVCIP; 3 - E. coli 

ATCC 25922 SCVCHL; 4 - E. coli ATCC 25922 SCVGEN. RAPD analysis of E. coli SCVs selected in the presence of various antimicrobials 

displayed identical profiles in comparison to parent strain. 
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Figure 6.5 S. epidermidis and P. aeruginosa SCV and parent RAPD profiles L - Hyperladder 1; 1 - S. epidermidis  LTN; 2 - S. epidermidis  

LTN SCVGEN; 3 - S. epidermidis  LTNTET;  A1 - P. aeruginosa PAO1; A2 - P. aeruginosa PAO1 SCVGEN.  RAPD analysis of S. epidermidis 

SCVs selected in the presence of gentamicin and tetracycline and P. aeruginosa SCVs selected in the presence of gentamicin displayed identical 

profiles in comparison to parent strain.   
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pyocyanin production (Figure 6.1). Although the presence of pyocyanin was 

visualised with increasing incubation, quantitative analysis confirmed SCVs were 

significantly deficient in pyocyanin production (P = < 0.01). Parent strains produced 

an absorbance of 0.31 (±0.08) in comparison to an average of 0.11 (± 0.05) in SCV 

strains.  

6.3.8 Characterisation of E. coli SCV isolates  

Biochemical analysis of wildtype E. coli demonstrated the production of                              

β-galactosidase through the hydrolysis of ortho-nitrophenyl-galactopyranoside          

(Table 6.4). The production of β-galactosidase facilitates the hydrolysis of lactose 

which is a common characteristic of E. coli. All E. coli SCV isolates showed an 

absence of β-galactosidase activity even after prolonged incubation. SCVs were 

negative for mannitol fermentation, for which the wildtype was positive. Other 

differences between SCVs and wildtype were seen in an inability to produce indole 

(SCVCIP and SCVGEN), and inability to ferment sorbitol (SCVCIP and SCVGEN) and 

melibioise (SCVCIP). Motility assays revealed that all E. coli SCV regardless of the 

selecting antimicrobial were deficient in swimming motility (Figure 6.7). A 

significant reduction in the mean average diameter was observed in SCV isolates in 

comparison to parent strains (P < 0.01) 

6.3.9 Characterisation of S. epidermidis SCV isolates  

S. epidermidis SCVs (SCVGEN and SCVTET), produced different biochemical profiles 

in comparison to parent strains (Table 6.5). Fermentation of maltose and lactose was 

not observed in both SCV isolates as well as a lack of production alkaline phosphatase 

production. Addition of hydrogen peroxide to wildtype strains resulted in rapid 

bubbling indicative of the action of catalase. However all SCV isolates showed a 

weak catalase response. As the assay did not allow a quantitative parameter all SCVs 

were regarded as weakly catalase positive. 
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Figure 6.6 Characteristics of P. aeruginosa SCVs A) - Twitching motility; B) - Swarming motility; C) - Swimming motility; D) - Elastolysis 

activity. Results represent the mean of three independent replicates and three independent biological replicate. Error bars represent standard error  
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Table 6.4 Biochemical analysis of E. coli ATCC 25922 SCVs 
 
 

 Parent  E. coli SCVCIP E. coli SCVCHL  E. coli SCVGEN 
ONPG + - - - 
ADH - - - - 
LDC + + + + 
ODC + + + + 
CIT - - - - 
H2S - - - - 
URE - - - - 
TDA - - - - 
IND + - + - 
VP - - - - 

GEL - - - - 
GLU + + + + 
MAN + - - - 
INO - - - - 
SOR + - + - 
RHA + + + + 
SAC - - - - 
MEL + - + + 
AMY - - - - 
ARA + + + + 

 
 

+ - Positive (enzyme activity, fermentation of carbohydrate); - = Negative (lack of enzyme activity, inability to ferment carbohydrates). 

Differences between SCV and parents are highlighted in grey. 
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Figure 6.7 Swimming motility of E. coli SCV and parent strains. E. coli SCVs produced reduced zones of swimming motility in both strains 

examined. Results represent the mean of three independent replicates and three independent biological replicate. Error bars represent standard 

error 
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Table 6.5 Biochemical profiles of S. epidermidis LTN SCVs  
 
 

 Parent  S. epidermidis SCVGEN S. epidermidis SCVTET 
GLU + + + 
FRU + + + 
MNE + + + 
MAL + - - 
LAC + - - 
TRE - - - 
MAN - - - 
XLT - - - 
MEL - - - 
NIT + + + 
PAL + - - 
VP + + + 

RAF - - - 
XYL - - - 
SAC + + + 
MDG - - - 
NAG - - - 
ADH + + + 
URE + + + 

 
 
+ - Positive (enzyme activity, fermentation of carbohydrate); - = Negative (lack of enzyme activity, inability to ferment carbohydrates). 

Differences between SCV and parents are highlighted in red 
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6.4 Discussion 

This study on E. coli, P. aeruginosa and S. epidermidis illustrates that SCV formation 

can be readily promoted by commonly used antibiotics. Although not all antibiotics 

examined result in the selection of SCVs, SCV selection with antibiotics 

(ciprofloxacin, chloramphenicol and tetracycline) that have previously not been 

known to select for SCVs, was observed.  

 

Regardless of the bacterial species all SCVs isolated produced atypical phenotypic 

characteristics in comparison with parent strains and therefore phenotypic 

identification is prone to misidentification. Phenotypic variation has been well studied 

in P. aeruginosa and is known to produce a diverse array of morphological 

characteristics (Hogardt & Heesemann, 2010). P. aeruginosa is easily recognisable 

when grown on solid agar due to the production of pyocyanin, which was shown to be 

attenuated in SCVs. The atypical morphology and slow growth rate of SCVs may lead 

to them being misidentified or the determination of a culture negative in the 

laboratory testing. Similar problematic issues may arise during phenotypic 

identification of E. coli SCVs. Due to abnormalities in carbohydrate utilisation and 

growth profiles, SCVs can be misidentified when grown on selective differential 

medium  (Kipp et al., 2005). MacConkey agar is commonly used for the identification 

of lactose fermenting Gram-negative bacteria. The utilisation of lactose in the medium 

results in an acidification of pH and a subsequent colour change. However all E. coli 

SCV isolates were unable to utilise lactose which may lead to misidentification.  

 

These results underline the importance of molecular identification as gold standard. In 

this study RAPD analysis was applied to determine whether SCVs showed clonality 

with parent strains. Consistent and easily interpretable banding patterns were 

produced confirming clonality between SCVs and parents. These results are similar to 

the findings found in RAPD profiles generated from S. aureus SCVs recovered 

following exposure to tetracycline (Chapter 3). RAPD analysis has been applied to          

P. aeruginosa isolates recovered from patients suffering from CF (Mahenthiralingam 

et al., 1996). Many of these isolates displayed alteration in colonial morphology and 

motility but continued to produce a consistent RAPD fingerprints. The RAPD profiles 

generated in this study are in agreement with the work of Mahenthiralingam et al., 
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(1996), as the various differences alterations observed in SCVs do not correspond to a 

change in RAPD profiles. Although RAPD strain typing is highly discriminatory, the 

technique is subject to variability between laboratories. There are alternative PCR 

identification methods which could also be employed to aid SCV identification. 

Several P. aeruginosa specific gene targets are available but ecfX (which encodes an 

extracytoplasmic function sigma factor) has been demonstrated to be both 

discriminatory and reliable (Lavenir et al., 2007). Multiplex PCR protocols are 

available for the identification of E. coli (Toma et al., 2003) which allows 

differentiation of different E. coli pathovars. Finally multiplex PCR allowing 

identification of S. epidermidis as well as differentiation from S. aureus (Zhang et al., 

2004) would permit accurate determination of S. epidermidis SCV isolates.  

 

P. aeruginosa is intrinsically resistant to many antimicrobial agents (most β-lactams 

the older quinolones, chloramphenicol, tetracycline, macrolides, and rifampin) and 

thus very few antipseudomonas agents are available (Rossolini & Mantengoli, 2005). 

The observation that gentamicin can select for SCVs is thus important as it remains 

one of the few agents available to treat P. aeruginosa infection. SCVs have been 

implicated in persistent and recurrent infections (Roggenkamp et al., 1998; von Eiff et 

al., 1998) and thus treatment with gentamicin (and possibly other aminoglycosides) 

may present risks through the selection of SCVs. Several antibiotics were also able to 

select for SCVs of E. coli and S. epidermidis. Although these species do not show 

intrinsic resistance to the same degree as P. aeruginosa, antibiotic resistance in 

isolates has become apparent (Arciola et al., 2005; Mathai et al., 2001). The 

observation that various antibiotics can select for the SCV phenotype therefore has 

implications in treatment and management of infections.  

 

The bacterial signal molecule cyclic-diguanylate GMP (c-di-GMP) has been linked to 

SCV phenotype in P. aeruginosa (Meissner et al., 2007). c-di-GMP controls several 

cellular functions in many bacteria, but is principally related to the regulation and 

transition of the motile to the sessile form (Jenal & Malone, 2006). Further 

investigation has shown that the yfiBNR genes in P. aeruginosa produce a signalling 

molecule that regulates c-di-GMP levels in P. aeruginosa (Malone et al., 2010). 

Disruption of the YfiR (which regulates YfiN and subsequently c-di-GMP) leads to 

the production of the SCV phenotype through increased c-di-GMP production. 
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Antibiotics such as aminoglycosides influence the expression of c-di-GMP (Hoffman 

et al., 2005), which may explain the ability of gentamicin to select for SCVs. Parallels 

can be drawn between this mechanism and the alternative sigma factor, sigma B (σB) 

in S. aureus which influences formation of the SCV phenotype (Mitchell et al., 

2010a). It is feasible that σB activity governs SCV formation in S. epidermidis as 

comparison of σB between the two species show a similar organisation although there 

are variations in their role and function (Kazmierczak et al., 2005).  

 

The identification of auxotrophy in E. coli and S. epidermidis SCVs confirmed 

disruption of the bacterial electron transport chain (ETC). Auxotrophy is a common 

occurrence in SCV isolates recovered from antibiotic exposure (Balwit et al., 1994; 

Lewis et al., 1991). The resulting defects in electron transport result in major energy 

deficiencies resulting in atypical colony morphologies and growth profiles. Although 

auxotrophy was not detected in P. aeruginosa, SCV isolates shared characteristics 

with SCVs from other species, suggesting defects in ETC are responsible for the SCV 

phenotype. Haemin and menadione both play roles in P. aeruginosa electron transport 

(Matsushita et al., 1980), therefore defects in other components of the ETC may be 

responsible for the SCV phenotype. E. coli and S. epidermidis SCVs also displayed 

atypical biochemical characteristics in comparison to parent strains. This is an 

agreement with previous analysis in E. coli (Lewis et al., 1991) and S. epidermidis 

SCV (Al Laham et al., 2007) This may be attributed to interruption of the ETC and 

inability to utilise the tricarboxylic acid cycle (TCA cycle; Proctor, 2006).  

 

P. aeruginosa is a motile organism that can move via the process of swarming and 

swimming; both functions are dependant on the action of flagella (Henrichsen, 1972). 

The observations in this study suggest that P. aeruginosa SCVs are flagella deficient 

in comparison to parent strains. P. aeruginosa flagella have been shown to be an 

important virulence factor, and are required for the establishment of respiratory tract 

infections (Feldman et al., 1998). The loss of flagella activity may relate to an 

adaption after infection has been established, which has been observed in P. 

aeruginosa recovered from CF patients (Luzar et al., 1985; Starkey et al., 2009). The 

findings presented in this study suggest that exposure of P. aeruginosa to gentamicin, 

results in the production of the SCV phenotype similar to that observed in CF, which 

serves as an environmental adaptation.  
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The various physiological changes that have been reported in P. aeruginosa isolates 

from CF patients are often the result of adaptation to the CF lung (Smith et al., 2006; 

Sriramulu et al., 2005). P. aeruginosa SCVs recovered from CF patients have been 

shown to exhibit similar characteristics suggesting the SCV phenotype may play a key 

role in the pathogenesis of P. aeruginosa lung infection (Haussler et al., 2003b). 

Although the P. aeruginosa SCVs isolates in this study share characteristics with CF 

SCV isolates, this study additionally reports reduction in pyocyanin production and 

elastolytic activity. Pyocyanin mediates tissue damage and necrosis during lung 

infection (Lau et al., 2004). This stimulates the immune system which increases the 

number of macrophages, CD4 (+) T cells and neutrophils at the site of infection 

(Caldwell et al., 2009). Elastase is a zinc metalloprotease secreted by P. aeruginosa 

that causes tissue destruction during infection due to its proteolytic activity 

(Galloway, 1991). The reduced activity of these virulence factors shares common 

features with S. aureus SCVs which show reduced production of certain virulence 

factors (Tuchscherr et al., 2010). Reduction in virulence factors in the CF lung serves 

as an adaptation to a less aggressive lifestyle geared towards persistence (Hogardt & 

Heesemann, 2010) which P. aeruginosa SCVs are suited to. The SCV phenotype may 

serve as a survival mechanism to respond to a change in environment (exposure to 

antibiotics), similar to adaptations that occur in the CF lung.  

 

Disc diffusion assays were used to provide a measure of antimicrobial susceptibility. 

All SCVs (regardless of bacterial species or selecting agent) showed a reduction in 

susceptibility to gentamicin. Auxotrophy was defined in the majority of SCV isolates, 

confirming that disruption of the ETC is present in these isolates. Disruption of the 

ETC results in a decreases in the uptake of gentamicin. The isolates in which 

auxotrophy were not detected, reduced gentamicin susceptibility may be attributed to 

disruption of the ETC, since they share many characteristics with the auxotrophic 

SCV isolates. E. coli and S. epidermidis SCVs also showed reduced susceptibility to a 

variety of different classes of antimicrobial agents in comparison to parent strains. An 

explanation for this reduced susceptibility is the reduced growth rate observed in all 

SCV isolates. Antibiotics target various bacterial cellular processes, including protein, 

DNA and cell wall synthesis and thus altered rates of bacterial growth rate coincides 

with the response to antimicrobial agents (Tuomanen et al., 1986). As SCV isolates 

displayed reduced growth rate these processes work at a slower rate thus reducing 
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susceptibility. This is supported by the observation that E. coli SCVCIP showed the 

slowest growth rate in comparison to other E. coli SCV isolates and the greatest 

reduction in susceptibility to all antibiotics examined.   

 

Hydrophobicity is an important factor in bacterial adhesion to surfaces and to each 

other (van Loosdrecht et al., 1987). Increased hydrophobicity has been attributed to 

the abundance of pili in both E. coli (Drumm et al., 1989) and P. aeruginosa (Speert 

et al., 1986). As E. coli and P. aeruginosa SCVs isolated in this study displayed 

increased hydrophobicity, it is postulated that these SCVs show an increased 

abundance of pili in comparison to parent strains. This is further supported by the 

increase in twitching motility observed in P. aeruginosa SCVs as twitching motility 

in P. aeruginosa is dependent on the action of pilli (Bradley, 1980) and mutants 

defective in pili production are deficient in twitching motility (Shan et al., 2004).  The 

increase in the abundance of pili may increase the capacity of SCVs to form biofilms. 

P. aeruginosa mutants that are deficient in the synthesis of type IV pili are also 

deficient in the formation of biofilms on abioitic surfaces (O'Toole & Kolter, 1998). 

Similarly in E. coli, mutants deficient in pili production are also deficient in biofilm 

formation (Pratt & Kolter, 1998). Although both of these studies show the crucial 

importance of pili in biofilm formation it is important to note that the deficiencies in 

different type pili systems impacts on different stages of biofilm development. 

Nevertheless the data shown in this study suggest that the presence of pili may be 

linked to biofilm formation in P. aeruginosa SCVs. An increased abundance of pili 

has been reported in P. aeruginosa SCVs isolated from CF patients and linked to 

biofilm formation (Haussler et al., 2003b) adding evidence to the links proposed.  

 

In contrast, S. epidermidis SCVs displayed no difference in cell surface 

hydrophobicity in comparison with parent strains but still showed an increased 

capacity to form biofilms. The σB mediated selection mechanism proposed previously 

correlates with the enhanced biofilm capacity in S. epidermidis SCVs. Previous 

studies have demonstrated that S. epidermidis mutants constitutively expressing σB 

displayed increased production of polysaccharide intracellular adhesin (PIA) therefore 

increasing biofilm formation (Jager et al., 2009). Increased expression of σ
B can be 

proposed as the genetic mechanism for increased biofilms formation in S. epidermidis 

SCVs. Biofilm formation in S. epidermis is considered as one of the organism’s key 
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virulence factors in mediating device associated infections (McCann et al., 2008). A 

switch to the SCV phenotype may facilitate persistence through the increased capacity 

to form biofilms.  

 

The production of the SCV has been linked to persistence and survival in S. aureus 

(Proctor et al., 2006). SCVs isolated from diverse bacterial species that inhabit many 

different environments share similar characteristics that have come to be associated 

with the SCV phenotype. The SCV phenotype appears to be a common mechanism 

utilised by bacteria to permit survival in the presence of antimicrobial compounds 

which subsequently permits persistence via reduced antimicrobial susceptibility and 

biofilm formation. The switch from a fast growing virulent phenotype to a slow 

growing SCV seems a small price to pay for survival. 
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6.5 Conclusions  
 
• Exposure of E. coli to ciprofloxacin and chloroamphenicol and S. epidermidis to 

tetracycline results in selection for SCVs. 

• Exposure of E. coli, P. aeruginosa and S. epidermidis to gentamicin results in 

selection for SCVs. 

• E. coli, P. aeruginosa and S. epidermidis SCVs share known characteristics with 

SCVs including atypical colony morphology and growth profiles. 

• E. coli and S. epidermidis SCVs are auxotrophic for compounds which have roles 

in electron transport. 

• Susceptibility to various antimicrobial agents is reduced in SCVs. 

• E. coli and P. aeruginosa SCVs have an increased capacity to form biofilms 

which appears to be related to increased abundance of pili. 

• RAPD analysis confirmed SCVs show clonality with parent strains. 

• E. coli and S. epidermidis SCVs display atypical biochemical profiles.  

• P. aeruginosa SCVs are deficient in swarming and swimming motility, as well as 

deficient in the production of virulence factors; elastase and pyocyanin.   
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7 CHAPTER 7: GENERAL CONCLUSIONS AND DISCUSSION 
 

7.1  Conclusions 

The work presented in this study aimed to investigate the ability of various 

antimicrobials to select for S. aureus SCVs and investigate their capacity to form 

biofilms as well as examine their susceptibility to a range of plant antimicrobial 

compounds. Antibiotic selection for SCVs in other bacterial species was also 

examined and these isolates were characterised and their capacity to form biofilms 

investigated. In this chapter the general conclusions of each main area of work will be 

reiterated with respects to the aims mentioned in Chapter 1.  

 

• Various aminoglycosides can select for S. aureus SCVs at a range of 

concentrations. 

• The formation of SCVs is a hindrance to accurate aminoglycoside susceptibility 

testing, which led to the development of a ‘minimum SCV prevention 

concentration’, which ensures eradication rather than SCV selection at higher 

concentrations.  

• Variations in carbohydrate utilisation, carotenoid production, levels of 

intracellular ATP, mutation frequency and rates of reversion are apparent between 

SCVs selected at different aminoglycoside concentrations. 

• Members of the tetracycline family of antibiotics can select for S. aureus SCVs 

• Tetracycline selected SCVs show attenuated catalase, coagulase and heamolysis 

activity and reduced production of extracellular DNase and lipase and reduced 

susceptibility to various antimicrobial agents.  

• S. aureus SCVs show increased biofilm formation in comparison to parent strains 

which appears to be linked to increased production of polysaccharide intracellular 

adhesin. 

• S. aureus SCV and parent biofilms show reduced susceptibility to various 

antimicrobial agents in comparison to planktonic cells.  

• The reduction in antimicrobial susceptibility is further pronounced in S. aureus 

SCV biofilms which is linked to reduced antimicrobial penetration through             

S. aureus SCV biofilms.  
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• S. aureus SCV and parents are susceptible to various plant antimicrobial 

compounds of which SCVs are more susceptible to cinnamon bark, green tea and 

oregano.  

• Resistance to plant antimicrobials was not detected following continuous exposure 

of S. aureus SCVs to sub lethal concentrations. 

• Various plant antimicrobials display a synergistic relationship against S. aureus 

with various antibiotics including oxacillin, neomycin and tetracycline.  

• Gentamicin can select for SCVs in Escherichia coli, Pseudomonas aeruginosa 

and S. epidermidis. Additionally exposure of E. coli to ciprofloxacin and 

chloramphenicol and S. epidermidis to tetracycline selected for SCVs. 

• SCVs from these bacterial species share characteristics with S. aureus SCVs 

including altered growth and biochemical profiles, auxotrophy for compounds 

involved in electron transport, reduction in virulence factors and reduced 

antimicrobial susceptibility. 

• All SCVs showed an increased capacity to form biofilms compared to their parent 

strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 198 

7.2 General discussion  

7.2.1 Identification and treatment of SCV infections   

Despite the observation that S. aureus SCVs are often associated with  infections 

commonly caused by biofilms,  planktonic cells are still of the utmost importance in 

species and strain identification and determining  susceptibility profiles in clinical 

laboratories. However the identification of SCVs is riddled with difficulty. It is well 

documented that identification of S. aureus SCVs is difficult and automated systems 

can misidentify SCVs (Seifert et al., 1999; Spanu et al., 2005). Atypical growth rates 

can lead to their presence being missed on agar plates and their atypical phenotypic 

and enzymatic characteristics can also lead to misidentification. In this study 

multiplex PCR was successfully employed for the identification of S. aureus SCVs. 

Molecular identification of SCVs has been applied previously and proved successful 

(Sendi et al., 2006; von Eiff et al., 1999). RAPD fingerprinting also showed that SCV 

isolates showed clonality with parent strains. Although molecular diagnostics may 

increase expense compare with conventional diagnostic microbiology it overcomes 

the uncertainty that may surround the identification of SCVs.  

 

In order for susceptibility testing to be performed cultivation is required. When 

investigating SCVs in species other than S. aureus conventional CLSI microdilution 

susceptibility proved difficult due to the formation of biofilms in microtitre plates. 

However the use of disc diffusion method of susceptibility overcame these associated 

problems. Again these issues highlight difficulties during susceptibility testing of 

SCVs. Molecular determination of resistance determinants such as mecA may prove 

useful for determining SCV susceptibility. Furthermore, the instability of the SCV 

phenotype represents further challenges. SCVs may be the causative agent of 

infection, but the subsequent cultivation may result in reversion to the parent 

phenotype which may have implications for the chosen treatment regime. Taking into 

account these issues, an awareness of the SCV phenotype (particularly in the diseases 

they have been associated with such as CF and osteomyelitis) may aid accurate 

diagnostics and change treatment course.  

 

Research presented here documents for the first time for the tetracycline class of 

antibiotics to select for S. aureus SCVs. The SCV phenotype represents a novel 
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mechanism for reduced tetracycline susceptibility in S. aureus. As the uptake of 

tetracycline is partially energy dependent (McMurry & Levy, 1978) and attributed in 

part to the presence of a proton motive force (Smith & Chopra, 1984), the reduced 

susceptibility to tetracycline in SCVs may be related to reduced uptake. Tetracycline 

and other tetracycline antibiotics have been successfully applied for the treatment of 

MRSA infections (Ruhe et al., 2005). A follow up of patients in the latter study would 

have provided an interesting observation to determine if any relapse of infection were 

reported.  This would perhaps correlate with the presence of SCVs. Although the 

selection of SCVs does not result in a large reduction in antimicrobial susceptibility, 

the finding that tetracycline can select for S. aureus (and also S. epidermidis) SCVs 

may have implications in its clinical use. Investigating the ability of the recently 

developed tigecycline to select for SCVs would be an interesting further investigation.  

 

Exposure to several aminoglycosides at a wide range of concentrations also resulted 

in the selection of S. aureus SCVs. Although gentamicin has a long history of SCV 

selection this study was the first to address concentration dependent selection. 

Interestingly the concentration of selecting aminoglycoside impacts on the 

characteristic of the SCV selected for and a clear correlation between 

aminoglycosides concentration and SCV characteristics are apparent. The observation 

that a broad range of concentrations selects for S. aureus SCVs is also an important 

finding. The concentrations examined range from bacteriostatic to bactericidal; 

however the distinction between bacteriostatic and bactericidal activity can often be 

arbitrary in the clinical sense. Achieving bactericidal activity is crucial for the 

effective treatment of various bacterial infections (Pankey & Sabath, 2004). As 

aminoglycosides are considered as bactericidal agents, they may be employed a high 

concentrations to treat infection. However the use of bactericidal concentrations can 

select for a SCV population, hence the development of the term ‘minimum SCV 

prevention concentration’. This ensures eradication of wildtype and thwarts the 

selection of SCVs.  

7.2.2 SCV and persisters   

Some overlap exists between the SCV phenotype and a state of bacteria termed 

persisters which are often recovered following antibiotic exposure. Persisters have 

been described as a ‘subpopulation of dormant cells that have been implicated in a 
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range of chronic and recurrent infections through their ability to survive antibiotic 

treatments’ (Jermy, 2011). Although persisters are antibiotic tolerant, they differ from 

antibiotic resistance mutants as their antibiotic tolerance is not hereditary and can be 

reversed when grown in the absence of antibiotics (Jayaraman, 2008). Persisters have 

also been implicated in chronic infectious diseases, including cystic fibrosis (CF) 

patients infected with Pseudomonas aeruginosa and Candida albicans in oral thrush 

patients (Lewis, 2010). The observation that SCVs have also been implicated in 

persistent infections suggests that some similarities exist between the two phenotypes. 

Some overlap in gene expression profiles in SCVs and persisters is apparent; for 

instance, expression of stress response proteins (heat shock, SOS response) and 

operons involved in oxidative phosphorylation (NADH dehydrogenase, ATP 

synthase, and cytochrome O-ubiquinole oxidase) are altered in persisters (Keren et al., 

2004). Similarly in S. aureus SCVs alteration in the expression of genes with 

functions in electron transport and global regulators involved in stress response and 

virulence are altered (Moisan et al., 2006; Seggewiss et al., 2006). An important 

contrasting characteristic between SCVs and persisters is growth rate. SCVs are 

metabolically active although they exhibit atypical growth profiles. On the other hand 

persisters are regarded as non-growing, dormant cells that exist as a distinct 

physiological state (Balaban et al., 2004; Shah et al., 2006).  

 

SCVs and persisters have been associated with antimicrobial resistance. Although 

SCVs and persisters do not follow classical resistance mechanisms, there are 

differences in the mechanisms that contribute to reduced antibiotic 

susceptibility/tolerance. In persisters of Escherichia coli toxin-antitoxin (TA) modules 

and other genes block translation in protein synthesis (Keren et al., 2004). This results 

in the shutting down of cellular processes and targets which antimicrobial agents 

required to be active in order to effective. The non-dividing state results in the 

tolerance observed in persisters. In SCVs however, reduced susceptibility to 

antimicrobial agents rather than tolerance is observed. A perturbed electron transport 

chain results in a reduced membrane potential and uptake of positively charged 

antimicrobials such as aminoglycosides is reduced. Defects in electron transport result 

in a slower growing phenotype however cellular processes are still active in contrast 

to persisters. As such, it is important to document that although persisters and SCVs 
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can both be linked to recurrent and refractory infections and some overlap exists 

between the states, they must be viewed as separate entities.   

7.2.3 Biofilm formation in SCVs  

In this study SCVs from several bacterial species displayed an increased capacity for 

biofilm formation in comparison to parent strains. Biofilms have been suggested to be 

the root of many chronic and persistent infections and are associated with increasing 

healthcare cost and morbidity. Furthermore, approximately 60% of bacterial 

infections are thought to involve biofilms (Costerton et al., 1999) yet the role of SCVs 

in these biofilm-related infections remains largely unknown. The ability of SCVs to 

form biofilms has clear implications in biofilm associated infections. It is well 

documented that bacteria present in biofilms showed a reduced growth rate which 

contributes to reduced antimicrobial susceptibility (Mah & O'Toole, 2001). Nutrient 

limitation and oxygen limitation is thought to be responsible for slow growth rate in 

biofilms (Brown et al., 1988). The SCV phenotype and the biofilm phenotype appear 

to share similarities. SCVs were not detected from parent biofilms, however it is 

important to note that SCVs are frequently unstable and reversion during plate 

counting may have meant SCVs went undetected. SCVs were shown to disseminate 

from S. aureus parent biofilms that had been exposed to antimicrobials and their 

growth characteristics and biofilm forming capacity suggest the SCV phenotype 

permits an optimised phenotypic state for biofilm growth and proliferation of 

biofilms. Couple with their reduced growth rate and reduced antimicrobial 

susceptibility the formation of a SCV phenotype serves as an adaptive plasticity.  

7.2.4 Novel biofilm treatment strategies  

This study also demonstrates the reduced antimicrobial susceptibility of biofilms. 

Biofilms displayed reduced susceptibility to various antimicrobials which we 

observed in several wildtype S. aureus strains. However, biofilms formed by SCV 

isolates showed further reduced susceptibility in comparison. One of the novel 

approaches to treating biofilm associated infections is the use of bacteriophage. 

Bacteriophages are viruses that infect bacteria and can follow a virulent lytic or 

lysogenic lifestyle. The use of bacteriophage to control device associated infections 

offers several advantages over antimicrobial agents. Firstly, whilst older biofilms are 

more difficult to eradicate using conventional antimicrobials, bacteriophage treatment 
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is not affected by biofilm age (Amorena et al., 1999; Hanlon et al., 2001). Hanlon et 

al., (2001) also documented that biofilm thickness and the presence of polysaccharide 

did not limit the diffusion of phage through biofilms, which in the study antibiotic 

penetration has a direct impact on antimicrobial susceptibility. Finally, bacteriophage 

can be engineered to express biofilm degrading enzymes. The treatment of biofilms 

with such degrading enzymes, such as dispersin B (which causes hydrolysis of 

glycosidic linkages in biofilm polysaccharide) can eradicate bacterial biofilms (Itoh et 

al., 2005) and use of bacteriophage expressing these enzymes enabled high levels of 

anti-biofilm activity (Lu & Collins, 2007). Bacteriophage K (a member of the 

Myoviridae phage family) has been shown to inhibit various clinically isolated S. 

aureus strains and other staphylococcal species (O'Flaherty et al., 2005), although it 

has yet to be tested on biofilms formed by S. aureus. Bacteriophage K has been 

demonstrated to reduce biofilm mass in biofilms formed by S. epidermidis (Cerca et 

al., 2007). The engineering of bacteriophage K to produce biofilm degrading enzymes 

such as dispersin B may offer an attractive option to combat SCV biofilms. Other 

novel approaches for the eradication of staphylococcal biofilms include the inhibition 

of quorum sensing (Balaban et al., 2007) and the impregnation of biomaterials with 

novel antibacterial compounds (such as usnic acid, a secondary lichen metabolite) to 

inhibit biofilm formation (Francolini et al., 2004).  

7.2.5 The SCV phenotype as a survival strategy  

An overview of the research presented here and a review of the literature implicates 

the role of the SCV phenotype as survival mechanism in S. aureus and other bacterial 

species. The ability to switch to an altered phenotype in the presence of antimicrobial 

agents is clearly favourable if it permits survival. SCVs ‘trade in’ many characteristics 

that are associated with rapid growth in order to survive in unfavourable conditions. 

Various reports of phenotypic switching have been reported in the literature including 

the formation of persisters, in the presence of antibiotics. Other examples include 

variation of membrane surface lipoprotein antigens in Mycoplasma bovis 

(Lysnyansky et al., 1996) and altered expression of surface determinants in 

Burkholderia pseudomallei (Chantratita et al., 2007). Formation of the SCV 

phenotype in S. aureus can also be viewed as a phenotypic switching system which 

appears to be strongly influenced by the alternative sigma factor, σB (Mitchell et al., 

2010a). The observation that SCVs characteristics correlates to the concentration of 
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the selecting aminoglycoside suggests that σ
B is influenced in a concentration 

dependent manner. Rates of reversion in SCV isolates showed differentiation with 

SCVs selected a higher concentrations remaining stable. In these variants σB may 

constantly upregulated thus locking them into the SCV phenotype. The influence of 

σ
B and the locking in of the SCV phenotype has been observed in S. aureus SCV 

isolated from CF patients (Mitchell et al., 2008). Clearly σB plays an important role in 

the SCV phenotype in S. aureus SCVs and their selection in the presence of 

aminoglycosides. Various other antimicrobial agents are known to select for S. aureus 

SCVs and it would be interesting to monitor the expression of σB (via  real time PCR) 

to determine whether these antibiotics influence the expression of the global regulator 

and are involved in SCV formation.  

7.2.6 Novel antimicrobials for S. aureus and SCVs 

The ability of S. aureus to develop resistance to variety of antimicrobial agents and 

the ability to switch to the SCV phenotype results in diminishing therapeutic options 

for treatment of these infections caused by these organisms. As discussed previously 

the difficulties surrounding antibiotic resistance and the lack of novel antibiotics in 

development have worrying implications in the healthcare setting. Cinnamon bark, 

ginger grass, green tea and oregano all have activity against S. aureus as demonstrated 

via disc diffusion and broth dilution methods. Broth dilution testing revealed S. 

aureus SCVs to be more susceptible to cinnamon bark, green tea and oregano which 

is encouraging as SCV show reduced susceptibility to various antimicrobial agents. 

Another significant observation was that none of the plant antimicrobials examined 

showed selection for S. aureus SCVs, which taking into consideration of previous 

finding may be a consideration in the treatment of S. aureus infection. Although the 

plant antimicrobials concentrations that were inhibitory are a lot higher than the 

concentrations of commonly used antibiotics, this research also highlights their 

possible use in combination with antibiotics. Various synergistic relationships were 

observed thus there is that these plant antimicrobials offer a novel avenue to combat 

antibiotic resistance.  

 

The susceptibility of S. aureus SCVs to plant antimicrobials may have applications in 

the treatment of biofilm associated infections. For example carvacrol and eugenol are 

effective against biofilms formed by E. coli O157:H7 and Listeria monocytogenes 
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(Perez-Conesa et al., 2011). Specifically carvacrol and thymol can inhibit the first 

step in biofilm formation (initial adherence) in S. aureus (Nostro et al., 2007). The 

application of these compounds to biomaterials such as catheters and prosthetics may 

provide a useful strategy to block biofilm formation. 
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APPENDIX 1 
 

Enzymatic Reactions of API STAPH Test Strip 

 

Result Tests Substrates  Reactions/Enzymes 
Negative Positive 

0 No Substrate negative Control red/orange - 
GLU 
FRU 
MNE 
MAL 
LAC 
TRE 
MAN 
XLT 
MEL 

D-glucose  
D-fructose 
D-mannose  

maltose 
lactose  

D-trehalose  
D-mannitol  

xylitol 
D-melibiose  

 
 

acidification due to 
carbohydrate 

utilization 

 
 
 

red 

 
 
 

yellow 

NIT potassium nitrate  reduction of nitrate to 
nitrite 

colourless-Light 
pink 

red/purple* 

PAL Β-naphthyl-acid 
phosphate 

 

alkaline phosphatase yellow violet# 

VP sodium pyruvate  acyl-methyl-carbinol 
production 

colorless/light 
pink 

pink/violet^ 

RAF 
XYL 
SAC 
MDG 
NAG 

raffinose  
xylose  
sucrose  

α-methyl-D glucoside 
N-acetyl-glucosamine 

 
acidification due to 

carbohydrate 
utilization 

 
 

red 

 
 

yellow 

ADH arginine  arginine dihydrolase yellow orange-red 
URE urease urease yellow red-Violet 
 

*1 drop of the reagents NIT-1 and NIT-2 was added, and left for 10min before result being read. 

# 1 drop of the reagents ZYM A and ZYM B were added, and left for 10min before result being 

read. 

^1 drop of the reagents VP-1 and VP-2 was added, and left for 10 min before result being read. 

ADH and URE- Anaerobic conditions needed for these reactions. This was achieved by filling up to 

the cupule meniscus with mineral oil. 
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API Staph medium (composition per litre) 0.5 g yeast, 10 g bactopeptone, 5 g NaCl, 10 mL 

trace elements  

 

Enzymatic Reactions of API E Test Strip 

 

Result  Tests   Substrate   Reactions/Enzymes 

Negative     Positive  

ONPG 

2-nitrophenol-ßD-

galactopranoside 

ß-galactosidase colorless Yellow 

ADH 
        L-arginine arginine dihydrolase yellow red/orange 

LDC 
L-lysine lysine decarboxylase yellow red/orange 

ODC 
L-omithine omithine decarboxylase yellow red/orange 

CIT 
trisodium citrate citrate utilisation yellow blue/green 

H2S 
sodium thiosulfate H2S production colorless black deposit 

URE 
urea urease yellow red/orange 

TDA 
L-tryptophane tryptophane deaminase yellow red* 

IND 
L-tryptophane indole production yellow red ring# 

VP 
sodium pyruvate acetoin production colorless pink/red^ 

GEL 
gelatin gelatinase no diffusion diffusion of pigment 

GLU 
D-glucose fermentation/oxidation blue/green yellow 

MAN 
D-mannitol fermentation/oxidation blue/green yellow 

INO 
inositol fermentation/oxidation blue/green yellow 

SOR 
D-sorbitol fermentation/oxidation blue/green yellow 

RHA 
L-rhamnose fermentation/oxidation blue/green yellow 

SAC 
D-sucrose fermentation/oxidation blue/green yellow 

MEL 
D-melibose fermentation/oxidation blue/green yellow 

AMY 
amygdalin fermentation/oxidation blue/green yellow 

ARA 
L-arabinose fermentation/oxidation blue/green yellow 

 
*1 drop of the TDA reagent added and result read immediately   

# 1 drop of the JAMES reagent added and result read immediately   

^1 drop of the reagents VP-1 and VP-2 was added, and left for 10 min before result being read. 

ADH, LDC, ODC, H2S and URE - Anaerobic conditions needed for these reactions. This was achieved by 

filling up to the cupule meniscus with mineral oil. 

 


