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Summary 

Age-related macular degeneration (AMD) is the principle cause of visual loss and 

blindness in the developed world. As new treatments and therapies are developed the 

need to better diagnose and then monitor outcomes of treatment has become more 

important. This thesis evaluates both structural and functional changes that occur in the 

early stage of AMD, known as age-related maculopathy (ARM), with the aim of 

determining their diagnostic potential. This thesis also explores the relationship between 

structural and functional parameters. 

 

Twenty four participants with ARM and 26 control participants were recruited. 

Retinal function was probed using four focal electroretinography (ERG) techniques: the 

focal cone ERG, focal flicker ERG, ERG photostress test and focal rod ERG. Long 

wavelength optical coherence tomography (OCT) was used to assess retinal structure, 

specifically retinal, choroidal and four intra-retinal layer thicknesses at 21 macular 

locations. These techniques were initially developed and optimised for the detection of 

AMD related changes. The ability of each parameter to diagnose ARM was assessed. 

Correlation and linear regression analyses were carried out to identify any relationships 

between retinal structure and function in healthy controls. 

 

Retinal thickness was reduced in participants with ARM at parafoveal locations (~2° 

eccentricity), but choroid thickness was unaffected. Diagnostically, focal ERG parameters 

provided better sensitivity and specificity to ARM than OCT measures, with the ERG 

photostress test providing the best diagnostic potential. No strong relationships were 

shown between any ERG parameter and any retinal or choroidal layer volume in control 

participants. Three ERG parameters were shown to be related to specific retinal features 

of ARM, but the strongest associations were between ERG photostress test recovery and 

focal cone ERG b-wave implicit time and a diagnosis of wet AMD in the contralateral eye.  

  

In conclusion the structural and functional parameters assessed appeared to 

provide independent information regarding disease status and severity. ERG parameters 

showed better diagnostic potential than OCT measures. The single most diagnostic 

parameter was the recovery time constant of the ERG photostress test.
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1 Chapter 1: Introduction 

Chapter 1: Introduction 

 

1.1 Outline 

This thesis describes a series of studies into the retinal structure and function of 

people with the early stage of age-related macular degeneration (AMD). Age-related 

macular degeneration is a condition that principally involves the outer retina, Bruch’s 

membrane and the choroid, which predominantly affects people over the age of 55. The 

early stage of AMD is also known as age-related maculopathy (ARM) and is characterised 

by soft drusen and focal pigmentary changes (Bird et al., 1995), but eventually progresses 

to either wet or dry AMD, characterised by choroidal neovascularisation or geographic 

atrophy respectively. 

 AMD is associated with a significant socio-economic burden and, in the United 

Kingdom, AMD is responsible for more visual impairment than all the other ocular 

conditions combined (Bunce and Wormald, 2006). Continuing improvements in medicine, 

living standards and, therefore, life expectancy mean that the prevalence of AMD will 

continue to rise. Between 2005 and 2050 there is predicted to be a 3 fold increase in the 

global number of people aged 60 years and over (UN, 2005). 

 Currently, treatment is limited to the wet type of AMD which is commonly and 

successfully treated by anti-angiogenic pharmacotherapy (Mitchell et al., 2010). No 

successful treatments currently exist for either dry AMD or ARM, although evidence 

suggests that nutritional supplements may help slow disease progression in some cases 

(AREDS, 2001b; Sangiovanni et al., 2007; Sangiovanni et al., 2009). There is 

consequently a strong research drive to develop therapeutic strategies for AMD. In order 

to assess outcomes of interventions, biomarkers for disease progression are needed 

which are sensitive to subtle changes in macular structure and function. The objective of 

this thesis is to explore structural and functional changes in ARM in order to enhance the 

understanding of disease progression and the development of tests capable of diagnosing 

and monitoring the condition. 

 This thesis starts by providing relevant background information on the healthy eye, 

AMD and different methods of ophthalmic imaging and assessment of retinal function in 

AMD. The following chapters discuss the development of protocols for this study. Results 

will be presented for structural and functional tests separately, where their diagnostic 

potential will be considered; these test results are then compared to look at the 

relationship between retinal structure and function. 
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The specific aims of this thesis are: 

 To identify functional and structural changes which are diagnostic for ARM 

and to compare the diagnostic ability of structural and functional parameters. 

 To determine if variations in macular structure are associated with macular 

function in healthy eyes. 

 To determine if a relationship exists between macular structural and 

functional changes associated with ARM and to identify the nature of the 

relationship. 

 

1.2 The healthy eye 

 

1.2.1 General Structure 

 The gross anatomy of the eye is summarised in figure 1.2.1. Age-related macular 

degeneration primarily affects the outer retina, choroid and Bruch’s membrane at the 

macula, a region covering an area approximately 6 mm in diameter centred on the fovea. 

The following pages will describe these and related structures in more detail. 

 

Figure 1.2.1: Diagram of the human eye, with anatomical structures and axes labelled. The 

macular region is highlighted in red. Image adapted from Snell and Lemp (1998). 
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1.2.2 Macula 

The macula is a region of the retina centred on the fovea (see figure 1.2.2), located 

temporally to the optic nerve head, which is specialised for high acuity vision facilitated by 

the high spatial density of cone photoreceptors at the fovea. The macular region is 

encircled by the retinal vascular arcades passing from the optic nerve head, superior and 

inferior to the macula, and extending into the temporal retina. Anatomically, the macula is 

defined as the region in which the ganglion cell layer is greater than 1 cell thick; however, 

many clinical grading systems define the macula as a circular region 6 mm in diameter 

centred on the foveal pit (Klein et al., 1991; Bird et al., 1995; AREDS, 2001a). This 

represents approximately 20° of the visual field (Drasdo and Fowler, 1974). 

 

Figure 1.2.2: Diagrammatic representation of the human macula showing anatomical 

divisions centred on the foveal pit, or foveola. The foveola is 250-350µm in diameter and 

represents 1°20’ of the visual field. The fovea is 1.85mm diameter and represents 5.5° of 

the visual field. Image from Hendrickson (2005). 

 

1.2.3 The Choroid 

The choroid is part of the uveal tract, which also includes the iris and ciliary body. 

The choroid is a vascular layer between the sclera and retina which is organised into 3 

distinct layers; the Haller layer, the Sattler layer and the choriocapillaris (from outer to 

innermost). The choriocapillaris comprises the smallest and densest capillaries within the 

choroid, and is adjacent to Bruch’s membrane; the greatest density is reached beneath the 
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macula where the capillaries have the widest bore (Fryczkowski and Sherman, 1988). 

These capillaries are fenestrated, allowing entry and exit of molecules from the vessels. 

The choriocapillaris is fed by and drains into the vasculature of the outer Sattler and Haller 

layers. The Sattler and Haller layers comprise connective tissues with predominantly 

medium and large sized blood vessels respectively; the choroidal blood supply feeds into 

these outer layers and is predominately supplied by the short posterior cilliary arteries 

(offshoots of the ophthalmic artery) and drained by vorticose veins into the ophthalmic vein 

(Snell and Lemp, 1998).  

The retina has a very high metabolic rate and oxygen consumption is high (Sickel, 

1972; Beatty et al., 2000; Nowak, 2006), this is supported by a combination of both the 

retinal and choroidal circulations, with the former predominantly supplying the inner and 

the latter predominantly supplying the outer retina. The major function of the choroid is to 

supply the outer retina with metabolites and remove the waste products, this is particularly 

important at the macula, where the inner retinal circulation is absent.  It has been 

suggested that the choroidal circulation is only barely adequate for its purpose. A study in 

primates has shown that, dependant on lighting conditions, between 90 to 100% of oxygen 

delivered by the choroid is consumed by the photoreceptors (Ahmed et al., 1993). It has 

also been suggested that the structure of the fovea has been optimised to account for a 

“meagre” metabolic supply from the choroidal circulation (Provis, Diaz and Dreher, 1998). 

This limited availability of metabolites is also hypothesized to make the macula more 

susceptible to age related changes (Penfold et al., 2001; Provis et al., 2005) than the rest 

of the retina, which receives a dual blood supply. 

 Ageing has been associated with a variety of changes to the choroidal structure, 

including increased intercapillary spacing, and a reduction in the number and diameters of 

vessels (Ramrattan et al., 1994). The use of non-invasive techniques such as Doppler 

flowometry (Riva et al., 1994) has expanded knowledge of the human choroidal circulation, 

with this technique showing that choroidal blood flow and volume decreases with age 

(Grunwald, Hariprasad and DuPont, 1998).  

 

1.2.4 Bruch’s membrane 

Bruch’s membrane is a homogenous layer located between the choriocapillaris and 

the retinal pigment epithelium (RPE). Bruch’s membrane consists of 5 layers; the 

basement membranes of both the choriocapillaris and RPE, an outer and inner 

collagenous layer, and a central elastic layer (Sumita, 1961; Del Priore, Tezel and Kaplan, 
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2006; Booij et al., 2010) (see figure 1.2.3). The choriocapillaris and RPE basement 

membranes are approximately 0.14 µm thick in the young and are predominantly 

comprised of collagen type IV, laminin, fibronectin, heparan sulphate and chondroitin and 

dermatan sulphates (Booij et al., 2010), although type VI collagen is far more abundant in 

the choriocapillaris than the RPE basement membrane (Guymer, Luthert and Bird, 1999). 

The choriocapillaris adjacent to the choriocapillaris basement membrane contains 

endothelial fenestrations that are permeable to macromolecules and are believed to aid 

the diffusion of metabolites across Bruch’s membrane (Altunay, 2007; Booij et al., 2010). 

The inner and outer collagenous layers are composed of fibres of collagen types I, III and 

V (Guymer et al., 1999; Booij et al., 2010). Although both layers are similar in structure, the 

inner collagenous layer is approximately 1.4 µm thick whilst the outer layer is 

approximately 0.7 µm thick in the young (Marmor and Wolfensberger, 1998; Booij et al., 

2010). Finally the elastin layer is comprised of linear elastin fibres, in addition to type VI 

collagen and fibronectin, with an approximate thickness of 0.8 µm in the young (Marmor 

and Wolfensberger, 1998; Booij et al., 2010), although this layer has been shown to be 

thinner at the macula compared to the periphery of the eye (Chong et al., 2005).  

 

Figure 1.2.3: An electron micrograph of Bruch’s membrane. Layers are as labelled: RPE-

BL = basal lamina of the retinal pigment epithelium; ICL = inner collagen layer; EL = 

elastin layer; OCL = outer collagen layer; CC-BM = basal lamina of the choriocapillaris. 

Image from Del Priore et al. (2006). 

 

1.2.5 The retinal pigment epithelium (RPE) 

The retinal pigment epithelium (RPE) is a monolayer of regularly arranged cells, 

generally hexagonal in shape, which are located between the outer neural retina and 

Bruch’s membrane. The RPE cells are bound together by tight junctions (zonulae 

occludentes), forming a blood retinal barrier with a high resistance to the passage of 

substances (Hudspeth and Yee, 1973). The inward facing apical surface is in contact with 
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the inter-photoreceptor matrix (IPM). From the apical surface microvilli extend into the IPM 

encompassing the rod and cone outer segments whilst simultaneously increasing the 

surface area. 

Recent reviews by Simó et al. (2010) and Strauss (2005) have identified the main 

function of the RPE as (see figure 1.2.4):  

 The transport of water, nutrients and ions in addition to the maintenance of  

the ion composition within the sub retinal space 

 Absorption of stray light and protection against photo-oxidation 

 The isomerisation of all-trans-retinal to 11-cis-retinal 

 Phagocytosis of photoreceptor membranes 

 Secretion of factors for the maintenance of retinal integrity 

 Constituting part of the blood retinal barrier 

  

 

Figure 1.2.4: A summary of retinal pigment epithelium functions. Abbreviations include 

PEDF, pigment epithelium-derived growth factor; VEGF, vascular epithelium growth factor; 

MV, microvilli; OS, outer segment. Image from Strauss (2005). 

 

The RPE is involved with transport of metabolites from the choroidal vasculature to 

the sub-retinal space and photoreceptors; these include electrolytes and water to the sub-

retinal space and glucose to the photoreceptors (Strauss, 2005; Simo et al., 2010). An 

important part of this transport function is the exchange associated with the visual cycle, 

involving the intake of all-trans-retinal from, and delivery of 11-cis-retinal to, the 

photoreceptors (Baehr et al., 2003; Lamb and Pugh, 2004). The transport of the retinoid is 
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facilitated by the presence of inter-photoreceptor retinoid binding protein (IRBP) that 

originates in the RPE cells and extends into the sub-retinal space (Gonzalez-Fernandez, 

2003; Wu et al., 2007). In addition, the isomerisation of all-trans-retinal to 11-cis-retinal is 

an essential component of the visual cycle (Lamb and Pugh, 2004) and is dependent on 

the protein RPE65 found within the RPE cells (Redmond et al., 1998).  

 Another important function of the RPE is the absorption of stray light, and protection 

of the retina from photo-oxidative damage (Strauss, 2005; Simo et al., 2010), the build up 

of which has been associated with the development of AMD (see section 1.3.2.4) (Beatty 

et al., 2000). The phagocytosis of shed photoreceptor outer segments, another important 

function of the RPE (Strauss, 2005; Simo et al., 2010), has been implicated in the 

susceptibility of the RPE to photo-oxidative damage, as have the high levels of 

polyunsaturated fatty acids within the outer segment membranes, which are easily 

oxidised (Beatty et al., 2000). The accumulation of the pigment lipofuscin with increasing 

age within the RPE and is thought to result from the incomplete digestion of this 

membranous material during phagocytosis. Lipofuscin itself renders the RPE prone to 

further oxidative damage (Margrain et al., 2004). To limit photo-oxidative damage, the RPE 

contains many light absorbing pigments, including melanin, and high levels of antioxidants 

such as dismutase and catalase (Miceli, Liles and Newsome, 1994; Simo et al., 2010). 

Additionally the adjacent photoreceptors also contain high levels of carotenoids, including 

lutein and zeaxanthin at the macula, which also act to limit photo-oxidative damage (Beatty 

et al., 2000; Beatty et al., 2001).  

 The RPE produces a range of growth and other factors for the maintenance of the 

retina and adjacent structures (Strauss, 2005; Simo et al., 2010). Of these factors the 

pigment epithelial derived factor (PEDF) and vascular endothelial growth factor (VEGF) 

are known to have anti-angiogenic and pro-angiogenic properties respectively and are 

associated with the manifestation of wet (neovascular) AMD (Frank et al., 1996; Witmer et 

al., 2003). 

 

1.2.6 Retina 

When observed using light microscopy the retina can be divided into distinct layers 

(see figure 1.2.5). The layered appearance betrays a highly organised neural retinal 

structure comprising many different types of cell (see figure 1.2.6).  

The primary purpose of the retina is that of light detection, enabled by the light 

sensitive photoreceptors. The absorption of photons of light by photopigments results in 
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hyperpolarisation of the photoreceptors, and a reduction in release of the neurotransmitter 

glutamate at the synapse with second order neurones within the retina. This conversion of 

light to a neural signal is known as phototransduction. This visual information is 

transmitted and modified by a complex neuroretinal structure that includes bipolar, 

horizontal and amacrine cells, and eventually retinal ganglion cells.  The structures 

comprising the retina will be described in further detail.  

 

Figure 1.2.5: A light micrograph of the peripheral retina with location of retinal layers and 

cell types identified. OLM, outer limiting membrane; OPL, outer plexiform layer; INL, inner 

nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; ILM, inner limiting 

membrane. Image from Kolb, Fernandez and Nelson (2003b). 

 

Figure 1.2.6: A schematic drawing of the neural retina showing major retinal cell types and 

interconnections. Image from Kolb, Fernandez and Nelson (2003b). 
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1.2.6.1 Retinal blood supply 

 The inner retina is supplied by an offshoot of the ophthalmic artery, called the 

central retinal artery, which enters the orbit via the optic canal. The central retinal artery 

enters the optic nerve approximately 1.25 cm behind the eye ball and runs forward within 

the optic nerve with its accompanying vein (Snell and Lemp, 1998). Upon entering the 

eyeball through the lamina cribrosa, the artery divides first into superior and inferior 

branches, before further dividing into additional nasal and temporal branches, allowing 

supply of all 4 retinal quadrants. The centre of the macula contains an avascular zone, 

centred on the fovea, which is not served by the retinal circulation and is therefore entirely 

dependent on the choroidal circulation (Provis et al., 2005).  

The retinal circulation is drained by the central retinal vein, whose tributaries 

approximately correspond to those of the central retinal artery. The central retinal vein 

follows the path of the central retinal artery and exits the globe via the lamina cribrosa 

emerging from the optic nerve approximately 10 mm posterior to the globe (Snell and 

Lemp, 1998). 

 

1.2.6.2 The photoreceptors 

 The photoreceptors comprise two types in the human retina, rods and cones, of 

which the latter can be divided into 3 sub-types based on their spectral sensitivity. Rod 

derived vision is monochromatic and optimised to lower levels of illumination, providing low 

visual acuity. Cone derived vision, however, is optimised for higher levels of illumination, 

and provides high acuity vision, enabled by the high cone density at the macula, and 

colour vision, due to different and overlapping spectral sensitivity curves within the cone 

population.  

 All types of photoreceptor share a similar structure: an outer segment, an inner 

segment, a cell body and synaptic tuft (see figure 1.2.7). The outer segment contains 

stacks of membranous discs which are embedded with the photopigments that are 

responsible for visual transduction. These membranous discs are generated at the base of 

the outer segment, slowly migrating along its length until they are shed at the apex; the 

shed membranous discs then undergo phagocytosis by RPE cells (Young and Bok, 1969; 

Strauss, 2005). The inner segment is connected to the outer by a thin cilium and contains 

numerous mitochondria, endoplasmic reticulum and the Golgi apparatus for cell energy 

and protein production. The cell body is where the cell nucleus is located, with the 

photoreceptor cell bodies forming the retinal outer nuclear layer (ONL).  The synaptic tufts 



 

 
 

10 Chapter 1: Introduction 

extend interiorly to make connections with bipolar and horizontal cells, within the retinal 

outer plexiform layer (OPL).  

 

Figure 1.2.7: Electron micrograph of rod and cone photoreceptor structure, the outer 

segment (o.s.) and inner segments (i.s.) are labelled. A magnified section (top right) shows 

the distribution of membranous discs within the rod outer segments. Image from Anderson 

and Fisher (1976). 

 

Rod Photoreceptors 

Rods have slim “rod” shaped outer segments stretching into the sub-retinal space 

towards the RPE cells. There are estimated to be 78-107 million rod photoreceptors within 

a healthy retina (Curcio et al., 1990). There are no rod photoreceptors present within a 

central zone centred on the fovea (covering approximately 1.25° or 0.35 mm), however 

beyond this, rod density increases rapidly reaching a peak at an annulus roughly 

corresponding to the eccentricity of the optic disc, before declining slowly across the 

peripheral retina towards the ora serrata (Curcio et al., 1990) (see figure 1.2.8). 

The rod photoreceptors contain the visual pigment rhodopsin, with a peak spectral 

absorbance at 498 nm (Bowmaker and Dartnall, 1980). The regeneration of rhodopsin 

following light exposure occurs within the RPE as part of the retinoid cycle (Redmond et 

al., 1998; Lamb and Pugh, 2004). Functionally, rod photoreceptors are known to light 

adapt to a background intensity range of approximately 2 log units, and with further 

processing within the visual system rod dominated vision can adapt to a range of up to 5 
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log units (Yau, 1994), this range of vision mediated by rod function is known as ‘scotopic’ 

vision. 

 

Cone Photoreceptors 

Cones have a “conical” structure, the cell bodies of which are located below the 

outer limiting membrane (OLM), with the inner and outer segments extending into the sub 

retinal space towards the pigment epithelium. There are estimated to be 4.6 million cone 

photoreceptors within a healthy retina (Curcio et al., 1990). The 3 types of cone are the S-

cone (blue), M-cone (green) and L-cone (red) which are spectrally most sensitivity at 419 

nm, 531 nm and 558 nm respectively in healthy human retinas (Gouras, 1984) (see figure 

1.2.9). The range of vision mediated by the cone system is known as ‘photopic’ vision and 

extends over a brightness range starting from a point just beyond the upper limit of rod 

sensitivity, with the intermediate intensity range where both rod and cone systems are 

active known as ‘mesopic’ vision.  

All 3 cone types increase in density towards the macular centre, and pass a parity 

with the rods at approximately 500µm from the centre (Curcio et al., 1990). Although s-

cones make up 6-12% of total retinal cones they are absent within the central 100µm of 

the fovea (Curcio et al., 1991), resulting in ‘small field tritanopia’. A peak cone density is 

found at the fovea, where the density averages 199,000 cones/mm², however, the density 

rapidly falls off with increasing eccentricity from the fovea (Curcio et al., 1990) (see figure 

1.2.8).  

 

Figure 1.2.8: Graph to show the relative densities of rod and cone photoreceptors along 

the horizontal meridian of the retina. Image adapted from Kolb, Fernandez and Nelson 

(2003a) and Osterberg (1935). 
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Figure 1.2.9: Absorption spectra of the human cone photoreceptors. S cone (Squares) 

maximum absorbance at 419 nm, M cone (Triangles) maximum absorbance at 530.8 nm 

and L cone (Circles) maximum absorbance at 558.4 nm. Image from Gouras (1984). 

 

1.2.6.3 Inter-photoreceptor matrix (IPM) 

The inter-photoreceptor matrix (IPM), or sub retinal space, is a region bordered by 

the apical RPE surface, the photoreceptor outer segments and the outer limiting 

membrane. The composition of the IPM is maintained by the RPE, and contains a variety 

of components including proteins and  enzymes, such as interphotoreceptor retinoid-

binding protein (IRBP), which aids in the primary function of the IPM i.e. to transport and 

exchange of metabolites between the photoreceptors and the RPE (Strauss, 2005). 

 

1.2.6.4 External limiting membrane (ELM) 

The external limiting membrane (ELM) is not considered a true membrane; it 

consists of adhesions between Müller cells and the inner segments of the photoreceptors. 

The ELM provides a separation between the IPM and the rest of the neural retina and is 

believed to act as a molecular sieve (Bunt-Milam et al., 1985). 

 

1.2.6.5 Bipolar cells 

The retina contains many different types of bipolar cells, whose cells bodies are 

located in the INL, from which dendrites extend into the OPL where they synapse with 

photoreceptors and horizontal cells. Bipolar cells also synapse in the IPL onto retinal 

ganglion cells (RGCs), either directly or indirectly via amacrine cells. Eleven bipolar cell 
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types have been identified using Golgi staining, of which only 1 type is known to synapse 

with rod photoreceptors whilst the remaining 10 synapse with cone photoreceptors (Kolb, 

Linberg and Fisher, 1992; Nelson and Connaughton, 2003). 

Bipolar cells axons either terminate in sublamina a or sublamina b of the inner 

plexiform layer. Nelson et al. (1978) demonstrated that in the cat retina bipolar cells were 

of two types, either with an ON-centre (centre depolarising), which synapsed with the 

RGCs in sublamina b, or of an OFF centre (centre hyperpolarising) type which synapsed 

with the RGCs in sublamina a; this is also believed to be the case in the human retina 

(Kolb et al., 1992). 

As the human retina is rod dominated, the rod bipolar cell type predominates in the 

human retina (Kolb, 2006). The rod bipolar is an ON-bipolar cell, there being no OFF rod 

bipolar cell. The rod bipolar cells do not make any direct synapses with the RGCs, but 

synapse with AII amacrine cells, which then pass this information on by a number of 

methods, including direct innervations or chemical synapses with OFF cone bipolar cells 

and RGCs, or by gap junctions between AII dendrites and ON cone bipolar cells (Kolb and 

Famiglietti, 1974). 

The ten types of bipolar cell that synapse with cone photoreceptors consist of 7 

which have a convergence function (known as diffuse and giant bistratisfied bipolar cells) 

that are connected to multiple cones, and 3 types which have a one to one relationship 

with the cone to which they synapse (consisting of 2 midget and 1 blue cone specific 

bipolar) (Nelson and Connaughton, 2003).  

 

1.2.6.6 Horizontal cells 

 Horizontal cells are laterally interconnecting neurons within the OPL; there are 3 

types designated as HI, HII and HIII (Kolb et al., 1992; Kolb et al., 1994). Horizontal cells 

receive input from cone photoreceptors, and are thought to be involved with the 

processing of light and dark adaptation within the retina and the integration of visual 

stimuli, enhancing spatial resolution of the retina. Specifically, the horizontal cells are 

thought to introduce centre-surround antagonism to the bipolar cell receptive fields (Kolb, 

2006).  

 

1.2.6.7 Müller Cells 

 Müller cells are a type of glial cell, with nuclei located in the inner nuclear layer, 

which span almost the entire neural retina, extending from the inner limiting membrane to 
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the photoreceptors at the level of the inner segments. Müller cells have been identified as 

having many roles within the retina, including maintaining retinal potassium level, 

contributing to the composition of the inter-photoreceptor matrix, participation in the retinal 

carbohydrate metabolism as a source of glycogen (Newman, 1985) and the transport and 

degradation of neurotransmitters (Sarthy et al., 2005). Müller cells have also been 

implicated in a cone only retinoid cycle (Mata et al., 2002; Lamb and Pugh, 2004); this is 

discussed further in section 1.2.8.   

 

1.2.6.8 Amacrine cells 

 Amacrine cells synapse with both bipolar and ganglion cell types within the IPL, 

providing lateral connections. Amacrine cells consist of many types with different 

morphologies and functions which are not fully understood, although many are thought to 

have a role in the modulation of the retinal response to visual stimuli. The role of the AII 

subtype, however, is known to be pivotal in the retinal structure by providing a link from the 

rod bipolar cells to the cone bipolar cells, providing onward access to the cone ganglion 

cell pathways (Kolb and Famiglietti, 1974). 

 

1.2.6.9 Retinal ganglion cells and their axons 

The ganglion cell layer is the retina’s innermost cellular layer and is comprised of 

RGCs whose purpose is to receive modified neurological signals from the retina and 

forward this visual information along the visual pathway towards the brain. Retinal ganglion 

cells are larger than most other retinal cells and pass the visual information they receive, in 

the form of transient electrical spikes (action potentials), along large axons which pass 

across the retinal surface forming the retinal nerve fibre layer (RNFL) and exit the globe 

via the optic nerve. The majority of RGC axons extend along the visual pathway and 

synapse at the Lateral Geniculate Nucleus (LGN) (Perry and Cowey, 1984; Perry, Oehler 

and Cowey, 1984). 

Boycott and Wassle (1974) divided the RGCs of the cat retina into different groups 

depending on their morphology; these were termed alpha (α), beta (β), gamma (γ) and 

delta (δ). Within the cat retina the α cell type comprised ~ 3% whilst the β comprised ~ 45-

50 % of the RGC population (Fukuda and Stone, 1974; Stone and Fukuda, 1974). The 

classification of RGCs could be refined further depending on the level of the inner 

plexiform layer in which the RGCs synapse. OFF-centre receptive field RGCs synapse in 

sublamina a, whilst ON-centre receptive field RGCs synapse in sublamina b. Kolb et al. 
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(1981) further classified RGC types by numbering, from G1 to G23, based on cell body 

size and dendritic appearance. 

Within the primate retina at least 18 types of RGC have been identified, with varying 

size and type of receptive field (Kolb et al., 1992). These RGC types have been given the 

same G number as the equivalent cells in the cat retina.  The human RGCs which are 

considered correlates of the cat α and β RGC are called P (midget) and M (parasol) cells, 

and project to the parvocellular and magnocellular layers of the LGN respectively 

(Leventhal, Rodieck and Dreher, 1981; Perry and Cowey, 1981 ; 1984; Perry et al., 1984). 

The majority of RGCs in the primate retina are P (midget) cells, comprising ~80% of the 

total, with the M (parasol) cell type comprising ~10% (Perry et al., 1984). Bistratified RGCs 

synapse at the koniocellular layer of the LGN, and are known as K-cells (Szmajda, Grunert 

and Martin, 2008). 

The axons arising from the RGCs form the retinal nerve fibre layer (RNFL), the 

innermost layer of the retina. These axons are unmyelinated in normal individuals and 

extend towards the optic nerve. The RNFL is thickest at the rim of the optic nerve head, 

particularly at the superior and inferior border due to the path taken by the axons; those 

originating at or near the macula follow an arcuate path so as not to overly the 

photoreceptors at the fovea.  

 

1.2.7 The visual pathway 

The visual pathway consists of a series of neurological structures which convey the 

visual information from the retina to the brain (figure 1.2.10). Each neurone within the 

visual pathway has a receptive field and will respond to selected stimuli presented within 

this region. The visual pathway has a topographical distribution which is maintained 

throughout; this structural organisation enables a point to point correspondence to be 

maintained from any position in the visual pathway to an individual retinal location. 

The visual pathway begins at the retinal photoreceptors, with the information 

passing successively through the retinal neurones on to the RGCs, which convey the 

information within their long axons through the optic nerve head and into the optic nerve. 

The axons then reach the optic chiasm where the axons arising from the nasal retina 

decussate to the opposite sides of the brain, before passing into the optic tracts; thus 

ensuring that each hemisphere of the visual field is carried by only the contralateral optic 

tract. Beyond the optic chiasm approximately 90% of the axons will continue to travel 

through the optic tract and synapse at the LGN (Perry et al., 1984), whilst approximately 
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10% will follow a “retinotectal pathway” and synapse at the superior colliculus and 

pretectum (Perry and Cowey, 1984), which are believed to help coordinate and control eye 

movements.  

The LGN has a role to play in visual processing, receiving input from other areas of 

the brain and visual cortex (Lachica and Casagrande, 1993), before ultimately relaying the 

visual information forward via the optic radiations to the primary visual cortex located at the 

occipital pole of the brain.  

A full description of the visual pathway is beyond the scope of this thesis, the 

anatomy and physiology of the visual pathway has been described in detail elsewhere 

(Snell and Lemp, 1998; Bruce, Green and Georgeson, 2003). 

 

Figure 1.2.10: Schematic diagram of the visual pathway. Image adapted from Snell and 

Lemp (1998). 

 

1.2.8 Visual transduction and the retinoid cycle 

Photopigment molecules comprise a protein, opsin, which is covalently bound to the 

chromophore 11-cis-retinal (Schertler, Villa and Henderson, 1993). The photopigments are 
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embedded into the membranous discs of the photoreceptor outer segments (see figure 

1.2.11).  

 

Figure 1.2.11:  Diagram showing photoreceptor structure and the location of rhodopsin 

molecules within the phospholipid bi-layer membranes of the outer segment discs. Image 

adapted from Kolb & Fernandez (2003b) and Hargrave & McDowell (1992). 

 

The absorption of light by a photopigment (e.g. rhodopsin) triggers the 11-cis-retinal 

to be photoisomerised into all-trans retinal. The pigment molecule (comprising the all-trans 

retinal and bound opsin) now becomes known as “metarhodopsin”, which may consist of a 

number of interchangeable forms (m1, m2 & m3, see figure 1.2.12). This process results in 

the photopigment becoming enzymatically active turning the protein transducin into an 

active form, thus triggering the phototransduction cascade (Lamb and Pugh, 2004). Active 

transducin in turn activates phosphodiesterase enzyme, which catalyses the degredation 

of intracellular messenger cGMP (see Luo, Xue and Yau (2008) for a review of the 

literature identifying this relationship).  

In the absence of light (i.e. dark adapted conditions) the plasma membrane of the 

outer segments allows a flow of ions into the photoreceptor through cGMP gated ion 

channels (Fesenko, Kolesnikov and Lyubarsky, 1985), resulting in the photoreceptor 

becoming depolarised. The depolarised state triggers the release of neurotransmitter 
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(glutamate) from the photoreceptor to second order neurones in the retina (i.e. bipolar & 

horizontal cells) (Copenhagen and Jahr, 1989). In the dark adapted state Na+ and Ca2+ 

ions flow in through the cGMP gated channels (Hagins, Penn and Yoshikami, 1970; 

Fesenko et al., 1985), depolarising the photoreceptor, although complete depolarisation is 

prevented by an ion exchanger in the outer segment moving Ca2+/K+ out, and Na+ in along 

the concentration gradient (Cervetto et al., 1989; Bauer, 2002). The Na+ gradient is 

maintained by an ATP (adenosine triphosphate, cellular energy source) dependent 

channel within the photoreceptor inner segments which pumps Na+ out in exchange for 

moving K+ ions in (Stirling and Lee, 1980). This organisation enables a flow of ions 

between the inner and outer segments under dark adapted conditions, known as the “dark 

current” (Hagins et al., 1970). 

Following exposure to light, the cGMP gated ion channels within the photoreceptor 

plasma membrane close as a result of the reduction in cytoplasmic concentration of cGMP 

(Fesenko et al., 1985). The altered ion flow resulting from channel closure leads to the 

dark current reducing and hyperpolarisation of the photoreceptor, and a consequential 

decrease in the release of glutamate to the second order neurones.  

Following light exposure, activated photopigment molecules bind with the protein 

arrestin (Wilden et al., 1986), which enables the separation of all-trans chromophore from 

the opsin molecule.  At this stage, the photopigment is said to be “bleached” and cannot 

absorb any further photons of light until it has been regenerated into its pre-bleach form of 

opsin and bound 11-cis-retinal.  

The retinoid cycle is the name given to the biochemical process of removing the 

products of light absorption from the photoreceptors and the regeneration of visual 

photopigments. The sequence of events involved in the retinoid cycle has been described 

by Pugh and Lamb (2004), see figure 1.2.12 and table 1.2.1. 

In order for the activated photopigment to become photosensitive again, the all-

trans retinal needs to be replaced with 11-cis retinal, this requires the removal of the 

retinoid from the photoreceptor. A series of biochemical processes occur within the outer 

segments which separate the all-trans-retinal from the opsin molecule. The opsin remains 

within the outer segment, whilst the separated all-trans retinol is transported by the inter-

photoreceptor binding protein (IRBP) chaperone across the inter-photoreceptor matrix to 

the RPE (Gonzalez-Fernandez, 2003; Wu et al., 2007). Within the RPE the all-trans retinol 

is converted to 11-cis retinal via one of two pathways. The major pathway involves a series 

of steps within the RPE cell cytoplasm, with the isomerisation of all-trans to the 11-cis form 
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carried out by the enzyme retinyl ester isomerohydrolase, whilst chaperoned by the protein 

RPE65 (Redmond et al., 1998; Mata et al., 2004). This reaction derives energy from the 

hydrolysis of the ester bond to create 11-cis retinol, which in turn is oxidised to11-cis 

retinal (Lamb and Pugh, 2004).  

 

 

Figure 1.2.12: The retinoid cycle as a biochemical representation. Abbreviations and 

numbered steps are shown in table 1.2.1. Image from Lamb and Pugh (2004). 

 

The minor pathway involves the direct photoisomerisation of all-trans retinal back to 

11-cis retinal by the enzyme retinal G-protein-coupled receptor (RGR), but is thought to 

make only a limited contribution, even in the presence of light (Lamb and Pugh, 2004). A 

supply of vitamin A derived from the choroidal circulation is required to maintain the 

retinoid levels of the retina (Dowling and Wald, 1960; Chen and Heller, 1977). 
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Table 1.2.1: Biochemical components of the retinoid cycle, numbered steps related to 

retinoid cycle stages as shown in Figure 1.9. Table from Lamb and Pugh (2004). 

 

The final stage of the retinoid cycle is the return of the regenerated 11-cis retinal to 

the photoreceptor; the 11-cis-retinal diffuses across the interphotoreceptor space, probably 

with the aid of the chaperone protein IRBP (see figure 1.2.12). Upon reaching the 
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photoreceptor disc membranes the 11-cis-retinal forms a bond with an available opsin 

yielding a molecule of regenerated rhodopsin (or iodopsin in cones). 

Wang and Kefalov (2011) highlight several key factors which are suggestive that a 

separate pathway exists for iodopsin regeneration,  evidence includes the rapid sensitivity 

recovery (dark adaptation) of cones following exposure to bright light (Hecht, Haig and 

Chase, 1937), the rate of pigment regeneration being limited by the supply of chromophore 

(Lamb and Pugh, 2004), and that the RPE visual cycle alone is too slow to support cone 

function under high illumination (Mata et al., 2002). The identification of the final enzymes 

in the retinoid cycle within the cone inner segments and the Müller cells, allowing the 

production of 11-cis-retinol from all-trans retinal, suggests that Müller cells could act as a 

separate pathway for photopigment regeneration (Mata et al., 2002). It was also suggested 

that this pathway is exclusively available to the cones, as the Müller cells return the all-

trans retinal to its penultimate form 11-cis-retinol, with only the cones containing the 

enzymes capable of the final transformation into 11-cis-retinal (Mata et al., 2002; Wang 

and Kefalov, 2011).  

 

1.3 Age-related macular degeneration 

 Age-related macular degeneration (AMD) is a condition which manifests in later life 

and affects the macular region of the retina, usually bilaterally, ultimately leading to severe 

central vision loss. Affected individuals lose the visual abilities associated with high acuity 

central vision, most notably the abilities to read and write, drive and recognise faces 

(Mitchell and Bradley, 2006). For individuals with AMD the associated visual impairment 

can mean loss of independence and income, and depression (Rovner, Casten and 

Tasman, 2002; Berman and Brodaty, 2006).    

 

1.3.1 Risk factors for AMD 

Many risk factors for AMD have been identified as a result of epidemiological 

studies (Klaver et al., 2004), the most important being: age, smoking, previous cataract 

surgery, a genetic predisposition, racial background, diet and light exposure. For further 

information about the risk factors for AMD see the excellent reviews by Klein et al. (2004), 

Evans (2001) and Chakravarthy et al. (Chakravarthy et al., 2010). 
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1.3.2 Aetiology & Pathogenesis of AMD 

The pathogenesis of AMD is complex and still not fully understood. The current 

literature indicates a multi-factorial process involving oxidative stress, metabolic 

insufficiency, chronic inflammation and choroidal vascular changes, all of which contribute 

to a greater or lesser extent to the development and progression of AMD (see Donoso et 

al. (2006) & Zarbin et al. (2004) for extensive discussion). Histology reveals that the first 

AMD-related pathological changes occur within the outer retina, retinal pigment epithelium, 

choriocapillaris and adjacent structures (Sarks et al., 1999; Provis et al., 2005; Donoso et 

al., 2006). As ageing is closely associated with AMD, the following sections will outline 

both age and AMD-related changes to these structures as well as considering some key 

aetiological factors in the disease process.  

 

1.3.2.1 Bruch’s membrane 

Bruch’s membrane undergoes a series of age-related changes which are closely 

associated with AMD pathology and are difficult to separate. Age-related Bruch’s 

membrane changes and their relationship to AMD pathology are summarised in figure 

1.3.1. 

  

Figure 1.3.1: Changes in Bruch’s membrane associated with ageing and the relationship 

with AMD pathology. The upper component of the image identifies changes that occur 

within Bruch’s membrane associated with ageing, the lower component of the image 

shows the potential progress of AMD pathology associated with these changes, which 

includes either complement system activation or stimulus to neovascularisation. Image 

from Booij (2010).  
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Ramratten et al. (1994) was able to identify a thickening of Bruch’s membrane in 

line with age, reporting an increase from 2.0 µm to 4.7 µm over 10 decades, with the 

greatest increase at the posterior pole. Booij et al. (2010) attribute this age-related 

membrane thickening to increased deposition and cross-linking of collagen fibres and 

increased deposition of biomolecules and oxidized metabolic waste.  

An increase in collagen cross-linking is known to occur with age and is thought to 

contribute to a reduced permeability of the membrane (Guymer et al., 1999). An age-

related linear decline in the solubility of the collagen which comprises Bruch’s membrane 

has also been reported (Karwatowski et al., 1995). Age-related changes to the elastin 

layer include an increased density and calcification, with a consequential reduction in 

flexibility (Loffler and Lee, 1986). The integrity of the elastin layer has additionally been 

shown to be significantly reduced in both early and end stage AMD compared to age 

matched controls in a study of 121 eyes (Chong et al., 2005). Similarly the presence and 

accumulation of advanced glycation end products (AGE) have been associated with age 

and AMD (Yamada et al., 2006).  

Light and electron microscopy has also identified diffuse accumulation of 

extraneous material, termed “basal laminar deposits” and “basal linear deposits”, at the 

inner aspect of Bruch’s membrane (Guymer et al., 1999). Basal laminar deposits are 

composed of granular material located between the plasma membrane and basal laminar 

of the RPE cells, whereas basal linear deposits are granular deposits within the inner 

collagenous zone of Bruch’s membrane, but external to the basal lamina of the RPE 

(Green, 1999). The progressive accumulation of hydrophobic lipids and lipoprotein like 

particles within Bruch’s membrane has also been linked with altering the permeability of 

the membrane (Huang, Curcio and Johnson, 2008; Wang et al., 2009; Booij et al., 2010). 

These age-related changes to Bruch’s membrane are thought to act as a barrier to the 

normal metabolic exchange between the choriocapillaris and RPE/photoreceptor complex 

(Bird and Marshall, 1986; Moore, Hussain and Marshall, 1995; Guymer et al., 1999; Moore 

and Clover, 2001). 

 

1.3.2.2 Choroid 

The choroid also undergoes ageing changes, including a decrease in overall 

thickness and reductions in both the density and diameter of the choriocapillaris vessels 

(Sarks, 1976; Ramrattan et al., 1994). Although there is strong evidence for the 

occurrence of age-related thinning of the choroid (Sarks, 1976; Ramrattan et al., 1994; 
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Margolis and Spaide, 2009), and for changes in choroidal perfusion in ARM (Friedman et 

al., 1995; Ciulla et al., 1999; Harris et al., 1999), evidence for thinning of the choroid 

specific to ARM is not apparent in the literature. However, choroidal thinning may occur in 

end-stage AMD (Sarks, 1976; McLeod et al., 2009). McLeod et al. (2009) examined the 

post-mortem choroid in 3 aged control eyes, 5 with GA, and 3 with neovascular AMD and 

reported a linear relationship between the loss of RPE and choriocapillaris in GA, and a 

50% reduction in choroidal vascular cross-sectional area in eyes with wet AMD, even in 

the absence of RPE atrophy. Sarks (1976) carried out a histological study on 378 eyes 

from patients aged 43-97 years, who had either a normal retina or some degree of AMD. 

They reported thinning of the choroid, resulting in a ‘tigroid’ retinal appearance. Thinning 

was associated with increasing age both in aged eyes classified as clinically normal and in 

those with all stages of AMD, but was especially prevalent in eyes with advanced AMD. 

 

1.3.2.3 Retina 

A study by Curcio et al. (1993) investigated photoreceptor topography with regard to 

ageing in 27 healthy retinas from donors aged 27 to 90. In these eyes there was no 

consistent relationship between cone density and age; however a 30 % loss in rod density 

was reported with preferential loss in an annulus 0.5 to 3 mm in eccentricity. Following on 

from these findings, Curcio at al. (1996) investigated the photoreceptor mosaic in eyes 

with AMD, theorising that the preferential rod loss previously shown in ageing may be a 

sign of subclinical AMD. Five eyes with dry AMD demonstrated loss of rods and cones in 

the parafovea but sparing of foveal cones, whilst in cases of wet AMD where the retina 

overlies disciform scarring remaining photoreceptors were predominantly cones. Given 

these findings, it is proposed that rods are preferentially susceptible to the pathological 

changes in AMD, whilst it is also proposed that loss of rods may indirectly lead to eventual 

cone loss given evidence that rods support cone function and survival (Hicks and Sahel, 

1999). 

 

1.3.2.4 Oxidative stress 

Oxidative stress has been implicated in RPE and possible choriocapillaris injury in 

ageing and AMD (Beatty et al., 2000; Roth, Bindewald and Holz, 2004; Zarbin, 2004). The 

macula is prone to photo-oxidative damage due to the high oxygen demand of the tissue, 

a high exposure to visible light and the high concentration of polyunsaturated fatty acids 

within the outer segments of the photoreceptors (Beatty et al., 2000). A decrease in 
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antioxidant and macular pigment density with age further increases the risks of photo-

oxidative damage; the cumulative oxidative stress could lead to the formation and 

accumulation of non-degradable lipofuscin, contributing to the impairment of RPE function 

(Roth et al., 2004). Additionally, Roth et al. (2004) suggested that increasing the presence 

of antioxidants at the macula could help protect against oxidative damage, a view 

supported by the Age-Related Eye Disease Study group (AREDS) finding that high doses 

of antioxidants, when taken with zinc, demonstrated a prophylactic effect on AMD 

progression (AREDS, 2001b). 

 

1.3.2.5 Lipofuscin 

The accumulation of lipofuscin results from incomplete phagocytosis within the RPE 

and is thought to play an important role in the pathogenesis of AMD (Kennedy, Rakoczy 

and Constable, 1995; Holz et al., 2001). The full composition of lipofuscin is not known, but 

it is known to contain toxic molecules such as N-retinylidene-N-retinylethanolamine (A2-E) 

which are thought to compromise lysosomal activity (Beatty et al., 2000). Holz et al. (2001) 

used autofluorescence imaging to identify lipofuscin accumulation in RPE cells as being 

directly associated with the development of geographic atrophy. However, it remained 

unclear whether high levels of lipofuscin cause RPE cell dysfunction and loss, or if the 

lipofuscin accumulation is a symptom of RPE dysfunction preceding eventual cell loss. In 

areas of geographic atrophy the loss of RPE cells is thought to precede eventual loss of 

both the adjacent photoreceptors and choriocapillaris (Sunness, 1999; Roth et al., 2004).  

 

1.3.2.6 Chronic inflammation 

Chronic inflammation related to the complement system has been associated with 

AMD, with evidence of inflammatory proteins being reported within drusen (Johnson et al., 

2001; Anderson et al., 2002). There is also growing evidence of a genetic predisposition in 

AMD for particular polymorphisms of the Complement Factor H gene, which codes for 

proteins within the complement immune response (Donoso, Vrabec and Kuivaniemi, 

2010). Fragments of complement system proteins (C3 and C5), which are often found in 

drusen of AMD patients, have been linked to the expression of vascular endothelial growth 

factors (VEGF) with the implication that these fragments may contribute to the process 

resulting in choroidal neovascularisation (CNV) (Nozaki et al., 2006).  
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1.3.2.7 Hypoxia and metabolism 

Abnormalities identified in the choroidal circulation and vasculature structure have 

been suggested to be the primary insult in AMD (Sarks, 1976; Friedman et al., 1995; Ciulla 

et al., 1999; Friedman, 2008). The increased prevalence of AMD with ageing (Klein, Klein 

and Linton, 1992) mirrors age-related changes in the choriocapillaris (Sarks, 1976; 

Ramrattan et al., 1994). Functional abnormalities in measures such as scotopic thresholds 

(Chen et al., 1992) and flicker ERG implicit times (Remulla et al., 1995) have been 

associated with reductions in choroidal blood flow in AMD (Chen et al., 1992; Remulla et 

al., 1995), and are similar to those reported under conditions of experimental hypoxia 

(Feigl, Stewart and Brown, 2007; Feigl et al., 2008). This provides further evidence that 

hypoxic changes may be a factor in the aetiology of AMD. 

The high cone density at the fovea, and limited retinal blood supply within the 

macula and foveal avascular zone are evolutionary compromises to enable high acuity 

vision (Provis et al., 2005). Provis et al. (2005) proposed that the anatomy of the macula 

make it highly susceptible to age-related degenerative changes. It is argued that the 

macular neurones are adapted to a limited blood supply that just meets the significant 

metabolic demands under normal conditions (Provis et al., 2005). However, age-related 

changes to Bruch’s membrane (Ramrattan et al., 1994; Karwatowski et al., 1995; Guymer 

et al., 1999) and reductions in choroidal blood flow (Sarks, 1976; Ramrattan et al., 1994; 

Grunwald et al., 1998) further reduce the already limited supply of metabolites. 

Additionally, although the choroidal blood flow is controlled by sympathetic innervations, it 

does not include a regulatory system responsive to local metabolic demand (Delaey and 

Van De Voorde, 2000), making the blood flow independent of demand. These age-related 

changes are thought to eventually impact on the provision of oxygen and nutrients to the 

macular region, which in turn would characteristically result in increased hypoxic stress 

and inflammation (Provis et al., 2005). Stefansson, Geirsdottir and Sigurdsson (2011) have 

recently reviewed the literature, and proposed that retinal changes associated with early 

AMD and ageing, including retinal elevation, drusen and choroid ischemia, all increase 

retinal hypoxia. They suggested that the hypoxia may have a positive feedback effect, 

progressively exacerbating the situation. The resulting chronic hypoxia would eventually 

provide a stimulus for VEGF expression and neovascularisation (Witmer et al., 2003). 
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1.3.2.8 Summary 

 It is apparent that AMD is a multi factorial condition, with underlying ageing changes 

within Bruch’s membrane (Ramrattan et al., 1994; Karwatowski et al., 1995; Green, 1999) 

and the choroid (Sarks, 1976; Ramrattan et al., 1994; Grunwald et al., 1998; Margolis and 

Spaide, 2009) occurring at an early stage. These underlying processes appear to be the 

catalyst for a series of pathogenic processes within the outer retina, resulting in reduced 

metabolic supply and chronic hypoxia (Moore et al., 1995; Guymer et al., 1999; Moore and 

Clover, 2001; Feigl, 2009; Stefansson et al., 2011). A series of interrelated processes have 

been identified which include localised inflammation (Donoso et al., 2006), with a strong 

association with the CFH gene (Donoso et al., 2010), oxidative stress (Beatty et al., 2000), 

lipofuscin and membranous deposition (Kennedy et al., 1995; Holz et al., 2001; Roth et al., 

2004) and loss of choroidal perfusion (Friedman et al., 1995; Ciulla et al., 1999; Harris et 

al., 1999; Ciulla et al., 2002; Feigl, 2009). The ultimate outcome of these processes is 

geographic atrophy (non-exudative / dry AMD) and/or choroidal neovascularisation 

(exudative / wet AMD) resulting in severe central vision loss. The progression to an 

exudative end point is determined by the expression of VEGF (Frank et al., 1996; Witmer 

et al., 2003).  

   

1.3.3 Clinical features of AMD 

 AMD does not typically develop before the age of 55 (Klein et al., 2004). The 

earliest associated changes are within the photoreceptors, RPE, Bruch’s membrane and 

the choriocapillaris (Sarks et al., 1999; Provis et al., 2005; Coleman et al., 2008). The 

following section will discuss the clinical features commonly associated with the various 

stages of AMD. 

  

1.3.3.1 Drusen 

Drusen are discrete deposits located between the RPE and Bruch’s membrane 

(Maguire, 1999), generally occurring prior to other clinical features of AMD (Gass, 1972). 

The development of drusen has been associated with the sub clinical presence of 

extracellular material deposits, known as basal linear and basal laminar deposits (see 

Green (1999) for a histopathology review). Drusen may regress over time, which can be 

associated with degeneration and atrophy of the RPE, choriocapillaris or outer retina but 

can occur without overt evidence of atrophy (Sarks et al., 1999). Drusen can vary greatly 

in their size, shape, composition, colour and border definition; however the most 
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commonly occurring types can be broadly classified as either hard or soft drusen. Different 

sources have attempted to categorise drusen appearance and features; given the 

variability in clinical presentation there are some variations in definition between sources 

(Bird et al., 1995; Maguire, 1999; AREDS, 2001a). The following section discusses the 

most common clinically identifiable drusen types. 

 

Hard drusen 

Hard drusen are defined as small (<63µm), round, flat deposits with a yellow to 

white colour (Bird et al., 1995; Maguire, 1999; AREDS, 2001a). Hard drusen consist of 

hyaline material deposited between the inner collagenous layer of Bruch’s membrane and 

the RPE (Sarks, 1976). The presence of drusen at the macula is common and not in itself 

an indication of AMD, with hard drusen being regarded as a normal change associated 

with ageing (Sarks et al., 1999). It has been reported that over 90% of the white population 

over the age of 40 may have hard drusen present in either eye (Klein et al., 1992). 

 

Soft drusen   

Soft drusen (see figure 1.3.2) are larger than hard drusen (>63µm) and similarly 

consist of hyaline deposits located between Bruch’s membrane and the RPE. Clinically 

they appear to have a yellow or grey colour, and may have a distinct or indistinct border. 

For the purposes of classification, soft drusen are often subdivided into distinct 

(characterised by a uniform density and defined borders) and indistinct (characterised by 

varying density and fuzzy borders) subtypes (Bird et al., 1995; Maguire, 1999; AREDS, 

2001a). The presence of soft drusen within the macular region is classified as a sign of 

AMD (Bird et al., 1995; AREDS, 2001a), in addition the presence of a large number is a 

risk factor for progression to advanced AMD (Klein et al., 1997). 

 

Confluent drusen 

The borders of multiple large soft drusen can merge; these coalescent drusen are 

referred to as confluent drusen (Maguire, 1999). Confluent drusen can result in a 

significant detachment of the overlying RPE and are therefore commonly associated with 

drusenoid pigment epithelial detachments (Zayit-Soudry, Moroz and Loewenstein, 2007). 

Drusen confluence has also been identified as a high risk factor for progression to 

advanced AMD (Smiddy and Fine, 1984). 

 



 

 
 

29 Chapter 1: Introduction 

  

Figure 1.3.2: Retinal photograph (Left) showing a macula with multiple soft drusen. OCT 

cross-sectional image (Right) corresponding to the black arrow on the retinal photograph, 

drusen appear as localised elevation in the RPE layer with underlying reflective material. 

 

Other drusen types 

 Basal laminar drusen represent hyalinised nodular thickening of the RPE basement 

membrane and are not associated with AMD. Reticular, or pseudo-drusen, are yellow 

lobular or ribbon like areas often seen in the outer macular area (Maguire, 1999). Calcified 

drusen appear to glisten and are associated with RPE atrophy (Bird et al., 1995; Maguire, 

1999; AREDS, 2001a). 

 

1.3.3.2 Pigment abnormalities 

 Pigment abnormalities, focal areas of hyperpigmentation and hypopigmentation 

within the RPE, are a common sign of early AMD. Hyperpigmentation represents areas of 

pigment clumping within the macula, and is often associated with the presence of both 

hard and soft drusen (Bressler et al., 1990). The hyperpigmentation has been attributed to 

a combination of RPE cell proliferation, RPE cell migration and increased levels of melanin 

expression (Bressler et al., 1994). Hypopigmentation is believed to result from reduced 

RPE melanin pigment density and is associated with RPE atrophy or thinning (Pauleikhoff 

et al., 2004). Focal hyperpigmentation is also a risk factor for progression to advanced 

AMD (Smiddy and Fine, 1984; Bressler et al., 1990; Klein et al., 1997). 

 

1.3.3.3 Geographic atrophy 

 Geographic atrophy is the end stage of dry (non-exudative) AMD. Its presence is 

considered a feature of advanced AMD and, in the absence of CNV, is the defining feature 
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of dry AMD (Bird et al., 1995; AREDS, 2001a). Geographic atrophy is identified as sharply 

demarcated depigmented areas, with increased visualisation of choroidal vessels and 

decreased retinal thickness (see figure 1.3.3). There are often areas of retinal sparing 

within regions of atrophy. Areas of geographic atrophy are usually associated with 

surrounding areas of pigmentary disturbance. Initially geographic atrophy spares fixation, 

beginning with localised areas of atrophy in the parafovea, which coalesce eventually 

affecting the fovea and fixation (Sarks, Sarks and Killingsworth, 1988). On fluoroscein 

angiography geographic atrophy usually appears as a hyperfluorescent region (Sunness, 

1999). 

 

 

Figure 1.3.3: Retinal photograph (Left) showing central area of atrophy with surrounding 

pigmentary disturbance and extensive soft drusen. OCT cross-sectional image (Right) 

corresponding to the black arrow on the retinal photograph, demonstrates retinal thinning 

overlying a region of RPE atrophy, note the reflectivity of sub-RPE structures facilitated by 

the loss of RPE. Soft drusen are apparent as extensive undulation of the RPE adjacent to 

the atrophic region.  

 

1.3.3.4 Choroidal neovascularisation (CNV) 

Light microscopy reveals that the new vessels originate from the choroid, extending 

through breaks in Bruch’s membrane (Sarks, 1980). The growth of these vessels is 

thought to result from a local imbalance of growth factors (Roth et al., 2004), specifically 

VEGF (angioproliferative) and PEDF (angiogenesis antagonist), which usually ensure the 

non-vascular nature of Bruch’s membrane. 
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Figure 1.3.4: Retinal photograph (Left) showing an active choroidal neovascular lesion in 

wet AMD. OCT cross-sectional image (Right) corresponding to the black arrow on the 

retinal photograph, CNV highlighted (white arrow) as a highly reflective structure at the 

level of the RPE with associated retinal oedema.  

 

Clinically the presence of CNV may appear as a greenish brown lesion at the 

macula (see figure1.3.4); however, due to the fragile nature of the vasculature, extensive 

haemorrhage, oedema, exudates and pigment epithelial detachments are common. 

Accompanying symptoms usually include metamorphopsia and reduced visual acuity. 

Recurrent haemorrhage of these new vessels ultimately leads to fibrovascular tissue and 

the development of disciform scarring (Penfold et al., 2001). This scarring results from the 

persistent presence of CNV, associated retinal oedema, haemorrhage and other structural 

abnormality within the retina and adjacent structures, which leads to widespread fibrosis 

and atrophy across the affected area. Clinical appearance of the scar tissue is varied on 

ophthalmoscopic investigation, with the lesion ranging in elevation and in colour from 

white-yellow to black. Optical coherence tomography (see figure 1.3.5) classically reveals 

a highly reflective structure corresponding to the disciform scar. 
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Figure 1.3.5: Retinal photograph (Left) showing an inactive choroidal neovascular lesion in 

wet AMD undergoing treatment with monthly ranibizumab (lucentis; Novartis) injections. 

OCT cross-sectional image (Right), corresponding to the black arrow on the retinal 

photograph, showing subfoveal CNV and extensive localised scarring (white arrow) 

appearing as a thickened and highly reflective structure at the level of the RPE. 

 

1.3.3.5 Pigment epithelial detachment (PED) 

 Pigment epithelial detachment (PED) is a feature of AMD which may or may not be 

associated with choroidal neovascularisation. The adhesion between Bruch’s membrane 

and the RPE is thought to be maintained by a vector force created by the limited hydraulic 

conductivity of the RPE to the flow of fluid from the vitreous to the choroid (Kirchhof and 

Ryan, 1993). RPE detachments occur between the inner collagenous layers of Bruch’s 

membrane and the basal lamina of the RPE (Murphy et al., 1985). Pigment epithelial 

detachments associated with AMD are divided into 3 types depending on the clinical 

appearance: drusenoid, serous and fibrovascular (see figure 3.1.6). Pigment epithelial 

detachments are mostly asymptomatic but those involving the fovea may result in blurred 

vision, distortion, metamorphopsia or micropsia (Zayit-Soudry et al., 2007).  

Drusenoid PEDs (see figure 1.3.6) are characterised by an irregular surface, often 

with overlying orange/grey hyperpigmentation, with a typically slow rate of enlargement. 

On fluoroscein angiography they are characterised by delayed hyperfluorescence due to 

the gradual staining of the sub RPE with no leakage and possible irregular density (Zayit-

Soudry et al., 2007). The impediment to fluid outflow towards the choroid, caused by 

ageing changes to Bruch’s membrane and the presence of soft drusen/basal linear 

deposits, is thought to result in a build up of fluid in the sub-RPE space and leads to PED 

(Casswell, Kohen and Bird, 1985; Bird and Marshall, 1986). A study by Roquet et al. 
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(2004) followed 61 eyes for an average of 4 to 6 years and found progression to 

geographic atrophy (dry AMD) in 49%, CNV (wet AMD) in 13% and persistent drusenoid 

PED in 38% of eyes followed.  

 

 

Drusenoid PED, with adjacent RPE 

elevation associated with drusenoid 

changes, resulting from solid hyper 

reflective material. No sub-retinal fluid is 

present. 

 

A smooth sub foveal serous PED. Internal 

to the PED, the absence of reflectivity 

indicates the presence of fluid. 

 

Fibrovascular PED with thickening of the 

RPE and continuity breaks associated with 

underlying CNV. Large areas of sub-retinal 

and intra-retinal fluid accumulation are seen 

adjacent to the PED. 

Figure 1.3.6: OCT image showing drusenoid (top), serous (middle) and fibrovascular 

(bottom) PEDs. Images from Zayit-Soudry et al. (2007). 

 

A serous PED is defined as an area of smooth, sharply demarcated dome shaped 

and regular PED, it characteristically has sharply demarcated margins due to firm 

adherence of the RPE to Bruch’s membrane (Zayit-Soudry et al., 2007). Diagnosis of 

serous PED is primarily made using fluoroscein angiography, which shows rapid, bright, 

and uniform filling of the lesion, delayed compared to the background fluorescence without 

leakage (Zayit-Soudry et al., 2007), but can also be identified using OCT (Mavrofrides et 

al., 2004). Serous PED is often, but not always, associated with the presence of CNV 

(Elman et al., 1986). 

 A fibrovascular PED is considered a subtype of CNV which has an irregular 

appearance. The PED has breaks in the RPE where the underlying CNV is exposed, and 

there are often large sub retinal fluid accumulations adjacent to the PED. The irregular 

elevations of the PED demonstrate a granular or stippled hyperfluorescence within 1 to 2 
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minutes on fluoroscein angiography; late frames often demonstrate leakage beyond the 

elevated boundaries of the PED (Zayit-Soudry et al., 2007).   

 

1.3.3.6 Retinal thickness changes 

A number of studies have evaluated in vivo retinal thickness, using OCT, in eyes 

with advanced dry or wet AMD (Yamaguchi, Otani and Kishi, 2000; Joeres et al., 2007; 

Kashani et al., 2009; Blair et al., 2010; Yuda et al., 2010), and ARM (Kaluzny et al., 2009; 

Malamos et al., 2009; Schuman et al., 2009).  

There is evidence that OCT is an effective technique for the imaging and 

quantitative evaluation of retinal thickness in advanced AMD (Kashani et al., 2009; Blair et 

al., 2010; Yuda et al., 2010). For example, Kashani et al. (2009) were able to associate 

increased ONL thickness with reduced visual acuity in 53 participants with wet AMD, using 

a technique that successfully allowed manual segmentation of images including PED and 

intraretinal fluid.  Yuda et al. (2010) were able to compare peripapillary RNFL thickness in 

eyes with wet AMD to non-exudative fellow eyes (n=100); the finding that that RNFL 

thickness was is not different between these eyes suggests that the inner retinal thickness 

was relatively unaffected in wet AMD. Blair et al. (2010) found a significant positive 

correlation (r=0.7, p=0.003) between maximum retinal thickness and PED height in 

participants with wet AMD and PED. This demonstrates that even in the presence of PED 

retinal thickness measurements may be obtained and, furthermore, that there is a 

relationship between the two.   

Those studies that have used OCT to investigate early AMD reported finding 

localised reductions in retinal thickness only overlying drusen and PEDs (Kaluzny et al., 

2009; Malamos et al., 2009; Schuman et al., 2009). This localised reduction in retinal 

thickness has been ascribed to the outer retina, with Schuman et al. (2009) finding inner 

retinal thickness to be almost unchanged over drusen. 

 

1.3.4 AMD treatments and prevention 

 The treatments for AMD are primarily for wet AMD, with no effective treatments 

available for dry AMD, although nutritional and lifestyle advice has been shown to reduce 

the risk of progression (Mares-Perlman et al., 1995; Klein, Klein and Moss, 1998; AREDS, 

2001b; Seddon et al., 2001; Mitchell et al., 2002; Chong et al., 2007; Tan et al., 2007; Tan 

et al., 2009). The following sections outline the current approaches to treatment and 

prevention of AMD. 
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1.3.4.1 Lifestyle and nutrition 

A diet high in anti-oxidants and zinc has been shown to slow the progression of 

AMD in some instances (AREDS, 2001b; Chong et al., 2007), but there is insufficient 

evidence to indicate that this has a primary preventative effect (Chong et al., 2007). The 

Age-Related Eye Disease Study (AREDS) in the United States looked at ~5000 men and 

women with AMD over a 7 year period. The study showed that taking a formulation of 

antioxidants and zinc significantly reduced the progression of AMD compared to a placebo 

group; with a 25% risk reduction in progression to late AMD over 5 years (AREDS, 2000 ; 

2001b). However, the intake of antioxidants and zinc has not been shown to prevent the 

initial development of AMD (Chong et al., 2007) and the AREDS formulation was only 

recommended for those with at least 1 large drusen, multiple intermediate sized drusen, 

parafoveal geographic atrophy or unilateral advanced AMD. It should be noted that 

individuals with a history of smoking are unable to benefit from the supplement beta-

carotene due to the increased risk of developing lung cancer (Evans, 2006). Those 

individuals who smoke tobacco should be advised to quit, with those who quit appearing to 

benefit from a reduced risk of progression and incidence of AMD compared to current 

smokers (Klein et al., 1998; Mitchell et al., 2002; Tan et al., 2007). 

Increased risks are associated with high levels of dietary fat intake, but a reduced 

risk is associated with dietary intake of fish, omega 3 fatty acids (Mares-Perlman et al., 

1995; Seddon et al., 2001; Sangiovanni et al., 2009; Tan et al., 2009) and carotenoids, 

including luetin and zeaxanthin (Seddon et al., 1994). Therefore, reasonable dietary advice 

to at risk individuals could include a reduced fat intake, but increased consumption of fish, 

nuts and green leafy vegetables such as kale and spinach. However, a lack of randomised 

control trial evidence means there is no conclusive evidence for such advice. There is also 

evidence to suggest that those exposed to high levels of sunlight may benefit from 

protection such as sun hats and sunglasses (Tomany et al., 2004). 

 

1.3.4.2 Anti-VEGF therapies 

There are several anti-VEGF drugs, which can deactivate the angioproliferative 

effect of VEGF. Currently available anti-VEGF drugs include Ranibizumab (Lucentis; 

Novartis), Pegaptanib sodium (Macugen;Pzifer) and Bevacizumab (Avastin; Genentech 

Inc). Recent studies have shown Ranibizumab and Bevacizumab to be effective in halting 
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the progression of wet AMD and they even improve the visual outcome for patients in 

some cases (Bhatnagar et al., 2007; Bashshur et al., 2008). 

A recent review of the current literature by Chiang and Regillo (2011) identifies 

Ranibizumab as the treatment of choice for wet AMD. However, Bevacizumab has been 

shown to provide similar clinical outcomes in a large (n=1208) multicentre trial. Those 

treated with monthly intravitreal injections of Ranibizumab or Bevacizumab demonstrated 

an average gain of 8.5 and 8.0 letters respectively on a logMAR grading at 1 year, whilst 

those on an “as needed” treatment regime gained 6.8 and 5.9 letters respectively (Martin 

et al., 2011). Currently within the United Kingdom, the National Institute for Clinical 

Excellence (NICE) has only approved Ranibizumab, and not Bevacizumab, for the 

treatment of wet AMD.  

 

1.3.4.3 Laser photocoagulation & photodynamic therapy (PDT) 

Laser photocoagulation was shown to limit vision loss people with CNV compared 

to no treatment in randomised controlled trials by the Macular Photocoagulation Study 

Group (1993). Laser photocoagulation utilises laser burns to destroy the CNV membrane 

whilst sparing the fovea, and was developed to reduce the risk of severe vision loss. 

However this approach does not restore vision, and can only be applied in cases where 

the CNV lesion is well defined and does not involve the fovea, due to the risk of laser 

induced visual loss (MPSG, 1996; Virgili and Bini, 2007). 

Photodynamic therapy involves the intravenous injection of the photosensitive dye 

“Verteporfin”.  Verteporfin diffuses into the blood stream and is selectively taken up by the 

CNV. A diode laser, of 689nm, is then focused into the CNV, activating the verteporfin dye 

which destroys and seals the CNV. However PDT is only recommended by NICE 

guidelines for a very specific group of patients with wet AMD who have a predominantly 

‘classic’ lesion not larger than 5400µm, and demonstrate a visual acuity of 6/60 or better 

(Kanski, 2003). Although Barnes et al. (2004) reported a reduction of less than 15 letters of 

acuity in 73% of all wet AMD eyes (n=170) treated with PDT within the NHS at 12 months, 

it should be noted that treatment with newer anti-VEGF therapies is associated with better 

visual outcomes (Lazic and Gabric, 2007). 

 

1.3.4.4 Surgical intervention & other novel therapies 

 Sub macular surgery to remove sub foveal CNV is an option available in cases of 

sub macular haemorrhage, however this approach has shown only modest improvements 
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in visual acuity, and suffers from a high rate of recurrence (Falkner et al., 2007). Other 

techniques that have been used to treat wet AMD include transpupillary thermotherapy 

(Newsom et al., 2001) and prophylactic laser treatment, which was intended to reduce 

progression to advanced AMD in eyes with high risk drusen (Choroidal Neovascularization 

Prevention Trial Research, 1998) but appeared to have had the opposite effect.  

 

1.4 Retinal imaging 

 Retinal imaging is a diverse field, with many different techniques providing a range 

of qualitative and quantitative information. This section considers the advantages and 

disadvantages of different techniques suitable for imaging the macula and provides a 

rationale for the use of OCT in this thesis. 

 

1.4.1 Retinal photography 

Retinal photography uses a principle similar to ophthalmoscopy. The first retinal 

photographs were produced in the 1880’s, however the first commercial camera was not 

produced until 1925 by Zeiss (Van Cader, 1978). 

Traditionally retinal photography utilised photographic film but now it predominantly 

uses digital imaging. Retinal cameras typically have a field of view limited to a range 

between 30 and 60°, although new technologies are capable of more extensive imaging 

(Csutak et al., 2010). Retinal photography is still principally used to image the posterior 

pole for the purposes of detection, monitoring or diagnosis of retinal disease.  Retinal 

photographs have been shown to be effective for these purposes in many retinal 

conditions including AMD (Sperduto et al., 1986; AREDS, 2001a), diabetic retinopathy 

(Hutchinson et al., 2000), and glaucoma (Detry-Morel et al., 2004).  

Additional filters may be used to enhance the types of images produced, e.g. a red-

free filter to improve contrast when assessing vasculature. Retinal photography is also 

used for angiography, where filters are used to enable excitation and imaging of 

intravenously administered dye (commonly fluorescein or indocyanine green) as it enters 

and drains from the retinal/ choroidal circulation (Novotny and Alvis, 1961).  

 

1.4.2 Stereo photography 

 Stereo retinal photography is an adaptation of standard retinal photography where 

two disparate images are taken of the eye, either simultaneously or sequentially (Van 

Cader, 1978). These images when viewed binocularly, often with the aid of polarising 
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filters, provide a stereoscopic view of the retina. Stereo imaging allows an appreciation of 

depth and height of retinal features, not obtained from standard 2-D photographs. 

Stereoscopic photography was used for grading in the AREDS (AREDS, 2001a) and 

International (Bird et al., 1995) AMD grading scales, because it provided depth information 

which enabled improved identification of specific retinal features.  

 

1.4.3 Scanning laser ophthalmoscopy (SLO) 

 Scanning laser ophthalmoscopes (SLO) were first described in the 1980’s by Webb 

& Hughes (1981), and later a pinhole aperture was incorporated within the optics to create 

the confocal SLO (Webb, Hughes and Delori, 1987). The SLO uses a tightly focused laser 

beam which scans across the retina in a raster pattern, with the laser focused on each 

spot sequentially. The light reflected or emitted from the laser spot is detected 

electronically and coded allowing the retinal image to be generated on a computer system. 

The advantage of this point-by-point system is that it allows imaging through small pupils 

and media opacities, and requires low levels of illumination.  

Commercially available ophthalmic SLO systems include the Heidelberg Retinal 

Tomograph (HRT, Heidelberg Engineering GmbH, Heidelberg, Germany) and the ultra-

wide field Optomap (Optos PLC, Dunfermline, Fife, Scotland, UK). The HRT is intended for 

detailed assessment of the optic nerve head and macula, producing high contrast 

topographic images with an axial resolution of ~300 µm and a transverse resolution of 

~10µm (Soares and LeBlanc, 2006). The Optomap is capable of imaging into the 

peripheral retina with a reported field of view of 200°. Unlike the HRT, the Optomap does 

not enable direct appreciation of depth, although the use of  two different wavelength 

lasers (red and green) provides improved colour contrast and additional depth clues for 

retinal features based on the relative absorption by these structures of the different 

wavelength lasers (Kernt et al., 2010).   

 

1.4.4 Optical coherence tomography (OCT) 

Optical coherence tomography is a non-invasive optical technique first reported in 

1991 (Huang et al., 1991), which utilises low coherence light to measure backscattered 

(reflected) light from within the imaged structure. The sampling depth is determined by an 

optical equivalent of the echo time delay in ultrasound, utilising the principles of 

interferometry, thus allowing depth-reflectivity data points to be obtained longitudinally 

from within the imaged structure to provide an axial (a) scan. Lateral movement of the 
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scanning system across the imaged structure enables construction of both 2 (b-scan) and 

3 (c-scan) dimensional images comprising multiple adjacent a-scans.   

Major advances in the technology since 1991 include the use of broad bandwidth 

light sources and Frequency Domain (FD) OCT technology. This has made OCT 

technology a promising imaging technique for the monitoring and diagnosis of retinal 

disease including AMD (Drexler, 2004). Commercially many ophthalmic OCT systems are 

available, with the most recent generation capable of axial resolutions of ~5µm and 

transverse resolutions of ~20 µm (Drexler and Fujimoto, 2008).   

Although SLO imaging systems are capable of obtaining better transverse 

resolutions than OCT, they do not provide a high axial resolution. The OCT was chosen for 

use in this thesis because it allows high resolution, layer by layer analysis of the retinal 

structure, which should readily facilitate comparisons with electrophysiological functional 

parameters. The following sub-sections will consider the principles and characteristics of 

OCT imaging in more detail.  

 

1.4.4.1 Basic principles 

There have been many reviews of OCT in the literature at various stages of its 

development (Huang et al., 1991; Schmitt, 1999; Drexler, 2004; Brezinski, 2006; Drexler 

and Fujimoto, 2008). Optical coherence tomography is a complex and rapidly developing 

technology; the following is an overview of the fundamental principles of OCT imaging.  

The basic principles of OCT can be explained with reference to a Michelson 

interferometer. The interferometer splits light into two equal components using a semi-

transparent mirror. Each component is guided along a separate path to a mirror or other 

reflecting surface, where it is directed back towards the semi-transparent mirror. At the 

mirror the light is recombined and undergoes interference. The light will have the exact 

same phase and amplitude when it returns to the mirror provided that both paths are 

identical in length and optical conditions. Should one or both of the paths be different, for 

example undergoing a change in amplitude, phase or spectral composition, then the 

optical properties of the recombined light will also have changed.  

In a Michelson interferometer (see figure 1.4.1), assuming that all other properties 

are equal, increasing or decreasing the distance of one of the mirrors from the light source 

will change the phase of the light within a given path in relation to the other. Therefore, 

when the two paths are recombined at the semi-reflecting mirror there will be a phase 

difference, and the resulting interference will affect the amplitude of the recombined light. 
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When considering the rules of interference, should the length of the paths be the same, or 

differ by a whole number of wavelengths, then constructive interference will occur. But 

when the difference in path length is a multiple of half the wavelength, then total 

destructive interference will occur. The resulting amplitude will either be a maximum or 

minimum, when these two conditions are met, or an intermediate value, depending on the 

phase difference between each path. 

 

Figure 1.4.1: Schematic diagram of a Michelson interferometer. 

 

 If a photodetector is introduced to measure the intensity of the recombined light it is 

possible to deduce the phase difference between each path of light, caused by increased 

or decreased distance to one of the mirrors. Additionally, if both mirrors are at a fixed path 

length, but the reflectivity of one of these mirrors is reduced, the intensity of the 

recombined light measured by the photodetector would similarly be reduced, and therefore 

it is possible to calculate the reflectance of this new mirror.  

 If a pulse of light is now passed through the system, rather than a beam, then the 

pulse will only coincide and recombine at the semi-reflecting mirror if the difference in path 

lengths is less than the length of the light pulse. In these circumstances, changing the 

position of one mirror requires that the location of the second must be changed by the 

same amount so that the pulses coincide, otherwise only a maximum of 50% of the light 

will reach the photodetector at one time.  As a pulse of light will only coincide when the 

path lengths are equal, we can determine the distance to a reflecting object of unknown 

distance by moving the mirror (the so called “reference mirror”) in the second path until a 

maximum intensity is found at the photo-detector (i.e. over 50%).   
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For a semi-reflecting sample whose reflectivity changes with depth (for example the 

retina), it is possible to assess the reflectivity at different depths within the sample (Huang 

et al., 1991). If the reference mirror is at the correct distance that a pulse of light reflected 

from a certain layer of the sample coincides at the semi-reflecting mirror we get a signal at 

the photodetector greater than 50% intensity, corresponding to that layer. All light reflected 

from material at different optical distances will not coincide with the reference pulse. By 

moving the reference mirror, the distance at which the light will need to be reflected from 

within the sample to coincide with the reference pulse will change; this enables the 

reflectivity to be assessed at different depths. However, the loss of light intensity due to 

backscattering and absorption within the sample ultimately limits the depth at which the 

OCT is able to image successfully (Huang et al., 1991).  

 

1.4.4.2 Broad bandwidth light & axial resolution 

The coherence length is a finite distance over which light maintains a degree of 

coherence, i.e. where different wavelengths remain together and interfere (see figure 

1.4.2). Within OCT systems a shorter coherence length enables higher axial resolutions to 

be achieved, as a greater number of depth-reflectivity measurements can be obtained 

from a sample without them overlapping. The coherence length is inversely proportional to 

the spectral bandwidth of the OCT light source used (Drexler, 2004), with the axial 

resolution being related to the spectral bandwidth of the light source as shown by equation 

1.4.1.  

 

Equation 1.4.1: ∆z =2ln(2)ʎ²/(π∆ʎ) 

 

Where: 

∆z is the axial resolution,  

∆ʎ is the spectral bandwidth of the light source,  

ʎ is the centre wavelength of the light source used for imaging (assuming a Gaussian 

spectrum). 
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Figure1.4.2: Representation of a broadband laser and the resulting coherence length 

(shown as ∆t) of the pulse produced. Image from Lundeen (2008).  

 

Therefore, the use of a broader bandwidth light source enables a proportionally 

higher axial resolution which has facilitated the development of Ultra-High Resolution 

Optical Coherence Tomography (UHR-OCT) with axial resolutions of 2-3µm (Drexler, 

2004; Drexler and Fujimoto, 2008).  

Schmitt (1999) identifies “emission in the near infrared”, a “short temporal 

coherence length” and a “high irradiance” as requirements for an ideal OCT light source. 

Super luminescent diodes (SLD) are a commonly used OCT light source. SLDs are 

available with output in the near infrared, a high irradiance and are relatively cheap to 

manufacture, although suffer from a wide coherence length, limiting the axial resolution 

(Schmitt, 1999). The UHR-OCT requirement for short coherence lengths has led to the use 

of femtosecond titanium-sapphire lasers (Drexler, 2004; Drexler and Fujimoto, 2008).  

These light sources, however, require greater power and are less portable than the 

traditional SLD (Schmitt, 1999). The advances in SLD light sources, such as multiplexed 

SLD (multiple spectrally displaced SLD’s which are combined to produce a broad 

bandwidth output) (Drexler and Fujimoto, 2008), have enabled imaging approaching the 

resolution of femtosecond lasers (Adler et al., 2004; Ko et al., 2004).  

 

1.4.4.3 Frequency domain OCT (FD-OCT) 

OCT systems where the individual reflectivity data points are collected by manual 

adjustment of the reference mirror is known as Time Domain OCT (TD-OCT). The need for 

mechanical movement within the system means acquisition speeds are limited (Drexler, 

2004) and as a result the acquisition of enough data points to construct UHR images or 3D 
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constructs is restricted. This represented one of biggest limitations in the early commercial 

OCT systems.  

An alternative to TD-OCT is a technique known as Frequency Domain OCT (FD-

OCT) which has a significant speed and sensitivity advantage compared to the older 

technique (Drexler and Fujimoto, 2008). Frequency domain OCT uses a stationary 

reference mirror and measures an entire a-scan simultaneously rather than sequentially. 

The depth resolved reflectivity profile of the a-scan can be determined from interferometric 

information obtained by either using a spectrometer and high speed charged coupled 

device (Spectral/Fourier Domain OCT) or a frequency swept light source with a 

photodetector (Swept Source OCT). The interferometric information obtained by both of 

these techniques is processed by computer systems using Fourier transforms (Van 

Velthoven et al., 2007) to produce the a-scans which comprise the OCT images. The 

utilisation of FD-OCT acquisition techniques has resulted in much improved acquisition 

speeds (Drexler, 2004; Povazay et al., 2007b; Van Velthoven et al., 2007; Drexler and 

Fujimoto, 2008) and has led to the realisation of clinically useful three dimensional scans 

(Drexler, 2004; Schmidt-Erfurth et al., 2005; Drexler and Fujimoto, 2008).   

 

1.4.4.4 Adaptive optics 

Optical coherence tomography achieves a high axial image resolution which, unlike 

traditional microscopy, is independent of transverse resolution (Drexler and Fujimoto, 

2008). The transverse resolution in OCT is determined by the focal spot size, as in 

traditional microscopy, however this is limited in ophthalmic imaging due to dispersion and 

aberrations in the eye (Drexler, 2004; Drexler and Fujimoto, 2008). 

 Adaptive optics (AO) can correct for aberrations, such as those in the eye (e.g. 

coma, spherical aberration), which has the effect of decreasing the focal spot size in OCT, 

improving transverse resolution. This process is achieved by monitoring the returning 

wave front electronically in real time with computer manipulation of a deformable mirror 

correcting for the aberrations in the wave front, thus allowing a tighter point focus and a 

reduced point spread function (Van Velthoven et al., 2007). 

The first reported use of AO in OCT technology was made by Hermann et al.(2004), 

who used an adaptive optics technique within an UHR-OCT. The AO UHR-OCT 

demonstrated an improvement in transverse resolution from ~15-20 µm to 5-10 µm in 

retinal imaging, without an associated loss in axial resolution. Adaptive optics in 

combination with UHR-OCT is still in its infancy with the potential for near cellular 
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resolution making it a promising development. The balance between the clinical benefits 

and technical complexities of this technology has not yet been fully assessed (Drexler and 

Fujimoto, 2008), and no commercial OCT has incorporated AO at this time.  

 

1.4.4.5 OCT Wavelength 

 Traditionally, OCT imaging has been undertaken using near infra-red light sources, 

with a bandwidth based around 800 nm having been used in most FD-OCT systems 

(Drexler and Fujimoto, 2008). When imaging using an 800 nm light source, the presence 

of ocular opacities can degrade the image quality (an important factor to consider when 

imaging elderly individuals), whilst the high levels of light scatter within the retinal tissue 

and absorption of light by the RPE results in limited visualisation of sub RPE layers, such 

as the choriocapillaris (Unterhuber et al., 2005; Povazay et al., 2007a; Povazay et al., 

2009).  

Recent developments have seen the use of light sources in the 1060 nm region, 

which have been shown to allow deeper penetration into the choroidal tissue and a better 

signal-to-noise ratio in the presence of media opacities (Povazay et al., 2003; Unterhuber 

et al., 2005; Povazay et al., 2007a; Povazay et al., 2009).  

 

 

Figure 1.4.3: Output spectra of a ~800 nm Ti:sapphire laser (thin black line left), ~ 1050 

nm PCF-based light source (gray line), and a long wavelength MenloSystems laser (black 

line, right), overlaid with a water absorption spectrum (dashed line). Image from Drexler 

(2004). 

 

In order to image the retina of a human eye the imaging beam has to pass twice 

through the cornea, lens and vitreous which, given the increased absorption of water at 

longer wavelengths, limits the available wavelengths for ophthalmic imaging (Unterhuber 
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et al., 2005). The water absorption spectrum has two regions where the absorption is low, 

the first includes the visible range up to ~950 µm, and the second is a narrow band 

between ~1000 µm and ~1100 µm (Drexler and Fujimoto, 2008).  Figure 1.4.3 (Drexler, 

2004) shows 3 different lasers with the water absorption overlaid, it can be seen that only 

two of the 3 lasers would be suitable for ophthalmic imaging, those corresponding to water 

absorption minima with wavelengths of ~800 µm and ~1050 µm. 

 

1.4.4.6 Imaging terminology 

The increasing use of OCT systems, particularly for ophthalmic purposes, has led to 

the evolution of common terminology to describe types of image and their components; 

some of the most commonly used terms are described in table 1.4.1. The terms and 

definitions described have been used throughout this thesis. It should be noted that the 

data points which comprise the retinal volumes are termed voxels due to their location in 

three dimensional spaces, in this thesis images were all analysed and measured in two 

dimensions on a visual display unit (VDU) and have, therefore, been referred to as pixels 

throughout. 

Imaging Term (s) Definition 

Pixel 
 

A pixel represents an individual data point within an OCT image, comprising location 
and reflectivity (backscatter intensity) information, commonly based on either a colour 
or black/white value scale.  A pixel technically represents location in only 2 dimensions 
(an x & y axis scale) and is usually used to describe OCT data points as viewed on a 
VDU. The minimum dimensions of each individual pixel (or Voxel) are determined by 
the axial and transverse resolution of the OCT system. 

Voxel 
A Voxel is the same as a pixel with the exception that the location is represented in 3 
dimensions (an x, y & z axis scale).  

a-scan 
The a-scan is analogous to an ultrasound a-scan. It is a representation of reflectivity 
(backscatter intensity) with depth, comprising a series of adjacent pixels at increasing 
depth within the sample (i.e. the retina).  

b-scan 
(cross section / 2D 

section) 

The b-scan is analogous to an ultrasound b-scan and is comprised of adjacent a-scans 
to produce a 2-D cross-section through the sample. 

c-scan 
(retinal volume / 3D 

volume) 
A c-scan is stack of adjacent b-scans, which can be viewed as a 3D volume. 

Table 1.4.1: Definitions of terms commonly used to describe ophthalmic OCT images and 

their composition.  

 

Less common terms are also encountered in the literature, for example a temporal 

scan (m-scan), is one in which a single image is repeatedly acquired at the same location, 

in order to track changes over time (Bizheva et al., 2006). 
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1.4.4.7 OCT imaging and histology 

 Optical coherence tomography images comprise tomograms with various bands of 

high and low reflectivity, depending on the reflectivity of the structure the imaging laser 

interacts with as the image is produced. As a clinical tool it is necessary to identify what 

structures these reflective bands represent in the retina. Studies have been carried out 

which have directly compared OCT images to histology (Huang et al., 1991; Toth et al., 

1997; Huang et al., 1998; Chauhan and Marshall, 1999; Gloesmann et al., 2003; Anger et 

al., 2004). 

 Gloesmann et al. (2003) and Anger et al. (2004) conducted studies which compared 

UHR-OCT tomograms directly to histology in pig and monkey retinas respectively. 

Although previous studies compared histology to OCT (Huang et al., 1991; Toth et al., 

1997; Chauhan and Marshall, 1999),  these used older TD-OCT systems where the axial 

resolution made comparison of intra-retinal layers to histology ambiguous at best (Anger et 

al., 2004). 

 Anger et al. (2004) conducted a systematic comparison of histological sections to 

OCT tomograms from Macaca Fascicularis monkeys. In order to overcome non-linear 

distortions which originate from the dehydration and sectioning stress involved in histology 

preparation, a ‘metamorphosis’ computer program was used to correct for these distortions 

and to make images comparable to the UHR-OCT tomograms in the study. To ensure 

these “morphing” procedures scaled the histological images correctly, a series of 

unequivocal points were selected to correspond on both the UHR-OCT and histology 

images, for example blood vessels or the inner limiting membrane. This study was able to 

directly relate the hyper-reflective bands from the OCT tomograms to the retinal layers 

identified by histology. Figure 1.4.4 demonstrates the relationship between individual 

retinal layers at the macula from histology and UHR-OCT.  

1060 nm OCT enables a greater depth of imaging and improved penetration 

through media opacity due to the reduced reflectivity of ocular media to 1060 nm light 

(Povazay et al., 2003; Drexler, 2004; Unterhuber et al., 2005; Povazay et al., 2007a; 

Drexler and Fujimoto, 2008; Povazay et al., 2009). The difference in reflectivity of the 

retinal structures to the 1060 nm laser compared to the traditional 800 nm may affect the 

identification of the structures in 1060 nm OCT images. Chen et al. (2009) compared 

images obtained from 1060 nm and 845 nm OCT systems. This study found that the 

visible layers in the images were comparable to the histological retinal layers for both 

systems; however the relative intensity of the individual retinal layers was different 
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between the two OCT systems.  For retinal layers anterior to the RPE the contrast was 

reduced in 1060 nm images relative to 845 nm, however those located posterior to the 

RPE underwent an increase in contrast with the longer wavelength system, improving their 

visibility (see figure 1.4.5). 

 

Figure 1.4.4: A comparison of a foveal semi-thin histological section (top) and 

corresponding UHR-OCT b-scan (bottom, note reverse contrast to traditional OCT 

greyscale to facilitate comparison). Major retinal sublayers are distinguishable and are 

labelled as follows: gc ax, ganglion cell axon layer; gc, ganglion cells; ipl, inner plexiform 

layer; inl, inner nuclear layer; H’s f, Henle’s fibres; onl, Outer nuclear layer; cis/cos, 

photoreceptor inner/outer segments; pe, Pigment epithelial layer; ch cap, choriocapillaris; 

ch, choroid; asterisk (*), darker faults in foveal floor indicative of foveal strain; d, epi-retinal 

debris producing negative shadow. Image from Anger et al. (2004). 
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Figure 1.4.5: A pointwise matched frame of a 1060 nm OCT b-scan (Left) and a 845 nm 

OCT b-scan (Right) with corresponding retinal layers identified. Image from Chen et al. 

(2009). 

 

1.4.4.8 Commercial OCT and analysis software 

The first commercially available OCT system was a TD-OCT released in 1996 by 

Zeiss with a 10 µm resolution and scan rate of 100 a-scans/s  (Drexler and Fujimoto, 

2008). Since 1996, OCT technology has advanced, for example with the advent of FD-

OCT which has eventually become available as part of newer commercially available OCT 

systems. The latest generation of OCT comprises a range of competing systems, which 

share similar axial resolutions of 5-7 µm and imaging speeds of ~25,000 a-scans/s, based 

on ~800 nm light sources (Drexler and Fujimoto, 2008), for example the Cirrus OCT 

system (Carl Zeiss, Meditec Inc, CA). 

Commercially available systems, unlike research based systems, are required to be 

easy to use and to allow speedy presentation of clinically relevant data to the clinician. As 

a result, commercial systems contain software designed to aid the clinician in image 

acquisition and processing. The software provided with these commercial devices is able 

to provide the clinician with both qualitative data, through image viewing tools, and 

quantitative information derived from automated segmentation of the OCT images.  

Automated segmentation is an important feature of commercial OCT systems, 

allowing rapid identification of the boundaries between retinal layers so that thicknesses, 
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areas and volumes may be calculated. Automated segmentation of the ILM and RPE 

layers allows retinal thickness to be calculated and is a standard feature of most 

commercial OCT systems. Although automated segmentation has been shown to be a 

reliable and accurate method of rapidly assessing macular thickness in healthy eyes, the 

evidence suggests that automated segmentation is less accurate in diseases such as 

AMD, where retinal structures become disorganised, than manual segmentation 

techniques (Menke and Feke, 2005; Sadda et al., 2006; Krebs et al., 2008; Ghazi et al., 

2009; Keane et al., 2009; Taban et al., 2009; Sadda et al., 2010).  

Table 1.4.2: Comparison of normal foveal thickness values from recent literature. * 500 µm 

refers to radius of ETDRS grid central subfield.  

Study & participant 
details 

OCT system and measurement type Reported retinal thickness 
values 

Ikuno et al. 2009 
 
Myopic eyes (n=31), 51.7 
± 11.4 years (-6 to -23 D) 

Cirrus HD-OCT  
(Carl Zeiss Meditec, Inc.). 
Manual 

Fovea  
201.2 ± 40.6 µm 
 

Legaretta et al 2008 
 
Normal eyes (n=50), 22 
to 68 years. 

Cirrus HD-OCT  
(Carl Zeiss Meditec, Inc.) 
Automated 
 

Foveal (500µm)* 
258.2 ± 23.5 µm 

Stratus TD-OCT 
(Carl Zeiss Meditec, Inc.) 
Automated 
 

Foveal (500µm)* 
212 ± 20 µm 

Grover et al. 2010 
 
Normal  eyes (n=36),  
20 to 69 years. 

Spectralis SD-OCT 
(Heidelberg Engineering, Heidelberg, 
Germany) 
Automated 
 

Foveal (500µm)* 
271.4 µm 
 

Stratus TD-OCT 
(Carl Zeiss Meditec, Inc.) 
Automated 
 

Foveal (500µm)* 
202.3 µm 

Kakinoki et al. 2008 
 
Normal eyes (n=50), 49.9 
±18 years. 

Cirrus HD-OCT  
(Carl Zeiss Meditec, Inc.) 
Automated 
 

Foveal (500µm)* 
257.6 ± 19.6 µm 

Stratus TD-OCT 
(Carl Zeiss Meditec, Inc.) 
Automated 
 

Foveal (500µm)* 
197.2 ± 17.8 µm 
 

Cheng et al. 2010 
 
Myopic (n=30; -6.00 to -
13.63 DS, mean age 
22.73) and non-myopic 
eyes (n=31; +2,75 to -
0.50 DS, mean age 
23.26), 

Stratus TD-OCT 
(Carl Zeiss Meditec, Inc.) 
Automated 
 

Myopic Fovea 
162 ± 19.21 µm 
 
Myopic Fovea (500 µm)* 
199 ± 17.27 µm 
 
Normal Fovea 
149 ± 11.80 µm 
 
Normal Fovea (500 µm)* 
191 ± 12.37 µm 
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Automated segmentation applied by different commercially available systems has 

been shown to produce different thickness values. Retinal thickness assessed using the 

older Stratus (TD-OCT; Carl Zeiss, Meditec Inc, CA) has been shown to produce lower 

values (~50 µm) than the newer Cirrus (FD-OCT; Carl Zeiss, Meditec Inc, CA) system in 

healthy subjects (Legarreta et al., 2008; Kakinoki et al., 2009). Legaretta et al. (2008) 

identified the inclusion of the photoreceptor layer within the retinal thickness measurement 

as the determining factor for this difference, facilitated by the increased resolution of the 

Cirrus. Kakinoki et al. (2009) drew attention to the potential pitfalls of comparing thickness 

values between different OCT systems. Table 1.4.2 describes a number of recent studies 

which have produce normative retinal thickness values using commercially available OCT 

systems. A more extensive list of OCT derived normative values including eccentric retinal 

locations, and intra-retinal and choroid layer thicknesses are given in Appendix F. 

 

1.5 Assessment of visual function 

 Visual function can be assessed using psychophysical or electrophysiological 

methods. This section considers a range of psychophysical and electrophysiological 

approaches to the assessment of retinal function, with an emphasis on those techniques 

which assess macular function.  

 

1.5.1 Visual psychophysics 

 The most common type of psychophysical tests carried out is where a detection 

threshold is determined for a specific visual stimulus. Because the responses are 

subjective, the threshold levels are usually calculated using probabilistic methods. A range 

of methods to estimate visual perception thresholds exist, which vary in the control of the 

stimulus properties, the method of presentation and type of subjective response required 

(Kalloniatis and Luu, 2005).  

 The psychophysical tests used to assess visual function in AMD may be divided 

into five broad categories, which comprise spatial vision, temporal vision, visual 

adaptation, visual field testing and chromatic function (Neelam et al., 2009); the following 

sections will discuss psychophysical tests within these categories. 
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1.5.1.1 Spatial vision 

 Spatial vision is concerned with how patterned stimuli are interpreted by the visual 

system. It is commonly assessed by way of visual acuity (VA), contrast sensitivity (CS) and 

reading speed or accuracy.   

 Visual acuity is the highest spatial frequency that can be detected by the visual 

system at 100% contrast (Owsley, 2003). Visual acuity is considered to be the standard 

test of visual function, and is most commonly assessed using a Snellen chart (Neelam et 

al., 2009). Visual acuity is commonly expressed as a Snellen fraction, comprising the test 

distance as the numerator, and the distance at which a just resolvable optotype should be 

positioned to subtend 5’ arc at the eye as the denominator. Visual acuity is now commonly 

recorded using LogMAR notation, which expresses the VA as the logarithm of the 

minimum angle of resolution. Test charts using the LogMAR notation, for example, the 

Bailey-Lovie and the early treatment diabetic retinopathy study (ETDRS) acuity charts, 

have additionally been designed to avoid problems associated with the traditional Snellen 

charts such as unequal visual tasks, i.e. varying number of letters per line and crowding 

between letter on each line and truncation of high and low acuity tasks (Bailey and Lovie, 

1976), resulting in better reproducibility and sensitivity (Ferris et al., 1982; Lovie-Kitchin, 

1988).  

 Contrast is defined as the difference in luminance between a target and its 

background expressed as a percentage of mean background luminance. The amount of 

contrast required to identify an object or border is the contrast threshold, in the human 

visual system it is often referred to as the contrast sensitivity (reciprocal of threshold) 

(Owsley, 2003). Contrast sensitivity varies according to the spatial frequency of the object 

or border being observed. The typical contrast sensitivity function, which describes the 

relationship between contrast sensitivity and spatial frequency, is shown for a normal 

subject in figure 1.5.1. Contrast sensitivity can be assessed using sine wave gratings, 

presented on a VDU, where the contrast and spatial properties of the alternating stripes 

(gratings) presented can easily be varied. However, clinical optotype charts, such as the 

Pelli-Robson chart (Pelli, Robson and Wilkins, 1988), are more practical and provide a test 

method likely to be more familiar to the patient. 
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Figure 1.5.1: The photopic spatial contrast sensitivity function (CSF) showing a peak in 

sensitivity for the mid spatial frequency range, with a rapid fall off towards high spatial 

frequencies and mild roll off towards low spatial frequencies. Image from Kalloniatis and 

Luu (2005). 

 

1.5.1.2 Temporal vision 

Temporal vision is concerned with how a flickering stimulus, which may be non-

periodic, is interpreted by the visual system. Intermittent stimuli are perceived by the eye 

as flicker; however when the temporal frequency reaches the ‘critical flicker frequency’ 

(CFF) the visual system is no longer able to perceive the flickering. The temporal contrast 

sensitivity (TCS) function described the modulation depth (temporal contrast) required to 

detect flicker at different temporal frequencies (see figure 1.5.2). It can be thought of as 

analogous to the spatial CSF, where the function describes the limits of the visual system 

with respect to contrast and frequency. The CFF is equivalent to visual acuity in the spatial 

domain, i.e. the maximum temporal frequency detectable at maximum contrast (Neelam et 

al., 2009). 
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Figure 1.5.2: The Temporal Contrast Sensitivity (TCS) function where the “threshold 

modulation ratio” is a measure of stimulus contrast, smaller values indicating a lower 

stimulus contrast, and “frequency” refers to the temporal frequency (Hz) of the stimulus. At 

photopic luminances, sensitivity is greatest at stimulus frequencies of 15 to 20 Hz, whilst 

the upper temporal frequency cut off is approximately 60 Hz at maximum contrast.  Lower 

luminance levels (scotopic) show a shift in the upper temporal frequency cut off towards a 

lower temporal frequency and a reduction in the overall height of the function. Image 

adapted from Hart (1987).  

 

The TCS function demonstrates that the eye is capable of responding to flicker at 

temporal frequencies of up to 80 Hz (Brown and Lovie-Kitchin, 1987). The detection of 

frequencies below ~25 Hz is mediated by both the rod and cone photoreceptors whilst 

responses to higher frequencies are dominated by the cone photoreceptors (Skottun, 

Nordby and Magnussen, 1981).  
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Flickering stimuli are known to increase the neural activity and metabolic demand 

within the stimulated retina, requiring an increase in retinal blood flow (Kiryu et al., 1995). 

The changes at the outer retina associated with AMD, which include the loss of 

choriocapillaris, the thickening, and deposition of lipids in Bruch’s membrane with resultant 

reduction in hydraulic conductivity (see section 1.3), and the consequential inhibition of 

metabolic supply suggest that aspects of temporal vision may be particularly sensitive to 

AMD (Phipps et al., 2004).   

 

1.5.1.3 Visual adaptation 

 Visual adaptation is concerned with the eyes ability to adapt to a range of 

luminances and can be assessed by monitoring dark adaptation. 

 

Figure 1.5.3: Dark adaptation functions for a normal subject measured with a violet light 

following different levels of light adaptation. The solid symbols indicate that a violet colour 

was apparent at the threshold representing cone mediated sensitivity, whilst empty 

symbols indicate absence of colour appreciation representing rod mediated sensitivity. 

Figure from Hecht, Haig and Chase (1937). 

 

Dark adaptation is the slow recovery of retinal sensitivity following exposure of the 

retina to a light that bleaches a significant proportion of visual pigment (Lamb and Pugh, 

2004) (see section 1.2.8 for overview of kinetics of photopigment regeneration). The dark 

adaptation function describes the drop in threshold which occurs over time in the dark after 

cessation of a bleaching light (see figure 1.5.3). Classically, there are two distinct periods 
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of sensitivity recovery, cone and rod, separated by a transition known as the rod-cone 

break. The recovery of rod sensitivity begins at light cessation, but the cone system shows 

a faster recovery, and initially has lower thresholds than the rod system and therefore 

dominate the subjective response at early time points (Lamb and Pugh, 2004). 

 

1.5.1.4 Visual field testing 

 Visual field testing is concerned with the eyes’ ability to detect the presence of 

stimuli at different retinal locations. The visual field normally extends to ~ 110° temporally, 

~65° nasally, ~60° superiorly and ~75° inferiorly (Henson, 2000). Visual field assessment 

usually takes the form of visual threshold testing at a range of distinct retinal locations 

(commonly called perimetry). 

Amsler grids are a series of grid patterns presented monocularly to patients at a 

fixed viewing distance. The patient is asked a series of questions, the answers of which 

describe the perceived integrity of the grid and therefore subjectively identify the location 

and extent of any central visual field abnormalities (Elliott, 2007). Amsler grids are 

commonly used clinically to identify visual field abnormalities in the macular region, 

although evidence suggests that they are relatively insensitive to many central visual field 

defects (Schuchard, 1993).  

 

1.5.1.5 Chromatic function 

 This type of psychophysical assessment is concerned with the eye’s ability to 

discriminate between stimuli with different spectral (colour) composition regardless of other 

visual attributes. Colour vision can be assessed by various methods including colour 

matching, discrimination arrangement and sensitivity (Neelam et al., 2009). Tests of colour 

discrimination and arrangement include the Farnsworth-Munsell 100 Hue test and the D-

15 saturated and desaturated tests. Isochromatic plates are used as part of the Ishihara 

colour vision test but this approach is limited to the detection of red-green defects.  

 

1.5.2 Electrophysiology 

The visual system comprises many different cell types from the retina to the visual 

cortex, which carry out different functional roles. Electrophysiological techniques can be 

used to record the electrical changes these cells undergo in response to different visual 

stimuli. Although external sensors are only able to measure the summed activity of cells, 

for example in the retina, different groups of cells in the visual pathway become active at 
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different times after a stimulus is presented. Experimental techniques can be used to 

identify the underlying physiological processes which produce different components of the 

electrophysiological responses, for example by using pharmacological agents to block 

activity of different neurone types. The components of these responses can often then be 

attributed to specific cell types within the visual system (Granit, 1933; Bush and Sieving, 

1994; Frishman, 2006) and hence can be used to as a means to assess visual function on 

a ‘layer by layer’ basis.  

The International Society for Clinical Electrophysiology of Vision (ISCEV) was 

established to promote global comparability and standardisation of electrodiagnostic 

techniques, for which it has developed and published standards for the recording of a 

range of electrodiagnostic tests. These electrodiagnostic techniques are commonly used 

within the Hospital Eye Service for the assessment and diagnosis of a range of conditions 

including congenital stationary night blindness, retinitis pigmentosa, Bests disease, rod 

and cone dystrophies and albinism (Weisinger, Vingrys and Sinclair, 1996). Standards or 

guidelines currently exist for electroretinograms (ERG) (Marmor et al., 2009), multi-focal 

electroretinograms (mfERGs) (Hood et al., 2008), electro-oculograms (EOG) (Brown et al., 

2006), pattern electroretinograms (PERG) (Holder et al., 2007) and cortical visual evoked 

potentials (VEP) (Odom et al., 2010). Guidelines for equipment setup and calibration have 

also been published (Brigell et al., 2003).  

  

1.5.2.1 Electro-oculogram (EOG) 

 The electro-oculogram (EOG) is an electrophysiological technique used to assess 

the slow changes in the standing potential of the eye during light and dark adaptation, 

which are attributable to changes in voltage across the RPE basal membrane (the trans-

epithelial potential). The normal EOG relies on the integrity of both the RPE and the 

photoreceptors, as it is a reduction in sub retinal potassium (K+) due to a light evoked 

closure of the cation channels in photoreceptor outer segments which is indirectly 

responsible for changes in the transepithelial potential recorded by the EOG (Joseph and 

Miller, 1992). The most common use of this technique is for the diagnosis of Best’s 

vitelliform dystrophy (Marmor and Zrenner, 2006).  

 

1.5.2.2 Visual evoked potential (VEP) 

 The visual evoked potential (VEP) and multi-focal visual evoked potential (mfVEP) 

record electrical potentials generated by the occipital cortex. The VEP is recorded in 



 

 
 

57 Chapter 1: Introduction 

response to stimulation of the central 15 – 20° of the visual field whereas the mfVEP 

enables simultaneous recording from different regions within the visual field. The VEPs 

can show the integrity of the whole visual system; as the signals from the stimulated retina 

are required to travel the length of the visual pathway to the occipital cortex, any defects 

within the visual pathway may change the waveform or latency of the VEP response 

(Fahle and Bach, 2006). Conversely, the localisation of an abnormal response may be 

complicated as the causative lesion may exist at any point along the visual pathway. 

Furthermore, due to the disproportionate representation of the macula in the primary visual 

cortex (cortical magnification) the response is dominated by signals originating from the 

central retina. The VEP is recorded by electrodes placed on the scalp overlying the 

occipital cortex, guidelines have been published regarding stimulus and recording 

protocols for standard VEPs (Odom et al., 2010).   

 

1.5.2.3 Multi-focal electroretinogram (mfERG) 

 Conventional ERG waveforms represents the summed electrical potentials from 

across the entire stimulated retina, whereas multi-focal electroretinograms (mfERGs) use 

a complex display system in combination with a selective extraction process to isolate 

localised retinal activity (Bearse and Sutter, 1996). 

The stimulus used for mfERGs typically comprise an array of 61 or 103 hexagons 

with each hexagon scaled in size to produce an approximately equivalent amplitude 

response from each retinal area stimulated. The hexagons are presented in a pseudo-

random stimulus pattern (called an M-sequence), with each hexagon being either white or 

black at any one time and starting at a different point in the m-sequence (Hood et al., 

2012). A continuous ERG is recorded, using a similar setup as for recording standard full 

field ERGs. Computer analysis is used to isolate the individual responses elicited by each 

hexagonal stimulus region, based on the cross-correlation of the stimulus sequence and 

the recorded ERG. The mfERG is a cone driven response, without a rod contribution, and 

typically is recorded for a central retinal area of between 20 and 30° (Hood et al., 2012).  

The extracted waveform for each hexagonal stimulus is called the basic mfERG 

response (or first-order kernel) and comprises 3 peaks, the first a negative wave, followed 

by a positive then a second negative referred to as N1, P1 and N2, respectively (see figure 

1.5.4). The peak N1 is understood to be derived from the same cells that contribute to the 

a-wave of the full-field cone ERG, whilst P1 receives contributions from the cells attributed 

to the cone b-wave and oscillatory potentials (Hood et al., 2008). 
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Figure 1.5.4: A basic mfERG waveform (first-order kernel) with peaks N1, P1 and N2 

shown. Image from Hood et al. (2008). 

 

1.5.2.4 Electroretinogram (ERG) 

The ERG is an electrophysiological signal derived from the retina in response to 

light stimulation. Electroretinograms are usually recorded using an electrode (active) 

placed in contact with the test eye and a second electrode (reference) attached to the 

head or the non-test eye. Differential amplification is then used to isolate the light evoked 

response from the test eye. A single flash of light will evoke a transient ERG, which is 

highly repeatable. The ERG waveform comprises a series of major subcomponents known 

as the a, b and d waves, the photopic negative response (PhNR) and oscillatory potentials 

(OPs) (see figure1.5.5 and 1.5.6), however, not all subcomponents are visible in all flash 

ERGs. The waveform characteristics depend on the stimulus used and the state of retinal 

adaptation, with stimulus, duration, luminance, wavelength, location and extent all known 

to affect the resultant waveform by affecting the response of different cell types within the 

stimulated retina (Frishman, 2006).  

A flickering stimulus evokes a flicker ERG (sometimes called a steady state ERG) 

which has a characteristic repeating waveform comprising positive to negative oscillations 

that match the temporal frequency of the stimulus. Patterned stimuli may also be used, 

often a reversing black and white checker board, to evoke a pattern electroretinogram 

(Holder et al., 2007).  
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Figure 1.5.5: Diagrammatic representation of ERGs recorded from human (left) and 

macaque monkeys (right). Dark adapted (scotopic) ERGs recorded in response to a brief 

flash, with a and b waves labelled (top). Light adapted (photopic) ERGs recorded in 

response to a 150 ms and 200 ms duration flash (human and macaque respectively) with 

a, b, PhNR and d wave labelled (bottom). Image adapted from Frishman (2006).  

  

ISCEV have published standards for the recording of 5 standard ERG responses, 

including a combination of full field transient and flicker ERGs, the characteristic responses 

are described in figure 1.5.6 (Marmor et al., 2009). 
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Figure 1.5.6: Diagrammatic representations of the standard ISCEV ERG responses. Large 

arrow heads indicate the stimulus flash, dotted arrows exemplify how to measure time-to-

peak (t = implicit time), a-wave amplitude and b-wave amplitude. (1) Dark-adapted 0.01 

ERG ‘‘rod response’’ recorded to a weak flash in the dark-adapted eye. (2) Dark-adapted 

3.0 ERG ‘‘maximal or standard combined rod–cone response’’ recorded to a strong flash 

in the dark-adapted eye. (3) Dark-adapted 3.0 oscillatory potentials ‘‘oscillatory potentials’’ 

recorded to strong flashes in the dark adapted eye with the signal isolated using a 100-

1000 Hz band pass filter. (4) Light-adapted 3.0 ERG ‘‘single-flash cone response’’ 

recorded to a strong flash in the light-adapted eye. (5) Light-adapted 3.0 flicker ERG ‘‘30 

Hz flicker’’ recorded to a rapidly repeated stimulus. Image adapted from Marmor et al. 

(2009).  

 

1.5.3 The Flash Electroretinogram (ERG) 

The ERG is a sum combination of all electrical activity within the retina; this activity 

can be divided into distinct components (peaks and troughs) of different cellular origin that 

can aid the analysis of the response. Granit (1933) was one of the pioneers in the isolation 

of the processes underlying the scotopic ERG, with work conducted on the rod dominated 

cat retina. Granit (1933) used ether, with increasing potency, to sequentially knock out the 

physiological processes contributing to the scotopic ERG. This approach revealed 3 

distinct processes, PI, PII and PIII, numbered according to which disappeared from the 

ERG waveform first (see figure 1.5.7). PIII has since been subdivided into fast and slow 

components (Frishman, 2006). The measureable sub-components of ERG are shaped by 
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these underlying processes.  Although PI, PII and PIII are summed to produce the 

transient ERG, different processes dominate at different times following stimulation. 

 

Figure 1.5.7: The scotopic ERG and the three components identified by Granit (1933), PI, 

PII and PIII. Image adapted from Granit (1933). 

 

1.5.3.1 a-wave 

The a-wave is the initial negative deflection of the transient ERG with the leading 

edge being dependent on the component fast PIII (Granit, 1933; Frishman, 2006). The a-

wave amplitude and latency are dependent on the adaptional state of the eye and the 

strength of the flash stimulus, with scotopic (rod dominated) responses being larger and 

slower than photopic (cone dominated) responses; however, under both light and dark 

adapted conditions the amplitude is truncated by the rising b-wave (Frishman, 2006). 

It has been shown that the a-wave (and the fast PIII component) predominately 

reflect the rod and cone photocurrent, with current source density analysis showing a 

comparable time course and waveform to the rod photoreceptor extracellular current in 

response to light stimuli (Penn and Hagins, 1969 ; 1972). Pharmacological techniques 

have further reinforced the photoreceptoral origin of the a-wave. Aspartate, an agonist for 

the neurotransmitter glutamate, can be used to eliminate synaptic transmission from the 

photoreceptor cells; when used in monkey retina this was shown to abolish all but a 

negative going deflection corresponding to the a-wave and comparable to Granit’s PIII 

component (see figure 1.5.8) (Bush and Sieving, 1994). Bush and Sieving (1994) used the 

more specific L-2-amino-4-phosphonobutyric acid (APB) which blocked the ON-bipolar 

neurotransmitters, and Cis-2,3-piperidine dicarboxylic acid (PDA) which blocked synaptic 

transmission to OFF bipolar, horizontal, amacrine and ganglion cells when eliciting ERGs 
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from the monkey retina. The use of these more specific synaptic inhibitors however, 

indicated a post-receptoral contribution to the photopic a-wave, this can be appreciated in 

figure 1.5.8 where the APB only response shows an initially larger negative going 

response than the Aspartate response in which all post-receptor activity is eliminated.  

 

Figure 1.5.8: Comparison of effects intravitreal injection of APB and APB + Aspartate on 

the monkey ERG in response to a 200 ms flash stimulus. Image from Bush and Sieving 

(1994). 

 

Figure 1.5.9: The photopic a-wave response amplitude plotted against stimulus luminance 

for a monkey retina with intravitreal injection of APB and APB+PDA up until maximal a-

wave amplitude in the control responses. Image from Bush and Sieving (1994). 

 

Bush and Sieving (1994) also investigated the stimulus-response relationship of the 

photopic a-wave over an intensity range extending up to the maximum response amplitude 

in the control monkey retina, and compared this to a APB and APB+PDA treated retina. A 

relative increase in amplitude of the response treated with APB+PDA indicated a reducing 

influence of inner retinal contributions on the a-wave amplitude at high stimulus levels (see 
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figure 1.5.9). These findings suggest that the photopic a-wave reflects both cone 

photoreceptor activity and a component of the cone inner retinal pathway. It has been 

suggested that this inner retinal contribution originates in the OFF-pathway (Bush and 

Sieving, 1994), in particular the amacrine and retinal ganglion cells, as NMDA (N-methyl-

D-aspartate) treated retina, which selectively blocks these neurones, demonstrates 

similarly reduced photopic a-wave responses (Frishman, 2006).  

 

1.5.3.2 b-wave 

The b-wave is the dominant positive deflection within the transient ERG, with the 

peak being dependent upon the PII process (Granit, 1933). It is generally accepted that 

the b-wave reflects the activity of depolarising bipolar cells (Knapp and Schiller, 1984; 

Stockton and Slaughter, 1989; Gurevich and Slaughter, 1993; Xu and Karwoski, 1994; 

Robson and Frishman, 1995; Karwoski and Xu, 1999; Shiells and Falk, 1999).  

Pharmacological techniques have been used to demonstrate the depolarising (ON) 

bipolar cell origin of PII and the b-wave. Shiells and Falk (1999) recorded dark adapted 

ERGs from dog fish retina in eyes with and without APB. By subtracting the pre from the 

post APB responses it was possible to separate the b-wave from the negative 

photoreceptor response and thus demonstrate the depolarising bipolar cell origin of the b-

wave (PII component). In addition, a stimulus-response series for the isolated b-wave 

showed agreement with that of rod bipolar cell function measured using intracellular 

recordings.  

A contribution to the b-wave by the Müller cells has also been suggested (Miller and 

Dowling, 1970; Xu and Karwoski, 1994; Jamison et al., 2001). However, a study using 

barium chloride to block the activity of the Müller cells, was not able to demonstrate an 

effect on the size of the b-wave (Lei and Perlman, 1999), thus suggesting that the b-wave 

(& PII) may be directly attributable to bipolar cell activity.  

 

1.5.3.3 Oscillatory potentials (OP) 

 Oscillatory potentials (OP) are a series of small wavelets that are present on the 

ascending limb of the ERG b-wave, which occur in response to a bright stimulus and are 

maximal in mesopic conditions. Oscillatory potentials have been shown to be present 

under both light and dark adapted conditions (Peachey, Alexander and Fishman, 1987). 

These can be isolated by the use of filters, i.e. a high pass filter between 75 and 100 Hz 
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and a low pass filter set at 300 Hz or above, as described in the ISCEV standard (Marmor 

et al., 2009).  

The evidence suggests that OPs are post receptoral in origin, with pharmacological 

blocking of post receptoral signals eliminating the response (Yonemura et al., 1974). 

Although the exact origin has not been confirmed, evidence suggests that both retinal 

ganglion cells and amacrine cells may contribute depending on whether photopic or 

scotopic stimulus parameters are used to elicit the OPs (Frishman, 2006). 

 

1.5.3.4 Photopic negative response (PhNR) 

The photopic negative response (PhNR) is a negative wave that occurs following 

the b-wave under photopic conditions, originating from the retinal ganglion cells. The 

PhNR has been shown to be reduced in cases of glaucoma (Colotto et al., 2000; Drasdo 

et al., 2001; Viswanathan et al., 2001). Monkeys with induced glaucoma have 

demonstrated reductions in the PhNR when a and b wave parameters were unaffected. 

The same study also demonstrated that eyes treated with Tetrodotoxin (TTX), which 

blocks RGC action potentials, had massively reduced or eliminated PhNR responses, both 

these findings strongly suggesting an RGC origin (Viswanathan et al., 1999). 

 

1.5.3.5 Scotopic threshold response (STR) 

 The scotopic threshold response (STR) is apparent after exposure to very weak 

stimuli, resulting in a slow negative response (Sieving, Frishman and Steinberg, 1986; 

Wakabayashi, Gieser and Sieving, 1988). The STR may simulate the a-wave response, 

but has been shown to be an independent response by pharmacological methods; in 

aspartate treated retina the STR was eliminated, but the a-wave remained (Wakabayashi 

et al., 1988) suggesting a postreceptoral origin. Frishman (2006) suggests that the STR 

originates in either the amacrine or retinal ganglion cell function within the rod pathway, 

based on the assessment of pharmacological studies.  

 

1.5.3.6 c-wave 

The c-wave is a positive wave which develops slowly when a short, bright flash is 

presented to the dark adapted eye.  The c-wave is the sum of two processes, PI and PII 

(Granit, 1933).  A positive component (PI) has been attributed to the RPE by Noell (1953) 

(cited by Rodieck (1972)) who used sodium iodate to remove the RPE contribution in the 

rabbit retina. The positive potential attributable to the RPE is thought to result from a 
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decrease in the extra cellular potassium indirectly associated with the light-evoked closure 

of potassium channels in the photoreceptor outer segments (Weisinger et al., 1996). The 

negative contribution to the c-wave (Slow PIII) has been attributed to hyperpolarisation of 

the Müller cells, also caused by the decrease in extracellular potassium following light 

exposure (Witkovsky, Dudek and Ripps, 1975). 

 

1.5.3.7 d-wave 

This sub-component of the ERG is a positive response to the cessation of light 

stimulation of the cone photoreceptors, under light adapted conditions. The d-wave is only 

detected when long duration stimuli are used, as it merges with the b-wave for short 

flashes. The d-wave has been attributed to the transient depolarisation of OFF-bipolar 

cells of the retina (Weisinger et al., 1996). 

 

1.5.4 The flicker ERG 

The flicker ERG (photopic fast flicker ERG) is generated in response to a flickering 

stimulus, usually at a temporal frequency of about 30 Hz (Frishman, 2006; Marmor et al., 

2009), which produces a repeatable waveform. As rods are insensitive to temporal 

frequencies above around 20 Hz, this response is dominated by the cone pathway 

(Sharpe, Stockman and MacLeod, 1989). Bush and Seiving (1996) used pharmacological 

dissection to demonstrate the origins of the flicker ERG in monkeys, recording both 

transient (15-ms single flash) and flicker ERGs (33 Hz). Glutamate analogues (APB & 

PDA) were used to selectively block the ON (APB) and OFF (PDA) pathways. Blocking the 

ON pathway delayed the time to peak of both the transient ERG b-wave and the flicker 

ERG. The application of both APB and PDA (blocking both ON and OFF pathways) 

virtually eliminated the flicker ERG, indicating that the fast flicker ERG originates post 

receptorally.  

By assessing the first and second harmonic of the Fourier analysed focal flicker 

ERGs, Falsini et al. (1995) were able to demonstrate deficits in both the first and second 

harmonic responses in participants with outer retinal disease, for example AMD. In 

contrast, those with only post receptoral disease (i.e. central artery occlusion) had normal 

first harmonic responses. These findings suggested an outer retinal origin for the first 

harmonic of the flicker ERG. However, other studies have shown this response to be post 

receptoral in origin (Kondo and Sieving, 2002), and have suggested that the first harmonic 
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of the flicker ERG appears to be dominated by bipolar cell activity (Kondo and Sieving, 

2001; Hare and Ton, 2002; Viswanathan, Frishman and Robson, 2002).    

 

1.5.5 The focal cone ERG 

Because full field ERGs are a sum of the total retinal response, they are likely to be 

insensitive to macular diseases such as early AMD (Sunness et al., 1985; Holopigian et 

al., 1997), which may only affect up to ~2% of the total retinal area. A focal ERG allows 

selective stimulation of a particular area of the retina, so facilitating identification of 

localised defects. The focal stimulus requires a desensitising surround to prevent 

stimulation of the peripheral retina by scattered light. A common approach to obtaining 

focal cone ERGs has been the use of a stimulator ophthalmoscope, which utilises a 4° 

stimulus operating at 42Hz, with a 12° white surround (Weiner and Sandberg, 1991; 

Sandberg, Miller and Gaudio, 1993; Remulla et al., 1995). Falsini et al. (1999b) similarly 

used a focal 32 Hz flicker stimulus (9° diameter) presented against a light adapting 

background. 

The focal flicker ERG technique used by Binns and Margrain (2005) utilised a 

circular stimulus which was positioned such that it stimulated the central 20° of visual field. 

The stimulus was an amber (595 nm) colour designed to provide effective stimulation of 

the L and M cones. A ganzfeld adapting surround was used to suppress any response 

from the peripheral retina, luminance matched to the time averaged luminance of the 

stimulus (Binns and Margrain, 2005). 

Although ISCEV standards recommend a 30 Hz stimulus frequency for full field 

flicker ERG recording (Marmor et al., 2009), a frequency of 41Hz is used by Binns and 

Margrain (2005; 2007). Both of these frequencies are above the rod flicker detection 

threshold (~20Hz) ensuring a cone dominated response (Sharpe et al., 1989). The 

literature shows that stimuli flickering at around 40 Hz have been used successfully for 

studies of macular function, for example by Falsini et al. (2000) and Sandberg et al. 

(1993), using temporal frequencies of 41 and 42 Hz respectively. Work by Seiple, 

Greenstein and Carr (1989) on 6 normal subjects investigated the response amplitude as 

a function of temporal frequency, and demonstrated a maximum response at 40Hz . 

Although many focal ERGs are based on eliciting a focal flicker ERG (Weiner and 

Sandberg, 1991; Sandberg et al., 1993; Remulla et al., 1995; Falsini et al., 1999b), Miyake 

et al. (1988; 1989) utilised a 5 degree focal target with a time averaged luminance of 29.46 

cd.m-2 presented at 4.5 Hz within a uniform adapting background of 2.84 cd.m-2 (> 40 
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degrees diameter) to elicit a transient focal ERG response. Miyake et al. (1988) was able 

to show that the transient ERG was elicited from the macula and did not contain any 

contributions from the peripheral retina.  

More recently transient focal macular ERG responses have been successfully used 

to assess retinal function in AMD (Terasaki et al., 2002; Terasaki et al., 2004; Nishihara et 

al., 2008). The focal ERGs in these studies were elicited from a larger 15° (diameter) 

stimulus presented against a 45° light adapting background. The ERG was evoked by a  5-

Hz rectangular stimulus consisting of alternating 100 ms light-on and 100 ms light-off 

periods with a mean luminance of 29.46 cd.m-² (Terasaki et al., 2004). 

Binns and Margain (2007) used an identical 5 Hz rectangular stimulus to elicit 

transient ERG responses from the macula. However an even larger 20° (diameter) amber 

stimulus, with an average luminance of 30 cd.m-², was used. This was presented within a 

luminance-matched ganzfeld surround, to suppress the response of the peripheral retina 

whilst avoiding any differential light adaptation between stimulated and suppressed retina. 

The transient focal cone ERG provided the characteristic response with demonstrable a 

and b waves, however, the amplitude of these components were reduced compared to a 

full field stimulus due to the reduced retinal area stimulated. Furthermore, Binns and 

Margrain (2007) were able to demonstrate that any rod contribution to the transient focal 

cone ERG was minimal. 

 

1.5.6 The ERG photostress test 

Recovery of function following adaptation to a bright light is largely dependent on 

the speed of photopigment regeneration (Binns and Margrain, 2005). Diseases which 

compromise the integrity of the choriocapillaris, RPE and/or photoreceptor layers are likely 

to interrupt or limit the supply of metabolites to the photoreceptors thus affecting the speed 

of their functional recovery after a photopigment bleach. The literature clearly indicates 

that diseases affecting the outer retina, such as AMD, prolong recovery (Smiddy and Fine, 

1984; Sandberg and Gaudio, 1995; Midena et al., 1997; Phipps, Guymer and Vingrys, 

2003; Binns and Margrain, 2007; Dimitrov et al., 2008), indicating the clinical potential for a 

dynamic assessment of photostress recovery.  

The ERG photostress test assesses the rate of recovery of the focal flicker ERG 

amplitude following exposure to a bright white adapting light (Binns and Margrain, 2005; 

Binns and Margrain, 2007). The test was developed to provide an objective measure of 

photostress recovery. 
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 Binns and Margain (2005) showed that the greatest limitation with previous 

photostress techniques was their subjective nature and that, by using an ERG measure of 

outer retinal function, it was possible to avoid this potential problem. Alternative objective 

techniques have been based on the VEP (Lovasik, 1983; Parisi, 2001), but have a reliance 

on a healthy inner retina and visual pathway, which makes them less suitable for 

assessing outer retinal disease. Although the flicker ERG (see section 1.5.4) is dominated 

by the bipolar response, i.e. is not directly a photoreceptoral response, this more directly 

reflects outer retinal recovery than the psychophysical or VEP alternatives (Binns and 

Margrain, 2005). The rate of ERG recovery is thought to reflect the regeneration of cone 

photopigment (Binns and Margrain, 2005). An additional benefit of using the flicker ERG to 

monitor photostress recovery, compared to a transient response, is that it enables 

significant rapid signal averaging, improving the signal to noise ratio of the ERG post-

bleach. 

Binns and Margrain (2005) were able to successfully model the ERG recovery data 

using two models, a “first order” and “rate limited” model, which have been proposed to 

describe photopigment regeneration kinetics (Paupoo et al., 2000; Mahroo and Lamb, 

2004). However the residual standard deviation of both models, an indication of goodness 

of fit, did not indicate a significant difference between the models, therefore given the 

smaller number of parameters, the first order exponential was deemed most appropriate. 

 

1.5.7 The focal rod ERG 

Focal scotopic ERGs normally produce a double b-wave, the first from the direct 

stimulation of the central retina, the second as a result of light scatter stimulating the 

peripheral retina (Sandberg, Pawlyk and Berson, 1996). Removing the scattered light 

response is more problematic in scotopic conditions, because of the lack of directional 

sensitivity in rods (Alpern, Ching and Kitahara, 1983). The current ISCEV standards 

therefore only include a method for full field rod assessment (Marmor et al., 2009).  

Various approaches have been used to try and overcome the scattered light 

response, these include a subtraction technique developed by Sandberg et al. (1996), a 

background adaptation technique based on work by Hood et al. (1998), and finally the use 

of a very dim light stimulus (Choshi, Matsumoto and Nakatsuka, 2003). 

 The subtraction technique assumes that a full field signal of a similar amplitude and 

implicit time to that produced by scattered light can be produced by presenting a low 
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luminance flash to the whole retina, and then subtracting this from the double-peaked ERG 

leaving the isolated contribution from the focal stimulus (Sandberg et al., 1996).  

 The background adaptation technique proposed by Hood et al. (1998) works on the 

principle that the peripheral retina, not exposed to the focal stimulus, can be desensitised 

by a low luminance suppressing surround and therefore the suppressed peripheral retina 

should not be able to produce a signal in response to the scattered light.  

Finally, the approach advocated by Choshi et al. (2003) to elicit a pure focal rod 

ERG was based upon a stimulus which was bright enough to produce a focal ERG, but 

dim enough to avoid a scattered light response. The ERGs were elicited using a 5° 

diameter blue stimulus. The luminance that would produce no scattered response was 

determined by projecting the stimulus onto the optic nerve head and identifying the 

maximum luminance that did not produce an ERG (1.5 scotopic cd.m-2). 

Binns and Margrain (2006) considered the 3 different methods described above to 

isolate the focal rod response in the development of a focal rod ERG protocol. The 

approach taken by Choshi et al. (2003) was capable of producing a measurable focal rod 

ERG but the averaging required and the minimal size of the b-wave produced was 

considered to be a major disadvantage by the investigators for a clinically viable protocol 

and was not considered for further evaluation. However the subtraction (Sandberg et al., 

1996) and background adaptation (Hood et al., 1998) techniques were directly compared. 

The subtraction technique produce larger and slower b-waves compared to the adaptation 

technique but only 4 of the 10 subjects assessed demonstrated an a-wave. This finding 

would limit the usefulness of this technique for investigating the function of the outer retinal 

complex, as the photoreceptor function is reflected in the a-wave component of the ERG. 

In contrast, the background adaptation technique produced a smaller b-wave amplitude, 

however the resulting ERG waveforms demonstrated a-waves in more cases. Additionally, 

Binns and Margain (2006) reported that the background adaptation approach was simpler 

and quicker to conduct, a significant benefit for a potential clinical protocol.  

 

1.6 Functional changes in age-related macular degeneration 

Sections 1.4 and 1.5 discussed how retinal structure and visual function may be 

assessed, with particular regard to the macula. This section will consider the functional 

deficits which occur in AMD and how these relate to structural changes.  

The effect of geographic atrophy on visual acuity, the most commonly used 

assessment of visual function, is largely dependent on the extent of foveal and adjacent 
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retinal involvement (Sarks et al., 1988). Choroidal neovascularisation and retinal scarring 

associated with the wet form of AMD usually result in severe central field loss and reduced 

visual acuity, the severity again being dependent on the extent of the lesion and foveal 

involvement (MPSG, 1994; Hogg et al., 2003).  

Functional losses are also associated with the early stages of AMD. Affected visual 

functions include, but are not limited to, contrast sensitivity (Kleiner et al., 1988; Owsley et 

al., 1990; Stangos et al., 1995; Midena et al., 1997; Feigl et al., 2005b), flicker sensitivity 

(Mayer et al., 1994; Mayer, Dougherty and Hu, 1995), photostress recovery (Smiddy and 

Fine, 1984; Sandberg and Gaudio, 1995; Midena et al., 1997; Phipps et al., 2003; Binns 

and Margrain, 2007), dark adaptation (Eisner et al., 1991; Eisner et al., 1992; Steinmetz et 

al., 1993; Owsley et al., 2001; Haimovici et al., 2002; Owsley et al., 2007; Dimitrov et al., 

2008) and foveal ERG parameters (Sandberg et al., 1993; Remulla et al., 1995; Sandberg 

et al., 1998; Falsini et al., 1999b; Falsini et al., 2000; Li, Tso and Lam, 2001; Chen et al., 

2004; Binns and Margrain, 2007; Falsini et al., 2007; Piccardi et al., 2009).  

These impairments are often apparent in individuals whose visual acuity remains 

near normal. For example, Midena et al. (1997) assessed macular function in participants 

with early AMD with good visual acuity, with (n=13) and without (n=47) wet AMD in the 

fellow eye, and compared them to age matched healthy subjects (n=36). In comparison 

with the ‘normal’ group, central visual field sensitivity and contrast sensitivity were reduced 

in the diseased group. Additionally, there was a positive relationship between the 

functional impairment and the extent of the retinal lesions. Other studies have also 

compared / correlated functional losses with ophthalmoscopically visible retinal features in 

AMD (Smiddy and Fine, 1984; Eisner et al., 1987; Collins and Brown, 1989; Eisner et al., 

1991; Cheng and Vingrys, 1993; Sandberg et al., 1998). However, recent research has 

begun to take advantage of modern imaging techniques such as OCT: for example studies 

have been published showing a relationship between photoreceptor layer integrity and 

visual acuity in different pathologies (Aizawa et al., 2009; Forooghian et al., 2010; 

Maheshwary et al., 2010; Oster et al., 2010), including AMD (Hayashi et al., 2009; Landa 

et al., 2011; Shin, Chung and Kim, 2011). 

 

1.6.1 Visual acuity and contrast sensitivity 

Visual acuity is often used as the primary clinical measure of visual function, 

however, the association with structural changes at the macula are variable. Advanced 

AMD is usually associated with a significant reduction in acuity, whereas those lesions 
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associated with early AMD, such as drusen and pigmentary changes, may only be 

associated with negligible changes (Klein et al., 1995).  

Beirne et al. (2006) evaluated short wavelength sensitive (SWS) grating acuity with 

regard to different stages of AMD in 88 adults between the ages of 51 and 87 years. The 

study participants were graded using the Wisconsin Age-Related Maculopathy Grading 

System (WARMGS) (Klein et al., 1991), and assigned a severity grade (stages 0 to 6). 

Beirne et al. (2006) found that there was a statistically significant reduction in SWS acuity 

in those with AMD compared to normal participants (p<0.002). However, there was no 

evidence of a significant relationship between functional deficit and disease severity using 

ANOVA and general linear models, with considerable overlap between severity grades. 

When the data was reassessed following reallocation of individuals into new groups of 

healthy (stage 0), early AMD (stages 1 to 4) and advanced AMD (stage 5) participants, the 

analysis revealed statistically significant differences between all the revised groupings. 

This may suggest that only a gross relationship exists between retinal appearance and 

function.  

Whilst recent evidence suggests that retinal thickness, assessed using OCT, was 

not a good predictor of visual function in people with wet AMD (Moutray et al., 2008) there 

are reports that the IS/OS junction is affected in AMD (Drexler et al., 2003; Ko et al., 

2005). Hence, Hayashi et al. (2009) decided to investigate the relationship between the 

structural integrity of the IS/OS junction and visual acuity. The study used OCT to image 

51 eyes with wet AMD following successful treatment with PDT. The integrity of the IS/OS 

junction was graded at the fovea as either complete, discontinuous or absent. Twenty 

eight eyes were graded as having no visible IS/OS junction and were shown to have a 

statistically poorer visual acuity than those with continuous or discontinuous IS/OS 

junctions (p<0.001). Landa et al. (2011) was also able to identify a correlation between 

visual acuity and integrity of the IS/OS junction at the fovea in participants (n=55 eyes) 

with both wet (r=-0.6, p<0.02) and dry (r=-0.58, p<0.02) AMD. This study also compared 

microperimetry measurements on a point by point basis to IS/OS integrity, and retinal 

sensitivity was shown to provide a stronger correlation than visual acuity to integrity in both 

wet and dry AMD. Pappuru et al. (2011) demonstrated that there are also mild correlations 

between acuity and ONL and photoreceptor inner segment thickness (r=-0.49 and -0.59 

respectively) in participants with dry AMD (n=100 eyes), however, given the weakness of 

these correlations and variability in acuity measurements they concluded that these OCT 

parameters could not fully explain the acuity levels achieved. The relationship between 
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visual acuity and parameters of outer retinal structure, particularly the photoreceptors, has 

also been shown in other conditions including diabetic eye disease (Forooghian et al., 

2010; Maheshwary et al., 2010), retinitis pigmentosa (Aizawa et al., 2009) and in the 

presence of epiretinal membranes (Arichika, Hangai and Yoshimura, 2010; Oster et al., 

2010).   

 Contrast sensitivity has also been shown to be affected in AMD (Kleiner et al., 

1988; Owsley et al., 1990; Stangos et al., 1995; Midena et al., 1997; Feigl et al., 2005b). 

Midena et al. (1997) were able to associate a loss in high spatial frequency sensitivity with 

confluence of drusen, hyperpigmentation and RPE atrophy, although not absolute number 

of drusen. Losses in high spatial frequency sensitivity and peak contrast sensitivity have 

also been demonstrated in a study involving participants with drusen (n=52) and healthy 

controls (n=27) all with good acuity (6/6). The drusen within this study were categorised 

based on severity into 4 groups, which were assessed using one way analysis of variance 

techniques, and demonstrated worsening contrast sensitivity with increasing severity of 

drusen (p<0.001) (Kleiner et al., 1988). Studies by Midena et al. (1997) and Stangos et al. 

(1995) also attempted to establish if contrast sensitivity was a predictor for wet AMD by 

comparing participants with bilateral early AMD to those with a contralateral wet AMD eye; 

however, in both studies contrast sensitivity measures were not found to be predictors of 

wet AMD.   

High spatial frequency contrast sensitivity and visual acuity are dependent on the 

cone density of the photoreceptor mosaic at the fovea (Curcio et al., 1990), but a 

significant reduction in photoreceptor density or function is required before reductions in 

VA become apparent (Geller, Sieving and Green, 1992). Therefore, it seems likely that 

other measures of visual function may be more sensitive to early AMD (Landa et al., 

2011). 

 

1.6.2 Colour vision 

Midena at al. (1997) reported that colour vision (assessed using the Farnsworth-

Munsell 100) was not significantly impaired in participants with early AMD (with good 

acuity), however, colour vision defects have frequently been linked to AMD in the literature 

(Bowman, 1978; Eisner et al., 1991; Holz et al., 1995; Elsner, Burns and Weiter, 2002; 

Feigl et al., 2005b; Mitrut et al., 2010), with early AMD predominantly associated with tritan 

(blue-yellow) defects (Feigl et al., 2005b). 
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 Eisner et al. (1991) investigated cone dark adaptation, absolute cone sensitivity, s-

cone mediated sensitivity and colour matching in participants with AMD in the test eye and 

unilateral wet AMD in the fellow eye (n=41). The eyes assessed were sub divided into high 

and low risk of progression by assessing drusen confluence, drusen size and focal 

hyperpigmentation, and visual function was compared between these groupings. In this 

study, test eyes with abnormal colour matching (n=16), were all found to express retinal 

features associated with a high risk of AMD progression. Elsner et al. (2002) also 

assessed colour matching in 53 participants with ARM and not only demonstrated that 

colour matching was abnormal in these participants, but was able to attribute this to a 

reduced density of cone photopigment, based on a modelling technique which assessed 

how the colour matching changed over a range of retinal illuminance. Recently, Mitrut et 

al. (2010) reported a correlation between colour vision deficiency, (red-green and blue-

yellow) assessed using a computerized optotype test, and total drusen area within a 3000 

µm diameter centred on the fovea. 

 

1.6.3 Visual fields and retinal sensitivity 

 Various studies have attempted to correlate retinal sensitivity with disease severity 

in terms of drusen characteristics, pigmentary abnormalities and atrophy (Eisner et al., 

1991; Midena et al., 1994; Tolentino et al., 1994; Midena et al., 1997). Midena et al. (1994) 

evaluated retinal sensitivity (central 10°) in participants with drusen (n=35 eyes) and age 

matched controls (n=16 eyes) and detected a reduction in mean retinal sensitivity which 

was associated with the presence of large and soft drusen, these findings were supported 

by similar findings reported in a later study (Midena et al., 1997) but contradicted by 

Tolentino et al. (1994) who was unable to find a relationship with drusen extent. Eisner et 

al. (1991) was able to identify deficits in absolute sensitivity in eyes with early AMD and 

identified a greater reduction in absolute sensitivity in eyes deemed “high risk” compared 

to “low risk” eyes (p<0.001), although the author cautioned whether this finding could have 

been influenced by the greater age of participants within the “high risk” group.   

More recently Iwama et al. (2010) used microperimetry in 22 eyes to investigate the 

relationship between retinal sensitivity overlying soft drusen (with and without disruption of 

the inner and outer photoreceptor segment (IS/OS) junction), and that overlying apparently 

normal adjacent retina. The retinal structure was assessed using images produced by the 

Topcon 3D-OCT 1000 (Topcon medical systems Inc., Tokyo). The retinal sensitivity was 

measured at 57 locations in each eye, and each point was classified as above or below 14 
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decibel sensitivity. The study found that 68.1% of non-drusen locations achieved this 

sensitivity, however, for locations overlying soft drusen this dropped to 38.9%, and in the 

presence of disruption to the IS/OS junctions only 15.2% of the locations tested had a 

sensitivity greater than 14 dB. These findings revealed a significant reduction in sensitivity 

overlying the drusen and locations with disrupted IS/OS junctions (p<0.0001), indicating a 

clear association between early AMD changes and retinal function. A previous study by 

Sunness et al. (1988) had also investigated retinal sensitivity overlying drusen but 

suggested that sensitivity loss was diffuse and not directly related to the presence of 

drusen, however, this study only tested a total of 54 points in 8 patients, with comparison 

between drusen and non-drusen retinal points made for only 12 pairs. The smaller number 

of patients assessed may mean that the study was not sufficiently powered to detect the 

difference between drusen and non-drusen locations. 

In addition to retinal features being associated with retinal sensitivity, a study by 

Chen et al. (1992) was able to associate changes in choroidal perfusion to localised 

reduction in dark adapted sensitivity. Eight eyes with abnormal choroidal filling phases, 

identified by fluoroscein angiography, were compared to 6 eyes matched for retinal 

appearance but with normal choroidal filling phases. Areas of scotopic threshold elevation 

(of up to 3.4 log units) were shown to correspond to areas of abnormal choroidal filling. 

 

1.6.4 Dark adaptation and the macular photostress test 

Dark adaptation is the slow recovery in visual sensitivity following exposure to a 

bright adapting light (often called a photobleach). The dynamics of dark adaptation have 

been shown to be abnormal in AMD (Eisner et al., 1991; Eisner et al., 1992; Steinmetz et 

al., 1993; Owsley et al., 2001; Haimovici et al., 2002; Owsley et al., 2007; Dimitrov et al., 

2008). The macular photostress test provides a more rapid measure of dark adaptation 

kinetics by assessing cone adaptation following exposure to a bright adapting light. This is 

commonly carried out clinically by timing the recovery of visual acuity following a 

photobleach to a line above the pre-bleach level (Margrain and Thomson, 2002). The 

macular photostress test has been shown to be sensitive to AMD and associated retinal 

features (Smiddy and Fine, 1984; Sandberg and Gaudio, 1995; Midena et al., 1997; 

Phipps et al., 2003; Binns and Margrain, 2007).  

Eisner et al. (1991) investigated rates of dark adaptation and showed that “high risk” 

eyes tended to have longer time constants of recovery than “low risk” eyes (P<0.01), 

furthermore, all 21 eyes in the study with a time constant greater than 200s (considered to 
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be the upper limit of normal) were “high risk” eyes, with slow dark adaptation being 

considered a very specific marker of high risk retinal features in this study. The study 

showed that a combination of dark adaptation and colour matching assessment was very 

sensitive to “high risk” eyes (P<0.001), in fact 30 out of 32 high risk eyes demonstrated 

abnormal colour matching or dark adaptation in the study.  

Owsley et al. (2001) investigated rod dark adaptation in participants with ARM 

(n=20) and healthy age matched controls (n=16). They showed that participants with ARM 

had abnormal dark adaptation parameters. Later work by Owsley et al. (2007) again 

investigated parameters of dark adaptation in participants with ARM (n=83) and once more 

identified a significant abnormality in rod-mediated parameters of dark adaptation including 

the rod-cone break, rod slope and rod sensitivity (P<0.0001), when compared with normal 

age matched participants (n=43).  Additionally they showed that these parameters 

worsened with increased disease severity (participants were categorised into early, 

intermediate and advanced AMD based on retinal photograph grading).  

Cone parameters were also assessed by Owsley et al. (2007), who reported that 

cone mediated time constants and cone sensitivity were not impaired compared to control 

participants in this study. This may be expected given the reported preferential loss of rod 

photoreceptors over cones in early AMD (Curcio et al., 1996), however other studies have 

found delayed cone adaptation to be highly sensitive to early AMD (Dimitrov et al., 2008; 

Gaffney, Binns and Margrain, 2011). This may reflect differences in the bleach and 

stimulus parameters used e.g. the retinal location tested. 

Furthermore, Sandberg et al. (Sandberg and Gaudio, 1995; Sandberg et al., 1998), 

using a macular photostress test technique, have shown cone mediated adaptation to be 

associated with AMD in studies assessing fellow eyes of participants with wet AMD. In a 

longitudinal follow-up they showed a slowed photostress recovery time to be an 

independent risk factor for the development of wet AMD (Sandberg et al., 1998). Midena et 

al. (1997) were similarly able to show that a slowed photostress recovery time was 

associated with AMD, and related this to disease severity, with slower recovery associated 

with increased extent of drusen, pigmentary changes and atrophy in test eyes. Other 

studies have failed to identify a relationship between photostress recovery and drusen 

confluence or AMD severity, despite finding significant delays in photostress recovery 

(Smiddy and Fine, 1984; Cheng and Vingrys, 1993).  

A study by Binns and Margrain (2007) used an ERG photostress test (see section 

1.5.6) to provide an objective measure of cone recovery. In this study, participants with 
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ARM (n=31) were shown to have a reduced rate of recovery, compared to age-matched 

controls (n=27; p<0.001). Additionally, 9 individuals did not demonstrate any recovery 

during the testing period; 5 of these participants had a fellow eye with wet AMD, again 

suggesting photostress recovery as having a prognostic role for wet AMD.  

Dark adaptation and photostress recovery parameters may be particularly sensitive 

to AMD related changes given the relationship between the dynamics of photopigment 

regeneration upon which these parameters depend, and the health of the outer retina. The 

retinoid cycle requires constant exchange of retinoid across the inter-photoreceptor space 

between the RPE and rods to regenerate rod photoreceptor photopigments (Lamb and 

Pugh, 2004). During retinal adaptation the outer retina requires a constant supply of 

metabolites derived from the choroidal circulation which must be transported across 

Bruch’s membrane. Structural changes related to ageing and AMD, such as deposition of 

hydrophobic material and the thickening of Bruch’s membrane and loss of choriocapillaris 

(see section 1.3.2), are likely to impede the rate and supply of metabolites to the outer 

retina and therefore, slow the rate of retinal adaptation in AMD (Owsley et al., 2001).  

 

1.6.5 Electrophysiology 

 The electroretinogram (ERG) objectively assesses visual function at the level of the 

retina and through modifying the state of adaptation and the stimulus parameters used can 

elicit responses which reflect different aspects of retinal function (see section 1.5). There 

are numerous reports of abnormal ERG parameters in people with ARM and AMD. 

However, whilst many authors identify statistically significant differences, only a fraction of 

these describe the diagnostic potential of the techniques. The Appendix G identifies those 

publications where statistically significant differences in ERG parameters are reported. 

This section will therefore concentrate on studies where the diagnostic potential or a 

relationship with retinal structure has been assessed. Studies evaluating treatment 

outcomes using the ERG have not been included. 

 

1.6.5.1 Ageing and ERG parameters 

Electroretinogram parameters have been shown to be affected by normal ageing 

independent of AMD-related changes (Weleber, 1981; Birch and Fish, 1988; Birch and 

Anderson, 1992; Freund et al., 2011). For example, Birch & Anderson (1992) reported a 

reduction in full field photopic and scotoptic ERG amplitudes whilst b-wave implicit times 

lengthened with increasing age in a study comprising healthy adults (n=269). More 
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recently Freund et al. (2011), cited two similar studies which investigated the effect of age 

on the cone ERG, one reported no change (Chiti et al., 2003), the other a reduction in b-

wave amplitude with age (Weleber, 1981). Prompted by the contradictory evidence within 

the literature Freund et al. (2011) investigated the effect of normal ageing on a series of 

transient ERGs over range of adaptation states and for a series of ISCEV standard ERG 

techniques (Marmor et al., 2009). ERGs were recorded from healthy participants with good 

visual acuity (>6/6) and the ERG parameters compared between 3 age groups, 20-39 

(n=27), 40-59 (n=20) and 60-82 (n=18) years. Bilateral full field ERGs were recorded using 

an active DTL fibre electrode and reference and earth gold skin electrodes. Standard 

ISCEV responses (Marmor et al., 2009) were recorded in addition to a photopic (11 

increments, -1.63 to 2.86 photopic log cd.m-2.s) and scotopic (16 increments, -5.22 to 1.37 

scotopic log cd.m-2.s) luminance response series. The older participant group in this study 

demonstrated increased photopic a and b wave amplitude and implicit times for high 

luminance flashes (>7.6 photopic cd.s.m-2), delayed dark adaptation, reduced dark 

adapted a wave amplitudes (although b wave amplitudes were unaffected) and prolonged 

scotopic a and b wave implicit times.  

This evidence would suggest that ageing can be expected to influence ERG 

parameters. Weleber et al. (1981) suggested that a correction to ERG parameters should 

be made for age related changes using age-corrected values derived from linear or 

multiple regression coefficients.  

 

1.6.5.2 Full field techniques   

The effect of AMD on full field ERG and EOG responses is unclear. For example, 

Walter et al. (1999) investigated participants with AMD (n=122 eyes) and compared these 

to age matched controls (n=47 eyes) for a range of full field responses and found deficits 

in both rod and cone driven ERG parameters. Findings included delayed and reduced 

amplitude a and b waves of the rod dominated ERG, and reduced amplitude a and b 

waves of the cone dominated ERG, although the 30 Hz ERG was unaffected. Only 42 of 

the 122 eyes that Walter et al. (1999) assessed could be classified as ARM, whilst the 

remainder had advanced AMD. In contrast, Sunness et al. (1985) and Holopigian et al. 

(1997) found a range of full-field ERGs to be unaffected by earlier stage AMD, which might 

be expected given that macular disease only affects up to ~2% of the total retinal area. 

Full field ERGs are therefore unlikely to provide measures of value in the diagnosis of 

ARM.  
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1.6.5.3 Focal techniques 

 Falsini et al. (1999b) assessed cone mediated macular function using a focal flicker 

ERG (32 Hz; 9° diameter) in non-exudative AMD. Twenty-five participants with bilateral dry 

AMD were compared to 10 age matched controls, and the participants with AMD 

demonstrated a reduced ERG amplitude (57% reduction, p<0.001), whilst those with 

minimal AMD related lesions and normal acuity had a relatively smaller reduction in ERG 

amplitude (47% reduction, p<0.01). The amplitudes were also found to correlate with 

grading scores (r=-0.63, p<0.001), based on the Wisconsin AMD grading scale (Klein et 

al., 1991), and the percentage area of hyperflourescence (r=-0.70, p<0.01). Falsini et al. 

(1999b) suggested that the focal flicker response may be a suitable measure for assessing 

disease severity (Falsini et al., 1999b; Falsini et al., 2000).  

Piccardi et al. (2009) compared perimetry and focal electroretinography (ERG), to 

morphological changes in people with ARM (n=26) and age matched controls (n=12).  A 

series of focal flicker ERGs (41 Hz) were recorded to central (4.5° diameter) and 

paracentral (4.5 to 18° diameter annulus) stimuli. Both stimuli showed a statistically 

significant reduction in amplitude in the group with ARM (p<0.01), and a phase delay was 

identified for the paracentral stimuli (p<0.01). It was reported that ERG delays and 

morphological lesions associated with ARM were most evident in the paracentral region 

tested, but they concluded that ERG responses were linked to eccentricity and not retinal 

morphology. 

Sandberg et al. (1993) reported delayed implicit time in responses obtained using a 

focal flicker (4°, 42 Hz) ERG technique, in fellow eyes of participants with unilateral wet 

AMD (n=73) when compared to normal eyes (n=28). Remulla et al. (1995) similarly utilised 

a focal flicker ERG (4°, 42 Hz) to investigate 67 fellow eyes of participants with unilateral 

wet AMD. In this study fluoroscein angiography identified 28 eyes with abnormal choroidal 

perfusion, which demonstrated delayed implicit times of 1 ms (p<0.02) compared to eyes 

with normal perfusion, and were more likely to have delayed implicit times (p<0.01). These 

studies suggest a link between choroidal circulation / metabolic supply in AMD and the 

focal flicker ERG implicit time, however, the small difference in implicit time between 

groups suggests that this is unlikely to be clinically useful. In addition, when 127 

participants with unilateral wet AMD were followed up over a 4.5 year period, the focal 

flicker ERG implicit time of the fellow eye was not found to be an independent risk factor 

for neovascular changes, although the interval to CNV manifestation was inversely related 
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to flicker ERG implicit time in those participants who progressed. This later study did report 

that the extent of macular abnormalities (e.g drusen confluence and pigmentary 

abnormalities) and the glare recovery time were independent risk factors for progression 

(Sandberg et al., 1998).     

 Binns and Margrain (2007) demonstrated not only delayed implicit time (p<0.001 & 

AUC=0.73) and reduced amplitude (p<0.003 & AUC=0.73) of the focal flicker ERG (20°, 

41 Hz) in participants with ARM (n=31) compared to age matched controls (n=27), but also 

deficits in transient focal cone ERG parameters. The focal cone ERG elicited by a photopic 

(20°, 5 Hz) stimulus demonstrated delayed implicit times for both a (p<0.002 & AUC=0.74) 

and b (p<0.001 & AUC=0.77) waves. These findings were in addition to the slowed ERG 

photostress recovery previously discussed. As can be seen by the area under ROC 

curves, these parameters all had relatively good diagnostic potential for the detection of 

ARM.  

Chen et al. (2004) investigated cone and rod function using an mfERG technique in 

both light and dark adapted conditions. They showed that rod N1 and P1 mfERG 

components were significantly reduced in AMD participants (n=24) compared to normals 

(n=16) in a ring at 5° eccentricity, corresponding to a deficit in scotopic sensitivity 

assessed using a perimetry technique. However, this finding was in isolation, and both rod 

and cone mfERG amplitude and latencies for other retinal regions and the summed 

responses were not found to be significantly different between groups.  

 The literature clearly shows that cone ERGs can be used to investigate AMD. 

Although, there is relatively little literature on focal rod techniques, psychophysical 

evidence suggests that electrophysiological measures of rod function are likely to be 

impaired in early AMD (Owsley et al., 2000; Owsley et al., 2001; Owsley et al., 2007). 

 

1.7 Project overview and aims 

A combination of the advent of anti-VEGF therapy and the recent advances in OCT 

technology (Drexler and Fujimoto, 2008), has meant that imaging techniques have 

become much more important as a method of diagnosis and monitoring of AMD. Optical 

coherence tomography has been shown to be a reliable technique for retinal imaging, 

being able to clearly image the structural changes which occur within the eye as a result of 

AMD (Pieroni et al., 2006; Chen and Lee, 2007; Zayit-Soudry et al., 2007). The literature 

indicates that there are many functional changes associated with AMD, some of which are 
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apparent at even the earliest stages of the disease, even when visual acuity remains 

normal (see section 1.6). 

Clinically, the detection and diagnosis of AMD is made based on a combination of 

both structural and functional changes of the eye. Within a primary care, setting functional 

assessment of visual acuity, Amsler chart and structural assessment, by way of routine 

ophthalmoscopic examination of the macula, have been considered enough for a 

preliminary diagnosis. It is clear that there exists the possibility of extending the current 

clinical protocol for AMD assessment to increase the sensitivity to mild structural and 

functional changes. As the intensive effort invested in the research and development of 

new treatments and therapies for AMD comes to fruition the ability to accurately diagnose 

the onset of AMD and to monitor disease progression is vital for the early identification of 

patients suitable for therapy, and in evaluating the outcomes of the treatment.  

Therefore, the first aim of this thesis was to determine and compare the diagnostic 

potential of a range of structural (provided by OCT imaging), and functional (provided by 

electrophysiological tests) parameters. This was achieved by carrying out a case control 

study using participants with ARM (early AMD) and comparing these with age matched 

healthy controls. 

The evidence to date for relationships between structural changes within the retina 

or choroid and ARM have largely considered the presence and extent of retinal lesions 

associated with AMD, such as drusen (see section 1.6). However, advances in OCT 

imaging have enabled the accurate identification and measurement of features such as 

intra-retinal layer thickness, which were not accessible using traditional techniques 

(Loduca et al., 2010). Optical coherence tomography retinal images are comprised of 

hyper-reflective bands; which have been shown to reflect the underlying retinal histology. 

Correspondence between the different cellular layers within the retina and OCT images 

has been well documented (Chauhan and Marshall, 1999; Gloesmann et al., 2003; Anger 

et al., 2004; Chen et al., 2009).  

   Electrophysiological techniques have been shown to be capable of isolating and 

assessing the function of individual cell types within the retina (Bush and Sieving, 1994; 

Frishman, 2006). Section 1.5 describes how the subcomponents of the ERG are 

dominated by the activity of different cell types within the retina, many of which may be 

found within specific retinal layers. Therefore with the ability to identify, delineate and 

quantify many of the intra-retinal cellular layers using OCT images this provides an 

excellent opportunity to directly compare retinal and choroidal structure to retinal function.   



 

 
 

81 Chapter 1: Introduction 

The second aim of this thesis was to investigate the relationship between retinal 

structure and function. This was achieved by imaging the retina using OCT and measuring 

the thickness of the intra-retinal layers and the choroid and then comparing the thickness 

of these individual layers to retinal function as determined by focal ERG parameters. 

The final aim of this study was to determine if retinal appearance was related to 

focal ERG parameters in participants with ARM.  

 Ultimately this information will be of value in understanding the development and 

progress of AMD, and will aid in the development of clinical tests suitable for the detection 

and monitoring of AMD. 
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Chapter 2: Development of imaging techniques 

This chapter describes the OCT system used for this thesis, the imaging protocols 

and image processing methods selected, and the evaluation of a novel segmentation 

method. In addition, the system used for grading and classifying age-related macular 

degeneration in this thesis is described. 

 

2.1 1060 nm FD-OCT system 

The 1060 nm FD-OCT, also known as the Enhanced Choroidal Penetration OCT, 

was a prototype system capable of an imaging rate of 47,000 a-scans/s allowing 512 x 512 

a-scan raster patterns to be acquired in a clinically viable timescale (Esmaeelpour et al., 

2010). The 1060 nm light source allows the system to achieve greater penetration of 

media opacities such as cataract, and increased imaging depth i.e. to the level of the 

choroid-scleral junction (Povazay et al., 2007a). The 1060 nm FD-OCT has an axial 

resolution of ~8µm, less than the equivalent 800 nm system (Povazay et al., 2007a). 

The 1060 nm FD-OCT system used for this thesis lacked several clinically important 

features. Firstly, the software did not provide a ‘review’ image facility to allow assessment 

of image quality following acquisition. Secondly, the use of a ‘fixed’ fixation target within 

the imaging system required accurate patient instruction to image eccentric locations. 

Consequently to ensure that accurate and usable images were obtained from participants, 

multiple images were acquired so that the best images could be used for analysis.  

 

Dimensions 
(X by Y by Z) 

Angular 
Extent 

Imaging 
Wavelength 

Details 

512x512x1024 20°x20° 1060 nm  

512x512x1024 36°x36° 1060 nm 
Imaged area exceeds the central 20° giving 

more allowance for poor fixation and 
centration. 

Table 2.1.1: OCT scan parameters used in this thesis for the 1060 nm FD-OCT system.  

 

The 1060 nm FD-OCT system, in contrast to commercial systems such as the 

Cirrus OCT (Carl Zeiss, Meditec Inc, CA), had no pre-defined imaging protocols, but was 

able to capture images which exceeded 20° of visual angle. However, for a given b-scan, a 

larger visual angle results in a proportional reduction in a-scan density and therefore a 

reduced transverse resolution of the resulting image. The scan protocols selected for use 

in this thesis are shown in table 2.1.1. The protocols selected were based on equal 

spacing of a-scans in each image dimension, highest achievable image resolution and 
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coverage of the 3 macula subfields used for the international ARM grading system (Bird et 

al., 1995) assuming central (foveal) fixation. 

 

2.2 Post processing and quantification 

 

2.2.1 Transverse image magnification 

The axial component of an OCT image is unaffected by magnification effects, 

however, the transverse parameters are subject to magnification effects in the same way 

as retinal photographs. The magnification is derived from both the optics of the imaging 

system and the eye being imaged. A method of correcting for magnification in retinal 

imaging was first proposed by Littmann (1982) and has since been modified by Bennett et 

al. (1994). Thus, a correction can be made to length and area measurements obtained 

from retinal images using equations 2.1 & 2.2 respectively. 

 

Equation 2.1:    t = pqs 

 

Equation 2.2:    t² = (pqs)² 

 

Where: 

 “t” is the true size of retinal feature 

 “s” is the size of the feature on the photograph  

“q” is a value based on the optical dimensions of the eye 

“p” is a value based on the optics of the imaging device 

 

The factor q is directly related to the optical properties of the eye being imaged and 

can be calculated based upon the ametropia, keratometry, lens curvature and refractive 

indices of the media in the eye being imaged.  However, Bennett et al. (1994) compared 

12 different methods for calculating q and found that axial length was the most important 

contributing factor to determining the value q. Accordingly, this study determined that the 

most effective method for calculation “q” was using equation 2.3, called the “adjusted axial 

length method”. 

 

Equation 2.3:    q = 0.01306(x-1.82) 
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Where: 

“q” = eye correction factor,  

“x” = axial length of imaged eye (mm). 

 

In order to calculate the correction factor for OCT images the value “p” is needed for 

the system. Studies have calculated the value “p” for OCT systems using a telecentric 

optical setup (Leung et al., 2007; Kang et al., 2010); these systems have no magnification 

effect when the axial length of the eye is 24.46mm. Therefore, using equation 2.3 it is 

possible to produce a correction factor for the magnification effect in OCT, as shown 

below: 

 

When the axial length is 24.46 mm there is no magnification effect, therefore t = s and it 

follows from equation 2.1 that, p.q = 1 and therefore: 

 

p = 1/q 

 

The value p is calculated as: 

p = 1/ (0.01306. (24.46-1.82)) = 3.3822 

 

Thus, transverse OCT dimensions should be corrected for axial length using 

equation 2.4 (Littmann, 1982). 

 

Equation 2.4:   t =3.3822 . (0.01306.(x-1.82)).s 

 

Where: 

t = true size of retinal feature (µm) 

x = axial length of imaged eye (mm) 

s = measured size of retinal feature (µm) 

 

To reflect the effect axial length may have on the transverse dimensions of an OCT 

image the magnification factor for a 20 and 27mm axial length eye have been calculated 

below:  

 

20 mm axial length magnification factor: 0.80x 
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27 mm axial length magnification factor: 1.11x 

 

To summarise, where OCT measurements are made in the transverse plane then 

these measurements should be corrected for the magnification. The adjusted axial length 

method (Bennett et al., 1994) was used for calculating the eye correction factor “q” whilst 

the factor “p” is fixed at 3.3822 for the OCT system used in this thesis.    

 

2.2.2 Image enhancement techniques 

Optical coherence tomography images are usually recorded using a raster scan 

pattern, the individual a-scans that comprise the b-scans and full image are therefore 

recorded sequentially. Although the a-scans are collected at high speed, minimising the 

potential for adjacent a-scans to be misaligned, the numbers required for large images 

(e.g. 262144 a-scans for a 512x512 image) make it increasingly likely that the acquisition 

will be affected by movements or fixation artefacts in the images. Additionally, the pupil 

margins or a poorly timed blink may obstruct imaging of part, or the entire retina, during 

image acquisition. The optics of the eye may also degrade the image due to media 

opacities and aberrations resulting in universal or localised reductions in image quality, 

whilst the eyes’ pigmentation may reduce the laser penetration limiting the visibility of 

retinal/ choroidal features.  

Some factors that affect image quality may be reduced or eliminated by good 

imaging technique, for example good patient alignment and instruction. Other factors, 

however, require correction by ‘post processing’ techniques following image acquisition.  

The techniques may be both objective and subjective in nature, with the application of 

each technique dependent upon both the quality of the image and the clinical features of 

interest to the observer. The following is an overview of the post-processing techniques 

used in this thesis, all of which were carried out using ‘ImageJ’ (Rasband, 1997), the 

descriptions given are based on information available from the ImageJ website 

(http://rsbweb.nih.gov/ij/index.html, as accessed 27th August 2010).  

 

2.2.2.1 Brightness and contrast 

The brightness adjustment adds or subtracts a bias to every pixel within the image, 

increasing or decreasing the absolute luminance. The contrast applies a scale factor to all 

the pixels, proportional to the original intensity of each. The adjustment of the brightness 

and contrast of an image can help improve the visualisation of the individual retinal layers. 
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However adjustments can lead to blurring of the intra-retinal boundaries, possibly 

changing the interpretation of their exact location. The brightness and contrast of images 

were adjusted manually, using ImageJ (Rasband, 1997), until the retinal layers were 

subjectively identifiable.  

 

2.2.2.2 Stack registration 

B-scans within a newly acquired OCT image are not necessarily aligned with their 

neighbour, for example when motion artefacts occur during image acquisition. Stack 

registration aligns adjacent b-scans based on common features between adjacent scans. 

Stack registration sequentially assesses each b-scan from a predefined starting point 

within the image (for the purposes of this study the b-scan corresponding to the foveal pit 

was used). 

 

2.2.2.3 Spatial convolution blur 

Spatial convolution allows the introduction of controlled blur into the OCT image 

with the pattern described by a ‘kernel’. The kernel is a matrix whose centre corresponds 

to the source pixel and the other elements correspond to the adjacent pixels, the adjusted 

pixel intensity is obtained by multiplying each source pixel by its corresponding kernel 

coefficient and adding the results.  ‘Convolving blur’ was applied to the OCT images to 

enhance the retinal layers by reinforcing features common to adjacent b-scans whilst also 

reducing noise.  

 

2.2.2.4 Gaussian blur 

Gaussian blur blurs each pixel according to the shape of the Gaussian function.  A 

'Radius' can be specified which describes radius of decay to exp(-0.5) ~ 61% (i.e. the 

standard deviation sigma of the Gaussian). The radius value specified for each OCT 

image was determined subjectively with the intention of producing a blur that improved the 

visibility of the retinal layers and choroid.  

 

2.2.2.5 Reslice 

Reslicing is a function which enables the reconstruction of one or more orthogonal 

slices through the image. The reconstruction can be specified to start at any edge of the 

image, and the number slices and orientation of the new image can be specified. This 

function was used to produce enface views (viewable from the top or bottom of the image), 



 

 
 

87 Chapter 2: Development of imaging techniques 

or to view horizontal or vertical cross-sections (b-scans) through the OCT image.  

 

2.2.2.6 Radial reslice 

Radial reslice is an adaptation of the ‘reslice’ function, which creates an orthogonal 

reconstruction of the image stack by consecutively rotating a line around a central point (in 

this case the foveal pit), each successive image in the new stack represents a section from 

the fovea to the periphery, at regular intervals (1° per image) over 360°. These images 

were used in this thesis to produce a series of ‘annular’ images comprising rings of a-

scans with increasing eccentricity from the fovea by applying the reslice function.  Each 

consecutive annular image represented an increase in eccentricity from the foveal pit of 1 

pixel. This technique was used in section 2.3 only. 

 

2.2.2.7 Z-project 

The Z-project function enables adjacent images (usually b-scans) to be merged into 

a single image, effectively producing an averaged b-scan. The Z-project function can 

improve OCT image quality by reducing noise. That is, noise is reduced whilst the 

appearance of common features such as intra-retinal boundaries is enhanced. This type of 

image processing is achieved at the loss of spatial localisation relative to the number of 

adjacent scans combined.  

The Z-project may merge multiple images using a variety of techniques, the most 

useful approaches involve averaging the intensity or summing the intensity across merged 

images. This technique was used to combine adjacent b-scans during analysis to improve 

the localisation of faint or poorly defined retinal layers. 

 

2.3 OCT measurement techniques 

Clinically, quantitative analysis of OCT images is carried out manually using a 

digital calliper to measure retinal structure at specific locations or, more commonly, by 

automated segmentation. Segmentation works by delineating specific layers within each b-

scan (for example, the ILM and RPE for retinal thickness) and then calculating the volume, 

area and thickness of the structures contained within the delineated area.  Commercial 

OCT systems usually contain specifically designed and calibrated software for this 

purpose.  

The advantage of manual segmentation is that it allows the observer to ensure that 

the retinal layers are correctly identified in the potentially disordered diseased retina. The 
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processes used in automated segmentation do not necessarily follow retinal morphology, 

but do allow images to be analysed in such a way that any value (for example retinal 

thickness) can be recalled for any point within the imaged area. When carried out by 

computer software this approach can be very effective, allowing a wide range of analyses 

to be conducted. In contrast, manual segmentation of an entire OCT image is time 

consuming and labour intensive, with FD-OCT images often comprising 256 or 512 

individual b-scans that need to be segmented by hand. Manual segmentation often only 

involves a subsection of b-scans within an OCT image; however, each reduction in sample 

density reduces the reliability of thickness maps and other data produced.  

Given the difficulties associated with manual segmentation, consideration was given 

to a novel approach involving the selective segmentation of ‘annular’ OCT scans 

corresponding to specific retinal eccentricities. This study investigated structural and 

functional changes in ARM participants and, therefore, it seemed reasonable to 

concentrate the analytical effort on retinal locations where AMD related changes had been 

previously identified. Structural and functional changes have both been shown to occur 

preferentially in an annular region within the parafovea (Curcio et al., 1993; Curcio et al., 

1996; Owsley et al., 2000). Therefore, by concentrating manual segmentation 

measurement of retinal and choroidal thickness to locations at specific eccentricities within 

this region (up to 10° eccentricity) it was hoped to provide an efficient method for the 

detection of AMD related changes.  

The following study compared two methods of analysing OCT images obtained 

using the 1060 nm FD-OCT system. The first method utilised a manual segmentation 

approach which produced an average retinal and choroidal thickness for a series of 

annular rings centred on the fovea. The second method utilised manual measurements, at 

pre-determined points of increasing eccentricities along the horizontal and vertical planes 

intersecting the fovea. Measurements using these two approaches were compared to each 

other and to retinal thickness values from established analysis techniques in the literature.  

 

2.3.1 Methods 

21 healthy elderly participants were recruited (age 56-76 years).  Each participant 

was imaged using the 1060 nm FD-OCT system, with a 512x512 scan (20°x20°) protocol. 

All OCT images were post processed using the techniques described in section 2.2 to 

improve image quality and allow identification of the ILM, RPE and choroid-scleral 

boundaries. The following sections describe both the ‘manual measurement’ (section 
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2.3.1.1) and ‘annular segmentation’ (section 2.3.1.2) techniques applied to each image. 

The agreement between techniques was assessed using a technique proposed by Bland 

and Altman (1999) and the thickness values produced were compared to equivalent 

values reported in the literature.  

 

2.3.1.1 Manual measurement 

 The post processed OCT images were resliced (see section 2.2) to isolate b-scans 

that provided a horizontal and vertical cross section that intersected at the foveal pit.  

Thickness measurements were obtained at 21 locations, corresponding to the foveal pit 

and at 0.4 mm intervals temporally and nasally on the horizontal image, and superiorly and 

inferiorly on the vertical image extending to an eccentricity of 2.0mm (~7°) in each 

direction.  

 

Figure 2.3.1: OCT b-scan (Left) with arrows indicating example calliper measurements for 

retinal (red arrows) and choroidal (blue arrow) thickness at 2 locations. Retinal thickness 

was measured between the ILM (the most anterior hyper-reflective line) and the RPE 

(inner edge of the brightest hyperreflective line). Choroid thickness was measured 

between the RPE/choriocapillaris boundary (outer edge of the brightest hyper-reflective 

line) and the choroid-scleral boundary, identified by a combination of a visible sclera 

reflectivity band and the limit of visible choroidal vessels. Retinal photograph (right) 

indicates measurement location at 0.4 mm intervals (black spots) along the vertical and 

horizontal meridians (black lines).  

 

The calliper function within ImageJ (Rasband, 1997) was used to measure the 

retinal and choroidal thickness at each location (see figure 2.3.1). The calliper was 

orientated vertically to avoid introducing a transverse component to the measurement. The 
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measurement was returned in pixels, and converted into microns (µm) using the 

conversion factor of 2.43µm per pixel. To aid comparison with the annular segmentation 

technique a mean of the 4 manual measurements at each eccentricity was determined.  

 

2.3.1.2 Annular segmentation 

The post processed OCT images were radially resliced to obtain annular rings 

centred on the foveal pit with each ring spaced in pixel steps from the fovea (see figure 

2.3.2). The rings were separated by 0.4 mm with the outer ring being 2 mm from the fovea.  

These were manually segmented using bespoke software called ‘Manseg 4’. The four 

boundaries corresponding to the borders of the retina and choroid were manually 

delineated (see figure 2.3.1). Manseg 4 used the boundaries to calculate an area for each 

image representing the total number of pixels within each segmented area. This area was 

then divided by the circumference (circumference = 2.π.r) to provide an average thickness 

for each ring. 

 

Figure 2.3.2: Example annular images for ~0.4 mm (outlined in red) and ~2.0 mm (outlined 

in blue) eccentricity.  

 

2.3.2 Results 

Retinal thickness measurements for both manual and annular techniques 

demonstrated an increase in retinal thickness from the thinnest point at the fovea reaching 

a peak at ~0.8 mm eccentricity before declining towards the periphery (see figure 2.3.3). 
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The annular technique produced a slightly smaller mean of between 8 and 14 µm at each 

retinal eccentricity compared to the manual approach, this difference was statistically 

significant at every eccentricity (p<0.05; paired t-tests).   

Choroidal thickness appeared to be less affected with increasing eccentricity, 

although both techniques demonstrated a small decline with increasing eccentricity (see 

figure 2.3.3). Both the variability of the measurements and the difference between the 

groups was larger for choroidal compared to retinal measurements with the manual 

technique providing thicker measurements.  However, the choroidal measurements were 

only statistically different between methods at the fovea and 0.8 mm eccentricity (p<0.05; 

paired t-tests). 

 

Figure 2.3.3: Comparison of retina (left) and choroid (right) thickness measurements at 0 

(Foveal pit; denoted as F) 0.4, 0.8, 1.2, 1.6 and 2 mm retinal eccentricity for healthy 

participants (n=21) for the manual (solid) and annular segmentation (open) techniques. 

Error bars shown the standard error of the mean.  The difference between techniques was 

assessed using a paired t-test at each eccentricity, these differences were significant 

(P<0.05) for all retinal eccentricities, and choroidal measurements at the fovea and 0.8 

mm eccentricity for the choroid. 

 

Figure 2.3.4 shows Bland and Altman plots of agreement between techniques at the 

fovea, 1.2 mm and 2 mm eccentricity. The small bias towards thicker values using the 

manual technique is clear at all eccentricities. The agreement between techniques is 

clearly poorer for the choroidal than retinal measurements, as evidenced by the wider 
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limits of agreement.  

 

Figure 2.3.4: A comparison between manual measurement and annular segmentation for 

retinal thickness (Left; A, C & E) and choroidal thickness (Right; B, D, F) measurements at 

the fovea (top; A & B), at 1.2 mm (middle; C & D) and at 2 mm (bottom; E & F) eccentricity. 

The difference between methods is plotted against the average of both methods providing 

a graphical comparison between methods, as advocated by Bland and Altman (1986). The 

solid horizontal line represents the mean difference between methods (the bias), whilst the 

dotted lines indicate the 95% limits of agreement; a narrower interval between these lines 

indicates better agreement.  

 

The relatively constant bias of between 8 and 14 microns for retinal thickness 

across eccentricities measured, although small, may suggest an underlying systematic 
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difference between each methodology. The narrowing limits of agreement for the choroidal 

thickness with increasing eccentricity suggests an increased variability for measurements 

obtained closer to the fovea. 

 

2.3.3 Conclusion 

The results showed that the annular technique produced retinal thickness values 

that were between 8 and 14 µm thinner at each eccentricity than the corresponding 

manual measurement. We would expect the results to be identical as the underlying OCT 

images were identical and the same retinal boundaries were used. However, given that the 

images were measured and segmented manually, a subjective bias may have occurred 

when identifying the boundaries, possibly related to the difference in appearance of the 

annular and traditional b-scan images. This difference may also relate to the fact that the 

annular scan is composed of many data points, whilst the manual technique uses only 4 a-

scans to determine the average thickness for each eccentricity. Although consistent, this 

difference between techniques was less than the standard deviation of the mean for either 

approach.  

The choroidal thickness results also demonstrated a bias between techniques, but 

this decreased with increasing measurement eccentricity (see figure 2.3.4). The choroid 

thickness data also demonstrated a greater variability than the equivalent retinal thickness 

data. These findings are almost certainly attributable to the less well defined boundaries 

used to delineate the choroid, resulting in a greater variance amongst the data (see figure 

2.3.1). The difference between the two methods for choroidal thickness measurements, 

however, was only statistically significant (p<0.05) at the fovea and 0.8 mm eccentricity 

(possibly due to the greater variability of the choroidal measurements), again the annular 

segmentation technique returned thinner values (see figures 2.3.3 and 2.3.4).  

When considering the merits of each approach, the manual technique produced 

measurements at specific locations, whereas the annular segmentation technique returned 

an averaged value for all points at the eccentricity measured. The manual technique was 

quicker and simpler to carry out and did not require the aid of additional software to 

provide the results. Potential difficulties also arose using the annular segmentation 

techniques. These largely involved the annular rings closest to the fovea where, due to the 

small circumference, they comprised less a-scans than the more eccentric rings reducing 

the quality and clarity of the image (see figure 2.3.2). These images were therefore more 

difficult to measure. In contrast the manual technique presented a similar task difficulty for 
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all measurements. Although each manual measurement was localised to a single point 

within the image (a single a-scan), the adjacent b-scan image provided a contour and 

definition to the layer boundaries to enable accurate measurement. This was particularly 

helpful in poorer quality images and when identifying the less well defined boundaries such 

as that between the choroid and sclera (see figure 2.3.1). 

Commercially available OCT systems, such as the Cirrus OCT (Carl Zeiss, Meditec 

Inc, CA), usually present thickness data as averages for retinal regions corresponding to 

an ETDRS grid configuration (see Appendix H, figure H.1) making direct comparison with 

published studies difficult. The results at 0.4 mm eccentricity for the annular (259 ±25µm) 

and manual (272 ±30µm) methods in this study are not directly comparable to those from 

Cirrus OCT systems, however, similarities were observed. For example, Legaretta et al. 

(2008), who imaged 50 healthy eyes (20 to 68 years), reported an average foveal 

thickness of 258.2 ± 23.5 µm whilst a similar study by Kakinoki et al.(2009) who also 

imaged 50 healthy eyes (49.9 ±18 years) reported an average foveal thickness of 257.6 ± 

19.6 µm.  

Given the lack of fully automated segmentation software which could produce 

comparable data analysis to commercial OCT systems, and the difficulties experienced 

segmenting data points nearest the fovea using the annular segmentation approach, 

further OCT measurements in this thesis were obtained using the manual technique 

described. 

This study used the inner edge of the RPE to delineate the outer retinal boundary, 

in a similar approach to that used by the automated software on the Cirrus OCT (Carl 

Zeiss, Meditec Inc, CA). However, it was observed that adjustments to brightness and 

contrast during post-processing increased or decreased the width of this OCT feature. 

Therefore it was decided that the centre of the outer hyper-reflective line should be used to 

represent the boundary between the retina and choroid for all future measurements within 

this thesis. This approach has been previously used by Esmaeelpour et al. (2010) and 

should allow for more repeatable measurements. 

 

2.4 AMD classification and grading 

An important aspect of a study is the ability to determine the clinical classification of 

study participants. There are published methods for the grading of AMD, one of the 

earliest being the “Wisconsin Age-Related Maculopathy Grading System” (Klein et al., 

1991). The Wisconsin system was developed, based on methods previously used to grade 
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AMD and diabetic retinopathy, to provide a reliable and consistent method for the 

classification of AMD in population based studies, for example the Beaver Dam Eye study 

(Klein et al., 1992). More recently, two further grading systems have been developed 

based on the original “Wisconsin” system, these are the International Classification and 

Grading System for AMD (Bird et al., 1995), developed in 1995 as a collaboration between 

six research groups to produce a universal AMD grading system, and the more recent Age 

Related Eye Disease Study group (AREDS) grading system (AREDS, 2001a) designed for 

their multicentre study of nutrition in AMD (AREDS, 2000). 

 All of these systems record the presence, location and frequency of clinical features 

(e.g. drusen and pigmentary abnormalities) attributable to AMD, within the macula, based 

entirely upon 30° or 35° stereoscopic retinal photographs. These systems define the 

macula as a 6000 µm diameter circle, centred on the fovea, which for the purposes of 

grading is subdivided into three distinct annular regions; central (500 µm radius), inner 

(500 to 1500 µm radius) and outer (1500 to 3000 µm radius). The inner and outer regions 

are further subdivided into quadrants representing the superior, inferior, nasal and 

temporal macula (see Appendix H, figure H.1). The systems also set a minimum age 

whereby clinical features maybe attributable to AMD,  this is 50 years for the International 

System (Bird et al., 1995) and 55 years for the AREDS system (AREDS, 2000; 2001a ). 

However, none of these systems take account of visual acuity or other clinical 

investigations such as fluorescein angiography. 

For this thesis there was access to a conventional 2-D retinal camera, but not 

stereoscopic imaging as used for the Wisconsin (Klein et al., 1991),  AREDS (2001a) or 

International (Bird et al., 1995) systems. This posed two problems; firstly, in the absence of 

stereoscopic images the established grading systems could not be directly applied, and 

secondly, an alternative methodology or technique was required to provide depth 

information regarding the retinal features associated with AMD to enable effective 

identification and grading.  

Using a technique such as binocular indirect ophthalmoscopy would provide depth 

information, but has the limitation of being a subjective technique and the assessment is 

limited to when the participant is present. Fluorescein angiography has been considered 

for grading AMD, but was deemed by the AREDS study to be “too risky” due to the 

invasive nature of the test and risks of anaphylaxis and death (AREDS, 2001a). It should 

be noted that when the International (Bird et al., 1995) and AREDS (AREDS, 2001a) 

grading systems were developed, alternative imaging techniques such as OCT were not 
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available. However, OCT has since been shown to be capable of not only providing the 

depth information required, but also of providing in vivo cross-sectional imaging of the 

retina not possible with stereo photography. This intra-retinal imaging provides additional 

clinical information enabling, for example, differentiation between types of PED 

(Mavrofrides et al., 2004).  

For this thesis the classification of participants into disease groups was based upon 

the appearance of both 2-D digital retinal photographs and the OCT images obtained 

using the 1060 nm OCT system. The definitions of AMD used were largely based on the 

International (Bird et al., 1995) and AREDS (AREDS, 2001a) classification system 

definitions. The following sections will describe and define how participants were allocated 

to the disease (ARM) or control (normal) groups.    

 

2.4.1 Classifications 

The following section outlines a comparison of the International (Bird et al., 1995) 

and AREDS (AREDS, 2001a) classification systems and describes the classification of 

AMD used for this study. The classification criteria were based on the ability to identify 

pathology using the imaging techniques available, the established grading systems and 

recent research on the clinical features of AMD and their aetiology.  

 

2.4.1.1 Normal 

The classification of normal for the purpose of grading varies, this is unsurprising as 

signs such as drusen are not only associated with AMD, but are also considered a part of 

normal ageing (Sarks et al., 1999). The AREDS system deemed the presence of any 

drusen within the macula to be indicative of AMD, although small drusen (<63µm) were 

graded as the lowest level of abnormality, (AREDS, 2001a). By contrast the International 

system (Bird et al., 1995), defines the presence of drusen of less than 125µm diameter in 

the absence of pigmentary changes or other signs of AMD as normal. Given the potential 

overlap with individuals displaying normal ageing signs (i.e. small hard drusen), the 

International system designation for normal was adopted. 

 

2.4.1.2 ARM / Early AMD 

This classification is what the International system (Bird et al., 1995) defines as 

age-related maculopathy (ARM), or early AMD. The International system characterises 

ARM as the presence of soft drusen and/or focal pigmentary changes within the macular 
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area which are not secondary to another disorder. This is similar to levels 2 and 3 on the 4 

step AREDS system, which are characterised by soft drusen (>63µm), pigment changes or 

geographic atrophy not located at the centre of the macula. For this study ARM was 

defined as the presence, within the macula, of any soft drusen (>125µm), any pigment 

change (hyper or hypo) or drusenoid PED. 

AMD Type International system AREDS system 
Dry AMD Any sharply delineated roughly round or oval area 

of hypopigmentation or depigmentation or 
apparent absence of the RPE in which choroidal 
vessels are more visible than in surrounding areas 
that must be at least 175µm  in diameter (>=C2) 
on the colour slide (using a 30° or 35° camera). 
 

Geographic atrophy in central subfield 
with at least questionable involvement 
of centre of macula 
 

Wet AMD Wet AMD is also called "neovascular" 
AMD,"disciform" AMD, or "exudative" AMD and is 
characterized by any of the following: 

*RPE detachment(s), which may be associated 
with neurosensory retinal detachment, associated 
with other forms of ARM. 

*Subretinal or sub-RPE neovascular 
membrane(s). 

*Epiretinal (with exclusion of idiopathic macular 
puckers), intraretinal, subretinal, or sub-pigment 
epithelial scar/glial tissue or fibrin-like deposits. 

*Subretinal hemorrhages that may be nearly 
black, bright red, or whitish-yellow and that are not 
related to other retinal vascular disease. 
(Hemorrhages in the retina or breaking through it 
into the vitreous may also be present). 

*Hard exudates (lipids) within the macular area 
related to any of the above, and not related to 
other retinal vascular disease. 

Evidence of neovascular AMD: 

*Fibrovascular/serous pigment 
epithelial detachment 

*Serous (or hemorrhagic) sensory 
retinal detachment 

*Subretinal/subretinal pigment 
epithelial hemorrhage 

*Subretinal fibrous tissue (or fibrin) 

*Photocoagulation for AMD 

 

Table 2.4.1: Advanced AMD definitions as used for the International (Bird et al., 1995) and 

AREDS (AREDS, 2001a) systems, the presence of any features of wet AMD supersedes 

the presence of any other grading feature for both systems, resulting in a classification of 

wet AMD.  

 

2.4.1.3 Advanced AMD 

The definitions used for advanced AMD were generally in agreement for both 

grading systems (see table 2.4.1). However, the International Classification and Grading 

System for AMD (Bird et al., 1995) defines any serous pigment epithelial detachment 

(PED) as wet AMD regardless of its aetiology, as stereo retinal photographs are not 
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capable of differentiation between the vascular and avascular forms (Bird et al., 1995). The 

AREDS  system (AREDS, 2001a), in the absence of angiographic information, grades 

PED by its stereoscopic appearance as dome shaped, shallow or irregular and does not 

classify the presence of drusenoid pigment epithelial detachment as advanced AMD. 

For this thesis advanced AMD was graded as either dry or wet AMD. Consistent 

with both grading systems dry AMD was defined as the presence of geographic atrophy of 

at least 175µm in diameter (as in the International system), with visibility of choroidal 

vessels (Bird et al., 1995).  Wet AMD was defined as the presence of any signs of 

neovascularisation, including the presence of a suspect vascular serous or fibrovascular 

PED, haemorrhage, serous retinal detachment, retinal oedema or disciform scarring. The 

eye was also classified as wet if it had been previously treated or diagnosed as wet AMD 

by an ophthalmologist.  

 

The definitions used in this study, based on those shown in table 2.4.1 for the 

International and AREDS systems, are described in table 2.4.2. 

Category Definition 
Normal Defined as the absence within a 6000µm diameter 

circle centred on the fovea of any clinical feature 
associated with AMD. The presence of drusen less 
than 125µm in extent was not considered a feature 
of AMD 

ARM (early AMD) Defined as the presence within a 6000µm diameter 
circle centred on the fovea of any of the following 
features, in the absence of signs associated with wet 
or dry AMD:  

Drusen > 125µm in diameter 
Hyper or hypopigmentation 
Drusenoid PED 

Dry AMD (advanced AMD) Defined as the presence within a 6000µm diameter 
circle, centred on the fovea, of geographic atrophy 
(at least 175µm in diameter) without any signs of wet 
AMD. 

Wet AMD (advanced AMD) Defined as the presence within a 6000µm diameter 
circle centred on the fovea of any of the following 
signs attributable to AMD: 

Choroidal neovascularisation 
Haemorrhage 
Serous or fibrovascular PED  
Exudates 
Disciform scarring 

Other Defined as the presence within a 6000µm diameter 
circle centred on the fovea of any clinical feature not 
associated with AMD. 

Table 2.4.2: Definitions of disease status for participants in this study. 
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2.4.2 Classification and grading methodology 

The grading of participants in this thesis had two primary purposes, firstly to allow 

the categorisation of eyes based on disease status and secondly to provide information 

regarding disease severity within the disease group (ARM participants). The following 

describes the methodology used to categorise the participants and then provide an 

assessment of disease features associated with early AMD based upon the International 

Classification System (Bird et al., 1995).  

For each eye a 37° digital retinal photograph and 1060 nm OCT image (36° in 

diameter) centred on the fovea were evaluated to classify the retinal appearance 

according to table 2.4.2. The retinal photograph was viewed within Powerpoint (Microsoft, 

Richmond WA), which enabled digital overlays to be used, which represented the macular 

anatomical divisions and sizing circles for assessment of size and location of clinical 

features as in Bird et al. (1995) (see Appendix H, figure H.2 and table H.1 for further detail 

on scaling calculations). The OCT images were viewed using ImageJ (Rasband, 1997), 

and were used specifically to identify the presence and nature of PED (serous, 

fibrovascular or drusenoid), choroidal neovascular membranes, retinal oedema and scar/ 

glial/ fibrous tissue (disciform scarring) associated with AMD.  

In addition the severity of drusen and pigmentary abnormalities was graded 

according to the criteria described by the International System (Bird et al., 1995) (see 

Appendix H, figure H.3). This provided data to allow comparison with other studies which 

have investigated early AMD using the International (Bird et al., 1995), and similar grading 

systems (Klein et al., 1991; AREDS, 2001a) whilst also providing additional structural 

information relating to extent and severity of clinical features within the study group.  

All the participant eyes in this study were classified and graded by the author, and 

then classified by two optometrists masked to all other patient data. The final classification 

assigned to each eye was that agreed by the author and the two optometrists, in the case 

of disagreement, a majority verdict was accepted. 

 

2.4.3 Evaluation of classification system 

During the course of this study a total of 104 eyes were graded using this grading 

approach, each eye was assigned a category based on the eyes appearance, either 

Normal, ARM, Wet, Dry or Other. Unanimous agreement occurred in ~89% of Normal 

participants, ~92 % of ARM participants and in all cases where a grade of wet was 

assigned. Where there was not unanimous agreement, and a majority decision was taken 
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in determining the final diagnosis, the category assigned by the grader in the minority is 

shown in Table 2.4.3. In no cases did each of the 3 graders provide 3 different categories. 

 

Grading 
categories 

Number of 
eyes  

Categorisation of minority grader 
Normal ARM Wet Dry Other 

Normal 56 - 5 0 0 1 
ARM 37 0 - 3 0 0 
Wet 11 0 0 - 0 0 
Dry 0 0 0 0 - 0 

Other 0 0 0 0 0 - 
Table 2.4.3: Grading categories assigned to 104 eyes assessed in this study. Final 

category allocated based on majority (2 out of 3 graders), in cases of disagreement the 

categorisation assigned by the grader in the minority is shown. 
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Chapter 3: Development of electrophysiology techniques 

This chapter describes the development and refinement of the ERG protocols used 

in this thesis. All participants who took part in studies within this chapter had a corrected 

visual acuity of 0.2 (LogMAR) or better, clear ocular media, normal retinal / optic disc 

appearance, no history of retinal or systemic disease, and were not taking medication 

known to affect retinal function, unless otherwise stated. 

 

3.1 Standard Techniques 

 This section describes the general ERG recording methods and recording protocols 

for the focal cone ERG, focal flicker ERG, ERG photostress test and focal rod ERG.  

 

3.1.1 Participant preparation 

The following methods were used for ERG protocols throughout this thesis unless 

otherwise specified.  

Participants’ pupils were dilated bilaterally with 1 drop of 1.0% Tropicamide prior to 

electrode placement.  A silver-silver chloride 9mm, touchproof skin electrode (Viasys 

Healthcare Ltd, Warick, UK) was applied to the skin at a midfrontal position to act as the 

earth electrode. The skin electrode was attached using surgical tape (Blenderm;3M, 

St.Paul, MN) following skin preparation with abrasive gel (Nuprep;D.O. Weaver & Co., 

Aurora, CO). The electrode cup was filled with electrolyte electrode gel (Teca, 

Pleasentville, NY). DTL fibre electrodes (Dawson, Trick and Litzkow, 1979); (Unimed 

Electrode Supplies, Surrey, UK) were placed into the lower fornix of each eye, and 

connected to the Medelec Synergy evoked potential monitoring system (Medelec Synergy 

EP; Oxford Instruments Medical, Surrey, UK) using a holder, which was attached to the 

outer canthus using surgical tape (Blenderm;3M, St.Paul, MN) (see figure 6.1.1). The DTL 

electrodes acted as the active (test eye) and reference (non-test eye) electrodes, the non-

test eye was patched prior to any ERG recording.  

 



 

 
 

102 Chapter 3: Development of electrophysiology techniques 

 

Figure 3.1.1: Participant prepared for ERG recording with DTL fibre holders adjacent to 

each eye (active and reference electrodes) and a skin (earth) electrode attached to the 

forehead.  

  

3.1.2 General ERG recording 

 

3.1.2.1 Filtering, averaging and artefact rejection 

Filtering, averaging and artefact rejection are used to isolate the signal of interest 

whilst removing, or reducing, the influence of noise in ERG recordings. ISCEV guidelines 

recommend the use of filtering and averaging where appropriate, for example when trying 

to identify “very weak pathologic” signals (Marmor et al., 2009). 

Signals at frequencies outside the range of interest are considered to be noise. 

ISCEV recommends that specific ranges of frequencies are isolated when recording 

particular ERG waveforms. For example, to record flicker or transient ERGs a range of 1 to 

100 Hz is recommended, whilst for oscillatory potentials the suggested range is 100 to 

1000 Hz (Marmor et al., 2009). Filters are used to eliminate undesirable frequencies from 

electrophysiological recordings, this is typically achieved using a combination of 4 main 

types of filter described below (see figure 3.1.2): 
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 A low pass filter allows frequencies below a preset level whilst rejecting 

frequencies above this level (Odom, 2006). 

 A high pass filter allows frequencies above a preset level whilst rejecting 

frequencies below this level (Odom, 2006). 

 A band pass filter works by allowing through a range of frequencies between two 

preset vales, and rejecting all frequencies which fall outside this range (Odom, 

2006).  

 A notch filter (band reject) works by rejecting frequencies between two preset 

values but allowing all others, in electrophysiology this type of filter can be applied 

to eliminate mains interference (50Hz) (Odom, 2006). 

 

Ideally these filters would have a sharp cut-off between frequencies but in reality 

they have an attenuated roll off (see figure 3.1.2) (Odom, 2006). An attenuated roll off 

means that the amplitude of the response at frequencies adjacent to the cut off frequency 

may be altered, therefore this may distort the overall waveform recorded. In some cases 

the use of filters may be detrimental to recording particular electrophysiological responses. 

 

Figure 3.1.2: Schematic diagrams of the characteristics of the four filter types used in 

electrophysiology recordings, the “theoretical” effectiveness (bold) and “actual” 

effectiveness (dashed) of each filter type is shown. Image from Odom (2006).  
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The signal to noise ratio (SNR) describes the ratio between the size of the response 

and the noise created by all other signals recorded (e.g. 50 Hz electricity hum). A high 

SNR aids the recording of reliable and repeatable ERGs. The SNR may be improved by 

either reducing the noise or increasing the signal.  Averaging involves the recording of 

multiple responses and finding the mean value of all recorded responses. Averaging 

improves the SNR based on the principle that noise and artefacts make a random 

contribution to each individual ERG, which is not time-locked to the onset of the stimulus, 

whilst the evoked signal remains relatively constant. This results in a progressive reduction 

in the noise due to destructive interference such that the SNR of the averaged data 

improves in proportion to the square root of the total number of traces averaged (van der 

Tweel and Estéves, 2006). However, from a clinical perspective averaging is time 

consuming and can potentially lead to fatigue and reduced patient compliance.  

Artefact rejection is based on the principle that the signal of interest will not be 

expected to exceed a particular value in amplitude, under any circumstances, therefore 

any value that exceeds this amplitude must be an artefact. The artefact reject will ignore 

any response recorded that exceeds a pre-determined upper amplitude limit.  

An evoked potential monitoring system (Medelec Synergy EP; Oxford Instruments 

Medical, Surrey, UK) was used to record the ERGs. Unless otherwise specified, all 

responses were band-pass filtered from 1 to 100 Hz and an artefact-reject setting (50 µV) 

applied to exclude traces contaminated with blinks or eye movements. The system digitally 

averaged the ERG responses, as specified in each recording protocol. 

 

3.1.2.2 Stimulation 

 All stimuli were produced by a miniature LED ganzfeld stimulator (CH electronics, 

Kent, UK). The stimulator consisted of an array of LEDs of different wavelengths (red, 

amber, green and blue) set within a tube, behind a circular diffuser. The LEDs could be 

modulated with respect to luminance, frequency and duration of stimulation. All focal 

stimuli were provided by viewing the miniature ganzfeld tube from a distance of 16 cm, 

such that it subtended 20° of visual angle.  

 

3.1.3 Focal cone ERG 

This section describes the protocol used to record the focal cone ERG based on a 

previously published protocol (Binns and Margrain, 2007). 
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3.1.3.1 Recording protocol 

An amber stimulus (λmax = 595 nm, half-height bandwidth =17 nm) with an average 

luminance of 30 cd.m-2 (1500 photopic td.s) subtending 20° at the eye, was presented at a 

temporal frequency of 5 Hz (50 % duty cycle). A luminance matched desensitising white 

square surround (30 cd.m-2, 118° width) was used to suppress the cones and rods of the 

peripheral retina. Responses were recorded on a 200 ms time base with a 20ms baseline 

prior to stimulus presentation. Four traces were recorded, each consisting of an average of 

100 responses (recorded in blocks of 25 to minimise blink artefacts). 

 

3.1.3.2 Data analysis 

The ERG traces were exported and analysed using Excel (Microsoft. Redmond, 

WA). Each trace was drift corrected and Fourier analysed (Stroud, 1986). A waveform, 

comprising the first 9 harmonics, was reconstructed (see figure 3.1.3), this removed all 

frequencies above 45 Hz (previous work has indicated that higher frequencies do not 

contribute to the a and b waves (Binns and Margrain, 2007)). The a and b waves were 

identified objectively from the reconstructed trace, using Excel, and the amplitude and 

implicit times assessed (see table 3.1.1). The a and b waves were measured for each 

trace separately, and the values averaged. The traces were inspected visually to confirm 

the objective analysis.  

 

 

Figure 3.1.3: Raw focal cone ERG waveform for a healthy participant (left, blue trace) and 

the Fourier analysed focal cone ERG waveform (right, red trace). 
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Parameter Selection 
a-wave implicit time (ms) The time from flash onset to the amplitude minimum between 5 to 30 ms 

post flash.  
a-wave amplitude (µV) The potential difference from the time of flash onset to the amplitude 

minimum between 5 to 30 ms post flash. 
b-wave implicit time (ms) The time from flash onset to the amplitude maximum between 30.2 to 55 ms 

post flash. 
b-wave amplitude (µV) The potential difference between the amplitude minimum between 5 to 30 ms 

post flash, and the amplitude maximum occurring between 30.2 to 55 ms 
post flash. 

Table 3.1.1: Criteria for identification of a and b wave parameters of the focal cone ERG 

waveform. 

 

3.1.4 Focal flicker ERG 

This section describes the protocol used to record the focal flicker ERG based a 

previously published methods (Binns and Margrain, 2007). 

 

3.1.4.1 Recording protocol 

An amber stimulus (λmax = 595 nm, half-height bandwidth =17 nm) with an average 

luminance of 30 cd.m-2 (1500 photopic td.s) subtending 20° at the eye, was presented at a 

temporal frequency of 40 Hz (50% duty cycle). A wavelength of 595 nm was selected to be 

a good stimulus for the l and m cones, whilst the luminance (30 cd.m-2) produced a good 

signal to noise ratio without significantly bleaching the retina. A luminance matched (30 

cd.m-2) desensitising square white surround (118° width) was used to suppress responses 

from the peripheral retina. Each trace was recorded using a 50 ms time base and 

consisted of 100 averaged responses; eight traces were recorded per participant. 

Responses were band-pass filtered from 10 to 100 Hz.  

Using a time base (= analysis interval) of 50 ms, with a stimulus of 40 Hz provided 

for exactly 2 response cycles. By ensuring the number of response cycles were whole 

integers (for the stimulus frequency used, i.e. 40Hz)  within the analysis interval, the 

introduction of ‘trends’ due to aliasing or extra harmonics due to ‘leakage’ were avoided 

(Bach and Meigen, 1999).  

The harmonic content of the focal flicker ERG was assessed in 5 healthy 

participants (age 56-75 years, median 65). The amplitude of the first 8 harmonics was 

calculated as a percentage of the 1st harmonic (fundamental) for each participant. This 

analysis showed that the 2nd Harmonic represented between 11 and 32 % (mean 21%) of 

the fundamental, whilst the 3rd harmonic represented between 4 and 14 % (mean 8%) of 
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the fundamental amplitude. All additional harmonics represented less than 10% of the 

fundamental in these participants. 

 

3.1.4.2 Data analysis 

The ERG traces were exported and analysed using Excel (Microsoft. Redmond, 

WA). The traces were drift corrected and then the first harmonic of the 40 Hz response 

was isolated using Fourier analysis (see figure 3.1.4) (Stroud, 1986). The amplitude and 

implicit time of the first harmonic were objectively determined using Excel for each trace 

separately then averaged. The traces were inspected visually to confirm the objective 

analysis.  

The first harmonic was isolated for analysis as it has been shown to be dominated 

by bipolar cell activity, most closely reflecting outer retinal activity if interest, whilst the 

higher harmonics have a stronger contribution from inner retinal neurones (Kondo and 

Sieving, 2001; Hare and Ton, 2002; Kondo and Sieving, 2002; Viswanathan et al., 2002). 

Furthermore, higher harmonic noise, such as the 50 Hz ‘mains hum’ was also removed 

from analysis. 

A consequence of the artefact reject (above 50 µV) setting the potential for ‘trend’ 

artefacts in the averaged data exists, therefore prior to Fourier analysis a ramp function 

was applied to neutralise any trend effects within the ERG trace, thus limiting the 

introduction of harmonic content not related to the stimulus (Bach and Meigen, 1999). 

 

 

Figure 3.1.4: Raw flicker ERG (40 Hz) waveform for a healthy participant (left, blue trace) 

and the Fourier analysed flicker ERG waveform (right, red trace). 
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3.1.5 ERG photostress test 

The following describes the recording of the ERG photostress test based on the 

previously published methods of Binns and Margrain (2005; 2007). 

 

3.1.5.1 Recording protocol 

Four focal flicker ERGs (see section 3.1.5) were recorded to provide a baseline 

measure. A Maxwellian view imaging system was used to provide a retinal illuminance of 

144543 photopic td.s (5.16 log photopic td.s) to the central 40° of the retina for 1 minute, 

which produced an equilibrium bleach of approximately 80% of cone photopigment (see 

Appendix A & B) (Westheimer, 1966; Hollins and Alpern, 1973; Paupoo et al., 2000). 

Immediately after the cessation of the bleach, focal flicker ERG traces were obtained at 20 

s intervals for 5 minutes.  

 

3.1.5.2 Data analysis 

The average phase of the four baseline focal flicker ERG traces was used, with a 

flexibility of 5 ms, to phase-lock the Fourier analysis so that only the 40 Hz component in 

phase with the original signal was extracted from the post-bleach recordings. This 

improved the SNR by eliminating all 40 Hz signals not time locked to the stimulus onset or 

with a different phase from the pre-bleach response.  

The amplitudes of the first harmonic of the post-bleach focal flicker ERGs were then 

modelled using an exponential function (see equation 3.1) which has been shown to reflect 

photopigment regeneration (Binns and Margrain, 2005). The data were fitted using a least 

squares fit paradigm using the solver function within Excel (Microsoft. Redmond, WA). The 

modelled data returned values for the time constant of photopigment regeneration (τ), pre-

bleach amplitude (µv) and initial bleach effectiveness (%). 

 

Equation 3.1:  Amplitude (t) = a [1-B*exp (-t/τ)]  

 

Where “t” is time after the photobleach in seconds (s), “a” is the pre-bleach amplitude (µv), 

“B” is the initial bleach effectiveness (%) and “τ” is the time constant in seconds (s). “B” 

was constrained to return a positive value. 
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3.1.6 Focal rod ERG 

The following describes the protocol used to record the focal rod ERG test, based 

on a previously described methods (Binns and Margrain, 2006). 

 

3.1.6.1 Recording protocol 

A 1 scotopic cd.m-2 blue stimulus, following dark adaptation for 20 minutes, (λmax = 

454 nm, half-height bandwidth =67 nm, 1.7 log scotopic td.s) subtending 20° at the eye 

was presented to the eye at a temporal frequency of 0.5 Hz. A desensitising 0.9 scotopic 

cd.m-2 green Ganzfeld surround was used (λmax= 525 nm, half-height bandwidth = 37 nm, 

1.67 log scotopic td.s) to suppress responses from rods in the peripheral retina.  

Each trace was recorded using a 500 ms time base with a 50 ms pre-stimulus 

baseline, and comprised 25 responses which were digitally averaged (recorded in blocks 

of 5 to minimise blink artefacts). 

 

3.1.6.2 Data analysis 

The ERG traces were exported to Excel (Microsoft. Redmond, WA) and drift 

corrected prior to Fourier analysis (Stroud, 1986). Fourier analysis involved the isolation of 

the first 9 harmonics (removing all frequencies above 45 Hz; see figure 3.1.5). The a and b 

waves were identified objectively from the resultant waveform using Excel, and amplitude 

and implicit times determined (see table 3.1.3). The objective assessment was confirmed 

by visual inspection. 

 

 

Figure 3.1.5: Raw focal rod ERG waveform for a healthy participant (left, blue trace) and 

the Fourier analysed focal cone ERG waveform (right, red trace). 
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Parameter Selection 
a-wave implicit time (ms) The time from flash onset to the amplitude minimum between 20 to 40 

ms post flash.  
a-wave amplitude (µV) The potential difference from the time of flash onset to the amplitude 

minimum between 20 to 40 ms post flash. 
b-wave implicit time (ms) The time from flash onset to the amplitude maximum between 40.2 to 

70 ms post flash. 
b-wave amplitude (µV) The potential difference between the amplitude minimum between 20 

to 40 ms post flash, and the amplitude maximum occurring between 
40.2 to 70 ms post flash. 

Table 3.1.3: Criteria for identification of a and b wave parameters of the focal rod ERG 

waveform. 

 

3.1.7 Equipment 

In the recording of all focal cone ERGs, the adapting surround was provided by a 

light box containing white LEDs, which were viewed through an acrylic white diffuser, to 

provide a wide adapting field (~118°). At the centre of this adapting surround was mounted 

the focal stimulus set behind a diffuser. An adjustable chin rest was mounted in front of the 

light box to improve patient comfort and enable more accurate patient alignment with the 

focal stimulus (see figure 3.1.6). The light box was connected to a direct current power 

supply (rather than alternating current) in an effort to reduce electromagnetic noise. This 

equipment was used to record all focal cone ERGs, focal flicker ERGs and ERG 

photostress tests in this thesis unless otherwise stated.  

The ERG photostress test described by Binns and Margrain (2005; 2007), used a 

halogen light source positioned behind a Ganzfeld bowl to produce the photobleach. This 

approach was also used in the preliminary study described in section 3.6. However 

Maxwellian view optical systems are smaller and more efficient as they achieve uniform 

illumination of the retina by focusing light entering the eye at the nodal point, eliminating 

the effect of pupil size on retinal illumination (Westheimer, 1966). A Maxwellian view 

bleaching system was therefore constructed to deliver photobleaches in this thesis unless 

otherwise stated (see figures 3.1.7 & 3.1.8). The system utilised a LED light source, with a 

variable voltage power supply, which was then directed through an optical system to 

image the light source at a location in front of the objective lens, which was coincident with 

the nodal point of the eye. By varying the input voltage the light intensity could be varied 

and therefore used to modify the photobleach delivered. The Maxwellian view optical 

system calibration is described in Appendices A and B.  
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Figure 3.1.6: Photograph of the ERG photostress test “light box” with the adapting 

surround, focal stimulus, chin rest and the electrode connection point for the Synergy 

evoked potential monitoring system. 

  

 

Figure 3.1.7: Photograph showing the Maxwellian view optical system with the LED, 

collimating and objective lenses, fixation cross and chin rest labelled.  
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Figure 3.1.8: A diagrammatic representation of the Maxwellian view optical system 

showing the source of light (S); collimating lens (C); diaphragm (D); fixation target (T) in 

the focal plane of objective lens (L); the first focal point (F) of objective lens (L) which is 

conjugate of the retina of an emmetropic eye; the centre of the entrance pupil of the eye 

(E). Image adapted from Millodot (2009). 

 

3.2 Establishing optimal electrode placement 

Current ISCEV standards for full field ERGs recommend the use of a bipolar 

corneal lens or reference skin electrode for flash ERG recording, attached to the ipsilateral 

temple of the eye being examined (Marmor et al., 2009). However, electrode positioning 

has been shown to affect ERG amplitude in canines (Mentzer et al., 2005). In cases of 

monocular ERG recording, it is possible to use a reference electrode on the cornea of the 

contralateral eye, this approach has been shown to produce larger pattern ERG 

amplitudes than the traditional ipsilateral skin electrode for pattern ERGs (Aldebasi et al., 

2001). Aldebasi et al. (2001) speculated that contralateral corneal reference electrodes 

produced more reliable results as artefacts due to blinking and eye movement were 

common to both eyes, which allowed differential amplification to give an improved SNR. 

Therefore, ISCEV standard for pattern ERGs suggest using a contralateral corneal 

reference electrode to record monocular pattern ERGs (Holder et al., 2007). 

To determine the effect of reference position on the quality of ERG recordings a 

preliminary experiment was conducted. Specifically, ERGs were recorded with an active 

DTL fibre electrode and 4 different reference electrode positions. The ERG response 

amplitude and clinical ease of use were considered before selecting a preferred electrode 

setup for use in this thesis.  
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3.2.1 Methods 

Seventeen healthy participants (ages 18-39 years) were recruited, four skin 

electrodes and bilateral DTL fibre electrodes (Dawson et al., 1979) were applied as shown 

in figure 3.2.1. This arrangement provided an active, earth and four reference electrodes 

(a contralateral DTL and ipsilateral skin electrodes at 3 positions). Skin reference 

electrodes were positioned at 1, 3 and 5 cm from the outer canthus. 

Focal flicker ERGs were recorded simultaneously for each of the four reference 

electrodes as described in section 3.1.4. Two hundred responses were averaged for each 

trace. Subsequently, the ERG amplitudes were determined for each reference electrode. 

The ERG amplitudes for the 4 reference electrodes were compared to identify any 

statistically significant differences (1-way ANOVA). 

 

Figure 3.2.1: Electrode placement on participants. DTL fibre electrodes (black holder) were 

placed within the lower canthus of each eye, acting as the active electrode in the test eye 

(patients left eye), and reference electrode in the contralateral eye. Skin electrodes were 

connected to the temple, posterior to the test eye, at distances of 1 (white wire), 3 (yellow 

wire) and 5 cm (blue wire) to act as reference electrodes. A skin electrode attached to the 

forehead (green wire) acted as the earth electrode. 
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3.2.2 Results 

The ERG amplitude data indicated an increasing amplitude with posterior 

displacement of the skin electrodes from the outer canthus (see figure 3.2.2), however, 

this was not shown to be statistically significant (P> 0.5, 1-way ANOVA). In 71% of 

participants the skin electrode at 3 cm (2.41 µv) demonstrated greater amplitude 

responses than at 1 cm (2.12 µv).  

 

Figure 3.2.2: Graph showing average amplitude (±SEM) for each reference electrode 

position for 17 participants. 

 

3.2.3 Conclusions 

The skin electrode placed 5 cm posterior to the outer canthus was found not to be 

practical due to the anatomical position of the hair line in many participants, which made 

electrode attachment difficult and often resulted in high electrode impedance. The 

contralateral DTL electrode and the 3 cm skin electrode provided recordable responses 

from all 17 participants. However, the DTL electrode produced a lower contact impedance 

in all cases. In addition, the use of the DTL electrode enabled a rapid switch of test eye 

and ensured consistent electrode placement for all participants on all visits. Therefore, 

contralateral DTL reference electrodes were selected as reference electrodes for all 

monocular ERG recordings in this thesis. 
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3.3 Determining optimal stimulus frequency for flicker ERGs 

The ERG photostress test and the focal flicker ERG both use a flickering stimulus to 

evoke a highly repeatable sinusoidal waveform dominated by bipolar cell activity (Bush 

and Sieving, 1996; Kondo and Sieving, 2002).  

A range of stimulus frequencies have been used to elicit the cone flicker ERG 

(Miyake et al., 1987; Seiple et al., 1989; Peachey, Alexander and Fishman, 1991; 

Sandberg et al., 1993; Bush and Sieving, 1996; Falsini et al., 1999a; Falsini et al., 2000; 

Kondo and Sieving, 2002). Many studies have utilised a ~30 Hz stimulus frequency 

(Miyake et al., 1987; Peachey et al., 1991; Falsini et al., 1999a), this is also the 

recommended frequency for full field flicker ERGs given in the ISCEV standards (Marmor 

et al., 2009). Studies on monkeys have used similar frequencies, for example 33 Hz in the 

case of Bush and Sieving (1996), and 32 Hz by Kondo and Sieving (2002). However, other 

studies have used frequencies in the 40 Hz range, for example, Binns and Margrain (2005; 

2007) and Falsini et al. (2000) used a 41 Hz, whilst Sandberg et al. (1993) used a 42 Hz 

stimulus frequency. In order to determine which stimulus frequency would produce the 

largest response, and hence contribute to obtaining the best SNR, focal flicker ERGs were 

recorded using a range of frequencies, and the amplitude of the responses compared.  

 

3.3.1 Methods 

 Eleven healthy participants (age 18-31years) were recruited and focal flicker ERGs 

were recorded following the protocol set out in section 3.1.4. Each flicker ERG trace 

comprised 200 digitally averaged responses. Focal flicker ERGs were recorded in 

response to stimuli of temporal frequency between 10 and 60 Hz, at 5 Hz intervals. The 

timebase was adjusted depending on the temporal frequency to ensure a full response 

cycle (peak and trough) was included within each trace. The flicker ERG amplitudes were 

measured manually (peak to trough) using the calliper function of the Synergy onboard 

software (Medelec Synergy EP; Oxford Instruments Medical, Surrey, UK). The mean 

amplitudes for each stimulus frequency were then plotted for comparison.  

 

3.3.2 Results 

 Data were obtained at 25, 30, 35 and 40 Hz stimulus frequencies for all participants 

(n=11), whilst amplitudes were determined for stimulus frequencies between 10 and 60 Hz 

for a smaller number of participants (n=5). The mean amplitude values (and standard 

errors) are shown in figure 3.3.1. The peak amplitude was seen at 10 Hz before declining 
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to a local minimum at 20 Hz, the amplitude recovered and reached a second maximum 

between 30 and 40 Hz. Frequencies above 40 Hz resulted in progressively smaller 

amplitudes.  

 

Figure 3.3.1: Graph showing ERG amplitude for a range of stimulus frequencies, error 

bars represent standard error.  

 

3.3.3 Conclusions 

A maximum amplitude was found at 10 Hz however, stimuli at this frequency could 

include a rod contribution (Sharpe et al., 1989), and therefore would not be suitable for use 

with the focal flicker ERG or ERG photostress tests which aim to elicit a cone response. 

The results also demonstrated a second peak in amplitude response to stimuli in the 30 to 

40 Hz range. This finding is similar to that reported by Seiple et al. (1989) who evaluated 

the effect of stimulus frequency on ERG amplitude in 6 normal subjects. The results of that 

study showed that a stimulus frequency of 40 Hz produced the largest ERG amplitude. 

Falsini et al. (2007) assessed the focal (central 18°) flicker ERG amplitude over a range of 

stimulus frequencies for 3 groups of subjects, i.e. young (n=13), old (n=9) and people with 

early ARM (n=18). The young group produced a peak in amplitude at 3.7 Hz and 41 Hz, 

whilst a minimum was found at approximately 10Hz. The old and early ARM groups 

demonstrated two peaks in amplitude, the first at 14Hz and a second peak at 41Hz. Both 

Seiple et al. (1989) and Falsini et al. (2007) agree that peak amplitude is at ~40 Hz, in 

addition the results of Falsini et al. (2007) suggest that frequency sensitivity changes with 

age, but does not appear to be affected in early ARM. 

Given these findings and the evidence in the literature, it was decided to use a 40 

Hz stimulus frequency for the focal flicker ERG and ERG photostress test. The 40 Hz 
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stimulus frequency also allowed more data to be averaged within a fixed time period than 

the ISCEV standard of 30 Hz (Marmor et al., 2009). This was an important consideration 

when using the focal flicker ERG to monitor rapid cone recovery after a photobleach.  

 

3.4 Assessment of stimulus size 

The literature reveals that a range of stimulus sizes has been used to evoke focal 

ERGs from participants with macular disease; a summary of these is given in table 3.4.1. 

Stimuli ranging from 2.8° in diameter, to assess foveal function (Mayer et al., 1994), to as 

large as 20° to evaluate the whole macular region (Binns and Margrain, 2005; Binns and 

Margrain, 2007) have been used, although few studies have provided a rationale for the 

stimulus size used. However, Falsini et al. (1999b) justified the use of a 9° (diameter) 

stimulus based on evidence provided by Curcio et al. (1996) which showed preferential 

loss of photoreceptors in the parafovea of patients with AMD, and on the size of the “inner 

macula” as defined under the International Classification and Grading System for AMD 

(Bird et al., 1995).  

Study Diameter of stimulus Condition investigated 
Binns and Margrain(2007) 20° AMD 
Falsini et al.(1999b) 9° AMD 
Sandberg et al.(1993) 4° AMD 

(stimulator ophthalmoscope) 
Falsini et al.(2007) 18° AMD 
Mayer et al.(1994) 2.8° AMD 
Seiple et al.(1989) 9° Retinitis Pigmentosa & Stargardt’s 

Disease 
Remulla et al.(1995) 4° AMD 
Birch and Fish(1988) 3° AMD 

(stimulator ophthalmoscope) 
Piccardi et al.(2009) 4.5° & 

4.5 to 18° (annulus) 
AMD 

Miyake et al.(1988 & 89) 5° Normals 
Terasaki et al.(2002 & 04) 15° AMD 
Nishihara et al.(2008) 15° AMD 

Table 3.4.1: A comparison of focal ERG stimuli used to assess macular function in a range 

of studies. 

 

Histological evidence suggests a preferential photoreceptor loss occurs within the 

parafoveal region, out to ~10° from fixation, as a result of ARM (Curcio et al., 1996). 

Functional deficits have also been shown by electrophysiology (Feigl et al., 2005a) and 

psychophysical findings (Owsley et al., 2000) to be present within this region. However, 

the effect of disease may not be uniform over this area and therefore comparison of 
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function in the central retina (central 5-10° diameter) to the wider macula (20° diameter) in 

ARM may be more sensitive to a heterogeneous functional deficit.  

As the ERG is a summed response from the retinal area stimulated, a reduction in 

stimulus size would be expected to reduce the amplitude of the response. To determine 

whether this reduction in amplitude would render the SNR too low for the response to be 

measured, focal flicker ERGs and the ERG photostress test were carried out with different 

diameter stimuli on two participants prior to any further investigation of stimulus size. 

 

3.4.1 Methods 

Two healthy participants (AW age 23, AB age 30) were recruited and focal flicker 

ERGs recorded as described in section 3.1.4. A black paper mask was placed over the 

original 20° stimulus to reduce its size to 10° or 5° in diameter. Four focal flicker ERGs 

were recorded from each participant with a 20° and 10° diameter stimulus, the participant 

AW had a further 4 focal flicker ERG traces recorded with a 5° diameter stimulus. In 

addition, ERG photostress tests were performed using the protocol described in section 

3.1.5 on participant AB with a 10° and 20° diameter stimulus. Both the focal flicker ERGs 

and the ERG photostress test recovery curves were assessed visually and amplitudes 

measured. Responses obtained using the different stimulus sizes were then compared.  

 

3.4.2 Results 

 The focal flicker ERG traces are shown in figure 3.4.1. It is apparent that the 

biphasic waveform is diminished for the 10°, and almost extinguished for the 5° diameter 

stimulus. The ERG photostress test recorded using the 10° stimulus for participant AB 

produced a diminished amplitude recovery (see figure 3.4.2) and resulted in a 

considerably lengthened time constant (306 s) in comparison to the 20° stimulus (109.7 s).  
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Figure 3.4.1: Pre-bleach flicker ERG traces obtained from participant AB (Left) for a 20° 

diameter stimulus and 10° diameter stimulus. Flicker ERG traces from participant AW 

(Right) using a 20°, 10°and 5° diameter stimulus. 

 

Figure 3.4.2: ERG photostress test recovery curves from participant AB for a 20° diameter 

stimulus (Left) with a time constant (τ) of 109.7s, and a 10° diameter stimulus (Right) with 

a time constant (τ) of 306s. 

 

3.4.3 Conclusions 

As was expected, the amplitude of the focal flicker ERG was diminished when 

elicited using a smaller stimulus size. In addition, the low amplitude responses elicited by 

the 10° diameter stimulus showed a more variable recovery in the ERG photostress test 

than those produced by the 20° diameter stimulus, presumably due to the lower SNR. 

Given that these results were from healthy young participants, it was deemed unlikely that 

a smaller stimulus size could produce reliable or repeatable results, particularly in 

participants with compromised retinal function, and therefore the 20° diameter was used 

for all further ERG recording.  
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3.5 Assessing adaptation to the stimulus 

The ERG photostress test records consecutive focal flicker ERGs following a 

photobleach, and assesses the amplitude recovery. To determine if this recovery may be 

affected by physiological adaptation to the flickering stimulus the amplitude and implicit 

time of the flicker ERG was assessed over an extended period of recording, in the 

absence of a photobleach.  

 

3.5.1 Methods 

Two experienced participants (AB age 30 and TM age 44) were recruited and a 

series of flicker ERGs were recorded (using the otherwise similar protocol described in 

section 3.1.4) in response to a full field stimulus at regular intervals for a period of up to 

1500 seconds. The interval between consecutive ERG recordings was 20 s (initially) and 

40 s (after 300 s) during the period of recording, this was done to limit participant fatigue 

and loss of concentration during the lengthy recording session. The participants were 

required to maintain fixation of the flickering stimulus throughout the recording session. 

The amplitude and implicit time of the flicker ERGs were determined and plotted against 

time for each of the participants to allow qualitative assessment of any adaptation effects. 

Participants were adapted to the ambient room lighting prior to ERG recording.  

 

3.5.2 Results 

The data demonstrated a small increase in implicit time over consecutive 

recordings, that was demonstrable upon repetition for both subjects (see figure 3.5.1). This 

change appeared to have stabilised within 400 seconds. The amplitude data similarly 

appeared to show a small increase over the first 400 seconds before stabilising (see figure 

3.5.2).  
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Figure 3.5.1: Implicit time plotted against time for participant TM (left) and AB (right) 

showing the effect of adaptation to stimuli on two separate occasions.  

 

Figure 3.5.2: Amplitude plotted against time for participant TM (left) and AB (right) showing 

the effect of adaptation to stimuli on two separate occasions. 

 

3.5.3 Conclusions 

Given the changes in implicit time and amplitude over the first 400 seconds 

following exposure to the flicker stimulus, it was decided that participants should undergo a 

5 minute period of adaptation to the flicker stimulus prior to the ERG photostress test and 

focal flicker ERG recordings. 

 

3.6 The ERG photostress test: A comparison of bleaching techniques and the 

effect of age 

The study described in this section has been published (Wood, Margrain and Binns, 

2011b), and is presented in Appendix L. 

 

3.6.1 Introduction 

In previous dark adaptation and photostress studies, photopigment bleaches have 

been produced in one of two ways. The first method typically involves the use of a 
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photoflash unit which produces a very brief but intense flash of light (Owsley et al., 2001; 

Bartlett, Davies and Eperjesi, 2004; Wolffsohn et al., 2006; Owsley et al., 2007; Dimitrov et 

al., 2008; Newsome and Negreiro, 2009). The second method exposes the retina to a less 

intense but longer duration light until equilibrium is reached between photopigment 

bleaching and regeneration (Hollins and Alpern, 1973; Midena et al., 1997; Mahroo and 

Lamb, 2004; Binns and Margrain, 2005; Binns and Margrain, 2007).  

The literature suggests that the kinetics of cone photopigment regeneration are 

different in these two situations. Following an equilibrium bleach the recovery rate is not 

dependent on the percentage of photopigment bleached (Hollins and Alpern, 1973). For a 

short duration bleach the recovery rate shortens as the percentage bleach achieved 

increases, furthermore even when an equivalent percentage bleach is achieved recovery 

is faster following a short bleach than an equilibrium bleach (Hollins and Alpern, 1973). 

Given that clinic time is at a premium, the use of a photoflash is an attractive alternative to 

the longer duration equilibrium bleach that was used by Binns and Margrain (2007).  

The first aim of this study was to compare the intersession repeatability of the ERG 

photostress test recorded using an equilibrium and photoflash bleach. Additionally, the 

psychophysically determined time constant of cone dark adaptation is known to be 

affected by age (Coile and Baker, 1992), with a reported increase of 0.21 minutes per 

decade. Therefore, the second aim of this study was to determine the effect of age on the 

time constant of recovery determined using the ERG photostress test.  

 

3.6.2 Methods 

Twenty-three healthy participants (age 20-71 years) were recruited from staff, 

students and volunteers attending the Eye Clinic at the Cardiff University School of 

Optometry and Vision Sciences.  

 

3.6.2.1 Bleaching techniques 

A long duration ‘equilibrium’ bleach was provided by a tungsten halogen source 

which was presented to the subject within a Ganzfeld bowl. A central fixation cross was 

placed within the Ganzfeld bowl such that the bleaching source subtended 40° at the eye. 

The focal flicker stimulus was placed directly above this, allowing the subject to quickly 

take up position for ERG recording at cessation of the photobleach. Heat filters were in 

place, which reduced output of the bleaching light to below 5% between 800-900nm, so 

that excessive infra-red (IR) radiation did not reach the eye. The eye was light-adapted to 
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a bright white background of 19905 cd.m-2 for a period of 2 minutes (~5.6 log photopic 

td.s). The effective retinal illuminance was calculated as 5.2 log photopic td.s, when 

adjusted for the Stiles-Crawford effect, which bleached approximately 84% of the cone 

visual pigment (Hollins and Alpern, 1973). 

A short duration “photoflash” bleach was provided by a Metz Mecablitz 76 MZ-5 

flashgun (Metz-Werke GmbH & Co., Zirndorf, Germany), positioned such that this source 

also subtended 40° at the eye when centrally fixated. The eye was exposed to a bright 

white flash of 415445 cd.s.m-2 (~9.5 log photopic td.s, duration 6.6ms). The effective 

retinal illuminance, adjusted for the Stiles-Crawford effect,  was calculated as 9.1 log 

photopic td.s, which bleached approximately 98% of the cone visual pigment (Paupoo et 

al., 2000). A higher percentage bleach was chosen for the photoflash because brief 

bleaches are associated with more rapid recovery times, which could be problematic when 

attempting to monitor recovery of sensitivity. 

Heat filters were used to attenuate output to below 5% between 800-900nm, so that 

excessive infra-red (IR) radiation did not reach the eye. Additionally a UV filter integrated 

within the flash gun eliminated wavelengths below 375 nm.  All luminance measurements 

were made using an IL1700 photometer (International Light Inc, Newburyport, MA) and 

exposures were within the safety guidelines set out within BS EN 15004-2 (BSI, 2007) 

(see appendix C for calculations).  

 

3.6.2.2 General procedure 

Both bleaching protocols were evaluated with the ERG photostress test at the same 

recording session. Participants were randomly assigned to one of two groups determining 

whether the photoflash or equilibrium bleach was to be used first. The eye with better 

visual acuity was chosen for testing, with the left eye chosen as default in cases of equal 

acuity. Prior to recording, a 5 minute period of adaptation to the flickering stimulus and 

surround was undertaken to avoid any flicker adaptation effects during the recording 

period. To prevent any carry over effects between tests, a 5 minute break was 

implemented. The entire protocol was repeated on a second occasion within 4 weeks of 

the first visit for every participant. A sequential representation of the protocol undertaken at 

each visit is shown in figure 3.6.1.  
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Figure 3.6.1: The timeline showing recording process for ERG photostress tests. The 

bleach type for tests 1 and 2 were randomly selected prior to recording for each 

participant, and bleach duration was either 6.6 ms or 2 minutes. 

 

3.6.2.3 Analysis 

The ERG photostress test data were analysed following the methods described in 

section 3.1.6, and the time constants of recovery were calculated. Inter-session 

repeatability of the time constant was determined by calculating the coefficient of 

repeatability (CoR) (determined as 1.96 x the standard deviation of differences between 

visits 1 and 2). The repeatability was also demonstrated graphically by plotting the 

difference in time constant between visits 1 and 2 against the mean time constant for both 

visits, a technique advocated by Bland and Altman (1986). Paired t-tests were also carried 

out to determine whether there was a statistically significant difference between mean data 

obtained at visit 1 and 2 for each technique. The time constant of recovery for the 

equilibrium bleach and photoflash were calculated as the average of the two visits for each 

participant and plotted against age. The data were then assessed for any relationship 

between age and the time constant of recovery (Pearson’s correlation coefficient).  

 

3.6.3 Results 

Typical focal flicker ERG traces for 3 participants aged 23, 44 and 60 are shown in 

figure 3.6.2. The upper traces are the pre-bleach baseline and represent the expected 

waveform after a full recovery.  The subsequent 15 traces were recorded at 20 second 

intervals following the bleach. The recovery in ERG amplitude post-bleach, towards the 

baseline level, is apparent in these participants for both bleaching modalities. Figure 3.6.3 

plots ERG amplitudes as a function of time for each participant and the amplitude recovery 

data have been fitted with an exponential function (see equation 3.1 and section 3.1.5). 
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Figure 3.6.2: Focal flicker ERG traces for participant A (aged 23 years), B (aged 44 years) 

and C (aged 60 years). Top panel shows pre-bleach traces, middle panel shows traces 

following an equilibrium bleach and the bottom panel shows the traces following a 

photoflash bleach.  

 

ERG photostress tests were recorded from all 23 participants on both occasions, 

only 1 recovery was excluded due to excessive recording noise. However, of the tests 

conducted using the photoflash, 8 were excluded due to ineffective bleaching i.e. the 

‘bleach’ did not diminish the amplitude of the focal flicker ERG and hence there was no 

recovery. Of the 8 failed photoflash bleaches, one participant did not produce valid results 

on either visit. The mean time constants for the equilibrium and photoflash bleach 

techniques (Visits 1 and 2) were 117 (±72) s and 112 (±58) s respectively. This difference 

was not statistically significant (p>0.05; paired t-test). 

Figure 3.6.4 describes the repeatability of each technique, the CoR was 85 s (n=22) 

for the equilibrium bleach and 184 s (n=16) for the photoflash bleach. The mean difference 

between visits was close to zero, indicating no overall bias for either technique (see figure 

3.6.4). 
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Figure 3.6.3: ERG amplitudes for participant A, B and C plotted against time post bleach, 

and recovery to baseline modelled with an exponential function for the equilibrium 

(Participant A; τ = 95.6, Participant B; τ = 103.5, Participant C; τ= 157.8) and photoflash 

bleach (Participant A; τ = 77.8, Participant B; τ = 273.2, Participant C; τ = 127.5,).  

 

 

Figure 3.6.4: Intersession difference plotted against intersession average providing a 

graphical representation of intersession repeatability as advocated by Bland and Altman 

(1986). The solid horizontal line represents the mean difference between visits 1&2, whilst 

the dotted lines indicate the 95% limits of agreement; a narrower interval between these 

lines indicates better repeatability. The coefficients of repeatability (1.96 x SD of 

differences) for each technique were 85 s (equilibrium bleach) and 184 s (photoflash). This 

analysis does not include data from those participants who were excluded due to 

ineffective photoflash bleaching. 
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Figure 3.6.5 plots the time constant of recovery as a function of age for the ERG 

photostress test carried out using the equilibrium bleach. The time constant (τ) of recovery 

increased significantly (r=0.66, p=0.0008; Pearson’s correlation coefficient) with age (by 

27.6 s per decade), there was also a subjectively evident increase in variability with older 

participants.  There was no significant relationship with age for the photoflash bleach. 
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Figure 3.6.5: The relationship between mean time constant and age for the equilibrium 

bleach data. A statistically significant correlation was identified for the equilibrium bleach 

(r=0.66 p=0.0008; Pearson’s correlation coefficient). 

 

3.6.4 Conclusions 

The results provide compelling evidence for the retention of the equilibrium bleach 

as part of the ERG photostress test. The equilibrium bleach showed relatively good 

repeatability (CoR 85 s) and was successfully recorded on 45 out of 46 occasions. The 

photoflash bleach, by comparison, was less repeatable (CoR 184 s) and did not always 

provide an effective bleach. 

The ERG photostress test has been shown to differentiate those with ARM from 

age matched controls demonstrating a mean difference of 106 s in time constants between 

groups (Binns and Margrain, 2007). Given that the coefficient of repeatability for the 

photoflash technique (184 s) is larger than the difference between those with and without 

disease (106 s) it is apparent that the sensitivity and specificity of the ERG photostress 

test would be compromised by switching to the photoflash bleaching method.   

It is noteworthy that this assessment of the repeatability of the photoflash bleaching 

method only included data from 16 out of 23 subjects for whom a post bleach recovery 

was available. The observation that the photoflash unit did not diminish the amplitude of 
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the focal flicker ERG in 7 participants suggests that blinks or gross fixation losses must 

have coincided with the timing of the photoflash discharge. Given the number of bleach 

failures, additional bleaches would need to be administered to obtain satisfactory results. 

In a clinical situation this would increase examination time making the technique clinically 

unviable. The instantaneous nature of the photoflash exposure may also have increased 

the potential for partial bleaches due to inaccurate patient fixation and incomplete blinks 

and this may have contributed to the relatively poor CoR of this technique. This renders 

the technique unreliable. 

In contrast, the equilibrium bleach allows 2 minutes to bleach the retina, therefore 

transient fixation losses and blinking are unlikely to affect the photopigment bleach 

obtained (see figure 3.6.6).  

There is also a theoretical basis for assuming that an equilibrium bleach may 

provide a better separation between individuals with ARM and age matched controls than 

a photoflash bleach. The rod photoreceptors, when bleached, obtain the retinal required to 

regenerate photopigment from the RPE. As a result of this, the rate of photopigment 

regeneration within the rods is dependent on the health and function of the RPE and the 

diffusion of retinoids to the RPE from the choroidal circulation via Bruch’s membrane 

(Lamb and Pugh, 2004). The cone photoreceptors, however, are able to regenerate 

photopigment using a local store of retinoid derived from the Müller cells (Mata et al., 

2002), and therefore do not necessarily have the same dependence on the health of the 

RPE, Bruch’s membrane and choroidal circulation. Abnormal RPE/Bruch’s function may 

have little or no effect on cone photopigment regeneration whilst this local retinoid store is 

present. Unlike photoflash bleaches, long duration bleaches are likely to deplete local 

stores of 11-cis-retinal (Rushton and Henry, 1968) placing a greater emphasis on the role 

of the RPE in photopigment regeneration. Hence long, but not short, duration bleaches 

may help elucidate functional delays in people with ARM.  
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Figure 3.6.6: Percentage cone photopigment bleach achieved during exposure to a 

constant adapting light. Image derived from Hollins and Alpern (1973). 

 

It has been reported that the rate of dark adaptation decreases as we get older 

(Jackson, Owsley and McGwinJr, 1999). The effect of age on recovery time constant in 

this study produced an increase of 27 seconds per decade (0.45 minutes / decade) which 

was comparable to the findings of Coile & Baker (1992) who showed an increase of 0.21 

minutes per decade. In agreement with our findings, Coile & Baker (1992) also 

demonstrated greater variability in the rate of adaptation of older participants compared to 

younger ones. The increased variability could suggest that those apparently normal 

individuals with prolonged time constants may be at risk of developing ARM.  

Currently ARM is identified on the basis of retinal photography, but it is possible that 

significant changes occur in the function of the retina prior to macroscopic changes, such 

as the appearance of drusen and pigmentary changes. Histological work by Sarks (1976) 

identified changes to Bruch’s membrane and the presence of basal linear deposits 

beneath the retina in eyes with a normal retinal appearance and often good visual acuity. 

Changes in the permeability of Bruch’s membrane have been suggested to be the cause 

of delayed dark adaptation in ARM (Steinmetz et al., 1993), so individuals with pre-clinical 

ARM might be expected to show abnormal time constants.  Confounders such as media 

opacities could also be influencing the spread of data. The increase in lenticular changes 

with age would conceivably lead to more variability in retinal illumination, and therefore 

increase the variability of the results. However, this is unlikely to have played a role here 
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because those with marked lens opacities were excluded from the study. Hollins and 

Alpern (1973) also showed that equilibrium bleaches over a range of intensities produced 

the same time constants of recovery. This would minimise any differences in time 

constants (τ) due to minor media opacities.  

In conclusion, the current equilibrium bleach technique was found to have 

intersession repeatability sufficient to be sensitive to ARM related changes. The alternative 

photoflash bleaching technique was found to be less repeatable and clinically unreliable. In 

addition the data showed that the time constant of recovery, as determined using an 

equilibrium bleach, was found to increase with age. Therefore the use of an equilibrium 

bleach with the ERG photostress test was retained, whilst the finding that time constants 

are affected by age means that any comparison of time constants should utilise age 

matched data, or should adjust for the age effect. 

 

3.7 Recording a focal rod ERG stimulus response series 

 The focal rod ERG is capable of isolating a focal ERG under scotopic conditions 

(Binns and Margrain, 2006) (see section 1.5.7). This section investigates the relationship 

between luminance of the stimulus and the ERG amplitude; the so called “stimulus 

response relationship” and describes work that was undertaken to develop a protocol to 

assess the focal rod ERG intensity-response relationship.  

 

3.7.1 Introduction - the stimulus-response relationship 

The stimulus-response relationship of retinal photoreceptors, based on 

measurements of the photoreceptor circulating current from in vitro sections of fish retina, 

was first modelled using a function proposed by Naka and Rushton (1966b) (see equation 

3.2) and will be referred to as the ‘Naka-Rushton’ function from this point onwards. This 

function was latterly shown to describe the human b-wave amplitude stimulus-response 

relationship (Fulton and Rushton, 1978). The parameters of the function have been shown 

to be affected in retinal diseases such as retinitis pigmentosa (Arden et al., 1983; Massof 

et al., 1984; Birch and Fish, 1987), diabetic retinopathy (Roecker et al., 1992) and 

glaucoma (Velten et al., 2001). Additionally ERG a-wave amplitudes have also been 

successfully modelled using the ‘Naka-Rushton’ function, with the parameters again being 

good predictors of retinal disease (Hood and Birch, 1990b; Holopigian et al., 2004). 

The fitting of the ‘Naka-Rushton’ function to ERG stimulus-response data has been 

described by Severns & Johnson (1993a) (see figure 3.7.1)  and demonstrated on a group 
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of patients with central retinal vein occlusion. The function used to describe the stimulus-

response relationship between stimulus luminance, I (cd.m-2.s), and ERG b-wave 

amplitude, R (µv), is as follows: 

 

Equation 3.2:  

 

Where ‘Rmax’ is the maximum amplitude (µv), ‘K’ is the stimulus luminance at half 

‘Rmax’, and ‘n’ is an exponent which describes the slope of the curve at I=K. The 

parameters ‘Rmax’ and ‘K’ are thought to reflect the “response capacity” and “sensitivity” of 

the retina respectively (Massof and Johnson, 1981). Hood, Shady and Birch (1994) used a 

computer model to predict the effect of heterogeneous photoreceptor damage on the 

stimulus-response function of the rod ERG b-wave and compared this with actual data 

from participants with retinitis pigmentosa (n = 11) and cone-rod dystrophy (n = 17). The 

findings demonstrated that Rmax is decreased when an area of the retina has a reduction of 

sensitivity greater than 0.5 log units compared to a healthier region of the same retina. 

Parameter K was shown to increase in the presence of a diffuse loss of sensitivity across 

the retina, and/ or a substantial reduction in sensitivity (between 0.5 to 2 log units) over a 

large area of the retina, but to decrease once sensitivity losses exceed 2 log units. These 

findings suggest that Rmax and K parameters may be sensitive to diffuse and/ or localised 

functional changes within the retina, and therefore are likely to be a measure sensitive to 

AMD related changes. 

Within the literature the exponent n has often been constrained to 1, (Naka, 1969; 

Arden et al., 1983). Naka (1969) investigated the stimulus-response relationship for 

chromatically different stimuli, showing the variation of the exponent from 1 to be small and 

commenting that “there seemed no reason for further elaboration”, suggesting that 

allowing n to be a free variable would add little to the goodness of fit of the model. 

However,  Massof et al. (1984), who applied the ‘Naka-Rushton’ function to human ERGs 

and allowed the exponent ‘n’ to be a free variable, claimed that changes to the shape of 

the function determined by ‘n’ may “occur secondary to heterogeneous depressions of 

retinal sensitivity, uneven retinal illumination, or some putative neurophysiological 

response anomaly” (Massof et al., 1984). Therefore, given that n may vary as a result of 

retinal functional changes it was decided to allow ‘n’ to be a free variable when modelling 

the ‘Naka-Rushton’ function as part of this thesis. 
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The scotopic b wave ERG stimulus-response relationship comprises two limbs (see 

figure 3.7.1) (Peachey, Alexander and Fishman, 1989; Hood and Birch, 1990ba; Breton 

and Montzka, 1992), which has been attributed to an interaction of the underlying 

components of the ERG, with both limbs reflecting rod activity (Peachey et al., 1989). This 

suggests that if sufficient stimulus strength is reached, a 2nd limb will be apparent in the 

rod dominated focal rod ERG stimulus-response relationship. However, the ‘Naka-

Rushton’ function only applies to, and describes, the first limb of this relationship 

effectively (Peachey et al., 1989; Severns and Johnson, 1993a). The first limb could be 

isolated by applying an upper retinal illuminance limit to the ERG stimuli, however, this 

may not be an effective method given the variability in the stimulus strength at which the 

second limb arises in different individuals (Severns and Johnson, 1993a). A second 

approach which has been suggested is to remove points from the second limb before 

modelling the data (Severns and Johnson, 1993a). Therefore, whilst developing the focal 

rod ERG stimulus-response series protocol, the data in this study were assessed 

subjectively for involvement of 2nd limb and, depending on the extent of involvement, 

points were removed or alterations to the protocol considered.   

Simplistically, the a and b wave amplitudes and implicit times of the focal rod ERG 

are attributed to photoreceptor and bipolar cell function respectively. The focal rod ERG 

stimulus-response series may provide additional information about the integrity of scotopic 

visual function.  This study aimed to determine the viability of recording a stimulus-

response series for the scotopic b-wave and to assess the ability of the ‘Naka-Rushton’ 

function to describe the data (Naka and Rushton, 1966b).  
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Figure 3.7.1: A scotopic ERG stimulus-response series with a pronounced second limb. 

The dashed curve shows the ‘Naka-Rushton’ function fitted to all data points comprising 

both the first and second limb of the series, the solid curve shows the ‘Naka-Rushton’ 

function fitted to the data points comprising the first limb only. Image from Severns & 

Johnson (1993a).  

 

3.7.2 Isolation of the rod component 

The first aspect of recording a focal rod ERG stimulus-response series was to 

ensure that the recorded ERG was rod dominated for all stimuli. Binns and Margrain 

(2006) determined that there would be a cone contribution to the focal rod ERG for stimuli 

of 50 scotopic td.s and above; the stimulus response series would  exceed this stimulus 

strength. In order to determine the magnitude of any cone contribution to the focal rod 

ERG for each stimulus, Binns and Margrain (2006) presented a red stimulus to the dark 

adapted eye of the same photopic luminance as the blue stimulus used to elicit the focal 

rod ERG. On the basis that the rods are relatively insensitive to long wavelength light 

(Wyszeki and Stiles, 1982), any response to the red stimulus was assumed to be of cone 

origin. Below 50 scotopic td.s the response to the red flash was minimal, suggesting a 

negligible cone involvement in the focal rod ERG response. However, this approach is not 

ideal as rods are not completely unresponsive to the red LED (664 nm) used in the study 

(Wyszeki and Stiles, 1982). Therefore, the approach advocated by Hood & Birch (1996), 

Friedburg et al. (2001) and Birch et al. (2002) was adopted in this study whereby stimuli 

are presented against a rod-saturating background of 1500 scotopic td.s (30 scotopic 

cd.m-2), to isolate the cone ERG component, which is then subtracted from the dark 
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adapted response. The first part of the study aimed to determine the luminance level at 

which a cone contribution must be subtracted. 

 

3.7.2.1 Methods 

A series of ERGs were recorded over a range of stimuli both with and without a rod 

saturating background. The participant AG (age 24) was prepared as described in Section 

3.1.1. The stimulus and recording protocol outlined in section 3.1.6 was adapted as 

follows. The retinal illuminance of the focal stimuli were adjusted to 2.5, 5, 10, 20, 30, 40, 

50, 60 and 100 scotopic td.s for successive recordings, presented dimmest to brightest. 

Twenty-five ERGs were averaged at each retinal illuminance, subsequently these 

recordings were repeated with the addition of a green (λmax 525 nm) rod saturating 

background (1500 scotopic td.s) to desensitise the rods; thereby isolating cone responses 

to the stimuli (Hood and Birch, 1996; Birch et al., 2002). The resulting ERGs were Fourier 

analysed and the amplitude of the b-wave measured as described in section 3.1.6. 

 

3.7.2.2 Results 

 Figure 3.7.2 presents the b-wave amplitudes obtained to stimuli at each retinal 

illuminance.  The data indicated that a cone contribution is only evident for stimuli at or 

above 20 scotopic td.s (0.4 scotopic cd.m-2). 

 

Figure 3.7.2: ERG b-wave amplitudes recorded for a range of stimuli eliciting a combined 

rod & cone (filled) and a cone only (open) response. The cone only response was obtained 

by presenting stimuli against a rod saturating background. 
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3.7.2.3 Conclusions 

  The finding of a lower retinal illuminance at which cones still contribute to the 

response than the 50 scotopic td.s reported by Binns and Margrain (2006) may be 

attributable to the different methodology employed on this occasion. To obtain a purely 

focal rod ERG to a stimulus above 20 scotopic td.s it is necessary to subtract the isolated 

cone response from the signal recorded. This subtraction technique is demonstrated in 

figure 3.3.4 on a focal rod ERG elicited by a stimulus of 500 scotopic td.s.  

 

Figure 3.7.3: Subtraction technique used to isolate the Focal Rod ERG for a 500 scotopic 

td.s stimulus. The top trace shows the combined rod & cone response, the middle trace 

shows the cone only response (recorded with stimulus presented against a green rod 

saturating background) whilst the bottom trace shows the isolated rod response with the 

cone contribution subtracted.  

 

3.7.3 Effect of the focal rod ERG recording on the adaptational state of the eye 

The stimuli used to elicit the focal rod ERG may alter the adaptational state of the 

eye and this in turn may alter the ERG waveform. The aim of this part of the study was to 

ascertain whether light adaptation, produced by the ERG stimuli, could affect the focal rod 

ERG data by recording a series of consecutive ERG traces and assessing for changes in 

amplitude and implicit time.  

 

3.7.3.1 Methods 

Two participants (AW age 24 and AG age 24) were prepared as described in 

section 3.1.1. Focal rod ERGs were recorded following the methods described in section 

3.1.6 to stimuli of 20 scotopic td.s (5 ms flash, 0.4 scotopic cd.s.m-2) and 1000 scotopic 

20µv

50 ms

Rod & cone
response

Cone only
response

Rod only 
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td.s (20 ms flash, 20 scotopic cd.s.m-2). The subtraction of the cone component of the 

ERG, as described in section 3.7.2 was not undertaken on this occasion. At each retinal 

illuminance a series of 6 consecutive traces were recorded, with each trace comprising an 

average of 30 responses recorded in blocks of 5. A period of between 5 to 10 seconds, on 

average, for blinking was allowed between each block of 5 responses recorded, a further 

minute was allowed between recording with the 20 and 1000 scotopic td.s stimulus to 

change the stimulus intensity. 

 

3.7.3.2 Results 

 The a and b wave amplitudes and implicit times for both the 20 and 1000 scotopic 

td.s retinal illuminance values did not show any systematic change over the 6 consecutive 

recordings although there was some general variability in response amplitudes (see 

figures 3.7.4 and 3.7.5) 

 

 

Figure 3.7.4: Consecutive focal rod ERG b-wave amplitudes for participants AG (solid) and 

AW (open) obtained using a 20 (Left) and 1000 (Right) scotopic td.s stimulus.  

 

 

Figure 3.7.5: Consecutive focal rod ERG b-wave implicit times for participants AG (solid) 

and AW (open) obtained using a 20 (Left) and 1000 (Right) scotopic td.s stimulus.  
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3.7.3.3 Conclusion 

It was concluded that adaptation due to repeated stimuli did not have an 

appreciable effect on the focal rod ERG parameters under normal testing conditions. 

 

3.7.4 Determination of the luminance range for recording the stimulus-response function 

of the focal rod ERG 

The determination of the range of stimulus luminance for a focal rod ERG stimulus- 

response series depends on a number of factors. The first point to consider was the 

number of individual data points that it was possible to obtain from a patient within a single 

recording session, which was then balanced against the number of data points needed to 

obtain a satisfactory model fit for the ‘Naka-Rushton’ function. The second point to 

consider was the lowest level at which a reliable Focal Rod ERG could be obtained.  The 

third and final point to consider was an upper limit to the stimulus range which could 

minimise the involvement of the second limb of the ERG stimulus-response relationship. 

Previous studies which have modelled scotopic b-wave ERG stimulus-response series 

with the ‘Naka-Rushton’ function have used a range of approximately 4 log units (Arden et 

al., 1983; Massof et al., 1984; Birch and Fish, 1987; Severns and Johnson, 1993ab; Velten 

et al., 2001; Holopigian et al., 2004). The aim of this part of the study was to determine the 

most appropriate range of stimuli to include in the recording of the focal rod ERG stimulus-

response series.  

 

3.7.4.1 Methods 

A stimulus-response series was recorded from AW (age 24) who was prepared as 

described in section 3.1.1. Focal rod ERGs were recorded following the methodology 

described in section 3.1.6 but with stimuli of 1, 4, 6, 20, 50, 100, 200, 400, 800, 1600, 3200 

scotopic td.s (~0.0003, 0.60, 0.78,1.30, 1.70, 2.00, 2.30, 2.60, 2.90, 3.20 and 3.51 log 

scotopic td.s - presented from dimmest to brightest). These recordings were then repeated 

against a green (λmax 525 nm) rod saturating background (1500 scotopic td.s) to obtain a 

cone only response which was then subtracted from the initial response, to isolate the rod 

response (see section 3.7.2). All ERGs were substantially averaged (n=~50); the examiner 

subjectively determined the number of averages required to produce a clear ERG 

waveform. The focal rod ERGs were recorded over 3 recording sessions to avoid 

participant fatigue due to the extensive averaging required for each ERG; b-wave 
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amplitude data were then modelled with the ‘Naka-Rushton’ function using a ‘least 

squares’ paradigm in Excel (Microsoft. Redmond, WA). 

 

3.7.4.2 Results 

The stimulus-response series for participant AW is shown in figure 3.7.6, extending 

from 1 to 3200 scotopic td.s (0.0003 to 3.51 log scotopic td.s). The ‘Naka-Rushton’ 

function provided a good fit to the data (RMSE = 0.083). The data show a plateau of 

approximately 25 µv being reached with a stimulus intensity of 500 scotopic td.s (2.70 log 

scotopic td.s). The range of stimulus intensities shown in figure 3.3.7 appears to provide a 

reasonable representation of the stimulus-response relationship of the focal rod ERG b-

wave, with only the 3200 scotopic td.s (3.51 log scotopic td.s) deviating substantially from 

the ‘Naka-Rushton’ model. 

  

Figure 3.7.6: Focal rod ERG stimulus-response series for participant AW (blue diamond’s) 

fitted with Naka Rushton model (red line); Rmax = 29.27 µV, n = 2.49, LogK = 1.08 log 

scotopic td.s. 

 

 Given the substantial time required to produce the stimulus-response series shown 

in figure 3.7.6 and the intention to develop a protocol for clinical application, a revised 

protocol was developed. A range of 1 to 1000 scotopic td.s (0.0003 to 3 log scotopic td.s) 

was selected based the intensity response series shown in figure 3.7.6, which covered the 

full ‘S’ shaped curve of the stimulus-response relationship. It was determined that a 

maximum time frame for the completion of the protocol should be 1 hour, including 25 

minutes dark adaptation. To allow for sufficient data points, whilst still allowing sufficient 

time for adequate averaging, 6 retinal illuminance values were selected as follows: 1, 4, 
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20, 100, 500, 1000 scotopic td.s (0.0003, 0.60, 1.30, 2.00, 2.70, 3.00 log scotopic td.s). 

Based on the recording of the previous stimulus-response series, the focal rod ERG 

recorded with a retinal illuminance of 1, 4 and 20 scotopic td.s (0.003, 0.60 and 1.30 log 

scotopic td.s) would require a minimum of 50 averaged traces. The stronger stimuli (100, 

500 and 1000 scotopic td.s - 2.00, 2.70 and 3.00 log scotopic td.s), due to a better SNR, 

would require at least 25 averages, in addition to a further 25 averages with the rod 

saturating background (as these values exceeded 20 scotopic td.s it was necessary to 

subtract the cone only response). 

The modified methods described was then assessed on two experienced 

participants (AW age 24 and AG age 24) and fitted with the ‘Naka-Rushton’ function, see 

figure 3.3.8. The data for each subject demonstrated the expected ‘S’ shape curve. The 

value of Rmax in both cases was approximately equal to the b-wave amplitude for the 

strongest stimulus. The ‘Naka-Rushton’ model fit was also satisfactory, with root mean 

square error (RMSE) values of only 0.62 and 0.90 in the case of participants AG and AW 

respectively. 

  

 Figure 3.7.7: Focal rod ERG stimulus-response series for participant AG (Left) and AW 

(Right) showing ERG b-wave amplitude values (blue diamonds) fitted with the ‘Naka 

Rushton’ function (red line). Model parameters for AG (Left) Rmax = 7.10 µV, n = 1.87, 

LogK = 1.12 log scot td.s and AW (Right) Rmax = 11.59 µV, n = 3.24, LogK = 1.16 log scot 

td.s. 

 

3.7.4.3 Conclusions 

 Given the satisfactory fit shown for the ‘Naka-Rushton’ function using only 6 data 

points over the stimulus range of 0.0003 to 3 log scotopic td.s (1 to 1000 scotopic td.s) for 

two experienced participants, it was decided to evaluate this methodology on a larger 

group of inexperienced healthy participants.  
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3.8 Evaluating the focal rod ERG stimulus-response function 

With the aim of developing a clinical protocol to record the focal rod ERG stimulus-

response series in elderly people and those with ARM it was decided to carry out a pilot 

feasibility study on a group of healthy participants over the age of 55 years. Data were 

collected on two separate occasions so that an assessment of repeatability could be 

made.  

 

3.8.1 Methodology 

Fourteen older participants (age 56-71 years) were recruited and the general 

methodology described in sections 3.1.1 and 3.1.6 were followed. Focal rod ERGs were 

recorded in response to the stimuli described in table 3.8.1. At least 50 responses were 

averaged for stimuli up to and including 20 scotopic td.s. For stimuli of more than 20 

scotopic td.s, at least 25 responses were averaged. Additional responses were recorded 

as necessary, based on a subjective assessment of the SNR during recording. For retinal 

illuminance values above the cone detection threshold of 20 scotopic td.s, ERG traces 

were also recorded using the same focal stimuli with a constant rod suppressing green 

background of 1500 scotopic td.s in order to elicit a cone only response, which was then 

subtracted from the original mixed rod and cone ERG to leave an isolated rod response 

(see section 3.7.2). 

 

scotopic td.s       (log) Photopic cd.m-2 Duration (ms) 
1        (0.0003) 0.75 1 
4  (0.6) 1.5 2 
20   (1.3) 3 5 
100   (2.0) 15 5 
500   (2.7) 18.8 20 
1000   (3.0) 37.51 20 

Table 3.8.1: Retinal illuminance values used for recording the stimulus-response series. 

Those values shown in Bold exceed the cone detection threshold and were therefore 

repeated with rod saturating background to isolate the cone component. 

 

The focal rod ERG waveforms were Fourier analysed and measured to identify the 

a and b-wave amplitudes and implicit times. The b-wave amplitudes were then modelled 

using the ‘Naka-Rushton’ function on a ‘least squares’ fit basis in Excel (Microsoft. 

Redmond, WA)( (Naka and Rushton, 1966a; Severns and Johnson, 1993a) (see equation 

4.2). The coefficient of repeatability (CoR) of the best fitting ‘Naka-Rushton’ functions was 
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calculated (1.96 x SD of differences of Visit 1 – Visit 2) for the parameters ‘Rmax’ and ‘Log 

K’, in addition the CoR was also calculated for the focal rod ERG b-wave amplitude for 

each stimulus. The CoR was also expressed as a percentage of the mean for each 

parameter, to allow comparison of repeatability between different stimulus levels and 

parameters.   

 

3.8.2 Results 

 The ‘Naka-Rushton’ function provided a satisfactory fit to only 13 of the 28 stimulus-

response series recorded. Of the remaining 15 datasets, 11 produced a fit with grossly 

abnormal Rmax or LogK parameters whilst a further 4 did not return any fit (see figures 

3.8.1 and 3.8.2 for examples of good and bad fits respectively). The parameters of the 

best fitting ‘Naka-Rushton’ parameters from each participant are shown in table 3.8.2. The 

CoR was calculated as 11.37 and 1.91 respectively for Rmax and Log K, however, these 

values were calculated using only the 3 participants who provided acceptable datasets on 

both visits. The CoR expressed as a percentage of the mean Rmax and Log K values was 

135 and 130 % respectively.   

 

1st Session 2nd Session 

Participant Rmax n LogK 
Sum of 
squares Rmax n LogK 

Sum of 
squares

BA 8.51 34.89 1.30 9.24 17.42 1.48 2.47 38.72

CB 999.11 1.05 432.28 0.55 5.80 3.02 1.47 6.05

DF 28.01 0.91 13.84 0.96 206.86 0.80 224.95 0.90

RE 10.19 1.91 1.57 9.12 24.55 1.41 4.57 2.23

DFO 3.03 7.30 0.69 1.71 5.66 2.61 0.89 1.41

SA No Fit No Fit

WBS 9.38 1.81 2.12 29.46 6.70 3.47 1.34 21.92

JF 436.17 0.54 9125.77 1.00 8.50 34.07 1.32 10.40

LB No Fit 1209.63 0.86 664.92 18.42

LD 7.69 2.22 1.25 7.86 No Fit

MF 1868.80 0.73 3888.17 13.31 32.12 1.67 3.43 9.83

ND 610.83 0.69 1614.74 3.78 6.50 29.12 1.32 2.84

PF 9.20 2.05 1.14 3.64 352.57 0.71 776.29 4.92

SD 67.18 1.42 12.17 5.01 10.27 6.58 1.66 8.52

Table 3.8.2: ‘Naka-Rushton’ function parameters from modelled focal rod ERG intensity-

response data. Data where no model fit was achieved are indicated whilst those with 

grossly abnormal parameters are highlighted in Bold type.  
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Figure 3.8.1: Examples of good Naka-Rushton data fits from participants LD session 1 

(left) and  DFO session 2 (right) with parameters of Rmax=7.69, n=2.22, LogK =1.25 and 

Rmax=5.66, n=2.61, LogK =0.89 respectively.  

 

Figure 3.8.2: Examples of a poor data fit from participant ND (left) with parameters of 

Rmax=610.83, n=0.69, LogK =1614.74, and data which could not be fitted using the ‘Naka-

Rushton’ function from participant SA (right). 

 

In addition to modelling the data with the ‘Naka-Rushton’ function, the repeatability 

of the focal rod ERG b-wave amplitude was assessed for each stimulus level (see table 

3.8.3). It can be seen that the b-wave of the focal rod ERG produced larger amplitudes for 

stronger stimuli, with the exception of the highest level. The lowest CoR was provided by 

the 0.0003 log scotopic td.s (1 scotopic td.s) stimulus, although as a percentage of the b-

wave amplitude the lowest CoR was provided by the 1.3 log scotopic td.s (20 scotopic 

td.s) stimulus. The CoR even for the most repeatable luminance was 75% of the mean b-

wave amplitude, showing a high level of inter-session variability.  
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Retinal 
illuminance 

(scotopic td.s) 

Mean b-wave 
amplitude (µV) 

Standard 
deviation 

Coefficient of 
repeatability (CoR) 

CoR as percentage 
of Amplitude (%) 

1 1.67 1.15 2.54 152 

4 2.11 1.51 3.91 185 

20 3.67 1.60 2.77 75 

100 5.61 2.12 5.10 91 

500 7.56 3.11 6.93 92 

1000 6.91 2.48 5.95 86 

Table 3.8.3: Mean ERG b-wave amplitudes for each retinal illuminance comprising the 

Focal Rod ERG intensity response series recorded, the coefficient of repeatability has 

been determined for each and additionally expressed as a percentage of the mean 

amplitude. 

 

3.8.3 Conclusions 

The recording of a focal rod ERG stimulus-response series was achieved from 

young healthy participants and was shown to be well described by the ‘Naka-Rushton’ 

function. However, under the reasonable clinical limitations (time and averaging) applied to 

the protocol the data were not found to be repeatable in a group of older adults and were 

also too noisy to provide a reliable fit with the Naka-Rushton function. The combination of 

participant fatigue limiting acquisition time and the requirement for substantial averaging to 

obtain reliable focal rod ERG waveforms made the recording of a stimulus-response series 

a challenge even in compliant healthy participants. Unless further innovations to improve 

the SNR of focal rod ERG data are developed it is unlikely that widespread clinical use of a 

focal rod ERG intensity-response series will be possible. 

The results, however, did show that the focal rod ERG could be recorded effectively 

for stimuli with a range of different luminance levels and, with the application of the 

subtraction technique described in section 3.7.2, the rod response isolated. It was hoped 

that the stimulus-response series would provide additional information regarding rod 

function, over and above that of the focal rod ERG parameters (a and b wave). As this has 

been shown to be impractical, an alternative approach would be to record the focal rod 

ERG at a low and high intensity and to assess the ratio of the two. This would allow more 

extensive averaging due to the reduced number of ERGs recorded.  

From the results, the best candidates for two stimulus levels based on the 

repeatability of the a and b wave parameters, and the difference in amplitudes appeared to 

be the 500 (2.70 log) and 20 (1.30 log) scotopic td.s stimuli. The 500 scotopic td.s stimulus 

produced the largest mean b-wave amplitude (7.56 µv) and was positioned towards the 
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higher end of the stimulus-response function, whilst the 20 scotopic td.s had a smaller 

amplitude and produced the smallest coefficient of repeatability as a proportion of the 

response amplitude. 

 

3.9 Conclusions 

As a result of the issues discussed and assessed within this chapter the following 

conclusions were reached with regard to the protocols described in section 3.1. The 

contralateral DTL reference electrode was shown to provide a reliable response of 

equivalent amplitude to the ipsilateral skin reference electrode for ERG recording. A 20° 

diameter, 40 Hz focal flicker ERG stimulus produced the largest measureable signals 

compared to the alternative temporal frequencies and stimulus sizes considered.  The 

benefits of an equilibrium bleach in comparison to a potentially faster photoflash technique 

was shown, with better repeatability and reliability of ERG photostress test results. An 

ageing effect was also identified in the ERG photostress test data. The identification of an 

adaptational effect when recording consecutive focal flicker ERGs suggested the need for 

a pre-recording period of adaptation.    

Although it was hoped that a focal rod ERG stimulus-response series would provide 

additional information regarding retinal function under scotopic conditions, it was shown to 

be an unfeasible approach clinically, due to difficulties related to poor SNR and collecting 

sufficiently averaged data within a limited clinical time frame. This work did however 

demonstrate that a rod dominated response could be elicited for stimuli with a range of 

luminance levels using a subtraction technique to remove the cone contribution from the 

response. An approach was also suggested whereby focal rod ERGs could be recorded 

using two different stimuli, and a ratio of amplitudes calculated providing additional 

measures of retinal function under scotopic conditions. These conclusions were used to 

optimise the protocols in chapter 6.  
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Chapter 4: Participants and baseline measurements 

This section describes the selection criteria, general methodology and baseline 

clinical measures for the study participants in chapters 5, 6, and 7 of this thesis. 

 

4.1 Power calculation 

Power calculations were carried out representing one or more of the measurement 

parameters for each of the investigative techniques being compared in the final chapters 

(5, 6 and 7) of this thesis. For the Focal cone ERG and ERG photostress tests previously 

published data was used as the basis for the calculations (Binns and Margrain 2007). 

However, in the case of the 1060 nm OCT thickness measurements and the Focal Rod 

ERG parameters no previously published data was available, therefore pilot data collected 

from healthy participants was used to provide an expected standard deviation value, whilst 

the smallest clinical difference was taken to be 1 standard deviation. The power 

calculations and any assumptions made are shown in table 4.1.1.  

It is apparent from table 4.1.1 that the target sample size is different for each 

parameter. The parameter requiring the largest sample size to find a clinically significant 

difference was the ERG photostress test. For the ERG photostress test a sample size of 

120 participants (60 per group) would be required to have an 80% chance of finding a 

difference in means of the rate of recovery of 0.189 at the 5% significance level.  Therefore 

the participant recruitment target was based on these values, with the aim of recruiting 60 

healthy participants and 60 participants with Age-related maculopathy.    
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Parameter Calculation values 
Sample per 

group 
Focal cone ERG 
 
‘b-wave amplitude’ 
 
‘b-wave implicit time’ 

Based on data from Binns & Margrain (2007)  
 
ARM participants (n=31) 

• b-wave amplitude (µV) 3.42 (SD ±0.24) 
• b-wave implicit time (ms) 45.37 (SD ±0.49) 

Control participants (n=27) 
• b-wave amplitude (µV) 3.96 (SD ±0.28) 
• b-wave implicit time (ms) 42.66 (SD ±0.33) 
 

Smallest clinical difference 
Difference in means as previously found 0.54 µV (b-wave 
amplitude) and 2.71 ms (b-wave implicit time) 
 

 
 

<4 
 

<4 

ERG photostress test 
 
‘rate of recovery’ 

Based on data from Binns & Margrain (2007) 
 
ARM participants (n=31) 

• Rate of Recovery (1/T) 0.183 (SD ±0.27) 
Control participants (n=27) 

• Rate of Recovery (1/T) 0.372 (SD ±0.38) 
T = Time constant of photopigment regeneration 
 
Smallest clinical difference 
Difference in means as previously found = 0.189 
 

 
 

60 

Focal rod ERG 
 
‘500 scotopic td.s b-
wave amplitude’ 
 

Based on data from Chapter 3.8  
 
Healthy participants (n=14) 

• b-wave amplitude (µV) 7.56 (SD ±3.11) 
 
Smallest clinical difference 
Assumed to be 1 SD (3.11 µV) 

 
 

15 

1060 nm OCT 
 
‘Foveal retinal 
thickness’ 

Based on data from Chapter 2.3 
 
Healthy participants (n=21) 
           • Retinal thickness at the fovea (µm) 205.9 (SD 
±23.9) 
 
Smallest clinical difference 
Assumed to be 1 SD (23.9 µm) 

 
 

15 

Table 4.1.1: Power calculations for selected study parameters based on the Altman 

Nomogram for unpaired t-tests. Expected group sizes are shown, all calculations assumed 

a power of 80% and a significance level of 95%. 

 

4.2 Participant selection 

Participants with ARM were recruited from the retinal clinic of Mr. Ayed Al-Bermani 

at the University Hospital of Wales. Additional participants with ARM were recruited from 

the Cardiff University Eye Clinic and via Optometrists within the Cardiff and Vale University 

Health Board area. Participants who acted as controls for this study were primarily 

recruited from the Cardiff University Eye Clinic and via Optometrists within the Cardiff and 

Vale University Health Board area.  
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Ethical approval was obtained from both the School of Optometry and Vision 

Sciences Research Ethics Committee and the South East Wales Research Ethics 

Committee. All participants were provided with written information regarding the study prior 

to attending for the first appointment, and were given the opportunity to discuss the study 

with the researchers prior to giving written consent.  The study adhered to the tenets of the 

Declaration of Helsinki. 

A set of eligibility criteria was specified for all participants of this study, these are 

outlined below (see sections 4.2.1 & 4.2.2). 

 

4.2.1 Inclusion criteria 

 Males and females aged 55 years and above. 

 Participants with ARM in one or both eyes, including pigmentary changes and/or 

drusen within the macular area, or participants with bilateral healthy maculae 

(control group). 

 

4.2.2 Exclusion criteria 

 Visual acuity worse than 0.3 LogMAR (test eye). 

 A visual field defect within central 30° assessed with suprathreshold automated 

static perimetry (test eye). 

 Any of the following ocular conditions: non-AMD related fundus changes, narrow 

anterior angles (<grade 1 van Herick), amblyopia, congenital colour vision defects, 

significant cataract (LOCS III graded, above grade 4 on any criterion (Chylack et al., 

1993)), central corneal/media opacity, any posterior eye condition and /or 

glaucoma. 

 Any of the following systemic conditions: diabetes, neurological disease (for 

example, Parkinson’s disease, Alzheimer’s disease, stroke and epilepsy), any other 

systemic conditions known to affect ocular function. 

 Taking medication known to affect retinal function (for example Chloroquine, 

Tamoxifen). 

 Refractive error ≥ ±6.00D in the most powerful meridian. 
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4.3 Baseline measures and methods 

 

4.3.1 Visual acuity 

Visual acuity (VA) was assessed using an ETDRS LogMAR chart for each eye 

separately (the chart was calibrated to be viewed at 3m, this distance was reduced if 

necessary). Participants were encouraged to read down the chart until they made at least 

4 errors on a line. Acuity was scored on an individual letter basis.  

 

4.3.2 Colour vision 

The colour vision was assessed for each eye using a Saturated D-15 test 

(Farnsworth, 1943). The caps were placed in a random order, face up, within a standard 

Illuminant C light box. The participant was asked, starting with the 1st cap, to place the 

coloured caps in an ordered sequence based on their perception of similarity. When the 

participant was happy with the sequence of caps, the caps were turned over and the 

number sequence displayed on the reverse was recorded.  

Analysis was carried out using a computer based technique described by Vingrys 

and King-Smith (1988), with software loaded into MS-DOS (Microsoft. Redmond, WA). 

The D-15 cap orders were input and the program returned 6 values which describe the 

original D-15 cap sequence based on a vector scoring method.  

The colour vision result may be described in terms of a major and minor vector 

(values output); the angle of the major vector is known as the confusion angle and has 

been shown to correspond to the type of colour vision defect present (Vingrys and King-

Smith, 1988), the minor vector is perpendicular to the major axis, and represents colour 

confusion along vectors that deviate from the confusion angle. Normal participants were 

reported to have an angle of ~60°, where as protan, deutan and tritan defects had 

approximate angles of +3 to +17°, -4 to -11° and -70 to -90° respectively. The analysis 

also gives a ‘C-index’, which describes the severity of a defect, with normal participants 

returning values of ~ 1.0 up to 1.77, and an ‘S-index’, which provides a measure of scatter, 

or selectivity in cap arrangement. A low S-index (~1.09 to 1.38) may indicate a normal 

participant or anarchic cap arrangement, whereas a high S-index maybe suggestive of 

congenital colour vision defects. Acquired defects are often characterised by a high C-

index, but lower S-index, thought to reflect a more generalised loss in chromatic sensitivity 

(achromatopsia) (Vingrys and King-Smith, 1988). The colour vision status of test eyes in 
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both ARM and control groups were compared with regard to group average parameters 

and individuals.  

 

4.3.3 Irido-corneal angle assessment 

The irido-corneal angle was assessed in each eye adjacent to the temporal limbus. 

This assessment was made using the Van Herick technique (Van Herick, Shaffer and 

Schwartz, 1969). 

 

4.3.4 Dilation 

Both pupils were dilated with 1 drop Tropicamide HCl 1%. The formulation, 

strength, expiry date, time of instillation and batch number were recorded for each drug 

administration. 

 

4.3.5 Axial length 

Axial length was assessed using the IOL master (Carl Zeiss, Meditec Inc, CA) with 

5 readings from each eye recorded and a mean calculated.  

 

4.3.6 Auto-refraction 

Refraction was assessed objectively for each eye using an auto-refractor (KR-7500 

Auto-kerato-refractometer, Topcon, Tokyo). Where possible, 3 individual objective 

refractions for each eye were obtained and mean sphero-cylinder refraction was recorded. 

 

4.3.7 Central visual field screening 

The visual field was assessed for each eye using the C 40 supra-threshold testing 

program on the Humphrey Field Analyser (Carl Zeiss, Meditec Inc, CA). A subjective 

assessment of the results was made by the researcher and, in cases of poor compliance, 

the test was repeated, or if suspect visual field defects were found then appropriate 

referral was made.  

 

4.3.8 Lens assessment 

Media clarity was assessed using a slit-lamp bio-microscope for each eye.  The 

LOCS III grading system was used to assess the presence and extent of cataract in each 

eye (Chylack et al., 1993). A subjective assessment of media clarity (cornea and anterior 

vitreous) was also made during the slit-lamp examination. 
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4.3.9 Retinal photography 

Retinal images were obtained for each eye using the Canon CR-DGi non-mydriatic 

camera (Canon medical systems, Irvine, CA). Thirty-seven degree posterior pole retinal 

photographs were captured and stored digitally. The retinal photographs were used to 

determine allocation to either the ARM or control group and to grade drusen features and 

pigmentary abnormalities with the International Classification and Grading System for 

AMD (Bird et al., 1995) using the methods described in section 2.4.  

 
4.4 Participant characteristics 

 

4.4.1 AMD grading 

 Fifty participants met the eligibility criteria for this study, comprising 24 participants 

graded as having ARM and 26 graded as normal. The disease characteristics of the 

participants graded as having ARM have been summarised in table 4.4.1. Furthermore, 

the grading of drusen features and pigmentary abnormalities is shown in the Appendix I , 

table I.1 (ARM participants) and I.2 (Control participants).  

 

4.4.2 Age and axial length 

 The mean age for each group was 73.8 (±8.5) and 66.6 (±7.5) years for ARM and 

control groups respectively; there was a statistically significant difference between groups 

(p=0.003; independent t-test). The mean axial length for each group was 23.1 (±0.71) and 

23.7 (±0.91) mm for ARM and control groups respectively, which also showed a 

statistically significant difference between groups (p<0.03; independent t-test) (see 

Appendix I, tables I.5 and I.6, for individual values). 

 Due to the difference between groups for each of these parameters, the ERG and 

OCT parameters measured in this thesis were assessed for significant correlations with 

age and axial length (Pearson’s correlation coefficient for parametric data, or Spearman’s 

rank correlation coefficient for non-parametric data). Linear regression was carried out to 

determine the relationship between age/axial length and ERG/OCT parameters where 

there was a statistically significant correlation. To avoid a confounding effect, ERG and 

OCT parameters were adjusted for age and axial length based on the gradient of the linear 

regression.  

 



 

 
 

151 Chapter 4: Participants and baseline measurements 

Participant 
Test eye (ARM) Contralateral eye 

status Drusen size 
>125µm 

>10 
Drusen

Pigmentary 
abnormalities

Drusenoid 
PED 

DG24  N  N Y N  Normal

UH38  Y  Y N N  ARM

MK48  Y  Y N N  ARM

PJ45  Y  N N N  Normal

JM83  Y  N N N  ARM

RJ95  N  N Y N  Wet

DR96  Y  Y Y Y  Wet

TO97  N  N Y N  Wet

BS100  Y  N N Y  Wet

DN82  Y  N Y N  Normal

DP103  Y  N Y N  ARM

SJ90  Y  Y Y N  Wet

CG101  Y  N N N  ARM

SO107  Y  Y N Y  Wet

JH108  Y  Y N N  Wet

AP109  N  N Y N  ARM

PT139  Y  N Y N  ARM

MT125  Y  Y N N  ARM

WC122  Y  Y Y N  Wet

JT99  N  N Y N  Wet

BS116  Y  N N N  Normal

BC92  Y  Y Y N  Wet

PS115  N  N Y N  Normal

SH93  N  N Y Y  Wet

Table 4.4.1: Disease characteristics for ARM participants (n=24). N= feature not present, Y 

= feature present.  

 

4.4.3 Baseline 

 

4.4.3.1 Visual Acuity 

 The mean visual acuity in the ARM group was 0.11 logMAR (±0.12) compared to an 

acuity of 0.04 logMAR (±0.11) for the control group. There was a statistically significant 

difference between groups (p<0.05 z=-2.143; Mann-Whitney u-test). The data from 

individual participants is shown in Appendix I, tables I.5 and I.6.  
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4.4.3.2 Gender and ethnicity 

 The control group contained 17 male and 9 female participants, whilst the ARM 

group contained 10 male and 14 female participants (χ2= 1.952 p>0.1; Chi-squared test). 

All participants (n=50) within the study reported their ethnicity as white European.  

 

4.4.3.3 Colour vision 

 Only 1 participant within the control group made an error on the D-15 test (see 

Appendix I, table I.4); the low C-index (1.44) and relatively low S-index (1.88), were 

suggestive of anarchic cap placement or a mild acquired defect. For the control group the 

mean confusion angle, C-index and S-index were 62.7°, 1.02 and 1.40 respectively. In 

contrast, 7 participants within the ARM group (see Appendix I, table I.3) made at least one 

error. For the ARM group the mean confusion angle, C-index and S-index were 65.8°, 1.16 

and 1.56 respectively. All 7 ARM participants who made errors expressed a confusion 

angle consistent with a blue-yellow defect. The range of C-index (1.12-2.20) and S-index 

(1.50-3.20) scores for these 7 participants suggest that these were mild acquired defects, 

or a result of anarchic cap placement.  

 

4.4.3.4 LOCS grading 

 The grading of the clarity of the crystalline lens of all participants using the LOCSIII 

system is shown in Appendix I, tables I.5 and I.6. The test eye of 4 participants within the 

ARM group, and 1 participant within the control group had undergone cataract extraction 

and had an artificial intra-ocular lens (IOL) implanted.  When compared between groups, 

nuclear colour (NC), nuclear opalescence (NO), cortical cataract (C) and posterior sub-

capsular cataract (P), were not found to be statistically different (p>0.9 z=-1.659, p>0.4 z=-

0.799, p>0.1 z=-1.574,p>0.1 z=-1.545 respectively; Mann-Whitney u-test).  

 

4.4.3.5 Refractive status 

 The refractive status for all participants in the study is shown in Appendix I, tables 

I.5 and I.6. The average mean sphere of control participants was +0.73 DS (±1.79) whilst 

that of the ARM group was +1.79DS (±1.65). There was a statistically significant difference 

in refractive error between the groups (p<0.05; independent t-test).  
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Chapter 5: Retinal structure 

This chapter describes a study to evaluate the effect of ARM on retinal and 

choroidal structure using the 1060 nm OCT. As previously discussed, in section 1.4, OCT 

is capable of imaging and measuring retinal (Legarreta et al., 2008; Ikuno and Tano, 2009; 

Kakinoki et al., 2009; Ikuno et al., 2010; Wood et al., 2011a), intra-retinal (Loduca et al., 

2010) and when 1060 nm wavelength OCT is used, choroidal (Ikuno and Tano, 2009; 

Margolis and Spaide, 2009; Ikuno et al., 2010; Manjunath et al., 2010; Hirata et al., 2011) 

layer thicknesses in healthy participants. However, only a few previous studies have 

specifically measured retinal thickness in ARM (Kaluzny et al., 2009; Malamos et al., 2009; 

Schuman et al., 2009), none of which have investigated choroidal thickness, or assessed 

the diagnostic potential of these measures. Therefore, the first aim of this chapter was to 

identify structural changes within the retinal, choroidal or intra-retinal layers associated 

with ARM. The second aim was to assess the diagnostic potential of these changes in 

order to determine the clinical utility of these findings and ultimately to compare the 

diagnostic ability with the functional measures described in chapter 6. Finally, these values 

provided the basis for a layer by layer comparison of retinal structure to function described 

in chapter 7.  

The analysis described in this chapter contributed to a publication in the American 

Journal of Ophthalmology (Wood et al., 2011a)(see Appendix M).  

 

5.1 Methods (OCT protocols) 

OCT images were obtained after dilation of a participant’s pupil (1 drop 1% 

Tropicamide HCl) using a 1060 nm OCT system (see figure 5.1.1). Participants were 

positioned comfortably and asked to fixate an internal fixation cross to ensure accurate 

imaging of the macula. The OCT was then aligned and focused prior to image capture. 

The saved images were processed by the OCT system and converted into a useable file 

format prior to exportation to ImageJ (Rasband, 1997) for analysis. 
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Figure 5.1.1: The 1060 nm OCT system; adjustable table, chin rest, imaging head and 

OCT system shown.  

  

OCT images were obtained from both eyes of each participant. Two scans were 

carried out on each eye, both of which comprised 512x512 a-scans, (each a-scan 

containing 1024 individual data points). One covered a retinal area of 20°x20° and the 

other 36°x36°. As it was not possible to review images at the time of acquisition with this 

OCT system, multiple images were obtained during the imaging session, with the best 

images selected for post processing. In this chapter, the 36°x36° data analysis is 

described, as these images were better able to sample the full macular area. 

 

5.1.1 Post processing and analysis 

The visibility and definition of the intra-retinal and choroidal layers was improved 

using the post processing techniques described in section 2.2 (see figure 5.1.2). The post 

processed images were ‘resliced’ to create a vertical and a horizontal b-scan (see figure 

5.1.3 for an example), which intersected at the foveal pit, the ‘z-project’ function of ImageJ 

(Rasband, 1997) was applied to average approximately 5 adjacent b-scans to improve 

image quality.  
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Figure 5.1.2: Image showing a raw OCT prior to post-processing (Left) and OCT after post 

processing techniques had been applied (Right). The image has been processed to 

enhance the intra-retinal and choroid-scleral boundaries. 

 

The horizontal and vertical b-scan images were measured using the manual 

technique described in section 2.3.1.1. As the appearance of the intra-retinal layers in 

OCT images is dependent on the relative reflectivity of each component layer, the 

boundaries of specific retinal layers, as identified by histology, may not easily be resolved. 

Therefore the selection of intra-retinal layers that were measured in this study was based 

on using the most prominent and visible intra-retinal boundaries within the OCT image 

(see figure 5.1.3). The layers measured, and their histological equivalent layers, are 

described in table 5.1.1. The names given to the measured intra-retinal layers in this study 

are based upon the cell type which predominates within each layer. At the foveal pit, the 

retina comprises almost entirely photoreceptors (Provis et al., 2005), therefore, the retinal 

thickness at this location was taken to represent the photoreceptor layer thickness with the 

other measured intra-retinal layers being absent.  
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Figure 5.1.3: Image showing a post processed horizontal OCT section (36° image) from 

the left eye. Blue box indicates approximate 20° field that was used in this analysis. Red 

arrows point to the hyper-reflective boundaries which were used as reference points for 

the measurement of the features described in table 5.1.1. ILM (inner limiting membrane), 

GC anterior (anterior boundary of ganglion cell layer), INL anterior (anterior boundary of 

inner nuclear layer), ONL anterior (anterior boundary of outer nuclear layer), RPE (retinal 

pigmented epithelium) and choroid-sclera (the choroid-scleral boundary). 

 

Thickness measurements were made at 21 individual locations, along both the 

vertical and horizontal b-scan intersecting at the foveal pit. The thickness measurements 

at the foveal pit were assessed twice i.e. once in the vertical and once in the horizontal b-

scan. The position of each measurement location was determined based on the position of 

the foveal pit within each b-scan image, the measurement locations were then spaced at 

increasing eccentricity (2, 4, 6, 8 and 10 degrees) nasally, temporally, superiorly and 

inferiorly from this point (see figure 5.1.4). Measurement locations were determined by 

calculating the relative distance in pixels from the foveal pit; and were corrected for 

transverse image magnification using the method described in section 2.2.1.  

Thicknesses were obtained whenever possible for each of the 6 layers described in 

table 5.1.1. Where a layer could not be visualised or where it was identifiable but not 

measurable (its thickness being equal to or less than the image resolution) the thickness 
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was recorded as ‘absent’ or as ‘0’ respectively. All measurements were recorded in pixels 

and converted into microns using a conversion factor of 2.43 µm per pixel.  

 

Name Layer (histological equivalent) OCT boundary (see figure 5.1.3) 
Retinal nerve fibre 
layer 

Retinal nerve fibre layer ILM to the anterior boundary of 
GCL 

Ganglion cell layer Retinal ganglion cells and inner plexiform layer Anterior boundary of GCL to the 
anterior boundary of INL 

Bipolar cell layer Inner nuclear and outer plexiform layers Anterior boundary of INL to the 
anterior boundary of ONL 

Photoreceptor layer Outer nuclear layer and the photoreceptors Anterior boundary of the ONL to 
the RPE  

Retina Neural retina ILM to the RPE 
Choroid Choroid  RPE to the choroid-sclera 

boundary 

Table 5.1.1: Table showing the names given to the layers measured in this thesis, the 

histological equivalent layers and the boundaries used to delineate these layers on the 

OCT images. 

 

Figure 5.1.4: A retinal photograph showing the 21 OCT measurement locations (solid dots) 

spaced at 2° intervals from the foveal pit along a horizontal and vertical plane (black lines), 

retinal direction is indicated by S (Superior), I (Inferior), N (Nasal), and T (Temporal) as 

labelled.  

 

In addition to layer thickness values at individual locations, a “weighted average 

thickness” was calculated for each of the 6 layers measured. This was intended to provide 

an estimate of average layer thickness across the 20° field that could be directly compared 
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to focal ERG results (which also originated from a 20° diameter retinal area). The weighted 

average volume and thickness values were calculated as described in equations 5.1 to 

5.3.  

 

The central foveal volume over the central 2° diameter region (n=1° eccentricity) was 

calculated as shown in equation 5.1: 

 

Equation 5.1:  Volume = (π.rn²).(t(n-1)+t(n+1)/2) 

 

Where, t= mean thickness measurement (average of all recorded thickness measurements 

at each eccentricity), n= eccentricity in degrees and r= radius (µm) 

 

The volume of each intermediate 2° wide annular rings (centred at n= 2, 4, 6 and 8° 

eccentricity) was calculated as shown in equation 5.1.2:  

 

Equation 5.2:  Volume = (π.r(n+1)²).(tn+t(n+2)/2) – (π.r(n-1)²).(tn+t(n+2)/2)  

 

The volume of the outer annular ring 1° wide extending from 9 to 10 ° eccentricity (n=10° 

eccentricity) was calculated as shown in equation 5.1.3: 

 

Equation 5.3:  Volume = (π.rn²).(tn) – (π.r(n-1)²).(tn) 

 

The sum of each of these volumes was then divided by the total area of the 20° diameter 

region (π.r²) to produce the weighted average thickness for each retinal, intra-retinal or 

choroidal layer assessed.  

 

5.1.2 Statistical analysis 

 All data were assessed for normality using the Shapiro-Wilk test. Thickness 

measurements at each location were assessed for a relationship with age and axial length 

(using Pearson’s correlation coefficient for normally distributed data and Spearman’s rank 

correlation coefficient for non-normally distributed data), as the control and ARM groups 

were not matched for these factors (see section 4.3.2). Where a statistically significant 

correlation was identified (p<0.05), linear regression was used to correct raw data.  
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Statistical comparison of group mean thickness values (ARM v Controls) was 

carried out for all 6 layers at every measurement location (Independent t-test for normally 

distributed data, Mann-Whitney U-test for non-normally distributed data). As the 

measurements obtained for different retinal locations from each individual are related 

variables (i.e. they are obtained from the same structure within the same eye), they show a 

high degree of correlation (Wood et al., 2011a). If multiple unrelated variables were 

compared, it would be expected that the null hypothesis would be wrongly rejected in 1 out 

of every 20 comparisons through chance alone (i.e. multiple testing increases the risk of a 

type I error). However, the risk of a type I error decreases when variables tested are 

correlated, such that  the probability of the null hypothesis being rejected due to chance is 

not multiplicative of the probability of each comparison being found significant by chance 

alone (Bland and Altman, 1995). This means that a conservative approach to multiple 

statistical testing, such as Bonferroni correction, is not appropriate here. 

A two way between group analysis of variance was carried out, to identify any 

overall difference in retinal or choroidal layer thickness between the ARM and Control 

groups. Measurement location and participant status (ARM or Control) were identified as 

categorical independent variables, whilst the thickness values were defined as the 

dependent continuous variable. A significance level of p<0.05 was used, except where the 

data were identified (assessed using Leverns’s test of equality) as not displaying equal 

variance, where a more stringent significance level of p<0.01 was applied. The Eta 

squared parameter is a measure of the size of effect, ranging between 0 and 1, greater 

values indicates larger size of effects, a value of >0.06 is considered moderate. 

In addition, the structural measures that demonstrated statistical differences 

between groups were assessed for diagnostic potential. Each thickness measurement was 

assessed using receiver operating characteristics curves (ROC). These curves describe 

the ability to correctly identify individuals with disease (sensitivity) and those without 

(specificity). 

 The ROC curves were assessed with regard to the area underneath the curve 

(AUC) which reflects the diagnostic potential of the parameter. A value of 1 indicates 

perfect differentiation, whilst a value of 0.5 indicates no ability to differentiate between 

healthy and diseased participants. Cut off values were also determined for each parameter 

to best distinguish between disease and healthy participants. Diagnostic tests with both a 

high sensitivity and specificity are those which are best at differentiating healthy 
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participants from those with ARM. All statistical analysis in this chapter was carried out 

using SPSS 19 software (IBM, Armonk NY). 

 

5.2 Results 

 OCT images were obtained from all individuals, apart from 2 participants with ARM 

whose images were not of sufficient clarity to include in the study. The following results 

therefore originate from 22 participants with ARM and 26 controls. All measurements at 

each location were individually assessed for a relationship with age and axial length, 

where a statistically significant correlation was found, the individual values were adjusted 

by linear regression analysis. The individual thickness values for each participant are 

shown in Appendix J; values where adjustment for age or axial length was made are 

indicated. 

 

5.2.1 Retinal thickness 

 The mean retinal thickness for ARM and control groups is shown as a function of 

eccentricity in figure 5.2.1.  

  

Figure 5.2.1: Retinal thickness for controls (open symbols) and participants with ARM 

(filled symbols). Error bars indicate standard error at each measurement location. 

Locations where the difference between groups was statistically significant (p<0.05) are 

denoted by a star (*). 
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The retina was shown to be thinnest at the foveal pit in both control (mean foveal 

thickness ±SD; 216 ±32 µm) and ARM (mean foveal thickness ±SD; 207 ±48 µm) 

participants, with thickness increasing to reach a maximum at approximately 4° in all 4 

directions before decreasing towards the periphery. The ARM group tended to have 

thinner retinas than the control group out to 6° eccentricity in all meridians. A statistical 

difference in mean thickness between groups was identified at 2° nasally and temporally 

from the foveal pit (p<0.05 at both location N2 and T2; independent t-tests). Other 

locations did not demonstrate a statistically significant difference between groups.  

 

5.2.2 Choroid thickness 

 The mean choroidal thickness for ARM and control groups is shown as a function of 

eccentricity in figure 5.2.2. The choroid was shown to be thinnest at the 10° nasal location 

(103 ±42 µm), which is the point closest to the optic nerve head.  A small reduction in 

mean thickness was seen with increasing eccentricity from the fovea in all 4 meridians 

(see figure 5.2.2). The group of participants with ARM had slightly higher mean choroidal 

thickness at almost all locations; however, this did not reach significance for any 

measurement location. 

  

Figure 5.2.2: Choroidal thickness for controls (open symbols) and participants with ARM 

(filled symbols). Error bars indicate standard error at each measurement location. There 

were no statistically significant differences in choroidal thickness at any of the locations 

studied.  
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5.2.3 Photoreceptor layer thickness 

The mean photoreceptor layer thickness for ARM and control group participants is 

shown as a function of eccentricity in figure 5.2.3. The photoreceptor layer was shown to 

be thickest at the foveal pit in both control (mean F; 216 ±32 µm)  and ARM (mean F; 207 

±48 µm) participants (103 ±42 µm), and rapidly declined by 2° eccentricity before a more 

gradual thinning with increasing eccentricity in all directions. The mean photoreceptor layer 

thickness was lower for the ARM group than the control group at most locations, with 

those at 2° nasally and 2° and 4° superior to the fovea reaching significance (p<0.05; 

independent t-test). 

  

Figure 5.2.3: Photoreceptor layer thickness for controls (open symbols) and participants 

with ARM (filled symbols). Error bars indicate standard error at each measurement 

location. Locations where the difference between groups was statistically significant 

(p<0.05) are denoted by a star (*). 
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5.2.4 Bipolar cell layer thickness 

 

Figure 5.2.4: Bipolar layer thickness for controls (open symbols) and participants with ARM 

(filled symbols). Error bars indicate standard error at each measurement location. 

Locations where the difference between groups was statistically significant (p<0.05) are 

denoted by a star (*). 

 

The mean bipolar cell layer thickness for ARM and control groups is shown as a 

function of eccentricity in figure 5.2.4. The bipolar cell layer was thickest at 2-4° 

eccentricity before declining gradually with increasing eccentricity. The bipolar cell layer 

thickness was only found to be significantly different between groups at 2° nasally (p<0.05; 

independent t-test), where the control group showed a thicker mean value.  

 

5.2.5 Ganglion cell layer thickness 

The mean ganglion cell layer thickness for ARM and control groups as a function of 

eccentricity is shown in figure 5.2.5.  The ganglion cell layer, not present at the fovea, was 

thickest at 4° along all meridians before declining gradually with increasing eccentricity. 

The ganglion cell layer thickness was found to be significantly thinner for the ARM group at 

2° nasal, temporal and superior to the fovea (p<0.05; independent t-test) but did not reach 

significance at more eccentric locations. 
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Figure 5.2.5: Ganglion cell layer thickness for controls (open symbols) and participants 

with ARM (filled symbols). Error bars indicate standard error at each measurement 

location. Locations where the difference between groups was statistically significant 

(p<0.05) are denoted by a star (*). 

 

5.2.6 Retinal nerve fibre layer thickness 

The retinal nerve fibre layer thickness for ARM and control groups is shown as a 

function of eccentricity in figure 5.2.6. The retinal nerve fibre layer increased in thickness 

with increasing eccentricity superiorly and inferiorly to the fovea, the greatest increase was 

seen towards the optic nerve head nasally, whilst the thickness temporally to the fovea 

was minimal reaching a peak at 6° eccentricity. The retinal nerve fibre layer was found to 

be significantly thinner for the ARM group at 4° and 8° superiorly and (p<0.05; 

independent t-test) but did not approach significance at any other locations. 
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Figure 5.2.6: Retinal nerve fibre layer thickness for controls (open symbols) and 

participants with ARM (filled symbols). Error bars indicate standard error at each 

measurement location. Locations where the difference between groups was statistically 

significant (p<0.05) are denoted by a star (*). 

 

5.2.7 Between group macular layer thickness 

The effect of retinal or choroidal layer thickness differences across all measurement 

locations for each retinal or choroidal layer was assessed by two approaches.  Firstly, a 

Two way between group analysis of variance, that considered the between group effect 

when of all thickness measurements at all locations are considered together. The second 

involved calculating a weighted average thickness for each retinal or choroidal layer 

assessed and assessing the statistical significance of any difference between groups 

identified.  

 

5.2.7.1 Two way between groups analysis of variance 

Two way between group (ARM and Control) analysis of variance identified 

significant differences for all retinal layers at the p<0.001 significance level. The Eta 

squared parameter, which represents size of effect, returned the highest value for the 

photoreceptor layer (0.061) and lowest for the nerve fibre layer (0.027). The choroidal 

measurements did not demonstrate a significant difference between groups (p>0.05).  
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OCT Parameter Significance between groups Eta squared 
Retina P<0.001 0.05 
Photoreceptor layer P<0.001 0.061 
Bipolar cell layer P<0.001 0.047 
Ganglion cell layer P<0.001 0.049 
Nerve fibre layer P<0.001 0.027 
Choroid P>0.05 - 
Table 5.2.1: Two way between groups ANOVA comparing OCT layer thickness values at 

all measurement locations between the Control and ARM groups.  

 

5.2.7.2 Weighted average layer thickness 

The weighted average retinal thickness was marginally thinner for the ARM (263 

±52 µm) compared to the control group (269 ±29 µm) but was not found to be significantly 

different (p>0.2; Mann-Whitney U-test). Similarly none of the intra-retinal layers 

demonstrated a statistically significant difference between groups when the weighted 

average thicknesses were compared (see table 5.2.1). The weighted average choroidal 

thickness was shown to be greater in the ARM group (204 ±62 µm) compared to the 

controls (186 ±62 µm), again this difference was not statistically significant (p>0.3; 

independent t-test).  

 

Layer 
Group 

 p-value               Control                 ARM 
Mean (SD) Mean (SD) 

Retina1  269 (29) 263 (52) 0.230* 
Choroid  186 (62) 204 (62) 0.328 
Nerve fibre  31 (7) 28 (5) 0.082 
Ganglion cell  63 (10) 68 (14) 0.285* 
Bipolar cell1  55 (8) 54 (14) 0.275* 
Photoreceptor1  121 (13) 120 (21) 0.800 
1. corrected for age          
*. non-parametric (Mann-Whitney U-test) statistical test applied

Table 5.2.2: Mean weighted average thickness values for 6 layer measurements. P-values 

for independent t-tests, or Mann-Whitney U-test for non-parametric data, carried out 

between groups are shown, no tests identified a significant difference between groups at 

the p<0.05 significance level. 

 

5.2.8 Diagnostic ability 

An analysis of the diagnostic potential was carried out for each thickness 

measurement where a statistical difference between groups was identified; the eleven 

qualifying measurements are shown in table 5.2.2. Receiver operating characteristics 

(ROC) curves were produced for each thickness measurement, with the retinal, 
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photoreceptor layer and bipolar cell layer ROC results shown in figure 5.2.7 and the 

ganglion cell and retinal nerve fibre layer ROC results shown in figure 5.2.8. The ROC 

curves were assessed for the overall diagnostic potential of each measurement by 

comparing the area under the curve (AUC). The AUC for the thickness measurements 

ranged from 0.642 for the photoreceptor layer at 2° nasal to 0.787 for the photoreceptor 

layer at 2° superior to the fovea.  

 

Measured layer Location Optimal cut-off Sensitivity Specificity
Retinal thickness  Nasal 2° 284 µm 69% 59% 
 Temporal 2° 265 µm 92% 59% 
Photoreceptor  Nasal 2° 148 µm 65% 55% 
layer thickness Superior 2° 128 µm 92% 67% 
 Superior 4° 125 µm 73% 76% 
Bipolar cell layer thickness Nasal 2° 57 µm 81% 59% 
Ganglion cell  Nasal 2° 74 µm 62% 64% 
layer thickness Temporal 2° 68 µm 89% 65% 
 Superior 2° 84 µm 62% 68% 
Nerve fibre layer thickness Superior 4° 31 µm 77% 68% 
 Superior 8° 33 µm 58% 75% 
Table 5.2.3: A summary of the 11 thickness measurements which best differentiated 

participants with ARM from healthy controls. The optimal cut off value for each 

measurement and the sensitivity and specificity of each are shown.  
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Figure 5.2.7: ROC curves assessing diagnostic potential for retinal, photoreceptor and 

bipolar cell layer thickness measurements at locations where a statistical difference 

between groups had been shown. Area under the curve (AUC) is shown for each ROC 

curve. (A) Retinal thickness Nasal 2°, (B) Retinal thickness Temporal 2°,(C) Photoreceptor 

layer thickness Nasal 2°, (D) Photoreceptor layer thickness Superior 2°, (E) Photoreceptor 

layer thickness Superior 4°, (F) Bipolar cell layer thickness Nasal 2°.   

AUC = 0.650 AUC = 0.673

AUC = 0.642 AUC = 0.787 

AUC = 0.766 AUC = 0.658

A B

C D

E F
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Figure 5.2.8: ROC curves assessing diagnostic potential for ganglion cell and nerve fibre 

layer thicknesses measurements at locations where a statistical difference between 

groups had been shown. Area under the curve (AUC) is shown for each ROC 

curve.(A)Ganglion cell layer thickness Nasal 2°, (B) Ganglion cell layer thickness Temporal 

2°, (C) Ganglion cell layer thickness Superior 2°, (D) Nerve fibre layer thickness Superior 

4°, (E) Nerve fibre layer thickness Superior 8°. 

AUC =  0.666 AUC =  0.714

AUC = 0.695 

AUC = 0.677 AUC =0.774 

A B

C

D E
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The optimal cut off value for differentiation between the control and ARM groups 

was determined based on the combination of greatest sensitivity and specificity. These 

values are shown in table 5.2.2. The total retinal thickness assessed at 2° nasally and 

temporally proved to have a reasonable sensitivity (69 and 92 % respectively) and poor 

specificity (59 % each) to ARM, this is reflective of the other OCT parameters (see table 

5.2.2). The photoreceptor layer thickness at 2° superior to the fovea appears to have the 

best diagnostic potential with sensitivity and specificity of 92 % and 67 % respectively. 

 

5.3 Discussion 

This chapter intended to approach the data analysis using participants with ARM 

who were age and axial length matched to the controls, as was the case in the analysis 

described by Wood et al. (2011a). However, an alternative approach was adopted here 

whereby each individual thickness measurement was corrected for age and axial length 

where a relationship with those variables was found. Given that age-related losses of 

retinal cells may be heterogeneous across the macula, for example photoreceptor loss is 

reported to begin inferiorly and then spreads to cause greatest loss in an annular ring 

between 0.5 to 3 mm eccentricity (Curcio et al., 1993), these corrections were applied on a 

point by point basis. 

 Many recent studies have reported retinal thickness values (see Appendix F), for 

example, Legaretta et al. (2008) and Kakinoki et al. (2009) reported foveal retinal 

thickness in healthy individuals of 258.2 µm (± 23.5 µm) and 257.6µm (± 19.6 µm) 

respectively. These values are generally thicker than the 216 µm (± 32 µm) found in this 

thesis. However, previous studies used commercial OCT systems and reported thickness 

values based on the averages for the ETDRS grid sub-fields (Legarreta et al., 2008; 

Kakinoki et al., 2009; Cheng, Lam and Yap, 2010; Grover et al., 2010; Loduca et al., 

2010). Therefore, the thickness at the foveal pit in this study cannot be directly compared 

to the average of the ETDRS central sub-field (radius 500 µm, ~2°). These values may be 

more directly comparable to the average of the 2° eccentricity measurements and foveal 

pit measurement, which for the control participants produced a value of 286.4 µm.  

Loduca et al. (2010) measured the thickness of the photoreceptor outer segments 

and a layer corresponding to the outer nuclear layer and photoreceptor inner segments 

separately. The combined values of these two layers are comparable to the thickness of 

the photoreceptor layer measured in this study. They reported an average thickness within 

the central ETDRS sub-field (~2°) of 144 µm, the average of the 4 measurements at 2° for 
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control participants in this study was 148.5 µm. Other retinal locations have similar values, 

for example when comparing the thickness within the inner subfield (~5°) superior to the 

fovea, where a thickness of 117 µm was reported by Loduca et al. (2010) an equivalent 

location in this data set returned a measurement of 133 µm (location S4).  

The bipolar cell layer in this study is equivalent to the sum of the inner nuclear layer 

and outer plexiform layer thickness measured by Loduca et al. (2010) using OCT images 

obtained from normal subjects. The thickness of the central ETDRS sub-field (~2°) of 61 

µm, was of a similar magnitude to the average of the 4 measurements at 2° for control 

participants in this study (68.75 µm). The values reported by Loduca et al. (2010) also 

reflect the reduction in bipolar cell thickness with increasing eccentricity shown in these 

data. 

The ganglion cell layer thickness values in normal participants reported by Loduca 

et al. (2010) was structurally correspondent to the ganglion cell layer described in this 

thesis. The values reported by Loduca et al. (2010) for the central ETDRS sub-field (~2°) 

of 56 µm were smaller than the 81µm (average of the 4 measurements at 2° for control 

participants) found in this study.  However, the values reported by Loduca et al. (2010) for 

the extra-foveal thicknesses reached a peak within the inner subfield, before declining on 

the outer sub-fields, reflecting the same pattern as shown by these data (see figure 5.2.5). 

The retinal nerve fibre layer thickness values in normal participants reported by 

Loduca et al. (2010) were again comparable to those found in this thesis, with similar 

thicknesses at the 2° location, and a similar pattern of increasing thickness with 

eccentricity, reaching a maximum adjacent to the optic nerve head, and a minimum 

temporally to the fovea (see figure 5.2.6). 

Given the finding of a reduced retinal thickness in participants with ARM at the 

fovea, and adjacent parafovea locations, in Wood et al. (2011a) we would have expected 

to identify a statistically significant reduction in retinal thickness at the fovea and at all four 

2° measurement locations. However, only two of these locations proved statistically 

significant (N2 and T2) between control and ARM groups. These findings could possibly 

be related to the methodology used, i.e. the 36° OCT scan imaged a wider visual angle 

than the published 20° data. This meant that the a-scan spacing was reduced accordingly, 

as both images comprised 512x512 a-scans, so the 36° images had a reduced transverse 

resolution in comparison to the 20° images (see figure 5.3.1). When the mean foveal 

thickness (average of vertical and horizontal b-scan data) is compared between the 20° 

and 36° images for the 16 control participants described in Wood et al. (2011a), there is 
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reasonable agreement with 95% confidence intervals of 14.85 to -19.86 µm. However, the 

variance of the 36° data with standard deviations of ± 33 µm and ±50 µm for control and 

ARM participants respectively at the fovea is greater than the ±18 µm and ±27 µm for the 

20° images. These findings are also reflected in the variance of the thickness values 

obtained for the other locations measured.   

 

 

Figure 5.3.1: Comparison of two512x512 a-scan images obtained from the same eye but 

with a visual angle of 36° (left) and 20° (right). 

 

 In Wood et al. (2011a) the reductions in retinal thickness in the group of participants 

with ARM were hypothesised to be attributable to losses in the photoreceptor layer. The 

literature reports that photoreceptor loss occurs overlying drusen in early AMD (Kaluzny et 

al., 2009; Malamos et al., 2009; Schuman et al., 2009), whilst histology indicates 

photoreceptor loss (with a predilection for rods over cones) in non-exudative AMD, with the 

greatest photoreceptor loss occurring within the parafoveal/perifoveal region, equivalent to 

1.5 to 10° from the foveal pit (Curcio et al., 1996). The statistically significant reduction in 

photoreceptor layer thickness at locations N2, S2 and S4, in this study, supports the 

hypothesis that localised loss of photoreceptors may be responsible for the reduction in 

overall retinal thickness associated with early AMD in this study and Wood et al. (2011a).  

In addition to the reductions in photoreceptor layer thickness, significant reductions 

in the ganglion cell layer thickness at locations N2, T2 and S2 were found. These are also 

likely to contribute to the overall reductions in retinal thickness observed. This finding was 

not expected. Studies have shown reduced RGC density in advanced AMD (Medeiros and 

Curcio, 1997 ; 2001), however Medeiros et al. (2001) reported no significant reduction in 
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RGC density in 6 non-exudative (dry) AMD eyes when compared to normal participants 

(n=15). The finding of reductions in ganglion cell layer thickness could be reflective of a 

localised loss of retinal ganglion cells, possibly related to photoreceptor malfunction or loss 

within the outer retina. Further investigation should be conducted to confirm these findings 

given the lack of evidence for reductions in ganglion cell numbers at this stage of disease. 

The two way between groups analysis of variance identified a significant reduction 

in thickness in the ARM groups for the retina and all intra-retinal layers across the 

locations measured. This again indicates that retinal thickness and the thickness of its 

component layers are affected in age-related maculopathy. Of particular interest was the 

eta squared parameters returned, where a bigger number represents a larger size of 

effect. Overall the retina returned an eta squared value of 0.05, however, when the 

component layers were analysed individually the photoreceptors demonstrated the largest 

effect (eta squared = 0.061) reducing for the intermediate layers (eta squared = 0.047 & 

0.049) with the smallest values returned for the retinal nerve fibre layer (eta squared = 

0.027). This indicates that the disease effect is greatest in the outer retina, although 

disease related changes in thickness are also present throughout the retina, reflecting the 

findings previously discussed for individual intra-retinal layers and locations. 

Given that the majority of the statistically significant differences between the control 

and ARM groups were identified in close proximity to the fovea, this suggests and 

reinforces the widely held view that the central macula is particularly susceptible to age-

related disease (Provis et al., 2005). The localised nature and lack or statistically 

significant changes in thickness across a wider range of retinal locations suggests that the 

ARM group studied in this thesis were at an early stage of disease progression.  

Only a handful of studies have assessed choroidal thickness in healthy individuals 

using OCT imaging (Ikuno and Tano, 2009; Margolis and Spaide, 2009; Esmaeelpour et 

al., 2010; Ikuno et al., 2010; Manjunath et al., 2010; Wood et al., 2011a). A few of these 

have used a similar 1060 nm system (Esmaeelpour et al., 2010; Ikuno et al., 2010; Wood 

et al., 2011a).  For example, Esmaeelpour et al. (2010) used a 1060 nm OCT to 

investigate the correlation between axial length and choroidal thickness in 34 healthy 

subjects (64 eyes) aged 19-80 years and found a mean central choroidal thickness of 

315m (SD 106m), with the choroid thinnest in the nasal parafovea. This is reflected in 

other studies which found choroidal thickness to be greatest at the fovea, with a reduction 

in thickness with eccentricity reported to be greater nasally than temporally (Margolis and 
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Spaide, 2009; Ikuno et al., 2010; Manjunath et al., 2010; Wood et al., 2011a), a pattern 

which is reflected in the data within this thesis for both control and ARM participants.  

The mean sub-foveal choroidal thickness reported has varied between studies from 

272m (± 81m) (Manjunath et al., 2010), to 354nm (±111m) (Ikuno et al., 2010) for 

normal participants. The 222 µm (±83µm) found in this thesis is lower, although the mean 

age of the control group is higher than the mean age than other studies (Ikuno et al., 2010; 

Manjunath et al., 2010) (see Appendix F for study details).  

Evidence within the literature suggests that choroidal thickness may be affected by 

age, and this may explain the thinner choroidal thickness reported in this thesis (see 

section 5.2.2). In fact, a recent study investigating choroidal thickness in healthy 

individuals (n=31) that had a mean age of 64.6 years found a sub foveal thickness of 

199.8 µm ±85.6, consistent with the findings reported here (Hirata et al., 2011). Margolis et 

al. (2009) who investigated choroidal thickness in vivo using OCT, suggested a reduction 

of 15.6 µm per decade using regression analysis in a study of 30 participants (mean age 

50.4, range 19 to 85 years). Esmaeelpour et al. (2010) reported an age related thinning in 

myopic eyes, although this was not evident in emmetropic or hyperopic eyes. When 

assessed for age, the data within this thesis revealed no correlations with age for choroidal 

measurements at any location. However, it may be that we did not have a wide enough 

range of age data to demonstrate an effect on choroidal thickness. Another point to 

consider is that our 1060 nm OCT is different from other FD- OCT instruments that have 

measured choroidal thickness and there may be inherent differences across instruments. 

The finding of no significant differences in choroidal thickness between control and 

ARM groups at any sub-macular location agrees with a histological study which reported 

no significant decrease in choroidal thickness compared to age matched controls, despite 

a significant decrease in choriocapillary density, in eyes with features of AMD (n=25) 

(Ramrattan et al., 1994). There is, however, evidence that choroidal thinning may occur in 

end-stage AMD (Sarks, 1976; McLeod et al., 2009). McLeod et al. (2009) examined the 

post-mortem choroid in 3 eyes with neovascular AMD, 5 with geographic atrophy, and 3 

aged-matched control eyes; they identified a linear relationship between the loss of RPE 

and choriocapillaris in geographic atrophy, and a 50% reduction in choroidal vascular 

cross-sectional area in eyes with wet AMD, even in the absence of RPE atrophy. 

Additionally, Sarks (1976) conducted a histological study on eyes (n=378) from patients 

aged 43-97 years, with either a normal retinal appearance or some degree of AMD. They 

reported a thinning of the choroid, resulting in a ‘tigroid’ retinal appearance. The thinning 
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was associated with increasing age both in elderly patients classified as clinically normal 

and in those with all stages of AMD; however, it was particularly prevalent in those with 

advanced AMD.  

In contrast to reports of age and AMD related choroidal thinning, it has also been 

suggested that “para-inflammation” within the choroid in response to ageing or age-related 

disease may result in choroidal thickening (Xu, Chen and Forrester, 2009), which may 

partially explain the increased thickness seen in the ARM group. However, this increased 

thickness was not significant at any location assessed.  

The variability of the measurements and the sample size limited the minimum 

detectable difference between groups in this study. If we assume a power of 0.8, a 

significance level of 95 % and N=44 (22 per group), using the Altman nomogram for 

unpaired t-tests, then the smallest detectable differences between groups can be 

calculated: these values are shown in table 5.3.1. Smaller difference in means were found 

at many of the measurement locations assessed, however  this study was not powered to 

determine if these were significant. It is therefore possible that disease effects exist at 

these locations, but as these differences are smaller in magnitude than one standard 

deviation of the OCT measurements, within the control population, it is unlikely that they 

are clinically detectable or diagnostically useful for ARM at this time. Future improvements 

in OCT imaging and analysis techniques may make smaller magnitude differences 

between groups detectable and therefore an investigation with a larger sample size may 

prove beneficial at a later date.  

 

OCT parameter  
(layer thickness) 

Assumed variance  
(1 standard deviation) 

Smallest detectable difference 

Retina 29 µm 23 µm 
Photoreceptor 13 µm 10 µm 
Bipolar cell 8 µm 6 µm 
Ganglion cell 10 µm 8 µm 
Nerve fiber 7 µm 6 µm 
Choroid 62 µm 50 µm 

Table 5.3.1: Smallest detectable difference between groups, assuming a power of 0.8, at 

the p=0.05 significance level for unpaired t-tests using the Altman Nomogram. Assumed 

variance (1 standard deviation) based on control group for each parameter, and equal size 

of groups (n=24 each; actually controls n=26 and ARM n=24). 

 

Diagnostically the structural parameters assessed within this chapter provided a 

moderate ability to differentiate between ARM and healthy participants. However, the 
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nature and distribution of the measurement locations presents a difficulty when applying 

this clinically. Clinicians are unlikely to assess thickness at a specific location, such as 2° 

nasally when diagnosing a condition. Although the locations with statistically significant 

differences in retinal thickness between groups were predominately parafoveal, only some 

of the expected locations assessed produced significant findings. In part, significant 

differences between groups may have been masked by the increased variability of data 

here, compared to the measurements obtained using the 20°x20° images described in 

Wood et al. (2011a).  

The diagnosis of ARM in this study was based on the retinal appearance of affected 

eyes, effectively an assessment of retinal structural changes, and this is currently 

considered the ‘gold standard’ method for the diagnosis of AMD (Klein et al., 1991; Bird et 

al., 1995; AREDS, 2001a). The development of a new clinical test for the purposes of 

diagnosis requires a variety of different attributes. An OCT based system would potentially 

offer a quick and non-invasive technique.  A reasonable approach may be to assess mean 

retinal thickness over a region approximating the central 2°. However, given that not every 

retinal location provided a statistical difference, then this average measure is likely to be 

less sensitive to ARM related changes. Clark et al. (2011) evaluated retinal thickness 

measures using the Cirrus OCT (Carl Zeiss, Meditec Inc, CA) on 74 adults with a range of 

AMD from near normal to extensive geographic atrophy. Although differences were shown 

for the retinal thickness in central and paracentral subfields, confirming the findings in this 

study, those differences between almost normal participants and those with disease 

(equivalent to the ARM group in this study) were less than 20 µm in each case, and less 

than the standard deviations of the measurements. 

It would appear that there are small measurable structural changes, which occur in 

ARM, predominantly in the parafoveal region. However, the magnitude and distribution of 

these changes combined with normal variation means that they are not an effective 

biomarker for the diagnosis of ARM. 
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Chapter 6: Retinal function 

 This chapter describes a study designed to evaluate the effect of ARM on retinal 

function using four focal ERG techniques. Section 1.5 described the four ERG techniques, 

three of which had previously been shown to have diagnostic potential for ARM (Binns and 

Margrain, 2007): the focal cone ERG and focal flicker ERG provided static measures of 

cone function, whilst the ERG photostress test provided a dynamic measure of cone 

adaptation. The fourth technique, the focal rod ERG (Binns and Margrain, 2006) provided 

a static measure of rod function. The sensitivity of the focal rod ERG to ARM has not 

previously been assessed, however there is psychophysical evidence of rod dysfunction in 

ARM (Owsley et al., 2000; Owsley et al., 2001; Owsley et al., 2007). Chapter 3 described 

a series of studies intended to improve the clinical utility and diagnostic potential of these 

four focal ERG techniques. The modified techniques developed are employed in this 

study. 

The first aim of this chapter was to identify which ERG parameters were sensitive to 

ARM-related functional change. The second aim was to assess the diagnostic potential of 

each parameter, i.e. to determine which techniques had the best sensitivity and specificity 

to ARM, and to compare to the diagnostic potential of the OCT measures evaluated in 

chapter 5. Finally, these values provided the basis for a comparison of retinal structure to 

function described in chapter 7.  

 

6.1 Methods (ERG protocols) 

 

6.1.1 Participant preparation 

 Participants were prepared for ERG recording using the protocol described in 

section 3.1.1. Electrode impedance was also assessed prior to recording, if the impedance 

of any electrodes exceeded 7 kilo ohms (kΩ) the electrode was reattached following 

further skin preparation; high electrode or unequal impedance can result in excessive 

noise and therefore a reduced SNR.  

 

6.1.2 Focal cone ERG 

Four focal cone ERG traces were recorded and analysed using the methods 

previously described in section 3.1.3. The mean amplitudes and implicit times of the a and 

b waves were determined for each trace and then averaged for each participant.  
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6.1.3 Focal flicker ERG 

  Eight focal flicker ERG traces were recorded and analysed using the methods 

described in section 3.1.4. The mean amplitude and implicit time was determined for each 

trace and then averaged for each participant. 

 

6.1.4 ERG photostress test 

An ERG photostress test was recorded and analysed for each participant using the 

general methods described in section 3.1.5 however, the following paragraphs describe 

several adaptations made to the protocol. 

Eight, rather than four, pre-bleach focal flicker ERGs (each consisting of 100 

averaged responses) were recorded to provide a more robust baseline for ERG recovery. 

All participants were pre-adapted to the stimulus for a period of 5 minutes as experimental 

work demonstrated progressive changes in the amplitude and implicit time of the flicker 

ERG which appear to stabilise after 5 minutes of adaptation (see section 3.5). Post-bleach 

ERG recording began 10 seconds after the bleach and focal flicker ERGs were obtained at 

20 s intervals thereafter for 5 minutes, each recording took approximately 5 seconds to 

complete (see figure 6.1.1). 

  

Figure 6.1.1: Timeline showing the recording process for the ERG photostress test with 

timings shown for each stage. 

 

As the baseline amplitude of the focal flicker ERG can vary between individuals as 

a result of physiological differences (e.g. fundus pigmentation, scleral resistance or axial 

length) as well as disease (Fishman et al., 2005), all ERG photostress recovery curves are 

presented with the amplitude normalised to the pre-bleach baseline. For example, the 

recovery curves presented in figure 6.1.2 (curves A & B) have been reproduced with 

normalised amplitudes (curves C & D). This allows easier visual comparison of recovery 

rates.  

~5 min5 min

Stimulus adaptation

ERG recording
“pre-bleach”

Bleach

ERG recording
“post-bleach”

60 s~120 s



 

 
 

179 Chapter 6: Retinal function 

A. B. 

C. D. 

Figure 6.1.2: Top: Two recovery curves for the ERG photostress test from participants AW 

(A) and TM (B) with baseline amplitudes of 3.6µV and 1.8µV respectively. Bottom: The 

recovery curves for participants AW (C) and TM (D) have been reproduced with the 

amplitudes normalised to the pre-bleach baseline. The time constants of recovery were 

determined as 95 s and 96 s for participants AW and TM respectively. 

 

To provide a more objective approach to identifying and removing outlying data 

points (e.g. those with a poor SNR) 95% confidence limits were calculated for the 

modelled data. These confidence limits were calculated based on the fit residuals i.e. the 

difference between the real amplitude value and the modelled value. The standard 

deviation of the post bleach recovery data residuals was calculated, this value was then 

multiplied by 1.96, and this value ± the modelled amplitude provided the confidence limits. 

These upper and lower confidence limits were then plotted on the recovery curves and 

used to assess the quality of each data point. Points lying outside these limits could be 

considered as outliers and were reassessed based on the following criteria: 

 If the absolute amplitude of the data point exceeded twice the baseline amplitude 

then it was excluded. 
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 If the data point waveform did not have the biphasic appearance expected of a 

reliable focal flicker ERG (see figure 6.1.3), then the data point was excluded (see 

figure 6.1.4).  

Datasets with any outliers removed were remodelled and the returned values for “a”, “B” 

and “τ” recorded. 

 

  

Figure 6.1.3: Focal flicker ERG traces showing the actual response prior to Fourier 

analysis (blue) and the isolated 1st harmonic (black) following Fourier analysis. A normal 

biphasic response is shown on the left, whilst a non-biphasic response (which would be 

excluded from data modelling) is shown on the right.  

 

Figure 6.1.4: A modelled (black line) ERG photostress test recovery with 95% confidence 

intervals (grey lines). Example traces are shown for two data points, the first (Top; red box) 

lies within the confidence interval and shows the expected waveform, the second (Bottom; 

blue box) lies outside the confidence interval and does not demonstrate a biphasic 

waveform and was therefore removed from the analysis. 
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6.1.5 Focal rod ERG 

The focal rod ERG protocol was adapted from that described in section 3.1.6, such 

that the response would be elicited to both a 20 and 500 scotopic td.s blue stimulus. The 

stimulus properties are given in table 6.1.1. A focal rod ERG was recorded for each 

stimulus, comprising ~75 averages per trace (recorded in blocks of 5 to minimise blink 

artefacts). Additional averaging was undertaken as required to maximise the SNR.   

As these luminance levels have been shown to contain a cone contribution (see 

section 3.7.2), ERG recordings were repeated with the same stimulus presented against a 

constant rod suppressing green background of 1500 scotopic td.s, producing a cone 

response that could be subtracted to isolate the rod response of the focal rod ERG. These 

traces were analysed as described in section 3.1.6. In addition, the ratio between 20 td.s 

and 500 td.s response amplitudes was also calculated for both a and b wave for each 

participant.  

 

Scotopic td.s Photopic cd.m-2 Duration (ms) 
20 3 5 
500 37.50 10 

Table 6.1.1: Duration and luminance of focal stimulus used to elicit the 20 and 500 td.s 

focal rod ERG. 

 

6.1.6 Data analysis 

 The ERG parameters for the control participants were assessed for any correlation 

with age and axial length because the control and ARM groups were not matched for 

these factors (see section 4.3.2). Normally distributed data (assessed using the Shapiro-

Wilk test) were tested using the Pearson’s correlations coefficient, whilst non-parametric 

data were assessed using the Spearman’s rank correlation coefficient. Where a 

statistically significant correlation was identified (p<0.05) the parameters of both control 

and ARM groups were corrected based on the gradient of a linear regression analysis.  

Once any corrections were made for age or axial length, the mean data of the two 

groups were compared with independent t-tests (if normally distributed according to the 

Shapiro-Wilk test), whilst non-normally distributed data were compared using the non-

parametric Mann-Whitney U-test, a statistically significant difference was determined 

based on the p<0.05 (95%) confidence level. In cases where any ERG parameter was 

successfully recorded on less than 80% of participants, in either group, then non-
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parametric statistical tests were applied. Statistical analysis was carried out using SPSS 

19 software (IBM, Armonk NY). 

Electroretinogram parameters that demonstrated statistical differences between 

groups were assessed for diagnostic potential by determining the area under ROC curve.  

 

6.2 Results 

 Electroretinograms (ERG) were recorded from all 24 participants with ARM and 26 

controls. The individual ERG response parameters for each participant and technique are 

shown in Appendix K; values where adjustment for age or axial length was made are 

indicated. 

 

6.2.1 Focal cone ERG 

 The focal cone ERG was successfully recorded on all study participants (n=50). 

Figure 6.2.1 shows typical focal cone ERG responses recorded from 3 controls and 3 

participants with ARM. Those recorded from individuals with ARM tended to be smaller 

and slower than those obtained from members of the control group. The ARM group 

(n=24) returned mean a and b wave amplitudes of -2.25 µV (±0.99) and 5.18 µV (±1.89) 

respectively. This was smaller than mean a and b wave amplitudes for the control group 

(n=26) of -2.58 µV (±0.82) and 5.95 µV (±1.54) respectively. However, the difference 

between groups did not reach statistical significance, with p>0.1 (independent t-tests) for 

both a and b wave amplitudes.  

The mean focal cone ERG a and b wave implicit times were 25.5 ms (±1.58) and 

47.4 ms (±3.27) respectively for the ARM group, and 24.5 ms (±2.19) and 44.6 ms (±2.21) 

for the control group. The difference between groups for b-wave implicit time was 

statistically significant (p<0.001; independent t-test) whilst the a-wave implicit time was 

approaching significance (p<0.06; independent t-test). 
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Figure 6.2.1: Example of typical Fourier analysed focal cone ERGs recorded from control 

(left) and ARM (right) participants.  

 

6.2.2 Focal flicker ERG 

 The focal flicker ERG was successfully recorded in all controls (n=26) and 22 of the 

24 participants with ARM. The focal flicker ERG traces were generally smaller and less 

well defined for the those with ARM compared to the control participants (see figure 6.2.2). 

The mean amplitude and implicit time for the control group was 2.2 µV (±0.75) and 10.8 

ms (±0.88) respectively, this compared to the ARM group with a smaller amplitude of 1.94 

µV (±1.15) and longer implicit time of 10.9 ms (±1.86). However, these differences were 

not significant for either the amplitude (p>0.3; independent t-test) or implicit time (p>0.6; 

independent t-test). There was considerable overlap between the data for the two groups, 

which may be attributable to the high variability of the ARM data for both amplitudes and 

implicit times compared to the control participants.  
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Figure 6.2.2: Example of typical focal flicker ERG responses for 3 controls (left) and 3 

participants with ARM (right). 

 

6.2.3 ERG photostress test 

The ERG photostress test recoveries were successfully modelled (i.e. the Excel 

solver function (Microsoft, Redmond WA) was able to find a least squares solution for the 

data) for all control participants, but for only 15 of the 24 participants with ARM. Failure of 

the modelling resulted from the absence of ERG amplitude recovery in the ARM group 

(see figure 6.2.3 for sample data). Of the successfully modelled ERG photostress 

recoveries, the underlying focal flicker ERGs appeared to be smaller and more variable in 

appearance in participants with ARM, with less defined biphasic waveforms than in 

controls (see figure 6.2.4). 

 

Figure 6.2.3: The ERG photostress test amplitude recovery in an ARM participant (JH108) 

that was not successfully modelled. 

 

The control group produced a mean time constant of 159.7 s (±95.98) compared to 

a much longer mean of 250.3 (±181.95) for the ARM participants, this difference 

approached significance (p=0.09; independent t-test). However, the comparison of means 
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did not take into account the large proportion of participants with ARM who showed no 

recovery. When a non-parametric approach was undertaken, with test failures arbitrarily 

assigned a high time constant of recovery (1000 s), a median value of 161s was found for 

the control participants and 322s for the ARM participants, the difference between groups 

was highly significant (p<0.001).  The individual amplitude recovery data are shown in the 

Appendix K, figure K.1. 

 

Figure 6.2.4: Top: Raw focal flicker ERG traces for healthy participant PF70 (left) and for 

ARM participant UH38 (right). Bottom: the ERG photostress test recoveries are shown for 

each participant. Red points indicate focal flicker ERG amplitudes; the recovery model is 

indicated by the black line and 95% confidence limits are shown as grey lines. Time 

constants were 98 s and 330 s respectively for participants PF70 (control) and UH38 

(ARM). 
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6.2.4 Focal rod ERG 

 The focal rod ERG was successfully recorded using the 20 td.s stimulus from only 

10 of 24 ARM participants, of which only 7 demonstrated a measureable a-wave, and only 

18 of 26 control participants, of which only 10 had a measurable a-wave. In contrast, all 

but 2 participants (both with ARM) produced a measurable focal rod ERG in response to a 

500 scotopic td.s stimulus, although a-waves were not measureable on all participants. 

 The focal rod ERGs recorded in response to the 20 td.s stimulus were generally 

smaller and less well defined than those for the brighter 500 td.s stimulus for both ARM 

and control participants (see figure 6.2.5 for example data from 3 control and 3 participants 

with ARM). For both the 20 td.s and 500 td.s stimuli the ARM participants produced less 

well defined responses, in addition they were generally smaller and demonstrated delayed 

time to peak compared to the equivalent responses from control participants. 

 The median a and b wave amplitudes (±Inter-quartile range) for the 20 scotopic td.s 

stimulus were of -0.98 µV (± 0.8) and 4.14 µV (±1.1) respectively for the control group. The 

ARM group produced median a and b wave amplitudes -1.35 µV (±1.4) and 3.5 µV (±2.3) 

respectively. No 20 td.s focal rod ERG a or b wave parameter (amplitude or implicit time) 

reached statistical significance when compared between groups.  

 

 

Figure 6.2.5: Example of typical Fourier analysed focal rod ERG responses for the 20 td.s 

and 500 td.s stimulus intensity recorded from 3 controls (Top) and 3 participants with ARM 

(bottom).  

 

 In contrast, the 500 td.s focal rod ERGs were larger, and a and b wave parameters 

successfully identified on a greater number of study participants. The b wave amplitudes 
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and implicit times were successfully measured on 100% of control, and 92% of ARM 

participants, the mean amplitudes were 11.9 µV (±4.78) and 8.8 µV (±3.69) respectively 

for the control group and the group with ARM. The b-wave amplitude was significantly 

larger in the controls than the ARM group (p=0.017; independent t-test). Furthermore, the 

mean b-wave implicit time was found to be longer in the ARM group, 57.1 ms (±5.86), 

compared to the control group at 53.9 ms (±4.90); this difference was again statistically 

significant (p=0.046; independent t-test). The a wave amplitudes and implicit times were 

successfully identified on fewer participants (see table 6.2.1), and therefore analysed using 

non-parametric statistics, however neither parameter was shown to be significantly 

different between groups (see table 6.2.1).  

Given the small number of 20 td.s ERG parameters successfully measured, it was 

not viable to calculate and compare the ratio of response amplitudes at the two stimulus 

intensities.  
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6.2.5 Parameter summary 

The group averaged results for the focal cone ERG, focal rod ERG, ERG 

photostress test and focal flicker ERG have been summarised in table 6.2.1. 

 

Parameter 
Group   

Control ARM  p-value 

Success Median Mean ±SD Success Median Mean ±SD   

Focal cone ERG       

a-wave amplitude (µV) 100% -2.6 -2.6 0.8 100% -2.1 -2.2 1.0 0.197 
a-wave implicit time (ms) 100% 24.2 24.5 2.2 100% 25.5 25.5 1.6 0.059 
b-wave amplitude (µV) 100% 6.2 5.9 1.5 100% 4.9 5.2 1.9 0.120 
b-wave implicit time (ms) 100% 43.8 44.6 2.2 100% 46.9 47.4 3.3 0.001 
Focal rod ERG (20 td.s)       
a-wave amplitude (µV) 39% -1.0 -1.0 0.6 29% -1.3 -1.3 0.9 0.495* 
a-wave implicit time (ms) 39% 30.8 30.4 4.4 29% 26.5 26.7 5.1 0.107* 
b-wave amplitude (µV) 69% 4.1 4.3 1.5 42% 3.5 3.6 1.7 0.292* 
b-wave implicit time (ms) 69% 61.0 60.1 6.1 42% 62.5 62.7 6.2 0.374* 
Focal rod ERG (500 td.s)       
a-wave amplitude (µV) 92% -3.1 -3.0 1.1 71% -2.7 -2.7 1.2 0.316* 
a-wave implicit time (ms) 92% 27.0 27.4 2.7 71% 28.5 28.9 4.1 0.630* 
b-wave amplitude (µV) 100% 12.8 11.9 4.8 92% 8.7 8.8 3.7 0.017 
b-wave implicit time (ms) 100% 53.8 53.9 4.9 92% 56.0 57.1 5.9 0.046 
ERG photostress test       
time constant (s) 63%  161 160 96 100% 322 250 182 <0.001* 
Focal flicker ERG       
amplitude (µV) 100% 2.1 2.2 0.7 92% 1.7 1.9 1.2 0.361 
Implicit time (ms)1 100% 10.9 10.7 0.9 92% 10.8 10.9 1.9 0.686 
1. corrected for age 
* non-parametric (Mann-Whitney U-test) statistical test applied 

Table 6.2.1: Mean and standard deviation for each ERG parameter assessed. P-values for 

independent t-tests (or Mann-Whitney U-test for non-parametric data) carried out between 

groups at each location are shown, with significant values (p<0.05) highlighted in bold 

type. 

 

6.2.6 Diagnostic ability 

Four ERG parameters were shown to have a statistical difference between groups 

(see table 6.2.1). In addition, the focal cone ERG a-wave implicit time approached 

significance. These five parameters were believed to be the most promising diagnostic 

indicators for differentiating participants with ARM from healthy controls and therefore 

were assessed for diagnostic ability.  
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Receiver operating characteristic curves were produced (see figure 6.2.6) and 

assessed for each of the ERG parameters described in table 6.2.2. In the case of the ERG 

photostress test a failure to demonstrate a recovery within the recovery period was 

arbitrarily assigned a values of 1000s, which exceeded the longest time constant recorded 

from any individual, for the purposes of conducting the ROC analysis. The overall 

diagnostic potential for each parameter was then assessed by comparing the area under 

the curve (AUC) for each. The AUC for the ERG parameters ranged from 0.672 for the 

focal rod ERG (500 td.s) b-wave implicit time to 0.807 for the ERG photostress test time 

constant of photopigment regeneration. The ERG photostress test showed the best 

diagnostic potential when model failure was included as a predictor of ARM. 

The ERG parameters were also assessed to determine the optimal cut off value for 

each which provided the best combination of sensitivity and specificity in differentiating 

between the control and ARM groups. These values are shown in table 6.2.2. The ERG 

photostress test provided the greatest sensitivity (75%) and specificity (81%) when a cut 

off of 192 s was applied. The focal rod ERG (500 td.s) proved to be the least diagnostic of 

the ERG parameters assessed, with b wave amplitude and implicit time sensitivities of 62 

and 55 % respectively. 

 

Test Parameter Optimal cut-off Sensitivity Specificity
Focal cone ERG  a-wave implicit time 24.63 ms 67% 65% 
 b-wave implicit time 45.65 ms 71% 77% 
Focal rod ERG (500 td.s) b-wave amplitude 10.02 mV 62% 68% 
 b-wave implicit time 55.75 ms 55% 77% 
ERG photostress test Time constant 192 s 75% 81% 

Table 6.2.2: A summary of 5 ERG parameters which best differentiate participants with 

ARM from healthy controls. The optimal cut off value for each parameter and the 

respective sensitivity and specificity of each are shown. 
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Figure 6.2.6: ROC curves assessing diagnostic potential for ERG parameters. Area under 

the curve (AUC) is shown for each ROC curve. (A) Focal cone ERG a-wave implicit time, 

(B) Focal cone ERG b-wave implicit time, (C) Focal rod ERG 500 td.s b-wave amplitude, 

(D) Focal rod ERG 500 td.s b-wave implicit time, (E) ERG photostress test time constant.   

AUC = 0.685 AUC = 0.672 

AUC =  0.706 AUC = 0.777 

AUC =  0.807

A B

C D

E
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6.3 Discussion  

This chapter describes the results of a number of electrophysiological tests in 

people with ARM. The tests used assessed the integrity of rod and cone pathways, as well 

as retinal adaptation. Both focal cone and rod ERGs showed abnormalities in ARM, but 

the ERG photostress test provided the best discrimination between groups, with 9 

participants with ARM failing to show recovery that could be modelled within 5 minutes of 

the bleach, which has been shown to be an indicator of ARM (Binns and Margrain, 2007).  

Scotopic visual function was assessed in this thesis using the focal rod ERG, this 

was done using both a bright (500 td.s) and dimmer (20 td.s) stimulus. A measurable 

response to the 20 td.s stimulus was not obtained from 20 of the participants, 

predominantly but not exclusively those with ARM. Ultimately, the greater proportion of 

immeasurable 20 td.s focal rod responses in this group may be attributable to the disease 

itself. Participants with widespread rod loss or dysfunction, known to be a feature of ARM 

(Curcio et al., 1993; Curcio et al., 1996; Owsley et al., 2001; Owsley et al., 2007), may 

produce smaller signals which become difficult to identify from the background noise. The 

lack of measurable signals in participants with ARM is not therefore surprising. 

The 500 td.s focal rod ERG stimulus provided measurable results in a far greater 

proportion of participants; the brighter stimulus is likely to have contributed to this by 

evoking a larger amplitude response, which is measureable even in participants with 

dysfunction. As can be seen from the b-wave amplitude and implicit time of the response 

to the 500 td.s stimulus, there was both a reduction in the amplitude and delay in the 

implicit time for participants with ARM compared to controls. The finding of deficits in 

parameters of rod function which mediate scotopic vision was not unexpected; the 

literature contains widespread evidence of functional deficits in scotopic visual parameters 

in age-related macular disease (Eisner et al., 1991; Eisner et al., 1992; Steinmetz et al., 

1993; Owsley et al., 2001; Haimovici et al., 2002; Owsley et al., 2007; Dimitrov et al., 

2008) as well as histological evidence of macular rod loss (Curcio et al., 1993; Curcio et 

al., 1996). 

Photopic visual function was assessed by 3 different techniques within this thesis, 

each eliciting a different type of electrophysiological response. The focal cone ERG 

however, was the only photopic technique to demonstrate a statistically significant 

difference between groups for a photopic ERG parameter. A significantly delayed b-wave 

implicit time was found in the group with ARM. In addition, although the a-wave implicit 

time was not found to be statistically different between groups, the p-value was 
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approaching significance. This is consistent with previously reported findings of delayed 

focal cone ERG a and b wave implicit times in participants with ARM (Binns and Margrain, 

2007).The finding that implicit times but not amplitudes were significantly different between 

groups is likely to be due to greater variability of amplitudes than implicit times in ERG 

recordings (Hochstein, Molnar and Marmor, 2007; Mortlock et al., 2010). Binns and 

Margrain (2007) reported area under the  ROC curve for the a and b wave implicit times of 

0.74 and 0.77 respectively, which is comparable to the 0.71 and 0.78 respectively found in 

this thesis.   

There is no evidence of widespread macular cone loss, in histological studies of 

ARM (Curcio et al., 1996), but cone dysfunction may be explained by histological evidence 

suggesting that the cones undergo morphological changes in ARM (Curcio, Owsley and 

Jackson, 2000). The impact of these morphological changes may therefore be reflected in 

reduced or delayed input to the bipolar cells, which is consequently detected as increased 

implicit times for the a and b wave in participants with ARM. Other studies have reported 

abnormal cone function in early AMD, including increased thresholds (Eisner et al., 1991; 

Owsley et al., 2000; Owsley et al., 2007), reduced colour vision (Eisner et al., 1991; Holz 

et al., 1995; Feigl et al., 2005b; Mitrut et al., 2010) and reduction in cone dominated ERGs 

(Sandberg and Gaudio, 1995; Sandberg et al., 1998; Binns and Margrain, 2007). 

We could hypothesis that the focal flicker ERG parameters would be affected in 

ARM, given the effect of the AMD disease process on the mechanics of metabolic supply 

in the retina (Karwatowski et al., 1995; Moore et al., 1995; Guymer et al., 1999; Moore and 

Clover, 2001; Huang et al., 2008; Wang et al., 2009; Booij et al., 2010). Supply of 

metabolites and retinoid to the outer retina must be transported from the choriocapillaris 

via Bruch’s membrane (Saari, 2000). The molecular deposition and thickening of Bruch’s 

membrane (Ramrattan et al., 1994; Moore et al., 1995; Moore and Clover, 2001), choroidal 

blood flow abnormalities (Grunwald et al., 1998; Ciulla et al., 1999; Ciulla et al., 2002) and 

an increased oxygen diffusion distance (Stefansson et al., 2011) associated with AMD will 

hinder metabolic supply.  The increased metabolic demand imposed by flicker stimuli 

(Kiryu et al., 1995) is likely to impose a further stress on the ability of the outer retina to 

maintain sufficient metabolic supply, this may be expected to impact on retinal function. 

The focal flicker ERGs from the participants with ARM displayed both a smaller amplitude 

and longer implicit time than the control group, however, these parameters were not found 

to be significantly different between groups. Other studies that have used the flicker ERG 

to assess participants with AMD have found a reduction in amplitude (Birch and Fish, 
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1988; Falsini et al., 1999b; Binns and Margrain, 2007) and prolonged implicit time 

(Sandberg et al., 1993; Binns and Margrain, 2007). Birch and Fish (1988), identified a 

relationship between age and flicker ERG amplitude, and adjusted the results for this 

factor (the same approach followed in this thesis), whilst  the others used age matched 

groups to control for age effects (Sandberg et al., 1993; Falsini et al., 1999b; Binns and 

Margrain, 2007). The most likely explanation for the lack of significant difference between 

groups in this thesis is that participants in previous studies often had more advanced 

disease and therefore probably greater retinal dysfunction than the participants with ARM 

in this study. This suggests that changes in outer retinal function, which we would expect 

to be reflected in the focal flicker ERG (Remulla et al., 1995; Falsini et al., 2000; Binns and 

Margrain, 2005), may not manifest at this stage of disease, or at least not in all 

participants. The greater variability of the ARM group results may also reflect a 

heterogeneous distribution of functional abnormality in people with a similar gross retinal 

appearance.  

The dynamics of photopigment regeneration are known to be affected in AMD 

(Owsley et al., 2001; Lamb and Pugh, 2004; Owsley et al., 2007), and the ERG 

photostress test has previously been shown to be sensitive to ARM (Binns and Margrain, 

2007). The ERG photostress test recovery times in this thesis demonstrated a highly 

significant difference (p<0.001; Mann-Whitney U-test) between groups, whilst the median 

time constants for ARM and control groups of 161 s and 322 s, respectively, are very close 

to the 161 s for control and 328 s for ARM participants previously reported (Binns and 

Margrain, 2007).  

The lack of measurable recovery within the measurement interval (~5 minutes) for 9 

participants within ARM group is likely to be reflective of the disease status. Given that 

lengthened recovery time is expected in ARM, then failure of the ERG amplitude to 

recover within the measurement interval is likely to be indicative of the disease process. 

When absence of recovery is considered in addition to lengthened photostress recovery as 

a marker of disease, the ERG photostress test proves to be an effective diagnostic 

measure, demonstrated by the ROC analysis in this chapter. Previously, ROC analysis for 

the discrimination between ARM and control participants reported by Binns and Margrain 

(2007) produced an area under the curve of 0.74. In comparison, the ROC analysis carried 

out in section 6.2.6 found an AUC of 0.81 indicating an improved diagnostic potential. This 

improvement may be attributable to the modifications of the original protocol made in this 

thesis, in particularly the adoption of the Maxwellian view optical system to provide the 
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photobleach. The improved bleach delivery should have enabled a more consistent 

photopigment bleach to be achieved. The 75% sensitivity and 81% specificity found for this 

test, when a cut off of 192 s is used, indicates a good diagnostic ability for the detection of 

age-related macular degeneration, even at the early stage of disease (age-related 

maculopathy) investigated in this thesis. 

Previously we had showed that the time constant of recovery determined by the 

ERG photostress test was affected by age (see section 3.6) (Wood et al., 2011b), but the 

data in this chapter did not demonstrate such a relationship. However, the findings of 

Wood et al.(2011b), and those of Coile and Baker (1992), demonstrated much greater 

variability in time constants of recovery in older participants. Therefore, given that the 

participants within this chapter represent an older and narrower age range then the 

inherent variability of data may have acted to mask any relationship.  

Finally, table 6.3.1 shows the smallest detectable difference based on the power of 

this study for a selection of the ERG parameters assessed in this chapter. Accepting 

assumptions regarding the power (0.8) and variance (1 standard deviation) of the 

measures, the smallest detectable differences were smaller than the variance for each 

ERG parameter assessed. Although smaller difference in parameters may potentially exist 

between groups, diagnostically detecting difference smaller that the variance of the 

parameter concerned is unlikely to be of diagnostic value.  

 
ERG parameter Assumed  

standard deviation 
Smallest detectable difference 

Focal rod ERG (500 td.s)    
b-wave amplitude 4.78 µV 3.82 µV 
b-wave implicit time 4.9 ms 3.92 ms 
Focal cone ERG    
b-wave amplitude 1.54 µV 1.23 µV 
b-wave implicit time 2.21 ms 1.77 ms 
Focal flicker ERG    
amplitude 0.75 µV 0.60 µV 
implicit time 0.88 ms 0.70 ms 
ERG photostress test    
time constant 95.98 s 77 s 

Table 6.3.1: Smallest detectable difference between groups, assuming a power of 0.8, at 

the p=0.05 significance level for unpaired t-tests using the Altman Nomogram. Assumed 

variance (1 standard deviation) based on control group for each parameter, and equal size 

of groups (n=24 each; actually controls n=26 and ARM n=24). 

 

In conclusion, static measures of both cone and rod mediated ERGs were shown to 

be sensitive to ARM related changes at the retina, and provided moderate diagnostic 
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potential. However, the ERG photostress test demonstrated the best diagnostic ability of 

the parameters assessed, and would appear to support the findings of other studies that 

dynamic rather than static measures of retinal function are most sensitivity to age-related 

maculopathy (Owsley et al., 2001; Binns and Margrain, 2007).  
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Chapter 7: Relating retinal structure and function 

 This chapter investigates the relationship between the structural and functional 

measures described in chapters 5 and 6 respectively. The ERG represents a summed 

response of the neurones stimulated, in which particular parameters can be attributed to 

specific cellular origins (see section 1.5 for a comprehensive review). The nature of ERGs, 

as described, suggests that they may be proportionate to the cellular population and 

specific to particular retinal layers. OCT imaging offers the unique ability to visualise and 

quantify some of these intra-retinal layers (as discussed in section 1.4). It is therefore 

possible that a relationship between OCT retinal layer volumes and ERG functional 

parameters may exist, assuming the retinal layer volumes reflect the cellular population 

contained within. This relationship has not to our knowledge been explored in previous 

publications. In addition to OCT thickness, data was also collected on the presence of 

retinal features of ARM in this study cohort (see section 2.4). It has previously been shown 

that some ERG parameters are related to the severity of retinal features of ARM (Falsini et 

al., 1999b), although this has not been widely investigated to date. 

The first aim of this chapter was to determine if retinal volume, assessed by manual 

segmentation of OCT images, was related to retinal function assessed using the ERG in 

the healthy retina. This was assessed in a layer-by-layer analysis of data from the control 

participants. The second aim was to determine if the retinal appearance, assessed by 

grading of features of ARM in retinal photographs, was related to any of the focal ERG 

parameters in participants with ARM. 

 

7.1 The relationship between retinal and choroidal layer volumes and function 

 

7.1.1 Methods 

 Volumes were calculated for each of the 6 retinal and choroidal layers measured in  

chapter 5; this was done by multiplying the weighted average thickness (corrected for age 

and axial length) for each layer by the area covered by a circle of 10° radius, equivalent to 

the stimulus size used in all the ERG techniques (20° diameter). Volumes were calculated 

for the 26 participants classified as normal.  

The ERG parameters, as measured and corrected for age and axial length in 

chapter 6, and layer volumes were assessed for normality using the Sharpio-Wilk test. 

Analysis was then carried out to look for correlations between each ERG parameter and 

each of the 6 layer volumes, using either the Pearsons correlation coefficient or 
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Spearmans rank coefficient in the cases of parametric and non-parametric data 

respectively. Bonferroni correction for multiple tests was not applied to the statistical tests 

on this occasion, therefore the significance level was reduced to p<0.01 to mediate the 

effect of false positive results.  

 

7.1.2 Results 

All the ERG parameters were assessed for correlations with the 6 different 

structural parameters. No pair of parameters demonstrated a statistically significant 

correlations at the p<0.01 level. However, at the lower p<0.05 level four comparisons were 

identified, the focal rod ERG (500 td.s) a-wave amplitude correlated with the volume of the 

whole retina (p=0.03) and the ganglion cell layer (p=0.03), whilst the focal rod ERG (20 

td.s) b-wave implicit time correlated with the retina (p=0.02) and retinal nerve fibre layer 

volumes (p=0.04). A linear regression analysis was carried out for each of these 

parameters and the relationships plotted are shown in figure 7.1.1. Each pair of 

parameters demonstrated low R² values (R²<0.3; see figure 7.1.1) (Altman, 1991), 

suggesting that even where less conservative approach is applied (i.e. p<0.05), a 

relationship between structure and function it may only account for a small proportion of 

the total variance in volumes.  Therefore it was concluded that no close association 

between retinal or choroidal layer volumes and ERG parameters of macular retinal 

function in normal participants exists.   
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A B 

C D 

Figure 7.1.1: Linear regression analysis showing regression lines (bold) and 95 confidence 

intervals (dashed lines): A – Retinal volume plotted against focal rod ERG (500 td.s) a-

wave amplitude. B – Ganglion cell layer volume plotted against focal rod ERG (500 td.s) a-

wave amplitude. C – Retinal volume plotted against focal rod ERG (20 td.s) b-wave implicit 

time. D – Retinal nerve fibre layer volume plotted against focal rod ERG (20 td.s) b-wave 

implicit time. 

 

7.2 The relationship between retinal appearance and function in participants with 

ARM 

 

7.2.1 Methods 

 Retinal appearance (based on retinal photography) was graded according to the 

International Classification and Grading System for Age-Related Maculopathy (Bird et al., 

1995) as described in section 2.4 for all 24 participants with ARM. These gradings were 

modified to reflect feature severity as described in table 7.2.1.   
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All of the ERG parameters, as measured in chapter 6, were assessed for 

correlations with each of the severity gradings using the Spearman rank correlation 

coefficient. Furthermore, ERG parameters were assessed for their ability to differentiate 

participants with wet AMD in the contralateral eye using independent t-tests. The purpose 

of this analysis was to identify any potential relationships between retinal features and 

retinal function in the participants with ARM. Correction for multiple tests was not applied 

to the statistical tests on this occasion, therefore a significance value of p<0.01 was 

applied to mediate the effect of false positives. 

In addition independent t-tests, or Mann-Whitney u-tests for non-parametric data, 

were carried out to identify which retinal features were most closely associated with a wet 

contralateral eye.  

Retinal feature as described in Bird et al. (1995) Adapted categories 
1.1 Drusen morphology, highest grade present 1) absent  / questionable 

2) hard drusen (<C1, 125µm) 
3) intermediate, soft drusen (>C0,<C1; >63µm, 
<125µm) 
4) large, soft distinct drusen (>C1, 125µm) 
5) large, soft indistinct drusen (>C1, 125µm) 
crystalline/calcified/glistening, semisolid or 
serogranular 

1.2 Predominant drusen type  1) absent  / questionable 
2) hard drusen (<C1, 125µm) 
3) intermediate, soft drusen (>C0,<C1; >63µm, 
<125µm) 
4) large, soft distinct drusen (>C1, 125µm) 
5) large, soft indistinct drusen (>C1, 125µm) 
crystalline/calcified/glistening, semisolid or 
serogranular 

1.3 Total number of drusen 1) absent  / questionable 
2) 1-9 
3) 10-19 
4) >20 

1.4 Average drusen size 1) <C0 (<63µm) 
2) >C0<C1 (>63µm,< 125µm) 
3) >CI<C2 (>125µm,<175µm) 
4) >C2<C3 (>175µm,<250µm) 
5) >C3 (>250µm) 

3.1 Hyperpigmentation 1) absent  / questionable 
2) present <C0 (<63µm) 
3) present >C0 (>63µm) 

3.2 Hypopigmentation 1) absent  / questionable 
2) present <C0 (<63µm) 
3) present >C0 (>63µm) 

Table 7.2.1: A summary of the retinal features used for the comparison with retinal 

function. The categories have been adapted and simplified from the original grading 

described by Bird et al. (1995) for the purposes of this analysis. 
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7.2.2 Results 

Only the correlation between the Focal cone ERG a-wave implicit time and grade of 

hyperpigmentation was shown to be significant (p<0.001). Figure 7.2.1 shows a box and 

whisker plot for the relationship between focal cone ERG a-wave implicit time and grade of 

hyperpigmentation (1 to 3, in order of severity), which demonstrated a relationship at the 

p<0.001 significance level, it can be seen that delayed implicit times are strongly 

associated with hyperpigmentation grade severity.  

Independent t-tests were carried out to identify which retinal features were most 

closely associated with a wet contralateral eye found the focal cone ERG b-wave implicit 

time (p<0.01) and the ERG photostress test time constant (p<0.007) to be sensitive 

measures. Figure 7.2.2  shows the focal cone ERG b-wave implicit time and ERG 

photostress test recovery time constant for participants grouped according to the status of 

the non-test eye, both parameters demonstrate delayed times for participants with wet 

AMD in the fellow eye. Four unsuccessful ERG photostress recoveries occurred in 

participants with wet AMD in the contralateral eye (out of 10), whilst 5 occurred in 

participants without wet AMD in the contralateral eye (out of 14). These participants were 

not included in the box and whisker diagram or the independent t-test. When these 

participants are incorporated and the recovering time allocated a value of 1000s, the 

adjusted medians for each group were 197s for contralateral eyes without wet AMD and 

613 s for contralateral eyes with wet AMD.  

 

Figure 7.2.1: Box and whisker plots showing focal cone ERG b-wave implicit time for 

grading of hyperpigmentation as described in table 7.1.1. Medians (±Inter-quartile range) 

were 24.7 (±1.5) 25.8 (±1.4) and 27.1 (±1.4) ms respectively for hyperpigmentation grades 

1, 2 and 3.  
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Figure 7.2.2: Box and whisker plots showing focal cone ERG b-wave implicit time and 

ERG photostress test time constants for wet and non-wet AMD contralateral eye status. 

Medians (±Inter-quartile range) were 45.5 (±2.4) and 48.6 (±3.9) ms for focal cone ERG b-

wave implicit time for eyes without and with wet AMD in the contralateral eyes 

respectively. Medians ERG photostress recovery time constants were 137 (±86) and 313 

(±126) ms for eyes without and with wet AMD in the contralateral eyes respectively 

 

7.3 Discussion 

 The analysis in this chapter reveals that structural measures obtained through OCT 

are not interchangeable with functional tests using the ERG. There were no correlations 

between OCT derived structural and ERG based functional measures at the p<0.01 

significance level, whilst those identified at the p<0.05 level were weak. Additionally, only 

one retinal features of ARM was found to be related to ERG based functional tests at the 

p<0.01 significance level. The scarcity of relationships may be surprising, given that there 

are significant differences in ERG parameters for those with and without ARM, it would 

seem logical that there should be a relationship with the grade of ARM (i.e. the more 

severe ARM equating with increased functional loss). However, two functional parameters 

were shown to be particularly effective in differentiating eyes where the fellow eye is 

categorised as wet AMD.  This is relevant as a diagnosis of wet AMD in the fellow eye 

results in an increased risk of developing choroidal neovascularisation in a previously dry 

eye (Pieramici and Bressler, 1998; AREDS, 2001b). This suggests that ERG photostress 

test time constants and focal cone ERG b-wave implicit times may have prognostic value. 
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The analysis of the structural and functional data in the control participants involved 

conducting multiple correlations to identify statistically significant relationships; when this is 

done there is an increased risk with each additional test that a type 1 error will occur. In 

total, 90 correlation analyses were carried out. Without corrections for multiple testing we 

would expect ~4 type 1 errors to occur, at the p=0.05 significance level  i.e. 4 comparisons 

would be found to be spuriously significant due to chance alone. The results in this study 

therefore appear to be consistent with that expectation. When the 4 statistically significant 

correlations are considered, with regard to the origin of the ERG parameters and 

composition of the retinal layers concerned, there is no obvious scientific rationale to 

support these relationships and the strength of the correlations is weak. This suggests that 

these findings may be spurious. It may have seemed prudent to apply a statistical 

approach that would limit the number of type 1 errors within the analysis, for example the 

Bonferroni correction (Altman, 1991; Curtin and Schulz, 1998); however, such a 

conservative methodology could have limited the ability to identify potential relationships 

between structural and functional parameters, thus an approach of reducing the 

significance level to p<0.01 was adopted.  

 We may have expected retinal function in healthy eyes to be related to the volume 

of the retinal, intra-retinal or choroid layers in which the functional processes originate and 

on which they depend. The ERG is a sum of the entire retinal response to a stimulus, of 

which individual components of the response are dominated by contributions attributed to 

particular cellular origins (Frishman, 2006). Change to the size and speed of a response 

can be expected from differences in spatial organisation and density and population of the 

various contributing cell types, in addition to localised or diffuse deficits within the cellular 

population stimulated.  A reduction in the number of cells within the retina could therefore 

be expected to reduce the size of the response proportionately. However, it would appear 

that the relationship between the two is more complex. 

Measures of thickness and volume have been shown to be poor indicators of retinal 

cell populations. A study of ageing and cell loss in rat retinas showed reductions in retinal 

thickness whilst the overall volume and density of cellular populations (GCL, INL, ONL) 

appeared not to be affected (Feng et al., 2007). Furthermore, Curcio et al. (1993) 

demonstrated a loss of ~30% in photoreceptor density with ageing in 27 donor retinas, 

however, the space vacated by deceased rod photoreceptors was filled by enlargement of 

remaining rod photoreceptor inner segments, suggesting that cellular loss within the retina 

may not be reflected in reduced volume. In addition, as an example of the potential 
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physiological differences in cell population and density within the normal population,  the 

peak density of the cone photoreceptors in healthy donor eyes has been shown to vary 

between 96,000 and 281,000 cones per square millimetre (Curcio et al., 1987). 

Evidence indicates that cone photoreceptors survive longer in AMD than their fellow 

rod photoreceptors, but these surviving cones appear to undergo morphological changes 

(Curcio et al., 1996; Curcio et al., 2000). A study of cone photoreceptor integrity in eyes 

with AMD demonstrated signs of misalignment and outer segment deterioration, even in 

early disease (Kanis et al., 2008). Microscopy also reveals abnormalities in the cone axons 

and opsin distribution related to ageing and AMD (Shelley et al., 2009). This suggests that 

the density of cell populations can remain relatively unaffected whilst being structurally 

and/or functionally compromised.  

It is finally worth considering the methodology employed to determine the retinal 

volume. The technique employed manual measurements at up to 21 locations within a 20° 

diameter circle and these points were used to calculate an average thickness. The small 

number of points used relies on a relative uniformity of thickness across the retinal area 

sampled to produce an accurate measure. In some cases it was not always possible to 

obtain a thickness measurement at each location, further reducing the accuracy of the final 

volumes calculated. The overall macular volume for the normal participants was 7.00 ± 

0.77 (SD) mm³, and was of a comparable magnitude to the total macular thickness 

calculated using commercial software, which corresponds to the area within the outer ring 

of the ETDRS grid, for example 6.84 ±0.36 mm³ in 219 healthy eyes assessed using an 

OCT 3 (Carl Zeiss, Meditec Inc, CA) (Sugita et al., 2008), or the normative range of 6.18 to 

7.42 mm³ provided with the Stratus OCT system (Carl Zeiss, Meditec Inc, CA). However, it 

would be expected that automated segmentation techniques produce more accurate 

values than the approach used in this thesis, as they can utilise many more data points 

within the image and therefore will better reflect localised variations in layer thickness. 

Improved measurement accuracy and greater numbers of participants (including higher 

age and prescription ranges) could potentially reveal a weak relationship between retinal, 

intra-retinal or choroidal layer volumes and ERG parameters of retinal function. 

We can conclude that no strong relationship exists between the ERG parameters 

assessed and retinal, intra-retinal and choroidal layer volumes in healthy participants on 

the evidence that the relationship between layer volume or thickness and cellular 

population or cellular health within the retina is not strong. 
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In this thesis a number of clinical features of ARM were associated with ERG 

parameters, even at the early stage of disease investigated. The strongest association 

was found between extent of hyperpigmentation and delayed focal cone a-wave implicit 

time, a response which is dominated by photoreceptor activity. Given that pigmentary 

abnormalities are reflective of localised RPE dysfunction, and when we consider the 

extensive support which the RPE provides to normal photoreceptor function (see section 

1.2.5 for an overview) it may be expected that disruption of the RPE would negatively 

affect  aspects of photoreceptor function. Other studies have reported a relationship 

between focal pigmentary changes and visual function in ARM (Collins and Brown, 1989; 

Eisner et al., 1991; Cheng and Vingrys, 1993). Eisner et al. (1991) also found a 

relationship between cone function and focal hyperpigmentation, and demonstrated a 

decrease in absolute cone sensitivity, assessed psychophysically, in participants with 

pigmentary changes compared to other individuals with ARM. Focal hyperpigmentation 

was found to be associated with an increased risk of developing wet AMD in a study 

following 71 patients with bilateral drusen (Smiddy and Fine, 1984). Longitudinal data 

assessing the prognostic value of the focal cone ERG a-wave implicit time are not 

available.  

A number of clinical features of ARM have been shown to be reflective of changes 

in retinal function (Collins and Brown, 1989; Eisner et al., 1991; Cheng and Vingrys, 1993; 

Midena et al., 1997; Falsini et al., 1999b). Midena et al. (1997) investigated  central visual 

field sensitivity, contrast sensitivity, colour vision and photostress recovery on 47 

participants with AMD and was able to show reduction in contrast sensitivity measures 

related to drusen confluence. In addition, a slower photostress was associated with 

increased extent of drusen, pigmentary changes and atrophy. Mean sensitivity of the 

central retina and colour vision were not found to be related to number of drusen, focal 

hyperpigmentation or atrophy, although the mean sensitivity approached significance for 

the presence of drusen confluence (p<0.06). Other studies have tended to grade retinal 

appearance, which may better reflect overall disease severity than individual retinal 

features (see table 7.2.1), for example Eisner et al. (1991) investigated retinal function in 

groups of ‘high’ and ‘low’ risk eyes, assessed by retinal appearance. Their study showed 

that abnormalities in colour matching and dark adaptation were greater in eyes with ‘high’ 

risk features, which included the presence of hyperpigmentation, drusen confluence or 

large (>250 µm diameter) and /or extensive drusen (predominantly >63 µm in diameter). In 

addition, ERG-based measures of retinal function have also been shown to be sensitive to 
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ARM, with Falsini et al. (1999b) finding a significant correlation between grading scores of 

increasing disease severity and reductions in focal flicker ERG amplitude.  

 A notable finding in this study was the strong association between fellow eyes of 

wet AMD and delayed focal cone ERG b-wave implicit times and lengthened ERG 

photostress test time constants of recovery. Sandberg, Miller and Gaudio (1993) also 

reported delayed implicit times in the ‘good eye’ of participants (n=67) with unilateral wet 

AMD. Remulla et al. (1995), who also investigated the fellow eyes of 67 patients with 

unilateral wet AMD, identified a relationship between choroidal perfusion defects and 

delayed implicit time in these patients. This suggests that delays in photoreceptor 

responses maybe linked to reduced vascular supply.  

The finding that the time constant of recovery for the ERG photostress test is 

particularly prolonged in participants with unilateral wet AMD in the fellow eye agrees with 

a study by Sandberg and Gaudio (1995) who reported that 62% of participants (n=133) 

with unilateral wet AMD had delayed photostress recovery times in the fellow eye. 

Similarly, Sandberg et al. (Sandberg et al., 1998) carried out a longitudinal study to assess 

the characteristics of patients with unilateral wet AMD which conferred a high risk of 

progression to wet AMD in the fellow eye. They found that glare recovery time was an 

independent predictor of progression to wet AMD, which is consistent with the findings of 

this study that prolonged recovery is associated with high risk fellow eyes of participants 

with unilateral wet AMD. Prolonged recovery after bleach may be explained when we 

consider the retinal changes which are associated with an increased risk of progression to 

wet AMD. These changes include the presence of confluent drusen, choroidal perfusion 

defects and thickening of Bruch’s membrane, all of which have been implicated as 

contributing factors for localised retinal hypoxia (Feigl, 2009; Stefansson et al., 2011). 

Hypoxia is a known stimulus for VEGF production (Aiello et al., 1995) and by extension 

increased risk of choroidal neovascularisation (wet AMD) and, hypoxia has also been 

shown to adversely affect dark adaptation (Vingrys and Garner, 1987; Brinchmann-

Hansen and Myhre, 1989; Connolly and Hosking, 2006).  As the ERG photostress test is a 

dynamic test of cone dark adaptation, the finding that it is particularly sensitive to eyes 

considered at higher risk of progression to wet AMD may implicate retinal hypoxia as the 

underlying mechanism. 

In conclusion, there is no apparent relationship between retinal, intra-retinal and 

choroidal layer volumes and ERG-based measures of retinal function in healthy older 

adults, attributable to the predominant cellular components the retina. This suggests that 
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both functional and structural tests are useful in the assessment of retinal health, as each 

provides independent information. However, some of the functional parameters were 

found to be sensitive to the presence of wet AMD in the fellow eyes of participants with 

ARM. 
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Chapter 8: Conclusions and future work 

 The overall aim of this work was to investigate structural and functional changes in 

the early stages of AMD. Initially, Chapter 1 discussed the current literature regarding age-

related macular degeneration, in particular the early stage of disease known as age-

related maculopathy. Methods which have previously been used to assess retinal 

structural and function at the macula were discussed, specifically those which had been 

shown to be, or likely to be, sensitive to AMD-related changes. Previously identified 

relationships between measures of structure and function in AMD were also discussed. As 

a consequence, the following aims were identified: firstly, to determine and compare the 

diagnostic potential of structural measures, assessed by OCT imaging, and functional 

parameters, assessed using focal ERG techniques. Secondly, to determine if a 

relationship existed between these measures of retinal structure and function in healthy 

individuals and, finally, to determine if a relationship existed between retinal appearance 

and the focal ERG parameters in participants with ARM.  

The investigation of retinal structure was carried out using a long wavelength (1060 

nm) OCT system, which facilitated not only allowed retinal, but also choroidal imaging 

(Povazay et al., 2003; Povazay et al., 2007a). This was the first study to image the choroid 

using long wavelength OCT technology in people with ARM. Chapter 2 described the 

development of the analytical methods for assessing retinal and choroidal layer thickness 

from 1060 nm OCT images. This ultimately led to the adoption of a manual measurement 

technique, later applied in chapter 5.  

Chapter 5 investigated retinal, choroidal and 4 intra-retinal layer thicknesses at 21 

macular locations in participants with ARM and healthy controls. Retinal thickness was 

shown to be reduced at multiple locations assessed within the parafoveal region in 

participants with ARM, whilst the more peripheral macula was unaffected. This appears to 

be consistent with other OCT studies of participants with ARM that reported localised, but 

not diffuse or generalised, reductions in retinal thickness (Kaluzny et al., 2009; Malamos et 

al., 2009; Schuman et al., 2009). Individual retinal and intra-retinal thickness 

measurements showed moderate diagnostic ability, but given the point by point nature of 

the analysis used, it was not deemed a clinically useful approach. In contrast, choroidal 

thickness was shown to be unaffected in ARM.  

 Many ERG parameters are attributable to specific cellular  origins within the retina 

(see section 1.5) (Frishman, 2006), and therefore were thought the most likely functional 

parameters to facilitate a direct comparison with the retinal layers measured by OCT 
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imaging. Function in this thesis was assessed using four focal ERG techniques, providing 

a localised assessment of retinal function at the macula. The ERG photostress test, focal 

flicker ERG and focal cone ERG had previously been shown to be sensitive to ARM (Binns 

and Margrain, 2007), whilst the focal rod ERG was expected to be sensitive given previous 

reports of abnormal rod function in ARM participants (Owsley et al., 2000; Owsley et al., 

2001; Owsley et al., 2007). Chapter 3 described a series of studies intended to improve 

the clinical practicality and diagnostic ability of these tests, prior to their use in chapter 6. In 

particular an investigation into bleaching parameters strongly indicated the use of 

equilibrium bleaches, over photoflash bleaches, for the ERG photostress test; these 

findings resulted in a publication (Wood et al., 2011b). 

 Chapter 6 described a study that investigated the differences between the ERG 

results obtained from participants with ARM and controls; in particular the diagnostic 

potential of those parameters affected was determined. Parameters affected in ARM 

included the b-wave of the focal rod ERG b-wave amplitude and implicit time and the focal 

cone ERG b-wave implicit time. When compared to the OCT measurements (see chapter 

5) ERG parameters showed better diagnostic capability as, although the range of area 

under the curves on ROC analysis were similar (0.672 to 0.807 for ERG parameters, and 

0.642 to 0.787 for OCT), the ERG parameters provided better sensitivity and specificity for 

clinical cut off values. The ERG photostress test recovery time constant provided the best 

diagnostic ability of any single parameter assessed in this thesis, with an area under the 

ROC curve of 0.81. Furthermore, whilst OCT thickness measures at specific locations 

provided moderate diagnostic potential, it would not be clinically feasible to base a 

diagnostic approach on a single thickness measurement at an individual retinal location. In 

this study, the overall thickness of the layers across the macular region appeared to be 

only mildly affected by ARM. Further investigation of other aspects of macular and 

choroidal structure, e.g. integrity of layers, may yield more useful diagnostic information.  

Chapter 7 describes the relationship between the OCT measures (structure) and 

ERG parameters (function) assessed. It was shown that retinal, intra-retinal and choroidal 

layer volumes were not strongly related to the ERG parameters assessed in normal 

participants. Although, some aspects of retinal appearance and function were shown to be 

related in ARM participants, in particular, extent of focal hyperpigmentation was 

significantly related to focal cone ERG a-wave implicit time (p<0.001), supporting previous 

reports of relationships between retinal appearance and function (Collins and Brown, 

1989; Eisner et al., 1991; Cheng and Vingrys, 1993; Falsini et al., 1999b). However, of 
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potential clinical significance was the finding that the ERG photostress recovery time 

constant and focal cone ERG b-wave implicit time were prolonged in fellow eyes of 

participants with wet AMD, suggesting that these parameters may be sensitive to 

underlying retinal changes that precede progression to wet AMD. 

Finally, it is important to consider that the diagnosis of ARM or AMD in this thesis 

was based on the retinal appearance of affected eyes; this is, in effect, the gold standard 

method for the diagnosis of AMD (Klein et al., 1991; Bird et al., 1995; AREDS, 2001a). At 

present no technique which utilises functional measures has been widely used as a 

diagnostic tool for ARM. The participants in this study were, therefore, allocated to control 

or ARM groups based on the grading of retinal photography and OCT images for clinical 

signs associated with AMD. The first point to consider when assessing the diagnostic 

potential of both the structural and functional parameters included in this thesis is that the 

sensitivity and specificity obtained were dependent upon the assumption that all 

participants were classified accurately at the outset. If functional or structural changes 

occur within the retina prior to observable clinical features then it is possible that 

participants designated as controls may have had sub-clinical disease, the true diagnostic 

value of the parameters evaluated may therefore be higher than those calculated in this 

study. A longitudinal study assessing the outcomes of participants in the ‘control’ group 

would provide the only means of retrospectively identifying those who would go on to 

develop ARM.  

The potential limitations of this study include that the comparison of means for the 

parameters assessed was limited by the power of the statistical tests applied and the size 

of control and ARM groups, it is therefore possible that the smaller magnitude differences 

between groups could prove to be significant with further investigation. The manual 

measurement technique used to obtain thickness values from the OCT images was 

subjective in nature, and therefore open to error. The application of an automated 

segmentation technique may reduce the variability of results, due to increased averaging 

and objectivity, thus allowing smaller differences to be detected. Additionally, the reliance 

on fundoscopic grading for disease group allocation and lack of longitudinal follow up 

could potentially influence the assessment of diagnostic potential made for the different 

clinical parameters. Finally, a baseline assessment of smoking was not made; this could 

potentially have had a confounding effect on the clinical parameters assessed in this 

thesis. 
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In conclusion, both structural and functional changes were observed in people with 

ARM. These included parafoveal reductions in retinal thickness, delayed focal rod and 

cone ERG implicit times and delayed ERG photostress recovery. Diagnostically, ROC 

analysis suggests that ERG parameters provided better diagnostic potential than the OCT 

measures assessed. Additionally, prolonged ERG photostress test recoveries were 

implicated as a potential predictor of disease progression and shown to provide the best 

diagnostic potential for ARM. Measures of retinal, intra-retinal and choroidal thickness 

were not shown to be related to the ERG parameters assessed, this lack of any strong 

relationships between the focal ERG parameters and OCT layer measurements suggests 

that they represent independent biomarkers for ARM.  

 

8.1 Future Work 

Following on from chapter 6 it would be interesting to conduct a longitudinal study to 

investigate the effect of disease progression on the ERG parameters studied, in particular 

the predictive ability of the ERG photostress test for the progression to wet AMD. Similarly 

a longitudinal study would allow the identification of participants who may have had sub-

clinical AMD at baseline, allowing refinement of the disease groups, leading to a better 

assessment of the diagnostic potential of the ERG parameters.  

Chapter 5 identified a difference in the ganglion cell layer thickness between the 

control and ARM groups at 3 parafoveal locations, suggesting that the inner retina may 

also be affected in early ARM. As the PhNR has been shown to reflect the activity of RGC 

in the inner retina (Viswanathan et al., 1999), then future study of the PhNR elicited from 

focal stimuli in participants with ARM may reveal whether RGC activity is affected. 

The work in chapter 5 relied upon a manual analysis technique to produce retinal, 

intra-retinal and choroidal thickness values at 21 retinal locations. In the future, analysis 

software should become available for the 1060 nm OCT system that would allow more 

conventional analysis based on automated segmentation, similar to that recently used by 

Loduca et al. (2010) to assess retinal and intra-retinal layer thicknesses in OCT images. 

Application of such techniques to the images collected in this thesis would allow more 

specific localisation of thickness differences, the construction of thickness maps and 

calculation of values in the ETDRS format. The application of such analytical techniques 

may allow for better measurement accuracy and improve the quality of thickness and 

volume measurements produced. In particular, thickness maps may reveal patterns of 
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retinal or intra-retinal layer loss characteristic of ARM in a similar way to rod photoreceptor 

loss identified in histology (Curcio et al., 1996).   

Furthermore, recent OCT studies have related IS/OS junction abnormalities to 

acuity (Hayashi et al., 2009; Landa et al., 2011). This suggests that specific localised 

abnormalities in retinal structure may reflect retinal changes with functional consequences 

better than the macro measures of thickness and volume assessed in this thesis. A study 

investigating the microstructure abnormalities, such as changes to the IS/OS appearance 

in OCT images and relating them to ERG measures, may help identify whether specific 

structural changes affect the ERG waveform, and if so, to what extent.  
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Appendix A: Photobleach calculation 

 

Calculating percentage of rhodopsin bleached 

Rhodopsin bleaches in this thesis were calculated using the equation described by 

Thomas and Lamb (1999) (see equation A.1).  Values reported and used by Thomas and 

Lamb (1999) included a bleaching constant of 107 Td.s (LRh ) and a time constant of 420 s 

(τRh) additionally by using Equation A.2 it was possible to calculate IRh as 23809 td. These 

values were used in this thesis to calculate rhodopsin bleaches, example calculations are 

shown below for both a short (photoflash) and long (equilibrium) duration rhodopsin 

bleach. 

 

Equation A.1: Photobleach calculation from Thomas and Lamb (1999), B = percentage of 

rhodopsin photopigment bleached, I retinal illuminance, t exposure duration, IRh bleaching 

constant and τRh time constant 

 

LRh = IRh. τRh 

Equation A.2: Where IRh is the light intensity at which half the rhodopsin is bleached, LRh 

is the rhodopsin bleaching constant and τRh is the time constant of rhodopsin regeneration 

(Thomas and Lamb, 1999).  

 

Example calculations: 

 

Mecablitz C-76 Flashunit “photoflash bleach” 

t 6.6 ms 

I 2.97E+09 Td 

Irh 23809 Td 

τrh 420 s 

Lrh 1.00E+07 Td.s 

Rhodopsin bleach (B) 86.2 % 
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Ganzfeld “equilibrium bleach” 

t 120 s 

I 3.98E+05 Td 

Irh 23809 Td 

τrh 420 s 

Lrh 1.00E+07 Td.s 

Rhodopsin bleach (B) 93.8 % 

 

Calculating percentage of iodopsin bleached 

Iodopsin bleaches in this thesis were calculated using the equation described by 

Paupoo et al. (2000) originally adapted from Equation A.1 as described by Thomas and 

Lamb (1999). Unlike rhodopsin bleaches, the time constant for iodopsin bleaches varies 

according to the bleach duration, with long duration equilibrium bleaches  having a  fixed 

time constant whereas shorter duration bleaches (<10 seconds duration) have a smaller 

time constant related to the bleach duration (Rushton and Henry, 1968; Hollins and Alpern, 

1973).  Hollins and Alpern (1973) reported a iodopsin time constant of 105 s for equilibrium 

(>10 second) bleaches, whilst shorter duration bleach (i.e. photoflash bleach) were shown 

to decrease with shorter bleach duration to a lower limit of 65 s. Hollins and Alpern (1973) 

also reported a bleaching constant (Ip) of 30000 td for iodopsin. These values reported and 

used by Hollins and Alpern were used in this thesis to calculate iodopsin bleaches, for 

equilibrium (long duration) bleaches a time constant of 105s was used and a time constant 

of 65 s was used for (short duration) photoflash bleaches. Additionally, the bleaching 

constant (Lp) was calculated, using Equation A.3, for each type of bleach, Lp = 3.15x106 

td.s for an equilibrium (long duration) bleach (τp = 105 s) and Lp = 1.92x106 td.s for a 

photoflash (short duration) bleach (τp = 65 s). Below example calculations are shown 

below for both photoflash and equilibrium iodopsin bleaches. 

  

Equation A.3: Photobleach calculation from Paupoo et al. (2000), B = percentage of 

iodopsin photopigment bleached, I retinal illuminance, t exposure duration, Ip bleaching 

constant and τp time constant. 

 

Lp = Ip. τp 



 
 

Appendix A:Photobleach calculation  III 
 

Equation A.4: The above was derived from Thomas and Lamb (1999) for Iodopsin. Where 

Ip is the light intensity at which half the iodopsin is bleached, Lp is the iodopsin bleaching 

constant and τp is the time constant of iodopsin regeneration. 

 

Example calculations: 

 

Mecablitz C-76 Flashunit “photoflash bleach” 

t 6.6 ms 

I 1.19E+09 Td 

Ip 30000 Td 

τp 64 s 

Lp 1.00E+07 Td.s 

Iodopsin bleach (B) 98.4 % 

 

Ganzfeld “equilibrium bleach” 

t 120 s 

I 1.59E+05 Td 

Ip 30000 Td 

τp 105 s 

Lp 1.00E+07 Td.s 

Iodopsin bleach (B) 84.1% 
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Appendix B: Maxwellian view photobleach 

The following appendix describes the calibration of the Maxwellian view optical 

system used in this thesis. Maxwellian viewing is the principle of imaging the light source 

directly into the pupil plane, rather than viewing it directly. Provided that the source is 

smaller than the pupil area, it can be assumed under these conditions that all the light from 

the source enters the pupil (Westheimer, 1966).  

A Maxwellian view optical system was set up consisting of a super bright white LED 

and two 20D lenses. An eye piece was positioned such that the image of the source would 

be positioned at the pupil plane of the viewing eye. The retinal illuminance was calculated 

using the following equation (Westheimer, 1966) by measuring the illuminance of a 

perfectly diffusing surface at a set distance, illuminated by the Maxwellian view system. 

 

Equation B.1:   Retinal illuminance (td) = 107Bx2/r 

 

B = luminance of perfectly diffusing surface (mL) 

r = reflectance of surface 

x = distance from image plane to surface (m) 

 

The photometer measurement was converted from cd.m-2 to millilamberts (1mL is equal to 

10/π cdm-2).  

 

Calibration 

The Maxwellian view optical system was setup and the image projected onto a 

uniform surface (reflectance ~ 84.2%) at 0.185 m (x), the luminance of the surface was 

then measured at a range of voltages using a photometer (LS-110; Konica Minolta, Osaka, 

Japan). Retinal illuminance values were calculated using equation B.1.  

Volts (v) (cd.m-2) (Log td.s) 
2.5 0.09 4.06 
3 0.70 4.95 
4 2.59 5.52 
5 4.16 5.73 
6 6.18 5.90 
9 10.66 6.13 

Table B.1: Table showing the voltages, measured luminances and the calculated log 

trolands values for the source at each voltage. 
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Figure B.1: Graph showing the relationship between illuminance and voltage for the 

maxwellian view optical system at a distance of 0.185 m, equation shown is that of the 

linear best fit of the data. 

 

Photopigment 
Bleach (%) 

(Log td.s) (td.s) 
Millilamberts 

(mL) 
(cd.m-2) 

Voltage 
(V) 

95 5.76 570123.66 1.40 4.46 5.16 
90 5.44 277887.50 0.68 2.18 3.78 
80 5.16 145657.56 0.36 1.14 3.15 
70 4.99 98420.65 0.24 0.77 2.93 
60 4.85 70932.47 0.17 0.56 2.79 
50 4.71 51811.67 0.13 0.41 2.70 
40 4.57 37244.28 0.09 0.29 2.64 
30 4.41 25518.99 0.06 0.20 2.58 

Table B.2: Table showing the calculating of voltage requirement to obtain a range of 

photopigment bleaching using the maxwellian view optical system assuming a 60 second 

exposure. Retinal illuminance was calculated using equation B.1 and the final 

determination of voltage was achieved by applying the value to the equation of a straight 

line from figure B.1. The photopigment (iodopsin) bleach was calculated as described in 

Appendix A; the values for an 80% iodopsin photopigment bleach as required for the ERG 

photostress test are highlighted in bold.  
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Appendix C: Photoflash calibration and safety 

This appendix describes a series of calculations to demonstrate the compliance of 

the Metz Mecablitz C76 photoflash unit with the relevant safety regulations. The calibration 

of the unit is also described.    

Prior to use, the safety of the photoflash needed to be demonstrated; the 

appropriate safety regulations are laid out in the British Standard BSEN 15004:2 (BSI, 

2007) “Ophthalmic Instruments - fundamental requirements and test methods Part 2 - 

Light Hazard Protection”. These standards are based upon the International Commission 

on Non-Ionizing Radiation Protection (ICNIRP, 1997) guidelines. 

 The ICNIRP guidelines provide spectral weightings and calculations for 3 primary 

types of exposure hazard:  

 Retinal thermal hazard (380-1400 nm) 

 Blue-light photochemical hazard (300-700 nm) 

 Infrared radiation hazards to the eye (780-3000 nm) divided into, cornea & lens, 

retina and skin.  

 British Standards (BSI, 2007) annex C state that, if the output of a white light source 

is less than 1 cd.m-2, then spectral data is not required when calculating the safe exposure 

limit. The Metz Mecablitz C76 output exceeds this value. The manufacturer kindly provided 

the spectral output distribution of the unit (see figure C.1), and the total radiometric output 

was obtained by the using a light meter (IL1700; International Light Inc., Newburyport, MA) 

with a SED033 detector. This allowed the radiometric output to be determined at 5 nm 

wavelength intervals.  

The spectral irradiance (Eλ) was calculated by dividing the total light output 

measured using the light meter, by the known spectral distribution of the flash (see figure 

C.1). This information was then multiplied by a wavelength specific calibration factor 

(provided by International Light Inc., Newburyport, MA), for each wavelength to produce an 

irradiance output in Wcm-2. The spectral radiance (Lλ) was also calculated for the flash by 

multiplying the spectral irradiance (Eλ) by the flash duration.  

The calculated spectral irradiance and spectral radiance values were applied to the 

safety calculations identified in BSEN 15004:2 (BSI, 2007), utilising the specific spectral 

weightings within the guidelines. In order to confirm the safety of the photoflash, the safety 

calculations produced by the ICNIRP (1997) were also carried out. The individual 

calculations are shown below in figures C.2 to C.6; the symbols used are identified in table 

C.1. 
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Figure C.1: “Spectral distribution of Mecablitz C76 Flash” as provided by Metz. 

 

 

Figure C.2: Corneal and lenticular ultraviolet radiation exposure limit (BSI, 2007) 

 

 

Figure C.3: Visible and infrared radiation limit values (BSI, 2007) 

 

 

Figure C.4: Corneal and lenticular infrared radiation exposure limit (BSI, 2007) 

 

 

Figure C.5: Blue-light photochemical retinal hazard (300-700 nm)(ICNIRP, 1997) 
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Figure C.6: Retina infrared exposure limit (380-1400nm) (ICNIRP, 1997) 

 

Symbol Quantity Unit 
Eλ Spectral irradiance W/cm2 
Lλ Spectral radiance J/cm2 

ES-CL 

 
Weighted corneal and lenticular 
ultraviolet radiation irradiance 

W/cm2 
 

EVIR-R 

 
Weighted retinal visible and 
infrared radiation thermal 
irradiance 

W/cm2 
 

HIR-CL Unweighted corneal and 
lenticular infrared radiation 
radiant exposure 

J/cm2 
 

Lhaz Limit for radiant exposure  
LB.t Limit for blue light 

photochemical exposure 
 

S(λ) 
 

Ultraviolet radiation hazard 
weighting function 

 

R(λ) 
 

Visible and infrared radiation 
thermal hazard weighting 
function 

 

∆λ 
 

Summation interval  nm 

α Angular sub tense of light 
source 

Maximum value 0.1 radians 

dr Minimum retinal image 
diameter 

If greater than 1.7mm use 1.7 
If less then 0.03mm use 0.03 

t Exposure time s 
Table C.1: Symbols as used by light hazard protection calculation for BSI (BSI, 2007) and 

ICNIRP (ICNIRP, 1997) standards. 

 

Flash calibration 

To ensure that the photoflash bleached the correct amount of photopigment the 

consistency of the flash output was assessed. The luminance of the C-76 Mecablitz flash 

unit was measured using the IL1700 light meter for 27 consecutive discharges at 

maximum output. In addition, to determine if the flash intensity remained constant after a 

period of inactivity, similar to that which may occur in the laboratory during the study, the 

flash unit was stored for 7 days without recharging before a further 10 consecutive 

discharges were measured. 
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Figure C.7: A graph showing the log flash intensity for a series of consecutive photoflash 

discharges on two occasions separated by a 7 day interval without recharging the 

photoflash unit.  

 

The results (see figure C.7) indicated that the flash output remain relatively constant 

between consecutive flashes and following a period of inactivity (up to 7 days). All 

measured flashes were within 0.1 log units of each other. The flash consistency was 

deemed satisfactory, given that no more than 4 consecutive discharges per patient visit 

were likely and that the unit was not left without recharging for a period greater than 1 

week prior to a patient visit.  

 

Reference 

BSI (2007) Ophthalmic Instruments - fundamental requirements and test methods 
Part 2 - Light Hazard Protection. British Standards Institute BS EN 15004-2. 
 
ICNIRP (1997) Guidelines on limits of exposure to broad-band incoherent optical radiation 
(0.38 to 3 microM). International Commission on Non-Ionizing Radiation Protection. Health 
Phys 73: 539-554. 
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Appendix D: ERG luminance calibration 

The ERG techniques employed during this thesis required a variety of focal and 

background light stimuli. The protocols required specific luminance values; the following 

describes the luminance calculations for each of the stimuli employed in the final protocols 

and the calibration carried out over the period of data collection. After initial calibration the 

equipment was reassessed prior to periods of data collection and repeated at regular 

(approximately monthly) intervals within these periods. All luminance measurements were 

obtained using a photometer (LS-110; Konica Minolta, Osaka, Japan). 

 

Photopic focal ERG stimuli 

 The photopic ERG techniques (Focal Cone ERG, Focal flicker ERG and ERG 

photostress test) utilised a focal ERG stimulus with a time averaged luminance of 30 cd.m-

2 presented at different temporal frequencies using a 50% duty cycle. The stimulus was 

calibrated with a constant (non-flickering) light to a luminance value of 60 cd.m-2, with the 

photometer focused at the centre of the stimulus. Over the course of the data collection 

period a range of between 59.92 and 67.43 cd.m-2 with a mean of 62.55 cd.m-2 was 

measured from the stimuli (see table D). 

 

Measurement date Luminance cd.m-2 

Initial 60.00 

08.01.2010 61.82 

25.01.2010 60.32 

10.02.2010 59.92 

01.03.2010 68.47 

23.04.2010 60.29 

11.05.2010 61.17 

02.06.2010 67.43 

16.08.2010 65.62 

24.09.2010 62.82 

13.05.2011 60.54 

09.06.2011 62.18 

Mean 62.55 

Standard deviation 2.99 

Table D.1: Luminance of the focal stimuli for the photopic ERG techniques, the figure in 

bold indivated the initial calibration luminance.  
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Photopic suppressing background 

The photopic ERG techniques (Focal Cone ERG, Focal flicker ERG and ERG 

photostress test) utilised a white light suppressing background which was luminance 

matched to the time averaged luminance (30  cd.m-2) of the focal stimulus used. The 

background was calibrated for a point approximately 10 cm above the focal stimulus. Over 

the course of the data collection period a range of between 26.46 and 33.01 cd.m-2 with a 

mean of 29.26 cd.m-2 was measured for the photopic background (see table D.2). 

  

Measurement date Luminance cd.m-2 

Initial 30.00 

08.01.2010 30.04 

25.01.2010 29.36 

10.02.2010 26.46 

01.03.2010 27.00 

23.04.2010 28.84 

11.05.2010 28.17 

02.06.2010 28.62 

16.08.2010 29.49 

24.09.2010 30.10 

13.05.2011 29.98 

09.06.2011 33.01 

Mean 29.26 

Standard deviation 1.68 

Table D.2: Luminance of the suppressing background used for the photopic ERG 

techniques, the figure in bold indicate the initial calibration luminance.  

 

Scotopic focal ERG stimuli 

 The focal rod ERG was recorded using both a low (20 scotopic td.s) and high (500 

scotopic td.s) luminance focal stimulus. As the photometer measures in photopic cd.m-2, 

the measurements were converted from photopic to scotopic units using the conversion 

factor of 26.66 for blue light (454 nm), taking account of the rod spectral sensitivity 

(Wyszeki and Stiles, 1982). Conversion to trolands assumed a dilated pupil (area = 50 

mm²). Therefore the constant photopic luminance of the stimuli for a flash duration of 5 

and 10 ms respectively for the low and high luminance targets were calculated as follows: 
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Low Luminance  

 

(20/50)/26.66 * (1000/5) = 3 

 

Scotopic retinal illuminance = 20 scotopic td.s 

Pupil diameter = 50 mm² 

Conversion factor for 454 nm light = 26.66 

Stimulus duration = 5 ms 

 

High Luminance 

 

(500/50)/26.66 * (1000/10) = 37.5 

 

Scotopic retinal illuminance = 500 scotopic td.s 

Pupil diameter = 50 mm² 

Conversion factor for 454 nm light = 26.66 

Stimulus duration = 5 ms 

 

Measurement date Low luminance stimuli cd.m² High luminance stimuli cd.m² 

Initial 3.00 37.50 

08.01.2010 5.50 34.50 

25.01.2010 3.83 29.50 

10.02.2010 4.13 33.09 

01.03.2010 3.06 31.17 

23.04.2010 5.52 32.40 

11.05.2010 3.34 32.26 

02.06.2010 2.98 35.33 

16.08.2010 2.94 32.14 

24.09.2010 3.06 34.13 

13.05.2011 3.44 34.03 

09.06.2011 3.45 35.16 

Mean 3.69 33.43 

Standard deviation 0.93 2.13 

Table D.3: Luminance of high and low luminace focal stimuli for the focal rod ERG, the 

figures in bold indicate the initial calibration luminace.  
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The scotopic focal stimuli were therefore calibrated to provide a constant output of 3 

and 37.5 cd.m-2 for the low and high luminance stimuli respectively. Over the course of the 

data collection period the low luminance target ranged between 2.94 and 5.52 cd.m-2 with 

a mean of 3.69 cd.m-2 whilst the high luminance target ranged between 29.50 and 37.50 

cd.m-2 with a mean of 33.43 cd.m-2  (see table D.3). These means equate to scotopic 

values of 24.9 and 442.6 scotopic td.s for the low and high luminance stimuli respectively.  

 

Scotopic suppressing background 

 The focal rod ERG technique, as described by Binns and Margain (Binns and 

Margrain, 2006), utilised a log 1.67 scotopic td.s green Ganzfeld surround. The equivalent 

photopic luminance was calculated to be 0.33 cd.m-2, assuming a conversion factor from 

scotopic to photopic sensitivity for green light (525 nm) of 2.81(Wyszeki and Stiles, 1982). 

Conversion to trolands assumed a dilated pupil (area = 50 mm²). Over the course of the 

data collection period a range of between 1.38 to 1.80 log scotopic td.s was measured, 

with a mean of 1.58 log scotopic td.s (see table D.4).  

 

Measurement date 
Luminance 

cd.m-2 log scotopic td.s 

Initial 0.33 1.67 

08.01.2010 0.45 1.80 

25.01.2010 0.41 1.76 

10.02.2010 0.21 1.47 

01.03.2010 0.24 1.53 

23.04.2010 0.23 1.51 

11.05.2010 0.26 1.56 

02.06.2010 0.17 1.38 

16.08.2010 0.24 1.53 

24.09.2010 0.21 1.47 

13.05.2011 0.27 1.58 

09.06.2011 0.38 1.73 

Mean 0.28 1.58 

Standard deviation 0.09 0.13 

Table D.4: Scotopic suppressing background initial calibration (bold) and consecutive 

luminance measured during data collection. 
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Maxwellian view bleaching unit 

 The calibration for the Maxwellian view optical system has been previously 

described in Appendix B, these luminance measurements were obtained using the same 

methodology. Over the course of the data collection period the bleaching luminance 

ranged between 1.07 and 1.14 cd.m-2, with a mean of 1.12 cd.m-2 (see table D.5). 

 

Measurement date Luminance cd.m-2 

Initial 1.14 

08.01.2010 1.09 

25.01.2010 1.14 

10.02.2010 1.12 

01.03.2010 1.07 

23.04.2010 1.12 

11.05.2010 1.14 

02.06.2010 1.09 

16.08.2010 1.14 

24.09.2010 1.12 

13.05.2011 1.14 

09.06.2011 1.12 

Mean 1.12 

Standard deviation 0.02 

Table D.5: Luminance of the maxwellian view optical system as used for the ERG 

photostress test, the figure in bold indicates the initial calibration luminace.  
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Appendix E:Focal rod ERG intensity response data  XV 
 

Appendix E: Focal rod ERG intensity response data 

BA1 Rmax=8.51, n=34.89, LogK=1.30 BA2 Rmax=17.42, n=1.48, LogK=2.47

CB1 Rmax=999.11, n=1.05, LogK =432.28 CB2 Rmax=5.80, n=3.02, LogK =1.47 

DF1 Rmax=28.01, n=0.91, LogK =13.84 DF2 Rmax=206.86, n=0.80, LogK =224.95

DFO1 Rmax=3.03, n=7.30, LogK =0.69 DFO2 Rmax=5.66, n=2.61, LogK =0.89 
 



 
 

Appendix E:Focal rod ERG intensity response data  XVI 
 

RE1 Rmax=10.19, n=1.91, LogK =1.57 RE2 Rmax=24.55, n=1.41, LogK =4.57

SA1 No Fit SA2 No Fit

WBS1 Rmax=9.38, n=1.81, LogK =2.12 WBS2 Rmax=6.70, n=3.47, LogK =1.34 

JF1 Rmax=436.17, n=0.54, LogK =9125.77 JF2 Rmax=8.50, n=34.07, LogK =1.32



 
 

Appendix E:Focal rod ERG intensity response data  XVII 
 

LB1 No Fit LB2 Rmax=1209.63, n=0.86, LogK =664.92

LD1 Rmax=7.69, n=2.22, LogK =1.25 LD2 No Fit

MF1 Rmax=1868.80, n=0.73, LogK =3888.17 MF2 Rmax=32.12, n=1.67, LogK =3.43 

ND1 Rmax=610.83, n=0.69, LogK =1614.74 ND2 Rmax=6.50, n=29.12, LogK =1.32



 
 

Appendix E:Focal rod ERG intensity response data  XVIII 
 

PF1 Rmax=9.20, n=2.05, LogK =1.14 PF2 Rmax=352.57, n=0.71, LogK =776.29

SD1 Rmax=67.18, n=1.42, LogK =12.17 SD2 Rmax=10.27, n=6.58, LogK =1.66
Figure E.1: Intensity-response curves for focal rod ERG  b-wave amplitudes (blue dots) at 

6 stimulus intensities are shown. The ‘Naka-Rushton’ model (red line) was fitted to each 

dataset. Participant ID, and parameters Rmax, n and LogK are shown below each curve.  
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Appendix H:AMD Grading  XXXI 
 

Appendix H: AMD Grading  

 

Figure H.1: Grid used to overlie macular retinal images for both International and AREDS 

grading systems, showing central, inner and outer zones, diameters are 1000, 3000 and 

6000µm respectively. Image from Bird et al. (1995). 

 

 

Figure H.2: Five circles of varying sized used with the International Classification System 

to grade lesion size. The approximate dimensions for a normal macula are as follows: C0 

63µm, C1 125µm, C2 175µm, C3 250µm, C4 500µm. 

 

Grading feature Equivalent diameter in Powerpoint 
37° Diameter Image (10656µm) 141.92 mm 
Outer zone 6000µm 79.91 mm 
Inner zone 3000µm 39.95 mm 
Central zone 1000µm 13.32 mm 
C0 63µm, 0.84 mm 
C1 125µm, 1.66 mm 
C2 175µm, 2.33 mm 
C3 250µm, 3.33 mm 
C4 500µm. 6.66 mm 

Table H.1: Showing the conversion of retinal distances to scaled values for use with 37° 

retinal images undertaken for each grading features used with the International 

classification system (Bird et al., 1995).  



 
 

Appendix H:AMD Grading  XXXII 
 

 

 

Figure H.3: Drusen and retinal pigmentation grading criteria for the International 

classification system (Bird et al., 1995). 
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Appendix K:ERG data  LIX 
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Appendix K:ERG data  LX 
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Appendix K:ERG data  LXI 
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Appendix K:ERG data  LXII 
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Appendix K:ERG data  LXIII 
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Appendix K:ERG data  LXIV 
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Figure K.1: ERG photostress test recovery curves for control (n=26; Left) and ARM (n=24; 

Right) participants. X axis shows time in seconds, Y axis shows amplitude normalised to 

the pre-bleach amplitude (1). Amplitude recovery model is indicated by black line, with 

95% confidence intervals indicated by grey lines. 
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Abstract
Background The ERG photostress test assesses the recov-
ery of the focal 41 Hz ERG following exposure to a bright
light that bleaches a significant proportion of photopigment.
The aims of this study were: 1) to compare the repeatability
of the ERG photostress test recovery time constant
following long and short duration light exposure, and 2)
to determine the effect of age on the ERG photostress test
recovery time constant.
Methods Focal 41 Hz ERGs were recorded from 23
participants (age range 20–71 years) at 20-second intervals
for 5 minutes following either a short-duration (photoflash)
or long-duration (equilibrium) light exposure. After a 5-
minute wash-out period, the procedure was repeated using
the second bleach modality. The time constant of cone
recovery was determined by fitting an exponential model to
the amplitude recovery data. The whole procedure was
repeated on a second occasion. The co-efficient of
repeatability (CoR) was calculated for each bleaching
technique. The relationship between the time constant of
recovery and age was investigated (Pearson’s correlation
coefficient).
Results The time constant of recovery following an
equilibrium bleach was more repeatable than recovery
following a photoflash (CoR=85s and 184s respectively).

Eight trials (from seven participants) failed to show a
reduction in amplitude following the photoflash, suggesting
that a blink or fixation loss had occurred. All participants
were reliably light-adapted by the equilibrium bleach. For
the equilibrium bleach data, the time constant of recovery
increased with age at a rate of 27 seconds per decade.
Conclusions The equilibrium bleach was more reliable and
repeatable than the photoflash. Increasing participant age
was shown to result in a lengthening of the recovery time
constant, of a magnitude comparable to previously pub-
lished psychophysical data.

Keywords Electroretinogram, ERG . Cone adaptation .

Repeatability . Age-related macular degeneration

Introduction

The electroretinogram (ERG) photostress test [1, 2] was
developed as a dynamic test of outer retinal function, which
assesses the recovery of the 41 Hz ERG amplitude,
following exposure to a bright light. The technique is
capable of differentiating patients with early age-related
maculopathy (ARM) from healthy controls, even when VA
remains near normal [2].

In dark adaptation and photostress studies, photopigment
bleaching has been elicited in one of two ways. The first
method typically involves the use of a photoflash unit
which produces a very brief but intense flash of light [3–7].
The second method is to expose the retina to a less intense
but longer duration light until equilibrium is reached
between photopigment bleaching and regeneration [1, 2,
8–10]. The literature suggests that the kinetics of cone
photopigment recovery are different in these two situations.
Following an equilibrium bleach, the time constant of cone
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recovery is not dependent on the percentage of photopig-
ment bleached, whilst the recovery following a photoflash
is prolonged with an increasing percentage of photopigment
bleached [3]. For exposures that bleach the same amount of
photopigment, the time constant of cone recovery is also
shorter after exposure to a brief flash than after an
equilibrium bleach [3]. Given that clinic time is at a
premium, the use of a photoflash is an attractive alternative
to the longer duration equilibrium bleach currently used
with the ERG photostress test [2].

To investigate the potential utility of this approach, the
first aim of this study was to compare the inter-session
repeatability of ERG photostress test results obtained with
equilibrium and photoflash bleaches. The psychophysically
determined time constant of cone dark adaptation is known
to be affected by age [4], with a reported increase of
0.21 minutes per decade. Therefore, the second aim of this
study was to investigate the effect of age on the time
constant of cone recovery as determined by the ERG
photostress test with both bleaching techniques.

Material and methods

Participants

Twenty-three healthy participants, aged 20 to 71 years
(mean age 43.5±17.6 years) were recruited for this study
from staff, students and volunteers attending the Eye Clinic
at the School of Optometry and Vision Sciences. All
participants had a corrected visual acuity of 0.2 (LogMAR)
or better, clear ocular media, normal retinal/optic disc
appearance, no history of retinal or systemic disease, and
were not taking medication known to affect retinal function.
The study adhered to the tenets of the Declaration of
Helsinki and was approved by the School of Optometry and
Vision Sciences Research Ethics Committee. Each partici-
pant was given a full explanation of the procedures
involved, and their written informed consent was obtained
before participation in the study.

ERG recording

The earth electrode was a silver–silver chloride touchproof
skin electrode (Viasys Healthcare Ltd., Warwick, UK)
applied to the midfrontal position, whilst active and
contralateral reference electrodes consisted of DTL fibres
(Unimed Electrode Supplies, Surrey, UK) positioned in the
lower fornix of both eyes. Contralateral corneal reference
electrodes have been reported to provide larger ERG
amplitude responses than traditional skin electrodes [5].

ERGs were recorded in response to a focal (20°
diameter) amber stimulus (peak output 595nm, half height

band width 17 nm) produced by a miniature Ganzfeld LED
stimulator (CH Electronics, Kent, UK). The stimulator
comprised an array of LEDs set behind a circular diffuser.
The LEDs provided a square wave flicker stimulus at a
frequency of 41 Hz (50% duty cycle, flash duration 12 ms)
with a time-averaged luminance of 30 cd/m2. The stimulus
subtended 20° at the eye, when viewed from a distance of
14 cm, and was set within a luminance-matched Ganzfeld
surround to suppress responses from the peripheral retina.
Stimulus luminance was measured with a photometer (LS-
110; Konica Minolta, Osaka, Japan).

An evoked potential monitoring system (Medelec Syn-
ergy EP; Oxford Instruments Medical, Surrey, UK) was
used to record all ERGs in the course of this study. ERG
responses were recorded monocularly, bandpass filtered (1
to 100 Hz) and digitally averaged. A 50 ms time base at a
sampling rate of 20 KHz was used with one hundred
sweeps (each consisting of two response cycles) averaged
per trace. An artefact reject setting (50 μV) allowed the
exclusion of traces contaminated by eye movements.

Bleaching techniques

The long duration ‘equilibrium’ bleach was provided by a
tungsten halogen source which was presented to the subject
within a Ganzfeld bowl. A central fixation cross was placed
within the Ganzfeld bowl such that the bleaching source
subtended 40° at the eye. The flickering amber stimulus
was placed directly above this, allowing the subject to take
up position for ERG recording quickly at cessation of the
photobleach. Heat filters were in place, which reduced
output of the bleaching light to below 5% between 800–
900 nm so that excessive infra-red (IR) radiation did not
reach the eye.

Using this apparatus the eye was light-adapted to a
bright white background of 5.6 log td for a period of
2 minutes. The effective retinal illuminance was calculated
as 5.2 log photopic td, when adjusted for the Stiles–
Crawford effect, which bleached approximately 84% of the
cone visual pigment [3].

The short duration “photoflash” bleach was provided by
a Metz Mecablitz 76 MZ-5 flashgun (Metz-Werke GmbH
& Co., Zirndorf, Germany), positioned such that this source
also subtended 40° at the eye when centrally fixated. The
eye was exposed to a bright white flash of 7.3 log td.s for a
period of approximately 6.6 ms. The effective retinal
illuminance, adjusted for the Stiles–Crawford effect, was
calculated as 6.9 log photopic td.s, which bleached
approximately 98% of the cone visual pigment [3, 6].

The time constant of cone recovery following an
equilibrium bleach is independent of the percentage bleach
achieved [3]. However following a ‘non-equilibrium’ short
duration bleach of an equivalent level the time constant is
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shorter [3, 7], and is variable, with the quickest recoveries
following less intense bleaches [3]. Therefore, the maxi-
mum intensity bleach from the flash unit was used in this
study, theoretically producing the longest recovery times
over which to monitor the ERG recovery.

Heat filters were used to attenuate output to below 5%
between 800-900 nm, so that excessive infra-red (IR)
radiation did not reach the eye. Additionally a UV filter
integrated within the flash gun eliminated wavelengths
below 375 nm. All bleach luminance measurements were
made using an IL1700 photometer (International Light Inc,
Newburyport, MA, USA) and exposures were within the
safety guidelines set out within BS EN 15004-2 [8].

General procedure

Both bleaching protocols were evaluated at the same
recording session, and participants were randomly assigned
to one of two groups determining whether the photoflash or
equilibrium bleach was to be used first. The eye with better
visual acuity was chosen for testing, with the left eye
chosen as default in cases of equal acuity. The non-test eye
was patched. Pupils were dilated with 1 drop of 1.0 %
tropicamide prior to electrode attachment.

Prior to recording, a 5-minute period of adaptation to the
flickering stimulus and surround was undertaken to avoid
any flicker adaptation effects during the recording period.
In order to prevent any residual bleach effect between tests,
a 5-minute break was implemented. Initially four 41 Hz
flicker ERG traces, each consisting of the average of 100
sweeps, were recorded to provide a baseline pre-bleach
amplitude. This was followed by exposure of the eye to
either the photoflash or equilibrium bleach. Upon comple-
tion of the bleach, the participants had 10 seconds to align
themselves with the stimulus for the recording of the first
trace; a total of 15 traces were then recorded at 20-second
intervals over a 5-minute period. Each trace took approx-
imately 5 seconds to record; however, the time required was
extended if any blinks or other contamination occurred
which led to trace rejection. This would normally leave 10
to 15 seconds between successive recordings for the
participant to relax and blink. The entire protocol was
repeated on a second occasion within 4 weeks of the first
visit for every study participant. A sequential representation
of the protocol undertaken at each visit is shown in Fig. 1.

Analysis

The amplitude of the fundamental frequency of each trace
was determined by Fourier analysis using Excel 2003
(Microsoft. Redmond, WA, USA) and plotted as a function
of time after cessation of the bleach. In order to limit the
effect of any noise or contamination of individual traces,

especially in those traces immediately post-bleach where
the signal-to-noise ratio was low, the Fourier analysis for all
post-bleach traces was phase-locked to the mean of the four
pre-bleach traces. In this way, only 41 Hz signals which
were the same phase as the pre-bleach signal were
extracted.

The time constant of cone photopigment regeneration
was determined by fitting Eq. 1 to the amplitude recovery
data on a least squares fit basis, using the Solver function of
Excel 2003 (Microsoft).

Amplitude tð Þ ¼ a 1� B» exp �t=tð Þ½ � ð1Þ
Where “t” is time after the photobleach in seconds, “a” is

the pre-bleach amplitude, “B” is the proportion of photo-
pigment bleached (where B=0 signifies 0% and B=1
signifies 100%) and “τ” is the time constant in seconds.
“B” was constrained within the model to return a value of 0
or greater. Inter-session repeatability of the time constant of
recovery was assessed by calculating the coefficient of
repeatability (CoR) (determined as 1.96 x the standard
deviation of differences between visits 1 and 2). The
repeatability was also graphically demonstrated by plotting
the difference in time constant between visits 1 and 2
against the mean time constant for both visits, a technique
advocated by Bland and Altman [9]. The agreement
between recovery time constants for long and short duration
bleaches was also presented using this (Bland and Altman)
approach [9].

The effect of age on the recovery time constant was also
assessed. Recovery time constants for all participants were
plotted as a function of age, with the gradient of the best
fitting line indicating the change in time constant per
decade of life. Pearson’s correlation coefficient was
calculated to determine whether this relationship was
significant.

Results

Typical 41 Hz ERG traces for three participants aged 23, 44
and 60 are shown in Fig. 2. The initial four traces shown
are the pre-bleach baseline and represent the expected
waveform after a full recovery. The subsequent 15 traces
were recorded at 20-second intervals following the bleach.
The recovery in ERG amplitude post-bleach, towards the
baseline level, is apparent in these participants for both
bleaching modalities. The amplitude values plotted against
time for these three participants are shown in Fig. 3. The
amplitude recovery has been fitted with Eq. 1.

For the group of 23 participants, a total of 46 ERG
photostress tests were recorded using the equilibrium
bleach, and 46 were recorded using the photoflash bleach.
From the trials conducted using the equilibrium bleach,
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only one was excluded due to excessive recording noise;
however, of the trials conducted using the photoflash, eight
were excluded due to ineffective bleaching, i.e., the ‘bleach’
did not diminish the amplitude of the 41 Hz ERG and hence
there was no recovery. Of the eight failed photoflash bleaches,
one participant did not produce valid results on either visit.
The mean time constants for the equilibrium (117±72s) and
photoflash bleach (112 ± 58s) techniques were not signifi-
cantly different (paired t-test; P=0.992).

Figure 4 describes the repeatability of each technique;
the CoR was 85s (n=22) for the equilibrium bleach and
184s (n=16) for the photoflash bleach. The mean difference
between visits was close to zero, indicating no bias between
visits (see Fig. 4).

Figure 5 compares the mean time constant of recovery
between the two techniques for the 15 participants where
successful bleaches were achieved for both bleach techni-
ques. There was no bias towards a longer time constant for
either technique.

Figure 6 plots the time constant of recovery as a function
of age for both techniques. For the equilibrium bleach data,
the time constant (τ) of recovery increased by 27.6s per
decade of life; this relationship was statistically significant
(Pearson’s correlation coefficient r=0.66, P=0.0008). There
was also a subjectively evident increase in variability with

older subjects. There was no significant relationship between
age and time constant of recovery for the photoflash
technique (Pearson’s correlation coefficient, P=0.19).

Discussion

The results provide compelling evidence for the retention of
the equilibrium bleach as part of the ERG photostress test.
The equilibrium bleach showed relatively good repeatabil-
ity (CoR 85s) and was successfully recorded on 45 out of
46 occasions. The photoflash bleach, by comparison, was
less repeatable (CoR 184s), and did not always provide an
effective bleach.

Previously, we have shown that the ERG photostress test
can differentiate those with early ARM from age-matched
controls, demonstrating a mean difference of 106s in time
constants between groups [2]. Given that the coefficient of
repeatability for the photoflash technique (184s) is larger
than the difference between those with and without disease
(106s) [2], it is apparent that the sensitivity and specificity
of the ERG photostress test would be compromised by
switching to the photoflash bleaching method.

It is noteworthy that this assessment of the repeatability
of the photoflash bleaching method only included data from
16 out of 23 subjects for whom a post-bleach recovery was
available. The observation that the photoflash unit did not
diminish the amplitude of the 41 Hz ERG in seven
participants (eight trials) suggests that blinks or gross
fixation losses must have coincided with the timing of the
photoflash discharge. Given the number of bleach failures,
additional bleaches would need to be administered to obtain
satisfactory results. In a clinical situation, this would
increase examination time, making the technique clinically
nonviable. The instantaneous nature of the photoflash
exposure may also have increased the potential for partial
bleaches, due to inaccurate patient fixation and incomplete
blinks, and this may have contributed to the relatively poor
CoR of this technique.

In contrast, the equilibrium bleach allows 2 minutes to
bleach the retina; therefore, transient fixation losses and
blinking are unlikely to affect the photopigment bleach
obtained. In addition, there is a theoretical basis for
assuming that an equilibrium bleach may provide a better
separation between individuals with ARM and age-matched

Fig. 2 Raw 41 Hz ERG traces for participants a (aged 23 years), b
(aged 44 years) and c (aged 60 years). Top panel shows pre-bleach
traces, middle panel shows traces following an equilibrium bleach,
and the bottom panel shows the traces following a photoflash bleach

Fig. 1 The timeline showing the recording process for the ERG photostress tests. The bleach type for tests 1 and 2 was randomly selected prior to
recording for each participant, and bleach duration was either 6.6 ms or 2 minutes
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controls than a photoflash bleach. The rod photoreceptors,
when bleached, obtain the retinal required to regenerate
photopigment from the RPE. As a result, the rate of
photopigment regeneration within the rods is dependent on
the health and function of the RPE and the diffusion of
retinoids to the RPE from the choroidal circulation via
Bruch’s membrane [10]. The cone photoreceptors, however,
are able to regenerate photopigment using a local store of
retinoid derived from the Müller cells [11], and therefore do
not necessarily have the same dependence on the health of
the RPE, Bruch’s membrane and choroidal circulation.
Abnormal RPE/Bruch’s function may have little or no
effect on cone photopigment regeneration while this local
retinoid store is present. Unlike photoflash bleaches, long-
duration bleaches are likely to deplete local stores of 11-cis-
retinal [7], placing greater emphasis on the role of the RPE
in cone photopigment regeneration. Hence long-, but not
short-duration bleaches may help elucidate functional
delays in people with ARM.

It has been reported that the rate of dark adaptation
decreases as we get older [12]. The effect of age on recovery

time constant in this study produced an increase of
27 seconds per decade (0.45 minutes/decade), which was
comparable to the findings of Coile & Baker [4] who
showed an increase of 0.21 minutes per decade. Although
the relationship between age and time constants in this study
can be fitted using a single linear function, it is possible that
a steeper rate of change above 55 years may be present, as
suggested by Newsome et al. [13]. The increased variability
in time constant with age makes this difficult to determine.

In agreement with our findings, Coile & Baker [4] also
demonstrated a greater variability in the rate of adaptation
of older participants compared to younger ones. The
increased variability could suggest that those apparently
normal individuals with prolonged time constants may be at
risk of developing ARM. Currently, ARM is identified on
the basis of fundus photography, but it is possible that
significant changes occur in the function of the retina prior
to the macroscopic changes, such as drusen and pigmentary
alteration, becoming visible on ophthalmoscopic examina-
tion. Histological work by Sarks [14] identified changes to
Bruch’s membrane and the presence of basal linear deposits
within the retina in eyes with a normal fundus appearance
and often good visual acuity. Changes in the permeability
of Bruch’s membrane have been suggested to be the cause
of delayed dark adaptation in ARM [15], so individuals
with pre-clinical ARM might be expected to show
abnormal time constants. Confounders such as media
opacities could also be influencing the spread of data. The
increase in lenticular changes with age would conceivably
lead to more variability in retinal illumination, and therefore
increase the variability of the results. However, this is
unlikely as all those with marked lens opacities were
excluded. Hollins and Alpern [3] showed that equilibrium
bleaches at a range of intensities all produced the same time
constants of recovery, making any difference in τ due to
minor media opacities unlikely.
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The photoflash data demonstrated a similar time constant
to the equilibrium bleach technique. A shorter recovery
may have been expected following the photoflash, had a
similar proportion of photopigment been bleached for each
technique [3]; however, given the higher percentage bleach
provided by the photoflash, the lack of a significant
difference in recovery time is not unexpected. Additionally,
the photoflash technique did not demonstrate a significant
relationship with age (see Fig. 6). This was attributed to the
variability of the post-photoflash ERG data, particularly the
traces recorded immediately post-bleach. Fitting Eq. 1 to
noisy data will inevitably result in aberrant recovery times.
This corresponds to participant-reported, and -observed,
difficulty in avoiding blinks and eye movements for the
initial ERG recordings after a photoflash, an observation
not apparent following the equilibrium bleach.

Many studies have successfully used photoflash bleaches
[16, 17], some of which report using techniques to hide or
obscure the flash source [13, 18], potentially improving
reliability of flash delivery by reducing anticipation. Most
importantly, these studies assessed psychophysical
responses, where the effects of blinking and eye movements
following the flash exposure are likely to have a minimal
impact on data quality and reliability, compared to the
electrophysiological techniques used in this study.

In conclusion, the established equilibrium bleach tech-
nique was found to give good intersession repeatability,
sufficient to be sensitive to ARM-related changes. The
alternative photoflash bleaching technique, when applied
with an ERG, was less repeatable and clinically unreliable.
Finally, the time constant of recovery as determined using
the equilibrium bleach was found to increase with age.
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Retinal and Choroidal Thickness in Early Age-Related
Macular Degeneration
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● PURPOSE: To compare retinal thickness and choroidal
thickness at increasing retinal eccentricity in individuals
with early age-related macular degeneration (AMD) and
in healthy controls using enhanced choroidal penetra-
tion, 3-dimensional optical coherence tomography at
1060 nm.
● DESIGN: Cross-sectional study.
● METHODS: Individuals with early AMD (n � 16; mean
age, 71.6 � 8.5 years) and a comparison group of healthy
controls (n � 16; 67.6 � 5.4 years) were recruited.
Three-dimensional (20 degrees � 20 degrees) long-
wavelength optical coherence tomography (1060 nm)
images (approximately 8-�m axial resolution; 47 000 A
cans/second, centered on the fovea) were obtained from
ll participants after pupil dilation. Retinal thickness was
easured between the inner limiting membrane and the

etinal pigment epithelium. Choroidal thickness was
easured between the retinal pigment epithelium and the

horoid–scleral interface. Thickness measurements were
btained subfoveally and at 0.5-mm intervals to a maxi-
um of 2.0 mm nasally, temporally, superiorly, and

nferiorly. The main outcome measures were retinal and
horoidal thickness (measured in micrometers) at differ-
nt eccentricities on vertical and horizontal meridians.

● RESULTS: Mean retinal thickness was reduced signifi-
cantly in the group of participants with early AMD
compared with the control group at multiple locations
within 2.0 mm of the fovea. This difference was most
significant at the fovea, where the mean retinal thickness
of the early AMD group was 179 � 27 �m and that of
the control group was 202 � 18 �m (P � .008). There

as no significant difference in choroidal thickness be-
ween groups at any location.

● CONCLUSIONS: Retinal thickness is reduced in early
MD, but choroidal thickness seems to be unaffected by

he early disease process. (Am J Ophthalmol 2011;xx:
xx. © 2011 by Elsevier Inc. All rights reserved.)
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A GE-RELATED MACULAR DEGENERATION (AMD) IS

the leading cause of blindness in the United
Kingdom, and is responsible for more people being

registered as sight impaired or severely sight impaired than
all other ocular conditions combined.1 The prevalence of
AMD is expected to increase globally between 2005 and
2050 because of a predicted 3-fold increase in the number
of people older than 60 years.2 AMD manifests either as
choroidal neovascularization (wet AMD) or geographic
atrophy (dry AMD), whereas early AMD, also known as
age-related maculopathy, is characterized by soft drusen
and focal pigmentary changes only.3 Currently, treatment
s available only for the wet (neovascular) type of AMD,
sually in the form of antiangiogenic pharmacotherapy.4

Although no treatment currently exists for dry AMD and
early AMD, there is some evidence to suggest that nutri-
tional supplements may slow the progression of the dis-
ease.5 The ability to diagnose the onset of AMD accurately
nd to monitor disease progression is vital in the early
dentification of patients suitable for therapy and in eval-
ating the outcomes of the treatment.
Historically, the diagnosis and grading of AMD largely

as been based on visual acuity and stereoscopic fundus
hotographs.3 However in recent years, detailed analysis of

retinal microstructure has become possible through optical
coherence tomography (OCT), which offers an extra
dimension to the evaluation of age-related macular dis-
ease.6 OCT is a technique that uses the optical equivalent
f the echo time delay in ultrasound to construct a
ross-sectional image of the retina in vivo, analogous to a
istologic section.
Frequency-domain (FD) OCT traditionally has used

ight sources with a bandwidth based at approximately 800
m.6 The limitation of this band of wavelengths is partly

that ocular opacities can degrade the quality of the
collected image (which is especially important in the
assessment of elderly individuals), but also that the high
level of scatter by retinal tissue and increased absorption by
the retinal pigment epithelium (RPE) results in limited
visualization of sub-RPE layers.7–9 An alternative light
ource, with a bandwidth based at approximately 1060 nm,
as been shown to allow deeper penetration into the
horoidal tissue and better signal-to-noise ratio in the
resence of media opacities.7,9–11

Although the longer-wavelength 1060-nm OCT is the

first system that allows a reliable assessment of in vivo
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choroidal thickness in all patients, it has been used to date
only to assess outer retinal features and choroidal structure
in patients with the neovascular form of AMD,12 where
he structural changes to the choroid–Bruch’s membrane–
PE complex already are marked. There is substantial
vidence to suggest that the dynamics of the choroidal
irculation are affected earlier in the disease process (see
arris and associates for a review13), and histologic studies
ave found evidence of a difference in choroidal structure

n eyes with early and advanced AMD compared with
ge-matched control eyes, such as reductions in choriocap-
llary density and choroidal thickness.14–16 However, his-

tologic evidence regarding choroidal thickness in AMD is
mixed, with some evidence to suggest a reduction, partic-
ularly in the advanced stages of the disease,15–16 whereas
another study found no significant change in choroidal
thickness, even in advanced AMD.14

The aim of this study was to use the 1060-nm enhanced
choroidal penetration OCT to investigate retinal and
choroidal thickness as a function of eccentricity in patients
with early AMD (drusen or pigmentary changes only) as a
means of determining the potential clinical value of the
1060-nm OCT in assessing early macular disease and of
providing insight into the earliest structural changes oc-
curring in AMD.

METHODS

● PARTICIPANTS: Control participants (n � 16) and
hose with early AMD (n � 16) were recruited for this
tudy from among staff, students, and volunteers attending
he eye clinic at the School of Optometry and Vision
ciences and the eye unit at the University Hospital of

FIGURE 1. Optical coherence tomography (OCT) layer bo
Cross-sectional 1060-nm OCT B-scan, the superior row of arr
the middle row indicating the retinal pigmented epithelium (R
These features were used to delineate the boundaries of the
photograph with retinal locations overlaid (solid dots) at whi
Retinal direction is indicated by S (superior), I (inferior), N (
ales. All participants had a corrected visual acuity (VA) A

AMERICAN JOURNAL OF2
f 0.3 logarithm of the minimal angle of resolution units
approximately 20/40) or better assessed using an Early
reatment Diabetic Retinopathy Study sight chart and a

efractive error of less than � 6 diopters. Participants were
xcluded if they had secondary retinal disease, significant
ataract (Lens Opacities Classification System III grade 4
r more for any criteria17), or narrow iridocorneal angles

(grade 1 or less assessed by Van Herick). Each participant
was given a full explanation of the procedures involved,
and their written informed consent was obtained before
participation in the study.

Participants were categorized into either a control or
early AMD group, depending on the assessment of 37-
degree digital fundus images (CR-DGi nonmydriatic
retinal camera; Canon Inc, Lake Success, New York,
USA) and 20-degree 1060-nm OCT images. Images were
assessed for AMD-related features located within a
6000�m diameter centered on the fovea. Definitions were
based on the International and the Age-Related Eye
Disease Study AMD classification systems.3,18 Control
participants exhibited no features associated with AMD,
with any drusen present being less than 125 �m in
diameter (hard drusen). Early AMD was defined as the
presence of soft drusen (� 125 �m diameter), pigment
changes, or drusenoid pigment epithelial detachment in
the absence of any feature of advanced AMD (wet or dry)
as defined by the Age-Related Eye Disease Study grading
system.18 Classification was carried out by on of the
uthors (A.W.) and was confirmed independently by 2
ther authors (A.B. and T.M.). One drop of tropicamide
.0% was instilled into both eyes of each participant,
nsuring pupil dilation of at least 7 mm before obtaining
undus photographs and OCT images. Images were ob-
ained from both eyes of all individuals to determine their

ries and measurement locations used in this study. (Left)
indicating the location of the inner limiting membrane (ILM),
and the inferior row indicating the choroid–sclera boundary.
a and choroid for thickness measurements. (Right) Fundus
ch retinal and choroid thickness measurement was obtained.
), and T (temporal) as labeled.
unda
ows
PE),
retin

ch ea
nasal
MD status. One eye was selected for analysis from each
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eratio
participant; this was the eye with a diagnosis of early AMD
or, in the case of bilateral early AMD or controls, the eye
with the better VA, with the left eye used as default.

● IMAGING: Three-dimensional OCT imaging at 1060
nm was performed with less than 2.5 mW at the cornea,
below the maximum power limit for a 10-second expo-

FIGURE 2. Graph showing retinal thickness in early age-
related macular degeneration (AMD) along the horizontal
meridian. Retinal thickness for normal (black squares) and
early AMD (open circles) participants from (Left) 2 mm nasal
to (Right) 2 mm temporal of the fovea. The asterisk (*)
indicates retinal locations where a difference between groups is
significant at the P � .05 level. Error bars indicate standard
error at each point. Measurement locations identified as fovea
(F), nasal (N), and temporal (T) with eccentricity of 0.5, 1.0,
1.5, or 2.0 mm.

TABLE 1. Clinical Features of Participants

Participant

No. Age (y) Tested Eye

Drusen Diameter

� 125 �m

1 56 R N

2 64 R Y

3 80 L Y

4 79 L N

5 70 L Y

6 67 L Y

7 58 L Y

8 87 L Y

9 73 L Y

10 65 L N

11 74 L N

12 65 L Y

13 75 R Y

14 78 R Y

15 79 R Y

16 75 L Y

L � left eye; N � no; PED � pigment epithelial detachment; R �
aEarly or wet denotes the subtype of age-related macular degen
sure.19,20 OCT volumes were acquired across a 20 �

RETINAL AND CHOROIDAL THVOL. XX, NO. X
20-degree (5.76 � 5.76-mm) field consisting of 512 � 512
A-scans obtained at a rate of 47 000 A-scans/second
(approximately 8-7 �m axial resolution). OCT volumes
were centered on the fovea, aligned by participant fixation.
Axial length (cornea to RPE) measurements were acquired
using optical biometry (IOL Master; Zeiss, Jena, Germany)

FIGURE 3. Graph showing retinal thickness in early age-
related macular degeneration (AMD) along the vertical merid-
ian. Retinal thickness for normal (black squares) and early
AMD (open circles) participants from (Left) 2 mm inferior to
(Right) 2 mm superior of the fovea. The asterisk (*) indicates
retinal locations where a difference between groups is signifi-
cant at the P � .05 level. Error bars indicate standard error at
ach point. Measurement locations identified as fovea (F),
uperior (S), or inferior (I) with eccentricity of 0.5, 1.0, 1.5, or
.0 mm.

Early Age-Related Macular Degeneration

esence of Clinical Feature

Contralateral

Eye Statusa
en

10

Hyperpigmentation or

Hypopigmentation

Drusenoid

PED

Y N Normal

N N Normal

Y N Normal

Y N Early

N N Early

N N Early

Y N Early

N N Early

N N Early

Y N Wet

Y N Wet

Y N Wet

N N Wet

Y Y Wet

N Y Wet

N Y Wet

t eye; Y � yes.

n.
with

Pr

Drus

No. �

N

N

N

N

Y

N

N

N

Y

N

N

Y

Y

Y

N

Y

righ
for each eye by averaging 5 measurements.
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at the P � .05 level.
FIGURE 4. Graph showing choroidal thickness in early age-
related macular degeneration (AMD) along the horizontal
meridian. Choroidal thickness for normal (black squares) and
early AMD (open circles) participants from (Left) 2 mm nasal
to (Right) 2 mm temporal of the fovea. Error bars indicate
standard error at each point. Measurement locations identified
as fovea (F), nasal (N), and temporal (T) with eccentricity of
0.5, 1.0, 1.5, or 2.0 mm.
AMERICAN JOURNAL OF4
FIGURE 5. Graph showing choroidal thickness in early age-
related macular degeneration (AMD) along the vertical merid-
ian. Choroidal thickness for normal (black squares) and early
AMD (open circles) participants from (Left) 2 mm inferior to
(Right) 2 mm superior of the fovea. Error bars indicate
standard error at each point. Measurement locations identified
as fovea (F), superior (S), or inferior (I) with eccentricity of
0.5, 1.0, 1.5, or 2.0 mm.
TABLE 2. Mean Retinal Thickness Values at Each
Location for Both the Control and Early Age-Related

Macular Degeneration Groups

Locationa

Control Retinal

Thickness (�m)

Early AMD

Retinal

Thickness (�m)
t Testb

(*P � .05)Mean SD Mean SD

F 202 18 179 27 .008
T0.5 274 24 247 31 .011
T1.0 299 23 278 27 .030
T1.5 282 22 267 20 .038
T2.0 255 22 241 18 .055

N0.5 278 24 255 35 .040
N1.0 313 19 292 30 .028
N1.5 302 15 289 27 .092

N2.0 276 20 271 22 .480

S0.5 288 22 265 37 .039
S1.0 306 23 288 25 .045
S1.5 277 23 263 24 .090

S2.0 252 19 239 21 .083

I0.5 287 24 261 33 .018
I1.0 306 15 292 22 .036
I1.5 279 21 267 19 .104

I2.0 253 23 244 15 .205

AMD � age-related macular degeneration; SD � standard

deviation.
aMeasurement locations identified as fovea (F), nasal (N),

temporal (T), superior (S), or inferior (I) with eccentricity of 0.5,

1.0, 1.5, or 2.0 mm.
bIndependent t test; P values for differences between groups

at each location are in boldface where a difference is significant
TABLE 3. Mean Choroidal Thickness Values at Each
Location for Both the Control and Early Age-Related

Macular Degeneration Groups

Locationa

Control Choroid

Thickness (�m)

Early AMD

Choroid

Thickness (�m)
t Test

(P � .05)Mean SD Mean SD

F 213 63 231 70 .429

T0.5 219 60 220 72 .974

T1.0 213 65 211 71 .940

T1.5 203 62 203 54 .982

T2.0 195 54 204 47 .593

N0.5 219 71 229 71 .710

N1.0 199 74 218 80 .505

N1.5 188 77 200 85 .678

N2.0 162 70 162 80 1.000

S0.5 207 62 207 65 .973

S1.0 210 75 208 79 .952

S1.5 209 76 203 86 .830

S2.0 195 63 207 83 .640

I0.5 218 62 240 74 .360

I1.0 215 64 230 69 .529

I1.5 206 72 218 65 .624

I2.0 196 54 212 73 .487

AMD � age-related macular degeneration; SD � standard

deviation.
aMeasurement locations identified as fovea (F), nasal (N),

temporal (T), superior (S), or inferior (I) with eccentricity of 0.5,
1.0, 1.5, or 2.0 mm.

OPHTHALMOLOGY MONTH 2011
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Image processing and analysis was undertaken using
ImageJ software (ImageJ, Bethesda, Maryland, USA). Raw
OCT images were enhanced digitally to improve the
visibility of the retina and choroidal boundaries. Postpro-
cessing procedures were carried out subjectively and in-
cluded adjustments to brightness and contrast, B-scan
registration, despeckling or noise removal, and application
of Gaussian or convolving blur (ie, controlled blurring of
the image between adjacent b-scans). Measurements were
made using the caliper function in the axial plane of the
images. The thickness represented by each pixel was
calculated assuming a refractive index of 1.4.

Retinal thickness was measured from the most anterior
hyperreflective line, which corresponds to the inner lim-
iting membrane, to the center of the most posterior
hyperreflective line, which corresponds to the RPE. Cho-
roidal thickness was measured from the RPE to the
choroid–sclera boundary. Thickness measurements were
obtained for both the retina and the choroid at the fovea
and then at 0.5-mm intervals to 2 mm nasally (N),
temporally (T), superiorly (S), and inferiorly (I; see Figure
1). This produced thickness measurements at 17 individual

FIGURE 6. Retinal and optical coherence tomography (OC
corresponding OCT sections (scan locations indicated by arrow
photograph of localized pigmentary disturbance, with few druse
left) photograph of multiple large, soft druse, pigmentary dis
(Bottom right) OCT image of a drusenoid PED and soft druse
retinal locations for each eye. At each location, the i

RETINAL AND CHOROIDAL THVOL. XX, NO. X
distribution of thickness measurements was checked for
normality, and an independent t test was conducted
between the control and early AMD groups.

Additionally, the fundus and OCT images were assessed
subjectively; specifically, the participants regarded at the
highest risk of progression to advanced AMD (i.e., those
with drusenoid pigment epithelial detachment,21 conflu-
ent drusen, or a fellow eye with advanced AMD18) were
ompared with those at lowest risk (ie, those with normal
ellow eyes and none of the high-risk features listed above).

RESULTS

THE STUDY INVOLVED 32 PARTICIPANTS CONSISTING OF A

control group (n � 16) and an early AMD group (n � 16).
he control group (n � 16) had a mean age of 67.6 � 5.4

years and a mean axial length of 23.7 � 0.8 mm. The early
AMD group (n � 16) had a mean age of 71.6 � 8.5 years
nd a mean axial length of 23.2 � 0.7 mm. The mean age
P � .12, independent t test) and axial length (P � .09,

images for 2 study participants. Macular photographs and
(Top) Patient 1 and (Bottom) Patient 14. Patient 1: (Top left)
sent; (Top right) OCT image of a drusen. Patient 14: (Bottom
nces, and drusenoid pigment epithelial detachments (PEDs);
T)
) for
n pre
turba
n.
ndependent t test) of the 2 groups were not significantly

ICKNESS IN EARLY AMD 5
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different. The clinical features of the participants with
early AMD are shown in Table 1.

The mean retinal thickness for participants in the
ontrol and early AMD groups was plotted for each retinal
ocation and is shown in Figure 2 for the horizontal
eridian and in Figure 3 for the vertical meridian. The
ean retinal thickness was found to be smallest at the

ovea (F) for both groups, increasing with eccentricity in
oth vertical and horizontal meridians to reach a maxi-
um at 1 mm, before declining with further increase in

ccentricity. Central retinal thickness, measured at the
ovea (F), was 202 � 18 �m for the control group and
79 � 27 �m for the early AMD group. This difference
as significant (P � .008). Table 2 shows mean retinal

hickness at each retinal location and the P value for the
ifference between the groups. The early AMD group was
ound to have significantly thinner retinal thickness values
t the fovea and eccentricities to 1 mm, extending to 1.5
m temporally.
Mean choroidal thickness was plotted for each retinal

ocation measured along horizontal and vertical meridians
Figures 4 and 5). In the horizontal meridian, choroidal
hickness was found to be greatest at the fovea (F),
ecreasing to a minimum nasally and showing a more
odest reduction in thickness temporally. There was less

ariation in choroidal thickness in the vertical meridian.
entral choroidal thickness, measured at the fovea (F),
as 213 � 63 �m for the control group and 231 � 70 �m

or the early AMD group. This difference was not signifi-
ant (P � .05, independent t test). Table 3 shows mean
horoidal thickness at each retinal location and the P
alue for the difference between each group. The differ-
nce between groups was not significant at any location for
horoidal thickness.

OCT and macular photographs of those at most and
east risk of progression to advanced AMD were compared
ubjectively to identify qualitative differences. Participant

(Figure 6) had a low risk of progression to advanced
MD,22 whereas Participant 14 was at high risk of pro-

gression.21 A common feature identified on the OCT
images of both participants was a localized thinning of the
photoreceptor layer overlying drusen or pigment epithelial
detachments. This is exemplified in Figure 6, although the
underlying choroidal thickness appears unaffected.

DISCUSSION

THIS STUDY USED ENHANCED CHOROIDAL PENETRATION

(1060 nm) OCT to assess the thickness of the choroid in
patients with early AMD. It was found that retinal thick-
ness differed significantly at the fovea, and at a number of
extrafoveal points, between individuals with early AMD
and age-matched controls. However, there were no signif-
icant differences in choroidal thickness at any eccentricity

assessed.

AMERICAN JOURNAL OF6
The one previous study that used a 1060-nm OCT
system to evaluate the choroid in age-related macular
disease recruited participants with the late neovascular
form of AMD (n � 12).12 Yasuno and associates compared
mages obtained using long-wavelength OCT with the
tandard 830-nm FD OCT in visualizing the morphologic
eatures of structures beneath the RPE, such as choroidal
eovascular membranes.12 They found a general improve-
ent in the image contrast of sub-RPE structures in most

yes, and in 3 eyes were able to see hyperreflective
tructures beneath the choroidal neovascular membranes
ot accessible using the 830-nm OCT. However, the study
id not evaluate disease-related changes in the thickness of
he choroid.

This study provides in vivo evidence that choroidal
hickness may not be affected by early AMD. Histologic
tudies have been carried out to investigate the cross-
ectional area and thickness of the choriocapillaris of
onor eyes from individuals with early and advanced
MD.14–16 Our data are in agreement with a study

reporting a significant decrease in choriocapillary density
in 25 eyes with features of AMD, but finding no significant
decrease in the thickness of the choroid compared with
age-matched controls.14 Our data are also supported by a
ecent study by Chung and associates evaluating choroidal
hickness in early AMD using the 870-nm OCT with an
nhanced depth imaging technique.23 They also found a
mall, but statistically nonsignificant, reduction in subfo-
eal choroidal thickness in the individuals with early
MD compared with age-matched controls.
However, there is evidence to suggest that choroidal

hinning may occur in end-stage AMD.15,16,23 McLeod
and associates examined the postmortem choroid in 3
age-matched control eyes, 5 eyes with geographic atrophy,
and 3 eyes with neovascular AMD and reported a linear
relationship between the loss of RPE and choriocapillaris
in geographic atrophy and a 50% reduction in choroidal
vascular cross-sectional area in eyes with wet AMD, even
in the absence of RPE atrophy.15 Sarks carried out a
histologic study on 378 eyes from patients 43 to 97 years of
age who had either normal fundi or some degree of
AMD.16 He reported thinning of the choroid, resulting in

tigroid fundus appearance. Thinning was associated with
ncreasing age both in older patients classified as clinically
ormal and in those with all stages of AMD, but it was
articularly prevalent in those with advanced AMD. A
ignificant reduction in in vivo subfoveal choroidal thick-
ess also has been reported in individuals with exudative
MD in a study that used 870-nm enhanced depth

maging OCT.23

Although there is strong evidence for the occurrence of
age-related thinning of the choroid14,16,24 and for changes
in choroidal perfusion in early AMD,13,25,26 evidence for
thinning of the choroid specific to early AMD is not
apparent in the literature. Our findings suggest that any

changes in the perfusion and blood flow dynamics of the

OPHTHALMOLOGY MONTH 2011
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choriocapillaris associated with early AMD are indepen-
dent of choroidal thickness.

Multiple studies have assessed choroidal thickness in
healthy individuals using OCT23,24,27–30; however, only a
ew have used a 1060-nm system.27,28 A recent study using

1060-nm OCT to investigate the correlation between axial
length and choroidal thickness in 34 healthy subjects (64
eyes) 19 to 80 years of age found a mean central choroidal
thickness of 315 �m (standard deviation [SD], 106 �m),
with the choroid thinnest in the nasal parafovea.27 Other
studies also have found choroidal thickness to be greatest
at the fovea, with a greater reduction in thickness with
eccentricity reported nasally than temporally,23,24,28,30 a
pattern reflected in our findings from both controls and
individuals with early AMD. The mean subfoveal choroi-
dal thickness reported has varied between studies from 225
�m (SD, 53 �m)23 to 354 �m (SD, 111 �m).28 The
ontrol group used in our study was found to have a slightly
ower mean subfoveal choroidal thickness of 213 �m (SD,
3 �m), which may reflect the greater mean age of the
articipants than in most previous studies.
A manual technique was used to identify the boundaries

nd to measure the retinal and choroidal thickness in this
tudy. Although more time consuming than automated
ystems, there is evidence to suggest that manual measure-
ent is more accurate, especially in the presence of

isruption caused by diseases such as AMD.31–33 Using this
trategy, the mean retinal thickness was found to be lower
n individuals with early AMD than in controls at all
ccentricities; this reached statistical significance at the
ovea and at extrafoveal locations up to 1 mm in eccen-
ricity in all meridians.

Multiple comparisons were carried out in this study (17
etinal locations were evaluated). If these were unrelated
ariables, then one might expect the null hypothesis to be
rongly rejected in 1 comparison of 20 through chance
lone (ie, multiple testing increases the risk of a type I
rror). However in this study, the retinal thickness mea-
urements at different retinal locations were highly corre-
ated (mean r � 0.72 across all retinal locations, Pearson
orrelation coefficient). When variables tested are corre-
ated, the risk of a type I error decreases as the probability
f the null hypothesis being rejected because of chance is
ot multiplicative of the probability of each individual
omparison being found significant by chance alone.34

However, even if a correction method such as that de-
scribed by Sankoh and associates is used,35 which factors in
he correlation between variables, retinal thickness re-
ains reduced significantly in individuals with early AMD

t the fovea (P � .019), 0.5 mm inferiorly (P � .039), and
.5 mm temporally (P � .023).

A number of studies have used OCT to evaluate retinal
hickness in eyes with advanced dry or wet AMD,36–40 but

there is less evidence regarding retinal thickness assessed
using OCT in early AMD.41–43 One study using FD OCT

on 17 eyes with early AMD and 17 healthy control eyes

RETINAL AND CHOROIDAL THVOL. XX, NO. X
reported that photoreceptor layer thickness is reduced over
drusen in eyes with early AMD, but that there is no
evidence of a generalized reduction in thickness across the
macular region.43 Similarly, Kaluzny and associates used
D OCT to identify focal changes in retinal thickness in
4 eyes with soft drusen, localized to the position of the
rusen.41 They reported evidence of photoreceptor atrophy
nterior to the drusen, but not diffusely present across the
acula. Malamos and associates used FD OCT to evaluate
acular changes in 12 individuals with early AMD, as well

s 37 with choroidal neovascularization.42 They also found
hat discrete thinning of the retina above underlying
rusen was the only abnormality in retinal thickness in
atients with early macular disease and that this was not
ufficient to influence mean thicknesses of annuli centered
n the fovea. This localized reduction in retinal thickness
as been ascribed to the outer retina, with Schuman and
ssociates finding inner retinal thickness to be almost
nchanged over drusen.43

It is possible that the finding of a reduced retinal
thickness in individuals with early AMD in our study
reflects the photoreceptor degeneration reported to occur
overlying drusen.41–43 Although drusen areas were not
targeted specifically for our measurements, subjective as-
sessment of the images showed localized thinning of the
photoreceptor layer overlying drusen and pigment epithe-
lial detachment (Figure 6). Histologic findings from
human donor eyes have suggested that a loss of photore-
ceptors (with a predilection for rods over cones) occurs in
nonexudative AMD, which may explain such a reduction
in retinal thickness.44 The difference in retinal thickness
between individuals with early AMD and age-matched
controls in this study extended up to 1.5 mm (5.2 degrees)
of eccentricity. Curcio and associates also reported that the
location of greatest cell loss in age-related macular disease
occurs within the parafovea and perifoveal region, from 1.5
to 10 degrees from fixation.44 Further investigation of the
ndividual intraretinal layer thicknesses and their relation-
hip to clinical features in patients with early AMD may
ndicate the cause or location of the retinal thickness loss
dentified.

Legaretta and associates and Kakinoki and associates
eported foveal retinal thickness in healthy subjects of
58.2 �m (SD, 23.5 �m) and 257.6 �m (SD, 19.6 �m),
espectively, which is thicker than the 202 �m (SD, 18
m) found in this study.45,46 Both of these studies used the

Cirrus OCT, which used the same retinal boundaries as
this study but measured the foveal thickness as an average
over 500 �m centered on the fovea, rather than at the
foveola, as in this study.45,46 The values found in this study
re comparable with myopic foveal thickness measure-
ents using a similar methodology to our own29 and to

minimum foveal thickness in normal eyes found using a
Stratus OCT.45–47

Our overall approach to the analysis was conservative

because we adopted an independent samples rather than a
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paired approach, despite having matched our groups for
age and axial length. Based on the standard deviation of
the foveal thickness measurements and the sample size, the
smallest difference between groups detectable in this study
was 24.8 and 64.7 �m for retinal and choroidal thickness,
respectively (with a power of 80% and a significance level
of 0.05).48 Intraobserver reliability previously was assessed
for retinal and choroidal thickness measurements by one of
the authors (A.W.) using the manual measurement tech-
nique used in this study. Using the Bland and Altman
technique, the intraobserver coefficient of repeatability for
measurement of foveal retinal thickness on 2 separate

occasions was 18.9 �m for individuals with early AMD

Chavez-Pirson A, Drexler W. In vivo retinal optical coher-

1

1

1

1

1

1

1

1

1
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(n � 17) and 15.7 �m for healthy control participants
n � 24).49 For choroidal thickness measurements, an

intraobserver coefficient of repeatability of 58.7 and 35.6
�m was obtained for early AMD and control participants,
respectively. This study therefore was powered to detect
any difference that was greater than the measurement error
of the technique.

Although a modest, but significant, reduction in retinal
thickness in early AMD was shown, no significant change
in choroidal thickness was found during this study. These
findings suggest that measurement of choroidal thickness
using OCT is not diagnostic for early age-related macular

disease.
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