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ABSTRACT

An integrated  horizontally two- and fully  three-dimensional  numerical  model  system has 

been developed based on a combined unstructured and σ-coordinate grid to simulate the flow 

and  water  quality  process  in  large  water  bodies  with  a  focus  on  the  three  dimensional 

behaviours at specific areas. The model is based on the time dependent Reynolds-Averaged 

Navier-Stokes  equations  with  a  non-hydrostatic  pressure  distribution  and a  baroclinic  force 

being  incorporated  in  the  three  dimensional  (3D)  model.  The  two  sub  models  interact 

dynamically during the solution procedure with no time-step restriction due to integration. The 

main idea is to use a fractional step algorithm for each model and then integrate the two models 

fraction by fraction. Hybrid 2D-3D finite volume cells have been introduced for the link nodes 

which are partly in the 2D domain and partly in the 3D domain. Thus an interpolation/averaging 

procedure at the interface and domain overlapping is no longer needed. 

The 3D model uses the projection method for pressure calculation. The advection equation is 

solved by the semi-Lagrangian method. Other components are solved via the finite element -  

finite volume (FV) method. The water surface is determined implicitly through a global matrix 

equation  created  by  assembling  the  domain's  matrices.  The  cell  integrals  are  calculated 

analytically  to  eliminate  a  common  source  of  numerical  diffusion  due  to  the  use  of 

approximation techniques for the FV integrals. 

The horizontal gradients of the density and  shear stresses are calculated on true horizontal 

planes, in order to avoid artificial velocity and diffusion in highly stratified flows. Neumann 

interpolation elements with virtual nodes have been introduced at Neumann type of boundaries 

for more accuracy. 

The integrated model has been verified using analytical solutions and benchmark test cases, 

including  the  Ekman  velocity  distribution,  wind  driven  circulation,  lock  exchange  and 

integrated  2D-3D flows  in  basin.  The  results  show the  model  is  capable  of  the  model  for  

accurate simulation and implicit 2D-3D integration. 

Keywords:  integrated  modelling,  hydrodynamic  numerical  model,  non-hydrostatic, 

unstructured mesh, hybrid finite element finite volume method.
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1 Introduction

1 Introduction

1.1 Overview

An examination of the trends in human health during recent decades reveals a great deal of 

good  news.  In  many  world  regions  today,  more  people  are  living  longer  and  healthier. 

Undoubtedly, the improvement of water environment has played a significant role in this regard. 

The current role of the hydro-environmental engineering sector in the least developed countries 

is much more than just improvement. For many people living in underdeveloped areas, it  is 

really the matter of to be or not to be. Scientists have made a good progress in this branch of  

engineering. Nevertheless, there is still a lot of work to do. 

The  main  subject  of  hydro-environmental  engineering  today  is  not  just  a  little  more 

optimization, but it has a clear relation with human health, environmental conservation, peace, 

and sustainable development. In the least developed countries, one in five children do not live to 

see their fifth birthday, mostly because of avoidable environmental threats to health. 

Many  developing  countries  are  now  faced  with  modern  toxic  pollution  problems.  Many 

coastal areas around the world receiving urban and industrial discharges are suffering heavily 

from eutrophication caused algae decay. Eventually this leads to disturbance of the ecological 

balance and deterioration of the marine ecosystems. Discharge of cooling water from power 

plants has effects on the marine ecosystem in coastal areas. Construction of harbours, bridges, 

causeways and dams have an impact on the coastal and marine ecology not only during the 

construction phase but also after completion. Environmental Impact Assessment has become a 

requirement as part of the approval of any major construction work.

Nowadays,  numerical  modelling  is  an  important  technique  in  hydro-environmental 

engineering,  particularly  for  problems  concerning  free  surface  flows.  The  evolution  of 

computational fluid dynamic (CFD) models is progressing rapidly. The currently available tools 

are very valuable, but they are still far from being entirely satisfactory. Currently, two major 

fields still require significant research and improvement: a) CFD methods/models for specific 

problems,  and  b)  techniques  for  coupling  models  or  methods  to  support  integrated 

environmental modelling. This present study focuses on developing an efficient system of depth 

integrated two dimensional (2DH) and fully three dimensional (3D) hydrodynamic model based 

on an unstructured grid and applying them in lakes and reservoirs.
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1 Introduction

1.2 Objectives of the project

There is  a growing realisation that  many problems of water  management  are  best  solved 

through an integrated approach. To date, integrated water quality modelling is an important issue 

and  many  researchers  are  focused  on  different  aspects  of  this  phenomenon.  Integrating 

environmental models is not straightforward, the models must be able to link and work together. 

In most cases, integration means linking models for different physical processes, e.g. linking a 

free surface model to a groundwater model, or integrating a wave model with a current model. 

Some times integration means linking models for the same physical processes with different 

simplifications. Two common examples are: a) linking a 1D river model to a 2D shallow water 

one for flood management and, b) linking a waste-water model to a 2D free surface flow one. 

The  aim  of  the  present  study  is  to  develop  an  integrated  horizontal  2D-3D  hydro-

environmental model system for simulating the flow, sediment and water quality on unstructured 

grid.  This kind of integration is applicable in many cases where 3D modelling is needed.  The 

application domain of this model will be primarily lakes, reservoirs and esturine. Therefore, it is 

desirable that the new model is able to simulate the baroclinic forces (such as density current) 

and  non-hydrostatic  pressure  distribution  within  the  3D  domain.  The  computational  grid 

selected unstructured in plan, in order to reflect the complexity in natural water courses . 

1D and 2D free surface models are widely used in solving hydro-environmental engineering 

problems. They are sufficient for many practical cases. However, there are other cases were 3D 

modelling is necessary. Developing 3D models and using them in practical problems have a 

growing trend. 3D models are considerably more time consuming than the 2D and 1D models. 

They also need more detailed input data. In some practical problems, the simulation area is 

much larger than the area of interest. Usually the reason is the restriction in locating boundaries. 

Similarly, in most situations, it is not necessary to solve the whole simulation domain with  three 

dimensional details. Such details are often needed just in a limited fraction of the model domain. 

However,  3D  models  are  used  to  simulate  the  whole  domain.  This  approach  results  in  a 

considerable, but unnecessary, increase in the simulation run-time, computer resource usage and 

data management. It also results in a higher risk of instability,  because a 3D model is more 

sensitive to the time step size and geometrical complexity than a depth integrated 2D one and it 

may crash in an area where it's three dimensional hydrodynamic details are actually not needed.

Figure (1.1) illustrates a typical example for which, integrated 2D-3D modelling is useful. 

Boushehr harbour, located in Boushehr bay at the Northern part of Persian Gulf, is one of the 
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1 Introduction

oldest  ports  in  that  region and the  financial  position  of  many families  is  related  to  it.  The 

harbour has serious problems due to cohesive sedimentation in part of its access channel. Field 

measurements have shown that the velocity among the access channel has sometimes a three-

dimensional behaviour with the upper layer's flow crossing the channel and the bottom layer 

following the channel direction. The velocity field in front of the river mouth, the main source 

of cohesive sediment material,  is also shows a two-layer system. Therefore 3D modelling is 

needed. The flow field within the bay is mainly affected by the tidal regime in Persian Gulf. 

Hence the flow field must be simulated also in a regional scale. It is not necessary nor efficient 

to do 3D simulation in the regional domain. Therefore the need for integrated 2D-3D modelling 

comes up. 

Reservoir  simulation  is  another  case  where  2D-3D  modelling  may  be  useful.  The  3D 

behaviour of the flow regime near the water intakes is important in some studies. However it is 

not always necessary to simulate the whole reservoir by 3D details. Therefore 3D modelling 

may be limited to the near-dam region for example to simulate erosion near the sediment bottom 

outlet, while the rest of the reservoir is simulated by a simpler model.

Sometimes boundary conditions required by a 3D sub-domain model can be obtained from an 

independent 2D model with a large domain. However, there are cases where the 3D sub-domain 

interacts with the larger domain. Some of the flow characteristics, such as the large eddies that  

cross the local models' interface, can not be simulated in this way. These kind of eddies are 

usually  developed  around  the  headlands,  islands  and  bays  and  when  the  flow  direction  is 

changed  by tide.  As  an  example,  figure  (1.2)  illustrates  the  transient  eddies  around  a  bay 

(Chabahar) located at the northern coast of Oman Sea. They cross the local model's boundary if 

it  is not far from the bay-opening. Another problem with data transfer from an independent 

regional 2D model to the 3D boundary of a local model is that it requires extensive effort for  

data management when the flow regime is unsteady. An efficient and general solution is to 

integrate  the  3D  sub-domain  model  with  a  2D  horizontal  (H)  one  to  gain  expedition  and 

accuracy together. This is the aim of this study. This research aims to increase the efficiency of 

3D modelling  by coupling  it  dynamically  with  horizontal  2D modelling  without  additional 

restrictions (such as time step limitation) due to integration. 
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Figure 1.1. Boushehr harbour at the North part of Persian Gulf 
with sedimentation problem in the access channel 

and 3D velocity behaviour along the access channel and the river mouth
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1 Introduction

Figure 1.2. Transient eddies clarified by Landsat image of Chabahar and Pozm bays

North of Oman Sea, July 17, 2000, with emphasis on colour band 2 (Baird, 2008)

There are just a few research works on integrating 2DH and fully 3D free surface flow and 

quality models together. Two approaches have been employed in the literature for combining 

multi-dimensional free surface models. One approach is to use a simpler model in the entire 

solution  domain  and  a  more  complex  model  in  confined  sub-domains.  The  simpler  model 

provides  boundary conditions  for  the  more  complex model,  but  they are  not  coupled.  This 

approach is called the hybrid modelling (McAnally et al., 1986; Yu, L. et al, 1998; ). The other 

approach is is to fully couple the models (Wu W., 2007; Sebastian and Shu, 2003; Verway, 2001; 

McAnally et al., 1986; Wu and Li, 1992; Zhang, 1999; Kashefipour et al, 2002; Namin, 2003; 

Katopodes and Kao, 2003). The current fully coupled 2D-3D model systems are based on the 

interpolation/averaging procedure in order to exchange data between the models. Therefore they 

are not fully conservative at the interface. They use mesh overlapping or nested grid techniques 

at the interface. By mesh overlapping, which also called the multi-block approach, each model 

received its boundary condition at the interface from inside the other model's domain. It is not a 

fully implicit coupling algorithm. The model of Namin (2003) is not based on mesh-overlapping 

and  is  fully  implicit  and  dynamic.  However  his  technique  can  not  be  extended  to  the 
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unstructured grid without difficulties and loss of efficiency. It depends completely on the ADI 

algorithm and the structured grid characteristics. It is also based on the nested grid approach 

which needs interpolation-averaging and is not fully conservative at the nesting interface. For 

details see section (7.13).

Some recent 2D and/or 3D models (or model versions) fulfil a general interaction standard 

named Open MI (Open Modelling Interface and Environment, www.OpenMI.org). There is also 

a growth in the number of models that fulfil this standard. From the theoretical point of view, it 

is possible to link two 2DH and 3D models of this type in order to simulate a 2DH-3D domain 

semi-interactively. However, this approach results in definitive restrictions practically when it is 

used for the hydrodynamic flow modelling. One reason is that the data interaction at the link 

boundary will  be explicit,  which restricts  the time step for simulating some of the physical 

processes such as the free surface. Open MI is a useful toolbox for linking the models via the 

hybrid mechanism or integrating them via the multi-block approach. However, it can not be used 

a tool for fully implicit and dynamic model integration. 

None of the present coupling techniques present a fully dynamic, implicit and conservative 

integration procedure on unstructured grid without enforcing solution iterations. The proposed 

integration  strategy  in  the  present  work  is  a  novel  algorithm  which  is  free  from 

interpolation/averaging so it is fully conservative and accurate at the interface, it is based on 

unstructured grid, and does not restricts the implicit behaviour of the two models in simulation 

time step selection.

It  is  important  for  an  integrated  system to  design  a  smooth  and  non-restricting  dynamic 

interaction algorithm between the models. For example the overall computational time step must 

not be restricted by an explicit linking algorithm, when each one of the models are implicit  

separately and can use large time steps when working alone. The sensitivity of different physical 

processes is not the same in this regard. For example the diffusion process will not restrict the 

overall computational time step even if it is handled explicitly. But the free surface simulation 

will restricts the time step considerably when it is handled explicitly at the linking boundary of 

the two model domains. Therefore, the most efficient integration may be achieved when each 

one of the models are based on solution techniques that are most efficient for the integration 

procedure. 

1-6



1 Introduction

The integration algorithm in this research work is based on the following ideas:

a) The models must solve the equations process by process (fractional steps algorithm) and 

exchange data with each other at the process levels. In other words each common process 

(fraction step) must be integrated separately by its most efficient method.

b) Hybrid finite volume cells have been introduced for the linking boundary nodes, where the 

2D and 3D domains interact (finite volume is the method of choice in this work except for  

the  advection  step).  A part  of  the  hybrid  cells  is  located  in  the  2D  domain  and  the 

remaining part is located at the 3D domain. In this way, each linking node is solved just 

once per fraction and receives data from both sides.

The result of the present research work includes:

1-  A new  unstructured-grid  3D  model  including  non-hydrostatic  pressure  and  baroclinic 

forces among other capabilities, ready for integration.

2- A new unstructured-grid depth integrated 2D model, ready for integration.

3- An integration algorithm that couples the above models dynamically and interactively.

The 2D and 3D models in this research have been developed from scratch, in order to fulfil 

the proposed framework completely. The computational language C++ has been used because of 

its flexibility in object-oriented programming, flexibility in mixing the object-oriented program 

with procedural code segments of Fortran and C in order to gain more efficiency, and its power 

in memory management. 

The ability of simulating baroclinic forces is necessary for the 3D model because it must be 

able to be used in the dam reservoirs, where sometimes density currents such as turbidity current 

might happen. The ability of non-hydrostatic pressure simulation is necessary for the 3D model 

because the vertical acceleration is not negligible at some areas of the dammed reservoir, for 

example near the outlets. The turbidity current also may not be simulated always accurately 

without  solving  the  non-hydrostatic  pressure  component.  The  pressure  treatment  in  the  3D 

model is based on the projection method, which is consistent with the fractional steps algorithm. 

The unstructured grid is crucial for both of the 2D and the 3D models, because their application 

domain  has  sometimes  very  irregular  boundaries  with  complex  domain  shapes  and  rapid 

changes (for example many of the mountainous dam reservoirs). It is difficult to reflect such 

boundaries with efficient structured grid (even curvilinear or nested grid). Using unstructured 
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grid guarantees the flexibility that is needed in such problems. Sigma coordinate system has 

been used in the vertical direction. However the horizontal gradients of the water density have 

been computed on real horizontal planes.

The time step fractions of the present 3D flow model are advection step, horizontal diffusion 

step with baroclinic force, free surface step with barotropic force, vertical diffusion step, and 

hydrodynamic  pressure  step  with  velocity  projection,  respectively.  The  fractions  of  the  3D 

advection-diffusion solver are advection, horizontal diffusion, and vertical diffusion. The time 

step  fractions  of  the  2D flow model  are  advection  step,  horizontal  diffusion  step,  and free 

surface step. The fractions of the 2D advection-diffusion solver are advection and horizontal 

diffusion steps.  The common fractions  of the 2D and 3D models are  handled together  with 

similar  procedures  and  data  exchange  directly.  The  advection  step  is  solved  by  the  semi-

Lagrangian method. Horizontal  diffusion is solved explicitly via finite volume (FV). Hybrid 

cells handle the nodes on the link boundary. Free surface steps of the two models are solved 

together implicitly. The depth integrated forms of the continuity and momentum equations are 

solved by FV while the hybrid cells link the domains. The vertical diffusion is solved implicitly 

column by column via 1D FV cells. 

The FV cell integrals are calculated analytically using finite element triangles. Unstructured 

finite difference method and the divergence theorem are used for nodal and cell-integral values 

of the spatial gradients respectively. 

Figure (1.3) illustrates the flow chart of the new 2DH and 3D models in company with the 

new integration algorithm. 
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Figure 1.3. Flow chart of the new models and the new integration algorithm
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1.3 Outline of the Thesis

This document is divided into nine chapters. After introduction, there is a presentation about 

the  physical  and  mathematical  behaviour  of  free  surface  flows  as  chapter  two.  It  includes 

descriptions about turbulence, turbidity current (a special case of density current), shallow water 

modelling,  and  connection  conditions  for  model  integration.  It  also  describes  the  special 

situation with most hydro-environmental models, where the horizontal scale is much larger than 

the vertical one. 

Chapter  three  reviews  the  solution  strategies  for  three  dimensional  free  surface  flow 

modelling and the 2DH-3D coupling strategies. It deals with the pressure-velocity relationship 

for incompressible flows, defining the unknown and moving free surface domain boundary, and 

common procedures for the pressure simulation. The selected algorithms for this study have 

been marked at the end of the chapter.

Chapter four reviews the general discretisation algorithms needed for numerical simulation of 

flow and water quality. Chapter five is focused on the governing equations that must be solved 

in a numerical model for hydrodynamic flow and water quality. It also deals with the sigma-

coordinate transformation procedure and the transformed equations. 

Chapter six presents the discretisation algorithms that are used in the present work. It includes 

the horizontal interpolation finite volume element, the vertical interpolation elements, and the 

3D  interpolation  procedure  with  is  needed  for  the  advection  solver.  It  also  describes  the 

horizontal and vertical and 3D finite volume cells which are of hybrid finite element – finite 

volume type. The analytical procedure of integration over the cells and their boundaries has also 

described in this chapter. This chapter also describes the unstructured finite difference technique 

for point-wise spatial gradient calculations and also application of the divergence theorem for 

computing  the cell-integration of the gradients directly.

Chapter seven presents the structure of the 3D and 2D models of this study. It contains the 

numerical  procedures  and  the  overall  structures  of  the  3D model,  the  2D model  and  their 

integration. The numerical procedure for each fraction is also described (the models are based 

on the fractional steps algorithm). Chapter eight concerns the model evaluation. It presents the 

model results for some typical benchmarks and compares the results with analytical solutions 

whenever possible. Chapter nine is for the conclusions and recommendations. 
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2 Free Surface Hydrodynamics

2 Free Surface Hydrodynamics

2.1 Introduction

Numerical  modelling  of  hydrodynamic  phenomena  has  become  a  standard  approach  in 

dealing  with  engineering  problems  and  research.  In  this  regard,  the  clarity  of  the  related 

mathematical equations is necessary. Many natural processes can be described by conservation 

laws. Conservation equations of mass and momentum are the key for simulating free surface 

flows. They are described in section (2.2). The mass and momentum equations can be averaged 

to remove oscillations and the need for non-realistic dense temporal and spatial solution grids. 

The price of this benefit is the addition of new unknowns in the momentum equations. It leads to 

the topic of turbulence modelling, which is the subject of section (2.3). Section (2.4) describes 

the effect of density gradient as a driving force and its effect on the structure of turbulence. 

Generally, the horizontal scale is some order of magnitudes larger than the vertical scale, the 

water depth, in hydro-environmental modelling problems. Therefore the vertical grid spacing is 

much smaller than the horizontal  correspondent in  numerical  simulation.  Thus some special 

techniques are necessary in modelling such problems, which are the subject of section (2.5). 

Section  (2.6)  concerns  the  depth  integration  and two dimensional  shallow water  equations. 

Because  this  study  concerns  the  integration  of  two  and  three  dimensional  hydrodynamic 

modelling. Section (2.7) involves the necessary conditions needed for model integration at the 

connection interface.

2.2 Flow Modelling

No matter how complicated the detailed evolution of a system might be, during the evolution 

of a fluid, a certain number of properties, such as mass, generalized momentum and energy, are 

conserved during the whole process and at all times. In addition, they can completely determine 

the  behaviour  of  the  system.  Therefore  the  behaviour  of  a  physical  system  is  completely 

determined by conservation laws. The conservation laws also provide our most common basic 

controls  upon  the  reasonableness  of  the  behaviour  of  a  computation.  The  concept  of 

conservation means that the variation of a conserved flow quantity within a given volume is due 

to the net effect of some internal sources and the amount of the quantity which is crossing the 
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boundary surface. (Hirsch, 1988; Abbott and Basco, 1989).

Conservation laws can be derived by considering a given quantity (a parcel)  of matter or 

control mass and its extensive properties such as mass, momentum and energy. This approach is 

used to study the dynamics of solid bodies. In fluid flow, however, it is difficult to follow a 

parcel of matter. It is more convenient to deal with the flow within a certain spatial region (a 

control volume), rather than in a parcel of matter which quickly passes through the region of 

interest. This method of analysis is called the control volume approach (Ferziger and Peric, 2002). 

The key governing equations of fluid flow, which represent mathematical statements of the 

conservation laws of physics, are:

• The mass of a fluid is conserved,

• The rate of change of momentum equals the sum of the forces on a fluid particle (Newton's 

second law),

• The rate of change of energy is equal to the sum of the rate of heat addition to and the rate of 

work done on a fluid particle (first law of thermodynamics). 

2.2.1 Mass Conservation

Mass can neither be created nor destroyed. The increase in mass within a control volume is 

equal to the mass inflow minus the mass outflow through the control surface plus the effect of 

sources and sinks (such as intakes, outfalls and exchange for some two-phase flows). In absence 

of source/sinks, the mass conservation law for a control volume in mathematical notation is 

(Abbott and Basco, 1989):

∫
V cell

∂
∂ t
dV∫

Scell

u⋅ndAcell=0 (2.1)

where ρ is the mass density, u is the fluid velocity, n is a unit normal vector (positive outward), 

V cell  is the control volume, and Acell  is the control volume surface area.

For a very small element of fluid like the one shown in figure (2.1), the mass conservation or 

continuity equation can be written as follows (Versteeg and Malalasekera, 1995):

∂
∂ t
∂u
∂ x

∂v
∂ y

∂w
∂ z

=0 (2.2)

or in more compact vector notation:

∂
∂ t
div u=0 (2.3)
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Figure 2.1. A differential element of fluid and mass balance

The first term on the left hand side of equation (2.2) is the density rate of change in time 

(mass per unit volume). The second term describes the net flow of mass out of the element 

across its boundaries and is called the convective term. 

For an incompressible fluid (i.e. a liquid) the mass conservation equation simplifies to:

div u=0 (2.4)

or in longhand notation:

∂u
∂ x
 ∂v
∂ y
∂w
∂ z
=0 (2.5)

The  above  equation  is  not  a  mathematically  exact  relationship.  It  is  just  a  very  good 

approximation of the original mass conservation equation. It is acceptable in situations where 

the density is not affected by change in pressure or net mass inflow/outflow (which can affect 

the pressure). 

Incompressibility means that the density of an element of fluid is not affected by pressure 

change.  Still,  change  in  some  other  parameters  like  temperature,  salinity  and  suspended 

sediment concentration can affect the fluid density. Hence, incompressibility does not imply that 

density is constant. In this manner, incompressibility is a property of flow, not a property of the 

fluid itself. It is possible to have incompressible flow of a compressible matter; the pattern of air 

flow can be similar to that of water in some conditions.
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2 Free Surface Hydrodynamics

There are specific conditions in which, the flow can be assumed incompressible. The most 

important one is related to the Mach number (the flow speed / the speed of sound in the field).  

Whenever Ma2 << 1 everywhere (say Ma2 < 0.1, that is Ma < ~0.3), incompressibility is a good 

approximation.

2.2.2 Momentum Conservation

Newton's second law states that the rate of change of momentum of a fluid particle equals the 

sum of the forces on that particle. The most useful forms of the conservation laws for CFD are 

concerned with flow property changes for a stationary element in space (control volume), not 

with fluid particles. The relationship between any property of a moving fluid particle and a fixed 

fluid element is as follows (Versteeg and Malalasekera, 1995): 

Rate of increase of
   

of fluid element
+

Net rate of flow of


out of fluid element
=

Rate of increase of


for a fluid particle

Hence the Newton's second law can be expressed as:

The vector sum of all external forces acting on a control volume is equal to the sum of; a)  the 

total rate of change of momentum of mass within the control volume, and b) the rate of flux of 

momentum through the control surface. 

In mathematical notation, it is (Abbott and Basco, 1989):

∫
V cell

∂u 
∂ t

dV cell∫
S cell

u u .ndA=F (2.6)

where u  is the momentum “flux density” and F  is the vector sum of all the external forces.

External  forces  can  be  categorized  into  surface  and  body  forces.  Surface  forces  contain 

pressure forces and viscous forces. Body forces contain gravity force, centrifugal force, Coriolis 

effect and electromagnetic force.

Surface forces have an important role in deriving the usual form of momentum conservation 

equations (Navier-Stocks or N.S. equations). The action of surface forces (pressure and viscous 

stresses) on a differential control volume are illustrated in figures (2.2) and (2.3). 
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Figure 2.2. Shear stresses on a differential control volume

Figure 2.3. Normal forces (pressure) on a differential control volume

The most common body force is due to gravity. Its value is −g  in the vertical direction (if 

the upward direction is positive).

The effect of external forces on a differential control volume leads to momentum change. It is  

equal to the momentum change for the mass within the control volume plus flux of momentum 

through the control surface1. It means: 

ρ Du
Dt
≡
∂ρu
∂ t

div  ρuu  (2.7)

ρ Dv
Dt
≡
∂ ρ v
∂ t

div  ρ v u (2.8)

ρ D w
Dt
≡
∂ρw
∂ t

div ρwu (2.9)

for x,y and z components of the velocity field respectively.

Therefore,  for  the  three  components  of  momentum  equation,  we  have  (Versteeg  and 

1 As described for the relationship between a fluid particle and a stationary fluid element.
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Malalasekera, 1995):

ρ Du
Dt
≡
∂ρu
∂ t

div  ρuu =−∂ p
∂ x
 ∂ xx∂ x


∂ yx
∂ y


∂zx
∂ z BodyForcesx (2.10)

ρ Dv
Dt
≡
∂ ρ v
∂ t

div  ρ v u=−∂ p
∂ y
∂xy∂ x


∂ yy
∂ y


∂ zy
∂ z BodyForces y (2.11)

ρ D w
Dt
≡
∂ρw
∂ t

div ρwu=−∂ p
∂ z
∂ xz∂ x


∂ yz
∂ y


∂ zz
∂ z BodyForces z (2.12)

The governing equations also contain, as further unknowns, the viscous stress components 

(τij).  In  many  fluid  flows  the  viscous  stresses  can  be  expressed  as  functions  of  the  local 

deformation rate. For a Newtonian fluid (like water), the viscous stresses are proportional to the 

rate of deformations. Assuming that the fluid is isotropic, we have:

ρDu
Dt

≡
∂( ρu)
∂ t

+div( ρu u⃗)=−∂ p
∂ x

+ ∂
∂ x (2μ ∂ u∂ x+λdiv u⃗)⏞

τxx

+ ∂
∂ y (μ( ∂u∂ y+∂ v∂ x))⏞

τ yx

+ ∂
∂ z (μ(∂u∂ z+∂w∂ x ))⏞

τ zx

+BodyForces x

(2.13)

and similar relationships for y- and z- momentum components.

Liquids are incompressible, so that the mass conservation equation is  div u=0 , so the term 

 div u  is  eliminated  from  equation  (2.13)  and  its  y  and  z  correspondents.  After  some 

rearrangements, the famous Navier-Stocks equations are derived:

ρ Du
Dt
≡
∂ρu
∂ t

div  ρuu =−∂ p
∂ x
div grad uBodyForces x (2.14)

ρ Dv
Dt
≡
∂ ρ v
∂ t

div  ρ v u=−∂ p
∂ y
div grad v BodyForces y (2.15)

ρ D w
Dt
≡
∂ρw
∂ t

div ρwu=−∂ p
∂ z
div gradw BodyForcesz (2.16)

or in extended notation:

∂u
∂ t
u ∂ u
∂ x
v ∂u
∂ y
w ∂u

∂ z
=−1

ρ
∂ p
∂ x

ρ ∂2u
∂ x2

∂2u
∂ y2

∂2u
∂ z 2  1

ρ
BodyForcesx (2.17)

∂ v
∂ t u

∂v
∂ xv

∂ v
∂ yw

∂ v
∂ z=−

1
ρ
∂ p
∂ y


ρ ∂2 v
∂ x2

∂2 v
∂ y2

∂2v
∂ z2  1

ρ BodyForcesy (2.18)

∂w
∂ t u

∂w
∂ x v

∂w
∂ yw

∂w
∂ z =−

1
ρ
∂ p
∂ z 


ρ ∂

2w
∂ x2

∂2w
∂ y2

∂2w
∂ z2  1

ρ BodyForces z (2.19)

There are many other equivalent ways to represent the viscous terms, advection terms, and 
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non-linear terms in Navier-Stokes equations using vector algebra. 

2.2.3 Body Forces

For  hydro-environmental  problems,  body forces  in  the  momentum equations  involve  the 

gravity effect and Coriolis effect. When the z-direction is exactly vertical, the gravity affects just 

the z-momentum equation, but does not appear in the x- and y- momentum equations. 

Coriolis effect is not a real force, but acts exactly as a real force in the governing equations. It  

is the result of earth rotation.  It is possible to derive momentum equations in a really fixed 

astronomical  coordinate  system  without  Coriolis  terms.  However,  using  a  local  coordinate 

system which is  fixed to  the earth and is  rotational  is  much easier.  The cost  is  just  adding 

Coriolis terms to the equations. 

Considering a location with latitude l  on the sphere of the Earth. A local coordinate system 

may be set up with the x-axis in the east direction, the y-axis in the north direction and the z-axis 

vertically upwards. Considering that the Earth is rotating around the north-south axis with the 

angular velocity of E , the rotation vector, the velocity of movement and Coriolis acceleration 

expressed in this local coordinate system are:

ω⃗E=∣ω∣⋅[ 0
cos ϕl
sinϕl ] , V⃗=[ veastvnorth

vupp ] , a⃗c=−2⋅ω⃗E×V⃗=2⋅∣ω∣⋅[vnorth⋅sinϕl−vupp⋅cos ϕl
veast⋅sinϕl
veast⋅cos ϕl ] (2.20)

For shallow water conditions the vertical velocity is small and the vertical component of the 

Coriolis acceleration is small compared to the gravity. In such a condition, the body forces in the 

right hand side of the momentum equations are (  f v ) for the x-momentum equation, ( − f u ) 

for the y-momentum equation, and ( g≃9.81 ) for the z-momentum equation respectively, with:

f =20 sinl (2.21)

where 0  is the rotational speed of the Earth (7.2921159 × 10^-5 rad/s) and l  is latitude.

It is important to note that if the x-direction of the coordinate system is not in the eastward 

direction,  then  the  Coriolis  forces  in  the  hydrodynamic  equations  are  different  from  what 

mentioned  above.  The  general  form of  Coriolis  forces,  for  a  generally  directed  coordinate 

system, may be written as:

ac=−2⋅E×V=−2⋅[ x

 y

z
]×[ uvw]=2⋅[v⋅z−w⋅y

w⋅x−u⋅z

u⋅ y−v⋅x
] (2.22)
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For applications to meso-scale oceanic flows the vertical component of the Coriolis effect 
should also be incorporated (Casulli and Stelling, 1998). 

2.2.4 Boundary Conditions

The boundary and initial conditions distinguish the simulation results of different problems. 

The necessary boundary data for a 3D problem are:

● Pressure at the lateral open boundaries1

● Flux or velocity at the lateral open boundaries

● Barometric pressure field at the free surface2 (or the horizontal gradients)

● Shear stress at free surface or wind velocity and shear coefficient

● Bed resistance 

The kinematic boundary condition at the free surface is:

∂
∂ t
u

∂
∂ x
v

∂
∂ y
=w (2.23)

The kinematic boundary condition at the bottom is:

ub
∂ zb
∂ x
vb

∂ zb
∂ y
=wb (2.24)

Free surface shear stress is a boundary condition for vertical shear term. It is caused by the 

horizontal velocity difference between water and air. The relevant formula for x-direction is as 

follows:

 xz
water

=T ∂ u∂ z∂w∂ x = air
water

⋅Cw⋅W⋅W x (2.25)

where air  is the air density,  water  is the water density,  W  is the wind speed relative to water 

velocity at free surface, and Cw  is the wind drag coefficient. 

The relationship in the y-direction is similar. An empirical formula for wind friction factor in 

SI unit system is as follows:

Cw=C 0C24−C 0 .
Wind Velocity

24.0
if Wind Velocity24.0

Cw=C 24 if Wind Velocity24.0
(2.26)

where C0=0.0013  and C24=0.0026 .

1 Sometimes surface level may be adequate, when hydrostatic pressure assumption is sufficient at lateral boundaries.
2 In most numerical models, pressure is needed at the topmost computational point, which is not exactly at the free 

surface,  but  half  a  cell  below  it.  The  pressure  distribution  between  this  point  and  free  surface  may  assume 
hydrostatic.
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Bottom shear stress is another boundary condition for vertical shear term. It is common to assume 

a  logarithmic  vertical  profile  for  horizontal  (or  bed-parallel)  velocity  in  the  most  down-side 

computational cell. In this way, the following relationship may be used for the bed shear stress:

 xz
 = t∂ u∂ z∂w∂ x =[ 1 ln d 0

k s /30]
2

.∣u∣. ux (2.27)

where  =0.41  is von Karman's constant,  k s  the bed roughness height,  d 0  the distance from 

bed, ∣u∣  the current speed at distance d 0  above the bed, and ux  the x component of velocity at 

the same distance from bed.

The relationship in the y-direction is similar. The drag coefficient formula must be consistent 

with the vertical turbulence closer model.

In most practical applications, it is acceptable and sufficient to assume the horizontal velocity 

distribution near the lateral boundaries to be linear. 

For shallow-water models, boundary conditions at the bed mostly include just vertical 
diffusion terms using wall functions. Additionally, the horizontal diffusion terms are also needed 
when bed slope is not small and pressure is non-hydrostatic (see Stansby and Zhou, 1998 for 
more details).

2.3 Turbulence Modelling
Turbulence  modelling  is  one  of  the  key  elements  in  Computational  Fluid  Dynamics. 

Turbulence is  a  natural phenomenon in fluids that  occurs when velocity gradients are high, 
resulting  in  flow disturbance  as  a  function  of  space  and  time.  Most  flows  encountered  in 
engineering practice, become unstable and turbulent above a certain Reynolds Number1,  even 
when the controlling factors of the flow, such as the model geometry and upstream conditions, 
are stationary. In fact, it is impossible to obtain steady-state results in many situations of viscous 
flow (Zienkiewicz  and  Taylor, 2000). For slightly viscous fluids, such as water and air, large 
(turbulent) Reynolds number corresponds to anything stronger than a small swirl or a puff of 
wind. From a mathematical point of view, the instabilities result from the interaction between 
the Navier-Stokes equation's non-linear inertial terms and viscous terms (Wilcox, 1994). 

Turbulence can be described as a state of continuous instability, whereas it is still possible to 
separate the fluctuations from the mean flow properties (Jasak, 1996). The most common source 
of turbulence is shear flow instability (Abbott and Basco, 1989). It arises in contact with walls 
or in between two neighbouring layers of different velocities. With velocity gradients increasing, 
1 The Reynolds  number of  a  flow gives  a  measure of  the relative importance of  inertia  forces  (associated with 

convective effects) and viscous forces.
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the flow becomes rotational, leading to a vigorous stretching of vortex lines, which cannot be 
supported in two dimensions.  Thus,  turbulent  flows are always physically three-dimensional 
(Chung, 2002). Figure (2.4) shows an example of 3D turbulent vortexes.

Figure 2.4. 3D behaviour of turbulence within cloud, (Landsat7 08Aug05)

Turbulence increases the rate of mixing (accomplished by diffusion) by orders of magnitude 

and reduces the gradients.  The increased mixing of momentum leads to  increased frictional 

forces and energy dissipation. The dissipated energy is converted into internal energy of the 

fluid, i.e. an increase in temperature.

Turbulent flows fluctuate on a broad range and continuous spectrum of length and time scales 

(Ferziger and Peric, 2002). They contain rotational flow structures (turbulent eddies) with a wide 

range of length scales (Versteeg and Malalasekera, 1995). Large eddies have a long length scale 

and time scale (period of generation or rotation), associated with a low frequency, while small 

eddies have a high frequency associated to small length and time scales (Abbott and Basco, 

1989).  The  range  of  scales  in  turbulent  flow is  several  orders  of  magnitude.  The  smallest 

turbulent eddies characterised by micro-scales, but still are far larger than any molecular length 

scale.  As an example,  for  a  fully-developed turbulent  boundary layer  flow, the length scale 

appropriate to the large energy-bearing eddies (often referred to as the integral scale in statistical 

turbulence  theory)  is  one-tenth  times  the  boundary-layer  thickness.  At  the  same  time,  the 

smallest scale (Kolmogorov length scale) outside the viscous near-wall region is less than one 

ten-thousandth  times  the  thickness  of  the  boundary layer  (Wilcox,  1994;  Jasak,  1996).  The 

smallest scale is dictated by viscosity. At these scales (lengths on the order of 0.1 to 0.01 mm 

and frequencies around 10 kHz in typical turbulent engineering flows) viscous effects become 
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important. Thus the energy associated with the eddy motions is dissipated and converted into 

thermal internal energy (Versteeg and Malalasekera, 1995). 

The larger-scale turbulent motion carries most of the energy and is mainly responsible for the 

enhanced diffusivity and stresses. The characteristic velocity and length of the larger eddies are 

of the same order as the mean flow. The presence of mean velocity gradients in sheared flows 

distorts the rotational turbulent eddies, because one side is forced to move faster than the other. 

Larger eddies also carrying smaller ones. The stretching work done by the mean flow on the 

large  eddies  provides  the  energy which  maintains  the  turbulence.  Vortex  stretching  creates 

motions at smaller transverse eddies which have smaller time scales. In this way, the turbulence 

energy is handed down from large eddies to progressively smaller and smaller ones. This procedure 

is termed the turbulence energy cascade. Ultimately, the smallest eddies dissipate into heat through 

the action of  molecular  viscosity (Versteeg  and Malalasekera,  1995;  Ferziger  and Peric,  2002; 

Wilcox, 1994; Abbott and Basco, 1989). Figure (2.5) compares the largest eddies' size with the 

whole flow domain at the north part of Persian Gulf, of about 220 Km width, as an example. 

Figure 2.5. The characteristic length of large eddies are of the same order as the mean flow
(Part of Persian Gulf, Modis, 04Nov02)

The  physical  procedure  mentioned  above  clarifies  that  the  effects  of  large  and  small 

turbulence scales on the mean flow are not the same. Momentum exchange and diffusion are 

mainly  affected  by  larger  scales.  Hence  larger  eddies  are  more  important  when  defining 

turbulence diffusive effects  on the mean velocity field.  It  means that  modelling only larger 

eddies might be sufficient for diffusion calculation in many cases. On the other hand, turbulence 
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energy dissipation must be known too, which is affected by the smallest scales of turbulence. 

Nevertheless, modelling smaller scales is not always necessary. There is not any other source of 

turbulence energy except the largest eddies. The amount of energy that transfers to the smallest 

eddies (and dissipates), is controlled by the production rate of the large eddies. Therefore it may 

be possible to use some kind of dissipation modelling based on data from larger eddies (via 

calibration factors). In spite of the fact that the scale of the smallest eddies is controlled by the 

fluid viscosity, this property does not control the amount of energy dissipation. 

Figure (2.6) illustrates a schematic turbulence energy distribution versus the eddy scale. The 

vertical  axis  illustrates  the  turbulence  energy  spectrum  E e   while  the  horizontal  axis 

illustrates the wave number e  standing for the eddy scale. 

Figure 2.6. Energy spectrum versus spatial scale, log-log scales (after Chung, 2002)

The turbulence energy spectrum is related by the turbulence kinetic energy as follows (Chung, 

2002):

k=1
2
⋅u ' i⋅u ' i=∫

0

∞

E e ⋅d  e (2.28)

The distribution of energy spectrum  E e   versus wave number  e  is divided into three 

regions  as  shown in Figure (2.6):  the  region of  energy containing large  eddies  (small  e ), 

followed by the inertial sub-range (medium e ) and energy dissipation sub-range at smallest 

eddy scales (large  e ). The wave numbers  l k  and   k  in figure (2.6) are the energy bearing 

length  scale  and  the  so  called  Kolmogorov  micro-scale,  respectively  (Chung,  2002).  The 

structure of large eddies is different from the small ones. Largest eddies are highly anisotropic 

(directional). The smallest eddies are isotropic (non-directional) because of the diffusive action 
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of viscosity (Versteeg and Malalasekera, 1995).

The use of computer has altered what is considered as “mean flow modelling” and what is 

considered as “turbulence modelling”. The modern computational fluid dynamics definition of 

turbulence modelling is simply all of the phenomena due to the irregular motion that occurs at 

scales  below  those  resolvable  on  the  grid  employed  for  computational  purposes.  What  is 

turbulence modelling to one modeller using a coarse grid may then constitute resolvable fluid 

flow to another modeller using a finer grid (Abbott and Basco, 1989). Research on turbulence 

has  started  from 1895 and  still  continues.  It  is  difficult  to  summarize  a  complete  and still 

compact history of all the of relevant works. 

2.3.1 Modelling Approaches

There  are  several  possible  approaches  for  turbulence  simulation.  The  most  natural  and 

accurate  way is  to  simulate  the  original  N.S.  governing equations  over  the  whole  range of 

turbulent scales. This is the so called Direct Numerical Simulation (DNS) method. By DNS, a 

very refined mesh is used so that all of the eddy scales, large and small,  are resolved. This 

approach  is  not  feasible  for  general  engineering  computations.  The  requirements  on  mesh 

resolution and time-step size force very high demands on computer  resources.  For example 

something about 1010 grid points may be needed for a typical problem and the time step must be 

proportional to grid space. 

For most engineering purposes, defining the turbulence effect of the mean flow is sufficient, 

with details of turbulent fluctuations being not needed. Therefore a more practical idea is to 

simulate  just  the  effect of  turbulence on the mean flow and leave the details  of  turbulence 

structure unresolved. This idea was introduced by Reynolds (1895). The basis of this idea is to 

separate the mean and fluctuating values of each variable in conservation equations and derive 

some N.S.-like relationships for the mean values. This is a statistical approach, which eliminates 

the grid and time resolutions needed for DNS. Different filtering or averaging1 algorithms are 

available for such a statistical approach: 

1. Time averaging in a fixed point of space, for stationary turbulence, 

2.  Space  filtering  or  averaging for  a  fixed  moment  in  time  in  the  case  of  homogeneous 

turbulence, 

1 Time and space averaging are specific kind of filtering. Averaging results in a filtering-out of certain wave periods 
or length-scales of information (Abbott and Basco, 1989).
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3. Ensemble averaging for a series of identical experiments. This is the most general form of 

averaging. 

4. Mass (Favre) averaging, which is used for compressible flows.

The first major statistical approach with turbulence is time averaging on the Navier-Stokes 

equations (Reynolds, 1895). This is the so called Reynolds averaged Navier-Stokes (RANS) 

approach. In this way, the whole of turbulence spectrum is modelled (not simulated directly) . 

There are several versions of RANS method.

The second major statistical (or semi-statistical) approach is Large Eddy Simulation (LES). Its 

key idea is space filtering of N.S. equations. It separates the turbulence frequency spectrum into 

two parts  (sub-grid and super-grid scales).  The large eddies  are  resolved directly,  while  the 

influence of smaller ones is modelled. 

A brief description about RANS and LES approaches follows. 

2.3.2 Temporal Averaging (Reynolds Averaging)

Engineers are normally interested in knowing just a few quantitative properties of a turbulent 

flow, such as the average quantities of pressure and velocity  (Ferziger  and Peric, 2002). The 

most  important  feature  of  turbulence  from  an  engineering  point  of  view  is  its  enhanced 

diffusivity, which greatly enhances the transfer of mass, momentum and energy by orders of 

magnitude.  Even if  we had a  complete  time  history of  a  turbulent  flow,  we would  usually 

integrate the flow properties of interest over time to extract time-averages (Wilcox, 1994). The 

idea of Reynolds-averaging is to filter out variable fluctuations from the governing equations. 

Thus  the  equations  and  the  variable  quantities  must  be  averaged  on  time.  Time  averaging 

procedure for an unsteady variable,  , is as follows:

= 1
T ∫0

T

dt '= ' (2.29)

For a steady mean flow, the time interval, T, goes to infinity. For an unsteady mean flow, T is 

chosen large enough with respect  to  the time scale  of  the turbulent  fluctuations,  but  has to 

remain small with respect to the time scales of other time-dependent effects in the flow that we 

do not wish to regard as belonging to the turbulence. If these two time scales are not some 

orders  of  magnitudes  different,  then  time  averaging is  not  adequate  (Hirsch,  1988;  Wilcox, 

1994). In such a condition, the mean of a property at time t is taken to be the average of the 
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instantaneous values of the property over a large number of repeated identical experiments; the 

so-called ensemble averaging (Versteeg and Malalasekera, 1995). 

By  averaging,  the  non-linearity  of  the  N.S.  equations  gives  rise  to  new  unknowns.  For 

example, averaging the product of velocity and another instantaneous quantity leads to:

u i= u iu '   ' =ui u i '  ' (2.30)

The last term of right-hand is zero only if the two quantities are uncorrelated; this is rarely the 

case in turbulent flows (Ferziger and Peric, 2002; Wilcox, 1994). 

The non-linear terms in N.S. Equations are of the form u iu j . Hence, Reynolds averaging in 

3D leads to six unknown quantities of the form −ui ' u j ' . They called Reynolds-stresses.

By introducing new unknowns,  the  momentum and  continuity system of  equations  is  no 

longer a close system (the unknowns are more than the relationships). In order to complete the 

system of equations, the Reynolds stress has to be expressed in terms of the mean quantities of 

velocity and pressure. However, no general law for this is known. This is known as the closure 

problem.  In  practice  semi-empirical  relationships  are  introduced,  leading  to  the  so-called 

turbulence models. 

Several approaches have been introduced by researchers to define Reynolds stresses. Many of 

them are based on Boussinesq approximation. 

2.3.2.1 Boussinesq Approximation

Boussinesq eddy viscosity concept relates the time-averaged Reynolds stresses to the time-

averaged velocity gradients as follows:

−u i ' u j '= t 
∂ u i
∂ x j


∂ u j
∂ xi
− 2

3
∂ uk
∂ xk

ij −
2
3
k ij (2.31)

where ν t  is the turbulent eddy kinematic viscosity and k is the turbulent kinetic energy. 

Boussinesq eddy-viscosity approximation assumes that the principal axes of the Reynolds-

stress tensor are coincident with those of the mean strain-rate tensor at all points in a turbulent 

flow. The coefficient of proportionality between these two is the eddy viscosity,  ν t  (Wilcox, 

1994).  This approach is  based on the presumption that there exists  an analogy between the 

action  of  viscous  stresses  and  of  Reynolds  stresses  on  the  mean  flow  (Versteeg  and 

Malalasekera, 1995).

Models based on the Boussinesq approximation provide excellent predictions for many flow 

types  of  engineering  interest,  but  not  for  all  of  them.  Some  applications  for  which  this 
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approximation fails are sudden change in the mean strain rate, flow over curved surfaces, and 

flow in ducts with secondary motion and flows with boundary-layer separation (Wilcox, 1994).

2.3.2.2 Classification of RANS Turbulence Models

The most regular RANS turbulence models may be classified as follows:

1. Zero equation models

2. One equation models

3. Two-equation models

4. Reynolds stress simulation models

5. Algebraic Reynolds stress models

6. Other turbulence models

The titles  of  the  first  three  classes  refer  to  the number of  differential  equations  used for 

transport (advection-dispersion) of turbulence quantities. A brief review of each class follows.

2.3.2.3 Zero Equation Models (Algebraic Models)

In an algebraic model the eddy viscosity is estimated via a simple algebraic relationship. The 

relationship  involves  local  velocity  characteristics  (for  example  local  velocity  gradient)  in 

addition to some  empirical constants. Some of the famous zero-equation models are:

● mixing length model (after Prandtl, 1925), 

● free shear layer model (after Prandtl, 1945) which is a specific case of mixing length,

● mixing length models with correction factors (for example Van Driest, 1956 and Cebeci, 

Smith, 1974), and

● two-layer  or  N-layer  mixing length  models  (for  example  Baldwin Lomax,  1978 and 

Degani and Schiff, 1986).

In a mixing length model the eddy viscosity in shear layers is estimated by the following 

relationship:

v t=lm
2∣∂ u∂ y∣ (2.32)

where y axis is normal to the boundary and lm  is the mixing length. The value of lm  has been 

calibrated for different kind of flows via many research works.

The mixing length is the distance in the y direction, in which the eddy lumps retain their x-

directed momentum. Near solid boundaries, the mixing length value is proportional to distance 
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from the surface. For free shear flows such as the jet, wake and mixing layers, the mixing length 

value is proportional to the width of the layer. The value of the mixing length can be calibrated 

for specific class of flows.

Zero-equation models assume local equilibrium for production and dissipation of turbulence 

at  each point of the velocity field.  They are simple and easy to use in comparison to other 

turbulence models. They rarely cause unexpected numerical difficulties (Wilcox, 1994). Each 

Zero-equation model works well only for flow types for which it has been tuned.

2.3.2.4 One-Equation Models

Local equilibrium assumption is an important restriction for zero-equation models. In most 

cases  turbulence  eddies  migrate  across  the  flow.  Therefore  turbulent  behaviour  at  a  given 

position depends upon upstream history too. One-equation models are the first answer to this 

problem.  They  simulate  one  of  the  turbulence  characteristics  via  an  advection-dispersion 

transport equation. Considering that at least two properties are needed to have a good estimation 

from turbulence  (for  example  turbulent  kinetic  energy and the mixing length or  the  energy 

dissipation),  one-equation  models  relay  on  calibration  for  the  other  property.  through  one-

equation modelling, the unsteadiness of turbulence in time and spaces receives attention.

In  most  one-equation  methods  turbulence  kinetic  energy,  k ,  is  chosen  for  numerical 

simulation1 while the mixing length is their calibration parameter to close the problem. 

The first one-equation turbulence model was introduced by Kolmogorov (1942) and then by 

Prandtl  (1945).  They  assumed  the  following  relationship  between  the  eddy  viscosity  and 

turbulence kinetic energy:

v t=c ' k lm (2.33)

where c '  is an empirical constant and lm  is the mixing length.

The transport equation for turbulence kinetic energy is derived from Navier-Stokes equations. 

Its exact form for high Reynolds numbers is as follows:

∂ k
∂ t
u i

∂ k
∂ x i
=− ∂

∂ x i
[u ' i

u ' iu ' j
2

 P ]−u ' iu ' j
∂ ui
∂ x j

− t g i u ' i '−
∂ u ' i
∂ x j

∂ ui
∂ x j

(2.34)

From left to right, the constituent terms are: temporal change, transport of turbulence energy 

with mean velocity,  diffusion of turbulence because of itself and pressure effect2, turbulence 

1 Some one-equation models use other turbulence characters. For example Bradshaw (1967) proposed a one equation 
model which solves a transport equation directly for turbulence shear stress. 

2 In many applications, the fluctuating-pressure flow-work term is often neglected. This is primarily because p is  
poorly correlated with velocity except near boundaries (Abbott and Basco, 1989).
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production by shear stress, buoyancy effect (may be positive or negative), and dissipation of 

turbulence energy in the smallest eddies. 

Most of existing turbulence models use a simplified version of equation (2.34). The cost of 

simplification is  some extra  constants,  which have been defined empirically.  The simplified 

equation is given as:

∂ k
∂ t
ui

∂ k
∂ x i
= ∂
∂ x i


 t
σ k
∂k
∂ x i
t 

∂ ui
∂ x j


∂u j
∂ xi


∂u i
∂ x j

− g
 t
σ k
∂
∂ z
−C D

k 3 /2

lm
(2.35)

The mixing length lm  in the above equation must be calibrated for each flow regime. Many 

researchers have focused on estimating this value for different flow types. There is a valuable 

literature about it. The zero-equation mixing length model from Prandtl is a specific simplified 

form of equation (2.35).

The one-equation turbulence model given in (2.35) is applicable for high Reynolds numbers. 

It is not adequate for flow types with low Reynolds numbers such as near wall flows. 

There are also some other one-equation models, such as Bradshaw (1967), Baldwin and Barth 

(1990), Goldberg (1991), and Spalart and Athmaras (1994), and Menter (1997).

2.3.2.5 Two-Equation Models

Estimating the mixing length in one equation models is not always an easy and accurate task. 

This  method cannot  estimate  turbulence  behaviour  accurately for  a  large  number  of  hydro-

environmental problems. Especially in situations where two or more flow regimes exist at the 

same time (for example jet flow and boundary shear flow). For a more general RANS model, at 

least two characteristics of turbulence must be simulated numerically via the advection diffusion 

equations. It is not necessary to simulate the mixing length directly as the second character. A 

combination of ( k n⋅lm
m )  may also be used.  In  fact,  all  of known two-equation models  use 

something different from lm  itself. Several combinations have been used by researchers such as 

k1 /2/ lm  (Kolmogorov),  k /lm  (Rotta),  k1 /2/ lm  which  is  turbulence  vortex  (Spalding),  and 

k 3/2 /lm  which is turbulence dissipation (by most researchers).

The first two-equation turbulence model is introduced by Kolmogorov (1942). The second 

quantity  which  he  used  was  the  energy  dissipation  rate  per  volume  per  time  (ω).  The 

relationships  between  this  parameter  and  energy  dissipation  and  the  mixing  length  are  as 

follows:

=k⋅ (2.36)
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lm=k
1/2 /ω (2.37)

A wide variety of k-ε models exists. The most common versions are the standard k-ε model by 

Launder and Spalding (1972) and the RNG k-ε model by Yakhot and Orszag (Jasak, 1996). 

The standard k-ε model has gained the most attention from researchers and model users. In 

addition  to  equation  (2.35)  for  turbulence  kinetic  energy,  it  involves  another  equation  for 

turbulence  dissipation.  The  dissipation  equation,  like  the  kinetic  energy equation,  has  been 

derived from N.S. equations. Its original form involves several complicated non-linear terms, 

which  are  difficult  to  simulate.  Most  k-ε models  use  a  simplified  version  of  the  original  ε 

equation. The simplification is based on some engineering assumptions and empirical constants. 

Here is the standard form of k-ε model:

∂ k
∂ t
ui

∂ k
∂ xi
= ∂
∂ xi   tσ k ∂ k∂ xi  t ∂ u i∂ x j


∂u j
∂ x i  ∂ ui∂ x j


g i

 t
σ t
∂
∂ xi
−C D

k3 /2

lm
(2.38)

∂
∂ t ui

∂
∂ x i
= ∂
∂ x i  tσ ε ∂∂ xi k c1ε t ∂u i∂ x j


∂u j
∂ x i  ∂u i∂ x j

c3ε
g i

 t
σ t
∂ 
∂ x i
−c2ε (2.39)

Γ=
t
σ t

,  t=c μ
k 2


(2.40)

The second equation relates turbulence energy dissipation to mean flow and to large eddies. 

How it is possible when dissipation occurs just in the smallest eddies? The reason is that the 

smallest eddies receive their energy from larger ones via the so-called energy cascade and the 

energy cascade is controlled by larger eddies. 

The dissipation equation (2.39) involves some empirical factors ( σ ε , c1ε , c2ε , c3ε ) as part of 

simplification cost. The last factor is just for buoyancy effect. It may be eliminated in situations 

where buoyancy has no effect. For the standard k-ε model, the empirical constants have been 

calibrated as follows:

Table 2.1. Empirical constants in the standard k-ε model

c c1ε c2ε c3ε σ k σ ε σ t
0.09 1.44 1.92 0.0 – 1.0 1.0 1.3 0.8

The result from a k-ε model simulation is highly sensitive to the factors c1ε  and c2ε . With 

buoyant flow, the values of σ t  and c3ε  must be calibrated per case. The values in table (2.1) 

are not the best choices for every kind of flow. It is possible to extent and improve the standard 

k-ε model by fine-tuning its constants for specific flow regimes or via replacing by carefully-

chosen functions. Many researchers have been worked on this matter. Among them are Yakhot et 
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al (1992), Chukkapalli and Turan (1995), Chang et al (1995) and Hwang et al (1998). Some two-

equation models are not based on Boussinesq approximation. They are some kind of second-

order closer models.

The  RNG  k-ε model  from  Yakhot  et  al  (1992)  has  gained  a  lot  of  attention  by  other 

researchers. It is a second-order closer model. It tries to solve accurately the non-linear terms by 

orders  more  than  two.  It  is  based  on a  statistical  technique  called  Re-normalization  Group 

(RNG) theory. This model does not restricted to high-Reynolds numbers. It introduces effective 

viscosity coefficient (  eff ) instead of normal eddy viscosity. So  eff  is used instead of ( t ). 

The effective viscosity is given as:

eff=mol1 cmol k
2

(2.41)

where mol  is the molecular viscosity.

The RNG k-ε equations are as follows:

∂ k
∂ t
u i

∂ k
∂ xi
= ∂
∂ x i v effσ t ∂k∂ x i veff 1

2 ∂u i∂ x j

∂u j
∂ x i 

2


g i

veff
σ t
∂
∂ xi
−C D

k3 /2

lm
(2.42)

∂
∂ t u i

∂
∂ x i
=
∂
∂ x i effσ t ∂∂ x ik c1εveff  ∂u i∂ x j


∂ u j
∂ x i  ∂ u i∂ x j

c3ε
g i

v eff
σ t
∂
∂ x i
−c2ε

*  (2.43)

where:

c2
* =c2

c
31− 0 2

10
3

2

k
(2.44)

Equation (2.43) is identical to the standard ε equation except that the coefficient c2  has been 

replaced by c2
* . The effect of the rate of strain appears in this coefficient. 

For the RNG k-ε model, the empirical constants have been calibrated as follows:

Table 2.2. Empirical constants for the standard k- ε model

c c1ε c2ε σ k σ ε σ t
0.0845 1.42 1.68 1/ 1/ 1/

The value of α can be obtained from the following graph:
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Figure 2.7. The value of α for RNG k-ε model (Fluent, 1998)

RNG k-ε model is more responsive to the effects of rapid strain and streamline curvature than 

the standard version. 

Some other two-equation models are k−k lm  model (by Rotta, 1968), k-ω model (by Wilcox, 

1988), and realisable k-ε  model (by Shih et al, 1995). There are still some other two-equation 

models which are from a different category. They are second order closer models such as k-τ 

model (by Speziale et al, 1992), another one by Nisizima and Yoshizawa (1987), and another 

one from Rubinstein and Barton (1990). 

2.3.2.6 Reynolds Stress Simulation Models

Reynolds  Stress  models  improve  turbulence  modelling  in  complex  flow  cases  such  as 

streamline  curvature. They  are  more  accurate  for  unsteady  flows  involving  anisotropic 

turbulence  Reynolds  stresses.  Reynolds  stress  models  are  not  based  on  Boussinesq  eddy-

viscosity approximation. They are more general. Some relevant research results are due to Daly 

and Harlow (1970), Launder et al. (1975), Lumley (1978), Reynolds (1987) and Speziale (1985, 

1991).

Reynolds stress models are very complex in comparison with models based on Boussinesq 

approximation. They contain six Reynolds stress tensor components ( u iu j ) in addition to three 

scalar  components  of  the  form ( u i )  plus  2 .  Therefore,  there  are  10 partial  differential 

equations that must be solved together. More research is needed before Reynolds stress models 

can be used in practical engineering software. 

2.3.2.7 Algebraic Reynolds Stress Models

As  mentioned,  Reynolds  stress  models  contain  several  equations  with  complex  terms. 

Therefore they are difficult to solve. Some researchers have tried to simplify the complex terms 
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via reasonable assumptions. Therefore some models have been derived in which the complex 

equations  have  been  simplified  to  simple  algebraic  relationships.  These  new  models  have 

reserved  many  positive  properties  of  the  original  Reynolds  stress  models.  The  purpose  of 

developing algebraic Reynolds stress models is to avoid the solution of differential equations 

and to obtain the Reynolds stress components directly from algebraic relationships. Difficulties 

still remain in geometrically and physically complicated flow fields (Chung, 2002). 

Algebraic Reynolds stress models have been used successfully in cases containing buoyancy, 

separation and secondary eddies. Some of the relevant works are from Cebeci and Smith, Meller 

and Herring, Patankar andSpalding, and Michel et al.

2.3.2.8 Other turbulence models

There are some other turbulence models which have been developed for specific purposes. 

For example viscous effects are important near the walls, while common models do not take it  

into account. Some relevant research works are from Hanjalic and Launder (1976), Shima (1988) 

and Lia and So (1991). Such models can be found under the category of wall-functions too.

There are also some turbulence models especially developed for low-Reynolds conditions. 

Some relevant works are after Lam and Bermhorst (1981), Launder and Sharma (1974), Chein (1982), 

and Nagano and Hishida (1987). 

Another category of turbulence models are multi-scale models. These models are used to simulate all  

parts of the turbulence energy spectrum. Some models of this category are Hanjalic et al. (1980), Kim 

and Chen (1989) and Durbin (1993). 

2.3.3 Boundary Conditions for k and ε

The boundary conditions for k and ε, as the choice of this study, are as follows:

● inlet: k and ε must be known,

● outlet: ∂ k /∂n=0  and ∂/∂ n=0  where n is perpendicular to the boundary,

● free surface: ∂ k /∂ z=0  and =k c 
3 /2
/0.07 −zb ,

● bed and lateral closed boundaries: wall function.

The most accurate simulations can only be achieved by supplying measured values of k and ε 

at inlet boundaries, but it is not possible by most cases. Thus some kind of estimation is needed. 
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2.3.4 Wall Function

The physics of turbulence in the vicinity of walls is considerably different from the other parts 

of the flow (Jasak, 1996). At the wall boundary, the velocity gradient is high, Reynolds number 

is  low (viscous  effects  are  important),  and  turbulence  eddies  are  highly anisotropic.  Normal 

turbulence  models  are  not  adequate  for  this  region,  because  they  are  calibrated  for  high 

Reynolds numbers and more or less isotropic conditions. Some turbulence models have been 

introduced especially for low-Reynold flows. For a detailed treatment, such models must be 

used.  In  this  way,  the  computational  mesh  must  be  very  fine  near  the  wall  and  a  lot  of 

computational resources are needed for that region. In addition, numerical solution of near-wall 

turbulence  models  is  more  complex  than  normal  ones.  Many of  these  models  use  viscous 

damping functions, which makes them stiff1 (Wilcox, 1994). The numerical algorithms which are 

adequate (and stable) for a stiff system of equations, are more complicated than the normal ones. 

There  is  also  a  simpler  approach  to  consider  near-wall  turbulence  into  account without 

resolving the near-wall region. This approach based on wall functions. Wall-functions represent 

a simplified model of turbulence2,  which mimics the near-wall behaviour of the velocity.  In 

numerical simulation, wall functions are used to bridge the near-wall region and couples with a 

high Reynolds turbulence model in the rest of the domain (Jasak, 1996). 

The formula for wall function is as follows (Olsen, 2000):

U
U *
=1


ln  30 y
k s
 (2.45)

in which  U is  near-wall  velocity (it  is  parallel  to the wall),  U* is  the shear velocity,  y is the 

distance  from  the  wall,  ks is  the  wall  roughness,  and  κ is  the  von  Karman  constant.  The 

relationship mentioned above shows the typical velocity profile in a boundary layer. It is valid in 

the following range:

30
U * y
 3000 (2.46)

where ν is the kinematic viscosity of water.

For a numerical simulation, the centre of the nearest computational cell to the bottom must be 

in the range mentioned above. For most engineering problems, it is not a restricted bound. For a 

1 An equation, or system of equations, is said to be stiff when there are two or more very different scales of the  
independent variable on which the dependent  variables  are changing. The equivalent  situation for  a system of 
equations is to have eigenvalues of the characteristic equation of very different magnitudes (Wilcox, 1994).

2 The flow behaviour assumes to be like a fully developed turbulent boundary layer.
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nearly steady uniform free surface flow, the boundary layer involves whole of the water column 

up to the free surface. 

Implementing the wall laws in the CFD code, the main idea is to include a sink term for the 

velocity equations. The shear stress at the wall appears as a negative source in the momentum 

equation. The shear stress is estimated using the wall laws (Olsen, 2000). The values of k and ε 

near the wall are as follow (Namin, 2003):

k=
U *

2

c
(2.47)

=
U *

3

 y
(2.48)

2.3.5 Spatial Averaging (Large Eddy Simulation)

Turbulent  flow contains  a  wide  range  of  length  and  time  scales.  Large  scale  eddies  are 

generally much more energetic than the small scale ones; their size and strength make them by 

far the most effective transporters of the conserved properties (such as momentum). The small 

scales are usually much weaker and provide little transport of these properties. A simulation 

which treats the large eddies more precisely than the small ones may make sense; large eddy 

simulation is just such an approach (Ferziger  and Peric, 2002). The underlying premise is that 

the largest eddies are directly affected by the boundary conditions and must be computed. By 

contrast, the small-scale turbulence is more nearly isotropic and has universal characteristics; it 

is thus more amenable to modelling (Wilcox, 1994).

Large eddy simulation (LES) is a compromise between DNS and RANS. Here, large-scale 

eddies are computed (resolved) and small scales are modelled (leaving them unresolved). Small-

scale eddies are isotropic, hence their modelling is simpler than in RANS. The mesh refinements 

are required much more than in RANS, but not as much as in DNS (Chung, 2002).

In order to define a velocity field containing only the large-scale components, it is necessary 

to filter the variables of the governing equations. There are two major steps with LES analysis: 

filtering and sub-grid scale modelling. Filtering is carried out using the box function, Gaussian 

function,  or  Fourier  cut-off  function.  Sub-grid  modelling  includes  eddy  viscosity  model, 

structure function model,  dynamic  model,  scale  similarity model,  and mixed model,  among 

others  (Chung,  2002).  The  filter  provides  a  formal  definition  of  the  averaging  process  and 

separates the resolvable scales from the sub-grid scales (Wilcox, 1994). 
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Sufficient grid resolution is critical in LES methods. The ultimate test of grid convergence is 

the requirement that excessive energy must not accumulate in the smallest scales. Details of the 

dissipating eddies are unimportant in LES. By contrast, DNS requires accurate simulation of the 

dissipating eddies (Wilcox, 1994).

In the context of LES,  i j  is called the sub-grid scale Reynolds stress. These stresses are 

there because of filtering. The models used to approximate i j  are called sub-grid scale or sub-

filter  scale  models.  The  earliest  and  most  commonly  used  sub-grid  scale  model  has  been 

introduced by Smagorinsky (1963). It is not free from some kind of calibration. There are two 

other  approaches  which  do  not  require  any externally  provided  information  such  as  model 

constants (Ferziger and Peric, 2002). The first approach is called dynamic modelling. Dynamic 

models contain a procedure to estimate the sub-grid scale model parameter via  filtering the 

velocity field using a filter broader than the one used in the LES itself to obtain a very large 

scale field and then subtraction of the two fields. In this way, a kind of self-consistent sub-grid 

scale model is produced. Any sub-grid scale model can be used as a basis for this approach. The 

other approach, which is more recent,  is based on the deconvolution concept.  These models 

attempt to estimate the unfiltered velocity from the filtered one (Ferziger and Peric, 2002). 

The simulation time needed by LES modelling on a sufficiently refined grid is more than the 

simulation time needed by RANS methods. Nowadays, some published hydro-environmental 

models  propose  Smagorinsky  LES  method  without  stressing  on  dense  grid.  In  this  way, 

simulation is faster than many RANS models. However, adjusting the calibration factor is more 

difficult and must be addressed case by case. In addition, for certain turbulence behaviour, the 

value of the calibration factor depends on the distance between the grid points. The calibration 

factor must be changed when the mesh density changes. It is not easy to control the turbulence 

behaviour precisely if an unstructured grid is used.

2.4 Turbidity Current and Its Influence on Turbulence

For some engineering problems, non-homogeneity of water density acts as a driving force or 

stabilizer, which affects the velocity field and sediment transport. In particular, this phenomenon 

is  the main factor in stratified flow and turbidity current.  The cause of non-homogeneity in 

density is non-homogeneity in temperature, salinity or suspended sediment concentration. The 

temperature-, sediment- or salt-caused density gradients may have similar or opposite sign and 
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the aggregate effect will determine which kind of flow type may occur. Turbidity current in dam 

reservoir is a specific type of density current. It is the most effective density current detected in 

reservoirs.

Turbidity  current  is  the  flow  of  water  laden  with  sediment  that  moves  down-slope  in 

otherwise still  water  of reservoir.  Turbidity current  may occur  in ocean,  lake and reservoir. 

Turbidity current in dam reservoir is one of the most interesting and practically important kinds 

of density driven flows. The dynamic of turbidity flow has major impact on water quality and 

sedimentation pattern in reservoirs. Turbidity current can transport sediment a long way inside 

the reservoir, even cause sediment deposition near the dam in front of water intakes. The process 

also redistributes sediments from the river mouth to the deeper part of the lake/reservoir. It has 

the ability to carry large quantities of sediment, nutrients and various chemical substances. Field 

measurement at several reservoirs has showed the velocity range between 0.03 to 0.5 m/s and 

travel distance up to 100 km without notably mixing/vanishing in the ambient water (Batuca, 

2000; Olsen, 2004). Figure (2.8) illustrates phases of turbidity current in a reservoir.

Figure 2.8. Typical turbidity current in a reservoir (after Cesare, 1998)

During significant flood events, the suspended sediment concentration at the upstream river 

becomes very high.  Therefore the density of inflowing water  becomes much more than the 

density of  still  water  in  the reservoir.  The heavier  muddy inflow continues  its  motion  as  a 

momentum-dominated  flow.  Meanwhile,  water  depth  increases  and  current  speed  decreases 

continuously because of the bed slope. Finally the muddy flow reaches to a specific depth where 

the current velocity is too low to remain dominant. The buoyancy effect becomes dominant at 

this stage. Then plunging occurs; the muddy water separates from the water surface and pulls 

down  toward  the  reservoir  bottom.  After  plunging,  the  turbid  water  continues  his  forward 

motion as a separate layer towards the downstream end of the reservoir, without notable mixing 

with ambient water. 
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The  plunge  point  is  often  visible  at  the  water  surface,  as  the  river  water  contains  more 

sediment and has a different colour than the water in the reservoir. The sediment-laden river 

water  often  has  a  darker  colour  than  the  cleaner  reservoir  water.  It  is  therefore  sometimes 

possible to observe the plunge point at the water surface (Olsen, 2004). 

After the plunging point, turbidity current becomes buoyancy dominated. Most of reservoirs 

have a  sedimentation region called “delta1”.  The bottom slope at  the front  of  delta  region is 

relatively sharp. When turbidity current travels in this region, its velocity increases significantly 

and often it is able to erode the bottom material. Bed erosion leads to more suspended sediment 

concentration in the turbidity layer. After the delta region, the bottom slope becomes gentle. If the 

bottom slope changes rapidly or has discontinuity at this position, a change in turbidity current 

regime may occur from supercritical to sub-critical flow via a hydraulic jump. Large amounts of 

erosion  and sedimentation  may accrue  in  different  parts  of  reservoir  during  flood  events  by 

turbidity current. Figure (2.9) illustrates typical processes at the front of the turbidity current.

Buoyancy can influence the turbulence structure significantly, wherever there is large density 

gradient in vertical direction. When the heavier water is above the clear water, the situation is 

unstable which leads to increase in turbulence. When the heavier water is below the clear water, 

the stratification is stable which leads to decrease in turbulence. There is a sharp density gradient 

at the interface between turbidity layer and the ambient water, which is of stable stratification 

type. This phenomenon decreases the turbulence viscosity significantly at the interface. This is 

the key reason which prevents mixing and permits forward movement of turbidity current for a 

long time without major mixing with ambient water. 

1 In the vertical cross section, it is similar to a reverse Δ in the longitudinal direction.
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Figure 2.9. Typical processes at the front of turbidity current (after Cesare, 1998)

It  is  not  possible  to  simulate  turbidity  current  without  taking  the  buoyancy  effect  on 

turbulence into account. There are two approaches for buoyant turbulence simulation. The first 

one is to add buoyancy terms into the k-ε equations. This is the best way if the k-ε model has 

been selected for turbulence. It must be noted that it will be more difficult to satisfy the stability 

of k-ε solution when buoyancy terms are effective. The second approach is to correct the values 

using  an  estimated  analytic  formula  after  normal  computation  of  diffusion/dispersion 

coefficients (without buoyancy effect). This is the only possible approach when simple methods 

for turbulence modelling, such as Prandtl method, are used. 
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The buoyancy terms in the k-ε equations are been shown below:
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∂ k
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∂
∂ t
u j⋅

∂
∂ x j

=

∂
∂ x j υtσ k⋅∂∂ x j k ⋅c1ε⋅υt⋅

∂ ui
∂ x j ∂ ui∂ x j


∂ u j
∂ x i c3ε⋅

g i
ρ
⋅
υt
σ k
⋅
∂ ρ
∂ x i


buoyancy effect

−c2ε⋅ (2.50)

Table (2.1) illustrates the constant values used in equations (2.49) and (2.50).

If the buoyancy effect is not included in the k-ε equations, or if another turbulence model such 

as  Prandtl's  mixing  length  method has  been  used,  then  the  calculated  eddy  viscosity  and 

dispersion coefficients must be corrected at each time step. Different correction formulae have 

been proposed in the literature for different kind of density currents. The general form of them is 

given as one of the following two equations:

ν=νo⋅1Ri⋅Ri 
Ri

ν=νo⋅e
c⋅Ri (2.51)

where νo is the eddy viscosity or diffusion/dispersion coefficient without the buoyancy effect, ν is 

eddy viscosity or diffusion/dispersion coefficient corrected by the buoyancy effect, and Ri  and 

Ri  are empirical constants.

The definition of Richardson number for a 2D vertical flow field is as follows:

Ri=− g

⋅∂ ρ
∂ z
⋅∂u∂ z 

-2

(2.52)

and for a three dimensional flow (Mike3 user manual 2005):

Ri=− g
0

∂
∂ z ∂ u∂ z 

2

∂ v∂ z 
2

-1

(2.53)

Some of the proposed formulas for eddy viscosity and dispersion coefficient, under different 

kind of density currents, are as follows:
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Munk and Anderson (1948):

ν=νo 110Ri -1 /2

Dt=ν o 13.33 Ri - 3/ 2 (2.54)

Pacanowski and Philander (1981):

ν=νo 15 Ri -210-4

Dt=ν 15 Ri -110 -5 (2.55)

Lehfeldt and Bloss (1988):

ν=νo 13Ri -1

Dt=ν o 13 Ri -3
(2.56)

Park and Kuo (1993):

ν=νo 10.75Ri -1/2

Dt=ν o 10.75 Ri -3/2 (2.57)

Perrels and Karelse (1981):

ν=νo⋅e
-4 Ri

Dt=ν o⋅e
-15Ri (2.58)

Rodi (1993):

ν=νo . e
-C . Ri (2.59)

Olsen and Lysne (2000) for ice-covered lake:

ν=νo 110 Ri -1.3 (2.60)

Some modellers do not use buoyancy terms in their k-ε simulation to gain more stability. They 

use Richardson correction after each k-ε simulation step. 

For most hydro-environmental engineering problems, buoyancy does not affect the turbulence 

structure in the horizontal plane. It just affects the turbulence structure in the vertical direction. 

The difference between horizontal and vertical turbulence structures will be described later. 

When water is abstracted from a stratified reservoir,  different situations may occur. When 

water discharge is less than a critical value, only the water in a layer at the same level (as the 
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intake) is abstracted. For this case, the thickness of the abstracting layer depends on the rate of 

discharge, water density and vertical density gradient. When water discharge is above the critical 

value, then water will be abstracted from the whole depth (Olsen, 2004).

The effect of buoyancy on turbulence is not the only matter that a model developer must take 

into  account  for  density currents.  Including gravity directly into the  calculation,  and letting 

density varies according to the resulting concentration field, result in large source terms that 

may cause instabilities. From a mathematical point of view, these large source terms must cancel 

out each other, but in a numerical model the differences between the large source terms may 

cause instability.

A more stable approach for density flow is to include just the difference from a base value,  

instead of including absolute density values1. Gravity current will usually move close to the bed, 

giving large source terms only in cells in this region. Most of the cells may therefore not be 

affected  by  large  source  terms.  Also,  the  density  increase  is  usually  one  or  two  orders  of 

magnitude smaller than the water density. The magnitude of the source terms therefore decreases 

correspondingly. Thus, the additional source term in the vertical direction in the Navier-Stokes 

equations becomes (Olsen, 2000): 

Sourcevertical=V cell⋅g⋅s−w c (2.61)

where  V is the volume of computational cell, g is the acceleration of gravity,  ρs and  ρw are the 

sediment and water density respectively, and c is the sediment concentration. 

Simulating horizontal density gradients for stratified lakes is difficult too. Modelling stratified 

flows using gravity in the vertical direction would lead to large source terms and instabilities. 

Adding additional forces due to density deviation from a standard water density would affect 

most of the cells in the geometry, as the density variation is often over the whole depth of a lake. 

Instabilities would thereby occur. One solution is to compute and include density gradients only 

in the horizontal directions, as in quasi-3D models (Olsen, 2000).

2.5 Effects of Difference in Vertical and Horizontal Scales

For a problem where the vertical scale is of the same order as the horizontal scales, turbulence 

eddies  are  mostly  isotropic  and  completely  three-dimensional.  With  hydro-environmental 

1 Avoiding large source terms which cancel each other, is a common strategy in numerical modelling. An example is  
the approach for eliminating the hydrostatic part of pressure and use of excess pressure in order to prevent flow 
caused by computer round-off errors (for example see Mike3 HD scientific documentation).
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engineering problems, the vertical scale is some order of magnitudes smaller than the horizontal 

ones. This kind of problem has two specific behaviours. 

The first specific behaviour is that such a problem has two different turbulence structures, 

which are more or less independent from each other. One of them is for large horizontal 2D 

eddies, which are much larger than the water depth. The other is for small nearly-isotropic 3D 

eddies produced by the bottom friction. Both phenomena are effective and must be taken into 

account. Sometimes the second phenomenon is called sub-depth scale turbulence1.

The effect of the second specific behaviour on modelling hydro-environmental problems is 

that the numerical model grid for such a problem is inhomogeneous; the grid spacing in the 

vertical direction is some order of magnitudes less that grid spacing in horizontal plane. 

Because  of  the  two  mentioned  characteristics,  it  is  necessary  for  hydro-environmental 

modellers  to  use  different  turbulence models  in  the  vertical  and horizontal  directions.  Even 

when the two models are of one type, the calibration parameters may be radically different. 

Therefore the momentum equations may read as follows: 

∂u
∂ t
+u ∂ u
∂ x
+v ∂ u
∂ y
+w ∂ u

∂ z
=−1

ρ
∂ p
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+
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∂ x2+

∂2u
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ρ
∂
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ρ
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If k-ε model has been selected for calculating the vertical eddy viscosity, then the production 

terms in the k and ε equations have to be modified. Such production terms involve just the 

vertical  gradients  of  the  horizontal  velocities  in  this  regard,  without  taking  the  horizontal 

gradients into account. Therefore the production terms in the equations (2.38), (2.39), (2.49) and 

(2.50) have to be reduced as follows:

For the k-equation:

t  ∂ ui∂ x j

∂ u j
∂ x i  ∂u i∂ x j

 v∂ u∂ z 
2

∂ v∂ z 
2 (2.65)

For the ε-equation:

c1ε
ε
k
 t ∂ui∂ x j


∂ u j
∂ x i  ∂ui∂ x j

 c1ε
ε
k
v∂u∂ z 

2

∂ v∂ z 
2 (2.66)

1 for example see Nadaoka and Yagi, 1998
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There are also simpler turbulence models for calculating the vertical eddy viscosity which are 

sufficient in many cases. One of the common models is the log-law relationship which gives the 

standard parabolic profile (Mike3/21 2007):

 v=U *max⋅D⋅0.41 z− zbzs−zb −0.41 z−zbzs−zb
2 (2.67)

where  D=zs−zb  is the total water depth and  U *max  is the maximum of the bed and the free 

surface shear velocities.

Another challenge for hydro-environmental models is that they have to use computational 

cells which have large aspect ratios (horizontal space to vertical space). It must be taken into 

account when choosing a numerical scheme.

The problems mentioned here prevent many classical fluid dynamic models (originated from 

the mechanical engineering sector) being used for hydro-environmental simulations.

2.6 Shallow Water Modelling

The  flow  of  water  in  shallow  regions  is  of  obvious  practical  importance.  For  many 

engineering problems, the horizontal velocities are of primary importance and the problem can 

be  reasonably  approximated  in  two  dimensions.  Consequently,  shallow  water  models  are 

practical  tools  for many engineering problems in the hydro-environmental  modelling sector. 

They  result  from  simplifying  the  original  3D  equations  by  assuming  that  the  vertical 

acceleration of flow is negligible, the flow field is nearly horizontal, and the distribution of flow 

variables along depth are not far from homogeneity. 

The integration of the original 3D equations (equations  2.17-2.19) over the water depth, in 

addition to the mentioned assumptions, leads to the following equations:

∂
∂ t

∂DU 
∂ x


∂DV 
∂ y

=DQdis (2.68)
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(2.69)
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where D is the water depth,  h is the depth averaged eddy viscosity in the horizontal plane, U  

and V  are the depth averaged velocities defined by:

U= 1
D∫z b



udz  and V= 1
D∫za



v dz , (2.71)

Qdis  is the source discharge, udis  and vdis  are the velocity components of the discharged source, 

f  is the Coriolis factor,  sx= t∂u /∂ z   and  sy  are the wind shear stress components at the 

water surface, and bx= t∂ u /∂ z z b  and by  are the bed shear stress components.

Equation (2.68) has been derived by integrating the continuity equation (2.17) along the water 

depth. Equations (2.69) and (2.70) have been derived by integrating the x- and y-momentum 

(N.S.)  equations  (2.18)  and  (2.19).  Integration  of  the  z-momentum  equation  leads  to  the 

hydrostatic pressure distribution formula, as follows:

− 1
ρ
∂ p
∂ z
=g (2.72)

The  factor  β in  equations  (2.69)  and  (2.70)  is  due  to  the  non-homogeneity  of  velocity 

distribution in the vertical direction. It can be assumed to be equal to 1.0 for many engineering 

problems; for example when the vertical distribution of velocity is logarithmic such as tidal or 

channel flows. When wind induced current is dominated, the factor is different.

The main assumption for the validity of shallow-water equations is that the water depth is 

much smaller than the horizontal length scales. It implies that the wavelength of surface waves 

should be much larger than the depth (more than 20 times) (Wesseling, 2001) 

Assuming that =1  and using the continuity equation (2.68), the left hand side of equation 

(2.69) may be expanded and simplified as follows:
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(2.73)
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The right  hand side  of  equation  (2.70)  may be  simplified  in  a  similar  way.  Using these 

simplifications in equations (2.69) and (2.70) and dividing by D , the non-conservative forms of 

the momentum equations may be derived as follows:
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It is possible to solve the shallow water equations for the velocities (U, V) or the fluxes (DU, 

DV). From the mathematical point of view, they are the same, but the numerical solution of the 

flux form is generally more stable. The reason is that rapid change in the bed topography or the 

channel cross section leads to rapid change in the velocity, while the flux still changes gradually 

(tracking sudden change is  challenging for  the  numerical  models).  However,  using  a  depth 

averaged model in a problem with sudden depth changes is questionable.

Using Cartesian coordinates for SWE means that the domain is assumed to be small enough to 

be considered flat. For very large domains, spherical coordinate system is a better choice. 

2.7 Connection Conditions for Model Integration

Two approaches have been employed in the literature for combining 1D, 2D, and 3D models. 

One approach is to use a simpler model in the entire solution domain and a more complex model 

in  confined  sub-domains.  The  simpler  model  provides  boundary  conditions  for  the  more 

complex model, but they are not coupled. The other approach is to fully couple the models (Wu 

and Li, 1992; Zhang, 1999; Verwey 2001) by simultaneously solving all component models. The 

fully  coupling  approach  is  more  general.  Flow  (and  any  other  quantity  such  as  sediment 

transport) should satisfy continuity conditions at the interfaces between 1D, 2D, and 3D sub-

domains, as discussed below. 

2.7.1 Water Level

The water levels at the interfaces should satisfy (Wu W., 2007):
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B⋅z s , 1d=∫
0

B

zs , 2ddy=∫
0

B

z s ,3ddy (2.76)

where z s ,1d , z s ,2d , and z s , 3d  are the water levels calculated in the 1D, 2D, and 3D sub-domains, 

respectively; B  is the width of the interface; and y is the coordinate along the interface.

For a 3D model that solves the full Navier-Stokes equations, the dynamic pressure needs to be 

provided at the interfaces, whereas the 1D and depth-averaged 2D models assume a hydrostatic 

pressure distribution there. To overcome this problem, the interfaces should be located in the 

regions where the flow varies gradually and the hydrostatic pressure assumption is valid (Wu 

W., 2007).

When only 2D/3D integration is considered, the connection condition may be addressed more 

precisely. If the two meshes are the same at the interface (all of the 3D nodes on the interface 

coincides with the 2D nodes and vice versa) it is sufficient to satisfy the following relationship 

at each interface node:

z s ,2d=z s , 3d (2.77)

If the 3D mesh is denser at the interface than the 2D one, the quantity B in equation (2.76) 

may be the distance between each two neighbouring nodes of the 2D mesh on the interface.

2.7.2 Flow Discharge

The flow discharges at the interfaces should satisfy the continuity condition (Wu W., 2007):

Q1d=∫
0

B

U 2dD2ddy=∫
0

B

∫
zb

z s

u3ddz dy (2.78)

where  Q1d  is the flow discharge calculated in the 1D sub-domain,  D2d  and  U 2d  are the flow 

depth and depth-averaged velocity in the 2D sub-domain, u3d  is the local velocity in the 3D sub-

domain, and z is the vertical coordinate.

When only 2D/3D integration is considered, the connection condition may be addressed more 

precisely. If the two meshes are the same at the interface (all of the 3D nodes on the interface 

coincides with the 2D nodes and vice versa) it is sufficient to satisfy the following relationship 

at each interface node:

U 2d D2d=∫
zb

z s

u3ddz (2.79)

If the 3D mesh is denser at the interface than the 2D one, the quantity B in equation (2.78) 
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may be the distance between each two neighbouring nodes of the 2D mesh on the interface.

2.7.3 Flow Resistance

The bed shear stresses at the interfaces satisfy (Wu W., 2007):

l wet⋅b ,1d=∫
0

lwet

b ,2ddl=∫
0

l wet

b ,3d dl (2.80)

where b ,1d ,  b ,2d , and b ,3d  are the bed shear stresses calculated in the 1D, 2D, and 3D sub-

domains, respectively; and lwet  is the wetted perimeter at the interfaces.

It must be noted that using similar Manning values in 1D and 2D models does not mean that the 

bed roughness in the two models are equivalent. In order to satisfy equation (2.80) at the interface 

between 1D and 2D reaches,  n1d  and n2d  may have to be given different values. Inserting the 

Manning equations for 1D and 2D uniform flows into equation (2.80) leads to (Wu W., 2007):

n2
1d⋅U 1d

2 ⋅
A1d

R1d
4 /3=∫

0

l wet n2
2d⋅U 2d

2

D2d
1/3 dl (2.81)

where R1d  and U 1d  are the hydraulic radius and the section-averaged flow velocity calculated in 

the 1D model respectively; and  n1d  and  n2d  are the Manning coefficients in the 1D and 2D 

models, respectively.

The bed shear stress must be identical at the interface of 2DH/3D model integration. The bed shear 

stress is usually determined using the wall-function approach in the 3D models, which links the bed 

shear stress to the near-bed velocity. On the other hand the bed shear stress in the 2D models (in the 

horizontal plane) is usually linked to the depth averaged velocity. Thus, equation (2.80) may not be 

satisfied at the interface between 2D and 3D models, without some corrections. 

The conservation lows have to be satisfied for any other quantity too, which is simulated in 

addition to the flow itself. Several quantities may be named in this regard such as the bed load,  

suspended sediment load, bed level change, salinity, temperature, and water quality parameters.

2.8 Summary

The theoretical background of hydrodynamic models has been presented in this chapter. The 

mass and momentum conservation lows have been described in this regard with attention to the 

body forces and boundary conditions. It has been stressed that the Coriolis effect has a vertical 

component which is not negligible in meso-scale oceanic flows and that the famous form of the 
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Coriolis terms, which have been used in many numerical models, is acceptable only if the x- and 

y-direction of the coordinate system are in the east- and north-ward directions.

There  are  always  some  fluctuations  in  the  flow  properties  that  are  not  important  for  the 

engineers. The averaging techniques to filter-out such fluctuations and the averaging effect on the 

N.S.  Equations  has  been  presented  in  this  section.  The  physical  behaviour  of  turbulence,  as 

continues instability, and its modelling approaches has been illustrated in this regard. It helps 

adequate turbulence model selection for each flow case. The broad range and continuous spectrum 

of length and time scales of the eddies has been considered into account with the importance of 

large and small eddies in momentum exchange and energy dissipation respectively. 

Several  Reynolds  averaging (temporal  averaging)  models  has  been illustrated including zero 

equation models, one equation models, two-equation models and so on. The k-ε models are the most 

common  two-equation models. A wide variety of k-ε models exists. The most common versions are 

the standard and the RNG k-ε models which have been described in more detail.  Large eddy 

turbulence modelling has also been illustrated, which is some kind of spatial averaging. The idea 

behind this approach is that large scale eddies are by far the most effective transporters of the 

conserved properties (such as momentum) in comparison with the small scale eddies. 

The water density gradient affects not only the flow field but also the turbulence intensity. 

Turbidity current is a specific type of density gradient flow which has been illustrated in the 

present section. When the heavier water is above the clear water, the situation is unstable which 

leads  to  increase  in  turbulence.  When  the  heavier  water  is  below  the  clear  water,  the 

stratification  is  stable  which  leads  to  decrease  in  turbulence.  The  effect  of  vertical  density 

gradient, the buoyancy effect, on the turbulence modelling has been addressed in detail.

The vertical  scale of flow field in hydro-environmental engineering problems is  generally 

some order of magnitudes smaller than the horizontal  scale  and there are two distinguished 

turbulence structures; a) the small nearly-isotropic 3D eddies produced by the bottom friction 

and b) the large horizontal 2D eddies much larger than the water depth. Therefore two eddy 

viscosities are needed in the N.S. Equations; for the vertical eddies and for the horizontal ones. 

Each viscosity needs its own turbulence model. General k-ε turbulence models are not suitable 

in this regard. Instead,  specific versions of the k- ε models are used with modified production 

terms. The difference has been illustrated in this chapter. 

The shallow water equations and the connection conditions for 2D/3D model integration have 

been addressed in the the rest of this chapter. 
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3 Review on Solution Strategies for 3D Free Surface Flow

3.1 Introduction

The complexity of 3D numerical solution for the free surface flow, in comparison with 2D 

horizontal modelling, is more than just an extension to a third dimension or by taking another 

equation into account. The pressure treatment and water surface variability are the main issues 

in  this  regard.  The  pressure  gradient  is  one  of  the  main  driving  forces  in  the  momentum 

equations.  However,  there  is  not  a  direct  relationship  for  representing  the  pressure  field. 

Determining the free  surface is  the  other  issue.  The free surface  position is  needed for  the 

solution  procedure  while  it  is  variable  and  must  be  determined  during  the  solution.  The 

variability of the free surface also leads in a variable solution domain. The necessity of dealing 

with very large number of unknowns is an extra difficulty. 

This  chapter  deals  with  the  above  mentioned  problems.  The  pressure  treatment  issue  is 

addressed  in  section  (3.2).  The  problem is  described  first  and  the  solution  approaches  are 

reviewed.  The  most  popular  methods  are  described  with  more  details,  which  include  the 

hydrostatic pressure assumption, the artificial compressibility method, the SIMPLE family of 

methods, the PISO method and the projection method. The moving upper boundary is addressed 

in section (3.3). It starts with the problem description and continues with illustrations of the 

most popular solution approaches. The marker and cell (MAC) method, volume of fluid (VOF) 

method, level-set formulation methods, kinematic boundary condition method, depth integrated 

continuity equation method and the shallow water approach are described. The sigma-coordinate 

and  its  vertical  gradient  adaptive  version  are  reviewed  in  section  (3.3.3) to  address  the 

variability  of  the  solution  domain.  Section  (3.4)  describes  the  Poisson  equation  used  for 

computing the pressure and the associated solution methods. 

Numerical  solution  of  the  pressure  equation  is  part  of  this  study because  the  projection 

method is used. Because the resulting system of equations is very large in a real 3D problem, 

special matrix solvers are needed in this regard. Several algorithms have been listed in section 

(3.4.2)  and  some  of  them are  reviewed  in  the  remaining  sections.  They  are  the  conjugate 

gradient  method,  preconditioned  conjugate  gradient  method  and  multigrid  method.  Matrix 

solvers are needed not only for solving the Poisson pressure equation, but also for some other 
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parts of the numerical model. For example the preconditioned bi-conjugate gradient stabilised 

(BI-CGSTAB) method (van der Vorst, 1992) has been used in the present study for computing 

the free surface implicitly. 

3.2 Pressure-Velocity Relation

3.2.1 The Problem and Solution Ideas

Pressure gradient has an important role on the flow field via the momentum equations. In fact,  

it is the main momentum source term in most flows of engineering importance (Versteeg  and 

Malalasekera, 1995). In compressible flows, the continuity equation can be used to determine 

the density.  Then the pressure is calculated from the equation of state.  This approach is not 

appropriate  for incompressible or low Mach number flows  (Ferziger  and Peric,  2002).  With 

incompressible flows, there is not any independent equation to solve the pressure field, in spite 

of pressure gradient's contribution and importance in the momentum equations as driving force. 

This is a problem for 3D modelling of incompressible flows. 

Several approaches have been proposed by researchers to deal with this problem. They can be 

categorized into three classes:

• Pressure eliminating methods

• Artificial compressibility methods

• Pressure-velocity decoupling methods

The first class comprises methods which eliminate the pressure variable from the momentum 

equations. The most common method of this kind is the hydrostatic assumption whereby the 

pressure is replaced by the water surface elevation. This technique is useful where the vertical 

acceleration component is small enough to enable the hydrodynamic part of the pressure field to 

be neglected. The second class comprises methods that change the continuity equation in order 

to include an artificial compressibility term.

The  third  class  comprises  methods  which  decouple  pressure  from  velocity.  They  differ 

fundamentally from the first class by retaining pressure as one of the prognostic variables. There 

are  two main sub-classes  of  this  type,  including pressure-correction methods and projection 

methods.  There  are  different  pressure  correction-methods:  SIMPLE-family  (SIMPLE, 
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SIMPLER and SIMPLEC) and PISO methods. The projection methods include a large family of 

solution procedures. 

There are also some other techniques that are not widely used in 3D solutions, such as solving 

non-primitive variables such as velocity-vorticity. The definition of vorticity is suitable for 2D-

vertical problems, but rarely used in three dimensions. The reason is that with 2DV problems one 

vorticity variable is sufficient, while for 3D problems three vorticity are required (Mike3 manual).

A brief description for the above mentioned approaches is given in the following sections.

3.2.2 Hydrostatic Pressure Assumption

This  is  a  pressure  eliminating  method,  which  eliminates  the  pressure  term  from  the 

momentum equations. This approach neglects the non-hydrostatic part of the pressure field. The 

pressure term is replaced by the water surface elevation. The hydrostatic part of the pressure 

field at elevation z  is given as:

p z= pag∫
z



 . d z (3.1)

The momentum equations need only the horizontal gradient of the pressure field. There is no 

need for knowing the pressure itself. Hence it is possible to eliminate the atmospheric pressure 

(pa) from the equations to avoid round-off error problems due to cancelling large magnitude 

terms. For constant water density equation (3.1) becomes:

pz= g −z  (3.2)

The  hydrostatic  pressure  distribution  assumption  is  useful  in  cases  where  the  vertical 

acceleration of velocity is negligible. It can be used in many practical engineering problems.

The atmospheric pressure terms must not be cancelled-out for  problems with  large solution 

domains, because the horizontal gradient in the atmospheric pressure may be effective in sudden 

storm conditions.

3.2.3 Artificial Compressibility

With the  artificial  compressibility  method (ACM),  the  continuity equation  is  modified  to 

include an artificial compressibility term which vanishes when the steady state is reached. The 

idea is to change the mathematical characteristics of the incompressible equations to make them 

similar to the compressible ones. The compressible flow equations are hyperbolic which means 
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that they have real characteristic lines on which signals travel at finite propagation speeds1. By 

contrast,  the incompressible equations have a mixed parabolic-elliptic characteristic (Chorin, 

1967; Ferziger and Peric, 2002). 

In free surface flows only the slow processes are of interest and usually the fast processes 

(such as the shock waves) have no substantial influence on the slow processes (such as the free 

surface waves). Hence they may be removed without significantly loss of information. The fast 

processes  are  easily  eliminated  by replacing  the  time derivative  of  the  density  in  the  mass 

conservation equation with the pressure term in the equation of state, whereby a compressibility 

of  the  fluid  is  introduced.  The  fast  processes  are  then  subsequently  eliminated  through  an 

artificial  compressibility,  whereby  the  system  mathematically  has  become  hyperbolically 

dominated. The continuity equation becomes:

1
c
∂ p
∂ t

∂ ui 
∂ x i

=0 (3.3)

where c  is an artificial compressibility parameter2. 

The artificial compressibility is an excellent tool to enable faster convergence of model solution in 

steady state situations.  However it  is not obvious that the same technique can also be applied 

accurately for unsteady incompressible flows. The addition of a time derivative of the pressure to the 

continuity equation means that we are no longer solving the true incompressible equations. Thus the 

time history generated may not be accurate. In spite of that, this method has been used successfully 

for simulating unsteady free surface cases too (for example Mike3). It seems that for free surface 

flows,  accumulated  pressure  can  be  released  during  each  time  step  via  adjusting  the  surface 

elevation. If no free surface is present, the artificial compressibility method cannot be used for 

unsteady applications unless with very small time steps (Ferziger and Peric, 2002; Mike3 manual). 

The  compressibility  value  must  not  become smaller  than  the  celerity  of  the  free  surface 

waves. If it is too high the system becomes stiff (the pressure information travels fast). If it is 

too low, the flow does not propagate with the correct physical celerity. The appropriate range for 

the compressibility is a function of grid spacing, time step and the maximum water depth. It 

must be low enough to overcome stiffness associated with a disparity in the magnitudes of the 

eigenvalues,  but  high  enough  such  that  pressure  waves  (moving  with  infinite  speed  at 

incompressible limit) be allowed to travel far enough to balance viscous effects (Chung, 2002). 

1 This reflects the ability of compressible fluids to support sound waves.
2 In fact,  c  is the artificial speed of sound

3-4



3 Review on Solution Strategies for 3D Free Surface Flow

There are different methods that can be used to solve compressible flow equations. Most of 

them can also be used for solving artificially compressible equations. 

3.2.4 SIMPLE-Family Methods

The SIMPLE family of methods employ iterative solution strategies to solve the pressure-velocity  

issue with incompressible problems. There are three main methods in this category: The SIMPLE 

(Semi-Implicit Method for Pressure-Linked Equations) algorithm of Patankar and Spalding (1972), 

the  SIMPLER (SIMPLE-Revised)  algorithm of  Patankar  (1980),  and  the  SIMPLEC (SIMPLE-

Consistent) algorithm of Van Doormal and Raithby (1984).  They are kinds of guess-and-correct  

procedures to calculate pressure and mostly deploy a staggered grid. The original SIMPLE method 

was restricted to steady state problems. Then its unsteady version was introduced.

The main procedure of SIMPLE method is as follows (Versteeg and Malalasekera, 1995; Olsen, 2004):

1- Guess the pressure and velocity fields,

2- Solve discretised momentum equations to define a new guess for velocity field

3- Solve a pressure correction equation to define pressure-correction values, 

4- Correct pressure and velocity fields (under-relaxation is needed for stability),

5- Check for convergence, if not gained yet, use the latest values as new guess and go back to step 1.

In step 4 an additional equation is needed for velocity correction. It comes from the momentum 

equation.  Discretised momentum equation links velocity  correction at  each  point  to  pressure  and 

velocity  corrections  around  it.  The  velocity  correction  values  at  the  neighbouring  points  are  not 

known; therefore in SIMPLE method it is assumed that velocity corrections are negligible at this stage. 

Similarly in step 3 an additional equation is needed for pressure correction. It comes from the  

continuity equation. If the corrected velocities (using the simplification described) are inserted into  

the continuity equation, the only remaining unknowns in the resulting equation will be the pressure 

correction at the neighbouring points (it is an implicit equation). This equation involves the guessed  

values of velocity at the neighbouring points as source terms. 

The pressure-correction equation is satisfactory for correcting velocities, but it is not so useful for 

correcting  the  pressure  field  (because  of  the  simplifications  made).  The  improved  procedure  

SIMPLER is introduced to overcome this shortcoming. The SIMPLER method uses two different  

pressure correction equations. One of them, which is the same as for the SIMPLE method, is used  

just to obtain velocity corrections. A separate, more effective, pressure equation is solved to yield the 

correct pressure field. No terms are omitted in deriving this pressure equation. This one uses the so-

called pseudo-velocities which are again calculated on the base of guessed velocity values, but via  
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the complete momentum equations without neglecting any term. 

The procedure of SIMPLER method is as follows (Versteeg and Malalasekera, 1995; Olsen, 2004):

1- Guess the pressure and velocity fields,

2- Calculate the so-called pseudo-velocities,

3- Solve the enhanced pressure correction equation

4- Calculate the corrected pressure field (under-relaxation needed for stability),

5- Set the calculated pressure field as the new guess,

6- Solve discretised momentum equations to have a better guess from velocity field,

7- Solve the simplified  pressure  correction  equation  (like  SIMPLE) to  have a  more  accurate 

pressure corrector,

8- Correct velocity field as in step 4 of the SIMPLE method,

9- Check for convergence, if not gained yet, use the latest pressure and velocities as the new 

guess and go back to step 1.

The SIMPLEC (SIMPLE-Consistent) algorithm of Van Doormal and Raithby (1984) follows the 

same steps as the SIMPLE algorithm, with the difference being that in deriving the velocity correction 

equations it omits some terms that are less significant than those omitted by the SIMPLE algorithm. 

Under-relaxation is  necessary at  each stage of pressure or velocity correction due to  stability 

problems. The selection of relaxation factors is dependent on the flow conditions. The values are  

between 0 and 1 (1 means no under-relaxation and 0 means no correction). A general guide is 0.2 for 

pressure and 0.8 for velocity.

The  steady and  unsteady  formulations  of  simple  family  methods  are  not  very  different.  The  

unsteady version has an additional transient term in each discretised momentum equation and also 

an additional term due to time derivative as source terms in the pressure correction equations. For 

unsteady problems, iterations are needed at each time step.

The  iterative  methods  used  in  SIMPLER  or  SIMPLEC  method  have  robust  convergence 

characteristics  in  strongly  coupled  problems  (Versteeg  and  Malalasekera,  1995).  The  SIMPLE 

method and its extensions are used in most CFD calculations in the world (Olsen, 2000). More 

details can be found in text books like Chung, 2002; Olsen, 2004;  Versteeg  and Malalasekera, 

1995 and many others.

3.2.5 PISO Method

The  PISO  algorithm  (Pressure  Implicit  with  Splitting  of  Operators)  of  Issa  (1986)  is  a 

pressure-velocity calculation procedure developed originally for the non-iterative computation 
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of unsteady compressible flows. It obtains solutions without iterations, and with larger time 

steps and less computing effort (Versteeg and Malalasekera, 1995; Chung, 2002).

In this  scheme,  the conservation of mass is  designed to  be satisfied within the predictor-

corrector steps. It involves one prediction step and two correction steps.  The procedure is as 

follows (Versteeg and Malalasekera, 1995):

1- Perform steps 1 to 4 of SIMPLE algorithm. It solves the discretised momentum equations and  

pressure correction equations and then corrects pressure and velocities,

2- Solve the second pressure correction equation,

3- Correct pressure and velocities,

4- Check convergence, if not gained yet, use the latest values as the new guess and go back to step 1

The second pressure  correction  equation  in  PISO method (step  2)  is  different  from SIMPLE 

family  correspondents.  It  contains  the  difference  between  the  two consecutive  guessed  velocity 

fields as source terms. The pressure and velocity correctors (step 3) are also different. They contain  

two successive pressure correction values and two successive guessed velocity fields. 

Issa (1986) showed that the temporal accuracy achieved by the predictor-corrector process is of  

order 3 (Δt3) for pressure and 4 (Δt4) for momentum. Therefore, the pressure and velocity fields 

obtained at the end of the PISO process with a suitably small time step are considered to be accurate 

enough to proceed to the next time step immediately and the algorithm is non-iterative. The PISO 

method may be seen as an extension of SIMPLE, with a further corrector step to enhance it. Still it is 

very similar to the fractional-step method (Versteeg  and Malalasekera,  1995; Ferziger  and Peric, 

2002).  More  details  can  be  found  in  text  books  like  Chung,  2002;  Olsen,  2004;  Versteeg  and 

Malalasekera, 1995 among many others.

3.2.6 Projection Method

The projection method (first introduced by Chorin, 1968)  uses operator splitting in order to 

decouple velocity and pressure computations. It is based on a projecting operator which projects 

a vector field onto the space of divergence-free field with appropriate boundary conditions. It is 

a time splitting method in which the momentum equations are solved without the pressure term 

for the first stage, then the continuity and the remaining part of the momentum equation are 

solved in the second stage. This method is based on the fractional steps algorithm, which has 

been used widely in the present study for 2D/3D modelling and for integration of the models.

The main idea of projection method is that any vector field can be uniquely decomposed into 

divergence-free and rotation-free components where the rotation-free portion may be denoted by 
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the gradient of a potential:

u= ud∇ (3.4)

where ud  is divergence-free ( ∇⋅ud=0 ) and ∇  is rotation-free (   is a scalar function). This 

approach may be used for the hydrodynamic velocity field with the real fluid velocity as the 

divergence-free vector field and the pressure as the scalar function. One can start with estimating 

an intermediate velocity field by neglecting the pressure gradient terms in the N.S. equations. 

This intermediate velocity field is not divergence-free. However, it can be decomposed later into 

divergence-free  (vector)  and  rotation-free  (scalar)  components  in  such  a  way that  the  scalar 

component is the pressure gradient term. Therefore, the divergence-free component will be the 

solution of the complete N.S. equations.

The N.S. equations may be written in the following way:

∂u
∂ t
1

∇ p=S u=g ∇2u−u⋅∇u (3.5)

where  the  term  ∂u/∂ t  is  divergence  free  because  of  incompressibility.  The  term  ∇ p  is 

rotation-free.  S u   is  generally  neither  divergence-free  nor  rotation-free.  When  u  is  given, 

S u   can be projected into divergence-free and rotation-free components. 

Equation (3.5) may be fractioned as follows:

uest−u
n

 t
=S u (3.6)

un1−uest
 t

=−1
 ∇ p (3.7)

In  order  to  define  the  intermediate  velocity  field,  equation  (3.6)  may be  solved  without 

knowing  the  pressure  gradient.  Equation  (3.7)  includes  two  unknowns:  ∇ p  and  un1 . 

However, it is known that  un1  is divergence-free. Therefore its divergence is zero. Applying 

the divergence operator on equation (3.7) leads to:

∇2 p= 
 t
∇ uest−∇u

n1
0

= 
 t
∇uest (3.8)

Equation (3.7) is  the Poisson equation for pressure. It need be solved in order to define the 

pressure (and pressure gradient) field. Then equation (3.8) may be solved to define un1 .

The major steps of the projection method are as follows (two steps): 

1- Intermediate velocity step

The estimated velocity field is computed using an approximate version of the momentum 
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equation. This version of momentum equation does not include unknown pressure values. 

The resulting intermediate velocity is not divergence-free.

2- Projection step

2-a- Solve the pressure Poisson equation (3.8).

2-b- Determine the projected velocity, i.e. the final one:

ud=uest−∇ p (3.9)

There are two versions of the projection method. In the original version (projection-I method) 

the intermediate velocity  uest  is computed using the momentum equations without taking the 

pressure gradients into account. The scalar function in this case is the physical global pressure. 

Equation (3.5) follows this approach. In the second version (projection-II method) the influence of 

the pressure gradients is not neglected completely in estimating the intermediate velocity. Instead, 

the pressure gradient from the previous time step  ∇ pn  is applied in the intermediate velocity 

step. In the projection-I method, the total pressure is computed in the projection step (step 2-a) 

while a pressure correction is computed in the projection step of the projection-II method.

When  the  projection  method  is  applied  for  predicting  free  surface  flows,  there  is  an 

opportunity to use the hydrostatic part of pressure in the momentum equation in the first step in 

order to define the intermediate velocity. The hydrostatic pressure can be easily found. Therefore 

the pressure may be decomposed into a  sum of  the hydrostatic  pressure and hydrodynamic 

pressure.  Using  this  idea,  the  governing  equations  will  be  split  in  such  a  way  that  the 

hydrodynamic pressure is treated as a correction to the hydrostatic component. It is also possible 

to apply in the first stag not only the hydrostatic pressure gradients, but also the gradients of the 

hydrodynamic pressure from the previous time step. This approach is suitable especially for 

situations where  the hydrodynamic pressure is relatively large in comparison to the hydrostatic 

one.

3.3 Moving Free Surface Boundary

3.3.1 The Problem

For most of the hydro-environmental problems, the upper boundary of water domain is free to 

move. In general, the position of the free surface is neither steady nor known a priori and has to be 

determined during the computation. This fact leads to some difficulties in 3D and 2D-vertical free 

3-9



3 Review on Solution Strategies for 3D Free Surface Flow

surface flow problems, where the governing equations must be discretised in the vertical direction 

too. 

Specially, there are two specific difficulties. The first one is that one of the domain boundaries is 

unknown and must be solved as part of the solution, in spite of that the solution procedure itself 

needs to know the boundary position. Upper boundary conditions can be applied only when the 

free surface position is known. The barotropic pressure gradients caused by free surface slopes act 

as driving forces on the flow (especially in shallow waters). It makes the exact reproduction of 

free surface movements a crucial point in the modelling (Jankowsky, 1999).

The  second  problem is  that  a  variable  domain  must  be  discretised,  gridded  and  handled 

through the numerical solution. Handling unsteady grid or unsteady boundary positions has its 

own difficulties. The variable free surface not only defines the new computational geometry, but 

also influences the velocity and pressure fields through the boundary conditions. The kinematic 

and dynamic boundary conditions at the free surface have been discussed in chapter (2). The 

implementation of free surface boundary conditions is not as trivial as it would appear. If the 

position of the free surface were known, there would be little problem remains. The problem is  

that the location of the free surface must be computed as part of the solution and is not usually 

known in advance (Ferziger and Peric, 2002).

It must be noted that sometimes considerable non-linearity and instability problems can arise 

because of the effect of unsteady free surface on solution procedure. Therefore, it is a good idea 

to  use  the  implicit  values  (the  values  of  the  new time  step)  of  water  surface  elevation  in 

momentum equations1. This is the reason why in many numerical models the water surface is 

calculated before momentum equations (or implicitly with them) at each time step.

The problems described above do not exist with 1D and 2D horizontal problems, because they 

do not disretize the vertical dimension. For them, the position of water surface is one of the 

normal unknowns in the horizontal mesh to be solved. 

3.3.2 Allocating the Free Surface Position

There are several algorithms that can be used to allocate water surface in hydro-environmental 

problems with vertical discretisation (3D and 2DV). Some of them use boundary fitted grids and 

some other use a fixed grid, which extends beyond the free surface. 

The most common algorithms are as follows:

● Marker and cell (MAC) method,

1 Even if the water surface elevation, itself, has been calculated explicitly.
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● Volume of fluid (VOF) method,

● Level-set formulation method,

● Solving the kinematic boundary condition,

● Using depth integrated continuity equation, and

● Solving the shallow water equations.

Below is a brief review of each algorithm.

3.3.2.1 Marker and Cell (MAC) Method

The idea of Marker-and-Cell (or Marker-in-Cell) scheme is to introduce mass-less particles at 

the free surface or in the whole fluid volume at the initial time and following their motion in a 

fixed grid, which extends beyond the free surface. The shape of the free surface is determined by 

computing the fraction of each near-interface cell that is partially filled. This approach has been 

introduced by Harlow and Welch (1965). It can treat relatively complex situations. However, the 

computing effort is large, especially in three dimensions. In addition to solving the equations 

governing  fluid  flow,  one  has  to  follow the  motion  of  a  large  number  of  marker  particles 

(Ferziger and Peric,  2002).  The  MAC algorithm is  a  Lagrangian  method.  It  is  necessary to 

redistribute the particles evenly in all fluid cells whenever they lead to spread disproportionately 

(Jankowski, 1999). 

A great advantage of MAC method is the ability to handle complicated, general and arbitrary 

free surface problems: breaking surfaces; dam breaking or splash of a falling column of water;  

fluid  detachment  or  coalescence  (droplets);  or  to  simulate  filling  complex moulding shapes 

(Jankowski, 1999). However, it is a method for small scale problems. For large scale problems, 

such as common hydro-environmental problems, the resultant limitation in time step becomes a 

problem  (Ferziger and Peric, 2002).  A stability restriction, relating the time step to the spatial 

discretisation and to the free surface wave speed, inhibits this method from being applied to 

three-dimensional geophysical flows with a sufficiently fine grid to resolve the small scale non-

hydrostatic  component  of  the  flow  (Casulli  and  Stelling,  1998).  In  addition,  the  required 

number  of  particles  is  too  much  to  be  reasonable  for  large  scale  problems.  Figure  (3.1b) 

illustrates the approach of MAC method. 

3.3.2.2 Volume of Fluid (VOF) Method

With the VOF method, in addition to the conservation equations for mass and momentum, one 

solves an extra equation for the filled fraction of each control volume. The shape of the free 
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surface is determined by checking the fraction of each near-interface cell that is partially filled. 

This approach has been introduced by Hirt and Nichols (1981). The computation is performed on 

a fixed grid, which extends beyond the free surface. This method is more efficient than the MAC 

scheme and may be applied to complex free surface shapes including breaking waves. However, 

the free surface profile is not sharply defined; it is usually smeared over one to three cells. Local 

grid refinement is necessary for accurate resolution of the free surface (Ferziger and Peric, 2002). 

From the continuity equation, one can show that the evolution of the filled fraction of a cell is 

governed by the transport equation:

∂ccell
∂ t

div ccell u=0 (3.10)

where ccell  is the filled fraction of each cell and u  is the velocity field.

The VOF algorithm is an Eulerian approach. The critical issue in this type of method is the 

discretisation of the convective term in equation (3.10). Low-order schemes smear the interface 

and introduce artificial mixing of water and air. Therefore higher-order schemes are preferred. 

The VOF method is very attractive for small scale problems, but it enforces too small time step 

limitations in hydro-environmental engineering problems (Ferziger and Peric, 2002). 

Figure (3.1c) illustrates the approach of VOF method. There are several variants of the VOF 

method. The water surface line inside each cell is not simple to specify for all of them.

Figure 3.1. MAC and VOF methods (Jankowski, 1999)

3.3.2.3 Level-Set Formulation Method

Another class of interface-capturing methods is based on the level-set formulation, introduced 

by Osher and Sethian (1988). The surface is defined as the one, on which a level-set function 

equals to zero. Other values of this function have no significance. To make it a smooth function, 
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it is typically initialized as the signed distance from the interface. This function is then allowed 

to evolve as a solution of the transport equation (Ferziger and Peric, 2002): 

∂
∂ t
divu =0 (3.11)

where   is the mentioned function and u  is the fluid velocity field.

The advantage of this approach relative to the VOF method is that   varies smoothly across 

the interface while the volume fraction c is discontinuous there. Since    does not explicitly 

occur  in  any  of  the  conservation  equations,  the  original  level-set  method  did  not  exactly 

conserve mass. There are special treatment methods to enforce mass conservative (see Zhang et 

al., 1998) (Ferziger and Peric, 2002).

3.3.2.4 Solving the Kinematic Boundary Condition

It is possible to use the kinematic boundary condition at the free surface to trace the water 

surface level. The condition is as follows:

∂
∂ t
us

∂
∂ x
v s

∂
∂ y
−w s=0 (3.12)

The suffix s  indicates the velocity components at the free surface.

This approach needs the surface velocity components to be known. It may be obtained by 

extrapolation from the interior or by using the dynamic free surface boundary condition. The 

main  limitation  of  this  method,  like  any  other  surface-tracking  algorithm,  is  due  to  the 

mathematical requirement for the height function; it must be a single-valued function. These 

kind of methods cannot simulate complex cases such as wave breaking. Equation (3.12) is a 

pure advection equation.  Any suitable advection solver can be used for it.  For example the 

method of characteristics can be used. 

Equation (3.12) does not include any dissipative terms which may make the solution smooth. 

Therefore the solution is over-sensitive to small errors or imperfectly set boundary conditions. To 

overcome this problem, stabilising techniques for the free surface are needed1 (Jankowski, 1999). 

3.3.2.5 Using Depth Integrated Continuity Equation

The  most  common  approach  for  defining  the  elevation  of  water  surface  in  hydro-

environmental  modelling  is  to  solve  the  depth  integrated  form of  continuity  equation.  The 

kinematic boundary conditions at the water surface and bed are involved in this manner. This 

1 For example some kind of filtering method.
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procedure leads to an equation which includes the surface position and the gradient of horizontal 

velocities integral on the water column, giving as:

∂
∂ t
=∫

zb



∂ u∂ x dz∫zb


 ∂ v∂ y dz= ∂
∂ x ∫zb



u.dz ∂
∂ y ∫z b



v.dz (3.13)

This approach offers a simple and robust method for simulating free surface flows. It restricts 

to  a  single  valued  function  for  the  water  level.  Thus  a  wide  class  of  flows,  e.g.  breaking 

surfaces, bubbles, and drops cannot be simulated via this method. 

Equation (3.13) is a conservative form of the free surface equation (the kinematic BC). It 

brings a method of finding the free surface while automatically satisfying the mass conservation 

criterion (Jankowski, 1999).

There  are  several  ways  to  solve  equation  (3.13),  including  explicit,  semi-implicit  and 

implicit1. Following is a brief description of these methods.

a) The simplest way is an explicit solution, which is straightforward, but restricts the maximum 

value of time step. 

b) It  is  also  possible  to  solve  equation  (3.13)  semi-implicitly.  This  method  is  based  on 

computing [uk] and [vk] velocity vectors (for water column) from x- and y-momentum equations, 

then inserting them into the discretised form of equation (3.13). The momentum equations are 

discretised in such a way that only water level (η) appears implicitly (of time step n+1) at the 

left  hand side  of the resulting equation.  All  other  terms are explicit  (from time step n) and 

known. They are advection terms, hydrodynamic component of pressure,  etc.  For this to be 

achieved, the following conditions need to be satisfied:

1- The momentum equations must be written in the vector form (for each water column), 

2- The water level gradient2 and all vertical gradient terms must be discretised implicitly, and

3- All the other terms must be discretised explicitly. 

The  resulting  equation  for  water  level  is  solved  implicitly.  The  semi  implicit  method 

mentioned above has been introduced by Stansby (1997) and Stansby and Zhou (1998) for 2DV 

modelling.  They  used  a  tri-diagonal  solver  for  the  resulting  implicit  equation.  Casulli  and 

Stelling (1998) used the same method for 3D modelling. They used a preconditioned conjugate 

gradient method for solving the resulting implicit equation. 
1 Anyhow, the values of η and vertical position of the σ-coordinate mesh points is taken from the previous time step.
2 What is doing this term (water level gradient) in a 3D x- or y-momentum equation? It is there because the whole 

pressure has been split into hydrostatic and hydrodynamic parts. The hydrostatic part has been written as a function 
of distance from the water level. Thus the horizontal gradient of the whole pressure produces horizontal gradient of  
water level.
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c) It is also possible to define water level implicitly. This approach is based on the fractional step 

method to simplify momentum equations before combining them with equation (3.13). There 

are also some other interesting algorithms, which use equation (3.13) among others to eliminate 

velocity or pressure and derive a system of equations purely for pressure or velocity. They called 

pressure-elimination or velocity-elimination methods. The unknowns in the resulting equations 

are not scalar values. They are vectors of pressures or horizontal velocities. Each vector involves 

the pressure or velocity values for all the computational cells in a water column. The resulting 

system of equations is in a block tri-diagonal form for the 2DV problems (Namin, 2003). For 

more information, see Namin et al. (2001) and Namin (2003). 

3.3.2.6 Solving Shallow Water Equations

Another way to define water surface, is to solve the 2D shallow water equations at the start of 

each time step. This approach is simple and suitable for those 3D (or 2DV) models that assume 

the  pressure  field  to  be  hydrostatic.  For  each  shallow  water  simulation,  the  3D  velocity 

components  are  integrated  numerically  along  the  water  column  to  define  depth  averaged 

velocities at the recent time step. There are many efficient numerical methods for modelling 

shallow water flows, which can be used in this regard. It is not necessary for the 2D model to 

have the same time step,  as the 3D model.  This  approach is  not suitable  for complex flow 

problems.

3.3.3 Handling Variability of Solution Domain

Three main approaches are used to deal with the problem of variable solution domain:

● Eulerian approach,

● Lagrangian approach,

● Arbitrary Lagrangian-Eulerian approach (ALE).

With Eulerian approach, the numerical model grids are fixed and steady, except the top layer. 

The thickness of a cell at the top layer is generally variable in time and space in order to define 

the unsteadiness of the free surface. Some numerical models (for example MIKE3-Structured) 

use the Eulerian approach. In places where water level variation is considerably large relative to 

the  water  depth,  this  approach does  not  produce  accurate  vertical  velocity  profiles.  This  is 

especially true for the situation when wind induced currents are not negligible. Shallow coastal 
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bays  (or  channels)  at  windy areas  with  high  tidal  variations  are  beyond  the  scope  of  such 

models.

With the Lagrangian approach, the computational points move with the flow. The numerical 

formulations of governing equations thus become different from what was described in chapter 

(2). Specifically, the advection terms disappear. 

A pure Lagrangian approach is an attractive method for particle tracking within a defined 

velocity field. However, it may lead to distorted grids when it is used for solving the Navier 

Stokes equations. Because it is the velocity field that controls the grid shape. 

The arbitrary Lagrangian-Eulerian (ALE) approach is the method of choice for most hydro-

environmental free surface models. With the ALE, the numerical mesh moves with an arbitrary 

velocity which is different from the fluid velocity. The equations are formulated and solved in a 

transformed co-ordinate system. The mesh must be adapted to the new domain geometry at each 

new time step. There are several kinds of ALE methods for hydro-environmental free surface 

flow problems. Most of them restrict grid movement to the vertical direction. They track the 

spatial variations of bed and water surface and adapt themselves to free surface variations (and 

gradual variations in bottom topography). In this way, the solution domain remains constant and 

rectangular while the real physical domain is variable. The ALE method for vertical grid may be 

used jointly with  either a structured or an unstructured horizontal  mesh. There are  different 

kinds of vertical moving ALE systems. With geophysical flows, the main categories are:

● Sigma (σ) coordinate grid system,

● Non-uniform extensions of σ system (for example Gamma grid system),

● Gradient-Adaptive-Sigma grid system.

The σ-coordinate is one of the most common coordinate systems for 3D and 2DV free surface 

flow problems. In this coordinate system, the vertical position of the computational nodes in real 

domain change (with the time-variable free surface) in such a way that the relative vertical 

distances between them remain constant. This method was first presented by Phillips (1957). 

The σ-coordinate  system is  sufficient  for  many engineering problems.  However,  due to  its 

uniform grid distribution, it has shortcomings when the vertical profile of the unknown quantity 

involves sharp changes. Two such examples are non-cohesive suspended sediment concentration 

and wind induced velocity profile. One solution is to use a vertical distributor function to refine 

the mesh at specific vertical positions.  γ-coordinate system is such an example which has been 

developed to increase vertical resolution near the water surface (Huang and Spaulding, 1995). 

3-16



3 Review on Solution Strategies for 3D Free Surface Flow

Figure (3.2) illustrates  σ- and  γ-coordinate system of grids in comparison with some Eulerian 

meshes.

Multi-Layer Model 
(Kawahara, 1983)

σ -Grid system
(Philips, 1957)

γ -grid system 
(Huang & Spauding, 1995)

Multi-Layer Model 
(Kawahara, 1983)

Multi-Layer Model 
(Kawahara, 1983)

σ -Grid system
(Philips, 1957)
σ -Grid system
(Philips, 1957)

γ -grid system 
(Huang & Spauding, 1995)

γ -grid system 
(Huang & Spauding, 1995)

Figure 3.2. Stretches from σ-, γ- and Eulerian meshes (after Lu, 2003)

Using the vertical distributor function extends the applicability of  σ-coordinate systems to 

more complex problems. But still the grid mapping is fixed in time and space. It means that the 

vertical position of sharp gradients must be known or to be estimated before a simulation starts. 

In  addition,  it  must  remain  fixed during  the solution  and be the  same everywhere.  A more 

flexible approach is a vertical gradient adaptive σ-coordinate system (GAS), which has been 

proposed by Wai and Lu (1999). 

The GAS method takes into account the gradient variation of a selected variable and uses it as 

an additional controlling factor in the σ-coordinate transformation. The transformed grid spacing 

automatically adjusts in time and space, according to the local solution gradient of the selected 

variable, and converges in the high gradient regions for better resolution. The transformation 

rules for GAS coordinate system are as follows (Wai and Lu, 1999):

tGAS=t
xGAS=x
yGAS= y

zGAS=
 z−z bμ
−zbΜ

zGAS∈[0,1]

(3.14)

Where:

μ=∫
z b

z  β∣∂ λ∂ z∣γ∣∂2 λ
∂ z2∣dz= f t , x , y , z  (3.15)
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Μ=∫
z b

  β∣∂ λ∂ z∣γ∣∂2 λ
∂ z 2∣dz= f t , x , y  (3.16)

The transformation rules for the GAS system are similar to their correspondents for the σ-

coordinate  system,  except  the  coefficients  μ  and M.  The transformed form of  the  governing 

equations keeps the same as for σ transformation. The coefficients μ and M control the vertical 

distribution of the grid nodes. They are functions of the first and second vertical derivatives of an 

interested quantity, λ, which can be sediment concentration, velocity, temperature or anything else. 

Coefficients  b  and  g  are  weighted  parameters,  which  affect  the  grid  distribution.  The  GAS 

transformation returns to σ transformation when these parameters are zero (Wai and Lu, 1999).

Figure (3.3) illustrates a snapshot of a GAS grid generated in an unsteady and complicated 

suspended sediment transport study, where two sediment sources exist (inflow and bed).

Any grid system can be used directly or as a transformation from the real domain into the 

solution domain. In this way, the governing equations are transformed from the real domain into 

a  fixed  solution  domain  before  discretisation  and  numerical  solution.  By  direct  use,  the 

governing equations are discretised and solved directly in the real domain. A combination of 

these to choices is also possible (for example see Stansby and Zhou, 1998). 

Applying the σ-coordinate transformation to diffusion terms leads to lengthy and complicated 

expressions,  while  advection  terms  transform without  overhead.  The  following  relationship 

illustrate the transformation rules for the first and second gradients:

∂
∂ x
= ∂
∂x
∂ z
∂ x

∂
∂ z (3.17)

∂2

∂ x2=
∂2

∂ x22 ∂ z
∂ x

∂2

∂ x ∂ z
 ∂2 z
∂ x ∂ x

∂
∂ z
∂ z
∂ x

∂2 z
∂ z ∂ x

∂
∂ z
 ∂ z∂ x 

2
∂2

∂ z2 (3.18)

Equations (3.17) and (3.18) show that the transformed form of the first gradient includes only 

two first gradient terms and does not include cross-derivatives, while the transformed form of 

the second gradient includes several composite terms with complex cross-derivatives. 

In  several  models  the  horizontal  gradient  of  non-hydrostatic  pressure  and  the  horizontal 

diffusion are not transformed into the σ coordinate system. They are discretised in the Cartesian 

frame to avoid large errors, particularly near a steep bed. These errors result from the summation 

of  large terms of  opposite  sign  in  the  σ-coordinate  transformation.  The resulting  truncation 

errors could cause spurious flows, particularly near the bed (Stansby and Zhou, 1998).
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Figure 3.3. Example of GAS mesh (Wai and Lu, 1999)

One disadvantage of the σ-, γ- and GAS-mesh systems is that the number of vertical layers is 

the same for deep and shallow parts of the solution area. Thus the vertical layers near the bed 

may be less than necessary while at the shallowest parts, they are too much. Special strategies 

are also needed for flooding and drying areas.

3.4 Pressure Solution

As  mentioned  earlier  there  are  several  approaches  for  pressure  treatment,  such  as  the 

hydrostatic assumption, artificial compressibility, and pressure-correction relationships. The last 

group are based on combining momentum and incompressibility equations. Projection methods, 

the choice of this research, also need to define pressure or some kind of pseudo-pressure field 

through combining momentum and incompressibility relationships. This procedure leads to a 3D 

Poisson equation for pressure which must be solved implicitly at each time step. Solving such a 

3-19

Conc.
1.40+
1.27 to 1.40

1.15 to 1.27
1.02 to 1.15
0.89 to 1.02

0.76 to 0.89
0.64 to 0.76
0.51 to 0.64

0.38 to 0.51
0.25 to 0.38
0.13 to 0.25
0.00 to 0.13

Conc.
1.40+
1.27 to 1.40

1.15 to 1.27
1.02 to 1.15
0.89 to 1.02

0.76 to 0.89
0.64 to 0.76
0.51 to 0.64

0.38 to 0.51
0.25 to 0.38
0.13 to 0.25
0.00 to 0.13

1.40+
1.27 to 1.40

1.15 to 1.27
1.02 to 1.15
0.89 to 1.02

0.76 to 0.89
0.64 to 0.76
0.51 to 0.64

0.38 to 0.51
0.25 to 0.38
0.13 to 0.25
0.00 to 0.13



3 Review on Solution Strategies for 3D Free Surface Flow

relationship  in  a  3D domain  is  time-consuming1.  Therefore,  it  is  important  to  be  aware  of 

efficient solution algorithms. 

3.4.1 The Pressure Equation

The Poisson equation  for  the  pressure  has  been  derived  in  section  (3.2.6)  as  part  of  the 

projection method. However, it may be derived directly too. Assuming that the flow velocity is 

known, it is possible to define the pressure field from the velocity field. The basic procedure for  

deriving such a relationship is as follows:

1- Differentiate the u momentum equation with respect to x, the v equation with respect to y,  

and the w equation with respect to z. 

2- Change the position of time and space derivations in the first term of each new equation.

         For example: ∂
∂ x ∂u∂ t  ∂

∂ t ∂ u∂ x  (3.19)

3- Add the three equations to each other.

4- Use the continuity equation to simplify the resulting equation.

        For example ∂
∂ t ∂ u∂ x∂ v∂ y∂w∂ z = ∂∂ t 0=0 (3.20)

Another way is to discretise the time derivatives in the momentum equations, derive new 

relationships  for  un+1,  vn+1 ,  and  wn+1   and  then  insert  them in  the  discretised form of  the 

continuity equation. 

The resulting relationship is as follows (Ferziger and Peric, 2002):

∂
∂ xi  ∂ p∂ x i =− ∂

∂ x i [ ∂∂ x j ui u j−i j ]
∂F i
∂ x i

∂
2
∂ t 2 (3.21)

For the case of constant density and viscosity this equation can be simplified further; as the 

viscous and unsteady terms disappear by virtue of the continuity equation, leaving: 

∂
∂ x i ∂ p∂ x i =− ∂

∂ x i [∂ uiu j ∂ x j ] (3.22)

The Laplacian operator in the Poisson pressure equation is  the product  of the divergence 

operator originating from the continuity equation and the gradient operator that comes from the 

momentum  equations.  The  outer  derivative  in  equation  (3.21)  stems  from  the  continuity 

1 Solving  Poisson's  equation  for  the  pressure  correction  takes  most  of  the  time  in  computing  non-stationary 
incompressible viscous flows (Wesseling, 2001).  The main source of computational  expense in simulations for 
incompressible flows is due to the solution of a Poisson equation for pressure (Yang and Voke, 2000). ...
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equation  while  the  inner  derivative  arises  from  the  momentum  equations.  In  a  numerical 

approximation, the approximation of the Poisson equations must be defined as the product of the 

divergence  and  gradient  approximations  used  in  the  basic  equations.  A violation  of  this 

constraint would lead to dissatisfaction of the continuity equation. Hence the outer and inner 

derivatives  may be  discretised  using  different  schemes.  To maintain  consistency among  the 

approximations used, it is best to derive the equation for the pressure term from the discretised 

momentum and continuity equations rather than by approximating the Poisson equation directly. 

Similarly,  the  right  hand  side  of  the  pressure  equation  must  be  approximated  in  a  manner 

consistent with their treatment in the momentum equations they are derived from (Ferziger and 

Peric, 2002).

Equation  (3.21)  shows the  normal  Poisson equation  which  relates  pressure  to  other  flow 

parameters. The right hand side of Poisson equation may be different for different pressure-

treatment algorithms. In particular, there are different projection methods with each one using its 

own  set  of  estimations,  procedures  and  fractioning  methods.  Therefore  pressure-updating 

formulas are not always the same. Sometimes other names such as pseudo-pressure are used. 

The common fact for different projection methods is that some kind of 3D Poisson equation 

must be solved to define the pressure field.

3.4.2 Poisson Solvers

The Poisson equation is a linear elliptic equation. It is linear because the flow variables in the 

right hand side are known from time- or fraction-step calculations. The discretised form of the 

equation is applied for each computational point. It leads to a linear system of equations. There are 

different direct and iterative solution algorithms for such a system on structured and unstructured 

grids. Direct matrix solvers such as the LU decomposition and tri-diagonal algorithm (Thomas 

Algorithm, TDMA) are useful and very efficient (TDMA) for 1D problems. There are also 5- or n- 

or even block-diagonal matrix solvers which are efficient for 2DV problems on structured grids. 

However there is not any direct matrix solver suitable for real engineering problems in 3D1. The 

algebraic  systems for unstructured-mesh 3D engineering problems are usually very large and 

extremely sparse. Iterative matrix solvers are the only efficient algorithms for such systems2.

1 Sometimes it is possible to break-down a 3D problem on structured mesh into several smaller 2D problems.
2 With one exception: the equation for the pressure correction can often be solved very efficiently by so-called fast  

Poisson solvers, based on Fourier transformation and/or cyclic reduction (Wesseling, 2001). This algorithm does 
not work with unstructured grids.
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Several iterative solvers have been proposed by researchers. Here is a list of some of the most 

widely used ones:

● Jacobi’s method,

● Gauss–Seidel method,

● Successive over relaxation (SOR) and Symmetric SOR,

● Incomplete LU decomposition (Stone's method), 

● Adding time derivative and use unsteady problem algorithms (like ADI),

● Newton and quasi-Newton methods,

● Conjugate gradient method (CG),

● Bi-conjugate gradient method,

● Preconditioned conjugate gradient method (PCG), 

● Nested iteration method,

● Multi Grid Methods,

● Generalized minimal residual method (GMRES)

● Other less famous methods or sub-methods.

Some of these algorithms are restricted to symmetric matrices and some are more general. 

Most of the methods need the matrix to be positive definite. The efficiency of iterative methods 

varies. Rapid convergence of an algorithm is the key for effectiveness. This behaviour measures 

by the computing work (W) that each algorithm needed for convergence.  Generally, iterative 

methods  have  W=Order(Na)  where  a>  1  and  N is  the  number  of  grid  points.  The  optimal 

efficiency for an iterative algorithm is W=Order(N). Table  3.1 shows the efficiency of some 

algorithms for a steady state 2D Poisson problem. Unsteady problems are considered simpler, 

because  they  often  come  with  a  good  first  approximation  from  the  previous  time  step 

(Trottenberg et al., 2001).

The CG method is a fast and efficient iterative solver (Kelley, 1995), but it is applicable only 

to symmetric and positive definite matrices. Non-symmetric system solvers are also needed in 

hydrodynamic modelling. There are extended versions of the CG method applicable to non-

symmetric systems, such as the bi-conjugate gradient (BI-CG) method (Fletcher, 1976) and the 

bi-conjugate gradient stabilised (BI-CGSTAB) method (van der Vorst, 1992). The BI-CGSTAB 

method is  a variant  of the BI-CG method that  improves irregular convergence rates so that 

residuals can be reduced smoothly. 
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A brief description about conjugate gradient, preconditioned conjugate gradient and multi-grid 

methods is given .

Table 3.1. Effectiveness of some iterative solvers (2D Poisson), after Trottenberg et al, 2001

Method Number of operations
Gaussian elimination (band version) Order (N2)
Jacobi iteration Order (N2 log(ε))
Gauss-Seidel iteration Order (N2 log(ε))
Successive over-relaxation (SOR) Order (N3/2 log(ε))
Conjugate gradient (CG) Order (N3/2 log(ε))
ADI Order (N log(N) log(ε))
Multigrid (iterative) Order (N log(ε))
Multigrid (FMG) Order (N)

3.4.3 Conjugate Gradient Method

CG is the most popular iterative method for solving large systems of linear equations with a 

symmetric, positive-definite sparse matrix. The main advantages of conjugate gradient method 

are that it uses relatively little memory for large scale problems and fast at each time step. It 

typically converges more slowly than Newton or quasi-Newton methods, but convergence is 

guaranteed. 

Like many other  global  solvers,  the conjugate gradient  method is  based on converting the 

original system of equations into a minimization problem. It is an improvement to the steepest 

descents algorithm, which is a natural way to find the minimum value via following the opposite 

to the gradient from an initial guess (similar to following the steepest downward path as a starting 

point on a curved surface). Then search for the lowest point on that direction and use the new 

position as the starting point for the next iteration until convergence. In this way, convergence is 

guaranteed, but for a real problem it is slow (Ferziger and Peric, 2002). The more ill-conditioned 

the matrix (that is, the larger its condition number1), the slower the convergence of the method 

(Shewchuk, 1994). The idea of CG is to minimize a function with respect to several directions 

simultaneously while searching in one direction at a time. Each new search direction is required to 

be conjugate to all the preceding ones (Ferziger and Peric, 2002). This algorithm always produces 

a new linearly independent search direction until convergence. The convergence of CG is much 

1 Matrix condition number = its maximum eigenvalue / its minimum eigenvalue.
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quicker than that of steepest descent  (Shewchuk, 1994).  Nevertheless, it depends on the condition 

number of the matrix concerned. 

The residual, which must be determined during each iteration. It may be calculated via the normal 

and accurate relationship or through a fast estimating formula. The fast recursive formula is usually 

used to speed up the procedure. After every selected number of iterations, the exact residual may be 

recalculated in order to remove accumulated floating point error (Shewchuk, 1994). 

3.4.4 Preconditioned Conjugate Gradient Method

The CG method can be improved by replacing the problem by one with the same solution but 

a  smaller  condition  number.  This  is  called  preconditioning.  One  way  to  precondition  the 

problem is  to  pre-multiply  the  equation  by another  carefully  chosen  matrix.  Therefore,  the 

matrix equation (M-1 A x = M-1 b) will be solved instead of (A x = b).

The pre-conditioner matrix must be chosen carefully in such a way that:

1- The condition number of (M-1 A) is much smaller than the condition number of (A) itself.

2- The new matrix (M-1 A) remains symmetric. 

Finding  such  a  matrix  is  possible  for  instance,  by  the  so  called  incomplete  Cholesky 

factorization or incomplete LU decomposition (Stone's method) (Wesseling, 2001; Ferziger and 

Peric, 2002; Shewchuk, 1994).  For most of the iteration methods (Krylov subspace types), the 

choice of a good pre-conditioner seems to be more crucial for efficiency than the choice of a 

particular iterative method (Wesseling, 2001). 

3.4.5 Multigrid Method

The first studies investigating multigrid method in a strict sense were those by Fedorenko 

(1964) and that of Bakhvalov (1966). Multigrid is more a strategy than a particular method. The 

basis  for this  strategy is  an observation about iterative methods,  whose rate of convergence 

depends on the eigenvalues of the iteration matrix. Some iteration methods produce errors that 

are smooth functions of the spatial coordinates, because after a few iterations the rapidly varying 

components of the error may be removed. When the error field is smooth, the update can be 

computed on a coarser grid. In this way, the dimension of the problem is greatly reduced and 

each iteration costs considerably less time. Furthermore, iterative methods converge much faster 
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on coarser grids. It is possible to use more than one grid coarsening level to gain more benefit  

from the multi-grid method. 

A two-grid multigrid algorithm involves the following steps (Ferziger and Peric, 2002):

● On the fine grid, perform iterations with a method that gives a smooth error,

● Compute the residual on the fine grid,

● Restrict the residual to the coarse grid (smoothing, filtering, restricting),

● Perform iterations of the correction equation on the coarse grid,

● Interpolate the correction to the fine grid (prolonging),

● Update the solution on the fine grid, 

● Repeat the entire procedure until the residual is reduced to the desired level. 

Different methods are possible for restricting and prolonging. It is also possible to use more 

than one coarsening steps, which opens different opportunities for going back and forth between 

the grids. Therefore several versions of multi-grid are possible.  Figure (3.4) illustrates some 

possible multigrid compositions for two and three level coarsening.

Figure 3.4. Grid levels for the V and W cycles for 2 and 3 levels
(after Knabner and Angermann 2003)

3.5 Summary

The major difficulties of 3D numerical modelling  of free surface flows  and their  solution 

algorithms have been presented in this chapter. The problem of pressure treatment has been 

described and several  widely used  solutions have been presented. The projection method has 

been  selected  as  the  solution  for  the  present  study  and  is  described  in  more  details.  The 

projection method is based on the fractional steps algorithm, which has been used widely in the 
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present study for 3D and 2D hydrodynamic modelling and also for implicit integration of the 

2D/3D models.  Some existing  algorithms for  allocating the  free surface  position have  been 

reviewed. The depth integrated continuity equation will be used in the present study which is a 

simple and robust method for defining the free surface. 

The sigma-coordinate and its vertical gradient adaptive version GAS (Wai and Lu 1999) have 

been reviewed in this chapter in order to address the variability of the solution domain. These 

coordinate  systems  allow  the  mesh  nodes  to  move  vertically  while  they  are  fixed  in  the 

horizontal plane. The GAS coordinate system has been used in the present study. Using this 

system, the transformed grid spacing automatically adjusts in time and space according to the 

local solution gradient of the selected variable. 

The Poisson pressure equation and some large matrix solvers have been reviewed in the rest 

of the chapter. Efficient matrix solvers are needed not only for the Poisson pressure system of 

equations, but also for the implicit free-surface solution procedure.  In the present study, the 

preconditioned  conjugate  gradient  method  and  the  preconditioned  bi-conjugate  gradient 

stabilised method will be used for the hydrodynamic pressure and the free surface treatment 

respectively.  The  generalized  minimal  residual  method  is  used  for  situations  where  the 

mentioned algorithms are not successful.
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4 Review of Discretisation Algorithms

4.1 Introduction

The governing equations for the flow and the advection diffusion phenomenon generally do not 

have an analytic solution.  Thus they are discretised into a system of algebraic equations with  a 

finite number of unknowns as the solution quantities at the finite number of locations in space and 

time  (for  example  at  nodes,  elements  or  cells).  The  system  of  equations  may  be  solved 

numerically  by  computer.  There  are  several  discretisation  frameworks  and  algorithms  in  the 

literature.  The  stability,  accuracy,  conservativeness,  shape  preservation  and  computational 

efficiency are important  properties that a discretisation scheme  ought to  satisfy to a sufficient 

degree. The positivity of the method is also essential in the case of mass transport problems. This 

chapter presents a general review of the discretisation frameworks and algorithms. 

The governing equations may be fractioned into distinguished parts in order to discretise each 

fraction with the most efficient algorithm. Therefore the splitting approach will be described 

before the discretisation methods. Practical hydro-environmental problems are usually advection 

dominated.  Traditional discretisation methods are not difficulty-free for advection dominated 

flow.  There  are  many  advection  dominated  discretisation  algorithms  in  the  literature.  This 

chapter includes a general review of these algorithms. 

Interpolation is an essential part for most of the numerical algorithms. When it comes to the 

semi-Lagrangian algorithm, the interpolation accuracy and stability become more important. 

Linear interpolation is  not sufficient  for the advection dominated problems while  traditional 

higher order schemes are at  a  risk of instability. On the other hand, sophisticated interpolation 

procedures are relatively straightforward on a structured grid. However, this is not the case when 

an unstructured  grid  is  used.  This  chapter  includes  a  short  review  on  several  unstructured 

interpolation procedures that have been proposed in the literature. 

Wetting or drying may happen at part of the solution area. Numerical simulation of such an area 

needs special attention. This chapter includes a short review of several handling methods in this 

regard. 
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4.2 Splitting Approach

The  governing  equations  of  fluid flow  and  mass  and  solute  transport  involve  different 

physical processes. The main processes are the advection, diffusion, pressure influence, Coriolis 

effect and input (or output) as source terms. Each process has its own behaviour, length-scale 

and time-scale.  For some hydro-environmental  problems a process may  even  have different 

scales  in  the  vertical  and  the  horizontal  directions.  The  numerical  characteristics  and  the 

optimum solution  methods  for  the  mentioned  processes  are  not  the  same.  The  method  of 

fractional steps (introduced by Chorin, 1968 and Yanenko, 1971) makes it possible to decouple a 

problem into consecutive smaller and easier stages and to solve each stage via a most efficient 

numerical algorithm. 

The idea  of  the  fractional  steps  method may be  used  in  several  ways.  The algorithm of 

projection  method,  introduced  by  Chorin  (1968)  for  solving  the  3D  incompressible  flow 

problem, is an example of the fractional steps method. The directional splitting algorithm is 

another  example which breaks  a 2D or 3D problems into two or three 1D problems over a 

structured grid. The fractional steps method is also named the operator splitting algorithm when 

it is used for separating the physical processes such as advection, diffusion and so on. Equation 

(4.1) illustrates a typical operator splitting algorithm:

∂ f
∂ t
=
f n1− f diffusion

 t
remaining part


f diffusion− f advection

 t
diffusion part


f advection− f n

 t
advection part

(4.1)

where f n  stands for the solution at the previous time step, f advection  stands for the solution of the 

advection part of the governing equation,  f diffusion  stands for the solution of the diffusion part, 

and  f n1  stand for the solution at the new time step. Some parts of the source terms may be 

involved in the diffusion and advection steps.

The fractional steps method may be used along with the semi-implicit time marching (for 

example  see  the  difference  between  the  versions  I  and  II  of  the  projection  method).  The 

fractional steps algorithm used for 3D incompressible modelling is sometimes a combination of 

operator  splitting  (decoupling  the  pressure  from  the  velocity)  and  directional  splitting 

(decoupling the vertical diffusion from the horizontal diffusion) methods.

The order of time accuracy for a fractional step algorithm depends on how it moves from the 

known time step up to the new time step. For example the following algorithm is of the first order:
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∂ f
∂ t
= f n1− f flux terms

 t
source terms part

 f flux terms− f n

 t
advectiondiffusion part

(4.2)

and the following algorithm is of the second order:

∂ f
∂ t
= f n1− f flux terms

 t /2
source terms part repeated

 f flux terms− f source terms *

 t
advectiondiffusion part

 f source terms *− f n

 t /2
source terms part

(4.3)

There are several choices for splitting the governing equations into smaller stages. However 

the robustness of the overall behaviour must be taken into account. The optimum algorithm 

depends on the behaviour of the problem in hand. 

Some of the fractional steps algorithms define the horizontal and vertical velocities jointly and 

some  others  compute  the  vertical  velocity  in  a  separate  stage.  Some  of  them  handle  the 

advection and diffusion terms jointly and some others breakdown them into different stages. It is 

common to handle all of the source terms in the diffusion phase and leave the advection phase to 

be free of force, in order to make a characteristic method more robust at the advection stage. The 

barotropic  part  of  the  hydrostatic  pressure  (the  free  surface  slope)  may be  included  in  the 

diffusion step. It is usually more effective on the horizontal velocity than the diffusion effect, 

except for the baroclinic currents and the wind induced currents where the vertical diffusion 

dominates. An implicit discretisation of the vertical diffusion and the barotropic pressure terms 

is  crucial  in order to  use a reasonable and practical  time step.  Some of the fractional  steps 

algorithms  split  the  pressure  term into  the  hydrostatic  and  hydrodynamic  parts,  with the 

hydrostatic part  being solved  in the first  step and the hydrodynamic part  later.  Some others 

involve also the explicit values of the hydrodynamic pressure in the first  step. The splitting 

algorithm has been used extensively in the present study. 

4.3 Discretisation Frameworks

The most common discretisation frameworks are the finite difference method (FD), the finite 

volume method (FV), the finite element method (FE) and the semi-Lagrangian characteristic 

method for advection. There are also other approaches such as the boundary element and the 

spectral  method that are  less common in the hydro-environmental modelling field. The aim of 

each method is to discretise the governing equations (the differential form or the integral form) 

relevant to a continuous problem into a discrete problem which can be solved using a computer.
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The finite difference method (see Abbott and Basco, 1989) is usually based on the structured 

grid and is most efficient when the spacing is equidistant with quadrangle computational cells. 

The problem domain is covered by a grid of nodal points and the components of the governing 

equations are approximated using Taylor series expansions The FD method does not guaranty 

the mass conservation naturally. The goal is to satisfy the differential form of the governing 

equations at the grid points to some degree. It is possible but not straightforward and maybe 

optimum to extend the FD method to the unstructured 2D/3D grids. Other numerical algorithms 

usually use the FD method for the time discretisation. 

In the the FE method (see Zienkiewicz and Taylor, 2000), the local approximation is  often 

substituted  into  an  appropriately  weighted  integral  of  the  governing  equations  (the  weak 

formulation). The integrals are evaluated in such a way to minimise a residue parameter.  The 

domain is covered by a mesh of elements and the terms in the governing equations estimated in 

terms of functions that interpolate the nodal values over the elements. The FE method usually is 

based on the unstructured computational grid. The mass conservation in the FE method can be 

secured just in a global system.

The aim of the finite volume discretisation method (see Versteeg and Malalasekera 1995) is to 

balance the fluxes between arbitrarily chosen control volumes through their  boundaries.  The 

idea is to satisfy the integral form of the conservation law(s) to some degree of approximation 

for each control volume. This method can be adapted efficiently to the unstructured grids which 

is suitable for complex geometries. The FV method is commonly treated as a natural method for 

the fluid mechanics, because it is based directly on the flow properties. This method can perform 

very good conservative properties in the flow field.  The FV method is usually based on the 

unstructured computational grid. The FV method can guarantees mass conservation at the local 

control volume level. Most of the FV methods use the divergence theorem in order to convert 

the over-cell gradient integration into over-face integrations. Several estimation algorithms have 

been proposed in the literature in order to define the cell-face values from the cell-averaged or 

the cell centred ones. Some of the FV methods use finite element shape functions in this regard. 

They are called hybrid finite volume finite  element  algorithm or sometimes control volume 

finite element (CVFE) algorithms. The last name had been used in some early papers also as the 

finite  volume  method  on  the  unstructured-grid.  The  hybrid  finite  volume  finite  element 

algorithm has been used in the present study for the Eulerian parts of the solution algorithm.
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The  governing  equations  are  mostly  solved  under  the Eulerian  framework  in  which  the 

computational  grid is  fixed.  Even if  the grid points are  allowed to move vertically (the    

coordinate approach) the governing equations may be transformed into the   coordinate system 

and  discretised  on  the  fixed  grid.  There  are  many  sophisticated  Eulerian  algorithms  for 

simulating the hydrodynamic processes. However, the time step is restricted to certain values of 

Courant number for such models, even  for the implicit  algorithms.  For the explicit schemes 

schemes Courant number is generally restricted to  be less than one  (because of the stability 

condition). On the other hand, a large Courant number results in a decrease in the accuracy of 

the numerical schemes. The Lagrangian approach is another framework to solve the governing 

equations. In this  approach, the computational grid moves along the fluid trajectories or the 

characteristic lines (they are the same for the pure advection). This approach is a natural idea for 

the pure advection problem. However the movement of the computational points along with the 

fluid  particles  distorts  the  grid.  Another  approach  is  the  Lagrangian-Eulerian or  the  semi-

Lagrangian  framework  (Donea  1983,  Healy  and  Russell  1993) in  which  the  computational 

points  of  an  Eulerian  grid  are  tracked  backward  along  the  fluid  particle  trajectories  or  the 

characteristic  lines  just  for  one  time  step  in  order  to  form  a  Lagrangian  grid.  Then  the 

information  obtained  from the previous time step is projected from the Eulerian grid to the 

Lagrangian one. This procedure is repeated for each time step. A forward-tracking version of the 

approach is also possible. By using the semi-Lagrangian method, the Courant number restriction 

is  eliminated,  as  is  the  case  for  the  Lagrangian  method,  while  the  risk  of  grid-distortion 

disappears. However, some kind of interpolation or data-reconstruction is needed at each time 

step. The interpolation procedure must be handled with such an accuracy that eliminates the 

cumulative  damping  effect  as  much  as  possible.  When  the  simulation  is  long,  the 

conservativeness  of  the  scheme  becomes  crucial.  There  are  several  conservative  semi 

Lagrangian methods in the literature. Section (4.4) gives more description in this regard.

The present  model uses  the semi-Lagrangian method for  the  advection stage  and the  FV 

method (with the finite element shape functions) for the diffusion step and the source terms. 

Indeed the FE method is at least as good as FV for the pure diffusion  problem.  Additionally, 

some highly effective source terms such as the barotropic pressure term, are also handled in the 

diffusion step in the present algorithm. Therefore the local mass conservation property of the FV 

method is an advantage. 
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Based on the geometric shape of control volumes and the position of variables, a FV model 

grid  may be  cell-centred, cell-vertex, or mixed. The later one means that some quantities are 

cell-centred and some others are cell-vertex. The most important subjects with the FV method 

are  the  approximating scheme of  the boundary integrals  (numerical  fluxes),  the  distribution 

function of each quantity within the cell or the numerical estimation procedure for the quantity 

gradients over the cells,  the method of dealing with discontinuities and the oscillations,  the 

numerical estimation of the source terms and the time discretisation. 

Most of the numerical models use the finite difference method for the time discretisation. 

There are also mixed space-time algorithms which are less common. In many existing models 

the time step is the same for all of the grid points at each time advance (global time step). There 

are  also time discretisation algorithms based on the local time stepping approach. The time 

discretisation may be explicit,  implicit  or semi-implicit.  The explicit schemes do not need a 

matrix solver to solve a system of equations.  However their  time-step is  restricted with the 

Courant number less than one because of stability problems (except for the semi-Lagrangian 

methods). The time accuracy of the explicit schemes may be of the first order or higher. The 

Runge–Kutta  algorithm  is  an  example  of  the  higher  order  explicit  schemes.  The  implicit 

schemes are stable with Courant numbers larger than one. However a large system of equations 

must be solved at each time step. The time step of a fully implicit scheme is controlled by the  

accuracy instead of the stability. A compromise between the efficiency and the time step is the 

semi-implicit  (mixed  implicit  and  explicit)  algorithm in  which  the  fast  evolving  terms  are 

handled implicitly while the other terms are handled explicitly. 

The local time step algorithm uses different time steps for different cells or blocks of cells. 

There are different algorithms of this type of algorithms, including: the adaptive time refinement 

method, the domain decomposition method, the variable time-stepping method,  the adaptive 

time  space  discretisation  method  and  the  self-adaptive  flux-conserving  local  time  stepping 

method. All of these algorithms are explicit (for details see Omelchenko and Karimabadi, 2006). 

The implicit domain decomposition algorithm using the structured nested grid is also available 

via the ADI method and double sweep tridiagonal matrix solver (Namin et al. 2001).

The present  model is  largely based on the global time step in order to use implicit schemes 

easily.  However,  the  advection  step  is  based  on  local  time  stepping  in  order  to  define  the 

characteristic path of each computational point.
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4.4 Advection Dominated Discretisation Algorithms

Practical hydro-environmental problems are usually advection dominated.  When applied to 

such problems, simple Eulerian discretisation methods of any type (FD, FE or FV) are likely to 

fail  unless  very  small  time  steps  are used.  They  produce  numerical  oscillations  or  high 

numerical diffusion in  regions with high gradients.  On the other  hand, the semi-Lagrangian 

methods  have  their  own  challenges  both  due  to  the  damping  effect  caused  by  repetitive 

interpolations and the concerns of mass balance when long period of time is considered. 

Several shock capturing algorithms have been developed in order to eliminate the numerical 

oscillation  and  minimise  numerical  diffusion.  The  characteristic  behaviour  of  the  advection 

process plays an essential role in deriving shock capturing algorithms. It is not always easy to 

use the shock capturing algorithms with unstructured 2D and 3D grids, because many of them 

were introduced in one dimensional space. 

Some  of  the  well  known  advection  dominated  discretisation  schemes  are  the  hybrid 

(central/upwind)  scheme,  the  exponential  scheme,  the  Godunov's  FD algorithm (1959),  the 

Fromm's scheme (Fromm, 1968),  the Monotonic Upstream Schemes for Conservation Laws 

(MUSCL)  (van  Leer,  1973),  the  Lax-Wendroff  scheme,  the  Holly-Preissmann  characteristic 

method  (1977),  the  QUICK  (Quadratic  Upstream Interpolation  for  Convective  Kinematics) 

method (Leonard,  1979), the  QUICKEST (Quadratic  Upstream Interpolation for  Convective 

Kinematics with Estimated Streaming Terms) method (Van Leer, 1977; Leonard, 1979 ;Leonard, 

1988),  the  Roe's  method  (1981),  the  HLL method  (Harten  et  al.,  1983),  the  cubic-spline 

characteristic  method (Branski  and  Holley,  1986)  and it's  later  improvements,  the  six-point 

characteristic method of Komatsu et al. (1985, 1989), the UNO (Uniformly Non-Oscillatory) 

scheme  (Harten  and  Osher,  1987),  the  HLLE  method  (Einfeldt,  1988), the  ULTIMATE-

QUICKEST  algorithm  (Leonard,  1991),  the  SOUCUP  (Composite  Second-Order 

Upwind/Central  Difference/First-Order  Upwind)  scheme  (Zhu  and  Rodi,  1991),  the  HLPA 

(Hybrid Linear/Parabolic Approximation) scheme (Zhu, 1991), the UTOPIA (Uniformly Third 

Order  Polynomial  Interpolation  Algorithm)  method  (Leonard,  1993),  the  NIRVANA (Non-

oscillatory Integrally Reconstructed Volume-Averaged Numerical Advection) scheme (Leonard, 

1995),  the  PPM  scheme  (Colella  and  Woodward,  1984;  Savic  and  Holly 1993),  the  ENO 

(Essentially Non-Oscillatory) scheme (Shu and Osher, 1988; Nujic, 1995), the HLLC method 

(Fraccallo  and  Toro,  1995),  the  WAF  method  (Fraccarollo  and  Toro,  1995),  the  WENO 

(Weighted Essentially Non-Oscillatory) scheme (Levy et al., 2002), the HLLEC method (Váchal 
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et al., 2004) and different types of the Total Variational Diminishing (TVD) methods. 

For the finite element method in particular, the most known advection dominated algorithms 

are the  generalised Galerkin method (GGM), the Taylor-Galerkin method (Donea, 1984), the 

streamline upwind Petrov–Galerkin method (Heinrich et al., 1977; Brooks and Hughes, 1982), 

the Lagrange–Galerkin method, the least  squares-Galerkin  method (Hughes et  al,  1989), the 

characteristic Galerkin method (Zienkiewicz and Codina, 1995), and the discontinuous Galerkin 

method (Oden et al, 1996). 

The present model solves the pure advection process using the fractional splitting algorithm. 

The semi-Lagrangian approach has been used in this regard. It is an explicit approach which is 

unconditionally stable with no time step restriction. With this approach, interpolation is carried 

out at each time step in order to transform data from Eulerian grid to Lagrangian grid (or vice 

versa for the forward tracking algorithm). Low order interpolation results in high damping effect 

after several time steps. It is necessary to use some kind of high-order interpolation. Therefore 

some kind of limiter  is  also needed (monotonicity constraint)  in order to  prevent  numerical 

oscillations.  The  basic  form of  the  SL  (semi-Lagrangian)  method is  not  conservative.  This 

behaviour  does  not  cause  practical  difficulties  for  short  period  simulations  because  the  SL 

methods, when high-order interpolation procedures are used, are highly accurate. However mass 

conservation is critical for long period simulations. 

Several conservative SL methods have been introduced by researchers. The key idea is to 

transform the computational  cells  instead of the grid points alone.  The whole mass (of any 

conservative  material)  inside  each  cell  remains  constant  for  pure  advection  during  the 

Lagrangian movement at each time step. Then the Lagrangian cell masses may be distributed 

conservatively over the joint Eulerian cells. The interpolation functions may be integrated on 

each shared area or volume (between the Eulerian and Lagrangian cells) separately to  enable 

conservative data transformation. The Gauss theorem may also be used, in order to change the 

over cell area (or volume) integration into over cell boundary integration. Calculating the nodal 

values on the base of the cell averaged (or integrated) values is an essential step in order to 

construct a fully conservative and stable SL scheme (Mohamadian, 2006). The conservative SL 

schemes  may  be  classified  in  two  categories:  a) corrective  schemes  and  b) inherently 

conservative schemes. For most of the second type, mass conservation is obtained by imposing a 

constraint at the polynomial interpolation step. The inherently conservative schemes themselves 

may be of the exactly conservative methods formulated in a non-conservative form (CIP-CSL) 
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(for example see Tanaka et al. 2000, Yabe et al. 2001, Xiao and Yabe 2001, Xiao 2002) or may 

be one of the SL integrated mass (SLIM) methods (see Laprise and Plante 1995, Zerroukat et al. 

2002, Mohamadian and Le Roux 2006). 

The mentioned above methods are based on some kind of “piecewise exact” approach in order 

to project the information from the Eulerian grid into the Lagrangian one. This approach, while 

works well, is difficult and computationally expensive to extend to unstructured grid  models. 

Most of these methods have been studied on 1D or structured 2D/3D grids. Extending such 

methods to unstructured 3D grids with high order interpolation functions is  neither easy  nor 

efficient.  An alternative approach has been introduced by Mofrad (1999) which is  based on 

tracking the Gaussian quadrature points of each cell instead of its boundaries. In this way, the 

numerical  integration  over  each  cell  is  computed  using  the  associated  Gaussian  points.  A 

reasonable accuracy through this algorithm needs 7 Gaussian points for each 2D cell and 11 

Gaussian points per each 3D cell. Extending this approach to an unstructured 3D grid model is 

relatively simple and straightforward. 

The conservative versions of the SL methods are considerably time consuming in comparison 

with the non-conservative ones, especially if an unstructured grid is used. 

3D hydro-environmental models are usually not used for  problems requiring a  long period 

simulation. Accurate interpolation SL schemes are sufficient for short period problems in many 

cases. The present model is based on an accurate but not conservative semi Lagrangian scheme 

for the 3D model. This approach has been selected in order to  make the model  perform more 

efficiently.

Some of the high resolution numerical schemes, both for discretisation and interpolation, have 

been introduced firstly in the one dimensional space.  There is a generic way to extend  a  1D 

scheme to 2D/3D schemes with structured grids, based on the splitting approach. The 2D (or 3D) 

problem is divided into two (or three) one dimensional problems. Then it is possible to use all of 

the scheme developed for 1D problems. For example, the two dimensional advection problem:

∂U
∂ t
∂F
∂ x
∂G
∂ y
=S (4.4)

may be split as follows:

∂U
∂ t
∂F
∂ x
=S x   ,     ∂U

∂ t
∂G
∂ y
=S y (4.5)

However,  this method is not useful when the computational grid is unstructured. It is not 

always possible or efficient to extend higher order interpolation functions such as the cubic 
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splines  or  the  third-degree  polynomials  into  the  unstructured  2D/3D grids.  There  are  some 

studies  that use one dimensional scheme along  the direction orthogonal to the cell interfaces 

(Namin  2003,  Mohamadian  et  al.  2006).  However,  they  are  not  as  accurate  as  their  1D 

counterparts,  because  of  the  lower-order  interpolations  used to  transform  data  from  the 

computational points to other needed locations (for example from the cell centres to the vertices 

or to define the mean values on the cell  edges).  There are also interpolation/re-construction 

procedures in the literature for unstructured grids with higher orders of accuracy. 

4.5 Interpolation on Unstructured Grid

Interpolation is an essential  method for most of the numerical methods. It is used in the FE 

method for  computing the shape functions, in the FV method for reconstructing data at the cell 

edges, and in the semi-Lagrangian method for defining data at the departure (or arrival) points. 

The accuracy of the first order interpolation scheme is usually not sufficient. Therefore, higher 

order interpolation schemes are needed. The interpolation procedure is relatively straightforward 

on a structured grid. However, it is not the case when an unstructured grid is used. 

Several unstructured interpolation procedures have been proposed in the literature. There are 

plenty of shape functions for the FE method in this regard. Several FV methods are also exist, 

with  most of  them being based on the cell-averaged gradients of the solution quantity. Some 

schemes to be listed in  this  regard are the  Pan and Cheng method (1993),  the large stencil 

method  by  Jawahar and Kamath (2000), the method of  Wang and Liu (2000), the maximum 

limited  gradient  method  by  Brufau  and  Garcia-Navarro  (2000),  and  the  least-squares 

reconstruction method by Wang (2000).  Some of these procedures take the variation of the 

gradient  within a  cell into account for defining  the cell-averaged gradients. However the data 

reconstruction is still based on the linear interpolation. It is possible to consider both the cell-

gradient and the cell-curve (the second derivatives) into account (Namin, 2003). This method is 

more accurate than the previous ones. 

Barth  and  Frederickson  (1990)  introduced  a  general  approach  considering  high-order 

polynomials of arbitrary degrees using the neighbouring cell-averaged values and least squares 

formulation.  Agarwal  and  Halt  (1999)  introduced  a  high-order  scheme  with  third  order 

interpolation polynomials by solving extra differential equations over the solution domain for 

the  spatial  derivatives  of  the governing equation  or  their  moments.  Harten and Chkravartht 

(1991) and Abgral (1994) extended the ENO finite volume scheme to the unstructured grid as an 
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unstructured  interpolation  algorithm.  Sonar  (1997)  studied  the  2D polynomial  recovery and 

accuracy over the triangular grid for the ENO algorithm. Friedrich (1997) introduced a weighted 

ENO algorithm (WENO) on the triangular. All of the cited procedures use some kind of limiter 

to avoid numerical oscillations except the ENO/WENO schemes that use selected neighbouring 

cells for polynomial fitting in this regard.

4.6 Horizontal Discretisation with σ-coordinate Mesh

The grid-layers of the sigma-coordinate mesh are not necessarily horizontal. Therefore, every 

horizontal gradient term in the governing equation is transformed into two terms; an on-layer 

gradient term and a vertical gradient one.  The horizontal diffusion and the pressure gradient 

terms involve additional derivative terms in the vertical direction in a sigma coordinate system. 

The sigma coordinate mesh usually follows the bed slope. In such conditions, the horizontal 

gradient terms may cause significant errors near the steep bed slopes.

The horizontal gradient is numerically equivalent to the difference between the gradient along 

the sigma-coordinate (called the sigma gradient) and the vertical gradient (called the hydrostatic 

correction  when it  comes to  the pressure  gradient).  When topography is  steep  or  when the 

vertical  gradient  is  large,  the horizontal  gradient  becomes the difference between two large 

numbers. Therefore, even small errors in the computation of either term can produce relatively 

large errors in the horizontal gradient. The large truncation errors resulted from the summation 

of  large  terms  of  opposite  sign  in  the  σ-coordinate  system  could  cause  spurious  flows, 

particularly  near  the  bed  (Stansby  and  Zhou,  1998).  The  problem  becomes  particularly 

significant when some kind of vertical layering/stratification is happened in the solution quantity 

and the mesh is compressed near the bed. For density induced currents, Stelling and van Kester 

(1994) have shown that artificial circulation can be produced due to numerical errors in the 

baroclinic terms. 

There are  primarily  four approaches  developed to avoid the problem mentioned above. The 

first approach is using higher order  numerical schemes (Auclair et al. 2000, Shchepetkin and 

McWilliams 2003). The second approach is based on mixing the sigma coordinate mesh with the 

z-level mesh (for example see Mike3, 2009). This method is called eta-coordinate. In this way, 

the upper part of the domain is discretised using the sigma coordinate approach while the lower 

part and near the bed is discretised using the Cartesian z-level approach (stepwise topography). 

Therefore, the variable water level is handled with the sigma transformation while the near bed 
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region, the area where the combination of steep slope and stratification is probable, is handled 

with real horizontal layers. This approach needs further enhancements for simulating the process 

of down-slope spreading of a dense plume density current. Because in sigma coordinates the 

process  is  dominated  by  down-slope  along-sigma  advection  driven  by  pressure  gradients. 

However, in stepwise topography it is a combination of horizontal advection and diffusion that 

results in intense vertical mixing and thicker boundary layers.

The third technique is to decompose the solution quantity into a vertical varying base state 

and a perturbation from the base state. The horizontal gradient can then be calculated from the 

perturbation rather than from the total quantity. This approach is suitable in particular for the 

pressure gradient because the pressure gradient and the hydrostatic correction are several orders 

of magnitude larger than their difference. Some references in this regard  can be found from 

(Corby et al. 1972, Gary 1973, Mellor et al. 1994, Mellor et al. 1998, Batteen 1988, Song 1998, 

Robertson et al. 2000, Bernardet 2005). 

The fourth approach is to calculate the horizontal gradients on a true horizontal plane instead 

of using just the neighbouring nodes/cells/elements on the same sigma plain. In this way, the 

horizontal  discretisation  terms  are  not  transformed  into  the  sigma  coordinate  system. 

Interpolation  in  the  vertical  direction  (between  the  layers)  is  needed  before  computing  the 

horizontal gradients. There are some enhancements for this method close to the bed in order to 

avoid intersecting the topography. Some references in this regard are (Simmons and Burridge 

1981,  Mellor  and  Blumberg  1985, Haney  1991,  Stelling  and  Kester  1994,  Stansby  1997, 

Stansby and Zhou 1998, Ye et al.  1998, Li and Atkinson 1999, Mahrer 1984, Fortunato and 

Baptista1996, Song 1998, Zängl et al. 2004).

The fourth approach has been used in the present  model both for  computing  the pressure 

gradient and horizontal diffusion. On the other hand, using the projection method the pressure 

has been de-composited into the hydrostatic and hydrodynamic parts, which is in harmony with 

the third technique. 

4.7 Discretisation in Flooding/Drying Area

Wetting and drying may happen at  part  of the computational domain of coastal  areas and 

reservoirs. Some coastal domains involve tidal-flats  that are influenced  by the wetting/drying 

process. The upstream parts of many reservoirs are also affected by the wetting/drying process 
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because of water level variation. It is not always possible to ignore the wetting/drying area in the 

numerical simulation.

Special attention is needed in numerically simulating the wetting/drying process. Both the 

variability of  the solution domain and the severely shallowness  of  the nearby area must  be 

addressed in this regard. The landlocked elements (or cells) may also be a source of difficulty. 

They are wet elements surrounded by non-active (dried) elements. It is usual to choose limiter 

depth values (a few decimetres) for  both  the wet-to-dry and dry-to-wet  processes. These two 

values may be different in order to prevent oscillation.

In  some  numerical  models  the  computational  grid  is  allowed  to  change  with  the  water 

boundaries (for example see Gopalakrishnan 1989, Roig and Evans 1993, Lin et al. 2004). This 

approach works well in smooth topography areas. However, it is computationally intensive and 

may lead to ill-shaped elements when the topography is complex. Many numerical models use 

fixed computational grid and let the elements to be wet and dry during the solution process. It is 

possible to turn the elements active and inactive or on and off (for example see Jia and Wang 

1999,  Dietrich  et  al.  2006,  Kruger  and Rutschmann 2006).  Another  approach  is  to  remove 

selected  terms  from the  governing equations  (Falconer  and Chen 1991).   (Roig  1995)  uses 

variable marsh porosity in order to lower the ability of a dried element to hold water (RMA2 

manual 2006). Bradford and Sanders (2002) let the element to be half wet and half dry (also in 

Lu 2003). An efficient approach for the last scheme is to set velocities equal to zero for partly-

dried elements and ignore the momentum solution while the mass conservation is solved (Zhao 

et al. 1994, Sleigh et al, 1998, .Lu 2003). The outward flux, the bed slope and the friction values 

may be set to zero for the dry elements while inward fluxes remains active as a mechanism for 

re-wetting the dry elements. It means setting the momentum fluxes to zero and only taking the 

mass fluxes into consideration (Zhao et al. 1994, Sleigh et al. 1998, Mohammadian and Roux 

2006). 

Another approach is to handle all of the wet and dry elements in a unique solution procedure 

without any on-off or on-partly-off scheme. It is called the thin slot algorithm. The idea of the 

thin slot algorithm is  to lett the dry elements to have a thin layer of water but increasing their 

bed resistance to a very high value. An intermediate depth-zone for smooth change of roughness 

between the wet and dry elements is necessary (MacArthur et al., 1990; Bates and Hervouet, 

1999; Namin, 2003; Nielsen and Apelt, 2003). The bed roughness terms in this way must be 

discretised implicitly in order to prevent instability. 
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Some of the shallow water models, which are based on the approximate Riemann solution, 

use the analytical solution of the Riemann problem in which the initial depth at one side of the 

cell-edge is zero in order to simulate the wetting process (for example see Brufau et al. 2002, 

Titov and Synolakis 1995, Yoon and Kang 2004, and Kim et al. 2004). This is a good approach 

for predicting dam-breaking flows. 

Simulating the  wetting/drying  process  is  usually  included  in  the  shallow  water  models. 

However, many 3D numerical models do not have this capability. Some of the 3D models with 

the  wetting/drying  capability  are:  TRIVAST by Lin  and Falconer  (1997),  RMA10 by King 

(1998), an extension to  ECOM by  Zheng et al. (2002), SSIIM by Olsen (2003),  FVCOM by 

Chen et al. (2003), the model of Lu (2003), MIKE3-HD, MIKE3-FM and Telemac3D. Among 

the above mentioned list, FVCOM and Telemac3D are based on the σ−coordinate grid system. 

SSIIM uses blocks of structured horizontal grids with unstructured cells in the vertical direction. 

RMA10 is  an  unstructured  FE model  which  uses  the  element  removal  method  and  marsh 

porosity (King, 1988 and 1998). The model of Lu (2003) is a layer integrated  model, which 

handles the wetting/drying problem as a shallow water model. MIKE3-FM is based on the work 

by Zhao  et  al.  (1994)  and  Sleigh  et  al.  (1998).  When  the  depths  are  small  the  governing 

equations  are reformulated  (setting the momentum fluxes  to  zero  and only taking the  mass 

fluxes into consideration) and when the depths are very small the elements/cells are removed 

from the “active” model domain. 

The reason for requiring 3D models to offer wetting/drying simulation capability is the need 

to simulate a whole model domain which involves such areas. It does not mean that the near-

drying or just-flooded areas need 3D simulation. When the water depth is so shallow as to be 

close to the drying depth, 2D modelling is more reasonable than 3D simulation. 

4.8 Summary

A general review on the discretisation techniques has been presented in this chapter. The idea 

of the fractional splitting has been explained and preferred over the coupled algorithms because 

of its flexibility. The model developed in this thesis is based on the projection method II and the 

operator splitting algorithm in order to simulate the advection and diffusion processes separately 

through  an  optimised  numerical  algorithm.  Common  discretisation  frameworks  have  been 

reviewed along with the  advection  dominated  schemes.  The semi-Lagrangian  algorithm has 

been  selected for  use in the advection step and the FV scheme for the diffusion part. Several 
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sophisticated interpolation algorithms have been cited as  an essential  part  of  the mentioned 

algorithms for unstructured grid models. 

The problem of traditional horizontal discretisation algorithms on  the  σ-coordinate grid has 

been considered with  exiting  solution strategies  being described.  In this  study the horizontal 

discretisation  is performed on the real horizontal plane instead of transforming the horizontal 

gradient terms into the sigma coordinate system.

Wetting or drying may happen at some parts of the solution area, for which a special treatment 

is needed. Several handling methods have been reviewed in this regard. The method of Zhao et 

al. (1994) and Sleigh et al. (1998) has been selected for use in the current study. When the water 

depth  is small  the problem is reformulated (setting the momentum fluxes to zero and only 

taking the mass fluxes into consideration) and when the depth is very small the elements/cells 

are removed from the active computational domain. 

4-15



5 Governing Equations to be Solved

5 Governing Equations to be Solved

5.1 Introduction

This chapter includes the governing equations that must be solved in the present study in 

order to address the hydrodynamic, water quality and sediment transport characteristics. Both 

the  3D  and  the  2D  version  of  the  governing  equations  will  be  discussed  in  this  regard. 

Considering that the sigma coordinate system will be used, the transformation procedure and the 

transformed equations will also be presented. 

5.2 Hydrodynamic Equations

The 3D mass and momentum conservation equations in the Cartesian coordinate system are:

∂u
∂ x
 ∂v
∂ y
∂w
∂ z
=Q dis (5.1)

∂ u
∂ t
u ∂u

∂ x
v ∂ u
∂ y
w ∂ u

∂ z
= ∂
∂ x  h ∂ u∂ x  ∂

∂ y  h ∂ u∂ y 
1

 ∂
∂ z v ∂ u∂ z 

2

−1

∂ pa
∂ x


3

−g


∂
∂ x

4

−g 1
∫z


∂
∂ x

dz


5

−1

∂ q
∂ x

6

2⋅v⋅ z−2⋅w⋅ y
7

udisQdis

 (5.2)

∂ v
∂ t
u ∂ v
∂ x
v ∂ v
∂ y
w ∂v

∂ z
= ∂
∂ x  h ∂ v∂ x ∂

∂ y  h ∂v∂ y 
1

 ∂
∂ z v ∂ v∂ z 

2

−1

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∂ y


3

−g


∂
∂ y

4

−g1
∫z


∂
∂ y

dz


5

−1
ρ
∂ q
∂ y

6

−2⋅u⋅z2⋅w⋅x
7

vdissQdis

 (5.3)

∂w
∂ t
u ∂w

∂ x
v ∂w

∂ y
w ∂w

∂ z
= ∂
∂ x  h ∂w∂ x  ∂

∂ y h ∂w∂ y 
1

 ∂
∂ z  v ∂w∂ z 

2

−1
ρ
∂ q
∂ z


6

2⋅u⋅ y−2⋅v⋅ x
7

wdisQdis

(5.4)

where u , v  and w  are the velocity components in the x-, y-, and z-directions, respectively,   

is the local water density,    is the water density at the  free surface,  pa  is the atmospheric 

pressure,  g  is  the  acceleration  of  the  gravity,    is  the  water  surface  level,  q  is  the 

hydrodynamic pressure,   h  is the horizontal eddy viscosity,   v  is the vertical eddy viscosity, 
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x ,   y  and  z  are the projections of  E , the rotational speed of the Earth around the S-N 

axis, in the x-, y- and z-directions respectively, Qdis  is the magnitude of the discharge due to the 

point sources, and udis , vdis  and wdis  are the velocity components representing water discharged 

into the solution domain. 

The terms (1) and (2) in equations (5.2) to (5.4) are relevant to the horizontal and vertical 

diffusion processes, respectively. The terms (3) to (6) illustrate different parts of the pressure 

gradient. They stand for the atmospheric pressure gradient, the barotropic pressure effect, the 

baroclinic pressure effect, and the hydrodynamic pressure gradient respectively. The term (7) 

stands for the Coriolis effect.

The Earth rotational speed components  x ,   y  and  z  are functions of the geographical 

latitude of the cell involved and the angle between the x-axis and the east-direction. If the x-axis 

is in the eastward direction, then x  is equal to zero. 

The baroclinic pressure term in equations (2.26) and (5.3) involve the ratio of the surface 

water density to the local water density. It indicates that the effect of the free surface slope on 

the layers of a stratified flow depends of the layer density. This term may not be negligible in 

situations when both the density force and the free surface slope influence the current.  It is 

derived from the pressure equation:

p=pa∫
z



 g dzq (5.5)

by applying differentiation to equation (5.5) in the x and y directions, respectively. For example in 

the x-direction we have:

∂ p
∂ x
=
∂ pa
∂ x
 ∂
∂ x∫z



 g dz∂ q
∂ x
=
∂ pa
∂ x
g∫

z


∂
∂ x
dzg 

∂
∂ x
∂ q
∂ x (5.6)

The Leibniz rule has been used in equation (5.6), because the upper limit of the integral is a 

function of x; the derivation parameter.

It should be noted that the term −g  (or an equivalent term) is not included in equation (5.4), 

while some versions of the vertical momentum equation in the literature include such a term. In 

fact, two versions of the vertical momentum equation exist in the literature in this regard. The 

difference is  caused by whether or not  the  Boussinesq approximation (for   ) is applied. The 

vertical body force due to the gravity effect has been cancelled in the present version with the 

vertical  gradient  of  the  hydrostatic  pressure.  This  is  the  case  when  the  Boussinesq 

approximation is not used. With the Boussinesq approximation, a small term (compared to the 
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gravity term) remains in the equation which is equal to  −g⋅−o/o ,  where  o  is the 

average water density.

The kinematic boundary condition for the hydrodynamic equations at the free surface is given as:

∂
∂ t
u

∂
∂ x
v

∂
∂ y
=w (5.7)

The dynamic boundary conditions at the free surface are:

 v∂ u∂ z ∂w∂ x =  x
s

water
=
air
water

.C w .W.W x (5.8)

and 

 v∂ v∂ z ∂w∂ y =  y
s

water
=
air
water

.Cw .W.W y (5.9)

where air  is the air density, water  is the water density, W  is the wind speed relative to the water 

velocity at the free surface, and Cw  is the wind drag coefficient (see equation 2.26). 

The kinematic condition for the hydrodynamic equations at the bottom boundary is given as:
V b⋅nbed=nx ubn y vbnz wb=0 (5.10)

where nx , ny , nz  is the outward unit vector normal to the bed. 

Equation (5.10) is used usually as the boundary condition for the vertical velocity component 

because the bed slope is usually gentle or even negligible.

The dynamic conditions at the bottom boundary may be derived from the wall function. If the 

bottom-boundary node is located within an acceptable distance from the bed and the bed surface 

is rough, the following relationships may be used:

b

=t

∂ V b

∂n
(5.11)

t= d o
∣V b∣

1
 ln d o

k s /30 (5.12)

b
 =−

∣V b∣V b

 1
 ln d o

k s /30
2

(5.13)

where d 0  is the normal distance between the real bed and a suitable point above it. It may be the  

no-slip level or the boundary between the bed slope and the suspended sediment load. V b  is the 

5-3



5 Governing Equations to be Solved

velocity at distance d 0  above the bed, n  is the unit outward directed vector normal to the bed, 

=0.41  is von Karman's constant, and k s  is the bed roughness height.

Applying equations (5.12) and (5.13) to equation (5.11) leads to the following relationship:

∂ V b

∂ n
=−

V b

d o⋅ln d o
k s /30 (5.14)

Equation (5.14) is projected into the bed-parallel directions, e xn  and e yn , in the xn  and yn  

planes,  in  order  to  present  the  bed  stress  components  needed  for  the  x-  and  y-momentum 

equations. If the bed slope is negligible, the planes  xz  and  yz  may be used instead of the 

planes  xn  and  yn .  Therefore, the dynamic bottom boundary conditions may be written as 

follows:

∂ub
∂ z
=

ub

d o⋅ln d o
k s/30 (5.15)

∂vb
∂ z
=

vb

d o⋅ln d o
k s /30 (5.16)

However, when the bed slope is not gentle or negligible, then the planes xn  and yn  are different 

from the planes xz  and yz , with the later ones being not necessarily perpendicular to the bed 

(lateral  bed  slope).  The  direction  n  and  the  distance  d 0  in  equations  (5.11)  to  (5.14)  are 

considered perpendicular to the bed. They are not necessarily within the planes xz  or yz . Even 

the directions  e xn  and e yn  are not generally perpendicular to each other. Therefore the bottom 

boundary condition will be more complex in situations where the bed slope is considerable. 

The distance between the bottom boundary point and the bed has to satisfy the following 

relationship:

30d o
∣V do∣

1
 ln d o

k s /30
100

(5.17)

where   is the water viscosity. 

The  velocity  or  the  pressure  may  be  known  at  the  boundary  nodes  as  lateral  boundary 

conditions. The water surface level may be used instead of the pressure term if the hydrostatic 
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pressure assumption is adequate. The horizontal gradient of the vertical velocity component may 

be assumed to be zero at the lateral open boundaries:

∂w
∂ x
=0  and 

∂w
∂ y
=0 (5.18)

When such simple forms of the outflow boundary conditions influence negatively the interior 

solution, then the non-reflecting or absorbing boundary conditions may be used.

The boundary conditions for the hydrodynamic pressure correction will be discussed in the 

next section.

5.2.1 Poisson Equation

The present study is based on the projection-2 method in order to estimate the effect of the 

hydrodynamic pressure gradient on the velocity field. A Poisson-like equation may be solved in 

this regard in order to define the hydrodynamic pressure correction. The momentum equations 

are solved numerically using the explicit  value of the hydrodynamic pressure field from the 

previous time step. However the estimated velocity field is not necessarily convergence free. It 

is considered just as an intermediate solution. If the hydrodynamic pressure correction field was 

known, its spatial gradient could be used in order to project the intermediate velocity into the 

divergence-free velocity field via the following relationships:

un1−u
 t

=−1

∂ q
∂ x

, vn1−v
 t

=−1

∂ q
∂ y

, w n1− w
 t

=−1

∂ q
∂ z

(5.19)

where un1 , vn1 , and wn1  are the convergence-free velocity components, u , v  and w  are 

the intermediate velocity components, and  q≡qn1−q n  is the correction to the hydrodynamic 

pressure. Therefore the convergence-free velocity components may be written as follows:

un1=u− t 1

∂ q
∂ x

, vn1=v− t 1

∂ q
∂ y

, wn1= w− t 1

∂ q
∂ z (5.20)

The quantities un1 , vn1 , and wn1  in the incompressibility equation may be defined from 

equations (5.20) which results in the following relationship:

∂
∂ x u− t 1


∂ q
∂ x  ∂

∂ y v− t 1

∂ q
∂ y  ∂

∂ z  w− t 1

∂ q
∂ z =0 (5.21)

and can be re-arranged as follows:

∂
∂ x 1 ∂ q∂ x  ∂

∂ y  1

∂ q
∂ y  ∂∂ z 1 ∂ q∂ z = 1

 t  ∂ u∂ x ∂ v∂ y∂ w∂ z  (5.22)

and then may be expanded as follows:
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− 1
2
∂
∂ x
∂ q
∂ x
1

∂
∂ x  ∂ q∂ x − 1

2
∂
∂ y

∂ q
∂ y
1

∂
∂ y  ∂ q∂ y  ∂

∂ y  1

∂ q
∂ y 

− 1
2
∂
∂ z
∂ q
∂ z
 1

∂
∂ z ∂ q∂ z = 1

 t ∂ u∂ x ∂ v∂ y ∂ w∂ z 
(5.23)

In practical situations, the order of magnitude of the terms, ∂/∂ x  and ∂/∂ z  are not more 

than 1 and 10 respectively. Recalling that  ρ≈1000 (kg/m3), the terms with  1/2  in the left 

hand  side  of  equation  (5.23)  are  negligible  in  comparison  with  the  other  terms.  Therefore 

equation (5.23) may be simplified as follows:

∂
∂ x ∂ q∂ x  ∂

∂ y ∂ q∂ y  ∂
∂ z  ∂ q∂ z = 

 t ∂ u∂ x∂ v∂ y∂ w∂ z  (5.24)

If the atmospheric pressure term and the wind stress are negligible and the free surface slope is 

sufficiently small, the free surface boundary condition for the hydrodynamic pressure is given as:

q= v
∂w
∂ z (5.25)

If the water level changes are negligible (for example the pure baroclinic conditions), it is 

usually adequate to assume that the hydrodynamic pressure component at the free surface is 

negligible (Stansby and Zhou 1998): 

q=0 (5.26)

It is also the case when the viscosity is negligible and the flow may be assumed to be inviscid.

The hydrodynamic pressure may be assumed negligible at the lateral open boundaries if the 

hydrostatic  condition  is  adequate  for  those  areas.  If  not,  the  normal  gradient  of  the 

hydrodynamic pressure may be set to zero.

From the theoretical point of view, the hydrodynamic pressure condition at the closed lateral 

boundaries and at the bottom boundary may be written as follows:

∂q
∂n
=0 (5.27)

where n  is the direction normal to the boundary, because the velocity field is convergence-free. 

However, depending on the boundary conditions used for the intermediate velocity field, it may 

be convergence-free or divergent at the closed boundaries. Therefore equation (5.27) may not be 

used for the hydrodynamic pressure simulation. The adequate boundary condition for the bed and 

the lateral closed impermeable boundaries is given as:
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−1

∂ q
∂ n
= 1
 t unormal

n1 −unormal = 1
 t 0−unormal   ∂ q

∂ n
= 
 t 
unormal (5.28)

where unormal  is the normal component of the intermediate velocity close to the wall. 

When the intermediate velocity field is simulated by the convergence-free restrictions near the 

walls the right hand side of equation (5.28) is zero and equation (5.27) is true. The hydrodynamic 

pressure correction may be simulated in many cases by zero Neumann boundary conditions at the 

solid and open boundaries and zero Dirichlet boundary conditions at the free surface (Gresho 

1990, Jankowski 1999).

Equation (5.24) has been solved in the present study in order to define the hydrodynamic 

pressure correction field. 

5.2.2 Salinity Equation

The 3D conservation equation for  the salinity follows the general  form of  the advection-

diffusion equation as follows:

∂ S
∂ t
u ∂ S

∂ x
v ∂ S
∂ y
w ∂ S

∂ z
= ∂
∂ x Dh

∂ S
∂ x  ∂

∂ y Dh
∂ S
∂ y  ∂

∂ z Dv
∂ S
∂ z S disQ dis (5.29)

where Sdis  is the salinity of the source and Dh  and Dv  are the horizontal and vertical diffusion 

coefficients. 

The salinity diffusion coefficients may be linked to the momentum diffusion coefficients as follows:

Dh=
 h
P r

 and Dv=
 v
P r

(5.30)

where P r  is the Prandtl number.

The bottom boundary condition for the salinity equation is given as:

∂ Sb
∂ z
=0 (5.31)

where Sb  is the near bed salinity of the water.

The surface boundary condition for the salinity equation is (Steinhorn, 1991):

Dv
∂ S
∂ z
= 1

S E vap−Rpr 
1−0.001S s

(5.32)

where  S  is  the  water  surface  salinity  measured  in  (PSU),  Evap  is  the  evaporation  rate  in 

kg m−2 s− 1 , and R pr  is the precipitation rate in kg m−2 s− 1 .

The  salinity  gradient  normal  to  the  boundary  assumed  to  be  zero  at  the  closed  lateral 
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boundaries and also at the outflow open boundaries. The value of the salinity must be known at 

the inflow open boundary.

5.2.3 The Temperature Equation

The 3D advection-diffusion equation for the temperature is given as:

∂T
∂ t
u ∂T

∂ x
v ∂T
∂ y
w ∂T

∂ z
= ∂
∂ x D h

∂T
∂ x  ∂

∂ y Dh
∂T
∂ y  ∂∂ z D v

∂T
∂ z T dis Q disAheat

rad

(5.33)

where T dis  is the temperature of the source and Aheat
rad  is the heat exchange with the atmosphere 

(see Eq. 5.55).

The temperature diffusion coefficients may be linked to the momentum diffusion coefficients 

as follows:

Dh=
 h
S ch

 and Dv=
v
S ch

(5.34)

where Sch  is the Schmidt number.

The bottom boundary condition is:

∂T b
∂ z
=0 (5.35)

The surface boundary condition is:

Dv
∂T 
∂ z
=

Qheat
surf

4217⋅
T p

PT eE heat (5.36)

where Qheat
surf  is the surface net heat flux and Eheat  is the evaporation effect as follows:

Eheat={ qheat
vap

2.5⋅106⋅
qheat
vap 0

0 qheat
vap 0} (5.37)

in which, qheat
vap  is the heat flux due to the water vaporization.

The surface net heat exchange Qheat
surf  may be estimated as follows:

Qheat
surf=qheat

vap qheat
convheat

infraRed qheat
shortRadqheat

longRad (5.38)

where qheat
conv  is the heat flux due to the convection effect (see Eq. 5.40),  qheat

shortRad  is the net heat 

loss due to the short wave radiation (see Eq.  5.41),  heat
infraRed  is the fraction of infra-red energy 

which is absorbed near the water surface (usually between 0.2 to 0.6), and qheat
longRad  is the net heat 
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5 Governing Equations to be Solved

loss due to the long wave radiation (see Eq. 5.53). 

The value of qheat
vap  in equation (5.38) is defined by the following relationship (Mike3, 2009):

qheat
vap=−4370 0.50.9W 2m

exp5418 1
273.15

− 1
T water273.15

T water273.15
−

exp5418 1
273.15

− 1
T air273.15

T air273.15  (5.39)

where  W 2m  is  the  wind  speed  at  two  meters  above  the  water  surface,  T water  is  the  water 

temperature and T air  is the air temperature.

The value of qheat
conv  in equation (5.38) is defined by the following relationship (Kantha Clyson, 2000):

qheat
conv={air cair cheatconvW 10m T water−T air T airT water

air cwater cheat
convW 10m T water−T air  T airT water} (5.40)

where air  is the air density ( kg /m3 ), cair  is the specific heat of the air (1007 J/kg oK), cwater  is 

the specific heat of the water (4186 J/kg  oK),  cheat
conv  is the convection heat transfer coefficient 

(1.41x10-3), and W 10m  is the wind speed at 10 meters above the water surface.

The value of qheat
shortRad  (W/m2) in equation (5.38) is defined by the following relationship:

qheat
shortRad=1−heat

refl qhourly
shortRad 106

360
(5.41)

where  qhourly
shortRad  is the hourly-averaged short radiation (see Eq.  5.48) and  heat

refl  is the reflection 

coefficient:

heat
refl ={ altitude

5
0.48 altitude5

30−altitude
25

0.48−0.05 5altitude30

0.05 altitude30
} (5.42)

The value of altitude  in equation (5.42) is given as:

altitude=90−180


arccos sin dec
ang sin lcos dec

ang cos lcos hr  (5.43)

where l  is the latitude (positive for the northern hemisphere), hr  is the hour angle, and dec
ang  

is the declination angle measured in radian. 

The value of hr  in equation (5.43) is defined by the following relationship:

hr=

1212 t summer

4
60 LS

t z−Ll
t z − E time60

−t local (5.44)
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5 Governing Equations to be Solved

where   t summer  is the time-shift due to the summer time,  L s
t z  is the standard longitude for the 

time zone, Ll
t z  is the local longitude (in degrees), t local  is the local time in hours, and E time  is the 

discrepancy in time due to the solar orbit (Iqbal, 1983; Mike3, 2009):

E time=
229.18 0.000075

229.18 0.001868cos day−0.032077 sinday
−229.18 0.014615cos 2day0.04089 sin 2day

(5.45)

where day  is the day angle measured in radian. It is defined by the following relationship:

day=
2d Julian−1

360
(5.46)

where d Julian  is the Julian day of the year.

The value of dec
ang  in equation (5.43) is:

dec
ang=0.006918−0.399912cos day0.07257sinday−0.006758cos2day
0.000907sin 2 day−0.002697cos 3day0.00148sin 3day

(5.47)

The value of qhourly
shortRad  in equation (5.41) is the amount of the average hourly short radiation. It is 

defined by the following relationship:

qhourly
shortRad=4.9212 E ecsinlsin dec

ang 24


coslcos dec
angcos hr

a2b2
nsunRise
nsunRise
max a3b3 cos hr 

(5.48)

where nsunRise  is the number of sunrise hours, nsunRise
max  is the maximum number of sunrise hours, 

a2  and  b2  are  calibration  factors  for  the  daily  radiation  under  the  cloudy conditions  (their 

default values are 0.295 and 0.371 respectively). Eec  is the eccentricity in the solar orbit:

E ec=1.0001100.034221cos day
0.001280sin day0.000719 cos 2day0.000077sin2day

(5.49)

The values of a3  and b3  in equation (5.48) are defined as follows:

a3=0.40900.5016 sinsr−

3  (5.50)

b3=0.66090.4767 sin sr−

3  (5.51)

where the sunrise angle ang
sunRise  (rad) is given by:

ang
sunRise=arccos− tan l tan  dec

ang (5.52)
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5 Governing Equations to be Solved

The value of qheat
longRad  in equation (5.38) is defined as follows:

qheat
longRad=−5.6697 10−8 T air273.15 40.56−0.07710 Rh⋅esat

vap0.10.9
nsunRise
nsunRise
max  (5.53)

where Rh  is the relative humidity and esat
vap  is the saturated vapour pressure (kPa). The saturated 

vapour pressure is estimated by the following relationship:

esat
vap=3.38639 7.38 10−3T air0.80728−1.9 10−5 ∣1.8 T air48∣1.316 10−3 (5.54)

The heat exchange with the atmosphere Aheat
rad  in equation (5.33) is defined as follows:

Aheat
rad =

qsr ,net 1−heatinfraRed  e
−l −z 

 l
4217 

(5.55)

where l  is the light extinction coefficient (usually between 0.5 to 1.4 m-1)

The temperature gradient normal to the closed lateral boundary and the bed may be set to 

zero.  The  same condition  may be  used  for  the  outflow open boundaries.  The  value  of  the 

temperature must be known at the inflow open boundaries.

5.2.4 Suspended Sediment Equation

The 3D version of the suspended sediment concentration equation is:

∂c
∂ t
u ∂ c
∂ x
v ∂ c
∂ y
w ∂ c

∂ z
−
∂w s c
∂ z

= ∂
∂ x Dh

∂ c
∂ x  ∂

∂ y Dh
∂ c
∂ y  ∂

∂ z Dv
∂ c
∂ z S.T. (5.56)

where w s  is the sediment settling velocity and “S.T.” includes the source terms.

Equation (5.56)  is  solved numerically for  one or  more fractions  of  sediment  and/or  mud 

classes. Each fraction has specific settling velocity and source terms. The classification of the 

suspended sediment  fractions is  based on the grain size.  The mud itself  involves silt  (grain 

diameter ranges from 4 to 63 μm) and clay (grain diameter is less than 4 μm) grain sizes.
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5 Governing Equations to be Solved

The settling velocity w s  is defined differently for sand and mud materials. For the grain size 

greater than or equal to 63 μm (sand), the following relationship may be used (van Rijn, 1987):

w s ,i={
s−w
w

g d i
2

18
d i100m

10
d i {[1s−ww

0.01 g d i
3

2 ]
0.5

−1} 100d i≤1000m

1.1 s−ww
g d i

0.5

d i1000m } (5.57)

where i  is the fraction index, d  is the grain size, and   is the water viscosity.

For grain size less than 63 μm (mud), the settling velocity is affected by flocculation, hindered 

settling,  and  the  gelling  effects.  Therefore  it  is  a  function  of  the  suspended  sediment 

concentration. The following relationship may be used for the salt water:

w s ,i={
ws ,i ,cons ∑i ci≤c floc

w s , i , cons

∑i ci
C floc

c floc∑i c i≤chind

w s ,i , const

chind cgel
c floc cgel−chind  1−min1.0,

∑i c i
cgel  chind∑i ci≤cgel } (5.58)

where c floc  is the concentration at which flocculation starts, chind  is the concentration at which 

hindered  settling  starts,  c gel  is  the  concentration  at  which  gelling  process  occurs,  c i  is  the 

concentration of the ith sediment fraction, and w s ,i ,const  is the constant settling velocity for the i th 

sediment  fraction  when  the  concentration  is  sufficiently  low  and  no  one  of  the  mentioned 

processes are effective. 

The recommended values for  c floc ,  chind  and  c gel  are 0.01, 10, and 50 kg/m3 respectively. 

These parameters are relevant to the total suspended sediment concentration (the sum of all 

suspended sediment fractions). The value of  w s ,i ,const  may be defined by field or laboratory 

measurements. It may also be considered as a calibration coefficient. Equation (5.57) may be 

used as the first estimation for w s ,i ,const  when there is not any measurement in hand.

The flocculation process for the mud material is effective both in the fresh water due to the 

organic matter content and in the saline water where the salt flocculation process is also active. 
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5 Governing Equations to be Solved

In situations where the fresh water meets the salt water, the salinity depression slows down the 

flocculation process and the settling velocity. The formulation is (Krone 1962, Mike3MT 2005):

w s ,i=w s , i , salt water 1−0.5e−0.33S  (5.59)

where w s ,i , salinewater  is the output of equation (5.58). Equation (5.59) is applicable for situations 

where the salinity is less than 10 PSU. The flocculation process is not influenced by the salinity 

value when it is more than 10 PSU.

Equation (5.56) needs boundary conditions. The free surface boundary condition for the ith 

sediment fraction is:

w s ,i c i , Dv∂ ci∂ z z==0 (5.60)

which means that the net vertical sediment transport at the water surface is zero.

The bottom boundary condition for the sediment fractions with grain sizes less than 63 μm 

(mud) is (Han and He, 1997; Fang and Wang, 2000):

w s ,i c i , bD v ∂c i∂ z b=Depositioni − Erosioni (5.61)

which  means that the net vertical sediment transport at the bed is equal to the deposition rate 

minus the bed-erosion rate. The horizontal dispersion effect has been neglected in this regard.

Positive  values  are  not  realistic  for  the  vertical gradient  of  the  suspended  sediment 

concentration  near  the  bed  in  usual  cases.  In  these  cases  if  for  any numerical  reason  (for 

example  using  an explicit  algorithm for  a  rapidly varying flow field)  the  bottom boundary 

condition  results  in  the  positive  gradient,  then  equation  (5.61)  has  to  be  solved  again  by 

∂ ci /∂ z=0 . A simpler approach for the cohesive sediment transport  that may be applied in 

simple cases is to assume that  ∂ ci /∂ z=0  as the bottom boundary condition and handle the 

deposition and the bed erosion quantities as the sinks and sources for the bottom boundary 

nodes.

The deposition rate for each fraction of the suspended sediment in equation (5.61) may be 

defined by the following relationship (Krone, 1962):

Depositioni=w s ,i c i , b pD ,i (5.62)

where the index i  is the fraction number, c i , b  is the suspended sediment concentration for the ith 

fraction  close  to  the  bed,  w s ,i  is  the  settling  velocity  for  the  ith fraction,  and  pdep ,i  is  the 

probability function. 

5-13



5 Governing Equations to be Solved

Te probability function may be defined as follows:

pdep ,i=max0,min1,1−
 b
cr ,d ,i  (5.63)

where b  is the bed shear stress and cr , d ,i  is the critical bed shear stress for deposition of the ith 

fraction. No deposition occurs when b  is more than the critical value cr , d ,i . 

The bed material generally involves different grain sizes. The eroded material includes all of 

the  sediment  fractions.  The  total  erosion  rate  depends  on  the  bed  density  and  the  bed 

consolidation.  The  bed  may  include  more  than  one  layer,  each  one  with  specific  density, 

consolidation and critical shear stress. Erosion occurs at the active layer on the top. When it is 

eroded  completely,  the  next  layer  becomes  active.  The  erosion  rate  is  different  for  the 

consolidated (hard) bed and the un-consolidated (soft) bed conditions. The water or moisture 

content in the hard bed is below 100% while it is more than 100% in the soft bed material.

The total erosion rate for the hard bed layer is defined by the following relationship (Mehta et  

al, 1989):

E j ,total=h , j
erosion pE , j (5.64)

where  j  is the active bed layer,  E j ,total  is the erosion rate of the jth bed layer,  h , j
erosion  is the 

calibration factor for the hard bed erosion, and perosion , j  is the probability function.

The probability function is defined as follows:

perosion , j=max0,  b
c , er , j

−1 (5.65)

where c , er , j  is the critical shear stress for erosion for the jth bed layer.

The total erosion rate for the soft bed layer is defined as follows (Parchure and Mehta, 1985;  

Mehta et al, 1989):

E j ,total=E0, j exp  serosionb−c ,er , j  (5.66)

where E0, j  and s
erosion  are calibration factors.

The relationship between the bed erosion rate ( E j ,total ) and the erosion rate of each sediment 

size fraction ( Erosioni ) is based on the percentage of each suspended sediment fraction (grain 

size) in the bed material. This data must be known at the start of the simulation as part of the 

initial  condition.  The  variation  of  the  bed  gradation  with  time  is  calculated  through  the 

simulation.
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The bottom boundary condition for the suspended sediment concentration is different from 

equation (5.61) if the suspended sediment grain size is 63 to 125 μm (fine sand). The following 

empirical relationship may be used in this regard (Zyserman and Fredsoe, 1994):

cb=
0.331 sh−csh 

1.75

10.331
0.46  sh−csh

1.75 (5.67)

where  cb  is the near-bed suspended sediment concentration,  sh  is the shields parameter and 

c
sh  is the critical shields parameter. 

The shields parameter is:

sh=
b

w g d 50

s−w
w

(5.68)

The bottom boundary condition for the fine sand (63 to 125  μm) is  more complicated in 

situations where the bed material includes both mud and fine sand. This condition has not been 

considered in the present study.

The suspended sediment concentration gradient normal to the lateral closed boundary may be 

set to zero. The same assumption may be used for the outflow open boundary. The concentration 

must be known at the inflow open boundary. 

5.2.5 Turbulence Equations

The eddy viscosity in the hydrodynamic equations stands for the turbulence effect and any 

other sub-grid scale mixing phenomena. The behaviour of the small eddies (compared to the 

water depth) is isotropic in the 3D space while the behaviour of the larger eddies are anisotropic 

and restricted to the horizontal plane. The 3D small eddies mainly influence the vertical mixing 

while the 2D large eddies mainly influence the horizontal diffusion. The 3D small eddies have 

not  considerable  effect  on the  horizontal  diffusion  in  the  momentum equations  because  the 

horizontal grid space is usually some order of magnitudes larger than the vertical grid space and 

the water depth.

The  3D  k−  equations  are  solved  in  the  present  study  for  the  small-scale  isotropic 

turbulence in order to define the vertical eddy viscosity. It is also possible to choose the log-law 

relationship which gives the standard parabolic profile (see Eq. 2.67). The log-law relationship 

is sufficient and more efficient in many practical cases. 
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The k−  model for the vertical eddy viscosity is different from the general form of the 3D 

k−  model. The production terms in the k and ε equations involve just the vertical gradient of 

the horizontal  velocities without taking the horizontal  gradients into account.  The 3D  k−  

equations for the vertical eddy viscosity are:

∂ k
∂ t u

∂ k
∂ xv

∂ k
∂ yw

∂k
∂ z


1

= ∂
∂ x hσ k ∂ k∂ x  ∂

∂ y hσ k ∂k∂ y 
2

 ∂
∂ z vσ k ∂k∂ z 

3

v∂u∂ z 
2

∂ v∂ z 
2

4

 g
v
σ t
∂
∂ z

5

−ε
(5.69)

∂ ε
∂ t u

∂ ε
∂ xv

∂ ε
∂ yw

∂ ε
∂ z


1

= ∂
∂ x hσ ε ∂ ε∂ x  ∂

∂ y hσ ε ∂ε∂ y 
2

 ∂
∂ z vσ ε ∂ ε∂ z 

3

c1ε
ε
k
v∂u∂ z 

2

∂v∂ z 
2

4

c3ε
ε
k
g

v
σ t
∂
∂ z

5

−c2ε
ε2

k

(5.70)

The values of k  and   in equations (5.69) and (5.70) are the turbulence kinetic energy and 

its dissipation rate respectively. The terms (1) to (5) are the advection, the horizontal diffusion, 

the vertical diffusion, the production and the buoyancy effect respectively. 

The bottom boundary-conditions for k  and   are based on the wall function theory (Rodi, 

1984):

k b=

b


c
=

1
c

∣V do∣
2

1 ln d o
k s/30

2 (5.71)

b=
b 

3 /2

 d o
= 1
 d o  ∣V do∣

1 ln d o
k s /30

3 /2

(5.72)

where =0.41  is the von Karman's constant, k s  is the bed roughness height, d o  is the normal 

distance between the boundary point and the bed, and ∣V do∣  is the magnitude of the velocity at 

the boundary point.
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The free surface boundary conditions for k  and   depend on the wind shear stress:

k =
1
c

 s
 =

1
c

airCwW
2


(5.73)

=
 b 

3/2

 d o ,
= 1
 d o,  airC wW

2

 
3/2

(5.74)

where W  is the wind speed relative to the water velocity at the free surface, Cw  is the wind drag 

coefficient as illustrated in equation (2.26), and d o ,  is the distance between the top layer and the 

real free surface.

In situations where the wind shear stress is negligible, the following relationship may be used 

(Rodi, 1984):

∂ k∂ z =0 (5.75)

=
kc 

3 /2

0.07 −zb
(5.76)

where  – zb   is the water depth.

The  horizontal  eddy  viscosity  usually  needs  calibration  in  the  practical  problems.  The 

Smagorinsky formulation has been used for the horizontal eddy viscosity. The relationship is:

 h=csm l sm
2 ∂ u∂ x2 ∂ v∂ y 21

2  ∂u∂ y∂ v∂ x 
2

(5.77)

where csm  is the calibration factor and l sm  is the length scale. The area of the triangular elements 

has been used for l sm
2  in the present study.

5.2.6 Water Density

The value of the water density   depends on the temperature, the salinity and the suspended 

sediment concentration. The UNESCO equation of state (EOS–80) determines the effect of the 

salinity and the temperature in this regard. It is valid for  T∈[−2 ,40]  oC and S∈[0,42]  psu. 

The present model calculates the value of   in three steps as follows: 

Step 1- The reference density of the pure water is computed as a function of the temperature:

 pw T =a0a1Ta2T
2a3T

3a4T
4a5T

5 (5.78)

where  pw  is the pure water density in (kg/m3) and T is the water temperature in oC. The relevant 
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coefficients are:

a0 = + 999.842594 a3 = + 1.001685e-4
a1 = + 6.793952e-2 a4 = - 1.120083e-6
a2 = - 9.095290e-3 a5 = + 6.536332e-9

Step 2- The effect of the salinity is added to the density by the following relationship:

T ,S = pwT b0b1Tb2T
2b3T

3b4T
4Sc0c1Tc2T

2S 3/2d 0S
2 (5.79)

where T ,S   is the clean water density measured in (kg/m3) and S  is the salinity measured 

in (psu). The unit (psu) is almost identical with (ppt) for practical purposes (parts per thousand).

The relevant coefficients in equation (5.79) are:

b0 = + 8.24493e-1 c0 = - 5.72466e-3
b1 = - 4.0899e-3 c1 = + 1.0227e-4
b2 = + 7.6438e-5 c2 = - 1.6546e-6
b3 = - 8.2467e-7
b4 = + 5.3875e-9 d0 = + 4.8314e-4

Equation  (5.79)  is  adequate  for  the  standard  atmospheric  pressure  condition  at  the  free 

surface.

Step 3- The effect of the suspended sediment concentration on the water density is taken into 

account by the following relationship:

T ,S , c =T ,S 
sed−T ,S 

sed
c (5.80)

where  sed  is  the sediment  constituent  density in  (kg/m3) and  c  is  the dry mass  suspended 

sediment concentration in (kg/m3).

When there are more than one suspended sediment fractions to be solved, a more general 

relationship may be used instead of equation (5.80). It is:

T ,S , c =T ,S ∑
i=1

N f sed−T ,S 
sed

ci (5.81)

where i  is the fraction number and N f  is the total number of the sediment fractions.
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5.3 Transformation and the Transformed Equations

5.3.1 Transformation

The  3D  governing  equations  may  be  transformed  from the  Cartesian  coordinate  system 

t , x , y , z   into the vertical boundary fitted coordinate system t ,x , y , z   in order to simplify 

parts  of  the  solution  procedure  including the  water  level  variability.  Several  transformation 

approaches are available in this regard. The present study is based on an extension of the  σ-

coordinate  system  called  the  vertical  gradient  adaptive  σ-coordinate  transformation  system 

(GAS). This method was proposed by Wai and Lu, 1999. The GAS transformation system takes 

into account the vertical gradient of a selected variable (for example the sediment concentration 

or the temperature) as a control factor in order to adjust the vertical grid spacing automatically 

during the simulation procedure. 

The transformation rules for the GAS coordinate system are (Wai and Lu, 1999):
t=t
x= x
y= y

z=
 z−zbaGAS
− zbbGAS

zGAS∈[0,1]

aGAS=∫
zb

z GAS∣∂∂ z ∣GAS∣∂2
∂ z2 ∣dz

bGAS=∫
zb

 GAS∣∂∂ z ∣GAS∣∂2
∂ z 2 ∣dz

(5.82)

where GAS  and GAS  are user specified coefficients which control the influence of the variable 

  on the vertical  grid distribution.  The control  variable    can  be the  suspended sediment 

concentration, the velocity, the temperature, the salinity, or any other interested quantity.

The rules for the GAS transformation (5.82) are similar to their counterparts for the standard 

σ-coordinate system, except for the coefficients aGAS  and bGAS . The transformed equations in 

the GAS-coordinate system are also similar to the transformed equations in the σ-coordinate 

system. The GAS transformation is exactly identical to the σ transformation if the constants 

GAS  and GAS  are set to zero. 

The factors  GAS  and  GAS  must  be  selected  carefully.  The  grid  skewness  becomes  too 

significant if one of the factors is set unreasonably large. This may cause numerical instability. 

For estuary and coastal water simulation, the optimal value for GAS , subject to a settling term, 
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may be chosen between 1 and 5. The optimal value for GAS , subject to dissolved substances, 

should be in the range of 0.1 to 1. The value of GAS  should be 1/10 of GAS .

The partial derivatives must be transformed from the Cartesian coordinate system x , y , z , t   

to the GAS coordinate system  x , y , z , t  . The transformation rules are:

∂
∂ t
= ∂
∂ t
∂z
∂ t

∂
∂ z (5.83)

∂
∂ x
= ∂
∂x
∂ z
∂ x

∂
∂ z

, ∂
∂ y
= ∂
∂y
 ∂z
∂ y

∂
∂ z (5.84)

∂
∂ z
=∂z
∂ z

∂
∂ z (5.85)

The time and z derivatives of zGAS  in equations (5.83) to (5.85) are defined as follows:

∂ z
∂ t
= 1
H GAS
∂ aGAS∂ t

−z ∂
∂ t
−z
∂ bGAS
∂ t  (5.86)

∂ z
∂ z
= 1
H GAS

(5.87)

where the value H GAS  is defined by the following relationship:

H GAS=
−zbbGAS

1GAS∣∂∂ z ∣GAS∣∂
2
∂ z 2 ∣ (5.88)

The horizontal diffusion and the horizontal non-hydrostatic pressure gradient terms are not 

transformed into the GAS co-ordinate system. The reason has been described in section (4.6).

The vertical velocity component w  may be transformed into a new variable w  in order to have 

simple transformed equations similar to their original counterparts. Two kinds of transformations are 

common in this regard. One of them is given as (Wai and Lu 1999, Luyten et al. 1999):

w = D z
D t
= ∂ z
∂ t
u ∂ z
∂ x
v ∂ z
∂ y
w ∂ z

∂ z (5.89)

which links w  to w  as follows:

w=H GAS wz
∂
∂ t
u z ∂∂ x1−z  ∂ z b∂ x v z ∂∂ y1−z  ∂ zb∂ y  (5.90)

The other one is the multiplication of equation (5.89) by H GAS  which is the water depth in the 

σ-coordinate system (Stansby 1997, Stansby and Zhou 1998). The first choice has been selected 

in the present study. The transformed vertical velocity in the governing equations appears in a 

similar form as the horizontal velocity components when the first choice is used. 
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5.3.2 Flow Equations

The hydrodynamic equations in the transformed coordinate system are:

∂H GAS

∂ t

∂u HGAS
∂ x


∂v HGAS 
∂ y


∂w HGAS
∂ z

=H GAS⋅Qdis (5.91)

∂ u
∂ t
u∂ u
∂ x
v ∂u
∂ y
w∂ u

∂ z
=

∂
∂ x  h∂u∂ x ∂ z∂ x ∂

∂ z  h∂u∂ x ∂∂ y  h∂ u∂ y ∂ z∂ y ∂
∂ z  h∂u∂ y  ∂∂ z  v ∂u∂ z 

−1

∂ pa
∂ x

−g


∂
∂ x
−g 1
∫z


∂
∂ x

dz−1
 ∂ q∂ x ∂ z∂ x ∂ q∂ z 

2⋅v⋅z−2⋅w⋅ yudisQ dis

(5.92)

∂ v
∂ t
u ∂v
∂ x
v ∂ v
∂ y
w∂ v

∂ z
=

∂
∂ x  h∂ v∂ x ∂ z∂ x ∂

∂ z h∂ v∂ x  ∂
∂y h∂ v∂ y ∂z∂ y ∂∂ z  h∂ v∂ y  ∂∂ z  v∂ v∂ z 

−1

∂ pa
∂y

−g


∂
∂y
−g1
∫z


∂
∂ y

dz−1
ρ ∂ q∂ y ∂z∂ y ∂ q∂ z 

−2⋅u⋅z2⋅w⋅xvdisQdis

(5.93)

∂w
∂ t

u∂w
∂ x

v∂w
∂ y

w ∂w
∂ z
=

∂
∂ x  h∂w∂ x ∂ z∂ x ∂

∂ z  h∂w∂ x  ∂
∂ y  h∂w∂ y ∂ z∂ y ∂

∂ z  h∂w∂ y  ∂∂ z  v∂w∂ z 
− 1
HGAS

1
ρ
∂ q
∂ z
2⋅u⋅y−2⋅v⋅xwdisQ dis

(5.94)

The  horizontal  gradient  terms  in  equations  (5.92)  to  (5.94)  have  not  been  transformed 

completely into the  σ-coordinate system. The reason for such transformation was described in 

section (4.6). The aim is to avoid the artificial velocity and diffusion that could form near the 

steep bed slope in highly stratified flow regions such as the density current in the reservoir. 

The present study has introduced a new approach for discretisation of the horizontal diffusion 

terms. It computes the shear stresses in the Cartesian coordinate system, and then computes the 

gradients of the shear stresses in the σ-coordinate system. 

The  vertical  diffusion  terms  in  equations  (5.92)  to  (5.94)  have  been  discretised  in  the 

Cartesian coordinate system in order to guaranty the shear stress continuity at the boundary of 

the vertical elements.
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5.3.3 Hydrodynamic Pressure Equation

The relationship for the hydrodynamic pressure correction (5.24) is  transformed to the  σ-

coordinate system as follows:

∂
∂ x ∂ q∂ x ∂ z∂ x ∂ q∂ z ∂ z∂ x ∂

∂ z ∂ q∂ x ∂ z∂ x ∂ q∂ z 

∂
∂y ∂ q∂ y ∂ z∂ y ∂ q∂ z ∂ z∂ y ∂

∂ z ∂ q∂ y ∂z∂ y ∂ q∂ z 
 1
H GAS

∂
∂ z  1

HGAS

∂ q
∂ z = 

 t ∂ u∂ x∂z∂ x ∂ u∂ z ∂ v∂ y ∂z∂ y ∂ v∂ z 1
HGAS

∂ w
∂ z 

(5.95)

where  u ,  v  and  w  are  the  intermediate  non-divergence-free  velocity  components  and 

q=qn1−qn  is the correction to the hydrodynamic pressure. 

Equation (5.95) is used to calculate the correction term to the hydrodynamic pressure. It does 

not provide the total pressure. This approach is consistent with the third technique described in 

section (4.6) for avoiding the hydrostatic pressure inconsistency when σ-coordinate grid is used. 

The second order vertical gradient term in equation (5.95) has been derived as follows:

1
HGAS

∂
∂ z  1

H GAS

∂ q
∂ z = 1

H GAS
2
∂2 q
∂ z2

1
H GAS

∂1/H GAS
∂ z

∂ q
∂ z (5.96)

It should be noted that when the σ planes are not distributed homogeneously along the water 

depth, then:

∂2

∂ z 2≠
1

H GAS
2

∂2

∂ z2 (5.97)

5.3.4 Other 3D Governing Equations

The transformed equations for the salinity and temperature are given as:

∂ S
∂ t
u ∂ S
∂ x
v ∂ S
∂ y
w ∂ S

∂ z
=

∂
∂ x Dh

∂ S
∂ x  ∂

∂ y Dh
∂ S
∂ y  1

HGAS

∂
∂ z  Dv

H GAS

∂ S
∂ z S disQdis

(5.98)

∂T
∂ t
u ∂T
∂ x
v ∂T
∂ y
w∂T

∂ z
=

∂
∂ x Dh

∂T
∂ x  ∂

∂ y Dh
∂T
∂ y  1

H
∂
∂ z  Dv

H
∂T
∂ z T disQ disAheat

rad
(5.99)
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The transformed equation for the suspended sediment concentration is given as:

∂c
∂ t
u∂c
∂ x
v∂c
∂ y
w ∂c

∂ z
−1
H GAS

∂w s c
∂ z

=

∂
∂ x Dh

∂c
∂ x  ∂

∂ y Dh
∂c
∂ y  1

H GAS

∂
∂ z  Dv

HGAS

∂c
∂ z S.T.

(5.100)

The transformed equations for the vertical turbulence are given as:

∂ k
∂ t
u ∂ k
∂ x
v ∂ k
∂ y
w∂ k

∂ z
=∂
∂ x  hσ k ∂ k∂ x ∂∂ y  hσk ∂ k∂ y 

 1
H GAS

∂
∂ z   vσk 1

HGAS

∂ k
∂ z  v∂ u∂ z 

2

 ∂v∂ z 
2

production

 g
 v
σ t
∂
∂ z
−ε

(5.101)

∂ ε
∂ t
u∂ ε
∂ x
v∂ ε
∂ y
w ∂ ε

∂ z
=∂
∂ x  hσ ε ∂ ε∂ x ∂∂ y  hσε ∂ ε∂ y 

 1
H GAS

∂
∂ z  vσ ε 1

H GAS

∂ ε
∂ z c1ε

ε
k
 v ∂u∂ z 

2

∂ v∂ z 
2

production

c3ε
ε
k
g

v
σ t
∂
∂ z
−c2ε

ε2

k

(5.102)

5.4 2D Governing Equations

The governing equations for the 2D depth averaged hydrodynamic model are:

∂−zb
∂ t


∂DU 
∂ x


∂DV 
∂ y

=DQdis (5.103)

∂U
∂ t
U ∂U

∂ x
V ∂U

∂ y
= f V−g ∂ 

∂ x

sx
D

−gU U
2V 2

DC ch

−
1

∂ pa
∂ x −

g D
2

∂
∂ x t∂

2U
∂ x2 

∂2U
∂ y2 us−U Qdis

(5.104)

∂V
∂ t
U ∂V

∂ x
V ∂V

∂ y
=− f U−g ∂

∂ y

sy
D

− gV U
2V 2

DC ch

−
1

∂ pa
∂ y −

g D
2

∂
∂ y  t∂2V

∂ x2 
∂2V
∂ y2 vs−V Qdis

(5.105)

where D=−zb  is the total water depth, C ch  is the Chezy coefficient for the bed roughness,  s  

is the wind shear stress,   is the depth averaged water density, f  is the Coriolis factor, and U  

and V  are the depth averaged velocities defined by (5.106):

U= 1
D∫z b



udz  and V= 1
D∫za



v dz (5.106)
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The 2D depth averaged advection-diffusion equation for the temperature is given as:

∂T 
∂ t

U ∂
T 
∂ x

V ∂
T 
∂ y

= Dh ∂2 T
∂ x2

∂2 T
∂ y2 AheatradT s−T Qdis (5.107)

where T  is the depth averaged water temperature.

The 2D depth averaged advection-diffusion equation for the salinity is:

∂S 
∂ t

U ∂
S 
∂ x

V ∂
S 
∂ y

= Dt ∂2S
∂ x2

∂2S
∂ y2 S s−S Qdis (5.108)

where S  is the depth averaged salinity level.

The  applicability  of  the  depth  averaged  equations  for  the  salinity  and  temperature  are 

restricted to well-mixed conditions. The vertical gradient of these parameters and the suspended 

sediment concentration is usually not negligible even when the flow field can be defined by the 

shallow water equations. The safe approach in this regard is to use the 3D equations of these 

parameters in joint with the 2D depth averaged flow equations. The depth averaged form of the 

suspended sediment concentration has not been included in the present study in order to force 

the users to use the 3D version.

5.5 Summary

This chapter presented the governing equations that are to be solved in the present study. The 

3D hydrodynamic equations were illustrated with descriptions of the relevant terms, the variable 

effect of the free surface slope on different layers of the stratified flow, and the effect of the 

Boussinesq approximation on the vertical momentum equation. Then the kinematic and dynamic 

boundary conditions were reviewed. 

The  Poisson  equation  for  the  hydrodynamic  pressure  and  its  boundary  conditions  were 

presented. Then the 3D conservation equations for the salinity and temperature were illustrated 

together with their boundary conditions. Several heat exchange relationships, necessary for the 

boundary conditions and the source terms of the temperature equation, were listed. Then the 

suspended sediment equation was presented together with relationships for describing the fall 

velocity, boundary condition and erosion/deposition processes in the cohesive and non-cohesive 

environments. 

The log-law relationship and the 3D  k−  equations for the vertical  eddy viscosity were 

considered with the Smagorinsky formulation for the horizontal eddy viscosity. The UNESCO 

equation  of  state  (EOS–80)  was  illustrated  for  the  water  density  involving  the  effect  of 
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temperature and salinity. Then the effect of the suspended sediment concentration (of sediment 

fractions) on the water density was considered into account. 

The vertical gradient adaptive σ-coordinate transformation system (GAS, Wai and Lu 1999) 

and the associated transformation rules were employed in the current study in order to transform 

the 3D governing equations from the Cartesian coordinate system into a vertical boundary fitted 

coordinate system giving flexibility and control on the vertical the vertical grid spacing along 

the solution area. The transformed forms of the 3D flow, hydrodynamic pressure correction, 

temperature, salinity and suspended sediment concentration were listed. A new approach for the 

discretisation of the horizontal diffusion terms in the momentum equations has been proposed in 

order to avoid the difficulties that have been described in section (4.6). The depth averaged 

equations for the flow, temperature and salinity have been cited at the end of this chapter. 
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6 Discretisation Algorithms in the Model

6.1 Introduction

This chapter addresses the computational grid, the discretisation schemes and the interpolation 

elements that have been used as tools in the solution procedures of the present study. It does not 

involve the solution procedures of the numerical model,  but rather includes the methods and 

schemes  that  have  been  used  as  discretisation  tools  in  the  solution  procedures.  The  solution 

procedure itself is addressed in the next chapter (7) which uses the present chapter as a reference.

Section  (6.2)  demonstrates  the  computational  grid.  Section  (6.3)  reviews  the  general 

discretisation algorithm of the numerical model  in order to show the role of each discretisation 

scheme in the overall picture. Section (6.4) describes the horizontal interpolation elements and 

shape functions. The vertical interpolation elements and shape functions are described in section 

(6.5).  Section  (6.6)  addresses  the  complete  three-dimensional  interpolation  procedure.  This 

procedure is used for the 3D  semi-Lagrangian  advection algorithm. Section (6.7) describes the 

horizontal finite volume discretisation scheme. It has been used for the horizontal diffusion solver, 

the free surface solver and part of the hydrodynamic pressure correction step. The divergence 

theorem has  an  essential  role  in  the  finite  volume algorithm.  This  theorem and  the  analytic 

derivation of the cell-boundary integrals through the interpolation functions have been described 

in section (6.8). The lateral boundary conditions are handled in a new way in order to satisfy the 

Neumann  boundary  conditions  in  the  semi-Lagrangian  advection  algorithm  and  the  FV 

discretisation  procedure.  Section  (6.9)  describes  the  handling  method of  the  lateral  boundary 

conditions.  Section  (6.10)  addresses  the  numerical  estimation  of  the  spatial  gradients  at  the 

computational nodes of the unstructured grid. Section (6.11) describes the vertical finite volume 

discretisation algorithm. It has been used in the vertical diffusion step of the 3D model. 

6.2 Computational Grid

The present model uses the unstructured triangular grid in order to discretise the horizontal 

plane. The horizontal grid is projected on several layers to discretise the vertical direction. In 

this way, the three dimensional grid is unstructured in the horizontal plane (sigma-layers) while 

it is structured in the vertical direction. Figure (6.1) illustrates a sample computational grid in 
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the three dimensional space. The discretisation and interpolation schemes that have been used 

for the vertical direction are different from their counterparts for the horizontal plane. The two 

dimensional part of the model uses the same horizontal grid.

Figure 6.1. Sample computational grid

6.3 General Algorithm

The present model is based on the operator splitting approach. The 3D flow equations are 

solved through the following steps: the advection step, the horizontal diffusion step, the vertical 

diffusion step, the free surface step, the hydrodynamic pressure correction step and the velocity 

projection step. The advection step is solved by the  semi-Lagrangian method which needs an 

interpolation  algorithm  in  order  to  transform  data  from  the  computational  nodes  to  other 

locations in the elements. There are several interpolation schemes in the literature (see section 

4.5).  The  present  model  uses  the  two  dimensional  finite  element  shape  functions  in  the 

horizontal plane in combination with the one dimensional finite element shape functions in the 

vertical  direction  in  order  to  interpolate  data  in  the  3D space.  The  FE interpolation  shape 

functions have been used in order to ensure the consistency of the advection step with other 

steps that use the same shape functions for finite volume discretisation. 

The horizontal diffusion step is solved layer by layer through the 2D finite volume approach. 

It is also the case for the free surface step. The vertical diffusion step is solved by the 1D finite 

volume approach in the vertical direction. The finite volume procedures in the model are based 
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on  the  analytical  integration  of  the  FE-type  shape  functions  over  the  FV cell  areas  and/or 

boundaries (faces). The discretisation algorithm for the 3D Poisson step has been developed 

through  combining  the  2D  horizontal  finite  volume  approach  and  the  1D  vertical  finite 

difference scheme. The 2D model is based on semi-Lagrangian scheme for the advection step 

and the horizontal FV scheme for the remaining steps.

6.4 The Horizontal Interpolation Elements

Two interpolation procedures have been used in the model: quadratic and linear. Complete 

interpolation functions of any order may be constructed for triangular elements using the so-

called  Pascal's  triangle  of  numbers.  Pascal's  triangle  shows  both  the  terms  needed  in  the 

interpolation  polynomial  and  the  position  of  the  nodes  on  a  triangular  cell.  Figure  (6.2) 

illustrates the Pascal's triangle of numbers. The resulted polynomial is identical to the Taylor 

series of the same order.

The six-node (quadratic) and three-node (linear) triangular elements have been used with the 

Lagrangian shape functions in order to interpolate data horizontally between the computational 

nodes. In this way, all of the variables remain continuous and consistent not only at the nodes 

but  also  along the  element  boundary lines.  Continuity along  the  element  boundaries  is  not 

satisfied in the traditional FV cells. However it is crucial for the semi-Lagrangian advection 

algorithm.

x y2 2

1

x y

x2 y2x y

x3 y3x y x y2 2

x4 y4x y3 x y3

Figure 6.2. Triangular interpolation element construction by Pascal's triangle of numbers

Figure (6.3)  illustrates  a  quadratic  triangular  element  with the  nodal  points  and the local 

numbering order.  The unknown quantity may be interpolated inside the element and on the 

boundaries through the following relationship:
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x , y =∑
j=1

6

 j
h  x , y ⋅ j (6.1)

where   is a generic quantity at the point  x , y   in the element,  j  is the value of   at the jth 

node of the element, and  j
h  x , y   is the shape function of the jth node. 

The interpolation function (6.1) is second-order accurate because the nodal shape functions 

 j
h  x , y   are  second-order  polynomials.  There  are  six  shape  functions  in  a  quadratic 

interpolation element. The relationship for the shape functions is given as:

h  x , y =a1a2 x−xo a3 y−yo a4 x−xo
2a5 x−xo y−yo a6 y−yo 

2 (6.2)

where   xo ,yo  is the origin point of the local coordinate system. The polynomial coefficients, 

a1  to a6 , must be defined for each node.

1 2

3

4

56

Figure 6.3. Quadratic triangular cell with six nodes

The polynomial coefficients relevant to the jth shape function  j
h  may be defined by solving 

six equations:

a) The value of  j
h  is equal to 1 at the jth node  x j ,y j , and

b) The value of  j
h  is equal to zero at all of the other nodes of the element.

The resulting shape functions are independent from the nodal values  j . They depend solely 

on the geometry of the triangles and the position of the nodes. The equations mentioned above 

have been solved analytically for the present study.
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If the node number 1 is selected as the local origin point, the resulted coefficients for the 

shape function of the node number 1 ( 1
h ) are:

a1=1 a2=
3
2
y2−y3

Ae
a3=

3
2
x3−x2

Ae

a4=
1
2 y 2−y3

Ae 
2

a5=
x3−x2 y2−y3

Ae
2 a6=

1
2  x3−x2

Ae 
2 (6.3)

where Ae  is the triangle's area. 

The coefficients for the shape function of the node number 2 ( 2
h ) are:

a1=0 a2=
y1−y3

2 Ae
a3=
x3−x1

2 Ae

a4=
1
2 y1−y3

Ae 
2

a5=
x3−x1 y1−y3

Ae
2 a6=

1
2  x3−x1

Ae 
2 (6.4)

The coefficients for the shape function of the node number 3 ( 3
h ) are:

a1=0 a2=
y2−y1

2 Ae
a3=
x1−x2

2 Ae

a4=
1
2 y 2−y1

Ae 
2

a5=
x1−x2 y2−y1

Ae
2 a6=

1
2  x1−x2

Ae 
2 (6.5)

The coefficients for the shape function of the node number 4 (  4
h ) are:

a1=0 a2=2
y3−y1

Ae

a3=2
x1−x3

Ae
a4=

y2−y3 y3−y1
Ae

2

a5=
x1−x3 y 2−y3x3−x2 y3−y1

Ae
2 a6=

x3−x2 x1−x3

Ae
2

(6.6)

The coefficients for the shape function of the node number 5 ( 5
h ) are:

a1=0 a2=0

a3=0 a4=
y1−y2 y3−y1

Ae
2

a5=
x2−x1 y3−y1x1−x3 y1−y2

Ae
2 a6=

x1−x3 x2−x1

Ae
2

(6.7)
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The coefficients for the shape function of the node number 6 ( 6
h ) are:

a1=0 a2=2
y1−y2

Ae

a3=2
x2−x1

Ae
a4=

y1−y2 y2−y3
Ae

2

a5=
x2−x1 y2−y3x3−x2y1−y2

Ae
2 a6=

x2−x1 x3−x2

Ae
2

(6.8)

The area of the triangular element may be defined from the following relationship:

2 Ae=∣1 x1 y1

1 x2 y2

1 x3 y3
∣=x2−x3 y3−y1x1−x3y 2−y3 (6.9)

The present model is based on the fixed computational grid. Therefore the shape functions are 

constant during the simulation procedure. The shape functions for a specific computational grid 

are calculated only once. 

The finite element models usually use a master iso-parametric element with already known 

shape functions and surface integrals. However they compute and store the Jacobian matrices 

for all of the real elements in order to transform the real elements into the master element. The 

present model has not used the concept of master element. There is no benefit from using the 

master element when the shape functions and the integrals are computed analytically.

Figure  (6.4)  illustrates  the  linear  elements  inside  each  quadratic  element.  Linear  shape 

functions are used in the FV algorithm for specific quantities/conditions in order to prevent 

numerical oscillation and instability in parts of the model (see chapter 7 for details). It must be 

noted that separating the advection part and handling it with the semi-Lagrangian algorithm is 

another arrangement to prevent numerical oscillation. 
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1 2

3

4

56

1 2

3

1 2

3

1

23
1 2

3

1 2

3

4

Figure 6.4. Linear interpolation triangles inside a quadratic triangle

The interpolation function for the linear element is given as:

x , y =∑
j=1

3

 j
hl  x ,y ⋅ j (6.10)

in which the linear shape function  hl  is:

 hl  x ,y =a1a2x−xo a3 y−yo  (6.11)

where  xo ,yo  is the local origin point for the linear interpolation sub-element. 

The coefficients have been defined analytically for the present study. If the node number 1 of 

the  linear  element  is  selected  as  the  local  origin  point,  then  the  coefficients  for  the  shape 

function of the node number 1 (  1
hl ) are:

a1=1 , a2=−
y3− y2

2 Ae
, a3=−

x 2−x3

2 Ae
(6.12)

The coefficients for the shape function of the node number 2 (  2
hl ) are:

a1=0 , a2=
y3− y1

2 Ae
, a3=

x1− x3

2 Ae
(6.13)

The coefficients for the shape function of the node number 3 (  3
hl ) are:

a1=0 , a2=
y1− y2

2 Ae
, a3=

x2−x1

2 Ae
(6.14)

where Ae  is the area of the linear triangular element.

The  node  numbers  mentioned  in  equations  (6.3)  to  (6.14)  are  different  from the  global 

numbering system of the computational grid. The numbering system in the elements is local.
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6.5 The Vertical Interpolation elements

The one dimensional cubic polynomial (third degree) has been used in order to interpolate 

data in the vertical direction. There is an interpolation element between each two consecutive 

nodes in the column. The interpolation functions is used to ensure the consistency of  to the 

solution  parameters  and  their  vertical  derivatives  at  the  nodes.  In  this  way,  both  of  the 

interpolating variables and their vertical gradients will be continuous at the element boundaries.

The interpolation scheme is used for the Cartesian and for the σ-coordinate systems. The 

resulting curves in the two coordinate systems are not exactly the same. The lengths of the 

vertical elements are not necessarily equivalent in the Cartesian coordinate system. The vertical 

gradient at a node is estimated by fitting a second-degree polynomial to that node and its two 

neighbouring  nodes.  This  algorithm  results  in  the  following  relationship  for  the  spatial 

derivative of ϕ  at the node number l  in the Cartesian coordinate system:

∂∂ z l=All−1BllC ll1 (6.15)

where:

Al=−
z l1−z l

 zl−z l−1 z l1−z l−1
, Bl=

z l1−2 z l z l−1

 zl−z l−1 zl1− z l
, C l=

z l−z l−1

 z l1−z l z l1− z l−1

(6.16)

The interpolation function relevant to a vertical element in the Cartesian coordinate system is 

given as:

 z =∑
k=l−1

l2

k
v  z ⋅k (6.17)

where   is the interpolating quantity at the arbitrary position z  in the element, k  is the nodal 

value of    at  the node number k,   k
v  z   is the shape function of the kth node.  The global 

numbering system has been used in the vertical direction.

The vertical shape functions are cubic polynomials of the form:

v  z=b1b2 z− zlb3 z− z l
2b4 z−z l

3 (6.18)

where zl  is the z  value of the computational node below the point and b1  to b4  are polynomial 

coefficients. 

The polynomial coefficients relevant to the l th  shape function  k
v  may be defined by solving 

four equations:
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a) The value of  z   is equal to k  at the nodes l  and l1 , and

b) the value of ∂ z /∂ z  is equal to equation (6.15) at the nodes l  and l1 .

The resulting shape functions are independent from the nodal values k . They depend solely 

on the vertical positions of the nodes l−1 , l , l1  and l2 . 

The equations  mentioned above have  been solved analytically for  the  present  study.  The 

resulting coefficients for the shape function of node number l−1 , l−1
v , are:

b1=0 , b2=Al , b3=−
2 Al
 z 

, b4=
Al

 z 2
(6.19)

The coefficients for the shape function of node number l , l
v , are:

b1=1 , b2=Bl , b3=−
3

 z 2
−

2B l
 z 

−
Al1

 z 
, b4=

Al1

 z 2


Bl
 z 2

 2
 z3

(6.20)

The coefficients for the shape function of node number l1 , l1
v , are:

b1=0 , b2=C l , b3=
3

 z 2
−

2C l

 z 
−
B l1

 z 
, b4=

B l1

 z 2


C l

 z 2
− 2
 z 3

(6.21)

The coefficients for the shape function of the node number l2 , l2
v , are:

b1=0 , b2=0 , b3=−
c l1

 z 
, b4=

c l1

 z 2
(6.22)

The quantity  z  in equations (6.19) to (6.22) is  z= z l1− z l .

The node number l−1  does not exist for the area between the bed layer and the next one (the 

node numbers 1 and 2). Thus, another condition is needed for calculating the coefficients in 

equation (2.18). For the Neumann boundary conditions, the near-bed vertical gradient is known 

and may be used as the fourth condition. A virtual layer is used under the bed layer in order to 

handle the boundary condition without changing the discretisation scheme. This approach lets 

the program to use a unique interpolation procedure for all of the vertical elements. However an 

extra relationship is needed for the virtual node. This relationship is defined in such a way that 

the vertical gradient at the bed layer becomes equivalent to the Neumann boundary condition:

z0=z1− z2− z1 , 2−0=2  z2− z1∂∂ z 1 (6.23)

where the subscripts 0  and 1  stand for the virtual layer and the bed layer respectively.

For the explicit interpolation procedures equation (6.23) is solved directly in order to define 

the nodal  value at  the under-bed virtual  layer.  For the implicit  numerical  schemes equation 

(6.23) is added to the linear set of equations that must be solved numerically. 
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Sometimes the bed boundary condition is a linear relationship between the bed value and the 

vertical gradient. In this case the corresponding equation for the virtual node may be derived 

from equation (6.23) as follows:

2−2 z 2−z11−0=2 z2−z1 where ∂∂ z b=1 (6.24)

A similar approach may be used for the water surface by adding a virtual node above the 

water level with the following characteristics:

z k1=z k zk−z k−1 , k1−k−1=2 z k− zk−1 ∂∂ z k (6.25)

where the subscripts k  and k1  stand for the free surface layer and the virtual layer respectively.

If the vertical gradient at the boundary is linked to the boundary value itself, the following 

equation may be used:

k1−2  zk−zk−1k−k−1=2  zk−z k−1 where  ∂∂ z b=1 (6.26)

The vertical interpolation shape functions may be simplified further when the procedure is 

needed directly in the σ-coordinate system instead of the Cartesian one. Considering that  z  is 

fixed and unique for all of the vertical elements, equations (6.17) to (6.22) may be simplified as 

follows:

z =∑
k=l−1

l2

k
v  z ⋅k (6.27)

v  z=b1b2 z−zlb3 z−z l
2b4 z−z l

3 (6.28)

For l−1
v :

b1=0 , b2=−
1

2 z 
, b3=

1
 z 2

, b4=−
1

2 z 3
(6.29)

For l
v :

b1=1 , b2=0 , b3=−
5

2 z 2
, b4=

3
2 z 3

(6.30)

For l1
v :

b1=0 , b2=
1

2  z
, b3=

2
 z 2

, b4=−
3

2 z 3
(6.31)

For l2
v :

b1=0 , b2=0 , b3=−
1

2 z 2
, b4=

1
2 z 3

(6.32)
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The integral of the interpolation function (6.17) between the layers l  and l1  is written as:

∫
l

l1

 z dz=∫
l

l1

∑
k=l−1

l2

 k
v  z ⋅k dz= ∑

k=l−1

l2

k∫
l

l1

 k
v  z dz (6.33)

in which the integral for each shape function may be defined analytically as follows:

∫
l

l1

 k
v  zdz=∫

l

l1

[b1b2 z−zl b3 z−z l 
2b4  z−z l

3]d z
=b1  zb2 z 

2b3 z 
3b4 z 

4
(6.34)

where  z= z l1−z l .

Equation (6.33) may be used for numerical depth integration. 

6.6 The 3D Interpolation procedure

The horizontal and vertical interpolation equations (6.1 and 6.27) may be mixed together in 

order to link the unknown quantity at an arbitrary point  x , y , z   to the surrounding nodes. The 

relationship for the 3D interpolation is given as:

x , y , z =∑
j=1

6  j
h x , y ⋅∑

k=l−1

l2

k
v  z ⋅ j ,k  (6.35)

Figure (6.5) illustrates the affecting nodes for data interpolation at an arbitrary point in the 3D 

space. Equation (6.35) determines the weight of each node in the interpolation procedure.

Figure 6.5. Affecting nodes for data interpolation at an arbitrary point in 3D space
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6.7 The Horizontal Discretisation Algorithm

The finite volume approach has been used as the horizontal discretisation scheme in the sigma 

coordinate planes except for the semi-Lagrangian advection step. The finite volume schemes are 

usually based on the cell-averaged values or numerical integration. The present scheme makes 

use  of  the  interpolating  shape  functions  described in  section  (6.4)  in  order  to  integrate  the 

equations over the cell area and the cell boundaries. This type of finite volume scheme may be 

considered as a hybrid finite volume finite element scheme in the literature. 

Figure (6.6) illustrates the finite volume cells.  Each cell  belongs to a  computational node 

(vertex-cell). The computational nodes are the vertices of the interpolation triangles and the mid-

points  of their  edges.  There is  an independent  cell  for  each node.  Therefore each unknown 

variable has an independent equation which means that the number of unknowns is equal to the 

number of equations. 

Figure 6.6. Two sample finite volume cells over the interpolating triangular elements

The finite volume discretisation scheme is based on the integration over the cell area. The 

Gauss' divergence theorem is commonly used in order to convert the cell area integration of the 

divergence terms into the cell boundary integration of the quantities. The area and boundary 

integrals can be determined via analytical integration of the interpolating shape functions. It can 

be shown that when the analytical shape function and the analytical integration is used, there is 

no difference between the result of the boundary integral and the cell-area integration of the 

divergence terms. The proof for this claim is exactly the proof of the Gauss' divergence theorem. 

The integration procedure has been described below.
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Figure  (6.6)  shows that  each  FV cell-area  contains  parts  from two or  more  interpolation 

elements. Each interpolation element has its specific shape functions. Therefore the cell-area 

integral is the sum of two or more sub-cell integrals. On the other hand the analytical integration 

is easier on triangle than other shapes. Therefore each FV cell is partitioned into several sub-cell  

triangular parts as illustrated in figure (6.7). Considering the quadratic interpolation elements, 

equation (6.1) may be integrated analytically over each part in order to derive the integral of a 

generic quantity   over a finite volume cell. The result is:

∑
1

m

∬
sp
x , y dx dy=∑

1

m

∬
sp
∑
j=1

6

 j
h x , y ⋅ jdx dy=∑

1

m

∑
j=1

6

 j ∬
sp
 j
h  x , y dx dy  (6.36)

where the subscript sp  stands for the sub-cell triangle parts in a FV cell, m  is the number of the 

sub-cell triangle parts, x , y  is the interpolating function to be integrated,  j  is the value of 

x , y  at the nodes of the interpolation element which contains sp , and  j
h  x , y   is the shape 

function of the interpolation element nodes.

Figure 6.7. Integration sub-cell triangles in a finite volume cell

Equation (6.36) shows that the integration of the variable   on a finite volume cell depends 

on the surrounding nodal values and the integration of the nodal shape functions. All of the 

shape  functions  are  polynomials  of  the  same  form  (see  equation  6.2).  The  analytical 

interpolation of a polynomial of the form (6.2) on a triangular area sp  is written as:
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∬
sp
h x , yds =

∬
sp
a1ds∬

sp
a2 x−xo ds∬

sp
a3 y−yo ds

∬
sp
a4x−xo 

2ds∬
sp
a5 x−xo y−yods∬

sp
a6 y−yo 

2ds =

a1∬
sp
dsa2∬

sp
x−xo dsa3∬

sp
y−yo ds

a4∬
sp
x−xo

2dsa5∬
sp
x−xoy−yo dsa6∬

sp
y−yo 

2ds

(6.37)

where the subscript o  stands for the node number 1 of the quadratic interpolation triangle which 

involves sp . 

Analytic integration of the terms in equation (6.37) results in the following relationships:

∬
sp

ds=1
2 [ x1 y2− y3x2 y3− y1x3 y1− y2 ] (6.38)

∬
sp

x ds=1
6 [ y1− y2x3

2− x1 x2 y2− y3 x1
2−x2 x3 y3− y1x2

2−x1 x3] (6.39)

∬
sp

yds=1
6 [x2− x1 y3

2− y1 y2x3− x2 y1
2− y2 y3 x1−x3 y2

2− y1 y3] (6.40)

∬
sp

x2ds =

1
12 [x3

2x1
2x3 y1−x1 y3 x2

2x3
2x2 y3−x3 y 2x1

2 x2
2 x1 y2−x 2 y1]

 1
12 [x3

2−x2
2x1 y1x 2

2−x1
2x3 y3 x1

2−x3
2 x2 y2 ]

(6.41)

∬
sp

y2ds=

1
12 [ y1

2 y3
2x3 y1−x1 y3 y2

2 y1
2x1 y2−x2 y1 y3

2 y2
2 x2 y3− x3 y2]

 1
12 [ y1

2− y 2
2 x3 y3 y2

2− y3
2x1 y1 y3

2− y1
2 x2 y2 ]

(6.42)

∬
sp
x y ds =

x3− x1

24 [x3 x1 y3
2 y1

22  y3 y1x3 y3x1 y1]


x2− x3

24 [x2 x3 y2
2 y3

22  y2 y3x2 y2x3 y3]


x1− x2

24 [x1x2 y1
2 y2

22  y1 y2 x1 y1x2 y2]

(6.43)

where the subscript sp  stands for a triangle with the vertices x1, y1 ,  x2, y2  and x3, y3  in 

the local coordinate system ( x≡x−xo , y≡y−yo ). 
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Equations (6.37) to (6.43) show that the integrals in equation (6.36) are only depends on the 

horizontal mesh-geometry. They are fixed in time and may be computed just once. In this way, 

the  integral  of  the interpolation function  (6.36)  over  the finite  volume cell  is  linked to  the 

surrounding nodal values and the cell centred node itself.

The integral  of  the spatial  gradient  of  the interpolation  function on the cell  area  may be 

determined analytically as follows:

∑
1

m

∬
sp

∂x , y
∂ x

dx dy=∑
1

m

∬
sp

∂∑
j=1

6

 j
h x ,y ⋅ j

∂ x
dxdy

=∑
1

m

∑
j=1

6  j∬
sp

∂ j
h x , y 
∂ x

dx dy
(6.44)

A similar relationship can be defined for the y - gradient.

Equation (6.44) shows that the gradient operator acts on the shape functions. The spatial gradient 

of a polynomial shape function of the form (6.2) may be determined analytically as follows:

∂
∂ x
 h x ,y =a22a4 x−xoa5 y−yo  (6.45)

∂
∂ y
 h x , y =a3a5 x−xo 2a6 y−yo  (6.46)

The integrals of equations (6.45) and (6.46) over sp  are derived as follows:

∬
sp

∂h

∂ x
dx dy=a2∬

sp
dx dy2a4∬

sp
x−xo dx dya5∬

sp
y−yo dx dy (6.47)

∬
sp

∂h

∂ y
dx dy=a3∬

sp
dx dya5∬

sp
x−xo dx dy2a6∬

sp
y−yodx dy (6.48)

Equations (6.38) to (6.40) can be used in order to define the right-hand side of equations 

(6.47) and (6.48) analytically. In this way, the integrals of the gradients over a FV cell are linked 

to its neighbouring nodal values and its own, through constant coefficients.

The  analytic  derivations  of  the  cell  surface  integrals  are  also  possible  for  the  linear 

interpolation sub-elements described in section (6.4). Integration on the linear sub-elements is 

needed locally in situations where the second-order estimation results in numerical oscillation. 

The integrals of a generic parameter   and its  x -  and  y -  gradients on a FV cell with the 

linear interpolation elements are defined as follows:
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∑
1

m

∬
sp
x , ydx dy=∑

1

m

∬
sp
∑
j=1

3

 j
h x , y ⋅ jdx dy

=∑
1

m

∑
j=1

3

 j∬
sp
 j
h x , y dx dy

(6.49)

∑
1

m

∬
sp

∂x , y
∂ x

dx dy=∑
1

m

∬
sp

∂∑
j=1

3

 j
h x ,y ⋅ j

∂ x
dxdy

=∑
1

m

∑
j=1

3  j∬
sp

∂ j
h x , y 
∂ x

dx dy
(6.50)

∑
1

m

∬
sp

∂x , y
∂ y

dx dy=∑
1

m

∬
sp

∂∑
j=1

3

 j
h x ,y ⋅ j

∂ y
dxdy

=∑
1

m

∑
j=1

3  j∬
sp

∂ j
h x , y 
∂ y

dx dy
(6.51)

where the linear shape function   is defined by equations (6.11) to (6.14).

The derivatives of the linear polynomial shape function are:

∂
∂ x
 h x ,y =a2 (6.52)

∂
∂y
 h x , y =a3 (6.53)

The integrals of equations (6.52) and (6.53) on sp  are derived as follows:

∬
sp

∂h

∂ x
dx dy=a2∬

sp
dx dy (6.54)

∬
sp

∂h

∂ y
dx dy=a3∬

sp
dx dy (6.55)

6.8 Divergence Theorem

The divergence theorem is an essential part of most finite volume schemes. The plane version 

of the theorem states that the 2D integral of the divergence of   ( ∇⋅ ) over the cell area and 

the 1D integral of   over the cell boundary are related by:

∬
S

∇⋅ dA=∫
∂S

⋅n ds (6.56)

where ∂ S  is the boundary of the finite volume cell.
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Equation (6.56) is used in the FV algorithm in order to replace the 2D divergence integrals 

into some boundary integrals. The hybrid finite element finite volume algorithm of the present 

study can determine the boundary integrals analytically. The 1D integral along the cell-boundary 

may be partitioned into several boundary segments as illustrated in figure (6.7). The unit vector 

n  is constant along each boundary segment line and
⋅n= xn x y ny (6.57)

where =x , y  and n=nx , n y . Therefore:

∬
S

∇⋅ dA=∫
∂S

⋅n ds=nx∫
∂S

 x dsn y∫
∂S

 y ds (6.58)

The  line-integral  of  a  generic  scalar  function    along  a  cell  boundary  segment  can  be 

derived analytically. Each boundary line segment is inside an interpolation element in which the 

generic function   may be written as follows:

x , y =∑
j=1

6or3

 jx , y ⋅ j (6.59)

where the nodes j  correspond to the interpolation element that includes the boundary segments. 

Thus we have:

∫
∂ S
 ds=∑

i=1

m ∫∂ si∑j=1

6or 3

 j x , y⋅ j ds=∑i=1

m

∑
j=1

6or 3

 j∫
∂ si

 j x , y ds (6.60)

where  ∂ si  is  the cell  boundary segment and  m  is the number of boundary segments.  Each 

boundary segment has its own set of   j  and   j x , y   in equation (6.60).  The cell boundary 

∂ S  is  composed  from  several  line-segments  ∂ si  each  segment  in  a  boundary  segment 

analytically.

Equation (6.58) may be written as follows:

∬
S
∇⋅ dA=∑

i=1

m

∑
j=1

6or3

nx  x jny  y j ∫
∂si

 j ds (6.61)

where each boundary segment has its own set of  x j ,  y  j  and   j x , y   relevant to its 

element-node.

The  coefficients  ∫
∂ si

 j x , y  ds  are  not  dependent  on  the  nodal  values  of  the  solution 

quantity. They are solely functions of the computational grid geometry. These coefficients may 

be calculated analytically, because the functions  j x , y   have analytical representations along 

the boundary segments. The integration procedure is described:
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The boundary line segment from the point xs , ys  to the point xe , ye  may be determined 

by the following parametric relationship:

x t =xsa l t
y t = ysbl t

(6.62)

where:

t∈[0, L] , L= xe− xs2xe− ys2 , a l=
xe−xs
L

, b l=
ye− ys
L

(6.63)

and the subscripts  s  and  e  are the start point and the end point of the boundary line segment 

respectively.

When the divergence theorem is  used with the quadratic  interpolation element,  the shape 

function  x , y  can be written as follows:

 x , y=a1a2 xa3 ya4 x
2a5 xya6 y

2 (6.64)

Equation (6.62) can be inserted in equation (6.64) which results in the following relationship:

 x=A1A2 tA3 t
2 (6.65)

where:

A1=a1a2 xsa3 ysa4 xs
2a5 xs ysa6 y s

2

A2=a2a la3b l2 xsa4a la5 x sb la5 y sa l2 a6 ysbl
A3=a4a l

2a5a lbla6bl
2

(6.66)

Therefore:

∫
∂ s j

 ds=∫
0

L

 dt=A1 L
1
2
A2L

21
3
A3 L

3 (6.67)

When the divergence theorem is used with the linear interpolation element, the shape function 

 x , y  in equation (6.61) can be written as follows:

 hl x , y =a1a2 xa3 y (6.68)

Then equation (6.62) can be inserted into equation (6.63) to give the following relationship:

 x=A1A2 x (6.69)

where:

A1=a1a2 xsa3 ys
A2=a2a la3b l

(6.70)

Therefore:

∫
∂ s j

 ds=∫
0

L

 dx=A1L
1
2
A2 L

2 (6.71)

6-18



6 Discretisation Algorithms in the Model

The coefficients  ∫
∂ si

 j ds  are computed for all of the finite volume cells just once at the 

beginning of the simulation. 

Applying the  divergence  theorem results  in  a  similar  coefficient  matrix  as  the  traditional 

surface integration over the FV cells, when the hybrid finite element finite volume method is 

used together with the analytic interpolation functions. However, it is easier to handle some of 

the boundary conditions such as the closed boundary,  when the divergence theorem and the 

resulting cell-boundary flux determination are used. Many of the existing TVD schemes are also 

applied on the cell boundary fluxes. 

6.9 Handling the Lateral Boundary Conditions

The interpolation elements need modification at the boundaries. There is no problem with the 

normal interpolation elements when the boundary condition is of the Dirichlet type. However, 

the interpolation elements along the Neumann boundaries need some adjustments, in order to 

satisfy the  Neumann condition without  the  need to  condense the computational  grid.  Many 

existing  discretisation  schemes  ignore  this  requirement.  The  present  study  introduces  the 

Neumann  interpolation  elements  with  virtual  nodes  in  order  to  avoid  dense  grid  near  the 

boundary. This procedure is used for interpolation in the advection step and for the finite volume 

procedure in some of the model components.

Figure (6.8) illustrates a normal computational grid with normal interpolation elements near 

the boundary. These boundary elements are satisfactory for the Dirichlet boundary condition. 

Figure  (6.9)  illustrates  the  modified  computational  grid.  Each  interpolation  element  with  a 

boundary side has been superseded with two interpolation elements containing virtual node in 

such a way that the boundary line be their symmetric axis. The Neumann interpolation elements 

are used exactly as the normal interpolation elements. 

Figure 6.8. Computational grid with normal interpolation elements at the boundary
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Figure 6.9. Neumann boundary interpolation elements

The virtual nodes in figure (6.9) are proportional and symmetric to real nodes. In this way, the 

positions of the virtual nodes are determined. The normal gradient of the interpolation function 

at  the boundary may be controlled by linking the nodal values of the virtual nodes to their 

proportional  real  nodes.  If  the  nodal  values  of  the  virtual  nodes  are  set  equal  to  their  real  

counterparts, then the normal gradient at the boundary will be zero. The following relationship 

may be used in order to produce any arbitrary normal gradient at the boundary:

n1
virtual−n1

real=l⋅ ,n , for the vertex nodes

n2
virtual−n2

real=
l
2⋅ ,n , for themid−side nodes

(6.72)

where l  is the distance between the real and the virtual vertex nodes (see figure 6.9), and , n  is 

the normal gradient which is known as the boundary condition. Equation (6.72) can be used for 

the extra relationships needed because of adding the virtual nodes. 

When the second gradient of the solution quantity in the direction normal to the boundary is 

zero, the following relationship may be used:

n1
virtual−2b1n1

real=0 , for the vertex nodes

n2
virtual−2∑

j=1

6

 j j
b
2
,0n2

real=0 , for the mid−side nodes
(6.73)

The coefficient matrix for the global  system of equations is  fixed in time even when the 

Neumann boundary values are not constant in time. The Neumann interpolation element may 

also  be  used  for  situations  where  the  boundary  condition  is  given  as  a  linear  relationship 

between the normal gradient and the boundary value itself. 

It  should  be  noted  that  the  above  procedure  does  not  addresses  the  Neumann  condition 

completely at the vertex boundary nodes if the boundary line direction changes considerably at 

these boundary points. This weakness is not due to the procedure itself, but due to the natural 
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behaviour of the discretisation procedure which converts the continuous boundary curve into 

broken segments. Therefore the technique of condensing the computational grid is nevertheless 

necessary near the boundaries with severe curvature, except for the corners. 

The nodal values at the boundary nodes with the Dirichlet condition are known. There is no 

need for extra equations to be included in the linear system of equations. However, the boundary 

nodes  with  the  Neumann  boundary  condition are  unknown.  Each Neumann  boundary node 

needs a specific equation per unknown variable. This equation can be based on the finite volume 

scheme as at any other nodes. The finite volume cells for the boundary nodes do not cover part 

of the area which is outside the solution domain. 

There are practical situations in which some of the variables have Dirichlet condition on a 

specific boundary segment while some others have Neumann condition at the same location. 

Therefore the Neumann and Dirichlet interpolation elements will be both used at the same time. 

However, the mid-side boundary nodes are not necessarily located in the same position. It is a 

good idea to use  semi-length triangular interpolation elements at  the boundaries in order  to 

prevent interpolation of data along the boundary line. The mid-side boundary nodes are identical 

for  the  two  element  types  when  semi-length  triangles  are  used  as  the  Dirichlet  boundary 

elements. 

It is possible to use the unstructured finite difference method instead of the finite volume 

approach for  determining the governing equations at  the Neumann boundary nodes.  Such a 

scheme estimates the x- and y-gradients of the unknown quantity at the boundary nodes using 

the position and the nodal values of the surrounding nodes. This method is especially useful at  

the vertex boundary nodes when the boundary line direction changes rapidly. The unstructured 

finite  difference  scheme is  described  in  detail  in  section  (6.7).  However,  the  result  of  that 

procedure is:

∂∂ x  j=∑i=1

m

c i⋅i− j∑
i=1

m

ci , ∂∂ y  j=∑i=1

m

d i⋅i− j∑
i=1

m

d i (6.74)

where c i  and d i  are constant coefficients based on the mesh geometry, the subscript j  stands 

for the boundary node, and  i  is the nodal value at the  ith  neighbouring node. Figure (6.10) 

illustrates the selected neighbouring nodes for two vertex boundary nodes in a sample grid.

The following relationship links the Neumann boundary condition to the nodal values of the 

boundary node and its surrounding nodes:

6-21



6 Discretisation Algorithms in the Model

, n=nx, xn y, y=−nx⋅∑i=1

m

ciny⋅∑
i=1

m

d i⋅ j∑
i=1

m

nx⋅cin y⋅d i⋅i (6.75)

where , x ,  , y  and , n  are the spatial gradients of   in the x, y, and the normal directions 

respectively. The subscript  n  stands for the direction normal to the boundary. The coefficients 

nx  and n y  are the constituents of the outward unit vector normal to the boundary nx , n y . The 

normal  direction  at  a  boundary  node  is  determined  using  the  side  between  its  neighbouring 

boundary nodes. 

Figure 6.10. Selected surrounding nodes for two vertex boundary nodes

When the second gradient of the solution quantity in the direction normal to the boundary is 

zero, the following relationship is used:

, nn=
∂
∂ n
, n=nx

∂
∂ x
 ,nn y

∂
∂ y
, n

      =n x
∂
∂ x
nx, xn y, yny

∂
∂ y
nx, xny , y 

      =n x
2, xx2nx ny, xyny

2, yy=0

(6.76)

where  the  second  derivatives,  , xx ,  , xy  and  , yy ,  are  derived  using  the  second  order 

unstructured finite difference scheme  as follows (see section 6.7):

, xx=∑
i=1

6

c̊i⋅i , , yy=∑
i=1

6

d̊ i⋅i , , xy=∑
i=1

6

e̊i⋅i (6.77)

where c̊ i , d̊ i  and e̊ i  are constant coefficients based on the mesh geometry. 

Therefore, the following relationship is used for the boundary nodes:

, nn=nx
2∑
i=1

6

c̊ i⋅i2nx n y∑
i=1

6

e̊i⋅iny
2∑
i=1

6

d̊ i⋅i=0 (6.78)
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The finite difference approach mentioned above is not dependent on the virtual nodes and the 

Neumann elements. 

6.10 Numerical Estimation of the Spatial Gradients

In  the  present  model,  the  integral  of  the  spatial  gradients  on  a  FV  cell  are  computed 

throughout the convergence theorem, which is usual in the FV models. This procedure links the 

call-integral of a spatial gradient to the nodal values inside and around a cell. However, there is 

also another option available when the spatial gradients are needed at a computational node. 

This option is based on the finite difference method. The issue is simple and straightforward 

when  a  Cartesian  or  curvilinear  structured  computational  grid  is  used.  However  it  is  more 

complicated for the unstructured grid. Some procedures in this regard are presented by (Ollivier-

Gooch, 1997), (Lu and Wai, 1998) and (Magesh and Ruhle, 2003). The method of (Ollivier-

Gooch, 1997) has been used herein which is more general and has the capability to produce any 

arbitrary level of accuracy. A second order version of the algorithm has been used in order to 

give  the  same  accuracy  as  the  interpolation  shape  functions.  A first  order  version  is  also 

available.

The method of (Ollivier-Gooch, 1997) is based on the two dimensional Taylor series in order 

to link a nodal value and its spatial derivatives to the neighbouring nodal values: and Taylor 

series may be written for each surrounding node, i , around a specific node, j :

i= x i⋅x y i⋅ y
1
2 !  x i

2⋅ xx2 x i⋅ yi⋅xy yi
2⋅ yy  (6.79)

where  j  is  the  node  in  which  the  derivatives  are  needed,  i  is  a  neighbouring  node, 

i=i – j ,   x i= x i – x j ,  and   y i= y i – y j .  The derivatives  x ,   y ,  xx  and   yy  are 

determined at node j .

There are five unknown derivatives in equation (6.79). This equation must be written for a 

selected set of the neighbouring nodes. At least five nodes are needed in this regard. If the number 

of nodes is more than five, a weighted least squares optimization algorithm may be used in order 

to reduce the number equations into five. The relevant equation is:

[A]T⋅[A]⋅[ X ]=[ A]T⋅[B] (6.80)

in which:
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[A]m×5=[1⋅ x1 1⋅ y1

1⋅ x1
2

2
1

2⋅ x1⋅ y1
1⋅ y1

2

2

2⋅ x2 2⋅ y2

2⋅ x2
2

2
2

2⋅ x2⋅ y2
2⋅ y2

2

2
⋮ ⋮ ⋮ ⋮ ⋮

m⋅ xm m⋅ ym
m⋅ xm

2

2
m

2⋅ xm⋅ yn
m⋅ ym

2

2
]
m×5

(6.81)

[X ]5×1=[
x

 y

 xx

 xy

 yy

]
5×1

(6.82)

[B]m×1=[1− j

2− j

⋮
m− j

]
m×1

(6.83)

and m  is the number of the selected neighbouring nodes and i  is the weighting factor which 

weights data from more distant nodes less heavily. One suitable choice is i=1 .

Equation (6.80) may be solved as follows:

[X ]=[A]T⋅[ A]−1
[A]T⋅[B] (6.84)

The matrix [A]T⋅[A]−1
[A]T  depends solely on the mesh geometry. It is calculated just once 

before the solution procedure. In this way, a definite relationship is produced between the x- and 

y-derivatives of the quantity   at a computational node with the neighbouring nodal values. 

The general relationships for the first derivatives are:

 ∂∂ x  j=∑i=1

m

ci⋅i− j=∑
i=1

m

c i⋅i− j∑
i=1

m

ci

∂∂ y  j=∑i=1

m

d i⋅i− j=∑
i=1

m

d i⋅i− j∑
i=1

m

d i
(6.85)

where  c i  and  d i  are  the  components  of  the  first  and  the  second  rows  of  the  matrix 

[A]T⋅[A]−1
[A]T  respectively.

The general relationships for the second derivatives are:
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∂2
∂ x2 

j

=∑
i=1

m

c̊i⋅i− j=∑
i=1

m

c̊i⋅i− j∑
i=1

m

c̊i

 ∂2
∂ y2 

j

=∑
i=1

m

d̊ i⋅i− j=∑
i=1

m

d̊ i⋅i− j∑
i=1

m

d̊ i

 ∂2
∂ x∂ y  j=∑i=1

m

e̊i⋅i− j=∑
i=1

m

e̊ i⋅i− j∑
i=1

m

e̊i

(6.86)

where  c̊ i ,  d̊ i  and  e̊ i  are  the  components  of  the  third,  forth  and  fifth  rows  of  the  matrix 

[A]T⋅[A]−1
[A]T  respectively.

When  the  number  of  the  selected  neighbouring  nodes  ( m )  is  equal  to  five,  the  matrix 

equation [A]⋅[X ]=[B]  can be solved directly. Therefore the coefficients c i , d i , c̊ i ,  d̊ i  and 

e̊ i  will be the components of the first to fifth rows of the matrix [A]−1 .

It  is  possible  to  produce  a  linear  version  of  the  above  procedure,  which  is  needed  for 

situations with the risk of numerical oscillation. The linear order of the Taylor series may be 

written for each surrounding node, i , around a specific node, j  as follows:

i= x i⋅x y i⋅ y (6.87)

where i=i – j ,  x i= xi – x j ,  y i= y i– y j , and all derivatives are evaluated at j .

The two derivatives in equation (6.87) are unknown. They are computed by writing equation 

(6.87) for a selected set of surrounding nodes. At least two nodes are needed in this regard. If the 

number of the selected nodes is more than the unknowns, a weighted least squares optimization 

algorithm should be used as follows:

[A]T⋅[A ]⋅[X ]=[A]T⋅[B ] (6.88)

where:

[A]m×2=[1⋅ x1 1⋅ y1

2⋅ x2 2⋅ y2

⋮ ⋮
m⋅ xm m⋅ ym

]
m×2

, [X ]2×1=[xy]2×1
 and [B]m×1=[1− j

2− j

⋮
m− j

]
m×1

(6.89)

m  is the number of selected surrounding nodes and i  is the weighting factor which weights 

data from more distant nodes less heavily. One suitable choice is i=1 .

The solution for equation (6.88) is:

[X ]=[A]T⋅[ A]−1
[A]T⋅[B] (6.90)
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The  matrix  [A]T⋅[A]−1
[A]T  depends  only  on  the  computational  grid  geometry.  It  is 

calculated once at the start of a simulation. The participant surrounding nodes for the linear 

version are different from the surrounding nodes for the second-order procedure. The quadratic 

algorithm uses the mid-side and the vertex neighbouring nodes from the linked interpolation 

elements. However, the linear procedure uses just the mid-side element nodes. In this way, the 

linear FD scheme is identical to the linear interpolation sub-elements described in section (6.4).

The linear relationships for the first derivatives are:

 ∂∂ x  j=∑i=1

m

ci⋅i− j=∑
i=1

m

c i⋅i− j∑
i=1

m

ci

∂∂ y  j=∑i=1

m

d i⋅i− j=∑
i=1

m

d i⋅i− j∑
i=1

m

d i
(6.91)

where c i  and d i  are components of the first and second rows of the matrix, [A]T⋅[A]−1
[A]T , 

respectively.  They  are  functions  of  the  mesh  geometry  and  are  fixed  during  the  solution 

procedure.

If  the number of the selected neighbouring nodes,  m ,  is  equal  to 2,  the matrix  equation 

[A]⋅[X ]=[B]  can be solved directly [X ]=[A]−1[B] . 

6.11 The Vertical Discretisation Algorithm

The  vertical  diffusion  step  in  the  model  is  based  on  the  one  dimensional  finite  volume 

discretisation method. The finite volume method is based on the interpolation elements and the 

Lagrangian shape functions described in section (6.5). 

Figure (6.11) illustrates three finite volume cells along a grid column (the cells are distinguished 

by  colours).  Each  finite  volume  cell  involves  one  computational  node.  The FV  cell  is 

distinguished into two sub-cell areas and each sub-area belongs to one interpolation element. The 

boundary FV cells have only one sub-cell area.
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Figure 6.11. One dimensional interpolation elements and FV cells for the vertical direction

Equation (6.17) is used in order to integrate the quantity   on the FV cell:

∫
z1

z2

 z dz=∫
z1

zl

 ∑
k=l−2

l1

k
v  z ⋅kdz∫

z l

z2

 ∑
k=l−1

l2

 k
v  z ⋅k dz

= ∑
k=l−2

l1

k∫
z1

zl

 k
v  z dz ∑

k=l−1

l2

k∫
zl

z2

 k
v  z dz

(6.92)

in which  l  is the node inside the FV cell,  z1  and  z2  are the cell boundaries,   z   is the 

function to be integrated,  k  is the nodal value of   z   at the  k th  node of the interpolation 

element which contains the sub-cell area,  k
v  z   is the Lagrangian shape function relevant to the 

k th  node. 

The boundary of the FV cell is determined using the following three formulae:

z1=
z l zl−1

2
, z2=

zlzl1

2
for l≠1 ,N (6.93)

z1=zl , z2=
z l zl1

2
for l=1 (the bed layer's node) (6.94)

z1=
z l zl−1

2
, z2=zl for l=N (the surface layer's node) (6.95)

The integrations in  the right  hand side of equation (6.92) may be derived analytically as 

follows:
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∫
z1

zl

 v  z dz=∫
z1

zl

[b1b2 z−z lb3 z− zl
2b4 z−z l

3 ]dz

=−b1 z1
1
2
b2 z1

2
1
3
b3 z1

3
1
4
b4 z1

4
(6.96)

∫
zl

z2

 v  z dz=b1 z 2
1
2
b2 z2

21
3
b3 z 2

31
4
b4 z2

4 (6.97)

where   z1=z1−z l ,   z2= z2−z l .  The coefficients  b1  to  b4  are defined through equations 

(6.19) to (6.25). 

When the Cartesian coordinate system is used, the coefficients in equations (6.96) and (6.97) are 

not  constant  in  time and not  necessarily equivalent  for  different  cells.  The reason is  that  the 

lengths of the interpolation elements are not necessarily the same and the water depth may be 

variable. A similar FV procedure in the sigma coordinate system involves constant and unique 

shape functions. 

6.12 Summary

This chapter described the computational grid and the discretisation schemes that have been 

used as tools in the solution procedures of the present study. Section (6.2) demonstrated the 3D 

computational grid with the unstructured triangular elements. Section (6.3) presented the general 

solution algorithm in order to show the role of each discretisation scheme in the overall solution 

procedure.  Section  (6.4) described the horizontal interpolation elements used for both the semi-

Lagrangian advection interpolation and the analytical integrations needed in the horizontal finite 

volume scheme.  Section (6.5) illustrated the vertical  interpolation elements used  for both the 

vertical part of the semi-Lagrangian advection interpolation and the analytical integrations needed 

in  the vertical  finite  volume scheme.  Section  (6.6)  addressed the  complete  three-dimensional 

interpolation procedure used for the advection algorithm. Section (6.7) described the horizontal 

finite  volume  discretisation  scheme.  This  scheme  is  based  on  analytical  integration  of  the 

interpolation functions on the FV cells and along their boundaries. Section (6.9) illustrated the 

lateral boundary conditions and the boundary elements. Section (6.10) described the unstructured 

finite difference scheme used for numerical estimation of the spatial gradients at the computational 

nods.  Section (6.11)  addressed the  vertical  finite  volume discretisation  algorithm  used in  the 

vertical diffusion algorithm. 
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7 Model Development

7.1 Introduction

The present  chapter  includes  details  about  the  numerical  models  and solution  algorithms 

developed and integrated in this study. The present study includes three dimensional and depth 

averaged two dimensional  models  for  simulating  the hydrodynamic  and advection  diffusion 

processes. The distributions of salinity level, temperature and suspended sediment concentration 

are  handled  through  the  advection  diffusion  models.  All  of  the  models  are  based  on  an 

unstructured computational grid. 

Section (7.2) describes the general algorithm of the 3D hydrodynamic model, which is based 

on the operator splitting algorithm. Sections (7.3) to (7.9) describe different components of the 

solution procedure. Section (7.3)  gives details  of the pure advection step. Section (7.4) deals 

with the horizontal diffusion step. The free surface solution procedure  is described in section 

(7.5).  Section  (7.6)  deals  with  the  vertical  diffusion  step.  The  simulation  algorithm for  the 

hydrodynamic pressure correction is the subject of section (7.7). Section (7.8) illustrates the 

numerical  algorithm for  the  velocity  projection  into  a  convergence-free  field.  Section  (7.9) 

concerns the rare situations where the hydrodynamic pressure or the variation in the bed friction 

influences the water level. The 3D advection diffusion model is described in section (7.10). The 

2D hydrodynamic model is described in section (7.11), which is also based on the fractional step 

method, identical to  the 3D model.  Section (7.12) is  relevant  to the 2D advection diffusion 

model. The integration procedure of the 2D and the 3D models is described in section (7.13). It 

includes the integration of the advection steps, integration of the horizontal diffusion steps, and 

integration of the free surface steps with the bed friction and the free surface slope steps. 

7.2 The General Algorithm for the 3D Hydrodynamic Model

The main component of the 3D model is the hydrodynamic model. The salinity, temperature, 

suspended sediment and turbulence  sub-models  are  also available when required.  In the 3D 

hydrodynamic model the hydrodynamic pressure is taken into account. The solution algorithm 

for the 3D hydrodynamic model is based on the second type of the projection method and the 

operator splitting algorithm. The general splitting relationship for a generic quantity,  , is:
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∂
∂ t
=

n1−d

 t
projection step


d−a

 t
diffusion step

 
a−n

 t
advection step

(7.1)

where n  is the known solution of time step n , a  is the solution of the advection step, d  is 

the solution of the diffusion step including the source terms, and n1  is the final solution of the 

new time step. 

The  diffusion step is  partitioned into an explicit  horizontal  diffusion step and an implicit 

vertical diffusion one. The free surface is computed implicitly before the vertical diffusion step. 

The hydrodynamic solution algorithm contains the following steps:

a) advection step (is three dimensional)

b) horizontal diffusion step, including the source terms except the barotropic pressure gradient 

(is two dimensional, acts on several layers)

c) implicit free surface step (is two dimensional)

d) vertical diffusion step including the barotropic pressure gradient (is one dimensional)

e) hydrodynamic pressure correction step (is three dimensional, elliptic)

f) velocity projection step

g) water level refining option

Below is a brief description of each solution step.

a) Advection step

In the advection step a 3D hyperbolic equation governing the velocity vector is solved. Three 

scalar advection equations are solved for the velocity components u , v , and w , as follows:

ua−un

 t
u ∂u
∂ x
v ∂ u
∂ y
w ∂ u

∂ z
=0 (7.2)

va−vn

 t
u ∂ v
∂ x
v ∂ v
∂y
w ∂ v

∂ z
=0 (7.3)

wa−wn

 t
u ∂w

∂ x
v ∂w

∂ y
w ∂w

∂ z
=0 (7.4)

It is clear from equations (7.2) to (7.4) that the advecting velocity field is u , v , and w , while 

the advected components are u , v , and w . The advection step is described in section (7.3).

b) Horizontal diffusion step

The horizontal diffusion step concerns the horizontal diffusion terms and the source terms of the 

horizontal  momentum equations  without a  barotropic pressure gradient.  It  is  a  two dimensional 
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equation which is solved for the velocity component on the sigma planes. The relevant equations are:

ud 1−ua

 t
= ∂
∂x  h ∂ u

a

∂ x  ∂z∂ x ∂∂ z  h ∂ u
a

∂ x  ∂
∂ y  h ∂ u

a

∂ y  ∂z∂ y ∂∂ z  h ∂ u
a

∂ y 
− 1

∂ pa
∂ x

−g 1
 ∫z


∂n

∂ x
dz−1

 ∂ qn∂ x
∂z
∂ x
∂ qn

∂ z 
usdiss

(7.5)

vd 1−va

 t
= ∂
∂x  h ∂ v

a

∂ x ∂z∂ x ∂∂ z h ∂v
a

∂ x  ∂
∂y  h ∂ v

a

∂ y ∂ z∂ y ∂∂ z  h ∂ v
a

∂ y 
− 1

∂ pa
∂ y

−g 1
 ∫z


∂n

∂ y
dz− 1

ρ ∂ q
n

∂ y
∂ z
∂ y

∂qn

∂ z 
vsdis s

(7.6)

w d 1−wa

 t
= ∂
∂ x  h ∂w∂ x ∂ z∂ x ∂∂ z  h ∂w∂ x  ∂

∂y h ∂w∂ y  ∂z∂ y ∂∂ z  h ∂w∂ y 
−

1
H

1
ρ
∂ qn

∂ z
w sdiss

(7.7)

The horizontal diffusion step is described in section (7.4).

c) Free surface step

The free surface  elevation  is  predicted implicitly using three  joint  equations. They are the 

depth integrated continuity equation and the result of depth integration of the remaining parts of 

the horizontal  momentum equations.  This step includes the vertical  diffusion,  the barotropic 

pressure gradient and the Coriolis terms. 

The free surface step is described in section (7.5).

d) Vertical diffusion step

The vertical diffusion step concerns the effect of the vertical diffusion of momentum and the 

barotropic pressure gradient (the free surface slope) on the velocity field. These terms are solved 

implicitly in order to increase the solution stability. Three one dimensional parabolic equations 

are solved along the water columns for the components u , v , and w  . 

The corresponding relationships are:

ud 2−ud 1

 t
= ∂
∂ z  v ∂ u

d 2

∂ z −g   ∂
n1

∂ x
1− ∂ 

n

∂ x 2⋅vd 1⋅z−2⋅w d 1⋅y (7.8)

vd 2−vd 1

 t
= ∂
∂ z  v ∂ v

d 2

∂ z −g   ∂
n1

∂ y
1− ∂

n

∂ y −2⋅ud 1⋅z2⋅wd 1⋅x (7.9)
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wd 2−wd 1

 t
= ∂
∂ z v ∂w

d 2

∂ z 2⋅ua⋅y−2⋅va⋅ x (7.10)

e) Hydrodynamic pressure correction step

During the pressure correction step the hydrodynamic pressure correction field is determined. 

It is based on the divergence rate of the intermediate velocity field, see Equation (5.95). It is a 

three  dimensional  scalar  elliptic  equation.  The intermediate  velocity field  at  the  end of  the 

vertical diffusion step is used herein. 

f) Velocity projection step

The final step  in calculating the velocity  within a time step is to correct the intermediate non-

convergence-free velocity field. The hydrodynamic pressure correction field is used in this regard. 

The following relationships are solved at the computational nodes:

un1=ud 2− t 1

∂ q
∂ x (7.11)

v n1=vd 2− t 1

∂ q
∂ y (7.12)

wn1=wd 2− t 1

∂ q
∂ z (7.13)

g) Water level refining option:

The water level which has been determined from the implicit free surface step is acceptable 

for almost most of the hydrodynamic applications. However, it has been computed based on the 

intermediate velocity field which is not necessarily convergence-free. It is possible to increase 

the model accuracy to a higher level by re-computing the free surface level on the basis of the 

convergence free velocity field at the end of a time step. This refining step is optional. It is not 

necessary  because  the  hydrodynamic  part  of  the  pressure  field  usually  has  not  noticeable 

influence on the free surface position. 

The following sections describe the solution procedure in more details. It should be noted that 

a hydrostatic-pressure version of the model is also available in which steps (e), (f) and (g) have 

been omitted and the other steps do not  involve the vertical velocity component.  The depth 

integrated continuity equation from the bed to any required z-level is solved in the hydrostatic 

model in order to calculate the vertical velocity component. 
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7.3 Advection Step

The pure advection process is addressed within the advection step by solving the advection terms 

of the momentum equations.  The semi-Lagrangian characteristic method has been used in  this 

regard. A brief overview about the semi-Lagrangian algorithms is presented in section (4.4). 

Equations  (7.2)  to  (7.4)  illustrate  the  pure  advection  process.  It  means  that  the  velocity 

components u , v  and w , as any other scalar quantity, remain constant along the streamlines. 

The corresponding relationship is:

u i
a=u p

n , v i
a=v p

n , w i
a=w p

n (7.14)

where the subscript  i  stands for the computational node and the subscript  p  is the departure 

point ( x p , y p , z p ) of the streamline from the point p  at time n⋅ t  to the point i  at the time 

n1⋅ t .

For each node the advection step involves two stages. They are:

a) determining the streamline and the departure point, 

b) interpolating data from the surrounding nodes to the departure point at time n⋅ t . 

The first stage (a) is handled through backward tracking the streamline explicitly from the 

computational node i  from time n1⋅ t  to time n⋅ t . The backward tracking is based on 

dividing the time step  t  into K  t  sub-steps  t= t /K  t . 

Therefore, the following iteration is performed:

The first stage:
x0=x i , uo=u i

n , y0= yi , vo=v i
n , z0=z i , wo=w i

n

 
The next stages:
xk=xk−1− t⋅u k−1

n , uk−1=u  x , y , zk−1
y k= y k−1− t⋅v k−1

n , vk−1=v  x , y , z k−1 k=1 , , K  t

z k=z k−1− t⋅w k−1
n ,w k−1=w  x , y , z k−1

 
The last stage:
x p=xK , y p= yK , z p=zK

(7.15)

An implicit alternative to equation (7.15) is  to iterate at each time step,  although it is  more 

time consuming. Figure (7.1) illustrates the backward tracking procedure for a computational 

node.

The second stage (b) is handled via a non-conservative but high-order accurate interpolation 

scheme in the three dimensional model. This algorithm is an optimal balance of the computation 

speed and  mass conservation for  the  short and moderate simulation  periods. The interpolation 
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equation (6.35) with the shape functions (6.3) to (6.8) and (6.29) to (6.32) has been used in this 

regard. 

Figure 7.1. The back-tracking procedure for a single node

The clipping algorithm of (Wang et al., 1988) has been used in order to avoid oscillation risk 

and artificial local extremes in the front of sharp gradients. The clipping algorithm is based on 

comparing the interpolated data with the maximum and minimum nodal values of an element. 

The interpolated value must be inside that range. A local weighting procedure is also available 

which  determines  the  interpolated  data  by  a  weighted  average  of  low-  and  high-order 

interpolation schemes (Zalesak, S. T., 1979). For a brief review on some oscillation-free semi-

Lagrangian algorithms, see (Liu and Dane, 1996).

During the backward tracking procedure, the  streamline may cross  the domain boundary.  It 

may  be  a  closed  boundary  or  an open  input  boundary. If  the  boundary  is  closed  and  the 

boundary condition is not no-slip, the streamline is followed back further along the boundary in 

the direction of the velocity component up to the previous time step. This is the case for the 

closed lateral boundary, the bottom boundary and the free surface. For the open input boundary 

with known velocity, the value at the departure point is determined from the boundary values. 

Interpolation in time and/or space may be required for the boundary data.

The  boundary  condition  at  the  input  open  boundary  of  a  hydrodynamic  model  may  be 

something other than known velocity. Sometimes it is the water level that is known at the input 

boundary.  The departure points  corresponding to the nodes near the input  boundary may fall 

outside the solution domain. It is also the case for the nodes on the boundary. It is possible to use a 
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local model especially for the near-boundary region. It is also possible to use a level-discharge 

relationship if the boundary is a river section. It may also be possible to use a simple Chezy 

relationship. Nevertheless, the most practical idea is to locate the input boundary at a location 

where the velocity is nearly perpendicular to the boundary and the depth integrated velocity (the 

flux) does not change noticeably along the perpendicular direction. The dominant driving force at 

the input boundary is the free surface slope. A small error in the advection step does not influences 

the flow field considerably. The input boundary condition for the advection diffusion problems 

such as the salinity, temperature or suspended sediment concentration must be of Dirichlet type. It 

is not possible for the back-ward streamline to cross the outflow open boundary. 

7.4 Horizontal Diffusion Step

The horizontal diffusion and other remaining terms, except for the free surface slope and the 

Coriolis force, are solved in the second step. The free surface slope is solved later in conjunction 

with the vertical diffusion. The horizontal diffusion step is based on the numerical solution of 

equations (7.5) to (7.7). These equations are solved layer by layer on the sigma planes. 

Following the two dimensional finite volume approach, the above equations are integrated on 

the  FV cells  and  discretised  through  the  procedure described  in  section  (6.7).  The  resulting 

relationships are as follows:

1
 t∑1

m

∑
j=1

6

u j
d 1∬

sp
 j
h ds= 1

 t ∑1
m

∑
j=1

6

u j
a∬
sp
 j
h ds

∑
1

m

∑
j=1

6  h∂ ua∂ x  j∬sp ∂ j
h

∂ x
ds∑

1

m ∂ z
∂ x ∑j=1

6 ∂ h∂ua /∂ x ∂ z 
j
∬
sp
 j
h ds

∑
1

m

∑
j=1

6  h∂ ua∂ y  j∬sp ∂ j
h

∂ y
ds∑

1

m ∂ z
∂ y∑j=1

6 ∂h∂ ua/∂ y∂ z 
j
∬
sp
 j
h ds

−∑
1

m 1
sp
∑
j=1

6

 pa j∬
sp

∂ j
h

∂ x
ds−g∑

1

m 1
sp
∑
j=1

6 ∫
z


∂n

∂ x dz j∬sp  j
h ds

−∑
1

m 1
sp
∑
j=1

6

q j
n∬
sp

∂ j
h

∂ x
ds−∑

1

m 1
sp
∂ z
∂ x ∑j=1

6 ∂ qn∂ z  j∬sp  j
h dsusdis s

(7.16)
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1
 t∑1

m

∑
j=1

6

v j
d 1∬

sp
 j
h ds= 1

 t ∑1
m

∑
j=1

6

v j
a∬
sp
 j
h ds

∑
1

m

∑
j=1

6  h∂ va∂ x  j∬sp ∂ j
h

∂ x
ds∑

1

m ∂ z
∂ x∑j=1

6 ∂ h∂ va /∂ x ∂ z 
j
∬
sp
 j
h ds

∑
1

m

∑
j=1

6  h∂ va∂ y  j∬sp ∂ j
h

∂ y
ds∑

1

m ∂ z
∂ y ∑j=1

6 ∂ h∂ va/∂ y∂ z 
j
∬
sp
 j
h ds

−∑
1

m 1
sp
∑
j=1

6

 pa j∬
sp

∂ j
h

∂ y
ds−g∑

1

m 1
sp
∑
j=1

6 ∫
z


∂n

∂ y dz j∬sp  j
h ds

−∑
1

m 1
sp
∑
j=1

6

q j
n∬
sp

∂ j
h

∂y
ds−∑

1

m 1
sp
∂ z
∂ y∑j=1

6 ∂qn∂ z j∬sp  j
h dsusdis s

(7.17)

1
 t∑1

m

∑
j=1

6

w j
d 1∬

sp
 j
h ds= 1

 t ∑1
m

∑
j=1

6

w j
a∬
sp
 j
h ds

∑
1

m

∑
j=1

6  h∂wa∂ x j∬sp ∂ j
h

∂ x
ds∑

1

m ∂ z
∂ x ∑j=1

6 ∂ h∂wa /∂ x ∂ z 
j
∬
sp
 j
h ds

∑
1

m

∑
j=1

6  h∂wa∂ y j∬sp ∂ j
h

∂ y
ds∑

1

m ∂ z
∂ y∑j=1

6 ∂h ∂wa /∂ y
∂ z 

j
∬
sp
 j
h ds

−∑
1

m 1
sp
∑
j=1

6  1
H
∂ qn

∂ z j∬sp  j
h dsw sdis s

(7.18)

where sp  stands for the sub-cell triangles in a FV cell, m  is the number of sub-cells, and  sp  is 

the averaged density in the sub cell. The quantities ∂ z /∂ x  and ∂ z /∂ y  are constant in the sub 

cell triangles. 

The vertical gradient terms in the above equations are determined by the finite difference 

scheme  along  the  vertical  direction.  The  nodal  values  of  the  quantities   h∂ u /∂ x  and 

 h∂ u /∂ y  in equation (7.16) are the stress components due to the horizontal diffusion. They are 

computed  in  the  Cartesian  coordinate  system,  not  the  sigma  system,  in  order  to  prevent 

inaccuracy in stratified flow conditions with considerable bed slope. The same procedure has 

been used for computing the horizontal gradient of the water density ∂/∂ x . 

The  terms  h∂ u /∂ x ,   h∂ u /∂ y ,  ∂/∂ x  and  ∂/∂ y  are  determined  via  two  stages, 

including:

a) vertical interpolation along the surrounding grid columns in order to define the corresponding 

values at the same z level,

b) computing the spatial derivatives in the horizontal plane.

The first  stage (a)  is  handled  through the  vertical  interpolation  relationships  described in 

section (6.5). If the z  value along a neighbouring column falls below the bed level or above the 
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surface  level,  the  corresponding  point  is  neglected.  The  second  stage  (b)  may  be  handled 

through the FV divergence theorem for the spatial gradients or through the unstructured finite 

difference algorithm discussed in section (6.10). The terms of explicit hydrodynamic pressure 

gradients  are  optional  (they  are  active  if  projection  method-2  is  used  instead  of  projection 

method-1).

The cell integrals in equations (7.16) to (7.18) have been derived analytically in section (6.7). 

Applying each one of the above equations to the FV cells of a layer in addition to the boundary 

conditions results in a set of linear equations of the form ( 〚A〛[ x ]=[b] ). The coefficient matrix, 

〚A〛 , is constant during the simulation procedure. The inverse matrix, 〚A〛−1 , is computed once 

and is used for every time step in order to reduce computational time .

In spite of the fact that equations (7.16) to (7.18) have been discretised explicitly, the solution 

procedure here is based on a matrix solver. This is the characteristics of the hybrid finite volume 

finite element method and will result in increased model accuracy. With most of the usual finite 

volume algorithms  it  is  assume that  the  shape  of  the  unknown quantity  over  the  cells  (for 

example the gradient) at the new time step is equivalent to its shape at the previous time step. 

The explicit version of such a scheme not only defines the diffusion terms explicitly, but also 

defines the over-cell  variation of the unknown variable at  the new time step explicitly.  The 

present method, on the other hand, defines the over-cell variation of the quantity at the new time 

step  implicitly.  It  is  possible  to  eliminate  the  need for  a  matrix  solver  by adding a  similar 

simplification assumption. However, there is no need for it, because the present scheme uses an 

efficient matrix solver nearly as fast as the explicit procedure.

The horizontal diffusion equation is solved for the velocity components, u , v  and w  layer 

by  layer.  Each  velocity  component  has  boundary  conditions  at  the  lateral  boundaries.  The 

kinematic boundary condition links the velocity components u  and v  at the closed boundaries. 

The horizontal velocity components  u  and  v  in the present study are solved together via 

solving a larger system of equations. The larger system is created by combining the u  and v -

system of  equations  and adding the  kinematic  closed boundary conditions.  In  this  way,  the 

dependency of u  and v  at the boundaries is addressed implicitly. The linear system is solved 

by inverting its coefficient matrix, which is constant in time. The shape of the solved matrix 

equation is as follows:
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[
u1

.
uN
v1

.
vN
]

2N×1

=[ A−1]2N×2N × [
rhsu1

.
rhsuN
rhsv1

.
rhsvN
]

2N×1

(7.19)

where the coefficient matrix may be fractioned into four sub-matrices as follows:

[A−1]2N×2N=[ [ I ] [ II ]
[ III ] [ IV ]] (7.20)

and the large matrix solution may be partitioned as follows:

[u1

.
u N]N×1

=[ I ]N×N × [rhsu1

.
rhsuN ]N×1

[ II ]N×N × [rhs v1

.
rhs vN]N×1

and

[ v1

.
vN ]N×1

=[ III ]N×N × [ rhsu1

.
rhsuN ]N×1

[ IV ]N×N × [rhsv1

.
rhsvN ]N×1

(7.21)

Other quantities such as the vertical velocity component, the salinity and the temperature are 

solved separately.

It is common in coastal engineering studies to use simplified assumptions for the velocity at 

lateral boundaries, because they are generally located in shallow water regions. However, there 

are applications in which the water depth is not shallow near the closed lateral boundaries. This 

type of boundary is common in dam reservoir modelling. Considering that the nodal columns 

are directed  vertically,  the lateral boundaries are vertical and the boundary condition for the 

vertical velocity component is independent from the horizontal velocity components. 

The dynamic BC for the closed lateral boundary may be no-slip, free-slip or wall-function. 

The free-slip condition for the vertical velocity component is:

∂w
∂ n
=0 ⇒ ∂w

∂ n
=−∂z

∂n
∂wn

∂ z
(7.22)

The  following  relationship  may be  used  as  the  wall-function  boundary condition  for  the 

vertical velocity component:
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wall , zn


= t
∂w
∂ n (7.23)

with the following relationships for wall , zn /  and t :

t= d o
∣V∣

1
 ln d o

k s /30 (7.24)

wall , zn


=−
∣V∣ w

1 ln d o
k s /30

2
(7.25)

where =0.41  is the von Karman's constant, k s  is the roughness height, and d 0  is the normal 

distance between the boundary point and the wall. The boundary node is assumed to be within the 

wall-function region. The wall is assumed to be rough.

Equations (7.24) and (7.25) are inserted into equation (7.23) to get:

∂w
∂ n
=

wdo

d o⋅ln d o
k s/30 (7.26)

The vector n  is horizontal while the sigma layer is not necessarily horizontal at the boundary. 

This phenomenon might be important in the mountainous reservoir simulation. The right hand 

side of equation (7.26) is transformed into the sigma coordinate system:

∂w
∂ n
∂z
∂n
∂w
∂ z
=

wdo

d o⋅ln d o
k s/30

⇒ ∂w
∂ n
− w

d o⋅ln d o
k s /30

=−∂ z
∂ n
∂wn

∂ z (7.27)

where the direction n  is the intersection of the zn -plane and the sigma plane. 

The  spatial  gradient,  ∂/∂ n ,  in  equation  (7.27)  may  be  discretised  and  linked  to  the 

neighbouring computational nodes in the sigma plane, while it is not possible for  ∂/∂ n . The 

algorithm for handling equation ( 7.27) as the lateral boundary condition has been discussed in 

section (6.9).

The kinematic boundary condition in the horizontal plane may be written as follows:

V n=0 ⇒ nx uny v=0 (7.28)

where the vector  nx , n y  is  the unit  outward vector normal to the boundary and  V n  is  the 

velocity component normal to the boundary.
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Generally,  neither  of  the  horizontal  velocity  components  is  parallel  to  the  boundary.  The 

parallel component of the horizontal velocity for the free-slip condition is derived as follows:

∂V h
tan

∂ n
=0 ⇒

∂V h
tan

∂ n
=−∂ z

∂ n
∂V h

tann

∂ z
(7.29)

where V h
tan=−n yunxv  is the horizontal component of the 3D velocity parallel to the boundary.

The wall-function boundary condition may be written as follows:

∂V h
tan

∂ n
=

V h
tando

d o⋅ln d o
k s/30

⇒
∂V h

tan

∂ n
−

V h
tan

d o⋅ln d o
k s /30

=−∂ z
∂ n
∂V h

tann

∂ z (7.30)

For the “no-slip” condition, the computational grid near the boundary must be dense enough 

in order to simulate the boundary layer accurately. A wall function is needed in this case in order 

to estimate the near-wall eddy viscosity. If the no-slip condition is used without dense mesh near 

the boundary, unrealistic large shear stress may be transmitted from the boundary to the fluid. 

This inaccuracy results in under-prediction of the flow field (Li and Falconer, 1995).

In coastal modelling applications, the lateral closed boundaries are shallow and the horizontal 

grid-size is much larger than the vertical one, therefore the wall function is no longer adequate. 

The free slip condition is usually acceptable for such a condition. It is the bed roughness, not the 

shore-line velocity condition that controls the velocity in shallow regions.

For the open boundary, if there is no other data, the velocity gradient normal to the boundary 

may be assumed to be zero or not to change in the normal direction. This condition may be used 

for each velocity component. It is handled easily using the algorithm described in section (6.9). 

If one of the velocity components is known at the open boundary, that data may be used as a 

Dirichlet condition. Usually, the vertical velocity component may be assumed to be zero at the 

open boundary. The horizontal velocity component parallel to the boundary is also negligible for 

many cases. 

The idea of soft start is used in the current study in order to avoid unrealistic shock waves in 

the computational domain. This technique is usually sufficient for avoiding the need for a non-

reflective condition at the open boundary. 
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7.5 Free Surface Step

The present model handles the barotropic pressure gradient terms during the vertical diffusion 

step.  Therefore,  the  free  surface  is  determined  just  before  the  vertical  diffusion  step.  It  is 

essential that the barotropic pressure gradient terms are computed implicitly in order to increase 

model stability and  reduce the time step limitation.  In the present study the depth integrated 

continuity equation is used in this regard, as described in section (3.3.2.5). 

The depth-integrated continuity equation and the horizontal momentum equations are solved 

jointly. The velocity gradient terms in the continuity equation and the free surface slope terms in 

the  momentum equations  are  discretised  implicitly  while  the  remaining  terms  are  handled 

explicitly.  The advection and the horizontal  diffusion steps have been computed beforehand, 

therefore  it  is  sufficient  to  solve just  the  remaining  parts  of  the  momentum  equations  in 

conjunction with the continuity equation. 

The following equations must be solved together:

−∂
∂ t
=−

n1−n

 t

= ∂∂ x ∫zb


un1dz ∂
∂ y ∫zb



vn1dz1− ∂∂ x ∫z b
 n

undz ∂
∂ y ∫z b

 n

vndz
≈ ∂∂ x ∫z b



ud 2dz ∂
∂ y ∫z b



vd 2dz1− ∂∂ x ∫z b
 n

undz ∂
∂ y ∫z b

 n

vndz
(7.31)

ud 2−ud 1

 t
= ∂
∂ z  v ∂ u∂ z −g   ∂ 

n1

∂ x
1− ∂

n

∂ x 2⋅z⋅v
d 1−2⋅ y⋅w

d 1 (7.32)

vd 2−vd 1

 t
= ∂
∂ z  v ∂ v∂ z −g   ∂

n1

∂ y
1− ∂ 

n

∂ y −2⋅z⋅u
d 12⋅x⋅w

d 1 (7.33)

where θ  is the implicitness factor,   is the free surface level at the new time step, and  n  is the 

free surface at the previous time step.

Replacing  un1  and  vn1  with  ud 2  and  vd 2  in  equation  (7.31)  can  only  obtain an 

approximation,  because  the  intermediate  velocity  field  is  not  necessarily  convergence-free. 

However, it is an acceptable  solution because at least the explicit value of the hydrodynamic 

pressure gradient has been taken into account at the horizontal diffusion step.  On the other hand 

the hydrodynamic pressure does not influences the water level considerably. The widely-used 

algorithm of Stansby and Zhao (1998) involves the same approximation. 
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Equations (7.32) and (7.33) are re-arranged and integrated vertically along the water depth in 

order  to  give the same velocity terms as  participated in  equation (7.31).  The procedure for 

solving equation (7.32) is given below:

ud 2=ud 1 t ∂
∂ z  v ∂ u∂ z − t g   ∂

n1

∂ x
− t g


 1−

∂ n

∂ x
2z⋅v

d 1 t−2y⋅w
d 1 t

(7.34)

Therefore:

∫
z b



ud 2dz=∫
zb



ud 1dz∫
zb



 t ∂
∂ z  v∂ u∂ z dz

−∫
zb



 t g 

 ∂

n1

∂ x
dz−∫

z b



 t g 

1− ∂ 

n

∂ x
dz

2⋅z t∫
zb



v d1dz−2⋅y t∫
zb



wd 1dz

(7.35)

or:

∫
z b



ud 2dz=∫
zb



ud 1dz t∫
zb


∂
∂ z  v∂ u∂ z dz

− t g  ∂
n1

∂ x ∫zb

 

dz− t g 1− ∂

n

∂ x ∫zb

 

dz

2⋅z t∫
zb



v d1dz−2⋅y t∫
zb



wd 1dz

(7.36)

The depth integrated vertical diffusion term in equation (7.36) may be defined as follows:

∫
z b


∂
∂ z  v ∂ u∂ z dz= v ∂u∂ z −v ∂ u∂ z zb=

 x

−
 x b
b

(7.37)

where  x  is positive if U x windu x  and  xb  is positive if ub  is positive.

Inserting equation (7.37) in equation (7.36) results in the following relationship:

∫
z b



ud 2dz=∫
zb



ud 1dz t  x 
−
 x b
b 

− t g  ∂
n1

∂ x
− t g 1− ∂ 

n

∂ x


2⋅z t∫
zb



v d1dz−2⋅y t∫
zb



wd 1dz

(7.38)

where: 

=∫
zb

 n1


z
dz (7.39)

The parameter   is equal to the water depth if the density is homogeneous.
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7 Model Development

Therefore the resulting equations to be solved for determine the free surface are:

−
n1−n

 t
=

 ∂∂ x ∫z b


ud 2dz ∂
∂ y ∫z b



vd 2dz1− ∂∂ x ∫z b
 n

undz ∂
∂ y ∫z b

 n

vndz (7.40)

∫
z b



ud 2dz=∫
zb



ud 1dz t  x 
−
 x b
b 

− t g  ∂
n1

∂ x
− t g 1− ∂ 

n

∂ x


2⋅z t∫
zb



v d1dz−2⋅y t∫
zb



wd 1dz

(7.41)

∫
z b



vd 2dz=∫
z b



vd 1dz t  y 
−
 y b
b 

− t g  ∂
n1

∂ y
− t g 1− ∂ 

n

∂ y


−2⋅z t∫
zb



ud 1dz2⋅ x t∫
zb



wd 1dz

(7.42)

Two approaches are common in the literature for solving equations (7.40) to (7.42). The first 

one  is  to  solve  the  three  equations  jointly  by  writing  their  discretised  form  for  each 

computational node and solving a linear system of equations that has three equations and three 

unknowns for every node. The second approach is to derive the x- and y-gradients of the depth 

integrated velocity components by deriving equations (7.41) and (7.42), then insert the results in 

equation  (7.40).  This  approach  leads  to  a  single  unknown  and  single  equation  at  each 

computational node which includes not only the water level but also the curvature of the water 

surface. The present model is based on the first approach. Handling the boundary conditions is 

straightforward in this algorithm and it is free from the water surface curvature, which is more 

sensitive to the truncation errors than the water surface gradient. 

Equations (7.40) to (7.42) may be written as following:

 n1 t  ∂∂ x DU d 2 ∂
∂ y DV

d 2= n− t 1− ∂∂ x DnU n  ∂
∂ y D

nV n (7.43)

(DU d 2)+Δ t g θ∂η
n+1

∂ x
Π=(DU d 1)−Δ t g (1−θ)∂η

n

∂ x
Π

+Δ t((τ x)ηρη −
(τ x)b
ρb )+2⋅ωzΔ t (DV

d 1)−2⋅ωyΔ t(DW
d 1)

(7.44)
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DV d 2 t g ∂ 
n1

∂ y
 = DV d 1− t g 1−∂

n

∂ y


 t  y
−
 y b
b −2⋅z t DU

d 12⋅x t DW
d 1

(7.45)

where  DU ,  DV  and  DW  are  the  depth  integrated  velocity  components  in  the  x  and  y 

directions, respectively. All of the unknown parameters, n1 , DU d 2  and DV d 2 , are in the left 

hand side of the above equations and everything in the right hand sides is known. The known 

values of D  and   are used in order to linearise the above equations. 

Equation (7.43) may be written in the following form:

 n1 t ∇⋅DU d 2 , DV d 2= n− t 1−∇⋅DnU n , DnV n  (7.46)

Equations (7.46), (7.44) and (7.45) may be integrated on the 2D FV cells in order to be solved 

using the finite volume algorithm. The integral form of equation (7.46) is:

∬
S
n1dA t∬

S
∇⋅DU d 2 , DV d 2dA=

∬
S
ndA− t 1−∬

S
∇⋅DnU n , DnV n dA (7.47)

Applying the divergence theorem on equation (7.47) results in the following relationship:

∬
S
ηn+1dA+Δ t θ∫

∂S
(nx(DU d 2)+ny (DV

d 2))ds=

∬
S
ηndA−Δ t(1−θ)∫

∂ S
(nx (DnU n)+ny (D

nV n))ds (7.48)

The integral form of equations (7.44) and (7.45) are:

∬
S
(DU d 2)dA+Δ t g θΠ∬

S

∂ηn+1

∂ x
ds=

∬
S
(DU d 1)ds−Δ t g (1−θ)Π∬

S

∂ηn

∂ x ds+Δ t∬
S
(Δ τ)x ds

+2Δ t∬
S
(ωz(DV

d 1)−ω y (DW
d 1))

(7.49)

∬
S
DV d 2ds t g∬

S

∂ n1

∂ y
ds=

∬
S

DV d 1ds t∬
S

 y ds− t g 1−∬
S

∂n

∂ y
ds

−2 t∬
S
zDU

d 1−x DW
d 1

(7.50)

where:

  x=
 x

−
 xb
b

,   y =
 y 

−
 y b
b

(7.51)
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The free surface slope terms in equations (7.49) and (7.50) may be addressed by the divergence 

theorem as following:

∬
S

∂η
∂ x

ds=∬
S
∇⃗⋅⃗(η e⃗ x ,0 e⃗ y) ds =∫

∂ S
( n⃗⋅e⃗xη)dl =∫

∂ S
(nxη)dl  (7.52)

∬
S

∂η
∂ y

ds =∬
S
∇⃗⋅⃗(0 e⃗ x ,η e⃗ y ) ds=∫

∂ S
( n⃗⋅e⃗ yη)dl =∫

∂ S
(nyη)dl (7.53)

Following the FV algorithm described in sections (6.7) and (6.8),  the discretised form of 

equations (7.48) to (7.50) may be written as follows:

∑
1

m

∑
j=1

6

η j
n+1∬

sp
ψ j ds

+Δ t θ∑
i=1

m

∑
j=1

6

((nx)i (DU d 2) j+(n y)i (DV
d 2) j)∫

∂si

ψ j dl=

∑
1

m

∑
j=1

6

η j
n∬
sp
ψ jds

−Δ t(1−θ)∑
i=1

m

∑
j=1

6

((nx)i (DnU n) j+(ny )i (D
nV n) j)∫

∂ si

ψ j ds

(7.54)

∑
1

m

∑
j=1

6

(DU d 2) j∬
sp
ψ j ds+Δ t g θΠ∑

i=1

m

∑
j=1

6

η j
n+1(nx)i∫

∂ si

ψ jdl=

∑
1

m

∑
j=1

6

(DU d 1) j∬
sp
ψ j ds−Δ t g (1−θ)Π∑

i=1

m

∑
j=1

6

η j
n(nx)i∫

∂si

ψ jdl

+Δ t∑
1

m

∑
j=1

6

(Δ τx) j∬
sp
ψ j ds+2⋅Δ t∑

1

m

∑
j=1

6

(ωz⋅DV j
d 1−ω y⋅DW j

d 1)∬
S
ψ j ds

(7.55)

∑
1

m

∑
j=1

6

(DV d 2) j∬
sp
ψ j ds+Δ t g θΠ∑

i=1

m

∑
j=1

6

η j
n+1(ny)i∫

∂ si

ψ jdl=

∑
1

m

∑
j=1

6

(DV d 1) j∬
sp
ψ j ds−Δ t g (1−θ)Π∑

i=1

m

∑
j=1

6

η j
n(n y)i∫

∂si

ψ j dl

+Δ t∑
1

m

∑
j=1

6

(Δ τy ) j∬
sp

ψ jds−2⋅Δ t∑
1

m

∑
j=1

6

(ωz⋅DU j
d 1−ωx⋅DW j

d 1)∬
S

ψ j ds

(7.56)

If  the  velocity  and/or  free  surface  gradient  is  too  steep  at  a  location,  the  second  order  

interpolation element may cause numerical oscillation. In this case the first order interpolation 

sub-elements  are  used locally  for  the  FV scheme (see  equations  6.49 to  6.55).  The risk of 

oscillation is checked by comparing the sign of the the gradients of the solution quantity at the 

nodes of the quadratic interpolation.

Writing equations  (7.54) to (7.56) for the FV cells  and handling the boundary conditions 

results in a linear system of equations of the form [A]⋅[X ]=[B ] . The coefficient matrix [A]  is 
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not constant in time, because it involves the time-variable quantities D  and  . Therefore an 

efficient iterative matrix solver is needed in order to solve the matrix equation at each time step. 

The coefficient matrix [A]  is not necessarily symmetric, because the water depth terms ( and 

D  in equations 7.54 to 7.56) are not equivalent at the neighbouring nodes. Thus, the iterative 

solver must not be restricted to symmetric matrices. The preconditioned bi-conjugate gradient 

stabilised method (BI-CGSTAB) has been used in this regard (see van der Vorst, 1992).

The open boundary nodes with known water level are handled by using Dirichlet condition 

for the water level and applying equations (7.55) and (7.56) for the depth integrated velocity 

components.  The open boundary nodes with known velocity are  handled by using Dirichlet 

condition for the velocity components and applying equation  (7.54) for the water level. The 

closed boundary nodes are handled by using the three FV relationships (7.54) to (7.56) while the 

no-flow condition of the boundary is applied when the line integrals on the cell boundary are 

determined  in  equation  (7.54).  All  of  the  boundaries  are  handled  by  using  the  normal 

interpolation elements (not the Neumann elements and the virtual nodes).

The procedure for calculating the water level,  as described in this section, determines the 

depth integrated velocity components in addition to the water level. These extra parameters are 

not trivial. They will be used in the next step for calculating the effect of vertical diffusion and 

free surface gradient on the 3D velocity field.

7.6 Vertical Diffusion Step

The vertical diffusion and the effect of the barotropic pressure gradient (i.e.  the free surface 

slope)  on  the  3D velocity  field  are  determined  in  the  vertical  diffusion  step.  The  solution 

procedure is implicit. Three one-dimensional equations for u , v , and w  are solved along the 

vertical water columns. Each water column is solved independently. The relevant equations are 

(7.8) to (7.10). They are represented herein for easy referencing. 

ud 2−ud 1

 t
= ∂
∂ z  v ∂ u

d 2

∂ z −g   ∂
n1

∂ x
1− ∂ 

n

∂ x 2⋅z⋅v
d 1−2⋅ y⋅w

d 1 (7.57)

vd 2−vd 1

 t
= ∂
∂ z  v ∂ v

d 2

∂ z −g   ∂
n1

∂ y
1− ∂

n

∂ y −2⋅z⋅u
d 12⋅ x⋅w

d 1 (7.58)

wd 2−wd 1

 t
= ∂
∂ z v ∂w

d 2

∂ z 2⋅ y⋅u
d 1−2⋅x⋅v

d 1 (7.59)
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The free surface slope has a dominant effect on the velocity field in many practical problems. 

The effect of this parameter on the depth integrated velocity has been determined in the previous 

step. However, its effect on the 3D velocity field must be calculated  now. It is important to 

determine  the  free  surface  gradients  exactly  as  they  were calculated  in  the  previous  step. 

Otherwise the 3D velocity field will  not  be  compatible with the water free surface. Recalling 

that the depth integrated form of equations (7.57) and (7.58) have been used in the previous step 

for the free surface calculation, the free surface gradients here may be replaced by the results of 

that step. In this way, the surface gradients are computed only once. Equations (7.41) and (7.42) 

may be rearranged as follows:

−g ∂ n1

∂ x
1− ∂

n

∂ x =D⋅U
d 2−U d 1

 t
− 1
   x −  x bb 

− 2

z⋅DV

d 1− y⋅DW
d 1

(7.60)

−g ∂ n1

∂ y
1− ∂

n

∂ y =D⋅V
d 2−V d 1

 t
− 1
   y  −  y bb 

 2

z⋅DU

d 1− x⋅DW
d1

(7.61)

Inserting equations (7.60) and (7.61) into equations (7.57) and (7.58), we obtain:

ud 2−ud 1

 t
= ∂
∂ z  v ∂ u

d 2

∂ z  D

U d 2−U d 1

 t
−



1
   x −  x bb 

2zv
d 1−


DV d 1


−2 y w

d 1−


DW d 1




(7.62)

vd 2−vd 1

 t
= ∂
∂ z  v ∂ v

d 2

∂ z  D

V d 2−V d 1

 t
−



1
   y −  y bb 

−2zu
d 1−


DU d 1


2 x w

d 1−


DW d 1




(7.63)

Equations (7.62), (7.63) and (7.59) are solved on each computational grid column in order to 

determine the 3D velocity field for this step. The solution procedures for the three equations are 

the  same,  while  the  boundary  conditions  are  different.  The  procedure  for  u -component  is 

described below. 
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Equation (7.62) is rearranged as follows:

ud 2− t ∂
∂ z  v ∂u

d 2

∂ z =ud 1 t


D

U d 2−U d 1

 t
− t




1
   x  −  xbb 

2 tz v
d 1−


DV d 1


−2 t yw

d 1−


DW d 1




 (7.64)

where everything in the right hand side is known. 

The 1D finite volume algorithm of section (6.11) has been used in order to discretise equation 

(7.64). Cartesian coordinate system is used herein instead of the sigma coordinate system. In this 

way,  not  only the  velocity  but  also  its  vertical  gradient  remains  continuous at  the  element 

boundaries. It is a benefit for the vertical diffusion term. 

The integral of equation (7.64) along a 1D FV cell is written as follows:

∫
z1

z2

ud 2dz− t∫
z1

z2
∂
∂ z  v ∂u

d 2

∂ z dz=∫z1
z2

ud 1dz t Acol∫
z1

z2 
 dz

2 t∫
z1

z2

z v
d 1−yw

d 1dz
(7.65)

where l  is the node number in the vertical direction,

Acol=
1

DU d 2−DU d 1

 t
− 1
   x  −

 xb
 −2 z

DV d 1


− y

DW d 1

  (7.66)

where Acol  is constant along the column and is known from the previous step for the free surface.

z1=
z l−1 zl

2
, z2=

zlzl1

2
for l≠1 , N

z1=zl , z2=
z l zl1

2
for l=1 (the bed layer's node)

z1=
zl z l−1

2
, z2=zl for l=N (the surface layer's node)

The second term in the left hand side of equation (7.65) is simplified as follows:

∫
z1

z2
∂
∂ z  v ∂u

d 2

∂ z dz=[v ∂u
d 2

∂ z ]z1
z2

= v ∂ ud 2

∂ z z2− v ∂ u
d 2

∂ z z1 (7.67)

The point z1  is located in the interpolation element that is bounded by the nodes l−1  and l  

while the point z2  is located in the interpolation element that is bounded by the nodes l  and 

l1 . The right hand side terms in equation (7.67) is derived through centred FD between the 

layers. The result is:
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(νv ∂ud 2

∂ z )z1=(νv)z1 u l−ul−1

Δ z
(7.68)

(νv ∂ud 2

∂ z )z2=(νv)z2 u l+1−u l
Δ z

(7.69)

Following the approach described in section (6.11) and combining equations (7.67) to (7.69), 

equation (7.65) are discretised as follows:

∑
k=l−2

l+1

uk
d 2∫
z1

z l

ψk
v (z )dz+ ∑

k=l−1

l+2

uk
d 2∫
zl

z2

ψk
v ( z)dz

−Δ t((νv)z2 u l+1
d 2 −u l

d 2

Δ z
−(νv )z1

u l
d 2−u l−1

d 2

Δ z )
= ∑
k=l−2

l+1

uk
d 1∫
z1

z l

ψk
v (z )dz+ ∑

k=l−1

l+2

uk
d 1∫
zl

z2

ψk
v (z )dz

+Δ t Acol( ∑k=l−2

l+1

(ρηρ )k ∫
z1

z l

ψk
v (z )dz+∑

k=l−1

l+2

(ρηρ )k ∫
zl

z2

ψk
v ( z )dz)

+2Δ t( ∑k=l−2

l+1

(ωz vk
d 1−ω ywk

d 1)∫
z1

zl

ψk
v dz+∑

k=l−1

l+2

(ωz vk
d 1−ω ywk

d 1)∫
zl

z2

ψk
v dz)

(7.70)

The discretised equation for v  is derived in a similar way. The resulting equation is:

∑
k=l−2

l+1

v k
d 2∫
z1

zl

ψk
v ( z )dz+ ∑

k=l−1

l+2

v k
d 2∫
zl

z2

ψk
v ( z)dz

−Δ t((νv)z2 v l+1
d 2 −v l

d 2

Δ z
−(νv )z1

v l
d 2−v l−1

d 2

Δ z )
= ∑
k=l−2

l+1

vk
d 1∫
z1

zl

ψk
v ( z)dz+ ∑

k=l−1

l+2

v k
d 1∫
z l

z2

ψk
v (z )dz

+Δ t Bcol( ∑k=l−2

l+1

(ρηρ )k ∫
z1

zl

ψk
v (z )dz+∑

k=l−1

l+2

(ρηρ )k ∫
zl

z2

ψk
v (z )dz)

−2Δ t( ∑k=l−2

l+1

(ωz uk
d 1−ωxwk

d 1)∫
z1

zl

ψk
v dz+ ∑

k=l−1

l+2

(ωz uk
d 1−ωxwk

d 1)∫
zl

z2

ψk
v dz)

(7.71)

where 

Bcol=
1

DV d 2−DV d 1

 t
− 1
   y  −

 yb
 2 z

DU d 1


−x

DW d 1

  (7.72)

where Bcol  is constant along the column and is known from the previous step for the free surface.
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The discretised equation for w  is derived from equation (7.59) as follows:

∑
k=l−2

l+1

wk
d 2∫
z1

z l

ψk
v (z )dz+∑

k=l−1

l+2

w k
d 2∫
zl

z2

ψk
v (z )dz

−Δ t((νv)z2 w l+1
d 2 −wl

d 2

Δ z
−(νv )z1

wl
d 2−w l−1

d 2

Δ z )
= ∑
k=l−2

l+1

wk
d 1∫
z1

z l

ψk
v (z )dz+ ∑

k=l−1

l+2

w k
d 1∫
zl

z2

ψk
v( z)dz

+2Δ t( ∑k=l−2

l+1

(ω yuk
d 1−ωxv k

d 1)∫
z1

zl

ψk
v dz+ ∑

k=l−1

l+2

(ωy uk
d 1−ωx vk

d 1)∫
zl

z2

ψk
v dz)

(7.73)

The derivations of the shape function integrals in equations (7.70), (7.71) and (7.73) have 

been presented in section (6.11). 

Equations (7.70), (7.71) and (7.73) are solved along the vertical computational grid columns. 

This procedure, in addition to the boundary conditions, results in an individual linear system of 

equations for each velocity component at each column. Each system of equations is of the form (

〚A〛[ x ]=[b] ) being five-diagonal coefficient matrix. The number of unknowns is equal to the 

number of the layers in a column plus two. The two extra unknowns are due to the virtual nodes 

discussed in section (6.5). They are included in order to handle the boundary conditions at the 

bed and free surface. A standard five-diagonal matrix solver is used in order to solve each nodal 

column separately. The numerical  solution procedures for  solve equations (7.9) and (7.10),  to 

get v  and w , are similar to that described for equation (7.8). 

The  dynamic  boundary  conditions  at  the  free  surface  and  the  bed  are  used  for  solving 

equations (7.8) and (7.9). The kinematic boundary conditions are used for equation (7.10). The 

Neumann boundary conditions for the  u - and  v -equations at the water surface are extracted 

from equations (5.8) and (5.9). The terms ∂w /∂ x  and ∂w / ∂ y  are determined explicitly in 

this  regard.  The corresponding Neumann boundary conditions at  the bed are extracted from 

equations  (5.15)  and (5.16)  if  the bed slope  is  negligible.  These equations  link  the  vertical 

gradient of the velocity component to its own value at the boundary via a linear relationship 

with  constant  coefficients.  The  numerical  procedure  used  to  handle  this  kind  of  boundary 

condition in the vertical direction is described in section (6.5). 
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The Dirichlet boundary condition for the w -equation at the bed is given as:

wb=ub
∂ zb
∂ x
vb

∂ z b
∂ y

(7.74)

The Dirichlet boundary condition for the w -equation at the free surface is given as:

w=
∂
∂ t
u

∂
∂ x
v

∂
∂ y (7.75)

The virtual nodes are not used for the w -equation (7.10).

At the lateral free-slip closed boundaries, the vertical diffusion sub-model is solved for the 

parallel direction.

7.7 Hydrodynamic Pressure Correction Step

The pressure  correction  equation  cannot  be transformed into  a  simple  form in  the  sigma 

coordinate system due to the nonconformity of this transformation (Jonkowsky, 1999). In order 

to  avoid  the  difficulties  caused  by  transforming  the  second  order  derivative  directly,  the 

transformation is conducted by applying the divergence theorem on the Poisson equation in the 

real mesh. The Poisson equation in the Cartesian coordinate system is:

∂
∂ x ∂ q∂ x ∂

∂ y  ∂ q∂ y  ∂
∂ z ∂ q∂ z = 

 t ∂ ud 2

∂ x

∂ vd 2

∂ y

∂wd 2

∂ z  (7.76)

where ud 2 , v d 2 , and wd 2  are the intermediate velocity components as computed by the vertical 

diffusion step. Equation (7.76) is written in the following form:

∇⋅ ∂ q∂ x , ∂ q∂ y , ∂ q∂ z = 
 t
∇⋅ud 2

, vd 2
,wd 2 (7.77)

Integrating equation  (7.77)  over the  three  dimensional  finite  volume  cell  results  in  the 

following relationship:

∭


∇⋅ ∂ q∂ x , ∂ q∂ y , ∂ q∂ z  d = 
 t∭

∇⋅ud 2
, vd 2

, wd 2 d (7.78)

where   is the volume of the 3D FV cell.

Applying the divergence theorem on equation (7.78) results in the following relationship:

∬
∂
nx ∂ q∂ xny ∂ q∂ ynz ∂ q∂ z  d s= 

 t∬∂ 
nx ud 2

ny vd 2
nzwd 2 d s (7.79)

where ∂  is the boundary surface of the 3D FV cell. 
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Equation (7.79) is not transformed into the sigma coordinate system. It is solved in the real 

space.  Considering  that  the  computational  nodes  are  located  on  non-horizontal  layers,  the 

transformation rules of the derivatives may be used to transform ∂/∂ x  into ∂/∂ x  and ∂/∂ y  

into ∂/∂ y . The transformation rules are (Thompson et al., 1985):

∂ q
∂ x
=∂ q
∂ x
−∂ z
∂ x
⋅∂ q
∂ z

, ∂ q
∂ y
=∂ q
∂ y
− ∂ z
∂ y
⋅∂ q
∂ z (7.80)

Therefore equation (7.79) may be rewritten as:

∬
∂
nx ∂ q∂ x−nx ∂ z∂ x⋅∂ q∂ zn y ∂ q∂ y−ny ∂ z∂ y⋅∂ q∂ znz ∂ q∂ z  d s=

 t∬∂ 

nxud 2
n yv d 2

nzwd 2 d s
(7.81)

This can be further rearranged as follows:

∬
∂Ω
(nx ∂ q̂∂ x̃+ny ∂ q̂∂ ỹ+∂ q̂∂ z (nz−N z )) d s= ρ

Δ t∬∂Ω (
nxud 2

+n yv d 2
+nz wd 2) d s (7.82)

where:

N z=nx
∂ z
∂ x
ny

∂ z
∂ y (7.83)

The boundary surface of a 3D FV cell is partitioned into three surfaces:

∂=S1S2S3 (7.84)

where S1  is the lower face of a 3D FV cell, S2  is the upper face, and S3  is the lateral boundary 

surface. 

In the same way, the boundary surface integrals in equation (7.82) are partitioned into three 

parts: integrals on S1 , S2 , and S3 . The boundary faces S1  and S2  are located between the 

sigma layers. The integration over S1 and S2  is done on the 2D FV cells that are located on the 

computational  grid  layers.  Then  the  surface  integrals  on  S1  and  S2  are  determined  by 

averaging the 2D FV cell integrals of the layers. 

The surface integrals on the 2D FV cells are calculated according to equations (6.49) to (6.55) 

in section (6.7). For example:

∬
S
nz ∂ q∂ z  d s=nz⋅∬S ∂ q∂ z d s=nz⋅∑1

m

∑
j=1

3

 ∂ q∂ z  j ∬sp  j
hdx dy  (7.85)
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The discretised form of equation (7.82) on the faces S1 and S2 may be written as follows:

∑
1

m

∑
j=1

3 (nx(∬sp ∂ψ j
h

∂ x
dxdy )+ny (∬

sp

∂ψ j
h

∂ y
dx dy))q̂ j

+∑
1

m

∑
j=1

3

(nz−N z)⋅(∬
sp
ψ j
hdx dy)(∂ q̂∂ z )j

=
ρ
Δ t
⋅

∑
1

m

∑
j=1

3

(nx⋅(ud 2) j+ny⋅(v d 2) j+nz⋅(wd 2) j)(∬
sp
ψ j
hdx dy)

(7.86)

If the computational grid layers are horizontal, then  n x=n y=0  on the boundary faces  S1  

and S2 . Therefore:

∬
S1
nx ∂ q∂ x d s=∬S1 ny ∂ q∂ y  d s=∬S2 nx ∂ q∂ x  d s=∬S2 n y ∂ q∂ y  d s=0 (7.87)

The surface integrals on the lateral face of the 3D FV cell  S3  are computed through the 

following steps:

a) to calculate the 1D integrals on the boundary line of the lower and upper faces S1  and S2 . 

b) to average the 1D integrals of step (a) and multiply it by the height of the 3D cell.

The corresponding equation is:

∬
S3

LHS d s=hcell⋅
1
2
⋅∫∂ S1 LHS d l∫∂ S2 LHS d l (7.88)

where hcell  is the height of the 3D FV cell and LHS  is the left hand side of equation (7.82).

In fact, one dimensional boundary integration is determined on the boundaries of the 2D FV 

cells that are located on the computational grid layers. The 1D boundary integrals for ∂ S1  and 

∂ S2  are determined by averaging the calculated 1D boundary integrals on the layers. 

The value n z  is always zero on S3 . Thus we have:

∬
S3
nz ∂ q∂ z  d s=nz⋅∬S3 ∂ q∂ z  d s=0 (7.89)

Therefore it  is sufficient to calculate the 1D boundary integrals of the remaining parts  of 

equation (7.82) on the 2D FV cells  for layers. It  is determined  based on equations (6.58) to 

(6.61) given in section (6.8), i.e.s:
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∫
∂ S
(nx ∂ q̂∂ x̃ +n y∂ q̂∂ ỹ −N z

∂ q̂
∂ z ) d s=

∑
i=1

m

∑
j=1

3 (nx∫∂si ∂ψ j
h

∂ x
ds+ny∫

∂si

∂ψ j
h

∂ y
ds)q̂ j−∑i=1

m

∑
j=1

3

N z(∫
∂ si

ψ j
h ds )(∂ q̂∂ z )j=

ρ
Δ t
⋅∑

1

m

∑
j=1

3

(nx⋅(ud 2) j+ny⋅(v d 2) j)(∫
∂ si

ψ j
hdx dy)

(7.90)

where ∂ S  is the boundary of the 2D FV cells on the computational grid layers. The x  and y  

gradients in equation (7.90) are discretised  according to equations (6.45) and (6.46) and (6.52) 

and (6.53) in section (6.7). The vertical gradient is discretised using the finite difference scheme. 

The boundary integrals are discretised through the procedure described in section (6.8).

The discretisation procedure for the right hand side of equation (7.82) is similar to that for the 

left hand side using quadratic elements. If the velocity gradient is too steep at a location, the 

second order interpolation method may cause numerical oscillations. In this case the first order 

sub-elements are used locally for the right hand side terms. The risk of oscillation is checked by 

comparing the sign of the gradients of the solution quantity at the nodes. 

The discretised form of equation  (7.82), as described above, is written for all of the 3D FV 

cells in all of the sigma layers except at Dirichlet boundaries. This procedure, in addition to the 

boundary conditions,  results  in  a  linear  system of  equations  for  the  hydrodynamic  pressure 

correction field.  The linear  system is  solved by an iterative matrix  solver.  The bi-conjugate 

gradient stabilised (BI-CGSTAB) method (van der Vorst, 1992) has been used in this regard.

The boundary condition for the free surface layer and the lateral open boundaries is  q=0 . 

The boundary condition for the bed and the closed lateral boundaries is ∂ q /∂ n=0  where n  

is perpendicular to the boundary. This condition is used because the impermeability condition at 

the closed boundaries has been satisfied in the intermediate velocity field ud 2 , v d 2 ,wd 2 . 

The procedure for handling the Neumann boundary condition at the lateral boundaries has 

been  discussed  in  section  (6.9).  The  virtual  nodes  are  used  herein.  The  procedure  for  the 

boundary condition at the bed is more complex, because the bed is not necessarily horizontal. 

The relationship used at the bottom boundary is:

∂ qb
∂ n
=nx

∂ q
∂ x
n y

∂ q
∂ y
nz

∂ q
∂ z
=0 (7.91)

The bed boundary condition is handled through the virtual nodes under the bed as described in 

section (6.5).
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7.8 Velocity Projection Step

The  intermediate  velocity  field  ud 2 , v d 2 ,wd 2  generally  does  not  satisfy  the  continuity 

equation.  In  other  words,  it  is  not  convergence-free.  The  reason  is  that  the  hydrodynamic 

pressure field used in calculating the velocity is from the previous time step. It is not necessarily 

consistent with the hydrodynamic pressure at the new time step. However, the hydrodynamic 

pressure correction for the new time step has been determined from the previous step. Thus it is 

right  time  for  the  intermediate  velocity  field  to  be  projected  into  a  convergence-free  form. 

Equations (7.11) to (7.13) may be used for this purpose. They must be transformed into the 

sigma coordinate system before discretisation. The transformed forms are:

∂ q
∂ x
=∂ q
∂ x
−∂ z
∂ x
⋅∂ q
∂ z

, ∂ q
∂ y
=∂ q
∂ y
−∂ z
∂ y
⋅∂ q
∂ z

un1=ud 2− t 1

∂ q
∂ x
=ud 2− t 1

 ∂ q∂ x− ∂ z∂ x ∂ q∂ z  (7.92)

v n1=vd 2− t 1

∂ q
∂ y
=v d 2− t 1

  ∂ q∂ y− ∂ z∂ y ∂ q∂ z  (7.93)

wn1=wd 2− t 1

∂ q
∂ z (7.94)

Equations  (7.92)  to  (7.94)  have  been  solved  for  the  computational  nodes  except  for  the 

Dirichlet boundary ones where the velocity is known. Equations (7.92) and (7.93) are discretised 

and solved on the sigma planes through the 2D finite volume algorithm described in sections 

(6.7). Linear elements are used. In this way, the discretisation scheme is consistent with the one 

used in the hydrodynamic pressure correction step. The vertical gradient is determined through 

the finite difference scheme.

The discretised form of equations (7.92) to (7.94) are derived as follows:

∑
1

m

∑
j=1

6

u j
n1∬

sp
 j
hds=∑

1

m

∑
j=1

6

u j
d 2∬

sp
 j
hds

− t 1
∑1

m

∑
j=1

3

q j∬
sp

∂ j
h

∂ x
ds t 1∑1

m

∑
j=1

3 ∂ z
∂ x ∂ q∂ z  j∬sp  j

hds
(7.95)

∑
1

m

∑
j=1

6

v j
n1∬

sp
 j
hds=∑

1

m

∑
j=1

6

v j
d 2∬

sp
 j
hds

− t 1
∑1

m

∑
j=1

3

q j∬
sp

∂ j
h

∂y
ds t 1∑1

m

∑
j=1

3 ∂ z
∂ y ∂ q∂ z  j∬sp  j

hds
(7.96)
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∑
1

m

∑
j=1

6

w j
n1∬

sp
 j
hds=∑

1

m

∑
j=1

6

w j
d 2∬

sp
 j
hds− t 1

∑1
m

∑
j=1

3

∂ q∂ z  j∬sp  j
hds (7.97)

Each one of the above equations is applied to the FV cells on a layer in order to produce a 

linear system of equations in combination with the boundary conditions. The coefficient matrix 

is  fixed  in  time  and  unique  for  each  layer.  It  is  inverted  at  the  start  of  simulation  and  is 

multiplied by the right hand side vector for each layer at each time step.

It would be possible to solve equations (7.92) to (7.94) explicitly without matrix solution. 

However, the above algorithm guaranties that the discretisation schemes here are identical with 

other parts of the model. Considering that the inverted coefficient matrix is used, this solution 

procedure is not slower than the explicit algorithm.

7.9 Water Level Refining Option

The water level resulted from the implicit free surface step has been computed based on the 

intermediate  velocity field,  which  is  not  necessarily convergence-free.  Nevertheless  it  is  an 

acceptable implicit estimation to be used for the barotropic pressure gradient terms in order to 

increase the simulation stability.  It  is  also acceptable for most  of  the practical  applications, 

because the hydrodynamic pressure usually do not have noticeable effect on the water level. 

However, it is possible, if needed, to solve the depth integrated continuity equation again by the 

final velocity field of the new time step, in order to determine the water level more precisely. 

The resulted water level will be in complete harmony with the velocity field. 

The semi discretised form of the depth integrated continuity equation is:

−∂
∂ t
=−

n1−n

 t

= ∂∂ x ∫z b
*

un1dz ∂
∂ y ∫zb

 *

vn1dz1− ∂∂ x ∫z b
 n

undz ∂
∂ y ∫z b

 n

vndz (7.98)

where *  is the implicit water level estimated in the “Free Surface Step”. Equation (7.98) may be 

solved iteratively until *  converges to  n1 , if necessary.

Equation (7.98) may be re-arranged as the following:

n1= n− t ∂DU n1

∂ x

∂DV n1

∂ y − t 1−∂DU n

∂ x

∂ DV n

∂ y  (7.99)

where:
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DU=∫
zb



u dz and DV=∫
zb



v dz (7.100)

All  of  the  quantities  in  the  right  hand  side  of  equation  (7.99)  are  known.  The  vertical 

integrations are discretised through equations (6.17) and (6.18). Details in this regard have been 

discussed  in  section  (6.5).  Equation  (7.99)  may  be  solved  for  each  computational  node 

separately. However, the FV approach has been used in order to use an identical discretisation 

scheme as the other parts  of the model.  In order to apply the divergence theorem, equation 

(7.99) is rewritten to give:

n1= n− t ∇⋅DU n1 , DV n1 − t 1−∇⋅DU n , DV n  (7.101)

Applying the FV approach to equation (7.101) results in the following relationship:

∬
S

n1 ds=∬
S

 n ds

− t∬
S
∇⋅DU n1 , DV n1  ds− t 1−∬

S
∇⋅DU n , DV n  ds (7.102)

Applying the divergence theorem, equation (7.102) may be written as follows:

∬
S
n1 ds=∬

S
 n ds

− t∫
∂S
nxDU n1n yDV

n1 ds− t 1−∫
∂S
n xDU nny DV

n ds (7.103)

Equation (7.103) may be discretised using the algorithms described in sections (6.7) and (6.8). 

The result is:

∑
1

m

∑
j=1

6

η j
n+1∬

sp
ψ j
hds=∑

1

m

∑
j=1

6

η j
n∬
sp
ψ j
hds

−Δ t θ∑
i=1

m

∑
j=1

6

(nx DU j
n+1+n yDV j

n+1)∫
∂ si

ψ j ds

−Δ t (1−θ)∑
i=1

m

∑
j=1

6

(nxDU j
n+ny DV j

n)∫
∂ si

ψ j ds

(7.104)

The integrals in equation (7.104) are derived analytically through equations (6.37) to (6.43) 

and (6.56) to (6.61). Equation (7.104) is written for all of the FV cells, except for the Dirichlet 

boundary nodes. The result is a linear set of equations of the form ( 〚A〛[ x ]=[b] ) in which the 

coefficient matrix is constant in time. The coefficient matrix is inverted once and is multiplied 

by the RHS vector at every time step.
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7.10 3D Advection Diffusion Model

There are other 3D equations that are required to be solved in addition to the flow equations.  

They are the salinity equation (5.29), the temperature equation (5.33), the suspended sediment 

concentration equation (5.56), and the k-ε equations (5.69 and 5.70). Equations (5.98) to (6.40) 

represent the transformed form of these equations in the sigma coordinate system. They are 

specific versions of the general advection-diffusion equation, solved with a numerical algorithm 

similar to that used for the momentum equations. 

The general algorithm contains the following steps:

a) advection step

b) horizontal diffusion step including the source terms

c) vertical diffusion step

The advection solver is exactly the same as that used for the flow model. Equation (7.15) and 

the interpolation relationship (6.35) have been used in this regard. The advecting velocity field 

in this regard is u , v ,w , except for the suspended sediment concentration where the settling 

velocity is also included. 

The  settling  velocity  is  not  necessarily  constant  in  time,  because  it  is  a  function  of  the 

suspended sediment concentration. The present study introduces a numerical algorithm which 

handles  the  settling  velocity implicitly.  Such a  procedure  is  helpful  in  situations  where  the 

concentration changes rapidly, as is the case in the front of the turbidity current. 

The implicit value of the settling velocity may be written as follows:

w s=w s
nw s (7.105)

where w s=w s
n1−w s

n and   is the implicitness factor.

The settling velocity term in equation (5.100) may be expanded by using equation (7.105). 

The result is as follows:

−
∂w s c
∂ z

=−w s
n ∂ c
∂ z
−w s

∂ c
∂ z
−
∂w s

n

∂ z
c−

∂ w s
∂ z

c

=−
w s
n

H
∂ c
∂ z

1

−w s
∂ c
∂ z

2

−
∂w s

n

∂ z
c


3

−
∂w s
∂ z

c


4

(7.106)

The term (1) in the right hand side of equation (7.106) is added to its identical term in the 

advection  part  of  equation  (5.100).  In  this  way,  the  advecting  velocity  field  for  the  semi-

Lagrangian procedure will be u , v , w−ws
n/H  . The terms (2), (3) and (4) are handled in the 
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vertical diffusion step. The solution algorithms for the horizontal and the vertical diffusion steps 

are similar to their counterparts in the flow model. The vertical diffusion step is solved for each 

nodal column separately. An iterative procedure may be used until convergence is achieved in 

w s  at each node. 

7.11 The 2D Flow Model

The present study aims at developing a smooth and efficient combination of 2D/3D modelling 

framework.  The three dimensional  model  has  been described in  the previous  sections.  This 

section describes the numerical algorithm of the two dimensional model. The general algorithm 

employed in the 2D model in the present study is similar to the 3D model. The operator splitting 

method has been used with the semi-Lagrangian approach for the advection step and the FV 

approach for the diffusion step. It is not unusual to simulate a 2DH problem for relatively large 

time  duration,  where  the  conservativeness  of  the  numerical  method  becomes  crucial.  A 

conservative  semi-Lagrangian  procedure  has  been  used  in  this  regard.  The  faster  non-

conservative algorithm of the 3D model is also available. 

The 2D flow equations (5.103) to (5.105) are solved numerically in order to simulate the 

depth averaged velocity field. The general splitting approach is as follows:

∂ f
∂ t
= f n1− f d

 t
barotropic step

 f d− f a

 t
diffusion step

 f a− f n

 t
advection step

(7.107)

The general algorithm is combined from the following steps:

a) the advection step

b) the diffusion step

c) the free surface, barotropic pressure and friction step

The equations to be solved in the advection step are:

U a−U n

 t
U ∂U

∂ x
V ∂U

∂ y
=0 (7.108)

V a−V n

 t
U ∂V

∂ x
V ∂V

∂ y
=0 (7.109)
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The equations to be solved in the diffusion step are:

U d−U a

 t
= zV−

1

∂ pa
∂ x
−g D

2
∂
∂ x
 t∂2U

∂ x2 
∂2U
∂ y2 us−U diss (7.110)

V d−V a

 t
=−zU−

1

∂ pa
∂ y

− g D
2

∂
∂ y
t ∂2V

∂ x2 
∂2V
∂ y2 vs−V dis s (7.111)

The equations to be solved in the free surface, barotropic pressure and friction step are (see 

section 7.11.3): 

 n1 t  ∂∂ x DU n1 ∂
∂ y DV 

n1=
n− t 1− ∂∂ x DU n ∂

∂ y
DV n

(7.112)

The equations used in the barotropic and friction step are:

DU n1−DU d

 t =−g  D ∂n1

∂ x 1−D
∂ n

∂ x sx −c f U n1U n 2V n2 (7.113)

DV n1−DV d

 t =−gD ∂ n1

∂ y 1−D
∂n

∂ y sy −c f V
n1U n2V n2 (7.114)

7.11.1 Advection Step

The semi-Lagrangian characteristic method has been used in order to solve equations (7.108) 

and (7.109). Two algorithms have been used in this regard:

a) transforming the computational nodes along the characteristic lines

b) transforming the FV cells along the characteristic lines. 

The above algorithms are described below.

a) Transform the computational nodes:

This approach is similar to the algorithm for the 3D model. It is fast but non-conservative. 

This algorithm is based on the assumption that the two velocity components and any other scalar 

quantity remain constant along the characteristic curves during the pure advection process, i.e.:

U i
a=U p

n , V i
a=V p

n (7.115)

where the subscript i  stands for the computational node and the subscript p  is for the departure 

point ( 
x p , y p ) of the characteristic curve from the time n⋅ t  to the time n1⋅ t .

7-32



7 Model Development

The  characteristic  curve  is  identical  to  the  current  streamline  when  pure  advection  is 

considered.  The 2D streamline is traced back from the point  i  during the time period   t  

explicitly by dividing the time step into K  t  sub-steps  t= t /K  t :

The first stage:
x0=x i , U o=U i

n , y0= y i , V o=V i
n

 
The intermediate stages k=1 , , K t :
xk=xk−1− t⋅U k−1

n ,U k−1=U  x , y k−1 
y k= y k−1− t⋅V k−1

n ,V k−1=V  x , y k−1
 
The last stage:
x p=xK , y p= yK

(7.116)

The quadratic interpolation equation (6.1) with the shape functions (6.3) to (6.8) have been 

used in order to interpolate data from the computational nodes to the departure points at the 

previous time step. In this way, the nodal values are defined at the new time step. This algorithm 

is  not  conservative,  however  the  interpolation  procedure  is  sufficiently  accurate  for  many 

practical problems. The clipping algorithm of (Wang et al.,  1988) has been used in order to 

avoid  oscillation  risk and artificial  local  extremes  in  front  of  sharp  gradients.  The clipping 

algorithm is based on comparing the interpolated data with the maximum and minimum nodal 

values of the element. The interpolated value must be inside that range.

The boundaries of the solution domain are handled in a similar way as in the 3D advection 

step. If the backward streamline crosses a closed boundary at an intermediate time, it is followed 

further along the boundary in the backward direction of the velocity parallel to the boundary. If 

the boundary is open (input) with a known velocity, the concentration value at the departure 

point is computed through interpolation in time and space on the boundary. If there is any input 

boundary with a known water level instead of velocity, a procedure similar to that developed for 

the 3D model is then used.

b) Transform the FV cells:

This algorithm is a conservative semi-Lagrangian discretisation scheme. It is based on the fact 

that the cell-integral of the solution quantity over a 2D FV cell remains constant while the cell  

transforms and reshapes with pure advection. The FV cell,  as described in section (6.7), has 

been used in this regard. This algorithm produces an individual relationship for the solute at 

each computational node. It is the cell boundary points, not the computational nodes that are 
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traced backward along the streamlines. In this way, the position and geometry of the FV cell at 

the previous time step are determined.  Then the cell-integral  of the solution quantity in the 

transformed cell is computed through the divergence theorem by 1D integration along the cell 

boundaries. The interpolation shape functions and the nodal values at the previous time step are 

used for the analytical derivation of the boundary integrals. The boundary of the transformed FV 

cell is partitioned into several sub-cell edges, with each one in a single interpolation element. 

The integral may be defined analytically over each edge according to equations (6.56) to (6.61). 

The sub-cells here are not necessarily identical to the sub-cells in section (6.7). Because each 

sub-cell of the second type may sit in more than one interpolation element (see figure 7.2). 

Recalling  that  the  cell-integral  of  the  solution  quantity  does  not  change  during  the  pure 

advection  transformation,  the  integrals  over  the  original  FV cells  at  the  new time step  are 

equivalent to the integral over the back-warded cell at the previous time step. On the other hand, 

the cell integrals at the new time step may also be calculated through the nodal values at the 

computational nodes (see section 6.7). The cell-integrals from the two methods are equivalent. 

This  relationship  links  the  nodal  values  at  the  new time step  to  the  nodal  values  from the 

previous time step. The relationship is written for all of the FV cells. This procedure, in addition 

to the boundary conditions, results in a linear set of equations with a coefficient matrix that is 

fixed in time. 

Figure 7.2. Semi-Lagrangian transformation of a FV-cell

7.11.2 Diffusion Step

The explicit FV method with FE shape functions has been used in order to solve equations 

(7.110) and (7.111). The procedure is similar to that used in the horizontal diffusion step for the 
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3D model with the same discretisation algorithm and the same boundary condition, and with the 

same matrix solver. For details see section (7.4).

7.11.3 Free Surface, Barotropic and Friction Step

Three equations are used in order to determine the free surface and final velocity implicitly. 

They are the depth integrated continuity equation, the remaining part of the momentum equation 

in the x direction, and the remaining part of the momentum equation in the y direction. Two 

approaches may be used for predicting the water level. One is to solve the three equations jointly 

in a linear system of equations with three unknowns and three equations for each computational 

node. The second approach is to derive a unique relationship with only the water level as the 

unknown  by  inserting  the  quantities  DU  and  DV  from  the  momentum  equations  (the 

remaining part) into the continuity equation. The first approach has been used in the present 

study. It is identical to the procedure used in the 3D model. 

In  the present  step,  the  barotropic  pressure  (the free  surface slope)  and the new velocity 

distributions are determined implicitly. This method results in more stable solution and with less 

time step restriction. The bed shear stress has no significant effect on the flow field if the water 

depth is large. However it may be effective and dominant in the shallow waters regions. Using 

an implicit discretisation of the bed shear stress will increase the stability and robustness of the 

model in very shallow or wetting/drying regions. Thus the bed friction is solved implicitly in the 

current study. 

The semi discretised equations to be solved are as follows:

 n1− n

 t
∂DU n1

∂ x
∂DV 

n1

∂ y 1−∂DU n∂ x
∂DV 

n

∂ y =DQdis (7.117)

DU n1−DU d

 t =−g  D∂n1

∂ x 1−D ∂
n

∂ x 

sx

−c f U

n1U n2V n 2udis−U DQdis

(7.118)

DV n1−DV d

 t =−gD ∂ n1

∂ y 1−D
∂n

∂ y 

sy

−c f V

n1U n2V n2v dis−V DQdis

(7.119)

Equations (7.117) to (7.119) may be rearranged in the following manner:
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 n1 t  ∂∂ x DU n1 ∂
∂ y DV 

n1=
n− t 1− ∂∂ x DU n ∂

∂ y
DV nDdiss

(7.120)

DU n1DU n1 t
c f
D U

n2V n2 t g D∂
n1

∂ x
=

DU d− t g D 1− ∂
n

∂ x
 t

sx

 t udis−U DQdis

(7.121)

DV n1DV n1 t
c f
D U

n2V n2 t g D∂
n1

∂ y
=

DV d− t g D1− ∂
n

∂ y
 t

sy

 t vdis−V DQdis

(7.122)

Equation (7.120) may be rewritten in the following form:

 n1 t ∇⋅DU n1 , DV n1 =n− t 1−∇⋅DU n , DV n Ddis s (7.123)

Following  the  finite  volume  procedure,  equations  (7.123),  (7.121)  and  (7.122)  may  be 
integrated over the 2D FV cells in order to produce the following relationships:

∬
S
 n1ds t ∬

S
∇⋅DU n1 , DV n1ds=

∬
S
nds− t 1−∬

S
∇⋅DU n , DV nds∬

S
Ddis sds

(7.124)

∬
S
DU n1ds t c f∬

S
DU n1U n2V n2

Dn ds

 t g Dn∬
S

∂ n1

∂ x
ds=∬

S
DU d ds− t g Dn1−∬

S

∂n

∂ x
ds

 t∬
S

sx

ds t∬

S
udis−U DQdis ds

(7.125)

∬
S
DV n1 ds t c f∬

S
DV n1U n2V n2

Dn ds

 t g Dn∬
S

∂ n1

∂ y
ds=∬

S
DV d ds− t g Dn1−∬

S

∂n

∂ y
ds

 t∬
S

sy

ds t∬

S
vdis−V DQdis ds

(7.126)

Applying the divergence theorem to equation (7.124) results in the following relationship:

∬
S
 n1ds t ∫

∂S
nx DU n1n y DV

n1dl=

∬
S
nds− t 1−∫

∂S
n xDU nny DV

ndl∬
S
Ddiss ds

(7.127)
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Equations  (7.127),  (7.125)  and  (7.126)  are  discretised  through  the  finite  volume  scheme 

described in sections (6.7) and (6.8). The result is:

∑
1

m

∑
j=1

6

 j
n1∬

sp
 j ds t ∑

i=1

m

∑
j=1

6

nx DU j
n1n yDV j

n1∫
∂ si

 j dl=

∑
1

m

∑
j=1

6

 j
n∬
sp
 j ds− t 1−∑

i=1

m

∑
j=1

6

n xDU j
nny DV j

n ∫
∂ si

 j dl

∑
1

m

∑
j=1

6

Ddiss∬
sp
 jds

(7.128)

∑
1

m

∑
j=1

6

DU j
n1∬

sp
 j ds t c f∑

1

m

∑
j=1

6

DU j
n1U j

n2V j
n2

D j
n ∬

sp
 jds

 t gDn∑
1

m

∑
j=1

6

 j
n1∬

sp

∂ j

∂ x ds=

∑
1

m

∑
j=1

6

DU j
d∬
sp
 jds− t g D

n1−∑
1

m

∑
j=1

6

 j
n∬
sp

∂ j

∂ x ds

 t∑
1

m

∑
j=1

6 sx  j∬sp  j ds t udis−U DQdis∑
1

m

∑
j=1

6

∬
sp
 j ds

(7.129)

∑
1

m

∑
j=1

6

DV j
n1∬

sp
 j ds t c f∑

1

m

∑
j=1

6

DV j
n1U j

n 2V j
n2

D j
n ∬

sp
 j ds

 t gDn∑
1

m

∑
j=1

6

 j
n1∬

sp

∂ j

∂ y ds=

∑
1

m

∑
j=1

6

DV j
d∬
sp
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(7.130)

If  the  velocity  and/or  free  surface  gradient  are  too  steep  at  a  location,  the  second order 
interpolation element may cause numerical oscillation. In this case the first order interpolation 
sub-elements are used locally (see equations 6.49 to 6.55). The risk of oscillation is checked by 
comparing  the  sign  of  the  gradients  of  the  solution  quantity  at  the  nodes  of  the  quadratic 
interpolation.

Writing equations  (7.128) to (7.130) for the FV cells and handling the boundary conditions 
results in a linear system of equations of the form [A]⋅[X ]=[B ] . The coefficient matrix [A]  is 
not constant and may not necessarily be symmetric.  An efficient iterative matrix solver,  not 
restricted to symmetric matrices, is needed in order to solve the matrix equation at each time 
step. The preconditioned bi-conjugate gradient stabilised method (BI-CGSTAB) has been used 
in this regard, see van der Vorst (1992).
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The open boundary nodes with known water level are handled by using Dirichlet condition 
for the water level and applying equations (7.129) and (7.130) for the velocity components. The 
open boundary nodes with known velocity are  handled by using Dirichlet  condition for the 
velocity components and applying equation  (7.128) for the water level. The closed boundary 
nodes  are  handled  by  using  the  three  FV  relationships  (7.128)  to  (7.130)  while the 
impermeability condition of the boundary is applied when the line integrals on the cell boundary 
are  determined  in  equation  (7.128).  All  of  the  boundaries  are  handled  by  the  normal 
interpolation elements (not the Neumann elements and the virtual nodes).

7.12 2D Advection Diffusion Model

The 2D advection diffusion equation for the generic depth averaged quantity   is given as:

∂
∂ t
U ∂

∂ x
V ∂

∂ y
=t ∂2

∂ x2
∂2
∂ y2s−dissSD (7.131)

where dis s  and s  are the discharge and the   value (for example, the temperature or salinity) 

of the point source respectively. SD  is the distributed source term such as the interaction with the 

bed.
Equation (7.131) is  solved numerically using the operator  splitting approach.  The general 

formula is:

∂
∂ t
=

n1−a

 t
diffusion step

 
a−n

 t
advection step

(7.132)

The overall algorithm contains the following steps:
a) advection step
b) diffusion step

The solver for the advection step is identical to the semi-Lagrangian solver used in the 2D 

flow  model.  The  solution  algorithm  for  the  horizontal  diffusion  step  is  identical  to  its 

counterpart in the flow model. For more details see sections (7.11.1) and (7.11.2). The Neumann 

condition at the input boundary is not allowed.

7.13 2D/3D Integration Algorithm

There is a generous literature due to research on single depth integrated two dimensional free 

surface simulation. There is also a valuable literature regarding to research on single hydrostatic 
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or non-hydrostatic  three dimensional  free surface simulation.  However,  there are  just  a  few 

research works on coupled the free surface model systems dynamically. Still there are fewer 

research works on integrating 2DH and fully 3D free surface flow and quality models together. 

Several  1D-2DH integrated  modelling  systems  have  been  developed  for  integrated  flood 

modelling.  The  2DH model  in  these  systems  is  a  simplified  version  of  the  shallow water 

equations, in order to be efficient for the over-land region. There are also research works on 

integrated  watershed-hydrodynamic  model  systems  and  on  groundwater-free  surface  model 

systems, which are beyond the scope of the present work. 

The nested grid technique has been used widely in single 2DH models and also in some 3D 

models that are based on structured computational grid. There is also a research work (Namin, 

2003)  which  has  used  the  nested  grid  technique  for  coupling  a  structured  3D model  to  a 

structured 2D one. All of the nested grid models are based on interpolation and averaging for 

data  exchange  at  the  interface  of  the  nested  grids.  This  procedure  is  not  numerically 

conservative. 

Two approaches have been employed in the literature for combining multi-dimensional free 

surface models. One approach is to use a simpler model in the entire solution domain and a 

more  complex  model  in  confined  sub-domains.  The  simpler  model  provides  boundary 

conditions for the more complex model, but they are not coupled. This approach is called the 

hybrid modelling. The other approach is is to fully couple the models (Wu W., 2007; Sebastian 

and Shu, 2003; McAnally et al., 1986; Wu and Li, 1992; Zhang, 1999; Verwey, 2001). 

The current  fully coupled 2D-3D model  systems are based on the interpolation/averaging 

procedure  in  order  to  exchange  data  between  the  models.  Therefore  they  are  not  fully 

conservative  at  the  interface.  They  use  mesh  overlapping  or  nested  grid  techniques  at  the 

interface. 

McAnally et al. (1986) used a hybrid (not coupled) type of mixed 2DH-3D model to study the 

salinity intrusion in New York harbour. Wu and Li (1992) applied a coupled 1D-2DH quasi-

steady model system in the study of sedimentation problems in the China's Three Gorges project 

(TGP). The entire study domain was divided into four 1D and four 2DH reaches. Yu, L. et al 

(1998) presented a hybrid type (no coupled) mixed 2DH-3D flow model to analyse flow in an 

estuary. Their hybrid system consisted of a three dimensional finite volume approach sub-model 

being nested with a two dimensional finite element model. The 2D FE model was explicit on 

unstructured grid, while the 3D FV model used structured grid. Zhang (1999) applied a coupled 
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1D-2DH model system in order to simulate the flow and sediment transport at the Yellow River 

mouth,  based  on  the  multi-block  approach.  However,  it  was  not  a  fully  implicit  coupling 

algorithm. Kashefipour et  al  (2002) presented a coupled 1D-2DH model  system in order to 

simulate the hydro-environmental parameters of water at Ribble Estuary, UK. He used a multi-

block approach with domain overlapping at  the interface.  Each model received its boundary 

condition at  the interface,  from inside the other model's domain.  Multi-block approach with 

domain overlapping is common in model coupling. However, it is not a fully implicit coupling 

algorithm. 

Namin (2003) introduced a fully 3D model nested with a 2D shallow water one. Both of the  

models use structured computational grid. The 3D model is based on solving the vertical planes 

with a  2DV module filling the domain in  each direction as  an ADI method.  The boundary 

conditions for the 3D domain are provided implicitly from the the 2DH model.  The linking 

procedure is based on the behaviour of the ADI algorithm, which solves the 2D domain, line by 

line via the tri-diagonal system, and solves the 3D domain, vertical plane by vertical plane via a 

block tri-diagonal system. The tri-diagonal systems are solved by the double sweep algorithm. 

The two tri-diagonal  systems are mixed in a single double sweep algorithm over the entire 

model wherever needed. The integrated system of Namin et al works very well in situations 

where the structured grid is sufficient. However, it depends on interpolation and integration of 

data  at  the  link-boundary,  as  any  kind  of  nested  model,  when  the  resolution  of  the  3D 

computational  grid is  different from the 2D one.  The technique of Namin et  al.  can not be 

extended  to  the  unstructured  grid  without  difficulties  and  loss  of  efficiency.  It  depends 

completely on the ADI algorithm and the structured grid characteristics. 

Katopodes  N.  D.  and  Kao  K.  (2003)  presented  nested  grid  model  for  nearshore 

hydrodynamics in which, two different 3D models coupled together. The coarse model is based 

on a fixed Cartesian grid. The nested model is based on a variable curvilinear grid. The authors 

focused on developing a subspace projection method for time integration and non-reflective 

boundary  conditions  at  the  interface.  They  used  the  multi-block  approach  with  domain-

overlapping at the interface and managed the nested grid to expand gradually in the overlap 

region until it reaches the desired scale in consistency with the coarse grid. The coupling was 

based on the interpolation/averaging algorithm. Lin B. et al. (2006) presented a sophisticated 

1D-2DH integrated system using the 1D ISIS model and the 2DH DIVAST model. This model 

system is for predicting flood inundation levels in complex river basins. The ISIS and DIVAST 
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model is linked by a weir equation, in which the volume of flow from the 1D domain to the 2D 

domain is determined by the water level difference. 

A fully implicit 1D/2D integrated model has been developed in WL Delft Hydraulics (Sobek-

1D2D) for modelling river and floodplain hydraulics together.  It  solves the complete  set  of 

equations (from the two domains) together using a matrix solver. The two models are coupled 

via an interface in the horizontal plane that divides the river at the floodplain level. The 2D 

model uses structured computational grid.

No one of the present free surface 2D-3D coupling techniques are available to present a fully 

dynamic  and  conservative  integration  procedure  with  implicit  behaviour  without  enforcing 

solution iterations. The integration strategy in the present work is a novel algorithm which is 

free from interpolation/averaging so it is fully conservative and accurate at the interface, it is  

based on unstructured grid, and does not restricts the implicit behaviour of the two models in 

simulation time step selection.

It is possible to apply a two-way data transformation standard between individual models, by 

back and forth data transformation at the shared model boundaries. However it results in a fully 

explicit linking method which restricts the time step limitation. Iteration may also be needed at 

each  time  step.  This  approach  decreases  the  overall  efficiency when  all  of  the  models  are 

implicit. 

As mentioned earlier, one approach for integrating two implicit models is to share a limited 

part of the solution domain close to the interface of the models. The interface is the contact 

line/surface between the two models. Figure (7.3) illustrates a schematic of this algorithm. This 

integration algorithm is not fully implicit, because the boundary conditions of the two models at 

their internal boundary are not from the new time step. Therefore they are not accurate. This 

inaccuracy will  spreads  into the  solution domain gradually.  If  the solution  time step of  the 

models is much smaller than the time scale of variation in the boundary conditions and/or the 

solution domain, the inaccuracy will not be noticeable.

Figure 7.3. Model integration by sharing part of the solution domain
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A more accurate coupling approach is to add an extra model which covers the interface and a 

limited  part  of  the  solution  domains  around it.  The  extra  model  simulates  the  limited  area 

implicitly or explicitly in order to define the solution values on the interface at the new time 

step.  This procedure is  applicable if  the interface is  located at  a region where the effect  of 

hydrodynamic  pressure  is  negligible.  Figure  (7.4)  illustrates  a  schematic  view of  the  three 

solution domains. 

Figure 7.4. Model integration by adding an extra model

The extra model in figure (7.4) receives its boundary conditions from the two main models. The 

boundary conditions of the extra model are explicit and therefore they are not accurate. However 

the solution domain size is selected in such a way that the effect of the boundaries does not reach 

the interface location in the extra model during one time step. In this way, the proposed algorithm 

is more accurate than the previous one. However, it needs an initial knowledge from the flow 

characteristics to determine the minimum grid-overlapping extension needed.

The  mentioned  algorithms  above  do  not  deal  with  the  structure  of  the  models  that  are 

integrated. It is possible to develop more efficient integration algorithms when the structures of 

the models are accessible and identical. In this research program a new coupling algorithm has 

been introduced. The main idea is to use fractional step algorithms for the models and then 

integrate them fraction by fraction. Hybrid finite volume cells have been introduced for the link 

nodes which are partly in the 2D domain and partly in the 3D one.  The present 2D and 3D 

models are based on similar operator splitting schemes. They have been coupled fraction by 

fraction.  Common  fractions  are  handled  together  with  similar  procedures  and  data  are 

exchanged directly. The need for the interpolation/averaging algorithm at the interface has been 

eliminated by using unstructured computational grid and introducing hybrid finite volume cells. 

The hybrid finite volume cells are partly in the 2D domain and partly in the 3D domain area. A 

hybrid finite volume cell produces a unique discretised equation for a computational node, while 

the discretised equation is partly supported by nodes within the 2DH domain and partly by the 

3D domain. 
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The advection steps of the two models are integrated and solved jointly. Then the horizontal 

diffusion steps of the two models are integrated and solved. Afterwards the free surface steps of 

the two models are integrated and solved together. Finally the remaining computations of both 

models are carried out. The following subsections present details of each step of the integration 

procedure .

7.13.1 Integrating the Advection Sub-models

When a backward streamline of the 2D, or 3D model crosses over the interface boundary, it 

continues movement into the 3D, or 2D domain using the velocity data from that domain until 

reaching the position of the previous time step (see figure 7.5). When the backward streamline 

of the 2D model falls in the 3D domain, it uses the depth averaged velocity values of the 3D 

model.  The  vertical  velocity  components  are  neglected  in  this  regard.  When  the  backward 

streamline of the 3D model falls in the 2D domain, the velocity data are determined based on the 

depth averaged values.  The vertical  distribution of the horizontal  velocity is  assumed to be 

logarithmic in the 2D domain. The temperature and salinity values are assumed to be constant in 

depth.

Figure 7.5. Continuing the backward tracking in the 2D depth-averaged domain
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7.13.2 Integrating the Horizontal Diffusion Sub-models

Recalling that the horizontal diffusion solver is explicit, the global time step is assumed to 

satisfy the stability condition. The nodal values at the new time step on the interface boundary 

may be calculated one by one explicitly using their neighbouring nodes from the two domains 

(2D  and  3D).  The  introduced  hybrid  2D-3D  finite  volume  cells  are  used  for  deriving  the 

discretised form of the governing equations at the link nodes. Part of these cells located in the 

2D domain and the other part in the 3D domain. In this way, the interface nodes are linked 

explicitly to nodal data from both sides (2D and 3D domains). The vertical velocity component 

at the interface nodes assumed to be zero. After defining the interface node values at the new 

time step, the horizontal diffusion steps of the 2D and 3D models are carried out normally using 

Dirichlet boundary conditions at the interface nodes. 

The interface nodes of the 2D model have some neighbouring nodes (vertical columns) in the 

3D field. The depth averaged values of the vertical columns may be used in this regard. On the 

other hand, the interface nodes of the 3D model (on each sigma plane), have some neighbouring 

nodes in the 2D domain. The required data in the same z level is determined from the depth 

averaged values. The vertical distributions of the solution quantities are assumed to be known in 

the 2D area, as described for integrating the advection steps.

7.13.3 Integrating the Free Surface Sub-models

The free surface equations for the two models are combined in order to produce a unified 

system of linear equations. The solution procedures for the free surface in the 3D and the 2D 

models are identical. A unique system of equations is produced for the integrated free surface 

solution which involves both the 3D and 2D domains. Equations (7.54) to (7.56) are applied to 

the FV cells in the 2D domain and equations (7.128) to (7.130) are applied to the FV cells in the 

3D domain. The computational nodes and the FV cells on the interface of the two models are 

handled as normal internal cells. The only difference is that part of the shared FV cells, which is  

in the 3D domain, is handled by equations (7.54) to (7.56) and the other part, which is in the 2D 

domain, is handled by equations (7.128) to (7.130). The global system of equations is solved 

with the preconditioned bi-conjugate gradient stabilised method (BI-CGSTAB). Each one of the 

individual models, the 3D and the 2D versions, are also based on the same matrix solver when 

working independently. 
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There is no need to global computational grid or global numbering system of the nodes in the 

present algorithm. Discretisation of the depth integrated forms of the continuity and momentum 

equations in the 2D and 3D domains, results in two distinguished matrix equations. However, 

each matrix (and right hand side vector) involves just half of the data regarding to the hybrid 

cells on the interface. Then the matrices are linked together at the link nodes in order to be 

solved as a global matrix equation.

7.14 Summary

The numerical techniques and discretisation procedures which are used in the 2D and 3D 

models of the present study have been presented in this chapter. Four new numerical models 

have been created and linked together. They are the 3D hydrodynamic model, 3D advection-

diffusion model, 2D depth averaged hydrodynamic model, and 2D depth averaged advection 

diffusion model. The solution procedures for all of the models are based on the fractional steps 

algorithm. Each fraction includes one or more physical processes.  

Sections (7.2) described the general algorithm of the 3D hydrodynamic model and listed the 

corresponding solution steps.  They include pure advection,  horizontal  diffusion,  free surface 

simulation, vertical diffusion, hydrodynamic pressure correction and velocity projection steps. 

Sections (7.3) to (7.8) characterised the above solution steps. Section (7.3) illustrated the semi 

Lagrangian backward tracking characteristic method that has been used for the pure advection 

solver. Section (7.4) described the horizontal diffusion step. This process is simulated layer by 

layer. The new hybrid finite element - finite volume algorithm has been used as described in 

chapter (6). The horizontal diffusion processes are solved jointly. It is a new algorithm which 

handles the velocity condition at the closed boundary implicitly. The discretisation procedure for 

the horizontal diffusion terms involves new schemes. The shear stresses are computed in the 

horizontal plane, while their gradients are computed in the sigma layers. Section (7.5) addressed 

the solution procedure for the free surface through the hybrid FV scheme and the corresponding 

divergence theorem. The depth averaged versions of the continuity equation and the remaining 

parts of the x- and y-momentum equations have been solved implicitly. The solution procedure 

for the effect of the vertical diffusion, the free surface slope and the bed friction on the velocity 

components has been described in section (7.6). The depth integrated velocity from the previous 

section, has been used here instead of recalculating the free surface slope. This is a new scheme 

which guaranties the adjustment of the calculated velocity with the free surface slope. Section 
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(7.7) illustrated the solution algorithm for the hydrodynamic pressure. The 3D FV cells in the 

real space have been used in this regard. A new algorithm has been presented for calculating the 

surface  integrals  on  the  lateral  boundaries  of  the  3D FV cells.  Section  (7.8)  illustrated  the 

velocity projection step into the convergence-free field.  Section (7.9) described the optional 

recalculation procedure for the free surface by the final velocity field. It is applicable to the rare  

situations where the hydrodynamic pressure influences the water level. 

Section (7.10) described the numerical algorithm of the 3D advection diffusion model. The 

model is based on the fractional steps algorithm with the pure advection, the horizontal diffusion 

and the vertical diffusion steps. The solution algorithms for each fraction are identical to its 

counterpart in the 3D hydrodynamic model. Section (7.11) illustrated the 2D flow model. The 

2D flow model  is  also based on the fractional  steps  algorithm with the advection step,  the 

diffusion  step,  and  the  free  surface/barotropic  pressure  and  bed  friction  step.  The  solution 

algorithm for each fraction is identical to its  counterpart  in the 3D hydrodynamic model.  A 

conservative  version  of  the  semi-Lagrangian  algorithm has  also  been  introduced  to  the  2D 

model, with new scheme for determining the cell boundary integrals. Section (7.12) described 

the 2D advection diffusion model with its solution fractions; pure advection and diffusion. The 

solution algorithm for each fraction is again identical to its counterpart in the 3D hydrodynamic 

model. 

Section (7.13) illustrated the algorithm for integrating the 3D and the 2D models. A new 

implicit and efficient coupling algorithm has been introduced, which couples same operators 

(solution steps) of the two models. The backward tracking procedure of the semi-Lagrangian 

advection step continues the tracking when it moves from the 3D domain into the 2D one or vice 

versa. The free surface steps of the two models are solved jointly in a unified global matrix 

equation. There is no need for shared solution domain between the 2D and 3D models. It is 

possible to switch off a physical process without affecting the integration procedure. The matrix 

equations for several parts of the model contain a constant coefficient-matrix, which is inverted 

only once and used at each time step. Thus the algorithm of the solution procedure is fast and 

efficient.
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8 Model Evaluation

8.1 Vertical Diffusion – Wind Induced Current

Horizontal  and  vertical  diffusion  processes  jointly  construct  the  fully  3D  diffusion 

phenomenon together. However, the vertical diffusion is usually the critical diffusion process in 

a real-world three dimensional simulation problem. A good case for testing the vertical diffusion 

model is the simulation of the Coriolis effect on the drift current (Ekman spirals). 

Both of the drift current and slope current distributions are affected by the Coriolis effect. The 

drift current is the shear velocity produced by the wind shear stress at the free surface and is 

restricted by the bed shear stress. The slope current is the velocity profile which is produced by 

the pressure gradient at the water column (due to the free surface slope) and is restricted by the 

bed  shear  stress.  The  spiral  distribution  appear  due  to  the  disturbance  of  the  geostrophic 

equilibrium just below the surface by the wind shear (drift current) and just above the ocean 

floor by the bottom shear (slope current). The geostrophic equilibrium condition means that the 

pressure gradient (or shear stress) and Coriolis force cancel each other out in the momentum 

equation. 

The analytical solutions for the Ekman profiles were obtained for the steady flow and constant 

eddy viscosities  by V.  W.  Ekman in  1905.  The solution  for  the  drift  current  is  determined 

through a Neumann wind shear boundary condition at the surface. 

Before simulating the Coriolis effect on the wind-driven current, the pure wind-driven current 

is addressed in order to compare it with the analytical solution and with the changes in velocity 

distribution after introducing the Coriolis force.

The analytical solution of the steady state pure wind-driven current with wind velocity in the 

y-direction may be obtained by solving the following equation:
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Equation :
∂
∂ z  v∂ v∂ z =0

Free Surface B.C. : Bottom B.C. :

 v ∂v∂ z =

 =

air
water

.Cw .W.W y
∂ vb
∂ z =

vb

d o⋅ln d o
k s /30 

Simplified Bottom B.C. :
vb=0.0

(8.1)

where d 0  is the normal distance between the real bed and the first mesh layer above it (reference level).

The no-slip condition for the bottom B.C. results in a vertical velocity distribution which is 

not exactly the same as the result of wall function. However, the analytical solution of the flow 

with  the  Coriolis  force  (at  the  next  stage)  has  been  obtained  using  the  no-slip  condition. 

Therefore the same boundary condition will be used here.  

Equation (8.1) illustrates that the steady state velocity distribution is exactly linear and the 

vertical gradient of the velocity is controlled by the shear stress:

∂ v∂ z = 1
 v


 =

1
 v

air
water

.C w .W.W y (8.2)

The above problem has been simulated numerically on a 200km by 200km solution area with 

the water-level open boundary condition being used at all of the side boundaries. Figure (8.1) 

illustrates the plane view of the numerical mesh. Other model parameters are: water depth = 

68.8m (this is half of the depth of frictional influence in the next test for Ekman profile), vertical 

eddy viscosity = 0.1 m2/s, wind velocity = 32 m/s, and the velocity drag coefficient = 0.002513. 

This problem has been solved numerically with the time step = 400s. Figures (8.2) and (8.3) 

illustrate the result of simulation. The predicted velocity is in the wind direction and the steady 

state free surface velocity is 2.03 m/s and the vertical gradient of the velocity is 0.030. This is in 

good agreement with the analytical solution in which the free surface velocity is 2.01 m/s and 

the vertical gradient of the velocity is 0.030. Similar simulations have been done for wind speed 

=  5  m/s  and  vertical  eddy  viscosity  =  0.01,  0.05  and  0.1  m2/s  Figure  (8.4)  illustrates  a 

comparison of the simulation results with the analytical solutions. It shows that the numerical 

results are in close agreement with the analytical ones. The maximum errors for the velocity  at 

the free surface are 1.2%, 1.2%, and 0.9% for the viscosities  ν=0.1 m2/s,  ν=0.05 m2/s, and 

ν=0.01 m2/s respectively.
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Figure 8.1. Model grid deployed in diffusion test
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Figure 8.2. Simulated velocity distribution for pure drift current

wind speed = 32 m/s, eddy viscosity = 0.1 m2/s
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Figure 8.3. Simulated velocity distribution for pure drift current

wind speed = 32 m/s, eddy viscosity = 0.1 m2/s
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The analytical solution of the steady flow with the Coriolis force on the wind-driven current is 

obtained by solving the following complex number equation:

 v
d 2V
d z 2 −i f V=0

B.C. :

T= v
d V
d z

at z=0

V=0.0 at z=−H for finite depth

(8.3)

where i  is the imaginary part of the complex unit vector, f  is the Coriolis coefficient and z  is 

zero at the free surface and is positive upward. T  is the complex wind shear stress:

T= xi⋅ y  x= z∂ u /∂ z   y= z ∂v /∂ z  (8.4)

The analytical solution of equation (8.3) is (Jankowski, 1999):

V=V o
sinh [1i   zH ]

cosh [1i H ]
e
−4 i (8.5)

where = f / 2 z  and the parameter V o  is:

V o=uoi vo=
T

 z∣ f ∣
1/ 2=

wx
 z∣ f ∣

1/2i
wy

 z∣ f ∣
1 /2 (8.6)

General solution of equation (8.5) results in lengthy analytical formulae for the real velocity 

components  u  and  v .  Assuming  that  the  wind  blows  in  the  y-direction,  the  solution  is 

(Jankowski, 1999):

u=vo
2
2 [sinh cos−cosh  sin]cosh  H cos  H 

cosh2  H cos2  H sinh2 H  sin2H  
vo

2
2 [sinh  cos  cosh  sin]sinh  H sin  H 

cosh2 H cos2 H sinh2H sin2 H  
(8.7)

v=vo
2
2  [sinh  cos  cosh  sin ]cosh H cos  H 

cosh2 H cos2 H sinh2H sin2 H  
−vo

2
2 [sinh  cos  −cosh  sin ]sinhH sin  H 

cosh2H cos2H sinh2H sin2 H  
(8.8)

The wind driven current  with the Coriolis force has been simulated numerically  under the 

same conditions and model parameters as the pure wind test case. The time step used is 400s. 

Figures (8.5) and (8.6) illustrate  the simulated velocity distribution. Figure (8.7) illustrates  a 

comparison of the analytical and numerical solutions (by 11 and 21 layers). It shows that the 

numerical result is in good agreement with the analytical one, with the maximum velocity error 
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1.0% (0.01 m/s) and maximum direction error 0.6 degrees. Figure (8.7) shows that the accuracy 

has increased by increasing the number of computational points in the vertical direction.

Similar simulations have  also  been  undertaken for water depths = 33.4 and 160 m. Figures 

(8.9) and (8.10) illustrate the comparison of the simulation results with the analytical ones. They 

show that the results are in good agreement. The maximum velocity error for depth=33.4m is 

0.1% (0.0009m/s) and direction 0.3 degrees. The maximum velocity error for depth=160m is 

2.3% (0.02m/s) and direction 1.3 degrees. These error values are satisfactory when the limited 

vertical  resolution  (  Z=9m )  is  considered  into  account.  The  analytical  results  are  very 

sensitive to the water depth. Figure (8.11) illustrates that if the water depth is assumed to be 

159m (instead of 160m) in the analytical solution, the results are similar to the numerical results 

of 160m depth. 

Figure 8.5. Simulated velocity distribution for the Ekman problem (combination of

wind shear stress and the Coriolis force). 

                depth = 66.84m, wind speed = 32 m/s, eddy viscosity = 0.1 m2/s, latitude = 50o
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Figure 8.6. Simulated velocity distribution for the Ekman problem (combination of

wind shear stress and the Coriolis force). 

depth = 66.84m, wind speed = 32 m/s, eddy viscosity = 0.1 m2/s, latitude = 50o
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Figure 8.7. Comparison of the numerical and analytical Ekman profile 

depth = 66.84m, wind speed = 32 m/s, eddy viscosity = 0.1 m2/s, latitude = 50o
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Figure 8.8. Comparison of the numerical and analytical Ekman profile 

depth = 66.84m, wind speed = 32 m/s, eddy viscosity = 0.1 m2/s, latitude = 50o
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Figure 8.9. Comparison of the numerical and analytical Ekman profile 

depth = 33.4m, wind speed = 32 m/s, eddy viscosity = 0.1 m2/s, latitude = 50o
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Figure 8.10. Comparison of the numerical and analytical Ekman profile 

depth = 160m, wind speed = 32 m/s, eddy viscosity = 0.1 m2/s, latitude = 50o
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Figure 8.11. Sensitivity analysis of the Ekman profile due to the water depth

depth in numerical simulation = 160 m, depth in analytical solution = 159

(compare with figure 8.10)
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8.2 Hydrodynamic Pressure - Wind Driven Circulation

A typical example that illustrates the effect of non-hydrostatic pressure effect is the wind-driven 

circulation in a closed basin (Huang, 1993; Tsuruya et al., 1985; Jankowski, 1999; Kocyigit M., 

2002). A square basin measuring 10m by 10m with 5m depth has been considered here. The water 

body is influenced by wind shear stress due to the wind velocity in the x-direction. 

The problem has been simulated for wind speed of 5 m/s. The vertical eddy viscosity is 0.001 

m2/s. The horizontal eddy viscosity is zero in one case and 0.001 m2/s in another case. The 

computational mesh is similar to figure (8.1). However the dimensions are different. There are 

21 computational nodes along the vertical direction which have distributed evenly. The vertical 

resolution is 0.25m. The Coriolis force is neglected. The bed condition is no-slip and the wall 

condition is free-slip. The simulation time step is 1s. 

The simulation was carried out for 1000 seconds at first, but it was not steady state. Then, the 

non-hydrostatic simulation was repeated for 4000 seconds where it was close to the steady state 

condition. Figures (8.12) to (8.15) illustrate the simulation results after 1000 seconds, in order to 

compare the hydrostatic and non-hydrostatic simulations. Figure (8.16) illustrates the simulation 

result after 4000 seconds for comparison with the analytical steady state solution.

Figure (8.12) compares the results of hydrostatic and hydrodynamic pressure assumptions for 

the  case  of  0.001  m2/s  horizontal  eddy  viscosity.  Figure  (8.13)  compares  the  results  of 

hydrostatic  and hydrodynamic  cases  for  zero horizontal  eddy viscosity.  It  is  clear  from the 

figures that the near-wall vertical velocity in the hydrostatic pressure case is considerably more 

than  the  hydrodynamic  pressure  case.  The  non-hydrostatic  solution  results  in  a  smoother 

circulation over the entire area. Increasing the horizontal eddy viscosity helps for reducing the 

vertical velocity near the wall. 

The underwater circulation in the hydrostatic case is due to the free surface slope which results in 

hydrostatic pressure gradient along the horizontal layers. However, the underwater circulation in the 

hydrodynamic pressure case is partly due to the hydrostatic pressure gradient and partly due to the 

hydrodynamic pressure gradients in the horizontal and vertical directions. Figure (8.14) illustrates 

the effective pressure and velocity field.  The effective pressure is the sum of the hydrodynamic 

pressure and the hydrostatic excess pressure.  The hydrostatic excess pressure is the difference in 

hydrostatic pressure at each point relevant to the still water condition. It is clear from the figure that 

there  is  no  velocity  gradient  when  there  is  no  effective  pressure  gradient.  The  maximum 

8-15



8 Model Evaluation

hydrodynamic pressure occurs at the upper corners. The near-wall velocity in the non-hydrostatic 

solution is completely due to the hydrodynamic pressure gradient. The vertical velocity component 

in the hydrostatic solution is obtained from the continuity equation only.

Figure (8.16) illustrates the predicted vertical distribution of the horizontal velocity at the middle 

of the basin after 4000 seconds. The continuous line in the figure shows the analytic solution after 

(Huang, 1993).  for comparison with the analytical steady state solution. The analytic solution for a 

constant vertical eddy viscosity is given as (Huang 1993, Kocyigit 2002)

u= 1
6νv

g ∂η
∂ x

(3 z2−H 2)+ τw
2ρνv

(H+2z ) (8.9)

where

∂η
∂ x
=3

2
τw
ρ g H (2νv+K lH

3νv+K lH ) (8.10)

and k l  is the linearized bottom friction coefficient.

Figure (8.16) shows that the predicted results are in good agreement with the analytic solution. 

However, the predicted velocity is not yet completely steady state and the analytic solution can not 

takes the left and right boundaries into account. The velocity error at the water surface is about 2%. 
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Figure 8.12. Wind driven circulation in a 10x10x5m pool after 1000 seconds.

(a) water level for the hydrostatic pressure case, (b) velocity pattern for the hydrostatic pressure case,

(c) velocity pattern for the non-hydrostatic case. vv= 0.001 m2/s, vh= 0.001 m2/s.
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Figure 8.13. Wind driven circulation in a 10x10x5m pool after 1000 seconds.

(a) velocity pattern for the hydrostatic pressure case,

(b) velocity pattern for the non-hydrostatic case. vv= 0.001 m2/s, vh= 0.0 m2/s.
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Figure 8.14. Effective pressure and velocity filed relevant to the wind driven circulation 

Effective pressure = Hydrodynamic pressure + Hydrostatic excess pressure.

Hydrostatic excess pressure is the difference in hydrostatic pressure relevant to the still water condition.
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Figure 8.15. A 3D view of the wind driven circulation (vh= 0.001 m2/s).
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Figure 8.16. Comparison of the predicted velocity distribution at the middle of basin 

with the analytical solution of (Huang, 1993) for the non-hydrostatic case.
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8.3 Lock exchange flow

The lock exchange flow is a well-known test case to verify the modelling of density-buoyancy 

current  (Benjamin, T., 1968; Turner, J., 1973; Yih, C.-S., 1980; Huppert  and Simpson, 1980; 

Jankowski, J. A., 1999; Namin, 2003). In this case, two incompressible free surface fluids of 

slightly different densities and equal depth are initially divided in a rectangular basin by a thin 

wall in the middle of the basin. When the wall is removed, a buoyancy driven flow is developed. 

The denser fluid flows towards the other side along the bed, while the lighter fluid flows in the 

opposite direction along the water surface. 

The shape of the simulated interface between the fluids depends on considering or ignoring 

the  hydrodynamic  pressure  component.  The  hydrostatic  pressure  assumption  results  in  a 

rectangular-type pattern which is not observed in nature or laboratory.  The noses of density 

currents advancing along a flat bottom have a slope of approximately π /3  to zero (Turner J. 

1973).  This  kind  of  interface  shape  is  reproduced  by  simulation  when  the  hydrodynamic 

pressure component is taken into account.

The original  driving  force  for  the  denser  fluid  is  the  horizontal  pressure  gradient  due  to 

heavier water column in the denser part.  With hydrostatic pressure assumption in mind, the 

driving force for the lighter fluid is just the pressure gradient due to the water surface gradient 

that  happens  after  dense  fluid  flow.  But  in  fact  the  hydrodynamic  pressure  component  has 

considerable role in driving the fluid and shaping the velocity field.

It is possible to find analytically the mean velocity of the fluids movement during the transient 

time in a  simplified  condition  where there  is  no viscosity and energy loss.  Equation (8.11) 

illustrates the result of such a solution (for details, see Jankowski J. A. 1999). 

u=√2
2 √ρ2−ρ1

ρ2+ρ1
gH=0.71√ρ2−ρ1

ρ2+ρ1
gH≈0.5√ρ2−ρ1

ρ2
gH=0.5√ g ' H (8.11)

where g '=g⋅Δρ/ρ2  is the reduced gravity acceleration.

The  laboratory  experiments  of  Yih  (Yih,  1980) yield  the  flow  velocity  as  given  by  the 

equation (8.11) with the coefficient being 0.67 instead of 0.71. Barr observed the factor of 0.44 

in a closed conduit. He observed slightly asymmetrical flow with factors of 0.47 and 0.59 for the 

underflow and overflow respectively (Jankowski, 1999).
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The lock exchange flow case has been simulated here using the present model. The basin is 

30m long and 3m wide. The water depth is 4m. The water temperature is 15°C and the initial 

salinity at the left hand side and right hand sides are 11 psu and 10 psu, respectively. Therefore 

the initial water density is 1007.55 kg/m3 at the left hand side and 1006.78 kg/m3 at the right 

hand side. The vertical and horizontal eddy viscosities are set to zero, in order to compare the 

results with the analytical case.

Figure (8.17) illustrates a part of the computational mesh for this test. The distance between 

the nodes is 0.35m in the central area. The number of computational nodes along each column is 

21. The simulation time step is set to 1s. 

Figure 8.17. Plan view of the computational grid for the lock-exchange test case.

Figure  (8.18)  illustrates  some  results  at  selected  times  during  the  simulation  when  the 

hydrodynamic pressure component is taken into account. It shows that the smooth penetration of 

the salty water below the fresh water and also the smooth penetration of the fresh water above 

the salty water. The frontal angle of the salt-fresh water is from about π/3  to zero, similar to 

the physical modelling results (Turner J. 1973). 

Figure  (8.19)  compares  the  behaviour  of  the  hydrostatic  and  hydrodynamic  pressure 

assumptions. It shows that when the pressure is assumed to be hydrostatic, the vertical velocities 

at  the  fronts  are  unrealistically  high,  the  horizontal  velocities  are  under-estimated,  and  the 

general shape of the salt-fresh boundary is wrong. The reason is that  with this assumption the 

horizontal  velocity  components  are  forced  just  by  the  baroclinic  and  hydrostatic  pressure 

gradients, the vertical velocity component is defined just by the continuity equation, and the 

effect  of  the  hydrodynamic  pressure  gradient  has  been  ignored  both  on  the  horizontal  and 

vertical velocity components.

The present model has the option of switching each physical process on or off separately. It is 

interesting to see the effect  of pure advection on the results  of the lock exchange problem. 
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Figure  (8.20)  compares  the  result  of  the  lock  exchange  problem  after  100  seconds  when 

advection  is  ignored,  when  the  horizontal  advection  is  solved  but  the  vertical  advection  is 

ignored, and finally when the advection process is solved completely. The figure shows that the 

horizontal advection has considerable effect on the velocity of the salt-fresh water penetration. 

The vertical  velocity has considerable effect  on the height  of the front and its  shape at  the 

centre-line.

Figure (8.20) shows the simulation result of a non-hydrostatic version of Telemac3D for the 

same lock exchange problem after 100 seconds (Jankowski, 1999). The initial salinities in the 

Jankowski's test case are 0 and 1 instead of 10 and 11, but the initial density gradient is the 

same. Comparing figures (8.17) and (8.20) shows that there is a good agreement between the 

two simulations. The salt water front movement after 100 seconds is predicted consistently in 

the two models. Comparing the vertical distribution of the salinity at the mid-side shows that the 

numerical diffusion in the present model is less than that version of Telemac3D.
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Figure 8.18. Selected simulation results from the hydrodynamic pressure simulation.

8-24

π/3



8 Model Evaluation

Figure 8.19. Difference between the hydrostatic and hydrodynamic pressure simulations.
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Figure 8.20. The effect of horizontal and vertical advection on the lock exchange problem.

Figure 8.21. The simulation result of a non-hydrostatic version of Telemac3D 

for the same lock exchange problem after 100 seconds (Jankowski, 1999).

(The salinities in this simulation are 0 and 1 instead of 10 and 11, 

but the initial density gradient is the same)
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8.4 Basin Wave Movement by Integrated 2D-3D Simulation

The following test  case shows the smooth integration and implicit  dynamic data  exchange 

between the 2DH and the 3D models within a basin. A semi-enclosed basin with the length of 200 

meters and width of 100 meters is considered, with the initial water depth equal to 20 meters. The 

left side of the basin is simulated by the 2DH model while the right sidez is modelled by the 3D 

one.  The  two models  are  connected  to  each other  at  the  middle  of  the  basin.  Figure  (8.22) 

illustrates the basin and the distinct computational grids of the 2D and 3D domains. The left 

boundary of the basin (located in the 2DH domain) is open from which water enters into the basin 

with a constant rate of 200 m3/s uniformly along the boundary line. Other boundaries of the basin 

are closed. The computational time step in this simulation is 0.5 seconds with Courant number 

more than 2.0.  The computational  grids  of  the  two domains  are  independent.  Figure  (8.23) 

illustrates the numbering systems of the grids. There is not any global numbering system for the 

computational nodes. 

Figures (8.24) to (8.28) illustrate selected results of the simulation. Figure (8.24) shows the 

simulated water-level change in the test basin. It shows that the incoming wave moves smoothly 

towards the right side up to the end of the basin. Then a backwater wave is generated at the 

right-end of the basin and moves back up to the input boundary, where the second input wave is 

generated on top of the new water  level.  The movement of the the second input wave and 

backwater is illustrated too. It is clear that no partial reflection occurs at the interface. Figures 

(8.25) to (8.27) illustrates the simulated velocity field within the test  basin (upper segment: 

depth  averaged  horizontal  velocity,  below:  local  velocity).  It  shows  that  the  velocities  are 

identical at the interface during the simulation period. Figure (8.28) illustrates the instant when 

the input wave crosses the interface in more details. There is no numerical partial reflection or 

discontinuity  in  the  free  surface  slope  or  local  oscillations  when  the  input  waves  and  the 

backwater waves cross the 2D-3D domains interface. This result is achieved without a global 

computational grid that solves all or part of the governing equations on the whole basin. The 

integration process does not restricts the simulation time step and does not enforce any iterative 

computation to the simulation procedure. There is no predicted velocity at the right side of the 

backwater  wave,  which  is  consistent  with the analytical  solution of  such a  backwater.  This 

consistency shows that the conservations lows for mass and momentum have been fulfilled with 
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the same accuracy as simulating on a single mesh with no multi dimensional coupling. It also 

signs that no numerical partial reflection has happened at the interface.

Figure 8.22. The basin with the distinct computational grids for the 2D and 3D domain parts.

Figure 8.23. The independent numbering system of the computational grids.
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Figure 8.24. Water-level change in the test basin, simulated by 2D-3D integration.
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After 6.0 seconds: input wave moves to the right

After 7.5 seconds: left-to-right wave reaches to the interface

After 9.0 seconds: left-to-right wave crosses the interface

After 14.5 seconds: left-to-right wave reaches to the end of basin

Figure 8.25. Velocity field within the test basin simulated by 2D-3D integration.

(upper segment: depth averaged horizontal velocity, below: local velocity)
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After 16.5 seconds: backwater wave starts at the end of basin

After 21.5 seconds: right-to-left backwater wave crosses the interface

After 25.0 seconds: backwater moves toward the input boundary

After 32.5 seconds: second wave is developed on top of the backwater 

Figure 8.26. Velocity field within the test basin simulated by 2D-3D integration (continue).

(upper segment: depth averaged horizontal velocity, below: local velocity)
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After 42.5 seconds: second wave moves toward the end of basin

After 47.5 seconds: second backwater wave moves to the left

After 71.5 seconds: the third input wave reaches the end of basin (over the 2th backwater)

Figure 8.27. Velocity field within the test basin simulated by 2D-3D integration (continue).

(upper segment: depth averaged horizontal velocity, below: local velocity)
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Figure 8.28. Predicted input wave crossing the interface with continuous free surface slope 

without domain-overlapping or iteration.
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8.5 Conclusion

In  this  chapter,  samples  of  the  verification  of  the  3D model  and  the  integration  against 

analytical data are given. The hydrodynamic pressure, density current, diffusion effect, Coriolis 

force and 2D-3D flow integration have been examined. 

In  the  first  part  of  the  chapter,  ...A comparison of  the  model  predictions  with  analytical 

solutions showed very good agreement. 

The numerical model was then applied to study the wind induced current circulation in a 

closed basin, where an analytical solution is available for the vertical velocity distribution. It 

was shown that the model predictions were again in good agreement with the analytical solution.

Then the model capability was checked for simulating the density currents in conjunction with 

the  hydrodynamic  pressure.  The  results  compared  and  were  in  good  agreement  with  the 

available data and results from another world-class sophisticated model, while the numerical 

diffusion in the present model was less than the compared one.

Finally the capability of the model  for implicit  coupling of 2D-3D domains was checked 

throughout simulating the water wave and backwater wave motion in a semi-enclosed basin. 

The results showed that no numerical reflection or local oscillation has been produced at the 

interface and the velocity behind the backwater wave is always zero (as expected), which signs 

the accurate mass and momentum balance within the domains and at the interface. 
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9 Discussion

In  this  research  program,  an  integrated  horizontally  two  dimensional  and  fully  three 

dimensional  model  system  has  been  developed  based  on  a  combined  unstructured  and  σ-

coordinate grid to simulate the flow and water quality process in large water bodies with a focus 

on the three dimensional behaviours at specific areas. Each model is robust and efficient and can 

be used independently. Nevertheless, the two models are optimised for coupling to each other 

and give a  robust  and efficient  integration procedure.  The two models  interact  dynamically 

during the solution procedure with no additional time-step restriction or iteration introduced due 

to the integration algorithm. 

Both  of  the  models  have  been  developed  from  scratch,  in  order  to  fulfil  the  proposed 

framework completely. The programming language C++ has been used because of its flexibility 

in  object-oriented  programming,  flexibility  in  mixing  the  object-oriented  program  with 

procedural code segments of Fortran and C in order to gain more efficiency, and its power in 

memory management. 

The models are based on the time dependent Reynolds-Averaged Navier-Stokes equations 

with a non-hydrostatic pressure distribution and a baroclinic force being incorporated in the 

three dimensional (3D) model. The horizontal gradients of the water density and shear stress are 

computed on the true horizontal plains in order to prevent inaccuracy in density flow simulation 

when the slope of near-bed sigma layers varies significantly. 

A  novel  coupling  algorithm  has  been  introduced  in  order  to  overcome  some  known 

restrictions of the previous coupling algorithms (see example see Wu W., 2007; Sebastian and 

Shu, 2003). There are not many integrated 2DH-3D models available in the literature. However, 

existing ones use the interpolation/averaging algorithm at the interface in order to exchange data 

back and forth between the models. This procedure does not guarantee the conservation low at 

the interface and may cause inaccuracy when the spatial gradients of the flow parameters are not 

gentle. In the present model, an interpolation/averaging algorithm at the interface is not required 

due to unstructured computational grid and introducing hybrid finite volume cells. The hybrid 

finite volume cells are partly in the 2D domain and partly in the 3D domain area. 

The present model uses the fractional step algorithm in both of the models and solves the 

common fractions  of  the  two sub models  together  with  common algorithms.  Dynamic  data 

exchange between the models are handled fraction by fraction. Each fraction concerns one or 
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more physical processes and is solved by its most efficient algorithm. Most of the fractions are 

solved throughout the cell-vertex finite volume method except for advection which is solved by 

the semi-Lagrangian method. The 2D and 3D models are coupled dynamically through applying 

the  hybrid  cells  to  the  computational  nodes  on  the  interface.   A hybrid  finite  volume  cell 

produces a unique discretised equation for a computational node, while the discretised equation 

is partly supported by nodes within the 2DH domain and partly by the 3D domain. 

The 3D model uses the projection method for pressure calculation. The projection method is a 

specific type of the fractional step algorithm and is consistent with the overall solution strategy.

The solution fractions of the 3D flow model are:  the advection,  horizontal  diffusion,  free 

surface, vertical diffusion, and projection steps respectively. The solution fractions of the 2DH 

flow  model  are:  the  advection,  horizontal  diffusion  and  free  surface  steps.  The  common 

fractions of the two models are solved together with similar procedures to enable data to be 

exchanged directly. 

The advection step is solved by the semi-Lagrangian method. It  is unconditionally stable, 

which  is  an  important  requirement  for  advection  dominated  problems.  The  method  is  also 

efficient and simple for predicting the advection effect at the interface, and id unconditionally 

stable. 

The horizontal diffusion equation is solved explicitly via the finite volume (FV) method. An 

explicit solution of the horizontal diffusion does not restrict the model's overall solution time 

step. The computational nodes on the interface are handled by the hybrid FV cells. In this way, 

data on a link node is predicted by nodal data from both 2D and 3D domains. This algorithm 

enables the smooth transmission of the diffusion process at the interface.

The horizontal gradients of the water density and shear stresses are calculated on the true 

horizontal planes, instead of transforming their terms into the σ-coordinate space. The aim is to 

avoid artificial velocity and diffusion that could form near the steep bed slope in highly stratified 

flow regions, such as density current in a reservoir. The present study has used a new approach 

for  discretisating  of  the  horizontal  diffusion  terms.  It  computes  the  shear  stresses  in  the 

Cartesian coordinate system, and then computes the gradients of the shear stresses in the  σ-

coordinate system.  

The  free  surface  slope  has  a  major  role  in  the  flow field  in  most  of  the  practical  flow 

problems. Determining the free surface needs special attention when two models are coupled, 

particularly when an implicit procedure is used. The present study has introduced a new implicit 
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algorithm, in order to guaranty the mass and momentum conservation at the interface of the 

unstructured  grids.  The  discretisation  of  the  depth  integrated  forms  of  the  continuity  and 

momentum equations in the 2D and 3D domains results in two distinctive matrix equations. 

However, each matrix (and right hand side vector) involves just half of the data regarding to the 

hybrid cells on the interface. Then the matrices are linked at the link nodes in order to be solved 

as a global matrix equation. There is no need to have a global computational grid or a global  

numbering system, of the nodes in this regard. 

The  vertical  diffusion  sub-model  is  solved  implicitly,  column  by  column,  using  a  one 

dimensional finite volume method. This sub-model also involves the barotropic and Coriolis 

terms. The Cartesian coordinate system is used herein instead of the sigma coordinate system. In 

this way, not only the velocity but also its vertical gradient remains  continuous at the element 

boundaries. At the lateral free-slip closed boundaries, the vertical diffusion equation is solved 

for the tangential direction.

The pressure correction equation is solved in the Cartesian coordinate system using the three 

dimensional finite volume method. The bi-conjugate gradient stabilised (BI-CGSTAB) method 

(van der Vorst, 1992) has been used in this regard. The hydrodynamic pressure at the 2D-3D 

interface is set to zero.

The finite volume method used in the present model is of the so called cell-vertex type. A 

hybrid finite element – finite volume algorithm has been used herein. Several estimations have 

been proposed in the literature to estimate the FV cell-area and cell-boundary integrals using 

nodal values, even for the hybrid FE – FV cells. The present study is based on a new algorithm. 

The integrals have been calculated analytically using shape functions. It has been done without 

projecting the real elements and cells into a master element. In this way, the coefficients that link 

a nodal value to its surrounding nodes (the matrix elements) are exactly accurate for the selected 

finite element shape functions. This technique has eliminated one of the numerical diffusion 

sources which is common in existing models. Six-node finite element triangles and three-node 

sub elements have been used in the present study. The divergence theorem has been used for 

predicting the spatial gradients on the cells. The unstructured finite difference method has also 

been incorporated as a fast but non-conservative option for predicting the nodal gradients.

The above model  system has been verified using analytical  solutions  and benchmark test 

cases. The first test addresses the wind driven current, with and without the Coriolis force, in a 

large three dimensional domain (200km by 200km with depths from about 70 to 160 m). The 

9-3



9 Discussion

dimensions of the domain were chosen such that the development of the Ekman profile in the 

ocean bodies  can  be  verified.  The simulation  of  the  pure  wind driven current  (without  the 

Coriolis force) resulted initially in a curved vertical velocity distribution which converged to a 

linear profile and finally reached to a steady state condition. This was then repeated for different 

viscosities.  It  showed  that  the  numerical  model  results  were  in  close  agreement  with  the 

analytical ones. Then the Coriolis force was activated in the model to compare the predicted 

velocity distribution with the analytical Ekman profile. This test case was simulated for three 

water depths in order to check different developments of the spiral-type Ekman velocity profile. 

The numerical simulation results were again in close agreement with the analytical ones. 

The next test case was simulating wind driven circulation in a closed square basin (10m by 

10m with 5m depth) in order to show the flow field difference predicted with the hydrostatic and 

non-hydrostatic pressure assumptions. The simulation results showed that the near-wall vertical 

velocity in the hydrostatic pressure case was considerably larger than the hydrodynamic pressure 

case. The non-hydrostatic solution resulted in a smoother and reasonable circulation over the 

entire area.  Then the simulated vertical  velocity distribution at  the middle of the basin was 

compared with an analytical solution (Huang, 1993), which showed a close agreement. 

The next test case was the well-known lock exchange flow test case in order to verify the 

model capability for predicting the density-buoyancy current. A basin with 30m long  and 3m 

wide with 4m water depth was selected in this regard. The results showed a smooth penetration 

of the salty water below the fresh water and also the smooth penetration of the fresh water above 

the  salty water,  with the  frontal  angle  of  the  salt-fresh  water  equal  to  π /3 ,  similar  to  the 

physical modelling observations (Turner J. 1973). The results were also compared with a similar 

simulation by a non-hydrostatic version of Telemac3D and the two are consistent. The numerical 

diffusion in that version of Telemac was more than the present model. The reason may be that 

Telemac model was based on linear elements (FE) while the present model uses a second-order 

approximation. The present model has the option of switching each physical process on or off 

separately. Therefore the simulation was repeated for several assumptions by activating and de-

activating  individual  processes.  Comparing  the  results  showed  the  importance  of  the  non-

hydrostatic pressure distribution and the horizontal and vertical advection processes in this test 

case. 

The next  test  case  was to  check  the smoothness of  integration and implicit  dynamic data 

exchange between the 2DH and the 3D models. A semi-enclosed basin with the length of 200 
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meters and width of 100 meters was considered, with the initial water depth equal to 20 meters. 

The left side of the basin was simulated by the 2DH model while the right side was modelled by 

the 3D model. The two models were coupled at the middle of the basin. The predicted incoming 

wave moved smoothly towards the right side with no partial reflection or local oscillations when it 

was crossing the 2D-3D domains interface. The simulated reflected backwater wave also moved 

back towards the left side with no oscillations, false velocity or partial reflection at the coupling 

boundary and within each domain. Then the second input wave developed on top of the new water 

level towards the right end and the second backwater developed and moved to the left and so on. 

The implicit solution was as smooth, accurate and conservative as a single mesh simulation with 

no multi-dimensional coupling. 

The test cases show that the proposed model is capable of simulating both the flow processes 

in 3D and integrated 2D/3D domains. Indeed, it must be applied to real lakes and reservoirs 

having field measurements and to test cases having experimental data for further investigation. 

The model already satisfies the necessary requirements for performing a smooth and adequate 

solution  in  real-world problems.  This  includes,  among others,  identical  discretisation  of  the 

source terms to the main equation, unconditionally stable solution algorithm for the advection 

terms,  modelling  separately  the  vertical  turbulence  and  horizontal  turbulence,  accurate 

discretisation of the baroclinic forces and shear stresses in the real horizontal plane, implicit 

discretisation of the bed shear stresses, implicit algorithm for the water surface and the vertical 

diffusion, stable procedure for the wetting-drying area and so on.
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10 Conclusions and Recommendations

10.1 Conclusions

In the present research a new approach has been proposed using a 3D numerical model in 

conjunction with a 2D model. The integration of the two models is based on the method of 

fractional steps, an unstructured computational grid and hybrid 2D/3D finite volume cells. 

This research has shown that the proposed approach is capable of solving integrated problems 

dynamically  and  efficiently  without  restricting  the  efficiency and  robustness  of  the  models 

involved. The fractional steps algorithm is a suitable framework for dynamic model integration 

in such a way that not only the coupling but also each one of the models may be efficient and 

implicit. It has also shown that it is possible and adequate to couple the 2DH and 3D models in a 

fraction  by fraction  manner  with  the  most  efficient  solution  algorithm being used  for  each 

physical process. The idea of using hybrid 2D/3D finite volume cells at the interface is a suitable 

tool for coupling the two models at each fraction and to solve the free-surface via a unified 

matrix equation for the total domain.

A crucial benefit of this integration approach is that most of the existing advanced numerical 

techniques (for example for shock capturing etc.) may be used within this framework without 

introducing new problems. 

The main novelties of this research study are:

1- A dynamically integrated 2DH-3D model with a fully implicit solution method based on an 

unstructured computational grid has been developed. 

2- Hybrid 2D-3D finite volume cells have been introduced on the unstructured grid which 

applies to the discretised equations of the link cells, involving nodes from both the 2D and 

the 3D domains. This method removed the need for an interpolation/averaging procedure 

at the interface and domain overlapping.

3-  The 2D and 3D models have been coupled fraction by fraction within a fractional step 

algorithm in order to use the most efficient coupling algorithm for each fraction and each 

physical process. 

4- The finite volume integrals have been derived analytically on the cell-areas and the cell-

boundaries  in  order  to  eliminate  the  numerical  diffusions  regarding  to  the  integral 

estimations.  This procedure is based on the hybrid finite element – finite volume method 
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in  the model.  Analytical integrations have been derived on the real cells  and elements 

without projecting them to a master element.

5- A new set of  the solution algorithms has been implemented for the 2DH and 3D model 

components, which are efficient both for the multi-dimensional modelling and also for the 

single-dimensional modelling.

6- The implicit behaviour of the fluid flow solution has been preserved by solving the free 

surface through a global matrix equation, which has been assembled by linking the local 

free surface matrices of the domains without using a global computational grid. The local 

matrices  are  linked  throughout  the  hybrid  FV  cells.  In  this  way,  the  accuracy  and 

smoothness  of  coupling,  i.e.,  without  any  numerical  partial  reflections  at  the  domain 

interface are guaranteed.

7-  Neumann  interpolation  elements  with  virtual  nodes  have  been  introduced  at  the 

boundaries,  in  order  to  avoid  dense  grid  near  a  boundary  with  Neumann  boundary 

condition. 

10.2 Recommendations for further studies

In  extending  this  research  study  in  the  future,  the  following  aspects  are  worthy  of  further  

considerations:

● Quadrilateral  elements. The triangular elements are not the most efficient elements in 

narrow and long water bodies like rivers. By adding quadrilateral finite element - finite 

volume cells to the model, it will be possible to use distorted elements with small node 

distances along the river's width and large distance along the river's length.

● 1D integration. The present model may be coupled with a one dimensional model in order 

to simulate the rivers at the upstream and downstream of a reservoir within an integrated 

environment. This capability is useful for simulating the flood events.

● 2DV integration. The present model may be coupled with a vertically two dimensional 

model in order to be more efficient in the narrow parts of the mountainous reservoirs  and 

also in the deep but narrow parts of the rivers.

● 3D  conservative  semi-Lagrangian  methods. It  is  useful  to  add  some  kind  of  3D 

conservative semi-Lagrangian advection method as an option for the problems where the 

3D model must be run for a long time period. 

10-2



10 Conclusions and Recommendations

● Further calibration and validation of the model. The numerical model developed should 

be  applied  to  real  lakes  and  reservoirs  having  field  measurement  data  for  further 

investigation of the flow patterns, sensitivity of model parameters and calibration and 

validation of the model.
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