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ABSTRACT 

The Bees Algorithm, a heuristic optimisation procedure that mimics bees foraging 

behaviour, is becoming more popular among swarm intelligence researchers. The 

algorithm involves neighbourhood and global search and is able to find promising 

solutions to complex multimodal optimisation problems. The purpose of 

neighbourhood search is to intensify the search effort around promising solutions, 

while global search is to enable avoidance of local optima.  

Despite numerous studies aimed at enhancing the Bees Algorithm, there have not 

been many attempts at studying neighbourhood search. This research investigated 

different kinds of neighbourhoods and their effects on neighbourhood search.  

First, the adaptive enlargement of the search neighbourhood was proposed. This 

idea was implemented in the Bees Algorithm and tested on a set of mathematical 

benchmarks. The modified algorithm was also tested on single objective 

engineering design problems. The experimental results obtained confirmed that 

the adaptive enlargement of the search neighbourhood improved the performance 

of the proposed algorithm. 

Normally, a symmetrical search neighbourhood is employed in the Bees 

Algorithm. As opposed to this practice, an asymmetrical search neighbourhood 

was tried in this work to determine the significance of neighbourhood symmetry. 

In addition to the mathematical benchmarks, the algorithm with an asymmetrical 

search neighbourhood was also tested on an engineering design problem. The 

analysis verified that under certain measurements of asymmetry, the proposed 
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algorithm produced a similar performance as that of the Bees Algorithm. For this 

reason, it was concluded that users were free to employ either a symmetrical or an 

asymmetrical search neighbourhood in the Bees Algorithm. 

Finally, the combination of adaptive enlargement and reduction of the search 

neighbourhood was presented. In addition to the above mathematical benchmarks 

and engineering design problems, a multi-objective design optimisation exercise 

with constraints was selected to demonstrate the performance of the modified 

algorithm. The experimental results obtained showed that this combination was 

beneficial to the proposed algorithm.   
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Chapter 1 

INTRODUCTION 
 

1.1. Background 
 

Over the years, swarm intelligence has inspired scientists to develop population-

based algorithms to deal with complex optimisation problems. Among the most 

common population-based optimisation algorithms are the Genetic Algorithm, 

Particle Swarm Optimisation and Ant Colony Optimisation. The Genetic 

Algorithm is based on biological evolution and adaptation in nature, while the 

Particle Swarm Optimisation algorithm imitates the actions of flying agents 

keeping themselves in the air alongside other members. Ant Colony Optimisation 

is inspired by the ants‟ foraging behaviour where they tend to choose the shortest 

route that links the food source and their nest. In addition to these algorithms, 

bees-inspired algorithms are being also developed and they are emulating various 

behaviours of the bees.  The Bees Algorithm (Pham et al., 2005), which imitates 

the foraging behaviour of honey bees, is one of the examples of a bees-inspired 

algorithm. The algorithm has been widely applied to solve many complex 

optimisation problems and received a number of improvements.  

Despite numerous attempts to improve the performance of the Bees Algorithm, 

limited attention has been paid to the study of its parameters and how they affect 

the algorithm. In the standard version, the algorithm employs six parameters that 

need to be tuned and one of them is the neighbourhood size. Neighbourhood size 
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refers to the exploitation area of the forager bees. The exploitation area is 

designed to facilitate the forager bees in finding a more promising food source in 

a short time.  

Like the Bees Algorithm, other swarm-based algorithms also have a set of 

parameters that need to be carefully tuned, in order to obtain the desired solution 

of the optimisation problems. (El-Gallad et al., 2002) stated that properly chosen 

parameter values could positively influence the accuracy of the solutions and time 

consumed for the search process. In particular, the authors mentioned that the 

individuals‟ flying velocities was one of the most important parameters for 

Particle Swarm Optimisation. The flying velocities could influence the steps taken 

by the particles. An excessively small step size could cause the particle to get 

trapped in local optima, while a too large value led to oscillation around a certain 

position.  In the improved version of Particle Swarm Optimisation, the inertia 

weight affected the behaviour of the algorithm. A larger inertia weight facilitated 

global search while a smaller one provided fine-tuning (Meissner et al., 2006).  

Exploitation is important for a swarm-based algorithm as it is functioning as a 

„tool‟ enabling the population to converge towards a local minimum (MacNish 

2007). This exploitation is accomplished by the procedure of neighbourhood 

search. The quality of the neighbourhood search is highly influenced by the size 

of the neighbourhood. On one hand, a smaller neighbourhood size could intensify 

the exploitation effort, while a larger one could reach better solutions quickly. On 

the other hand, a smaller step (neighbourhood) size might lead to a slow 

convergence of the algorithm, while a larger one might miss out the spaced peaks 
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(Krishnanand and Ghose 2009). Furthermore, in (Sundareswaran and Sreedevi 

2008), the distance of flight was a key factor and it significantly affected the time 

for the algorithm to reach the global optimum. Similarly in this research, the 

neighbourhood size greatly influenced the performance of the algorithm.  

 

1.2. Motivations 
 

Currently, the neighbourhood size employed in the Bees Algorithm is fixed 

throughout the optimisation. It was anticipated that an adaptive and large search 

neighbourhood could help the bees to reach the global optimum faster than a fixed 

and small neighbourhood size. For that reason, the first motivation for this work 

was to study the adaptive enlargement of the search neighbourhood in the Bees 

Algorithm.  

The first proposed idea did not always succeed in enabling the Bees Algorithm to 

reach the global optimum and increasing the size of the search neighbourhood 

actually decreased the probability of finding the global optimum, which is a form 

of „contradiction‟.  The cause of this failure was referred to TRIZ (Altshuller 

2001), a theory that provided a list of inventive principles to solve contradictions 

in problems. The application of TRIZ suggested the adoption of an asymmetrical 

search neighbourhood. Coincidently, an asymmetrical search neighbourhood had 

never been employed in the Bees Algorithm. Thus, the second motivation for this 

work was to investigate the effects of an asymmetrical search neighbourhood on 

the performance of the Bees Algorithm. 
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The „neighbourhood shrinking‟ method was introduced to improve the 

performance of the Bees Algorithm (Ghanbarzadeh 2007). This method was 

followed by „site abandonment‟ if the former procedure failed to yield to 

improvement. In contrast to the „neighbourhood shrinking‟ method, the third 

motivation was to study the combination of the adaptive enlargement and 

reduction of the search neighbourhood in the Bees Algorithm. Instead of applying 

„site abandonment‟, the reduced neighbourhood size was increased back to the 

initial size if there was no improvement in the solutions.  

In choosing the size of the search neighbourhood in the Bees Algorithm, the aim 

is to achieve a robust algorithm. Robustness can be interpreted in many ways 

(Beyer and Sendhoff 2006): 

 The ability of an optimisation algorithm to adapt to different optimisation 

scenarios (e.g., different classes of optimisation problems). 

 The sensitivity of the algorithm‟s performance corresponding to algorithm 

specific parameter setting. 

 Robustness in terms of implementation details. 

 Robustness in terms of the solution produced by the algorithm, including 

insensitivity of the final solution to different initialisation. 

 

1.3. Aim and objectives 
 

The overall aim of this research was to prove the hypothesis that neighbourhood 

size could influence the performance of the Bees Algorithm.  
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The objectives of this work were: 

1. To develop the adaptive enlargement of the search neighbourhood in the 

Bees Algorithm. 

2. To determine whether an asymmetrical search neighbourhood gave 

positive influence(s) to the Bees Algorithm. 

3. To demonstrate the effects of the combination of adaptive enlargement and 

reduction of the search neighbourhood in the Bees Algorithm. 

It should be emphasized that the purpose of this work was not to produce the best 

algorithm in solving a wide range of problems but rather to understand how the 

various types of search neighbourhood served in the Bees Algorithm.  

 

1.4. Methods 
 

In carrying out this research, the following methodologies were adopted: 

1. Surveying the previous works including behaviours of the swarm in nature 

and the developments of other algorithms.  

2. Implementing the proposed algorithms in C++. 

3. Testing the modified Bees Algorithms on a set of mathematical 

benchmarks and several engineering design problems in order to validate 

the modifications. The outcomes of the experiments were analysed and 

compared to the ones obtained by the Bees Algorithm.  
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1.5. Outline of the thesis 
 

The remainder of the thesis is organised as follows. 

Chapter 2 reviews the definition of optimisation and highlights swarm 

behaviours. The developments of population-based algorithms are also presented. 

Examples of optimisation problems that were solved by the Bees Algorithm are 

highlighted. In addition, the No Free Lunch Theorem and TRIZ are briefly 

described.  

Chapter 3 introduces the adaptive enlargement of the search neighbourhood in 

the Bees Algorithm. The modification is tested on mathematical benchmarks and 

several engineering design problems. They are single objective problems, with 

and without constraints. 

Chapter 4 presents the types of asymmetrical search neighbourhood and their 

influences on the Bees Algorithm. The Bees Algorithm with different kinds of 

asymmetrical search neighbourhoods is tested on mathematical benchmarks and 

an unconstrained, single objective engineering design problem. 

Chapter 5 elaborates the idea of neighbourhood reduction which is combined 

with adaptive enlargement. The difference between the „neighbourhood shrinking‟ 

method and the proposed idea is highlighted. In addition to the mathematical 

benchmarks and stated engineering design problems, this method is also tested on 

a constrained, multi-objective optimisation problem. 
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Chapter 6 lists the contributions of this research, summarises the conclusions 

reached and provides suggestions for further research.  

Appendices A, B and C describe the selected engineering design problems. 

Appendix D provides a summary of the experimental results of three types of 

search neighbourhood in comparison against the Bees Algorithm. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1.      Preliminaries 
 

In this chapter, Swarm Intelligence and popular swarm-based algorithms are 

reviewed. Applications that have been accomplished by the Bees Algorithm are 

revisited. In addition, the No Free Lunch Theorem is highlighted.  The main ideas 

of TRIZ are explained at the end of this chapter.   

 

2.2.      Swarm Intelligence 
 

Swarm Intelligence (SI) is an engineering branch and one developed based on the 

emergent collective intelligence of groups of simple agents (Bonabeau et al., 

1999). An ant colony, a flock of birds and a shoal of fish is regarded as a swarm. 

These groups miraculously do not have a centralised control system. Rather, they 

use a decentralised system or self-organisation. That means every task is engaged 

without any central or hierarchical control to direct the individuals into particular 

tasks. With this system, every individual responds to simple and local information 

that allows the whole system to function (Gordon 1996). The exchange of 

information among the individuals is the most essential component in the 

formation of collective knowledge (Frisch 1953).  
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Another significant element in SI is the division of labour or task allocation 

(Anderson and Ratnieks 1999; Seeley 2002). Division of labour means that 

different tasks are performed simultaneously by specialised individuals. This 

behavioural specialisation is able to keep the colony functioning efficiently 

(Seeley and Buhrman 2001). For instance, in the honey bee colony, the forager 

bees collect the food and bring it back to the hive. Then, the receiver bees are 

responsible for the storing (Anderson and Ratnieks 1999). This kind of task 

allocation enables the swarm to adapt to the environment (Karaboga 2005).  

The following are three of the swarm behaviours that adopt the decentralised 

system and division of labour. 

2.2.1. Dwelling 

 

The queen and about half of the workers in a colony leave their hive and form a 

cluster on a nearby branch (Passino and Seeley 2006; Passino et al., 2008). Scout 

bees fly from the cluster to survey for potential dwelling places. Upon returning to 

the cluster, the scout bees perform a waggle dance (Seeley et al., 2006). The 

waggle dance is a process of information exchange and other scouts evaluate the 

quality of the potential new hive by witnessing the dance. The quality of the nest 

site is characterised by the level of protection against weather, predators and 

distance from food source (Janson et al., 2007). In addition, there are six attributes 

that are considered by the honey bees before choosing a new nest; cavity volume, 

entrance height, entrance area, entrance direction, entrance position relative to the 
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cavity floor and presence of combs from a previous colony (Seeley and Buhrman 

1999).  

2.2.2. Evading predators 

 

A flock of starlings flies in perfect unison and sometimes changes and reforms the 

flying shape to avoid any predator. While in the air, the starlings are always aware 

of their neighbours. A gull (predator) may dive into the flock in order to grab a 

starling. To avoid this threat, the starlings work together, for example by making a 

sudden change of direction in order to wrong-foot the attackers (2011). Also, a 

shoal of fish makes compression, hourglass, vacuoles or fountain shape as well as 

flash expansions in order to avoid a predator (Parrish et al., 2002; Sumpter 2006).  

2.2.3. Foraging 

 

During the harvesting season, the honey bees optimise the amount of pollen by 

recruiting a number of scouts to go to the flower field. The amount of nectar in the 

field is always fluctuating and represents an unpredictable resource. To cope with 

this uncertainty, changes in the number of workers are necessary to balance the 

work load of foragers and others in the hive so that the resources can be exploited 

efficiently (Anderson and Ratnieks 1999). With a decentralised system, the colony 

sends the scout bees into the field. The scouts search randomly from one flower 

patch to another, hoping to find a good food source. When the scouts discover the 

food source, the scouts evaluate and memorise three pieces of information 

regarding a flower patch (Frisch 1950):  
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1. The direction in which it was found  

2. Its distance from the hive  

3. Its quality rating (fitness) 

When the scouts return to the hive, they perform a waggle dance on the dance 

floor. The dance conveys the information of the direction, distance and quality of 

the flower patch that they found during the searching process. Other bees witness 

the dance and assess the information that is delivered. This information helps 

others to locate the flower patch without using guides or maps. When the dancing 

process is over, other bees follow the scout bees to the discovered flower patch to 

gather the food. How the other bees decide to follow a particular scout is not well 

understood, but it is thought that the recruitment among bees is associated with 

the quality of the food source (Teodorović 2008).  

A flower patch with plentiful nectar and near to the hive is regarded as more 

promising and would attract more followers. On the other hand, long distance 

scouting is costly and less preferred by others since there is no assurance that a 

patch will be discovered (Beekman and Ratnieks 2000). Optimising the number of 

scouts recruited accordingly will optimise the amount of nectar and pollen to be 

collected. In other words, a maximum amount of pollen and nectar can be 

gathered with a minimum of effort invested.  
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2.3.     Population-based algorithms 
 

Population-based algorithms are developed based on the interaction and 

cooperation of members of a swarm. The following are examples of such 

algorithms:  

2.3.1. Genetic Algorithm 

 

Genetic Algorithm (GA) was introduced by John Holland (Goldberg 1989) and 

developed based on the genetic processes of biological organisms. The idea was 

inspired by the Darwinian evolutionary concept, which stated “survivability of the 

fittest species” (Rahmat-Samii 2007). Each species is evolving in adapting with 

the changes of the environment and only the fittest can survive. The better a 

species can adapt to the environment, the higher the level of survival of that 

species will be.  

In GA, each generation consists of a population of binary strings which are called 

chromosomes. Every time evolution takes place, the new attributes are encoded in 

the chromosomes.  The chromosomes with the highest fitness are always being 

copied into the next generation. In addition, the Crossover operator enables an 

exchange of substrings between two parents, in order to increase the diversity of 

the perturbed offspring. The Selection operator decides whether or not a new 

solution should be selected to be a member of the next generation. Meanwhile, the 

random modification of a new configuration is controlled by the Mutation 

operator. (Digalakis and Margaritis 2002) applied GA to a set of benchmark 

functions. In addition, there are wide applications of GA including pattern 
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recognition, cellular automata, biology and medicine (Chaiyaratana and Zalzala 

1997).  

2.3.2. Ant algorithms 

 

(Dorigo et al., 1996) proposed Ant System (AS) that mimicked the foraging 

behaviour of an ant colony. The ant colony builds a trail that connects the nest and 

food source. During travelling back to the nest from the food source and vice 

versa, pheromones are deposited by the ants. Over time, pheromone trails are 

formed on the ground. Using these pheromone trails, the other ants are able to 

navigate towards the nest or food.  The more ants that follow a trail, the more 

pheromone accumulates on it. The trail with a high density of pheromones 

becomes more attractive to other ants.  

AS was applied to the Travelling Salesman Problem (TSP), which is a 

combinatorial optimisation problem. Also, AS had been tested on continuous 

problems (Bilchev and Parmee 1995; Socha and Dorigo 2008). The study of AS 

had led to the development of Ant Colony Optimisation (ACO) (Dorigo et al., 

1999). Furthermore, (Dorigo et al., 2000) focused on potential models that derived 

from the behaviour of real ants and how they had inspired other algorithms for the 

solution of distributed optimisation and control problems. 

2.3.3. Particle Swarm Optimisation 

 

Particle Swarm Optimisation (PSO) was introduced by Kennedy and Eberhart 

(Eberhart and Kennedy 1995; Kennedy 1997; Kennedy and Eberhart 1995). PSO 
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is population-based stochastic optimisation technique and is inspired by the 

behaviour of a flock of birds. The algorithm consists of a swarm of particles 

moving in a space. Every particle holds a position and velocity vector 

representing a candidate solution to the problem. In addition, each particle 

memorises its own best position found so far and a global best position that is 

obtained through communication with its neighbour.  

The early version of PSO had operated in continuous space but was later adapted 

to operate in discrete binary variables (Kennedy and Eberhart 1997; Zhong et al., 

2007). PSO received large amounts of interest from researchers and there are now 

improved versions of PSO which are detailed in (Angeline 1998; Hu et al., 2004; 

Kennedy 2000; Shi and Eberhart 1998). Furthermore, the Simple PSO algorithm 

(SiC-PSO) was developed to cope with constrained optimisation problems 

(Cagnina et al., 2008).  

2.3.4. Cuckoo Search 

 

Cuckoo Search (CS) was in its day a reasonably new metaheuristic that imitates 

the breeding behaviour of the cuckoo birds (Yang and Deb 2009; 2010). When the 

breeding time has come, the cuckoo birds tend to lay their eggs in the nest of other 

birds. The host birds would either throw the eggs left by the cuckoo out of the nest 

or decide to leave the nest and build a new home at another place. Further to 

confuse the host birds, some cuckoo birds were able to produce eggs that look 

similar to the eggs of chosen host birds. This imitation would ensure that these 

eggs would be cared for by the host birds and thus increase the cuckoo‟s 
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productivity. Once the cuckoo eggs hatched, the cuckoo chick would throw out 

the host birds‟ eggs of the nest, which were hatched slightly later than cuckoo 

eggs. Consequently, the cuckoo birds got more chance to be fed as the number of 

chicks in the nest became less.  

The CS adopted three rules from the breeding behaviour of cuckoo birds, which 

were: 

 Each cuckoo laid one egg at a time. The eggs were left in random 

nests. 

 The nest with a high quality of eggs (solutions) would be carried to 

the next iterations. 

 The number of potential hosts was fixed, and the cuckoo eggs could 

be found with a probability pa є [0, 1]. If the host bird discovered that 

the eggs were not hers, the alien eggs could be thrown away or the 

host birds simply abandon the nest.  

The capability of CS was verified by testing it on a set of mathematical 

benchmarks and a few engineering design problems. In spite of using only two 

parameters, which were the population size of the cuckoo and pa, the experimental 

results showed that the CS produced better solutions compared to the GA and 

PSO.  

2.3.5. Glowworm Swarm Optimisation  
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Glowworm Swarm Optimisation (GSO) (Krishnanand and Ghose 2009), was 

another example of a swarm-based algorithm. The GSO was inspired by the 

behaviour of glowworms in passing the information to the other members of their 

group. The information regarding the fitness of the current location of glowworms 

was encoded into a luminescent quantity, which was called luciferin. Each 

glowworm carried luciferin along and it was to be broadcast to other members.  A 

glowworm with more luciferin would attract more members. By using sensor 

range, a glowworm recognised its neighbour and computed its movement. 

Probabilistically, each glowworm selected a neighbour that owned greater 

luciferin value than hers and moved towards this neighbour. According to the 

authors‟ analysis, the GSO only needed two parameters, which were the number 

of glowworms and the maximum radial range. Unlike other optimisation 

algorithms, the GSO was tested in capturing the peaks in a series of multi-modal 

test functions. Experimental results demonstrated that the GSO was able to locate 

more peaks than Niche-PSO within a specified number of runs.  

2.3.6. Firefly Algorithm 

Flashing light emitted by fireflies inspired Yang to develop an algorithm, called 

the Firefly Algorithm (FA) (Yang 2009). Whether to attract mating partners or 

potential prey, the light intensity complied with the inverse square law. It meant 

that the amount of light that was visible to the mating partners or potential prey 

was inversely proportional to their distance from the fireflies. The more apart they 

were, the less the intensity of light from the fireflies would be. Consequently, the 

fireflies at such distance would be less attractive to other fireflies or potential 



17 

 

prey. On the other hand, the fireflies at a close distance exhibited bright light and 

would attract more fireflies to them. In the context of the FA, the brightness of the 

firefly was associated with the landscape of the objective function. In addition, 

fireflies were assumed as unisex so that the attraction was not restricted to a 

particular sex. Conversely, each firefly could attract any other fireflies. The 

capability of the FA was validated by testing it on a number of mathematical 

optimisation benchmarks. The experimental results showed that the FA produced 

a low number of evaluations with small standard deviation, compared to the PSO 

and GA. 

2.3.7. Invasive Weed Optimisation 

There was also an algorithm that was developed based on colonising weeds 

(Mehrabian and Lucas 2006). The weeds, which referred to vigorous and invasive 

plants, caused a threat to desirable and cultivated crops. The adaptation and 

robustness of weeds against herbicides had inspired the researchers to develop an 

algorithm that was named Invasive Weed Optimisation (IWO). With nine 

parameters, the IWO was tested on a set of mathematical benchmarks and the 

outcomes were promising. 

2.3.8. Bees-inspired algorithms 

 

Marriage in Honey Bees optimisation (MBO) was inspired by the evolution of 

honey bees. The algorithm, which adopted the mating and breeding behaviour of 

honey bees, started from a solitary colony (single queen without a family) to the 

development of an eusocial colony (one or more queens with a family) (Abbas 
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2001).  To produce a family, the queen needed to mate with the drones, which 

took place in the air and in a probabilistic manner. The mating flight was 

initialised when the queen performed a dance. Subsequently, the queen flew and 

was followed by the drones, which then started mating in the air. During the 

mating flight, the queen flew at different states and at a certain speed. 

Probabilistically, the queen mated with the drones that she met at each state. At 

the beginning of the mating flight, the queen owned an amount of energy. As time 

progressed, the energy supply was gradually reduced. As a result, the probability 

to mate with a drone was also low. When the queen‟s energy met a certain 

threshold or her spermatheca was full, the queen returned to the hive. In the hive, 

the queen started the breeding process by retrieving randomly the mixture of the 

sperms that accumulated in the spermatheca. The breeding process involved the 

crossover with the queen‟s genome and mutation, to guarantee that a new and 

different brood was produced. The workers were improving the fitness of the 

broods, before updating the fitness of themselves. The brood with the best fitness 

replaced the least-fitted queen, while the rest of the broods were killed. At the end 

of this step, another eusocial colony was developed and a new mating flight 

started.  (Haddad et al., 2006) applied the same mating and breeding procedure for 

water resources optimisation and named it the Honey-Bees Mating Optimisation 

(HBMO) algorithm. 

Fast Marriage in the Honey Bees Optimisation (FMBO) was introduced to 

improve the calculation process and speed of the MBO, as claimed in (Yang et al., 

2007). Instead of using a probabilistic mating condition, the FMBO generated a 
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drone randomly and mated it with a finite number of queens. This procedure was 

designed to avoid the local optima. In addition to the crossover and mutation 

operator, the FMBO also adopted a heuristic operator. The experimental results 

found that these modifications had saved much computation time relative to the 

MBO. 

The Honey-Bees Optimisation (HBO) algorithm was another model that emulated 

the mating behaviour of bees (Curkovic and Jerbic 2007). This model also 

adopted the same probabilistic method as in MBO. In HBO, the amount of energy 

reduction was expressed in the function of size of spermatheca, which was not 

clearly stated in the implementation of MBO and FMBO. The HBO was applied 

in finding a collision-free path in the work area containing different shapes and 

distributed obstacles.  

Bee System, an improved version of the GA, was the earliest algorithm that 

mimicked bees‟ foraging behaviour (Sato and Hagiwara 1997). As it was an 

enhanced version of the GA, the Bee System involved new operations such as 

concentrated crossover and the Pseudo-Simplex Method. In the system, when a 

bee found a feed, it then informed the other bees by performing a dance. Then, 

they were responsible to carry the feed to the hive. After completing this task, 

each bee tried to find another feed. The purpose of the Bee System was to improve 

the local search while keeping the ability of the global search of the GA. In 

contrast to the conventional GA, the global search in the Bee System, named as 

pop_G, was performed prior the local search. The purpose of the global search 
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was to search the space as broadly as possible, in order to minimise the chance of 

falling into a local optimum. The Superior Chromosome, which was the best 

chromosome found at the end of a number of generations, was selected. It was 

assumed that the Superior Chromosome might contain the global optimum. At the 

end of this procedure, the pop_G was initialised again and the search process was 

repeated.  

(Luc  ić and Teodorović 2002) proposed another bee system and applied it to solve 

complex problems in traffic and transportation. They named the model the Bees 

System and aimed to deal with the Travelling Salesman Problem. In their version, 

a number of nodes were scattered in a network and the hive was located at one of 

the nodes. The artificial bees needed to collect as much nectar as possible, by 

flying along a certain link. The amount of nectar was inversely proportional to the 

length of the link that connected the two nodes. Hence, to maximise the quantity 

of the nectar, the artificial bees needed to locate the shortest link. After a pre-set 

period, the hive was moved to another new position. The artificial bees then 

collected the nectar from this new location and the steps were repeated. One 

change of the hive position corresponded to one iteration in the searching process. 

Furthermore, every iteration contained a number of stages. In each stage, the 

artificial bees flew to nodes, before flying back to the hive. In the hive, a decision 

making process was performed. After completing this process, the artificial bees 

would choose whether to abandon the food source or forage in it. If they decided 

to forage, they might recruit others to the food source or fly back to the source 

without recruiting nest mates.  
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The Bee Colony Optimisation (BCO) was proposed by (Teodorović and Dell'Orco 

2005) and designed to solve combinatorial optimisation problems (Chong et al., 

2006; Wong et al., 2008). Two main elements in the BCO were forward pass and 

backward pass. A partial solution was generated when the bees performed a 

forward pass, which was accomplished by the combination of individual 

exploration and collective experience from the past. A backward pass was 

performed when they returned to the hive. The step was followed by the decision-

making process, which involved an information exchange among the bees. The 

information regarding the quality of the partial solution was delivered to other 

members and compared to the one acquired by the individual bee. Based on the 

quality of the partial solution, the bees decided to commence three different tasks; 

abandon the food source, forage in it without recruiting others or forage in it and 

recruiting nest mates, as described in the Bees System. In addition, the loyalty 

parameter was introduced to control the number of bees returning to the 

previously discovered partial solutions. The bees resumed the process by 

performing a second forward pass and backward pass before returning to the 

hive. If the bees found one or more feasible solutions, the optimisation was 

considered as having completed one iteration. Since there were a number of 

stopping criterion that could possibly be made and more questions/ options that 

must be faced by the bees during the decision-making process, the study of BCO 

led to the development of the Fuzzy Bees System (Teodorović and Dell'Orco 

2005). 
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(Nakrani and Tovey 2004) found that the server allocation to collect revenue in 

internet housing centres resembled the allocation of foragers to collect nectar in 

honey bee colonies. For instance, the waggle dance, dance floor, waggle dance 

duration, flower patch location, following a waggle dance and waggle dancing 

resembling advertisement, advert board, advertisement duration, web-site 

identifier, reading an advertisement and posting an advertisement, respectively. 

Besides these similar key features, they also claimed that the rapid change of 

request stream, the significant downtime cost of reallocation and the distributed 

nature of the process were parallel to the performance strengths of honey bee 

foraging. Due to this fact, they employed the honey bee forager algorithm to work 

on the server allocation problem.  

AntNet was proposed by Di Caro and Dorigo (Di Caro and Dorigo 1998). In 

AntNet, there were two ant agents involved; Forward_Ant and Backward_Ant. 

The Forward_Ant was responsible for estimating queuing time without waiting 

inside data packet queues and they had a stack memory that recorded the address 

and entrance time of each node along its path. Meanwhile, the Backward_Ant 

which was created by the Forward_Ant, visited the same nodes as the 

Forward_Ant, in reverse order. Later on, BeeHive was developed by Wedde and 

his colleagues (Wedde and Farooq 2005; Wedde et al., 2004). In contrast to the 

AntNet, this model, which was inspired by the communication activities of honey 

bees, did not need to be equipped with a stack memory to perform the tasks. In 

addition, this model eliminated the use of backward moving agents. The forward 

moving agents were able to calculate the travel duration from the source to a 
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given node. There were two types of agents in the BeeHive; short distance bee 

agents and long distance bee agents. The former agents gathered and distributed 

routing information in the neighbourhood of their source node. Meanwhile, the 

latter agents were responsible for gathering and distributing the information to all 

nodes of the network. A network was split into two; Foraging Regions and 

Foraging Zones. Each node was restricted to only one Foraging Region and each 

Foraging Region has a representative node. Meanwhile, a Foraging Zone of a 

node comprised all the nodes from which a replica of an agent could get in touch 

with this node (Wedde and Farooq 2005).  

BeeAdHoc, another routing algorithm was proposed by (Wedde et al., 2005) and 

motivated by the success of the BeeHive. This algorithm was introduced for 

energy efficient routing in mobile ad hoc networks. The challenge in the Mobile 

Ad Hoc Networks (MANETs) domain was to design a routing algorithm that was 

energy efficient as well as having the same performance as that of other 

algorithms. This model consisted of four types of agents; packers, scouts, 

foragers, and swarms. The packers played a role as a food-storer bee, while the 

scouts were looking for new routes from their initial position to a destination 

node. Foragers accepted the data packets from packers and brought them to their 

destination. Meanwhile, the swarm acted as problem solver when a protocol could 

not provide an implicit return to its source node. In addition, each node in 

MANETs contained a hive. Each hive consisted of three sections; packing floor, 

entrance and dance floor. The packing floor and entrance were an interface to the 
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higher and lower levels respectively, while the dance floor received routing 

decisions.   

The Virtual Bee Algorithm (VBA) was inspired by a swarm of virtual bees where 

it began with bees wandering randomly in the search space (Yang 2005). For 

function optimisation, the VBA initially created a population of virtual bees, 

where each bee was associated with a memory bank. Then, the functions of 

optimisation (objectives) were converted into virtual food. The direction and 

distance of the virtual food were then defined. The bees updated a population of 

individuals to new positions for virtual food searching and the direction by 

performing a waggle dance. The solution of the function optimisation was 

associated with the highest mode in the number of virtual bees or intensity 

(frequency) of visiting bees. The results obtained were then decoded to match the 

solution to the problem. 

(Lemmens et al., 2007; Lemmens et al. 2008) introduced a non-pheromone-based 

algorithm which combined the recruitment and navigation strategies of the 

biological bees. The recruitment strategies were employed to communicate the 

search experiences to the rest of the bees in the colony. These strategies involved 

the dancing process, where the information of distance and direction towards a 

destination were delivered to other members. Meanwhile, the navigation strategies 

were to find undiscovered worlds. Instead of pheromone, the bees used a strategy 

named Path Integration (PI), which adopted a simple approximation for 

navigation. By PI, they were able to figure out their current position from the 

previous trajectory continuously. As a result, they managed to navigate back to 
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their initial point by selecting the direct route, rather than retracing their outbound 

path. The algorithm consisted of three functions; ManageBeesActivity(), 

CalculateVectors() and DaemonActions(). The ManageBeesActivity() dealt with 

agents‟ activity, with each activity corresponding to any of six internal states; 

„AtHome‟, „StayAtHome‟, „Exploitation‟, „Exploration‟, „HeadHome‟ and 

„CarryingFood‟. An agent with the state „AtHome‟ indicated that the agent was 

located in the hive and to decide which new state it would embark. Meanwhile, 

„StayAtHome‟ implied that the agent stayed at home if there was no previous 

search experience available. An agent with the state „Exploitation‟ and 

„Exploration‟ indicated that the agent was exploiting previous search experiences 

and exploring its environment, respectively. An agent with the state „HeadHome‟ 

indicated that the agent was returning home without food. In contrast to the 

„HeadHome‟ state, an agent with the state „CarryingFood‟ indicated that the agent 

was bringing the food back to the nest. The function of CalculateVector() was to 

manage the PI vectors for each agent. The third function, the DaemonActions() 

was an optional one and used to implement centralised actions such as collection 

of global information. For example, this information was used by the agents to 

decide whether to dance or not. Experiments on this algorithm were conducted in 

a simulation environment, named BeeHave. The experimental results found that 

the non-pheromone-based algorithms were not only more efficient when foraging, 

but also required less computation time to complete the task and were less 

adaptive than ant-inspired algorithms. 
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Karaboga and Basturk introduced the Artificial Bee Colony (ABC) algorithm 

(Karaboga 2005; Karaboga and Basturk 2007a, 2008). The algorithm, which 

mimicked the foraging behaviour of bees, comprising employed bees, onlooker 

bees and scouts. Employed bees flew to a field and returned to the hive with a 

piece of memory. The memory, which contained the information regarding the 

food source, was delivered to the onlookers who were waiting on the dance area. 

Based on information received, the onlooker bees decided whether to follow the 

employed bees. Meanwhile, the scouts were the ones performing random search. 

In this algorithm, half of the colony was set as employed bees and the other half 

were onlookers.  Furthermore, one food source was associated with one employed 

bee. Once the food source got exhausted, the employed bee that was associated 

with it became a scout. The capability of the ABC had been tested on an artificial 

neural networks problem (Karaboga et al., 2007). A modified ABC algorithm was 

introduced later on to adapt to constrained optimisation problems (Karaboga and 

Akay 2011; Karaboga and Basturk 2007a).  

More highlights on the bees-inspired algorithm are available in (Bitam et al., 

2010; Karaboga and Akay 2009).  

 

2.4.     The Bees Algorithm  
 

The Bees Algorithm (BA) was developed by a group of researchers at the 

Manufacturing Engineering Centre, Cardiff University (Pham et al. 2006a). This 
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algorithm emulated the behaviour of honey bees in foraging for pollen and nectar. 

The algorithm required six parameters, namely the number of scout bees (n), 

number of selected sites (m), number of top-ranking (elite) sites among the m 

selected sites (e), number of bees recruited for each non-elite site (nsp), number of 

bees recruited for each elite site (nep), and neighbourhood size (ngh). The 

optimisation process started with n scout bees randomly spread across the solution 

space. Each scout bee was associated with a possible solution to the problem. The 

solutions were evaluated and ranked in descending order of the fitness, and the 

best m sites were selected for neighbourhood search.  

In the neighbourhood search procedure, more forager bees were sent in the 

neighbourhood of the elite (e) sites, and fewer bees around the non-elite (m-e) 

sites. According to this strategy, the foraging effort was concentrated on the very 

best (i.e., elite) solutions. That is, nep bees were sent to forage around the elite 

sites, while the area around the non-elite locations was exploited by nsp bees. 

Within the given neighbourhood area (i.e., flower patch size), some of the newly 

generated solutions were expected to be better than that found by the scout bees.   

In the global search procedure, the unselected scout bees (n-m) were used to 

explore at random the solution space. This kind of search was to avoid bees being 

trapped at local optima. At the end of each cycle, a new list of scout bees was 

formed, comprising the fittest solutions from each neighbourhood (neighbourhood 

search results), and the new randomly generated solutions (global search results). 

This list would be sorted in the next iteration and used for a new phase of 

optimisation. The combination of exploitative (neighbourhood) and explorative 
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(global) search would be able to capture the best solution quickly and efficiently.  

These steps were repeated until the stopping criterion was met. The pseudocode of 

the BA is shown in Figure 2.1 and the algorithm flowchart as in Figure 2.2. 

Since the algorithm was introduced, there have been several attempts to improve 

the performance of the BA, for instance, interpolation and extrapolation, 

„neighbourhood shrinking‟ and „sites abandonment‟ (Ghanbarzadeh 2007).  

 

2.5.      Applications  
 

The BA was tested on various types of problems which could be categorised into 

two groups: continuous and combinatorial problems. Below are examples of each 

group: 

2.5.1. Continuous 

 

 Mathematical benchmarks (Ghanbarzadeh 2007; Koc 2010; Sholedolu 

2009) 

 Mechanical design (Ang et al. 2009; Pham and Ghanbarzadeh 2007)  

 Wood defect classification (Pham and Haj Darwish 2010; Pham et al., 

2007c; Pham et al., 2006b).  

 Environmental/Economic Power Dispatch Problems (EEDP) (Lee and Haj 

Darwish 2008) 

 Chemical engineering process (Pham et al., 2008) 
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Figure 2.1 Pseudocode of the BA (Ghanbarzadeh 2007) 

 

 

 

 

 

 

 

 

1.  Initialise population with random solutions. 

2.  Evaluate fitness of the population. 

3.  While (stopping criterion not met) 

      //Forming new population. 

4.  Select sites for neighbourhood search. 

5.  Recruit bees for selected sites (more bees for best e sites) 

and evaluate the fitness. 

6.  Select the fittest bee from each patch. 

7.  Assign remaining bees to search randomly and evaluate 

their fitness. 

8.  End While. 
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Figure 2.2 Flowchart of the BA 
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2.5.2. Combinatorial 

 

 Job Shop Scheduling Problem (JSSP) (Pham et al., 2007b) 

 Manufacturing Cell Formation (Pham et al., 2007a) 

 Printed Circuit Board (PCB) problem (Ang et al., 2010) 

 

2.6.      No Free Lunch Theorem 
 

The No Free Lunch (NFL) Theorem was introduced by (Wolpert and Macready 

1997). The theory stated that there was no such algorithm that performed better 

than others in solving all classes of problems (e.g., multimodal, unimodal). In 

other words, if algorithm A performed better than algorithm B in some class of 

problems, then algorithm B performed better than algorithm A in some other class 

of problems. On average, each algorithm produced similar performance in respect 

to other algorithms. In addition, the performance of an algorithm on a set of 

benchmarking problems did not guarantee giving similar performance on a 

different class of problems (MacNish 2007).  

Even though (Yang 2005) was not directly discussing the NFL Theorem, he 

mentioned that parameter tuning could be difficult for any considered problem. 

Despite the fact that numerous evolutionary-based algorithms had been 

developed, the best choice of algorithm still depended on the type and 

characteristics of the problem concerned. (MacNish 2007) added that as well as 

comparing the algorithms proposed, it was also beneficial to understand what 
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properties of the algorithms were most successful so that improved algorithms 

could be developed. 

Moreover, (Kennedy and Spears 1998) stated that experimental results might not 

be generalised from the test problems used. This was because an algorithm might 

be carefully tuned in order to beat other algorithms on particular problems. On the 

other hand, the algorithm might produce poor performance on other problems. 

Complying with the NFL Theorem and claims above, this work was to study the 

effect of the proposed idea and identify its strengths and weaknesses, rather than 

producing an algorithm that is capable of solving any kind of problem.  

 

2.7.      TRIZ 
 

TRIZ is the acronym for „Teoriya Resheniya Izobretatelskikh Zadatch‟ in 

Russian, whereas in English it means „Theory of Inventive Problem Solving‟.  It 

was developed by Genrich Altshuller starting in 1946 and is now being used 

extensively in various fields such as engineering (Ang et al., 2010), service 

quality (Su and Lin 2008) and software development (Mann 2008). (Kim et al., 

2009) stated that TRIZ was a problem solving method that was not based on 

intuition but one relying on logic and data. In other words, it was a theory that 

considered problems and proposed solutions that were derived from previous 

successful design solutions.   
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To solve problems with TRIZ, users needed to identify the improving and 

worsening features before mapping those features onto the TRIZ contradiction 

matrix. The classical TRIZ contradiction matrix listed 39 improving and 

worsening features, and proposed 40 inventive principles to solve design 

problems. Each suggested inventive principle, however, was not subject to a 

single definition. On the other hand, the interpretation of the solution was very 

abstract, ambiguous and subjective (Ang et al., 2010).  

Over the years, the classical TRIZ has been studied and extended to embrace 

broader features and inventive principles. This study led to the development of a 

new TRIZ matrix, which contained up to 48 features, with 77 inventive principles 

(Mann et al., 2003). Several years later, the study of TRIZ had brought to another 

matrix, which comprised 50 features, with 82 solutions (Mann 2009). The 

increasing number of features and inventive solutions did not necessarily 

guarantee a solution to a problem. On the other hand, it did minimise the number 

of trials and error of the solution finding process (Duran-Novoa et al., 2011). 

Considering the problem from a different perspective might also derive a system 

in different and stronger ways. Furthermore, the higher the level of the 

disagreement, the more obvious it would be and become easier to remove it 

(Altshuller 2001). 

The BA was not a technical engineering problem. It was a virtual tool that was 

used to solve optimisation problems that often occur in the engineering world.  

Since the idea of TRIZ now covered a wide range of fields, it was reasonable to 

look at the problem faced by the algorithm from a TRIZ perspective.  
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2.8.      Summary 
 

This chapter briefly described swarm-based and population-based optimisation 

algorithms. It also highlighted the No Free Lunch Theorem and TRIZ. This study 

provided information and background to the contents of subsequent chapters. 

Nevertheless, none of the survey especially those are related to the bees-inspired 

algorithm studied and discussed the search neighbourhood. For this reason, the 

contents of the subsequent chapters primarily focused on this issue.  
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Chapter 3 

ADAPTIVE ENLARGEMENT IN THE SEARCH 

NEIGHBOURHOOD IN THE BEES ALGORITHM 

 

3.1.      Preliminaries 
 

The Bees Algorithm (BA) involves global and neighbourhood search. In the 

global search procedure, a number of bees are employed to explore at random the 

solution space. This kind of search is crucial as it enables the bees to escape from 

local optima. Meanwhile, neighbourhood search concentrates exploitation around 

promising solutions. The combination of global and neighbourhood search in 

population-based algorithms may locate solutions that gradually come closer to an 

optimal one. This iterative method makes this kind of algorithm more efficient 

than other conventional optimisation methods.  

This work presents a modification of the neighbourhood search procedure in the 

BA. The proposed modification consists of manipulating the neighbourhood size 

by enlarging it dynamically as the optimisation progresses. The BA with the 

adaptive enlargement of the search neighbourhood, named BA-NE (which stands 

for the Bees Algorithm- neighbourhood enlargement), was tested on ten 

mathematical benchmarks with various characteristics and dimensionality. 

The chapter is organised as follows: Section 3.2 explains the BA-NE, its 

experimental setup, and the results obtained, followed by a discussion of the 
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outcomes. The BA-NE was also tested on several engineering problems, with and 

without constraints and the results are presented in Section 3.3.  Section 3.4 

summarises the achievements. 

3.2.      BA-NE 
 

This work proposes an adaptive neighbourhood enlargement procedure. Like the 

BA, this new algorithm required the same six parameters (n, m, e, nsp, nep, ngh).  

Initially, a number of bees (n) were sent randomly to the search space. Each bee 

was associated with one solution. The solutions representing the fitness of 

individual bees were then ranked in descending order. The top m solutions were 

regarded as selected sites. Of m sites, a number of top e site(s) were considered as 

elite one(s). Each of non-elite (m-e) and elite (e) sites respectively received nsp 

and nep forager bee(s) to exploit the discovered food source.   

At present, when the neighbourhood search procedure fails to improve the current 

solution, the size of a flower patch is gradually shrunk until either a better solution 

is produced or the patch is abandoned (Ghanbarzadeh 2007; Pham et al., 2006a). 

In contrast to this practice, the idea proposed in this work was to enlarge the 

neighbourhood size if the neighbourhood search procedure progressed, and to 

keep it unchanged if the neighbourhood search brought no improvement. This 

proposed technique increased the range of the neighbourhood search around the 

promising solutions, aiming to speed up the optimisation of the fitness landscape. 

The size of the new neighbourhood was enlarged independently and depended on 
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how far the distance of the new best solution was from the current best solution of 

each particular patch. The farther the solution was found to be from the current 

best solution, the larger the new neighbourhood would be and vice versa.  

For each dimension, the size of the new neighbourhood (nghj) was calculated 

according to Equation 3.1: 

nghj= 

(xj of nspi – ngh – DIFFERENCE, xj of mi  +  ngh + DIFFERENCE)              (3.1)                   

where, 

DIFFERENCE=| xj of nspi- xj of mi|,   

i=1, 2, 3, … mmax (nspmax), where i was the index of selected and forager bee, j=1, 

2, 3,…D, where j was the index of axis, D was the dimension of the problem and 

x was the point in that particular axis.  

Figure 3.1 illustrates an example of applying the proposed method to the 

neighbourhood search procedure in a one-dimensional flower patch. The 

neighbourhood size was set as 1.0, a selected bee (mi) was at position (5.0), a 

forager bee (nspi) landed at (5.5), and the optimisation problem was a 

maximisation one. Figure 3.1 (a) represents the neighbourhood search process 

around a given selected bee (before the enlargement procedure), while Figure 3.1  
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(a) 

 

  

(b) 

 

Figure 3.1 The neighbourhood size (a) before and (b) after the enlargement 

procedure 
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(b) shows the case when a forager found a better solution than the selected bee 

(after the enlargement procedure).  

In this example, the total neighbourhood size was increased from 2.0 to 3.0. That 

is to say that the neighbourhood size was enlarged from 1.0 to 1.5 on the right and 

left sides of the current selected solution (mi). In the event that no improvement 

took place, the neighbourhood size was kept equal to ngh. The advantage of using 

this kind of enlargement was that it allowed the bees to adjust independently and 

adaptively the neighbourhood size, with the aim of speeding up the search 

process.  

As long as the stopping criteria were not satisfied, the neighbourhood search 

procedure was individually adjusted for each of the selected solutions. Figure 3.2 

presents the flowchart of the neighbourhood search performed following this new 

approach, where i was the index of forager bees (nsp and nep) and i=1,2,3,..., 

nspmax (nepmax). The stopping criteria in the flowchart were either that the solution 

obtained met the preset threshold or the index i > nspmax  (i > nepmax). 

After the neighbourhood search procedure had been completed, the BA-NE 

performed the global search as in the BA. The number of unselected bees (n-m) 

explored the search space randomly and hopefully better solutions would be 

found. Upon completion of the random search procedure, there were two groups 

of solutions; one group were solutions obtained by the neighbourhood search 

procedure, while the other group were the solutions that had been captured during  
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Figure 3.2 Flowchart of the neighbourhood search procedure in the BA-NE 
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the global search procedure.  As long as the stopping criteria had not been met, 

the algorithm resumed the next iteration by sorting and ranking the solutions 

obtained from the previous iteration. Figure 3.3 shows the pseudocode of the BA-

NE. 

3.2.1. Experimental setup  

 

Based on their characteristics and popularity, ten mathematical benchmarks were 

selected (see Table 3.1). The mathematical formulation of the test functions was 

referred to (Adorio 2005; Pham and Castellani 2009). These test functions 

spanned different dimensionalities and modalities that were able to challenge the 

performance of the algorithm. A function was called unimodal if the global 

optimum was the only optimum, whereas a multimodal function was the one that 

had two or more local optima. For multimodal functions, the search process 

should be able to avoid the local optima, which often cause premature 

convergence and stagnation.  

The Goldstein & Price function represents an easy and multimodal function 

(Pham and Castellani 2009). Most algorithms easily locate the global optimum on 

this test function. The Schwefel, a multimodal function, possesses a great number 

of peaks and valleys. The function has the second best minimum far from the 

global minimum where many search algorithms were trapped (Digalakis and 

Margaritis 2002; Dimopoulos 2007). The Schaffer, another example of a 

multimodal function, was chosen because its surface could cause difficulty to the 
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Figure 3.3 Pseudocode of the BA-NE 

 

 

 

 

 

 

 

 

1.    Initialise population with random solutions. 

2.    Evaluate and rank of the fitness of the population. 

3.    While (stopping criterion not met). 

        // Forming new population. 

4.    Select the m solutions. 

5.    Select the e solutions. 

6.    Recruit bees and evaluate their fitness. 

7.    Select the fittest bee from each patch. 

8.    Update new neighbourhood size. 

9.    Assign bees to search randomly and evaluate their fitness. 

10.   End While. 
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Table 3.1 Test functions 
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algorithms. Reaching the global optimum was not easy since it was surrounded by 

a high number of local minima (Zhao et al. 2009). Furthermore, the closer a 

candidate solution was to the global optimum, the longer the peak that must be 

overcome to move from one local minimum to the other (MacNish 2007). 

The Rosenbrock function is frequently used to assess the performance of 

optimisation algorithms. The classical Rosenbrock, which is 2-dimensional, is 

regarded as a unimodal function. Over the years, researchers found that the 

Rosenbrock with n-dimensional (n=4~30) was a multimodal function (Shang and 

Qiu 2006). In this work, the 10-dimensional Rosenbrock was used. Besides its 

multimodality, a nonlinear deep valley with the shape of a parabola that led to the 

global minimum and nonlinear interactions among the variables was the challenge 

that was offered by the Rosenbrock (Akay and Karaboga 2010).   

The Sphere represented a convex, symmetric and unimodal test function. On the 

Ackley test function, the exponential term produces numerous local minima and 

valleys that spread over its problem domain. In addition, its optima are regularly 

distributed (Akay and Karaboga 2010). The Rastrigin, a multimodal function, was 

constructed from a sphere but having a modulator term. The challenge offered by 

this function was that an algorithm could be easily trapped in its million local 

optima on its way towards the global optimum (Karaboga and Basturk 2008). In 

addition, its contour was made up of numerous local minima that were evenly 

spaced and their value raised with the distance to the global minimum (Karaboga 

and Basturk 2007a). The Martin & Gaddy was an example of simple unimodal 
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function (Pham and Castellani 2009). The Easom, a unimodal and nonlinear 

function, represented a problem of flat surfaces (Pham and Castellani 2009). Flat 

surfaces were a hindrance for optimisation algorithms. This was because there 

was no variable step size that could give information on which direction would 

lead to a better solution (Digalakis and Margaritis 2002). Also, the global 

minimum on the Easom was located in a very narrow hole. The Griewank, a 

multimodal function, has a product term that introduces interdependence among 

the variables (Akay and Karaboga 2010). A parabola was produced by the terms 

of summation, where the local optima were located above the parabola level 

(Digalakis and Margaritis 2002).   

Parameter selection highly influenced the performance of the algorithms in terms 

of solution quality and execution time (Chai-ead et al. 2011). In this work, the 

solution quality was represented by the accuracy of the solution, while the 

execution time was denoted by the number of evaluations. To achieve the best 

quality and execution time, a large number of experiments were conducted on the 

BA in order to determine the best parameter setting for this algorithm. For each 

test function, parameters values were optimised by trial and error since there was 

no defined procedure to guide the user in selecting the most suitable set of 

parameters (Dereli and Das 2010). The parameter setting that served best in the 

BA was then employed in the BA-NE. The BA-NE with corresponding parameter 

setting was tested on the benchmarks. For every benchmark, the BA and BA-NE 

were run for 100 times, so a meaningful statistical analysis could be performed. 
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Table 3.2 presents the parameter setting that was employed in the BA and BA-

NE.  

The optimisation was terminated when the number of iterations reached 5000, or 

an acceptable solution was found. A solution was an acceptable one if the 

difference between the solution found and the global optimum was less than or 

equal to 0.001. This threshold is illustrated in Equation 3.2: 

                                                                                                          (3.2) 

where      was the best solution found and       was the known global optimum 

of the problem considered (Ali and Kaelo 2008).  

3.2.2. Experimental results 

 

The average of accuracy and number of evaluations obtained by the BA, BA-NE 

and other state-of-art algorithms are presented in Table 3.3 (a) and (b), 

respectively. The results of the PSO, Evolutionary Algorithm (EA) and ABC were 

extracted from (Pham and Castellani 2009). When the difference between the final 

solution and global optimum was less than 0.001, the accuracy was denoted as 

0.0000. It should be noted that the parameters of the PSO, EA and ABC were 

tailored to be equivalent to 100 evaluations in one cycle (i.e., iteration). 

Conversely, parameters that were adopted in this work were not subjected to 100 

evaluations per iteration. For that reason, the number of cycles that were denoted 

by the „speed‟ in (Pham and Castellani 2009) was converted to the number of 
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Table 3.2 Parameter setting in the BA and BA-NE 

 

 

 

 

 

 

 

No. Function n m nsp e nep ngh 

1 Goldstein & Price (2D) 10 3 2 1 13 0.005 

2 Schwefel (2D) 10 2 5 1 6 0.5 

3 Schaffer (2D) 100 4 10 2 30 3 

4 Rosenbrock (10D) 15 8 10 5 30 0.0015 

5 Sphere (10D) 10 7 20 1 30 0.05 

6 Ackley (10D) 100 8 10 1 20 0.7 

7 Rastrigin (10D) 100 3 20 1 40 0.01 

8 Martin & Gaddy (2D) 10 5 10 1 30 0.1 

9 Easom (2D) 100 4 10 2 30 0.5 

10 Griewank (10D) 100 40 10 20 30 1.5 
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Table 3.3 Comparison on (a) accuracy and (b) average number of evaluations against other algorithms 

(a) 

 

 

 

 

 

 

 

 

 

 

  

No. Functions 

PSO EA ABC BA BA-NE 

Avg. 

Acc. 
Std. Dev. 

Avg. 

Acc. 
Std. Dev. 

Avg. 

Acc. 
Std. Dev. 

Avg. 

Acc. 
Std. Dev. 

Avg. 

Acc. 
Std. Dev. 

1 
Goldstein & 

Price (2D) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 0.0000 0.0003 

2 
Schwefel 

(2D) 
4.7376 23.4448 4.7379 23.4448 0.0000 0.0000 0.0000 0.0005 0.0000 0.0005 

3 Schaffer (2D) 0.0000 0.0000 0.0009 0.0025 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003 

4 
Rosenbrock 

(10D) 
0.5998 1.0436 61.5213 132.6307 0.0965 0.0880 44.3210 112.29 0.0508 0.0337 

5 Sphere (10D) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0002 

6 Ackley (10D) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.2345 0.3135 1.2297 0.2383 

7 
Rastrigin 

(10D) 
0.1990 0.4924 2.9616 1.4881 0.0000 0.0000 24.8499 8.3306 23.3201 9.1703 

8 
Martin & 

Gaddy (2D) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003 

9 Easom (2D) 0.0000 0.0000 0.0000 0.0000 0.0000 2.0096 0.0000 0.0003 0.0000 0.0003 

10 
Griewank 

(10D) 
0.0008 0.0026 0.0210 0.0130 0.0052 0.0078 0.3158 0.1786 0.1912 0.1024 
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(b) 

No. Functions 

PSO EA ABC BA BA-NE 

Avg. 

evaluations 

Std. 

Dev. 

Avg. 

evaluations 

Std. 

Dev. 

Avg. 

evaluations 

Std. 

Dev. 

Avg. 

evaluations 
Std. Dev. 

Avg. 

evaluations 
Std. Dev. 

1 
Goldstein & 

Price (2D) 
3,262 822 2,002 390 2,082 435 504 211 384 168 

2 
Schwefel 

(2D) 
84,572 90,373 298,058 149,638 4,750 1,197 1,140 680 1,140 701 

3 
Schaffer 

(2D) 
28,072 21,717 219,376 183,373 21,156 13,714 121,088 174,779 132,176 157,520 

4 
Rosenbrock 

(10D) 
492,912 29,381 500,000 0 497,728 16,065 935,000 0 935,000 0 

5 
Sphere 

(10D) 
171,754 7,732 36,376 2,736 13,114 480 285,039 277,778 325,125 252,987 

6 
Ackley 

(10D) 
236,562 9,119 50,344 3,949 18,664 627 910,000 0 910,000 0 

7 
Rastrigin 

(10D) 
412,440 67,814 500,000 0 207,486 57,568 885,000 0 885,000 0 

8 
Martin & 

Gaddy (2D) 
1,778 612 1,512 385 1,498 329 600 259 450 187 

9 Easom (2D) 16,124 15,942 36,440 28,121 1,542 201 5,280 6,303 4,576 3,344 

10 
Griewank 

(10D) 
290,466 74,501 490,792 65,110 357,438 149,129 4,300,000 0 4,300,000 0 
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evaluations, by multiplying the „speed‟ with 100.  

In terms of number of evaluations, the BA and BA-NE outperformed the PSO, EA 

and ABC in the case of the Goldstein & Price, Schwefel and Martin & Gaddy. In 

other cases, the performance of the BA and BA-NE were comparable to other 

algorithms. 

In addition, a test to determine whether the performance of the BA and BA-NE 

were statistically different was conducted.  Before performing this test, the 

normality test was performed on every data set. If both data sets which were 

generated by the BA and BA-NE were normally distributed, the Student‟s t-test at 

95% level of confidence was performed to identify whether the results were 

statistically different.  If the t-value generated by this test was more than 1.98, the 

performance of the BA and BA-NE in that particular problem was significantly 

different and vice versa. On the other hand, if either or both of the data sets were 

not normally distributed, the Mann Whitney test was applied. When the 

significant value generated by the Mann Whitney test was less than 0.05, the 

performance of two algorithms was significantly different and vice versa. In this 

thesis, a significant difference was denoted by „S‟, while a non-significant 

difference was represented by „NS‟.  Furthermore, the superiority of the algorithm 

was indicated by a hierarchical method, where the comparison on accuracy was 

performed prior to that of the number of evaluations (Pham and Castellani 2009). 

It should be noted that this statistical and hierarchical procedure was applied 

throughout the subsequent two chapters.  
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The significance of the difference between the BA and BA-NE is presented in 

Table 3.4. The comparisons on the number of evaluations on the Rosenbrock, 

Ackley, Rastrigin and Griewank were omitted since they were consistent in all 

runs. According to the table, the BA-NE outperformed the BA in the case of the 

Goldstein & Price, Rosenbrock, Ackley, Martin & Gaddy and Griewank. On the 

other hand, the BA did not outperform the BA-NE in any case. 

3.2.3. Discussions 

Compared to the BA, the BA-NE produced a better performance on the 

Rosenbrock, Ackley and Griewank, which were all multimodal and 10-

dimensional problems. It was because the enlarged neighbourhood promoted the 

BA-NE to converge faster at an early stage of iteration. The fast convergence at 

an early stage of optimisation was visualized by the steepness of the graph. The 

steeper the graph, the faster the optimisation progressed. For example, Figure 3.4 

shows the optimisation progress of the BA-NE and BA on the Rosenbrock.  

However, the BA-NE failed to reach the global optimum on the Rosenbrock, 

Ackley, Rastrigin and Griewank. Despite its multimodality, the global optimum 

that was located in a deep valley might cause the difficulty on the Rosenbrock. 

Meanwhile, the highly multi-pocketed landscape that was created by a 

cosinusoidal noise component (Pham and Castellani 2009) might have contributed 

to the poor optimisation progress on the Ackley, Rastrigin and Griewank. It could 

be said that the enlarged neighbourhood could not accommodate the bees to locate 

the global optimum on the problems that exhibited such characteristics. In other 
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Table 3.4 Significance difference between the BA and BA-NE 

 

 

 

 

 

 

 

 

No. Function Accuracy 
Number of 

Evaluations 

1 Goldstein & Price (2D) NS S 

2 Schwefel (2D) NS NS 

3 Schaffer (2D) NS NS 

4 Rosenbrock (10D) S - 

5 Sphere (10D) NS NS 

6 Ackley (10D) S - 

7 Rastrigin (10D) NS - 

8 Martin & Gaddy (2D) NS S 

9 Easom (2D) NS NS 

10 Griewank (10D) S - 
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Figure 3.4 Optimisation progress on the Rosenbrock 
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words, the enlarged neighbourhood reduced the capability of the algorithm to 

intensify the search, where this kind of search was crucial to solve problems with 

multi-pocketed surfaces. 

On easy functions such as the Goldstein & Price and Martin & Gaddy, the 

solution improvement might occur in every iteration. This impressive progress 

nevertheless might risk an „explosion‟. It meant that the neighbourhood size 

became larger and larger as the number of iterations increased. Due to this 

uncontrolled neighbourhood size, the role of neighbourhood search might conflict 

with that of global search, where the size of the search area equalled the total 

search space. Since they were easy functions, the global optimum could still be 

located with a large neighbourhood search.  

The performance of the BA and BA-NE was similar on the Schwefel, Schaffer, 

Sphere, Rastrigin, and Easom. Therefore, it could be said that the modified 

algorithm had no superiority over the BA when solving these problems.  

The Schwefel and Sphere were also examples of easy functions. The BA and BA-

NE could easily converge and locate the global optimum quickly on these 

functions. Figure 3.5 shows the similar steepness produced by the BA and the 

BA-NE during the early stage of optimisation on the Sphere. The similar 

steepness indicated that both of the algorithms converged equally at the same 

speed when solving this problem.  
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Figure 3.5 Optimisation progress on the Sphere 
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The vast number of extreme peaks on the Schaffer and Rastrigin meant that the 

BA-NE hardly made an improvement. Therefore, the adaptive enlargement of the 

search neighbourhood rarely happened. On the other hand, the BA-NE often 

performed the neighbourhood search by using the fixed neighbourhood size. 

However, it was expected that the enlarged search neighbourhood alone was also 

not able to help the algorithm to perform better than the BA on these functions as 

they were featuring multi-peak landscape. This landscape required an intensive 

neighbourhood search which was served less in the BA-NE. 

Meanwhile, on the Easom, the flat surface caused the similar performance of the 

algorithms. As long as the bees landed on the flat surface, the procedure of 

adaptive enlargement of the search neighbourhood would not take place. 

Consequently, the BA-NE produced a similar performance to that of the BA. This 

is shown by the similar straight lines at the early stage of optimisation (see Figure 

3.6).  

3.3.      Applications 
 

3.3.1. Single objective problem without constraints 

 

The effectiveness of the adaptive enlargement of the search neighbourhood was 

verified by testing the proposed algorithm on the gear train problem. The 

objective of this problem was to design a compound gear train such that the gear 

ratio between the driver and driven shafts was as close as possible to 1/6.931 (or 

0.1442793) (Kannan and Kramer 1994). The closer the gear ratio to this value, the 
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Figure 3.6 Optimisation progress on the Easom
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smaller the % error would be. The gear ratio and % error were calculated by using 

Equations 3.3 and 3.4, respectively: 

Gear ratio=
    

     
                                                                                                   (3.3)

% error = 
                    

         
 x 100%                                                                 (3.4) 

The number of teeth which was the design variable of the problem was to be an 

integer between 12 and 60. The diagram and mathematical formulation of this 

problem is provided in Appendix A. 

By trial and error, a set of parameters that worked best on the BA was captured 

(see Table 3.5). With this parameter setting, 30 independent experiments were run 

on the BA. The optimisation was interrupted when the number of evaluations was 

more than 60 or the solution obtained was equal to or smaller than 2.700857E-12. 

This value was the best reached by the ABC in (Akay and Karaboga 2010). With 

the same parameter setting and stopping criteria, the experiments were conducted 

on the BA-NE. The experimental results of the BA and BA-NE were then 

compared against Unified Particle Swarm Optimisation (UPSOm) (Parsopoulos 

and Vrahatis 2005) and ABC (Akay and Karaboga 2010). According to Table 3.6, 

the average solution and standard deviation obtained by the UPSOm and ABC 

were better than the ones obtained by the BA and BA-NE. The % error produced 

by the ABC was also smaller than that of the BA and BA-NE. 
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Table 3.5 Parameters for gear train problem 

Parameter Value 

Number of scout bees, n 5 

Number of selected bees, m 2 

Number of forager bees for each selected bee, nsp 1 

Number of elite bees, e 1 

Number of forager bees for each elite bee, nep 2 

Neighbourhood size, ngh 2.0 

 

 

Table 3.6 Comparison against other algorithms on the gear train problem 

 UPSOm ABC BA BA-NE 

Avg. 

Solution 
3.80562E-08 3.641339E-10 6.84E-05 2.12E-06 

Std. 

Deviation 
1.09631E-07 5.525811E-10 0.366946E-04 4.43477E-06 

Best 

Solution 
2.70085E-12 2.700857E-12 9.92158E-10 1.54505E-10 

x1 NA 49 47 43 

x2 NA 16 12 13 

x3 NA 19 26 21 

x4 NA 43 46 44 

Gear 

ratio 
NA 0.144281 0.144311 0.144292 

% error NA 0.001% 0.022% 0.009% 
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Using the Mann Whitney Test, the average solution produced by the BA-NE was 

better than the one obtained by the BA. In addition, the % error produced by the 

BA-NE was less than half of the % error obtained by the BA.  This experimental 

result suggested    that the    adaptive    enlargement in the   search neighbourhood 

encouraged the optimisation progress in the BA-NE.  

3.3.2. Single objective problem with constraints 

 

A set of four well-known engineering design problems were chosen. An 

engineering design problem is normally large and comprised nonlinear objective 

problem(s) and constraints that must not be violated (Akay and Karaboga 2010). 

In this work, it should be noted that the BA and BA-NE were not tailored to adapt 

to constrained problems. On the other hand, they adopted the idea of (He et al. 

2004), where the solution searching was only conducted inside the feasible region. 

In this method, a produced solution was checked as to whether it satisfied all 

constraints. If it did, it would be regarded as a feasible solution. A feasible 

solution was put into a solution list, while an infeasible one was discarded. The 

solution searching was resumed until a required number of feasible solutions were 

captured. 

The chosen engineering design problems were the welded beam, pressure vessel, 

tension/ compression spring and speed reducer (Akay and Karaboga 2010). 

Minimising the cost was the objective of the welded beam and pressure vessel 

design problem. Meanwhile, the objective of the tension/ compression spring and 
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speed reducer problem was to minimise the design weight. These design problems 

had various dimensionalities, which was indicated by the number of design 

variables, xi. Meanwhile, the details of these problems, including mathematical 

formulation and constraints, are described in Appendix B (Akay and Karaboga 

2010). 

A number of experiments were carried out on the BA with different parameter 

settings. The parameter setting that produced the best performance on the BA was 

chosen and used for the BA-NE. Table 3.7 shows the parameter setting that was 

employed to solve these engineering design problems. The BA and BA-NE were 

run 30 times on every problem, with 30,000 evaluations. 

In addition to the UPSOm and ABC, the performance of the BA and BA-NE were 

also compared against results that were obtained by the Society and Civilisation 

Algorithm (SCA) (Ray and Liew 2003), PSO (He et al., 2004) and (µ+λ)-ES, 

which was a version of Evolutionary Strategies (Mezura-Montes and Coello 

Coello 2005) (see Table 3.8). In general, the average of the solutions produced by 

the BA and BA-NE was comparable to other algorithms.  

The significance of the difference between the BA and BA-NE is shown in Table 

3.9. It implies that the BA-NE gave a better performance than the BA on the 

welded beam and pressure vessel problem, while both of the algorithms 

performed equally on the tension/ compression spring and speed reducer problem. 

These experimental results proved that the adaptive enlargement of the search  
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Table 3.7 Parameter setting for design problems 

 

 

 

 

 

 

No. Problem n m nsp e nep ngh 

1 Welded Beam (4D) 10 5 2 2 4 0.08 

2 Pressure Vessel (4D) 10 5 2 3 6 0.2 

3 Tension/ comp. spring (3D) 6 5 5 1 8 0.001 

4 Speed Reducer (7D) 35 15 5 5 15 0.01 
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Table 3.8 Comparison against other algorithms on design problems 

 

Problem Stats. SCA PSO (µ + λ)-ES UPSOm ABC BA BA-NE 

Welded 

Beam 

Best 

Mean 

Std. Dev. 

Evaluations 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

1.724852 

1.777692 

0.088 

30000 

1.92199 

2.83721 

0.68 

100000 

1.724852 

1.741913 

0.031 

30000 

1.734783 

1.768855 

0.040 

30000 

1.731916 

1.749546 

0.013 

30000 

Pressure 

Vessel 

Best 

Mean 

Std. Dev. 

Evaluations 

6171.00 

6335.05 

NA 

20000 

6059.7143 

6289.92881 

310 

30000 

6059.701610 

6379.938037 

210 

30000 

6544.27 

9032.55 

996 

100000 

6059.714736 

6245.308144 

205 

30000 

6289.745562 

6853.349849 

609 

30000 

6283.130775 

6749.722776 

542 

30000 

Tension/ 

Compression 

spring 

Best 

Mean 

Std. Dev. 

Evaluations 

0.012669 

0.012923 

0.00059 

25167 

0.012665 

0.012702 

0.000041 

15000 

0.012689 

0.013165 

0.00039 

30000 

0.0131200 

0.0229478 

0.0072 

100000 

0.012665 

0.012709 

0.013 

30000 

0.00988 

0.01036 

0.00048 

30000 

0.00988 

0.01027 

0.00048 

30000 

Speed 

Reducer 

Best 

Mean 

Std. Dev. 

Evaluations 

2994.744241 

3001.758264 

4.0 

54456 

NA 

NA 

NA 

NA 

2996.348094 

2996.348094 

0 

30000 

NA 

NA 

NA 

NA 

2997.058412 

2997.058412 

0 

30000 

2997.843904 

3005.295876 

3.2 

30000 

2998.348453 

3003.358497 

3.1 

30000 
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Table 3.9 Significance of the difference of the BA and BA-NE on the 

engineering design problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problems Significance 

Welded Beam Problem S 

Pressure Vessel S 

Tension/ Compression Spring NS 

Speed Reducer NS 
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neighbourhood had the potential to encourage the bees to reach the solution faster 

than using the fixed and small search neighbourhood. Furthermore, the BA did not 

outperform the BA-NE in any case. The xi and gi values of each problem obtained 

by the BA and BA-NE are provided in Table 3.10 (a)-(d).  

 

3.4.      Summary 
 

Adaptive enlargement of the search neighbourhood was proposed. This method 

was intended to speed up the optimisation. The landscape of the surface highly 

influenced the performance of the algorithm. A smooth surface encouraged the 

algorithm to capture the global optimum in a short time, while a rough and noisy 

surface caused more time to be needed by the algorithm to find the global 

optimum.  

A number of experiments were carried out on the BA, where the parameter values 

were obtained by trial and error. The parameter settings that worked best in the 

BA were then used for the BA-NE. The experimental results produced by the BA-

NE were better than the ones obtained by the BA in five of ten mathematical 

benchmarks and in three of five single objective design problems. On the other 

hand, the BA never outperformed the BA-NE in any case. This result proved that 

the proposed algorithm was robust since its good performance did not depend on 

its own parameter-tuning.  
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Table 3.10 The xi and gi values of the best solution obtained by the BA and 

BA-NE on (a) welded beam, (b) pressure vessel, (c) tension/ compression 

spring and (d) speed reducer problem 

 

(a) 

 

Variables and 

Constraints 
BA BA-NE 

x1 0.206526 0.203612 

x2 3.48281 3.52698 

x3 9.004 9.02774 

x4 0.207398 0.206293 

g1 -52.4761 -21.0005 

g2 -25.2893 -23.0144 

g3 -0.00087 -0.00268 

g4 -3.42486 -3.42527 

g5 -0.08153 -0.07861 

g6 -0.2355 -0.23554 

g7 -132.54 -45.5134 
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(b) 

 

 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

Variables and 

Constraints 
BA BA-NE 

x1 0.808553 0.803735 

x2 0.399348 0.402705 

x3 41.6614 41.4947 

x4 196.083 198.152 

g1 -0.00449 -0.00289 

g2 -0.0019 -0.00685 

g3 -2.09E+08 -2.11E+08 

g4 -43.917 -41.848 

Variables and 

Constraints 
BA BA-NE 

x1 0.050041 0.050011 

x2 0.375376 0.374656 

x3 8.51061 8.53865 

g1 -7.6E-05 -2E-05 

g2 -4.4E-06 -5.2E-05 

g3 -4.86073 -4.86041 

g4 -0.71639 -0.71689 
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(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Variables and 

Constraints 

BA BA-NE 

x1 3.50086 3.50193 

x2 0.700063 0.700005 

x3 17 17 

x4 7.31302 7.31539 

x5 7.80287 7.80578 

x6 3.3526 3.35355 

x7 5.28682 5.28685 

g1 -0.07431 -0.07443889 

g2 -0.19834 -0.19845198 

g3 -0.49796 -0.498 

g4 -0.90138 -0.90127 

g5 -0.00211 -0.00296 

g6 -7.7E-05 -9.4E-05 

g7 -0.70247 -0.7024979 

g8 -0.00016 -0.00054 

g9 -0.58327 -0.58311 

g10 -0.05253 -0.05264 

g11 -0.01119691 -0.0115613 
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Chapter 4 

ASYMMETRICAL SEARCH NEIGHBOURHOOD IN THE 

BEES ALGORITHM 

 

4.1.      Preliminaries 
 

According to the experimental results from Section 3.2.2, the BA-NE did not 

reach the global optimum after 5000 iterations on the Rosenbrock, Ackley, 

Rastrigin and Griewank. Despite its multimodality, the global optimum that was 

located in a deep valley might have caused the difficulty on the Rosenbrock. 

Meanwhile, the highly multi-pocketed landscape that was created by a 

cosinusoidal noise component (Pham and Castellani 2009) might have contributed 

to the poor optimisation progress on the Ackley, Rastrigin and Griewank.  

This work aims to investigate the effect of using an asymmetrical search 

neighbourhood and to study its rationale in the context of the BA, as opposed to 

the standard practice of using a symmetrical one. An algorithm with an 

asymmetrical search neighbourhood, named BA-AN (which stands for the Bees 

Algorithm- asymmetrical neighbourhood), was tested on the same ten test 

functions and the gear train problem. The experimental results were compared to 

those obtained by the BA and BA-NE.   

This chapter is organised as follows: Section 4.2 describes the symmetrical search 

neighbourhood, which was normally used in the BA and section 4.3 is about TRIZ 

and how it leads to the use of an asymmetrical search neighbourhood. The BA-NE 
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with an asymmetrical search neighbourhood is described at Section 4.4.  Section 

4.5 states the application of the proposed algorithm on an engineering problem. 

Lastly, Section 4.6 summarises the work. 

4.2.      Symmetrical search neighbourhood  
 

Symmetry is defined as how half of an object can be a reflection of another half 

and the reflection can be upon axes or planes. The object is symmetrical if it can 

produce an exact reflection about any plane (Ball et al., 2011). Complying with 

this definition, the search neighbourhood that was used for the BA and BA-NE 

was symmetrical. Since the neighbourhood size was defined and implemented in a 

1-dimensional space, the reflection of the neighbourhood was made about a point, 

instead of an axis or plane (see Figure 4.1). The point was the position of a scout 

bee. During the neighbourhood search procedure, the forager bees searched 

randomly within this symmetrical search neighbourhood. 

 

A symmetrical search neighbourhood had been used for the BA ever since its 

introduction. Nevertheless, the rationale for making the search neighbourhood 

symmetrical was not well-justified. In addition, the failure to find the global 

optimum on the Ackley, Rastrigin and Griewank demanded a special approach by 

the BA-NE. As stated earlier, these three functions shared the same characteristic, 

which was featuring multi-pocketed surfaces created by a cosinusoidal noise 

component (Pham and Castellani 2009). This noise component might cause 

difficulty to the algorithm in finding the global optimum. For this reason, this 

noise component should be reduced or eliminated from the problems.  
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Figure 4.1 Symmetrical search neighbourhood 

 

 

 

 

 

 

 

 

 

 

 

                         -ngh  x          +ngh 

 

x: position of mi  bee in 1-dimensional diagram 

ngh: neighbourhood size 

i: index of selected bees 
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However, it was not possible to remove the noise feature from the problems as 

these benchmarks were deliberately built to exhibit this characteristic. 

Alternatively, the noise component could be treated partially, more precisely by 

reducing the neighbourhood size so that the noisy surface would no longer appear 

as it was. On the other hand, it then became a smooth surface. However, reducing 

the neighbourhood size would somehow slow down the optimisation progress. In 

other words, it may slow down the speed of the algorithm. This conflict yielded to 

a number of solutions, as proposed by TRIZ. 

4.3. Solutions from TRIZ perspective 
 

TRIZ was developed by Genrich Altshuller in 1946. In (Altshuller 2001), he 

stated that changing one part of the system might cause drawback(s) in the 

system‟s other parts. This technical contradiction could be solved by applying the 

inventive solution. An inventive solution always has two conditions that must be 

met: 

1. Improving a single part or characteristic of the system without, 

2. Worsening other parts or characteristics of the system or adjacent systems.  

The classical TRIZ contradiction matrix comprised 39 improving and worsening 

features and proposed 40 inventive principles. However, none of the features was 

explicitly concerned with the problems that were associated with noise. Darrell 

Mann was the individual who was responsible for the evolution of TRIZ, when he 

added nine new features into the matrix (Mann et al., 2003), of which one was 

noise. 
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According to (Mann et al., 2003; Mann 2009), noise is not only produced by an 

object, system or surrounding but also could be received by those entities. In this 

work, the noise problem is received by the algorithm. Noise also sometimes could 

be either useful or harmful. In respect to the noise problem in the Ackley, 

Rastrigin and Griewank benchmarks, a noisy surface could be regarded as a 

harmful one since it traps the bees and thus might cause stagnation of the solution. 

Due to this fact, reducing the noise surface by means of reducing the 

neighbourhood size in the BA-NE was regarded as improving the system.  

As stated earlier, a small neighbourhood size might reduce the amount of noisy 

surface but at the same time it could slow down the optimisation progress. A fast 

optimisation progress was one of the characteristics of a good optimisation 

algorithm. Hence, slowing down the optimisation progress is regarded as 

worsening the system. 

The system, improving and worsening features, as well as proposed solutions 

(Mann et al., 2003; Mann 2009) are listed in Table 4.1. To solve the stated 

conflict, there were seven possible inventive solutions suggested. Each solution 

could be implemented differently, based on an individual‟s interpretation.  

Because of this, the solutions suggested by the TRIZ matrix were not subjected to 

a rigid and single definition. On the contrary, they were abstract, ambiguous and 

subjective (Ang et al., 2010).  
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Table 4.1 Problem analysis in the BA by the TRIZ approach  

 

 

 

 

 

 

 

 

System 
Improving 

Feature 

Worsening 

Feature 
Proposed Solutions 

Neighbourhood 

size in the Bees 

Algorithm  

 

Noise Speed 

1. Segmentation 

3. Local Quality 

4. Asymmetry 

14. Curvature 

24. Intermediary 

31. Porous Materials 

39. Inert Atmosphere 
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In this work, an asymmetrical solution was chosen. There were a number of ways 

to implement the asymmetry solution and according to (Mann et al., 2003; Mann 

2009), this solution could be implemented by: 

A – Where an object or system is symmetrical or contains lines of symmetry, 

introduce asymmetries. 

B - Change the shape of an object or system to suit external asymmetries (e.g., 

ergonomic features). 

C - If an object or system is already asymmetrical, increase the degree of 

asymmetry. 

Of these three suggestions, instance A was selected because the current 

neighbourhood in the BA-NE was symmetrical. An asymmetrical search 

neighbourhood was introduced and coincidently its effect(s) on the BA had never 

been studied. To produce an asymmetrical search neighbourhood, the sum of old 

neighbourhood size and enlargement were kept on one side of the current best 

solution, while only the old neighbourhood size was on the other side (Note that 

the old neighbourhood size was referred to the neighbourhood size presented in 

Table 3.2). This setting formed an asymmetrical search neighbourhood. An 

asymmetrical search neighbourhood was only used when there was an 

improvement in the neighbourhood search. In the case that no improvement had 

been made, the neighbourhood size was symmetrical and fixed, as applied in the 

BA.  
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4.4.      BA-AN 
 

Similarly to the BA, BA-AN started by sending the bees randomly around the 

search space. Each bee which was associated with a solution that had been 

obtained from initialisation was ranked in descending order. The top m solution(s) 

were selected for neighbourhood search. Of m solution(s), the top e solution(s) 

which were regarded as elite sites received nep forager bee(s) to exploit the e 

discovered site(s). Meanwhile, the remaining selected sites (m-e), received nsp 

forager bee(s) for neighbourhood search. 

During neighbourhood search, solution evaluation in the BA-AN was performed 

in a serial way. Serial evaluation meant that any solution obtained by a forager 

bee (nspi) was compared straight away to the current best solution. The solution of 

nspi was kept if it was better than the current best solution, otherwise it would be 

discarded. Then, the neighbourhood search was carried out by the nspi+1 and the 

comparison against the current best solution was again performed. The step was 

repeated until nsp solutions were obtained and compared to the current best 

solution (see Figure 4.2). 

In conjunction with serial evaluation, four different assessments were carried out. 

For each current best solution in an assessment, there were two sides; former and 

latter.  The former side was regarded as the first attempt, while the latter (written 

in the parenthesis) was the second attempt (see Table 4.2). In the assessment-i and 

assessment-ii, if there was improvement in the first attempt, the neighbourhood  
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Figure 4.2 Serial evaluation 

 

 

 

Table 4.2 Assessments and its descriptions 

Assessment Description 

i Right first (then Left) with position of current best solution as 

lower (upper) bound. (Figure 4.3 (a)) 

ii Right first (then Left) with standard neighbourhood as lower 

(upper) bound. (Figure 4.3 (b)) 

iii Left first (then Right) with position of current best solution as 

upper (lower) bound. (Figure 4.3 (c)) 

iv Left first (then Right) with standard neighbourhood as upper 

(lower) bound. (Figure 4.3 (d)) 
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(a) 

 

 

 

 

 

(b) 

 

                       

                  -ngh - enlargement     x    

       

x: position of current best solution in 1-dimensional diagram 

ngh: old neighbourhood size 

(c) 

 

                       

                  -ngh-enlargement    x    +ngh 

       

x: position of current best solution in 1-dimensional diagram 

ngh: old neighbourhood size 

(d) 

 

Figure 4.3 Visualisation of (a) Assessment-i, (b) Assessment-ii, (c) 

Assessment-iii and (d) Assessment-iv 

 

                      

 

                                      x    +ngh + enlargement 

   

x: position of current best solution in 1-dimensional diagram 

ngh: old neighbourhood size 

 

                       -ngh       x    +ngh + enlargement 

 

x: position of current best solution in 1-dimensional diagram 

ngh: old neighbourhood size 
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search would be continued on the right side of the current best solution. In the 

case that no improvement had been made, the neighbourhood search would be 

performed on the left side of the current best solution (second attempt).  

Meanwhile, in assessment-iii and assessment-iv, if there was an improvement in 

the first attempt, the neighbourhood search would be continued on the left side of 

the current best solution. In the case that no improvement had been made, the 

neighbourhood search would be performed on the right side of the current best 

solution (second attempt). There was nothing special in each assessment other 

than to observe whether the evaluation on the right side prior to the left side was 

superior to doing the left side prior to the right side. Also, it was to observe 

whether making the position of the current best solution or the old neighbourhood 

as the boundary produced a different performance by the BA-AN.  

If the second attempt of any assessment did not yield a better solution, the 

neighbourhood search was performed in the symmetrical search neighbourhood as 

employed in the BA. The flowchart in Figure 4.4 depicts the process of the 

neighbourhood search in the BA-AN, where i was the index of forager bees (nsp 

and nep), and i=1,2,3,..., nspmax (nepmax). The stopping criteria in the flowchart 

were when either the solution obtained met the preset threshold or the index i > 

nspmax (i > nepmax).  

After neighbourhood search had been completed, the BA-AN resumed the 

optimisation by performing a global search as in the BA-NE. The process was  

 



80 

 

 

Figure 4.4 Flowchart of the neighbourhood search procedure in the BA-AN 
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repeated until a stopping criterion had been met. The pseudocode of the BA-AN is 

given in Figure 4.5. 

4.4.1. Experimental setup 

 

In the C++ programme, a counter was placed at the first attempt, second attempt 

and symmetrical search neighbourhood. Counter A and Counter B counted the 

number of solutions found at the first and second attempt, respectively. Counter C 

recorded the number of solutions found in the symmetrical neighbourhood. 

Counter C accumulated when there was no better solution found at the first and 

second attempt. With this setting, the BA-AN was tested on the ten test functions 

(see Table 3.1) and used the same parameter setting as in Table 3.2. For every test 

function, 100 independent trials were carried out. The average of accuracy, 

average number of evaluations, standard deviation and average value that were 

counted by Counter A, B and C were recorded. 

4.4.2. Experimental results 

 

On average, the performance of assessment-ii and assessment-iv was better than 

the performance of assessment-i and assessment-iii in all cases (see Table 4.3 (a)-

(d)). Furthermore, the performances of assessment-i and assessment-iii were 

similar (see third and fourth column of Table 4.4). The difference between 

assessment-i, assessment-iii and assessment-ii, assessment-iv was only that the 

first two assessments used the current best solution as the neighbourhood 

boundary.  The search neighbourhood of the latter two assessments was slightly 

larger since they used the old neighbourhood as the neighbourhood boundary.  
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Figure 4.5 Pseudocode of the BA-AN 

 

 

 

 

 

 

1. Initialise population with random solutions. 

2. Evaluate and rank of the fitness of the population. 

3. While (stopping criterion not met). 

        // Forming new population. 

4.  Select the m solutions. 

5. Select the e solutions. 

6. Recruit bees for assessment and evaluate their fitness. 

7. Select the fittest bee from each patch. 

8. Update new neighbourhood size. 

9. Update assessment. 

10. Assign bees to search randomly and evaluate their fitness. 

11. End While. 
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Table 4.3 Results of (a) assessment-i, (b) assessment-ii, (c) assessment-iii and (d) assessment-iv 

 

(a) 

No. Function 
Avg. 

accuracy 
Std. Dev. 

Avg. 

number of 

evaluations 

Std. Dev. 
Avg. 

Counter A 

Avg. 

Counter B 

Avg.  

Counter C 

1 
Goldstein & 

Price (2D) 
0.0000 0.0003 504 316.43 133 228 42 

2 Schwefel (2D) 0.0000 0.0005 1,539 1,061.94 252 554 81 

3 Schaffer (2D) 0.0011 0.0019 406,912 339,280.03 53 166,135 18,789 

4 
Rosenbrock 

(10D) 
13.7874 71.1378 935,000 0.00 436,174 460,589 3,237 

5 Sphere (10D) 0.0013 0.0003 676,413 208,520.83 7,144 654,915 87,941 

6 Ackley (10D) 1.986 0.8678 910,000 0.00 431 428,328 21,241 

7 Rastrigin (10D) 24.6274 7.6059 885,000 0.00 517 394,450 5,033 

8 
Martin & Gaddy 

(2D) 
0.0000 0.0003 675 365.62 244 311 47 

9 Easom (2D) 0.0000 0.0003 31,856 50,348.48 133 13,217 1,111 

10 Griewank (10D) 0.4499 0.1342 4,300,000 0.00 91,816 1,758,171 2,150,013 
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(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. Function 
Avg. 

accuracy 
Std. Dev. 

Avg. 

number of 

evaluations 

Std. Dev. 
Avg. 

Counter A 

Avg. 

Counter B 

Avg. 

Counter C 

1 
Goldstein & Price 

(2D) 
0.0000 0.0003 357 214.37 119 142 34 

2 Schwefel (2D) 0.0000 0.0005 1,102 648.90 2,239 325 91 

3 Schaffer (2D) 0.0000 0.0003 146,784 365,960.40 61 18,635 48,047 

4 Rosenbrock (10D) 0.3228 0.4152 935,000 0.00 364,907 531,134 3,959 

5 Sphere (10D) 0.0000 0.0003 377,298 300,237.08 1,844 93,720 274,310 

6 Ackley (10D) 1.2515 0.2587 910,000 0.00 645 167,027 282,328 

7 Rastrigin (10D) 25.6963 8.6835 885,000 0.00 514 337,719 61,767 

8 
Martin & Gaddy 

(2D) 
0.0000 0.0003 525 240.58 218 242 39 

9 Easom (2D) 0.0000 0.0003 5,280 6,768.14 137 1,157 1,099 

10 Griewank (10D) 0.2581 0.0902 4,300,000 0.00 27,121 719,863 3,253,017 
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(c) 

 

 

 

 

 

 

 

 

 

 

 

 

No. Function 
Avg. 

accuracy 
Std. Dev. 

Avg. 

number of 

evaluations 

Std. Dev. 

Avg.  

Counter 

A 

Avg. 

Counter B 

Avg. 

Counter C 

1 
Goldstein & Price 

(2D) 
0.0000 0.0003 462 248.41 136 193 41 

2 Schwefel (2D) 0.0000 0.0004 1,615 1,071.56 260 589 84 

3 Schaffer (2D) 0.0015 0.0022 482,416 357,969.46 54 197,183 22,045 

4 Rosenbrock (10D) 66.3468 297.81 935,000 0.00 334,053 561,911 4,036 

5 Sphere (10D) 0.0013 0.0003 678,096 209,469.37 9,728 656,889 6,851 

6 Ackley (10D) 1.8466 0.6759 910,000 0.00 434 426,039 23,527 

7 Rastrigin (10D) 22.5664 8.4194 885,000 0.00 558 394,401 5,041 

8 
Martin & Gaddy 

(2D) 
0.0000 0.0003 600 364.82 235 306 50 

9 Easom (2D) 0.0000 0.0003 35,552 49,882.02 134 14,897 1,095 

10 Griewank (10D) 0.3964 0.1658 4,300,000 0.00 33,840 1,754,822 2,211,338 
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(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. Function 
Avg.  

accuracy 
Std. Dev. 

Avg. 

number of 

evaluations 

Std. Dev. 
Avg. 

Counter A 

Avg. 

Counter B 

Avg. 

Counter C 

1 
Goldstein & 

Price (2D) 
0.0000 0.0003 378 215.18 123 154 35 

2 Schwefel (2D) 0.0000 0.0005 1,083 690.71 214 332 79 

3 Schaffer (2D) 0.0000 0.0003 120,208 166,848.12 61 16,680 37,889 

4 
Rosenbrock 

(10D) 
0.3888 0.3661 935,000 0.00 358,950 533,833 7,217 

5 Sphere (10D) 0.0000 0.0002 345,933 291,791.3 1,841 91,538 245,749 

6 Ackley (10D) 1.2360 0.1912 910,000 0.00 656 178,352 270,992 

7 Rastrigin (10D) 25.3088 7.7443 885,000 0.00 515 335,527 63,959 

8 
Martin & Gaddy 

(2D) 
0.0000 0.0003 525 221.73 213 243 39 

9 Easom (2D) 0.0000 0.0003 4,928 7,593.43 135 1,068 1,032 

10 Griewank (10D) 0.2550 0.1285 4,300,000 0.00 27,341 740,776 323,188 
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Table 4.4 Significance of the difference 

 

 

 

 

 

 

 

 

 

 

No. Function 

between assessment-i and 

assessment-iii 

between assessment-ii 

and assessment-iv 

Accuracy 

 

Number of 

evaluations 

Accuracy 

 

Number of 

evaluations 

1 
Goldstein & Price 

(2D) 
NS NS NS NS 

2 Schwefel (2D) NS NS NS NS 

3 Schaffer (2D) NS NS NS NS 

4 Rosenbrock (10D) NS NS NS NS 

5 Sphere (10D) NS NS NS NS 

6 Ackley (10D) NS NS NS NS 

7 Rastrigin (10D) NS NS NS NS 

8 
Martin & Gaddy 

(2D) 
NS NS NS NS 

9 Easom (2D) NS NS NS NS 

10 Griewank (10D) NS NS NS NS 
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Because of this, it could be said that the poor performance of assessment-i and 

assessment-iii was caused by the limited neighbourhood search area in these 

assessments. This small area increased the chance that the bees might miss out the 

potential solutions that were on the other side of the current best solution. From 

this observation, it was necessary to allocate an amount of neighbourhood on both 

sides, as exhibited in assessment-ii and assessment-iv.  

Between assessment-ii and assessment-iv, the difference was not statistically 

significant (see last two columns of Table 4.4). This similar result suggested that 

there was no advantage to perform neighbourhood search on one particular side 

prior to the other and vice versa. Theoretically, if the bees were focusing on a 

particular side due to the improvement made, the bees might stand a chance to 

miss out other better solutions that were on the other side. Moreover, there was no 

clue of which direction could help the bees to get to the global optimum quickly. 

The global optimum did not necessarily lie in the same direction as the path made 

by the current best solution.  Furthermore, getting to a higher (lower) position in 

the maximisation (minimisation) problem in the fitness landscape might lead to 

local optima, which were the points that the bees should avoid.   

4.4.3. Discussions 

 

On the Goldstein & Price, Schwefel, Rosenbrock and Martin & Gaddy, more than 

one third of the solutions were obtained at the first attempt, as revealed by the 

value of Counter A. This means that the algorithm made improvements most of 

the time and so encouraged the bees to perform an asymmetrical neighbourhood  
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search. The bees had no difficulty in locating better solutions even at the first 

attempt. Any better solution would drive the bees to repeat the neighbourhood 

search in the asymmetrical neighbourhood. This scenario accumulated the value 

of Counter A. The value of Counter B was also higher compared to that of 

Counter C when solving these functions. This indicated that after failing to find a 

better solution at the first attempt, the bees found one straight away at the second 

attempt. As a result, the bees rarely performed symmetrical neighbourhood 

search, as indicated by the low value of Counter C. For better visualisation, Figure 

4.6 shows the value of counter accumulations with respect to the number of 

iterations on the Rosenbrock. 

On the other hand, on the Rastrigin and Easom, most of the time the bees were not 

able to find a better solution at the first attempt, forcing them to perform the 

second attempt.  On the Rastrigin, even though most of the improvements were 

made at the second attempt (see Figure 4.7), the algorithm failed to reach the 

global optimum. On the Easom, the flat surface challenged the algorithm. If the 

bees landed on the flat surface, any modification of the neighbourhood size would 

not benefit the algorithm. The algorithm kept adopting the symmetrical 

neighbourhood size until at least one bee landed in the hole. This was the reason 

why the value of Counter C was about as high as that of Counter B. 

Because of failing to find a better solution at the first and second attempt, the 

Schaffer, Ackley and Griewank used a symmetrical neighbourhood for the 

neighbourhood search. The high value of Counter C for these functions implied 

that the asymmetrical neighbourhood was not able to deal with the numerous local  
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(b) 

 

Figure 4.6 Counter gained by (a) assessment-ii and (b) assessment-iv on the 

Rosenbrock 
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(a) 

 

 

 

(b) 

 

Figure 4.7 Counter gained by (a) assessment-ii and (b) assessment-iv on the 

Rastrigin 
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optima. For example, Figure 4.8 shows the value of counter accumulations with 

respect to the number of iterations on the Ackley. 

Even though there were no local optima on the Sphere, the BA-AN tended to use 

the symmetrical neighbourhood for the neighbourhood search. This might be 

caused by the high dimensionality here. High dimensionality might lead the bees 

to a higher position (since the Sphere was a minimisation problem), which would 

result in no improvement to the solution.  

4.4.4. Comparison against the BA 

 

The experimental results that were obtained by the BA-AN assessment-ii and 

assessment-iv were compared to the one obtained by the BA. The significance of 

the difference by the Mann Whitney test shows that the BA-AN produced a 

similar performance in all cases except on the Rosenbrock and Sphere (Table 4.5). 

The solution accuracy obtained on the Rosenbrock was significantly improved by 

the BA-AN. This promising result might be caused either by the asymmetrical 

search neighbourhood or by the adaptive enlargement, which will be discussed in 

the next section.  Meanwhile, on the Sphere, the BA performed better than the 

BA-AN. In the BA-AN, the asymmetrical search neighbourhood might be rarely 

used due to less solution improvements being made. As a result, the first and 

second attempt might cause more time consumption by the algorithm to optimise 

the problem, even though it did not yield a better solution. On the other hand, the 

algorithm could locate the global optimum faster by only adopting the 

symmetrical search neighbourhood, as shown by the high value of Counter C, 
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(a) 

 

 

(b) 

 

Figure 4.8 Counter gained by (a) assessment-ii and (b) assessment -iv on the 

Ackley 
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Table 4.5 Significance of the difference between the BA-AN and BA 

 

 

 

 

 

 

 

No. Function 

BA-AN (assessment-ii) BA-AN (assessment-iv) 

Accuracy 
Number of 

evaluations 
Accuracy 

 

Number of 

evaluations 

 

1 
Goldstein & 

Price (2D) 
NS NS NS NS 

2 
Schwefel 

(2D) 
NS NS NS NS 

3 Schaffer (2D) NS NS NS NS 

4 
Rosenbrock 

(10D) 
S - S - 

5 Sphere (10D) S S S S 

6 Ackley (10D) NS - NS - 

7 
Rastrigin 

(10D) 
NS - NS - 

8 
Martin & 

Gaddy (2D) 
NS NS NS NS 

9 Easom (2D) NS NS NS NS 

10 
Griewank 

(10D) 
NS - NS - 
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which was discussed in the previous section. 

4.4.5. Comparison against the BA-NE 

 

The comparison of the BA-AN assessment-ii and assessment-iv against the BA-

NE is presented in Table 4.6. The BA-AN was outperformed by the BA-NE on 

the Goldstein & Price, Rosenbrock, Ackley, Martin & Gaddy and Griewank. 

However, their performance was similar in other cases. 

The promising solution on the Rosenbrock obtained by the BA-AN was better 

than the one obtained by the BA. This might be caused by the adaptive 

enlargement, rather than by the use of an asymmetrical search neighbourhood. 

This was proved by the solution accuracy on the Rosenbrock that was better 

obtained by the BA-NE. In addition, in Section 3.2, the BA-NE failed to reach the 

global optimum on the Rosenbrock, Ackley, Rastrigin and Griewank. The 

asymmetrical search neighbourhood also failed to improve this situation. In fact, 

the solution accuracy on the Rosenbrock and Griewank obtained by the BA-AN 

deteriorated. Therefore, it could be said that an asymmetrical search 

neighbourhood did not have a positive influence on the BA-AN.  

4.4.6. Discussions of TRIZ 

 

Despite the fact that it had never been studied, the asymmetrical search 

neighbourhood was derived from a TRIZ inventive solution. The failure to 

improve the performance of the algorithm after TRIZ analysis might be caused by 

two factors. First, a different measurement of asymmetry might contribute to this 
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Table 4.6 Significance of the difference between the BA-AN and BA-NE 

 

 

 

 

 

 

 

No. Function 

BA-AN (assessment-ii) BA-AN (assessment-iv) 

Accuracy 
Number of 

evaluations 
Accuracy 

 

Number of 

evaluations 

 

1 
Goldstein & 

Price (2D) 
NS S NS S 

2 
Schwefel 

(2D) 
NS NS NS NS 

3 Schaffer (2D) NS NS NS NS 

4 
Rosenbrock 

(10D) 
S - S - 

5 Sphere (10D) NS NS NS NS 

6 Ackley (10D) S - S - 

7 
Rastrigin 

(10D) 
NS - NS - 

8 
Martin & 

Gaddy (2D) 
NS S NS S 

9 Easom (2D) NS NS NS NS 

10 
Griewank 

(10D) 
S - S - 
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failure. In this work, the asymmetrical search neighbourhood was formed by 

setting the sum of the old neighbourhood and enlargement on one side of the 

current best solution and only the old neighbourhood on another side. Other 

individuals might set the asymmetrical search neighbourhood using different 

measurements, such as increasing/ decreasing the degree of the asymmetry based 

on their preference. Different measurements of asymmetrical search 

neighbourhood might affect the algorithm differently. 

The other reason was that the TRIZ solution might hide in six other inventive 

solutions (1. Segmentation, 3. Local Quality, 14. Curvature, 24. Intermediary, 31. 

Porous Materials and 39. Inert Atmosphere). This list, however, does not 

guarantee a solution. On the other hand, they provided a number of potential 

solutions, in order to reduce the number of trial and error attempts (Altshuller 

2001). 

 

4.5.     Application 
 

The effectiveness of the BA-AN was tested on the gear train problem (see 

Appendix A). The parameter setting and stopping criterion were set the same as 

described at Section 3.3.1. The result was then compared against the BA, BA-NE, 

UPSOm (Parsopoulos and Vrahatis 2005) and ABC (Akay and Karaboga 2010). 

The experimental result revealed that the BA-AN assessment-ii and assessment-iv 

failed to beat the average solution and % error produced by the UPSOm and ABC 

(see Table 4.7). Also, the overall solutions produced by the BA-AN was poor.  
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Table 4.7 Comparison against other algorithms on the gear train problem 

 

 

 

 UPSOm ABC BA BA-NE 
BA-AN 

(assessment-ii) 

BA-AN 

(assessment-iv) 

Avg. Solution 3.80562E-08 3.641339E-10 6.84E-05 2.12E-06 4.53E-06 6.79E-06 

Std. Dev. 1.09631E-07 5.525811E-10 0.000366946 4.43477E-06 1.16133E-05 2.26966E-05 

Best Solution 2.70085E-12 2.700857E-12 9.92158E-10 1.54505E-10 9.92E-10 1.31252E-08 

x1 NA 49 47 43 47 46 

x2 NA 16 12 13 26 12 

x3 NA 19 26 21 12 21 

x4 NA 43 46 44 46 38 

Gear ratio NA 0.144281 0.144311 0.144292 0.14431 0.144165 

% error NA 0.001% 0.022% 0.009% 0.022% -0.079% 
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This fact was supported by the large standard deviation obtained by the BA-AN 

assessment-ii and assessment-iv. The large standard deviation also suggested that 

these two assessments were not good at producing a set of robust solutions. This 

was proved by the Mann Whitney test where there was no statistical difference 

between the BA, BA-AN assessment-ii and BA-AN assessment-iv (see Table 

4.8). On the other hand, the performance of the BA-NE was better than these three 

algorithms. This experimental result again implied that an asymmetrical search 

neighbourhood with the stated measurement was not useful to the BA-AN.  

 

4.6.     Summary 
 

A symmetrical search neighbourhood was normally applied in the BA. This kind 

of search neighbourhood was also adopted in the BA-NE. An asymmetrical search 

neighbourhood, which was derived from a TRIZ inventive solution, was used to 

replace the symmetrical search neighbourhood in the BA-NE. The BA-NE with 

such a neighbourhood was developed and named BA-AN. In the BA-AN, four 

different types of asymmetrical search neighbourhood were analysed. The results 

suggested that a certain neighbourhood area should be allocated on both sides of 

the current best solution to speed up the optimisation. In addition, evaluating the 

solution on one side of the current best solution before the other side and vice 

versa simply gave a similar performance.  

This work has also proved that an asymmetrical search neighbourhood formed by 

the sum of the old neighbourhood and enlargement on one side of the current best  
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Table 4.8 Significance of the difference between the BA, BA-NE and BA-AN 

on the gear train problem 

 

 

 

 

 

 

 

 

 

 

Methods BA BA-NE 
BA-AN 

(assessment-ii) 

BA-AN 

(assessment-iv) 

BA - S NS NS 

BA-NE S - S S 

BA-AN 

(assessment-ii) 
NS S - NS 

BA-AN 

(assessment-iv) 
NS S NS - 
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solution and only the old neighbourhood on another side did not bring benefits to 

the BA-AN. The experimental results from the gear train problem reinforced this 

finding. Thus, it could be concluded that there was no advantage of using an 

asymmetrical search neighbourhood as opposed to a symmetrical one.  
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Chapter 5 

COMBINATION OF ADAPTIVE ENLARGEMENT AND 

REDUCTION IN THE SEARCH NEIGHBOURHOOD IN THE 

BEES ALGORITHM 

 

5.1.      Preliminaries 
 

Based on work discussed in Chapter 3, adaptive enlargement of the search 

neighbourhood helped the BA-NE to reach better solutions faster when the search 

space was smooth. However, this new approach gave no benefit when the search 

surface was highly multi-pocketed, which was created by a cosinusoidal noise 

component. The failure to reach the global optimum in such problems implied that 

the policy of neighbourhood enlargement was not always helpful in every case. In 

other words, the method benefited when the surface was smooth but became 

useless with a noisy landscape. Furthermore, the study in Chapter 4 revealed that 

asymmetrical search neighbourhood also failed to reach the global optimum of 

problems that featured a noisy surface. Because of this, the symmetrical search 

neighbourhood was readopted in this work.  

This chapter is organised as follows: Section 5.2 reviews the shrinking method in 

the BA. Section 5.3 describes the current problem that motivates this work. 

Section 5.4 explains the proposed idea, experimental setup and results. Three 

types of engineering design problems were used to test the capability of the 

modification and they are presented in Section 5.5. Section 5.6 summarises the 

achievements of this work. 
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5.2. ‘Neighbourhood shrinking’ method 
 

The „neighbourhood shrinking‟ method was initially introduced by 

(Ghanbarzadeh 2007). The method stated that a large patch size should be set at 

the beginning of the optimisation. The patch size was then decreased by a half if 

the neighbourhood search did not bring any improvement in the solution. 

Conversely, the patch size was kept unchanged if the forager bees managed to 

find better solutions.  

In contrast, the idea proposed in this work was to combine the adaptive 

enlargement and reduction in the search neighbourhood. The initial 

neighbourhood size was not necessarily large but kept equal to the values as in 

Table 3.2. It was anticipated that the reduction of neighbourhood size was needed 

to stimulate the optimisation progress.  

5.3. Current problem 
 

The BA-NE failed to find the global optimum with an accuracy of 0.001 after 

5000 iterations on the Rosenbrock, Ackley, Rastrigin and Griewank. This might 

have been caused by the current neighbourhood size becoming large. This 

neighbourhood size could be larger than the distance of current best solution and 

global optimum. As a result, the bees associated with the best solution might 

overshoot the global optimum in the next iteration. To solve the overshooting 

problem, the distance of the best solution and the global optimum needs to be 

investigated.  
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5.3.1. Euclidean Distance  

The distance of two points in an n-space can be measured using the Euclidean 

Distance (ED) formula (Fiedler 2011). Mathematically, ED is defined as the 

length of the line segment that connects points p and q. If p is located at (p1, p2, 

p3,…,pn) and q is at (q1, q2, q3,…,qn), the ED between points p and q is 

summarised as Equations 5.1:   

              =                                               

                                            
 
                                                                   (5.1) 

Having Equation 5.2 to hand, the distance of the best solution obtained by the BA-

NE from the global optimum was calculated and denoted as r (see Table 5.1.) 

Note that only problems for which the BA-NE failed to find the global optimum, 

i.e., the Rosenbrock, Ackley, Rastrigin and Griewank, were considered for this 

calculation. 

5.3.2. Calibration 

The failure to reach an acceptable solution with the neighbourhood size as in 

Table 3.2 implied that there was a rough surface between the best solution 

obtained by the BA-NE and the global optimum. The neighbourhood size which 

was used before failed to adapt to this rough surface. Consequently, it was not 

possible to find the global optimum, unless the parameter setting was retuned. In 

order to reach the global optimum on these problems without retuning parameters, 

the size of search space of each problem was calibrated. This calibration meant 

that the standard search space was shrunk to a reasonably smaller one so that the 

bees could easily locate the global optimum. This procedure provided an insight 
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Table 5.1 Distance between the final solution and the global optimum 

 

 

 

 

 

 

*The numbering is based on Table 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No.* Function Solution  r 

4 Rosenbrock (10D) 0.0289 0.3172 

7 Ackley (10D) 0.5573 0.2344 

8 Rastrigin (10D) 3.9915 1.9912 

10 Griewank (10D) 0.0475 9.2214 
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into whether the neighbourhood size should be smaller towards the global 

optimum.  

The worst acceptable solution that was captured after the calibration of the search 

space was recorded. Its distance from the global optimum was also calculated and 

denoted by rcalib. This kind of solution was selected because it indicated that a 

solution must not be farther than rcalib to be an acceptable one. The calibrated 

search space, worst acceptable solution and the rcalib are shown in Table 5.2.  

Compared to rcalib, the sum of the old neighbourhood and enlargement was too 

large to capture the global optimum, as shown in Table 5.3.  A large 

neighbourhood might lead the bees to overshoot the global optimum. Therefore, it 

was necessary to reduce the neighbourhood size especially when the solution did 

not improve after a certain time.  

 

5.4.      BA-NER 

 

The procedure of neighbourhood reduction was developed on the BA-NE and the 

proposed algorithm named BA-NER, which stands for the Bees Algorithm- 

neighbourhood enlargement and reduction. The BA-NER also adopted the same 

initialisation procedure as the BA-NE. The n solutions that were obtained after 

random initialisation were ranked in descending order. The top m sites were 

selected for the neighbourhood search. A number of elite sites (e) were selected  
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Table 5.2 Calibration 

 

 

 

 

 

 

 

Table 5.3 Comparison on the sum of old neighbourhood and enlargement 

and rcalib 

*The numbering is based on Table 3.1 

 

 

 

 

No.* Function 
Calibrated 

search space 

Worst 

acceptable 

solution 

rcalib 

4 
Rosenbrock 

(10D) 
[0.9,1.1] 0.0002 0.0002 

7 Ackley (10D) [-0.0005,0.0005] 0.00083 0.0007 

8 Rastrigin (10D) [-0.0005,0.0005] 0.00026 0.0005 

10 Griewank (10D) [99.99,100.01] -9.94E-06 0.0101 

*The numbering is based on Table 3.1 

No.* Function old ngh + enlargement rcalib 

4 Rosenbrock (10D) 0.0024 0.0002 

7 Ackley (10D) 0.8166 0.0007 

8 Rastrigin (10D) 0.0117 0.0005 

10 Griewank (10D) 1.6209 0.0101 
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from the m sites. Each elite and non-elite sites (m-e) received nep and nsp forager 

bee(s) respectively.  

Figure 5.1 is the flow chart of the neighbourhood search performed in the BA-

NER, where i is the index of forager bees (nsp and nep) and i=1,2,3,..., nspmax 

(nepmax). In this algorithm, two new parameters were to be introduced. They were 

the allowed number of consecutive iterations (ci) and the amount of 

neighbourhood reduction (nr) and are included in the flow chart. If there were no 

forager bees making an improvement after ci had elapsed, the neighbourhood size 

was reduced by the factor nr. The stopping criteria in the flowchart were either 

when the solution obtained met the preset threshold or the index i > nspmax (i > 

nepmax).  

After all forager bees of every m sites completed the neighbourhood search, the 

unselected bees, (n-m) performed the global search. A set of solutions obtained 

upon completion of the global search would then be ranked in the next iteration. 

This process was repeated until any stopping criterion was met. Figure 5.2 shows 

the pseudocode of the BA-NER.  

5.4.1. Experimental setup  

 

BA-NER was tested on the ten mathematical benchmarks (see Table 3.1). As 

illustrated in the flowchart, two new parameters were included, which were the 

allowed number of consecutive iteration (ci) and the amount of neighbourhood 

reduction (nr). In this experiment, the neighbourhood size was reduced to 1/10 of 

the current size if there was no improvement made by the forager bees after 10  
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Figure 5.1 Flowchart of the neighbourhood search procedure in the BA-NER 
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Figure 5.2 Pseudocode of the BA-NER 

 

 

 

 

 

 

1. Initialise population with random solutions. 

2. Evaluate and rank of the fitness of the population. 

3. While (stopping criterion not met). 

        // Forming new population. 

4. Select the m solutions. 

5. Select the e solutions. 

6. Recruit bees and evaluate their fitness. 

7. Select the fittest bee from each patch. 

8. Update new neighbourhood size. 

9. Update number of iteration. 

10. Update amount of neighbourhood reduction. 

11. Assign bees to search randomly and evaluate their fitness. 

12. End While. 
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consecutive iterations. The amount of neighbourhood reduction and number of 

iterations specified above were part of the parameter setting and were of course 

not obliged to have these values. Since the aim of this work was to study the 

effect of neighbourhood reduction rather than finding the global optimum, no 

attempt was made to tune these new parameters. 

In this experiment, BA-NER was designed to adapt to two groups of problems; 

Group A and Group B. Group A were the problems for which BA-NE could not 

find the global optimum (Rosenbrock, Ackley, Rastrigin and Griewank), whereas 

Group B were the problems that had been successfully solved by the BA-NE 

(Goldstein & Price, Schwefel, Schaffer, Sphere, Martin & Gaddy, Easom).

 

In both 

Group A and Group B, the adaptive enlargement of the search neighbourhood was 

employed as long as the solutions improved. The only difference was:  

5.4.1.1. Group A 

If there was no improvement in the solution after 10 consecutive iterations, the 

neighbourhood size was reduced to 1/10 of the current size. This procedure was 

repeated until the neighbourhood size became smaller than rcalib. After reduction, 

the neighbourhood size that was smaller than rcalib was considered as the limit (see 

Table 5.4).  Once the neighbourhood size became equal to or smaller than the 

limit, it was increased back to its initial size and the optimisation was noted as 

completing one cycle. If there were more than one cycle and no improvement had 

been made, it was assumed that the bees were entrapped in the local optima. Also, 

this situation implied that the adopted neighbourhood size failed to deal with the 

current landscape.  



112 

 

 

 

Table 5.4 Range of neighbourhood 

 

No. Function Range of neighbourhood size 

1 Goldstein & Price (2D) 0.005 ≥ ngh 

2 Schwefel (2D) 0.5 ≥ ngh 

3 Schaffer (2D) 3.0 ≥ ngh 

4 Rosenbrock (4D) 0.0015 ≥ ngh ≥ 0.00015 

5 Sphere (10D) 0.05 ≥ ngh 

6 Ackley (10D) 0.7 ≥  ngh ≥ 0.00007 

7 Rastrigin (10D) 0.01 ≥  ngh ≥ 0.0001 

8 Martin & Gaddy (2D) 0.1 ≥ ngh 

9 Easom (2D) 0.5 ≥ ngh 

10 Griewank (10D) 1.5 ≥ ngh ≥ 0.0015 

 

 

 

 

 

 

 

 

 

 

 



113 

 

5.4.1.2. Group B 

For this group, the limit was not set. This meant that the neighbourhood size could 

be of any value, with a 1/10 reduction factor. The purpose of this procedure was 

to investigate which size of neighbourhood contributed most in reaching the 

global optimum. In addition, the bees were not risking entrapment in local optima 

in these problems. This was proved by the success of the BA-NE in dealing with 

these problems in Section 3.2.2.  

Apart from ci, nr, and limit, other parameters were set as shown in Table 3.2. 

Stopping criteria were also the same as described in Section 3.2. For each 

benchmark, BA-NER was run 100 times. 

5.4.2. Experimental results 

 

The experimental results were compared to the ones obtained by other algorithms 

(see Table 5.5). The performance of the BA-NER was comparable to the PSO, EA 

and ABC. Moreover, without considering the significance, the average final 

solution obtained by the BA-NER was the best on the Rosenbrock, Ackley and 

Griewank, compared to the BA and BA-NE. Also, the average number of 

evaluations was improved by the BA-NER on the Goldstein & Price, Schwefel, 

Schaffer, Sphere, Ackley and Griewank. For a clearer comparison, the 

significance of the difference of the accuracy and number of evaluations between 

BA-NER and BA-NE is shown in Table 5.6. The comparison on the number of 

evaluations on the Rosenbrock and Rastrigin were omitted since they were the 

same in all runs.   
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Table 5.5 Comparison on (a) accuracy and (b) average number of evaluations against other algorithms 

 

(a) 

 

No. Functions 

PSO EA ABC BA BA-NE BA-NER 

Avg. 

Acc. 

Std. 

Dev. 

Avg. 

Acc. 
Std. Dev. 

Avg. 

Acc. 

Std. 

Dev. 

Avg. 

Acc. 

Std. 

Dev. 

Avg. 

Acc. 

Std. 

Dev. 

Avg. 

Acc. 

Std. 

Dev. 

1 
Goldstein & 

Price (2D) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003 

2 
Schwefel 

(2D) 
4.7376 23.4448 4.7379 23.4448 0.0000 0.0000 0.0000 0.0005 0.0000 0.0005 0.0000 0.0005 

3 
Schaffer 

(2D) 
0.0000 0.0000 0.0009 0.0025 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003 

4 
Rosenbrock 

(10D) 
0.5998 1.0436 61.5213 132.6307 0.0965 0.0880 44.3210 112.29 0.0508 0.0337 0.0046 0.0059 

5 
Sphere 

(10D) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0002 0.0000 0.0002 

6 
Ackley 

(10D) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.2345 0.3135 1.2297 0.2383 0.0240 0.2316 

7 
Rastrigin 

(10D) 
0.1990 0.4924 2.9616 1.4881 0.0000 0.0000 24.8499 8.3306 23.3201 9.1703 25.4908 8.2092 

8 
Martin & 

Gaddy (2D) 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003 

9 Easom (2D) 0.0000 0.0000 0.0000 0.0000 0.0000 2.0096 0.0000 0.0003 0.0000 0.0003 0.0000 0.0003 

10 
Griewank 

(10D) 
0.0008 0.0026 0.0210 0.0130 0.0052 0.0078 0.3158 0.1786 0.1912 0.1024 0.0495 0.0323 
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(b) 

No. Functions 

PSO EA ABC BA BA-NE BA-NER 

Avg. 

evaluations 

Std. 

Dev. 

Avg. 

evaluations 

Std. 

Dev. 

Avg. 

evaluations 

Std. 

Dev. 

Avg. 

evaluations 

Std. 

Dev. 

Avg. 

evaluations 

Std. 

Dev. 

Avg. 

evaluations 

Std. 

Dev. 

1 

Goldstein 

& Price 

(2D) 

3,262 822 2,002 390 2,082 435 504 211 384 168 360 166 

2 
Schwefel 

(2D) 
84,572 90,373 298,058 149,638 4,750 1,197 1,140 680 1,140 701 950 570 

3 
Schaffer 

(2D) 
28,072 21,717 219,376 183,373 21,156 13,714 121,088 174,779 132,176 157,520 38,368 113,425 

4 
Rosenbrock 

(10D) 
492,912 29,381 500,000 0 497,728 16,065 935,000 0 935,000 0 935,000 0 

5 
Sphere 

(10D) 
171,754 7,732 36,376 2,736 13,114 480 285,039 277,778 325,125 252,987 14,841 4,495 

6 
Ackley 

(10D) 
236,562 9,119 50,344 3,949 18,664 627 910,000 0 910,000 0 88,816 118,495 

7 
Rastrigin 

(10D) 
412,440 67,814 500,000 0 207,486 57,568 885,000 0 885,000 0 885,000 0 

8 

Martin & 

Gaddy 

(2D) 

1,778 612 1,512 385 1,498 329 600 259 450 187 450 182 

9 
Easom 

(2D) 
16,124 15,942 36,440 28,121 1,542 201 5,280 6,303 4,576 3,344 4,752 3,559 

10 

Griewank 

(10D) 290,466 74,501 490,792 65,110 357,438 149,129 4,300,000 0 4,300,000 0 4,171,860 654,013 
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Table 5.6 Significance of the difference between the BA-NER and BA-NE 

 

 

 

 

 

 

 

 

 

 

 

 

No. Function Accuracy Number of evaluations 

1 
Goldstein & Price 

(2D) 
NS NS 

2 Schwefel (2D) NS NS 

3 Schaffer (2D) NS S 

4 Rosenbrock (10D) S - 

5 Sphere (10D) S S 

6 Ackley (10D) S S 

7 Rastrigin (10D) NS - 

8 
Martin & Gaddy 

(2D) 
NS NS 

9 Easom (2D) NS NS 

10 Griewank (10D) S S 
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5.4.3. Discussions 

 

Compared to the BA-NE, the performance of the BA-NER was significantly 

better in finding the global optimum of the Schaffer, Rosenbrock, Sphere, Ackley 

and Griewank. These experimental results suggested that the neighbourhood 

reduction was beneficial to the BA-NER. Despite this success, the performance of 

both algorithms was similar on the Goldstein & Price and Martin & Gaddy. This 

was because the rapid progress in the optimisation did not allow the 

neighbourhood reduction procedure to take place. In other words, the algorithm 

never reached 10 consecutive iterations without an improvement in the 

neighbourhood search. In order to investigate whether the neighbourhood 

reduction had an effect on the Goldstein & Price and Martin & Gaddy, the ci was 

altered. The ci was gradually decreased until at least a neighbourhood reduction 

occurred once. Table 5.7 shows that the 99 of 100 runs reached the global 

optimum when the neighbourhood size was 0.005 and ci was 2 on the Goldstein & 

Price. On the Martin & Gaddy, there was no single iteration that did not improve 

the neighbourhood search. This analysis proved that neighbourhood reduction was 

not crucial to the BA-NER in order to find an acceptable solution on these two 

functions. On the other hand, BA-NER was able to find the global optimum 

without reducing the size of the search neighbourhood. 

On the Schwefel, the neighbourhood reduction also did not improve the results 

that were obtained by the BA-NE. Of 100 runs, 87 reached the global optimum 

with the original neighbourhood size, which was 0.5 (see Figure 5.3). In fact, the
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Table 5.7 Neighbourhood reduction on the Goldstein & Price and Martin & 

Gaddy 

*The numbering is based on Table 3.1 

 

 

Figure 5.3 Neighbourhood size preference on the Schwefel 

 

 

 

No

.* 
Function ci 

Original 

ngh 

Number of 

runs 

reached 

acceptable 

solution  

0.1x 

original 

ngh 

Number of 

runs 

reached  

acceptable 

solution  

1 
Goldstein  & Price 

(2D) 
2 0.005 99 0.0005 1 

8 
Martin & Gaddy 

(2D) 
1 0.1 100 - - 
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number of iterations was getting larger as the neighbourhood size decreased. It 

was 111, 771 and 4921, when the neighbourhood size was 0.05, 0.005 and 0.0005, 

respectively. This size was just too small and thus slowed down the progress. 

Hence, the neighbourhood reduction was not necessary on the Schwefel.  

 

On the other hand, neighbourhood reduction stimulated a rapid progress on the 

Schaffer. 74 runs reached the global optimum when the neighbourhood size was 

0.3 and this was one tenth of the original size (see Figure 5.4). This analysis 

supported the fact that the global optimum was surrounded by a high number of 

local minima (Zhao et al. 2009). For better visualisation, the contour of this 

function within [-100, 100] of search space is shown in Figure 5.5 (Zhao et al. 

2009). In the figure, local optima which were near the edge were not obvious. In 

this area, the larger neighbourhood size, which was 3.0, was able to speed up the 

convergence towards the global optimum. However, the surface was getting 

noisier as optimisation was approaching the global optimum, which was located at 

[0, 0]. When the best solution was getting closer to the global optimum, the 

neighbourhood size (3.0) was no longer able to accommodate the bees to reach the 

global optimum. With this size, the bees tended to overshoot the global optimum. 

Fortunately, a neighbourhood size of 0.3 minimises this risk.  This is reflected in 

the fact that a neighbourhood size of 0.3 contributed to the success of 74 runs.  

 

Meanwhile, on the Rosenbrock, the algorithm reached the global optimum in 9 

runs when the neighbourhood size was 0.0015. The success of the remaining 91  
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Figure 5.4 Neighbourhood size preference on the Schaffer 

 

 

 

Figure 5.5 Contour of the Schaffer within [-100, 100] (Zhao et al., 2009) 
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runs was generated when the neighbourhood size was 0.00015, as in Figure 5.6. 

Moreover, Figure 5.7 shows the optimisation progress on the Rosenbrock. The 

improvement in the solution was remarkable when the neighbourhood size 

dropped from 0.0015 to 0.00015, which happened at 3360
th

 iteration. The solution 

was progressing until the 5000
th

 iteration.  

The Sphere also benefited from neighbourhood reduction. Once the 

neighbourhood size dropped from 0.05 to 0.005, the bees found the global 

optimum easily. In fact, 96 runs reached the global optimum when the 

neighbourhood size was 0.005, which was one tenth of the original size (see 

Figure 5.8). It was well known that the Sphere is an easy function. Its smooth and 

parabolic shape encouraged the bees to find the global optimum quickly. 

However, when approaching the global optimum, the neighbourhood size should 

be small in order to avoid the overshooting problem. In this case, 0.005 was an 

optimal one. In fact, the bees found the global optimum straight away after the 

neighbourhood size dropped to 0.005 (see Figure 5.9).   

The neighbourhood reduction was also useful when optimising the Ackley. 75 

runs reached the global optimum when the neighbourhood size was 0.0007 

(1/1000 of original neighbourhood size), while the other 25 trials benefited from 

0.00007 of neighbourhood size (1/10000 of the original neighbourhood size). The 

distribution of neighbourhood size in Figure 5.10 indicated that the 

neighbourhood size (0.0007) was just right when approaching the global optimum 

on the Ackley. 
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Figure 5.6 Neighbourhood size preference on the Rosenbrock 

 

 

 

Figure 5.7 Optimisation progress on the Rosenbrock  
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Figure 5.8 Neighbourhood size preference on the Sphere 

 

 

 

Figure 5.9 Optimisation progress on the Sphere 
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Figure 5.10 Neighbourhood size preference on the Ackley 

 

 

 

 

 

 

 



125 

 

There was however no significant difference between BA-NER and BA-NE when 

solving the Rastrigin. Based on a calculation, BA-NER only managed to give the 

best solution, which was 7.9597 when the bees were approximately 2.81 units 

from the global optimum.  When getting closer than this distance, the bees most 

often failed to find the global optimum, regardless of the size of neighbourhood 

adopted; 0.01, 0.001 and 0.0001 (see Figure 5.11).  In fact, the algorithm still 

failed even after completing one cycle. Hence, it could be said that the 

neighbourhood reduction failed to adapt with the problem landscape. Also, the 

small neighbourhood size was not able to guide the bees to escape from the local 

optima.  

There was no difference in the performance of the algorithms on the Easom. In 

fact, 84 runs reached the global optimum at the original neighbourhood size, 0.5 

(see Figure 5.12). This was because its flat surface would not bring the bees to 

any better solution. This unimproved solution forced the bees to use the old size 

and fixed search neighbourhood. Therefore, neither neighbourhood enlargement 

nor the reduction procedure would assist whilst the bees were searching for the 

solution on the flat surface. The fixed search neighbourhood was sufficient for the 

algorithm to optimise on this surface. Once the bees entered the hole, the 

procedure of neighbourhood enlargement and reduction might happen. Since the 

hole did not have local optima, the bees had no possibilities to get trapped at any 

point. Therefore, any size of neighbourhood could lead to an acceptable solution.  

On the Griewank, the algorithm only managed to find the global optimum in four 

runs, with 0.015 of neighbourhood size as shown in Table 5.8. The progress on  
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Figure 5.11 Neighbourhood size preference on the Rastrigin 

 

 

 

Figure 5.12 Neighbourhood size preference on the Easom 
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Table 5.8 Acceptable solutions found on the Griewank 

 

ith run Number of iterations Fitness ngh 

17 3014 0.00039 0.015 

39 845 0.00074 0.015 

55 515 0.00074 0.015 

72 740 0.00033 0.015 
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the Griewank was too dramatic at an early stage but stagnated at the 1191
st
 

iteration (see Figure 5.13). At the 1191
st
 iteration, the fitness was 0.06152 and this 

remained until the maximum iteration. In fact, the fitness did not change even 

after completing 127 cycles. This gave rise to the idea that the smaller 

neighbourhood size was not the only factor in improving algorithm performance 

when solving problems like the Griewank. To obtain a more acceptable solution 

within the allocated iteration, the amendment to ci should be made. Increasing the 

ci could give more time to the bees to search the neighbourhood and increase the 

chance of finding a better solution. 

5.5.       Applications 
 

5.5.1. Single objective problem without constraints 

 

BA-NER was tested on the gear train problem. The nr, ci and limit were obtained 

empirically and they were as in Table 5.9. The rest of the parameters and the 

stopping criterion were set as shown in Table 3.5. 

The result obtained by BA-NER and comparison against UPSOm (Parsopoulos 

and Vrahatis 2005), ABC (Akay and Karaboga 2010), BA-NE and BA-AN 

assessment-ii and assessment-iv is presented in Table 5.10. Even though the result 

produced by BA-NER was not as good as the UPSOm and ABC, it was better 

than the ones obtained by the BA-NE and BA-AN assessment-ii and assessment- 

iv. The Mann Whitney test confirmed that BA-NER collectively outperformed the 

BA-NE and BA-ANs (see Table 5.11). This was caused by the smaller average 

solution and standard deviation generated by BA-NER. This analysis also  
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Figure 5.13 Optimisation progress on the Griewank 

 

 

Table 5.9 The BA-NER parameters for gear train problem 

Parameter Value 

Number of scout bees, n 5 

Number of selected sites, m 2 

Number of forager bees for each selected sites, nsp 1 

Number of elite sites, e 1 

Number of forager bees for each elite sites, nep 2 

Neighbourhood size, ngh 2.0 

nr 1/10 

limit 0.2 

ci 5 
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Table 5.10 Comparison against other algorithms on the gear train problem 

 

 UPSOm ABC BA BA-NE 
BA-AN 

(assessment-ii) 

BA-AN 

(assessment-iv) 
BA-NER 

Avg. 

Solution 
3.80562E-08 3.641339E-10 6.84E-05 2.12E-06 4.53E-06 6.79E-06 3.61E-07 

Std. Dev. 1.09631E-07 5.525811E-10 0.000366946 4.43477E-06 1.16133E-05 2.26966E-05 8.71333E-07 

Best Solution 2.70E-12 2.70E-12 9.92E-10 1.55E-10 9.92E-10 1.31E-08 2.31E-11 

x1 NA 49 47 43 47 46 53 

x2 NA 16 12 13 26 12 13 

x3 NA 19 26 21 12 21 20 

x4 NA 43 46 44 46 38 34 

Gear ratio NA 0.144281 0.144311 0.144292 0.14431 0.14417 0.144284 

% error NA 0.001% 0.022% 0.009% 0.022% -0.079% 0.003% 
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Table 5.11 Significance of the difference against the BA-NE and BA-ANs on 

the gear train problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods BA BA-NE 
BA-AN 

(assessment-ii) 

BA-AN 

(assessment-iv) 
BA-NER 

BA - S NS NS S 

BA-NE S - S S S 

BA-AN 

(assessment-ii) 
NS S - NS S 

BA-AN 

(assessment-iv) 
NS S NS - S 

BA-NER S S S S - 
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suggested that BA-NER was able to produce robust solutions. 

 

5.5.2. Single objective problem with constraints 

 

BA-NER was also tested on the four engineering design problems. Each problem 

had a set of constraints that must not be violated. It should be noted that BA-NER 

was also not designed to adapt to constrained problems. The same parameter 

setting as in Table 3.7 was employed on BA-NER, while nr, ci and limit were 

empirically tuned (see Table 5.12). As described in Section 3.3.2, for each 

problem, the algorithm was run 30 times, with 30,000 evaluations as the stopping 

criterion. 

The experimental results produced by the BA-NER and other algorithms are 

shown in Table 5.13. In general, the average of the solutions produced by BA-

NER was comparable to other algorithms. Table 5.14 suggests that BA-NER was 

not as good as BA-NE on the welded beam problem. However, BA-NER and BA-

NE equally performed on the pressure vessel problem.  Furthermore, these two 

algorithms outperformed the BA on this problem. The BA-NER also produced the 

best solution on the speed reducer problem. Meanwhile, the BA, BA-NE and BA-

NER performed equally on the tension/ compression spring problem. The BA 

neither beat the BA-NE nor the BA-NER in all cases.  

The neighbourhood size that was used to capture the final solution of each 

problem was recorded. Table 5.15 shows the significance of neighbourhood size  
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Table 5.12 Parameter setting for the engineering design problems 

No

. 
Function n m nsp e nep ngh nr limit ci 

1 

Welded 

Beam 

(4D) 

10 5 2 2 4 0.08 1/10 0.008 1 

2 

Pressure 

Vessel 

(4D) 

10 5 2 3 6 0.2 1/10 0.02 14 

3 

Tension/ 

Comp. 

Spring 

(3D) 

6 5 5 1 8 0.001 1/10 0.0001 1 

4 

Speed 

Reducer 

(7D) 

35 15 5 5 15 0.01 1/10 0.001 5 
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Table 5.13 Comparison against other algorithms on the engineering design problems 

Problem Stats. SCA PSO (µ + λ)-ES UPSOm ABC BA BA-NE BA-NER 

Welded 

Beam 

Best 

Mean 

Std. Dev. 

Evaluations 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

1.724852 

1.777692 

0.088 

30000 

1.92199 

2.83721 

0.680 

100000 

1.724852 

1.741913 

0.031 

30000 

1.734783 

1.768855 

0.040 

30000 

1.731916 

1.749546 

0.013 

30000 

1.725877 

1.796066 

0.045 

30000 

Pressure 

Vessel 

Best 

Mean 

Std. Dev. 

Evaluations 

6171.00 

6335.05 

NA 

20000 

6059.7143 

6289.92881 

310 

30000 

6059.701610 

6379.938037 

210 

30000 

6544.27 

9032.55 

996 

100000 

6059.714736 

6245.308144 

205 

30000 

6289.745562 

6853.349849 

609 

30000 

6283.130775 

6749.722776 

542 

30000 

6234.788218 

6711.8400 

499 

30000 

Tension/ 

Com.  

Spring 

Best 

Mean 

Std. Dev. 

Evaluations 

0.012669 

0.012923 

0.00059 

25167 

0.012665 

0.012702 

0.000041 

15000 

0.012689 

0.013165 

0.00039 

30000 

0.0131200 

0.0229478 

0.0072 

100000 

0.012665 

0.012709 

0.013 

30000 

0.00988 

0.01036 

0.00048 

30000 

0.00988 

0.01027 

0.00048 

30000 

0.00988 

0.01036 

0.0004 

30000 

Speed 

Reducer 

Best 

Mean 

Std. Dev. 

Evaluations 

2994.744241 

3001.758264 

4.0 

54456 

NA 

NA 

NA 

NA 

2996.348094 

2996.348094 

0 

30000 

NA 

NA 

NA 

NA 

2997.058412 

2997.058412 

0 

30000 

2997.843904 

3005.295876 

3.2 

30000 

2998.348453 

3003.358497 

3.1 

30000 

2996.87953 

3002.371449 

2.9 

30000 
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Table 5.14 Significance of the difference against other algorithms on 

engineering design problems  

 

Problem Algorithms BA BA-NE BA-NER 

Welded 

Beam 

Problem 

BA - S S 

BA-NE S - S 

BA-NER S S - 

 

Pressure 

Vessel 

BA - S S 

BA-NE S - NS 

BA-NER S NS - 

 

Tension/ 

Com. 

Spring 

BA - NS NS 

BA-NE NS - NS 

BA-NER NS NS - 

 

Speed 

Reducer 

BA - NS S 

BA-NE NS - S 

BA-NER S S - 

 

 

Table 5.15 Distribution of neighbourhood size corresponds to the number of 

runs  

Problem ngh 
Number 

of runs 
Avg. solution Std. Dev. Significance 

Welded 

Beam 

0.08 16 1.79447 0.049181 
NS (0.803) 

0.008 14 1.79795 0.041441 

Pressure 

Vessel 

0.2 10 6796.98333 635.645625 
NS (0.93) 

0.02 20 6626.69667 464.9944074 

Tension/ 

Compression 

Spring 

0.001 9 0.010212194 0.000307181 

NS (0.541) 
0.0001 21 0.010309777 0.000386236 

Speed 

Reducer 

0.01 7 3004.337143 1.913092734 
NS (0.066) 

0.001 23 3002.154348 3.038526596 
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corresponding to the number of runs. It could be said that the distribution of 

neighbourhood size was not significant on all problems since the significance 

value given by the Mann Whitney test was more than 0.05. This analysis 

suggested that the procedure of neighbourhood reduction on the BA-NER when 

solving these four design problems was not necessary.  

 

However, on the speed reducer problem, even though the difference was not 

significant, the value given by the Mann Whitney test was close to 0.05, which 

was 0.066. Furthermore, 23 (77%) runs ended up with neighbourhood size (0.001) 

(see Figure 5.14). In fact, for the best solution (2996.87953), the solution 

stagnated at 3000.75 for as long as 13775 evaluations. It was assumed that at this 

stage, the bees were overshooting the global optimum. Once the neighbourhood 

size dropped to 0.001, the improvement was remarkable, which was turning to 

2997.84. This suggested that neighbourhood size (0.001) was suitable to avoid the 

overshooting problem. Figure 5.15 shows the optimisation progress of the BA, 

BA-NE and BA-NER on the speed reducer problem.  

This experimental result supported the idea that the combination of 

neighbourhood enlargement and reduction was beneficial to a problem that suffers 

from stagnation. Also, it should be emphasised that the BA did not outperform the 

BA-NE and BA-NER in any case. Table 5.16 (a)-(d) provides the values of design 

variables (xi) and constraints (gi) of the welded beam, pressure vessel, tension/ 

compression spring and speed reducer obtained by the BA-NER. 
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Figure 5.14 Neighbourhood size preferences on the speed reducer problem 

 

 

 

Figure 5.15 Optimisation progress of the algorithms on the speed reducer 

problem 
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Table 5.16 The xi and gi values of the best solution obtained by the BA-NER 

on the (a) welded beam, (b) pressure vessel, (c) tension/ compression spring 

and (d) speed reducer problem 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Variables and Constraints Values 

x1 0.205281 

x2 3.48091 

x3 9.03491 

x4 0.20581 

g1 -0.23993 

g2 -0.33519 

g3 -0.00053 

g4 -3.43176 

g5 -0.08028 

g6 -0.23554 

g7 -6.28462 
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(b) 

 

 

 

 

 

 

 

  

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

 

Variables and Constraints Values 

x1 0.798587 

x2 0.395051 

x3 41.375 

x4 199.643 

g1 -5E-05 

g2 -0.00033 

g3 -2.14E+08 

g4 -40.357 

Variables and Constraints Values 

x1 0.050061 

x2 0.375824 

x3 8.49478 

g1 -0.00017 

g2 -6.5E-05 

g3 -4.86003 

g4 -0.71608 
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(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables and Constraints Values 

x1 3.50001 

x2 0.700002 

x3 17 

x4 7.34552 

x5 7.80322 

x6 3.35033 

x7 5.28671 

g1 -0.07392322 

g2 -0.1980054 

g3 -0.48981651 

g4 -0.901351904 

g5 -2.7E-05 

g6 -1.5E-05 

g7 -0.7024992 

g8 0.000000 

g9 -0.583333333 

g10 -0.057181112 

g11 -0.011256763 
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5.5.3. Multi objective problem with constraints 

  

The BA-NER was also tested on a multi-objective problem with a number of 

constraints. In a multi-objective problem, every objective has the same priority. It 

means that there was no objective that is superior to any other and optimisation on 

all objectives should be dealt with simultaneously. Since all objectives held the 

same priority and solved at the same time, it was not possible to sort and rank the 

solutions as practiced in a single objective problem. Because of this, the elite bees 

(e) were no longer employed.  

A solution in a multi-objective problem is known as a Pareto optimal if and only 

if there is no other solution that dominates it (Lee 2010). Specifically, a solution 

(x1) was said to dominate the other solution (x2) if these both conditions were met 

(Li et al., 2008):  

1. The solution x1 is no worse than x2 in all objectives 

2. The solution x1 is strictly better than x2 in at least one objective  

For a multi-objective problem with constraints, a multiple-disk clutch brake 

problem was chosen (Deb and Srinivasan 2006; Osyczka 2002). The problem 

objectives were to minimise the brake mass (kg) and the stopping time (s), where 

all design variables were discrete. The details of the problem including the 

diagram, formulation and constraints are provided in Appendix C. 

5.5.3.1. Experimental setup 

The following experiment was to compare the performance of the BA-NE and 

BA-NER. Before performing simultaneous optimisation on the problem, the 
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algorithms solved the two objectives consecutively. First, the algorithms were to 

minimise the brake mass.  The design variables that were associated with the best 

solution of the brake mass were then substituted in the function of stopping time.  

Afterwards, the algorithms minimised the stopping time. The design variables that 

resulted in a minimum stopping time were substituted in the brake mass 

formulation. The points of minimum brake mass and stopping time were then 

plotted on a graph and a straight line that connected these points was sketched. 

This procedure was to provide a boundary line to a Pareto optimal. The solutions 

that lay above the line were considered as poor, while those below the line were 

considered promising ones.  

Since there is no sorting and ranking procedure of the solutions obtained in a 

multi-objective problem, there would be no global search performed. Optimising 

without global search also meant that the improvement was solely relying on the 

neighbourhood search. Neighbourhood search was performed by all the bees 

(solutions) that were generated at the initialisation stage. Each bee, followed by 

the same number of forager bees, returned to discovered flower patches for 

neighbourhood search.  

The parameter setting for the BA-NE was obtained by a trial and error procedure.  

The parameter setting that produced the best solution of the BA-NE was then used 

by the BA-NER. With this parameter setting, a number of experiments were run 

on the BA-NER to obtain the best nr, ci and limit. The best parameter 

configuration on the BA-NER was captured and shown in Table 5.17.  With these 
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Table 5.17 Parameter settings for the BA-NE and BA-NER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Single objective Multi-objective 

n 10 10 

m 8 10 

nsp 3 2 

e 5 0 

nep 5 0 

ngh 1.0 1.0 

nr 1/10 1/10 

limit 0.001 0.001 

ci 3 5 
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parameter settings, the BA-NE and BA-NER were run 30 times and each run was 

terminated when the number of iterations reached 1000.  

5.5.3.2. Experimental results 

The best solution of each objective that was obtained by the BA-NE and BA-NER 

was as in Table 5.18 (a) and (b). With the minimum brake mass as the objective, 

both algorithms produced the same brake mass and stopping time, which were 

0.470485kg and 14.83092s, respectively. When minimising the stopping time, the 

BA-NE produced shorter time, which was 3.805228s. However, after substituting 

the design variables into the brake mass formulation, BA-NER generated a lighter 

brake mass, which was 1.845918kg.  

The points of minimum brake mass and stopping time that were obtained by the 

BA-NE and BA-NER were plotted on the graph (   ) and a line that connected 

these two points was sketched (see Figure 5.16 (a) and (b)).  With simultaneous 

optimisation on the objectives, the Pareto optimal solution that had been obtained 

by the BA-NE and BA-NER were tabulated on the same graph (   ). In terms of 

proximity, BA-NER produced more solutions that were closer to this line, 

whereas solutions obtained by BA-NE were more scattered away from the line. 

The solutions that were farther from the line were marked with (/) sign.  

To make the comparison clearer, the experiment was repeated 100 times. Figure 

5.17 (a) and (b) shows the distribution of the Pareto optimals. Even though it was 

not easy to compare proximity to the boundary line, the solutions obtained by BA- 

NER were more clustered along the line compared to the BA-NE. This analysis 

implied that the BA-NER was able to find more Pareto optimals solutions that  
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Table 5.18 The best solution of (a) brake mass and (b) stopping time 

 

(a) 

 BA-NE BA-NER 

Brake Mass, f1 0.470485 0.470485 

x1 70 70 

x2 90 90 

x3 1.5 1.5 

x4 780 780 

x5 3 3 

Stopping Time, f2 

(by substitution) 
14.83092 14.83092 

 

 

(b) 

 BA-NE BA-NER 

Stopping Time, f2 3.805228 3.845122 

x1 79 78 

x2 109 108 

x3 1.5 1.5 

x4 990 990 

x5 8 8 

Brake Mass, f1 (by 

substitution) 
1.865767 1.845918 
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(a) 

 

 

(b) 

 

Figure 5.16 Proximity of 30 Pareto optimals to the boundary line obtained by 

the (a) BA-NE and (b) BA-NER 
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(a) 

 

 

(b) 

 

Figure 5.17 Proximity of 100 Pareto optimals to the boundary line obtained 

by the (a) BA-NE and (b) BA-NER  
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were closer to the boundary line compared to the BA-NE. 

 

5.6.      Summary 
 

Neighbourhood size as used in the early works contributed to overshooting the 

global optimum in four mathematical benchmarks. A calibration procedure was 

performed to identify the most appropriate neighbourhood size when approaching 

the global optimum. The analysis from this calibration procedure supported the 

view that the neighbourhood size should be small when approaching the global 

optimum to avoid the overshooting problem. Alongside neighbourhood reduction, 

the adaptive enlargement of the search neighbourhood was also employed to help 

the bees to escape from local optima.  

The BA-NER significantly produced better solutions when solving multi-pocketed 

problems. However, the role of adaptive enlargement and reduction of the search 

neighbourhood was not necessary when solving easy and smooth test functions. 

Experimental results also showed that the BA-NER had advantages in finding 

better solutions on the gear train problem. Furthermore, the BA-NER generated 

the best solution on one of the four engineering design problems. This new 

approach was also able to reach more promising solutions in a multi-objective 

problem.  
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Chapter 6 

CONCLUSION 

 

This chapter summarises the contributions and conclusions of this study. It also 

provides suggestions for further research. 

 

6.1.      Contributions 

First, this work investigated the types of neighbourhood in the Bees Algorithm, 

rather than proving the superiority of one algorithm over the others. In addition, 

this research found that the modified algorithms were robust, with respect to 

various criteria, as follows: 

1. The performance of the modified algorithms was never worse than that of 

the original BA, even after parameter tuning was carried out on the latter 

algorithm. For that reason, it could be said that the good performance of 

the modified algorithms was not caused by their own parameter selection. 

Implicitly, this procedure proved that the proposed methods were not 

parameter-dependent.  

2. The statistical difference obtained by the Student‟s t-test and Mann 

Whitney test showed that the solutions obtained by the modified 

algorithms were better than the BA, regardless of the random initialisation.  
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Second, this research proved that an adjustment to the neighbourhood size 

influenced the performance of the proposed algorithms.  However, for some 

problems, the amendment to the neighbourhood size only was not sufficient to 

improve the solutions.  

Third, the proposed algorithms were tested on well-known mathematical 

benchmarks which each exhibited different characteristics. Also, the algorithms 

were tested on selected engineering design problems. The problems were single 

objective with and without constraints, and multi-objective with constraints. 

Fourth, this work supported the No Free Lunch Theorem by showing that the 

modified algorithms did not always outperform the original algorithm in solving 

all classes of problems, without some efforts being spent on other parameter(s). 

For instance, a good performance of the BA-NER came only after adopting 

neighbourhood reduction.  

Finally, this work attempted to solve the problem faced by the algorithm by using 

the TRIZ approach.  

 

6.2. Conclusions 

In conclusion, all objectives stated in Chapter 1 have been met. 

Adaptive enlargement of the search neighbourhood in the BA was developed 

(Objective 1).  This method gave better performance when compared to that of 

the standard BA. The problem landscape highly influenced the performance of the 
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proposed algorithm. A smooth surface encouraged bees to converge quickly to the 

global optimum, while a multi-pocketed surface might cause difficulties to the 

bees. The adaptive enlargement of the search neighbourhood was unable to help 

the bees to improve the solution in the latter type of problem and thus caused 

stagnation.  

An asymmetrical search neighbourhood, which was derived from a TRIZ 

inventive solution, was proposed. This kind of search neighbourhood was 

introduced as opposed to a symmetrical search neighbourhood, which was 

normally practiced in the BA. Four different types of asymmetrical search 

neighbourhood were analysed. Experimental results suggested that an amount of 

neighbourhood size should be located at the both sides of the current best solution 

in order to improve the solutions quickly. In addition, the evaluation of the 

solution on one side of the current best solution prior to the other side and vice 

versa simply produced a similar outcome. Also, the analysis confirmed that under 

a certain measurement, the asymmetrical search neighbourhood did not give a 

positive influence to the proposed algorithm (Objective 2).  

The calibration procedure revealed that the neighbourhood size used in early 

works contributed to overshoot the global optimum. The algorithm with adaptive 

enlargement and reduction of the search neighbourhood significantly produced 

better solutions when solving multimodal problems that had a noisy landscape 

(Objective 3). The small size of the neighbourhood, which was caused by the 

neighbourhood reduction procedure, helped the bees to avoid the overshooting 

problem. In addition, the large neighbourhood size that resulted from no 
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improvement made after a number of iterations assisted the bees to get out from 

local optima. Despite this remarkable improvement, adaptive enlargement and 

reduction of the search neighbourhood was not necessary for the algorithm when 

solving easy optimisation problems.  

 

6.3. Further research 

First, this work investigated the effect of asymmetrical search neighbourhood on 

the algorithm. This kind of search neighbourhood was derived from a TRIZ 

inventive solution and aimed to reduce the noisy surface. Under a certain 

measurement, the asymmetrical search neighbourhood was not capable of 

accomplishing optimisation on multi-pocketed problems. Hence, it is worth 

studying asymmetrical search neighbourhoods with different measurements. 

Furthermore, there were seven inventive solutions listed in solving the problem. 

However, in this work, only one solution was considered. There is plenty of room 

to explore the other six solutions in respect to the current condition of the BA. 

Also, researchers might be interested to formulate the problem in different ways. 

As a result, different mapping on the TRIZ matrix could be done and other 

solutions could be derived. Besides, researchers might want to improve the BA in 

terms of ease of use, automation, etc. Improving these features might worsen 

other features in the BA. This contradiction might be solved by applying other 

TRIZ inventive solutions. 
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Second, the modified algorithms were tested on selected engineering design 

problems, with and without constraints. For constrained optimisation problems, it 

is worth studying how to handle the constraints. Good constraints handling would 

reduce the time consumed and thus high computation costs could be avoided.    

Third, this study found that the combination of adaptive enlargement and 

reduction in the search neighbourhood positively affected the algorithm, 

especially when solving problems with multi-pocketed surface. In the proposed 

algorithm, three new parameters were introduced, in addition to the six parameters 

of the BA. Since this work was to study the effects of various neighbourhoods, no 

effort has been made to reduce the number of parameters. Hence, it is suggested to 

develop a similar mechanism of neighbourhood enlargement and reduction, but 

with fewer parameters. 

Finally, this work focused entirely on the search neighbourhood of the algorithms. 

The algorithms which were developed based on the current situation of the BA 

exposed other elements that are worth studying. The elements are initialisation, 

randomisation, recruitment and global search.  
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Appendix A 
 

The schematic compound gear train that is to be designed is as Figure A.1.  

 

Figure A.1 Schematic of a gear train 

 

The gear ratio is defined as: 

Gear ratio = 
    

    
 

and it should be as close as possible to 1/ 6.931. Subsequently, the objective 

problem is written as below: 

Min f (x) = 
 

     
 

    

    
 
 

   
 

     
 

    

    
 
 

,  

Subject to            i=1,…4 and xi are all integers. 
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Appendix B  
 

Problem1: Minimisation of the cost of a welded beam 

The problem is to design a welded beam for a minimum fabrication cost, subject 

to constraints on shear stress(τ), bending stress in the beam (σ), buckling load on 

the bar (Pc) and end deflection of the beam  (δ). There are four design variables 

x1, x2, x3 and x4 corresponding to h, l, t and b, respectively. Figure B.1 shows the 

schematic of a welded beam.   

 

 

Figure B.1 Welded Beam 

 

The problem can be expressed as follows: 

Min f(x) =         
                         

Subject to: 

g1(x) =                     
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g2(x) =                    

g3(x) =        

g4(x) =         
                           

g5(x) =           

g6(x) =                   

g7(x) =                   
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Problem2: Minimisation of the total cost of designing a pressure vessel 

A cylindrical vessel is capped at both ends by hemispherical heads as shown in 

Figure B.2. The objective is to minimise the total cost, including the cost of the 

material, forming and welding. The design variables are: thickness x1, thickness of 

the head x2, the inner radius x3, and the length of the cylindrical section of the 

vessel x4. The variables x1 and x2 are integer multiples of 0.0625 inch.  

 

 

 

 

 

 

Figure B.2 Pressure Vessel 

 

The problem can be stated as follows: 
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Min f(x) =                        
          

           
    

Subject to: 

g1(x) =               

g2(x) =                

g3(x) =    
    

 

 
   

              

g4(x) =         

        

        

          

          

 

Problem3: Minimisation of the weight of a tension/ compression spring  

This problem is to minimise the weight of the tension/ compression spring, 

subject to constraints on minimum deflection, shear stress, surge frequency, limits 

on outside diameter and on design variables. The design variables are the wire 

diameter x1, the mean coil diameter x2, and the number of active coils x3. The 

schematic of a tension/ compression spring is shown in Figure B.3. 
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Figure B.3 Compression/ Tension Spring 

 

The objective function can be stated as:  

Min f(x) =           
  

Subject to: 

g1(x) =  
  
   

       
    

g2(x) =
   

      

          
     

  
 

      
      

g3(x) =  
        

  
   

   

g4(x) =
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Problem4: Minimisation of the weight of a speed reducer 

The weight of the speed reducer is to be minimised subject to constraints on 

bending stress of the gear teeth, surfaces stress, transverse deflections of the shafts 

and stresses in the shafts. The schematic of a speed reducer is shown in Figure 

B.4. The variables x1,x2,…x7 are the face width, module of teeth, number of teeth 

in the pinion, length of the first shaft between bearings, length of the second shaft 

between bearings and the diameter of the first and second shafts. All variables are 

continuous, except x3 that is integer.  

 

 

 

 

Figure B.4 Speed Reducer 

 

The problem can be expressed as follows: 

Min f(x) =          
          

                               
  

x72+7.4777x63+x73+0.7854(x4x62+x5x7  2) 

Subject to: 

g1(x) = 
  

    
   

     

g2(x) = 
     

    
   

      

g3(x) = 
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g4(x) = 
      

 

      
      

g5(x) =
 

     
 
  

     

    
 
 

              

g6(x) =
 

    
 
  

     

    
 
 

               

g7(x) =
    

  
     

g8(x) =
   

  
     

g9(x) =
  

    
     

g10(x) =
         

  
     

g11(x) =
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Appendix C 
 

 

 

Figure C.1 Multiple-disk clutch brake 

 

Figure C.1 is the schematic of a multiple-disk clutch brake design. Two 

conflicting objectives are considered: 

(i) Minimisation of mass (f1) of the brake system in kilogram, formulated 

as follows: 

Min               
     

               

 

(ii) Minimisation of stopping time (f2) in seconds, formulated as follows: 

 

Min             
    

      
  

 

There are five design variables to be considered:                     , where 
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Subject to: 

                      

                           δ    

                      

                                

                        

                   

                   

                        

                  

                  

              

           

           

Following are the parameters: 

   
 

 
µ     

  
    

 

       
       

     
     

  
      

µ      
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Appendix D 

Table D.1 Summary of the experimental results of the three types of search neighbourhood in comparison against the Bees 

Algorithm 
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