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Abstract 
 
 
Machine learning programs can automatically learn to recognise complex patterns and 

make intelligent decisions based on data. Machine learning has become a powerful tool for 

data mining. A great deal of research in machine learning has focused on concept learning 

or classification learning. Among the various machine learning approaches that have been 

developed for classification, inductive learning from examples is the most commonly 

adopted in real-life applications. 

Due to non-uniform data formats and huge volume of data, it is a challenge for scientists 

across different disciplines to optimise the process of knowledge acquisition from data 

with naïve inductive learning techniques. The overarching purpose of this research is to 

develop a novel and efficient rule induction algorithm a learning algorithm for inducing 

general rules from specific examples that can deal with both discrete and continuous 

variables without the need for data pre-processing. 

This thesis presents a novel rule induction algorithm known as RULES-8 which utilises 

guidelines for the selection of seed examples, together with a simple method to form rules. 

The research also aims to improve current pruning methods for handling noisy examples. 

Another major concern of the work is designing a new heuristic for controlling the rule 

formation and selection processes. Finally, it concentrates on developing a new efficient 

learning algorithm for continuous output using fuzzy logic theory. The proposed algorithm 

allows automatic creation of membership functions and produces accurate as well as 

compact fuzzy sets. 
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Chapter 1 

INTRODUCTION 
 

1.1 Background 

In recent years, robust advancements in the field of information technology have made the 

capacity of data collection and storage increase with incredible speed. Besides, the 

informationalisation, which is taking place rapidly on a large scale of different 

socioeconomic activities, has created an immense amount of information. Millions of 

different databases are being used that hold gigabytes or even terabytes of data. There is a 

need to tame those enormous sources of data into useful information and knowledge. Data 

mining, which is now no longer a new concept, has attracted a great deal of attention in the 

information industry and in society as a whole.  

Because of the diversity of disciplines that contributes to data mining, data mining research 

is expected to generate a large variety of data mining systems. These systems can be 

categorised as database-oriented, statistics, machine learning, visualisation pattern 

recognition, neural networks, and so on (Jiawei and Micheline, 2000) 

Machine learning is a branch of artificial intelligence, studying approaches that can 

automatically learn to recognise complex patterns and make intelligent decisions based on 

the available data.  In real applications, inductive learning as an example of such 

approaches has been one of the most commonly adopted methods for classification besides 

concept learning and classification learning. 

Perhaps the most well known inductive learning method is decision tree induction - a 

method in which a model is created to predict the value of the target variable based on 

http://en.wikipedia.org/wiki/Artificial_intelligence�
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several input variables. A tree can be learned by splitting the source set into subsets based 

on an attribute value test. Because of the popularity of this representation technique, many 

decision tree algorithms have been developed. ID3 (Quinlan, 1986) is one of the most 

popular algorithms and has been improved several times by a number of researchers ever 

since it was invented. The most recent versions of this algorithm are C4.5 (Quinlan, 1993) 

and C5 (Rulequest Research, 2001). Both are integrated into a commercially available 

software package. Although the decision tree method has a high predictive accuracy and 

can be easily interpreted by users in using the decision tree for a model, the output attribute 

must be categorical. The problem is there can be a lot of attributes as the size of data 

increases, the trees created from numeric datasets can be complex and less efficient. 

Another method is rule induction which represents classification knowledge in the form of a 

set of rules to describe each class. Like decision tree learning, there are many rule induction 

algorithms. Among them are AQ (Michalski, 1969; Michalski et al., 1986; Cervone et al., 

2001; Michalski and Kaufman, 2001), CN2 (Clark and Niblett, 1989; Clark and Boswell, 

1991) and RIPPER (Cohen, 1995). All these algorithms employ the same general method 

that was used for the first time in the AQ algorithm. AQ21 is the most recent version of the 

AQ family (Michalski and Wojtusiak, 2006).  

The AQ family and some of the algorithms mentioned above have been improved from 

time to time and have been able to solve some drawbacks of the decision tree. However, 

since they extract rules and then remove the covered examples from a training set of 

examples, fragmentation had been one of the problems of these algorithms.  

RULES (RULE Extraction System) is a family of simple inductive learning algorithm 

inspired by ideas from both AQ and CN2. The RULES family is different from the other 

algorithms in that it does not induce rules on a class-per-class basis but instead considers 
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the class of the selected seed example as the target class (Shehzad, 2009). It then attempts 

to induce rules that cover as many examples of the target class as possible using the rule 

evaluation function. At present, the RULES family has extended to Rules-7 (Pham and 

Khurram, 2010). Among members of the RULES family, Rules-5 (Pham and Samuel, 2004) is 

a noteworthy simple but efficient algorithm. It is also known as the Dyna algorithm. Its 

strength lies in its ability to handle continuous attributes. RULES-5 also employs a more 

efficient search mechanism as well as a new post-pruning technique (Pham and Bigot, 

2004) in order to handle noisy data. Thanks to these advantages, RULES-5 has been 

successfully employed in different applications. However, it also has drawbacks that 

prevent it from being adopted for many real-life applications. Hence, there is the need for a 

new method that is able to achieve good accuracy, compact rule sets and natural induction. 

1.2 Aim and objectives 

The overarching aim of this thesis is to propose a novel rule induction algorithm, a simple 

and efficient method which is able to deal with either discrete or continuous variables 

without the need to preprocess data.  

This research is based on RULES-5 (Pham and Bigot, 2004) developed at Cardiff University. 

This algorithm employs rule forming as a specific method for condition selection based on 

the consideration of distributions of examples. However, each seed example leads to the 

creation of a particular rule, and different sequences of seed examples can yield different rule 

sets. A new method will be developed to make sure that the sequence of seed examples leads 

to the best rule set. In addition, the new method also improves, the accuracy and 

simplification of rule forming, as well as expands its real life applications. 

Finally, the resulting inductive learning algorithm will be further modified for handling 

continuous outputs. 
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To achieve the overall aim of the research, the following objectives were set: 

- To survey current inductive learning techniques. 

- To develop a new simple algorithm that has guidelines for the selection of seed examples. 

- To design a new heuristic for controlling the rule formation and selection processes. 

- To develop a new algorithm to handle continuous output using fuzzy logic. 

1.3 Methodology 

To provide background for this research, an in-depth review of the existing literature was 

carried out regarding inductive learning techniques and fuzzy logic for inductive learning. 

The review was intended to cover both discrete and continuous outputs.  

It can be said that the inductive learning algorithms devised so far for extracting rules 

applied for discrete output have helped solve many real life problems. However, in today’s 

world, the fact that data is accumulating in surmounting volume as well as diversity is 

exceeding the capability of the existing algorithms. It is necessary, therefore, to invent new 

algorithms or improve current ones for more effective and beneficial data mining. With 

respect to this demand in the field, this research presents a new algorithm, RULES-8, and 

compares it against its predecessor RULES-5 on a diverse population of datasets.  

RULES-8 proves to be able to provide a decent result for discrete output, especially when 

it employs a new heuristic measure to evaluate rule quality. Based on RULES-8, another 

algorithm – TVFuzz – was designed to deal with continuous output. The new TVFuzz 

technique was also compared against the DynaFuzz using some real models.  
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1.4 Outline of the thesis 

Chapter 1 provides a brief introduction to the research and states its objectives. 

Chapter 2 reviews and gives background information about the research area, including the 

main inductive learning concepts and descriptions of number of existing algorithms based 

on these concepts. 

Chapter 3 presents a novel rule induction algorithm called RULES-8 that utilises 

guidelines for the selection of seed examples and proposed a simple method to form rules. 

This chapter also details an improved pruning method for handling noisy examples. 

Chapter 4 designs a new heuristic for controlling the rule formation and selection 

processes. The performance of the heuristic is compared with that of other heuristics. 

Chapter 5 describes a new efficient learning algorithm for continuous output using fuzzy 

logic theory. This algorithm allows automatic creation of membership functions and 

produces accurate as well as compact fuzzy sets. It also resolves some drawbacks in 

RULES-5 

Finally, chapter 6 summarises the thesis and proposes directions for further research. 
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Chapter 2 

LITERATURE REVIEW 
 

2.1 Preliminaries  

Human history has entered its third millennium. The information accumulated over 

thousands of years has exceeded the capacity of human brains. A perpetuating concern in 

the science world has been how to make that huge mountain of data useful. Research in 

this regard has achieved some degree of success, yet scientists are far from being satisfied 

with what they can learn from the data. During the middle of the 1980s, the concept of 

Knowledge Discovery from Data (KDD) was conceived and began to help people explore 

potential knowledge and benefits of immense databases. KDD is a process including 

several phases among which data mining is the most essential (Jiawei and Micheline, 

2000). This is the phase when new information is discovered. The process of knowledge 

discovery is itself the course of receiving, analysing, applying, and improving the 

achievements of previous discoveries. Various examples of this area of the science world 

are database technology, statistics, pattern recognition, information retrieval, neural 

networks, knowledge-based systems, artificial intelligence, high-performance computing, 

data visualisation, and so on. 

Like other knowledge discovery tools, machine learning (ML) also has the central purpose 

of “learning from data.” ML algorithms play an essential role in data mining. Most 

research in machine learning has focused on concept learning or classification learning. 

The mechanism of this kind of learning is the induction of the definition for a general 

category from specific positive and negative examples of that category. In real-world 



21 

application domains, inductive learning from examples is perhaps the most commonly 

adopted machine learning approache developed for classification.  

Inductive learning is simply known as a process of acquiring knowledge by drawing 

inductive inferences from data. The study of inductive learning is mainly motivated by the 

desire to automate the process of knowledge acquisition during the construction of expert 

systems. This chapter presents a background on machine learning with a focus on inductive 

learning developed for prediction and classification models. The chapter is organised as 

follows: Section 2.2 presents a framework for knowledge discovery including input and 

output format as well as discovery method. Section 2.3 describes in detail inductive 

learning approaches to classification including major decision tree and rule induction 

algorithms. Section 2.4 presents some basic concepts of fuzzy logic and existing 

algorithms for automatic fuzzy rule generation from numerical examples. A summary of 

the chapter is presented in section 2.5 

2.2 A framework for knowledge discovery  

 

 

 

 

 

 

Figure 2.1: A framework for knowledge discovery in databases 
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Figure 2.1 illustrates the basic components of a prototypical system for knowledge 

discovery in database. In this model, the input includes raw data from the database, 

information from the data dictionary, additional domain knowledge, and a set of user 

defined biases that provides a high-level focus. All these will be computed and evaluated 

by the discovery method so that new knowledge is discovered. Discovered knowledge is 

the output and can be directed to the user or back into the system as new domain 

knowledge. 

As can be seen in Figure 2.1, the discovery method is the central process designed to 

extract knowledge from data. This activity usually involves two processes, namely 

identifying and describing noteworthy patterns in a concise and meaningful manner. The 

identification process, also referred to as unsupervised learning in ML, categorises or 

clusters records into subclasses that reflect patterns inherent in the data. The descriptive 

process, in turn, summarises relevant qualities of the identified classes. This process is 

known as supervised learning in ML.  

Pattern Identification: Discovering pattern classes is a problem of pattern identification or 

clustering. There are two basic approaches to this problem: traditional numeric methods 

and conceptual clustering. Traditional methods of clustering come from cluster analysis 

and mathematical taxonomy (Dunn and Everitt 1982). These algorithms produce classes 

that have a maximum level of similarity within classes but a minimum level of similarity 

between classes. Various measures of similarity have been proposed, most based on 

Euclidean measures of distance between numeric attributes. Accordingly, these algorithms 

only work well on numeric data. An additional drawback is their inability to use 

background information, such as knowledge about similar cluster shapes. There have been 

attempts in conceptual clustering to overcome these problems. These methods work with 
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nominal and structured data and determine clusters not only by attribute similarity but also 

by conceptual cohesiveness, as defined by background information.  

Although successful under certain conditions, these methods do not always equal the 

human ability to identify useful clusters, especially when dimensionality is low and 

visualisation is possible. This situation has prompted the development of interactive 

clustering algorithms that combine the computer’s computational powers with the human 

user’s knowledge and visual skills. 

Concept Description: Describing the useful pattern classes once having been identified is a 

more important task than just simply enumerating them. In machine learning, this process 

is known as supervised concept learning from examples, i.e. to derive an intentional 

description of a class given a set of objects labeled by class. Empirical learning algorithms, 

the most common approach to this problem, work by identifying commonalities or 

differences among class members. Well-known examples of this approach include decision 

tree inducers (Quinlan 1986), rule induction (Michalski et al 1969), neural networks 

(Rummelhart and McClelland 1986), and genetic algorithms (Holland et al. 1986). 

Some learning approaches, such as explanation-based learning (Mitchell, Keller, and 

Kedar-Cabelli 1986), require a set of domain knowledge (called a domain theory) in order 

to explain why an object falls into a particular class. Other approaches combine empirical 

methods and knowledge-based ones. The main drawback of empirical methods is their 

inability to use available domain knowledge. This failure can result in descriptions that 

encode obvious or trivial relationships among class members. Discovery in large, complex 

databases clearly requires both empirical methods to detect the statistical regularity of 

patterns and knowledge-based approaches to incorporate available domain knowledge. 
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Because different tasks require different forms and amount of information, they often 

influence discovery algorithm selection or design. The next section discusses a learning 

method developed for classification model. 

2.3 Inductive learning for classification model 

The concept of learning has been tackled by many authors. Simon (1983), on a broader 

term, defined learning as changes in the system that are adaptive in the sense that they 

enable the system to do the same task or tasks drawn from the same population more 

efficiently and more effectively the next time. Shavlik and Dietterich (1990) narrowed it 

down to describe inductive learning, which is a process accomplished by reasoning from 

supplied examples to produce general rules.  

Inductive learning can be categorised as either supervised inductive learning or 

unsupervised inductive learning (Afify, 2004). In supervised learning a supervisor gives 

direct feedback to the learner about the appropriateness of its performance. This is in sharp 

contrast to unsupervised learning where this kind of feedback is absent. Since this thesis 

focused on supervised inductive learning procedures, all the algorithms discussed in this 

section refer to supervised inductive learning methods. 

2.3.1 Decision tree learning 

The major purpose of the decision tree method is to select step by step an attribute to 

decompose training set into several subsets until there remains a unique class in each 

subset. The result of this method generally takes the form of a tree, with class names as 

leaves and other nodes representing attribute-based tests for possible outcomes as 

branches. 
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Let S represent an example set and { }1 2, ,... nA A A A= be the condition attribute set with 

observable value sets { }1 2, ,...,i i i i
nV V V V= respectively. C is the decision attribute with 

domain { }1 2, ,... kC C C C= . The general decision tree inductive learning procedure is as 

follows: 

 

Step1: Select attribute thi to decompose example set S into 1 2, ,...,i i inS S S  (n is possible value 

of attribute thi ). For a continuous attribute iA , a binary test is carried out, and a 

corresponding branch i i
tV V<  is created, with a second branch corresponding to i i

tV V> , 

where i
tV  is a threshold in the domain of iA ) 

Step 2: For each subset ikS , if there is a unique class in it, then stop decomposing, and label 

the node as a class. Otherwise, continue to decompose ikS  in the same way as described in 

step 1. 

 

Figure 2.2: The general Decision tree inductive learning procedure 
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Table 2.1 shows an example data set and Figure 2.2 displays a decision tree constructed 

from this data. 

Table 2.1 Training set for the Alarm problem 

Example Sensor_1 Sensor_2 Alarm 
1 -1 0 OFF 
2 0 0 OFF 
3 -1 1 ON 
4 0 1 OFF 
5 0 1 OFF 
6 1 1 ON 
7 -1 0 OFF 
8 -1 1 ON 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Representation of the formed decision tree 
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In order to classify an object, one starts at the root of the tree, evaluate the test, and takes 

the branch appropriate to the outcome. The process continues until a leaf is encountered, at 

which time the object is asserted to belong to the class named by the leaf. 

The earliest Decision tree learning system is Concept Learning System (CLS). It was 

introduced by Hunt et al  (1966). In the CLS series, Hunt decomposes S by using a 

heuristic look-ahead method which utilises values which appear most frequently. CLS has 

nine versions, numbered from CLS1 to CLS9. The main difference between the first eight 

versions and the latest version CLS9 is that the former versions use only binary 

decomposition while CLS9 can provide non-binary decomposition. 

In 1983, Quinlan presented the ID3 inductive learning algorithm [Quinlan 1983], also a 

descendant of the CLS. ID3 uses an information entropy measure to guide the 

decomposition.  

Information entropy is defined as: 

 

 2( ) ( , ) log ( , )i i
i

I S p C C S p C C S= − = =∑   (2.1) 

 
i ik

ik i

j
i j

A v
v V

|S |
E(A ,S) I(S )

|S|=
∈

= ∑     (2.2) 

Where ( , )ip C C S= be the proportion of instance in S 

  I(S) is the whole information entropy in set S 

E(Ai,S) denotes the information entropy when S is divided based on the condition attribute 

Ai.  
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The information gain is defined as: 

 

 ( , ) ( ) ( , )i iGain A S I S E A S= − .   (2.3) 

 

ID3 chooses the optimal decomposition at a node by maximising the information gain 

(Pitas et al. 1992). 

By using the information gain as a guide, ID3 tends to choose the decomposition based on 

the condition attribute that has more values. This might cause ID3 to miss more general 

decision trees. Therefore, Quinlan introduced the information gain ratio to overcome this 

weakness (Quinlan 1986a). The information gain ratio is defined as: 

 

( ) ( , )_ ( , )
( )

i
i

i

I S E A SGain ratio A S
IV C
−

=     (2.4) 

Where ( )iIV A  denotes the degree of randomness of the distribution of the examples in S 

when partitioned using Ai  

 

 
i ik

ik i

j j
i 2

A v
v V

|S | |S |
IV(A ) log ( )

|S| |S|=
∈

= − ∑      (2.5) 

 

ID3 was also developed into a series of learning algorithms known as the ID3 family.  
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ID3-IV is a version of the ID3 family, modified with the information gain ratio (Quinlan 

1986a) and named by Cheng (Cheng et al. 1988). Cheng et al. (1988) continued to 

introduce Generalised ID3, or GID3. GID3 uses the information gain ratio and only 

generates a new branch (i.e. forms a new subset) when encountering a relevant value. The 

relevance of a value is evaluated by a user-determined tolerance level. This modification is 

intended to avoid over-specific decision trees. 

PRISM is based on ID3 but uses a modified information entropy measure which tries to 

reduce redundant condition values in the learning output (Cendrowska 1988). 

Subsequent to ID3 were ID4 (Schlimmer and Fisher 1986), ID5 (Utgoff 1988), ID5R and 

ID5R-hat (Utgoff 1989). 

C4.5 is an industrial version of ID3 (Quinlan 1993). It has the same basic structure as ID3-

IV. It features pruning of decision trees and then conversion of the pruned decision trees 

into rule sets. In addition, C4.5 can handle continuous values, noise and missing values. 

Breiman et al. (1984) present CART (Classification and Regression Trees). CART is 

designed for handling continuous-valued examples. In such examples, all the condition 

attributes have continuous values and the decision attribute has discrete values. As a 

Decision tree inductive learning method, CART can only generate binary decision trees. It 

uses the Gini index of diversity denoted by i(t). As a measure of node impurity to guide the 

decomposition of the example set at a node t, i(t) is defined as follows: 

 ( ) ( | ) ( | )
j k

i t p j S p k S
≠

= ∑    (2.6) 

Where S denotes the set at node t, j and k are classes in set S and p(j|S), p(k|S) denotes the 

probability of examples of class j and k in set S in turn. 
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Let S represents a continuous-valued example set and { }1 2, ,... nA A A A= be the condition 

attribute set. The learning process of CART can be briefly described as follows: 

At a node t, CART searches through the condition attributes { }1 2, ,... nA A A one by one. For 

each condition attribute, it finds the best decomposition by maximising the decrease of 

impurity. Then, it selects the best decomposition from n candidates. 

Clearly, at a node, the best decomposition is dependent on the measure of impurity. When 

that measure changes, the best decomposition will also change. 

Crawford presents an extension of CART (Crawford 1990), OC1, which is able to generate 

oblique decompositions (Murthy et al. 1994). The oblique decomposition is the 

decomposition that is not parallel to coordinate axes in example sets. A smaller decision 

tree can be generated by using oblique decomposition. 

2.3.2 Rule induction 

Mitchell (1978) introduced the Candidate-Elimination algorithm, which served as the basis 

to develop the Rule induction method. The Rule induction method is to establish a 

hypothesis rule space which is based on a given example set and then to refine (search 

through) the hypothesis rule space to find more general rules. The hypothesis rule space is 

also called the version space. 

Among the rule inductive methods devised based on the Candidate-Elimination algorithm 

is Cohen and Feigenbaum’s  (1982) Extension-Against method. The algorithm is described 

as follows. 
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Let S be an example set. The examples are categorised as either positive or negative 

according to their classes. If an example belongs to the class of interest, it is considered 

positive. Examples belonging to all other classes are considered negative.  

H denotes the version space. Initially, H contains all the possible concepts which are based 

on the given positive examples. Then, as examples are presented, candidate concepts are 

eliminated from H. The elimination process goes on until only one kind of concept for the 

same class remains in H, and this is the desired kind of concept. The procedure can be 

described in more details as follows: 

When a positive example is presented, H will be generalised, that is, specific concept 

descriptions are removed from H. When a negative example is presented, H will be 

specialised, that is, very general concept descriptions are removed from H. In this way, H 

gradually shrinks until only the desired concept descriptions remain. The learned concept 

is represented in the form “IF [description] THEN [decision]”. 

This algorithm can find the most acceptable concepts based on the given example set. 

However, for a large example set, it can be very difficult or even impossible to construct 

the initial H. 

Perhaps one of the best known Rule induction methods is AQ algorithm. Credited to 

Michalski (1975), this algorithm is similar in principle to the Candidate-Elimination 

algorithm. The main difference is that, initially, H contains the null description (the most 

general concept) only. Let an example set S be divided into a positive set S + and a negative 

set S − . The examples in S +  are in the same class, and S + ∪ S − =S and S + ∩ S − =∅. The 

basic idea in the AQ algorithm is to find a cover CV( S + | S − ) which covers S +  against S − , 
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that is, it separates S +  from S − . A simplified version of the AQ algorithm is as Figure 2.3 

follows: 

 

Step1: Randomly select a “SEED” example e from the positive examples set S + . 

Step 2: Generate an orderly disjoint "START" G(e| S − ), e∈ S + . The star is against the set S − .  

Step 3: Find the “best rule” from the START according to user-defined criteria. Remove 

the examples covered by this rule from S + . 

Step 4: If the positive example set S +  is not empty, return to step 1 and continue the 

procedure. Otherwise, the obtained rules constitute a complete and consistent concept of 

S + . 

 

Figure 2.4: A simplified version of the AQ algorithm procedure
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In the most general sense, the START G(e| S − ) of example e, e∈ S + , is a set of all possible 

alternative non-redundant descriptions of example e that do not cover examples in S − . 

S − thus acts as a constraint on the possible descriptions of e. The START can be generated 

using a number of methods (Michalski 1983) which constitute the kernel of the AQ 

algorithm. 

The advantages of AQ are two-folds: first, because the search is based on a Seed Example 

(SE), AQ will find the shortest descriptions for a concept; second, AQ can control the 

concepts forming procedure by using some user-defined criteria. 

Various AQ based inductive learning algorithms have been developed such as AQ11 

(Michalski 1983) and AQ14-NT (Pachowicz and Bala 1991). AQ15 is an incremental 

version of AQ11 (Michalski et al. 1986). AQ15-GA incorporates a genetic algorithm 

technique to guide the search (Vafaie and DeJong 1994). Some multistage versions of AQ 

based algorithms, AQ17-DCI, AQ17-FCLS, AQ17-HCI and AQ17, have also been 

reported (Wnek and Michalski 1994). Over the past decades, AQ algorithms have 

continued to be developed into a series of learning algorithms called the AQ family. The 

most recent member of the AQ family is AQ21 (Wojtusiak and Michalski, 2006). 

Another renowned method is CN2 (Clark and Niblett, 1989). It is a rule induction 

algorithm named after its authors. CN2 attempts to combine the good features of the 

decision tree algorithm ID3 with the rule induction algorithm AQ. CN2 uses a subset of the 

expression language VL1 used in AQ and also retains the beam search strategy of AQ. 

However, it differs from AQ in that it does not rely on specific examples during search but 

instead considers all specialisations of a complex similar to ID3, which considers all 

attributes in order to find the best one to split at a particular node. The specialisation of a 

complex involves either adding a new conjunctive term or removing a disjunctive element 
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in one of its selectors. Because of this top-down search for complexes, the CN2 algorithm 

is able to incorporate a cutoff method similar to the one used in decision tree pruning that 

can halt specialisation of a complex when no further statistically significant specialisations 

can be found. This results in an extension of the search space to include rules that do not 

perform perfectly on the training data.  

Similarly to ID3, to handle continuous attributes CN2 algorithm divides the range of values 

of each attribute into discrete subranges and then creates two thresholds on the attribute at 

subrange boundaries. One advantage is that CN2 also includes any missing values for both 

discrete and continuous-valued attributes. In case of discrete attributes, the missing value is 

replaced with the most commonly occurring value of that attribute in the training data. For 

continuous attributes, the mid-value of the most commonly occurring subrange is used to 

replace any missing values.  

The original version of CN2 produces an ordered set of rules. In the case where an 

example satisfies none of the rules, it is classified using the default rule at the end of the 

list, which assigns it the class label of the most frequently occurring class within the 

training data. CN2 uses two rule evaluation measures, namely entropy and statistical 

significance. The latter is measured using the likelihood ratio statistic (Kalbfleish, 1979) 

which is defined as:  

 

1

( , ) 2 log
n

i
i

i i

fLikelihoodRatio F E f
e=

= ∑    (2.7) 
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The function assesses the significance of the complex by comparing the observed 

frequency if  of examples satisfying the complex among classes with the expected 

frequency ie  if the rule made random predictions.  

The CN2 algorithm has been modified in a later version (Clark and Boswell, 1991), which 

enables it to generate an unordered set of rules. It also replaced the entropy rule evaluation 

measure with the Laplace expected error estimate which is given by:  

 

cov
cov

1( , , ) class
class ered

ered

nLaplaceAccuracy n n k
n k

+
=

+
  (2.8) 

 

Where  

classn is the number of examples of the target class covered by the rule  

coveredn is the total number of examples covered by the rule  

k is the number of classes  

The modified algorithm also incorporates a stopping criterion to check if the Laplace 

estimate of the best complex is better than that of the default rule. If this is the case, the 

induction continues for the current class. Otherwise, the new complex is not deemed to 

bring about an improvement and so rule generation for the current class terminates. Since 

the new version of CN2 generates an unordered set of rules, so a conflict resolution 

approach is also adopted in order to resolve any clashes that might occur. In case a new 

example satisfies more than one rule predicting different classes, a probabilistic method is 
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used in which the distribution of covered examples of each rule among classes is summed 

to find the most probable class.  

Among the more recent methods of rule induction is the RULES family. RULES (RULe 

Extraction System) is a family of simple inductive learning algorithms which inherit ideas 

from both AQ and CN2 algorithms. The RULES family is different from the other 

algorithms in that it does not induce rules on a class-per-class basis but considers the class 

of the selected seed example as the target class. It then attempts to induce a rule that covers 

as many examples of the target class as possible using the rule evaluation function.  In 

addition, the RULES family only marks the examples covered by previous rules instead of 

removing them.  

RULES (Pham and Aksoy, 1993), RULES-2 (Pham and Aksoy, 1995b) and RULES-3 

(Pham and Aksoy, 1995a) were the first three algorithms in the family. Later, Pham and 

Dimov developed a new rule induction algorithm RULES-3 Plus (Pham and Dimov, 

1997b) that incorporated the beam search strategy instead of greedy search and used a new 

rule evaluation measure called the H-measure (Lee, 1994), which is defined as:  

 

[2 2 . 2 (1 )(1 )]p n p P p PH
P N p n P N p n P N
+

= − − − −
+ + + + +

  (2.9) 

Where, P is the total number of positive examples (examples belonging to the target class);  

N is the total number of negative examples (examples not belonging to the target class); 

p is the number of positive examples covered by the newly formed rule; 

n is the number of the negative examples covered by the newly formed rule. 
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At present, the RULES family has extended to Rules-7 (Shehzad, 2010). Among members 

of the RULES family, Rules-5 (Bigot, 2004) is a noteworthy simple but efficient 

algorithm.  

2.3.3 Rules-5 algorithm 

Rules-5 (Bigot, 2004) is also known as the Dyna algorithm, which is described in Figures 

2.5 and 2.6. In the Dyna algorithm, the search strategy employed is based on seed 

examples. Each seed example leads to the creation of particular rules, and different 

sequences of seed examples can yield different rule sets. Thus, a guideline for selection of 

the seed examples needs to be developed in the later version.  

It should be noticed that in the Dyna algorithm, a new heuristic for rules evaluation is 

designed. The heuristic is defined as follows: 

 

1new

unclassified

pp nS
p n P N

−

−

⎛ ⎞= −⎜ ⎟+ ⎝ ⎠
   (2.10) 

 

Where: P is the total number of positive examples (examples belonging to the target class);  

N is the total number of negative examples (examples not belonging to the target class); 

p is the number of positive examples covered by the newly formed rule; 

n is the number of the negative examples covered by the newly formed rule. 

p_new is defined as the number of positive examples covered by the newly formed 

conjunction of conditions and not covered by previously created rules 
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P_unclassified is defined as the number of examples belonging to the target class and not 

classified by the rule set formed so far 

Step 1: Select Seed example (SE), SE is considered a positive example 

Step 2: Find conditions of a new rule according to a consideration of distribution of 

examples by looking for the closest example (CE) not belonging to the target class and 

covered by the rules formed so far 

Step 3: If there are uncovered examples, go back to Step 1 

Figure 2.5 Dyna rule forming procedure 

 

 

 

 

 

 

 

Figure 2.6:  Graphical representation of the coverage of the new rules  

Most inductive learning algorithms dealing with discrete classes use a similar input data 

structure. The following section discusses another trend of learning for handling 

continuous classes. 
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Attribute2 

SE 

CE 
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2.4 Learning fuzzy logic from examples 

Fuzzy set theory has been in existence for almost half a century and has been proved 

extremely useful in many control applications as well as non-control applications requiring 

decision-making in uncertain environments. This section summarises some basic concepts 

of fuzzy logic and existing algorithms for fuzzy inductive algorithms. 

2.4.1 Fuzzy logic basic concepts 

- A fuzzy set F defined on U is characterised by its membership function ( ) [0,1]F uμ ∈  (Klir 

and Folger, 1992), ( )F uμ is the degree of membership. ( ) 0F uμ =  means that u does not 

belong to the fuzzy set and ( ) ]0,1]F uμ ∈  means that u belongs to the fuzzy set with a 

degree of certainty of ( )F uμ . 

- Membership function ( )F uμ maps the degree to which an element u belongs to a fuzzy 

subset F from domain U to the range [0,1] 

Supposing that U is the set of all non-negative integers and F is a fuzzy subset of U labeled 

"approximately 10," then, the fuzzy subset can be represented by a membership 

function, 10 ( )uμ . Figure 2.7 depicts a possible definition of the membership 

function.According to this fuzzy subset, the number 10 has a membership value of 1.0 (i.e., 

10 is exactly l0), and the number 9, a membership value of 0.5 (i.e., 9 is roughly 10 to the 

degree of 0.5). Note that a membership function in general can be linear, trapezoidal, 

convex curve, or in many other forms (Lee 1990, Dummerrnuth 1991) but to facilitate 

computation, triangular forms are widely adopted because they are easy to define as 

Tr(a,b,c) (Figure 2.8) This representation will be employed in this study. 
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Figure 2.7: MF defining the concept "approximately 10" on a fuzzy system. 

 

 

 

 

 

 

 

 

Figure 2.8: Triangular membership functions 
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- A fuzzy rule R is composed of a number of possible fuzzy conditions on each of the m 

attributes and an output fuzzy set ( )out
RF it can be represented as follows: 

1 ... ...i m out
R R R RCond Cond Cond F∧ ∧ ∧ ∧ →  

2.4.2 Fuzzy logic system 

Fuzzy Logic Systems (FLS) are one of the main developments and successes of fuzzy 

logic. They are motivated by the biological brain’s ability to learn, reason and generalise 

using noisy or uncertain information (Lei 1999).  

A general structure of a fuzzy logic system consists of four units including fuzzification, 

defuzzification, inference engine, and rule base (Dadone 2001; Lee 1990a; Passino and 

Yurkovich 1998). A general structure of a fuzzy logic system is described in Figure 2.9 

 

 

 

 

 

 

 

Figure 2.9: A general structure of a fuzzy logic system 

To illustrate these steps, the following example (Grabot, 1998) will be used. A fuzzy rule 

set is needed in order to control a car moving towards a wall, bringing it close to the wall 
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in the most efficient way. There are two attributes, the speed of the car 

( [ ]0 / ,60 /Speed km h km h∈ ), and its distance from the wall ( [ ]Distance 0 ,60m m∈ ), and 

one output, the deceleration ( 2 20 / ,12 /Brake m s m s⎡ ⎤∈ ⎣ ⎦ ). 

a. Fuzzification 

Fuzzification is the process which translates measured values into real values between 0 

and 1. It also assigns these values degrees of truth, usually called membership degrees, for 

the linguistic values of the input linguistic variables. For the instance above, the tree 

parameters are decomposed as follows (Figure 2.10): 

The linguistic variables of attribute Speed is divided into the following fuzzy sets: zero, 

low, moderate and high. 

The linguistic variables of attribute Distance is divided into the following fuzzy sets: zero, 

short, moderate and long. 

The linguistic variables of attribute Brake is divided into the following fuzzy sets: zero, 

soft, medium, hard and max. 

 

 

 

 

Figure 2.10: Decompose in membership function 
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b. Rule base 

The rule base of a fuzzy logic system consists of a set of fuzzy IF-THEN rules. To help the 

generation of all rules, the typical method of multidimensional matrix representation called 

the decision table. Each cell in the matrix is called a fuzzy subspace and represents a 

possible rule when linked with a particular output. Table 2.2 shows the decision table 

generated from the previous example.  

Table 2.2:  Decision table 

Speed         Distance Zero Short Moderate Long 

Zero Zero Zero Zero Zero 

Low Max Medium Soft Zero 

Moderate Max Hard Medium Zero 

High Max Hard Medium Zero 

 

Rule base set includes: 

1. IF [Speed = Zero] and [Distance = Zero] THEN [Brake = Zero] 

2. IF [Speed = Zero] and [Distance = Short] THEN [Brake = Zero] 

3. IF [Speed = Zero] and [Distance = Moderate] THEN [Brake = Zero] 

4. IF [Speed = Zero] and [Distance = Long] THEN [Brake = Zero] 

5. IF [Speed = Low] and [Distance = Zero] THEN [Brake = Max] 

6. IF [Speed = Low] and [Distance = Short] THEN [Brake = Medium] 

…. 
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c. Reference engine 

Since fuzzy logic systems are stimulated by the biological brain’s capability to make 

decisions, the inference engine or fuzzy reasoning is considered a method of cloning a 

human decision making process of judging and giving a proper fuzzy output depending on 

the inputs and the rule base 

d. Defuzzification 

Defuzzification is the mapping from the linguistic fuzzy output defined over an output 

universe into a crisp output space (Awadalla 2005). There are many defuzzification 

strategies. The most common strategies are the Weighted Average, Mean of Maxima and 

Centroid. 

- Weighted Average method used the formula: 
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Where E is the new example,  

outC is the centre of the output fuzzy set of the considered rule 

r is the total number of rules              

- The Mean of Maxima method (MoM): This method selects the mean of output values 

within the group of possible output fuzzy sets that correspond to the highest membership 

degree. If more than one solution exists, the mean is taken. A graphical example can be 

seen in Figure 2.11. 
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- The Centre of Gravity method (CoG): This method was first suggested by Zadeh 

(Roychowdhury and Wang, 1996). The output value is obtained by assessing the centre of 

gravity of the resulting group of fuzzy sets (considering overlapping or not). A graphical 

example is shown in Figure 2.12. This method can be highly computationally costly since 

the centre of gravity might not always be easy to assess, in particular when considering 

overlapping.     

 

 

 

 

 

Figure 2.11: M.o.M defuzzification 

 

 

 

 

 

 

Figure 2.12: C.o.G defuzzification 
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2.4.3 Generating fuzzy rule from numerical data 

Perhaps the most popular method is the Wang and Mendel algorithm (Wang and Medel, 

1991). The method determines a mapping from the input space to the output space based 

on the combined fuzzy rule base using a defuzzification procedure. Follows is a detailed 

description of this method: 

 

Step 1: Divide the Input and Output Spaces into Fuzzy Regions 

Step 2: Generate Fuzzy Rules from the Given Data Pairs 

Step 3: Assign a Degree to Each Rule 

Step 4: Create a Combined FAM Bank 

Step 5: Determine a Mapping based on the FAM Bank 

 

Figure 2.13:  Wang and Medel procedure intended to generate fuzzy rules 

The mapping was proven to be capable of approximating any real continuous function to 

an arbitrary accuracy. However, as mentioned by the authors, there is a problem of 

“growing memory”: when more training examples become available, more rules are 

generated and the selection of the best rules becomes difficult. To help this selection, 

Delgado and Gonzalez use a method based on the definition of frequencies in each fuzzy 

domain, which allows one to identify if any possible rule is a “true rule”(Delgado and 

Gonzalez, 1993). 
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Similar to Wang and Mendel’s algorithm, Nozaki and Ishibuchi (1997) proposed to use a 

particular heuristic method to automatically generate fuzzy if-then rules from numerical 

data. The fuzzy if-then rules with non-fuzzy singletons (i.e., real numbers) in the 

consequent parts are generated by assessing single real numbers (instead of membership 

functions) which are to be stored in each cell of the decision table. Since there is no 

defuzzification step involved, Nozaki and Ishibuchi’s algorithm is quite simple. However, 

the problem of growing memory still remains. 

Sebag and Schoenauer(1994) observed that the problem of designing membership 

functions might be just as complex as designing fuzzy rules. Both methods above need to 

pre-define membership functions, which is actually not an easy task. Various methods for 

automatic creation of membership functions have been devised. However, all still cannot 

solve the existing problems, not to mention the rise of new problems. One of the 

challenges is the demand of post-processing the large fuzzy rule sets formed to acquire 

more compact rule sets.  

To resolve the problems for automatic membership functions design, Hong and Lee (1996) 

proposed a method, by which the fuzzification of output is performed using a clustering 

procedure that regards examples in the training set (T) with close output values as 

belonging to the same fuzzy set.  Appropriate membership functions are then assigned to 

represent each fuzzy set. Initial membership functions are assigned to attributes in the form 

of a triangle base equal to a small interval predefined by a user. After attributes have 

received their initial membership functions, the decision table is built using the examples 

in T. The decision table is then simplified through the process of merging membership 

functions from which the final rule sets can be extracted.  
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Nevertheless, a problem still exists with the merging process regardless of the attempt to 

improve it by the authors Hong and Lee (1999). That is, it can be highly computationally 

expensive as the number of attributes increases. Hong and Chen (2000) also attempted to 

develop a method to simplify the initial membership functions. Their method has been 

proven to be more efficient and accurate, yet it does not reduce considerably the 

computational cost. This method, however, generates a set of fuzzy rules where the 

membership functions have been automatically created and the universes of discourse are 

not equally partitioned. It should be noted that it is still a challenge when the number of 

attributes increases. 

Another type of algorithms based on machine learning techniques was developed by Shann 

and Fu (1995). This algorithm uses the neural network structure that allows the use of the 

error back-propagation learning algorithm for fuzzy rule generation. However, one of the 

weaknesses of this algorithm is that the membership functions need to be predefined. There 

are many other algorithms using neural networks and most of them use a method similar to 

Shann and Fu’s algorithm.  

In Yuan and Shaw (1995), continuous attributes are first fuzzified using human experts or 

techniques such as fuzzy clustering, and then the membership functions are employed by 

each attribute as possible branches during the construction of the decision tree. However, 

this algorithm is designed for classification problems only and it is not clear how it would 

handle real or fuzzy outputs. In addition, the membership functions also need to be 

predefined.  

Perhaps the most common way of creating fuzzy decision trees is to use a method similar 

to the FILM algorithm (Jeng et al., 1997) where a crisp decision tree is first created using 

ID3 and then fuzzification operations are applied to modify it. The membership functions 
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are created automatically, but the models can only be used for problems with discrete 

outputs; fuzzy logic is only employed to handle vagueness and ambiguity in the attribute 

values.  

Other methods also exist. Wang et al. designed an algorithm based on the PRISM learning 

strategy (Wang et al., 1999). More recently, a method was proposed using a combination 

of inductive learning and genetic algorithms (Castro et al., 2001). However, like many 

others (Ravi et al., 2001; Wang et al., 2001), all these fuzzy inductive learning methods 

have been developed only for classification problems where the fuzzy concepts are used to 

deal with noise, uncertainty and imprecision in the attribute values. 

In 2004, Bigot released a new technique called DynaFuzz that can automatically create 

input membership functions. Inheriting the advantages of its predecessors – theDyna and 

DynaSpace inductive learning algorithms, DynaFuzz can generate more compact and more 

accurate fuzzy rule sets. However, in the present world, given that databases are becoming 

more diverse with more features as well as bigger quantity, there is an increasing need for 

improving existing algorithms and developing new ones. The need for further research on 

the automation of creating output membership functions is also of no exception.  

2.5 Summary 

This chapter has given background information on different machine learning algorithms 

with attention focused on inductive learning. The basic concepts of inductive learning 

algorithms have been described and the two main types of these algorithms currently 

available presented. The chapter has also presented the basic concepts of fuzzy logic 

relevant to fuzzy rule generation. Finally, existing algorithms for automatic rule generation 

based on these concepts are discussed. 
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Chapter 3 

RULE 8: A NOVEL RULE INDUCTION LEARNING ALGORITHM 
 

3.1 Preliminaries 

Ian and Eibe (2005) observed, “We are overwhelmed with data. The amount of data in the 

world, in our lives, seems to go on and on increasing and there is no end in sight.” 

Achievements of digital archive technology have especially reinforced this observation. 

Everyday, a huge amount of data is being accumulated in all social, economic, 

technological, and production activities and is becoming highly valuable resources which 

could support or lead people to new understandings in socio-economic networking, in 

manufacturing as well as in scientific research activities. A challenge for scientists across 

different disciplines has been how to optimise the process of acquisition of knowledge 

from data.  

Inductive learning is a form of data analysis that can be used to extract models that are able 

to describe important data classes or predict future data trends. Such analysis can provide a 

better understanding of the data at large. In machine learning, many inductive methods 

have been proposed. They can be divided into two main categories, namely decision tree 

induction and rule induction.  

In rule induction, the search strategy employed is based on seed examples. Each seed 

example leads to the creation of particular rules, and different sequences of seed examples 

can yield different rule sets. In the current version of these algorithms there is no guideline 

for the selection of seed examples. The first uncovered example found in the training set 

(T) is always selected, and therefore the rule set created will depend on the storage order of 

the examples in T. 
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This chapter presents RULES-8, a proposed new rule induction algorithm that addresses 

the weaknesses of the predecessors. In particular, it selects a candidate attribute-value 

instead of a seed example to form a new rule to make sure that the candidate attribute-

value leads to the best rule. The conjunction is also formed by incrementally adding 

conditions which are selected by utilising a specific heuristic measure. In addition, a rule 

simplification technique is also improved to create more compact rule sets and minimises 

overlapping between rules. 

The chapter is organised as follows: Section 3.2 gives a detail description of the new rule 

induction algorithm. Section 3.3 discusses in detail the problems identified with Pruning 

techniques in Dyna algorithm. An improvement pruning technique will also be presented 

in this section. The next section, Section 3.4, provides the results obtained from an 

experimental evaluation of RULES-8 on some benchmark datasets. Finally, section 3.5 

summarises and concludes the chapter. 

3.2 The Novel Learning Algorithm 

3.2.1 Representation and Basis concepts 

Like its predecessors, RULES-8 also extracts IF-THEN rules directly from a set of 

examples called the training set (T). Each example is described by a vector of attribute-

value pairs, together with a specification of the class that belongs. Uncovered attribute-

value pairs are attribute-values in uncovered examples.  

Conditions on nominal attributes are equality tests of the form [ i ijA v= ], where iA  is the 

attribute and ijv  is one of its valid values. Conditions on continuous attributes are 
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inequalities of the form [ 1i iA t> ] or [ 2i iA t≤ ], where 1it  and 2it  are two thresholds in the 

domain of attribute iA .  

Seed attribute-value is a candidate condition, which if being applied to a rule, the newly-

created rule will be capable of covering the most examples   

An attribute-value constitutes a condition. If the number of attributes is an , a rule may 

contain between one or an conditions, each of which must be a different attribute-value. 

Only the conjunction of conditions is permitted in a rule and therefore the attributes must 

all be different if the rule comprises more than one condition. 

The class to be learned is called the target class. Examples of the target class in the training 

set are called positive examples. Examples in the training set that do not belong to the 

target class are called negative examples. 

A rule is said to cover an example if the example satisfies all the rule conditions. A rule is 

said to be consistent if it covers none of the negative examples in the training set, and it is 

complete if it covers all the positive instances in the training set. 

3.2.2 Learning algorithm description 

Unlike its predecessors in the RULES family and other rule induction techniques, the new 

learning algorithm begins by selecting a seed attribute-value. Based on the seed attribute-

value, this algorithm employs a specialisation process searching a general rule by 

incrementally adding new conditions to them.  

To select the best conjunction of conditions, a heuristic H measure is also used to assess 

the information content of each newly formed rule. It can be defined as follows: 
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  (3.1) 

Where  

P is the total number of positive examples (examples belonging to the target class);  

N is the total number of negative examples (examples not belonging to the target class); 

p is the number of positive examples covered by the newly formed rule; 

n is the number of the negative examples covered by the newly formed rule. 

The following figure describes the procedures of the newly proposed inductive learning 

algorithm. 
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Rule Forming Procedure 

Step 1: Select randomly one uncovered attribute-value from each attribute to form an 

array .1 .2 .[ .. ]jSETAV A A A= , then mark them in the training set T.  

Step 2: Form array expression T_EXP from SETAV 

Step 3: Compute H measure for each expression in T_EXP and sort them out according to 

the accuracy of expressions and then add them to the PRSET (highest H measure).  If the H 

measure of the newly formed rule is higher than the H measure on any rules in the PRSET, 

the new rule replaces the rule having the lowest H measure.  

Step 4: Select an expression with a potential condition ( )ijA having the highest H measure 

to find the seed attribute-value ( isA ) 

             IF the expression having the highest H measure covers correctly all covering 

example THEN the potential condition ( )ijA  is selected as a seed attribute-value ( isA ) 

              Assume that it covers n examples 

        - Removes this expression from the PRSET  

        - Go to step 7 

 ELSE go to step 5 

Step 5: Check uncovered attribute-values 

IF there are not uncovered attribute-values THEN Stop 

ELSE check uncovered attribute-values  
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 IF there are uncovered attribute-values that have not been marked 

                       THEN go to step 1 

 ELSE go to step 6 

Step 6: Form a new array SETAV by combining the potential attribute-value with other 

attribute value in the same example 1 2[ ; ;.. ]ij i ij i ij ikSETAV A A A A A A= + + +   

 Go to step 2 

Step 7: Form a set of conjunctions of condition SETCC by combining isA with other 

attribute-values, 1 2[ ; ;.. ]is i is i is ikSETCC A A A A A A= + + +  

Step 8: Form array rule Temporary Rule Set (T_RSET) from SETCC  

Step 9: Compute H measure for each expression of T_RSET and sort them out according to 

the consistency of expressions and then add them to the NRSET (highest H measure).  If 

the H measure of the newly formed rule is higher than the H measure on any rules in the 

NRSET, the new rule replaces the rule having the lowest H measure. 

Step 10: Select an expression with the conjunction of conditions ( iscA ) having the highest 

H measure to test the consistency. Assume that it covers m examples 

 IF m> n THEN  iscA  is considered as a new seed attribute-value 

  Go to step 6 

 ELSE add the new rule to RuleSet 

Go to Step 5 

Figure 3.1: A pseudo-code description of rule forming procedure 
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3.2.2.1 Seed attribute-value selection 

The proposed new mechanism, like other covering methods, searches for rules that best 

cover the examples from the target class meanwhile exclude examples belonging to other 

classes. Pham and Dimov (1997a) developed RULES-3 Plus in which the learning process 

employs a beam search method and considers all conditions extractable from, starting with 

condition having the highest H measure to form a rule. However, there are downsides in 

terms of speed and accuracy when applying to large amount of examples and values other 

than discrete values since the search space grows exponentially with the number of the 

descriptive attributes for the data. 

In the proposed new algorithm, the learning process considers each attribute-value a state 

of search space. Hence, if a data set consists of e examples, and there are n attributes of 

each example, the search space includes e * n states. To find a seed attribute-value, a hill 

climbing method is used by selecting randomly one attribute-value from each attribute to 

form an array of SETAV. An array of rules is constructed accordingly. The attribute-value 

in a rule having the highest H measure is the seed attribute-value. In this way, the 

shortcoming of the speed of beam search method using in RULES-3 Plus has been 

overcome.  

In the case of a continuous attribute, the seed attribute-value will be determined based on 

the size of neighbourhood. The size of neighbourhood is the range of attribute-values 

belonging to the target class. This can be clarified with the help of Figure 3.2, which shows 

typical data containing three classes and having ten values for a particular attribute. An 

attribute-value V4 is selected as a potential attribute-value; after employing a specialisation 

process, the range of attribute-values from V3 to V5 are found [Vmax, Vmin], the format 

of the formed condition will be min maxV V V≤ ≤   
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                                               Seed attribute-value candidate             

 

 

 

 

 

 

 

 

Figure 3.2: Illustration of the concept size of neighbourhood 

3.2.2.2 The conjunction of condition selection 

In the newly proposed learning algorithm, the condition in the temporary rule having the 

highest H measure is selected as a seed attribute-value. The condition of a rule is formed 

by incrementally adding new attribute-values. The process continues until a rule is 

generated, covering the number of examples that is not higher than that before adding more 

conditions.  

Assuming that the seed attribute-value is A with the range from min maxtoa a  and another 

attribute needs to combine is B. The following procedure is to determine the new condition 

when combining the seed attribute-value and another attribute: 

 

Examples Attribute Class 
1 V1 C1 
2 V3 C2 
3 V2 C1 
4 V4 C2 
5 V3 C2 
6 V4 C2 
7 V5 C2 
8 V6 C3 
9 V9 C3 
10 V3 C2 
11 V5 C2 
12 V10 C3 
13 V8 C3 
14 V7 C3 
15 V1 C1 
16 V4 C2 
17 V8 C3 
18 V1 C1 
19 V2 C1 
20 V7 C3

Examples Attribute Class 
1 V1 C1 
2 V3 C2 
3 V2 C1 
4 V4 C2 
5 V3 C2 
6 V4 C2 
7 V5 C2 
8 V6 C3 
9 V9 C3 
10 V3 C2 
11 V5 C2 
12 V10 C3 
13 V8 C3 
14 V7 C3 
15 V1 C1 
16 V4 C2 
17 V8 C3 
18 V1 C1 
19 V2 C1 
20 V7 C3 

Examples Attribute Class 
1 V1 C1 
15 V1 C1 
18 V1 C1 
3 V2 C1 
19 V2 C1 
2 V3 C2 
5 V3 C2 
10 V3 C2 
4 V4 C2 
6 V4 C2 
16 V4 C2 
7 V5 C2 
11 V5 C2 
8 V6 C3 
14 V7 C3 
20 V7 C3 
13 V8 C3 
17 V8 C3 
9 V9 C3 
12 V10 C3 
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The condition forming procedure 

Step 1: Initial condition of the rule [ ]min max,a a  

Step 2: Determine the range of attribute B given a = [ ]min max,a a , and following the target 

class. For example, b = [ ]min max,b b   

Step 3: Determine the range of attribute A, given b = [ ]min max,b b , and following the target 

class. For example, a = [ ]min max,new newa a− −  

 IF [ ]min minnewa a− < or [ ]max maxnewa a− >   

  THEN [ ]min min newa a −=  and [ ]max max newa a −=  

  Go to step 2 

 ELSE stop process 

  New condition are [ ]min max,a a  and [ ]min max,b b  

In case of discrete attribute min maxa a= and min maxb b=  

 

Figure 3.3:  A pseudo-code description of the condition forming procedure 
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Example: The distribution of dataset is showed in figure 3.4, the blue boxes are the 

distribution of negative examples and the yellow boxes are the distribution of positive 

examples (the target class). Assuming that the seed attribute-value is selected with the 

range from 1a  to 2a . The condition forming procedure when combining the seed attribute-

value (A) with another attribute (B) is explained with reference to the steps given in Figure 

3.3. 

 

 

 

 

 

 

 

Figure 3.4:  The conjunction selection between two continuous attribute-values 

Step 1: Initial condition of the rule [ ]min 1 max 2,a a a a= =  

Step 2: Determine the range of attribute B given A = [ ]1 2,a a  and following the target class  

Result B = [ ]1 2,b b   

Step 3: Determine the range of attribute A given B = [ ]1 2,b b , and following the target class  

Positive class 

Negative class 
b

a

1a  2a 3a

1b  

2b  
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Result A = [ ]1 3,a a  

 Due to  [ ]3 2a a>  THEN [ ]min 1a a=  and [ ]max 3a a=  

  Go to step 2 

  - Determine the range of attribute B given A = [ ]min 1 max 3,a a a a= =  and  

      following the target class.  

      Result B = [ ]1 2,b b   

- Due to [ ]min 1 max 2,b b b b= =  constant 

End process 

New condition are [ ]min 1 max 3,a a a a= =  and [ ]min 1 max 2,b b b b= =  

3.2.2.3 Illustrative learning algorithm 

To illustrate how the rule is formed in the new algorithm, the training data shown in Table 

3.1 is used. The problem involves four attributes, namely Heat Treatment (HT), Material 

(M), Tolerance (T) and Finish (F) which have output values respectively as follow: 

- Heat Treatment: Yes, No 

- Material: Steel-3135, Aluminum, Steel_1045 

- Tolerance: It can be a range of continuous values from 7 to 14. 

- Finish: High, Medium, Low 
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The output system can be from R1 to R4. The rule forming procedure is explained with 

reference to the steps given in Figure 3.1 

Step 1: A Set of Attributes and Values is constructed by selecting randomly attributes-

values from 4 attributes, for examples SETAV = {[Heat Treatment = Yes], [Material = 

Steel_3135], [Tolerance = 10], [Finish = Low]} which can be clarified as table 3.2 below: 

Table 3.2: Data set         SETAV 

Examples Heat Treatment Material Tolerance Finish Route 
1 Yes Steel_3135 10 Medium R2 
2 No Aluminum 12 Medium R3 
3 Yes Steel_3135 8 Medium R2 
4 No Steel_1045 14 Low R3 
5 No Aluminum 7 High R4 
6 Yes Steel_1045 9 Medium R1 
7 No Aluminum 9 Medium R3 
8 No Aluminum 10 High R4 
9 No Aluminum 10 Low R3 
10 Yes Steel_1045 7 Medium R1 
11 No Steel_1045 7 Low R3 

 

Step 2,3: Form array expression T_EXP using the conditions stored in SETAV, the 

following expressions are formed and stored in PRSET: 

 1. IF [Material = Steel_3135] THEN [Route = R2]; H = 0.489175  

 2. IF [Finish = Low] THEN [Route = R3]; H =0.340278 

 3. IF [Heat Treatment = Yes] THEN [Route = R2]; H = 0.07102 

 4. IF [Tolerance = 10] THEN [Route = R4]; H = 0.015947 
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Step 4: A rule is produced as the first expression in PRSET applies to only one class. 

Therefore [Material = Steel_3135] is a seed attribute-value 

NewRule: IF [Material = Steel_3135] THEN [Route = R2]; H = 0.489175 

Step 6: Form a set of conjunctions of conditions SETCC = {[Material = Steel_3135] and 

[Tolerance = 14], [Material = Steel_3135] and [Finish = Medium], [Material = Steel_3135] 

and [Heat Treatment = No]} 

Steps 7,8: Form array rule Temporary Rule Set (T_RSET) and NRSET then as follows: 

1: IF [Material = Steel_3135] and [Finish = Medium] THEN [Route = R2]; H =0.489167 

2: IF [Material=Steel_3135] and [Heat Treatment= No] THEN [Route = R2]; H =0.489167 

3: [Material = Steel_3135] and [Tolerance = 14] THEN [Route = R2]; H =0.345893 

Step 9: The expressions 1 and 2 have the highest H measure but they cover 2 examples that 

are not bigger than NewRule. Thus, NewRule is added to RuleSet.  

Rule 1: IF [Material = Steel_3135] THEN [Route = R3]; H = 0.489175 

Rule 1 can classify examples 1 and 3 

The process continues to Step 5 and goes to Step1 

Step 1: Four attributes-values continue to be selected to form SETAV. For example,  

SETAV = {[Heat Treatment=No], [Material=Steel_1045], [Tolerance=9], [Finish = High]} 

Step 2: Form array expression T_EXP from SETAV 

 1. IF [Heat Treatment = No] THEN [Route = R4], H = 0.012138 
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 2. IF [Material = Steal_1045] THEN [Route = R1], H = 0.07102 

 3. IF [Tolerance = 9] THEN [Route = R1], H = 0.050219 

 4. IF [Finish = High] THEN [Route = R4], H = 0.489167 

Step 3: PRSET is adjusted as follows: 

 1. IF [Finish = High] THEN [Route = R4], H = 0.489167 

 2. IF [Finish = Low] THEN [Route = R3]; H =0.340278 

 3. IF [Heat Treatment = Yes] THEN [Route = R2]; H = 0.07102 

 4. IF [Tolerance = 9] THEN [Route = R1], H = 0.050219 

The first expression applies to only one class. Like other steps to form Rule 1, a new rule is 

obtained.  

Rule 2: IF [Finish = High] THEN [Route = R4], H = 0.489167 

Rule 2 covers examples 5, 8. 

The process continues to Step 5 and goes to Step1 and then another rule is obtained 

Rule 3:  IF [Finish = Low] THEN [Route = R3]; H =0.340278 

Rule 3 covers examples 4, 9 and 11. 

The process continues to Step 5 and goes to Step1 

Step 1: Form SETAV = {[HT = Yes]; [M = Aluminum]; [T = 11]; [F = Medium]} 

Step 2: Form array expression T_EXP from SETAV 
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 1. IF [Heat Treatment = Yes] THEN [Route = R1], H = 0.07102 

 2. IF [Material = Aluminum] THEN [Rote = R3], H = 0.014384 

 3. IF [Tolerance = 7] THEN [Route = R1], H = 0.015947 

 4. IF [Finish = Medium] THEN [Route = R3], H = 0.011415 

Step 3: The new PRSET 

 1. IF [Heat Treatment = Yes] THEN [Route = R1], H = 0.07102 

 2. IF [Material = Steel_1045] THEN [Route = R1]; H = 0.07102 

 3. IF [Heat Treatment = No] THEN [Route = R3], H = 0.056521 

 4. IF [Finish = Medium] THEN [Rote = R1], H = 0.022552 

Step 4: The expression having the highest H measure covers more than one class. Thus, the 

process proceeds to step 5 and then continue to step 1.  

The process repeats until there are no more uncovered attribute-values that have not been 

marked. The following is the PRSET at that time. 

1. IF [Heat Treatment = Yes] THEN [Route = R1], H = 0.07102 

 2. IF [Material = Steal_1045] THEN [Rote = R1], H = 0.07102 

 3. IF [Material = Aluminum] THEN [Route = R3], H = 0.014384 

 4. IF [Finish = Medium] THEN [Rote = R3], H = 0.011415 

The potential attribute-value is a condition in the expression having the highest H measure. 

It is [Heat Treatment = Yes]  
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Step 6: Form a new array set SETAV by combining potential attribute-value with other 

attribute-value. Following is a new SETAV  

SETAV = {[Heat Treatment = Yes] and [Material = Steel_1045], [Heat Treatment = Yes] 

and [Tolerance = 9], [Heat Treatment = Yes] and [Finish = Medium]}. 

Step 2,3: A new PRSET is formed as follows: 

1: IF [Heat Treatment = Yes] and [Material = Steel_1045] THEN [Route = R1]; H 

=0.489167 

2: IF [Heat Treatment = Yes] and [Tolerance = 9] THEN [Route = R1]; H =0.489167 

3: [Heat Treatment = Yes] and [Finish = Medium] THEN [Route = R1]; H =0.345893 

Step 4: A rule is produced as the first expression in the PRSET applies to only one class. 

Therefore, [Heat Treatment=Yes] and [Material=Steel_1045] can be a seed attribute-value. 

NewRule : IF [Heat Treatment = Yes] and [Material = Steel_1045] THEN [Route = R1],  

H =0.489167 

Step 6: Form a set of conjunctions of conditions SETCC = {[Heat Treatment = Yes] and 

[Material = Steel_1045] and [7≤Tolerance ≤9], [Heat Treatment = Yes] and [Material = 

Steel_1045] and [Finish = medium]} 

Steps 7, 8: Form array rule Temporary Rule Set (T_RSET) and NRSET then as follows: 

1. IF [Heat Treatment = Yes] and [Material = Steel_1045] and [Finish = Medium] THEN 

[Route = 1], H = 0.489167. 
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2. IF [Heat Treatment = Yes] and [Material = Steel_1045] and [7≤Tolerance ≤9] THEN 

[Route = 1], H = 0.022552. 

Step 9: The expression 1 has the highest H measure but it covers 2 examples that are not 

higher than the number of examples covered by NewRule. Thus, NewRule can be added to 

RuleSet. 

Rule 4: IF [Heat Treatment = Yes] and [Material = Steel_1045] THEN [Route = R1],  

H =0.489167 

Rule 4 covers examples 6 and 10. 

The process continues to Step 5.  

The expression having the highest H measure in the PRSET at that time is   

IF [Material=Aluminum] THEN [Route = R3], H = 0.014384 

 The potential attribute-value is [Material = Aluminum] and goes to Step 6 

Step 6: Form a new array SETAV by combining the potential attribute-value with another 

attribute-value. SETAV = {[Material = Aluminum] and [Heat Treatment = No], [Material 

= Aluminum] and [9≤Tolerance ≤10], [Material = Aluminum] and [Finish = Medium]} 

Steps 2,3,4: The process finds out a seed attribute-value [Material = Aluminum] and 

[Finish = Medium].  

With this seed attribute value, the process continues some steps as in forming Rule 4 

above. The outcome is a new rule as follows and is added to RuleSet: 
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Rule 5: IF [Material = Aluminum] and [Finish = Medium] THEN [Route = R3],  

H = 0.277843 

Rule 5 covers examples 2 and 7. 

There are no remaining unclassified examples in the dataset, the procedure stops at that 

time. The final RuleSet includes 5 rules (Rule 1, Rule 2, Rule 3, Rule 4, and Rule 5) 

3.3 Rule Simplification 

Like predecessors in RULES family and other inductive learning algorithms, the presence 

of noisy data is also a problem in the learning process. In dealing with noisy data so far, the 

pruning technique is a standard method that can avoid overfitting the training data set as 

well as reducing the error and complexity of induced models.  

Learning in the presence of noisy data sometimes leads to the output of learning that 

comprises a large number of rules with low coverage. To address these drawbacks, Bigot 

(2004) presented the post-pruning technique that creates a new rule by merging two 

existing rules 1 (R1) and rule 2 (R2) covering examples from the same class.  

By this way, if a condition exists for a particular attribute in two existing rules, R1 and R2, 

a new rule is created by merging them. The merging of conditions between R1 and R2 is 

performed by carrying out the following operations: 

Continuous attribute: If a condition exists for a particular attribute in both 

rules
1 1min max

[ ]i i
R R

iV A V and≤ ≤  
2 2min max

[ ]i i
R R

iV A V≤ ≤ . The new condition in the new rule is 

min maxi i
new rule new rule

iV A V
− −

⎡ ⎤≤ ≤⎣ ⎦  
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Where   

1 2

1 2

min min min

max max max

min ,

max ,

i i i
new rule R R

i i i
new rule R R

V V V

V V V

−

−

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 

Otherwise, no condition will be formed for this attribute in the newly formed rule.  

Discrete attributes: If a condition exists for a particular attribute in both rules and if the 

attribute values in the conditions of both rules are the same ( 1 2
i i

R RV V= ), then the same 

attribute value is used to form a condition in the newly formed rule. Otherwise, no 

condition will be formed for this attribute in the newly formed rule. 

As one can see, Dyna algorithm is an efficient rule simplification method. However, during 

the merging process, all rules are used to form a new rule have been removed from rule set. 

Thus, the attempt to optimise a given rule set for more general ones may be trapped at local 

optimal solution. For instance, a rule set (RSet) shown in Figure 3.5 contains 8 rules. 

RSET = {Rule 1, Rule 2, Rule 3, Rule 4, Rule 5, Rule 6, Rule 7, Rule 8}. The noise level is 

set to 10% (Th =0.9)  
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Figure 3.5: Before Pruning, 8 Rules, consistency = 1.00 

The Basic Post-Pruning (BPP) (Bigot, 2004) procedure is applied, beginning with Rule 1 

as the first Rule-to-be-Merged (R2M) covering examples belonging to class +.  

 

 

 

 

 

 

Figure 3.6: Rule 1 merged with Rule 3, consistency = 0.95 

Rule 1, class  Rule 3, class  

Rule 4, class  

Rule 7, class  

Rule 8, class  

Rule 6, class  

Rule 5, class  

Rule 2, class  

Rule 1-3, class 
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Attribute2
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The result of merging Rule 1 with another rule in the same class in the PSet is Rule 1-3 

(Rule 1 merged with Rule 3) having the highest consistency measure (0.95 > Th) (Figure 

3.6). As the procedure in the Dyna Algorithm Rule 1-3 is added to the RSet, and Rule 1 

and Rule 3 are removed at the same time. By repeating the process above, Dyna Algorithm 

will result in the Final-RSet including 7 rules {Rule1-3, Rule 4, Rule 5, Rule 6, Rule 7, 

Rule 8} 

 

 

 

 

 

 

 

 

Figure 3.7: Rule 3 merged with Rule 4, consistency = 0.903 

With Dyna algorithm, the rule set has reduced the number of rules to six rules instead of 

eight rules. However, a merging between Rule 3 and Rule 4 can be employed (Figure 3.7). 

Therefore, the rule set will include three rules instead of six rules as employed by Dyna. 

In order to address the above-mentioned issues, both post-pruning techniques in Dyna 

algorithm will be developed. These techniques are described in detail in the next sections. 

Rule 3-4, class 

Attribute1

Attribute2
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3.3.1 Proposed pruning technique development 

3.3.1.2 Basic post pruning (BPP) Improvement 

The new pruning technique optimises the process of rules simplification by only marking 

rules that are used to form new rules instead of removing them like Dyna algorithm has 

employed. However, this technique is also applied after a rule set has been formed and 

used for the entire rule set (RSet). To avoid being trapped at the local optimal solution, two 

temporary sets are set up, called the New-RSet (a set of rules in the same class with a rule 

being taken to be merged) and the T-RSet (a set of rules used only for merging with R2M). 

By this way, the New-RSet and the RSet are stopping criteria for the algorithm. The 

complete BPP procedure is presented below: 

Step 1: Initialise New-RSET (empty list), T-RSET (empty list), Best-RSET (empty list) 

WHILE there is a rule in RSet DO 

Step 2 Take an R in RSet and remove all rules in the same class with R to New-RSET 

T-RSET = New-RSET 

WHILE there is a rule in New-RSET  DO 

    R2M is the first rule in New-RSET 

Step 3 Merge R2M with each rule in T-RSET and compute the consistency of the newly 

formed rule 

          new-rule = the rule with the highest consistency measure resulting from the merging 

             IF the new-rule consistency measure ≥ Th THEN 

   - Remove all rules used for its formation from New-RSET 

   - Add the new-rule to T-RSET and New-RSet at the same time 

              ELSE - Add R2M to Best-RSET 

    - Remove R2M from New-RSET 

 AND WHILE 

AND WHILE 
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Step 4 Initialise Final-RSet (empty list) 

WHILE there are examples not classified by Final-RSet DO 

Step 5 new_rule = the rule in Best-RSet covering the largest number of  

                              examples not covered by Final-RSet formed so far 

Add new_rule to Final-RSet 

END WHILE 

Figure 3.8: The Basic Post-Pruning Procedure (BPP) 

3.3.1. Incremental Post-Pruning (IPP) Improvement 

In contrast to the BPP algorithm, whenever a new rule is formed, the IPP techniques will 

be started. The new IPP is different from its predecessor technique  in that all rules used for 

merging new rule are also marked instead of being removed from RSet. Moreover, during 

creating Final-RSet, only unmarked rules in RSet are used. The developed IPP technique is 

described as follows. 

WHILE there is an uncovered example DO 

Best_Rule = a new rule is formed  

IF Th = 1 THEN Stop 

ELSE 

             R2M = Best_Rule 

Step 1:  Merge R2M with each rule for the same class in RSet 

          new_rule = the rule with the highest consistency measure resulting from the mergers 

Step 2: IF new_rule has a consistency measure ≥ Th THEN 

            Marks all rules used for its formation from RSet 

            Add new_rule into RSet 

            R2M = new_rule 

            Go back to Step  
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             ELSE  Add R2M into RSet 

END WHILE 
Step 3: Initialise Final-RSet (empty list) 

WHILE there are examples uncovered by the Final-RSet DO 

Step 4: new_rule = the unmarked rule in RSet covering the largest number of examples that 

are still not covered by the Final-RSet  formed so far 

Add new_rule to Final-RSet 

END WHILE 

Figure 3.9: The Incremental Post-Pruning Procedure (IPP) 
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3.3.2 Illustrative problem 

In order to illustrate the pruning process carried out by the algorithm given above, the new 

BPP procedure is applied to the rule set (RSet) shown in Figure 3.5. The noise level is set 

to 10% (Th = 0.9) for this illustrative problem. 

Step 1: Initialise new rule sets New-RSET = { }, T-RSET = { }, Best-RSET = { }. RSet 

contains 8 Rules, RSet = {Rule1, Rule 2, Rule 3, Rule 4, Rule 5, Rule 6, Rule 7, Rule 8} 

The pruning procedure starts.  

Step 2: Rule1 covering example belonging to class + is taken to be pruned  

New-RSet = {Rule1, Rule 3, Rule 4, Rule 7};  

T-RSet = {Rule1, Rule 3, Rule 4, Rule 7}; 

The first R2M is Rule 1 

Step 3: The result of merging R2M with Rule 3 (Rule 1-3), Rule 4 (Rule 1-4) and Rule 7 

(Rule 1-7) are shown in Figure 3.6, Figure 3.8 and Figure 3.9 respectively. The best rule, 

with the highest consistency, resulting from this merged is Rule1-3. Thus, new-rule = Rule 

1-3 
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Figure 3.10: Rule 1 merged with Rule 4, consistency = 0.76 

The consistency of new-rule is higher than Th (consistency = 0.95, Th = 0.9). Therefore 

Rule1 and Rule 3 are removed from New-RSet, and new-rule is added to T-RSet and New-

RSet 

New-RSet = {Rule 4, Rule 7, Rule1-3;  T-RSet = {Rule 1, Rule 3, Rule 4, Rule 7, Rule1-3} 

 

 

 

 

 

 

Figure 3.11: Rule 1 merged with Rule 7, consistency = 0.67 

Rule 1-4, class 
Attribute1 

Attribute2 

Rule 1-7, class 
Attribute1 

Attribute2 
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There are still rules in New-RSet so the algorithm goes back to step 2. R2M = Rule 4. 

Step 3:  R2M can be merged with other rules in T-RSet, resulting from that merging are 

Rule 4-1 (Merging Rule 4 with Rule 1), Rule 4-3 (merging Rule 4 with Rule 3), Rule 4-7 

(merging Rule 4 with Rule 7) and Rule 4-1-3 (merging Rule 4 with Rule 1-3) that shown in 

Figure 3.7, Figure 3.10, Figure 3.11 and Figure 3.7 respectively. 

 

 

 

 

 

 

 

Figure 3.12: Rule 4 merged with Rule 3, consistency = 0.903 

The best rule, with the highest consistency, resulting from this merging is Rule 4-3. New-

rule = Rule 4-3. The consistency of new-rule is higher than Th (consistency = 0.903, Th = 

0.9) therefore Rule 4 is removed from New-RSet and new-rule is added to T-RSet and 

New-RSet at the same time. 

T-RSet = {Rule 1, Rule 3, Rule 4, Rule 7, Rule1-3, Rule 4-3} 

New-RSet = (Rule7, Rule 1-3, Rule 4-3} 

 

Rule 4-3, class 

Attribute1 

Attribute2 
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Figure 3.13: Rule 4 merged with Rule 7, consistency = 0.894 

There are still rules in New-RSet and the algorithm, goes back to step 2 again, R2M = 

Rule7 

Step 3: Rule 7 can be merged with other rules in T-RSet, the best rule, with the highest 

consistency measure, resulting from this merging is Rule 7-4-3 (Rule 7 merged with Rule 

4-3) (Figure 3.12), new-rule = Rule 7-4-3 (consistency = 0.903) 

The consistency of new-rule is higher than Th (consistency = 0.903, Th = 0.9). At that time 

New-RSet and T-RSet are revised as below 

New-RSet = {Rule 1-3, Rule 7-4-3) 

T-RSet = (Rule 1, Rule 3, Rule 4, Rule 7, Rule 1-3, Rule 4-3, Rule 7-4-3} 

There are still rules in New-RSet so the algorithm continuously goes back to step 2, R2M = 

Rule 1-3. 

Rule 4-7, class 

Attribute1 

Attribute2 
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Step 3: Similar with the previous steps, the best rule, with the highest consistency measure, 

resulting from merging R2M with other rules in T-RSet is Rule 1-3-4-7 (Rule 1-3 merged 

with Rule 4-7) (Figure 3.13), new-rule = Rule 1-3-4-7 (consistency = 0.76) 

 

 

 

 

 

 

 

Figure 3.14: Rule 7 merged with Rule 4-3, consistency = 0.903 

 

 

 

 

 

 

Figure 3.15: Rule 3-1 merged with Rule 4-7, consistency = 0.76 

Rule 7-4-3, class 
Attribute1 

Attribute2 

Rule 1-3-4-7, class 
Attribute1 

Attribute2 
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The consistency of new-rule is lower than Th (consistency = 0.76, Th = 0.9) and therefore 

R2M is stored in Best-RSet and Rule 1-3 is removed from New-RSet. 

New-RSet = {Rule 7-4-3} 

T-RSet = {Rule 1, Rule 3, Rule 4, Rule 7, Rule 1-3, Rule 4-7, Rule 7-4-3} 

Best-RSet = {Rule 1-3} 

RSet = {Rule 2, rule 5, Rule 6} 

By repeating these steps until New-RSet and then RSet are empty, Best-RSet is formed 

(Figure 3.14). Best-RSet = {Rule 1-3, Rule 2, Rule 7-4-3, Rule 5, Rule 6, Rule 8} 

 

 

 

 

 

 

Figure 3.16: Best-RSet, 6 Rules 

 

 

 

Rule 7-4-3, class 
Attribute1 

Attribute2

Rule 1-3, class 

Rule 8, class Rule 5, class 

Rule 2, class 

Rule 6, class 
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Figure 3.17: Final-RSet, with speciafied NL = 10% (Th = 0.9) 

At that time Final-RSet is initialised. No examples are covered by Final-RSet; Final-RSet = 

{}. Like Dyna Algorithm, the rule covering the highest number of uncovered examples is 

selected and stored in Final-RSet 

 Final_RSet = {Rule 7-4-3} 

The process is repeated until all examples are covered by Final-RSet. At the end of the 

process Final_RSet includes the following rules (Figure 3.15): 

 Final_RSet = {Rule 7-4-3, Rule 1-3, Rule 8} 

3.4 RULES-8 classification technique 

Like its predecessors, the new inductive algorithm creates a set of rules whose coverage is 

limited to the training examples only. Therefore, when a set of rules is used as a 

classification model, there are three possible outcomes as follow: 

Rule 7-4-3, class 
Attribute1 

Attribute2

Rule 1-3, class 

Rule 8, class 
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The first possibility is only one rule covers the new example. The class classified by that 

rule is assigned to the new example. 

The second possible outcome is more than one rule covers the example. In this case, the 

rule having the highest H measure will be used to classify the example. 

The third possible outcome is no rules can classify the example. A specialised process is 

employed by applying the following rule: 

================================================================ 

Procedure NoRuleCover 

Step 1: Find the closest rule (Bigot, 2004).  

Step 2: Consider the new example a noisy one of the class predicted by the closest rule and 

then compute the noise level (NL) in this class. 

Step 3:  IF noise level < noise threshold   

  THEN the closest rule is used to classify the new example 

  ELSE the new example should be added to the training set  

and the learning process reinitiated. 

================================================================ 

The new covering algorithm uses the distance between a rule R and an example E to find 

the closest rule, this measure is also defined as: 

Distance R/E = _ _
c d

c dista nce d dista nce+∑ ∑   (3.3) 

Where 
c
∑ is the sum for continuous attributes; 

 
d
∑ is the sum for discrete attributes; 

 c_distance is defined for each continuous attribute as follows 
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  If the value is outside the condition range of the attribute 

   
( ) 2

max min

min max , min
_

i i i i
E R E P

i i

V V V V
c dista nce

V V

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟−
⎝ ⎠

  (3.4) 

  Else c_distance = 0 

 d_distance is defined for each discrete attribute by applying the following rule 

  IF attr_value = Rule attribute value 

   Then d_distace = 0 

  Else d_distance =1 

3.5 Missing attribute values 

As indicated so far, learning in the presence of missing attribute values needs to be 

considered carefully. Correspondingly, a number of solutions have been developed to 

overcome this problem. For instance, when an example was recognised containing missing 

attribute value, the following techniques can be applied (Quinlan, 1989):  

- Ignore this example; 

- Treat the example as though it has the most common value of the attribute  

- Consider the unknown value as a separate value for the attribute.  

These techniques have been developed and applied successfully in family rule algorithm 

(Pham et al., 1997). For the new inductive algorithm, these techniques above are also used 

but with modification. In particular, the following procedures are implemented: 

When the set of attributes and values (SETAV) is constructed, the number of elements is 

equal to the number of attributes. The elements of SETAV are attribute-values or a 
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combination between potential attribute-values and other attribute-values in the same 

example. Therefore, the example that has missing attribute-values and a combination of 

attribute-values leads to vacant elements in SETAV. In this case, the expressions from T-

EXP with no conditions that are considered the lowest H measure will be the last to be 

considered in the specialisation process. 

3.6 Test and analysis of result 

3.6.1 RULES-8 without pruning 

RULES-8 has been tested on 20 data sets that are commonly used to benchmark inductive 

learning algorithm. The test results are presented in Table 3.2. 

In comparison to Rules 3 Plus and Dyna algorithm, RULES-8 generates more compact rule 

sets. At the same time, higher classification accuracy is reached. Hence, the specialisation 

method used in RULES-8 is more efficient than those used in Rules 3 Plus and Dyna. 

Remarkably, these improvements occur not only with data sets containing continuous 

attributes but also with data sets with discrete attributes or combinations of both types. 
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Table 3.2 Test results with comparison between Rules 3 plus, Dyna and RULES-8 

Rules3 plus Results Dyna Results RULES-8 Results 

Data set name 
Rules 

Training 

% 
Test % Rules Training % Test % Rules Training % Test % 

Balance_scale 207 87.2204 75.0987 206 100 68.6901 195 100 72.2045 

breast_cancer 33 99.4286 93.0626 12 100 93.1232 12 100 94.8424 

wdbc 17 100 89.0819 6 100 89.0845 6 100 94.0141 

wpbc 32 100 57.5829 8 100 60.6061 8 100 78.7879 

car 169 100 87.1538 145 100 89.3519 139 100 90.8565 

credit screening 101 97.1014 74.2029 35 100 76.5896 34 100 81.2139 

dermatology 39 100 89.6210 22 100 81.9672 21 100 87.9781 

diabetes 122 74.2188 65.1027 43 100 68.4896 39 100 73.6971 

glass 23 98.1308 89.7232 9 100 99.0654 9 100 99.0654 

haberman 16 65.3595 57.5232 36 98.04 67.3203 34 100 90.8497 

iris 5 97.3333 93.3343 5 100 96 5 100 96 

liver 37 65.3179 50.5812 28 100 88.9535 27 100 92.4419 

Tic Tac Toe 133 100 89.7717 24 100 98.3299 24 100 98.3299 

Ecoli 38 83.9286 76.7828 23 100 100 23 100 100 

Teaching 30 60.5263 51.3242 30 97.37 65.3333 29 100 86.6667 

 



85 

3.6.2 RULES-8 with Pruning technique 

The performance of RULES-8 with BPP is compared against that of RULES-8 without any 

pruning. The test results presented in Table 3.3 show a significant reduction of the number 

of rules generated when pruning was performed. These reductions in the rule sets’ levels of 

accuracy are acceptable in most cases because the resulted rule sets are more compact and 

more capable to handle noisy data. 

Table 3.3 Comparison between RULES-8 without pruning and RULES-8 with BPP 

RULES-8 without pruning RULES-8 with BPP 
Data set name 

Rules Training Test % 
NL 

Rules Training Test % 
0.10 133 97.7636 85.3035 
0.20 84 92.3323 83.0671 Balance_scale 195 100 72.2045 
0.30 46 85.9425 83.3866 
0.10 2 93.1624 93.9828 
0.20 2 93.1624 94.2693 Breast_cancer 12 100 94.8424 
0.30 2 93.1624 94.2693 
0.10 4 95.7895 96.1268 
0.20 4 95.7895 85.5634 wdbc 6 100 94.0141 
0.30 4 95.7895 84.8592 
0.10 8 100 81.8182 
0.20 6 95.9596 76.7677 wpbc 8 100 78.7879 
0.30 3 83.8384 72.7273 
0.10 136 99.0741 90.3935 
0.20 82 92.1296 85.5324 Car 139 100 90.8565 
0.30 11 85.5324 70.7176 
0.10 18 95.0725 85.8382 
0.20 5 86.9565 83.5260 Credit 34 100 81.2139 
0.30 3 85.7971 85.2601 
0.10 21 100 89.6175 
0.20 21 100 89.6175 Dermatology 21 100 87.9781 
0.30 21 100 83.6066 
0.10 36 98.6979 75.7813 
0.20 25 90.8854 74.7396 Diabetes 39 100 73.6979 
0.30 10 80.4688 67.4479 
0.10 6 100 99.0654 
0.20 6 100 99.0654 Glass 9 100 99.0654 
0.30 6 100 99.0654 
0.10 26 96.7320 97.3856 
0.20 10 86.2745 77.7778 Haberman 34 100 90.8497 
0.30 4 83.6601 73.2026 
0.10 4 97.3333 93.3333 
0.20 4 97.3333 93.3333 Iris 5 100 96 
0.30 4 97.3333 93.3333 
0.10 28 100 71.5116 
0.20 24 98.8439 67.3299 Liver 27 100 92.4419 
0.30 16 95.3757 61.6279 
0.10 24 100 98.3299 
0.20 24 100 98.3299 Tic Tac Toe 24 100 98.3299 
0.30 16 92.2756 92.0668 
0.10 14 96.4497 84.5238 
0.20 11 92.3077 76.7857 Ecoli 23 100 100 
0.30 9 91.1243 74.4048 
0.10 29 97.3684 72 
0.20 29 97.3684 72 Teaching 29 100 86.6667 
0.30 19 93.4211 68 
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RULES-8 algorithm has applied the two new rule pruning procedures as described earlier. 

Tests have been carried out on the previous 15 data sets. Table 3.4 displays test results 

applying BPP and IPP. It can be seen that both methods yield very similar results in terms 

of the number of rules formed and their accuracy.  

Table 3.4 Comparison between BPP and IPP 

RULES-8 with BPP RULES-8 with IPP 
Data set name NL 

Rules Training% Test % Rules Training Test % 
0.10 133 97.7636 85.3035 135 98.4026 86.5851 
0.20 84 92.3323 83.0671 87 94.2492 84.6645 Balance_scale 
0.30 46 85.9425 83.3866 48 87.5399 84.0256 
0.10 2 93.1624 93.9828 6 96.5812 95.1289 
0.20 2 93.1624 94.2693 4 94.5869 94.8424 Breast_cancer 
0.30 2 93.1624 94.2693 2 93.1624 94.2693 
0.10 4 95.7895 96.1268 4 95.7895 96.1268 
0.20 4 95.7895 85.5634 4 95.7895 85.5634 wdbc 
0.30 4 95.7895 84.8592 4 95.7895 84.8592 
0.10 8 100 81.8182 8 100 81.8182 
0.20 6 95.9596 76.7677 6 95.9596 76.7677 wpbc 
0.30 3 83.8384 72.7273 3 83.8384 72.7273 
0.10 136 99.0741 90.3935 138 99.6528 91.3194 
0.20 82 92.1296 85.5324 84 93.8657 86.2269 Car 
0.30 11 85.5324 70.7176 13 87.9630 72.8009 
0.10 18 95.0725 85.8382 16 95.3623 87.5723 
0.20 5 86.9565 83.5260 7 90.1449 85.8382 Credit 
0.30 3 85.7971 85.2601 4 87.5362 86.1272 
0.10 21 100 89.6175 21 100 89.6175 
0.20 21 100 89.6175 21 100 89.6175 Dermatology 
0.30 21 100 83.6066 21 100 83.6066 
0.10 36 98.6979 75.7813 37 99.2188 77.3438 
0.20 25 90.8854 74.7396 26 91.9271 76.5625 Diabetes 
0.30 10 80.4688 67.4479 12 81.5104 70.0521 
0.10 6 100 99.0654 6 100 99.0654 
0.20 6 100 99.0654 6 100 99.0654 Glass 
0.30 6 100 99.0654 6 100 99.0654 
0.10 26 96.7320 97.3856 26 96.7320 97.3806 
0.20 10 86.2745 77.7778 14 92.8105 86.2745 Haberman 
0.30 4 83.6601 73.2026 6 85.6209 79.0850 
0.10 4 97.3333 93.3333 4 97.3333 93.3333 
0.20 4 97.3333 93.3333 4 97.3333 93.3333 Iris 
0.30 4 97.3333 93.3333 4 97.3333 93.3333 
0.10 28 100 71.5116 28 100 71.5116 
0.20 24 98.8439 67.3299 24 99.4220 69.1860 Lever 
0.30 16 95.3757 61.6279 20 97.6879 65.6977 
0.10 24 100 98.3299 24 100 98.3299 
0.20 24 100 98.3299 20 100 96.2422 Tic Tac Toe 

0.30 16 92.2756 92.0668 16 92.2756 92.0668 
0.10 14 96.4497 84.5238 15 96.4497 89.8810 
0.20 11 92.3077 76.7857 13 92.3077 80.3571 Ecoli 
0.30 9 91.1243 74.4048 9 91.1243 74.0448 
0.10 29 97.3684 72 27 96.0526 73.3333 
0.20 29 97.3684 72 25 94.7368 70.6667 Teaching 
0.30 19 93.4211 68 19 93.4211 68 

The results of the comparison between Dyna and RULES-8 with BPP are displayed in 

Table 3.5. It can be seen that for the majority of data, RULES-8 with BPP generated fewer 
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rules as compared against the number of rules generated by Dyna with BPP. However, a 

slight decrease in terms of the test accuracy is also seen.  

Table 3.5 Comparison between Dyna with BPP and RULES-8 with BPP 

Dyna with BPP RULES-8 with BPP 
Data set name NL 

Rules Training% Test % Rules Training Test % 
0.10 139 96.8051 79.3443 133 97.7636 85.3035 
0.20 85 90.7348 83.2786 84 92.3323 83.0671 Balance_scale 
0.30 51 85.9425 83.6066 46 85.9425 83.3866 
0.10 2 93.1429 94.0972 2 93.1624 93.9828 
0.20 2 93.1429 94.0972 2 93.1624 94.2693 Breast_cancer 
0.30 2 93.1429 94.0972 2 93.1624 94.2693 
0.10 4 96 84.8591 4 95.7895 96.1268 
0.20 4 96 84.8591 4 95.7895 85.5634 wdbc 
0.30 4 96 84.8591 4 95.7895 84.8592 
0.10 8 100 74.7474 8 100 81.8182 
0.20 6 95.9596 73.7374 6 95.9596 76.7677 wpbc 
0.30 1 79.798 72.7273 3 83.8384 72.7273 
0.10 145 100 90.3936 136 99.0741 90.3935 
0.20 98 92.1296 84.9536 82 92.1296 85.5324 Car 
0.30 1 70.9491 68.9815 11 85.5324 70.7176 
0.10 20 94.2029 84.9245 18 95.0725 85.8382 
0.20 5 86.9565 83.7681 5 86.9565 83.5260 Credit 
0.30 3 85.7971 85.2174 3 85.7971 85.2601 
0.10 21 100 83.0601 21 100 89.6175 
0.20 21 100 83.0601 21 100 89.6175 Dermatology 
0.30 21 100 83.0601 21 100 83.6066 
0.10 38 98.4375 73.6980 36 98.6979 75.7813 
0.20 25 90.8854 73.6977 25 90.8854 74.7396 Diabetes 
0.30 10 80.4688 67.1874 10 80.4688 67.4479 
0.10 6 100 99.0654 6 100 99.0654 
0.20 6 100 99.0654 6 100 99.0654 Glass 
0.30 6 100 99.0654 6 100 99.0654 
0.10 29 97.3856 67.3203 26 96.7320 97.3856 
0.20 10 86.2745 73.2025 10 86.2745 77.7778 Haberman 
0.30 1 75.1624 71.8954 4 83.6601 73.2026 
0.10 4 97.3333 93.3333 4 97.3333 93.3333 
0.20 4 97.3333 93.3333 4 97.3333 93.3333 Iris 
0.30 4 97.3333 93.3333 4 97.3333 93.3333 
0.10 28 100 67.4419 28 100 71.5116 
0.20 24 98.8439 66.2791 24 98.8439 67.3299 Lever 
0.30 16 92.4855 61.6279 16 95.3757 61.6279 
0.10 24 100 98.3298 24 100 98.3299 
0.20 24 100 98.3298 24 100 98.3299 Tic Tac Toe 

0.30 14 92.2756 92.0668 16 92.2756 92.0668 
0.10 15 96.4268 79.1667 14 96.4497 84.5238 
0.20 11 92.2619 75.5952 11 92.3077 76.7857 Ecoli 
0.30 9 91.0714 74.4048 9 91.1243 74.4048 
0.10 29 97.3684 65.7894 29 97.3684 72 
0.20 29 97.3684 65.7894 29 97.3684 72 Teaching 
0.30 20 92.1053 67.1052 19 93.4211 68 
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3.7 Summary 

The proposed new inductive learning algorithm, RULES-8, presented in this chapter has 

been tested on 15 sets of data obtained from the University of California at Irvine (UCI), 

repository of machine learning databases (Blake and Merz, 1998). It was found that 

RULES-8 generates fewer rules and produces more accurate rule sets in comparison to 

other algorithms in the RULES family. However, the selection of the conjunction of 

conditions was based on a heuristic measure – H measure – which is a measure constructed 

on experiences. Even though this measure has been successfully applied, the results are not 

always consistent. In several cases of tested data in this chapter, the results were not as 

desired. The causes are still yet to be fully understood. Therefore, the next chapter will 

concentrate on other rule quality measures, analyse precisely their roles within the 

inductive learning process in order to propose another improvement in rule quality 

measure. 
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Chapter 4 

AN ENHANCED MEASURE FOR RULE EVALUATION 
 

4.1 Preliminaries 

A rule induction system extracts rule sets from a set of training data. A set of rules is used 

to classify unseen objects. It is therefore important for a rule induction system to generate 

rules that have high predictability, reliability, likelihood, and so on. These properties are 

commonly measured by a function called rule quality. In covering methods, rule quality 

measures have become one of the central for many reasons. 

A function evaluating rules is not only needed in the rule induction process but is also 

necessary in the classification process. In the rule induction process, rule quality measures 

are devised to evaluate the information content of the newly formed conjunctions of 

conditions resulting from the specialisation process. Hence, rule quality measures are 

necessary to select the best conjunction of conditions for further specialisation at any stage 

of the rule forming process (specialisation heuristics). In addition, rule quality measures 

can evaluate the conjunctions formed so far and determine whether the specialisation 

process should be stopped (stopping heuristics). 

Furthermore, rule quality measures are also required in the classification process. It is 

possible that an unseen example satisfies several rules that are assigned to different classes. 

In such a case, a heuristic measure is necessary to select the most appropriate class.  

Many different heuristic measures have been applied in inductive learning to assess the 

quality of the rules generated. In earlier applied research in inductive learning, statistics 

methods have been used to evaluate the efficiency of the rule formation procedures. The 
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numbers of samples that are categorised accurately and those that are classified 

inaccurately by the newly formed rules are prompts of rule quality. Even though these 

methods provide valuable information, they are challenged by the quality of the rules 

formed and also influenced by the learning process. Thus, the results are not always 

reliable.  

Some measures developed so far have been interested only in the accuracy of rules with 

negligence to the number of examples covered by rules (Consistency (Pagallo and 

Haussler, 1990)). That leads to the formation of rules with higher scores. However, the 

newly formed rule can only cover only one positive example, whereas a rule that can cover 

1000 positive examples and 1 negative example would rather be desired. 

Quality of more recently developed measures has been improved. These include the H 

measure applied in Rules-3 plus (Pham and Dimov, 1996a) and Dyna, Laplace estimate 

(Clark and Bowell, 1991), Information Gain applying in RIPPER (Cohen, 1995), AQ18 

measure (Michalski and Kaufman, 1999)…etc.  

Bigot (2004) pointed out that the specialisation heuristics and classification heuristics do 

not have the same goals, and the information required to assess the quality of conjunctions 

and rules differs. Bigot (2004) therefore proposed a more efficient heuristic – S measure 

(to be described in more details later). The S measure has been the most current heuristic 

measure devised for covering algorithms. Despite its efficiency, this heuristic has some 

drawbacks since not all information of training data is covered during the specialisation 

process. 

In the next section (Section 4.2), the performance of some recently specialisation heuristics 

will be examined and a new heuristic that allows  the creation of more general rule sets 

will be proposed. The new heuristic is then evaluated and compared the latest 
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specialisation heuristic – S measure. Section 4.3 studies the methods used to select 

between competing rules in the rule sets to classify an unseen example, and a new and 

more accurate classification method is introduced and tested to compare with its 

predecessors. 

4.2 Specialisation heuristics 

Specialisation heuristics evaluate the information content of the newly formed 

conjunctions of conditions in order to select the best conditions to be added to the 

conjunctions formed during the specialisation process. The desired result from the 

application of these metrics is the creation of more general and consistent rules. 

4.2.1 Existing heuristics 

Most heuristic measures are derived by analysing the relationship between rule R and the 

target class. Specialisation heuristics are general required to be not only reliable but also 

powerful. Their reliability is characterised by a consistency factor, and their power is 

considered by a completeness factor.  

Assuming that, a training data set includes P positive examples and N negative examples. 

Rule R covers p positive examples and n negative examples. The consistency and 

completeness of a rule R can be defined as follow: 

pConsistency
p n

=
+

   (4.1) 

pCompleteness
P

=    (4.2) 
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Consistency was used in GREEDY3 (Pagallo and Haussler, 1990). However, if rule R 

covers no negative example (n = 0), the value of consistency is one for any value of 

positive example (p). Therefore, this measure does not provide information to decide 

which one to choose between two consistent rules. 

A modification of consistency measure, the Laplace and m-estimates (Cestnik, 1990) had 

been also introduced:  

1
2

pLaplace estimate
p n

+
=

+ +
   (4.3) 

Pp m
P Nm estimates

p n m

+
+− =

+ +
   (4.4) 

The bottom line of these estimates is the assumption that each rule covers a certain number 

of examples or a priori. They compute a precision estimate, but start to count covered 

positive or negative examples from a number > 0. With the Laplace estimate, both the 

positive and negative coverage of a rule are initialised with 1 (thus assuming an equal prior 

distribution), Meanwhile, the m-estimate assumes a prior total coverage of m examples, 

which are distributed according to the distribution of positive and negative examples in the 

training set. Due to its simplicity and efficiency, the Laplace estimate has been used in 

several algorithms. Its advantages over the entropy measure were proved as it was applied 

in CN2 and gave better results (Clark and Boswell, 1991). 

Another heuristic that was proposed using consistency and coverage factors is AQ18 

measure (Michalski and Kaufman, 1999). AQ18 measure is defined as follows: 

AQ18 measure:  
(1 )

( )
wwp p P P NQ w

P p n P N N

−
⎡ ⎤⎛ ⎞ +⎛ ⎞= −⎢ ⎥⎜ ⎟⎜ ⎟ + +⎝ ⎠ ⎝ ⎠⎣ ⎦

  (4.5) 
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The value of the parameter w is defined by the user. This setting of w has a different 

influence on coverage (the first part) and consistency gain (the second part). However, due 

to the discontinuity of the function, the function is negative if p P
p n P N

<
+ +

 and positive 

if p P
p n P N

>
+ +

 , there are therefore still drawbacks that need to be improved. 

Let’s consider another measure, which is based on the information content of the 

conjunctions, as defined by the equation below: 

2_ log pInfo Content
p n

⎛ ⎞
= − ⎜ ⎟+⎝ ⎠

  (4.6) 

The best conjunction would be the one that minimises this value. The information gain 

during the specialisation process is then calculated as the reduction of the information 

content in a conjunction when a new condition is added to it. In RIPPER (Cohen, 1995), p’ 

and n’ are considered the number of positive examples and number of negative examples 

in turn covered by the original conjunction of condition. A heuristic to measure the 

information content for the new condition is as below: 

 2 2
'_ log log

' '
p pInfo Content p

p n p n
⎛ ⎞⎛ ⎞ ⎛ ⎞

= − +⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠
  (4.7) 

Accuracy, another type of heuristics used for forming rules, has been proposed in 

PROLOG (Muggleton, 1995) and I-REP (Fürnkranz, 1996). In theory, accuracy is the 

proportion of covered positive examples (p) and uncovered negative examples (N-n) in all 

examples (P+N). 

( )p N nAccuracy
P N
+ −

=
+

   (4.8) 
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Perhaps the most well known heuristic used in inductive learning algorithms has been the 

H measure. This metric is the product of the accuracy and generality of a conjunction. The 

H measure is defines as below: 

2 2 2 1 1p n p P p PH
P N p n P N p n P N

⎡ ⎤⎛ ⎞+ ⎛ ⎞= − − − −⎢ ⎥⎜ ⎟⎜ ⎟+ + + + +⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
  (4.9) 

The H measure was originally introduced in the RULES family of algorithms only to guide 

the specialisation process. However, it has also been used successfully as a classification 

heuristic. 

As mentioned above, Bigot (2004) introduced a new specialisation heuristic – the S 

measure for covering algorithms. In this research, two new parameters were used. They are 

the number of positive examples covered by the newly formed conjunction of conditions 

and not covered by previously created rules (p_new) and the number of examples 

belonging to the target class and not classified by the rule set formed so far 

(P_unclassified).   

The S measure is computed using the following equation: 

_ 1
_

p p new nS
p n P unclassified N

⎛ ⎞= −⎜ ⎟+ ⎝ ⎠
   (4.10) 

4.2.2 The S measure and some unsolved problems 

The S measure (Bigot, 2003) is the latest heuristic applied in the specialisation process. It 

as a whole has been used quite efficiently and successful in many data sets. As mentioned 

above, two of the most important criteria to assess rule quality are reliability and coverage. 

In order to achieve this outcome with S measure, both the consistency characteristic and 

the completeness characteristic were considered. In order to reduce the number of 
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overlapping rules as well as the total number of rules required to cover the training data, 

the ratio between the number of positive examples covered by the newly formed 

conjunction of conditions and not covered by the previously created rules and the number 

of examples belonging to the target class and not classified by the rule set formed so far 

was used instead of the coverage of new rules (4.2).  

_ w

_unclassified

_
P

nep
Classification Gain

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

  (4.11) 

Ideally, during the rule forming process, the number of examples misclassified should be 

minimised. Therefore, to assess the newly formed conjunction, the S measure has also used 

a metric to evaluate the level of misclassification 

_ nMisclassification Level
N

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.  (4.12) 

As one can see, all examples that belong to the target class are considered positive 

examples, and those do not are considered negative examples. In addition, there are 

commonly more than two classes in a training set.  Thus, by the time the rules formed so 

far cover the examples belonging to the target class, the number of examples that do not 

belong to the target class (N_unclassified) will reduce. 

Accordingly, let’s examine the S measure in an example case. Assuming that the training set 

includes 1000 examples, the specialisation process is in progress with P = P_unclassified = 100, 

N = 900 and N_unclassified = 8. At that time, there are two descriptions including rule R1 

with p = p_new = 22, n = 7 and rule R2 with p = p_new = 17 and n = 1. Using the S 

measure, the first description is selected (S = 0.1656). However, the soft criteria select the 

second one, which is intuitively more predictive than the first. 
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4.2.3 A novel specialisation heuristic 

Inheriting of strong features from the S measure, the new specialisation heuristic proposed 

to also use two factors including Consistency (4.1) and Classification_Gain (4.11). A rule 

with higher Consistency and Classification_Gain is more desirable than one with lower 

indications of these factors. 

In many real applications, there are not only two classes in a training set. Therefore, in the 

rule forming process, the number of examples (N_unclassified) will reduce after the rules 

formed so far classify the examples belonging to the target class. When N_unclassified is 

small, it has a considerable effect on the measure that assesses the rule quality of the rules 

generated. However, all eight heuristics described in Section 4.2.2 have not paid 

satisfactory attention to this N_unclassified parameter. 

In order to overcome this problem, it is necessary to use a good metric to evaluate the 

number of examples misclassified by the newly formed conjunction (n) comparing to the 

total unclassified negative examples (N_unclassifed). This metric could be defined as the 

level of misclassification and computed as below: 

nisclassification_Level=
N_unclassified

M   (4.13) 

Together with Consistency and Classification_gain, a good newly formed conjunction is 

expected with the smallest level misclassification. Accordingly, a new specialisation 

heuristic has been designed as below: 

1new

unclassified unclassified

pp nTV measure
p n P N

−

− −

⎛ ⎞
= −⎜ ⎟⎜ ⎟+ ⎝ ⎠

  (4.14) 
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4.2.4 Specialisation heuristics evaluation 

Bigot (2004) also evaluated and compared the eight heuristics as described in Section 

4.2.2. His research has proposed and proved that the S measure gives the best results. 

Therefore, this research will not repeat the tests for eight heuristics mentioned. In stead, the 

new heuristic - TV measure will be evaluated and then compared with the S measure. The 

TV measure is also tested on several data sets and compared with the S measure as well as 

the H measure (the classification heuristic used in original algorithms). 

4.2.4.1 Graphical evaluation 

Graphical representation has been used by Bigot (2004) to evaluate the performance of the 

eight heuristics discussed in Section 4.2.2. Each function defines a surface. The value of 

the function f(p, n) at each point on this surface represents the performance of a rule that 

classifies p examples while misclassifies n examples.  Thus, with graphical representation 

the performance of a rule can be studied by comparing the values of two corresponding 

points on the surface.  

In this section, a graphical representation of these functions will be used to study the 

performance of two specific rules, ( 1 1 1( , )R p n  and 2 2 2( , )R p n ), during the forming process. 

In this case, each heuristic for a rule can be regarded as a function of two variables, being 

the number of examples belonging to the target class and not classified by the rule set 

formed so far (P_unclassified) and the number of examples not belonging to the target 

class and not classified by the rule set formed so far (N_unclassified). In this way, the 

performance of the two rules can be observed clearly on two surfaces. 

An assumption is made that the specialisation process is in progress at the time P = 

P_unclassified = 100, N = 900 and N_unclassified = 8. At that time, there are two descriptions 

including rule R1 with p = p_new = 22, n = 7 and rule R2 with p = p_new = 17 and n = 1. 
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Figure 4.1 Graphical representation of the S measure 

    The green surface is the representation of rule R1(22, 7) 
The red surface is the representation of rule R2(17, 1) 

According to Figure 4.1, the green surface (Rule 1) is always above the red surface (Rule 

2). This mean that, with any values of the number of examples belonging to the target class 

and not classified by the rule set formed so far (P_unclassified), and the number of 

examples not belonging to the target class and not classified by the rule set formed so far 

(N_unclassified) the measure assessing R1 is always higher than the one assessing rule R2  
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Figure 4.2 Graphical representation of the TV measure 

   The green surface is the representation of rule R1(22, 7) 
The red surface is the representation of rule R2(17, 1) 

As can be seen in Figure 4.2, the green surface (rule R1) lies above the red surface (rule R2) 

When the number of examples not belonging to the target class and not classified by the 

rule set formed so far (N_unclassified) is big enough. At that point, the measure assessing 

rule R1 is higher than the measure of rule R2. In contrast, when N_unclassified moves 

closer to n, the red surface will lies above the green surface. This indicates that, the 

measure assessing rule R2 is higher than the measure of rule R1. 

T 
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4.2.4.2 Experimental evaluation 

Based on two assessment criteria, the number of rules created and test accuracy, the TV 

measure will be tested on 15 data sets as described in Appendix A. Table 4.1 shows the 

results obtained by applying the H measure, the S measure and the TV measure to the 

Rules-8. As can be seen, the number of rules is reduced with al the three measures. 

However, the test accuracy is increased with the TV measure. Therefore, it may be 

concluded that the TV measure gives the best results. 

Table 4.1: Performance of the H measure, the S measure and the TV measure when 

used in Rules-8 

H measure S measure TV  measure 
 

Rules Test % Rules Test % Rules Test % 

Balance_scale 195 72.2045 157 71.5655 134 71.2460 

breast_cancer 12 94.8424 12 95.4255 12 96.2751 

wdbc 6 94.0141 6 94.7183 6 94.7183 

wpbc 8 78.7879 8 83.8384 8 87.8788 

car 139 90.8565 143 99.4213 127 90.1620 

credit screening 34 81.2139 33 80.6358 31 81.2139 

dermatology 21 87.9781 21 91.8033 21 93.9891 

diabetes 39 73.6971 36 73.1771 33 72.3958 

glass 9 99.0654 9 99.0654 9 99.0654 

haberman 34 90.8497 25 88.8889 25 89.5425 

iris 5 96 5 96 5 96 

liver 27 92.4419 24 92.2791 21 90.1163 

Tic Tac Toe 24 98.3299 22 97.9123 22 98.3299 

Ecoli 23 100 23 100 23 100 

Teaching 29 86.6667 27 85.3333 27 85.3333 
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4.3 Classification heuristics 

4.3.1 Development of classification heuristic 

In the classification process, an example may be covered by more than one rule. In such 

cases, classification metrics are used to assess the accuracy and generality of each covering 

rule and select the best one to classify a new example.  

Among the eight specialisation heuristics discussed in this chapter, five could also be used 

as classification metrics: Accuracy, Consistency, the H measure, the Laplace measure and 

the Q measures. The Information Gain, the S measures cannot be employed because they 

require data available only during the rule forming process.  

As can be seen, where an unordered set of rules is generated, classification heuristics need 

to provide additional information to select between two or more competing classes. Bigot 

(2004) presented a method to address this problem which has not been explicitly defined in 

CN2 and in the RULES family. In this method, the numbers of examples covered by the 

rules for each class are summed after weighting the importance of a given rule using the H 

measure. Then, the class having the highest sum is chosen to classify the new example. 

This method was tested on 15 data sets and achieved efficient results. However, in several 

cases, the method did not obtain good results. For instance, let’s consider the distribution 

of examples in two rules (Rule 1, Rule 2) in Figure 4.3 below. 

Rule 1: Covers 26 examples of class 1 and 5 examples of class 2, H measure = 0.064 

Rule 2: Covers 19 examples of class 1 and 57 examples of class 2, H measure = 0.055 
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According to the method presented by Bigot (2004), the corresponding sums are: 

For class 1, 26*0.064 + 19* 0.055 = 2.709 

For class 2, 57*0.055 + 5*0.064 = 3.455 

Because the sum for class 2 is the highest, the new example is considered to belong to class 

2. However, as can be seen, the most distribution of the example of class 1 are gathered in 

the intersection area between Rule 1 and Rule 2. Therefore, intuitively, it is more accuracy 

to classify the new example to class 1 rather than to class 2. 

 

 

 

 

 

 

Figure 4.3: Classification of an example covered by Rule 1 and Rule 2 
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Figure 4.4: Intersection area of Rule 1 and Rule 2 

In this section, a development to classify an example will be presented. In this case, the 

information-gain is defined as the product of the number of examples in the intersection 

area for each class and the H measure correspondingly. The algorithm will estimate the 

distribution of the example in the intersection area of these rules by finding the 

information-gain. The class having the highest information-gain is chosen to classify the 

new example.  

For example, in Figure 4.4, the intersection area of Rule 1 and Rule 2 covers 19 examples 

of class 1 and 5 examples of class 2. 

Information-gain for class 1 is: 15 * 0.064 = 0.96 

Information-gain for class 2 is: 5 * 0.055 = 0.275 

Because the information-gain for class 1 is the highest, the new example is considered to 

belong to class 1. 
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4.3.2 Experimental evaluation 

The results for test accuracy of the three classification methods presented above - the 

RULES family method, Bigot method and the proposed new classification method - are 

shown in Tables 4.2. In this case, the TV measure is used as a specialisation heuristic and 

the BPP technique (section 3.3.1) is employed for noise handling with four arbitrary values 

for the noise level (0, 0.1, 0.2 and 0.3). 

As can be seen, the average relative deviation of test accuracy values obtained for the new 

method is higher than those obtained for the other two methods (1.1827 % against -0.7469 

% for the RULES family method and -0.4359 % for the Bigot method). Hence, the new 

classification method can outperform both the RULES family and the Bigot classification 

methods. 
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Table 4.2: Classification performance of the heuristic when applying Rules-8 

Test accuracy (%) Relative deviation (%) 
Data set NL (%) Rules family 

method 
Bigot’s 
method 

New method
Average Rules family 

method 
Bigot’s 
method 

New method

 0 86.5815 87.2204 86.9010 86.9010 -0.3195 0.3194 0.0000 
0.10 84.3450 85.3035 85.6230 85.0905 -0.7455 0.2130 0.5325 
0.20 82.4281 83.0671 82.7476 82.7476 -0.3195 0.3195 0.0000 

Balance_scale 

0.30 82.7476 83.3836 84.0256 83.3856 -0.6380 -0.0020 0.6400 
0 95.9885 94.8424 96.2751 95.7020 0.2865 -0.8596 0.5731 

0.10 93.4097 93.9828 94.8424 94.0783 -0.6686 -0.0955 0.7641 
0.20 93.9828 94.2693 94.5559 94.2693 -0.2865 0.0000 0.2866 

Breast_cancer 

0.30 94.2693 94.2693 94.2693 94.2693 0.0000 0.0000 0.0000 
0 96.1268 96.4789 97.8873 96.8310 -0.7042 -0.3521 1.0563 

0.10 95.7746 96.1268 96.8310 96.2441 -0.4695 -0.1173 0.5869 
0.20 86.6197 85.5634 89.0845 87.0892 -0.4695 -1.5258 1.9953 

wdbc 

0.30 87.6761 84.8592 85.9155 86.1503 1.5258 -1.2911 -0.2348 
0 81.8182 82.8283 89.8990 84.8485 -3.0303 -2.0202 5.0505 

0.10 79.7980 81.8282 84.8485 82.1582 -2.3602 -0.3300 2.6903 
0.20 76.7677 76.7677 81.8182 78.4512 -1.6835 -1.6835 3.3670 

wpbc 

0.30 72.7273 72.7273 77.7778 74.4108 -1.6835 -1.6835 3.3670 
0 100 100 99.7685 99.9228 0.0772 0.0772 -0.1543 

0.10 90.3935 90.3935 90.6250 90.4707 -0.0772 -0.0772 0.1543 
0.20 85.6481 85.5324 85.7639 85.6481 0.0000 -0.1157 0.1158 

Car 

0.30 70.7176 70.7176 73.2639 71.5664 -0.8488 -0.8488 1.6975 
0 87.5723 86.4162 89.3064 87.7650 -0.1927 -1.3488 1.5414 

0.10 86.9942 85.8382 87.2832 86.7052 0.2890 -0.8670 0.5780 
0.20 84.1040 83.5260 84.9711 84.2004 -0.0964 -0.6744 0.7707 

Credit 

0.30 83.5260 85.2601 84.1040 84.2967 -0.7707 0.9634 -0.1927 
0 89.6175 89.6175 92.3497 90.5282 -0.9107 -0.9107 1.8215 

0.10 89.6175 89.6175 91.2568 90.1639 -0.5464 -0.5464 1.0929 
0.20 89.6175 89.6175 89.6175 89.6175 0.0000 0.0000 0.0000 

Dermatology 

0.30 83.6066 83.6066 86.8852 84.6995 -1.0929 -1.0929 2.1857 
0 75.5208 75.2604 77.8646 76.2153 -0.6945 -0.9549 1.6493 

0.10 75.7813 75.7813 76.0417 75.8681 -0.0868 -0.0868 0.1736 
0.20 75 74.7396 74.7396 74.8264 0.1736 -0.0868 -0.0868 

Diabetes 

0.30 67.4479 67.4479 67.4479 67.4479 0.0000 0.0000 0.0000 
0 99.0654 99.0654 99.0654 99.0654 0.0000 0.0000 0.0000 

0.10 99.0654 99.0654 99.0654 99.0654 0.0000 0.0000 0.0000 
0.20 99.0654 99.0654 99.0654 99.0654 0.0000 0.0000 0.0000 

Glass 

0.30 99.0654 99.0654 99.0654 99.0654 0.0000 0.0000 0.0000 
0 90.8497 94.7712 94.7712 93.4640 -2.6143 1.3072 1.3072 

0.10 93.4641 97.3856 97.3856 96.0784 -2.6143 1.3072 1.3072 
0.20 79.0850 77.7778 80.3922 79.0850 0.0000 -1.3072 1.3072 

Haberman 

0.30 73.2026 73.2026 77.7778 74.7277 -1.5251 -1.5251 3.0501 
0 96 96.0000 96 96.0000 0.0000 0.0000 0.0000 

0.10 93.3333 93.3333 93.3333 93.3333 0.0000 0.0000 0.0000 
0.20 93.3333 93.3333 93.3333 93.3333 0.0000 0.0000 0.0000 

Iris 

0.30 93.3333 93.3333 93.3333 93.3333 0.0000 0.0000 0.0000 
0 92.4419 92.4419 94.7674 93.2171 -0.7752 -0.7752 1.5503 

0.10 70.3488 71.5116 76.1628 72.6744 -2.3256 -1.1628 3.4884 
0.20 66.2791 67.4419 68.0233 67.2481 -0.9690 0.1938 0.7752 

Lever 

0.30 59.3023 61.6279 64.5349 61.8217 -2.5194 -0.1938 2.7132 
0 98.3299 98.3299 98.3299 98.3299 0.0000 0.0000 0.0000 

0.10 98.3299 98.3299 98.3299 98.3299 0.0000 0.0000 0.0000 
0.20 98.3299 98.3299 98.3299 98.3299 0.0000 0.0000 0.0000 

Tic Tac Toe 

0.30 92.0668 92.0668 92.0668 92.0668 0.0000 0.0000 0.0000 
0 98.2143 100 100 99.4048 -1.1905 0.5952 0.5952 

0.10 84.5238 84.5238 94.0476 87.6984 -3.1746 -3.1746 6.3492 
0.20 76.7857 76.7857 76.7857 76.7857 0.0000 0.0000 0.0000 

Ecoli 

0.30 77.3810 74.4048 77.9762 76.5873 0.7937 -2.1825 1.3889 
0 86.6667 86.6667 90.6667 88.0000 -1.3333 -1.3333 2.6667 

0.10 72 72 81.3333 75.1111 -3.1111 -3.1111 6.2222 
0.20 68 72 76 72.0000 -4.0000 0.0000 4.0000 

Teaching 

0.30 64 68 69.3333 67.1111 -3.1111 0.8889 2.2222 
Average 85.6348 85.9458 87.5644 86.3817 -0.7469 -0.4359 1.1827 
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4.4 Summary 

This chapter has studied and analysed different heuristics used in covering algorithms for 

specialisation and classification process. A new specialisation heuristics has been proposed 

to address specific weaknesses of existing heuristics. Several data sets have been used to 

test the new specialisation heuristic. The results show that it has advantages over the 

existing heuristics. It leads to the creation of rules that has greater generality. 

A classification method, one that is used to classify a new example when the example is 

covered by multiple rules, has also been studied in this chapter. The analysis results in a 

new classification method which is more accurate. However, there are still challenges as 

even the best heuristics cannot always generate the best results. It is not uncommon to see 

a less efficient heuristic providing better result in various situations.   
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Chapter 5  

LEARNING WITH CONTINUOUS OUTPUT 
 

5.1 Preliminaries 

In the field of information technology, many applications require the creation of models for 

the prediction of continuous values. Some of the effective existing learning methods that 

are used to predict numeric values include standard regression, neural network, instance 

based learning, and regression trees. All of them make prediction by discretising the class 

values in advance. Despite their advantages, these methods have certain drawbacks. 

Standard regression may not be an effective way to represent an induced function because 

it imposes a non-linear relationship on the data. The neural network and Instance-based 

learning methods are somehow more powerful, yet they are less efficient in providing 

information about the structures of the functions that they represent.  

A regression tree algorithm is perhaps the most popular and effective. The operational 

mechanism is similar to that of the decision tree, and the process of modeling is also 

explained in a similar way. The most noticeable work among the versions of regression 

trees is CART (Breiman, et al., 1984), which sets the basis for most latter versions. 

Morimoto (Morimoto et al., 1997) is a representative amongst these improved versions. It 

is more accurate in forming region-slitting regression trees. However, the scope of the test 

is larger because more internal nodes are covered. A shortcoming of the types of regression 

trees developed based on CART is that they only function effectively when values at their 

leaves are constant. Thus there is a limitation in the number of values to be predicted. 
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The decision tree model has also suggested a new type of regression methods using local 

linear regression functions instead of single values at the leaves (Karalic, 1992). By this 

method, Karalic (1992) has overcome the shortcomings of the previous regression tree 

methods. In this regards, Quinlan (1992) also proposed M5 algorithm. Like other methods, 

M5 has been applied in reality. Even though these regression methods have been 

continuously improved and have helped solve real life problems, in many applications, 

they need to have not only a high predictive accuracy, but also be close to human 

reasoning – i.e. – they should be easy to interpret and comprehend for users. 

By now, learning with continuous classes using fuzzy rule generation is no longer a new 

concept, and there are effective learning methods available for predicting real applications. 

Another model based on fuzzy logic has been widely used for the development of expert 

systems and controllers due to its similarity to some aspects of human reasoning – the 

Wang and Mendel’s (1991) method. With a five-step procedure, Wang and Mendel 

determine a mapping from the input space to the output space based on the combined fuzzy 

rule base. In this method, fuzzy rules are generated for examples based on membership 

functions that have been pre-defined to divide the attribute space into fuzzy regions. 

Problems arise as the number of rules generated grows, and challenges the memory 

capacity. Wang and Mendel (1991) referred to this as the “growing memory” problem. 

Due to this matter, the selection of the best rules becomes less efficient.  

Similar to Wang and Mendel’s algorithm, Nozaki and Ishibuchi (1997) proposed to use a 

particular heuristic method to automatically generate fuzzy if-then rules from numerical 

data. The fuzzy if-then rules with non-fuzzy singletons (i.e., real numbers) in the 

consequent parts are generated by assessing single real numbers (instead of membership 

functions) which are to be stored in each cell of the decision table. Since there is not 
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defuzzification step involved, Nozaki and Ishibuchi’s algorithm is quite simple. However, 

the problem of growing memory still remains. 

Sebag and Schoenauer(1994) observed that the problem of designing membership 

functions might be just as complex as designing fuzzy rules. Both methods above need to 

pre-define membership functions, which is actually not an easy task. Various methods for 

automatic creation of membership functions have been devised. However, all still cannot 

solve the existing problems, not to mention the rise of new problems. One of the 

challenges is the demand of post-processing the large fuzzy rule sets formed to acquire 

more compact rule sets.  

To resolve the problems for automatic membership functions design, Hong and Lee (1996) 

proposed a method, by which the fuzzification of output is performed using a clustering 

procedure that regards examples in the training set (T) with close output values as 

belonging to the same fuzzy set.  Appropriate membership functions are then assigned to 

represent each fuzzy set. Initial membership functions are assigned to attributes in the form 

of a triangle base equal to a small interval predefined by a user. After attributes have 

received their initial membership functions, the decision table is built using the examples 

in T. The decision table is then simplified through the process of merging membership 

functions from which the final rule sets can be extracted.  

Nevertheless, a problem still exists with the merging process regardless of the attempt to 

improve it by the authors Hong and Lee (1999). That is, it can be highly computationally 

expensive as the number of attributes increases. Hong and Chen (2000) also attempted to 

develop a method to simplify the initial membership functions. Their method has been 

proven to be more efficient and accurate, yet it does not reduce considerably the 

computational cost. This method, however, generates a set of fuzzy rules where the 
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membership functions have been automatically created and the universes of discourse are 

not equally partitioned. It should be noted that it is still a challenge when the number of 

attributes increases. 

In 2004, Bigot released a new technique called DynaFuzz that can automatically create 

input membership functions. Inheriting the advantages of its predecessors – theDyna and 

DynaSpace inductive learning algorithms, DynaFuzz can generate more compact and more 

accurate fuzzy rule sets. However, in the present world, given that databases are becoming 

more diverse with more features as well as bigger quantity, there is an increasing need for 

improving existing algorithms and developing new ones. The need for further research on 

the automation of creating output membership functions is also of no exception.  

This chapter presents a novel technique for fuzzy rule induction that combines the 

capabilities of fuzzy logic for continuous outputs and uncertainty handling with the good 

performance of RULES-8 algorithm. The technique, named TVFuzz, was designed as a 

covering algorithm that allows the creation of compact fuzzy system. Follow are a 

description of TVFuzz and the results obtained from an experimental evaluation of 

Rule8Fuzz on some benchmark datasets. 
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5.2 A novel fuzzy rule generation 

This section proposes the TVFuzz algorithm, a simple but powerful method for 

automatically generating fuzzy IF-THEN rule. TVFuzz uses the simplification technique of 

RULES-8 to form fuzzy rules. It thus has to predefine the target class. At this time, the 

outputs have been discretised. Based on RULES-8 rule forming process, rule sets are 

generated. The class of the rules is the target fuzzy. Therefore, each condition of the rule is 

also fuzzified. The fuzzy rules finally are generated. The fuzzy rule generation procedure is 

described in Figure 5.1 as shown below. 

 

Step 1: Fuzzify the output data. Each output value has to be fuzzified in order to determine 

the target output fuzzy set. 

Step 2: Create rule set. At this time, the outputs have been discretised. Based on RULES-8 

rule forming process, rule sets are generated 

Step 3: Fuzzy rule generation. The class of the rule is replaced by the target fuzzy, and 

each condition is also fuzzified. 

 

Figure 5.1 Fuzzy rule generation procedure 
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5.2.1 Fuzzification of outputs 

In learning with continuous outputs using fuzzy rule generation, the output values as a 

whole should be discretised and then fuzzified. Perhaps the most famous technique for 

fuzzification of output is employed by Hong and Lee (1995). According to Hong and Lee 

(1995), the output values of the training set are sorted out in ascending order and then 

using cutα of similarity to cluster the examples ( cutα is the threshold for two adjacent data to 

be thought of belonging to the same class). After the above operation, thi output data will 

be clustered into out
kF . At this time, triangle membership functions are used for each 

group out
kF . A triangle membership function can be defined as ( ( ), ( ), ( ))out

kF Tr a k b k c k=  
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C is a control parameter deciding the shape of the membership function of similarity 

kσ is the standard deviation of kdiff ’s 

By this way, the membership function of the outputs is automatically constructed. 

However, in case the outputs are a range of values with little disparity, the output data will 

be divided into many small clusters. Each cluster may contain only one value, and 

sometimes, there is only one cluster that contains all the output values. This can cause the 

problem of complication and inaccuracy. For example in robot control when it comes to 

determining joint movements and positions. Consequently, the application of this 

algorithm in this case is not so effective. 

In order to overcome the problems in Hong and Lee’s method, Wang and Mendel (1991) 

used a technique to divide the output data into two ranges: 2 1N + . Bigot (2004) specified 

this technique as below: 

The output range thus has been decomposed into Nf triangular fuzzy set 

1( ,..., ,..., )out out out
k NfF F F defined as ( ( ), ( ), ( ))out

kF Tr a k b k c k=  

Where k is an integer included in [1, Nf],  

( )max min( ) 1
1

out outV Vb k k
Nf
−

= −
−

    (5.5) 

 

max min( ) ( )
1

out outV Va k b k
Nf
−

= −
−

    (5.6) 
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max min( ) ( )
1

out outV Vc k b k
Nf
−

= +
−

    (5.7) 

 

Based on this, an example E with its output value ( )out
EV could belong to two membership 

functions. The output membership functions will be the fuzzy set out
KF where the 

membership degree ( )out
K

out
EF

Vμ is maximum. 

Dividing the outputs into equal ranges is a simple but effective method in case there is not 

much difference among the output values. However, the formula (5.5) (Bigot, 2004) cannot 

be applied for negative values. Sinceb(k) is always 0 when k = 1, b(1) cannot be computed 

when the range of the outputs begins with a negative value.  

To sum up, between the two methods mentioned above, each has its own advantages 

depending on the nature of the output values. In this research, efforts will continue to be 

made to improve the techniques for the less dissimilar output values. However, formula 

(5.5) can be improved  in order to apply for both positive and negative values, as can be 

seen below: 

 

( )max min
min( ) 1

1

out out
outV Vb k k V

Nf
−

= − +
−

   (5.8) 
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Figure 5.2 presents the output fuzzification having the range of values from -30 to 30. It is 

proposed to split the continuous output range in to 6 clusters. 

 

 

 

 

 

  

Figure 5.2: Output fuzzification 

5.2.2 Formation fuzzy rule 

As can be seen above, after the output data are predefined, they are now considered the 

discrete values 1( ,..., ,..., )out out out
k NfF F F . At that time, TVFuzz uses RULES-8 algorithm 

(Chapter 3) to form fuzzy rules. The rule forming process can be summarised as follows: 

Step 1: Select randomly one uncovered attribute-value from each attribute to find Seed 

Attribute value (SA). SA is the value applied for the discrete values or the range of values 

created as a result of the process of finding rules that have the best quality. The difference 

between this method and RULES-8 is using the TV measure to access rule quality instead 

of using the H measure as in RULES-8. 
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Step 2: Combine SA with other attributes to make the rule more general until the 

combination does not make the Rule any better. Then a rule R is obtained and belongs to 

the target class. 

The process repeats Step 1 and continues until no uncovered attribute-value remains in the 

training set. At the end of the rule formation process, a set of rules is generated. 

5.2.3 Fuzzification of conditions 

As can be seen, one or several rules can be created for each target class. The conditions 

take the form min max or i i i i i i i
R SA RCond A V Cond V A V⎡ ⎤ ⎡ ⎤= = = < <⎣ ⎦ ⎣ ⎦  for discrete and 

continuous values respectively. Each condition is fuzzified using the following method: 

- In the case of a continuous attribute, min max
i i i i
RCond V A V⎡ ⎤= < <⎣ ⎦ is converted into the 

fuzzy condition ( , , )i i
RCond A is Tr a b c⎡ ⎤= ⎣ ⎦ , where: 

max min
min max;

2

i i
i iV Va V b and c V−

= = = , if min
iV , max

iV are finite; 

i i i
min max mina  - ; b = V ; and c = V ,  if V   -→ ∞ → ∞  

i i i
min max maxa = V , b = V  and c  + , if V   +→ ∞ → ∞  

- In the case of discrete attribute, the condition i i i
R SECond A V⎡ ⎤= =⎣ ⎦ is converted into the 

fuzzy condition i i i
R kCond A is Vcod⎡ ⎤= ⎣ ⎦ , where i

kVcod is the coded value of i
SEV  

 

 



117 

5.3 Illustrative problem 

To illustrate the new fuzzy rules generation process, consider the following nonlinear two 

inputs – a single output system used in the research of Nozaki and Ishibuchi (1997). 

( )22 1.5
1 2 1 21 , (1 ; 5) (5.9)y x x x x− −= + + ≤ ≤  

This was also used in Takagi and Sugeno (1993). 50 input-output pairs were obtained 

(Appendix 2): 

 1x  2x  y  

1 3.49 4.20 1.44 
2 1.18 2.07 4.21 
3 3.50 2.11 1.98 
4 2.26 4.57 1.69 
5 1.06 4.13 4.01 
6 4.96 3.90 1.37 
7 2.19 4.23 1.75 
8 1.55 3.85 2.40 
    
    

25 4.79 4.53 1.32 
26 1.28 2.92 3.27 
27 1.82 2.00 2.75 
28 4.84 1.55 2.44 
29 1.91 2.58 2.29 
30 2.05 1.06 4.66 

    
    

45 1.04 2.24 4.97 
46 4.44 4.24 1.36 
47 1.67 1.48 3.67 
48 4.00 4.74 1.34 
49 4.17 4.04 1.39 
50 3.55 2.64 1.72 

Figure 5.3: Example set 
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Figure 5.4: Representation of the example set 

 

 

 

 

 

 

Figure 5.5: Fuzzification of y with Nf = 4 
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The precision for the model is fixed to Nf = 4 membership functions for the outputs. The 

four possible output membership functions F1, F2, F3, F4 are created (Figure 5.5). TVFuzz 

process will follow the steps described below. 

Step 1:A set of attribute-value is constructed by selecting random attribute-values from 

1 2,x x .For example, SETAV= {[ 1x = 4], [ 2x = 3.34]} 

Steps 2,3: Array expression T_EXP is formed 

IF [ 1x = 4] THEN [y=1.34], the targeted output set is fuzzy set F1  (1) 

IF [ 2x = 3.34] THEN [y=1.46] the targeted output set is also fuzzy set F1 (2) 

Based on (1), (2) new expressions are generated as follow: 

     IF [4 1x≤ ≤4.65] THEN [y = F1], covers 9 examples, TV measure = 0.3462   (3) 

     IF [3.34 2x≤ ≤ 3.81] THEN [y = F1], covers 6 examples, TV measure = 0.2308 (4) 

Seed attribute-values are [4 1x≤ ≤4.65] 

Step 6: Form a set of conjunctions of conditions  

SETCC = {[4 1x≤ ≤4.65] and [2.12 2x≤ ≤ 4.74]} 

Steps 7,8: Determine the neighbourhood of Seed attribute-values 

- Determine the range of 1x  with [2.12 2x≤ ≤ 4.74] and [y = F1]. The new range of 1x  is 

[2.62 1x≤ ≤4.96]. 

IF [2.62 1x≤ ≤4.96] AND [2.12 2x≤ ≤ 4.74] THEN [y = F1], TV measure = 0.9231      (5) 
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As can be seen, expression (5) covers 24 examples and TV measure = 0.9231, which is 

higher than the TV measure in expression (3). Thus, the range of 2x  continues to check for 

extending. 

For [2.62 1x≤ ≤4.96] and [y = F1], the new range of 2x  is [2.12 2x≤ ≤ 4.74], nothing 

changes with expression (5). Thus, Rule 1 is created as follow: 

Rule 1: IF [2.62 1x≤ ≤4.96] AND [2.12 2x≤ ≤ 4.74] THEN [y = F1], TV measure = 0.9231 

The process continues until there are no remaining unclassified examples in the dataset. 

The final RuleSet includes: 

Rule 2: IF [1.35 2x≤ ≤ 2.11] THEN [y = F2], TV measure = 0.7059 

Rule 3: [1.82 1x≤ ≤2.54] AND [2.0 2x≤ ≤ 4.22] THEN [y = F2], TV measure = 0.4118 

Rule 4: [1.06 1x≤ ≤1.28] THEN [y = F3], TV measure = 1 

Rule 5: [1.02 1x≤ ≤1.04] THEN [y = F4], TV measure = 1 

Rule 6: [2.19 1x≤ ≤4.79] AND [2.51 2x≤ ≤ 4.74] THEN [y = F1], TV measure = 0.8846 
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 1x  2x  y  

1 3.49 4.20 F1 
2 1.18 2.07 F3 
3 3.50 2.11 F2 
4 2.26 4.57 F1 
5 1.06 4.13 F3 
6 4.96 3.90 F1 
7 2.19 4.23 F1 
8 1.55 3.85 F2 
    
    

25 4.79 4.53 F1 
26 1.28 2.92 F3 
27 1.82 2.00 F2 
28 4.84 1.55 F2 
29 1.91 2.58 F2 
30 2.05 1.06 F4 

    
    

45 1.04 2.24 F4 
46 4.44 4.24 F1 
47 1.67 1.48 F3 
48 4.00 4.74 F1 
49 4.17 4.04 F1 
50 3.55 2.64 F1 

 

Figure 5.6: Discretised example sets 
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Rule 1: IF [2.62 1x≤ ≤4.96] AND [2.12 2x≤ ≤ 4.74] THEN [y = F1], TV = 0.9231 

Rule 2: IF [1.35 2x≤ ≤ 2.11] THEN [y = F2], TV = 0.7059 

Rule 3: [1.82 1x≤ ≤2.54] AND [2.0 2x≤ ≤ 4.22] THEN [y = F2], TV = 0.4118 

Rule 4: [1.06 1x≤ ≤1.28] THEN [y = F3], TV = 1 

Rule 5: [1.02 1x≤ ≤1.04] THEN [y = F4], TV = 1 

Rule 6: [2.19 1x≤ ≤4.79] AND [2.51 2x≤ ≤ 4.74] THEN [y = F1], TV = 0.8846 

Figure 5.7: Rule set obtained for Nf = 4 

 

 

Figure 5.8: Predicted obtained for Nf = 4 
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Figure 5.9: Fuzzification of Y with Nf = 6 

Rule 1: [3.43 1x≤ ≤5] AND [1.35 2x≤ ≤ 1.55] THEN [y = F3] 

Rule 2: [3.65 1x≤ ≤4.83] AND [1.58 2x≤ ≤ 2.52] THEN [y = F2] 

Rule 3: [3.63 1x≤ ≤4.96] AND [2.62 2x≤ ≤ 4.74] THEN [y = F1] 

Rule 4: [2.89 1x≤ ≤3.55] AND [2.02 2x≤ ≤ 2.69] THEN [y = F2] 

Rule 5: [1.85 1x≤ ≤2.62] AND [3.27 2x≤ ≤ 4.57] THEN [y = F2] 

Rule 6: [2.84 1x≤ ≤3.49] AND [3.43 2x≤ ≤ 4.20] THEN [y = F1] 

Rule 7: [1.02 1x≤ ≤1.04] THEN [y = F6] 

Rule 8: [1.06 1x≤ ≤1.18] THEN [y = F5] 

Rule 9: [1.28 1x≤ ≤1.82] AND [2.0 2x≤ ≤ 2.92] THEN [y = F3] 

Rule 10: [ 1x =1.82] AND [ 2x =1.48] THEN [y = F4] 

Figure 5.10: Rule set obtained for Nf= 6 
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Figure 5.11: Prediction obtained for Nf = 6 

 

5.4 Using fuzzy rule for output prediction 

As can be seen above, a fuzzy rule set is generated from the training sets. When a 

particular data is entered, the system will check to see if it matches with any of the rules 

and what the degree of match is.  

There are two popular methods defining the “degree of match” of an example to the rule. 

The first method is presented by Hong and Lee (1996). This method is based on the 

minimum membership degree. It is defined as: 

1 1 1_ ( ) min ( ),..., ( ),..., ( )i i i
R R R

R E E EF F F
rule E V V Vμ μ μ μ⎡ ⎤= ⎣ ⎦   (5.10) 

The second method, which is proposed by Nozaki and Ishibuchi (1997), uses the product 

of all membership degrees. It can be defined as: 

1
_ ( ) ( )i

R

m
i

R EFi
rule E Vμ μ

=
⎡ ⎤= ∏ ⎣ ⎦       (5.11) 



125 

In this research, the degree of match is determined by the first method (Hong and Lee, 

1996). For instance, an example regarding to fuzzy set ( i
RF ) in rule R has membership 

degrees of two attributes of 0.77 and 0.17, respectively as in Figures 5.4 and 5.5. This 

example has a degree of match to rule R defined as min(0.77, 0.17) = 0.17. 

Based on this, defuzzification techniques are used to identify the actual outputs. The output 

prediction procedure using fuzzy rules is described as below:  

 

Step 1: Transform numeric input to linguistic terms according to the membership function; 

Step 2: Match the linguistic terms with the decision rules to find the output groups; 

Step 3: Defuzzify the output groups to form the final decision 

 

Figure 5.3: Output prediction procedure using fuzzy rule 
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Figure 5.12: The membership degree of attribute 1 = 0.77 

 

 

 

 

 

 

Figure 5.13: The membership degree of attribute 2 = 0.17 
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5.5 Experimental results 

As mentioned in Chapter 2, it can be said thatDynaFuzzis one of the most efficient 

algorithms in predicting continuous outputs. In the section that follows, two real-life 

problems will be used to examine the TVFuzz algorithm. The results from this examination 

will be compared with those from the DynaFuzz algorithm. 

5.5.1 Fuzzy model for mathematical model 

The first problem will be applied on the sample sets illustrated in DynaFuzz (Bigot, 2004), 

including 250 samples (Figure 5.13). Each sample contains a discrete value Curve-type 

(1,2) and a continuous value Ax. The outputs are a range of continuous values,Ay. The 

following mathematical model represents the entire example space: 

IF Curve-type = 1 THEN Ay = sin(Ax) 

IF Curve-type = 2 THEN IF Ax = kπ  THEN Ay = 0 

    IF Ax ]2. . , (2. 1) [k kπ π∈ +  THEN    Ay = 1 

    IF Ax ](2. 1). , (2. 2) [k kπ π∈ + + THEN  Ay = -1 

Where k is an integer [0, ]∈ +∞  
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 Curve-type Ax Ay 
1 1 0.1 0.099833 
2 1 0.2 0.198669 
3 1 0.3 0.29552 
    
    

40 1 4 0.756802 
41 1 4.1 0.818277 
42 1 4.2 0.871576 
43 1 4.3 0.916166 

    
    
    

70 1 7 0.656987 
71 1 7.1 0.728969 
72 1 7.2 0.793668 

    
    
    

109 1 10.9 0.995436 
110 1 11 0.99999 
111 1 11.1 0.994553 
112 1 11.2 0.979178 

    
    
    

147 2 2.2 1 
148 2 2.3 1 
149 2 2.4 1 

    
    
    

206 2 8.1 1 
207 2 8.2 1 
208 2 8.3 1 

    
    

248 2 12.3 1 
249 2 12.4 1 
250 2 12.5 1 

 

Figure 5.14:  Example set



129 

In the case of the DynaFuzz algorithm, the outputs are decomposed into 4 membership 

functions (Figure 5.15) 

 

 

 

 

 

 

Figure 5.15: Fuzzufication of Ay with Nf= 4 

After having predefined the membership functions for the outputs, Bigot (2004) applied 

the DynaFuzz algorithm and obtained 12 rules as shown in Figure 5.16.The prediction of 

the model for 250 examples is shown in Figure 5.18 with the pink line. For this model, the 

maximum absolute error equals 1.3291 and mean absolute error equals 0.5682 

Similarly, the TVFuzz algorithm also decomposes the output values into 4 triangular 

membership functions, and obtains 16 rules as shown in Figure 5.17. The prediction of the 

model is shown in Figure 5.18 with yellow line. For this model, the maximum absolute 

error equals 0.9198 and mean absolute error equals 0.4938 
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R1 IF [Curve-type is 1] AND [Ax is Tr (-∞, 0.1, 3.5)] THEN Ay is F3 
R2 IF [Ax is Tr (0.3, 1.6, 2.9)] THEN Ay is F4 
R3 IF [Curve-type is 1] AND [Ax is Tr (2.8, 4.75, 6.7)] THEN Ay is F2 
R4 IF [Ax is Tr (3.4, 4.7, 6.)] THEN Ay is F1 
R5 IF [Curve-type is 1] AND [Ax is Tr (5.9, , 9.8)] THEN Ay is F3 
R6 IF [Ax is Tr (6.6, , 9.1)] THEN Ay is F3 
R7 IF [Curve-type is 1] AND [Ax is Tr (9,12.5,+ ∞)] THEN Ay is F2 
R8 IF [Ax is Tr (9.7, , 12.3)] THEN Ay is F1 
R9 IF [Curve-type is 2] AND [Ax is Tr (-∞,0.1, 3.2)] THEN Ay is F4 
R10 IF [Curve-type is 2] AND [Ax is Tr (3.1, ,6.3)] THEN Ay is F1 
R11 IF [Curve-type is 2] AND [Ax is Tr (6.2, ,9.5)] THEN Ay is F4 
R12 IF [Curve-type is 2] AND [Ax is Tr (9.4,12.5,+ ∞)] THEN Ay is F1 

 

Figure 5.16: Rule set obtained for Nf=10 using DynaFuzz algorithm 

 

R1  IF [Curve-type is 1] AND [Ax is Tr (-∞ , 0.1, 0.7)] THEN Ay is F3 
R2  IF [Curve-type is 2] AND [Ax is Tr (-∞ , 0.1, 3.1)] THEN Ay is F4 
R3  IF [Ax is Tr (0.8, 1.6, 2.4)] THEN Ay is F4 
R4  IF [Curve-type is 1] AND [Ax is Tr (2.5, 2.8, 3.1)] THEN Ay is F3 
R5  IF [Curve-type is 1] AND [Ax is Tr (3.2, 3.5, 3.8)] THEN Ay is F2 
R6  IF [Curve-type is 2] AND [Ax is Tr (3.2, 4.7, 6.2)] THEN Ay is F1 
R7  IF [Ax is Tr (3.9, 4.7, 5.5)] THEN Ay is F1 
R8  IF [Curve-type is 1] AND [Ax is Tr (5.6, 5.9, 6.2)] THEN Ay is F2 
R9  IF [Curve-type is 1] AND [Ax is Tr (6.3, 6.65, 7)] THEN Ay is F3 
R10  IF [Curve-type is 2] AND [Ax is Tr (6.3, 7.85, 9.4)] THEN Ay is F4 
R11  IF [Ax is Tr (7.1, 7.85, 8.6)] THEN Ay is F4 
R12 IF [Curve-type is 1] AND [Ax is Tr (8.7, 9.05, 9.4)] THEN Ay is F3 
R13  IF [Curve-type is 1] AND [Ax is Tr (9.5, 9.8, 10.1)] THEN Ay is F2 
R14  IF [Ax is Tr (10.2, 11, 11.8)] THEN Ay is F1 
R15  IF [Curve-type is 2] AND [Ax is Tr (9.5, 12.5,, +∞ )] THEN Ay is F1 
R16  IF [Curve-type is 1] AND [Ax is Tr (11.9, 12.5, +∞ )] THEN Ay is F2 
 

 

Figure 5.17: Rule set obtained for Nf=4 using TVFuzz algorithm 
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Figure 5.18: Prediction of output Ay using DynaFuzz and TVFuzz algorithm 

In the case of the DynaFuzz algorithm, the outputs are decomposed into 10 membership 

functions (Figure 5.19) 

 

 

 

 

 

Figure 5.19: Fuzzufication of Ay with Nf = 10 

After having predefined the membership functions for the outputs, Bigot (2004) applied 

the DynaFuzz algorithm and obtained 36 rules as shown in Figure 5.20.The prediction of 

the model for 250 examples is shown in Figure 5.22 with the pink line. For this model, the 

maximum absolute error equals 1.0293 and mean absolute error equals 0.4192 

-1 

F1 F2 F3 F4 F5 F6 F7 F8 F10 F9 
1

Ay

μ (Ay) 

-1.222 -0.778 -0.556 -0.333 -0.111 0.111 0.333 0.556 0.778 1 1.222 
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Similarly, the TVFuzzalgorithm also decomposes the output values into 10 triangular 

membership functions, and obtains 40 rules as shown in Figure 5.21. The prediction of the 

model is shown in Figure 5.22 with yellow line. For this model, the maximum absolute 

error equals 0.8827 and mean absolute error equals 0.3102 

R1  IF [Curve-type is 1] AND [Ax is Tr (-∞ , 0.1, 0.4)] THEN Ay is F6 
R2  IF [Curve-type is 1] AND [Ax is Tr (0.1, 0.35, 0.6)] THEN Ay is F7 
R3  IF [Curve-type is 1] AND [Ax is Tr (0.3, 0.6, 0.9)] THEN Ay is F8 
R4  IF [Curve-type is 1] AND [Ax is Tr (0.5, 1.55, 2.6)] THEN Ay is F9 
R5  IF [Ax is Tr (0.8, 1.55, 2.3)] THEN Ay is F10 
R6  IF [Curve-type is 1] AND [Ax is Tr (2.2, 2.55, 2.9)] THEN Ay is F8 
R7  IF [Curve-type is 1] AND [Ax is Tr (2.5, 2.8, 3.1)] THEN Ay is F7 
R8  IF [Curve-type is 1] AND [Ax is Tr (2.8, 3.05, 3.3)] THEN Ay is F6 
R9  IF [Curve-type is 1] AND [Ax is Tr (3, 3.25, 3.5)] THEN Ay is F5 
R10  IF [Curve-type is 1] AND [Ax is Tr (3.2, 3.5, 3.8)] THEN Ay is F4 
R11  IF [Curve-type is 1] AND [Ax is Tr (3.4, 3.75, 4.1)] THEN Ay is F3 
R12 IF [Curve-type is 1] AND [Ax is Tr (3.7, 4.7, 5.7)] THEN Ay is F2 
R13  IF [Ax is Tr (4, 4.7, 5.4)] THEN Ay is F1 
R14  IF [Curve-type is 1] AND [Ax is Tr (5.3, 5.65, 6)] THEN Ay is F3 
R15  IF [Curve-type is 1] AND [Ax is Tr (5.6, 5.9, 6.2)] THEN Ay is F4 
R16  IF [Curve-type is 1] AND [Ax is Tr (5.9, 6.15, 6.4)] THEN Ay is F5 
R17  IF [Curve-type is 1] AND [Ax is Tr (6.1, 6.4, 6.7)] THEN Ay is F6 
R18  IF [Curve-type is 1] AND [Ax is Tr (6.3, 6.6, 6.9)] THEN Ay is F7 
R19  IF [Curve-type is 1] AND [Ax is Tr (6.6, 6.9, 7.2)] THEN Ay is F8 
R20  IF [Curve-type is 1] AND [Ax is Tr (6.8, 7.95, 9.1)] THEN Ay is F9 
R21  IF [Ax is Tr (7.1, 7.85, 8.6)] THEN Ay is F10 
R22  IF [Curve-type is 1] AND [Ax is Tr (8.5, 8.8, 9.1)] THEN Ay is F8 
R23  IF [Curve-type is 1] AND [Ax is Tr (8.8, 9.1, 9.4)] THEN Ay is F7 
R24  IF [Curve-type is 1] AND [Ax is Tr (9, 9.3, 9.6)] THEN Ay is F6 
R25  IF [Curve-type is 1] AND [Ax is Tr (9.3, 9.55, 9.8)] THEN Ay is F5 
R26  IF [Curve-type is 1] AND [Ax is Tr (9.5, 9.8, 10.1)] THEN Ay is F4 
R27  IF [Curve-type is 1] AND [Ax is Tr (9.7, 10.05, 10.4)] THEN Ay is F3 
R28  IF [Curve-type is 1] AND [Ax is Tr (10, 11, 12)] THEN Ay is F2 
R29  IF [Ax is Tr (10.3, 11, 11.7)] THEN Ay is F1 
R30  IF [Curve-type is 1] AND [Ax is Tr (11.6, 11.95, 12.3)] THEN Ay is F3 
R31  IF [Curve-type is 1] AND [Ax is Tr (11.9, 12.2, 12.5)] THEN Ay is F4 
R32  IF [Curve-type is 1] AND [Ax is Tr (12.2, 12.35, 12.5)] THEN Ay is F5 
R33  IF [Curve-type is 2] AND [Ax is Tr (0.1, 1.65, 3.2)] THEN Ay is F10 
R34  IF [Curve-type is 2] AND [Ax is Tr (3.1, 4.7, 6.3)] THEN Ay is F1 
R35  IF [Curve-type is 2] AND [Ax is Tr (6.2, 7.85, 9.5)] THEN Ay is F10 
R36  IF [Curve-type is 2] AND [Ax is Tr (9.4, 12.5, +∞ )] THEN Ay is F1 

Figure 5.20: Rule set obtained for Nf=10 using DynaFuzz algorithm 
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R1  IF [Curve-type is 1] AND [Ax is Tr (-∞ , 0.1, 0.2)] THEN Ay is F6 
R2  IF [Curve-type is 2] AND [Ax is Tr (-∞ , 0.1, 3.1)] THEN Ay is F10 
R3  IF [Curve-type is 1] AND [Ax is Tr (0.3, 0.35, 0.4)] THEN Ay is F7 
R4  IF [Curve-type is 1] AND [Ax is Tr (0.5, 0.6, 0.7)] THEN Ay is F8 
R5  IF [Curve-type is 1] AND [Ax is Tr (0.8, 0.9, 1)] THEN Ay is F9 
R6  IF [Ax is Tr (1.1, 1.55, 2)] THEN Ay is F10 
R7  IF [Curve-type is 1] AND [Ax is Tr (2.1, 2.25, 2.4)] THEN Ay is F9 
R8  IF [Curve-type is 1] AND [Ax is Tr (2.5, 2.55, 2.6)] THEN Ay is F8 
R9  IF [Curve-type is 1] AND [Ax is Tr (2.7, 2.8, 2.9)] THEN Ay is F7 
R10  IF [Curve-type is 1] AND [Ax is Tr (3, 3.05, 3.1)] THEN Ay is F6 
R11  IF [Curve-type is 1] AND [Ax is Tr (3.2, 3.25, 3.3)] THEN Ay is F5 
R12 IF [Curve-type is 2] AND [Ax is Tr (3.2, 4.7, 6.2)] THEN Ay is F1 
R13  IF [Curve-type is 1] AND [Ax is Tr (3.4, 3.45, 3.5)] THEN Ay is F4 
R14  IF [Curve-type is 1] AND [Ax is Tr (3.6, 3.7, 3.8)] THEN Ay is F3 
R15  IF [Curve-type is 1] AND [Ax is Tr (3.9, 4.05, 4.2)] THEN Ay is F2 
R16  IF [Ax is Tr (4.3, 4.75, 5.2)] THEN Ay is F1 
R17  IF [Curve-type is 1] AND [Ax is Tr (5.3, 5.4, 5.5)] THEN Ay is F2 
R18  IF [Curve-type is 1] AND [Ax is Tr (5.6, 5.7, 5.8)] THEN Ay is F3 
R19  IF [Curve-type is 1] AND [Ax is Tr (5.9, 5.95, 6)] THEN Ay is F4 
R20  IF [Curve-type is 1] AND [Ax is Tr (6.1, 6.15, 6.2)] THEN Ay is F5 
R21  IF [Curve-type is 1] AND [Ax is Tr (6.3, 6.4, 6.5)] THEN Ay is F6 
R22  IF [Curve-type is 1] AND [Ax is Tr (6.6, 6.65, 6.7)] THEN Ay is F7 
R23  IF [Curve-type is 1] AND [Ax is Tr (6.8, 6.9, 7)] THEN Ay is F8 
R24  IF [Curve-type is 1] AND [Ax is Tr (7.1, 7.2, 7.3)] THEN Ay is F9 
R25  IF [Ax is Tr (7.4, 7.85, 8.3)] THEN Ay is F10 
R26  IF [Curve-type is 2] AND [Ax is Tr (6.3, 7.85, 9.4)] THEN Ay is F10 
R27  IF [Curve-type is 1] AND [Ax is Tr (8.4, 8.5, 8.6)] THEN Ay is F9 
R28  IF [Curve-type is 1] AND [Ax is Tr (8.7, 8.8, 8.9)] THEN Ay is F8 
R29  IF [Curve-type is 1] AND [Ax is Tr (9, 9.1, 9.2)] THEN Ay is F7 
R30  IF [Curve-type is 1] AND [Ax is Tr (9.3, 9.35, 9.4)] THEN Ay is F6 
R31  IF [Curve-type is 1] AND [Ax is Tr (9.5, 9.55, 9.6)] THEN Ay is F5 
R32  IF [Curve-type is 1] AND [Ax is Tr (9.7, 9.75, 9.8)] THEN Ay is F4 
R33  IF [Curve-type is 1] AND [Ax is Tr (9.9, 10, 10.1)] THEN Ay is F3 
R34  IF [Curve-type is 1] AND [Ax is Tr (10.2, 10.3, 10.4)] THEN Ay is F2 
R35  IF [Curve-type is 1] AND [Ax is Tr (10.5, 11, 11.5)] THEN Ay is F1 
R36  IF [Curve-type is 2] AND [Ax is Tr (9.5, 12.5, +∞ )] THEN Ay is F1 
R37  IF [Curve-type is 1] AND [Ax is Tr (11.6, 11.7, 11.8)] THEN Ay is F2 
R38  IF [Curve-type is 1] AND [Ax is Tr (11.9, 12, 12.1)] THEN Ay is F3 
R39  IF [Curve-type is 1] AND [Ax is Tr (12.2, 12.25, 12.3)] THEN Ay is F4 
R40  IF [Curve-type is 1] AND [Ax is Tr (12.4, 12.5, +∞ )] THEN Ay is F5 
 

 

Figure 5.21: Rule set obtained for Nf = 10 using TVFuzz algorithm 
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Figure 5.22: Prediction of output Ay using DynaFuzz and TVFuzz algorithm
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5.5.2 Fuzzy model for robot arm control 

The problem proposed in this section is the creation of a fuzzy model for the controlof a 

PUMA 560 robot arm (Armstrong and Khatib, 86). As shown in Figure 5.23, the position 

of the robot arm depends on 3 joints and can be defined by the angles at these joints 

( 1θ , 2θ , 3θ ). An example in T is composed of 6 input attributes, the joint angles at time t 

( 1_ tθ , 2_ tθ , 3_ tθ )and at time t-1 ( 1_ 1tθ − , 2_ 1tθ − , 3_ 1tθ − ), and of 3 outputs, the resulting spatial 

position (X, Y, Z). T contains 27,825 examples. 

 

 

Figure 5.23: Co-ordinate definition of the PUMA 560 robot arm 

(Armstrong and Khatib, 86) 
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A model is first created using DynaFuzz. The membership functions have to be predefined 

for the outputs. Three training sets are generated in order to produce one rule set for each 

output. The number of membership functions is fixed to 10. Parameter BS (in the 

DynaSpace rule forming process) is set to 2 and no pruning process is employed. The 

result is 13 rules for the prediction of X, 14 rules for the prediction of Y and 28 rules for 

the prediction of Z, a total of 55 rules. The predictions of the model for the first 10,000 

examples compared with the real outputs X, Y and Z are shown respectively in Figure 

5.24, Figure 5.26 and Figure 5.28. 

For output X: Maximum absolute error = 0.093403 and Mean absolute error = 0.0071 

For output Y: Maximum absolute error = 0.088887 and Mean absolute error = 0.003984 

For output Z: Maximum absolute error = 0.043807 and Mean absolute error = 0.002866 

The second model using TVFuzz is also created. The output is also decomposed into 10 

triangular membership functions. The result is 12 rules for the prediction of X, 13 rules for 

the prediction of Y and 19 rules for the prediction of Z, a total of 44 rules. The predictions 

of the model for the first 10,000 examples compared with the real outputs X, Y and Z are 

shown respectively in Figure 5.25, Figure 5.27 and Figure 5.29. 

For output X: Maximum absolute error = 0.089289 and Mean absolute error = 0.0068 

For output Y: Maximum absolute error = 0.061811and Mean absolute error = 0.003491 

For output Z: Maximum absolute error = 0.04081 and Mean absolute error = 0.002691 

 

 



137 

 

 

Figure 5.24: Prediction of output X using DynaFuzz 

 

 

Figure 5.25: Prediction of output X using TVFuzz 
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Figure 5.26: Prediction of output Y using DynaFuzz 

 

 

Figure 5.27: Prediction of output Y using TVFuzz 
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Figure 5.28: Prediction of output Z using DynaFuzz 

 

 

Figure 5.29: Prediction of output Z using TVFuzz 
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TVFuzz creates a much more compact rule set, which is also more accurate, with a mean 

absolute error reduced by 6.9%. The differences in accuracy are clearly shown in the 

graphical representations. 

5.6 Summary 

This chapter has presented the TVFuzz algorithm, a simple and efficient method designed 

for fuzzy rule induction. By combining RULES-8 and fuzzy logic theory, TVFuzz enables 

the creation of a model for the prediction of continuous outputs. 

The TVFuzz algorithm has been empirically compared with its immediate predecessor the 

DynaFuzz algorithm for fuzzy rule induction. The tests have shown that TVFuzz enables 

the creation of more compact and more accurate fuzzy rule sets. In addition, the rule 

forming method might be quite simple but still efficient. However, more tests might be 

needed to evaluate its capabilities in detail. 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

As discussed in this thesis, inductive learning is a form of data analysis that can be used to 

extract models in order to describe important data classes or predict future data trends. This 

thesis has proposed a simple and efficient rule induction algorithm for both discrete and 

continuous outputs. All the objectives set in Chapter 1 have been achieved 

Chapter Three concentrates on the development of a rule induction algorithm for the 

handling of continuous inputs and noisy examples. Instead of selecting any Seed Example 

(SE) to form a new rule based on the distribution of examples in the same class as SE as 

done in previous algorithms, the proposed algorithm used a new method, which employs a 

novel search-space to find out a potential attribute-value to establish new rules. Then a 

method was presented for searching for similar neighbouring attribute-value and 

combining with other attributes to expand the condition of rules. The algorithm only stops 

if a new condition could not be developed for those rules. The new algorithm has proved to 

be able efficiently to process continuous attributes. 

In many models, the existence of noisy examples increases the number of rules. By 

accepting a level of noisy, the merging of possible rules makes them more general and the 

set of rules generated more simply. The Pruning technique in the method of handing noise 

examples has been implemented reasonably successfully in the Dyna algorithm. However, 

attempts to optimise a given rule set to obtain more general ones may be trapped at local 

optimal solution. Chapter Three has addressed this weakness.  
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In the rule induction process, rule evaluation is devised to assess the information content of 

the newly formed conjunctions of conditions resulting from the specialisation process. 

Hence, rule evaluation is necessary to select the best conjunction of conditions for further 

specialisation at any stage of the rule forming process. In Chapter Four, a method for rule 

evaluation was presented. A new efficient heuristic has been applied efficiently in the 

algorithm in Chapter Three.  

The above technique can only be applied if the outputs are discrete. For problems with 

continuous outputs, it is necessary to consider in a higher level. Much research has been 

developed based on Fuzzy Logic to solve the problems of continuous outputs. Chapter Five 

presented a simple and effective process to generate rule sets for continuous outputs. 

6.2 Contributions 

It can be said that the inductive learning algorithms devised so far for extracting rules 

applied for discrete output have helped solve many real life problems. However, in today 

world, the fact that data is accumulating in surmounting volume as well as diversity is 

exceeding the capability of the existing algorithms. It is necessary, therefore, to invent new 

algorithms or improve current ones for more effective and beneficial data mining. With 

respect to this demand in the field, this research presents a novel rule induction algorithm, 

a simple and efficient method which is able to deal with either discrete or continuous 

variables without the need to preprocess data. A detailed description of the contributions of 

this research is as follows: 

The first contribute is a new rule induction algorithm for handling of continuous inputs 

and noisy examples namely RULES-8 is proposed. In particular, it selects a candidate 

attribute-value instead of a seed example to form a new rule to make sure that the 

candidate attribute-value leads to the best rule. The conjunction is also formed by 
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incrementally adding conditions which are selected by utilizing a specific heuristic 

measure. In addition, a rule simplification technique is also improved to create more 

compact rule sets and minimizes overlapping between rules. 

The second contribution is a new measure for rule evaluation called TV measure. 

Inheriting of strong features from the S measure (Bigot, 2004), the new specialization 

heuristic (TV measure) proposed to also use two factors including Consistency (4.1) and 

Classification_Gain (4.11). A new strong feature of TV measure is using a metric (4.13) to 

evaluate the number of examples misclassified by the newly formed conjunction (n) 

comparing to the total unclassified negative examples (N_unclassifed). 

The final contribution is a TVFuzz algorithm that integrates the capabilities and 

performance of a good inductive learning algorithm for classification applications with the 

ability to create accurate and compact fuzzy models for the prediction of continuous 

outputs.  

6.3 Future research directions 

It can be said that inductive learning for classification in general and machine learning in 

particular are extremely important techniques in data mining. The explosion of information 

technology and the development of the science of information storage have drawn special 

attention from a lot of scientists in the world. The last decade of the 20th century and the 

first one of the 21st century have witnessed a remarkable success in the field of data 

mining. Scientists have developed various algorithms to maximise the efficiency as well of 

accuracy of data processing. The development of machine learning algorithms has reached 

new heights and discovered new theories. However, new challenges are yet to come. 
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In a narrow scope, there is always room for the completion of existing theories as well as 

the improvement of existing algorithms. New problems require that scientists devise new 

schemes to solve them. In relation to this research, future investigations could be 

conducted along the following directions:  

- Developing a rule that could select the seed attribute-value for discrete attributes 

(attribute-seed range of values for continuous attributes). Through the process, the best 

conjunction of conditions is built incrementally by combining SA with every other 

attribute. However, many combinations do not bring good results. Therefore, there should 

be a method to identify quickly what the potential attributes are. In cases when the 

combinations are not effective and do not bring the desired results, there is no need to 

consider the remaining attributes. 

- Assessing the impact of components of the TV measure. In Chapter 4, a new 

specialisation heuristic (TV measure) was presented. TV measure is the product of three 

components Consistency, Classification_gain and Misclassification_Level. It is a default 

that each component contributes an equal influence. Although this has been applied in 

different problems and provided very good results, the research has not shown why the 

influences of the components are equal. Therefore a study assessing the impact of the 

above components, or even other components is necessary to address these questions. 

From there, a superior approach may arise. 

- Developing improved discretisation methods. In general, for continuous output problems, 

most algorithms provide a solution for predefined output values. Chapter 5 of this study 

pointed out two methods of discretising continuous output values in the Hong and Lee 

(1995) and Wang and Mendel (1991). As is well known, in each specific case, the two 

methods have different advantages and disadvantages. Whether the application of either 
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method will provide high efficiency or not is dependent on each specific problem. Further 

research needs to combine the advantages of the two methods to devise a new one. 
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Appendix 
 

1. DATA SETS 

All data sets used for the classification problems in this research were extracted from the 

University of California, Irvine (UCI) repository of machine learning (UCI, 01). These 

databases were contributed by many researchers, mostly from the field of machine 

learning, and collected by the machine learning group at UCI. 

A simple method was used for the splitting into training and test sets: around 70% of each 

data set were adopted for the training set and the remaining 30% were employed for 

testing. The splitting also made sure that the same proportion of each class was present in 

both sets. 

It should be noted that a typical method used by many researchers to assess an algorithm is 

randomly to generate 10 (or more) pairs of training and test sets and then take the average 

results of an algorithm on these sets in order to evaluate its performance. The problem with 

this random generation is similar to the problem highlighted for REP, concerning the 

splitting into growing and pruning sets. The training and test sets are unlikely to contain 

examples representing each disjunctive rule and the test results might not reflect the 

algorithm’s performance properly. This situation is less likely, when using the splitting 

method employed in this thesis. 

Balance_scale database: This data set was generated to model psychological experimental 

results. It contains 3 classes (balance scale tips to the right, tips to the left, or is central), 4 

numerical attributes and 625 examples divided into 436 examples for the training set and 

189 for the test set. 
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Winsconsin Breast Cancer databases: Each data point represents follow-up data for one 

breast cancer case. There are three different data sets. 

- Original (breast cancer): This data set contains examples in 2 classes (benign or 

malignant), 10 numerical attributes and 699 examples divided into 488 examples for the 

training set and 211 for the test set. 

- New prognostic (wpbc): This data set contains examples in 2 classes (recurrent or 

nonrecurrent), 33 numerical attributes and 198 examples divided into 137 examples for the 

training set and 61 for the test set. 

- New diagnostic (wdbc): This data set contains examples in 2 classes (benign or 

malignant), 31 numerical attributes and 569 examples divided into 397 examples for the 

training set and 172 for the test set. 

Car: This data set is used to evaluate cars according to the features that describe their 

price, technical characteristics, and safety. It contains examples in 4 classes (unacceptable, 

acceptable, good, very good), 6 discrete attributes and 1728 examples divided into 1207 

examples for the training set and 521 for the test set. 

Credit screening: This data set concerns credit card applications. For confidentiality 

reasons, all attribute names and values are meaningless symbols. It contains examples in 2 

classes (+, -), 6 numeric attributes, 8 discrete attribute and 690 examples divided into 590 

examples for the training set and 100 for the test set. 

Cylinder-band: This data set is used in induction for mitigating process delays known as 

"cylinder bands" in rotogravure printing. It contains examples in 2 classes (band, no band), 

20 numerical attributes, 19 discrete attributes and 539 examples divided into 376 examples 

for the training set and 163 for the test set. 
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Dermatology: This data set concerns different cases of the disease Eryhemato-Squamous. 

It contains examples in 6 classes (psoriasis, seborrheic dermatitis, lichen planus, pityriasis 

rosea, cronic dermatitis, pityriasis rubra pilaris), 1 numeric attribute, 33 discrete attributes 

and 366 examples divided into 253 for the training set and 113 for the test set. 

Diabetes (Pima Indians diabetes): This data set consists of records on diabetes patients. It 

contains examples in 2 classes (+, -), 6 numerical attributes, 8 discrete attributes and 768 

examples divided into 495 examples for the training set and 273 for the test set. 

Ecoli: This data set is used for the prediction of the Cellular Localization Sites of Proteins. 

It contains examples in 8 classes, 8 numerical attributes and 336 examples divided into 231 

examples for the training set and 105 for the test set. 

Glass: This data set was used in a study of different types of glass for a criminological 

investigation. It contains examples in 7 classes (Types of glass), 10 numerical attributes 

and 214 examples divided into 136 examples for the training set and 78 for the test set. 

Haberman: This data set was used in a study on the survival of patients who had 

undergone surgery for breast cancer. It contains examples in 2 classes (survive, die), 3 

numerical attributes and 306 examples divided into 213 examples for the training set and 

93 for the test set. 

Iris data set: This is the most widely used data set in the literature. It contains examples in 

3 classes (iris setosa, iris virginica, iris versicolor), 4 numerical attributes and 150 

examples divided into 80 examples for the training set and 70 for the test set. 

Liver: This data set was used in a study on liver disorder. It contains examples in 2 classes, 

6 numerical attributes and 345 examples divided into 140 examples for the training set and 

205 for the test set. 
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Tic-tac-toe: this data encodes the complete set of possible board configurations at the end 

of tic-tac-toe games, where the player "x" is assumed to have played first. It contains 

examples in 2 classes (x wins, x lose), 9 discrete attributes and 958 examples divided into 

657 examples for the training set and 301 for the test set. 

2. Data set obtained from equation ( )22 1.5
1 2 1 21 , (1 ; 5) (5.9)y x x x x− −= + + ≤ ≤  

 N0 X1  X2  Y 
1 3.49 4.20 1.44 
2 1.18 2.16 4.12 
3 3.50 2.11 1.98 
4 2.26 4.57 1.69 
5 1.06 4.13 4.01 
6 4.96 3.90 1.37 
7 2.19 4.23 1.75 
8 1.85 3.85 2.03 
9 3.82 1.96 2.06 

10 1.93 3.83 1.97 
11 2.84 3.42 1.64 
12 3.65 1.79 2.23 
13 1.85 4.22 1.98 
14 4.60 2.62 1.65 
15 2.86 3.68 1.60 
16 4.83 1.58 2.39 
17 2.89 4.08 1.54 
18 3.01 2.64 1.81 
19 1.13 3.01 3.90 
20 2.62 2.81 1.84 
21 3.64 4.50 1.39 
22 5.00 1.35 2.82 
23 1.18 2.21 4.08 
24 3.89 1.43 2.72 
25 4.79 4.53 1.32 
26 1.28 2.92 3.27 
27 1.82 2.00 2.75 
28 4.84 1.55 2.44 
29 1.91 2.58 2.29 
30 1.02 2.69 4.79 
31 3.49 3.81 1.48 
32 3.45 2.30 1.88 
33 4.70 2.03 1.94 
34 3.36 2.69 1.73 
35 2.54 2.37 2.04 
36 2.89 2.02 2.16 
37 3.43 1.52 2.62 
38 3.63 3.60 1.49 
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 N0 X1  X2  Y 
39 4.65 3.34 1.46 
40 4.20 2.52 1.71 
41 4.22 4.40 1.36 
42 4.37 3.41 1.47 
43 3.06 2.51 1.85 
44 4.07 2.12 1.92 
45 1.04 2.24 4.97 
46 4.44 4.24 1.36 
47 2.54 1.48 2.93 
48 4.00 4.74 1.34 
49 4.17 4.04 1.39 
50 3.55 2.64 1.72 
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