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Foreword and Summary 
 

 
An extensive literature exists attesting to the limited-capacity performance of 
everyday tasks, such as looking and mental manipulation. Only relatively recently 
has empirical interest turned towards the capacity limitations of the body 
coordinations (such as posture control) that provide the physical substrate for 
cognitive operations (and so mandatorily coexist with cognition). What are the 
capacity implications for the body’s safety and mobility, for example, in 
accommodating the need to stabilize the eye-head apparatus for looking, or when 
mentally manipulating objects in 3-D space? Specifically, what are the postural 
costs in having to position and orientate the body in its own task space while 
supporting spatial operations in cognitive task space? What are the performance 
implications, in turn, for everyday cognitive tasks when posture control is 
challenged in this way? The purpose of this thesis was to establish a theoretical and 
methodological basis for examining any postural costs that may arise from the 
sharing or partitioning of spatial reference frames between these two components (a 
frame co-registration cost hypothesis). 
 
In 7 experiments, young adults performed either conjunction visual search or mental 
rotation tasks (cognitive component) while standing upright (postural component). 
Visual search probed cognitive operations in extrapersonal space and mental 
rotation probed operations in representational space. Immersive visualization was 
used to operationalise postural and cognitive task contexts, by arranging for the two 
tasks (under varying postural and cognitive task-load conditions) to be carried out 
with respect to two spatial reference frames that were either coincident or non-
coincident with each other. Aside from the expected performance trade-offs due to 
task-load manipulations, non-coincidence of reference frames was found to 
significantly add to postural costs for cognitive operations in extrapersonal space 
(visual search) and for representational space (mental rotation). 
 
These results demonstrate that the maintenance of multiple task-spaces can be a 
source of interference in posture-cognition dual-tasking. Such interference may 
arise, it is suggested, from the dynamics of time-sharing between underlying spatial 
coordinations required for these tasks. Beyond its importance within embodied 
cognition research, this work may have theoretical and methodological relevance to 
the study of posture-cognition in the elderly, and to the study of balance and 
coordination problems in learning difficulties such as those encountered in dyslexia 
and the autistic spectrum. 
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Chapter 1 
                
 
Introduction 

 

 

 

1.1 Embodied attention 

 

The ability to control, maintain and rapidly reorganize body posture and spatial 

orientation is fundamental to the adaptive success of nearly all animal species, 

including humans [28]. The large-scale perceptual and neuromuscular coordinations 

that underpin such activities as standing, leaning, orienting and recovering balance 

are complex, but our usual experience of performing them effortlessly contrasts 

markedly with the effort and capacity limitations traditionally associated with many, 

arguably simpler, cognitive tasks, such as looking, listening and thinking. This may 

have underpinned the historical view that postural coordinations are perhaps 

different sorts of tasks to cognitive ones [150].  

 

Over recent decades, however, research has started to highlight the fallacy of this 

historical separation between studies of cognition and coordination. Firstly, research 

within developmental psychology has demonstrated the crucial impact of motor 

skills on the development of perception [44], spatial orientation [3; 29; 30], social 
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interaction [94] and memory [226]. Second, the research traditions that are now 

collectively referred to as embodied cognition [52; 89; 112] have emphasised how 

the evolutionary origin of the nervous system as a control system for the body must 

affect the architecture and performance of purportedly ‘central’ cognitive functions. 

Not only are many cognitive operations in daily life heavily reliant upon ongoing 

perceptual evaluation and motor manipulation [19; 20; 50], even our offline 

memory, reasoning and problem-solving operations are said to depend upon 

sensorimotor simulations of real or imagined events ([68; 89; 91; 92; 112; 277]; see 

also [112; 124; 125], for the bodily basis of logic, inference and abstract meaning).  

 

Additional evidence that perceptual-cognitive processes are inextricably tied-up with 

coordination skills comes from a growing volume of work on shared attentional 

processes in postural and cognitive tasks. Drawing on dual-task methodology from 

cognitive psychology, these investigations are showing that even highly practised 

coordinations such as standing and locomotion engage the same cognitive resources 

as attentive cognitive tasks, and when these are performed concurrently, negative 

patterns of processing interference between the tasks can be detected to varying 

degrees in young and old, healthy and clinical populations (see [286], for a review). 

Thus, performing a cognitive task during mechanically unperturbed standing is 

frequently shown to result in increased amount or variability of postural sway [107; 

146; 162; 235]―a result commonly interpreted as indicating decreased postural 

stability. A complementary finding is that simple adjustments to standing balance 

can adversely affect performance on cognitive tasks [116; 162]. To this effect, 
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posture control is ‘cognitively penetrable’ [250]. This represents an important 

theoretical shift, but it would also appear to be a matter of substantial clinical 

interest given that (a) concurrent cognitive activity is shown to affect postural 

destabilization and falling in the elderly (see [131], for a review), and (b) learning 

difficulties such as dyslexia [181] and the autistic spectrum [174], though defined by 

higher level cognitive difficulties, are accompanied by a variety of coordination 

difficulties. 

 

The relationship between postural control and higher level cognition is not 

straightforward, however. Many dual-task studies have shown decreased sway for a 

concurrent cognitive task during unperturbed standing [63; 70; 106; 272], while 

others have failed to find postural control effects [116; 250; 294]. Although there are 

considerable methodological differences between studies in terms of test 

populations, sway variables and dual-tasks, no systematic pattern of results emerges 

from the literature that would fully explain differences in postural responses under 

dual-task conditions. This underscores the fact that the specific mechanisms 

underling interference in posture-cognition dual-tasking are only poorly understood.  

 

The most common indication from the dual-task research is that processing 

interference in cognition-coordinations occurs because these tasks compete for 

shared spatial processing resources [116; 150], or because dual-tasking challenges 

the online sensorimotor mechanisms required for postural control [212; 250]. 

Reaching beyond these general terms accounts, this thesis considers an important 
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and as yet poorly understood aspect of sharing spatial and temporal operations 

between cognition and posture control—the impact of having to calibrate and 

perform these tasks with respect to two non-coincident reference frames. A 

fundamental consideration in this regard is that in everyday life every instance of 

cognitive activity occurs within the context of one or more large-scale, mandatory 

motor coordinations governing balance, locomotion and spatial orientation of the 

body. The organization of these coordinations is strictly constrained by the need to 

physically act and react with respect to a gravitational-inertial world frame. A 

concurrent cognitive task, however, can have parsimonious, performance-critical 

description in one of a number of reference frames [46; 87; 132], and which can 

have complex (frame) dynamics relative to the postural world frame. In this sense, 

how effortlessly a concurrent cognitive task coexists with posture control may 

depend not just on each task’s component load and resulting draw on common 

information-processing capacities, but also their deployment in terms of how tightly 

the cognitive task context or task space can be embedded within the behavioural 

context provided by posture control. 

 

1.2 Aim and outline of the thesis: Postural costs of performing cognitive 

tasks in non-coincident reference frames 

 

The aim of the thesis was to provide a theoretical and methodological platform for 

the investigation of postural costs of maintaining stable cognitive task spaces in 

posture-cognition dual-tasking. Immersive visualization (head-mounted display and 
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motion-tracking) was used to operationalise postural and cognitive task contexts by 

arranging for the two tasks to be carried out with respect to two spatial reference 

frames that were either coincident or non-coincident with each other. To investigate 

any interactions between frame coincidence or non-coincidence and task-load, the 

postural component’s task-load was manipulated by requiring participants to stand 

in either open (ankles about 10 cm apart and feet at comfortable angle) or closed 

stance (feet flush against each other). Closed stance reduces the support base area, 

and increases the difficulty of maintaining balance. Cognitive task-load was 

manipulated by varying the number of distractors for a conjunction search task, or 

else varying the size of the displacement angle for a mental rotation task. To 

anticipate the concluding chapter, if the behavioural flexibility and adaptive 

advantages of freeing cognitive task spaces from strict alignment with postural or 

locomotor control spaces comes at the expense of relentless contention scheduling 

between postural and cognitive task spaces (a frame co-registration cost hypothesis), 

there may be important implications for our understanding of postural vulnerability 

among the elderly as well as for emerging links between cognitive disabilities and 

coordination deficits.  

 

The theoretical and methodological framework to the thesis is developed in Chapter 

2. The opening literature review discusses methods for the assessment and 

measurement of postural control, and introduces a key conceptual issue concerning 

interpretations given to postural sway (see below). In a second literature review, the 

dual-task data that has demonstrated the existence of interference between posture-
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cognition tasks is summarized and then discussed in terms of the general theoretical 

frameworks that attempt to contain the data. The theoretical framework and 

experimental outline to the thesis are presented in the third part of the chapter. 

Methodology to the thesis experiments is given in Chapter 3.  

 

A key issue to emerge from the posture control literature is that postural sway 

cannot be assumed always as autonomously and automatically directed at the control 

of balance, but may instead reflect the modulating use of sway in support of the 

suprapostural (i.e., coordination-based) task. The theoretical implication, exposed in 

the posture-cognition literature review, is that increased sway cannot be reliably 

interpreted as signalling increased mechanical destabilization. Rigorous 

investigation of the frame co-registration cost hypothesis therefore required a means 

of disambiguating the experimental data arising from participants’ use of sway. An 

attentional priority paradigm in which young adults were required to minimize their 

sway while focussing on a conjunction visual search task was successfully devised 

for this purpose (Experiment 1), and this is developed in Chapter 4.  

 

The principal investigative work of the thesis begins in Chapter 5. In two 

experiments, dual-task performance in young adults was compared for a conjunction 

visual search task presented in spatial reference frames that either coincided, or did 

not. Aside from expected performance trade-offs due to task-load manipulations, 

non-coincidence of reference frames led to performance decrements in the postural 

task. This pattern persisted across instructions prioritising search only (Experiment 
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2) or specifying deliberate sway minimization as well (Experiment 3). These results 

provided first evidence that task-linked reference frames add postural costs to 

posture-cognition dual-tasking. 

 

In Chapter 6, the co-registration hypothesis is defended against possible objection 

that posture-relevant visual information in coincident frames could be used to 

advantage postural performance in that condition, as compared to performance in the 

non-coincident frames condition. In two experiments (Experiments 4 and 5), 

cognitive penetrability of posture control in young adults was observed when visual 

search was split between coincident and non-coincident frames and when frame 

conditions were rendered identical in visual information relevant to posture control. 

In a further experiment (Experiment 6), the applicability of the thesis visual search 

paradigm to the more general experimental case of posture-cognition dual-tasking 

was demonstrated by showing that visual search in 3-D in immersive environments 

has no more measurable impact on postural control than search in 2-D. 

 

In Chapter 7, the frame co-registration cost hypothesis is extended to the sphere of 

representational space. Dual-task performance in young adults was compared for a 

mental rotation task presented in either coincident or non-coincident spatial 

reference frames (Experiment 7). Robust effects of frame non-coincidence on 

postural sway were detected, confirming the importance of the frame co-registration 

cost hypothesis for concurrent activities involving postural control and internally 

generated and maintained representations for the cognitive task. 
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In Chapter 8, the thesis findings are discussed with respect to the posture-cognition 

dual-task literature, and broader implications of the thesis are drawn out. 
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Chapter 2 
                
 
Theoretical and Methodological Context,  

and Thesis Framework 

 

 

2.1 Introduction 

 

The theoretical and methodological context of the thesis is presented in two parts. 

Following an introduction to the organization and mechanisms of posture control, 

the first part of the chapter discusses conceptual and methodological issues relating 

to the assessment and measurement of human balance. The second part of the 

chapter presents methodological and interpretive issues in posture-cognition dual-

tasking during upright. The posture-cognition dual-task data is summarized, and the 

data discussed in terms of the most commonly applied theoretical frameworks. 

Finally, the theoretical framework, experimental outline and main experimental 

prediction to the thesis are presented. 

 

2.2 Posture control 

 

The goal of posture control is to preserve posture (the bodies’ geometric linkages) 

against gravity while providing a reference frame for perception and action with 
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respect to the world ([147], for a review). The particular orientating posture can 

depend on the reference task. During complex motor tasks, for example, most 

animals, including humans, tend to control trunk and head movements in order to 

stabilize the orientation of the gravitoinertial apparatus (vestibular system) and the 

eye-head system in space [10; 202], thereby simplifying the processing of sensory 

feedback [101].  

 

Postural orientation is integral to posture equilibrium or balance, the preservation of 

the body’s centre of mass (COM) with respect to the ground [147].1 The need to 

maintain a high COM over a relatively small base of support means that bipedal 

upright stance is inherently unstable. Any angular displacement of the body’s COM 

(as normally results from a change in posture) precipitates a gravity-induced torque 

at the support surface that disturbs the equilibrium position. Compensating for this 

gravitational-inertial effect on the body’s segments requires re-adjustment of the 

body’s posture and the application of corrective torques to the support base, such 

that the body’s line of gravity (i.e., the line that runs through the body’s COM, in the 

direction of gravity) once more projects over the support surface [161; 199].2 

                                                 
1 The terms “postural control” and “balance control” are used interchangeably in the posture-

cognition literature when referring to regulation of the body’s position, and this thesis follows in this 

convention. 

 
2 The degree to which the body is being kept within equilibrium limits (i.e., the extent to which the 

line of gravity falls within the base of support) is commonly referred to as postural stability (see, e.g., 

[236]). Other researchers have used this term to refer to the state in which uncontrolled movements of 

the body are minimized for purposes of perception and action (see, e.g., [215]). The latter position is 

discussed in sections 2.2.2 and 2.3.2.  
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The ability to maintain the body’s COM within equilibrium bounds is often 

approximated as a multisegmental inverted pendulum problem, involving weighted 

displacement of proximal (e.g., trunk) and distal (e.g., ankle) joints over the support 

base [84; 86; 280]. Muscles and ligaments spanning the joints act as stabilizing 

elements by providing instantaneous torque due to muscle viscosity, mechanical 

stiffness and damping (length-force tensions) [32]. Aside contributions from 

spinally-mediated reflexes (e.g., stretch reflexes), resistances to self-generated and 

externally-imposed perturbations are thought to involve functionally organized 

collectives of joints and muscles that simplify the actor’s choice over the system’s 

many degrees of freedom [28; 261].  

 

The precise pattern of muscle activation, joint movement and ground reaction force 

depends on sensory and environmental factors; for instance, perturbation magnitude 

in different sensory environments and balance goal, as well as biomechanical factors 

such as body and surface configuration (see [100; 101], for reviews). Against small 

external perturbations on a firm support base, for example, humans often behave as 

a single-link inverted pendulum, stabilizing themselves against the disturbance by 

applying torque to the ankles, with little hip flexion [170]. The resulting distal-to-

proximal pattern of muscle activation can be compared to the early activation of 

trunk and hip muscles occurring for larger disturbances or with a smaller supporting 

area, when the body’s COM is near equilibrium limits [187]. In the latter situation, 

most humans stabilize themselves by using the inertia of their body segments and 

their mechanical coupling, involving movement of the trunk around the hip joint 
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[102; 172]. Stronger disturbances may call for coordinated ankle and hip 

displacements of the body’s COM over the support base [102; 172], while a change 

in base is observed to invoke a stepping strategy [138; 139]. 

  

A well-established view is that these postural and movement patterns occur as 

locally constrained but centrally selected motor programs, controlled by high-level 

neurocognitive strategies, and implemented by feedback processes that signal 

deviations from a unique postural set-point ([18]; see also [99]). Other work in 

postural control dynamics has suggested that these apparently local constraints may 

in fact occur as spontaneous, higher-level pattern formations. Studies involving 

standing and visual tracking [22; 144; 239], as well as steady-state standing in the 

context of gravity (so-called ‘quiet standing’) [60], have shown that the human body 

spontaneously adopts two co-existing modes of movement during upright standing, 

rather than a continuum of mixed strategies [60]. These consist of an in-phase mode, 

with the ankle-hip joints moving simultaneously in the same direction, and an anti-

phase mode, with the two joints oscillating simultaneously in opposite directions, 

one-mode predominating depending on sensory, environmental and intentional 

(emotional-cognitive) conditions [22]. 

 

The postural stabilization process is thought to involve forward motor commands 

directed at the expected equilibrium disturbance [84; 86; 168; 265], as well as 

reactive control based on sensorimotor inputs [187; 199]. Studies suggest that some 

combination of the respective feedforward and feedback mechanisms might 
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represent different control systems―one subsystem for determining the internal 

reference point to which the equilibrium is maintained, and a second control directed 

at maintaining equilibrium about the target reference point [300]. In one 

interpretation, feedforward control operates cognitively long term to stabilize an 

unstable, reactive mechanical system by pushing the neuromuscular system back 

towards its reference point ([21]; see also [86]). A second view, which similarly 

identifies two-part behaviour but with different conclusions, is that persistent 

migrations from the equilibrium position over short time intervals are corrected by 

an anti-persistent, feedback loop operating at longer time-scale (>1 s) once 

departures exceed a threshold magnitude [53]. The presence of open- and closed-

loop controls has been interpreted as the use of exploratory sway as source of 

information in the detection of stability boundaries [214] followed by corrective 

activity ([221]; see [86; 300], for similar considerations). 

 

2.2.1 Balance assessment and measures 

 

Various techniques have been used to capture and quantify the small, low-amplitude 

motions of the body that accompany spontaneous, mechanically unperturbed upright 

standing, and the larger amplitude motions that result from mechanically or 

perceptually perturbed stance. Most usually, data is recorded using transducer force 

platforms taking the vertical ground reaction forces at the point of application (the 

centre of pressure, COP) along anterior-posterior and medial-lateral axes. However, 

since COP is a measure of the error signal underlying the centre of mass (COM) 
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position, studies reporting COP actually provide overestimates of centre of gravity 

excursions [21; 118; 279]. An alternative means of quantifying sway is to use 

mechanical or electromagnetic devices to directly record COM motions from body 

segments such as the head or hip  [2; 67; 126; 135; 162; 222] .  

 

The most commonly used sway measures are parameter estimates of the COP or 

COM trajectory, derived from signal analysis, and presented in time or frequency 

domains ([204], for a review).3 The large (often redundant) number of available 

statistical parameters can considerably complicate data interpretation [178; 223], 

although several studies have recommended particular summary measures based on 

their sensitivity in capturing individual differences [105; 136; 204; 211] or in 

describing particular characteristics of sway [223]. For example, in the frequency 

domain, spectral analysis has been used to identify postural constraints in terms of 

time-dependent postural behaviour [48; 63; 65; 157]. In the time domain, velocity-

related measures (e.g., sway path length) have been reported as discriminating 

between decreased balance control and random postural activity better than 

displacement-related measures ([196]; see [148]). On the other hand, displacement 

                                                 
3 The electrical signal taken (transduced) from a COP or COM displacement can be analysed in terms 

of change in a parameter estimate over time, or in terms of both time and frequency. The latter 

analysis includes methods such as Fast Fourier Transformation or spectral analysis, and which are 

used to separate the large sine wave and significant other sine wave components found for the time 

domain. Typically, the aim is to match frequency width and average signal power to particular 

physiological characteristics of the system, or to uncover differences in system behaviour between 

subject populations.  
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measures (e.g., standard deviation) take on greater significance when comparing 

sway performances in different age groups, especially under perturbed stance 

conditions [211]. There remains no agreement, however, as to which summary 

statistic best describes postural stability. More pertinently, it is not clear from the 

posture-cognition dual-task data (reviewed in section 2.3) how the different 

measures that have been used may relate to each other in the context of posture-

cognition dual-task performance (there being no discernable pattern between 

measures, dual-task types, and dual-task outcomes). 

 

A related concern is that, while the reliability of signal recording increases with 

sampling duration [48; 74], the validity of signal analysis is compromised by the 

assumption that sway values are stationary over the length of posture trial periods. 

As earlier discussed, work in stochastic processes [49; 53; 54; 178] has shown that 

posture sway during standing is a bounded random walk, meaning that the mean 

position of sway can drift over time. As a result, a posture trial may contain both 

shorter and longer time-scale motions, with the system exerting tighter or looser 

control over different time-scales, depending on the precise posture-cognition dual-

task and task load conditions. Under a low cognitive-load situation, for example, the 

system may be able to exercise strict control over longer time-scale motions, 

whereas a diversion of resources into cognitive task performance may slow the rate 

of postural corrections, resulting in reduced frequency of sway. Equally possible, 

when few attentional resources are required the system may be free to drift or 
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‘ramble’ [299] to a greater degree than under conditions of increased cognitive task 

difficulty [106].  

 

Attempts have been made to capture the dynamic organization of postural behaviour 

during dual-tasking using non-linear techniques [198; 208; 218; 220; 224]. As 

mentioned however, time series such as COP appear not to have much low 

dimensional dynamics, being best described as a random walk [49; 53; 54; 178]. 

This means that postural organizations may be rather general and without a low 

level deterministic structure [219]. A simplified means developed to account for 

non-linear time-dependent behaviour is to compute shorter and longer time-scale 

motions from the moving windowed signal. Computing the COM (or COP) mean 

standard deviation over a series of non-overlapping data windows for each posture 

trial [157; 222] gives a measure of shorter time-scale activity [162]. The root mean 

square distance between the windowed mean standard deviations gives a measure of 

longer-time scale activity (see Chapter 3, section 3.2.4, for further details and 

discussion of these measures). Together, the two measures allow for a minimally 

multi-resolution view of sway patterns, while at same time ensuring a degree of 

consistency with the standard measures from posture-cognition dual-task studies 

[162].  

 



                                                                                                 Context and framework 
 
                           

 17

2.2.2 Visual information in postural control 

 

Postural control involves the dynamic regulation and integration of visual, vestibular 

and somatosensory (cutaneous and proprioceptive) inputs (see [111; 160; 199], for 

reviews). Against external perturbations on firm ground, somatosensory information 

tends to play a dominant role in upright postural control [103; 104; 110; 161]. 

Where somatosensory information is limited by a reduced base of support, however, 

vestibular and visual information have increased importance ([59]; see [42; 171]).  

 

With respect to visual information, the low-frequency and low-amplitude oscillatory 

displacements of the body (chiefly in the AP direction) characteristic of spontaneous 

sway give rise to dynamic changes to optic flow (i.e., changes in the angular 

positions of points in the visual environment). Small displacements of the visual 

environment (as little as 2.5 cm for a viewing distance of 2 m, [244], below the 

threshold for conscious perception) are sufficient to induce postural sway [72]. 

Physical displacement of the visible surroundings using moving room environments 

[128; 186; 243; 244] or simulated displacement using computer-generated 

videographic displays [23; 72; 262; 269] are found to induce sway, while stationary 

visual environments tend to attenuate postural sway. Sinusoidal movement of the 

visible surround produces a matching sinusoidal postural response [72; 128; 229; 

263; 264], and the temporal coupling between stimulus and sway found to be 

controlled or influenced by such factors as motion parallax [38; 93], and image 

velocity [129], size and expansion ([127], but see [72]). 
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With visual motion in the frontal or sideways plane, body sway shows a phase lead 

at low visual frequencies and a phase lag at higher frequencies [129]. This suggests 

an ability to track (or anticipate) visual field motion, so as to minimize the amount 

of relative displacement between the body and the environment [101]. In one 

interpretation, posture is then stabilized with respect to a minimum detection 

threshold by minimizing retinal slip (i.e., movement of the retina relative to the 

optical projection of the object) [128]. These apparently automatic endeavours to 

control optic flow through minimizing the body’s motions are generally interpreted 

as attempts to secure or increase stance stability [162]. In this so-called autonomous 

control view of posture control [162; 245; 246], reducing or controlling the level of 

sway is seen as a reflexive goal of the posture system, and any increase in the level 

of sway interpreted as a weakening of the level of control.  

 

An alternative framework is provided by the facilitatory control view [245; 246], 

which stresses that in most everyday situations (but not often in experiments using 

the quiet stance paradigm, as above), posture control functions primarily as an 

enabler or facilitator of suprapostural activities [215]. Beyond the basic requirement 

of keeping the COM well within the stability boundary, posture control’s facilitatory 

functions may or may not warrant further sway minimization. Thus, in situations 

where there are no imminent threats to body safety and where there are ongoing 

suprapostural tasks, sway may increase or decrease depending on the suprapostural 

task requirements. Sway may increase, for example, when a visual suprapostural 

task benefits from larger excursions of the viewpoint (e.g., spotting partially 
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occluded objects), and similarly, decrease when the task requires very precise eye 

fixations, as perhaps, for a visual search task [245; 246].  

 

Since the postural task employed in this thesis offered no extreme threat to stance 

stability, a facilitatory control view has the consequence that participants might have 

attempted to strategically control or intentionally modulate sway in support of the 

cognitive (suprapostural) task, rather than choose to direct resources more fully to 

controlling balance. Under these circumstances, increased sway for any particular 

reference frame (or task-load) setting could not be specifically interpreted as a 

resource draw into attempted sway control activities, as opposed, say, to a relative 

neglect of the level of sway in favour of the cognitive task. To de-confound these 

two explanations of sway patterns, the visual search task paradigm for the thesis 

incorporated control experiments that required participants to actively minimize 

their sway while performing the visual search task (see Chapters 4-6, in detail). 

 

Historically, greater sensitivity to motion perception has been demonstrated for the 

peripheral retina, used for coding the speed and direction, over central vision 

(approximately 30 degrees of the visual field, [24]), used mainly for discriminating 

position signals and stable characteristics of the environment [26]. Peripheral vision 

is very sensitive to lamellar optical flow and, given that the ground surface is an 

essential frame of reference in everyday life, expectedly found to strongly affect 

both stability and balance [129; 243]. In context of the immersive environment 

(head-mounted display and motion-tracking) employed in the thesis paradigm 
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however, it is germane to note that both radial and lamellar flow as small as 15 

degrees in diameter at the fovea region are found to induce postural sway [13; 183]. 

As noted in the literature [162; 290], a perhaps more important issue in using head-

mounted displays (HMDs) concerns the latency involved both in tracking and 

generating a new image. Tracking latency and frame rate as small as 15 ms can be 

detected by the human viewer [4].4 Where the delay between the user’s actions and 

the displayed response is large enough [73], or time on task long enough [176; 166] 

or task complexity [188] great enough, cue conflict between competing visual and 

vestibular signals may give rise to motion sickness in susceptible individuals. The 

paradigm type employed in this thesis, however, involved short exposure duration 

and induced only small amplitude body sway, and so is unlikely to have had 

significantly disruptive effect on participants’ sensorimotor function.5 Concerning 

visual task performance, prolonged HMD use (> 10 min) may cause binocular 

function defects ([165; 166] but see [228]), and both frame rate and latency have 

been found to significantly affect perceptual stability and performance for a tracking 

task [78]. In respect of the cognitive tasks employed in the present work, however, 

direct comparison of visual search performances in HMDs and traditional screen 

                                                 
4 Note. For a frame rate kept constant and predictable, as for the apparatus used in this thesis (see 

section 3.2.1, for details), latency rate depends only on the sampling and processing time between the 

actor’s action and the displayed response. 

 
5 Of the about 200 participants to the thesis experiments (including pilot work), four people 

complained of motion discomfort. In each case, the session was immediately terminated by the 

experimenter. 

 



                                                                                                 Context and framework 
 
                           

 21

interfaces has shown the former search to be more efficient [195], while work on 

mental rotation has shown object-matching in immersive environments to be as 

effective (but not as efficient) as in real-world environments [227; 276]. 

 

2.3 Posture-cognition dual-tasking 

 

Physiological [85; 99; 102] and neurocognitive [206; 207] investigations show that 

efforts to regain and maintain posture against external perturbations are demanding 

of the same sorts of cognitive processes used to perform mentally effortful tasks. 

Supporting evidence that cognition has a role in posture control comes from 

behavioural studies examining reciprocal modulating effects of concurrent postural 

and cognitive activities. Drawing on dual-task methodology from cognitive 

psychology, these investigations are showing with some consistency that cognitive 

task performance is detrimentally affected when stance is mechanically or visually 

perturbed [14; 15; 36; 40; 210; 212; 213; 234; 250; 294]. This cognitive dual-task 

decrement is particularly pronounced in older [36; 40; 210; 234; 250] and balance-

impaired adults [36; 210; 213; 234], as compared to performances in young adults 

and controls, reflecting presumably the lesser psychomotor capacity of the elderly 

and infirm to contain the effects of a postural challenge. On the postural 

performance side, secondary task manipulations during perturbed standing are often 

found to promote increased amount or variability of postural sway [15; 36; 146; 157; 

197; 198; 210; 212; 213; 234; 235]―a result commonly interpreted as indicating 

decreased postural stability. This effect is greater or more common in older adults 
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and patients [36; 210; 212; 234; 235], and indeed a number of studies have reported 

reduced sway in healthy young adults for a concurrent cognitive activity performed 

under perturbed stance dual-task conditions [14; 36; 64; 65; 217; 218].  

 

Cognitive-task decrements are also found for concurrent tasks performed in 

unperturbed stance, although this rarer result tends to occur only when posture 

control is excessively challenged by reductions in the support base, such as in feet-

together standing [162] or standing with feet lined up heel-to-toe [116]. On the 

postural side, secondary task manipulations have produced a mixed set of results, 

variously bringing about increased [107; 137; 142; 146; 159; 162; 210; 235] or 

decreased postural sway [237; 63-65; 70; 106; 218, Exp 2; 268; 272], or else leaving 

sway unchanged [116; 250; 267; 294]. In line with the data for perturbed stance, 

postural dual-task decrements during unperturbed standing tend to be greater or 

more common in older adults [62; 107; 151; 210] and patients [96; 142; 143; 210] 

than young adults and controls. However, for a range of postural conditions, 

decreased sway in older adult and clinical groups during dual-tasking is not 

unknown [15; 41; 70; 159; 248; 272], and several studies have reported reduced 

sway in older but not younger adults under dual-task conditions that threatened [41] 

or especially taxed [159; 248] posture control (but see [107]).  

 

In summary, having to maintain upright stance under conditions that substantially 

challenge balance is often found to affect cognitive task performance. Less reliable 

are the ways in which concurrent cognitive tasks impact on postural performance. 
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While the ability in older and balance-impaired adults to maintain and regain 

balance under dual-tasking conditions appears to be hampered by the execution of a 

concurrent cognitive task, secondary task manipulations have produced a more 

varied set of results in young adults. In particular, the diverse data on posture-

cognition dual-tasking in the perhaps more ecologically valid and common case of 

unperturbed stance presents a challenge to discovering and understanding the 

precise cognitive task conditions that affect postural control. One complicating 

factor in cross-study comparisons of dual-tasking concerns problematic issues 

arising from the importing of psychological research into the study of posture-

cognition. This issue is next discussed. 

 

2.3.1 Dual-task methodology in posture-cognition studies 

 

Efforts to impose a theoretical structure on posture-cognition outcomes have mostly 

mirrored two broad (but not necessarily mutually exclusive [133; 173]) frameworks 

used in cognitive psychology to explain dual-task decrements. Capacity theory, on 

the one hand, views dual-task interference as arising from the parallel sharing of a 

limited set of general-purpose resources [113] or specialized structures [274; 275]. 

On this account, when combined task demands exceed (centralized or particular) 

resource supply, degraded performance is observed on one task, or both. Bottleneck 

accounts, in contrast, emphasize the serial (i.e., sequential) nature of the dual-task 

process, in terms of the single-channel filtering or scheduling of information at 

stimulus encoding [273], identification [69] or decision-response stages [193]. When 
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such sources of interference occur, the nervous system is said to temporarily 

postpone (i.e., time-share) operations on one task in favour of operations on the 

prioritized task, resulting in reduced performance on the non-priority task.  

 

When testing for dual-task interference, the most common approach (in general, as 

well as in posture-cognition research) is to compare dual-task performance in both 

tasks against their baseline performance, and to probe for interference by examining 

interactions between dual-task components (see [184], for a discussion on candidate 

scores for dual-tasks). As has been noted in the literature [286], dual-task 

interactions cannot be used to infer the absolute attentional cost associated with 

postural control [1; 83; 90]―a point implicitly or explicitly acknowledged in the 

few studies that have attempted general-purpose resource explanations of 

interference based on task interactions [64; 213; 294]. Also, dual-task interactions 

provide only limited means of discriminating between general-capacity and 

specialized capacity or bottleneck accounts of task interference [1]. The 

interpretation of such interactions can be more reliable, however, in the context of 

methodology that incorporates task difficulty and priority manipulations ([33]; see 

[90]), tracking tasks [140; 182], catch trials [123; 146] or the selective application of 

tasks that tap similar resource pools [146]. These cautionary caveats aside, a widely 

held view is that the controlled interplay of postural and secondary tasks can be used 

to understand the nature of competing task demands, if not their precise shared 

attentional demand or dynamics. 
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As mentioned, the transfer of dual-task methodology to the posture-cognition setting 

has usually involved so-called single- to dual-task performance comparisons in 

which dual-task effects are measured against the ‘isolated’ performance of the 

baseline task [14]. Implicit in this approach is the assumption that when subjects are 

asked to perform a postural task such as standing upright, but are given no 

instructions to perform a specific cognitive task, the only task-load they carry is of 

the postural task. This assumption is clearly problematic because experimenters 

have no control over what subjects think about in such baseline conditions. Adding 

instructions to perform an explicit (i.e., experimenter-specified) cognitive task 

alongside a balancing task does not simply add a cognitive task where there was 

none. It actually replaces an unspecified cognitive task of unknown load, with a 

specified task of known load. Performance differences can be therefore expected 

between the two dual-task settings irrespective of the load that each task component 

brings to the dual-task situation. 

 

The use of baselines is further problematic because the common requirement to 

stand as still as possible during the baseline recording period could encourage 

subjects to ‘concentrate’ on the balancing task in a manner that negatively interferes 

with the automatic processes underlying postural control [106; 268]. Support for this 

view comes from the earliest of posture-cognition studies in which Fearing [82] 

showed that the release of attention away from balance control and towards a 

secondary task can enhance postural stability. This outcome was accredited to a 

reduction in balance anxiety following the switching of attention to the secondary 
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task [82]. The theme of facilitating balance by external focus has been examined in a 

series of studies that show increased postural stability when subjects adopt an 

external focus on the postural task (i.e., focus on the consequences of the postural 

task) relative to an internal focus (i.e., focus on the postural task) [157; 291; 292]; 

see Chapter 4, for further discussion). One suggestion from the work is that the 

attentional load associated with the postural task in the baseline condition can differ 

markedly to that in the dual-task condition, irrespective of secondary task load. A 

second outcome of the work is to illustrate the important role of instruction in the 

dual-task emphasis that subjects are asked to bring to the experimental situation. 

Despite the existing appreciation in the literature that a change in attentional priority 

in one or other dual-task component can bias the allocation of resources [130; 235], 

posture-cognition studies have seldom raised the issue of the instruction set’s 

effects, or considered which other studies are, in this sense, comparable.  

 

Baseline versus dual-task comparisons carry the additional concern that physically 

responding to secondary tasks (for example, verbal answers or button pressing) may 

generate mechanical demands that produce changes in sway that do not have to do 

with cognitive load [65; 217; 218; 272; 296]. For this reason, it has been argued that 

paradigms incorporating baseline conditions should be limited to delayed response 

actions that come strictly after posture data collection ends [217; 218]. This would 

of course limit any such paradigm to studying or involving working memory 

retention periods only. An alternative is to devise baseline trials that require the 

same physical response as the experimental dual-task condition but which do not 
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carry the task load associated with the explicit cognitive task (see, e.g., [238]). 

Concerns stemming from the use of baselines can be altogether avoided, however, 

by restricting performance comparisons to manipulations of task difficulty under 

explicit dual-task conditions. Ideal in this respect are tasks whose load can be 

directly quantified, scaled by experimental manipulations, and confirmed from 

subjects’ performance, such as the visual search and mental rotation tasks employed 

in this thesis (see also, [162]). 

 

2.3.2 The nature of interference in posture-cognition dual-tasks 

 

As previously mentioned, the most commonly used explanation for posture-

cognition dual-task interference is that these tasks compete in parallel for one or 

more pool of resources, or else serially engage common input/output or response 

mechanisms. Methodological hurdles notwithstanding, a general-purpose resource 

model of the data is severely compromised by the fact that reductions in postural 

sway can be obtained without graded degradation in the cognitive task [65; 106; 

248; 272]. Instead, the literature has tended to gravitate towards interference 

accounts that implicate competition for specialized resource pools (e.g., spatial 

resources [116; 150]), or bottlenecks in response processes [212; 234; 251; 252] or 

motor mechanisms [65; 296].  

 

Early investigations into interference in cognition-coordinations in the context of 

aging demonstrated that, beyond performance degradation due to reduced peripheral 
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sensorimotor function [141; 287], an important cause of decreased stability in the 

aged is a slowing of the online sensorimotor mechanisms required for sensory 

integration [240; 241; 247]. For instance, the elderly are less able to modulate their 

sway in response to perturbations that involve the transitional loss and return of 

vision, as compared to their younger counterparts [250]. In particular, it has been 

suggested that sensory conflict situations requiring the effortful integration and 

resolution of sensory inputs have their impact on postural control by slowing the 

informational update rate in the postural orientation process ([213]; see also, [249; 

295]). Although a theoretical basis to time-sharing between cognition and 

coordinations has yet to be fully cached out, work on the temporal characteristics of 

posture control in dual-task contexts would suggest that the updating process in turn 

impacts on cognitive task performance. For example, disruption to a continuous 

visuomotor task is shown to be associated with the attentionally-demanding phase of 

stance recovery (about 350 ms after the onset of the balance reaction) but not with 

the reflexive initiation phase of the balancing activity ([182]; see [154], for a similar, 

seated postural activity, and [140], for individual differences in adaptive switching 

of attention between balance and a continuous visuomotor tracking task). 

 

Cognitive processes that underpin online sensorimotor adjustments in the balance 

control process are thought to involve feedforward representations [84; 86; 168; 

265] as well as reactive control of sensorimotor inputs [187; 199]. While it is not 

known whether attentional demands fall more on forward commands or on sensory 

processing [15], the need to locate and orientate the body in 3-D space for the 
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purpose of posture control has naturally focused attention on the possible 

modulating effects of spatial cognitive tasks. A continuing line of enquiry in this 

regard asks whether interference in posture control occurs more by spatial memory 

tasks drawing on visual or visual-imagery processes, or by verbal (i.e., speech-based 

linguistic) tasks that are traditionally assumed to invoke a different processing 

stream ([77]; see [17; 134]). In early studies, negative patterns of dual-task 

interference were found for spatial memory but not verbal memory tasks [116; 151]. 

Recent work, however, has demonstrated interference between posture control and 

both verbal and spatial tasks ([63; 64; 107; 208; 248] and, marginally, [150]).  

 

The discordant results between reports might be due in part to problems in 

controlling for task difficulty across secondary tasks, although improved reliability 

can be had from statistical analysis of task performances [107; 77; 267] or 

physiological markers of task load [77]. In some cases, experimental procedures 

may be an explanatory factor. For example, Brooks’ spatial matrix task 

[39]―frequently employed to test for spatial cognitive interference in posture 

control [15; 116; 150; 151; 248]―could be performed (in principle) using covert 

verbalization of the sequence of directions for the spatial activity. Also, the 

verbalized instructions could act as a direct source of interference. A further 

complicating factor is that posture-cognition studies claiming similar investigative 

goals have differed according to the precise cognitive function being studied. 

Whereas some experimental designs have used tasks that centre on spatial 

attentional processes, such as speed of visual processing [62; 63], others have used 
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tasks more obviously designed to tap memory functions [116; 150; 151; 208; 248]. 

While attention and memory are thought to be functionally linked [16; 201], the 

precise attentional demands and characteristics of these processes are not fully 

understood. This could potentially frustrate attempts to compare posture-cognition 

outcomes for the two types of tasks. 

 

A further and more general issue is that experimental designs have differed in terms 

of whether the secondary task is more demanding of cognitive or perceptual 

resources in its interaction with the balancing task. Memory-based tasks designed to 

tap internal visuospatial processes tend to have little or no perceptual load (for 

instance, simply requiring the subject to visually fixate a point while mentally 

encoding or retrieving verbally presented information, see, e.g., [150; 151]). These 

tasks offer few opportunities for perceptual-based, postural-cognitive synergies. 

Perceptual-cognitive tasks, in contrast, may involve operations that can be 

synergized off the postural control task (e.g., line orientation judgments [35; 235]), 

or else provide perceptual information relevant to posture control. This information 

could be used to help anchor balance, and so attenuate any negative effect of the 

dual-task’s cognitive component on postural stability (see, e.g., [108], for a visual-

verbal task, and [70], for an auditory task). For these reasons, researchers interested 

in ‘pure’ cognitive load effects on postural control have looked to minimize the 

perceptual (as well as motor) content of secondary tasks [15; 217]  
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Such an approach might be limited in reach, however, with respect to its clinical 

interest or its relevance to everyday posture-cognition tasks. This is because postural 

control often has the dual-purpose of securing the body’s safety and balance while 

providing a stable physical substrate for perceptual-cognitive tasks. Beyond the 

basic requirement of keeping the centre of mass within the stability boundary, 

changes in sway amount or variability may have to do with postural operations that 

facilitate the acquisition of perceptual information for the suprapostural task [222; 

245; 246]. In one study [245], for example, young adults fixated on either a 

cognitively-low (blank) target or on a cognitively-demanding target (requiring 

counting the frequency of letters in a block of text) while in upright stance. Target 

distance of the fixated items (near vs. far) was also manipulated. Both fixation on 

near targets as opposed to more distance targets, and fixation on the cognitively 

demanding target as compared to the cognitively-low target, brought about reduced 

sway variability. It was suggested that the need in each case to visually fixate the 

target placed restrictive constraints on the visual system, and which promoted 

reduced sway in support of the visual task [245].  

 

As earlier discussed, an important but often underestimated consequence of the 

facilitatory-control view of posture-cognition dual-tasking is that increased sway as 

a function of cognitive-load cannot be automatically interpreted as indicating 

postural destabilization. Equally, a decrease in sway amplitude (or greater frequency 

of sway) in response to added cognitive task load cannot be reliably interpreted as a 

bracing action to protect posture [62-64; 268] (e.g., by increasing muscle stiffness 
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[5; 47; 48]). Nor can decreased sway be simply understood as reflecting increased 

attentional recruitment due to arousal or emotion [14], or as, say, a release of 

postural control from attentional focus [82; 157; 268].  

 

As mentioned , this thesis employs control experiments that de-confound facilitatory 

and autonomous control explanations of postural sway. But the facilitatory control 

view has further importance in that it underscores the fact that posture has dual role 

in securing the body’s safety and stability while providing a postural substrate well-

suited to task-oriented perception-action [215]. In this respect, the ease with which a 

given task context can be embedded within the broad behavioural context enabled 

by posture control can be just as critical to the level of effort and skill the pairing 

requires, and the level of fluency it can be expected to achieve. In this sense, the act 

of setting up and maintaining a cognitive task space may have a cost to posture 

control, especially if the cognitive and postural task spaces are non-coincident and 

the relation between them is dynamically complex. It is to this issue of the co-

registration of task-spaces for postural and cognitive tasks that the chapter now 

turns. 

 

2.4 Frame co-registration cost hypothesis 

 

Maintenance of upright stance minimally involves monitoring the motion of the 

body’s COM and applying a pattern of forces across body segments to keep the 

body’s line of gravity comfortably within the support base provided by the stance 
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[147]. Thus, the task-space with respect to which balance is maintained is naturally a 

world-frame, since the forces that need to be generated to keep the body upright 

result directly from the motion of body segments with respect to an inertial reference 

frame that is always anchored to the ground surface, and has one axis parallel to the 

direction of gravity (see Figure 2-1, page 39). On the cognitive side, humans are 

capable of configuring themselves, physically as well as cognitively, into special-

purpose systems for efficiently performing many different functions. A notable 

feature of this versatility is that these tasks are of a bewildering variety of 

dimensions, both spatial and abstract, such that the cognitive task-spaces are highly 

flexible and apparently assembled on demand (see [254; 255], for illustrations from 

dynamic systems and motor learning). Most everyday cognitive tasks have 

prominent spatial aspects, but the most natural reference frame with respect to which 

a cognitive task is performed (call it the task-frame) may or may not be coincident to 

the world-frame. 

 

For example, consider the case of standing upright as the postural task and searching 

for a visual pattern, say, a particular a word within a piece of text, as the cognitive 

task. Standing upright on a flat surface involves monitoring the motion of the body’s 

centre of mass, and applying a pattern of forces across body segments to keep the 

body’s line of gravity comfortably within the support base provided by the stance. 

The reference frame with respect to which tasks such as reading or visual search are 

performed is, on the other hand, a more complex issue. It is useful to note that the 

task of detecting the target word from a piece of text involves working with a set of 
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visual features that appear in a particular spatial arrangement with respect to each 

other. It may be expected, then, that the most natural or most preferred reference 

frame for this task will be the one with respect to which the relative positions of 

visual features is specified in the most reliable and stable manner. If the display 

surface is ground-fixed (e.g., a wall or billboard), then the coordinates of the visual 

features with respect to the task-frame do not change relative to their coordinates 

with respect to the world-frame. In this sense, the postural and cognitive-task frames 

coincide. If the surface is, say, the side of a moving vehicle, or even a piece of paper 

held in the reader’s hands, the dynamic relationship between this task-frame and the 

world-frame can become quite complex. In the latter, perhaps more general, case of 

postural-cognition dual-tasking, the visual search coordinates are placed in a task-

linked reference frame that can move with respect to the world-frame. In this sense, 

reference frames for the two tasks do not always coincide. 

 

There can be two types of solutions to this problem of non-coincident task frames. 

One requires ongoing effort, and is therefore expected to generate performance 

costs. The other is a matter of choice without ongoing effort, and should not impact 

dual-task performance. To take the latter case first, one possibility is that performing 

a cognitive task such as reading or visual search in its natural reference frame does 

not impede simultaneous control of body posture with respect to the world-frame. If 

this is the case, then frame discrepancy is a non-issue. A second possibility is that 

discrepancy between the two tasks’ natural frames is an issue, but both tasks can 

simply adopt one or the other task’s natural frame as a common frame for dual-task 
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performance. In either case, there is no expectation of dual-task performance costs 

associated specifically with non-coincidence of task frames. The second type of 

solution involves performing each task in its most natural reference frame, but 

requires some (effortful) means of always keeping the task- and world-frames in 

register. Such a co-registration process could mean maintaining the transform that 

takes one frame to the other to allow working in a common reference frame, or it 

could mean keeping the world- and task-frames separate, but updating the state with 

respect to each frame at a rate that falls within the tolerance limits of both tasks (i.e., 

the motion of one frame relative to the other would have to be monitored to avoid 

disorientation). Either way, if the solution involves ongoing effort, the process is 

referred to here as frame co-registration, and any associated costs to postural or 

cognitive task performance as co-registration costs. It is hypothesized that when 

performing a cognitive task, such as reading or visual search, alongside a postural 

task, such as maintaining upright stance, non-coincidence of the two tasks’ natural 

reference frames is not resolved automatically, but by a co-registration process 

involving costs to postural performance. The following sections (2.4.1) refine the 

notion of a natural reference frame for the visual search and mental rotation tasks 

employed to test the frame co-registration cost hypothesis, and (2.4.2) present the 

experimental design in further outline. 
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2.4.1 Natural reference frame for the cognitive task  

 

The target of a visual conjunction search [259] is defined by the simultaneous 

presence of certain features at a particular location in the visual field. Whether 

selection by location is given a special status [259; 284] or not [43; 113], location 

information is logically prior to, and has important role in, any object-based visual 

search process (see [216], for a consideration). To unambiguously localize an object 

it is necessary to select a particular reference frame and specify locations with 

respect to that reference frame [122]. A given task situation typically offers a choice 

between multiple egocentric (e.g., eye-centred, head-centred, shoulder-centred) and 

exocentric (e.g., world-centred, object-centred, display-centred) reference frames 

(see, e.g., [27; 45; 46; 61; 80; 114]). Exocentric frames, which are defined in terms 

of relations between external objects (or portions or elements of objects), provide 

the most stable and reliable means of storing item locations if the relative position of 

items is of considerable interest  [185]. This is commonly asserted as the case for 

object recognition tasks [270], but evidence of oculomotor memory in visual search 

[88; 121; 152; 200] suggests that the location of display items with respect to each 

other is also important in a task such as conjunction search. 

 

If the choice of reference frames is essentially unlimited, in what sense can the 

cognitive component of a postural-cognitive dual-task have a natural or preferred 

reference frame that is worth retaining, even when it is non-coincident with the 

postural component’s world-frame? Kunde and Hoffman [122] have recently shown, 
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using a paradigm requiring participants to localize search targets either relative to 

the character configuration in which they were embedded (egocentric coordinates) 

or relative to the presentation screen on which the configurations were displayed 

(exocentric coordinates), that the propensity to localize a search target with respect 

to a given reference frame increases as the uncertainty of location with respect to 

that frame decreases. Applied to the present context, Kunde and Hoffman’s [122] 

least-uncertainty principle would advise that a natural reference frame for the visual 

search task is a screen-based, exocentric reference frame, by the following logic. 

While performing visual search, the searcher’s eyes move relative to the head, and 

the head moves relative to the world. The search display itself can be in motion 

relative to the world or the searcher’s eyes or head, but as long as groups of items on 

the search display do not move relative to each other, the least uncertain coding of 

their locations is always with respect to an exocentric reference frame anchored on 

the search display itself. Therefore, in the design of the visual search experiments, 

the coincidence and non-coincidence of postural and cognitive task-frames were 

determined from the relative motion of the postural task’s world-frame and the 

visual search task’s display-anchored exocentric frame.  

 

Regarding a natural reference frame for mental rotation, this extensively researched 

paradigm requires participants to decide whether one of a pair of 3-D objects, 

rotated in the picture plane or in depth, is a copy or mirror of the identity (i.e., 

reference) object. Typically, response latency is found to increase linearly with the 

angle of displacement between identity and parity/non-parity figures [55-57; 232; 
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288; 297; 298]. Since an approximate linear relationship between response time and 

angle of displacement in the matching process is also found for the rotation of actual 

objects, the linear relationship in the internal process of object matching has been 

interpreted as evidence that participants mentally rotate one object into congruence 

with the other [55; 56; 232]. In this sense, these studies would advise that the natural 

reference frame for the mental rotation task is a display-anchored exocentric task-

frame, in which observers mentally rotate (or otherwise compute) the axes of the 

one object into congruence with that of the second object, rather than utilizing the 

perspective of the viewer.6 

 

2.4.2 Testing the frame co-registration cost hypothesis 

 

Immersive visualization was used to allow full control over the relationship between 

the postural world-frame and the cognitive task-frame. For the visual search 

experiments, in the coincident frames condition, the conjunction search task was 

presented on a head-mounted display, and a head-mounted motion tracker 

(Polhemus Fastrak) used to update the participant’s swaying viewpoint in real-time 

(Figure 2-1). Phenomenologically, the task-frame in this condition remained static 

                                                 
6 The interpretation of a linear relationship between response time and displacement angle as 

reflecting physical rotations has been criticised on grounds that many mental imagery tasks are found 

to be cognitively penetrable [205], and that mental rotation is a visually complex task ([25; 98]; but 

see [233]). Regardless of the actual matching process underlying the mental process however, mental 

rotation for static displays is thought to be based on object orientation, because the viewpoint of the 

observer always remains the same [266].  
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Figure 2-1.  Schematic diagram of the experimental setup. As shown, the task-space for standing 
upright was the world-frame, with one axis parallel to gravity. The task-frame for the search 
task was attached to the bounding volume of the stimulus set. The stimuli were viewed through 
a stereoscopic head-mounted display. Postural sway was recorded from the participant’s head 
and hip segments using an electro-magnetic motion-tracker. In the basic manipulation 
(Experiments 2 and 3), in the coincident frames condition, head sway information was used to 
change the location of the viewpoint in the world-frame (i.e., from the participant’s perspective, 
the search items remained static in the world-frame). In the non-coincident frames condition, the 
search items moved with the swaying head. Participants responded using a two-button mouse 
held in the dominant hand. 
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with respect to the world-frame. Thus, the natural frame for the search task 

coincided with the postural world-frame. Since the aim of Experiment 1 (Chapter 4) 

was to simply establish if resource-sharing conditions could be altered according to 

(postural or cognitive) task requirements (rather than as a test of the frame co-

registration cost hypothesis), in this experiment the frames for the postural and 

search tasks were designed to always coincide.  

 

In Experiments 2 and 3 (Chapter 5), a non-coincident frames condition was added. 

This condition differed only in that the stimuli remained static not with respect to 

the world-frame, but with respect to the participant’s viewpoint. The display-

anchored, exocentric task-frame therefore remained anchored to a reference frame 

attached to the participant’s head, which swayed spontaneously (with respect to the 

world-frame) as the participant maintained upright stance. Since, as discussed in 

Chapter 2, the spontaneous body sway associated with standing upright has high 

dimensional dynamics, the latter condition of having the motion of the search task’s 

display mirror the motion of the participant’s swaying head gave a task-frame that 

was dynamically uncoupled from the world-frame: as the participant stood and 

performed the visual search, he or she could not solve the frame discrepancy by 

mapping the task-frame on to the world-frame by applying any low-dimensional 

motion equation. However, as there were multiple sources of information 

(vestibular, proprioceptive, etc.) about sway available to the participant's nervous 

system on a continuous basis, the cognitive task-frame was not arbitrarily related to, 

or informationally uncoupled from, the postural world-frame. The main 
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experimental prediction of the frame co-registration cost hypothesis was that the 

non-coincident frames condition would generate a greater performance cost to 

posture control than performing visual search in the coincident frames condition. 

As introduced, to investigate any interactions between frame coincidence and task-

load, the postural component’s load was manipulated by requiring that participants 

stand in either open or closed stance. Cognitive task-load was manipulated by 

varying the number of items (set size) in the display for the conjunction search task.  

 

In Experiment 2, participants were instructed to focus on the visual search task, but 

in Experiment 3, they were instructed to also minimize sway. This manipulation was 

expected to alter the balance of effort allocated to the postural and cognitive task 

components, and allow closer examination of any frame co-registration costs.  

 

As is discussed in detail in Chapter 6, one consequence of the frame manipulation 

was that participants had access to the optic flow generated by their own sway in the 

coincident frames condition only, and which might advantage postural control in 

this condition. To eliminate this potential confound, the basic frame manipulation 

was refined in Experiments 4 to 5 by splitting the search stimuli equally across the 

world and task-frames, with the target item appearing in the world-frame in the 

coincident frames condition and in the head-anchored task-frame in the non-

coincident frames condition. In Experiment 4, participants were instructed to focus 

on the visual search task, but in Experiment 5, they were instructed to also minimize 

sway.  
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Though the vast majority of research on visual search has been carried out on planar 

search displays, real-life visual search is manifestly more common in three 

dimensions. In contrast to Experiment 1, in which the visual search display was a 

planar surface, Experiments 2 to 5 used a fully 3-D version of the visual search task 

in which each item in the display appeared at random locations within a fixed 

display volume. To assess whether introducing depth in the search displays affects 

the pattern of dual-task performance, Experiment 6 compared participants’ 

performance in coincident and non-coincident frame conditions across 2-D and 3-D 

search display layouts. 

 

The visual search experiments examined the co-registration hypothesis in context of 

items located in the extrapersonal world (i.e., external space). Given the suspected 

involvement of feedforward representations in the sensorimotor calibration process , 

and the body-referential processes underlying cognitive processes [68; 89; 91; 92; 

112; 277], it is possible that postural control costs of non-coincident frames may be 

involved for cognitive operations that occur on internally generated and maintained 

representational states, as for example, the mental manipulation of objects. In 

Experiment 7, the frame co-registration cost hypothesis was tested using a mental 

rotation task in which participants performed parity/non-parity judgments for an 

identity object, in which the object pair were placed in either coincident or non-

coincident reference frames. Again, to investigate any interactions between frame 

coincidence and task-load, the postural component’s load was manipulated by 

requiring that participants stand in either open or closed stance. Cognitive task-load 
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was manipulated by varying the size of the displacement angle between identity and 

parity/non-parity objects. A frame co-registration cost hypothesis would predict that 

the non-coincident frames condition should generate a greater performance cost to 

posture control than performing mental rotation in the coincident frames condition, 

over and above any costs of postural or cognitive task-load. 

 



                  

 

Table 2-1 Literature review of previously conducted research on concurrent tasks during upright stance 

 
Notes. 
 
(1) Key to postural measures 
 
Balance control measures: acronyms, descriptions and measures 
 
(Parameters computed from ML, AP, and 2-D COP displacements) 
 
MD Mean distance from centre of COP trajectory, mm 
RMS Root mean square of COP time series, mm 
SD Standard deviation distance from the mean COP, mm 
SP Sway path, total COP trajectory length, mm 
RANGE Range of COP displacement, mm 
MV Mean velocity of the COP (SP/T*), mm/s- 

MPF Mean power frequency―revolutions per second of COP to travel total trajectory equal to SP (MF = SP/(2 - MD – T*)), Hz 
SDmw Moving window standard deviation―mean moving SD of the COP or COM time series, mm/s 
RMSmw Root mean square of the mean moving SD of the COP or COM time series, mm/s 
 
(Parameters computed from 2-D COP displacements only) 
 
CEA Confidence ellipse area, 95% confidence ellipse 

SA Sway area, computed as COP displacement per unit of time 
 

T, duration of a trial, s                                                                                                                                                                         (Following [223]) 
 

 
(2) Reported changes in balance and cognitive task performances are with respect to postural (seated or quiet standing) and cognitive (no explicit cognitive task) baseline conditions, 
unless otherwise indicated. Reported effects of postural and cognitive difficulty levels were nil (no difference between levels), unless otherwise indicated. Differences between test 
populations and between dual-task (postural, cognitive, vision) conditions were nil, unless otherwise indicated. ML = medial-lateral sway and AP = anterior-posterior sway directions.  

 
 

 
 
 



                  

 

  
Dual-task                                                       Population              Sway Instr.             Effect of cognitive task                                                Effect of postural task               Study                                                                
 

 

Unperturbed wide-base standing 
 
Spatial attention (visual) 
 Manikin task (2 levels) 
. 

 

Young (n = 15) 
and older adults 
(n = 15) 

Instruction 
 to “stand 
quietly” 
 

Young adults: Posture sway decreased 
 
 RMS-ML, RMS-AP decreased 
 MPF-ML, MPF-AP increased 
 
Older adults: Posture sway increased  
 
 RMS-ML, MPF-ML increased* 
 
*Increased frequency with no change in  
  amplitude interpreted by the authors as  
  indicating decreased posture control 

Cognitive task 
performance unchanged 

Dault & 
Frank (2004) 

 
 
Unperturbed wide- and narrow-base 
standing  
 
Spatial attention (visual) 
 Conjunction visual search (2 levels) 
 

Young adults  
(n = 17) 
 

None/Not 
stated 
 

Posture sway increased 
 
 SDmw-ML, RMSmw-ML, RMSmw-AP 

increased in narrow-base standing (high 
cognitive load only)* 

 
*Relative to dual-tasking in wide-base standing  
   

Cognitive task  
performance increased  
 
 RT decreased in narrow-

base standing 

Mitra (2003) 

 
 
Unperturbed wide- and narrow-base 
(tandem) standing 
 
Spatial attention (visual) 
 Manikin task (2 levels) 
 
Non-spatial attention 
 Word categorization task 
 
General attention 
 Random number generation 

Young adults 
(n = 22) 

Instruction  
to “stand 
quietly” 
 

Posture sway decreased 
 
 RMS-ML decreased in narrow-base standing 

(spatial and general attention tasks) 
 RMS-AP decreased in wide- and narrow-base 

standing (all cognitive tasks) 
 MPF-ML increased in narrow-base standing 

(spatial and non-spatial tasks) 
 MPF-AP increased in wide-base standing (all  

cognitive tasks) 

Cognitive task 
performance unchanged 

Dault, Frank 
 et al. 
(2001) 



                  

 

Unperturbed and perturbed wide-
base standing 
 
Spatial attention (visual)  
 Line orientation task 
(verbally reported) 
 
Non-spatial attention 
 Sentence completion task  
(verbally reported) 

Young adults  
(n = 20), and 
older adult 
fallers (n = 20) 
and non-fallers 
(n = 20) 

Instruction  
to “hold still as 
possible” 

Young adults: Posture sway increased   
 
 SP increased (spatial task) 
 
Non-fallers: Posture sway increased   
 
 SP increased (spatial task) 
 Sway increase greater than in young adults 
 
Fallers: Posture sway increased   
 
 SP increased (all cognitive tasks) 
 Sway increase greater than in young adults  
    and non-fallers 

Cognitive task 
performance unchanged 
 

Shumway-Cook 
et al.  

(1997) 
 

 
 
Unperturbed and perturbed wide-
base standing  
 
 Spatial attention (auditory)  
 Low- (speeded discrimination) and 

high-load (forced choice) auditory-
spatial RT tasks 

 
Non-spatial attention  
 Low- (speeded discrimination) and 

high-load (forced choice) verbal RT 
tasks 

Vestibular 
patients  
(n = 48)  
and controls  
(n  = 24) 
 
 
  
 

None/Not stated 
 
 

Posture sway unchanged  All adults: Cognitive task 
performance decreased  
 
 RT decreased in 

perturbed standing (all 
cognitive tasks, low 
cognitive load only) 

 Errors increased in 
perturbed standing (all 
cognitive tasks, high 
cognitive load only) 

 Greater errors on spatial 
task 

Yardley 
et al. 

(2001) 

 
 
Unperturbed and perturbed wide- 
and narrow-base standing  
 
Non-spatial attention 
 Auditory probe RT stimulus 

Young (n = 8)  
and older adults 
(n = 9) 
 

Instruction  
to “maintain a 
stable upright 
posture” 

Posture sway unchanged Cognitive task 
performance decreased 
 
 RT decreased in 

perturbed wide- and 
narrow-base standing 

 RT increase greater in  
   older adults 

Teasdale  
et al.  

(1993) 



                  

 

Unperturbed and perturbed wide-
and narrow-base (tandem) standing 
 
Visuo-verbal attention 
 Stroop task (3 levels) 

Young adults 
(n = 24) 

Instruction  
to “stand 
quietly” 
 
Minimum 
distribution of 
anterior body 
weight required 
for a seesaw 
standing 
condition  

Posture sway decreased  
 
 RMS-AP decreased, MPF-ML, MPF-AP 

increased in perturbed wide-base standing  
   (all cognitive tasks) 
 MV-ML decreased, MPF-ML and MPF-AP 

increased in perturbed narrow-base standing 
(spatial and general attention tasks)*  

 
*Increased velocity together with increased  
  frequency interpreted by the authors as  
  indicating decreased postural control 

Cognitive task 
performance unchanged 

Dault, Geurts 
 et al. 
(2001) 

 
 
Unperturbed wide- and narrow-base 
standing  
 
Visuo-verbal attention 
 Stroop task  

Young (n = 20)  
and older adults 
(n  = 20) 
 

Instruction  
to “stand 
still…as 
possible” 

Young adults: Posture sway increased   
 
 SD-ML, SP, MV, CEA increased in wide-base 

standing 
 SP, MV increased in narrow-base standing 
 
Older adults: Posture sway increased 
 
 SD-ML, SD-AP, SP, MV, CEA increased in 

wide-base standing 
 Sway increase greater than in young adults 
 
Older adults: Posture sway decreased 
 
 SD-ML, CEA decreased in narrow-base 

standing 

Not examined Melzer 
et al. 

(2001) 

 
 
 
 
 
 
 
 
 



                  

 

Unperturbed wide-base standing 
 
Visuo-verbal attention 
 Stroop task (3 levels) 
 
WM 
 Backwards counting 
  (verbally-reported) 

Older adults 
(n = 40) 
 
 

Instruction  
to “remain  
as stable as 
possible” 

Posture sway increased  
 
 SA increased (WM task) 
 

Not examined Jamet 
et al.  

(2004) 

 
 
Unperturbed wide-base standing 
 
Visuo-verbal attention 
 Stroop task (3 levels) 
 
WM 
 Backwards counting  
  (verbally-reported) 
 
Spatial attention 
 RT probe location task 
 

Young 
(n = 26), 
middle-aged  
(n = 26) and 
older adults 
(n = 28) 
 
 

Instruction  
to “remain  
as stable as 
possible” 

Young adults: Posture sway marginally 
decreased 
 
 SA, AP amplitude decreased (Stroop task) 
 
Middle-age and older adults: Posture sway 
increased 
 
 SA and AP amplitude increased (WM task) 
 
Young and middle-aged adults: Posture sway 
decreased 
 
 SA, ML and AP amplitude decreased (spatial 

attention task) 

Not examined Jamet 
et al. 

 (2006) 

 
 
Unperturbed and perturbed narrow-
base (tandem) standing  
 
Visuospatial WM 
 RT probe location-tracking task  
   (2 levels) 
 
Visual object  WM  
 RT probe object-tracking task 

(Attneave shapes, 2 levels) 

Young adults 
(n = 9)  
 

Instruction  
to “remain 
steady and 
stable” 
 

Posture sway unchanged  Cognitive task 
performance decreased 
 
 RT decreased in 

unperturbed and 
perturbed standing 
(spatial task, high 
cognitive load only) 

 

Vander-
Velde  
et al. 

(2005) 
 

 
 



                  

 

Unperturbed wide-base standing 
 
Visuospatial WM  
 Visuospatial N-back task 
  (2 levels)  
 
Non-spatial WM  
 Digit N-back task 
  (2 levels) 
 
General attention 
 RT forced-choice digit task 
  (2 levels) 

Young (n = 20)  
and older adults 
(n = 20) 
 

Instruction 
 to “stand as still 
as possible” 
 

Young adults: Posture sway increased 
 
 CEA increased (all cognitive tasks, high 

cognitive load only) 
 
Older adults: Posture sway increased 
 
 CEA increased (all cognitive tasks) 

Cognitive task 
performance unchanged 
 

Huxhold 
et al. 

(2006) 

 
 
Unperturbed wide-base standing  
 
Spatial WM  
 Modified Brooks’ spatial task 

(encoding phase only) 
 Backward digit recall 
 
Non-spatial WM  
 Modified Brooks’ verbal task 

(encoding phase only) 
 Backwards counting 
  (verbally-reported)  
 
General attention 
 Random digit generation 
  (verbally-reported) 

Middle-aged 
(n = 19) and 
older adults  
(n = 19) 
 

Instruction 
to “remain 
steady as 
possible” 
 
Posture control 
explicitly stated 
as being the 
primary task 
 

Middle-aged adults: Posture sway decreased 
 
 SD-AP decreased (spatial WM and digit recall 

tasks) 
 
Older adults: Posture sway increased 
 
 SD-AP sway increased (spatial WM and digit 

recall tasks) 

All adults: Cognitive task 
performance increased 
 
 Less time to completion 

(silent counting task) 
 

All adults: Cognitive task 
performance decreased 
 
 Less random production 

(random digit generation 
task) 

Maylor & 
Wing  
(1996) 

 
 
 
 
 
 
 
 



                  

 

Unperturbed wide-base standing  
 
Spatial WM  
 Modified Brooks’ spatial task 

(encoding and maintenance phases,  
    2 levels) 
 
Non-spatial WM  
 Modified Brooks’ spatial task 

(encoding and maintenance phases,  
   2 levels) 
 

Young and 
older adults  
(n = 70) 
 
Eleven or 
twelve adults in 
each of the six 
decades from 
20s through to 
70s 

Instruction  
to “stand still as 
possible” 
 
Equal emphasis 
given to postural 
and cognitive 
tasks 
 

All adults (encoding phase): Posture sway 
decreased  
 
 SD-ML, SD-AP, MV decreased (spatial task 

and, marginally, non-spatial task) 
 
All adults (maintenance stage): Posture sway 
increased  
 
 In young adults, SD-ML, SD-AP and MV 

decreased, MV increased (spatial and non-
spatial tasks) 

 In older adults, SD-ML, MV increased (spatial 
and non-spatial tasks)  

Cognitive task 
performance unchanged 
 

Maylor 
et al. 

(2001) 

 
 
Unperturbed narrow-base (tandem) 
standing 
 
Spatial WM  
 Modified Brooks’ spatial task 
 
Non-spatial WM  
 Modified Brooks’ verbal task 

Young adults 
(n = 24) 

None/Not stated  Posture sway unchanged* 
 
* Significant reduction in sway from the 
baseline condition explained as due to a 
significant order-condition effect 

Cognitive task 
performance decreased 
 
 Accuracy decreased 

(spatial WM task) 

Kerr 
 et al.  
(1985) 

 
 
Unperturbed and perturbed wide-
base standing  
 
Spatial WM  
 Modified Brooks’ spatial task 

(encoding phase only)  
 
Non-spatial WM  
 Modified Brooks’ verbal task 

(encoding phase only) 

Young (n = 18) 
and older adults 
(n = 15)  
  
 

Instruction  
to “hold still as 
possible” 
 

Older adults: Posture sway decreased 
 
 SD-ML, SD-AP decreased in perturbed 

standing, eyes closed 
 

Cognitive task 
performance unchanged 

Swan 
et al. 

(2004) 

 
 
 



                  

 

Perturbed wide-base standing 
 
Spatial WM  
 Modified Brooks’ spatial  task  

Vestibular 
patients  
(n = 24)  
and matched 
controls 
(n = 24) 

None/Not stated  In patients and controls: Posture sway 
increased* 
 
 AP peak amplitude increased 
 
* In a subset of patients failing a posturography  
   test, posture sway decreased 

Cognitive task 
performance decreased 
 
 Accuracy decreased 
 
*Eyes open and eyes 
closed conditions in 
controls. Eyes closed 
condition only in patients 

Andersson 
et al.   

(1998) 

 
 
Unperturbed wide-base standing 
 
Spatial WM (auditory) 
 Rotary-surround auditory recall  
 
 Non-attentive 
 White noise 

Older adults 
(n = 32) 
 
 

Instruction  
to “remain  
as stable as 
possible” 

Posture sway decreased  
 
 ML amplitude, SA decreased (spatial WM 

task) 
 

Not examined Deviterne 
et al. 

(2005) 

 
 
Unperturbed wide-base standing  
 
Visuo-WM 
 Colour identification task  
  (2 levels) 

Young adults 
(n = 6) 
 

Instruction to 
“remain 
immobile as 
possible” 
 

Posture sway decreased  
 
 RANGE-ML, RANGE-AP decreased 

Not examined 
 
  

Vuillerme  
 et al.  
(2000) 

 

 
 
Unperturbed wide-base standing 
 
Non-spatial WM 
 Backwards counting  
  (2 levels)―presentation  
  mode not specified 
 

Young adults  
(n = 20), and 
older adult 
fallers with  
(n = 20)  
or without  
(n = 20)  
cognitive 
impairments 

Instruction  
to “hold 
position”  
 
Explicit 
instruction  
to give equal 
emphasis to 
postural and 
cognitive tasks 

Cognitive-impaired: Posture sway increased 
 
 SD-ML, SA increased 
 

Cognitive task 
performance unchanged 
 

Hauer 
et al. 

(2003) 

 
 



                  

 

Unperturbed wide-base standing 
 
Non-spatial WM 
 Comprehension task 
 Backwards counting (silent) 
 
Non-attentive 
  White noise 

Young adults  
(n = 39) 
 
 

Instruction  
to “stand still as 
possible” 

Posture sway increased  
 
 SD-AP sway increased, as did activation of 

ankle and hip extensors correlated with the 
forward leaning (backwards counting task) 

Not examined 
 
 

Maki & 
McIlroy 
(1996) 

 
 
Unperturbed narrow-base (tandem) 
standing 
 
Non-spatial WM 
 Arithmetic addition task  
  (3 levels) presented in visual  
  and auditory modalities, and  
  performed with or without eye  
  movement 

Young adults 
(n = 30) 
 

None/Not stated 
 

Posture sway decreased  
 
 SD-ML sway decreased 
 Greater ML variability in eye movement than 

no-eye movement condition 

Cognitive task 
performance unchanged 
 

Hunter & 
Hoffman 
(2001) 

 
 
Unperturbed wide-base standing 
 
Non-spatial WM 
 Backwards counting  
  (verbally-reported) 
 
Motor task 
 Sequential finger movement task 

Parkinson’s 
patients  
(n = 24)  
and controls 
(n = 20) 
 
 

Instruction  
to “stand still as 
possible” 

Patients: Posture sway increased  
 
 CEA increased 
 Sub-analysis of pd fallers (n = 8) and SD non-

fallers (n = 16) showed that sway increase was 
greater in PD fallers 

Not examined 
 
 

Marchese 
et el. 

(2003) 

 
 
Unperturbed wide-base standing  
with or without focal (central) vision 
 
Non-spatial WM 
 Arithmetic task  
 
Motor task 
 Finger-thumb pinch task 

Young (n = 18)  
and older adults 
(n  = 18) 

None/Not stated 
 

All adults: Posture sway decreased 
 
 SD-ML sway decreased (non-spatial WM task) 
 
Note. Postural sway increased on motor task 

Cognitive task 
performance unchanged 
 

Weeks 
 et al.  
(2003) 

 



                  

 

Unperturbed and perturbed wide-
base standing  
 
Non-spatial WM 
 Auditory speed  
  discrimination task 
  (verbally-reported) 

Young  (n = 14) 
and older adults 
(n = 18) 
 

Explicitly states 
posture control 
as being the 
primary task 
 

Posture sway increased  
 
 SD-ML, SD-AP, RANGE-ML, RANGE-AP, 

MV, SP, CEA, SA increased 

Cognitive task  
performance unchanged 
 

Marsh 
et al. 

(2000) 

 
 
Unperturbed and perturbed wide-
base standing  
 
Non-spatial WM 
 Digit rehearsal task (2 levels)  
   in visual (Exp1) and auditory  
   (Exp 2) modalities 

Young adults  
 n = 23 (Exp 1)  
 n = 20 (Exp 2) 

Participants told 
not to focus 
exclusively on 
either task, but 
to perform the 
WM task as 
accurately as 
possible 

Posture sway decreased  
 
 MWSD-ML sway decreased under high 

cognitive load (both experiments) 
  

Not examined Riley 
et al. 

(2005) 

 
 
Unperturbed wide- and narrow-base 
(tandem) standing;  unperturbed and 
perturbed single-limb (arm raise) 
standing  
 
Non-spatial WM 
 Backwards recital 

Older-to- 
middle-aged 
Parkinson’s 
fallers (n = 15) 
and non-fallers 
(n = 15),  
and controls 
(n = 15) 

None/Not stated  Not examined All patients and controls:
Cognitive task 
performance decreased 
 
 Completion rate 

decreased in arm-raise 
condition 

 
PD fallers: Cognitive task 
performance decreased 
 
 Completion rate 

decreased in narrow-base 
standing 

Morris 
et al. 

(2000) 

 
 
 
 
 
 



                  

 

Unperturbed and perturbed wide-
base standing  
 
Non-spatial WM 
 Forced choice auditory  
  discrimination task (verbally-reported) 

Young adults 
(n = 18), and 
older adult 
fallers (n = 18) 
and non-fallers 
(n = 18) 

Instruction to 
“stand still as 
possible” 
 

Older non-fallers: Posture sway increased  
 
 SP increased in eyes closed, sway-referenced 

optokinetic stimulation condition 
 
Older adult fallers: Posture sway increased 
 
 SP increased in all sensory conditions* 
 
*On those dual-tasks that could be   
  completed―fallers were unable to stand under    
  the most challenging sensory contexts, and so  
  were excluded from performing in these 
  contexts under dual-task conditions 

Older adult fallers and 
non-fallers: Cognitive task 
performance decreased 
 
 RT decreased in 

perturbed standing 

Shumway-Cook  
& Woollacott 

(2000) 
 

 
 
Perturbed wide-base standing 
 
Non-spatial WM 
 Silent backwards counting 
 
Exp 2 as for Exp.1 but with  
inter-trial postural focus condition 

Young adults 
n = 30 (Exp 1) 
n = 20 (Exp 2) 
 

Exp.2 only: 
Explicit 
instruction 
to monitor 
balance control 
between 
cognitive task 
trials 

In Exp.1, posture sway decreased  
 
 Torque variance increased 
 
In Exp. 2, posture sway decreased, but  
effect attenuated 
 
 Torque variance increased 

In Exp.1, cognitive task 
performance decreased  
 
 Completion rate 

decreased 
 
In Exp 2, cognitive task 
performance unchanged 

Andersson 
et al. 

(2002) 

 
 
Perturbed wide-base standing 
 
Non-spatial WM 
 RT forced choice auditory  
  task (verbally-reported)  
 

Young adults  
(n = 15),  
and balance-
impaired older 
adults (n = 15) 
and controls 
(n = 13) 

Participants 
“instructed  
to keep their 
balance” 
 

Young adult and controls: Posture sway 
decreased 
 
 RANGE-AP decreased 
 
Balance-impaired: Postural sway increased  
 
 Stabilization time, MV increased 

Patients and controls: 
Cognitive task 
performance decreased 
 
 RT decreased 
 RT increase greater in 

patients than controls 

Brauer 
       et al.   
     (2001) 

 

 

 

 

 

 



                  

 

Perturbed wide-base standing 
 
Non-spatial WM 
 RT forced choice auditory  
  task (verbally-reported)  

Young (n = 15)  
and older adults 
(n = 10) 

Participants 
instructed “avoid 
using a step to 
recover their 
balance”  

Posture sway increased  
 
 Change in kinematics observed for 

strategy―step responses were closer to the 
base of support 

All adults: Cognitive task 
performance decreased 
 
 RT decreased 
 RT increase greater in 

older adults than young 
adults 

    Brown  
et al. 

(1999) 

 
 
Perturbed wide-base standing  
 
Non-spatial WM 
 Digit reversal, classification 
 Backwards counting  
   (presentation mode unspecified) 

Young adults 
(n = 20) 

None/Not stated Posture sway increased 
 
 RANGE-ML, RANGE-AP increased 

(classification task) 
 SP, SD-AP, RANGE-ML, RANGE-AP 

increased (backwards counting task) 

Not examined Pellecchia 
(2003) 

 
 
Perturbed wide-base standing  
 
Non-spatial WM 
 Backwards counting  
  (presentation mode unspecified) 

Young to 
middle-age 
adults (n = 18) 

None/Not stated Posture sway increased  
 
 SP increased 

Not examined Pellecchia 
(2005) 

 
 
Perturbed wide-base standing 
 
Non-spatial WM  
 Digit rehearsal task  
  (2 levels) 

Young adults  
(n = 23) 

None/Not stated Posture sway decreased 
 
 SD-AP sway decreased (high cognitive load 

only) 

Not examined Riley 
et al. 

(2003) 

 
 
 
 
 
 
 
 
 
 



                  

 

Unperturbed and perturbed wide-
base standing 
  
General attention without motor task 
 Silent counting 
 
General attention with motor task 
 Articulation task  
  (2 levels) 
 
Motor task 
 Jaw open and close 

Young adults 
(n = 20) 
 

None/Not stated Posture sway decreased in all dual-task 
conditions, but by a lesser amount with tasks 
involving verbalized responses 
 
 RMS-ML, RMS-AP decreased (all tasks 

except silent counting)  
 MPF-AP increased (all tasks except silent 

counting and motor tasks) 
 SP decreased (articulation task) 

Cognitive task 
performance unchanged 

Dault 
 et al.  
(2003) 

 
 
Perturbed wide-base standing  
 
Attentional focus 
 Control of finger-to-sheet contact, 

either to minimize the movement of a 
draped sheet (external focus), or to 
minimize the movement of finger 
(internal focus) 

Middle-aged 
adults (n = 19) 
 

Participants 
required to focus 
on the postural 
task (internal 
focus) or on the  
consequences of 
balance for the 
cognitive task 
(external focus) 

Posture sway increased  
 
 MWSD-ML, MWSD-AP sway increased 
 MPF increased in external focus condition 

only 
 

Not examined 
 

McNevin & 
Wulf 

(2002) 

 

 

Unperturbed and perturbed  wide-
base standing  
 
Inhibitory task 
 ‘Stop-Go’ visual-auditory inhibitory 

RT task 
 
General attention 
 Simple and forced choice RT auditory 

tasks 

Young (n = 18)  
and older adults 
(n = 18) 
 

None/Not stated Older adults: Posture sway increased  
 
 RMS-AP sway increased in body and visual 

sway-referenced condition 
 

Young and older adults: 
Cognitive task 
performance decreased 
 
 RT decreased in 

perturbed standing 
 
 

Redfern 
et al. 

(2001) 

 
 
 
 



                  

 

Unperturbed and perturbed  wide-
base standing  
 
Inhibitory task 
 ‘Stop-Go’ visual-auditory inhibitory 

RT task 
 
General attention 
 Simple and forced choice RT auditory 

tasks 

Vestibular 
patients (n =15)  
and matched 
controls (n =15) 
 
 

Instruction  
to “stand as still 
as possible” 
 
Equal emphasis 
given to postural 
and cognitive 
tasks 

Posture sway increased 
 
 RMS-AP increased, MV decreased 
 

Patients and controls: 
Cognitive task 
performance decreased 
 
 RT decreased in 

perturbed standing 
 RT increase greater in 

patients than controls 
 
 

Redfern 
et al. 

(2004) 
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Chapter 3 
                
 
Methodology 

 

 

 

3.1 Methodology 

 

This chapter describes the methodology used to generate, record and analyse the 

data for the investigation of the frame co-registration cost hypothesis. The first part 

describes methods to the visual search experiments, and the second part describes 

methods to the mental rotation experiment. Participant details, together with review 

of inter-experimental modifications, are prefaced immediately to each experiment in 

the respective chapter. 

 

3.2.1 Apparatus and data collection 

 

Basic apparatus design and data collection followed Mitra [162]. The visual stimuli 

were generated by a Silicon Graphics Onyx 3200 workstation (with InfiniteReality3 

graphics), and presented through a Virtual Research V8 head-mounted display 
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(HMD) unit. The field of view in each eye (i.e., the angular subtense of the 

displayed image as measured from the pupil of one eye) was 600 diagonal (see 

Figure 3-1). Stimulus presentation was stereoscopic, with both channels rendered in-

phase at each frame. Inter-pupillary distance was assumed fixed at 6.5 cm. 

Asymmetric viewing frustums were used for both eyes, with the point of 

convergence set at the participant’s eye level, exactly in between the two eyes, and 

at a distance of 48 cm in front of the participant at the instant of calibration. The 

centre of the stimulus display (where the crosshair was located) coincided with this 

point of convergence. The total weight of the HMD unit was 1.0 kg, balanced about 

the centre of the head.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3-1   The HMD’s field of view (following [79]).  
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The three position coordinates of the head were recorded and stored at the beginning 

of each screen refresh using a Polhemus Fastrak magnetic motion tracker attached to 

the HMD (see Figure 2-1, page 39). The recorded change in head position since the 

previous screen refresh was used to update the viewpoint location. For the 

coincident condition, the stimulus display appeared to maintain its position and 

orientation in the world-frame, with the observers’ own head motion appearing to 

generate the expected changes in viewpoint. This ensured that, within the accuracy 

limits of the motion tracker (itself approximately 0.0012 cm RMS when static, with 

a latency of 0.004 s), all the optical consequences of postural sway were made 

available to the participants at locked frame rate of 60 Hz (i.e., 0.017 s effective 

update latency). The anterior-posterior (AP) component of sway gave rise to radial

flow, the medial-lateral (ML) component of sway produced lamellar flow. In 

Experiments 2-6 only, motion parallax (i.e., changes in the optical separation 

between two or more search items as a result of sway) was generated due to 

presentation of the stimulus display in depth. Stereoscopic presentation also ensured 

that vergence control for binocular fixation on the search items provided information 

about head motion. Phenomenologically, this arrangement generated a strong 

impression that the stimulus display remained at the same point in space, and held 

its position and orientation in the task-space even as the participant’s viewpoint 

changed continually due to postural sway.  
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In Experiments 2-6, the apparatus was used to generate a second, non-coincident 

condition, in which the stimulus display appeared and maintained position 

orientation with respect to the observer’s head. Another way of describing the 

manipulation is through the dynamic relationship between the world-frame and the 

task-frame. In the non-coincident frames condition, the task-frame had the same 

motion with respect to the world-frame as the participant’s swaying head. This 

arrangement meant that participants had no access to the optical consequences of 

their sway (on which, see Experiments 4-5, Chapter 6). Nonetheless, the difference 

between coincident and non-coincident trial blocks for the visual search tasks was 

phenomenologically subtle. When interviewed at debriefing, only one participant 

volunteered having noticed a difference between the two frame conditions 

(reporting, for the stimuli used in Experiments 2-3, that the world-frame stimuli 

appeared “more three-dimensional”). While a number of participants claimed to 

recognize the manipulation when they were told about it afterwards, the majority did 

not. The subtlety of this manipulation can be appreciated by noting that the 

magnitude of spontaneous head sway during unperturbed standing by healthy young 

adults is quite small (as is apparent from the means of the sway measures presented 

in the results to the experiments). 

 

In addition to the head-mounted motion tracker used to generate the frame 

manipulation, in Experiments 2-6, participants wore a second receiver (attached to a 

Velcro belt) on their lower backs, approximately on the first lumbar vertebra. This 

tracker recorded the motion of the hip from the point on the body surface that is 
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closest to the centre of mass during upright stance [42]. Hip motion was recorded for 

data analysis only, and not used in rendering the visual display. Responses to stimuli 

were collected via presses of the left and right buttons of a three-button mouse held 

in the participant’s dominant hand. Responses were recorded at a resolution of 1 ms 

by a forked process running independently of, but in synchrony with, the 60 Hz 

graphics loop. 

 

3.2.2 Stimuli 

 

The visual search displays contained blue (RGB: 0.239, 0.451, 0.674) and green 

(RGB: 0.318, 0.62, 0.274) rectangular ‘A’ and ‘H’ letter shapes (see Figure 2-1, 

page 39). The coloured letters were of equal luminance, displayed against a black 

background. Each letter was 2.4 cm in height and 1.44 cm in width, and was 

composed of one vertical and one horizontal cylinder of the above lengths, 

respectively, and a diameter of 0.48 cm. The cylinders were approximated with a 6-

polygon tessellation, and were gouraud-shaded. The entire stimulus set was lit by a 

single white light source from the above-left of the viewpoint. In Experiment 1, all 

search items were placed on the same depth plane. In Experiments 2-5, the search 

stimuli were staggered randomly in depth (± 10 cm around an average distance of 48 

cm from the eyes). In Experiment 6, the visual search display was presented either 

as a planar surface at the convergence distance as in Experiment 1, or with the items 

randomly staggered in depth exactly as in Experiments 2 to 5. 
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Before each stimulus trial, a white fixation crosshair (composed of a cylinder of 

length 1.2 cm and diameter 0.24 cm) was presented in the world-frame for 1 s at the 

centre of an invisible 8 x 8 cell display grid (at the same depth as the point of 

convergence). Each display cell measured 5.76 cm in length and width. For each 

trial, the letter shapes were randomly assigned to display cells, and their vertical and 

horizontal positions within cells were further randomized within a 1.44 cm range. 

The proportion of the participant’s field of view over which search items could 

range in any given trial remained constant across all conditions.  

 

3.2.3 Experimental design and procedures 

 

The search displays consisted of 4 and 16 (randomly-placed) items in the low and 

high search-load conditions, respectively. On target-absent trials, half the display 

items were green H’s, and half the display items were blue A’s. On target-present 

trials, the search target item, a blue H, replaced one of the blue A’s. Each search 

block consisted of 20 target-absent and 20 target-present trials, randomly presented. 

Participants were instructed to press the left button of the hand-held mouse if the 

display in a given search trial contained a blue H, and the right button of the mouse 

if it did not.  

 

The search task was performed while standing upright at a location marked with a 

cross on the laboratory floor. No footwear was worn, and arms were held relaxed by 

the sides of the body. For Experiments 1-5, postural difficulty was manipulated by 
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using open and closed stances. In the open stance condition, participants took up 

stance either side of the marked cross, and stood with their heels about 10 cm apart, 

feet at about 45° to each other,  In the closed stance condition, participants stood 

over the marked cross, with feet flush against each other. Other than these 

requirements, no formal methods were employed to control participants’ stance. 

Experiment 6 was conducted in open stance only. 

 

Prior to data collection, the experimenter assisted the participant with fitting of the 

Velcro belt (with the hip-motion tracking sensor attached) and fitting of the HMD 

(with the head-motion tracking sensor attached). The mouse was then placed in the 

participant’s dominant hand, and he or she was guided in positioning the fingers on 

the mouse buttons. Initialization and calibration of the HMD display followed, in 

which the participant was asked confirm stereoscopic viewing. The first trial of each 

block was experimenter triggered. Subsequent trials were triggered by the 

participant’s button-presses. Once the participant responded in a trial with either a 

left or right button-press, the search display was removed from view and the fixation 

crosshair presented for 1 s before the next trial’s display appeared on screen. The 

experimenter’s triggering of the first search-trial also signalled the software to start 

storing the participant’s head and hip position coordinates for use in calculating the 

sway measures described in the data analysis section. Each block of task trials 

yielded one time series of sway data. Since the total time required for a task block 

varied as a function of the cognitive task’s load (averaging about 72 s and 100 s, 

respectively, for low and high-load conditions, including ISIs), the corresponding 
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time series of sway data differed in the number of data points. To ensure that the 

sway measures in all conditions were calculated off the same number of data points, 

and to minimize exposure of the measures to block-initial transients (that might 

arise, for example, due to the novelty of the viewing condition), sway data from only 

the final 60 s of each visual search block was used in calculating the sway measures 

described in section 3.2.4.  

 

For Experiment 1, data collection was carried out as two, successive sessions, 

corresponding with two instruction conditions. In the search-focus condition, 

participants were asked to perform the visual search task as quickly as possible 

without making too many mistakes. In the dual-focus condition, participants were 

told that they should try to minimize their sway as much as possible while 

performing the search task, with equal emphasis given to the postural and cognitive 

tasks. The order in which these two sessions were given was counterbalanced across 

participants, and instruction-order included in the visual search and postural analysis 

as a between-participants factor (see section 3.2.4). Varying stance (open, closed), 

number of search items (4-low, 16-high) and instruction (search-focus, dual-focus) 

gave rise to 8 within-participants experimental conditions. These conditions were 

randomly counterbalanced. The visual search task’s design also contained the target 

(present, absence) condition. Since target presentation was randomized, the target 

condition was absent in the design used to analyse the postural sway measures 

described below (section 3.2.4). There was a 5-minute break between the two 

instruction sessions, during which the HMD was removed and the participant asked 
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to sit down and re-orient before taking up position for the next session. Participants 

were given one block of 15 (randomly low and high search-load) practice trials at 

the beginning of each of two sessions.  

 

In Experiments 2, 4 and 6, participants were instructed to focus on performing quick 

and accurate visual search. In Experiments 3 and 5, participants were asked to 

perform quick and accurate search but to also focus on minimizing the amount they 

swayed, with equal emphases being given to these tasks. For Experiments 2-5, 

varying stance (open, closed), number of search items (4, 16) and reference frame 

(coincident, non-coincident) gave rise to 8 within-participants, counterbalanced 

experimental conditions. As for Experiment 1, the search target factor was also 

included in the visual search analyses. For Experiment 6, varying search depth (2-D, 

3-D), search item number (4, 16) and reference frame (coincident, non-coincident) 

gave rise to 8 within-participants, counterbalanced experimental conditions. Again, 

the search conditions were blocked, and the target factor included in the visual 

search analyses. For Experiments 2-6, the eight counterbalanced experimental 

conditions were presented as a series of two-block sessions, with a 2-3 minute break 

between sessions. All participants received one block of 15 (randomly low and high 

search-load) practice trials presented in the coincident frames condition. For 

Experiment 6, these practice trials were presented in 2-D only.  

 

For all visual search experiments, participants attended a one-hour long session, 

during which experimental run-time was no more than 25 minutes. The remainder of 
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the session was reserved for fitting of motion-capture sensors and HMD, 

instructions, practice trials, rest periods and debriefing. No participant was entered 

into more than one experiment. 

 

3.2.4 Dependent measures and analyses  

 

Cognitive task performance was assessed using the classic accuracy and response 

time measures for visual search, calculated separately for target-present and target 

absent trials. Only correct responses were used in analyses of response times. For 

Experiment 1, the visual search task was analysed using a 2 (target: present, absent) 

 2 (stance: open, closed)  2 (item number: 4, 16)  2 (instruction: search-focus, 

dual-focus) within-participants repeated measures, with independent measures on 

the between-subjects instruction-order factor (search-focus first, dual-focus first). 

For Experiments 2-5, the visual search task was analysed using a 2 (target: present, 

absent)  2 (stance: open, closed)  2 (item number: 4, 16)  2 (frame: coincident, 

non-coincident) within-participants repeated measures design. For Experiment 6, the 

visual search task was analysed using a 2 (target: present, absent)  2 (depth: 2-D, 3-

D)  2 (item number: 4, 16)  2 (frame: coincident, non-coincident) within-

participants repeated measures design. 

 

As mentioned, since each search block contained target-present and target-absent 

trials in random order, the target condition in the visual search task’s design was 
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absent in the design used to analyse the postural sway measures. Postural sway was 

measured using a moving-window standard deviation (MWsd) of anterior–posterior 

(AP) and medial–lateral (ML) sway, and the corresponding RMS drift. The MWsd 

measure (henceforth referred to as STS sway) was calculated by dividing each sway 

time series (i.e., a posture trial corresponding to task trial) into (1 s) non-overlapping 

windows of 60 data points each, and then averaging the mean standard deviation 

across windows [157; 222]. The RMS distance between the means of these (1 s) 

non-overlapping windows was calculated to produce RMS drift (henceforth LTS 

sway). A schematic description of the two measures is given in Figure 3-2, and a 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2   Posture sway dependent measures. The short time-scale (STS) measure was 
computed as the moving-window standard deviation (MWsd) of sway. The long time-
scale (LTS) measure was computed as the root mean square (RMS) distance between 
each of these windowed means. 
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representative sample of sway data taken from a participant’s head-sway data in 

Experiment 2 shown in Figure 3-3. As discussed in Chapter 2, the two measures 

were intended to be informative of possible changes in the system’s corrections 

during the trial period under various task-load conditions. The STS and LTS of the 

hip’s motion provided an approximation of the motion of the body’s centre of mass, 

and were therefore used as indicators of the (mechanical) stabilization activities of 

posture control. The two measures of the head’s motion additionally enabled a close 

look at the changes in the viewpoint of the visual search task that occurred due to 

postural sway. As such, the head motion data provided an indicator of any task-

facilitation activities of posture control.  

 

The data were analysed using repeated-measures analysis of variance (ANOVA). 

Variable distribution was checked for univariate outliers to reduce the probability of 

Type I and Type II errors.7 Regarding assumptions of repeated measures designs, 

the analysis of variance is known to be robust against violation of univariate 

normality with respect to Type I error [242] and no transformations were undertaken 

to normalize the data distributions. Regarding homogeneity of covariance matrices, 

in cases where data departed significantly from sphericity, the conservative 

Greenhouse-Geisser correction was applied to the tests of significance, and the 

corrected significance level reported. The level of significance for main effects and  

                                                 
7 Univariate outliers are commonly taken as individuals having z scores =>3 [120]. As defined, the 

thesis experimental data contained no outliers. 

 



  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-3   A representative participant’s head sway data in Experiment 2. The viewpoint is looking down from above. Vertical 
motions represent anterior-posterior (AP) sway and horizontal motions represent medial-lateral (ML) sway. 
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interactions was set at p < .05. Post hoc tests were performed using simple main 

effects or else Bonferroni-corrected paired sample t-tests [117; 149]. All effects of 

significance are reported. In keeping with those posture-cognition dual-task studies 

reporting treatment magnitudes, partial eta ( 2
p ) was used to measure effect size. All 

data analyses were performed using SPSS v.11 software. 

 

3.3 Mental rotation experiment 

 

3.3.1 Apparatus and data collection 

 

General apparatus and data collection was as for visual search Experiments 2-3. In 

the coincident frames condition, the mental rotation objects described below 

appeared in a world-frame (i.e., the object pair kept their position and orientation in 

the world-frame). In the non-coincident frames condition, the object pair appeared 

and maintained position-orientation with respect to the observer’s head.  

 

3.3.2 Stimuli   

 

The six mental rotation objects consisted of 9 or 10 solid cubes attached face-to-face 

to form a rigid structure with 3 right-angled elbows. They were given a yellow-

brown wood texture (InfiniteReality3 graphics ‘lwood3’ bit-map), and displayed 

against a black background. For each object type, a mirror image reversal was 
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generated, creating a total of 12 objects. For each of these, 3 different perspective 

projections corresponding to a rotation around the axis of the identity object by 50 

degree steps (i.e., 50o, 100o and 150o) were generated. To minimize practice effects, 

the identity object was randomly orientated within each block of trials by a 20o, -20o 

or -40o angle about the y-axis (the vertical axis about which the object was rotated in 

depth) or z-axis (the axis parallel to the line of sight about which the object was 

rotated in the picture plane). These 108 combinations of object axes and rotation and 

orientation angles were selected so as to ensure that no object part was wholly 

occluded by another part [232].  

 

3.3.3 Experimental design and procedures 

 

The identity (i.e., reference) object was always presented in the left side of the 

screen, and the parity/non-parity object always presented on the right side (see 

Figure 3-4). Each mental rotation block consisted of 10 parity and 10 non-parity 

trials, randomly presented. Participants were instructed to press the left button of the 

hand-held mouse if the display in a given trial contained the parity object, and the 

right button of the mouse if it did not. Participants were instructed to focus on 

performing quick and accurate mental rotation judgments. As for the visual search 

experiments, the mental rotation task was performed while standing upright

at a location marked with a cross on the laboratory floor. No footwear was worn, 

and arms were held relaxed by the sides of the body. Postural difficulty was
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Figure 3-4   Examples of the mental rotation stimuli. The six mental rotation objects consisted 
of 9 or 10 solid cubes attached face-to-face to form a rigid structure with 3 right-angled elbows. 
The top panel shows an identity figure (left) and a parity (i.e., same) figure rotated about the y-
axis by 1000 (right).. The other panels show the identity figure together with a parity figure 
rotated about the x-axis by 500 (middle panel) and z-axis by 1500 (lower panel). Block texture 
and colour are not reproduced here. 
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manipulated by using open and closed stances, as described for the visual search 

experiments.  

 

Fitting and calibration of the HMD was as described for the visual search 

experiments. Recording and storing of data was as for the visual search experiments, 

only that, due to faster than anticipated response times of some participants for the 

least difficult (50o rotation, open stance) experimental condition, sway data from

only the final 40 s of each mental rotation block was used in calculating the sway 

measures. Thus, the STS measure was calculated by dividing each sway time series 

into 1 s non-overlapping windows of 40 data points each, and the RMS distance 

between the means of these 1 s non-overlapping windows calculated to produce LTS 

sway. 

 

Varying stance (open, closed), angle displacement size (50o, 100o, 150o) and 

reference frame (coincident, non-coincident) gave rise to 12 within-participants, 

experimental conditions. These conditions were randomly counterbalanced. The 

mental rotation tasks’ design also contained the parity/non-parity condition. Since 

presentation of these was randomized, this condition was absent in the design used 

to analyse the postural sway measures described below (section 3.3.4). The 12 

experimental conditions were presented as a series of three-block sessions, with a 2-

3 minute break between each three-block session, during which the HMD was 

removed and the participant asked to sit down and re-orient before taking up 

position for the next session. The participants were given one block of 12 practice 
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trials (coincident condition, mixed rotational difficulty) at the beginning of the first 

block only. Participants attended a one-hour long session, during which 

experimental run-time was no more than 25 minutes. The remainder of the session 

was reserved for fitting of motion-capture sensors and HMD, instructions, practice 

trials, rest periods and debriefing. None of the participants to the metal rotation 

experiment performed in any of the other thesis experiments. 

 

Before the start of the experimental session, participants were familiarised with the 

task by viewing and attempting responses to the stimuli presented in 2-D on a 

computer monitor. Participant feedback from pilot studies revealed that some people 

performed parity/non-parity judgments based on the direction of a particular leg 

projection, rather than performing a rotation. For example, an inwards-facing leg on 

a object would act as a non-parity cue to the outwards-facing leg on the identity 

object (see [95; 115], for other studies reporting participants’ use of non-rotational 

strategies). This meant that non-parity object rotations about the y-axis were 

sometimes confused with parity object rotations about the z-axis, leading to 

incorrect judgments for the y-axis stimuli. As part of the familiarization process, the 

experimenter alerted the participant’s attention to the fact that leg projection was not 

a reliable cue for correct judgments. No other advice was given as to how judgments 

should be made.  
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3.3.4 Dependent measures and analyses 

 

Mental rotation performance was assessed using accuracy and response time 

measures (correct trials only for RTs) for identity-parity judgments, calculated 

separately for parity/non-parity trials. The mental rotation task was analysed using a 

2 (judgment: parity, non-parity)  2 (stance: open, closed)  3 (rotation size: 50o, 

100o, 150o)  2 (frame: coincident, non-coincident) within-participants repeated 

measures design. Because each mental rotation block contained parity and non-

parity trials in random order, the judgment condition in the mental rotation task’s 

design was absent in the design used to analyse the postural sway measures. The 

sway measures were as described for the visual search experiments. 
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Chapter 4 
                
 
Effects of Explicit Sway-Minimization on  

Posture-Cognition Dual-Tasking 

 

 

4.1 Introduction 

 

As discussed in Chapter 2, interpreting sway patterns can be problematic when no 

explicit sway control requirements are specified. Since the dual-task settings 

employed in the thesis paradigm presented no threat to stance stability, measurable 

effects might be observed for reference frame (and task-load) conditions depending 

on the preferred constraints imposed on balance. Close examination of any frame 

co-registration costs required, therefore, means of cleanly manipulating the 

resource-sharing settings for the experimental conditions. The experiment described 

in this chapter was designed to establish such means. Participants were required to 

stand upright while performing quick and accurate search for a visual target in a 

conjunction task [259] presented in an immersive environment, under varying 

postural- and cognitive-load conditions. In one session, henceforth the search-focus 

condition, participants were asked to focus on the visual search task. In a second 

session, henceforth the dual-focus condition, participants were told that the level of 
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body sway was also important, and that they should try to minimize their sway as 

much as possible. Since the aim of this first experiment was simply to establish 

whether resource-sharing conditions could be altered according to postural or 

cognitive task requirements, rather than as a test of the frame co-registration cost 

hypothesis, the frames for the balance and visual search tasks were designed to 

always coincide.  

 

While it is a common practice in posture-cognition dual-task research to instruct 

participants to stand as still as possible, there has been no direct test of postural and 

cognitive dual-task performance under explicit instruction to control posture. 

However, there is some evidence to advise that posture sway may increase in dual-

task conditions under a sway minimization instruction, relative to a condition in 

which people are asked simply to focus on the cognitive task. As discussed in 

Chapter 2, Fearing [82] showed that the release of attention away from balance 

control and towards a secondary task can enhance postural stability―an outcome 

accredited to a reduction in balance anxiety following the switching of attention to 

the secondary task. Similarly, Wulf and colleagues have shown increased postural 

stability for the adoption of an external focus on the postural task relative to an 

internal focus of attention [157; 292; 293]. For instance, McNevin and Wulf [157] 

had participants stand (postural task) while lightly touching a loosely hanging sheet 

with their fingertips (cognitive task). Participants were either asked to minimize 

movements of the finger (internal focus with respect to the postural task) or to 
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minimize movements of the sheet (external focus). Both instruction conditions 

resulted in increased postural sway, but frequency of responding (examined as Fast 

Fourier Transformation) was greater for the external focus condition compared to 

internal focus and baseline conditions. Increased postural frequency was taken to 

indicate increased constraints on (and so greater control over) the body’s degrees of 

freedom [256], and to thus reflect improved balance responses under external focus 

conditions and compromised balance response under internal focus conditions (see 

[218], for similar theoretical treatment).8 Similarly, other work [292] has 

demonstrated that, compared to internal focus on a cognitive task (focus on the 

hands holding a pole horizontally), external focus on the cognitive task (focus on the 

pole) results in increased cognitive task performance (as well as improved balance 

control). 

 

From a resource-competition perspective, adding an instruction to minimize sway 

should increase the load of the postural component by drawing resources into 
                                                 
8 McNevin and Wulf’s research was based on a study by Riley and colleagues [222], who sought to 

demonstrate the use (minimization) of posture sway to facilitate a suprapostural task (minimization of 

sheet movement). McNevin and Wulf set out to establish whether the reduced sway accompanying 

improved suprapostural task performance observed by Riley et al. was due, not to deliberate use of 

posture sway to facilitate suprapostural task performance, but to greater reflexive or automatic 

posture control when attention was prioritized towards the suprapostural task. It can be argued, 

however, that both the internal focus (minimize finger contact) and external focus (minimize sheet 

movement) instructions introduced by McNevin and Wulf in fact directed participants attention to the 

control of the suprapostural task. In this sense, McNevin and Wulf’s study cannot be authoritatively 

considered as a direct test of postural and suprapostural performance in the same dual-task condition 

under explicit posture focus instructions. 
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minimizing sway. The precise effects seen on postural or cognitive performance 

would depend in turn on the available margin for sway reduction with respect to 

postural or cognitive task difficulty conditions. As discussed in Chapter 2, the 

postural control system normally allows movements of the body’s COG during quiet 

standing within certain limits [54]. In the dual-task situation under a low resource 

load, when only few attentional resources are required, the system may be free to 

drift to a greater degree than in the situation imposed by more difficult dual-task 

conditions, under which a sway-minimization instruction would be found to have 

greater impact (on either postural or cognitive task performance). Thus, if the 

amount of allowable sway for the postural-cognitive task combination permits room 

for sway to be further minimized, an instruction to reduce sway may have no 

measurable effect on cognitive task performance. If, on the other hand, posture 

control is operating close to the margin of its stability limits, then increasing 

resource-load through instruction to control sway may lead to posture drift and, 

possibly, a worsening of cognitive performance.  
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4.2 Method 

 

General method was given in Chapter 3. 

 

4.2.1 Participants 

 

Twenty-two undergraduate students from the University of Warwick participated in 

the study, receiving course credit for their participation. They ranged from 18 to 30 

years in age, 1.50 to 1.79 m in height, and 48 to 91 kg in weight. All reported 

normal or corrected-to-normal vision, and none had any history of neurological or 

balance disorders. All participants were naïve to the purpose of the experiment, and 

were debriefed in detail only after data collection was completed. A number of 

participants were familiar with the visual search task, but none had previously 

encountered the stimuli used in this study, and none had previously participated in a 

posture control experiment. One participant’s data was eliminated from all analyses 

due to measurement errors during sway data collection. 

 

4.3 Results    

 

4.3.1 Instruction-order 

 

To establish whether instruction-order had any carryover effects on the instruction 

factor, data for the visual search and sway measures were entered into an analysis of 
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variance (ANOVA) with independent measures on the between-participants 

instruction-order factor (search-focus first, dual-focus first) and with repeated 

measures on the within-participants factors. The only significant effect involving the 

instruction factor was an instruction  instruction-order interaction for visual search 

response time, F(1,19) = 6.612, p < .05, 2
p  = .258; RT was always faster under the 

instruction condition that participants received second. As this performance 

improvement was not significantly different for the counterbalanced instruction-

order groups, it can be concluded that this was a straightforward practice effect, well 

known in the visual search literature [282]. Since there were no other significant 

effects involving the instruction-order and instruction factors, data from both 

instruction-order conditions were pooled, and all further analyses were carried out 

with repeated measures on the within-participants factors only. 

 

4.3.2 Visual search  

 

Analysis of variance (ANOVA) was conducted on percent accuracy and response 

time with repeated measures on target condition (present, absent), instruction 

(search-focus, dual-focus), search-load (low, high) and stance (open, closed) within-

participant factors.  

 

Accuracy.   ANOVA showed significant main effects of search-load (F(1, 20) = 5.412, 

p < .05, 2
p  = .213; accuracy was greater in the low search-load condition), and target 
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(F(1, 20) = 18.824, p < .001, 2
p  = .485; accuracy was greater in the target-absent 

condition). The target  search-load interaction was significant, F(1, 20) = 10.029, p < 

.01, 2
p  = .334; accuracy dropped significantly in the target-present condition as 

search-load increased (F(1, 20) = 13.743, p < .05, 2
p  = .389), but there were no 

significant differences in the corresponding target-absent conditions (see Figure 4-1, 

top panel). 

 

Response Time.   There were significant main effects of search-load (F(1, 20) = 

212.876, p < .05, 2
p  = .914; RT was faster in the low search-load condition), and 

target (F(1, 20) = 171.636, p < .001, 2
p = .896; RT was faster in the target-present 

condition). The target  search-load interaction (see Figure 4-1, bottom panel) was 

significant, F(1, 20) = 107.068, p < .001, 2
p  = .843; RT rose more sharply in the 

target-absent than the target-present condition as search-load increased (t(20) = 

10.347, p < .001). The average search slope was 0.027 s/item on target-present trials, 

and 0.052 s/item on target-absent trials. There was a significant search-load × 

instruction × stance interaction, F(1, 20) = 5.746, p < .05, 2
p  = .223. The mean 

differences of interest occurred in the high search-load condition (see Figure 4-2). 

Under the search-focus instruction, RT was numerically (but not significantly) lower 

in closed than in open stance. Under the dual-focus condition, however, RT was 

significantly higher in the more difficult, closed stance, F(1, 20) = 4.321, p < .05. 
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Figure 4-1  Percent accuracy (top panel) and response time (bottom 
panel) for low and high search-load as a function of target 
(present-absent) in Experiment 1. Error bars show standard errors 
of the means. Asterisks denote effects of interest statistically 
significant at the p < .001 level. 
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Figure 4-2  Response time for postural and cognitive task-load 
conditions as a function of instruction in Experiment 1. Error bars 
show standard errors of the means. Asterisk denotes effect of 
interest statistically significant at the p < .05 level. 
 
 
 
 
 

4.3.3 Postural sway  

 

Repeated measures ANOVA was conducted on the shorter time-scale (STS) and 

longer-time-scale (LTS) measures, separately for ML and AP sway, with instruction 

(search-focus, dual-focus), search-load (low, high) and stance (open, closed) as 

within-participant factors.  
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On the STS measure, considering ML sway first (see Figure 4-3, top-left panel), 

ANOVA showed significant main effects of search-load (F(1, 20) = 8.022, p = .01, 2
p  

= .286; STS-ML sway was greater in the higher search-load condition), and stance 

(F(1, 20) = 148.305, p < .001, 2
p  = .881; STS-ML sway was greater in the closed 

stance). There was a significant main effect of instruction, F(1, 20) = 6.438, p < .05, 

2
p  = .244; STS-ML sway was greater in the search-focus (M = .027, SE = .001) than 

the dual-focus condition (M = .023, SE  = .001). On the STS-AP measure (see 

Figure 4-3, top-right panel), there were significant main effects of search-load (F(1, 

20) = 10.525, p < .05; 2
p  = .345; STS-AP sway was greater in the higher search-load 

condition), and stance (F(1, 20) = 24.119, p < .001, 2
p  = .547; STS-AP sway was 

greater in the closed stance). The main effect of instruction was significant, F(1, 20) = 

7.021, p < .05, 2
p  = .260: STS-AP sway was greater in the search-focus (M = .077, 

SE  = .005) than the dual-focus condition (M  = .072, SE  = .005). 

 

Turning to the LTS drift measure, considering LTS-ML sway first (see Figure 4-3, 

bottom-left panel), there were significant main effects of search-load (F(1, 20) = 

6.262, p < .05, 2
p  = .238; LTS-ML sway was greater in the higher search-load 

condition), and stance (F(1, 20) = 168.300, p < .001, 2
p  = .894; LTS-ML sway was 

greater in the closed stance). On the LTS-AP measure (see Figure 4-3, bottom-right 

panel), significant main effects were found for search-load (F(1, 20) = 19.879, p < .05, 

2
p  = .498; LTS-AP sway was greater in the higher search-load condition), and 
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stance (F(1, 20) = 19.446, p < .001, 2
p  = .493; LTS-AP sway was greater in the closed 

stance). The main effect of instruction was significant, F(1, 20) = 6.258, p < .05, 2
p  

=.238; LTS-AP sway was greater in the search-focus (M = .122, SE  = .004) than the 

dual-focus condition (M  = .102, SE  = .003). 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 4-3    ML (left panels) and AP (right panels) of the head’s sway for search- and dual-
focus instructions under search-load conditions as a function of stance in Experiment 1. Top 
panels show STS and bottom panels show LTS. Error bars show standard errors of the means. 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
 M

W
sd

 (
cm

)

ML Sway

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Low load
(4 items)

High load
(16 items)

Low load
(4 items)

High load
(16 items)

R
M

S
 D

fr
if

t 
(c

m
)

Open stance Closed stance

Low load
(4 items)

High load
(16 items)

Low load
(4 items)

High load
(16 items)

Open stance Closed stance

Search-focus

Dual-focus

AP Sway



                                                                                    Effects of sway-minimization 
 
  

 88

4.4 Discussion 

 

Before presenting the experimental results in detail it is worth noting that the 

obtained sway size means are comparable to posture-cognition work [222] using 

similar measures but applied in non-immersive environment setting. Participants 

swayed significantly more on the shorter time-scale (STS) measure in both ML and 

AP directions when they stood in the more difficult closed stance, thereby 

replicating previous work [162] using this dual-task paradigm. However, based on 

STS results, participants succeeded in reducing their sway when they were asked to 

do so. They also demonstrated lesser sway in the dual-focus than the search-focus 

condition on the LTS measures, although this effect was significant only in the AP 

direction. Overall, these results strongly suggest that participants were able to 

prioritize resources towards control of posture, contradictory to the notion that 

allocation of attention towards balance negatively interferes with automatised 

processes .  

 

On both measured time-scales, participants swayed more when they performed the 

more demanding search task. This increased sway with increasing cognitive task-

load has been interpreted as a resource-competition, destabilization effect due to 

increased visual complexity [162]. Searching a display with a larger number of 

items requires a greater number of precise eye fixations and movements per trial, 

thereby adding to cognitive-load, and to a resource-draw away from the balancing 

task [162]. This issue is considered further in the discussion to Experiment 2. 
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On the characteristics of the visual search task, the approximate 2:1 ratio of the 

search slopes (0.027 s/item on target-present trials, and 0.052 s/item on target-absent 

trials) is consistent with a self-terminating process for visual search. This process 

has been explained in terms of serial search, in which individual items are located 

one-at-a-time [257-260; 281; 284], or as a parallel, limited-capacity process, in 

which all items are located simultaneously but at lower individual rate [153; 231]. 

On serial accounts, the linear increase in RTs for absent trials is rationalized by 

applying the logic that, on present trials, the search target may be the first or last 

item checked in the display, or any fall anywhere between these extremes. In which 

case, random search for a target requires on average only half of the display items to 

be checked if the target is present, but requires all items in the display to be checked 

if the target is absent [282]. On a parallel account, the linear increase in RTs is 

explained in terms of a capacity limitation in reallocating attention to the target 

following parallel detection of all the display items [37]. Regardless of the precise 

explanation as to the cause of search efficiency, both accounts agree that increasing 

set size increases task-load [282]. Following Mitra [162], the fact that the slopes 

obtained in the present study are at the top end of the typical range for visual search 

[282; 283] confirms that the task was attentionally demanding, and that the 

manipulation of the number of search items effected a significant change search-

load. 

 

The finding of greater number of errors on present trials than on absent trials under 

increased search-load, as in this experiment, is a common effect found in visual 
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search. The most straightforward explanation is that people are more cautious when 

responding to target present than target absent trials [271]. While accuracy in target-

present trials dropped significantly in the high search-load condition (92.6 percent 

correct trials), this amounted to an average of only 1.74 failures to detect the target 

in the 20 search trials in that condition. This suggests that participants were able to 

devote an adequate amount of cognitive effort to the search task. 

 

A notable finding was that the pattern of response times for stance and search-load 

manipulations significantly differed between the two instruction conditions. The 

effect of interest occurred only under high search-load conditions. In the absence of 

instruction to minimize sway, people tended to search faster (at a minimal cost to 

accuracy) when performing in closed rather than open stance (see Figure 4-2). 

Under dual-focus conditions, however, search was significantly slower when 

performed in closed stance. The former effect was found to be significant in Mitra 

[162] and was explained either as participants having felt pressurized when 

performing search in a difficult stance under visually-restrictive immersive 

environment conditions, or that the increased amplitude sway in the more difficult 

stance aided the perceptual detection of sway, allowing resources to be devoted to 

the search task. Following which, the shift from increment to decrement in task-

performance under the dual-focus conditions of the present study might be explained 

as the sway-detection advantage of closed stance under search-only instruction 

conditions as being attenuated or eliminated through a reduction in sway. An 

alternative explanation is provided by the adaptive resource sharing hypothesis [162; 
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163]. This considers that the sharing or partitioning of resources between postural-

cognitive task components is adaptively constrained by the availability of 

autonomous and facilitatory control patterns according to the level of resource-load, 

as well as the availability of perceptual support for postural and cognitive task 

components and the precision requirements of the cognitive task [163]. On this 

view, the experimental data of the present study might be explained as facilitatory 

operations (i.e., faster search) being no longer afforded when joint emphasis was 

given to performing the postural and cognitive tasks, owing to a resource-draw away 

from the search-task and into sway-minimization.  

 

In conclusion, the experiment’s findings confirmed the suitability of the 

experimental paradigm to the investigation of the frame co-registration cost 

hypothesis. Firstly, the results replicated the findings of Mitra [162] in showing that 

the dual-task combination of upright stance and conjunction visual-search can 

generate postural effects of cognitive task-load in healthy, young adults. Secondly, 

the results confirmed the sway minimization instruction as an effective experimental 

means of altering the resource-setting between task-components, so supporting the 

role of this manipulation in the examination of any frame co-registration costs on 

respective task components. That work begins in Chapter 5.          
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Chapter 5 
                
 
Postural Costs of Performing Cognitive Tasks in Non-

Coincident Reference Frames: The Basic Effect 

 

 

5.1 Introduction 

 

As introduced, the present series of experiments tests the frame co-registration cost 

hypothesis using a dual-task in which participants maintained unperturbed upright 

stance (postural component) while performing a visual conjunction search task 

(cognitive component) that was presented in 3-D space, either entirely in the same 

spatial reference frame as the postural task (coincident frames condition), or entirely 

in a different reference frame that maintained a dynamically complex relationship 

with the postural task’s reference frame (non-coincident frames condition). The load 

of postural and cognitive task components was manipulated, and performance in 

postural and cognitive components observed as the relationship between the world 

and task frames was altered. It was predicted that having to perform the search task 

in a non-coincident reference frame would have a negative impact on postural 

stability, as measured by an increased level of sway, over and above the expected 

negative impact of search-load on postural stability. In Experiment 2 participants 
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were instructed to focus on the visual search task, but in Experiment 3 they were 

instructed to also minimize sway. 

 

5.2 Experiment 2 

 

5.2.1 Method  

 

General method was given in Chapter 3. 

 

5.2.1.1 Participants 

 

Twenty-four undergraduate students at the University of Warwick participated in the 

study, receiving course credit for their participation. They ranged from 18 to 20 

years in age, 1.57 to 1.88 m in height, and 52 to 76 kg in weight. All reported 

normal or corrected-to-normal vision, and none had any history of neurological or 

balance disorders. All participants were naïve to the purpose of the experiment, and 

were debriefed in detail only after data collection was completed. A number of 

participants were familiar with the visual search task, but none had previously 

encountered the stimuli used in this study, and none had previously participated in a 

posture control experiment. Two participants’ data were eliminated from all 

analyses due to measurement errors during sway data collection.  
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5.2.2 Results 

 

5.2.2.1 Visual Search 

 

Analysis of variance (ANOVA) was conducted on percent accuracy and response 

time with repeated measures on target condition (present, absent), frame (coincident, 

non-coincident), search-load (low, high) and stance (open, closed) within-

participants factors.  

 

Accuracy.  ANOVA showed significant main effects of search-load (F(1, 21) = 

22.655, p < .001, 2
p  = .519; accuracy was greater in the low search-load condition), 

and target (F(1, 21) = 30.448, p < .001, 2
p  = .592; accuracy was greater in the target-

absent condition). The target  search-load interaction was significant, F(1, 21) = 

171.636, p < .001, 2
p  = .890; accuracy on target-present trials dropped significantly 

as search-load increased (F(1, 21) = 23.292, p < .001, 2
p  = .526), but there were no 

significant differences in the corresponding target-absent conditions (see Figure 5-1, 

top panel). There was a significant target  frame  stance interaction, F(1, 21) = 

4.345, p = .05, 2
p  = .171; on target-absent trials, accuracy was significantly lower in 

non-coincident frames than coincident frames when participants stood in closed 

stance (see Figure 5-2), F(1, 21) = 5.923, p < .05, 2
p  = .220. 
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Figure 5-1   Percent accuracy (top panel) and response time 
(bottom panel) for low and high search-load as a function of target 
(present-absent) in Experiment 2. Error bars indicate standard error 
of the means. Asterisks denote effects of interest statistically 
significant at the p < .001 level. 
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Figure 5-2   Percent accuracy for coincident and non-coincident 
frames under postural difficulty conditions as a function of target 
(present-absent) in Experiment 2. Error bars indicate standard 
error. Asterisk denotes effect of interest statistically significant at 
the p < .05 level. 
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5.302, p < .05, 2
p  = .202) indicated that RT was significantly higher in non-

coincident than coincident frames under high search-load conditions, F(1, 21) = 5.093, 

p < .05 (see Figure 5-3). 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3   Response time for coincident and non-coincident 
frames as a function of search-load in Experiment 2. Error bars 
show standard errors of the means. Asterisk denotes effect of 
interest statistically significant at the p < .05 level. 
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Head sway.   On the STS measure and for ML sway (see Figure 5-4, top-left panel), 

significant main effects were found for search-load (F(1, 21) = 17.756, p < .001, 2
p  = 

.458; STS-ML sway was greater in the higher search-load condition), and stance 

(F(1, 21) = 189.991, p < .001, 2
p  = .900; STS-ML sway was greater in the closed 

stance). On the STS measure of AP sway (see Figure 5-4, top-right panel), again 

there were significant main effects of search-load (F(1, 21) = 17.544, p < .001, 2
p  = 

.455; STS-AP sway was greater in the higher search-load condition), and stance (F(1, 

21) = 22.028, p < .001, 2
p  = .512; STS-AP sway was greater in the closed stance). 

Notably, there was a significant frame  search-load interaction, F(1, 21) = 5.894, p < 

.05, 2
p  = .219; STS-AP sway rose significantly in the non-coincident frames 

condition as search-load increased (F(1, 21) = 18.023, p < .001, 2
p  = .462), but there 

were no significant differences in the corresponding coincident frames conditions 

(see Figure 5-5). 

 

Turning to the LTS measure, considering LTS-ML sway first (see Figure 5-4, 

bottom-left panel), there were significant main effects of search-load (F(1, 21) = 

12.432, p < .01, 2
p  = .372; LTS-ML sway was greater in the higher search-load 

condition), and stance (F(1, 21) = 191.499, p < .001, 2
p  = .901; LTS-ML sway was 

greater in the closed stance). On the LTS-AP measure (see Figure 5-4, bottom-right 

panel), significant main effects were found for search-load (F(1, 21) = 23.189, p 

<.001, 2
p  = .525; LTS-AP sway was greater in the higher search-load condition), 
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and stance (F(1, 21) = 13.021, p <.001, 2
p  = .383; LTS-AP sway was greater in the 

closed stance). 

 

 

 

 

 

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5-4    ML (left panels) and AP (right panels) on the head’s sway for coincident and 
non-coincident frames under search-load conditions as a function of stance in Experiment 
2. Top panels show STS and bottom panels show LTS. Error bars indicate standard error 
of the means. 
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Figure 5-5    STS-AP of the head’s sway for low and high search-
load as a function of reference frame in Experiment 2. Error bars 
show standard errors of the means. Asterisks denote effect of 
interest statistically significant at the p < .001 level. 
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Figure 5-6    ML (left panels) and AP (right panels) on the hip’s sway for coincident and 
non-coincident frames under search-load conditions as a function of stance in Experiment 
2. Top panels show STS and bottom panels show LTS. Error bars indicate standard error 
of the means. 
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LTS-ML sway was greater in the closed stance). On the LTS-AP measure (see 

Figure 5-6, bottom-right panel), significant differences were found for search-load 

(F(1, 21) = 17.724, p < .001, 2
p  = .458; LTS-AP sway was greater in the higher 

search-load condition), and stance (F(1, 21) = 18.214, p < .001, 2
p  = .464; LTS-AP 

sway was greater in the closed stance).  

 

5.2.3 Discussion 

 

On the visual search task, the search slope in the target-present condition (0.034 

s/item) was once more approximately half of the slope found in the target-absent 

condition (0.074 s/item). The slopes were greater (by about 20 percent in both target 

conditions) than those obtained by Mitra [162] using the same task-combination, 

instruction set, and frame manipulations, but there the visual search display was 

presented as a planar surface. By contrast, the present experiment required search to 

be performed across multiple depth planes, necessitating binocular convergence 

movements to attain and re-attain fixation on the search items. This may have added 

to the cognitive load of the search task. The issues that may arise out of the presence 

or absence of depth variation across search items are addressed specifically in 

Experiment 6. Note that, despite the effortful search, a high level of accuracy was 

achieved across all conditions, with the lowest accuracy score (92.6% in the target-

present, high-load condition) amounting to an average of only 1.48 failures to detect 
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the target in the 20 search trials in that condition. This suggests that participants 

were able to devote an adequate amount of cognitive effort to the search task.  

 

In the postural component of the dual-task, participants swayed more, as could be 

anticipated, in both AP and ML directions on all measures when they stood in closed 

stance as opposed to open stance. Also, participants swayed more when they 

performed the more demanding search task. In earlier discussion, it was noted that 

this increase in sway with increasing visual search task-load has been interpreted by 

as a destabilization of posture control due to increasing number of eye fixation and 

movements required per trial under increased cognitive task-load [162]. Mitra [162] 

only recorded head segment movement. It could be argued that the larger number of 

eye movements required in the high-load search conditions might have led to 

inadvertently larger head movements that may be misconstrued as increased postural 

sway. In the present study, however, the increase in sway with increasing search-

load was observed on the hip segment as well. This provides support for the 

interpretation that increasing the cognitive task-load led to an observable level of 

mechanical destabilization of stance due to an increased draw on shared resources 

by the more demanding search task. 

 

The most important result for present purposes was the effect of the frame 

coincidence manipulation on the STS measure of the head’s AP sway. Participants 

swayed more in the non-coincident frames condition as search-load increased. This 

result is consistent with the hypothesis that the need to maintain the world- and task-
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frames in register in the non-coincident frames condition draws on resources 

required for postural control. The task of interpreting the differential effect on 

posture control of performing search in the two frame conditions is complicated, 

however, by the fact that search performance differed across frame conditions. 

There was a significant interaction between frame coincidence and search-load on 

search RT showing that increased search-load had a greater negative impact on task 

performance when the search task had to be performed in non-coincident frames. 

Also, search accuracy suffered under closed stance in the non-coincident frames 

condition on target-absent trials (although the interpretation of results from target-

absent trials in visual search is known to be problematic, see [51]). These results 

suggest that the search task itself may have been less demanding in the coincident 

frames condition. It is possible, for example, that the availability of visual 

information such as radial optic flow and motion parallax in the coincident frames 

condition made it easier for participants to determine the relative locations of search 

items in the display. This in turn may have made search less resource-intensive than 

in the non-coincident frames condition. If so, the detrimental effect of non-

coincident frames on postural stability could have been the result of a greater 

resource draw due to increased search task difficulty rather than due to non-

coincidence of reference frames per se.  

 

A related concern is that the interpretation of added resource draw due to frame non-

coincidence depends on the implicit assumption that participants were in fact trying 

to minimize their sway in all experimental conditions. As discussed in Chapter 4, the 
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posture control system may not always need to keep sway at a minimum in order to 

maintain stability, especially when stance is unperturbed, and the COM is well 

within the stability boundary. Since the visual search task required multiple, precise 

eye fixations, a posture control strategy for facilitating search ought to have 

minimized viewpoint movement (i.e., reduced sway), and more so under greater 

search-load [162]. The opposite pattern observed in the present experiment showed, 

however, that participants either did not try to reduce their sway to this end, or they 

tried but did not succeed. Since participants did not receive any specific instructions 

with respect to the postural component (except for the obvious requirement of 

maintaining upright stance), there was no way of disambiguating between an 

increase in sway due to a relative inability to devote resources to controlling sway 

(due to added frame co-registration costs), as opposed to simply de-emphasizing 

sway control when the cognitive task was in a non-coincident frame. In other words, 

participants many have heavily prioritized the search task, and did not try to control 

their sway beyond keeping within the stability boundary. This discrepancy in 

performance criteria is addressed in Experiment 3. 

 

5.3 Experiment 3 

 

In the present experiment, participants were explicitly instructed to control the level 

of body sway while performing the visual search task. If the detrimental effects of 

search-load on sway in Experiment 2 were indeed due to common resources being 

drawn away from posture control, it can be expected on basis of the results to 
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Experiment 1 that explicitly asking participants to maintain adequate resourcing of 

sway minimization in all conditions would stem the flow of resources out of posture 

control (i.e., stem those resources that, in the absence of a sway-minimization 

instruction, would otherwise be allocated to visual search). Accordingly, it was 

expected to observe a relative decrement in search performance and an attenuation 

or elimination of the frame manipulation’s effect on the search task.  

 

5.3.1 Method 

 

Method was as described for Experiment 2, but with the following differences.  

 

5.3.1.1 Participants 

 

Twenty-one undergraduate students from the University of Warwick participated in 

the study, receiving course credit for their participation. They ranged from 18 to 36 

years in age, 1.60 to 1.83 m in height, and 55 to 72 kg in weight. All reported had 

normal or corrected-to-normal vision, and none had any history of neurological or 

balance disorders. All participants were naïve to the purpose of the experiment, and 

were debriefed in detail only after data collection was completed. A number of 

participants were familiar with the visual search task, but none had previously 

encountered the stimuli used in this study, and none had previously participated in a 

posture control experiment. Two participants’ data were eliminated from all 

analyses due to measurement errors during sway data collection. 
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5.3.1.2 Experimental procedures 

 

The only change to procedures was that participants were told that the level of body 

sway while standing upright was important to the study, and that they should try to 

minimize their sway as much as possible while performing the visual search task as 

well as they could, with equal emphasis given to both tasks. 

 

5.3.2 Results 

 

5.3.2.1 Visual Search 

 

Analysis of variance (ANOVA) was conducted on percent accuracy and RT with 

repeated measures on target condition (present, absent), frame (coincident, non-

coincident), search-load (low, high) and stance (open, closed) within-participant 

factors.  

 

Accuracy.   ANOVA showed significant main effects of search-load (F(1, 18) = 

21.812, p < .001, 2
p  = .548; accuracy was greater in the low search-load condition), 

and target (F(1, 18) = 33.852, p < .001, 2
p  = .653; accuracy was greater in the target-

absent condition). The target  search-load interaction was significant, F(1, 18) = 

32.419, p < .001, 2
p  = .643; accuracy dropped significantly on target-present trials 
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as search-load increased (F(1, 18) = 5.472, p < .001, 2
p  = .234), but there were no 

significant differences in the corresponding target-absent conditions. 

 

Response Time.   There were significant main effects of search-load (F(1, 18) = 

128.110, p < .001, 2
p  = .877; RT was faster in the low search-load condition), and 

target (F(1, 18) = 111.114, p < .001, 2
p  = .861; RT was faster in the target-present 

condition). The search-load  target interaction was significant, F(1, 18) = 83.931, p < 

.001, 2
p  = .823; RT rose more sharply on absent trials than on present trials as 

search-load increased, t(18) = 9.161, p < .001. The average search slope was 0.028 

s/item on target-present trials, and 0.061 s/item on target-absent trials. 

 

5.3.2.2 Postural sway 

 

Repeated measures ANOVA was conducted on the shorter time-scale (STS) and 

longer-time-scale (LTS) measures, separately for ML and AP sway, with frame 

(coincident, non-coincident), search-load (low, high) and stance (open, closed) as 

within-participants factors. 

 

Head sway.   On the STS measure and for ML sway, ANOVA showed significant 

main effects of search-load (F(1, 18) = 16.055, p = .001, 2
p  = .471; STS-ML sway was 

greater in the higher search-load condition), and stance (F(1, 18) = 171.115, p < .001, 

2
p  = .905; STS-ML sway was greater in the closed stance). There was a significant 
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stance  search-load interaction, F(1, 18) = 4.590, p < .05, 2
p  = .203; STS-ML sway 

rose more sharply in closed stance than in open stance as search-load increased, t(18) 

= 3.313, p < .01. There was a significant search-load  frame  stance interaction 

(see Figure 5-7), F(1, 18) = 6.964, p <. 05, 2
p  = .279; as search-load increased, STS-

ML sway significantly increased in the coincident frames condition under open 

stance (F(1, 18) = 12.423, p <. 01, 2
p  = .402), and significantly increased in the non-

coincident frames condition under closed stance (F(1, 18) = 23.740, p <. 001, 2
p  = 

.569). On the STS measure of the AP sway, there were significant main effects of 

search-load (F(1, 18) = 16.000, p = .001, 2
p  = .471; STS-AP sway was greater in the 

higher search-load condition), and stance (F(1, 18) = 34.082, p < .001,  2
p  = .654; 

STS-AP sway was greater in the closed stance). 

 

Turning to the LTS measure of head sway, considering LTS-ML first, there were 

significant main effects of search-load (F(1, 18) = 12.513, p = .01, 2
p  = .410; LTS-ML 

sway was greater in the higher search-load condition), and stance (F(1, 18) = 270.137, 

p < .001, 2
p  = .938; LTS-ML sway was greater in the closed stance). The stance  

search-load interaction was significant, F(1, 18) = 6.945, p < .05, 2
p  = .278; LTS-ML 

sway increased significantly in closed stance as search-load increased (F(1, 18) = 

14.218, p = .001, 2
p  = .429), but there were no significant differences in the 

corresponding open stance conditions. On the LTS-AP measure of the head 

segment, significant main effects were found for search-load (F(1, 18) = 13.088, p < 
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.01,  2
p   = .421; LTS-AP sway was greater in the higher search-load condition), and 

stance (F(1, 18) = 10.194, p = .05, 2
p   = .362; LTS-AP sway was greater in the closed 

stance). 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 5-7   STS-ML of the head’s sway for low and high search-
load under postural difficulty conditions as function of reference 
frame in Experiment 3. Error bars indicate standard error of the 
means. Asterisks denote effects of interest statistically significant at p 
< .01 (**) and p < .001 (***) level. 
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increased significantly in closed stance as search-load increased (F(1, 18) = 13.534, p 

< .01, 2
p  = .415), but there were no significant differences in the corresponding 

open stance conditions. On the STS measure of the hip segment’s AP sway, there 

were significant main effects of search-load (F(1, 18) =  23.239, p < .001, 2
p  = .564; 

STS-AP sway was greater in the higher search-load condition), and stance (F(1, 18) = 

27.411, p < .001, 2
p  = .604; STS-AP sway was greater in the closed stance). The 

main effect of frame was significant, F(1, 18) = 4.654, p < .05, 2
p  = .205; STS-AP 

sway was greater in the non-coincident (M  = .021, SE  = .006) than the coincident 

frames condition (M  = .21, SE  = .006). 

 

On the LTS measure of hip sway, considering LTS-ML sway first, there were 

significant main effects of search-load (F(1, 18) = 9.797, p < .01, 2
p  = .352; LTS-ML 

sway was greater in the higher search-load condition), and stance (F(1,18 = 245.983, 

p < .001, 2
p  = .932; LTS-ML sway was greater in the closed stance). Again, the 

search-load  stance interaction was significant, F(1, 18) = 9.694, p < .01, 2
p  = .350; 

LTS-ML sway increased significantly in closed stance as search-load increased (F(1, 

18) = 14.128, p = .01, 2
p  = .440), but there were no significant differences in the 

corresponding open stance conditions. On the LTS-AP measure, significant main 

effects were found for search-load (F(1, 18) = 20.378, p < .001, 2
p  = .531; LTS-AP 

sway was greater in the higher search-load condition), and stance (F(1, 18) = 15.574, p 

= .001, 2
p  = .464; LTS-AP sway was greater in the closed stance). The main effect 
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of frame was significant, F(1, 18) = 11.563, p < .01, 2
p  = .391; LTS-AP sway was 

greater in the non-coincident (M = .060, SE = .002) than the coincident frames 

condition (M  = .055, SE  = .002). 

 

5.3.2.3 Effects of instruction to control sway 

 

To assess the effects of adding an instruction to control sway in Experiment 3, data 

from Experiments 2 and 3 were analysed together with instruction (search-focus, 

dual-focus) added as a between-participants factor. Significant effects involving the 

instruction factor were as follows. 

 

Visual Search. On the accuracy measure, the target  search-load  instruction 

interaction was significant, F(1, 39) = 6.213, p < .05, 2
p  = .137; accuracy on absent 

trials under low search-load was lower in the dual-focus than the search-focus 

condition, F(1, 39) = 4.893, p < .05, 2
p  = .111. On the RT measure, there was a 

significant target  search-load  frame  instruction interaction, F(1, 39) = 4.563, p < 

.05, 2
p  = .105; in the search-focus condition, RT on present trials under high search-

load was lower in coincident than non-coincident frames, F(1, 39) = 6.439, p < .01), 

but there were no significant differences in the corresponding dual-focus conditions. 

 

Postural Sway.  There were no significant effects involving the between-participants 

instruction factor on any of the head segment measures. Considering the hip 
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segment, the only significant effect involving the instruction factor was a significant 

frame  instruction interaction on the LTS-AP measure, F(1,39) = 4.654, p < .05, 2
p   

= .185; LTS-AP sway greater in non-coincident than coincident frames under the 

dual-focus instruction (F(1, 39 = 10.845, p < .01), but there were no significant 

differences in the corresponding search-focus conditions. 

 

5.3.3 Discussion 

 

Considering cognitive task performance first, the search slopes obtained in the 

present experiment (0.028 s/item in target-present and 0.061 s/item in the target-

absent conditions) were notably shallower than those obtained in Experiment 2 

(0.034 s/item in target-present and 0.074 s/item in the target-absent conditions). This 

speeding-up of search-task performance appears to have been at only minimal cost 

to accuracy (an average of 1.76 failures to detect the target out of 20 trials in the 

least accurate target-present, high-load condition, as opposed to 1.48 failures in 

Experiment 2). Despite this apparent strategic tightening of search slopes, however, 

the sway-minimization instruction appears to have left no room for those effects of 

frame coincidence on search accuracy and RT found in Experiment 2, as confirmed 

by the between-participants analyses. 

 

With respect to performance in the postural task component, the results of the 

present experiment mirrored those of Experiment 2 in that participants swayed 
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more, as expected, in the more demanding closed stance condition, and they also 

swayed more when the visual search-load was greater. As in Experiment 2, these 

effects were significant across the short and long time-scale measures of both head 

and hip sway, and along both the AP and ML axes. Compared to the single 

interaction on the head segment involving the frame manipulation in Experiment 2, 

requiring participants to control sway in the present experiment elicited a more 

pronounced postural performance deficit when the cognitive task was in a non-

coincident frame. On both the long and short time-scale measures, hip sway in the 

AP direction increased in the non-coincident frames condition, indicating clearly 

that performing the search task in the non-coincident frame reduced the mechanical 

stability of stance. These postural costs are rendered more interpretable as effects of 

frame coincidence, moreover, by the absence of frame costs in cognitive task 

performance.  

 

On the STS-ML sway measure for the head segment, performing the more difficult 

visual search resulted in increased sway in coincident frames under open stance, and 

increased sway in non-coincident frames under closed stance. An interpretation of 

this result is that in order to maintain performance on the search task people allowed 

themselves to sway more in the more secure open stance (not an uncommon finding 

in healthy young adults operating under low-load conditions, [62; 151; 159]). This 

loosening of sway, however, seems not to have been possible in the non-coincident 

frames condition, due to added cost of having to keep task-frames in register.   
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There was only a single significant effect along the postural measures indicating 

reduced sway under instruction to do so. Though this result (on the hip’s segment 

LTS-AP measure) appears to suggest that while participants did not, on the whole, 

succeed in deliberate sway reduction under the given dual-task setting, the 

numerical trends across all the measures was towards reduced sway under the 

combined instruction. It is worth noting that the sway reduction on the hip’s LTS-

AP sway under the dual-focus instruction was significantly greater in the coincident 

frames condition. One explanation, in keeping with the thesis hypothesis, is that no 

frame co-registration costs were associated with the coincident frames condition 

and, therefore, more shared resources could be allocated to reducing the level of 

sway. Note also, that this effect was achieved when people had to perform search 

under high search-load and under closed stance. Thus, the postural control effects 

observed in the non-coincident frames condition were over and above resource costs 

that could be attributable to component task loads. 

 

An alternative explanation for the observed postural control effects in non-

coincident frames could arise from the fact that the search display in the coincident 

frames condition potentially offered optic flow for use by the participant in reducing 

sway. In this condition, the 3-D visual search display maintained its position in the 

world-frame as the participant’s viewpoint moved (in the world-frame) due to body 

sway. Thus, the participant’s sway generated radial optic flow and motion parallax, 

both known to be potentially useful in controlling postural sway [11; 38]. In 

contrast, in the non-coincident frames condition, as the participant swayed, the 
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search display maintained its position relative to the participant’s viewpoint and, 

therefore, did not generate any optical information about the level of sway to aid 

sway reduction. It could be argued thus that the relatively lower levels of sway 

observed in the coincident frames condition were not due to the absence of frame 

co-registration costs, as hypothesized, but due to the difference in visual information 

available for posture control in the two conditions. Other work using the present 

paradigm [162] produced no indication that the posture control system does, or is 

able to, use the optical structure of a visual search display to modify levels of body 

sway. As noted however, the search display in that work did not contain depth 

variation. To eliminate the presence or absence of optic flow as a source of frame 

effects, the next series of experiments (4-6) employ a variant of the present 

experiment in which both the coincident and non-coincident frames conditions offer 

identical visual information of potential use in posture control. 
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Chapter 6 
                
 
Postural Costs of Performing Cognitive Tasks in Non-

Coincident Reference Frames: Split Frames 

 

 

6.1 Introduction 

 

The purpose of the present series of experiments was to introduce a variant of the 

dual-task arrangement that eliminated the optic flow performance differences 

between the coincident and non-coincident frames conditions for the previous series. 

In the present series, the basic dual-task was identical in all respects to that of 

Experiments 2 and 3 except in the way the coincident and non-coincident frames 

conditions were implemented. In Experiments 2 and 3, the entire search display 

either appeared in the world-frame or in a task-frame anchored to the participant’s 

swaying head. In contrast, in the present experiments, the search items were equally 

distributed between the world-frame and the (head-anchored) task-frame, based on 

item colour. In the coincident frames condition, all the blue search items (‘A’ 

distractors and the ‘H’ target) appeared in, and maintained position-orientation with 

respect to, the world-frame, while the green items (‘H’ distractors) appeared in, and 

maintained position-orientation with respect to, the participant’s swaying head. In 

the non-coincident frames condition, the green items appeared in, and maintained 
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position-orientation with respect to, the world-frame, while the blue search items, 

including the search target, appeared in, and maintained position-orientation with 

respect to, the participant’s swaying head. Thus, the coincident and non-coincident 

frame designations were based on which frame contained the blue ‘H’ search target. 

 

These frame-condition designations were based on the evidence that item- or 

location-based pre-attentive grouping of visual-field elements can allow nearly 

parallel search within groupings [75; 76]. Segmentation by grouping in visual search 

has been shown for a variety of conjunction searches (depth-location [97], depth-

colour [169], colour-orientation [253], colour-location [119]), including motion-

static combinations [155; 156; 271]. In light of this evidence, the present variant of 

the search task offered two types of pre-attentive grouping of search displays. First, 

the green and blue item groups could be segmented by colour, and second, they 

could also be segmented by motion. The latter possibility arose from the optical 

consequences of the swaying viewpoint of the standing participant. In the 

coincident-frames condition, the blue group (containing the target in the target-

present trials) maintained its position in the world-frame while the green group 

moved with the viewpoint. The blue group, therefore, generated radial optic flow as 

a result of the participant’s AP sway, and the blue and green groups also generated 

motion parallax by virtue of their relative optical motion due to viewpoint motion 

(particularly along the ML axis). In the non-coincident frames condition, the optical 

dynamics were identical except that it was the green group that maintained its 

position in the world-frame and generated radial optic flow as the viewpoint swayed. 



                                                            Postural costs of reference frames: split frames 
  
    

 119

The parallax generated across groups was the same as in the coincident-frames 

condition. Thus, the search displays in both frame conditions generated exactly the 

same optic flow characteristics as a result of the participant’s swaying viewpoint, the 

only difference being the swapping of blue and green colour groups. 

 

Though the optical characteristics of the two frame conditions were now exactly 

matched, their load implications in combination with a postural task component 

could still be differentiated in terms of the frame co-registration hypothesis. Once 

the green items were segmented from the blue items (via grouping by colour or 

motion or both), search for the target would occur among the blue items. In the 

coincident frames, this segmentation would eliminate all the (green) items appearing 

in the task-frame, leaving the search to continue among the remaining blue items in 

the world-frame. In each search trial, beyond the point of this segmentation, there 

remained no need for the task-frame to be kept in register with the world-frame (and 

both the search and task components could continue in the world-frame). In the non-

coincident frames condition, however, segmentation would eliminate all the (green) 

items appearing in the world-frame, leaving the search to continue among blue items 

in the task-frame. The task-frame would therefore need to be kept in register with 

the world-frame throughout each search trial. The frame co-registration hypothesis 

would therefore generate the same prediction as before—the non-coincident frames 

condition would incur additional frame co-registration costs and place a higher 

demand on shared resources. In Experiment 4 participants were instructed to focus 
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on the visual search task, but in Experiment 5, they were instructed to also minimize 

sway. 

 

6.2 Experiment 4 

 

6.2.1 Method  

 

Method was as described for Experiment 2, with the following differences.  

 

6.2.1.1 Participants 

 

Twenty-six undergraduates and postgraduates from the University of Warwick 

participated in the study, receiving payment for their participation. They ranged 

from 19 to 32 years in age, 1.55 to 1.92 m in height, and 48 to 73 kg in weight. All 

reported normal or corrected-to-normal vision, and none had any history of 

neurological or balance disorders. All participants were naïve to the purpose of the 

experiment, and were debriefed in detail only after data collection was completed. 

Several participants had previously participated in a posture control experiment, and 

several were familiar with the visual search task, but none had performed the type of 

task combination (i.e., posture control and visual search) used in this study.  
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6.2.2.1 Apparatus, experimental design and procedures  

 

All arrangements were identical to those in Experiment 2 except for the search 

display layouts in the two frame conditions. As introduced above, in the coincident 

frames condition, all the green search items were mounted on the display such that 

they maintained their position with respect to the participants’ (swaying) viewpoint. 

All blue items were mounted such that they maintained their position in the world-

frame. Phenomenologically, the swaying participants saw the blue items remain 

static in the world while the green items moved with their viewpoint. In the non-

coincident frames condition, it was exactly the other way around. Participants were 

given exactly the same instructions as in Experiment 2. 

 

6.2.2 Results  

 

6.2.2.1 Visual search 

 

Analysis of variance (ANOVA) was conducted on percent accuracy and response 

time with repeated measures on target condition (present, absent), frame (coincident, 

non-coincident), search-load (low, high) and stance (open, closed) within-

participants factors.  
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Accuracy.   ANOVA showed significant main effects of search-load (F(1, 25) = 

51.752, p < .001, 2
p  = .674; accuracy was greater in the low search-load condition), 

and target (F(1, 25) = 34.544, p < .001, 2
p  = .580; accuracy was greater in the target-

absent condition). The target  search-load interaction was significant, F(1, 25) = 

46.893, p < .05, 2
p  = .653; accuracy on target-present trials dropped significantly as 

search-load increased (F(1, 25) = 63.244, p < .001, 2
p  = .717), but there were no 

significant differences in the corresponding target-absent conditions. 

 

Response Time.   On the RT measure, there were main effects of search-load (F(1, 25) 

= 230.119, p < .001, 2
p  = .902; RT was faster in the low search-load condition), and 

target (F(1, 25) = 193.400, p < .001, 2
p  = .886; RT was faster in the target-present 

condition). The target  search-load interaction was significant, F(1, 25) = 141.705, p 

< .001, 2
p  = .850; RT rose more sharply on target-absent than on target-present trials 

as search-load increased, t(25) = 11.904, p < .001. The average search slope was 

0.031 s/item on target-present trials, and 0.076 s/item on target-absent trials.  

 

6.2.2.2 Postural sway 

 

Repeated measures ANOVA was conducted on the shorter time-scale (STS) and 

longer-time-scale (LTS) measures, separately for ML and AP sway, with frame 

(coincident, non-coincident), search-load (low, high) and stance (open, closed) as 

within-participants factors. 
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Head Sway.   On the STS measure and for ML sway, the main effect of stance was 

significant, F (1, 25) = 176.818, p < .001, 2
p  = .876; STS-ML sway was greater in the 

closed stance. On the STS measure of AP sway, there were main effects of search-

load (F(1, 25) = 9.463, p <.01, 2
p  = .275; STS-AP sway was greater in the higher 

search-load condition), and stance (F(1, 25) = 16.397, p < .001, 2
p  = .385; STS-AP 

sway was greater in the closed stance). The main effect of frame was significant, F(1, 

25) = 5.090, p < .05, 2
p  = .169; STS-AP sway was greater in the non-coincident (M  

= .032, SE  = .001) than the coincident frames condition (M  = .030, SE = .001). 

 

Turning to the LTS measure, considering the head’s LTS-ML sway first, the main 

effect of stance was significant, F(1, 25) = 230.576, p < .001, 2
p  = .902; LTS-ML 

sway was greater in the closed stance. On the LTS-AP measure, the main effect of 

stance was significant, F(1, 25) = 19.775, p < .001, 2
p   = .442; LTS-AP sway was 

greater in the closed stance. The main effect of frame was marginally significant, 

F(1, 25) = 4.120, p = .053, 2
p  = .141; LTS-AP sway was marginally greater in the 

non-coincident (M = .095, SE = .003) than the coincident frames condition (M  = 

.090, SE = .002). 

 

Hip Sway.   On the STS measure of the hip’s ML sway, ANOVA showed a main 

effect of stance, F(1, 25) = 30.794, p < .001, 2
p  = .552; STS-ML sway was greater in 

the closed stance. The main effect of frame was marginally significant, F(1, 25) = 
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4.139, p = .053, 2
p  = .142; STS-ML sway was marginally greater in the non-

coincident (M = .025, SE = .002) than the coincident frames condition (M  = .019, 

SE = .001). On the STS measure of the hip’s AP sway, the main effect of stance was 

significant, F(1, 25) =  8.154, p < .01, 2
p  = .246; STS-AP sway was greater in the 

closed stance. The main effect of frame was also significant, F(1, 25) = 7.843, p = .01, 

2
p  = .239; STS-AP sway was greater in the non-coincident (M = .024, SE = .001) 

than the coincident frames condition (M  = .020, SE = .001). 

 

Turning to the LTS measure of hip sway, considering LTS-ML sway first, ANOVA 

showed a significant main effect of stance, F(1, 25) = 163.542, p < .001, 2
p  = .867; 

LTS-ML sway was greater in the closed stance. The main effect of frame was 

significant, F(1, 25) = 10.528, p = .01, 2
p  = .296; LTS-ML sway was greater in the 

non-coincident (M = .052, SE  = .004) than the coincident frames condition (M = 

.044, SE  = .003). On the LTS-AP measure, there was a significant main effect of 

stance, F(1, 25) = 27.99, p < .001, 2
p  = .528; LTS-AP sway was greater in the closed 

stance. The main effect of frame was significant, F(1, 25) = 11.407, p < .01, 2
p  = .313; 

LTS-AP sway was greater in the non-coincident (M  = .065, SE  = .002) than the 

coincident frames condition (M = .058, SE  = .002). 
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6.2.3 Discussion 

 

Considering the visual search performance first, the search slopes (0.031 s/item on 

target-present trials, and 0.076 s/item on target-absent trials) were nearly identical to 

those obtained in Experiment 2 where, as in the present experiment, there was no 

explicit instruction to control postural sway. Accuracy was again quite high, with 

the lowest accuracy score being 90.5% in the target-present, high-load condition 

(amounting to just less than 2 failures to detect the target out of 20 trials in that 

condition). These performance measures suggest that the search task spread across 

two reference frames had similar characteristics to search tasks situated entirely in 

the world or task-frame. However, unlike in Experiment 2, where the entire search 

process occurred either in the same frame as the postural task or in a different one, 

in the present experiment, exactly half the search items always appeared in both 

reference frames. This symmetry may be why the frame effects on search 

performance that were observed in Experiment 2 were not found in the present 

experiment.  

 

With respect to the posture control component, the impact of the visual search task’s 

load was limited to a significant main effect on the STS measure of the head’s AP 

sway. The lesser impact of search-load on posture control in this experiment, as 

compared to Experiment 2, might be explained as the limited additional effect of 

increased search-load on the resource draw away from posture control given the 

already resource-intensive nature of visual search across two reference frames. With 
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respect to the coincident and non-coincident frames manipulation, however, the 

results were unequivocal. On 4 out of 8 measures of sway performance, participants 

swayed significantly more (and two further measures, marginally more) when they 

performed visual search in the non-coincident frames condition. An interpretation of 

this frame effect in terms of optic flow could now be ruled out, since, by design, the 

potential for pick-up of radial optic flow and motion parallax was identical in both 

frame conditions. There was a clear pattern of increased postural sway when the 

target containing half of the search display appeared in a frame different from the 

posture control task’s world-frame. Since the only difference between the coincident 

and non-coincident frames conditions was how long, per search trial, the task-frame 

needed to be kept in register with the world-frame, this experiment provided strong 

support for the interpretation that postural stability suffered in the non-coincident 

frames. 

 

6.3 Experiment 5 

 

Experiment 4 provided clear evidence of increased postural sway when the search 

task required a non-coincident task-frame to be kept in register with the world-frame 

for longer stretches of time. However, as in the case of Experiment 2, the 

instructions given to participants did not specify any performance criteria beyond 

maintaining upright stance. As discussed in the context of Experiments 2 and 3, it is 

possible that the postural performance results in Experiment 4 were due not to a 

relative failure to control sway in the non-coincident frames condition, but a de-
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emphasizing or de-prioritizing of sway control. To test between these two 

possibilities under the paradigm variant developed for Experiment 4, the present 

experiment applied the instructions given in Experiment 2 to the conditions of 

Experiment 4.  

 

6.3.1 Method 

 

Method was as described for Experiment 4, but with the following differences. 

 

6.3.1.1 Participants 

 

Twenty undergraduates and postgraduates from the University of Warwick 

participated in the study, receiving payment for their participation. They ranged 

from 19 to 30 years in age, 1.55 to 1.98 m in height, and 49 to 73 kg in weight. All 

reported normal or corrected-to-normal vision, and none had any history of 

neurological or balance disorders. All participants were naïve to the purpose of the 

experiment, and were debriefed in detail only after data collection was completed. 

Several participants had previously engaged in a posture control experiment, and 

several were familiar with the visual search task, but none had performed the type of 

task combination used in this study. 
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6.3.1.2 Experimental procedures 

 

All procedures were identical to those of Experiment 4 except that participants were 

told that the level of body sway was important, and that they should try to minimize 

their sway as much as possible while performing the visual search task as well as 

they could, with equal emphasis given to both tasks. 

 

6.3.2 Results 

 

6.3.2.1 Visual search 

 

Analysis of variance (ANOVA) was conducted on percent accuracy and response 

time with repeated measures on target condition (present, absent), frame (coincident, 

non-coincident), search-load (low, high) and stance (open, closed) within-

participants factors.  

 

Accuracy.   ANOVA showed significant main effects of search-load (F(1, 19) = 

18.976, p < .001, 2
p   = .500; accuracy was greater in the low search-load condition), 

and target (F(1, 19) = 24.540, p < .001, 2
p   = .564; accuracy was greater in the target-

absent condition). The target  search-load interaction was significant, F(1, 19) = 

15.613, p < .001, 2
p  = .444; accuracy on target-present trials dropped significantly 

as search-load increased (F(1, 19) = 23.138, p < .001, 2
p   = .549), but there were no 
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significant differences in the corresponding target-absent conditions. Overall, 

accuracy was not as high as in previous experiments. The lowest accuracy was 

84.8% in the high-load, target-present condition (amounting to over 3 failures to 

detect the target out of 20 trials in that condition). 

 

Response Time.   There were significant main effects of search-load (F(1, 19) = 

162.066, p < .001, 2
p  = .895; RT was faster in the low search-load condition), and 

target (F(1, 19) = 93.389, p < .001, 2
p  = .831; RT was faster in the target-present 

condition). The target  search-load interaction was significant, F(1, 19) = 72.101, p < 

.001, 2
p  = .791; RT rose more sharply on target-absent trials than on target-present 

trials as search-load increased, t(19) = 8.491, p < .001. The average search slope was 

0.032 s/item on target-present trials, and 0.073 s/item on target-absent trials. 

 

6.3.2.2 Postural sway 

 

Repeated measures ANOVA was conducted on the shorter time-scale (STS) and 

longer-time-scale (LTS) measures, separately for ML and AP sway, with frame 

(coincident, non-coincident), search-load (low, high) and stance (open, closed) as 

within-participants factors. 

 

Head Sway. On the head segment, main effects of stance were found across all 

sway measures: STS-ML (F(1, 19) = 162.574, p < .001, 2
p  = .895), STS-AP (F(1, 19) = 
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25.305, p < .001, 2
p  = .571), LTS-ML (F(1, 19) = 157.898, p < .001, 2

p  = .893), and 

LTS-AP sway (F(1, 19) = 48.601, p < .001, 2
p  = .719). In all cases, sway was greater 

in the closed stance. Notably, on the LTS measure of the head’s AP sway, the frame 

 search-load interaction was significant, F(1, 21) = 6.808, p < .05, 2
p  = .264; LTS-AP 

sway was greater in the non-coincident than the coincident frames condition under 

high search-load, F(1, 19) = 6.373, p < .05, 2
p  = .251 (see Figure 6-1, left panel). 

 

Hip Sway.   On the hip’s STS-ML measure, ANOVA showed a significant main 

effect of stance, F(1, 19) = 164.321, p < .001, 2
p  = .896; STS-ML sway was greater in 

the closed stance. On the STS-AP measure, there were significant main effects of 

search-load, F(1, 19) = 4.947, p < .05, 2
p  = .207; STS-AP sway was greater in the 

higher search-load condition), and stance (F(1, 19) = 55.995, p < .001, 2
p  = .747; STS-

AP sway was greater in the closed stance). Turning to the longer time-scale 

measures, taking ML sway first, the main effect of stance was significant, F(1, 19) = 

199.477, p < .001, 2
p  = .913; LTS-ML sway was greater in the closed stance. Also, 

there was a significant stance  search-load interaction, F(1, 19) = 7.725, p < .05, 2
p  = 

.289;  LTS-ML sway was greater in the closed than the open stance under high 

search-load, F(1, 19) = 5.375, p < .05, 2
p  = .221. On LTS-AP sway, the main effect of 

stance was significant, F(1, 19) = 50.684, p < .001, 2
p  = .727; LTS-AP sway was 

greater in the closed stance. There was a significant frame  search-load interaction, 

F(1, 19) = 9.246, p < .01, 2
p  = .327; LTS-AP sway fell in the coincident frames 
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condition as search-load increased (F(1, 19) = 4.889, p < .05, 2
p  = .205), but there 

were no significant differences in the corresponding non-coincident frames 

conditions (see Figure 6-1, right panel). Also, under high search-load, LTS-AP sway 

was marginally greater in non-coincident than in coincident frames (F(1, 19) = 4.071, 

p = .058, 2
p  = .176). 

 

 

 

 

 

 

 

 

 

 
Figure 6-1   LTS-AP of the head (left panel) and hip’s sway (right panel) for coincident and 
non-coincident frames as a function of search-load in Experiment 5. Error bars show 
standard errors of the means. Asterisk denotes effect of interest statistically significant at 
the p < .05 level. 
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dual-focus) added as a between-participants factor. Significant effects involving the 

instruction factor were as follows. 

 

Visual Search.  On the accuracy measure, the main effect of instruction was 

significant, F(1, 44) = 7.117, p < .05; 2
p  = .139; accuracy was lower in the dual-focus 

condition. The search-load  instruction interaction was significant, F(1, 44) = 4.847, 

p < .05, 2
p  = .099; accuracy fell more sharply with increasing search-load in the 

dual-focus than the search-focus condition, F(1, 44) = 7.057, p < .05. The target  

stance  instruction interaction was significant, F(1, 44) = 7.078, p < .05, 2
p  = .139; 

accuracy was lower in the dual-focus condition under closed stance on present trials 

(F(1, 44) = 6.972, p < .05) and under open stance on absent trials (F(1, 44) = 6.518, p < 

.05), as compared to these conditions under the search-only instruction. On RT, the 

target  stance  instruction interaction was significant, F(1, 44) = 7.074, p < .05, 2
p  = 

.137; dual-focus response time was significantly greater under closed stance than 

open stance on absent trials (F(1, 44) = 8.169, p < .01), but there were no significant 

differences in the corresponding search-focus conditions. 

 

Postural Sway.  Considering the head segment first, on the STS-AP measure, there 

was a significant search-load  instruction interaction, F(1, 44) = 8.317, p < .01, 2
p  = 

.159; STS-AP sway rose significantly in the search-focus instruction condition as 

search-load increased (F(1, 44) = 5.090, p < .05), but there were no significant 
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differences in the corresponding dual-focus conditions. There were no other 

significant effects involving the instruction factor on the head measures.  

 

Considering the hip segment measure next, on the STS-ML measure, there was a 

significant load  stance  instruction interaction, F(1, 44) = 4.105, p < .05, 2
p  = 

.085); in the search-focus instruction condition, STS-ML sway was greater in non-

coincident than coincident frames during closed stance and under low search-load 

(F(1, 44) = 6.628, p < .05), but there were no significant differences in the 

corresponding dual-focus conditions. On the STS-AP measure, the frame  

instruction interaction was significant, F(1, 44) = 4.341, p < .05, 2
p  = .090; in the 

search-focus instruction condition, sway was significantly greater in the non-

coincident than the coincident frames condition (F(1, 44) = 6.093, p < .05), but there 

were no significant differences in the corresponding dual-focus conditions.  

 

On the longer time-scale measures of the hip segment, on ML sway, a significant 

frame  instruction interaction (F(1, 44) = 8.403, p < .01, 2
p  = .160) indicated that 

LTS-ML sway was significantly greater in non-coincident than coincident frames 

under the search-focus instruction (F(1, 44) = 14.362, p < .001), but that there were no 

significant differences in the corresponding dual-focus conditions. Also on the LTS-

ML measure, the search-load  stance  instruction interaction was significant, F(1, 

44) = 7.780, p < .01, 2
p  = .150. Under open stance, LTS-ML sway tended to be 

greater in the dual-focus condition under low search-load, but greater in the search-
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focus condition under high search-load. In the closed stance condition, LTS-ML 

sway tended to be greater in the search-focus condition under low search-load, but 

greater in the dual-focus condition under high search-load. On the LTS-AP measure, 

the frame  instruction interaction was significant, F(1, 44) = 5.173, p < .01, 2
p  = 

.149; LTS-AP sway was significantly greater in non-coincident than coincident 

frames under the search-focus instruction (F(1, 44) = 14.635, p < .001), but there were 

no significant differences in the corresponding dual-focus conditions. 

 

In summary, the between-participants analysis of Experiments 4 and 5 showed a 

drop in search performance under dual-focus conditions, and a pattern of frame 

effects from Experiment 4 being eliminated in Experiment 5 when resources were 

reserved for minimizing sway. 

 

6.3.3 Discussion 

 

The results of Experiment 5 differed from those of Experiment 4 in ways dissimilar 

to the differences between results of Experiments 2 and 3. Considering visual search 

performance first, the search slopes obtained here were nearly identical to those of 

Experiment 4, indicating that participants maintained a similar overall level of 

resourcing for the search task in terms of speed (whereas slopes in Experiment 3 

were flatter than in Experiment 2). As confirmed in the between-participants 

analysis, however, adding the explicit instruction to control sway led to a sizeable 
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drop in search accuracy compared to Experiment 3. The between-participants 

analysis also showed that the drop in accuracy under the dual-focus instruction was 

greater when search-load was high or when participants were performing in the 

more demanding closed stance (on present trials). Dual-focus instruction also 

produced longer RTs in the closed stance condition (on absent trials). These results 

are consistent with a performance drop due to a resource draw away from search and 

into deliberate sway minimization. 

 

Considering postural sway results next, on the LTS-AP measure for the head 

segment, sway increased in the non-coincident frames condition as search-load 

increased. This occurred in spite of explicit instruction to control sway, and so can 

be interpreted as an indication of added load in the non-coincident frames condition. 

As shown in Figure 6-1, there was a trend towards sway reduction with increasing 

search-load when the target appeared in the coincident frames condition. A similar 

pattern of results was obtained for the LTS-AP sway of the hip segment. Here, the 

sway reduction in the coincident frames under high search-load condition was 

significant, while there was a trend towards increased sway in the corresponding 

non-coincident frames condition. It is possible that the optically denser search 

display in the high search-load condition helped participants minimize their sway. 

However, despite identical optical characteristics of the search displays in both 

frame conditions, participants did not succeed in similarly reducing sway when the 

target appeared in the non-coincident task-frame. The simplest interpretation of 
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these effects is that, despite explicit sway minimization instruction, sway control 

remained less well resourced in the non-coincident frames condition. 

 

Taken together, the deterioration of search performance and attenuation of frame 

and load effects on posture control were consistent with the frame co-registration 

cost hypothesis. As in the previous experiments, having to perform the search task in 

a reference frame that was non-coincident with the posture control task’s world-

frame again generated an added resource draw away from posture control. This 

additional resource draw could be partially counteracted by reserving resources for 

sway minimization, but only at the expense of decrements in task performance. 

 

6.4 Experiment 6 

 

Throughout Experiments 2 to 5, a 3-D version of the visual search task was used 

that differed from the 2-D task in Mitra [162] and Experiment 1 only in that the 

distance of each item from the viewpoint was randomly assigned within a fixed 

depth range. The reason for this was to test the frame co-registration hypothesis on 

the most general possible combination of standing upright and visually searching for 

patterns of interest in the environment. The change from the standard 2-D visual 

search displays used most often in experimental work to the 3-D versions used in 

this thesis could be, however, theoretically non-neutral. Firstly, searching a 3-D 

display increases the load and complexity of accurate visual fixation by requiring 

more vergence and accommodation changes than a planar display. This difference 
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may have added to the effective load of the search component, which could have 

impacted resource distribution between the postural and cognitive task components. 

Secondly, the 3-D search display made visual information such as motion parallax 

(of particular interest in the control of ML sway) and retinal velocity gradient 

(useful in the control of AP sway) more prominent. Thus, the addition of depth in 

the search display may have added to cognitive task-load while simultaneously 

offering informational means of reducing postural task-load. For both these reasons, 

the question of the sensitivity of the thesis dual-task paradigm to the presence of 

depth variation in the search display is an important one. This final experiment in 

the series was conducted to address this issue. Participants were asked to focus on 

performing quick and accurate search for a visual target set in split frames, as in 

Experiments 4 to 5, but in which the displays were with or without depth variation. 

In view of the length of the experimental session and participant comfort, 

participants performed the search task in the more natural open stance condition 

only. 
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6.4.1 Method 

 

Method was as described for Experiment 5, but with the following differences. 

 

6.4.1.1 Participants 

 

Twenty-six undergraduate students from the University of Warwick participated in 

the study, receiving course credit for their participation. They ranged from 18 to 22 

years in age, 1.59 to 1.86 m in height, and 53 to 75 kg in weight. All reported 

normal or corrected-to-normal vision, and none had any history of neurological or 

balance disorders. All participants were naïve to the purpose of the experiment, and 

were debriefed in detail only after data collection was completed. None of the 

participants had participated in a posture control experiment before, nor previously 

undertaken a visual search task in the laboratory. Two participants’ data were 

eliminated from all analyses due to measurement errors during sway data collection. 

 

6.4.1.2 Stimuli, and experimental procedures 

 

The visual search display was presented either as a planar surface at the convergence 

distance as in Experiment 1, or with the items randomly staggered in depth exactly 

as in Experiments 2 to 5. The search task was always performed in an open stance 

condition. 
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6.4.2 Results  

 

6.4.2.1 Visual search 

 

Analysis of variance (ANOVA) was conducted on percent accuracy and RT with 

repeated measures on target (present, absent), frame (coincident, non-coincident), 

search-load (low, high) and depth (2-D, 3-D) within-participants factors. 

 

Accuracy.   ANOVA showed significant main effects of search-load (F(1, 23) = 

23.373, p < .001, 2
p  = .504; accuracy was greater in the low search-load condition), 

and target (F(1, 23) = 31.317, p < .001, 2
p  = .577; accuracy was greater in the target-

absent condition). Accuracy on target-present trials dropped significantly as search-

load increased (F(1, 23) = 26.788, p < .001, 2
p  = .538), but there were no significant 

differences in the corresponding target-absent conditions. The 4-way interaction was 

significant (see Figure 6-2), F(1, 23) = 5.264,  p < .05, 2
p  = .186; for search in 2-D 

displays under low search-load, accuracy was significantly lower on present trials 

than absent trials in the non-coincident frames condition, (F(1, 23) = 4.600, p < .05), 

but there were no significant differences in the corresponding coincident frames 

conditions. For 3-D displays under low search-load, accuracy was significantly 

greater on absent trials than present trials in coincident frames (F(1, 23) = 6.457, p < 

.05), but there were no significant differences in the corresponding non-coincident 
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frames conditions. All other (Bonferroni-corrected) pairwise comparisons were 

significant. 

 

Response Time.   On the RT measure, there were significant main effects of search-

load (F(1, 23) = 420.334, p < .001, 2
p  = .948; RT was faster in the low search-load 

condition), and target (F(1, 23) = 130.146, p < .001, 2
p  = .850; RT was faster in the 

target-present condition). The search-load  target interaction was significant, F(1, 23) 

= 143.718, p < .001, 2
p  = .862; RT rose more sharply in the target-absent than the 

target-present condition as search-load increased, t(23) = 11.988, p < .001. The 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2  Percent accuracy for display and search-load 
conditions on  present and absent trials as a function of reference 
frame in Experiment 6. Error bars show standard errors of the 
means. 
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average search slope was 0.032 s/item on target-present trials, and 0.074 s/item on 

target-absent trials. Overall, RT was significantly greater for 3-D than 2-D displays 

(F(1, 23) = 11.073, p < .01, 2
p  = .325). Depth interacted significantly with search-load 

F(1, 23) = 44.408, p < .05; under high search-load, RT was greater for 3-D than 2-D 

displays (F(1, 23) = 8.326, p < .01, 2
p  = .266), but there were no significant 

differences in the corresponding low-search-load conditions (see Figure 6-3). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6-3   Response time for 2-D and 3-D displays as a function 
of search-load in Experiment 6. Error bars show standard errors of 
the means. Asterisks denote effect of interest statistically 
significant at the p < .01 level. 
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6.4.2.2 Postural sway 

 

Repeated measures ANOVA was conducted on the shorter time-scale (STS) and 

longer time-scale (LTS) measures, separately for ML and AP sway, with frame 

(coincident, non-coincident), search-load (low, high) and depth (2-D, 3-D) as 

within-participants factors. 

 

Head Sway.  On the STS-ML measure of the head’s ML sway, the frame  load 

interaction was significant, F(1, 23) = 5.771, p < .05, 2
p  = .201; STS-ML sway rose 

significantly in the coincident frames condition as search-load increased (F(1, 23)  =

5.765, p < .05, 2
p  = .200), but there were no significant differences in the 

corresponding non-coincident frames conditions (see Figure 6-4, top panel). Also, 

STS-ML sway was significantly greater in coincident frames than non-coincident 

frames under high search-load conditions, F(1, 23) = 5.992, p < .05, 2
p  = .207). There 

were no significant main effects and no significant interactions for the short time-

scale measure of the head’s AP sway. Turning to the longer time-scale measures, 

LTS-ML sway rose significantly in the coincident frames condition as search-load 

increased (F(1, 23) = 5.621, p < .05, 2
p  = .196), but there were no significant 

differences in the corresponding non-coincident frames conditions (see Figure 6-4, 

bottom panel). There were no significant main effects and no significant interactions 

for the head’s LTS-AP measure. 
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Hip Sway.   There were no significant effects on any of the measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4   STS and LTS of the head’s ML sway for low and high 
search-load as a function of reference frame in Experiment 6. Top 
panel shows STS, and bottom panel shows LTS. Error bars show 
standard errors of the means. Asterisks denote effects of interest 
statistically significant at the p < .05 level. 
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6.4.3 Discussion 

 

Work on visual search in depth [158; 167; 169] suggests, on balance, that 

conjunction search with stereo depth as an attribute is no more inefficient than 

search for a target defined by other features or spatial relations [167]; see also [195]. 

However, for the task conditions of the present study, adding depth to the search 

displays significantly affected search performance―as search-load increased, RT 

rose more sharply for 3-D displays than for 2-D displays. Since the search items in 

the 3-D displays appeared randomly staggered in depth, the task of repeated visual 

fixations during search may have been considerably more demanding than for the 2-

D display (or even one with items placed on multiple surfaces at different depths). 

Accuracy remained high, however, with the lowest accuracy score being 91.3%, in 

target-present, high search-load condition. 

 

The presence or absence of depth variation in the search displays had no effect on 

postural sway. There was no evidence therefore, the added visual support for posture 

control provided in the 3-D displays was taken up by participants, at least when 

performing search while standing in open stance, and in the absence of explicit 

instruction to control sway. Given that, as in Experiments 2 and 3, half the search 

items maintained their positions in the world-frame and half moved with the 

swaying viewpoint, participants’ head sway would have generated some relative 

(apparent) motion between the items in the two frames in both the 2-D and 3-D 

conditions. Though this relative motion would have been greater in the 3-D 
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condition, this difference may not have been important in terms of using parallax for 

controlling ML sway.  

 

The significant interaction between frame and search-load found for the head’s ML 

sway at both time-scales suggests that when the search target appeared in the world-

frame (coincident frames condition), increased search-load reduced participants’ 

ability to control their ML sway. In this frame condition, the search display may 

have been segmented early in each trial by colour (or motion) grouping of the green 

distractors presented in the non-coincident task-frame. If resources for both visual 

search and posture control then remained focused primarily on the world-frame 

alone, the ability to extract parallax from the relative optical motion of the green and 

blue item-groups may have been compromised. This would have particularly 

affected control of ML sway, which is sensitive to the presence of parallax 

information. Though the mean difference was in the opposite direction when the 

target appeared in the task-frame (non-coincident condition), the lack of significance 

would suggest that when the search task was anchored away from the postural 

world-frame, extraction of parallax did not differ across the load manipulation. With 

respect to the main purpose of the present experiment, however, the key point to 

note is that the presence or absence of depth variation in the search displays did not 

make any measurable impact on any of the measures of postural sway. A reasonable 

overall conclusion from these results seems to be that the use of the 3-D version of 

the visual search task simply added to its level of difficulty or resource 

requirements, but did not significantly alter the usefulness of the search display for 
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posture control. Since the present experiment did not also test under the more 

demanding closed stance or explicit sway minimization conditions, this conclusion 

cannot be wholly generalized to all possible testing conditions. However, the 

conditions not included in this experiment would impose even higher levels of 

overall load on participants, making it less likely to elicit subtle performance 

variations that could be observed in this experiment. 
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Chapter 7 
                
 
Postural Costs of Performing Cognitive Tasks in Non-

Coincident Reference Frames: Mental Rotation 

 

 

7.1 Introduction 

 

The visual search experiments examined the co-registration hypothesis in context of 

items located in external space. However, as humans, many of our cognitive 

operations require mentally arranging, remembering and manipulating spatial 

relations and object properties. There is evidence to suggest that these operations 

have a sensorimotor basis [277; 278], and several studies have demonstrated the 

body as having an important modifying role in imagined spatial transformations 

such as mental rotation tasks ([12; 189-192; 230]; see [225], for a commentary). A 

methodological consideration also exists in that the load manipulation in the visual 

search experiments was confounded with the presence of additional perceptual 

stimuli in the field in the high-load cognitive task condition. Using a cognitive task 

such as mental rotation, on the other hand, allows the examination of the frame co-

registration cost hypothesis for a task in which cognitive load is manipulated while 

keeping perceptual load constant (in the sense of the number of items in the field). 
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In the present experiment, participants were required to perform quick and accurate 

mental rotation judgments under conditions in which the identity and parity/non-

parity objects could be jointly presented in either a world-frame (coincident 

condition) or in a head-anchored task-frame (non-coincident condition). A frame co-

registration cost hypothesis would predict that the non-coincident frames condition 

should generate a greater performance cost to posture control than performing 

mental rotation in the coincident frames condition, over and above costs of postural 

or cognitive task-load.  

 

7.1 Method 

 

General method was given in Chapter 3. In the coincident frames condition, the 

mental rotation objects (described below) appeared in a world-frame (i.e., the object 

pair kept their position and orientation in the world-frame). In the non-coincident 

frames condition, the object pair appeared and maintained position-orientation with 

respect to the observer’s head.  

 

7.2.1 Participants 

 

Twenty participants (undergraduates and postgraduates) from the University of 

Warwick participated in the study, receiving payment for their participation. They 

ranged from 18 to 26 years in age, 1.56 to 1.87 m in height, and 52 to 73 kg in 



                                                      Postural costs of reference frames: mental rotation 
  
                                  

 149

weight. All reported normal or corrected-to-normal vision, and none had any history 

of neurological or balance disorders. All participants were naïve to the purpose of 

the experiment, and were debriefed in detail only after data collection was 

completed. Several participants had taken part in a posture control experiment, but 

none had previously performed an experiment involving mental rotation. 

 

7.3 Results   

 

7.3.1 Mental rotation 

 

Analysis of variance (ANOVA) was conducted on percent accuracy and response 

time with repeated measures on judgment condition (parity, non-parity), frame 

(coincident, non-coincident), rotation (50o, 100o, 150o) and stance (open, closed) 

within-participants factors.  

 

Accuracy.   On the percent accuracy measure, ANOVA showed a significant main 

effect of judgment, F(1, 18) = 32.683, p < .001, 2
p  = .645; accuracy was greater for 

parity objects. The main effect of rotation was significant, F(1, 18) = 62.210, p < .001, 

2
p  = .766; accuracy for parity/non-parity judgments increased as the displacement 

angle size increased―50o vs. 100o (t(18) = 5.161, p < .001), 50o vs. 150o (t(18) = 9.673, 

p < .001) and 100o vs. 150o rotations (t(18) = 7.217, p < .001). There were no 

significant effects involving the reference frame factor. 
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Response Time.   The main effect of judgment was significant, F(1, 18) = 55.843, p < 

.001, 2
p  = .756; RT was faster for parity judgments. The main effect of rotation was 

significant, F(1, 18) = 41.938, p < .001, 2
p  = .700; parity/non-parity judgments were 

significantly greater across rotation conditions―50o vs. 100o (t(18) = 5.172, p < .001), 

50o vs. 150o (t(18) = 7.367, p < .001) and 100o vs. 150o rotations (t(18) = 5.516, p < 

.001). There were no significant effects involving the reference frame factor. 

 

7.3.2 Postural sway 

 

Repeated measures ANOVA was conducted on the shorter time-scale (STS) and 

longer time-scale (LTS) measures, separately for ML and AP sway, with frame 

(coincident, non-coincident), rotation size (50o, 100o, 150o) and stance (open, 

closed) as within-participants factors.  

 

Considering the head segment first, on the STS measure and for ML sway (see 

Figure 7-1, top-left panel), there was a significant main effect of stance, F(1, 18) = 

214.108, p < .001, 2
p  = .922; STS-ML sway was greater in the closed stance. The 

main effect of frame was marginally significant, F(1, 18) = 4.266, p = 0.54, 2
p  = .192; 

STS-ML sway was marginally greater in the non-coincident (M = .027, SE  = .001) 

than the coincident frames condition (M = .025, SE = .001). The stance  rotation 

interaction was significant, F(1, 18) = 3.767, p < 0.5, 2
p  = .173; STS-ML sway rose 

significantly in open stance as rotation angle increased from 50o to 100o (F(2, 36) = 
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4.172, p < .05, 2
p  = .329), but there were no significant differences in the 

corresponding closed stance conditions (see Figure 7-2, top panel). On the STS-AP 

measure (see Figure 7-1, top-right panel), there was a significant main effect of 

stance, F(1, 18) = 20.477, p < .001, 2
p  = .532; STS-AP sway was greater in the closed 

stance. The rotation  stance  frame interaction (see Figure 7-3) was significant, 

F(2, 36) = 3.739, p < .05, 2
p  =.172; for 150o rotations, STS-AP sway was greater 

under closed than open stance in the non-coincident frames condition (F(1, 18) = 

5.027, p < .05), but there were no significant differences in the corresponding 

coincident frames conditions. 

 

Turning to the LTS measure, on ML sway (see Figure 7-1, bottom-left panel), the 

main effect of stance was significant, F (1, 18) = 192.969, p < .001, 2
p  = .915; LTS-

ML sway was greater in the closed stance. Also, there was a significant main effect 

of frame, F (1, 18) = 5.388, p < 0.5, 2
p  = .230; LTS-ML sway was greater in non-

coincident (M = .072, SE = .004) than coincident frames (M = .065, SE = .003). The 

stance  rotation interaction was significant, F(1, 18) = 4.401, p < 0.5, 2
p  = .196; LTS-

ML sway rose significantly in open stance as rotation angle increased from 50o to 

100o (F(2, 36) = 4.782, p < .05, 2
p  = .360), but there were no significant differences in 

the corresponding closed stance condition (see Figure 7-2, bottom panel). On the 

LTS-AP measure (see Figure 7-1, bottom-right panel), the main effect of stance was 

significant, F (1, 18) = 12.051, p < .01, 2
p  = .401; LTS-AP sway was greater in the 
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closed stance. The main effect of frame was significant, F (1, 18) = 7.1298, p < .05, 2
p  

= .284; LTS-AP sway was greater in the non-coincident (M = .096, SE = .003) than 

the coincident frames conditions (M = .091, SE = .003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7-1    ML (left panels) and AP (right panels) on the head’s sway for coincident and 
non-coincident frames under rotation difficulty conditions as a function of stance in 
Experiment 7. Top panels show STS and bottom panels show LTS. Error bars indicate 
standard error of the means. 
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Figure 7-2    ML of the head’s sway for rotation size as a function 
of postural difficulty for Experiment 7. Top panel shows STS and 
bottom panel shows LTS. Error bars show standard error of the 
means. Asterisks denote effects of interest statistically significant 
at the p < .05 level. 
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Figure 7-3    STS-AP of the head’s sway for open and closed 
stance under rotation difficulty conditions as a function of 
reference frame for Experiment 7. Error bars show standard error 
of the means. Asterisk denotes effect of interest statistically 
significant at the p < .05 level.  
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p < .001, 2
p  = .788; STS-ML sway was greater in the closed stance. On the STS-AP 

measure (see Figure 7-4, top-right panel), there was a significant main effect of 

stance, F(1, 18) = 7.998, p < .05, 2
p  = .308; STS-AP sway was greater in the closed 

stance. The main effect of frame was significant, F(1, 18) = 5.139, p < .05, 2
p  = .222; 

STS-AP sway was greater in the non-coincident (M = .023, SE = .001) than the 

coincident frames condition (M = .021, SE = .001). 
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Figure 7-4   ML (left panels) and AP (right panels) on the hip’s sway for coincident and 
non-coincident frames under rotation difficulty conditions as a function of stance in 
Experiment 7. Top panels show STS and bottom panels show LTS. Error bars indicate 
standard error of the means. 
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LTS-ML sway tended to be greater in the non-coincident frames condition. On the 

LTS-AP measure (see Figure 7-4, bottom-right panel), the main effect of frame was 

significant, F(1, 18) = 5.429, p < .05, 2
p  = .232; LTS-AP sway was greater in the non-

coincident (M = .071, SE = .003) than the coincident frames condition (M = .064, SE 

= .003). 

 

7.4 Discussion 

 

On the characteristics of the mental rotation task, participants’ RTs were 

significantly greater, and accuracy significantly lower, across rotation conditions, 

confirming that the rotation size manipulation effected a significant change in 

cognitive-load. Participants’ responses on average ranged from 2 s for 50o rotations 

to 3.4 s for the more difficult 150o rotations, typical of times found for matching 

standard Shepard-Melzer objects (about 1 sec at 0 degree of rotation for all 

participants, increasing to values ranging from 4 to 6 seconds at 180 degrees of 

rotation, [232]). The strong correlation (R2 = 96.6, p = .058, non-transformed data) 

for RT and angle of rotation found here is consistent with studies in which 

participants are believed to have mentally rotated stimuli using an exocentric 

viewpoint [57; 232; 288; 297; 298]. 

 

On the postural side, participants swayed more in both ML and AP directions on 7 

of the postural measures when they stood in the more difficult, closed stance. 
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Though the cognitive performance measures indicated that the mental rotation task 

was attentionally demanding, rotational difficulty had only limited effect on postural 

sway. On both time-scales of the head’s ML sway, increasing rotational difficulty 

from 50 to 100 degrees lead to significantly increased sway in open stance and, as 

can been seen from Figure 7-2, produced a trend towards reduced sway in closed 

stance. For both measures, increasing rotational difficulty still further, from 100 to 

150 degrees, produced a trend reversal of this pattern, with a tendency towards 

reduced sway in open stance and towards increased sway in closed stance. A 

straightforward explanation for these results is that as the mental rotation began to 

increase in difficulty (i.e., from 50o to 100o rotations) people allowed themselves to 

sway more in the secure open stance in order to maintain performance on the 

cognitive task. As the cognitive task became progressively more difficult (150o 

rotations) however, available resources were progressively consumed, leading to 

greater sway in the less secure closed stance.  

 

Overall experimental conditions the effect of frame co-registration was robust, with 

4 of the postural measures (and two further measures, marginally) indicating 

increased sway when the dual-task had to be performed in non-coincident reference 

frames. The pattern of interaction found on the STS-AP measure of the head sway 

involving frame, rotation and stance factors showed that, though sway levels could 

be maintained across postural difficulty conditions, participants could not contain 

the added demands of frame non-coincidence under combined high-load postural 

and cognitive conditions. These results confirm the importance of the frame co-
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registration cost hypothesis for concurrent activities involving postural control and 

imagined spatial transformations for a cognitive task.  
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Chapter 8 
                
 
General Discussion and Broader Implications 

 

 

 

The series of experiments presented in this thesis were designed to show that, in the 

context of posture-cognition dual-tasking, placing a cognitive task component in a 

reference frame other than the postural task’s world-frame incurs measurable 

postural costs. The frame manipulation (Experiments 2-7) essentially involved 

placing a visual search or mental rotation task in a natural reference frame that was 

either in coincidence with the world-frame (i.e., the postural component’s natural 

frame), or in coincidence with the standing participant’s swaying head (i.e., non-

coincident with posture control’s natural frame). Since spontaneous sway in the 

upright stance has high-dimensional dynamics, in the non-coincident frames 

condition, participants could not dynamically map the world and task frames to each 

other. However, they did have access to vestibular and somatosensory information 

about the task-frame’s instantaneous motion relative to the world-frame. The results 

to the visual search experiments (see summary Table 8-1, page, 171) showed that 

non-coincidence of the task components’ natural reference frames led to 

performance decrements in the cognitive (Experiment 2) as well as the postural task 

(Experiments 2–5). This pattern persisted across instruction variations that 
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prioritized the cognitive task (Experiments 2 and 4) or specified deliberate sway 

minimization (Experiments 3 and 5). The pattern also persisted when the visual 

search task was split between coincident and non-coincident frames and both frame 

conditions were rendered identical in terms of visual information relevant to posture 

control (Experiments 4 and 5). Thus, the posture control deficits observed in the 

non-coincident frames condition were not an artefact of differences in available 

visual information for posture control. Also, in Experiments 3-6, differences in 

visual search performance across the two frame conditions were eliminated, so 

differences in posture control could not be due to differential search task difficulty 

in the two frame conditions. Finally, the results to Experiment 7 showed that there 

can be significant postural costs for concurrent activities involving postural control 

and internally generated and maintained representations for a cognitive task. Since, 

in several cases, the undesirable effects of frame non-coincidence were found in the 

most demanding combination of closed stance and high cognitive load, it is 

concluded that the act of keeping two non-coincident frames in register itself 

incurred costs over and above those of the task components themselves.  

 

The experiments were not equipped to test whether co-registration costs arise from 

having to perform coordinate transformations to align the reference frames of the 

two components, or whether the co-registration process requires continuous 

updating of the state of one frame to the other. The observed performance costs 

nonetheless a striking observation about embodied cognition, because the dual-task 

of standing upright while engaged in cognitive tasks is endemic to everyday life, 
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often involving non-coincidence of postural and cognitive frames (for example, 

standing and looking at a moving person or object, or reading a piece of paper held 

in the hands). Since the central nervous system evidently has a wide choice of 

reference frames available for use (see, e.g., [27; 46]), the inability of participants to 

effortlessly solve the frame non-coincidence problem in such a common task 

combination suggests that concurrent tasks with non-coincident reference frames 

can effectively partition a common workspace into multiple non-compatible task-

spaces. If so, any given event such as a body or stimulus movement can have 

entirely different consequences for performance in different task-spaces. This can 

make it difficult, if not impossible, to operate simultaneously in the interest of both 

task components. In the case of visually searching while standing upright, this point 

can be well appreciated by examining how the eye-head system must be used during 

dual-task performance.  

 

On the posture control side, visual and vestibular systems used to stabilize sway are 

embedded in the head, and being a heavy body segment with a significant amount of 

moment about the pivot point at the ankle, its motion is also a significant contributor 

to the proprioceptive feedback from body sway.9 Also, sway during upright stance

                                                 
9 For tasks critically dependent on head stabilization and involving small body movements, head 

movement can be greater than trunk movement [202; 203]. More generally, for paradigm-types 

involving small amplitude movements, healthy young and middle-aged adults show a preference for 

an ankle strategy [66; 86]. 
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is thought to have both a performatory (i.e., corrective) as well as an exploratory 

element [214; 221]. Riccio [214] has proposed, for example, that low-frequency 

modulation of high-frequency sway variability can serve as a source of information 

about ongoing postural dynamics (see also, [31; 145], for further examples on 

information generating functions of movement variability). In this sense, postural 

movements of the eye-head system can be the result of a corrective action, an 

exploratory modulation, or uncorrected drift. In all cases, however, eye-head 

movements generate vestibular, proprioceptive (and, depending on task conditions, 

visual) signals that have specific implications for posture control in the world-frame.  

 

On the visual search side, the task itself involves multiple, high-precision eye 

movements that are easier to execute if the relative motion between the head and the 

search display can be minimized [245]. Equally, searching can engage both overt 

and covert attention in a way that may be incompatible with extracting any posture-

relevant visual information that may be present in the visual field (as, perhaps, in 

Experiments 3 to 6). Also, if the search task’s display-anchored reference frame is 

used to code item locations, the code needs to be invariant over eye and head 

movements. Thus, any eye-head movements associated with performatory or 

exploratory postural activities can add to the search task’s difficulty by complicating 

location coding. Perhaps most crucially, the same eye-head movement can mean 

different and incompatible things in the world and search task-frames. In the world-

frame, the movement may be an excursion that needs to be corrected, or a beneficial 

exploration that generates valuable information for posture control. In the search 
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task-frame, the very same eye-head movement may be either an unwanted transform 

over which location codes need to be kept invariant, or a helpful act of orienting to 

an item of interest. Furthermore, the level of incompatibility between these different 

meanings of the same eye-head movement depends strongly on both the choice of 

task-frame as well as the relative motion of the world- and task-frames.  

 

Such sources of dual-task interference have long been of interest to action-oriented 

theorists, who view dual-task capacity limitations as a by-product of functional 

selection problems [7; 175] that centre, in particular, on the spatial arrangement of 

task components [177]. Neisser [175] suggested, for example, that capacity 

limitations can arise simply because two actions are physically incompatible (see 

also, [177] on ‘blocking’) or because stimuli relevant to the two tasks may mask 

each other, or because there is a “genuine informational impediment to the parallel 

development of independent but similar schemata” (p. 103) due to difficulties in 

applying new perceptual information to the correct schema (see also, [8; 9], on the 

problem of crosstalk). Direct clashes between eye-head movements required by 

posture control and visual search, as well as the difficulties in using the information 

generated by eye-head movements to guide either task may well have contributed to 

the co-registration costs observed in the visual search experiments. Similarly, when 

mentally rotating an object, clashes may occur in the holding and use of 

sensorimotor information for the orientating frame and in the concurrent retention 

and allocation of information used for operations in the cognitive task frame. 
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While an action-oriented framework would seem natural choice for organizing the 

reference frame related issues that arise in posture-cognition dual-tasks, concepts 

such as selection-for-action [8] would need to be significantly updated before they 

could be fruitfully applied to dual-tasks involving complex coordination 

components. This is because these theories were originally devised around dual-task 

paradigms with relatively impoverished action requirements (for example, single-

digit button-presses), and therefore over-identified ‘action’ with ‘output’ (when 

‘action’ is just as significant a component of perceptual ‘input’ when we consider 

coordination tasks). Also, these theories often used simplistic conceptions of 

sensory-motor mapping that grossly underestimated the considerable complexities 

of using perceptual information to effectively guide large-scale, multi-segment body 

coordination (see, e.g., [164]). Similarly, structural accounts of dual-task 

interference based, for example, on the simultaneous use of the visuospatial 

sketchpad [116; 151] would need to be extended with details of exactly how dual-

tasks with non-coincident reference frames must be managed in working memory. 

Given that the importance of studying cognition in its naturally embodied state 

continues to increase, such theoretic efforts would appear to be well worth 

undertaking.  

 

The notion, from action-orientation accounts, that attentional limitations arise where 

stimuli have to be kept apart, not where they have to be combined [177], is 

particularly resonant with the requirement of keeping tasks activated and maintained 

with respect to more than one task-linked reference frame at a time. One way of 
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tackling barriers to dual-tasking such as the ones identified above would be to 

evolve a strategy for alternating between perceiving and acting with respect to two 

coordinations, and modulating the proportion of time allotted to each. The success 

of such a strategy would depend heavily, of course, on each task’s tolerance to time 

delays due to turn taking. In this respect, cognition-coordination dual-tasking comes 

with the further constraint that posture control has a natural time-scale dictated by 

the inertial properties of the body—regardless of the cognitive component’s 

requirements, the time-scale of corrective adjustments to body posture cannot be 

stretched beyond a physically dictated limit without risking stance destabilization. 

As earlier discussed, evidence suggests that this limit for unperturbed upright stance 

could be somewhere in the region of 1 s [53; 219].10  

 

While the impact of shared resources on temporal processing for postural control 

has not gone unappreciated [213], the profound implication of gravitationally 

governed time limits in posture-cognition dual-tasks is that any cognitive task that 

conflicts with postural coordination in the above manner must at least periodically 

yield the use of common control and articulatory dimensions. The implication of this 

strategy is straightforward but profound—any cognitive task that conflicts with 

postural coordinations in the above manner must at least periodically yield the use of 

common control and articulatory dimensions at a time-scale dictated by gravity. The 

                                                 
10 The time-scale for the visual search task was approximately 0.8 s and 1.5 s per trial, respectively, 

in low- and high-load conditions. 
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impact of such a constraint on the evolution of cognitive skills generally, and the 

cognitive architecture required to support them, merits detailed consideration in due 

course. More immediately, it suggests a more precise interpretation of ‘resource 

competition’ or ‘resource sharing’ in posture-cognition dual-task performance—the 

effects that are attributed to competition for limited resources between posture 

control and cognitive tasks such as visual search―may well be effects of time-

sharing between underlying coordinations. Increasing the cognitive task’s time 

allocation (for example, by increasing the number of search items) may slow down 

the time-scale of postural corrections, leading to greater sway dispersal, as observed 

for effects of frame non-coincidence on the longer time-scale measure in 

Experiment 5. Equally, shortening the time-scale of postural corrections (for 

example, by introducing a less stable closed stance or requiring deliberate sway 

reduction) can squeeze the size of the time intervals available to the cognitive task. 

In the case of visual search, this could lead to a flattening of search slopes (at some 

expense to accuracy), an apparently anomalous performance enhancement effect 

was actually observed in Experiment 1 and in other work with the present paradigm 

[162].  

 

If time is in fact the ‘resource’ that is shared between a postural and a suprapostural 

cognitive task, then the coexistence of facilitation and competition effects envisaged 

in Mitra’s adaptive resource-sharing theory [162; 163] can be examined in a clearer 

light. The control of upright stance has gravitationally governed tolerance limits in 

terms of allowable spatial dispersal and therefore time-scale of corrective action. 
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Well within these limits, the time requirements of another task can be absorbed and 

common control and articulatory dimensions recruited to facilitate the task. As the 

tolerance limits are approached, however, the effects of time-sharing become 

observable. Depending on the required time-scale of responding, time-sharing with 

posture control can both slow down as well as speed up task performance.  

 

A variety of everyday tasks such as reading, manipulating, tracking or intercepting 

moving objects, and even mentally imaging events other than the current physical 

task context, can all present complex frame co-registration requirements that far 

exceed the challenges presented by the subtle manipulations in the present 

experiments. Furthermore, healthy, young adults, the population tested in this study, 

are in fact the least likely to be affected by such frame co-registration challenges. 

Among the elderly, for example, there is strong evidence of particular postural 

vulnerability to the demands of concurrent cognitive task performance [40; 151; 

209; 212; 235]. A suggested cause is a failure to adequately and flexibly stabilize the 

vestibular apparatus and eye-head system in space for purpose of processing sensory 

feedback [71; 289]. While a head-in space strategy relies mainly on a geocentric 

frame of reference, both egocentric and exocentric frames are thought to contribute 

toward the control of head stabilization [71], and which conceivably could be 

brought into conflict in dual-task situations such as those studied here. In light of the 

present results with young adults, therefore, it would be worth investigating the 

extent to which the elderly are particularly vulnerable in task situations with frame 

co-registration requirements. 
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It is perhaps be at the other end of the lifespan, however, where the coexistence of 

cognitive and postural task-frames, and the effects of their dynamic relationship, 

assume their greatest importance. As discussed in the introduction, a major impetus 

to the study of embodied cognition came from research on the profound ways in 

which sensorimotor development underpins cognitive skill acquisition. The 

attainment of stable stance and gait are present substantial challenges for the 

maturing posture control system. If the costs to posture control of maintaining stable 

cognitive task-spaces are clearly discernible in healthy young adults, as the present 

research has shown, the costs to the immature posture control system of not only 

maintaining balance, but also supporting the often erratic sensorimotor activity 

accompanying emerging cognitive skills, must be substantial. The extent to which 

contention scheduling between postural and cognitive functions, especially between 

their respective task-spaces or reference-frames, governs the co-emergence of 

posture control and cognitive competence must therefore be well worth studying 

closely in children. 

 

In this respect, one issue of significant interest could be the manner in which 

impaired or inefficient contention scheduling between concurrent postural and 

cognitive task-spaces may affect embodied cognition in early life. It is worth noting, 

for example, the mounting evidence that in some developmental disorders, such as 

dyslexia [179-181] and the autistic spectrum [174], the cognitive impairments that 

define the conditions are often accompanied by systematic balance and coordination 

difficulties. The causal links between the postural and cognitive impairments in 
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these disorders are currently a topic of considerable debate, but there appear to be 

some remarkable similarities between the proposed reasons for motor impairments 

in these otherwise dissimilar cognitive disorders. In cognitive terms, one proposal is 

that both dyslexia and autism involve difficulties in shifting attention from one 

activity to another (for reviews, see [109], on dyslexia, and [174], on autism and 

Asperger’s disorder). Another possibly related proposal is that both conditions 

involve deficits in temporal information processing [34; 81; 285]. In anatomical 

terms, both conditions are said to have a component of cerebellar dysfunction [6; 58; 

181], which may be a locus of both the temporal processing as well as attention-

shifting impairments, although dysfunction of the posterior parietal cortex in 

dyslexia [109] and the basal ganglia in autism [174] may also be important 

contributors.  

 

A possible link between these two cognitive impairments and the balance and gait 

difficulties associated with these disorders may lie in inefficient time-sharing 

between operations in postural and cognitive task-spaces. As already discussed, 

concurrently performing postural and cognitive tasks, especially in non-coincident 

reference frames, may often require alternating between acting with respect to one 

frame or the other. Since the two task components draw on common attentional 

resources, any difficulty in switching attention between tasks (i.e., alternately 

allocating shared resources to either component) is likely to be particularly 

disruptive to posture-cognition dual-tasking. If there are temporal information-

processing difficulties as well, these can only compound the problem given that 
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posture control is subject to a gravitationally dictated time-scale for corrective 

actions, and that the time-course of postural corrections and cognitive operations 

must therefore be finely coordinated for both tasks to proceed without significant 

disruption. As shown in the present work, both attention-switching and temporal 

processing impairments are likely to have a greater impact on posture control as the 

cognitive task’s reference frame becomes less closely tied to the world-frame. This, 

however, is exactly the expected pattern in early life as children progress from 

attending to static objects and patterns to interacting with dynamic ones held in their 

own hands or moving independently in the world. It would seem, therefore, that a 

detailed investigation of the sensitivity of coordination deficits in developmental 

disorders such as dyslexia and autism to spatio-temporal relationships between 

postural and cognitive task-spaces may well provide important theoretical insights 

into the cognitive and coordination deficits associated with these disorders. 



  

                                                                                                                       
 

Table 8-1 Summary of experimental results to the thesis 

 
 
Notes. 
 
(1) Key to postural measures 
 
Balance control measures: acronyms, descriptions and measures 
 
 
SDmw Moving window standard deviation― mean moving SD of the COM time series, mm/s 
RMSmw Root mean square of the mean moving SD of the COM time series, mm/s 
 

 
(2) Reported effects of postural and cognitive difficulty levels were nil, unless otherwise indicated. ML = medial-lateral sway and AP = anterior-posterior sway directions.  
† Indicates marginally significant effect (p > .05 < .06).  
 
 
 

 
Dual-task                                                        Population              Sway Instr.             Effect of cognitive task                                                              Effect of postural task                                                                         
 

 
Unperturbed wide- and  narrow-base 
standing  
 
EXP 1: Conjunction visual search  
(2 levels) in 2-D. All search items in 
world frame. 
 
 
 
 
 
 

 
 
 
 
Young adults 
(n = 20) 
 
 
 
 
 
 
 

 
 
 
 
Cognitive task-
focus vs. Dual-
task focus 
 
 
 
 
 
 

 
 
 
 
Posture sway increased  
 
HEAD SEGMENT: 
 
 STS-ML, STS-AP, LTS-ML, LTS-AP sway increased 

(high search-load only) 
 STS-ML, STS-AP, LTS-AP sway greater under 

dual-focus than cognitive task-focus instructions 
 

 
 
 
 
Cognitive task performance 
decreased  
 
 RT decreased in narrow-base 

standing in dual-focus 
instruction condition (high 
search-load only) 

 
 



  

 

EXP 2: Conjunction visual search  
(2 levels) in 3-D. All search items in 
world-frame or all search items in task-
frame. 
 
 
 
 
 
 
 
 
 
 
 
EXP 3: Conjunction visual search 
(2 levels) in 3-D. All search items in 
world-frame or all search items in task-
frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 

Young adults 
(n = 20) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Young adults 
(n = 19) 
 
 
 
 
 
 

Cognitive task-
focus 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dual-task focus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

Posture sway increased  
 
HEAD: 
 
 STS-ML, STS-AP, LTS-ML, LTS-AP sway increased 
  (high search-load only) 
 STS-AP sway greater  in non-coincident than 

coincident frames 
 
HIP: 
 
 STS-ML, STS-AP, LTS-ML, LTS-AP sway increased 

(high search-load only) 
 
 
Posture sway increased  
 
HEAD: 
 
 STS-ML, STS-AP, LTS-ML, LTS-AP increased  
  (high search-load only) 
 STS-ML, LTS-ML sway greater in narrow-base than 

wide-base standing (high search-load only) 
 
HIP: 
 
 STS-ML, STS-AP, LTS-ML, LTS-AP sway increased  

(high search-load only) 
 STS-ML, LTS-ML sway greater in narrow-base than 

wide-base standing (high search-load only) 
 STS-AP, LTS-AP sway greater under non-coincident 

than coincident frames 
 

Cognitive task  performance 
decreased  
 
 RT decreased in non-coincident 

frames (high search-load only) 
 
 Errors increased in narrow-

base standing in non-coincident 
frames (target-absent trials only) 

 
 
 
 
 
 
Cognitive task  performance 
unchanged 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  

 

EXP 4: Conjunction visual search  
(2 levels) in 3-D. Half of search items 
in world-frame and other half in task-
frame. 
 
 
 
 
 
 
 
 
 
 
 
 
EXP 5: Conjunction visual search 
(2 levels) in 3-D. Half of search items 
in world-frame and other half in task-
frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Young adults 
(n = 26) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Young adults 
(n = 20) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cognitive task-
focus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dual-task focus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Posture sway increased  
 
HEAD: 
 
 STS-AP sway increased (high search-load only) 
 STS-AP, LTS-AP† sway greater under non-

coincident than coincident frames  
 
HIP: 
 
 STS-AP sway increased (high search-load only) 
 STS-ML† , STS-AP, LTS-ML, LTS-AP sway greater 

under non-coincident than coincident frames 
 
 
 
Posture sway increased  
 
HEAD: 
 
 LTS-AP sway greater in non-coincident than 

coincident frames (high search-load only) 
 

HIP: 
 
 STS-AP sway increased (high search-load only) 
 LTS-ML sway greater in  narrow-base standing vs. 

wide-base (high search-load only) 
 LTS-AP† sway greater in non-coincident than 

coincident frames  
 LTS-AP sway decreased in coincident frames 
   (high search-load only)  
 

 

 

 

Cognitive task  performance 
unchanged 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cognitive task  performance 
unchanged 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 

EXP 6: Conjunction visual search 
(2 levels) in  2-D OR 3-D. Half of 
search items in world-frame and other 
half in task-frame. Wide-base only. 
 
 
 
 
 
 
 
 
EXP 7: Mental rotation task (3 levels) 
in  3-D. Both identity and parity/non-
parity figures either in world-frame or 
both in task-frame. 
 
 
 

Young adults 
(n = 24) 
 
 
 
 
 
 
 
 
 
 
Young adults 
(n = 19) 

Cognitive task- 
focus 
 
 
 
 
 
 
 
 
 
 
Cognitive task- 
focus  

Postural sway increased  
 
HEAD: 
 
 STS-ML, LTS-ML sway increased in coincident 

frames (high search-load only)  
 
HIP: 
 
 No effect 
 
 
Posture sway increased  
 
HEAD: 
 
 STS-ML, LTS-ML sway greater in wide-base than 

narrow-base standing (medium vs. low rotation-load) 
 STS-AP sway greater in narrow-base than wide-base 

standing in non-coincident frames (high rotation-load 
only) 

 STS-ML†, LTS-ML, LTS-AP sway greater in non-
coincident than coincident frames 

 STS-ML, STS-AP, LTS-ML, LTS-AP increased in 
narrow-base standing (high rotation-load only) 

 
HIP: 
 
 STS-AP , LTS-ML†, LTS-AP sway greater in non-

coincident than coincident frames 
 

Cognitive task  performance 
unchanged 
 
 
 
 
 
 
 
 
 
 
Cognitive task  performance 
unchanged 
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Appendix: ANOVAs to the Results 
 
Within-Participants ANOVAs 

 

Experiment 1    Visual search 

 
                                                                                              ACCURACY                                                           RT 

                                         
 
 
 

TARGET 
INSTR 
LOAD 
STANCE 
INSTR*STANCE 
INSTR*LOAD 
STANCE*LOAD 
INSTR*STANCE*LOAD 
INSTR*TARGET 
STANCE*TARGET 
INSTR*STANCE*TARGET 
LOAD*TARGET 
INSTR*LOAD*TARGET 
STANCE*LOAD*TARGET 
INSTR*STANCE*LOAD*TARG 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE 
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 

 
4.958E-03 
3.737E-03  
4.009E-03 
1.150E-03 
1.057E-03 
4.249E-03   
2.174E-03 
1.205E-03 
3.007E-03 
2.254E-03 
1.017E-03 
3.0 39E-03 
1.469E-03 
1.603E-03 
2.057E-03 
  

 
18.824 
.072 
5.412  
.647 
.704 
.007 
.123 
.222 
.990 
1.901 
1.000 
10.029 
.000 
.669 
.058 

 
< .001*** 
.792 
.031* 
.431 
.411 
.934  
.729 
.642 
.332 
.183 
.329 
.005** 
1.000 
.423 
.812 

 
.485 
.004 
.213 
.031 
.034 
.000 
.006 
.011 
.047 
.087 
.048 
.334 
.000 
.032 
.003 

 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 

 
4.284   
1.900E-04 
19.999 
4.108E-03  
2.430E-02 
5.774E-03 
3.087E-03 
3.988E-02  
4.454E-04 
3.557E-03 
9.023E-03 
2.163 
3.572E-03 
5.977E-04 
6.697E-03 

 
171.636 
.004 
212.876 
.460 
.152 
.413 
.244 
5.746 
.109 
1.368 
1.894 
107.068 
.596 
.327 
.944 

 
< .001*** 
.950 
< .001*** 
.505 
.152 
.528 
.627  
.026* 
.744 
.256 
.184 
<. 001*** 
.449 
.574 
.343 
 

 
.896 
.000 
.914 
.022 
.100 
.020 
.012 
.223 
.005 
.064 
.086 
.843 
.029 
.016 
.045 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 1    Posture sway, STS (Head) 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

INSTR 
STANCE 
LOAD 
INSTR*LOAD 
INSTR*STANCE 
LOAD*STANCE 
INSTR*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p   

 
  df 
 

   MSE
 

   F-stat.       p 
 

  2
p  

 
 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 

 
5.931E-04 
1.253E-04 
4.859E-04 
2.482E-04 
4.899E-04 
2.980E-05 
3.747E-04 

 
6.438 
148.305 
8.022 
.134 
.405 
3.092 
.021 

 
.020* 
< .001*** 
.010** 
.719 
.532 
.094 
.887  

 
.244 
.881 
.286 
.007 
.020 
.134 
.001 

 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 

 
4.699E-05 
8.443E-05 
8.096E-05 
2.305E-05 
2.912E-05 
2.695E-05 
6.694E-04 

 
7.021 
24.119 
10.525 
.071 
.381 
.552 
1.377 

 
.015* 
< .001* 
.004** 
.793 
.544 
.466 
.254 

 
.260 
.547 
.345 
.004 
.019 
.027 
.064  

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 1    Posture sway, LTS (Head) 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

INSTR 
STANCE 
LOAD 
INSTR*LOAD 
INSTR*STANCE 
LOAD*STANCE 
INSTR*LOAD*STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p   

 
  df 
 

   MSE 
 

   F-stat.       p 
 

  2
p  

 
 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 

 
5.683E-04 
1.372E-03 
2.067E-04 
1.490E-08 
3.848E-04 
2.113E-04 
2.991E-04 

 
2.834 
168.300 
6.262 
.564 
.000 
3.165 
.002 

 
.108 
< .001*** 
.021* 
.462 
.984 
.090 
.967 

 
.124 
.894 
.238 
.027 
.000 
.137 
.000 

 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 

 
6.590E-04 
7.075E-04 
2.853E-03 
2.141E-04 
3.679E-04 
3.679E-04 
4.094E-04 

 
6.258 
19.446  
19.879 
.311 
.151 
.147 
.288 

 
.022* 
< .001*** 
.015* 
.583 
.702 
.705 
.598  

 
.238 
.493 
.498 
.015 
.007 
.007 
.014 

 
 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001 

 

 

 



 

 

 

Experiment 2    Visual search 
 
                                                                                               ACCURACY                                                           RT 
                                         
 
 
 

TARGET 
FRAME 
LOAD 
STANCE 
TARGET*FRAME 
TARGET*LOAD 
FRAME*LOAD 
TARGET*FRAME*LOAD 
TARGET*STANCE 
FRAME*STANCE 
TARGET*FRAME*STANCE 
LOAD*STANCE 
TARGET*LOAD*STANCE 
FRAME*LOAD*STANCE 
TAR*FRAME*LOAD*STANCE 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE 
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
6.350E-03 
1.959E-03 
4.291E-03 
1.329E-03 
1.537E-03 
2.968E-03 
1.361E-03 
2.435E-03 
1.570E-06 
1.242E-03 
1.375E-03 
2.564E-03 
1.781E-03 
1.245E-03 
9.744E-04 
 

 
30.448 
.613 
22.655   
.048 
.042 
18.952 
2.301 
.236 
.005 
.006 
4.345 
1.006 
.674 
.462 
.007  

   
< .001*** 
.443  
< .001*** 
 829 
.840  
< .001*** 
.144 
.632 
.947 
.940 
.050* 
.327 
.421 
.504 
.933 

 
.592 
.028 
.519 
.002 
.002 
.474 
.099 
.011 
.000 
.000 
.171 
.046 
.031 
.022 
.000 

 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1,20 
1.20 

 
7.251E-02 
2.158E-02 
.145 
3.363E-02 
4.714E-03 
6.474E-02 
2.713E-02 
8.012E-03 
1.325E-02 
2.223E-02 
1.074E-02 
2.467E-02 
1.698E-02 
2.624E-02 
5.893E-03 

 
115.794 
3.787 
256.801 
.060 
2.792 
77.879  
5.302 
.600 
.019 
.385 
2.666 
.084 
.006 
1.910 
.043 

 
< .001*** 
.065 
< .001*** 
.809 
.110 
< .001*** 
.032* 
.447 
.891 
.541 
.117 
.775 
.940 
.182 
.838  

 
.846 
.153 
.924 
.003 
.117 
.788 
.202 
.028 
.001 
.018 
.113 
.004 
.000 
.083 
.002 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
Experiment 2    Posture sway, STS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

   F-stat. 
 

      p 
 

  2
p  

 
 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
3.383E-05 
5.153E-05 
8.184E-05 
4.884E-05 
3.259E-05 
4.419E-05 
3.081E-05 

 
.008 
17.756 
189.991 
.623 
.870 
.340 
.162 

 
.929 
< .001*** 
< .001*** 
.439 
.362 
.566 
.691 

 
.000 
.458 
.900 
.029 
.040 
.016 
.008 

 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
3.783E-05 
4.298E-05 
4.923E-05 
3.364E-05 
4.090E-05 
1.920E-05 
4.452E-05 

 
.088 
17.544 
22.028  
5.894 
1.018 
1.298 
.182  

 
.770 
 < .001*** 
 < .001*** 
.024* 
.324  
.267 
.674 

 
.004 
.455 
.512 
.219 
.046 
.058 
.009 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 2    Posture sway, LTS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat.       p 
 

  2
p  

 
 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
1.283E-04 
5.001E-03 
9.688E-04 
6.664E-04 
4.271E-04 
4.133E-04 
3.500E-04 

 
.260 
12.432 
191.499 
.001  
1.018 
.391 
.413 

 
.616 
.002**  
 < .001*** 
.978 
.324 
.538 
.527  

 
.012 
.372 
.901 
.000 
.046 
.018 
.019 

 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
1.769E-04 
2.939E-04 
4.677E-04 
3.451E-04 
2.292E-04 
1.800E-04 
2.216E-04 

 
.036 
23.189 
13.021 
1.310 
.328 
.917 
.268  

 
.852 
 < .001*** 
.002** 
.265 
.573 
.349 
.610 

 
.002 
.525 
.383 
.059 
.015 
.042 
.013 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 



 

 

Experiment 2    Posture sway, STS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE  
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
1.909E-05 
2.662E-04 
5.140E-05 
2.529E-05 
2.781E-04 
2.330E-05 
1.526E-05 

 
.001 
8.960 
146.939 .136  
2.350 
.692   
.397 

 
.979 
.007** 
< .001*** 
.716 
.140 
.415 
.535 

 
.000 
.299 
.875 
.006 
.101 
.032 
.019 

 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
1.874E-05 
2.591E-05 
2.559E-05 
1.309E-05 
1.704E-05 
1.793E-05 
2.044E-05 

 
.036  
12.273 
44.348 1.048 
1.111 
.317 
.923 

 
.852 
.002**  
 < .001*** 
.318 
.304 
.580 
.348 

 
.002 
.369 
.679 
.048 
.050 
.015 
.042 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 2     Posture sway, LTS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE  
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
2.456E-04 
2.454E-04 
5.618E-04 
3.354E-04 
2.372E-04 
2.455E-04 
1.745E-04 

 
.034 
7.976 
174.067 
.020 
2.004 
.400 
1.005 

 
.855 
.010** 
< .001*** 
.889 
.172 
.534 
.328 

 
.002 
.275 
.892 
.001 
.087 
.019 
.046 

 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 
1,21 

 
1.407E-03 
2.412E-04 
3.463E-04 
2.382E-04 
1.191E-04 
2.173E-04 
2.100E-04 

 
.073 
17.724 
18.214 
.256  1.496 
.337 
.236  

 
.789  
< .001*** 
< .001*** 
.618 
.235 
.568 
.632 

 
.003 
.458 
.464 
.012 
.067 
.016 
.011 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 3    Visual search 
 
                                                                                               ACCURACY                                                           RT 
                                         
 
 
 

TARGET 
FRAME 
LOAD 
STANCE 
TARGET*FRAME 
TARGET*LOAD 
FRAME*LOAD 
TARGET*FRAME*LOAD 
TARGET*STANCE 
FRAME*STANCE 
TARGET*FRAME*STANCE 
LOAD*STANCE 
TARGET*LOAD*STANCE 
FRAME*LOAD*STANCE 
TAR*FRAME*LOAD*STANCE  

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
7.871E-03 
2.354E-03 
7.818E-03 
3.042E-03 
2.493E-03 
6.173E-03 
2.608E-03 
2.853E-03 
1.943E-03 
8.224E-04 
2.767E-03 
1.276E-03 
3.077E-03 
1.595E-03 
4.424E-03 

 
33.852 
.056 
21.812  
1.838  
.053  
32.419  
.454  
.184  
.017  
.340 
.297 
2.089  
1.293 
.021 
.364 

   
< .001*** 
.816 
< .001*** 
.192 
.821 
< .001*** 
.509 
.673 
.898 
.567 
.592 
.166 
.270 
.887 
.554 

 
.653 
.003 
.548 
.093 
.003 
.643 
.025 
.010 
.001 
.019 
.016 
.104 
.067 
.001 
.020 

 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
4.783E-02 
2.421E-04 
21.5222 
4.636E-04 
6.522E-03 
3.455E-02 
1.637E-03 
1.390E-02 
4.722E-03 
1.238E-02 
8.457E-03 
1.173E-02 
5.175E-03 
1.320E-02 
7.347E-03 

 
111.114  
.005  
128.110 
.031 
.736  
83.931  
.000 
.330  
.013 
.135  
1.266 
.073  
.968 
1.217  
.726 

 
< .001*** 
.946 
 < .001*** 
.861 
.402 
 < .001*** 
.984 
.573 
.911 
.717 
.275 
.791 
.338 
.285 
.405 

 
.861 
.000 
.877 
.002 
.039 
.823 
.000 
.018 
.001 
.007 
.066 
.004 
.051 
.063 
.039 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Experiment 3    Posture sway, STS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE  
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
2.625E-05 
2.709E-05 
7.324E-05 
1.681E-05 
2.929E-05 
8.169E-05 
1.536E-05 

 
2.391 
16.055 
171.115 
2.610 
.099 
4.590  
6.964 

 
.139 
.001***  
< .001*** 
.124 
.757 
.046* 
.017* 

 
.117 
.471 
.905 
.127 
.005 
.203 
.279 

 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
1.398E-05 
6.731E-05 
1.932E-06 
1.729E-05 
1.308E-05 
3.255E-05 
3.533E-05 

 
.879 
16.000 
34.082 .112 
2.500 
.679 
.129 

 
.361 
.001*** 
< .001*** 
.742 
.131 
.421 
.724 

 
.047 
.471 
.654 
.006 
.122 
.036 
.007 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 3    Posture sway, LTS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE  
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
2.326E-04 
2.311E-04 
6.136E-04 
3.187E-04 
2.465E-04 
1.277E-04 
3.233E-04 

 
.815 
12.513 
270.137 
.064 
.323 
6.945 
1.057 

 
.379 
.002** 
 < .001*** 
.803 
.577 
.017*  
.318 

 
.043 
.410 
.938 
.004 
.018 
.278 
.055 

 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
3.106E-04 
4.163E-04 
4.560E-04 
3.134E-04 
1.603E-04 
2.292E-04 
2.337E-04 

 
3.692 
13.088 
10.194 
.449 
.178 
.076 
.966 

 
.071 
.002** 
.005** 
.511 
.678 
.786 
.339 

 
.170 
.421 
.362 
.024 
.010 
.004 
.051 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 3    Posture sway, STS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE  
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
1.274E-05 
1.508E-05 
4.494E-05 
6.591E-06 
1.647E-05 
1.106E-05 
1.130E-05 

 
3.491  
13.384 
137.601 
.411 
.029 
7.136 
1.754 

 
.078 
.002**  
 < .001*** 
.530 
.866 
.016* 
.202 

 
.162 
.426 
.884 
.022 
.002 
.284 
.089 

 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
6.793E-06 
1.861E-05 
2.223E-06 
6.475E-06 
5.302E-06 
1.203E-05 
7.469E-06 

 
4.654 
23.239 
27.411 
.692 
3.839 
.005 
.002 

 
.045* 
< .001*** 
< .001*** 
.416 
.066 
.945 
.964 

 
.205 
.564 
.604 
.037 
.176 
.000 
.000 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 3    Posture sway, LTS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE  
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
1.181E-04 
1.085E-04 
3.807E-04 
1.295E-04 
1.307E-04 
5.913E-05 
1.802E-04 

 
2.073 
9.797  
245.983 .007 
.269 
9.694  
.577 

 
.167 
.006** 
 < .001*** 
.935 
.611 
.006** 
.457 

 
.103 
.352 
.932 
.000 
.015 
.350 
.031 

 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 
1,18 

 
6.904E-05 
1.095E-04 
3.306E-04 
9.944E-05 
6.469E-05 
8.144E-05 
4.702E-05 

 
11.563  
20.378 
15.574 
.277  
.058  
.273 
.764 

 
.003** 
< .001*** 
.001*** 
.605 
.812 
.608 
.394 

 
.391 
.531 
.464 
.015 
.003 
.015 
.041 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 4    Visual search 
 
                                                                                               ACCURACY                                                           RT 
                                         
 
 
 

TARGET 
FRAME 
LOAD 
STANCE 
TARGET*FRAME 
TARGET*LOAD 
FRAME*LOAD 
TARGET*FRAME*LOAD 
TARGET*STANCE 
FRAME*STANCE 
TARGET*FRAME*STANCE 
LOAD*STANCE 
TARGET*LOAD*STANCE 
FRAME*LOAD*STANCE 
TAR*FRAME*LOAD*STANCE 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
54.502 
18.502 
20.541 
19.502  
73.618 
26.156 
29.560 
28.752 
23.695 
21.002 
18.810 
19.502 
24.752 
21.772 
16.445 

 
34.544 
1.432 
51.752 
.077 
5.124 
46.983 
.002  
.052 
2.762  
.072 
.003 
.077  
.061 
 3.779 
 1.319 

   
< .001*** 
.243 
< .001*** 
.784 
.033* 
< .001*** 
.964 
.821  
.109 
.791 
.955 
.784 
.807 
.063 
.262 

 
.580 
.054 
.674 
.003 
.170 
.653 
.000 
.002 
.099 
.003 
.000 
.003 
.002 
.131 
.050 

 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
5.566E-02  
5.500E-02 
.178  
3.298E-02 
1.599E-02 
5.008E-02 
2.387E-02 
1.458E-02 
1.430E-02 
2.405E-02 
2.025E-02 
2.643E-02 
1.258E-02 
1.889E-02 
1.908E-02 

 
193.400 .752 
 230.119 
.052 
.071 
141.705 
.442 
1.756 
1.078 
.061 
.022  
.235  
.146 
.380 
.253 

 
< .001*** 
.394 
 < .001*** 
.822 
.792 
 < .001*** 
.512 
.197 
.309 
.806 
.884 
.632 
.706 
.543 
.619 

 
.886 
.029 
.902 
.002 
.002 
.850 
.017 
.066 
.041 
.002 
.001 
.009 
.006 
.015 
.010 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

 Experiment 4    Posture sway, STS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

   F-stat.       p 
 

  2
p  

 
 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
3.519E-05 
1.794E-05 
9.739E-05 
3.066E-05 
3.332E-05 
2.657E-05 
2.014E-05 

 
.322 
.541 
176.818 
.013 
.013 
.043 
3.339 

 
.576 
.469 
 < .001*** 
.910 
.911 
.838 
.080  

 
.013 
.021 
.876 
.001 
.001 
.002 
.118 

 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
3.562E-05 
2.983E-05 
6.773E-05 
3.803E-05 
3.314E-05 
2.886E-05 
2.088E-05 

 
5.090 
9.463 
16.397 
1.872 
.099 
.000 
1.153 

 
.033* 
.005** 
 < .001*** 
.183 
.756 
.985 
.293 

 
.169 
.275 
.396 
.070 
.004 
.000 
.044 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 4    Posture sway, LTS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
3.441E-04 
1.751E-04 
1.093E-03 
2.152E-04 
2.088E-04  
2.393E-04 
2.191E-04 

 
3.592 
2.886 
230.576 
.070 
.073 
.174 
1.967 

 
.070 
.102 
 < .001*** 
.793 
.790 
.680 
.173 

 
.126 
.103 
.902 
.003 
.003 
.007 
.073 

 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
2.731E-04 
2.948E-04 
4.874E-04  
2.935E-04 
2.256E-04 
1.023E-04 
2.190E-04 

 
4.120 
3.801 
19.775 
.994 
1.136 
.756 
.643 

 
.053 
.063 
 < .001*** 
.328 
.297 
.393 
.430 

 
.141 
.132 
.442 
.038 
.043 
.029 
.025 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 4    Posture sway, STS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
4.330E-04 
1.547E-04 
3.083E-04 
1.879E-04 
2.202E-04 
1.030E-04 
8.204E-05 

 
4.139 
.707 
30.794   .472 
.069 
3.209 
6.338 

 
.053 
.409 
 < .001*** 
.498 
.795 
.085 
.019* 

 
.142 
.202 
.552 
.019 
.003 
.114 
.202 

 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
1.326E-04 
9.272E-05 
1.104E-04 
1.079E-04 
6.626E-05 
6.213E-05 
4.115E-05 

 
7.843 
.094 
8.154 
.007  
.107  
1.591 
3.621 

 
.010**  
.762 
.009**  
.934 
.746 
.219 
.069 

 
.239 
.004 
.246 
.000 
.004 
.060 
.127 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 4    Posture sway, LTS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

 2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat.       p 
 

  2
p  

 
  
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
2.938E-04 
1.303E-04 
9.267E-04 
2.306E-04 
2.656E-04 
1.548E-04 
1.679E-04 

 
10.528 
0.15 
163.542 
.072  
.003 
1.752 
4.377 

 
.003** 
.904 
 < .001*** 
.791 
.954 
.198 
.047*  

  .296 
.001 
.867 
.003 
.000 
.065 
.149 

 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 
1,25 

 
1.911E-04 
1.203E-04  
3.254E-04 
1.868E-04 
2.371E-04 
9.145E-05 
1.428E-04 

 
11.407 
1.445 
27.993 
.583 
.035 
.028 
.428 

 
.002** 
.241 
 < .001*** 
.452 
.853 
.868 
.519 

 
.313 
.055 
.528 
.023 
.001 
.001 
.017 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 5    Visual search 
 
                                                                                               ACCURACY                                                           RT 
                                         
 
 
 

TARGET 
FRAME 
LOAD 
STANCE 
TARGET*FRAME 
TARGET*LOAD 
FRAME*LOAD 
TARGET*FRAME*LOAD 
TARGET*STANCE 
FRAME*STANCE 
TARGET*FRAME*STANCE 
LOAD*STANCE 
TARGET*LOAD*STANCE 
FRAME*LOAD*STANCE 
TAR*FRAME*LOAD*STANCE 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
151.299 
23.750  
158.158  
21.645  
88.092 
100.987 
19.589  
68.339  
30.592  
31.891  
39.720 
21.694 
40.444 
27.895 
26.908 

 
24.540 
.474  
18.976 
.058 
.227 
15.163 
.144 
1.0291 
4.086 
1.186 
.197 
.014 
.626 
.045 
.046 

   
< .001*** 
.500 
< .001*** 
.813 
.639 
.001***  
.709 
.323 
.058 
.290 
.662 
.906 
.439 
.835 
.832 

 
.564 
.024 
.500 
.003 
.012 
.444 
.007 
.051 
.177 
.059 
.010 
.001 
.032 
.002 
.002 

 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
9.037E-02 .138 
.196 
1.488E-02 
3.031E-02 
6.838E-02 
6.191E-02 
7.256E-06 
2.226E-02 
1.889E-02 
2.742E-03 
2.564E-02 
2.359E-02 
2.115E-02 
2.451E-02 
 

 
93.389 
.075 
162.066 
5.745 
.045 
72.101 
.164 
.000 
5.820 
.165 
.110 
2.836 2.179 
1.537 
.533 

   
 < .001*** 
.788 
 < .001*** 
.027 
.834 
 < .001*** 
.690 
.987 
.026* 
.689 
.744 
.109 
.156 
.230 
.474 

 
.831 
.004 
.895 
.232 
.002 
.791 
.009 
.000 
.234 
.009 
.006 
.130 
.103 
.075 
.027 

 
 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
 
 



 

 

Experiment 5    Posture sway, STS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
8.969E-06 
2.589E-05 
8.262E-05     
1.831E-05 
1.256E-05 
1.655E-05 
1.296E-05 

 
.030 
1.599 
162.574 
.131 
.707 
.219 
.070 

 
.865 
.221 
 < .001*** 
.721 
.411 
.645 
.793 

 
.002 
.078 
.895 
.007 
.036 
.011 
.004 

 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
2.194E-05 
1.951E-05 
1.467E-03 
1.867E-05 
1.392E-05 
1.653E-05 
3.137E-05 

 
.199 
1.078 
25.305 
3.062 
1.397 
.330 
3.591 

 
.661 
.312 
< .001*** 
.096 
.252 
.572 
.073 

 
.010 
.054 
.571 
.139 
.068 
.017 
.159 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 5    Posture sway, LTS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

   F-stat.       p 
 

  2
p  

 
 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
7.080E-05 
1.743E-04 
1.188E-03 
7.646E-05 
1.057E-04 
2.047E-04 
8.607E-05 

 
.074 
.056 
157.898 
2.400 
2.802 
2.854 
.570 

 
.788 
.816 
 < .001*** 
.138 
.111 
.107 
.459 

 

.004 

.003 

.893 

.112 

.129 

.131 

.029 

 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
1.432E-04 
1.144E-04 
2.303E-04 
9.405E-05 
2.626E-07 
1.859E-04 
2.609E-04 

 
1.317 
.016 
48.601 
 6.808 
.002  
1.004 
.684 

 
.265 
.901 
 < .001*** 
.017* 
.965 
.329 
.418 

 
.065 
.001 
.719 
.264 
.000 
.050 
.035 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 5    Posture sway, STS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

 2
p  

 
 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
1.977E-04 
2.395E-05 
5.040E-05 
2.827E-05 
4.926E-05 
1.859E-04 
4.420E-05 

 
.560 
1.781  
164.321 
.012 
.483 
1.004 
.676 

 
.464 
.198 
< .001*** 
.914 
.496 
.329 
.421 

 
.029 
.086 
.896 
.001 
.025 
.050 
.034 

 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
2.208E-04 
1.352E-05 
3.121E-05  
1.967E-05 
2.394E-05 
2.106E-05 
2.360E-05 

 
.284  
4.947 
55.995 
.776 
1.655 
.081 
.791  

 
.600 
.038* 
< .001**  
.389 
.214 
.779 
.385 

 
.015 
.207 
.747 
.039 
.080 
.004 
.040 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
Experiment 5    Posture sway, LTS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
STANCE 
FRAME*LOAD 
FRAME*STANCE 
LOAD*STANCE 
FRAME*LOAD*STANCE 

  df 
 

    MSE
 

   F-stat. 
 

       p 
 

2
p  

 

 
 

  df 
 

   MSE
 

   F-stat.       p 
 

 2
p  

 
 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
1.122E-04 
1.317E-04 
6.385E-04 
4.828E-05 
1.379E-04 
1.036E-04 
6.170E-05 

 
.543  
.132 
199.477 
2.092 
.675 
7.725 
.002 

 
.470 
.720 
 < .001*  
.164 
.422 
.012* 
.969  

 
.020 
.007 
.913 
.099 
.034 
.289 
.000 

 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 
1,19 

 
9.347E-05 
7.492E-05 
2.125E-04  
4.997E-05 
1.247E-04 
1.141E-04 
1.905E-04 

 
.174 
.063 
50.684 
9.246 
.304 
.332 
.991 

 
.682 
.805 
 < .001*** 
.007** 
.588 
.571 
.332 

 
.009 
.003 
.727 
.327 
.016 
.017 
.050 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 



 

 

Experiment 6    Visual search 
 
                                                                                               ACCURACY                                                           RT 
                                         
 
 
 

TARGET 
FRAME 
LOAD 
DEPTH 
TARGET*FRAME 
TARGET*LOAD 
FRAME*LOAD 
TARGET*FRAME*LOAD 
TARGET*DEPTH 
FRAME*DEPTH 
TARGET*FRAME*DEPTH 
LOAD*DEPTH 
TARGET*LOAD*DEPTH 
FRAME*LOAD*DEPTH 
TAR*FRAME*LOAD*DEPTH 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
5.256E-03 
3.240E-03 
2.409E-03 
1.637E-03 
3.199E-03 
3.693E-03 
1.608E-03 
3.138E-03 
1.465E-03 
3.469E-03 
1.764E-03 
1.485E-03 
1.050E-03 
1.739E-03 
1.189E-03 

 
31.317  
.098  
23.373 
.195 
.002  
19.436 
1.786 
.052 
.360 
.017 
.299  
.039  
.772  
.633 
5.264  

   
< .001*** 
.757  < 
.001*** 
.663 
.964 
 < .001*** 
.194 
.822 
.554 
.898 
.590 
.844 
.389 
.434 
.031*  

 
.577 
.004 
.504 
.008 
.000 
.458 
.072 
.002 
.015 
.001 
.013 
.002 
.032 
.027 
.186 

 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
7.328E-02 
.120     
9.000E-02 
2.770E-02  
2.568E-02 
3.860E-02 
4.364E-02 
1.314E-02 
1.002E-02 
3.422E-02 
1.284E-02 
2.799E-02 
9.307E-03 
4.353E-02 
8.241E-03 

 
130.146  
.006  
420.334  
11.073  
.134  
143.718 
.323 
.643 
 3.600  
.546  
.211 
4.408 
.772  
.298  
2.388 

   
< .001*** 
.938 
< .001*** 
.003**  
.718 
< .001*** 
.576 
.431 
.070 
.468 
.650 
.047* 
.389 
.590 
.136 

 
.850 
.000 
.948 
.325 
.006 
.862 
.014 
.027 
.135 
.023 
.009 
.161 
.032 
.013 
.094 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 6    Posture sway, STS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
DEPTH 
FRAME*LOAD 
FRAME*DEPTH 
LOAD*DEPTH 
FRAME*LOAD*DEPTH 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
6.177E-05 
6.124E-05 
3.768E-05 
3.419E-05 
4.189E-05 
4.998E-05 
4.667E-05 

 
.047 
.022 
.355 
5.771 
.084 
1.664 
.172 

 
.831 
.882 
.557 
.025* 
.775 
.210 
.682 

 
.002 
.001 
.015 
.201 
.004 
.067 
.007 

 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
6.622E-05 
4.251E-05 
7.212E-05 
9.216E-05 
1.164E-04 
8.230E-05 
6.313E-05 

 
.507 
1.428 
.175 
1.312 
.290 
.790 
.008  

 
.484 
.244 
.679  
.264 
.595 
.383 
.930 

 
.022 
.058 
.008 
.054 
.012 
.033 
.000 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 

 
 
 
Experiment 6    Posture sway, LTS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
DEPTH  
FRAME*LOAD 
FRAME*DEPTH  
LOAD* DEPTH 
FRAME*LOAD* DEPTH 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat.       p 
 

  2
p  

 
 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
5.916E-04 
3.041E-04 
1.592E-04 
1.925E-04 
1.886E-04 
2.557E-04 
1.759E-04 

 
.007 
.072 
1.181 
4.411 
.257 
.421 
.264 

 
.933 
.791 
.288 
.047* 
.617 
.523 
.612  

 
.000 
.003 
.049 
.161 
.011 
.018 
.011 

 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
3.566E-04 
1.917E-04 
1.074E-04 
1.834E-04 
2.039E-04 
1.901E-04 
2.485E-04  

 
.966  
.720 
.031 
.855  
.491  
.499 
.149 

 
.336 
.405 
.862 
.365 
.490 
.487 
.703 

 
.040 
.030 
.001 
.036 
.021 
.021 
.006 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 6    Posture sway, STS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
DEPTH 
FRAME*LOAD 
FRAME*DEPTH 
LOAD*DEPTH 
FRAME*LOAD*DEPTH 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
6.461E-05 
4.651E-05 
4.327E-05 
4.312E-05 
3.588E-05 
3.726E-05 
4.373E-05 

 
.001 
.000 
1.749 
2.543 
.157 
1.974 
.272 

 
.973 
.995 
.199 
.124 
.696 
.173 
.607 

 
.000 
.000 
.071 
.100 
.007 
.079 
.012 

 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
2.462E-05 
3.453E-05 
2.111E-05 
3.926E-05 
2.813E-05 
2.113E-05 
1.941E-05 

 
1.388 
3.216. 
.866 
1.560 
.140 
.077 
.010  

 
.251 
.086 
.362 
.224 
.711 
.784 
.920 

 
.057 
.123 
.036 
.064 
.006 
.003 
.000 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 

 
 
Experiment 6    Posture sway, LTS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
LOAD 
DEPTH  
FRAME*LOAD 
FRAME*DEPTH  
LOAD* DEPTH 
FRAME*LOAD* DEPTH 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
5.433E-04 
5.364E-0 
1.897E-04 
4.661E-04 
1.482E-04 
2.188E-04 
1.618E-04 

 
.009 
.565 
.835 
2.850 
.489 
.000 
.494 

 
.925 
.460 
.370 
.105 
.491 
.999 
.489 

 
.000 
.024 
.035 
.110 
.021 
.000 
.021 

 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 
1,23 

 
3.542E-04 
1.188E-04 
1.501E-04 
1.255E-04 
2.051E-04 
2.248E-04 
1.715E-04 

 
.331 
.911 
.123 
1.393 
.076 
.951  
.473 

 
.570 
.350 
.729 
.250 
.785 
.340 
.498 

 
.014 
.038 
.005 
.057 
.003 
.040 
.020 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 7    Mental Rotation 
 
                                                                                               ACCURACY                                                           RT 
                                         
 
 
 

JUDGMENT 
FRAME 
ROTATION 
STANCE 
JUDGE*FRAME 
JUDGE*ROTATION 
FRAME*ROTATION 
JUDGE*FRAME*ROTATION 
JUDGE*STANCE 
FRAME*STANCE 
JUDGE*FRAME*STANCE 
ROTATION*STANCE 
JUDGE*ROTATION*STANCE 
FRAME*ROTATION*STANCE 
JUD*FRAME*ROT*STANCE 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 
1,18  
1,18 

 
22145.316 
131.037 
27736.067 
69.309  
8.093E-10   
13.266 
484.351 
283.463 
572.882 
1.083 
155.945  
125.353 
256.931    
159.465 
137.265  

 
32.683 
.534 
62.210 
.425 
.000 
.049 
2.146 
2.324 
3.251 
.005 
1.046 
1.103 
1.988  
.488 
1.391 

   
< .001*** 
.474 
 < .001*** 
.523 
 1.000 
.952 
.132 
 .112 
.088 
.944 
.320 
.343 
.150 
.618 
.262 

 
.645 
.029 
.776 
.023 
.003 
.000 
.107 
.114 
.153 
.000 
.055 
.058 
.100 
.072 
.026 

 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 
1,18  
1,18 

 
115.019  
.870 
67.180  
1.295  
8.47E-03 
1.312 
.289 
.320 
3.903E-02 
.284 
5.795E-0 
1.836 
.480 
.665 
5.168E-02 

 
55.843 
.388 
41.938 
1.188 
.009 
1.490 
.133 
.584 
.038 
.510 
.110 
 2.789 
.651 
.826  
.122  

   
< .001*** 
.541 
 < .001*** 
.290 
.924 
.239 
.876 
.563 
.847 
.484 
.744 
.075 
.528 
.446  
.886 

 
.756 
.021 
.700 
.062 
.001 
.076 
.007 
.031 
.003 
.028 
.006 
.006 
.134 
 044 
.007 

 
Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiment 7    Posture sway, STS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
ROTATION 
STANCE 
FRAME*ROTATION 
FRAME*STANCE  
ROTATION*STANCE 
FRAME*ROTATION* STANCE 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 

 
6.152E-05 
1.778E-05 
1.422E-04 
2.799E-05 
3.703E-05 
1.145E-05 
1.166E-03 

 
4.266 
.904 
214.108 
2.337 
.557 
3.767 
.177 

 
.054 
.414 
< .001*** 
.144 
.457 
.033* 
.801 

 
.192 
.048 
.922 
.115 
.031 
.173 
.010 

 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 

 
3.732E-05 
3.194E-05 
5.978E-05 
4.174E-05 
2.430E-05 
5.562E-05 
2.024E-05 

 
1.759 
2.588 
20.277 
.415 
.164 
.531 
3.739  

 
.201 
.091 
< .001**  
.611 
.691 
.588 
.033* 

 
.089 
.125 
.532 
.023 
.009 
.029 
.172 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 

 

Experiment 7    Posture sway, LTS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
ROTATION 
STANCE 
FRAME*ROTATION 
FRAME*STANCE  
ROTATION*STANCE 
FRAME*ROTATION* STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 

 
8.851E-04 
5.468E-04 
9.342E-04 
6.280E-05 
4.168E-05 
4.096E-04 
3.802E-04 

 
5.388 
.310 
192.969 
2.589 
1.012 
4.401 
.680 

 
.032* 
.736 
< .001**  
.105 
.328 
.031* 
.495 

 
.230 
.017 
.915 
.126 
.053 
.196 
.036 

 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 

 
3.311E-03 
3.395E-04 
9.439E-05 
8.558E-03  
4.921E-05 
1.640E-04 
2.880E-04 

 
7.129 
1.056  
12.051 
.274 
.221 
.302 
1.737 

 
.016* 
.358 
.003** 
.762 
.644 
.741 
.191 

 
.284 
.055 
.401 
.015 
.012 
.016 
.088 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

 Experiment 7    Posture sway, STS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
ROTATION 
STANCE  
FRAME*ROTATION 
FRAME*STANCE  
ROTATION*STANCE 
FRAME*ROTATION* STANCE 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 

 
5.085E-05 
3.552E-05 
1.052E-04 
4.864E-05 
2.551E-05 
6.488E-05 
6.606E-05 

 
2.261 
.084 
67.039 
1.169 
1.025 
1.595 
1.278 

 
.150 
.920 
< .000*** 
.322 
.325 
.217 
.291 

 
.112 
.005 
.788 
.061 
.054 
.081 
.066 

 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 

 
2.283E-05 
2.282E-05 
7.980E-05 
4.110E-05  
9.422E-06 
4.566E-05 
1.481E-05 

 
5.139 
.279  
7.998 
.831 
.000 
.681 
2.001 

 
.036* 
.758 
.011* 
.762 
.644 
.741 
.191 

 
.222 
.015 
.308 
.044 
.000 
.036 
.100 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 

 
 
Experiment 7    Posture sway, LTS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

FRAME 
ROTATION 
STANCE  
FRAME*ROTATION 
FRAME*STANCE  
ROTATION*STANCE 
FRAME*ROTATION* STANCE 

  df 
 

    MSE 
 

   F-stat. 
 

       p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 

 
6.309E-04 
2.792E-06 
9.853E-04 
8.768E-05 
3.853E-04 
3.207E-04 
6.944E-04 

 
3.970 
.279 
79.217 
2.240 
.143 
2.663 
1.115  

 
.062 
.758 
< .001*** 
.140 
.709 
.113 
.313 

 
.181 
.015 
.815 
.011 
.008 
.129 
.058 

 
1,18 
1,18 
1,18  
1,18 
1,18  
1,18 
1,18 

 
1.201E-03 
1.852E-03 
2.304E-03  
1.565E-03 
1.003E-03 
2.085E-03 
1.728E-03 

 
5.429 
.713 
3.333 
.444 
.780 
1.355 
.930 

 
.032* 
.497 
.085 
.605 
.389 
.267 
.358 

 
.232 
.038 
.156 
.024 
.042 
.070 
.049 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Between-Participants ANOVAs 
 
Experiments 2-3    Visual search 
 
                                                                                               ACCURACY                                                           RT 
                                         
 
 

 
INSTR 
TARGET 
TARGET*INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE 
STANCE*INSTR 
TARGET*FRAME 
TARGET*FRAME*INSTR 
TARGET*LOAD 
TARGET*LOAD*INSTR 
FRAME*LOAD 
FRAME*LOAD*INSTR 
TARGET*FRAME*LOAD 
TARG*FRAME*LOAD*INSTR 
TARGET*STANCE 
TARGET*STANCE*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
TARGET*FRAME*STANCE 
TAR*FRAME*STANCE*INST 
LOAD*STANCE 
LOAD*STANCE*INSTR 
TARGET*LOAD*STANCE 
TAR*LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 
TARGET*LOAD*STANCE 
TAR*LOAD*STANCE*FRAME*INST 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE 
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,39 
1,39 
1,39 
1,39 
1,39  
1,39  
1,39 
1,39 
1,39 
1,39  
1,39  
1,39 
1,39 
1,39 
1,39  
1,39  
1,39 
1,39 
1,39  
1,39
1,39 
1,39
1,39  
1,39 
1,39 
1,39
1,39 
1,39 
1,39 
1,39 
1,39 

 
1.315E-02 
.459 
- 
2.305E-04 
- 
.265 
-  
3.607E-03 
- 
1.917E-04 
- 
.239 
- 
1.662E-04 
- 
2.279E-07 
- 
5.698E-06 
- 
3.683E-04 
- 
9.989E-04 
- 
5.225E-03 
- 
5.121E-04 
- 
4.214E-04 
- 
9.749E-04 
- 

 
3.557 
65.079 
.880 
.108 
.478 
44.766 
1.376 
1.708 
1.145 
.097 
.004 
53.800 
6.213 
0.86 
2.069 
.000 
.418 
.003 
.021 
.206 
.292 
4952 
.687 
2.664 
.006  
.215 
2.048 
.300 
.105 
.380  
.297  

   
0.67 
< .001*** 
.354 
.745 
.494 
 < .001*** 
.248 
.199 
.291 
.757 
.947 
< .001**  
.017* 
.771 
.158 
.993 
.552 
.955 
.886 
.652 
.592 
.486 
.109 
.111 
.940 
.645 
.160 
.587 
.748 
541 
589 

 
0.84 
.625 
.022 
.003 
.012 
.534 
.034 
.042 
.029 
.002 
.000 
.580 
.137 
.002 
.050 
.000 
.011 
.000 
.001 
.005 
.007 
.013 
.064 
.064 
.000 
.005 
.050 
.008 
.003 
.010 
.008 
 

 
1,39 
1,39 
1,39 
1,39 
1,39  
1,39  
1,39 
1,39 
1,39 
1,39  
1,39  
1,39 
1,39 
1,39 
1,39  
1,39  
1,39 
1,39 
1,39  
1,39 
1,39 
1,39 
1,39  
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
.451 
13.652 
- 
4.837E-02  
- 
58.351 
- 
2.491E-03  
- 
1.594E-03 
- 
7.877 
- 
8.019E-02 
- 
7.818E-05 
- 
3.350E-04 
- 
1.985E-03 
- 
3.040E-03 
- 
1.592E-04 
- 
3.331E-03 
- 
7.207E-04 
- 
3.421E-04 
- 

 
.612 
218.356 
.411 
.2083 
.478 
360.426 
1.999 
.101 
.364 
.286  
2.821 
150.369 
.332 
3.447   
.974 
.008 
2.783 
.036 
.312 
.117 
2.075  
.289 
.444  
.008 
.072  
.288 
.300 
.370 
4.563 
.547 
2.190 

   
.439 
< .001*** 
.525 
.157  
.494 
 < .001*** 
.165 
.752 
.550 
.596 
.101 
 < .001*** 
.568 
.071 
.330 
.931 
.103 
.850 
.580 
.734 
.158 
.594 
.509 
.927 
.790 
.595 
.587 
.547 
.039* 
.464 
.147 

 
.015 
.848 
.010 
.051 
.012 
.902 
.049 
.003 
.009 
.007 
.067 
.794 
.008 
.081 
.024 
.000 
.067 
.001 
.001 
.003 
.051 
.007 
.011 
.000 
.002 
.007 
.008 
.009 
.105 
.014 
.053 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 



 

 

Experiments 2-3    Posture sway, STS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 

 

INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE  
STANCE*INSTR 
FRAME*LOAD  
FRAME*LOAD*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
2.305E-04 
2.975E-05 
- 
1.332E-02 
- 
2.816E-06 
- 
7.015E-05 
- 
4.987E-05 
- 
8.008E-05 
- 
2.719E-05 
- 

 
.143 
1.073 3.494 
33.356 
1.015 
379.021 
1.996 2.138 
1.520 
.824 
.004 
2.477 
1.119  
.297 
2.397 

 
.707 
.307 
.069 
< .001*** 
.320 
< .001*** 
.167 
.152 
.225 
.369 
.947 
.124 
.748 
.297 
.130 

 
.004 
.027 
.082 
.461 
.025 
.907 
.048 
.052 
.038 
.021 
.000 
.060 
.003 
.028 
.058 

 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
3.798E-04 
1.504E-04 
- 
1.780E-02 
- 
2.274E-06 
- 
1.311E-05 
- 
2.573E-05 
- 
3.488E-05 
- 
4.492E-05 
- 

 
.297 
.542 
.000  
34.172 
2.130 
52.960 .107 
4.962  
2.320 
.824 
3.175 
.014 
1.119 
.011 
.064 

 
.589 
.466 
.998 
<.001*** 
.152 
< .001*** 
.745 
.032* 
.225 
.136 
.841 
.908  
.748 
.917 
.802 

 
.008 
.014 
.000 
.467 
.052 
.576 
.003 
.113 
.038 
.056 
.001 
.000 
.003 
.000 
.002 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 



 

 

Experiments 2-3    Posture sway, LTS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE  
STANCE*INSTR 
FRAME*LOAD  
FRAME*LOAD*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
1.830E-03 
2.970E-04 
- 
7.902E-02  
- 
.352 
- 
7.995E-05 
- 
9.218E-05 
- 
8.730E-05 
- 
9.837E-05 
- 

 
1.060 
.813  
.860 
25.156  
1.382  
444.956 
.739 
.017  
2.092 
2.651 
.266 
3.054 
.007 
.030 
2.049 

 
.310 
.371 
.359 
< .001*** 
.247 
< .001*** 
.395 
.898 
.156 
.112 
.609 
.088 
.933 
.864 
.160 

 
.026 
.020 
.020 
.392 
.034 
.919 
.019 
.000 
.051 
.064 
.007 
.073 
.000 
.001 
.050 

 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
3.581E-03 
4.161E-04   
- 
1.220E-02 
- 
1.074E-02 
- 
1.020E-05 
- 
8.669E-06 
- 
1.548E-05 
- 
2.495E-05 
- 

 
.344 
1.822 
2.946 
35.054 
.276 
23.240 
.032 
.175 
.299 
.044 
.451 
.766 
.299 
1.095 
.038 

 
.561 
.185 
.094 
< .001*** 
.602  
< .001*** 
.859 
.678  
.588 
.835 
.506 
.387 
.587 
.302 
.847  

 
.009 
.045 
.070 
.473 
.007 
.373 
.001 
.004 
.008 
.001 
.011 
.019 
.008 
.027 
.001 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 



 

 

Experiments 2-3    Posture sway, STS, Hip 
 
                                                                                                      ML                                                                        AP 
                                         
 
 
 

INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE  
STANCE*INSTR 
FRAME*LOAD  
FRAME*LOAD*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
1.37E-04 
1.814E-04 
- 
4.407E-07 
- 
1.378E-06 
- 
1.597E-05 
- 
2.141E-05 
- 
8.012E-05 
- 
1.255E-06 
- 

 
.082 
1.073 
3.987  
20.699 
.012 
297.153 
1.779  
.349  
.982 
1.444  
.483 
4.461 
.123 
.093 
1.501 

 
.776 
.282 
.053 
< .001*** 
.913 
< .001*** 
.190 
.558 
.328 
.237 
.491 
.041* 
.728 
.762 
.228 

 
.002 
.030 
.093 
.347 
.000 
.844 
.044 
.009 
.025 
.036 
.012 
.103 
.003 
.002 
.037 

 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
2.291E-04 
1.897E-05 
- 
7.335E-07 
- 
1.729E-06  
- 
1.713E-05 
- 
8.726E-05 
- 
3.733E-05 
- 
9.909E-06 
- 

 
1.539 
1.425 
.693 
33.171 
1.205 
71.773 
.893  
1.704 
.044 
.008 
3.375 
4.461 
.041 
.679 
.295 

 
.222 
.240 
.410 
< .001*** 
.279 
< .001**  
.351 
.199 
.836 
.930 
.074 
.245 
.840 
.415 
.590 

 
.038 
.035 
.017 
.460 
.030 
.648 
.022 
.042 
.001 
.000 
.080 
.006 
.001 
.017 
.008 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
 
  



 

 

Experiments 2-3    Posture sway, LTS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE  
STANCE*INSTR 
FRAME*LOAD  
FRAME*LOAD*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 

  df 
 

    MSE
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
1.210E-03 
1.504E-04 
- 
2.146E-04 
- 
.191  
- 
4.200E-04 
- 
4.078E-05 
- 
5.518E-05 
- 
1.024E-05 
- 

 
1.293 
.844 
2.398 16.985
  
1.208  
401.294  
.352  
.018  
1.717  
2.156  
.352  
3.399 
.031  
.058   
1.917 

 
.262 
.364 
.130 
< .001*** 
279 
< .001*** 
.556 
 893 
.198 
.150 
.557 
.073 
.861 
.810 
.174 

 
.032 
.021 
.058 
.202 
.030 
.911 
.009 
.000 
.042 
.052 
.009 
.080 
.001 
.001 
.047 

 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 
1,39 

 
2.308E-03 
2.611E-04 
- 
6.417E-07  
- 
1.144E-02   
 
4.168E-06 
- 
7.499E-05 
- 
1.107E-05 
- 
1.726E-05 
- 

 
2.887 
2.645 
4.654  
35.132 
.059 
33.742 
.002  
.024 
.109  
.790 
.764  
.072  
.815 
.013  
.744 

 
.097 
.112 
.035*  
< .001*** 
.809 
< .001*** 
.964 
.878  
.743 
.380 
.338 
.790 
.372 
.910 
.394 

 
.069 
.064 
.185 
.474 
.002 
.464 
.000 
.001 
.003 
.020 
.019 
.002 
.020 
.000 
.019 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
 
 
 
 



 

 

Experiments 4-5    Visual search 
 
                                                                                               ACCURACY                                                           RT 
                                         
 
 
 

INSTR 
TARGET 
TARGET*INSTR 
FRAME 
FRAME*INSTR 
LOAD 
INSTR*LOAD 
STANCE 
STANCE*INSTR 
TARGET*FRAME 
TARGET*FRAME*INSTR 
TARGET*LOAD 
TARGET*LOAD*INSTR 
FRAME*LOAD 
FRAME*LOAD*INSTR 
TARGET*FRAME*LOAD 
TARG*FRAME*LOAD*INSTR 
TARGET*STANCE 
TARGET*STANCE*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
TARGET*FRAME*STANCE 
TAR*FRAME*STANCE*INST 
LOAD*STANCE 
LOAD*STANCE*INSTR 
TARGET*LOAD*STANCE 
TAR*LOAD*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
TARGET*LOAD*STANCE 
TAR*LOAD*STANCE*FRAME*INST 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 

 
 

  df 
 

    MSE
 

F-stat. 
 

       p 
 

  2
p  

 
 
1,44 
1,44 
1,44 
1,44  
1,44   
1,44  
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44  
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
 

 
1.315E-02 
57.512 
-  
.762  
- 
387.626  
-  
1.054E-03 
- 
81.356 
-   
39.742 
- 
2.023 
- 
50.585 
- 
188.780 
- 
14.553 
- 
3.763 
- 
.074 
- 
21.07 
- 
26.422 
- 
15.302 
- 

 
7.117 
57.512 
3.072 
1.685 
.037  
49.139   
4.847 
2.718 
.000 
.114 
1.761  
47.202 
.680 
.048  
.080 
.659  
1.103 
.354  
7.078 
1.148 
.566 
.184 
.135 
.787 
.007 
.668 
.281 
1.082 
1.906 
730  
.237 
 

   
< .011* 
< .001*** 
.087 
.201  
.849  
 < .001*** 
.033* 
.717 
.994 
.707 
.191 
< .001* 
.414 
.828 
.778 
.421 
.229 
.555  
.011* 
.290 
.456 
.670 
.715 
.932 
.418 
.599 
.304 
.174 
.398 
.629 
 

 
.139 
.567 
.065 
.037 
.001 
.528 
.099 
.000 
.003 
.038 
.039 
.518 
.001 
.002 
.015 
.024 
.008 
.025 
.139 
.013 
.004 
.003 
.002 
.000 
.015 
.006 
.024 
.042 
.016 
.005 
 

 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
.451 
18.900 
- 
3.337E-03  
- 
71.367 
- 
 6.102E-02  
-    
2.512E-03  
- 
11.737  
- 
2.063E-02 
- 
1.071E-02 
- 
3.563E-02  
- 
2.774E-04 
- 
6.511E-03 
- 
2.274E-02 
- 
2.022E-02 
- 
3.665E-02 
- 
1.736E-03 
- 

 
.002 
267.529  
.006 
.037 
.487 
385.040 
.002 
2.425 
1.475 
.113 
.001 
 202.418  
.131 
.512 
.002  
.538 
.581 
 2.009 
 7.074 
.013  
.208  
.029 
.127 
.872 
2.487 
1.167 
2.277  
1.845  
.320 
.811 
.075 

   
.962 
< .001*** 
.938 
.849  
.489 
< .001*** 
.964 
.127 
.231 
.738 
.970 
< .001*** 
.719 
.478 
.968 
.467 
.450 
.163 
.011* 
.651  
.911 
.865 
.723 
.365 
.122 
.286 
.138 
.181 
.575 
.373 
.785 

 
.000 
.859 
.000 
.001 
.011 
.897 
.000 
.052 
.032 
.003 
.000 
.821 
.003 
.012 
.000 
.012 
.013 
.044 
.137 
.000 
.005 
.001 
.003 
.019 
.053 
.026 
.049 
.040 
.007 
.018 
.002 
 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 



 

 

Experiments 4-5    Posture sway, STS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE  
STANCE*INSTR 
FRAME*LOAD  
FRAME*LOAD*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 

  df 
 

    MSE
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,44
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
2.187E-04 
6.790E-06 
-   
3.350E-06 
- 
3.016E-02 
- 
3.638E-07 
- 
9.561E-06 
- 
5.342E-07 
- 
2.198E-05 
- 

 
1.753 
.284 
.140 
.362 
2.222 
331.358 
.004 
.099 
.022 
.359 
.188 
.024 
1.290 
2.202 
.204 

 
.192 
.596 
.710 
.550 
.143 
< .001***  
.950 
.755 
.882 
.667 
.552 
.878 
.653 
.145 
.262 

 
.038 
.006 
.003 
.008 
.048 
.883 
.000 
.002 
.001 
.008 
.004 
.001 
.028 
.048 
.005 

 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
2.821E-04 
1.029E-04 
- 
5.823E-06 
- 
3.016E-02 
- 
1.265E-04 
- 
4.507E-06 
- 
2.843E-06 
- 
2.250E-05 
- 

 
.163 
3.674 
1.797 
2.295 
8.317 
331.358 
.732  
 2.264 
.000 
.181 
.818 
.121 
.141 
4.950 
.886 

 
.688 
.062 
.187 
.137 
.006**  
< .001*** 
.397 
.045* 
.983 
.672 
.371 
.730 
.709 
.352  
.330 

 
.004 
.077 
.039 
.050 
.159 
.883 
.016 
.088 
.000 
.004 
.019 
.003 
.003 
.101 
.028 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 



 

 

Experiments 4-5    Posture sway, LTS, Head 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE  
STANCE*INSTR 
FRAME*LOAD  
FRAME*LOAD*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,44
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
1.874E-03 
2.261E-04 
- 
2.948E-04 
-  
.431  
- 
1.624E-04 
- 
2.405E-04 
- 
1.937E-04 
 
3.594E-04 
- 

 
.163 
2.037 
2.743 
1.686  
.891 
 380.218 
.025 
1.046 
.374 
1.463 
.655 
.863 
2.242 
2.223 
.439 

 
.689 
.161 
.105 
.201 
.350 
 < .001***  
.875 
.312 
.544 
.233 
.423 
.358 
.141 
.143 
.151 

 
.004 
.044 
.059 
.037 
.020 
.896 
.001 
.023 
.008 
.032 
.015 
.019 
.048 
.048 
.010 

 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
3.206E-03 
1.053E-03 
- 
5.328E-04 
- 
2.081E-02 
- 
9.174E-04 
- 
1.035E-04 
- 
1.983E-05 
- 
3.193E-04 
- 

 
.731 
8.317 
.641 
2.456 
2.045 
55.301 
.582 
4.423  
.290  
.556 
.643  
.144 
1.866 
1.347  
.021 

 
.397 
.008*  
.428 
.124 
.160  
< .001***   
.450 
.593 
.460 
.427 
.707 
.179 
.252 
.427 
.886 

 
.016 
.159 
.014 
.053 
.044  
.557 
.014 
.091 
.007 
.012 
.014 
.003 
.041 
.030 
.000 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
 
 

 

 

 

 

 

 



 

 

Experiments 4-5    Posture sway, STS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE  
STANCE*INSTR 
FRAME*LOAD  
FRAME*LOAD*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,44
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
5.701E-04 
4.002E-04 
- 
1.293E-04 
- 
1.760E-02 
- 
3.333E-05 
- 
3.882E-05 
- 
4.008E-05 
- 
3.666E-04 
- 

 
.211 
1.208  
3.872   
1.418  
.040  
89.378   
.089  
.280 
.371  
.265  
.008  
.529  
4.105 
1.817 
1.393  

 
.648 
.278 
.055 
.240 
.842 
 < .001***   
.767 
.599 
.546 
.928 
.609 
.471 
.049* 
.185 
.203  

 
.005 
.027 
.081 
.031 
.001 
.670 
.002 
.006 
.008 
.000 
.006 
.012 
.085 
.040 
.031 

 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
3.902E-04 
2.343E-04 
- 
1.765E-05   
- 
2.623E-03 
- 
5.580E-06 
- 
8.854E-06 
- 
3.105E-05 
- 
2.304E-05 
- 

 
.319 
1.373  
4.341  
.302   
1.120 
34.421  
1.780  
.080  
.177  
.185  
.699  
1.280  
.686 
.878 
3.802   

 
.575 
.248   
.043*  
.586 
.296 
< .001***   
.189 
.779 
.676  
.670 
.354 
.407 
.262 
.412 
.058 

 
.007 
.030 
.090 
.007 
.025 
.439 
.039 
.002 
.004 
.004 
.020 
.016 
.028 
.015 
.080 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
   
 
 
 



 

 

Experiments 4-5    Posture sway, LTS, Hip 
 
                                                                                                      ML                                                                         AP 
                                         
 
 
 

INSTR 
FRAME 
FRAME*INSTR 
LOAD 
LOAD*INSTR 
STANCE  
STANCE*INSTR 
FRAME*LOAD  
FRAME*LOAD*INSTR 
FRAME*STANCE 
FRAME*STANCE*INSTR 
LOAD*STANCE 
LOAD*STANCE*INSTR 
FRAME*LOAD*STANCE 
FRA*LOAD*STANCE*INSTR 

  df 
 

    MSE 
 

   F-stat.        p 
 

  2
p  

 

 
 

  df 
 

   MSE 
 

  F-stat. 
 

      p 
 

  2
p  

 
 
1,44
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
1.245E-03 
9.489E-04 
- 
4.919E-06 
-   
.276 
- 
2.376E-06 
- 
4.396E-05   
- 
1.084E-05 
- 
3.279E-04 
- 

 
.047 
4.406  
8.403 
.038 
.125 
343.569 
.168 
.156 
.690 
.209 
.295 
.817  
7.780 2.686 
2.551  

 
.830 
.042*   
.006**  
.847 
.725 
 < .001***   
.684 
.694  
.411 
.650 
.590 
.371  
.008* 
.108 
.117  

 
.001 
.091 
.160 
.001 
.003 
.886 
.004 
.004 
.015 
.005 
.007 
.018 
.150 
.058 
.055 

 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 
1,44 

 
2.525E-03 
1.143E-03 
- 
4.988E-0 
- 
1.987E-02 
-  
8.609E-05 
- 
7.409E-06 
- 
3.230E-05  
- 
2.397E-04 
- 

 
.087 
7.677 
5.173  
.495   
1.058  
71.820 
.824   
.674 
4.158 
.039 
.226  
.319 
.126   
1.467 
.164 

 
.770 
.008**  
.028*  
.485    
.309 
 < .001***  
.369 
.416  
.047* 
.844  
.637 
.575 
.724  
.232 
.688 

 
.002 
.105 
.149 
.011 
.033 
.620 
.018 
.015 
.086 
.001 
.005 
.007 
.003 
.032 
.004 

 

Asterisks confirm the outcome of repeated measures ANOVA (* p =<.05; ** p =<.01; *** p =<.001) 
 
 
 
 
 
 
 



 

 

 

 


