
DOCTOR OF PHILOSOPHY

Case based design of knitwear

Paul Richards

2013

Aston University



 

 

 

 Some pages of this thesis may have been removed for copyright restrictions. 

 

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either 

yours or that of a third party) or any other law, including but not limited to those relating to 

patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please 

read our Takedown Policy and contact the service immediately 

  



Case Based Design Of Knitwear

Paul Richards

Doctor of Philosophy

Aston University

October 2012

© Paul Richards, 2012

Paul Richards asserts his moral right to be identi�ed as the author of this thesis

This copy of the thesis has been supplied on the condition that anyone who consults it is understood to

recognise that its copyright rests with its author and that no quotation from the thesis and no

information derived from it may be published without proper acknowledgement.

1



Aston University

Case Based Design of Knitwear

Paul Richards

Doctor of Philosophy

2012

In the developed world we are surrounded by man-made objects, but most people give little thought
to the complex processes needed for their design. The design of hand knitting is complex because much
of the domain knowledge is tacit. The objective of this thesis is to devise a methodology to help designers
to work within design constraints, whilst facilitating creativity.

A hybrid solution including computer aided design (CAD) and case based reasoning (CBR) is proposed.
The CAD system creates designs using domain-speci�c rules and these designs are employed for initial
seeding of the case base and the management of constraints.

CBR reuses the designer's previous experience. The key aspects in the CBR system are measuring the
similarity of cases and adapting past solutions to the current problem. Similarity is measured by asking
the user to rank the importance of features; the ranks are then used to calculate weights for an algorithm
which compares the speci�cations of designs.

A novel adaptation operator called rule di�erence replay (RDR) is created. When the speci�cation to
a new design is presented, the CAD program uses it to construct a design constituting an approximate
solution. The most similar design from the case-base is then retrieved and RDR replays the changes
previously made to the retrieved design on the new solution.

A measure of solution similarity that can validate subjective success scores is created. Speci�cation
similarity can be used as a guide whether to invoke CBR, in a hybrid CAD-CBR system. If the newly
resulted design is su�ciently similar to a previous design, then CBR is invoked; otherwise CAD is used.

The application of RDR to knitwear design has demonstrated the �exibility to overcome de�ciencies
in rules that try to automate creativity, and has the potential to be applied to other domains such as
interior design.

Key words: case based reasoning, computer-aided design, heuristics.

2



To Adele and Leo:

I watch you grow

you'll learn much more

than I'll ever know.

3



Acknowledgements

I would like to thank my supervisor Dr Anikó Ekárt for giving me the opportunity to undertake this

fascinating research, and more importantly for her invaluable guidance, advice and support during the

project.

I am grateful to Sirdar Spinning Ltd for providing not only some of the funding for this work, but

also access to data, and experts in the �eld. This work was supported by a CASE studentship through

EPSRC.

The love and support of my family has been particularly important. My wife Sarah and my children

Adele and Leo have been very patient during the course of this work. I am grateful for my parents for

their important support, both emotional and �nancial.

4



Contents

1 Introduction 16

1.1 Design problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Knitwear design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Case based reasoning (CBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Motivation and research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Case Based Reasoning 22

2.1 What is CBR? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Foundations of CBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Types of tasks performed by CBR systems . . . . . . . . . . . . . . . . . . . . . 29

2.2 Challenges in constructing a CBR system . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Case representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.4 Ensuring quality and e�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.5 CBR Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.3.1 Rule-based reasoning (RBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3.2 Model-based reasoning (MBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.3 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.4 Analysis of CBR's capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4.1 Assumptions of CBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4.2 Some de�nitions about domain theory . . . . . . . . . . . . . . . . . . . . . . . 82

2.4.3 Advantages of CBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5



2.4.4 Disadvantages of CBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Design 88

3.1 Research in Design Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Computer aided design (CAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Knitwear and garment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Categorising design processes: creative versus mechanistic . . . . . . . . . . . . . . . . . 92

4 The Knitwear Domain 95

4.1 Designing sweaters and cardigans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Shapes used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Measurements and constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Stitches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Stitch Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Other design options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Comparison with other processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Knitwear CAD System 106

5.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 Existing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.2 SEACOP speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Questionnaire and Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Interactive Sketch Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.3 Stitch Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.4 Sketch Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.5 Sketch Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.6 Managing Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.7 Sketch Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Representing and comparing designs 156

6.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.1 Levels of detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.2 Features of a good representation from the domain perspective . . . . . . . . . . 158

6.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Questionnaire Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2.1 Similarity for e�cient retrieval in CBR . . . . . . . . . . . . . . . . . . . . . . . 165

6



6.2.2 Calculating the similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.3 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.3 Sketch Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3.1 Sketch similarity contrasted with related problems . . . . . . . . . . . . . . . . . 175

6.3.2 Measures based on translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3.3 Proportion of Common Shape Points (PCSP) . . . . . . . . . . . . . . . . . . . 184

7 Adaptation 186

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.1.1 Knitwear design speci�c aspects of adaptation . . . . . . . . . . . . . . . . . . . 186

7.1.2 Null adaptation is not applicable . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.1.3 Rule di�erence replay (RDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.2 Sketch adaptation in SEACOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2.1 Obtaining the comparison case . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2.2 Mapping sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2.3 Implementing RDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8 Experiments 205

8.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.2.1 Case base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.2.2 Design of automated experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.2.3 Evaluation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.3.1 Hypotheses 1 and 2: CBR compared with the rules . . . . . . . . . . . . . . . . 211

8.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.3.3 Hypothesis 3: Comparing score and MAD . . . . . . . . . . . . . . . . . . . . . 219

8.3.4 Hypothesis 4: Score and questionnaire similarity . . . . . . . . . . . . . . . . . 221

8.3.5 Hypothesis 6: Questionnaire similarity and the amount of change . . . . . . . . . 221

8.3.6 Hypothesis 8: E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.4 Estimating the e�ect of case base size . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.4.2 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.5.1 Signi�cance of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.5.2 Recommendations for Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

7



9 Conclusions 241

9.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9.2 Applicability to other domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

9.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

9.4 Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A Knitting stitches and patterns 250

B Chart Tool 253

B.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.1.1 Changing preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.1.2 Editing Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

B.2 Generating Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

B.2.1 Simpli�ed representation for identifying polygons . . . . . . . . . . . . . . . . . . 256

B.2.2 Understanding the geometry of cycle-polygons . . . . . . . . . . . . . . . . . . . 260

B.2.3 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

B.2.4 Assigning row tensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

B.2.5 Creating portions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

B.2.6 Assigning stitches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

B.2.7 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B.3 Correctness of Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B.3.1 Determining the shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

B.3.2 Applying shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

B.3.3 Determining validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

B.3.4 Making a group valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

B.3.5 Limitations of correctness algorithms . . . . . . . . . . . . . . . . . . . . . . . . 271

C Questionnaire Similarity Settings 274

D Example Sketches 278

E Case Base Composition 285

Bibliography 285

8



List of Figures

2.1 The 4RE cycle, adapted from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Time-line of Early CBR Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Taxonomic Hierarchy of CBR Systems, adapted from [2] . . . . . . . . . . . . . . . . . . 30

2.4 Types of case representation, as discussed in [3] . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Traditional CBR versus Generalised Cases (adapted from [4]) . . . . . . . . . . . . . . . 39

2.6 Taxonomy of adaptation operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7 Taxonomy of strategies for multiple case reuse in derivational replay . . . . . . . . . . . 63

2.8 15 puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.9 Qualitative illustration of the utility problem . . . . . . . . . . . . . . . . . . . . . . . . 68

2.10 Idiosyncratic mapping (inspired by [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.11 Taxonomy of hybrid systems, adapted from [5] . . . . . . . . . . . . . . . . . . . . . . . 77

2.12 4 stage competence model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Neck shape options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Armhole shape options (with a slash neck) . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Sleeve shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Example of a knitting chart showing a stitch pattern . . . . . . . . . . . . . . . . . . . . 101

4.5 Example stitch pattern: as textual instructions . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Questionnaire and sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 New stitch pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Specifying a new pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Editing a new stitch pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Right-click menu on the knitting chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Dragging points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Resizing bounding boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8 Adding a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.9 Specifying pockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9



5.10 Pockets applied to front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.11 Right-clicking on a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.12 Pop-up menu for a piece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.13 Topmost part of side panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.14 Class Diagram of Garment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.15 Class Diagram of sketch control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.16 Class Diagram: Move Advisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.17 Proportional Mover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.18 Armhole bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.19 Line Mover change level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.20 Finding a diagonal alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.21 Example shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.22 Crossover repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.23 Non-intersect repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.24 Fix which will revert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.25 Example combinations of options for the sketch of the front . . . . . . . . . . . . . . . . 149

5.26 Garment Relationships Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.27 Regions that must have a consistent length . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1 Sample portion of the XML �le for a garment . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Sample portion of an XML �le showing move advisers . . . . . . . . . . . . . . . . . . . 164

6.3 Example output from the di�erent weight generation functions . . . . . . . . . . . . . . 169

6.4 Sample portions of the similarity �le . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 User interface for setting similarity preferences . . . . . . . . . . . . . . . . . . . . . . . 175

6.6 Likert matrix example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.7 Example shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.8 Simple example of a translation used to implement MAD . . . . . . . . . . . . . . . . . 181

6.9 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.1 CBR Cycle modi�ed by RDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2 Armhole and neck roles in the front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.3 Example of a situation in which an adaptation rule will apply . . . . . . . . . . . . . . . 200

7.4 Abstract Move Adviser - hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.1 Distribution of Scores: CBR compared to Rules . . . . . . . . . . . . . . . . . . . . . . 212

8.2 budd58b: CBR result in magenta, goal shown in black . . . . . . . . . . . . . . . . . . . 214

10



8.3 budd58b: rules output in magenta, goal shown in black . . . . . . . . . . . . . . . . . . 214

8.4 s3014: CBR output in magenta, goal shown in black . . . . . . . . . . . . . . . . . . . . 215

8.5 s3014: rules output in magenta, goal shown in black . . . . . . . . . . . . . . . . . . . 216

8.6 s3003: rules output in magenta, goal shown in black . . . . . . . . . . . . . . . . . . . . 216

8.7 s3041: CBR output in magenta, goal shown in black . . . . . . . . . . . . . . . . . . . . 217

8.8 Replayed case where s3041 is the query, and s3311 is retrieved . . . . . . . . . . . . . . 218

8.9 Changes in s3041 after ETC versus questionnaire similarity . . . . . . . . . . . . . . . . 219

8.10 MAD versus score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.11 score versus MAD, with trend-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.12 Questionnaire similarity versus score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.13 Breakdown of results for CBR, rules and tied situations . . . . . . . . . . . . . . . . . . 223

8.14 Scatter plots with Questionnaire similarity . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.15 Questionnaire similarity histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8.16 Proportion of null changes versus questionnaire similarity . . . . . . . . . . . . . . . . . 226

8.17 Mean proportion of null changes versus questionnaire similarity . . . . . . . . . . . . . . 227

8.18 Distribution of questionnaire similarities . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.19 Questionnaire similarity versus score, showing logarithmic regression model . . . . . . . . 230

8.20 Comparison of estimated and actual values for questionnaire similarity, given the score . . 231

8.21 Proportion of technical successes versus questionnaire similarity . . . . . . . . . . . . . . 233

8.22 E�ect of the probability of success on the cases required for 'excellence' . . . . . . . . . 235

8.23 Illustration of function which increases threshold with age . . . . . . . . . . . . . . . . . 240

B.1 Chart tool showing a sweater with a bottom border . . . . . . . . . . . . . . . . . . . . 254

B.2 Detail mode showing the row number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

B.3 E�ect of preserve outline at neck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

B.4 Inserting a stitch at the edge of a sleeve in detail mode . . . . . . . . . . . . . . . . . . 257

B.5 Line, redundant and curve edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

B.6 Dealing with leaf vertices via intersects . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

B.7 Tension Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

B.8 Representation of charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B.9 Raw shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

D.1 Front of a round-neck sweater with a yoke and bottom border and a �tted waist . . . . . 280

D.2 Front of a v-neck cardigan with a yoke and a bottom border and a �tted waist (3 buttons) 281

D.3 v-neck Raglan sweater with a large centre pocket and horizontal band . . . . . . . . . . 282

D.4 Raglan sleeve with rectangular panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

11



D.5 Set-in sleeve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

12



List of Tables

2.1 Di�erences and similarities between design and planning . . . . . . . . . . . . . . . . . . 34

2.2 CBR systems using hierarchical representations . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Minkowski distance formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 An example of the use of Likert scales for weights . . . . . . . . . . . . . . . . . . . . . 47

2.5 Classi�cation of similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Creative versus mechanistic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Categories of knitting stitches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Abstracted move advisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Functions of Move Advisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Di�erences between a constrainer, fundamental constraint and bounding box . . . . . . . 144

5.5 Localised Stretches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6 Consistency information for default garment . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7 Consistency information for fully editable garment which has been edited to introduce

some asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1 Sleeves and symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 weight generation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 Likert score translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4 Example of the use of a Likert matrix for symbolic features . . . . . . . . . . . . . . . . 171

6.5 Features that are compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.6 E�ect of changing the bottom of the example shape . . . . . . . . . . . . . . . . . . . . 178

6.7 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.8 Constraints on operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.9 Constraints on shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

13



7.1 Criteria for whether mapping occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.2 Coordinate di�erence preservers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.3 Di�erences between adaptation rules and move advisers . . . . . . . . . . . . . . . . . . 203

8.1 Distribution of Scores: CBR versus rules . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.2 Scores grouped by source of garment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.3 Distribution of ranks of questionnaire similarity of retrieved cases . . . . . . . . . . . . . 218

8.4 Distribution of di�erences between estimated score based on MAD, and actual score . . . 221

8.5 Breakdown of results for CBR, rules and tied situations . . . . . . . . . . . . . . . . . . 222

8.6 Correlations with Questionnaire Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.7 Regression analyses: questionnaire similarity versus score . . . . . . . . . . . . . . . . . 230

8.8 Comparison of estimated and actual values for questionnaire similarity, given the score . . 231

8.9 Proportion of technical successes versus questionnaire similarity . . . . . . . . . . . . . . 232

8.10 Monte Carlo Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

A.1 Standard stitch patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

A.2 List of stitches used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

A.3 List of stitches used, continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

B.1 Options for editing charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

B.2 Statistics for a simple sweater front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

B.3 Terms used in algorithm B.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

B.4 Shaping using cast o� or cast on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

C.1 Weights used for features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

C.2 Armhole styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

C.3 Neck shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

C.4 Button positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

C.5 Sleeve lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

C.6 Stitch patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

C.7 Wearers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

C.8 Waist options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

C.9 Fastener options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

C.10 Cu� options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

C.11 Neck options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

D.1 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

14



E.1 Miscellaneous cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

E.2 Cases from Sirdar Spining Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

15



Chapter 1

Introduction

�Imagination is more important than knowledge.� - Albert Einstein

In the developed world we are surrounded by man-made objects, but most people give little thought to

the often complex and labour intensive processes needed for the design of these objects. A particular

design process (that of hand knitting) is explored here in order to build an understanding of how design

thinking can be supported by automated systems. This has the potential to ease the burden of work on

a designer, improve the quality of designs, and also reduce costs.

1.1 Design problems

This project is an exploration of how to support a designer to solve a complex design problem. Design is

an activity with both creative and technical aspects. In order for products to be commercially successful,

it is often important that they are aesthetically pleasing or stylish. However, designed objects are also

functional, and they must be capable of ful�lling the purpose required by the end user. Usually, designs

have to adhere to constraints; for example they may have limits on their size, weight or cost. Also, many

problem domains have rules that the design must adhere to, in order for it to be valid.

Designers are typically given a so-called brief or speci�cation, which de�nes the limits of their work.

It is the presence of rules and a speci�cation that di�erentiates design from art. A software system can

support a designer by helping them to work within the limits of the speci�cation, but also allowing them

the necessary creative freedom.

In order to support a design process, a software system must allow the designer to be creative.

Designers must have the freedom to explore di�erent solutions in their mind's eye, and to view the

design from di�erent levels of detail. Also, the system must support the technical aspects of the design

by reducing the burden of checking that the designer normally performs, so that the designer has the

reassurance that their work is technically feasible.

16



Design is a competitive activity and designers take pride in the individual nature of their work.

However, design is to some extent derivative as designers reuse aspects of existing designs. In fact, the

creativity is derivative also: although this seems contradictory, innovation is copied and applied to new

situations. So, a software system could assist the designer by being a repository of design knowledge,

that the designer can reuse.

1.2 Knitwear design

Hand knitting has been employed to produce clothes since the thirteenth century or earlier [6], and even

in modern times it is a popular leisure activity. Knitters work from patterns which consist of a mix of

textual instructions and codes. Although knitting patterns look complex to the uninitiated, knitwear

design comprises of an even more skilled set of activities. There is an initial creative phase where the

designer studies fashion trends and formulates high-level ideas about the appearance of the garments.

The designer will usually do a freehand (pencil and paper) sketch of the garment, capturing the shapes

in their mind's eye.

The sketch will then be annotated with several important measurements, for example the overall

length and width. The measurements are chosen so that the garment that is produced is wearable, and

also contains the required shapes. There are conventions that are normally followed in knitwear design, for

example most garments are symmetrical. This PhD concerns the design of the most frequent garments,

i.e. sweaters and cardigans. These are normally knitted as separate pieces of fabric, and then sewn

together. A very important convention is that the pieces must �t together, otherwise the garment will

not be feasible. Thus, knitwear design has both creative and technical aspects.

The shapes used in knitwear drawings or sketches are a mixture of straight lines and curves. In

cardigans and sweaters, curves are used for features such as a neckline, armhole and top of the sleeve.

The curves can normally be described by simple mathematical models, as hand knitting is not a domain

where things are expressed in high precision. The complexity in knitwear design arises because of the

many combinations of options of shape that are possible. The design must contain the shapes that are

dictated by fashion trends, but also be technically feasible as a knitted garment.

An automated system could assist knitwear design in several ways. The technical rules of knitting

could be enforced by the system, to ensure the output is correct. It could provide visual feedback

to changes so that the designer's need to be creative is supported. Ideally, it could also anticipate a

designer's requirements. Also, a system should make it easy to re-apply the work done in previous designs

to meet new design requirements. This has the potential to reduce the labour content of the design

process, presumably also reducing costs.

Typically, computer-aided design (CAD) packages tend to be e�ective at supporting the mechanistic

17



stages of design, and often provide rapid feedback, allowing the designer to visualise their work as it

progresses. However, they are often poor at anticipating the needs of a designer, since automation is

often �hard-coded� into the CAD program. So, a more �exible solution is sought for the knitwear problem.

1.3 Case based reasoning (CBR)

CBR is an arti�cial intelligence technique which aims to solve new problems by directly reusing the

solutions to previously encountered problems. Many techniques work by reusing previous knowledge;

however the di�erence is that CBR reuses speci�c snippets of knowledge, known as cases. It is distinct

from other strategies that solve problems by using general rules or formulae.

CBR was inspired by research in cognitive science that suggested humans often solve everyday problems

by remembering previous solutions to similar problems [7]. For example, a doctor might diagnose a patient

by remembering a previous patient with similar symptoms, or a computer help-desk operator might resolve

a problem by remembering a previous issue [8].

CBR systems contain a database or store of previously solved problems. There are many variants on

CBR, but in general the technique works as follows. When a new problem is input into the system, it is

compared against the problems in the store. The problem from the store that is the most similar to the

new problem is then retrieved. The retrieved problem is then reused for the solution to the new problem.

The new problem is retained with its new solution in the store for future use. The CBR system builds up

experience as the case base grows, since the more problems are contained in the store, the more likely

there will be one that is very similar to each new problem that is presented.

There are two main challenges in CBR: how to compare problems, and how to reuse solutions. Some

method of measuring the similarity between problems is necessary in order to determine which of the

problems in the store is the most similar to the current problem.

The second challenge is how to reuse the solution (that had previously been applied to the problem

from the store) to solve the new problem. This is usually the most complex part of CBR, since although

the two problems are similar, they are usually not identical and so the solution cannot often be reused

without changes. Some CBR systems avoid this challenge by simply presenting the previous solution to

the user and leaving it up to them how it is used; this is sometimes called CBR-lite [4, 9].

CBR is often cited as being useful for the sort of problems which are in areas not underpinned by

strong theories. If there is a theory, formula or law which can be used to solve the problem, then CBR

may not be necessary. However, many �real world� problems, for example solving computer faults in a

help-desk, do not have such formulae and often rely on the intuition or experience of humans. CBR can

be e�ective at storing and reusing this experience. Since hand knitting is such a �real world� problem,

CBR has the potential to be used as a repository of the designer's knowledge.

18



1.4 Motivation and research objectives

This thesis seeks to explore solutions to a complex design problem: how to automate the knitwear design

process, in a way which minimises the labour of the designer. The problem naturally lends itself to two

types of solutions. The most obvious is a computer-aided design (CAD) program that uses straightforward

rules to help the user construct a design. The rules would be necessary to ensure a sensible starting point:

it would be unrealistically labour intensive to expect a user to create a design from nothing.

The second solution that this research will explore in detail is the use of case-based reasoning. Many

design problems have a repetitive aspect, since designers reuse previous designs as sources of inspiration.

Also, fashion trends repeat themselves from one garment to the next. So, CBR has the potential to act

as a store of design expertise, and to re-apply this to new designs.

Both of these problem-solving approaches have obvious de�ciencies. The chief disadvantage of the

CAD approach is that it is di�cult to construct rules to aid design. It is impossible to anticipate all of a

designer's requirements, since there are large variety of designs that are possible. The di�culty with CBR

is that it learns from experience, and so it requires a store of previous experience to work. This research

is starting from a zero base; although some designs are accessible, they are not in an electronic format

that would be amenable to CBR.

The strategy used is a combination of the two: a hybrid CAD-CBR system. This thesis is about

exploring the issues involved with constructing a hybrid system, and experimenting with its e�cacy. Such

an exploration can give rise to many questions, such as:

i What is the most e�ective way of using a combination of CBR and CAD to automate the knitwear

design process?

ii How can problems be compared?

iii How can the solutions to problems be reused?

iv How can we measure success? What constitutes a 'good' design?

v How much �experience� does a CBR system need to acquire before it becomes e�ective in the

knitwear problem?

Knitting is an interesting domain for computer science research for a number of reasons. Firstly, little

academic study has been made of hand knitting. Most of the literature concentrates on machine knitting,

which has di�erent characteristics. Secondly, it is a problem domain which has technical aspects: knitted

garments have to obey rules in order to be valid, although there is some leeway in those rules. Thirdly,

knitwear is a creative domain where success is subjective: there are no mathematical formulae which can

19



tell you if a cardigan is beautiful! Finally, some aspects of knitwear design are repetitious. The same

shapes and methods are used again and again; this makes it amenable to automation.

Finally, hand knitting is interesting because it is a realistic problem. All problems must have limits

and therefore are underpinned by assumptions. However, many academic studies concentrate on `toy

problems', which are limited by the use of unrealistically strong assumptions. Therefore, it is sometimes

di�cult to see how the work on these toy problems can be extended to other areas. This issue does not

apply to knitwear design, which is a messy �real-world� problem. One of the objectives of this thesis is

to limit the assumptions behind the work so that the resulting system is as realistic as possible.

1.5 Thesis layout

The thesis is organised as follows.

Chapter 2: Case Based Reasoning. This chapter explains the concepts of CBR in detail, and

provides a critical literature review of work in the area. It begins with an examination of CBR's early

roots in cognitive science, then follows this with a discussion of the types of tasks that CBR is used for.

Then, each of the challenges to constructing a CBR system is discussed in detail: case representation,

retrieval, adaptation and case base maintenance. There is a discussion about hybrid systems, for example

the combination of CBR and rule-based systems. The chapter ends with a discussion of the assumptions

behind CBR, and its advantages and disadvantages.

Chapter 3: Design. This chapter reviews work in design studies. There then follows a short present-

ation of relevant topics in computer-aided design research. Knitwear design is then discussed, with a

focus on hand knitting, although literature in this area is scarce. Finally, two categories of design process

are de�ned (creative and mechanistic). The di�erences between the two categories are discussed, with

reference to the examples of other work discussed in the chapter.

Chapter 4: The Knitwear Domain. This chapter provides the necessary background material about

the problem domain of hand knitting. It begins with a high-level description of the issues in knitwear

design, then discusses the types of shapes that are commonly used. As with all design domains, knitwear

has constraints, and the nature of these is explained. Then, the more detailed concepts in knitwear design

(stitches and stitch patterns) are explained. Finally, knitwear design is compared to other processes such

as weaving or machine knitting.

Chapter 5: Knitwear CAD System. This chapter presents a detailed description of the computer-

aided design system which allows designs to be created, viewed and edited. Initially, the requirements

20



for the system are discussed, with reference to the existing design process (which is largely manual with

little automation). The system has two main parts: questionnaire and sketch. The way in which the user

completes the questionnaire and this generates a sketch is described, and the tools for editing the sketch

are presented. There are two major complications in the knitwear sketches: managing constraints, and

resizing. The way in which both of these issues is handled is explained in detail.

Chapter 6: Representing and comparing designs Both the CBR and CAD functionality require the

storage and manipulation of data. This chapter explains how the data is represented; it begins with a

discussion of what constitutes a good representation in this problem domain. Then, the implementation

of the knowledge representation is brie�y discussed. The knowledge representation must support the

comparison of problems, in order that the most similar problem may be obtained. Similarity assessment is

one of the most important challenges in CBR, and is addressed in SEACOP by comparing questionnaires

using a weighted-sum algorithm, which is explained and justi�ed. Finally, sketch similarity is concerned

with measuring the similarity between solutions to the design problems presented here; this is intended

to be used as an objective measure of the success of CBR and CAD.

Chapter 7: Adaptation Reuse of knowledge can take many forms, and its knitwear design aspects are

discussed. This chapter presents a novel strategy for reusing design knowledge called rule di�erence replay

(RDR). RDR works in processes which ful�l certain criteria, and these criteria are listed and the reasons

for them justi�ed. The application of RDR to knitwear design is then explained. An important part of

this strategy is the method of mapping the features which are in common to two di�erent designs. The

discussion �nishes with an explanation of how checks are performed to ensure the reuse was appropriate

in order to produce a technically feasible design.

Chapter 8: Experiments This chapter presents the experiments that were performed on the hybrid

CAD-CBR system. The hypotheses that the experiments are seeking to prove (or disprove) are stated.

Then, the experimental methodology is outlined. Two experiments were performed: one uses the 'leave

one out' methodology which is common in machine learning. Subsidiary to this is a Monte Carlo simulation

which attempts to make predictions about how the CBR can learn from experience. The signi�cance of

the results of the experiments are analysed. There is an explanation of whether the evidence a�rms

or contradicts each of the hypotheses. Recommendations are made as to how the algorithms presented

could form part of a coherent system.

The thesis then concludes with a synopsis of the main �ndings, and a brief discussion of how the work

could be extended.

21



Chapter 2

Case Based Reasoning

�Each problem that I solved became a rule which served afterwards to solve other prob-

lems.� - Rene Descartes

2.1 What is CBR?

This section introduces the problem-solving methodology known as case based reasoning (CBR). After

explaining the basic concepts of CBR, its theoretical and historical foundations are discussed. Then, the

capabilities of CBR are explained via a discussion of the types of problems that CBR systems have been

successfully applied to.

2.1.1 Introduction

Humans are typically taught to solve problems by other humans; initially their parents, and then their

elders, teachers, peers or colleagues. Some problems are straightforward and a complete description of

their solution can be given. However, many problems are more complex, involving several choices which

are interdependent on each other; or even seemingly being impervious to logic at all, and supposedly

solved using intuition. Complex tasks in this category include medical diagnosis, engineering design, and

judicial decision-making.

People who are experienced in solving such complex problems often teach novices by giving them a

series of rules. However, there is evidence (e.g. [7]) that when the learner becomes competent, many

of the rules are gradually abandoned, and problems are solved by remembering previous occasions when

solutions have been successful. For example, a doctor on encountering an ill patient may recall a previous

instance of a patient with the same (or similar) symptoms. He or she may repeat the treatment given,

possibly with some modi�cations, assuming that similar problems require similar solutions.

CBR is a problem-solving methodology which is inspired by human intellectual reasoning. CBR

systems learn through experience by reusing the solutions to previously encountered problems, similar to

22



Figure 2.1: The 4RE cycle, adapted from [1]

the doctor encountering symptoms which are reminiscent of a previous patient. It is substantially di�erent

to other techniques because it uses examples to map problems to their solutions, rather than relying on

rules, formulae or logic.

Although research in CBR began in the 1980s, it was in�uenced by earlier works in cognitive science

and philosophy. Schank [7] proposed theories about how the human memory is organised, which argued

that people learn from examples through failure. Early CBR systems (e.g. Cyrus [10]) were a proof of

concept of problem-solving capabilities.

CBR research �ourished during the 1990s, with extensive development of both theory and applications.

CBR builds up a repository of previous successful solutions, called a case base. New problems are solved

by �nding and adapting a similar problem from the case base. Aamodt and Plaza's seminal paper [1]

summarised the CBR process as a 4 step cycle, as shown in Figure 2.1. The cycle always starts with a

new problem, pi, of which a solution is required; this is known as the query case [11]. CBR proceeds by

searching for a similar problem to pi from the case base, labelled in �gure 2.1 as pa; the CBR system will

retrieve pa from the case base. Problem pa was previously stored together with its solution sa. Starting

from the assumption that similar problems tend to have similar solutions, if sa is a satisfactory solution

to pi, then the task is complete. However, if it is not satisfactory then sa will still be subject to reuse,

but in addition an attempt will be made to revise it into a suitable solution (si). If the change succeeds

and the new solution is deemed to be of su�cient quality, then the CBR system will retain it in the case

base for future retrieval.

The original 4RE model is deceptively simple. Retrieval requires an e�ective measure of similarity, and

23



often uses an index to improve performance. Retrieval can be problematic if the case base is small, since

there may not be a su�ciently similar case in the case base. If the case base is large, then performance

issues may arise and there may be several similar cases to choose from. Reuse can be problematic if

the query case and retrieved case are structured di�erently. Revision (otherwise known as adaptation) is

almost always the most challenging step in CBR, since the mapping between problem space and solution

space may be complex and poorly understood.1 In some systems, adaptation is not automatic, and is

left to the user; this is known as null adaptation [12]. Retention gives rise to decisions such as whether

to retain all cases, or just the highest quality ones. Also, sometimes operations are performed to control

the quality and e�ciency of the case base, known as case base maintenance. These issues are described

in detail in section 2.2.

Researchers have proposed amendments and extensions to the 4REs model, e.g. R5 [13]. The R5

model extends the traditional 4RE model with an initial repartition step. Repartitioning is based on

the idea that the domain is divided into problems and solutions by a partition which �corresponds to a

similarity relation�. The aim is to control case base quality by using the similarity relation not just in

retrieval, but also to construct the case base.

An entirely di�erent de�nition of repartition is given in [14]. Here, an R7model of CBR involving case

merging is proposed, and repartition refers to the process in which a case is decomposed into constituent

parts. Case merging is discussed in detail in section 2.2.3.3.

2.1.2 Foundations of CBR

Before the detail (of how CBR is performed) is discussed, it is important to examine CBR's origins. The

theory of CBR has been in�uenced by the early systems, which were not developed solely as problem-

solving tools, but also as an adjunct to research in cognitive science. This subsection summarises the

major milestones in CBR research. For an amusing visual presentation of these milestones, see [15]. I

have prepared a time-line of important CBR systems (�gure 2.2), which is arranged by the date of the

�rst signi�cant publication. The shaded systems deal with case based design (see section 2.1.3.2).

2.1.2.1 Beginnings

Some researchers (e.g. [1, 9]) cite Wittgenstein [16] as being the earliest documented work that consti-

tutes the theoretical foundation of CBR. However, the immediate roots of CBR were at Yale University

in the 1970s with Schank's work on �dynamic memory� [7]. Schank formed a model of how he believed

humans completed tasks by recalling events. In his model, the growth of the memory is triggered by

failure. A script is the generalisation of a set of situations, whereas a scene is a speci�c instance of that

script. A new situation may appear to occur within the context of a script; this creates an expectation.

1Adaptation is not required in some CBR systems, for example in many classi�cation tasks.

24



Figure 2.2: Time-line of Early CBR Systems

If the script does not encompass that situation, then there has been an expectation failure, and this new

situation is stored within the dynamic memory. A memory organisation packet (MOP) stores a list of

scenes, and the goal that they are directed towards. The dynamic memory is hierarchical, and a thematic

organisation packet (TOP) is a more general concept than a MOP. Early CBR systems organised their

case base in the way that re�ected Schank's dynamic memory model. These early systems were meant

to not only mimic human problem solving, but perhaps also provide a justi�cation for his model.2

The �rst CBR system was CYRUS, by Kolodner [10]. The domain of CYRUS was events in the

lives of the former US politicians Cyrus Vance and Edmund Muskie. The focus was on case structure

and retrieval; there was no adaptation3. CYRUS was able to answer questions presented to it in natural

language. If the system is presented with a new fact, it is able to incorporate it into its case base.

Items were stored in �Episodic Memory Organisation Packets� (E-MOPs). An E-MOP has two parts:

generalised information which describe its instances, and a conceptual tree which uses the di�erences

between �episodes� (cases) to index them. MOPs were arranged into a hierarchy, with sub-MOPs for

more specialised concepts. Indexes were chosen carefully by an algorithm which prioritised those that

were likely to be �predictive�. If features often occur together then one is said to be predictive of the

other. The system was dynamic in that not only could new indices be created, but also new E-MOPs. It

was the dynamic nature of the memory (the system was �self-organising�) in CYRUS that made this truly

ground-breaking work.

2.1.2.2 Proof of concept systems

Other researchers sought to build on the success of CYRUS, by providing evidence of CBR's capabilities.

MEDIATOR [17] was designed to resolve disputes by suggesting compromises. It organised cases in a

memory which was based on CYRUS. Problems were treated as a series of sub-goals, which begin with

2A caveat needs to be added to this discussion. Schank et al devised a model of how the human mind might work.
Several early CBR systems used that model as the basis for their case memory, and those systems showed promising results.
However, this does not constitute a proof that Schank's original model of the mind is correct.

3Adaptation was omitted from CYRUS because it was unnecessary. The purpose of the system was to retrieve facts
about actual events in history. Adaptation would be required for activities such as speculating about events that are beyond
the knowledge of the system (i.e. not in the case base) or inventing �ctional events. However, this was outside the scope
of CYRUS.

25



interpreting and classifying the problem itself. Each sub-goal was attempted using CBR, but if this failed

then a series of heuristics, e.g. �dependency-directed backtracking� were used. It had built in policies, e.g.

�divide equally�, which it attempted to use to resolve situations; MEDIATOR was capable of providing

a good textual explanation of its reasoning. A particularly interesting feature of MEDIATOR was how

it dealt with failure; recovery from failure was treated as a problem to be solved. Failure was then

remedied as per the main problem-solving strategies: �rst using CBR to search for previous failures, then

re-interpreting the problem. Since a problem in MEDIATOR was divided into a series of sub-problems, it

was able to use several previous cases to attempt to solve the main goal.

JUDGE [18] was a system that modelled judicial sentencing, in cases involving serious crime. In

some ways criminal sentencing is a model task for a CBR system, as the stages in the CBR cycle can

be clearly mapped to a judge referencing previous cases in a law library. During retrieval the judge �nds

the old case in the library, in reuse he cites it in his judgement, and in adaptation he alters the sentence

to re�ect the di�ering circumstances of the new and old cases. JUDGE modelled a simpli�ed version

of the circumstances, such as the o�ender's motives. An interesting feature was the �di�erence analysis

procedures� which compare the retrieved case with the query case. JUDGE would iterate through the

cases, looking for points of di�erence. It would then make a determination as to which of the two

crimes was more severe. A noteworthy feature of JUDGE was its use of rules. If the query and retrieved

case contained a substantial number of common features, a �sentencing rule� would be stored, with the

common features used as an index. If a new case was presented and it matched a rule, then that rule

could be invoked. JUDGE also had the capability to modify rules.

CHEF [19] was a case based planning system in the domain of Szechwan cooking. Its input consisted

of a set of goals, and its output was a single plan (a recipe). CHEF maintained a map of features and

how they mapped to particular problems; thus it was able to anticipate those problems. It contained

�modi�cation rules� for adaptation. If a plan failed, CHEF built a �causal explanation� and executed a

�plan repair� process. The explanation was used to locate a thematic organisation packet (see above)

which contained a strategy for dealing with the failures, e.g. reordering steps. The repaired plan was

stored and indexed in such a way that such a failure could be avoided in future.

CASEY [20, 21] dealt with diagnosis in coronary heart disease. It was built on top of a model-based

reasoning (MBR) (see section 2.3.2) program known as the Heart Failure program; this provided the

output if the CBR did not work. Retrieval in CASEY worked by matching all the features of a case,

using algorithms from the Heart Failure program; this often returned more than one case. Choosing the

best case from those retrieved was referred to as matching ; this considered only features judged to be

important, which meant features that were relevant to similar cases in the case base. Cases were given

a score which was derived from an algorithm that compared important features in the retrieved case and

query case. The highest scoring case which constituted an acceptable match was selected, subject to

26



a constraint that the retrieved case must not have a score that is too di�erent from the score of the

best match. A process known as justi�cation determined if a match was acceptable; this used a series

of domain-independent rules such as ruling out matches which contain values for features that could not

possibly co-exist in the underlying causal model. CASEY's novelty lay in the integration of CBR and

MBR; the combined system had greater capabilities than either of these alone.

PROTOS [22] was a general purpose �learning apprentice for heuristic classi�cation tasks�. It cat-

egorised objects by storing exemplars (of a category) with their features and an explanation of the features

relevance to that category. A human teacher trained the system, which learned a �category structure�. As

per the work of Schank and others, a heuristic estimate of a particular category being relevant to a new

case was known as a �reminding� (this is similar to SWALE, see below). Initially these remindings were

gleaned from an explanation provided by the �teacher� (i.e. the controller of the system). New cases were

integrated into the category structure, which may have involved merging cases judged by the teacher to

be su�ciently similar. Merging resulted in features being generalised. PROTOS was trained with data

from audiology. When an incorrect classi�cation was produced, PROTOS chose new remindings and

made di�erent generalisations according to heuristics; these were retained if accepted by the teacher.

PROTOS's novelty lay in the powerful general purpose nature of its capabilities.

SWALE [23, 24] was able to exercise creativity in its explanation of anomalous events. The name

originated from a prize-winning racehorse, Swale, which died unexpectedly of an undetermined cause in

1984. Cases in SWALE were known as �explanation patterns� (XPs). Events were explained by SWALE

by retrieving XPs, in a process referred to as reminding. Reminding was accomplished by traversing the

hierarchy of XPs in the case base. Anomalies fell into categories, e.g. �premature event�. If an existing

event was already located in the hierarchy then the explanation that was stored with it was retrieved,

and the process ended. However, if there was a failure to locate the event then a new explanation was

attempted, by adapting or tweaking the existing explanations of other events. Sometimes tweaking used

quite novel methods such as searching for explanations from folklore. The new explanation was then

stored in the hierarchy. SWALE aimed to provide deep, rich adaptation, and to learn from adaptation

failure. The outstanding features of SWALE were its ability to learn from failures, and the richness of its

explanations.

These early systems proved that CBR was a promising methodology with a wide applicability. CBR

was able to work in situations where there was a well-de�ned underlying model (CASEY), and also when

there was not. CBR was shown to be robust, and able to handle failure well (MEDIATOR, CHEF). It was

shown that CBR can be combined e�ectively with rules and heuristics. These early systems were also

able to provide good explanations for their results, meaning CBR was not just a 'black box' approach,

which can be important for gaining the trust of users.

27



2.1.2.3 CBR becomes a mature discipline

During the 1980s, CBR became an established sub-discipline within arti�cial intelligence, tested in principle

with some academic systems and backed by a solid foundation of theory. During the 1990s this theory was

extended, and commercial CBR systems were produced; three examples of such systems are presented

here. These systems have been chosen because they are ground-breaking (The Bauhaus), they are

widespread in the commercial world (CBR-Express) or because they have lead to substantial monetary

savings (FormTool). Further examples of successful CBR systems are listed in [9].

According to Tierney [25], The Bauhaus [26] was the �rst commercial CBR system, developed by

Inference Corporation. Component-based software development was automated by using a �frame-based

description language� to implement retrieval of software components from a catalogue. The Bauhaus

parsed textual speci�cations using the frame-based description language, then used a �subsumption net-

work� to generate implementations using a breadth-�rst search. There was null adaptation, although a

�data �ow diagram editor� was provided to assist the user. The user would edit the �ow graph, some

contradiction checking was performed, then program code was generated. It is worth noting that since

software is inevitably composed of more than one component, this is a form of case-merging (see section

2.2.3.3).

Inference Corporation were awarded several patents (e.g. [27]) for their enormously successful applic-

ation known as CBR-Express, which originated from a project which automated software development at

NASA [28]. CBR-Express is tailored towards the needs of helpdesks. Watson & Marir [9] make the point

that as helpdesks often deal with faults, a disadvantage of a model-based reasoning system is that it may

be easier to �x the fault in the product than to program the causal rules that the MBR would require.

CBR-Express uses nearest neighbour matching in retrieval. It is able to take free-form text as an input,

representing words as trigrams which are tolerant of spelling mistakes. A list of cases is retrieved, along

with some questions; these are used to narrow down the list further. There is a threshold value for what

constitutes an acceptable solution: if this is met then a case is retrieved. Otherwise, a more knowledge-

able member of sta� manually provides the solution to the case. CBR-Express is particularly noteworthy

since it is domain independent and highly commercially successful. For example, it was deployed as a

reservation system at American Airlines [28].

FormTool ([29], [30]) automates a colour matching system used at GE Plastics. The process involves

dyeing plastic using di�erent colourants, with the aim for the �nished product to have a predetermined

colour. The cost of the colourants must be minimised, and the accuracy of the �nish colour must be

maximised, no matter what the starting colour of the plastic was. A �fuzzy preference function� is used

in retrieval. A physical model4 is used in adaptation; unfortunately this only provides an approximation.

4The model used by FormTool is Kubelka-Munk theory.

28



The search space is so large that it is impractical to solve the problem alone using an unguided exhaustive

search, which is why the CBR is required.

It is interesting to note that, before FormTool, GE Plastics used a semi-manual process which closely

mirrored the principles of CBR. They stored previous successful colour matches in �ling cabinets, which

were manually indexed. These �ling cabinets were the physical equivalent to a case base, or more exactly

the physical predecessors of it. They manually retrieved a case, which consisted of a plastic chip which

had been previously coloured. If this chip exactly matched the new requirement, the parameters that

created it were re-used. Otherwise, the person's experience and a localised search (using software and

human intuition) were used to adapt the old formulae to the new requirement. The adaptation was

iterative, typically producing several sample batches of plastic in order to test the results. CBR has been

able to provide more accurate matches in a shorter time period, requiring less batches, and as a result

GE Plastics have reduced their expenditure by millions of dollars.

These three systems proved that CBR is more than a mere toy for academics. The emphasis moved

away from attempting to mimic human memory and reasoning to practical systems that function well

in commercial environments. CBR-Express showed how case based reasoning can be tolerant of noise,

which is typically present in the �real world�. All three systems could be used by people who were not

computer scientists; and as FormTool has shown, sometimes the processes in CBR are not too di�erent

from the manual processes that it replaces (or supports).

2.1.3 Types of tasks performed by CBR systems

CBR systems can perform a wide variety of tasks, ranging from software design and dispute resolution.

This subsection surveys the di�erent types of tasks carried out by CBR systems, each of which has their

di�erent challenges, and a di�erent subset of methods that are applicable.

Figure 2.3 shows a taxonomic hierarchy of tasks, adapted from [2] 5. There are two major categories

of tasks6:

� Classi�cation tasks involve making a decision which results in the assignment of a category or label

to an object, e.g. medical diagnosis.

� Synthesis tasks create an artefact, e.g. a plan which controls the movement of a robot in a factory.

Creation of an artefact typically involves making very many di�cult decisions.

This section compares synthesis and classi�cation; there are several signi�cant noteworthy di�erences

between the two, e.g. classi�cation tasks typically have many inputs and one output, whereas synthesis

tasks tend to have few inputs and many outputs. Classi�cation tasks can be subdivided further into

5A similar diagram to this also featured in [31].
6Marling et al [32] divide tasks into interpretive and problem-solving, which roughly translate into classi�cation and

synthesis respectively.

29



Figure 2.3: Taxonomic Hierarchy of CBR Systems, adapted from [2]

several categories (e.g. forecasting, assessment, and troubleshooting) and these are discussed below.

Synthesis tasks are either planning tasks or design tasks, and these are covered in section 2.1.3.2.

2.1.3.1 CBR for Classi�cation

When classi�cation tasks are automated, a computer is being entrusted with a decision-making task which

was traditionally being done by a human expert, e.g. a doctor. In arti�cial intelligence terms, this may be

viewed as partitioning a problem space into clusters, which are given labels (e.g. �diseased� or �healthy�).

In CBR systems which perform classi�cation, the case base consists of a repository of previously labelled

objects. A new object is presented to the system, and the best match for this is retrieved; the label for

the object in the case base is then applied to the query case. There is typically no need for adaptation,

since when a label is retrieved it can often be reused as it is.

Diagnosis is a typical classi�cation task. The query case will consist of a set of symptoms without a

diagnosis, and the case base will consist of previous cases which have both the symptoms and diagnosis

recorded. Some systems have to be able to furnish a diagnosis even if some of the values are missing.

Early examples are systems CASEY and PROTOS (see 2.1.2.2).

Systems for help desks are similar to diagnosis, however instead of the emphasis being on the cause

30



of a problem, it is on the �x for that problem. CBR-Express (see subsection 2.1.2.3) is a well-known

example of a helpdesk CBR system. One particular feature of helpdesk systems is that they often have

to cope with textual input, which may contain errors. CBR Express deals with errors through the use of

trigrams (three-letter words). The input text is split into a set of trigrams and this is used in the retrieval.

For example, the trigrams for �PRINTING� would be {�PRI�, �RIN�, �INT�, �NTI�, �TIN�, �ING�}. If a

word is misspelled, typically several of the trigrams are still correct and so retrieval is much more accurate

than if the raw text were used.

An extensive discussion on the use of knowledge-based systems in helpdesks is presented in Dearden

& Bridge [33]. There is a discussion of knowledge-based systems in general, and these are divided into:

� domain-model based reasoning (DMBR), which includes rule based reasoning and model based

reasoning.

� example-based reasoning (EBR), which includes case based reasoning and others such as analogical

reasoning.

Dearden & Bridge propose several arguments why EBR systems are more appropriate for helpdesks than

DMBR systems. For example, they make the point that DMBR systems are often particularly complex,

and substantial e�ort is often required to construct and maintain them.

Fault recovery involves both diagnosis and recovery. Altho� et al [2] say that, since there are often

existing procedures in place to recover from faults, these type of tasks can often bene�t from a hybrid

system involving both CBR and model based reasoning or rule based reasoning. Such hybrid systems can

be very powerful since the di�erent techniques can complement each other and, to some extent, make

up for each others shortcomings (see section 2.3). For example, rules may be useful at the beginning,

since sparsely populated case bases tend not to perform well as there is typically too large a gap between

the retrieved case and query case. When the case base has more cases in it, the CBR could then prove

invaluable by reasoning in situations that are not covered by the rules.

In forecasting and prediction, the case base consists of a repository of outcomes, which are stored

together with features that are thought to be predictive of that outcome. Temporal data is particularly

prevalent in these types of task, and some systems work with aggregations of the data [2]. In this type

of problem, it is particularly important that the user is con�dent in the output. CBR systems are often

capable of providing an explanation of their output, which is especially advantageous when compared to

other techniques which are more like a �black box�, e.g. neural networks.

Altho� et al [2] refer to tasks such as credit scoring as assessment. These tasks are di�erent from

forecasting since they attempt to objectively evaluate the present situation, without attempting to predict

the future.

Adversarial reasoning is where a human process which has two competing parties is modelled, e.g.

31



legal disputes. For example, in an attempt to exonerate a defendant in a criminal trial, a system may

encounter previous similar cases with verdicts of both 'guilty' and 'not guilty'. Retrieved cases are

optimal if they carry the label or class which the user requires; other cases carry a con�icting label. These

sort of systems have a �point-counterpoint reasoning mechanism� [2], which aims to win an argument by

anticipating the opponent. A system will typically look for similarities between the query case and optimal

case, concentrating on features with values that are very di�erent from those found in the sub-optimal

cases. MEDIATOR (see section 2.1.2.2) is a classic example of CBR in adversarial reasoning.

In [33], the argument is advanced that, when a helpdesk system proposes a �x, this is a synthesis

task (referred to by them as �construction�). The authors also refer to several di�erent hierarchies of

types of tasks, suggesting that the one in �gure 2.3 is not de�nitive; however it is adequate in my

opinion. Classi�cation is a term used generally in the literature of machine learning, and it generally

refers to a requirement to the decision as to which label or category an artefact should bear. Since these

types of tasks are arguably easier than synthesis tasks, it comes as no surprise that systems to automate

classi�cation are particularly common. However, it should be noted that there are other ways of classifying

data (e.g. neural networks, decision trees, or support vector machines). These other methodologies are

not necessarily applicable to synthesis tasks, which are considered in the next section.

2.1.3.2 CBR for Synthesis

In synthesis tasks, CBR uses a previous artefact as a template for creating a new one [2]. Adaptation

is typically extensive in synthesis tasks, whereas in classi�cation tasks it is often absent. Furthermore,

as Altho� et al point out, adaptation is often highly dependent on the application domain. Synthesis

tasks tend to be more di�cult to automate than classi�cation tasks, irrespective of the nature of the

automation (CBR, rules, model-based reasoning, etc.):

�As regards representation, indexing, retrieval and adaptation, creating planning/synthesis

problem solvers is a higher order of magnitude of di�culty than building classi�cation-oriented

problem solvers� - Altho� et al [2].

Planning is the construction of a sequence of steps that achieve a de�ned goal, given a speci�ed initial

state. Planning has been an extensively researched area of arti�cial intelligence for many years (e.g. [34]).

Automated planning systems are often used in project management, and manufacturing (Nau, [35]). Nau

makes the distinction between planning, where the actions (that will be performed) are undetermined,

and scheduling, where the actions are predetermined but their ordering is yet to be decided. Successful

automated planners are normally domain dependent; domain independent systems are very hard to develop

since planning problems can be NP-complete, or even worse, they can be undecidable. Traditionally, a

variety of heuristic algorithms (for example, Hierarchical Task Network planning) are employed to traverse

32



the search space, which can be extremely large.

Case based planning works by retrieving a previous plan from the repository, and adapting it to a new

requirement. One issue discussed in [2] is granularity : a case can be a whole plan, or just part of a plan.

The issues around granularity are similar to those encountered in case-merging (see 2.2.3.3).

� If a case is a whole plan, then the representation is more complex, indexing of cases is harder, and

adaptation is more di�cult (since there are fewer cases and the cases are more complex). However,

if the retrieved case happens to be very similar to the query case, then there is much less work to

do than if the cases were smaller.

� If a case is only a part of the plan, case representation, indexing and adaptation is easier, due to

reduced complexity. However, retrieval is more complex since it requires a more specialist search

operation: the retrieved parts have to be compatible with each other. Systems can also include

parts in the solution that are not from a previous case, but have been derived from �rst principles

[36].

CHEF (see section 2.1.2.2) is often cited as an example of an early case based planning system. More

recently Darmok, a system that focused on the domain of real-time strategy games, has been presented

[37]. A key issue in case based reasoning is how to initially populate the case base (this is discussed

brie�y in section 2.2.4). The authors show how this issue can be resolved by enabling plans to be

automatically learned from human demonstrations. Darmok generates a goal matrix which links a set of

goals to a set of plans, removes unnecessary actions through a dependency graph, then converts plans

into hierarchies in order to check if a plan is in fact a sub-plan of another. It uses an algorithm known as

Adversarial case based Planner (ACBP), which works by retrieving whole plans from the case base, then

using transformational adaptation (see section 2.2.3.1).

Nebel and Koehler [38] compared the worst-case complexity of plan generation (by exploring the

search space) and plan re-use. Their conclusion was that it is not possible to prove that reuse is more

e�cient than generation (by the means discussed above). The authors conceded that reuse can be faster

in some situations, but said that retrieval is a bottleneck in plan reuse. However, Muñoz-Avila and Cox

[36] question the assumptions of Nebel and Koehler, about the fact that the new solution is obtained by

minimal modi�cation of the retrieved plan. They point out that derivational replay (see section 2.2.1.2)

violates this assumption, since it involves quite extensive adaptation. This debate could be generalised

to CBR tasks other than planning, where case merging (see section 2.2.3.3) is used. However, e�ciency

is not the only factor e�ecting the choice of problem solving methodology: quality is also often an issue.

Design involves bringing together component parts to create an artefact, which conforms to a spe-

ci�cation. Examples of design are ubiquitous since most man-made objects have been designed, and

design is an activity of paramount importance in modern society. A key di�erence between design and

33



Factor Planning Design

Name of simpler type of task scheduling con�guration
Involves temporal data yes rarely
Involves a spatial element sometimes often
Involves artistic/aesthetic factors rarely often
Can be automated using rules and/or heuristics yes sometimes
Decomposable into sub-tasks yes (temporally) yes (spatially)
Involves constraints yes yes
May be intractable, if constraints are too tight yes yes
Amenable to domain-speci�c solutions yes yes
Unambiguous and consistent speci�cation? usually sometimes
Prevalence of the task in industry widespread widespread

Table 2.1: Di�erences and similarities between design and planning

planning is that in most planning problems discussed in the CBR literature, the objective is unambiguous.

However, in design problems, the objective (the speci�cation) is not always clear; it can be inaccurate,

incomplete, and inconsistent [39]. For example, the designer might be tasked with making an object as

aesthetically pleasing as possible, with the maximum functionality, but at minimum manufacturing cost.

I have highlighted some common similarities and di�erences between planning tasks and design tasks in

Table 2.1.

Design is often a complex task; however, paradoxically, it can be repetitive, and many new designs are

variations on existing designs. This makes design a good candidate for case based reasoning, and indeed

case based design is an active research topic in the literature.

The discussion of the di�erent types of tasks that CBR is capable of automating shows how those

concepts are applicable in a wide variety of application areas. If any two CBR systems were picked at

random, although they would both work according to the same basic principles, they may look very

di�erent and concern di�erent types of tasks. These wide di�erences have to be borne in mind when

CBR systems are constructed.

2.2 Challenges in constructing a CBR system

This section discusses the choices to be made during the design and construction of CBR systems. Each of

the stages in the 4RE cycle (depicted in �gure 2.1) entail design choices. As with other AI methodologies,

the e�cacy of CBR is often greatly dependent upon the right decisions being made.

Typically, the �rst decision to be made is how the cases are represented or structured, and this is

discussed in detail below. Closely related to the representation are the decisions about case indexing,

often crucial since it can dramatically improve the e�ciency of retrieval. However, the most important

factor in retrieval is usually the similarity function; there are a wide choice of types of functions ranging

from simple weighted sum algorithms to sophisticated graph-theoretic ones.

34



Figure 2.4: Types of case representation, as discussed in [3]

Adaptation is typically the most challenging part of CBR; it is an inherently complex task and it is

often omitted, either because it is not required or it is left to a human user. However, some systems do

successfully automate adaptation, and the di�erent ways of accomplishing this will be discussed in detail.

Retention is important as it can a�ect the e�ciency of a CBR system, as well as its quality. Sometimes, in

addition to the �online� decision about whether to retain a case, separate case base maintenance activities

are performed. These activities are aimed at maintaining a level of quality in the case base, and there are

both automated and manual methods of accomplishing this.

Finally, CBR shells are discussed. These purportedly reduce the time taken to implement a CBR

system, by providing a generic framework which can be augmented with speci�c functionality if required.

2.2.1 Case representation

A useful discussion of what the content of a case should be is given in [40]. Kolodner divides a case into

three parts: a description of the problem, the solution, and the outcome. The outcome is a description

of the e�ects of applying the solution. Some CBR systems store a trace of how the solution was applied.

However, it should be noted that in many CBR systems, the outcome will not be stored, because it is

an obvious consequence of the solution, e.g. in diagnosis tasks. Therefore, the pairing of problem and

solution constitutes the minimum composition of a case.

Watson describes numerous ways in which storage of problems and their solutions can be implemented,

for example in a database [41]. As Watson argues, CBR is a methodology and not a technology, and

it can be implemented in a variety of ways. Therefore, this section focuses not on the implementation

details, but instead on the types of structures that are used to organise the cases.

Di�erent approaches to case representation are discussed in Bergmann et al [3], and these are summar-

ised in �gure 2.4. The types of representation are divided into basic approaches and advanced approaches,

although this is somewhat arbitrary since object-oriented representations could be considered an advanced

approach.

35



2.2.1.1 Basic approaches

The simplest form of case representation is a so-called feature vector . Feature vector representations7

consist of a set of features, each of which has an associated value. A feature can typically be described

by a string name, and a value is often numeric. This type of representation is ubiquitous in machine

learning, and is probably the commonest in CBR, due to its simplicity.

PROTOS ([22], see section 2.1.2.2) used feature vector representations within a category and exemplar

model. The case base was a network of categories, cases (referred to as exemplars) and index pointers.

There were three sorts [1] of index pointers :

� remindings: features were linked to either categories or cases

� exemplar links: cases were linked to their associated categories

� di�erence links: cases were linked to other cases that were very similar.

New cases were classi�ed by considering their similarity to the existing exemplars, this is done by a

heuristic known as �knowledge-based pattern matching� which took into account factors such as the

prototypicality of the exemplar. The features simply consisted of just a name and a value; however, they

were incorporated into the complex hierarchical network described above. This illustrates the point that

considerable variation is possible within the categories in �gure 2.4.

Bergmann et al talk about two types of structured case base representation: frame-based and object

oriented approaches [3]. Minsky [42] de�nes a frame as a �a data structure for representing a stereotyped

situation, like ... going to a child's birthday party�. Herein lies the obvious relevance: a case can be

thought of as such a stereotyped situation.

Description logic (a formal knowledge representation language) has been used to partially formalise

frame-based approaches [3]. Use of description logic in CBR is discussed in Salotti and Ventos [43].

The case base was arranged in a taxonomy, and retrieval used two concepts: similarity and dissimilarity.

The similarity between two cases was determined by �nding the most similar concept in the taxonomy

that subsumed those two cases (the �least common subsumer�). Dissimilarity worked by considering the

relative complement8 of the sets of attributes of the two cases.

As with frame-based representations, object-oriented (OO) representations can involve a hierarchy.

OO approaches use features of an object-oriented language such as inheritance (or is-a relationships), and

composition (for has-a relationships). Göker et al [8] described HOMER, which had an object-oriented

case representation. HOMER was an in-house helpdesk system for automotive engineers at Daimler-Benz.

The developers eschewed a ��at� feature-vector representation as there would be hundreds of attributes

7Otherwise known as �attribute-value� representations [8].
8Given two sets A and B, the relative complement of A in B is the set of elements that are in B, but not in A.

36



and determining which of these were relevant for the similarity function was thought to be an onerous

knowledge engineering task. Also, a judgement was made that in order to solve �di�cult� problems, the

domain would have to be accurately modelled. The case was modelled in three parts: failure, symptoms

and solution. The parts were related to each other in the object-oriented model, for example a failure

could result in several symptoms.

New cases in HOMER were initially stored in a bu�er, until they were validated by a human editor.

The editors were given the responsibility of maintaining consistency and avoiding redundancy in the case

base; they were allowed to tweak cases by modifying the values in them, but were not allowed to add

or remove attributes. The use of an editor meant that the case base was quite small, and contained

prototypical cases. HOMER could be operated in two modes: �user-driven mode� enabled an experienced

operator to build direct queries against the case base. �System driven mode� was designed for less skilled

operators; it generated questions for the operator to ask a user, based on selecting attributes with the

highest information gain. The answers to these questions were used to retrieve suitable cases from the

case base; if none were found then the user was allowed to enter their own solution, thus creating a new

case which was then scheduled for review by an editor.

Göker et al stated that they chose CBR over rule-based systems, as they thought the latter would be

di�cult to implement. Nevertheless the development of HOMER apparently represented an unexpectedly

di�cult knowledge-acquisition task. This illustrates the trade-o� between the time-consuming operation

of building a complex model which accurately models the domain, and using a crude representation which

is easier to construct but less powerful and �exible. Also, it shows that when developing a CBR system,

one must consider not just the task and domain, but also the characteristics of the users. Highly skilled

users are able to perform some operations manually that would otherwise be automated, such as retrieval

(by constructing their own queries), and case based maintenance (by validating the cases). The level of

automation that is appropriate may be dependent on the skill level of the users.

If the information in a case is purely or mostly textual then this is typically decomposed into information

entities [3]. Information entities are particularly relevant words or phrases that can be placed (along with

their associated cases) in a directed graph known as a case retrieval net (CRN). Retrieval in a CRN

works by �rst �activating� information entities which are contained in the problem; this activation is then

propagated to similar nodes in the CRN, in a mechanism that is analogous to activation propagation in

neural networks.

If the inputs to the CBR system consist primarily of text, then a textual representation is the obvious

choice. An alternative is to construct a parser which generates a feature-vector representation from

the text; this has the advantage that it could incorporate domain-speci�c features, however its major

disadvantage would be the e�ort required in constructing such a parser. It could also be argued that leaving

the representation in its natural state (text) avoids information loss, since a feature vector representation

37



Ref Domain Comments

[44] design of control
software in steel mills

A design is stored in Déjà Vu as a hierarchy of cases:
�abstract cases� describe approximate designs whereas

�concrete cases� are fully implemented designs
[45] automobile

troubleshooting
A case in CELIA is a series of �snippets�, each of which

has a subgoal; snippets are linked together9.
[46] design of

hydro-mechanical
devices

Directed graphs are used in CADET to represent the
behaviour of devices. New solutions are found by using
two rules (chain rule and total inference rule) or their

inverses.
[47] control of humanoid

robot soccer players
Behaviours are described on a 4-level hierarchy, the
topmost of which is to decide the robot's role as an

attacker.
[48] resolution of complex

con�icts in air tra�c
control

The hierarchy had 2 levels: one contains the problem as
a whole, and the other has each pair of aircraft that are

in con�ict.
[49] a simple route �nding

task
They compared various algorithms; some returned

�abstract solutions�, e.g. movement on an 8x8 grid was
approximated to a 4x4 grid. They found that reusing

these �abstract solutions� gave better performance than
reusing only �concrete� ones.

[50] balanced scorecards: a
corporate management

decision tool

Each feature had three levels of weights corresponding
to di�erent aspects of the scorecard; they used genetic

algorithms to learn the weights.
[14] knitwear design SEACOP is the subject of this thesis.

Table 2.2: CBR systems using hierarchical representations

is going to be (at best) a summary of the text.

2.2.1.2 Advanced approaches

Hierarchical representations [3] possibly involve multiple levels of detail and di�erent vocabularies. I have

listed examples of several CBR systems which use hierarchical representations in table 2.2. Many early

CBR systems such as CYRUS (see section 2.1.2.1) used a hierarchical structure that was based on models

of the human mind.

In Smyth et al [44], the term hierarchical case based reasoning is de�ned as involving the retrieval of

multiple cases, at di�erent levels of abstraction. Many hierarchical systems involve case-merging, which

is discussed in section 2.2.3.3. As well as reducing the sophistication of the adaptation, Smyth et al also

argue that hierarchical CBR can reduce redundancy by sharing cases amongst hierarchies, thus making

storage more e�cient. However it is worth noting that this will not always be possible or practical; the

lowest level in the hierarchy may contain data that is unlikely to be reused due to its complexity or

uniqueness. Smyth et al also argue that the abstract cases (or parts of cases) can be used to facilitate

indexing of the more detailed parts, this is a signi�cant advantage since it will reduce the number of index

entries, thus making retrieval more e�cient.

38



Figure 2.5: Traditional CBR versus Generalised Cases (adapted from [4])

Hierarchical representations are often thought of as being complex; however, the domains that they

are used for (e.g. design, or planning) are often inherently complex. If the problem domain is not naturally

hierarchical, then the abstract parts of the hierarchy need to be arti�cially constructed [44].

Bergmann et al [3] discuss generalised cases. Whereas a case normally relates to a single experience,

scenario or problem, a generalised case can provide solutions to a range of problems. This is implemented

by introducing variables into the case representation, which may have constraints applied to them.

Figure 2.5 (adapted from [4]) shows a comparison of the principles behind traditional CBR, with CBR

using generalised cases. On the left, the two ellipses depict retrieval and adaptation in traditional CBR.

Only a few cases are shown but as this analogy shows, su�cient coverage of the case base is required to

make it work. On the right, the use of generalised cases is illustrated; similar processes of retrieval and

adaptation are present, but far fewer cases are required since each case covers a range of the problem

space rather than a single point.

A CBR system with a small case base may still perform well if it employs generalised cases [14]. It is

also claimed [51] that generalised cases can ease adaptation by ��lling the gap� in between cases (which

are speci�c) and rules (which are general).

39



An alternative to generalised cases is to use interpolation [52]. In interpolation a set of cases which

are close to the required solution are retrieved. The values in these cases are then used to derive the

solution. Interpolation may be a useful technique if a good interpolation function or method is available,

however it is unlikely to be suitable for complex cases where there are constraints or interdependencies

between features, e.g. those used in design tasks.

In [3], several examples were given of very speci�c case representations for design tasks. For example

[53] describes DRAMA, a system for aerospace design that utilises concept mapping. Concept mapping is

de�ned as a 2-dimensional visual representation of concepts which shows their interrelationships. Often,

the vertical axis on the map is used for di�erent layers in a hierarchy. Concept maps were incorporated

into the case representation of DRAMA so that the user could manually edit design cases. There is also a

textual element to the maps, and this can be used to document the decisions that users have made during

the design process. This is an example of the sort of extra functionality that is required when a CBR

system acts as an assistant to a user, rather than fully automating a process. Experts are often required

to document their work, and it is natural that this is recorded with the work that the documentation

relates to.

Finally, as per �gure 2.4, there are speci�c case representations for planning tasks. A notable example

is derivational replay, in which the means by which an artefact was created are stored, reused, and adapted.

In [54], derivational replay was implemented in a domain independent architecture, in which goals were

divided into subgoals and solved recursively. The case base was changed in response to feedback from

a problem solving module, which used a backward-chaining search. The steps taken by the problem

solver, the justi�cations for those steps, and even failures are recorded. Since the system was domain-

independent, the steps taken to solve a problem in one context were able to be replayed in another

context.

I believe that derivational replay is most likely to be successful in scenarios where automated planning

systems are successful: i.e. where the problem can be completely represented in some formal language or

calculus, there is a goal that can be divided into subgoals, and a large search space makes it a non-trivial

problem. The trade-o�s between retrieval and search can be managed well, as the system is able to avoid

repeating past failures (since those failures are recorded). In my opinion, it is unlikely to be successful in

scenarios where the CBR acts as an assistant for a human user, since humans often solve complex tasks

by means which are inconsistent, but that are acceptable.

2.2.1.3 Discussion

The previous sections have shown that there are several types of case representation, and these can vary

widely in their complexity, from simple feature-vector approaches to complex hierarchies. Even within

one type of representation, there is considerable variation; for example there is no universal model of

40



a hierarchical case representation; some systems have hierarchies of cases (e.g. abstract and concrete

cases), others have hierarchies within a case (and they can di�er in the number of levels in the hierarchy).

Sometimes the data which constitutes the inputs to the CBR process will be structured in such a

way as to make the choice of representation obvious, e.g. if it is textual. If the data is complex, then

the developer must choose whether to accurately model this in the case representation, or whether to

construct a simpler object (e.g. feature-vector) which is added to the complex data and does the work

involved in the CBR. A complex representation will be more �exible and can use more domain-speci�c

similarity measures and adaptation operators. A simple representation may be easier to index and easier

to retrieve. However, if the data itself is not simple, then the disadvantages to this approach are the

e�ort required to construct the the algorithm that simpli�es it, and the loss of information.

Some problem domains are more amenable to certain types of representation than others, e.g. deriv-

ational replay for planning, feature-vector for a simple helpdesk application, or hierarchies in design. Also

one must consider the nature of the task: is the system an assistant to a user, or does it totally automate

a process? If it is the latter, then the user will have other requirements such as the ability to annotate

their decisions. If a CBR system has additional functionality, e.g. if it is also a CAD program, then this

may in�uence the choice of representation as the data is being used for more than one purpose.

Finally, and most importantly, the representation must support the choice of similarity function, and

adaptation operators (if applicable). For example, feature-vector representations tend to support weighted

sum type algorithms very well. Similarity and adaptation are discussed in more detail in sections 2.2.2.2

and 2.2.3 respectively.

2.2.2 Retrieval

In the retrieval step of CBR, the system �nds a case from the case base which is su�ciently (or maximally)

similar to the query case. Sometimes, retrieval is the most important step in the CBR cycle; this is

particularly true if there is null adaptation. Even if there is adaptation, retrieval is arguably as important

as adaptation: if retrieval is sub-optimal it may select a case (or cases) which are not su�ciently similar

to the query case, so that adaptation becomes di�cult or impossible.

If there are only a few cases, the the retrieval algorithm may simply iterate through the case base,

applying the similarity function (see section 2.2.2.2) to each case. This is known as linear retrieval [2],

and might apply if generalised cases are being used, or perhaps if the case base is being kept very small

with prototypical cases. However, often case bases are too large to be searched in their entirety, and one

solution to this is to use indexing; this is discussed in section 2.2.2.1.

The concept of similarity (between cases) is central to retrieval. Di�erent ways of quantifying sim-

ilarity are discussed in section 2.2.2.2. The techniques are categorised by whether or not they require

training, and whether they are knowledge intensive or knowledge light. The latter distinction is import-

41



ant: knowledge light approaches involve little or no domain knowledge, whereas knowledge intensive

approaches speci�cally incorporate domain knowledge.

The similarity measure will be used by the retrieval algorithm in order to select cases from the case

base. A detailed discussion of retrieval algorithms is presented in section 2.2.2.3.

2.2.2.1 Case indexing

Case indexing can be described as the capability to exclude a portion of the case base from the retrieval

process [55]. The objective of indexing is to avoid the utility problem, which is is pervasive in arti�cial

intelligence. In methodologies such as neural networks or support vector machines, the utility problem

manifests itself when excessive training has occurred. This is due to over-�tting : the mapping (between

inputs and outputs) becomes unnecessarily complex, and �ts the training data too closely. When data is

supplied which is outside the boundaries of the training data, it is often misclassi�ed.

In CBR a large case base does not necessarily result in a drop in competence, but is associated with

a reduction in e�ciency [56]. As the coverage of the problem space becomes denser, the mean distance

between retrieved case and query case decreases, and hence the mean e�ort required for adaptation

decreases.10 This reduction in adaptation e�ort becomes progressively smaller as more cases are added.

However, the e�ort required for retrieval increases as the case base becomes denser, simply because there

are more cases in the case base that require comparison with the query case. Eventually a point is

reached whereby the advantages of adding cases (better coverage) are outweighed by the disadvantages

(ine�cient retrieval).

The utility problem is an issue if it causes retrieval to be unacceptably slow. The e�ciency of retrieval

will be in�uenced by several factors including the complexity of the retrieval algorithm, the size of the

case base, and the computing power that is used. So, to alleviate the utility problem one must increase

the processing power assigned to the task, perform case base maintenance to limit the size of the case

base (see section 2.2.4), or use indexing.

Kolodner [57] divides the problem of indexing into two sub-problems:

� Labelling cases: the data or metadata that labels a case must allow the similarity function to quickly

decide whether or not that case is suitable for retrieval.

� Organising the case base so that the case base can be searched e�ciently.

The problem of indexing is not a well-bounded one: case representation, case indexing and the other

aspects of retrieval are inter-related. A case must be labelled with an understanding of its representation,

and in such a way that it supports the similarity function. The retrieval algorithm must take into account

how the case base is organised. Case representation is not synonymous with organising the case base,

10Provided the assumption that similar problems require similar solutions is correct

42



since the former is focused on the structure of an individual case, whereas the latter is concerned with

the structure of the case base as a whole. However, sometimes these two are related, for example if cases

are arranged in a network with pointers to other cases, then case structure and case base structure are

intertwined.

Kolodner[57] describes the desirable features of indices. Indexing should be predictive, useful and

achieve the correct level of abstraction. Predictive features are those that are relevant to the �outcome�

or success of the solution in the case. However, in some CBR systems, the outcome might not be explicitly

stored. Perhaps a more useful idea is that features should be chosen on the basis that they provide a good

contribution to the mapping between problem and solution. For example, in a medical system predictive

features might be those symptoms that best discriminate between the di�erent diagnoses.

Kolodner [57] describes abstract indices as being widely applicable. If the features of a case are

hierarchical, then more general versions of those features would have that wider applicability. For example,

in the culinary domain, a dish could be described as containing fruit rather than apples. If the features

were numerical values then fuzzy sets could be used to make these more general. Kolodner also says

that indices that are too general may be unusable. In early CBR systems where cases were arranged

with concepts in a hierarchical network, retrieval based on generalities increased the complexity. In more

modern CBR systems which use feature-vector representations, for example it is certainly true that making

an index too general might weaken the similarity algorithm. It could reduce the algorithm's ability to

di�erentiate between similar cases, or it might simply result in ine�cient indexing, i.e. too many cases

being selected.

Kolodner states that indices should be useful. Useful indices are described as �those that label a case

as being able to give guidance about the decisions that reasoner deals with� [57]. For example, many

CBR systems are capable of learning from failure. If including a feature as part of an index is likely to help

the CBR system avoid failure, perhaps by simply not retrieving that case, then this could be valuable.

However, it is worth noting that CBR systems can reason using data in the whole case, not just the index

data.

The previous discussion (from [57]) is suggestive of indices being chosen manually, by a domain

expert. However, much work has been done on the automatic creation of decision trees for indexing.

Two classical decision tree algorithms are k-d and ID3 [2]. A k-d tree is a type of binary search tree, in

which the vertices constitute a subset of the case base (or indeed the whole case base, in the case of the

root vertex). Each non-leaf vertex has two child vertices which partition its cases into disjoint sets. A

well constructed k-d tree will be balanced, since its height is then minimised and the minimum number

of nodes are traversed, thus making it more e�cient. The ID3 algorithm was introduced by Quinlan [58].

It uses a greedy algorithm to build a decision tree based on a heuristic known as information gain which

picks the most discriminatory of attributes. The trees generated are not necessarily binary, but tend to

43



be well balanced [2].

There has been extensive research which has improved on the classical algorithms. For example,

Galushka and Patterson [55] describe D-HSE, which is a domain-independent algorithm that can be used

to automatically construct indexes for a given case base. In D-HSE, attributes are split into intervals;

if the data was discrete then it is left as it is. However, if the data is continuous then it was divided

into intervals using an �entropy-based discretisation approach�, which chose the intervals with the aim

of achieving a high information gain. They tested their technique using a standard dataset and replaced

missing values using averages.

Decision trees are simple to understand, can be automated with little or no manual intervention, and

being domain-independent they are generally applicable. They are also e�cient: a balanced binary tree

with n nodes requires at most log2 n decisions.

Decision trees also have a number of signi�cant disadvantages. They cannot tolerate missing values,

so these are typically substituted with the mean or modal value of the other data. This is obviously

undesirable, but the only alternative is to remove the feature (which can have missing values) from the

tree. Discretising continuous attributes will always result in loss of information. Trees are built using

heuristics and work well for some data sets but not for others [55]. One of the claimed advantages of

CBR systems is that they cope well with change, however this may not be so if a decision tree is used. If

the character of the case base changed, unexpected degradation in the performance of the indexing tree

could adversely a�ect the output of the CBR system.

When decision trees are implemented in a CBR system, they typically partition the cases repeatedly

until the number of cases reaches a speci�ed threshold [2]. The cases that remain are then tested against

the query case with the similarity function. With a threshold value of 1, the decision tree becomes the

whole retrieval mechanism; at the other extreme, if the value is very high then the decision tree will

be very shallow. If the threshold is a �xed value, then the decision tree will deepen as the case base

grows; the time taken for retrieval will not increase appreciably but more and more of the reasoning will

be performed by the decision tree. By carefully setting the threshold it may be possible to achieve the

optimum combination of e�ciency (due to the decision tree), and accuracy (with a well-chosen similarity

function).

2.2.2.2 Similarity

The key assumption of CBR is that similar problems require similar solutions (see section 2.4.1). CBR

expects some degree of correlation between similarity11 and adaptation distance, as illustrated in �gure

2.5. Therefore, it is always important that there be an e�ective similarity measure for CBR to work.

11In this section, I have used both the terms similarity and distance. For our purposes, the terms are assumed to be the
inverse of each other, hence the greater the similarity between two objects, the lesser the distance.

44



distance known as formula

L1 Manhattan or city block
∑n

r=1 |fr (x1)− fr (x2) |

L2 Euclidean
√∑n

r=1 (fr (x1)− fr (x2))
2

LP Minkowski
(∑n

r=1 (fr (x1)− fr (x2))
P
) 1

P

L∞ Chebyshev max |fr (x1)− fr (x2) |

Table 2.3: Minkowski distance formulae

This subsection discusses the types of measures that can be used for similarity, ranging from a simple

weighted sum approach to more complex measures, such as those based on information theory. A useful

taxonomy of similarity measures is given by Cunningham [59]. The measures were grouped into four

categories:

� direct metrics

� transformation based

� information-theoretic

� emergent

Direct metrics are the most established, and probably the simplest of the types of measure. Direct metrics

are used to �nd the nearest neighbour in the problem space, or in general several near neighbours (known

as k-NN). These metrics are applied to feature-vector representations, that constitute the simplest way

to structure a case (see section 2.2.1.1). The similarity measure of two cases will have two components:

local similarity, which measures the similarity between the values of an attribute in two di�erent cases,

and global similarity, which is an aggregation of the local similarities that applies to the two cases as a

whole.

The simplest direct metric is equality similarity, which involves simply counting the pairs of attributes

which are equal to each other. However, equality similarity is rarely appropriate since it only takes into

account the fact that attributes are di�erent, not how di�erent they are. It is likely to be more applicable

to symbolic data than continuous numeric data.

A common measure of distance involves summing the di�erences between numeric values, known as

the Manhattan distance. The Manhattan distance is a special case of the Minkowski distance. I have

given the formulae for the Minkowski di�erences in table 2.3, for two cases cases x1 and x2 which are

described by a feature vector <f1,f2....fn>. fr (x1) refers to the value of feature f r in case x1. As the

value of P increases, more emphasis is placed on the pairs of values which are most di�erent from each

other, until eventually in the Chebyshev distance, only the maximal di�erence is relevant.

45



Euclidean distance is a common variant of Minkowski distance, with P=2. It has a reported tendency

[60] to perform poorly when a lot of values are zero, in which case another alternative is the cosine angle

distance, which is de�ned as:

cosine (x1.x2)=
∑n

r=1 fr(x1)fr(x2)√∑n
r=1(fr(x1))

2
√∑n

r=1(fr(x2))
2

Cosine angle distance is described in [61] as providing similar results to Euclidean distance, but having

the advantage that it is automatically normalised. For some applications, such as �nding the maximum

similarity, normalisation is not required. However if the distance is required to exceed a threshold value,

then normalisation is essential.

It should be noted that Cunningham's term �direct metric� is not necessarily synonymous with the

notion of metric in the mathematical sense. In order to be a metric, a measure of similarity d between

objects a and b must conform to the following four rules:

� non-negativity: d (a, b) ≥ 0

� identity: d (a, b) = 0↔ a = b

� symmetry: d (a, b) = d (b, a)

� triangle inequality: d (a, c) ≤ d (a, b) + d (b, c)

The measures of similarity described above can be used in either metric or non-metric problem spaces.

In metric spaces, some optimisations are possible; the number of comparisons between objects is reduced

because the triangle inequality is followed. For example, the �sh and shrink [62] algorithm involves

��shing�, i.e. random access to the database. The �shrinking� refers to a narrowing interval (range) of

possible distances between the query case and cases that are not yet tested. As a result of the shrinking,

cases that are very di�erent from the query can be excluded from consideration by the retrieval algorithm,

and this has the potential to dramatically speed up retrieval.

Many works in the literature assume that the problem space is a metric space. However, Tversky's

seminal paper [63] questioned the assumptions which are necessary for metrics (see above). In particular,

psychological experiments have shown that human scores of similarity are often not symmetric. Some-

times, working in a metric space is an approximation. For example, route planning is not a metric space

when there are one-way streets or motorway junctions that permit only either exit or entry. Despite this,

most tables of distances between cities assume symmetry, since it is an acceptable approximation. So,

the optimisations that metric spaces bring must be balanced against the need for the distance measures

to accurately re�ect reality.

The biggest issue with the direct metrics, however, is that the features or attributes of a case usually

vary in their importance or relevance to the retrieval process. So, any method which treats the attributes

46



Likert Description Weight

1 �Irrelevant� 0
2 �Not important� 0.25
3 �Sometimes important� 0.5
4 �Important� 0.75
5 �Very important� 1

Table 2.4: An example of the use of Likert scales for weights

as equal may provide misleading results by over-emphasising di�erences in attributes which are of minor

importance, or under-emphasising di�erences in attributes which are of major importance. This problem

can be resolved by using a weighted sum approach, in which weights are assigned to the features; the

magnitude of the weight re�ects the importance of the feature. For example, the Manhattan distance

can be reformulated using wr, the weight of the r th feature, as follows:

distance (x1.x2) =
∑n

r=1wr|fr (x1)− fr (x2) |

Symbolic attributes present a problem, since the measures described above can only deal with numeric

values. Mono-valued attributes can be dealt with using a matrix which contains numeric values for the

distances between symbols. If it is a true metric, then for a group of n symbols, n2 (n− 1) weights must

be provided: presumably by a domain expert. However, this does not help for multi-valued attributes.

In this situation a metric based on set theory may be applicable, such as some formula involving the

cardinality of the intersection of the values in the two cases [2]. If the representation consists of a mix

of numeric, mono-valued symbolic and multivalued symbolic attributes, then a mix of local similarity

measures may be needed, which can then be incorporated into one global measure.

If weights are required, the obvious way of gathering them is to ask a domain expert to provide the

values. However, the concept of numerical weights is not intuitive and so this is fraught with di�culty.

Also, di�erent domain experts may provide di�erent weights. One alternative to this is to use a Likert

[64] scale, or linguistic terms which map to the weights; I have given an example this in table 2.4.

Instead of consulting human experts, several methods of automatically learning weights are in exist-

ence. Wettschereck and Aha [65] made the point, as do many other authors, that k-NN methods are

sensitive to feature sets �containing irrelevant, redundant, interacting or noisy features�, and suggested

the use of weights as a solution to these problems. They described methods for learning the weights

which utilised no domain-speci�c knowledge. Feature weighting methods were distinguished along several

dimensions, including model. The model dimension was split into wrapper and �lter methods:

� Wrapper methods utilise performance feedback. Weights are modi�ed by incremental hill climbing,

genetic algorithms, or the �variable kernel similarity metric� which utilises knowledge of the gradients

of functions.

47



� Filter methods do not utilise performance feedback. One type of �lter method sets weights using

conditional probabilities to assign large weights to features which are correlated to a given class.

Alternatively, the �value-di�erence metric� computes similarity between individual feature values,

then assigns larger weights to features which have a skewed distribution across the classes. A third

method uses �mutual information�, which is de�ned as the �reduction in uncertainty of one variable's

value given knowledge of the other's value�.

Wettschereck and Aha tested these methods on standard datasets and found most methods worked well

unless there were �highly interacting features�. They stated that wrapper methods learn faster and are

more accurate than �lter methods. An authoritative paper [66] states that the methods described in

Wettschereck and Aha are not applicable when there are complex representations. This is not surprising

since a complex representation will typically involve interacting features, and a higher number of features.

Cunningham [59] describes transformation based measures as those that assess the similarity between

objects as being the e�ort required to transform one object into another. One example is the earth mover

distance [67] for image similarity; it uses linear programming and works using an analogy of transforming

mass from one distribution to another. Transformation based measures include some domain-speci�c

specialist measures such as the Levenshtein Distance [68] for text, which counts the number of insertions,

deletions and substitutions required to transform one string into another.

Similarity measures for graphs tend to utilise edit distance, the largest common sub-graph, or sub-

graph isomorphism. Unfortunately many of these problems are NP-complete, although heuristics are

available to make them more tractable. In [69], several similarity measures were used, e.g. a count

vertices that are in common, or the maximum matching common subgraph. In [70], in order to solve

the graph isomorphism problem, a library of commonly occurring subgraphs (referred to as �models�)

was maintained. The problem was then reduced to trying to �nd an isomorphism between an input

graph and a model graph; this was done using decision trees. The worst-case run-time complexity of the

algorithm was quadratic with respect to the size of the graph. However, the size of the decision tree

grew exponentially, and in my opinion this is a serious disadvantage of this approach since it is likely to

be unacceptably ine�cient for complex cases (which involve larger graphs).

The most common of Cunningham's information theoretic measures [59] is compression-based simil-

arity. Using this measure, the compressed size of a document a which was compressed using the codebook

from document b gives an indication of the di�erence between documents a and b. The phrase codebook

refers to the dictionary that is used in methods such as LZW [71]. Compression-based similarity is simple

to understand and easy to apply. It requires neither training nor domain knowledge and has been shown

to be e�ective for many applications, e.g. the detection of software plagiarism [72] and spam �ltering

[73].

The �nal category referred to by Cunningham [59] is emergent measures. This is a loose collection of

48



no training training required

knowledge
light

(1)

� Levenshtein Distance

� Earth Mover Distance

� compression based

(2)

� weighted sum with
learned weights

� graph edit distance

� random forests

� other algorithms
involving collections of
decision trees

knowledge
intensive

(3)

� weighted sum with
automatically learned
weights

(4)

� hybrid approaches, e.g.
in Houeland [75]

Table 2.5: Classi�cation of similarity measures

more recent algorithms which are designed to exploit the computing power of modern computers. One

such algorithm is random forests [74]. A random forest consists of a collection of decision trees which

have been constructed by a stochastic12 process. The trees are not pruned (as would normally be the

case), since using unpruned trees increases diversity. The output consists of the modal value13 from the

decision trees.

Random forests are a generic type of classi�er; several researchers compare random forests favourably

with other classi�ers such as neural networks. An interesting example of the use of random decision trees

in CBR is given by Houeland [75], where the techniques were applied to the domain of palliative care.

Houeland used binary trees of depth 5; each node involved a the range of a numeric attribute being split

in two; the leaf nodes consisted of a set of cases from the case base. The 'knowledge-light' approach

involving decision trees was compared to a more 'knowledge-heavy' approach where domain experts were

asked to consider which features of the case were relevant. A hybrid approach which involved elements

of both of these was also tested. The results showed that the 'knowledge-light' approach outperformed

the 'knowledge-heavy' approach in this domain.

A wide variety of similarity measures has so far been discussed, but these are only examples and many

other methods exist in the literature. So, for a CBR system implementer the important question arises:

which similarity measure is the best for a given case base? To facilitate this discussion, I have divided

similarity measures into four categories in table 2.5.

12In this thesis, �stochastic� refers to any process which is non-deterministic, such as the output of a pseudo-random
number generator.

13The mode is de�ned as the most common value.

49



The most important distinction is between knowledge light (meaning little domain knowledge) and

knowledge intensive (extensive domain knowledge) measures. Knowledge light approaches o�er a distinct

advantage over knowledge intensive approaches, but are not always applicable. Knowledge intensive

approaches can be fraught since, in general, the acquisition of domain knowledge is di�cult; knowledge is

di�cult to obtain and, may not be accurate or relevant. Acquisition di�culties arise due to the �knowledge

elicitation bottleneck�, which is discussed in more detail in section 2.4.3. Experts may be skilled in the

construction, deconstruction, and repair of a particular artefact, but this does not necessarily mean that

they can give a reliable numerical score as to how important a feature is for similarity in CBR. If weights

are forthcoming, they tend to be very subjective. For example, in the construction of an automated

Scrabble system, Sheppard [76] found experts overestimated the importance of some factors, leading

him to �treat expert guidance with scepticism�. Knowledge intensive approaches should only be used if

knowledge-light ones have been shown to be inappropriate for the problem in hand, or if there is good

access to high quality domain knowledge (an atypical situation).

Some knowledge-light approaches do not require training: see (1) in table 2.5 e.g. Levenshtein

Distance for text. If the data supports such an approach, and it performs well for the task at hand, then

the lack of training and lack of domain knowledge would make these sorts of measures an obvious choice.

If none of the measures in category (1) are suitable then the decision will be guided by whether or

not suitable training data is available. The measures in category (2) all require training data: and, the

more complex the case is, the more data will be required. Complex cases tend to have more attributes,

and since the problem space has a large number of dimensions, more and more cases will be required to

adequately train the system. Assuming adequate training data is available, then the methods in category

(2) may be the best choice.

If categories (1) and (2) are excluded, but a domain expert is available, then the obvious alternative

is category (3), that of asking the domain expert to provide weights for the features. If the case repres-

entation is feature-vector then this is straightforward to implement. Otherwise, features will have to be

inferred or calculated from the case representation. For example, object-orientation has certain generic

features that could be extracted, such as the depth of the inheritance tree. However, domain-speci�c

measures could be valid as well, such as the number of �child� objects in a particular �has-A� relationship.

Of course, as they are typically implemented, objects can have numeric values, and a domain expert may

be able to distinguish which of these are important enough to be considered as �features� for similarity

purposes.

Category (4) is included for completeness since a hybrid approach showed a slight improvement in

results in [75], when compared to results from categories (2) or (3) alone.

If none of the options in table 2.5 are appropriate, then the only applicable strategy is to build up the

case base by non-CBR means (e.g. via model-based reasoning or rule-based reasoning) until it reaches a

50



size when training is possible for the measures in (2). This pathway may also be viable if category (3)

was used at the beginning, since it may be possible to use the expert's weights as a starting point for

improvements.

E�ectiveness is one criterion for choosing a similarity measure. The measure must be e�ective

otherwise adaptation may be too di�cult or impossible. E�ciency may also be a factor; for example it is

said in [59] that feature-vector approaches tend to be considerably faster than compression-based ones.

However, e�ciency is not always a signi�cant factor. Techniques such as �sh and shrink [62] can be used

to avoid having to search the whole case base. Also, modern computers are su�ciently powerful so that

the option of a simple linear search of the case base may be possible in an acceptable time.

Various methods of similarity have been discussed; some are specialist whilst others are quite general,

some are simple whereas others are complex, and some require domain knowledge or training and others

do not. The choice of an appropriate and e�ective similarity measure is important, but just as important

is how that measure is used to retrieve cases; this will be discussed in more detail in the next section.

2.2.2.3 Putting it all together: implementing retrieval

Once an e�ective similarity measure has been chosen, the implementer of a CBR system must then decide

how to use it in the retrieval process. A key decision is whether or not it will be necessary for the retrieval

algorithm to search every case, or if it can be restricted to a portion of the whole case base. Also, it is

possible to employ more than one criterion in the search, as just a single similarity measure may not be

optimal. Another issue is that it may be desirable to retrieve more than one case, and this may prove

useful in coping with adaptation failure.

If a case base is not large, then with the sort of impressive computing power that is cheaply available

nowadays, it may be feasible to do a straightforward linear search of an entire case base in an acceptable

time. However, if this is not possible, then one option is to use indices, as described in section 2.2.2.1. For

example, a balanced binary tree could select around 100 cases from a case base of 100000, by traversing

just 10 nodes of the tree.

Cunningham [59] lists several other strategies for making retrieval more e�cient, e.g. Fish and Shrink

[62], which is discussed in the previous section. Cover Trees [77] are a way of organising the case base to

avoid having to search through every case. Both Fish and Shrink and Cover Trees require the similarity

measure to be a true metric. Footprint-based retrieval [78] uses decision trees in a two-stage process; the

�rst stage is to localise the search, and the second is to �nd the nearest case to the query case within that

localised section of the case base. Footprint-based retrieval is not guaranteed to return optimal results,

but remains an e�ective heuristic.

Cunningham [59] discusses a technique known as case retrieval networks (CRN), which can be con-

�gured to return the same cases as k-NN. In a CRN a case is said [79] to constitute a series of information

51



entities (IEs). An information entity could be, for example, an attribute-value pair; CRNs depend on the

case representation being feature-based. The network has two types of nodes: case nodes and IE nodes.

The nodes are connected by two types of arcs: relevance arcs, and similarity arcs. A relevance arc con-

nects a case to the IEs which constitute its representation, whereas a similarity arc connects two IEs.

For example the IEs �Price: ¿10� and �Price: ¿10.50� might be connected by a similarity arc since the

attribute is the same and the values are similar. Case retrieval is e�ected by �activating� the IEs in the

query case, and propagating this activation through the network. The networks can be enhanced through

the addition of domain knowledge. It is claimed [79] that maintenance of the case base is straightforward,

so CRNs appear to be an attractive approach for speeding up retrieval.

One key factor which determines the e�ciency of retrieval is the computational e�ciency of the

similarity measure. However, for e�ectiveness it is sometimes desirable to use more than one similarity

measure. For example, in [80] there were two phases: retrieval and validation. The latter involved

applying a series of tests, and in this work, all the tests needed to be passed. However the authors

pointed out that weights could be applied to the test results and then the success criterion would involve

the sum of the weights of the successful tests exceeding a preset threshold value. The tests were supplied

with the assistance of domain experts. When validation was tested in real-world domains, it was found

that the tests were often not self-contained; they were inter-related in some way, so domain experts

were used to group the tests into sets and a dependency graph was constructed. It was claimed that this

approach is relevant to design tasks: retrieval would work on the surface features, which means the design

speci�cation. The validation would consist of checking that the new design meets the speci�cation. The

most interesting feature of this work was the use of di�erent levels of detail: surface features are used

�rst, which is presumably very e�cient. Secondly, there is an examination of the more complex 'deeper'

features of the case, which can make retrieval more e�ective, since domain knowledge can be employed.

Börner [81] proposes a process which makes an assumption that cases consist of two parts: the

surface or (attribute-value based) part, and the structural part (this assumption is reminiscent of the

work in the preceding paragraph). The surface representation can be transformed into the structural

via an invertible transformation function. This means that each surface representation corresponds to

one structural representation, and vice versa. The process begins with a �surface similarity assessment�,

which retrieves a set of cases which are similar to the query case by comparing the surface parts. This

is e�cient due to the simplicity of the surface features. As well as a case base, a rule-base exists and

each modi�cation rule within it has an inverse. Through careful selection of rules and application of their

inverses, both parts of the solution case are obtained. The surface representation can be shown to the

user for their approval; the user validates this and the whole process ensures that only cases which can

usefully be adapted are retrieved.

Börner makes the distinction between analysis and synthesis tasks. The claim is that for synthesis

52



tasks, similarity is not enough: the adaptability must be determined. One possible explanation for Börner's

claim is that, if the cases are complex artefacts, that the dimensionality increases and the mapping

between problems and their solutions becomes more complex. The assumption that �similar problems

require similar solutions� breaks down slightly. There are obvious �aws in Börner's proposal: rules are

not always invertible, and acquiring them can be an onerous task. However, for complex synthesis tasks,

the arguments about adaptability are persuasive. Also, the idea of representations on multiple levels

with di�erent similarity measures is an interesting one, since it can achieve an e�ective trade-o� between

thoroughness and e�ciency.

Much of the approaches in this section have involved using similarity measures to guide the retrieval

algorithm. However, concerns about adaptability have lead some researchers to consider an alternative

to solution-guided retrieval: adaptation guided retrieval (see section 2.2.3.2). Smythe and Keane [82]

argue that retrieval based on similarity of �surface� attributes is often insu�cient, and that it needs to

be augmented by �deep� domain knowledge about adaptability to ensure that retrieval is accurate. Their

algorithm is able to recommend adaptation methods for a particular case; the methods carry a score

which correlates with their complexity. The adaptation cost of the case is the sum of the cost of each of

those adaptation methods. The notion of �adaptation cost� is used in retrieval to prioritise cases which

are easy to adapt - and eliminate those which are impossible to adapt. An important advantage of this

approach is that it minimises the likelihood of adaptation failure.

The approaches of both Börner and Smythe and Keane involve a merging of retrieval and adaptation.

If such notions are cast aside and the activities are viewed as separate as per the traditional 4 REs model

(see section 2.1.1), then one factor that must be considered is the goal of the retrieval algorithm:

1 If the goal is to retrieve just one case, then this is presumably the one with the highest similarity

to the query case (or alternatively the �rst one with a satisfactory similarity).

2 The goal may be to retrieve a small cache of cases, but with an end goal of reusing and adapting

one case.

3 Lastly, the goal may be to retrieve and reuse several cases.

Option 3 implies that the CBR system will perform case merging. In many domains with complex cases,

the issues of dimensionality in the problem space are such that it is unlikely that there will ever be

su�cient coverage of the case case for one single case to be retrieved that is a satisfactory match.

However, sometimes it is possible to retrieve two or more cases, and reuse only parts of those cases; the

parts are merged together to form one coherent case that is the solution to the problem at hand. The

parts are (presumably) simpler structures than the whole, and this addresses the issues of dimensionality:

it is much more likely that a partial match will be found than a complete match. Case merging is discussed

in more detail in section 2.2.3.3.

53



The choice between options 1 and 2 determines the CBR system's strategy for dealing with failure.

Two sorts of failure are applicable: in null adaptation systems, it is possible that the retrieved result will

be unsatisfactory to the user, and they will then presumably expect to be o�ered an alternative. This is

particularly true in a recommender system.

In systems with adaptation, the possibility of adaptation failure is potentially the weakest point. If

option 2 was chosen, then the CBR system has the option of choosing another case from the cache. If

option 1 was chosen, or the cache from option 2 is exhausted, then the CBR system has several options

for dealing with the situation:

� Run the retrieval algorithm again. Obviously, the case(s) originally retrieved would have to be

excluded. If there is a threshold similarity value for retrieval, this might have to be decreased.

� Switch to case-merging. Even systems which are described as using case merging are likely to try

and adapt a single case �rst, since this is the easier option. Thus, case-merging is normally a

backup strategy.

� Switch to another problem-solving methodology, e.g. rule-based. Hybrid systems are featured in

section 2.3.

� Finally, the system may have to resort to reporting to the user that CBR has failed. Many of the

early CBR systems (see section 2.1.2.2) were able to learn from failure.

This discussion has shown that there are a wide variety of methods to measure similarity and to e�ect

retrieval in CBR. The methods vary in their e�ciency and their e�ectiveness. E�ciency considerations

are only valid if response times are unacceptably slow. E�ectiveness, however, is a key issue and since the

methods are typically not universally applicable (e.g. some only work for feature vector representations),

they must be chosen with the task and the case representation borne in mind. In many CBR systems (in

particular design), retrieval alone is insu�cient. Presenting a user with a previously solved problem is not

always useful, since the user's goal is solving their current problem. In those systems, the heart of CBR

is adaptation.

2.2.3 Adaptation

In the adaptation stage of CBR, a copy14 of the retrieved solution is altered so that it meets the re-

quirements posed in the new problem (query case). When CBR is working well, a solution which is very

similar (but probably not identical) to the query case is retrieved. The assumption is that, because the

problems are very similar, the solutions will also be very similar (see section 2.4.1). Adaptation 'tweaks'

the solution from the retrieved case to make it suitable for the query case.

14The original solution is typically retained without modi�cation.

54



Figure 2.6: Taxonomy of adaptation operators

In [66], two types of adaptation are distinguished. Adaptation during reuse happens when adaptation

is employed during the construction of a solution. In contrast, adaptation during revise is described

as occurring after solution is proposed, when feedback indicates that it is unsatisfactory and needs to

be repaired. In my opinion, this distinction is unnecessary and in this thesis, adaptation is considered

synonymous with the revise step of the 4REs model [1].

The ideal situation is where the case-base contains an existing solution that can be reused without

modi�cation, meaning adaptation is not required. However, in many CBR systems this situation is a

rarity: the coverage of the case base is too sparse to make it likely that exactly the same problem will be

encountered twice. Adaptation can thus be seen as a way of making up for lack of coverage of the case

base. Figure 2.5 provides a good visual illustration of this: there is a negative correlation between the

density of the case base and the mean �depth� of adaptation. Adaptation is often a particularly di�cult

part of CBR; if the distance between retrieved and query case is large then extensive changes may be

required which can be complex or even impossible to accomplish.

This section will begin with an introduction to the three adaptation operators. These operators can

be combined and used in a myriad of di�erent ways, and some of these strategies are presented, alongside

relevant examples of their use. Then case merging, and adaptation in general are discussed.

2.2.3.1 Adaptation Operators

All adaptation is accomplished through the use of three basic operators: substitution, transformation and

generative adaptation. Since there is no universally agreed terminology15, I have devised a taxonomy of

adaptation operators which is shown in �gure 2.6.

In direct adaptation, the existing solution from the case base is used directly to meet the new require-

ments. In contrast, generative adaptation reuses the method which was employed to create the existing

solution. This method is applied to the new problem. Generative adaptation is usually considered to be

synonymous with derivational replay, which was discussed brie�y in section 2.2.1.2. However, a new type

15For example, Bergmann and Wilke [12] refer to what I call direct adaptation as �transformational adaptation� and
transformation is described as �structural adaptation�. This is inconsistent with Kolodner's [57] de�nition of transformation,
which is distinct from substitution.

55



of generative adaptation is introduced in chapter 7.

Null adaptation is the simplest option, where in fact there is no adaptation! Sometimes this is because

the task does not require adaptation. For example, in spam �ltering [83] the solution space normally

has just two possible values (e.g. �spam� or �not spam�). Adaptation implies a slight �tweaking� of the

retrieved case, so it is clearly irrelevant to this sort of task. Alternatively, adaptation may be omitted

because it is left to the user to perform manually; a noteworthy example is Clavier (see section 2.2.3.4).

Substitution is where a part of the solution is replaced with another object or value [57]. For example,

in a meal planning system, if the retrieved case was 'beef curry' but the new case was a vegetarian

meal, then then tofu could be substituted for the beef. Kolodner [57] de�ned several sub-categories of

substitution, for example local search uses a replacement for an (unsuitable) item is found by searching

an abstraction hierarchy. In reinstantiation the roles in the new solution are �lled di�erently to those

in the solution part of the retrieved case. For example, a dispute involving ownership of an orange was

solved with reference to a previous dispute with a candy bar. The orange in the new case is performing

the same role as the candy bar did in the old case.

Parameter adjustment is where interpolation is used to change a value in the retrieved case so that

it better matches the new solution, for example in criminal justice, the sentence for a crime might be

altered if its circumstances of the new crime (query case) di�er from the previous crime (retrieved case).

Parameter adjustment may be particularly suited to numerical attributes, whereas local search could be

used for symbolic attributes.

Transformation involves structural changes to the solution, such as the insertion and/or deletion of

parts. In the meal planning example, this could be to delete an undesirable ingredient, for example the

removal of Brussels sprouts from a traditional English roast dinner if they are not required. Transformation

may be guided by a model - see below for a discussion of model based adaptation.

It is clear that transformation is a more powerful and �exible operator than substitution. Often, the

two are combined, and adaptation may consist of several substitution steps, several transformation steps,

or a mixture of both. Sometimes this is because more than one change is required. Another meal planning

example is given in Kolodner [57] where lasagne is adapted so that it becomes kosher. In this situation,

two substitutions were required: tofu-cheese for cheese and non-dairy margarine for butter.

In some cases it may be that only one (or few) changes are required, but when implemented these

solutions render the solution invalid, necessitating further changes. A simple example in judicial sentencing

may occur if the crime in question (the query case) has more aggravating circumstances than the previous

crime (retrieved case), which was punished by a term of imprisonment. Therefore, the solution is obtained

by parameter adjustment: the term of imprisonment is increased, using some heuristic. However, this

then poses a problem: the maximum term of imprisonment has been exceeded, so instead the sentence is

reduced to the maximum term and an additional �ne is imposed. Thus, an initial substitution necessitated

56



an additional substitution and a transformation step: the addition of a �ne to compensate for the reduction

in the prison term.

Many other awkward situations can be envisaged, for example in the meal planning domain it is

possible that a substitution will result in two incompatible ingredients being present. These examples

indicate that adaptation can be a complex process which is not always guaranteed to succeed.

2.2.3.2 Strategies for adaptation

This section discusses some ways in which the adaptation operators can be used and combined. Where

possible, examples are given as to where these strategies have been employed; these examples are largely

drawn from [66].

Model based adaptation is often implemented when a causal model is available but is incomplete,

which is why it is augmented with CBR. CASEY [20, 21] was an early example of this; it built on the

work of the Heart Failure Program, which reasoned according to a causal model. A solution had three

parts: diagnosis, therapy and explanation. CASEY had strategies to �repair� each of these if the solution

in the retrieved case is unsuitable. For example, the therapies could be repaired using the knowledge that

certain therapies bene�t certain physiological states.

Less commonly, the primary motivation for model based adaptation is the intractability of the model.

In FormTool ([29], see section 2.1.2.3), the solution in the retrieved case is used to provide the starting

point of a search. The solution space is so large that without this starting point, an exhaustive search

would be impractical. The examples of CASEY and FormTool show that even if a model is �awed, it still

may be of use when incorporated into a case based reasoner.

Evolutionary algorithms have been employed for adaptation. For example, GENCAD [84] used a

genetic algorithm to adapt �oor plan layouts according to the principles of feng shui, the �Chinese art

of placement�. Cases in GENCAD were the designs of such layouts. Adaptation was performed by two

operators which made changes to the designs: crossover and mutation. Crossover was used to combine

aspects of two designs; the resulting �o�spring� were two new designs. Mutation altered one design to

produce a single new design as its o�spring. The algorithm iterated through a cycle: a population of

designs was subjected to crossover and mutation. The designs were evaluated using a �tness function,

which was formulated using the principles of feng shui. The best designs of the generation were chosen

and the cycle repeated until a satisfactory design was produced. The stochastic nature of the process

produced some surprising results, which the implementers could not have anticipated. This is surely a

key advantage of evolutionary algorithms: their results may be quite creative or innovative.

One of the drawbacks of using evolutionary algorithms is the need for a �tness function. All problem-

solving techniques require some measure of success, whether this is done automatically or manually via

expert users. However, in the case of genetic algorithms the �tness function will typically be applied

57



many times, and so asking users to evaluate the solutions manually is typically not feasible. The e�cacy

of the algorithms is often determined by the accuracy of the �tness function.

Adaptation guided retrieval was introduced in section 2.2.2.3. The ease of adapting a solution is used

in the retrieval algorithm, with a goal of reducing or eliminating the possibility of adaptation failure. It is

a technique which has been applied to Déjà Vu, which automated the design of software that controlled

robotic devices in steel mills [82]. Déjà Vu produced �solution charts� for the programs, and adaptation

therefore involved modi�cation of those charts. The knowledge needed to perform such modi�cation

was stored in so called �specialists� and �strategies�. Strategies were more general than the specialists.

Specialists performed the basic adaptation mechanisms of insertion, deletion and substitution within the

graphs, without any knowledge of the e�ects of other specialists. Strategies coordinated the specialists;

their operations had interdependencies and therefore the order in which the specialists were invoked was

signi�cant. They also managed con�icts that arose between the specialists: for example, invoking an

earlier one may cause the preconditions of a latter one to not be met.

Both specialists and strategies had �action knowledge� encoded: this referred to the actual modi-

�cations that are performed. In fact all knowledge intensive adaptation methods need such �action

knowledge�. However, in Déjà Vu they also had their �capability knowledge� encoded; this de�ned their

scope and was used to guide retrieval so that only adaptable cases were retrieved. This work is signi�cant

both as a proof-of-concept for adaptation guided retrieval, and because of the way in which complex

multi-step adaptation is controlled.

Adaptation is presented as a constraint satisfaction problem in [85]. It uses a heuristic called the

minimum con�icts repair algorithm to resolve constraints in design speci�cations. The values in the

retrieved case are used as the starting point for the algorithm. Then, using the constraints from the query

case, an iterative repair process progressively resolves any con�icts; when there are no more con�icts,

the solution is found. It is worth noting that not all problems involve constraints that can be explicitly

encoded. For example, design problems (see chapter 3) often involve constraints that are di�cult to

encode in a computer system, because they may be vague, con�icting and rapidly changing.

As in many other aspects of CBR, approaches to adaptation di�er in the amount of domain knowledge

that is relied on. In knowledge heavy approaches, the adaptation knowledge is explicitly encoded in the

system, e.g. model based adaptation. Knowledge light methods involve some form of automated learning,

such as evolutionary algorithms. Craw et al [86] explored the use of decision tree algorithms to acquire

adaptation knowledge. �Adaptation training examples� were selected from the case-base using a leave

one out strategy. One algorithm used by Craw et al was the C4.5 algorithm, which chooses nodes which

allow the highest information gain. C4.5 works in a �general-to-speci�c direction�, i.e. as the nodes in

the tree are traversed the adaptation knowledge becomes more speci�c. Many of the concepts in the

discussion about retrieval (in section 2.2.2.3) apply here; for example decision trees, as per all knowledge

58



light methods, require su�cient data to train them.

Another knowledge light method was proposed by McSherry [87]. What makes this approach remark-

able is the claim that knowledge-light adaptation can be performed using just 3 cases. One of these,

chosen because of its similarity to the target, plays the role of the retrieved case in the classical 4REs

model [1]. The other two provide the adaptation knowledge using simple heuristics: the values of attrib-

utes in these two cases are compared and the di�erences between them are applied to the retrieved case

to give the solution. Although this technique sounds promising, it requires the retrieved case to di�er

from the target case only in the value of one attribute. In many problem domains, this would be wildly

unrealistic.

Case based adaptation is an approach that is similar to McSherry's work, was was used in DIAL [88].

Two cases were retrieved from the case base: one plays the role of the retrieved case in the 4REs model

[1], whereas the other is the adaptation case. The adaptation case will be similar to the query case, and

will contain a previous example of successful adaptation. The process which was applied in the adaptation

case is re-applied to the retrieved case.

The wide choice of approaches listed here indicates that the choice of adaptation strategy has to be a

pragmatic one, tailored to the needs of a particular problem. If a model exists and can be encoded into a

computer system, then model based adaptation may be a good choice. A CBR system that incorporates

model based adaptation is a special case of a hybrid system (see section 2.3). Alternatively, if the

adaptation is primarily about solving well-de�ned mathematical problems such as constraint satisfaction

then many algorithms exist for this and little or no domain knowledge may be required.

If creativity (in the output) is an advantage, and a good �tness function is available, then evolutionary

algorithms may be considered, since they sometimes produce surprising solutions. However, if the problem

is more about interpolation that creativity, and the problem case coverage is very good, then knowledge-

light methods should be explored. Adaptation functions can sometimes be learned through analysis of

the case-base, but it must be borne in mind that it tends to be very di�cult to get dense coverage of a

case base when the problems exhibit high dimensionality.

Some systems utilise more than one strategy for adaptation, e.g. DIAL [88], which was capable of

using both cases and rules for adaptation, as well as allowing manual adaptation. Of course, adaptation

does not have to adhere to any of the strategies listed here. For example, Kolodner [57] refers to common-

sense transformation: adaptation commonly uses heuristics and other domain knowledge. However, the

disadvantages of systems which incorporate domain knowledge are well known: acquiring such knowledge

can be di�cult, and the resulting heuristics are not guaranteed to be optimal. In some cases the best

strategy is to abandon the idea of retrieving a single case, in favour of case merging.

59



2.2.3.3 Case merging

Case merging is a variant on the traditional 4REs model [1] where multiple cases are retrieved instead

of one case. Parts of the retrieved cases are then combined in some way to provide the solution. It is

also known as compositional adaptation [12]. As discussed in section 2.2.2.3, case merging is a method

of coping with poor coverage in the case base. Problems of coverage are typically more acute when the

cases are more complex, due to the high dimensionality.

�The power of CBR is severely curtailed if problem solving is limited to the retrieval

and adaptation of a single case. For complex problem domains, it is unlikely that a single

case will be available which closely matches all of the target problem details, and hence

sophisticated adaptation support will be necessary. However, the same problem may be more

readily solved by combining parts of many di�erent solutions, without the need for the same

level of sophisticated adaptation. For this reason, the strategy of reusing multiple cases is

immediately appealing.� - Smyth et al [44].

CELIA [45] was an early CBR system which performed automobile troubleshooting, using case merging.

CELIA stored cases in pieces called �snippets�, and the integrity of the solution was preserved by links

between the snippets. Snippets could be retrieved in two ways: by following the links from one snippet

to the next, or directly, via a weighted similarity metric. The former was given a higher precedence than

the latter since the authors stated they wanted to retain the coherence (of the cases).

The examples given in [45] show CELIA retrieving a snippet, and following the links to other related

snippets; it is only when a retrieved snippet is found to be unsuitable that the global search is carried

out. A snippet is deemed unsuitable if its predictions (about the automobile) are inconsistent with reality.

The author pointed out that, even if a snippet was small, it was not merely a rule, since the snippets

carried links to one another and also stored the context in which they were applied. So CELIA's case

representation was not simply about inferring rules from cases. It was mentioned that storing the context

could facilitate reasoning that would prohibit the retrieval of incompatible snippets. In contrast, in a rule-

based system, the rules are not traditionally linked to one another and do not normally store contextual

information, therefore if rules are retrieved there is no way to ensure their compatibility. The example of

CELIA raises some interesting questions and choices about how to implement case-merging.

When to use case merging versus a single case?

CELIA [45] prioritised retrieval of a single case (via its chain of related snippets) over retrieval of multiple

cases. In my opinion this is the correct decision, as the simplest solutions to any problem should always

be tried before the complex ones; case merging has disadvantages over single case retrieval due to its

60



inherent complexity. However, the right balance must be struck: retrieving two cases which are a good

match may be better than one case which is a poor match.

How are cases stored?

As discussed above, CELIA [45], stored cases in parts called �snippets�. The key advantage of this is

that the parts can contain links to each other which can be used to intelligently aid retrieval. Déjà Vu

[44] also stored cases in parts, in a hierarchical structure. Such storage may result in a reduced storage

requirement if the parts are reused, but this is rarely signi�cant with modern computer systems.

CADET [46, 89] constructed designs for hydro-mechanical systems. Cases in CADET were stored as

a whole, and not fragmented. The justi�cation for this was that the components of a design can have

multiple functions, and the goals for a complete system can change during the design process, so indexing

components by their subgoals could be problematic.

If case merging takes place in a CBR system which stores cases as a whole, then the question arises

of how to break the case up and access the parts. If a case is stored in parts, then it is important that

the integrity of a case is maintained (e.g. by storing links between parts of a case).

�In the case of all things which have several parts and in which the totality is not, as it

were, a mere heap, but the whole is something beside the parts� - Aristotle (italics mine).

What size are the parts that are retrieved?

If the cases are stored as a whole, then perhaps the better question is about demarcation: how can we

identify parts of a case that can be reused? There is no general answer to this, what is an appropriate

granularity for one problem may not be so for another. Ideally the parts should be as self-contained as

possible to minimise interactions.

COMPOSER [85] was a case based design system which represented cases as constraint satisfaction

problems. Multiple cases were retrieved; the values from these retrieved cases were used to initialise the

values of the corresponding variables in the new problem. The problem decomposition algorithm utilised

knowledge of the case base; thus the size of the sub-problems was determined by the composition of the

case base.

CADSYN [90] used �generalised decomposition knowledge� to break down designs. This decompos-

ition knowledge originated in a 1980s frame-based system [91] which represented designs using domain

knowledge in the form of preconditions, constraints and goals. In addition, alternatives to those goals

were stored, as well as an ordering for the goals. When a goal could not be directly satis�ed, the problem

was decomposed. Thus, the degree of decomposition was determined by the nature of the problem, which

seems a pragmatic approach.

61



Are the cases of equal importance?

In CELIA [45] several cases can be retrieved, and although their contribution to the �nal solution may not

be equal, there is no concept of any one case in particular being more important than the others. Kolodner

[57] speaks about case based substitution, as a method of adaptation16. In case based substitution, a

value in the retrieved case is substituted for one in another case. Thus, it is possible to construct a

system where the solution comes principally from one case, but additional cases are used to perform

minor modi�cations to it.

In Déjà Vu [44], there are two sorts of cases: abstract cases (which o�er �high-level� general solutions)

and concrete cases (which contain real, speci�c solutions). A graphical representation based on �structure

function charts� is used for both types of cases. An abstract case typically corresponds to several concrete

cases. Since matching (for retrieval) is done against the abstract cases, they are used as a form of indexing.

The abstract cases store decomposition knowledge; both concrete and abstract cases may be retrieved

but decomposition only occurs if an abstract case is reused. Their role in indexing and decomposition

arguably makes abstract cases more important than concrete cases.

How can the retrieval of incompatible parts be resolved?

This point is particularly important since the main disadvantage of case merging is the possibility if

incompatibility between the parts. Case merging is particularly appropriate to complex tasks such as

planning and design, since these are the sort of tasks that the issues of high dimensionality tend to a�ect

the most. In design, it is possible to retrieve parts which are spatially incompatible with one another.

It is also possible to introduce redundancy in the case merging process. In planning, additional to these

issues there may be temporal problems: an earlier step may cause the pre-conditions of a latter step to

not be met.

There are two obvious strategies for dealing with incompatibility: prevent it from happening, or repair

it once it has happened. Intuitively prevention seems better than repair, however if the component parts

have complex interactions with each other, then it is possible that prevention will not be feasible as it may

be di�cult to foresee those interactions. For CELIA [45], the danger of incompatibilities was discussed

but no strategy was implemented. In COMPOSER [85], the minimum con�icts heuristic is responsible for

management of incompatibility, and for adaptation in general. Graph-theoretic heuristics which employ

tournament selection have also been successfully employed to help merge cases in CBR systems for course

timetabling problems [92]. The tournament selection prioritises courses which have the most constraints

to be scheduled �rst.
16Note that case based substitution is not the same as case based adaptation, which is discussed in section 2.2.3.2. The

use of cases to acquire adaptation knowledge is not (in my opinion) case merging, even though more than one case is
retrieved. This is because the additional cases are not structurally a part of the solution, they are merely used to guide the
adaptation process. However, this distinction becomes blurred when there is case merging in derivational replay.

62



Figure 2.7: Taxonomy of strategies for multiple case reuse in derivational replay

As well as incompatibilities, it is possible that when the retrieved cases are combined there will be

gaps or missing parts in the solution. Many CBR systems for planning and design often incorporate some

sort of non-CBR reasoning (e.g. rule based or model based). This reasoning is often used in adaptation,

and if present it could be of use to repair inconsistencies between merged parts, and to provide missing

parts to solutions.

The examples above have shown how case merging has been applied in design; however it is also

used in several case based planners. Muñoz-Avila and Cox [36] make the point that case merging is most

likely to be successful if the planner's task involves solving a set of goals and the case base consists of

cases that can be decomposed into parts that can be combined in di�erent ways to solve di�erent goals.

Strategies for case merging within derivational replay (see 2.2.1.2) were identi�ed by Veloso [93]. I have

arranged these strategies into a taxonomy, as shown in �gure 2.7.

Serial replay reuses only a single case. The simplest form of multiple case reuse is sequential replay.

The retrieval step establishes an order for the retrieved cases; they are replayed in their entirety in

that order and then the di�erent plans are connected together. Interleaved replay involves steps from

plans being mixed together. In ordering based interleaved replay, plans are played until a �step ordering

commitment� occurs. For example, a step in a plan may require a goal; if another step deletes this goal

then this imposes a constraint on ordering of the two steps.

Choice and ordering based interleaved replay is similar to ordering based interleaved replay, except

that it can use state information to make decisions. An example was given in [93] where a step in a plan

(which was being created) added a value to the state of that plan. Then, the plan encountered a goal

which could be satis�ed by four possible �operators� (plan steps). Three operators had preconditions that

were not satis�ed in the plan. However, one operator had the value (that was added previously) as its

precondition, since this precondition was satis�ed then this operator was the obvious choice.

63



Conceivably, there are di�erent ways in which cases can be combined in design also. For example, if

cases A and B are both a reasonable match for the query case, then it is possible that these cases will be

split in two, and the parts that form a good match will be merged. However, the merging could be more

complex than this. If the designs are hierarchical and the problem can be decomposed recursively, then

case A may be reused but some parts of it replaced with case B; however those parts may themselves

contain smaller parts of other cases, with merging being applied on di�erent levels of the hierarchy.

Most of the examples here have come from planning or design. Single case retrieval is often inadequate

in these complex tasks, and therefore the system developer is left with several choices. One option is to

augment CBR with another technology (hybrid systems are discussed in section 2.3). However, the reuse

of multiple cases is clearly an attractive option since it mirrors humans typical problem solving strategies

(as does CBR in general). People often blend together several past experiences when solving problems.

Good examples of this are presented in [94], for biologically inspired design tasks.

Many of the issues that case merging entails can be solved pragmatically according to the needs of

particular tasks. For example, if retrieval of a single case is virtually unlikely then it can be discounted

and case merging can be considered the norm. However, if interactions between parts of cases are strong,

and single case retrieval is likely, then this simpler option can still be allowed for as an alternative within

a case-merging system.

Some CBR systems store cases as part of a network or hierarchy (this is particularly true of early CBR

systems), with integrity being maintained by links between parts. An alternative is to store the cases as

a whole, and use some decomposition algorithm to select the parts. Again this can be determined on a

task-by-task basis: if the parts are rarely reused then the better option will be to store the cases as a

whole. However, if extensive reuse and retrieval is di�cult (e.g. if nearest neighbour algorithms perform

poorly) then the links between the parts could form a useful aid to retrieval.

The size of the parts that are retrieved can also be decided on a task-by-task, or case-by-case basis:

the number of cases that are retrieved does not have to be constant. In some situations this decision will

be obvious, e.g. if a design consists of clearly de�ned components with minimal interaction then those

components will be the parts retrieved. If cases are stored in parts, then it is probably better to make

those parts as small as possible, since an algorithm need not be restricted to retrieving just one part of a

case, and a �ne granularity a�ords maximum choice. For example in CELIA [45], it is common for several

�snippets� of one case to be combined with several from another.

In my opinion, the biggest potential disadvantage of case merging is incompatibility between retrieved

parts. The parts may be good solutions to the sub-goals that they address, but there is no guarantee that

an integrated solution can be formulated from them. It is possible that a repair activity will be necessary,

to facilitate the merging of the parts. For example, the repairs may involve altering the structure of

design components so that they �t together, or inserting extra steps into plans so that pre-conditions

64



will be met. But such a repair strategy has no guarantee of success; if structure is altered then the

functionality of the components may be a�ected and meeting the pre-conditions of one part may cause

those of another to be violated. However, for some tasks it may be easier to manage these inconsistencies

than to have to cope with large di�erences between the retrieved and query case, which will presumably

result in extensive adaptation being required.

Finally, I believe that one potential advantage of case merging is that it could be greatly bene�cial

where there are heterogeneous cases. Heterogeneous cases may reside within the same case base, or

di�erent case bases [95]. The latter is referred to as multiple case based reasoning, and typically requires

a mechanism such as an ontology, since the di�erent case bases may have di�erent semantics. An example

of an issue which may arise with heterogeneous cases is: how can a speci�cation for an apartment be

compared to the design of a house? The di�erences may not simply be quantitative (the apartment

is smaller) but could be qualitative (e.g. the apartment lacks a garage and has less rooms). However,

both have a kitchen and bathroom, and it is feasible that any one kitchen can be compared to another

regardless of whether it is sited in a house, apartment or commercial o�ce.

There have been several CBR systems using case merging, and there is work speci�cally devoted to it

in the case based planning literature (e.g. [93]). However, there are very few publications about multiple

case reuse in case based design; one of the aims of this thesis is to �ll that gap.

2.2.3.4 Failure of Adaptation

For some tasks, there will be an objective way of evaluating the output of the CBR, which the system

can measure itself. Thus, the CBR system will be able to detect if it has failed. Then, a number of

options are possible. The system can report to the user that adaptation has failed and it is then done

manually (null adaptation). Alternatively, it can switch to case merging (see above), or to a non-CBR

methodology.

The situation is more serious if there is no way for the system to evaluate its own output. Retrieval only

CBR tends to have a fairly predictable output, and it is a concept that is easily explained to non-computer

scientists. Retrieval only systems can often justify their output by estimating the degree to which the

query and retrieved cases match, which can be invaluable in gaining the con�dence of stakeholders (e.g.

clients or users). In contrast, adaptation sometimes makes use of complex heuristics and repair strategies,

which can make it more of a �black box� to the end user.

Clavier [96] was an interesting example of a CBR system which designed the layout of aerospace

materials in autoclave ovens at Lockheed. The materials being heated were of very high value, and the

physical properties of the autoclave oven were not fully understood. Adaptation was performed using

a mixture of case-merging and heuristics which incorporated domain knowledge. Clavier incorporated a

graphical editor so users were able to manually add new cases, assist with retrieval by con�rming the

65



A B C D

1 2 3 4 1 2 3 4 12 9 13 1 2 3 4

5 6 7 8 5 6 7 8 15 11 10 14 5 6 7 8

9 10 11 12 9 10 11 12 7 8 5 6 9 10 11 12

13 14 15 13 14 15 4 3 2 1 13 15 14

Figure 2.8: 15 puzzle

choice of retrieved case, and assist with adaptation by manually adapting cases.

When Clavier was evaluated, the users found that the adaptation was not reliable enough, due to

the interaction between parts in the oven. For example objects can interfere with convection currents

which a�ect the temperature to which nearby objects are heated. Therefore, the users did not use the

automatic adaptation, as they had too little con�dence in it. Experts tend to be naturally resistant to

being replaced by machines, and this resistance may be strengthened if the output of those machines is

inferior to their own.

In Clavier, adaptation failed because there was an underlying physical model which was poorly un-

derstood. However, it is possible for failure to occur even in well understood domains. Some tasks are

undecidable, unsolvable or computationally intractable. Also, there is an underlying assumption in CBR

that retrieval distance correlates to adaptation distance. However, in general there is no guarantee that

one object can be transformed into another, even if they appear similar. A good example of this is the

classic 15-puzzle [14, 97], as shown in �gure 2.8. The puzzle consists of a board with sixteen spaces on

it, and �fteen tiles. The only legal move is to slide a tile horizontally or vertically into the blank space.

There are many variants of the puzzle but the one of interest here has the tiles numbered 1 to 15, with

the goal being to achieve layout A in �gure 2.8.

We could regard the distance between layouts as the minimum number of legal moves required to

e�ect that transformation from one layout to another. Layouts B, C and D are to be transformed into

layout A. Intuitively, B and D look similar to A, but C looks very di�erent. In fact B is similar, with just

one move being required. C is very di�erent, the distance being 80 moves [98] which is the maximum

number of legal moves required to e�ect any transformation. Layout D, however, cannot be transformed

into layout A no matter how many moves are made [99].

The example of the 15 puzzle illustrates that, unless in the rare situation in which the solution space

is completely understood and adaptation is proven to always be possible, the failure of adaptation must

be allowed for. Of course, there are various techniques for minimising this possibility such as adaptation

guided retrieval (see section 2.2.3.2). Perhaps the possibility of failure is why so many CBR systems omit

66



adaptation completely.

2.2.3.5 Discussion

Adaptation is the most controversial area of CBR: some researchers [100] believe that deep adaptation

nulli�es one of the main advantages of CBR, which is the avoidance of the knowledge-elicitation bottleneck

(see section 2.4.3). However, this view is not universally accepted, and other researchers consider that

retrieval only CBR systems (which are sometimes termed as �case based retrieval� or �CBR-Lite�) avoid the

more di�cult, real-world problems. The consensus in the CBR community seems to be that adaptation

has a tendency to rely more on domain knowledge than retrieval. My opinion is that, in complex tasks

(e.g. design or planning) where case coverage is sparse, CBR with deep adaptation can serve as a useful

compromise between the knowledge-intensive approach of rule-based systems, and the knowledge-light

approaches which tend to shift the burden on to the user, who may otherwise have to perform adaptation

manually.

This section has explained how the basic adaptation operators can be combined in a variety of ways

to make a number of di�erent adaptation strategies. Some of these strategies involve techniques not

traditionally associated with CBR (e.g. evolutionary algorithms), so they are in e�ect hybrid systems.

These strategies di�er in the amount of adaptation knowledge which they incorporate: as with other

aspects of CBR there are knowledge heavy and knowledge light approaches. Case merging is an alternative

to adapting a single case which is popular in tasks such as design and planning.

Other systems shy away from adaptation altogether, perhaps because it is somewhat controversial,

or maybe because it is di�cult to implement and subject to failure. It is also possible that rather than

being a complete failure, adaptation will produce results which are mediocre. This can have an impact

on the quality of the case base, a topic which is discussed in the next section.

2.2.4 Ensuring quality and e�ciency

Once built, some CBR systems continue to perform acceptably without any special intervention. However,

other systems have their output a�ected by the related issues of quality and e�ciency. If the content of

the case base is causing these issues to occur then this may mean that the system cannot be allowed to

acquire cases and grow without intervention; in addition to the processes in the 4REs model, case base

maintenance may be required.

The drop in e�ciency arises from the utility problem, as discussed in section 2.2.2.1. As cases are

added to the case base, coverage of the problem space becomes denser, therefore the mean distance

between query case and retrieved case decreases. It is one of the assumptions of CBR that retrieval

distance correlates to adaptation distance, so therefore adaptation distance tends to decrease, which

hopefully results in a more accurate output. However, the decrease in retrieval distance tends to become

67



Figure 2.9: Qualitative illustration of the utility problem

gradually smaller, as shown qualitatively in �gure 2.9. Therefore, any improvement in adaptation accuracy

also tends to become more marginal as the case base gets larger.

Depending on the nature of the retrieval function, increases in case base size tend to result in increased

time taken for retrieval, since the retrieval algorithm has a larger case base to search. If retrieval uses a

decision tree then the execution times may be logarithmic with respect to the case base size, whereas if

every case is examined then it will be linear. So in some CBR systems, a point is reached when adding

more cases results in a negligible improvement in accuracy, but an unacceptable deterioration in e�ciency.

Case based maintenance ensures that execution speed remains acceptable by activities such as controlling

the size of the case base.

E�ciency is not the only issue, however. Problems of quality occur when there is an inaccurate

mapping between problem and solution space. For example, the bold diagonal line in �gure 2.10 indicates

a problem-solution mapping which clearly appears di�erent from the other mappings. In fact, the problems

that CBR systems deal with tend to be multidimensional and not just 2-dimensional. If a mapping is

complex then this is acceptable as long as it accurately re�ects the reality of the problem domain. However,

if it is not accurate17 then this is likely to lead to quality problems since there is an underlying assumption

(see section 2.4.1) in CBR that problems recur, i.e. the past can be used as a guide to the future.

In some domains, the nature of the task changes over time. This presents a challenge since older

cases may become irrelevant or misleading, which can have an impact on both quality and e�ciency.

Watson presented [101] an algorithm for case based maintenance in a CBR system which was used for

the speci�cation of heating, ventilation and air conditioning (HVAC) systems. The system acquired

approximately 5000 cases a year, which were stored in an SQL database. During this growth process,

17The concept of an inaccurate problem-solution mapping is not equivalent to the problem being a statistical outlier. For
some tasks it may be particularly important for the system to deal with unusual problems e�ectively, particularly if the task
is safety-critical.

68



Figure 2.10: Idiosyncratic mapping (inspired by [4])

redundant cases were acquired, and some cases became obsolete since they related to discontinued

products. All cases had to be stored for commercial reasons, so the cases were assigned a status �ag

which controlled whether they were suitable for retrieval.

Each evening, when the system was not in use, a case based maintenance algorithm was invoked.

The algorithm took all pairs of cases in the case base and computed their similarity. If the similarity

of two cases exceeded a preset value, then they became members of the same similarity set. Watson's

similarity set concept appears to be a specialisation of the mathematical idea of an equivalence class.

Once all the comparisons had been made, the algorithm found a representative case for each similarity

set; this was the one which had the greatest similarity to all cases in the set. Finally, all the members of

each set except the representative case were �agged as unsuitable for retrieval. Thus, the e�ective size of

the case base was minimised by the process, which ensured that redundancy was removed automatically.

Obsolescence was removed manually with the aid of specially crafted SQL queries.

It is common for academic published works about CBR (and AI in general) to relegate implementation

issues as being of minor importance, compared to theory. However, case based maintenance is a very

practical topic. Watson's work included no empirical data about performance, so the reader is left unable

to judge whether the case-based maintenance activities that he describes are actually necessary. Another

disadvantage of the work described in [101] is the crude simplicity of the approach, e.g. comparing all

69



pairs of cases is computationally expensive. Additionally, the algorithm e�ectively clustered some of the

cases, then removed all the outermost elements of each cluster. However, if the cluster happens to be

on the edge of a gap, then some of those elements may be valuable in providing coverage for that gap,

so their removal is questionable.

A more systematic treatment of case redundancy is given in [102]. The coverage of a case was de�ned

as the set of problems that it is capable of solving. The reachability of a problem is the set of cases that

can be used to solve it. They also de�ned several categories of case, which are listed in increasing order

of importance:

1 An auxiliary case can be removed without a�ecting performance.

2 A support case is a type of spanning case (see below) which exists in a group (of other support cases)

called a �support group�. Individual support cases can be deleted without a�ecting performance,

but if the support group as a whole is deleted then performance will decline.

3 A spanning case does not directly a�ect performance. However the coverage of a spanning case

links regions of the case base which are covered by other cases; if these cases are deleted then the

spanning case may become important.

4 A pivotal case is one which cannot be deleted from the case base without adversely a�ecting

performance.

The goal of the �footprint deletion policy� was to maximise competence whilst minimising the size of the

case base. The algorithm deleted cases, prioritising the ones of lesser importance. Within a category,

cases can be prioritised by choosing the one with the largest reachable set, or with the least coverage

(see above for de�nitions).

Whilst the theoretical contribution of [102] is interesting, there are real shortcomings in this article.

For example, the concepts of coverage and reachability (which underpin much of the paper) are binary;

either a case is in the set, or it is not. This doesn't re�ect the reality of many problems, which is that

set membership really ought to be fuzzy. If a set of cases provides an acceptable solution to a problem

then within that set some cases within the set will typically be better than others.

A theoretical framework for case based maintenance was presented by Wilson and Leake in [103].

Introspective and non-introspective approaches to analysing data were de�ned. Non-introspective ap-

proaches either involve no case-based maintenance, or they use information external to the case base to

do it. Introspective approaches were divided into synchrotic (which uses a single snapshot of the case

base) and diachronic (which analyses changes in the case base over time). Diachronic analysis could be

useful in a domain where the problem is dynamic, such as in technology or fashion.

70



Di�erent options for timing were also de�ned in [103]. If case based maintenance is performed at a set

stage in the CBR cycle, this is known as periodic. Periodic timing can either be continuous (if it happens

every cycle), or conditional (if it happens in response to a condition, e.g. case base size). In contrast,

ad hoc timing is de�ned as being unconnected to the cycle. This terminology is questionable since

maintenance that is performed every evening would be termed ad hoc, which seems counter-intuitive.

Similar to timing, two modes of integration were de�ned: online (which is during the CBR cycle) or

o�ine. O�ine could refer to time when the system is idle between cases, or when it is waiting for user

input. It appears that there is some overlap between the concepts of timing and integration.

Options for triggering case based maintenance were also de�ned. Maintenance can be invoked when

the case base reaches a certain size (space-based), when retrieval times exceed a threshold (time-based),

or when the system fails to give good results (result-based). Time-based and result-based will normally

be the most relevant, since storage in modern computer systems is often relatively cheap. Time-based

maintenance addresses mainly e�ciency problems, whereas result-based focusses on quality problems.

Alternatively (rather than being reactive) maintenance can be proactive, where problems in the future

are predicted. In general, extrapolation and predicting the future are activities that are notoriously hard

to do well. However, an example is given in [103] where a company is planning to release a range of new

products: this might change the nature of problems in the case base so it could be a good time to do

case base maintenance.

The scope of case based maintenance is categorised in [103] into operations which have a narrow

scope (e.g. a�ecting one or two cases), and a broad scope (e.g. changing the indexing structure). There

are three levels that can be a�ected by case-base maintenance: implementation level (e.g. changing

indices), representation level (e.g. changing the names of features) and knowledge level (e.g. deleting

cases). If the nature of problems change, it is possible that the nature of the features will change, e.g.

an integer value might need to become a real value, this would be at the representation level.

Wilson and Leake's framework shows that there exist a large variety of options for implementing

case-based maintenance. Case-based maintenance has traditionally been seen as being about removing

cases from the case-base, however there are alternatives such as making use of indices. If performance

is a problem, and decision trees are not part of the retrieval strategy, then introducing indexes ought to

be considered, as they can lead to substantial improvements in e�ciency, without having to remove any

cases.

Both indexing and removing cases were discussed in [104], and are described as eager learning. In

eager learning, the �training data� (i.e. case base for CBR) is used to craft the learning mechanism in

advance of the problem. In contrast, CBR is normally considered to be lazy learning , since the actual

reasoning only happens when the problem is input into the system. Experimental evidence in [104] has

shown that implementing a case based maintenance strategy can result in the case base having reduced

71



coverage, and the system having greater errors in its output.

The experiments performed in [104] were quite simple, they generated random data with a Euclidean

distance measure. In real life, data can be complex, with interactions, redundancy, conditional behaviour

and non-linearity. Whilst it may be possible to construct a distance function f , it may be di�cult to �nd

the inverse function f−1. Finding the distance from the query case to a solved case might be easy, but

�nding the area of the case base that is �covered� by that solved case could be much more di�cult. So,

caution must be exercised if cases are to be removed based on calculations of their �coverage�.

A separate but related issue to case based maintenance is that of seeding the case base for new CBR

systems. CBR systems need a case base to work! There are two options for dealing with this issue.

Firstly, a system can be started with an empty case base, but only if it is a hybrid system, and if the

complementary technology is capable of providing solutions with no training data. Presumably, if training

data was available, this would be loaded into the system as cases in advance of the system �going live�,

which is the second option. If the system is a pure CBR system (i.e. not a hybrid), this second option

may be the only choice; the system cannot be used until it is pre-loaded with cases. In some situations

it may be possible to seed the case base with cases manually created by users or imported from another

computer system. But not just any cases will do; they need to be representative of the sort of problems

that the system is presented with. They need to provide su�cient coverage so that a typical query case

will have a nearest neighbour in the case base that is suitable for retrieval. If there are large gaps in the

coverage, then the new CBR system will begin its life with quality problems.

In my opinion, the decision as to whether to employ case-based maintenance for e�ciency should be

a pragmatic one, based on knowledge of the retrieval algorithm and empirical data. CBR is not often

used for applications where the output is fed into another program or automatic process, such as device

control. Typically, CBR systems are employed in tasks where a human user is the consumer of their

output. So, the threshold for what is an acceptable level of e�ciency is determined by the user. If the

execution time is of the order of milliseconds, then this will appear instantaneous to a human. If the rate

of growth of that execution time is su�ciently small, then it may be several years before any case base

maintenance is required. Also, the extent to which computing power will develop in that time-frame is

not certain. Computer systems usually have a �nite life; they are often discontinued because they are

superseded with something better, or because the problem they solve is no longer relevant. So, in some

cases the system will end its life before e�ciency problems arise, or those e�ciency problems will be

cancelled out by improvements in the performance of computer hardware. Rather than predicting that

case base maintenance will be required, it may be better to wait until problems arise:

"We should forget about small e�ciencies, say about 97% of the time: premature optim-

ization is the root of all evil" - Donald Knuth [105]

72



�More computing sins are committed in the name of e�ciency (without necessarily achiev-

ing it) than for any other single reason - including blind stupidity� - William A Wulf [106]

Case base maintenance for quality is a di�erent issue. If products have become obsolete, for example,

then their corresponding cases may still be able to provide valuable lessons. It may be possible to craft

the retrieval algorithm so that obsolete products are not retrieved unless they can make a particularly

valuable contribution to a new problem; for example, perhaps the circumstances of the old and new cases

are both unusual but similar to each other.

The problem with poor solutions being stored in the case base is a more serious one. Algorithms

exist within the machine learning community to remove redundant and noisy data; for example jCOLIBRI

comes supplied with such algorithms (see section 2.2.5.1). However, as with all knowledge light methods,

this would only be appropriate if the dimensionality of the problems is small enough compared to the size

of the case base.

Another option is to let experts remove these solutions, as in HOMER [8] (see 2.2.1.1 for more detail).

However, this may be an expensive and labour intensive process. An alternative is to store a measure

of success with the case, and this can be used to guide retrieval. In some problem domains, objective

measures of success are available, however in others it is simply a matter of asking the user to rate the

solution, e.g. on a scale of 1 to 10. Presumably, the poorer quality solutions would only be retrieved if

they happened to be particularly similar to a new case, and no good quality solutions were applicable.

Building a case-based reasoning system can be something of an onerous task. Case based maintenance,

if required, will be just another activity that adds to the time taken to develop the system. However, as

the next section shows, short-cuts to developing a CBR system are available.

2.2.5 CBR Shells

Case based reasoning systems can often be complex and large software systems, which are rich in func-

tionality. All large software projects carry with them risk and cost, and so it makes sense for a system

developer to look at ways to reduce these. Although CBR systems work in many di�erent problem do-

mains, they all follow the same principles. They all have a case base, they all have retrieval and retention,

and some have adaptation also. Given this common ground, it is unsurprising that CBR shells have been

produced: these o�er a generic framework which a developer can utilise to quickly create a full CBR

solution.

2.2.5.1 jCOLIBRI

jCOLIBRI (http://gaia.fdi.ucm.es/projects/jcolibri) is by far the most successful CBR shell, and it is the

subject of many publications, e.g. [107, 108, 109, 110]. jCOLIBRI is implemented as a Java program

73



with associated XML �les, and a graphical user interface (GUI) editor. The XML �les describe tasks that

are involved in the CBR process, e.g. retrieval. These �les must adhere to a standard schema, which

is supplied. The developer is free to add tasks to the XML, but each task needs to have an associated

method, which must be implemented in Java.

The Java package has abstract classes and interfaces which correspond to all the important processes

and structures in CBR, such as Case and SimilarityFunction. jCOLIBRI is provided with some default

concrete classes which extend the abstract classes or implement the interfaces, providing default func-

tionality. The developer is free to use these classes, or to write their own in order to provide di�erent

functionality.

jCOLIBRI provides a means of organising the cases into a case base: the interface between persistent

storage and volatile in-memory storage is referred to as a �connector�. Connectors are provided for

cases stored in XML �les, and in relational databases. To assist with maintaining the case base, some

algorithms are included for removing cases which are redundant or �noisy�, i.e. cases which give the wrong

classi�cation. A number of problem solving methods are provided to perform key tasks such as retrieval;

for example, there are several in-built similarity functions. A case visualisation tool allows the developer

to check the appropriateness of the similarity function. There is also a means to perform adaptation by

using rules.

The GUI provides a rapid, easy means of con�guring the tasks in jCOLIBRI. A tree shows how the tasks

involved in CBR are decomposed in various levels. The topmost level has four high-level tasks: Retrieve,

Reuse, Revise and Retain. Lower level tasks relate to speci�c methods and the choice of methods can be

changed by the user using the interface. The connectors can also be con�gured in the GUI, for example

it can be used to map attributes.

jCOLIBRI contains several advanced features, such as the ability to interface with ontologies such

as OWL, and a tool which facilitates the development of web-based interfaces. There is also limited

support for adaptation in jCOLIBRI, where the case representation uses an ontology [110]. Developers

can store adaptation rules in text �les; the rules have three parts. The �rst part identi�es the �instance�

(attribute of the case) to be adapted; the second part is a condition that must be true for adaptation to

occur; and the third part is the de�nition of the adaptation. Substitution is the only supported adaptation

mechanism; the value to substitute can be speci�ed in the text �le or obtained using relationships in the

ontology.

Whilst jCOLIBRI's support for adaptation is welcome, it is perhaps disappointing that it is only

available to CBR systems which use an ontology. However, since jCOLIBRI allows the developer control

over which tasks it performs, it would be possible for adaptation to be incorporated as Java code. This

gives the developer almost complete freedom over the adaptation mechanism; for example they are not

restricted just to substitution.

74



The most impressive aspect of jCOLIBRI is how it can be utilised by developers with di�ering levels

of expertise: beginners can concentrate of con�guring the GUI, whereas advanced developers can extend

the algorithms by writing their own program code.

2.2.5.2 myCBR

myCBR (http://mycbr-project.net) is GUI-driven, and its key advantage is cited as being the ability to

do rapid prototyping [111]. myCBR focusses on retrieval, the goal was to enable a developer to create

a small CBR system with a complex similarity measure, with minimal e�ort being required. myCBR is

based on the ontology editor Protégé; both myCBR and Protégé are open source. Whilst the CBR system

is being developed, myCBR runs as a �plug-in� within Protégé. There is a GUI similarity editor which can

be used to build weighted sum type similarity measures. A data import tool can import data from CSV

�les into an existing ontology, or new one can be created.

Similarity measures are de�ned on both local and global levels; the latter is an aggregation of the

former. The global measures are typically Euclidean or weighted sum. The local measures can be

more sophisticated, e.g. trigram matching for strings, taxonomies for symbolic values, and mathematical

functions for continuous numeric values. A particularly innovative feature of myCBR is the explanation

capability, which can justify the system's output.

The many limitations of myCBR are apparent: it does not handle adaptation, and the case base is

restricted to being stored in an ontology. However, it remains a useful tool for building small prototype

retrieval-only systems.

2.2.5.3 Other tools

The AIAI CBR Shell (http://www.aiai.ed.ac.uk/project/cbr/CBRDistrib) is a tool which concentrates

on retrieval, with a weighted sum approach. An interesting feature is the ability to optimise weights using

a genetic algorithm. The tool can be ran as a Java applet within a web browser, meaning no software

installation is required.

CBR*Tools (http://www-sop.inria.fr/axis/cbrtools/usermanual-eng) is an object-oriented framework

for building CBR tools [112]. It consists of a set of Java classes; some of these are abstract and are

designed to be subclassed by the CBR system developer. Others are concrete and implement useful

functionality, e.g. k-d tree indexing.

Lastly, one particularly innovative tool has been dubbed �CBR for CBR� . jCOLIBRI was extended,

resulting in a recommender CBR system which produces prototype CBR systems [113]. They de�ned a

template as a series of tasks; one or more templates were retrieved and adapted to make a CBR system.

A library of templates was built, which the developers could select from, for example �single shot system�.

The �single shot system� template was decomposed into tasks such as �one-o� preference elicitation�.

75



A case in the system was a CBR system, stored with its templates. They used an interactive method

that they termed retrieval by trying ; this simply meant that the user is given an opportunity to run the

retrieved CBR system to check if it is suitable or not. The similarity measure compared the methods that

were used in the CBR systems; these were arranged in an ontology. There are several applicable similarity

measures when ontologies are used in CBR [110], e.g. computational based retrieval; this uses recursion

over the ontological hierarchy to match values, applying a weighted sum to each. The interactive nature

the system described in [113] is interesting but there are disadvantages to relying on the user to validate

outputs; eventually people become fatigued and tend to pay less attention to the result.

In general, the emphasis of CBR shells tends to be on retrieval, so these tools may provide a useful

short-cut for research into retrieval algorithms. jCOLIBRI is the best supported and most functional tool,

which even includes some support for adaptation. All tools have their limitations and disadvantages. One

universal disadvantage is the time taken to learn how to use the tool, and to understand its capabilities

and limitations. For example, the introductory user guide to jCOLIBRI is 47 pages long [114].

If a shell is only GUI based, then this is an obvious limitation since many bespoke algorithms would be

impossible to specify in a GUI. If it involves programming, through a mechanism such as abstract classes,

then there are more subtle limitations: the programmer will have to implement the abstract methods of

those classes. They will not have the (almost) total freedom over the structure of their software that

comes with programming a project from scratch.

Whether it is advisable to use a CBR shell depends entirely on the circumstances. CBR shells are an

e�ective way to build prototype systems or academic demonstrator systems with minimal e�ort. However,

if the features of the CBR task are particularly complex and specialist, then they are less advantageous.

If adaptation is needed, then jCOLIBRI is the only applicable choice. However, jCOLIBRI's support for

adaptation is very limited so if adaptation is complex and a large part of the CBR system, then it may

not be appropriate.

In general, if extensive adaptation is required, and the cases are very complex and require a sophist-

icated used interface, then CBR shells are unlikely to be a good choice. In these situations the bene�ts

that the shell brings may be minimal, and a competent software engineer may be able to construct such

minimal functionality fairly quickly anyway.

2.3 Hybrid Systems

A hybrid CBR system is any computer system where CBR is combined with another problem-solving

methodology. Hybrid systems are also known as multi-modal reasoning systems [115]. Such systems are

often very successful since the two methodologies can compensate for each others weaknesses. Several

hybrid systems have been discussed so far in this chapter, e.g., in section 2.2.3.2. This section �rst

76



Figure 2.11: Taxonomy of hybrid systems, adapted from [5]

discusses the nature of hybrid systems in general. This is followed by a brief survey of other methodologies

which can be hybridised with CBR.

Prentzas and Hatzilygeroudis [5] devised a classi�cation scheme for combining rule-based and case-

based reasoning, as shown in �gure 2.11. In fact, the scheme could apply to systems in which CBR is

hybridised with other methodologies, and it is used in this more general way in the following discussions.

The standalone classi�cation refers to situations in which the two systems do not interact at all.

The user receives the outputs from the two separate sub-systems and utilises them as they wish. For

the standalone approach to work, both CBR and the other methodology have to be able to handle the

problem as a whole. In many cases they cannot (or cannot handle them well), which is why the standalone

approach is rare. The other assumption is that the user is able to do something with two sets of outputs,

which may contain areas of agreement and disagreement. One possible use for the standalone approach

is testing the applicability of CBR versus other methodologies for a particular task.

Hybrid systems with coupling involve some form of interaction between the two systems. The simplest

sort of coupling is embedded processing, in which one of the two methodologies is the primary problem

solver, but it has the other methodology embedded within it. The responsibility of the secondary method-

ology is to perform a sub-task for the primary methodology. For example, a rule based reasoning system

might be embedded within CBR, with the responsibility of performing adaptation. CBR can play either

role: sometimes the task may lend itself to the CBR paradigm, but one of the steps in the CBR cycle

may require the assistance of the other methodology to implement it. Alternatively, CBR may be used

to implement a sub-task in some other problem solving methodology.

Watson argued that CBR is a methodology and not a technology [41]. Since CBR can be implemented

77



in a variety of ways, Watson felt that using rules for adaptation was just one of many implementation

options for CBR, and should not be considered a form of hybridism [41]. In this thesis, a more relaxed

view is taken; such systems can often incorporate the best of both methodologies, so they are worthy of

discussion here.

In sequential processing, the two sub-systems are invoked one after the other, in such a way that one

system has �nished before the other has started. Sequential processing systems can be further categorised

along two dimensions:

� Degree of coupling: In a loosely coupled system, the output of one subsystem does not play a

major role in the reasoning processes of the other. Alternatively, in atightly coupled system, the

information from one sub-system is vital to the other.

� Conditionality: In a compulsory sequence, one sub-system is always invoked after the other. However

if the sequence is conditional, then the latter sub-system is not necessarily invoked; the decision

may depend on the success of the �rst sub-system.

Sequential processing can be useful in situations where the success of one methodology cannot be guar-

anteed. For example, model based reasoning can be attempted, but if it fails then the system can resort

to CBR, in a conditional sequence. Compulsory sequences could be useful if one methodology has to do

some form of pre-processing, for the bene�t of another. For example, CBR could be employed �rst to

generate solutions which are close to being correct, but not perfect; those solutions can then be 'tweaked'

with the other methodology. In a medical domain, CBR might be used to provide the diagnosis, then

some other methodology could provide the treatment.

Co-processing is the most complex form of hybridism. In co-processing the sub-systems interact and

information �ow is bidirectional; the di�erent sub-systems may work in parallel or be interleaved in some

way. In cooperation-oriented approaches, the di�erent sub-systems work together to provide the solution.

In contrast, reconciliation-oriented approaches involve the sub-systems working more independently; the

results are compared at the end and then the system reconciles them to provide one answer. Co-processing

could be complex to implement, particularly if tasks are interleaved; one system may have to wait for

another. Reconciliation oriented sequences may be advantageous if the task is a safety critical one; if

the answers are very similar then a high degree of con�dence can be attributed to them since they came

from independent sources.

2.3.1 Rule-based reasoning (RBR)

Rule-based reasoning was the �rst methodology to be hybridised with CBR [32, 115]. The synergy often

works particularly well since rules represent general knowledge, whereas cases represent speci�c knowledge.

If a problem domain contains both types of knowledge but neither CBR nor RBR can solve the problem

78



on its own, then a hybrid system is a natural choice. For example, many early CBR-RBR systems were

in legal domains [32]. Within a legal domain, a system can model laws as rules, and precedents as cases.

Cases can be used to provide a �exible interpretation to rules, such as capturing exceptions that are not

represented in the rule base.

GYMEL [116] was a CBR-RBR system which specialised in harmonising musical melodies. Rules

existed for this domain, and these were taught to students in music schools; however the rules were more

like guidelines than certainties. It was thought that to implement GYMEL as a pure CBR system would

require an unrealistically large number of cases. So, a hybrid system was the natural choice.

�the rules don't make the music, (it) is the music which makes the rules� - Sabater et al

[116]

When a new problem was presented to GYMEL, it �rst attempted a solution using CBR. If the CBR

failed (because a similar case could not be found), the task was given to the RBR module. The output

of the RBR was then given to the CBR module to see if improvements could be e�ected. GYMEL was

classi�ed by Prentzas and Hatzilygeroudis [5] as a co-operation oriented co-processing system.

2.3.2 Model-based reasoning (MBR)

MBR works by encoding an underlying strong theory problem domain. The �rst CBR-MBR system [32]

was CASEY [20, 21], which was discussed in section 2.1.2.2. CASEY was primarily a CBR system, which

relied on a MBR module to provide output in case the CBR failed. Using CBR was more computationally

e�cient than using MBR, hence a hybrid system was appropriate. CASEY was a sequential processing

system with a conditional sequence in the classi�cation scheme of Prentzas and Hatzilygeroudis [5]. In

general, possible reasons for wanting to augment MBR with CBR are:

1 The model is incomplete - it only covers part of the problem domain.

2 The model is only an approximation.

3 The model requires excessive computation or is intractable.

In the case of CASEY and FormTool (see section 2.1.2.3), option 3 was applicable. In fact Kolodner

cites one of the advantages of CBR as being that solutions can be retrieved quickly rather than being

laboriously worked out �from scratch� [57]. However, this is not universally true: sometimes derivation

from �rst principles may be the most e�cient option.

2.3.3 Evolutionary Algorithms

Evolutionary algorithms were brie�y discussed in section 2.2.3.2; Evolutionary algorithms begin with a set

of arbitrary solutions, which are then modi�ed and combined by a stochastic process. Not all solutions are

79



retained and the process favours good solutions, in an analogy with the survival of the �ttest in natural

selection. Genetic algorithms (GA) is a sub-�eld of evolutionary algorithms, and GA and CBR have been

successfully combined in the past.

GENCAD [84] was a CBR system which used GA for adaptation; its name derives from GENetic Case

ADaptation. GA was also used to learn the weights for a weighted sum retrieval algorithm in [50], as

discussed in section 2.2.1.2. In the classi�cation scheme of Prentzas and Hatzilygeroudis [5], these are

both embedded systems, where the CBR is the primary methodology.

CBR tends to have a predictable output, often deterministic. In domains such as design, sometimes

some randomness or creativity is an advantage. However, creativity has to have its limitations; the

solution must �t the problem in hand. Thus, CBR-GA systems combine the advantages of creativity the

reuse of past experience.

2.3.4 Others

Constraint satisfaction problems (CSP) have been hybridised with CBR ([85]; see section 2.2.3.2). The

constraint satisfaction algorithms were involved in adaptation, by facilitating case merging via managing

inconsistencies between the several cases that were received. Thus this system was an embedded system,

with CBR as the primary methodology [5]. Where constraints can be represented formally, and adaptation

is complex, a CBR-CSP system may prove e�ective.

Information retrieval (IR) refers to the use of statistical techniques which use carefully crafted queries

to retrieve data from large collections of data [32]. SPIRE [117] was an example of a CBR-IR system

which retrieved text from legal documents. SPIRE worked by �rst retrieving documents from the case

base. Then, the most relevant documents were passed to a query engine, which would automatically

generate a query from terms in the documents. The query would then be run against a larger corpus

of text, and a set of documents returned. SPIRE was then able to form a query to locate passages of

text from that set of documents. Those passages were conceptually related to a term that is relevant

to the user's query, e.g. �sincerity�. SPIRE contained a case base of excerpts of text that were related

to particular terms, and it retrieved relevant excerpts then used them to formulate a query. This query

could then isolate relevant packages from the set of documents. SPIRE was an example of a co-operation

oriented co-processing system [5]. The advantage of SPIRE was that it was able to utilise powerful

querying technology, without requiring the user to explicitly formulate those queries.

CBR has been combined with fuzzy logic in numerous ways; typically the fuzzy logic is used to enhance

the CBR system [118]. For example in FormTool [29], a �fuzzy preference function� was used in retrieval.

Fuzzy logic could be useful in domains where there is uncertainty and imprecision.

CBR has been combined with ontologies in the generation of stories [119]. The domain knowledge

was represented in an ontology using OWL. Tests were done with several di�erent similarity measures

80



which were incorporated into CBROnto, an ontology which comes supplied with CBR concepts [120].

For example, similarity can be based on the most speci�c concept which subsumes two particular cases,

known as the least common subsumer. Ontologies are useful when concepts from the problem domain

naturally lend themselves to being stored in a hierarchy.

A CBR system which incorporated both fuzzy logic and neural networks was used to forecast poten-

tially harmful blooms of phytoplankton in oceans [121]. A case consisted of a small vector of numeric

values, including environmental data and the concentrations of the plankton. A neural network was used

in retrieval. Four fuzzy systems were used for adaptation; each subsystem was assigned a weight. When

the actual values for the plankton concentrations were received, these were used to update the weights

of the subsystems, so that the most accurate ones were given priority. This is a good example of a

CBR system that incorporates more than two methodologies. Thus, the taxonomy in �gure 2.11 is a

simpli�cation, albeit a useful one.

2.4 Analysis of CBR's capabilities

This chapter has so far de�ned and explained the concept of CBR, explored the options for constructing

a CBR system in detail, and discussed the issues behind hybrid CBR systems. Although hybrid CBR

systems have their place, they illustrate that CBR is just one option amongst many other methodologies.

The suitability of CBR for tasks (in general) has not yet been discussed. Many methodologies which are

far more established; CBR began in the 1980s (see section 2.1.2.1), but arti�cial neural networks were

starting to be developed as early as 1954 [122]. So, why use CBR, when so many other techniques are

available? This section addresses this question by examining the assumptions, strengths and weaknesses

of CBR.

Many academic works present CBR in an uncritical light. In some ways this enthusiasm is unsurprising

because historically some of the problems that CBR is good at solving were intractable by any other means.

However, this section provides an overview and objective and impartial discussion of the assumptions

behind CBR, and its advantages and disadvantages. It is necessary to be familiar with these ideas in

order to make an informed decision as to whether CBR alone will be suitable for a particular problem, or

whether the solution is a hybrid system or some other methodology altogether.

2.4.1 Assumptions of CBR

The CBR model relies upon several assumptions for it to work. Some CBR systems assume that adaptation

is possible, and this assumption cannot always be guaranteed to hold (see section 2.2.3.4). Also, as

with any methodology, CBR systems may make additional assumptions based on their problem domain.

However the assumptions listed below lie at the core of the CBR model.

81



The past is a guide to the future

The most basic assumption of CBR is that the information stored in the case base will be of use to solve

problems in the future. This means that, to some extent:

� Situations are repeatable: CBR may not be appropriate, for example, for medical diagnosis in a

specialist hospital dealing with rare diseases. Some diseases are so rare that they only a�ect two

people in the whole world [123].

� What worked in the past will work today : The design of antibacterial drugs may be a task unsuited

to CBR. Bacteria are capable of mutation and become resistant to drugs, so agents that work in the

past will not necessarily work today. CBR may sometimes be used in changing problem domains,

provided extra care is taken in maintaining the case base (see section 2.2.4).

Similar problems have similar solutions

Another basic assumption is there is some correlation between the di�erence between any two problems

and their solutions. If the mapping between problems and solutions is described as a mathematical

function, then that function ought to be continuous. For example, CBR would be an unreliable predictor

of values of the signum function (see below) due to the discontinuity around x=0.

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

Similarity is quanti�able

Given a query case Q, CBR assumes that:

� For any case A in the case base, the similarity function sim(Q,A) is computable, or

� For any two cases C and D in the case base, it is possible to compute which of C or D is more

similar to Q.

In some domains, e.g. art, it is very di�cult to objectively quantify the similarity of any two objects.

This, however, is an issue for any AI technique, and not just CBR.

2.4.2 Some de�nitions about domain theory

As with any technique, the advantages and disadvantages of CBR cannot be considered in isolation of the

sort of problems that it is typically suitable for. So, some de�nitions about domain theories are presented

82



here, from [124]. A weak theory domain is one in which there is substantial uncertainty associated

with the relationships between terms. In contrast, a strong theory domain is one where the relationship

between terms is more certain; if there is complete certainty then it is said to be perfect. A tractable

domain is one where an e�cient algorithm exists to computer the terms. The inverse concept of this is

an intractable domain. Examples of all cases are:

1 Finding the zeroes of a quadratic equation is a tractable, strong theory problem. A method for

solving quadratic equations was recorded as early as 628AD [125]; it is exact (perfect theory) and

easy (tractable).

2 The traditional oriental game of go is an intractable, strong theory problem. The de�nition of a

winning position in go is completely unambiguous, as are the rules about what constitutes a valid

move, so it is perfect theory. The number of distinct board positions is approximately 10170, and

approximately 1.2% of these are legal [126], so the size of the search space makes it intractable.

3 Computing a weighted sum for similarity is a tractable, weak theory problem. The underlying

domain may contain ambiguity, making it weak theory; so the weighted sum algorithm is just a

heuristic. However, the use of a weighted sum tends to be computationally very e�cient, since it

usually consists of simple arithmetic.

4 Choosing layouts for autoclave curing, as in Clavier [96], is an intractable and weak theory problem.

Although certain heuristics about the domain were known, the e�ects of changes were unpredictable,

so it was weak theory; the number of possible layouts was large so it was intractable. For more

information about Clavier [96], see section 2.2.3.4.

2.4.3 Advantages of CBR

CBR has been applied to many problem domains, due to its inherent advantages.

Often works in poorly understood problem domains

CBR often works in weak theory domains (see above for de�nition), where there are no reliable algorithms

for solving the problem are available [57]. In some ways, CBR mimics the �common sense� approach that

humans have to solving problems. Humans typically solve far more problems in their daily lives using

common sense, heuristics and experience than they do through formal logic or mathematical methods.

Does not normally require a large knowledge engineering exercise

Techniques such as model based reasoning and rule based reasoning typically require an extensive know-

ledge acquisition exercise. This may involve many interviews with experts, with the associated tasks of

83



Figure 2.12: 4 stage competence model

recording and analysing the �ndings. This can be a lengthy and time consuming task, and it is sometimes

only partially successful. The domain experts that are interviewed tend to be at stage 4 in the widely

cited 4 stage model of competence18 shown in �gure 2.12:

1 Learners start o� as an unconscious incompetent. They are unaware of their own limitations: they

don't know what they don't know!

2 The next level of progression to conscious incompetent, where the learner becomes aware of their

limitations, but has not yet overcome them.

3 At the conscious competent stage, the learner knows how to do things, because they have recently

acquired skills, and they are aware that they are using those skills.

4 The �nal stage is unconscious competence: the learner is now an expert, who performs tasks quickly

and e�ectively using instinct, habit and wisdom, rather than explicit rules or logic.

So, when experts are interviewed by the knowledge engineer, they often struggle to articulate how

they do their job [2], since they are not consciously aware of (at least some of) their decision making

processes. They might be able to describe heuristics which solve the more straightforward problems, but

explaining the special cases could prove more di�cult. And experts often make assumptions about what

the interviewer knows, which are not always accurate. Acquiring tacit knowledge is notoriously di�cult

and unreliable. This is known as the knowledge elicitation bottleneck.

A key advantage of CBR is that the amount of knowledge acquisition is typically much less than

with rule-based (or model-based) systems. In CBR, the knowledge is in the cases themselves, rather than

being explicitly encoded into the system. Note that there is an important caveat here. In several places

in this chapter, knowledge light and knowledge heavy have been used to describe contrasting approaches

to some aspect of CBR, e.g. retrieval or adaptation. So, I am not claiming that developing a CBR system

involves no knowledge acquisition, just that the level of knowledge acquisition is typically less than with

some other approaches.

18This model is of disputed origin, although Noel Burch is quoted as its originator [127].

84



Gradual degradation of performance

As a consequence of the assumption similar problems have similar solutions, the performance of CBR

degrades gradually as problems get further away from that portion of the problem space that is covered

by the case base. This means that if a CBR system is presented with something which is an outlier, the

results may be poor but they will probably not be disastrous. In contrast, rule-based systems [1] and

model-based systems [9] tend to be brittle; they are notorious for having a narrow, �xed area of expertise,

and for performing badly when those limited boundaries are challenged.

Ease of maintenance

Some CBR systems need very little maintenance: if the nature of the problem changes over time, the

nature of the case base tends to change, and this is re�ected in the output. So, although some maintenance

activities may be required (see section 2.2.4), these are not normally too onerous and may consist simply

of removing some older cases. There is an element of dynamism built into the CBR paradigm: as long

as a new case can be stored using the case representation, it can be entered into the case base and it

will change the nature of the case base in line with the changes in the problem. In contrast, rule-based

systems can become more and more di�cult to maintain as they expand [2].

Ability to o�er intuitive explanations

For classi�cation tasks, the ability of a system to o�er an explanation can be very important in gaining the

con�dence of users. In section 2.2.3.2, CASEY [20, 21] was discussed; this was a hybrid CBR/model-based

reasoning system which worked within the domain of heart failure, and was able to o�er explanations of

its output.

The explanation of a CBR system would be able to refer to the case that was retrieved. The idea

of solving problems based on problems in the past is not an inherently alien or complex one to most

people, so a carefully crafted explanation is likely to be accepted as �common sense�. In contrast, other

AI techniques are often not able to o�er as intuitive an explanation as CBR can. Although rule-based

systems can o�er a rule trace, if this was long it could be incomprehensible to a non-technical user. A

model based system might be able to provide a statistical or mathematical justi�cation of the output, but

again this could be opaque to a non-expert user. Neural networks have very poor explanation capabilities;

they are traditionally regarded as a �black box�. So, the ability to o�er easy-to-understand explanations

is a de�nite advantage of CBR over other methodologies.

85



Can incorporate domain knowledge

Several sub-goals in the CBR process (e.g. retrieval) have alternative methods of achieving them which

can be described as knowledge heavy, or knowledge light. Each has their respective merits and drawbacks:

knowledge heavy approaches can involve an onerous knowledge acquisition task, partly defeating one of

the main advantages of CBR. However, sometimes knowledge heavy approaches are the only ones that

work; if domain knowledge is available, should it not be made use of? At least the knowledge heavy

options are available in CBR. Some methodologies such as neural networks cannot be easily augmented

with domain knowledge. It is possible for a CBR system to take have the bene�t of past experience,

domain knowledge, and techniques outside of the CBR paradigm.

2.4.4 Disadvantages of CBR

As well as its many advantages CBR has some disadvantages, as do all methodologies.

Case based reasoning requires cases

CBR needs an adequate coverage of the case base in order for it to give acceptable performance. Tasks

where cases are not available, for example a one-o� computation where no previous data exists, are

therefore unsuited to CBR. This would be an issue for many other AI methodologies; technologies such

as neural networks, support vector machines and decision trees all require training data.

Cases must be stored

CBR requires on-demand access to a case-base to work. Storage in modern computer systems is relatively

cheap, so nowadays this is rarely a problem.

Solutions are not necessarily optimal

Case based reasoning is a heuristic technique. It tends to return good solutions but it cannot normally

be guaranteed to return the optimal solution. Consider the example problems in section 2.4.2. In weak

theory domains (options 3 and 4), there is probably no precise de�nition as to what constitutes the optimal

solution, so the fact that solutions may be sub-optimal is not necessarily a problem. Tractable, strong

theory problems (1) would not be suitable for CBR, since by de�nition there exist far more straightforward

algorithmic methods.

Some intractable, strong theory domains (2) would also be unsuitable for CBR. For example, CBR

would be an inappropriate methodology for an automated go game player. This is because even if a

previously won game was found with a similar position to the current one, it would not necessarily help

the search for an optimal move.

86



Other problems in category (2) might be suitable for CBR, because they could use previous cases to

initialise a search procedure. FormTool [29, 30], which was discussed in section 2.1.2.3, is an example.

However, CBR is still not guaranteed to give perfect answers in this sort of problem, since there may be

gaps in the coverage of the case base. When a query case is presented to the system, if it resides inside

the gap area, then it might not be practical to compute an exact solution. This is because the problem

in the retrieved case will be quite distant from that in the query case, and so we assume the solutions will

be distant. Intractable domains have wide search spaces and so the search might take an unacceptably

long time. So, the system must either report that it has failed, or output the best possible approximation

obtained within an acceptable time.

Fortunately, in the case of FormTool, the optimal solution was not necessary; it was a satis�cing

problem. Also, it is worth noting that the problem in FormTool was strong theory, but not perfect theory;

the domain model was an approximation. Hence the users of FormTool were satis�ed with very good

solutions, without requiring optimal ones.

Generating complex objects can be di�cult

Synthesis tasks involving complex objects, are notoriously di�cult for any methodology. In the case of

CBR the di�culties are twofold:

� Complex objects are multi dimensional, and therefore it is di�cult to get good coverage of the case

base.

� Adaptation is di�cult, since by de�nition it is di�cult to transform one complex object into another.

To some extent, these di�culties are interchangeable. Richter [128] viewed CBR as consisting of know-

ledge containers; de�ciencies in one area (container) can be made up for by the others. Thus, adaptation

is used to remedy gaps in the case base.

If coverage is poor or adaptation is intractable, then the CBR system developer ought to ensure that

easier, alternative methods of generating the objects do not exist. However, it is often the case that CBR

is employed because other approaches are not applicable or have failed.

This chapter has shown CBR to be an e�ective problem solving methodology; it works using an

intuitive model which is said to mimic human problem solving. It has been used since the early 1980s

across a wide range of tasks and problem domains. The many di�erent ways to build a CBR system

have been highlighted; these allow the developer of the system to choose to utilise previous experiences,

domain knowledge, and other arti�cial intelligence techniques in solving the task in hand. This chapter

has shown the CBR model to have a lot of �exibility built into it, and this �exibility is undoubtedly the

main reason for the success of case based reasoning as a problem solving methodology.

87



Chapter 3

Design

�The details are not the details. They make the design.�- Charles Eames

The design of hand knitting has similarities to any other design process. Before considering how the

process can be supported or automated, it is important to consider the nature of design itself. Section

3.1 begins by discussing design studies, an interdisciplinary �eld which has been actively researched since

around 1962 [129]. The focus of design studies is on the human aspects of the process of the design

activity.1

Section 3.2 highlights some recent developments in computer-aided design (CAD). Research in CAD is

fundamentally di�erent to design studies, in that it concentrates on tools to automate the design process

(rather than the human aspects of that process). Section 3.3 discusses speci�cally design of knitwear and

garments. Finally, section 3.4 divides design (in general) into two categories, and explains the relevance

of these categories to the problem in hand.

3.1 Research in Design Studies

Cross [130] asserts that designing is an activity which is inherent to humans. Designers are apparently

focussed on the outcomes of design, and are often unwilling or unable to discuss the activities that take

place during the design process. Cross points out that this gives design an almost magical air of mystery.

Design is an abductive2 process which uses intuition, draws on the broad life experiences of the designer,

and involves spontaneous �ashes of inspiration. In order to demystify this process, design researchers use

a variety of tools such as interviews, observation, experiments, simulations and re�ection/theorising.

In the case studies by Cross, the design journey begins with a design brief , which is less well de�ned

1In contrast, architecture and engineering tend to focus on the outcomes of design, and the technical aspects of the
design process.

2Abductive reasoning can be loosely de�ned as hypothesising or guessing. It contrasts with deduction (reasoning from
general rules to a speci�c proof, such as in mathematics) and induction (reasoning from speci�c observations to a general
rule or theory, such as in science).

88



than a speci�cation, meaning that the designer has freedom to be creative. Some designers take pride

in the fact that their goal is to produce a design that is not necessarily what the client asks for, but is

something that exceeds their expectations. Problems are often poorly structured and it is said that the

problem to be solved is not necessarily the problem that was given.

Since a human's short term memory is limited, they are likely to use sketches as a design aid. Cross

refers to traditional pencil and paper drawing, since this allows designers to be spontaneous, and switch

instantaneously between di�erent levels of detail. They may utilise emergent features, such as shapes that

unexpectedly appear when components are overlaid on each other (this is a form of interaction between

design components).

Designers are characterised by Cross as people who thrive on uncertainty and risk, and who work on

ill-de�ned problems. They often jump to a solution quickly, before the problem is fully formulated.They

work on parallel lines of thought, but adopt a systems approach to their work, i.e. they take a holistic

view of design.

Cross talks of the design process as being like a journey, starting with the design brief. The designer

is apparently often not able to see the whole route of the journey, but just their immediate surroundings.

Thus they may appear (to an outsider) to take a indirect route to their destination. Novices apparently

use a depth �rst approach to design problems, whereas an expert will use a mixture of breadth �rst and

depth �rst. Cross mentions that designers often prefer to work from �rst principles, rather than using the

innovations of others. Designers are described as being motivated and competitive.

Some of the ideas discussed in Cross's work [130] are intuitive. For example, the inability of designers

to discuss their processes is possibly because those processes are underpinned by tacit knowledge. Design

is a practical activity and much of design education has a large practical component; some connect the

methods of learning by experience to the ubiquity of tacit knowledge [131].

Other ideas are debatable, e.g. the assertion that designers prefer not to reuse others innovations.

This is perhaps unsurprising if expert designers work in a competitive culture. However, design is derivative

at some level, even if the designer is not consciously aware of it. Another design guru, Larry Leifer, has

formulated a series of design laws, one of which is �all design is redesign� [132].

The fact that apparent contradictions (such as the one discussed above) exist within design studies

research is unsurprising given that it uses theorising and re�ection as part of its methodology [130]. Critics

may accuse design studies as lacking rigour. However, in fairness, the inner workings of a designer's mind

cannot be observed objectively; this is also true of some other �elds, e.g. cognitive science [7]. The irony

is that perhaps both design and design studies can be said to use inspiration, intuition and abductive

reasoning.

89



3.2 Computer aided design (CAD)

Since CAD tools are well established (for example Autodesk [133] was developed in 1982), CAD is a

mature discipline and the basic concepts are well-established. Current research focusses on special topics

as discussed below.

Curves

The representation of curves continues to be an active research area. For example, non-uniform rational

basis splines (NURBS) are used to represent curves [134]; these are generalisations of Bézier curves

[135]. NURBS o�er �exibility and precision, and can be made to �t point clouds using interpolation and

approximation techniques [136].

Representation and visualisation

In addition to the work on curves, there is active research in visualisation, meshing models (e.g. using

quadratic surfaces [137]), the representation of boundaries, and relief extraction. 3D-CAD has been

established for some time, but innovations continue; for example, methods have been used to generate

3D drawings from 2D ones which are are assumed to be �orthographic parallel projections�. Various

optimisations have been found as the process is computationally intensive [138].

Manufacturing

Some CAD work is on the interface with engineering. For example, techniques are available to simulate

milling, turning and drilling [139]. Such simulations are rapid and cost-e�ective; they allow the parameters

of the engineering process to be �ne-tuned without manufacturing real prototypes. Other work has

concentrated on the use of optimisation techniques to reduce the errors in machining [140].

Other work

The above categories are broad but by no means all-encompassing; much work is done in CAD that is

interdisciplinary in nature. For example, a knowledge-based CAD system called DANE uses a Structure-

Behaviour-Function model to facilitate biologically inspired design [141]. Also, techniques have been

developed to use text mining to capture design rationale (the reasoning behind design choices) [142];

thus the reuse of design knowledge is facilitated.

In general, CAD research focusses on engineering problems, where shapes are complex and sophist-

icated mathematical models are used. Typically, a high level of precision is required, and the costs of

error are high. Nevertheless many of the generic issues in design (as discussed in section 3.1) apply. For

example, accurate visualisation is paramount in order to support the designer's creativity.

90



3.3 Knitwear and garment design

Eckert is the most proli�c researcher in machine-produced knitwear design, mainly approaching the subject

from an interdisciplinary design studies point of view. Eckert has authored or co-authored over 26

publications with relevance to knitwear design between 1994 [143] and 2006 [144], and completed one of

the few PhDs in the subject [145].

Eckert undertook a series of extensive studies into the garment industry. Early �ndings included

the divided nature of the personnel involved [143, 145]. The earlier activities in the design process are

undertaken by designers, and the latter ones by technicians. The designers generate the speci�cations,

and the technicians use CAD software to turn these into reality. However, communication di�culties

arise between the two groups of people, and the speci�cations are often �inaccurate, incomplete and

inconsistent� [145]. The technicians often complained that the designer's speci�cations were infeasible,

and the designers complained that the patterns produced by the technicians had deviated from their

speci�cations to an unacceptable level.

In order to overcome these di�culties, Eckert proposed a system for specifying garment shapes.

�Mock-ups� constructed using a drawing package were provided to show the suggested appearance of

such an interface [145]. The mock-ups show a set of points connected by lines and curves. Eckert

developed several mathematical models of garment shapes, mostly based on (quartic and quintic) Bézier

curves. In hand knitting, there is a lesser requirement for precision than machine knitting (see section

4.7), and so quintic Bézier curves would probably be unnecessary: they have the drawback that four

points need to be speci�ed.

The models suggested enable curves to be represented with a fairly high degree of precision. Eckert

was concerned with ambiguity as well as imprecision [145]. A system of notation was proposed to reduce

the ambiguity that is present in freehand sketches.

Eckert also conducted research into the reuse of designs. There is a discussion of how creativity is

often measured by the uniqueness of a design [146]; however there is also analysis of the adaptation of

previous designs. A designer's sources of inspiration are vital to the creative process and the utilisation of

those sources is termed �adaptation�. This term is also used in case-based reasoning (see section 2.2.3),

which is brie�y mentioned by Eckert as having utility in design problems [145, 146]. It seems likely that

there is extensive reuse in design, if not of the designs themselves but the sources of inspiration; therefore

it is no surprise that case based reasoning is often cited as being an appropriate methodology to support

design. As well as case-based reasoning, Eckert brie�y discusses the use of evolutionary algorithms in

design [145, 146].

The use of genetic programming to generate lace knitting stitch patterns was investigated by Ekárt

[147]. The pattern was represented in a novel way, as an ordered set of trees, to ensure it remained

91



technically valid. The biggest weakness of evolutionary algorithms is the need for a �tness function; in

this work, automatic evaluation was performed using some simple metrics. Evolutionary algorithms can

produce some surprising results, and thus are arguably capable of creativity. However, this creativity could

be a disadvantage if the purpose of the system was to produce designs according to the speci�c goal of

a user.

A system to enable members of the public to design their own garments was developed by Woodford

[148]. Due to the novice nature of the users, the goal of the system was to provide advice and assist-

ance to them. Woodford mentions case based reasoning as an option but states that the fundamental

characteristic of his situation was that the user did not have an initial goal in mind, other than to simply

design a garment. Their goal was developed and re�ned as a result of using the system.

Similarly, work has been done on customisation of machine produced knitwear [149]. This is a

slightly di�erent problem (to those discussed by Eckert or Woodford) since what is required is a co-design

tool, where the customer can specify their requirements, with a little help from a shop assistant. The

assistant will �rst show them samples of yarn and patterns. They then design the garment together

and the design is sent automatically to the knitwear CAD system at the factory without time-consuming

manual programming being required. The authors present this achievement as a �breakthrough�, which

is illustrative perhaps of the complexity of commercial knitwear CAD systems, or maybe of the di�culty

in technically interfacing them with other systems.

There is much research in knitwear that is not speci�cally related to the design process itself, such

as work in the commercial aspects of the garment industry, 3-D modelling of garments, the physical

properties of yarns, the development of new yarns, ubiquitous computing (integration of technology into

textiles), and the use of knitwear in speci�c domains such as medicine or sport. However, these subjects

are outside the scope of this thesis.

3.4 Categorising design processes: creative versus mechanistic

Much of the discussion in section 3.1 refers to design processes that are highly creative. Design is

ubiquitous in developed societies, and it seems intuitive that some of this design must be more routine in

nature. So, I distinguish between creative design and mechanistic design, as per table 3.1. In the studies

performed by Eckert (described in section 3.3), creative design is done by designers and mechanistic

design by technicians. In the processes at Sirdar Spinning Ltd (see section 5.1.1.1), the initial �design�

stage is creative design, whereas the other stages are mechanistic design.

Since mechanistic design is less creative, the question may arise as to whether it can be termed �design�

at all. Indeed, at Sirdar Spinning Ltd the term �design� is reserved for only the initial stages. However, I

believe that mechanistic design can be considered a design process, since creative and mechanistic design

92



Creative design Mechanistic design

begins with a high-level design brief begins with a detailed speci�cation

the problem to be solved is not necessarily that
which was given

the problem solved is identical to or has a close
relationship with the one given

works on ill-de�ned and poorly structured
problems

works on well-de�ned and well-structured
problems

uses a variety of sources of inspiration, including
abstract ones such as the designer's own memories

sources of inspiration are usually predetermined,
obvious or straightforward

design process is idiosyncratic, using intuition and
�ashes of inspiration: it is not predictable, even to

the designer

design process is mostly predictable

signi�cant uncertainty and risk limited uncertainty and risk

mostly abductive reasoning mix of abductive and deductive reasoning

emphasis on novelty, creativity and general
aspects of functionality

emphasis on correctness and detailed aspects of
functionality

Table 3.1: Creative versus mechanistic design

have common aspects. For example they both depend on expertise, and that expertise often relies on

tacit knowledge. Designers are often not consciously aware of how they select and adapt their sources.

At Sirdar Spinning Ltd, a pattern writer appeared not to be consciously aware of the rule they used to

avoid a ribbed cu� tightening (see section 4.6). They asserted that there was no rule, whereas in fact

they added almost exactly 17% more stitches on each occasion.

Both types of design involve constraints, although perhaps in creative design these are more likely to

be soft constraints: the designer is given more freedom to relax them. Also, both creative and mechanistic

design involve the possibility for inconsistency, inaccuracy and incompleteness. The �high-level� sketches

drawn by the designers at Sirdar Spinning Ltd are prone to ambiguity as they are not drawn to scale and

not every feature will have its measurement speci�ed. At the mechanistic level, I have personally seen

detailed sketches of garments drawn by pattern writers which have inconsistent measurements on them.

Freehand sketching and CAD packages can be utilised by either type of design. However, it seems

likely that freehand sketching will be more important in creative design, as it allows for spontaneity and

�exibility. Conversely, CAD will be more useful in mechanistic design, if the package supports the process

by ensuring compliance with the speci�cation. Emergent features can occur in either type of design; the

interaction between features can be utilised to bene�t the design. For example, a curve may be speci�ed

in a piece of fabric which is to be knitted in a lace pattern, and the pattern can be altered in a natural

93



way, to facilitate the shaping that makes the curve.

Reuse can be a feature of either type of design. In creative design, both the design and the sources

of inspiration can be reused. In mechanistic design, both the designs and the way in which they were

derived can be reused. The obstacles to reuse are that in mechanistic design, the designers may refer to

explicit rules which they use in their work; there is no need to reuse speci�c designs if good general rules

are available. However, it is worth noting that the exceptions to those rules are not always articulated. In

creative design, the chief obstacle to reuse is the designer's pride: they see each design as being individual,

and a suggestion that it is in any way derivative is not always met with a positive reaction.

When discussing the di�erences and similarities between creative and mechanistic design, it is more

helpful to think of them as being extremes on a spectrum, rather than a dichotomy. The pattern writing

at Sirdar Spinning Ltd is mechanistic design, but the pattern writers exercise creativity in their work,

albeit more limited than the �designers�.

One aim of this PhD is to support the latter, mechanistic stages of design. The initial stages are best

done using freehand sketches, using the designer's existing tools such as mood boards. The latter stages

can be supported by a system which provides a visual record of the designer's work with prompt feedback,

automates rules and constraint checking, and facilitates both creativity and the reuse of creativity. Chapter

5 explains how a CAD system was developed to support mechanistic design of knitwear. The reuse of

creativity is facilitated by the case-based reasoning functionality that is explained in chapter 7.

94



Chapter 4

The Knitwear Domain

�I will resist the urge to underestimate the complexity of knitting.� - Stephanie Pearl-

McPhee (2005)

Hand knitting is a leisure activity in which a human knitter produces garments, typically by following a

series of textual instructions (a knitting pattern), previously produced by knitwear designers. The fabric

that composes the garments is made from yarn, which is a long string made from natural or synthetic

�bres (e.g. wool, nylon or blends of these). The knitter manipulates the yarn with tools known as knitting

needles to make stitches. Stitches are loops in the yarn that are connected to each other. Each type of

stitch has a di�erent e�ect on the shape or appearance of the fabric that is formed.

Knitting patterns are typically several pages long and written in a codi�ed language that is often

incomprehensible to a non-knitter. Pattern design is a complex process which has artistic, technical and

commercial considerations. The �nished garment must be fashionable and aesthetically pleasing, as well

as wearable. The design process produces artefacts at di�erent level of detail, culminating in the �nished

knitting pattern. The designer has a choice of many knitting stitches, and there are technical and artistic

constraints on how these stitches are used to achieve the desired goal.

Constraints exist in nearly all design processes, and so are not unique to knitwear. However, what is

striking about professional knitwear design is the scarcity of literature. There are books for knitters, and

amateur knitwear designers, but the heuristics used in professional knitwear design are largely undocu-

mented. Although each design is unique, there is an element of repetitiveness to the process. Knitwear

designers employ a lot of tacit knowledge in their work.

Little academic study has been undertaken in hand knitwear design. However, the inherent complexity

of knitting, and the partially documented nature of the design process with its many constraints, arguably

makes this domain an interesting subject for research. This chapter summarises the domain knowledge

necessary to undertake research into the case based design of hand knitting.

95



(a) Round neck (b) Scoop neck (c) Slash neck (d) Straight neck (e) V neck

Figure 4.1: Neck shape options

4.1 Designing sweaters and cardigans

This dissertation concerns the special case of designing of hand-knitted sweaters and cardigans. These

are both types of garments that are worn on the torso, and optionally they can have sleeves to cover all

or part of the arms of the wearer. Sweaters are also known as pullovers, because the wearer will put them

on by pulling them over their head. Cardigans are similar to sweaters, the di�erence being that they are

divided at the front. Hand-knitted cardigans are usually (but not always) buttoned at the front.

Hand-knitted sweaters and cardigans are usually composed of individual pieces of knitting, which are

knitted separately and then sewn together afterwards1:

� Body pieces such as the front and back are always present. They are roughly rectangular in shape,

with exceptions for the neck and armhole, as described in section 4.2. Also, if the garment has a

�tted or baggy waist, then the basic shape will be closer to an irregular hexagon than a rectangle.

� Two sleeves; although some garments are sleeveless. The shape of a sleeve loosely approximates

to an elongated trapezium. The widest part of the sleeve is known as the head and is discussed in

section 4.2.

� An optional collar or hood.

Although most garments can be knitted (e.g. socks, hats or gloves), this study is restricted to cardigans

and sweaters,partly because these are the most common types of garment encountered in hand knitting.

More importantly, the design of cardigans and sweaters is suitable for automation as it tends to follow a

common set of principles common principles: it is an example of variant design.

4.2 Shapes used

When a knitwear designer wants to turn their artistic inspiration into a practical, wearable and fashionable

garment, they give careful consideration to the shapes of the pieces. Whilst most shapes are knittable, in

practice there are are commonly chosen options for most features. Since there is not universal agreement

on nomenclature, the terms for those options will be de�ned here.

1It is possible to use other techniques such as knitting sideways or circular needles to avoid having as many separate
pieces as this; however this is not the norm and so is excluded from our consideration.

96



(a) Set-in armhole (b) Semi set-in armhole (c) Raglan armhole (d) Dropped shoulder

Figure 4.2: Armhole shape options (with a slash neck)

(a) Raglan sleeve (b) Non-Raglan sleeve (c) Non-Raglan sleeve with
straight portions

Figure 4.3: Sleeve shapes

Figure 4.1 shows examples of the common options for the neck shape. Some garments have a

greater or lesser neck depth than others, and a designer may choose a shape which is a variant on these.

Nevertheless, for example, if a round neck was stretched vertically to make it more like an ellipsoid, it

would still be called as a round neck. The shapes involving curved lines, i.e. round, scoop and slash neck

could be described or speci�ed by Bézier curves, whereas the more simple shapes involve straight lines

only. Note that the back and front of a garment do not necessarily have the same neck shape. Indeed it

is most common for the back to have a slash neck.

Figure 4.2 shows the common armhole shape options. The armhole is located at the top of the body

pieces and allows a gap for the arms to �t through. The curves used in the set-in and semi set-in armholes

can be described adequately by an elliptical quadrant.

In a sleeved garment, the head of the sleeves will be connected to the armhole by the pieces being

sewn together. When the Raglan2 style is used, the front almost always has a V-neck, for aesthetic

reasons.

The neck and armhole shapes both relate to the body pieces. However, the shape of the head of the

2Raglan sleeves were named after Lord Raglan [150].

97



sleeve is normally a variant of two styles; the one shown in �gure 4.3a is used with a Raglan armhole,

and that in �gure 4.3b with armholes of other styles. The shape of the non-Raglan sleeve head may vary

qualitatively, but it can generally be described by a Bézier curve.

Figure 4.3c also shows a non-Raglan sleeve, with the head identical to 4.3b. However the di�erence is

that �gure 4.3c has two additional horizontal lines which are referred to as �straight at bottom of sleeve�

and �straight at top of sleeve�. The former is usually for reasons of style, whereas the latter is to make

it easier to knit. These two features are optional and some garments have only one of the straight parts.

4.3 Measurements and constraints

The design of hand knitting has aspects in common with other design processes, e.g. in engineering.

However, one key di�erence is in precision. No knitting pattern would express a measurement more

precisely than to the nearest millimetre. In fact, some measurements are usually to the nearest centimetre

for commercial reasons: it makes the pattern easier to understand for the knitter. If the number of stitches

is quoted (instead of a measurement), this is rounded to the nearest integer.

Symmetry is a common soft constraint in knitwear design. The sleeves are nearly always symmetrical

about a horizontal axis, as shown in �gure 4.3. Also, the right and left sleeves are almost always identical

when knitted, and mirror images of each other when the garment is assembled. A consequence of this is

that patterns usually only specify one sleeve, and state �sleeves both alike�. Also, the back and front are

normally symmetrical about a vertical axis. However, asymmetrical garments are technically possible to

knit and are sometimes a design feature, in response to particular fashion trends.

Consistency of measurements is the key technical constraint. It is important that, when pieces are

sewn together, that the measurements match. However, there is considerable leeway on this, since knitted

fabrics are capable of stretching. So, for the measurements to be within ±5% of each other is acceptable.

Consistency constraints apply to:

� Armhole - sleeve head : the arms and the body pieces must be able to be sewn together. This is

probably the constraint that is easiest to get wrong, as the shapes are usually not simply composed

of straight lines.

� Body length: since the front and back are sewn together on the sides, the lengths must be equal.

� Shoulder length: the body pieces are also sewn together at the shoulder.

� Body width: the bottom of the front and back is normally the same length, otherwise the seam

would not run down the side of the wearer, which could spoil the aesthetics of the garment.

� Border widths: if there is a bottom border (see section 4.6) on the front and back, this normally

has the same width for aesthetic reasons.

98



Regardless of the shapes used in them, knitting patterns are not commercially viable unless they come in

a range of sizes to suit the intended wearers. Traditionally in the UK the size of a cardigan or sweater

was measured in inches, and this represents the circumference of the wearer's torso across the chest or

bust. Nowadays the patterns use both metric and imperial for measurements. The size range is normally

speci�ed as an arithmetic sequence of inches where the terms are all even numbers. Adjacent to each

term is shown the size in centimetres, rounded to the nearest integer3.

When determining the measurements used in their garments, designers typically use a standard table

of measurements. The table is a rough guide to help the designer, and is not usually in the public domain.

It will typically list the standard length and width of the front, back and sleeve for each of the possible

sizes (e.g. 30�-50�). A smaller (e.g. 34�-42�) range of sizes will usually be speci�ed for a garment, since

the table represents some extreme scenarios; also the table may be unisex but most knitted garments

are not. The designer will pick a size in the range (often the smallest) and specify the measurements

with reference to those in the table. They may use the actual measurements, but leeway is possible

to suit fashion trends. For example, sometimes baggy garments are popular; these use slightly larger

measurements, e.g. �as table width plus 2cm�.

In order to derive the measurements for the garments in the other sizes within the range, a process

known as grading is performed. Grading normally involves scaling the design; the scale factors are usually

derived by comparing the guideline lengths and widths from the standard table. Thus, those scale factors

may be di�erent for the sleeve and the body pieces. However, grading is not as simple as applying a

uniform scaling. The standard tables typically specify constraints for some individual measurements, e.g.

the depth of the armhole. So, the designer will apply localised adjustments to these features to comply

with the guidelines. In addition, there are other complications to the grading process:

� If the measurements were di�erent from the guideline (in the standard table) in the original size,

one would expect that they would also be di�erent in the other sizes, presumably by the same

proportion.

� Consistency (see above) must be respected in all sizes.

� Rounding is applied (see above for the comments on precision).

4.4 Stitches

So far, the discussion of knitwear design has been at a relatively high level. However, for most knitters

the focus is on the lowest level of detail - the stitches. The number of types of knitting stitch is probably

3Hence the rounding means that the measurements in centimetres will not necessarily be an arithmetic sequence.

99



Category of stitch Stitch size Stitches linked to in previous row

Standard 1 1
Cast on 1 0
Cast o� 1 1 (but 0 in next row)
Cables n (where n > 1) n

Shaping stitches n (where n ≥ 1) n + d (where d 6= 0)

Table 4.1: Categories of knitting stitches

�nite but very large; however in reality only a few dozen are in common usage. The stitches listed in

appendix A cover the majority of knitting patterns.

The knitted fabric is formed by making rows of stitches; within each row the stitches are connected

to each other and to the stitches in the previous row. Each type of stitch has a textual abbreviation;

these are not completely universal so in knitting patterns there is always a legend which explains how to

knit each stitch.

Knitting stitches can be grouped into four categories:

� Standard stitches include the most common choices: knit and purl. Knit and purl make up the

majority of most garments.

� Cast on/o� : to begin a piece of knitting, the knitter will cast on stitches, these will form the �rst

row of knitting. On the last row they will cast o�.

� Cables: these are decorative stitches which are larger in size than standard stitches. For example,

the stitch C4B is the equivalent of 4 standard stitches.

� Shaping stitches: a shaping stitch can be used to change the number of stitches in a row, thus it

can make the knitting non-rectangular. Stitches which make the row longer are called increases,

and ones which narrow it are decreases.

Table 4.1 summarises the e�ect of the categories of knitting stitch on linked rows.

4.5 Stitch Patterns

A stitch pattern is a 2-dimensional matrix of stitches which achieves a predetermined aesthetic a�ect

when knitted. The number of possible stitch patterns is virtually in�nite, although the vast majority of

these would never be used as they would give an ugly appearance or would be di�cult to knit. Appendix

A lists some common stitch patterns; the most ubiquitous of these is stocking stitch. In stocking stitch

the rows alternate between knit and purl stitches.

It is possible to categorise the majority of stitch patterns thus:

100



Figure 4.4: Example of a knitting chart showing a stitch pattern

1 s t row ( r s ) : k1 , *k1 , k2tog , yfwd , k1 , yfwd , s1 k1 psso , k1 ; r ep from * , k1
2nd row : p u r l
3 rd row : l1 , *k2tog , yfwd , k3 , yfwd , s1 k1 ps so ; r e p e a t from * , k1
4 th row : p u r l
Repeat t h e s e f o u r rows .

Figure 4.5: Example stitch pattern: as textual instructions

� Plain patterns: these give an unremarkable appearance, e.g. stocking stitch or reverse stocking

stitch.

� Ribs: these are very stretchy and show straight parallel lines in the knitting, where there are ridges

and troughs. In contrast to other types of stitch pattern, ribs are speci�ed using two integer

parameters. These parameters control the width of the ridges and troughs.

� Lace: these involve holes for decorative e�ect.

� Cable: these employ cable stitches, and are often used on the front of sweaters for decorative e�ect.

Knitting is done in a zigzag or boustrophedonic way. The knitter will usually start on the right-hand side

of the piece, and work from right to left. The next row will be knitted on top of the previous one, and will

work from left to right, and so on. The rows alternate between the right side (which forms the outside

of the garment) and the wrong side (making the inside). For reference in a knitting chart (see below),

the rows are numbered. The following conventions are most commonly observed:

� The right side (rs) is typically worked right to left and has even numbers.

� The wrong side (ws) is typically worked left to right and has odd numbers.

Stitch patterns are often speci�ed using knitting charts. A sample knitting chart is shown in �gure 4.4.

Each of the rectangles corresponds to a knitting stitch which is uniquely identi�ed by a symbol; for

example, the circle directs the knitter to make a hole. The symbols are explained in appendix A. Figure

4.5 shows the textual version of the stitch pattern in �gure 4.4.

The pattern has the following noteworthy features:

� A blank square on a knitting chart corresponds to stocking stitch. This means that it will be knit

(k1) on a right side row, and purl on a wrong side row.

101



� The columns in grey in the knitting chart correspond to those stitches that are excluded from the

horizontal repeating part of the pattern. This is denoted by asterisks (*) in the textual instructions.

This means that this pattern repeats horizontally every 7 stitches.

� The pattern repeats vertically every 4 rows.

� The instruction �yfwd� makes a hole in the knitting and it is an increase.

� The instructions �k2 tog� and �s1 k1 psso� are decreases; they are added to balance out the e�ect

of the yfwd (see validity below). They have di�erent aesthetic a�ects though: the former creates

a shape that slants to the right, and the latter to the left.

Stitch patterns have one important technical constraint: validity . Often, for the reassurance of the reader,

a knitting pattern will quote the count of stitches in a row. As table 4.1 shows, the knitting stitches

have a di�erent e�ect on the stitch count. For example, the decrease stitch k2tog (�knit two together�)

decreases the count by one since it is connected to two stitches below. An increase such as yfwd (�yarn

forward�) increases the count by one as it is linked to no stitches in the previous row. Cable stitches are

not shaping stitches but, for the purposes of calculating the stitch count, they count as more than one.

The validity constraint means that any change in the stitch count from one row to the next must be

matched by the cumulative e�ect of the shaping stitches. In �gure 4.4, the stitch count does not change

since the increases are balanced out by the decreases.

If the shaping stitches are not balanced out, then the stitch count will change. For example, if the

only shaping stitch in a row was k2tog, then it would have a stitch count of one less than the previous

row. This is often exploited for deliberate e�ect, for example to make the fabric narrower for an armhole.

It is normal for stitch patterns to have their shaping stitches balanced, so to form the shapes described

in section 4.2 (such as a tapered sleeve) the row must be made unbalanced by changing the composition

of shaping stitches.

There can be complications if the stitch pattern being used contains shaping stitches. Stitch patterns

repeat regularly over the fabric (every 7 stitches and 4 rows in the example above). Often, the number

of stitches in a row is changed so that it is an integer multiple of the repeat period (7n+2 stitches in the

example above). However, it is not always possible to do that, and if only part of a pattern is used then

that may not be balanced and thus could lead to the row being invalid.

The options for changing the composition of shaping stitches include:

� Removing existing shaping stitches.

� Adding new shaping stitches.

� Changing the type of shaping stitch used. Some stitches have a greater or lesser e�ect on the stitch

count than others (see appendix A for details).

102



As explained above, a change in the stitch count will result in a change in the width of the knitted fabric.

Stitches take up an approximately rectangular area of the fabric. The size of a stitch is determined by

the tension. The width of the rectangle is given by the stitch tension and the height by the row tension.

The tension is a�ected by four factors:

1 The yarn - the thicker the yarn, the greater the tension.

2 The needle - knitting needles come in various sizes and smaller needles usually result in a lower

tension.

3 The stitch pattern - for example, rib patterns have a lower stitch tension than stocking stitch.

4 The style of knitting - some knitters will knit tighter stitches (i.e. a smaller tension) than others.

Manufacturers of yarns normally specify what the tension for a yarn should be, when it is used for stocking

stitch with a needle of a speci�ed size. To control the last factor, knitters are encouraged to knit a 10

stitch x 10 row tension square, and measure it to determine whether they are working to the correct

tension. It is customary to quote tensions as the number of stitches per 10 centimetres rounded to the

nearest integer, for example �22 stitches and 30 rows to 10cm�.

4.6 Other design options

Section 4.5 explained how stitch patterns can be speci�ed, and how stitches can be used to shape a

garment. A knitting pattern normally speci�es a particular pattern as being predominant throughout the

garment; we call this the background stitch. The background stitch may be the only pattern used on

the garment, but if other patterns are used they are speci�ed on a case-by-case basis. Often, additional

stitch patterns are used on a garment for aesthetic reasons. For example, they could be used for edging ,

for example:

� Bottom border : this a�ects both the front and back pieces.

� Front border : a cardigan (but not a sweater) may have a border running down the front; often the

buttons and buttonholes are located on the border.

� Neck band : a band is a thin strip of material which is used to ��nish o�� the neck in the absence

of a collar or hood.

� Cu� : the sleeves may have a separate region at the end. Sometimes the design speci�es that this

should be tighter (narrower in width) than the rest of the sleeve, but conversely it can also be looser

(wider).

103



The edging regions are often knitted in a di�erent direction to the rest of the garment; the main portion

of the piece of knitting is knitted �rst, then the edging is added. It is possible (but uncommon) for edging

to be done using the background stitch. Usually, the background is stocking stitch, and the edging is

done in a rib pattern (this is particularly true of bottom borders and cu�s). Ribs have a lower stitch

tension than stocking stitch (which is the dominant stitch pattern in most garments), so the designer has

so make allowances for this. For example, if a tight cu� is not required then the cu� will have to contain

more stitches per row than the rest of the sleeve.

Pockets are also typically created after the main part of the knitting has been done. They usually

have a di�erent stitch pattern to their surrounding area, and are typically rectangular shaped. However,

pockets are typically composed of two layers of knitwear superimposed on each other; the top layer is

connected to the bottom by sewing or knitting. Pockets are both functional and decorative.

In contrast, panels and yokes are purely decorative. Panels are regions which are knitted in a di�erent

stitch pattern to their surroundings. These are often rectangular shaped, but can also be a horizontal or

vertical band. A yoke is a region at the top of the front and back which is knitted in a di�erent stitch

pattern to the background stitch.

4.7 Comparison with other processes

Much of what has been presented in this chapter could apply to any method of producing garments; the

exceptions are the detail of stitches and stitch patterns (discussed in sections 4.4 and 4.5 respectively).

Therefore, it is useful to compare hand knitting to other processes which produce garments.

Knitting normally uses one thread of yarn4, whereas weaving uses many threads. In weaving, vertical

threads are arranged on a device called a loom, then separate horizontal threads are interlinked or woven

through this. Woven fabric has much less capacity to stretch than knitted fabric; therefore when designing

a woven garment there is less leeway in the measurements and a higher level of precision might be expected.

In modern times, most garments are mass-produced using machines. Machine knitting has di�erent

characteristics to hand knitting. In hand knitting, shaping is always performed with the use of shaping

stitches, whereas a machine can knit a rectangle and then the required shape is cut out afterwards [145]5.

Another important (but easy to overlook) factor is that the �nished product of commercial hand

knitting design is a knitting pattern. There are commercial constraints on knitting patterns, in addition

to those of the garment. The pattern must not be too long; a long pattern will be more expensive to print

and could be o�-putting to the purchaser. Similarly, the complexity of the written instructions must be

minimised. If the instructions are too complex then the knitter may become confused and the probability

4Except when di�erent colours are being knitted in the same garment (intarsia), although this is still very di�erent from
weaving as the threads are not arranged perpendicularly.

5The fabric is steamed before cutting, as this prevents it from unravelling

104



of errors increases. For example, Sirdar Spinning Ltd operates a telephone knitting advice line, and so

more complex patterns may impose a customer service burden, with the associated sta� costs.

One of the ways that complexity is minimised in knitting is to use a small number of line segments to

approximate curves. Thus, accuracy is sacri�ced for the bene�t of simplicity. In contrast, machines have

much less scope for error and in�nitely more patience than a human, therefore complex shapes, speci�ed

to a higher level of precision, are more likely to be employed in machine-produced garments.

Despite the di�erences between the processes, there are also commonalities. For example, machine

produced knitwear is also made in pieces, and then sewn together (�made up�) afterwards [145]. Both

designers of hand knitting patterns and commercial garments will work from sketches. However, it is

important to realise that although the individual pieces can be represented fairly well in two dimensions,

the �made up� garments are 3-dimensional. Fabric puckers and stretches and bands do not necessarily lie

�at as stitch patterns have di�erent properties. Therefore, any 2-dimensional representation of a garment

is only an approximation.

105



Chapter 5

Knitwear CAD System

�Design is a plan for arranging elements in such a way as best to accomplish a particular

purpose.� - Charles Eames

This chapter explains how the devised software facilitates the knitwear design process. The users will �rst

specify a pattern at a high level, and then re�ne that pattern at a progressively increasing level of detail.

Defaults and heuristics are utilised extensively; these automate common conventions in knitwear design

without removing control from the user. Design is a very visual process, and the user is given prompt

feedback of the results of their work. As with most other domains, knitwear design has constraints. Both

hard and soft constraints will be enforced, the latter being allowed to be relaxed at di�erent levels of

granularity. The enforcement of constraints is immediate where practical, in other cases it is acceptable

(or indeed necessary) for the design to temporarily be in an invalid state, in which case the enforcement

is delayed until appropriate.

First, the requirements for the software are discussed. This is followed by a description of the

functionality, and the algorithms that are used to implement this. SEACOP automates the Search,

Entry, Adaptation and Checking Of Patterns. The entry and checking aspects are described here, whilst

adaptation is dealt with elsewhere (see chapter 7). SEACOP also facilitates the persistent storage of

designs.

A design is represented on three levels: questionnaire, sketch and chart [97]. The questionnaire and

sketch stages are heavily interrelated, and so they are discussed together in section 5.2. Although the

chart is produced from the sketch, it is distinct from it. One of the aims of this thesis is to explore the

use of case-based design, and since the charts are produced by conventional CAD means alone, they are

discussed in appendix B.

106



5.1 Requirements

SEACOP has been developed without the luxury of a formal requirements speci�cation. The project

began with an understanding of the existing design process at Sirdar Spinning Ltd; this is an ine�cient

process which guided but did not dictate the requirements for SEACOP. The goals of SEACOP are to

improve upon this process by automating it, and to facilitate the application of case-based reasoning

(CBR) in knitwear design. Although each design is unique, the process is repetitive which suggests some

form of automation; however it relies heavily on tacit knowledge which makes it a domain that is suitable

for CBR.

5.1.1 Existing process

Visits to Sirdar Spinning Ltd were made in 20081; the objective of these was to understand their design

process in detail. This objective was achieved and what follows is a brief description of the process.

5.1.1.1 Process description

Although there is scope for iteration, the Sirdar process is mostly sequential, with the following stages

[14, 97, 152]:

1 Design. The designer draws on current fashion trends2 and other inspirations to develop the concept

of a new design. The products of this stage are a sketch, and a speci�cation of the design.

2 Pattern writing . A pattern writer takes the speci�cation and sketch and constructs the knitting

pattern.

3 Checking. Manual checking ensures that the pattern is valid and conforms to in-house style rules.

4 Typesetting . A typesetter formats the pattern in a format which is attractive for the customer to

purchase.

5 Proof-reading . A �nal check is performed to ensure that the typesetting has not introduced any

new mistakes.

6 Sample production. A garment is knitted in one size, using the pattern.

7 Sample veri�cation. Visual checks are performed to ensure the sample conforms to the design.

1The underlying processes are expected to stay the same in the years following the visit. 'Out of the box' software
to facilitate commercial pattern design to a professional standard are not available. Software exists to design a garment
for a knitter, or to design machine-produced garments, but these processes are di�erent from the commercial design of
patterns for hand-knitting. Apparently, some of these commercial knitting programs have of the order of 150 person-years
of software development [151]. Developing a bespoke software system that was robust enough for their use would be a
signi�cant investment for the company.

2Although fashions can change radically, everything else about the process remains fairly constant.

107



The design part of the process is the most creative and the designer would use tools such as mood boards

and fashion magazines to initiate the process of ideation. They then produce a freehand sketch of the

garment, using pencil and paper. This is augmented with a speci�cation of the garment consisting of a

single A4 sheet of paper with high-level details of the design such as stitch patterns and yarns used.

The pattern writing (2) stage is not termed or viewed as design within the company, but in fact it

is a design process, albeit more detailed and mechanistic than the initial design. Initially it is done using

pen and paper; typically they use graph paper to construct knitting charts showing complex areas of the

garment such as the neck and shoulders. Often, all the sizes are drawn on the same graph paper. Then,

they will calculate the numbers of stitches and write this out as textual instructions. These are then

typed out using a word-processor.

In the checking (3) stage, the processes used to generate the textual instructions will be re-visited

and checked to ensure that the written instructions will produce a garment that is consistent with the

output of the design (1) stage. If there are any mistakes, the pattern is changed and the checks repeated.

A pattern is typically checked 2-3 times. Often the checking discovers basic arithmetic errors such as

centimetre to inch conversions. The checker is also looking for violations of constraints, such as:

� house style rules must be adhered to

� size, e.g. the width and length must be correct

� shaping stitches must be correctly applied to give the shape in the sketch

� symmetry: most garments are symmetric (or contain many symmetric features)

� buttons must usually be lined up

� the armhole must be approximately the same length as the sleeve

� the pattern must be valid, i.e. the balance between increases and decreases must be correct.

The typesetting and proof-reading stages are largely concerned with presentation. In contrast, the sample

production and veri�cation processes are the �nal quality checks performed before the pattern is sold.

In reality stitches are not perfectly uniform and fabric sags and stretches so it is di�cult to ensure the

�nished garment has the required appearance without actually knitting it. If the pattern fails veri�cation

then alterations are made to the written pattern, if necessary these alterations are checked and then

another sample is produced.

5.1.1.2 Discussion

The existing process at Sirdar is largely manual and is very labour-intensive and time consuming. In

its entirety, the process typically takes several months and involves many people. Pattern production is

108



therefore expensive (due to the high labour content) and slow; the latter is an issue if the goal is to

respond quickly to changes in fashion.

The process involves a mixture of types of task. Some tasks are creative and creativity is traditionally

hard to automate or simulate on a computer. Some tasks are more mechanistic, but still involve individual

discretion and decision-making, for example �tting a stitch pattern to a shape. Other tasks are trivial,

such as centimetre to inch conversions, although even this can be a source of error.

Some parts of the process are well documented, for example there are many books which explain

which stitches to use to shape a garment. Other aspects are not well documented and rely on tacit

knowledge that is passed on by word of mouth. Sometimes this knowledge is taught to others by example

rather than by the exposition of general principles. Such tacit knowledge is notoriously hard to capture in

a software engineering process. It also represents a substantial risk for the employer, since when personnel

leave the organisation they take their knowledge with them.

It is easy to see how this process can be improved upon and indeed the requirements for SEACOP

were that a substantial proportion of the process should be automated.

5.1.2 SEACOP speci�cation

The requirements evolved from an understanding of the existing manual process, as explained below.

The existing process involved much paper documentation and there were three key documents: a

speci�cation �lled out by the designer (detailing the measurements, yarns, stitch patterns etc.), a sketch

of the garment, and knitting charts. This documentation should exist in an electronic form within

SEACOP. In the manual process, the speci�cation is a guide used to produce the sketch, and both

these documents serve as an input into the pattern-writing process, which produces the knitting charts.

Thus, the speci�cation becomes a sketch, and the sketch becomes a chart, and this process �ow can be

automated in SEACOP, with the major change that instead of the rules for transforming one thing into

another being purely manual, they would be automated by the system.

When editing the sketch, it is important that enforcement of constraints is automated; most of these

constraints are knitwear-speci�c, as described in the checking part of the process in section 5.1.1.1. These

are soft constraints, i.e. the user must be able to 'turn o�' their enforcement, either at a localised level or

on a global level. Other constraints were not explicitly stated during interviews with designers but apply

to the drawing of any 2-dimensional shape. The user must not have so much freedom that they can turn

the sketch into nonsense, for example by leaving a gap in the outline of a shape.

When editing charts, the constraints are clear. A chart must be valid, i.e. the balance of shaping

stitches must be correct. The shaping must be correct also, i.e. the shaping stitches at the edge must

be consistent with the change in width of a row.

Both sketches and charts must be capable of being produced in a range of sizes. There are established

109



guidelines about the measurements of the sketch, and these must be adhered to. There are two aspects

to knitwear grading: scaling up the shape of the sketch into di�erent sizes, and �tting the pattern to

the shape. Grading is non-trivial because the scaling used is non-uniform, and many patterns cannot be

'broken'. SEACOP must be able to cope with variations from standard measurements and shapes, and

any valid stitch pattern, including ones involving cables. SEACOP needs to be able to make a reasonable

attempt at grading any pattern. The results do not have to be perfect, so the user needs to be able to

edit both the sketch and the chart.

The mapping from questionnaire to sketch, and sketch to chart do not need to be perfect either, but

they do need to conform to established conventions, and be consistent and repeatable (i.e. deterministic).

The user should be able to complete a questionnaire and �nd that the sketch produced matches their

expectations, and is in accordance with standard rules for the sizing of garments.

The designers were also clear that they wanted instant (or rapid) visual feedback to their changes.

Hence, when the questionnaire is changed in SEACOP, the changes to the sketch must be immediately

visible. Both the need for precision and constant feedback must be supported.

5.1.2.1 Limitations

The main limitation of SEACOP is that its output is a knitting chart, rather than textual instructions. The

mapping between the chart and textual instructions is not a complex one, but it would require signi�cant

e�ort to achieve natural language generation in the required format, and as this is not expected to lead

to major scienti�c achievement, it is beyond the scope of the work here.

Another limitation is that SEACOP only produces designs for sweaters and cardigans. SEACOP could

be modi�ed to allow production of other types of garments with further work. However, the majority

(about 86%)3 of garments featured in knitting patterns are cardigans or sweaters. The main goal of

SEACOP is to facilitate case based design; this requires garments to be compared, and as it is only

practical to compare garments of the same type, it was decided to focus on the most common type.

Since the goal was to automate the most common patterns, some rarer scenarios such as crochet and

circular knitting are not supported.

5.2 Questionnaire and Sketch

This main purpose of this chapter is to discuss the two interrelated stages of pattern design: the ques-

tionnaire and sketch. The next section introduces the main components in the user interface, and how

they interact. This is followed by a more detailed treatment of the questionnaire, and the tools used

to create design sketches. Finally, the algorithms which transform the questionnaire into the sketch and

3When 100 garments were chosen at random from a sample of 1111, 86 of them were found to be cardigans/sweaters.

110



enforce constraints during sketch editing are explained.

5.2.1 Interactive Sketch Generation

Interactive sketch generation has four main components [14], as shown in �gure 5.1:

� Sketch editor : This is the main and largest part of the window; it shows the design of the sketch

in progress. In the example below it is covered by horizontal and vertical gridlines and shows one

of the sleeves, a collar, and the back and front of a sweater. The latter two are obscured by the

questionnaire in �gure 5.1, although the questionnaire dialogue box can be moved around the screen

as required.

� Side panel : This is the rectangular area on the left, which allows the user to set various personal

preferences, such as whether grid-lines are displayed. Also, it facilitates some presentation/display

choices about the content of the sketch, such as buttons.

� Questionnaire: This is the dialogue box in the foreground, entitled 'Size' in the example. The

questionnaire allows the user to make important choices about the design, such as the dimensions.

It is organised in six stages and is discussed in section 5.2.2. The questionnaire is not always visible

but when it is, the sketch editor and side panel are inactive as it is a modal dialogue box.

� Progress bar : This is the thin rectangular area at the bottom of the window indicating what stage

in the questionnaire the user has reached.

As discussed previously, a garment is represented on three levels. As the user moves through the

questionnaire, the sketch, and the chart, the level of detail increases. Interviews with knitwear designers

showed they prefer systems which are interactive and provide continuous visual feedback. Therefore, the

user interface for the questionnaire and sketch stages were integrated; the sketch provides rapid feedback

to changes made in the questionnaire.

Via the navigation buttons, the user can work through the six stages of the questionnaire, which

correspond to those shown in the progress bar:

� Back moves back to the previous stage

� Apply remains on the current stage, but it causes the changes made (in that stage of the question-

naire) to be applied to the sketch immediately

� Next moves forward to the next stage

� Reset remains on the current stage, but reverts all the choices in that stage back to the default.

111



Figure 5.1: Questionnaire and sketch

When the user presses the Back, Next or Apply buttons, the decisions they have made in the questionnaire

are applied to the sketch, via the sketch instantiation algorithm (as discussed in section 5.2.7.1). For

example, changing the gender of the wearer from a woman to a man a�ects which side the buttons appear

on a cardigan. Thus, the sketch provides the visual feedback from the questionnaire choices that designers

require; the designer can see the e�ect of their changes instantly. Some of the questionnaire options have

e�ects that interact with each other, e.g. the location of each button is a�ected by both the option for

the button position, and the option for the number of buttons. This means that providing immediate

visual feedback is important, so that the designer is reassured that their choices were appropriate; or

alternatively they will be able to see how those choices might need to be changed.

Each button on the progress bar (see section 5.2.2.2) corresponds to a stage in the questionnaire.

Once the user has �nished the questionnaire, it is no longer visible and they typically progress to the

sketch stage, where they use the sketch editor and side panel to make more detailed choices about the

garment. For example, they can have �ne control over the shape by adding or dragging points on the

sketch. The sketch interface is described in more detail in section 5.2.4.

If the user decides that they need to change the decisions that were made at the questionnaire

stage, then they can revisit it at any time during the sketch stage by clicking on one of the buttons on

the progress bar. This will invoke the appropriate stage in the questionnaire, and the sketch will then

be re-instantiated, depending on what choices the user makes. The re-instantiation ensures that the

questionnaire and the sketch stages are kept consistent with each other. When the chart editing stage is

112



reached, the questionnaire cannot then be revisited.

Once the user is satis�ed that the questionnaire choices were correct, i.e. that the sketch is a good

approximation to the design they require, then they are ready to move on to the chart stage. They do

this by pressing the Chart button on the side panel. The chart interface is discussed in more detail in

appendix B.1.

The CAD system interface aims to satisfy a number of seemingly con�icting requirements. The

questionnaire must cause the sketch to be changed immediately, since rapid feedback is required by the

designers. However, the sketch must be able to be edited (as described in section 5.2.4), as the output

of the questionnaire will rarely be perfect. Also, although the questionnaire is usually a linear process, it

must be able to be revisited at any time; the design process is partly iterative and designers sometimes

change their mind. The way in which the functionality of the questionnaire and sketch are linked (as

described above) supports both a linear and iterative process.

5.2.2 Questionnaire

The questionnaire is the early stage of the design, where the most fundamental decisions are made. The

questionnaire is distinct from the sketch, although they are related in the sense that information in the

questionnaire is used to construct the sketch. The questionnaire loosely corresponds to the speci�cation

stage in the process at Sirdar, explained in section 5.1.1.1.

Whereas the sketch stage involves manipulating shapes (which can be speci�ed at a �ne level of

detail) using continuous measurements, the questionnaire stage mostly entails choosing from a discrete

set of options. Choosing from pre-set options is a comparatively rapid process, compared to manipulating

the sketch or chart; so the designer should be able to work through the questionnaire quickly (in a few

minutes). However, the number of permutations of options is extremely large (over 1015), meaning the

questionnaire facilitates the speci�cation of a wide variety of designs.

Deciding on the composition of the questionnaire presented an important challenge in the development

of the CAD system. Including too few options may have meant that the sketch instantiation algorithm

(see section 5.2.7.1) had insu�cient data to work with. However, including too many options could risk

causing user fatigue. The questions which were included were descriptive, using the language of the

knitwear designer; and relevant4 to the sketch instantiation algorithm.

5.2.2.1 Stages of the Questionnaire

There are six stages to the questionnaire: Size, Fastener, General, Neck, Pockets and Sleeves. In the

Size stage, as depicted in �gure 5.1, the user is initially asked to choose the gender of the wearer. This

4With few exceptions, e.g. patterns have a reference number which must be recorded this is not relevant to the
instantiation of the sketch.

113



a�ects the positioning of buttons; on a man's garment they are on the right hand side, but on a ladies'

they are on the left. Also, the gender of the wearer a�ects the range of sizes.

The user speci�es the maximum and minimum sizes, and designs will be produced for these and

intermediate sizes. The options for sizes are displayed in both metric and imperial measurements, rounded

to the nearest integer. The default unit of measurement is always centimetres. However, it is convenient to

specify sizes in inches since conventional sizes are even numbers of inches, thus representing an arithmetic

sequence. The size of the garment is then used by the sketch instantiation algorithm (as described in

section 5.2.7.1) to produce the sketch. Data from a standard table of sizes, taking into account the length

adjustment and width allowance, is used to generate the sketch. The latter allow the user to specify looser

or tighter �tting garments. For more information about the heuristics used in grading (sizing) knitwear,

see section 5.2.7.2.

The next stage of the questionnaire, Fastener , is based on the choice of garment (cardigan or sweater).

For sweater there are no further questions, and for cardigan, the type of fastener (e.g. buttons or zip)

has to be chosen and then in the case of buttons, their number and position is speci�ed.

The next stage of the questionnaire is General . The most signi�cant choice here is that of background

stitch; see section 5.2.3 for a fuller explanation of the speci�cation of stitch patterns. Also, the user can

specify the option for the shape of the waist (e.g. narrow), whether or not there is a yoke and bottom

border, and if so what stitch patterns are used for these.

At the Neck stage, the user chooses an option for the neck shape; these are explained in section 4.2.

They also specify whether the garment has a collar, hood, band or neither. Where a collar, hood or band

is speci�ed, the user must choose the stitch pattern that is applicable to it.

The next stage is where the Pockets are chosen: their position and stitch pattern will be speci�ed by

the user.

The �nal stage is Sleeves. The armhole shape is chosen from a series of standard options; these are

explained in section 4.2. Then the user must choose whether the garment is sleeveless or not; if it is

sleeveless, then the questionnaire is complete. However, for a garment with sleeves, the user has several

choices: sleeve length, whether there are cu�s, and whether the sleeve has straight regions at the top

and bottom. The latter determines the default shape of the sleeve (although the user can modify this

using the sketch editor).

Finally, the user has to decide whether the sleeves are symmetrical or not. If they are, then only

one sleeve is editable, otherwise both sleeves are independently editable. The latter option is rare, since

sleeves are almost always the mirror image of one another. It is possible to make the sleeves independently

editable at a later stage using the button marked �Both Sleeves Editable� on the side panel; this is shown

in �gure 5.1.

114



5.2.2.2 Progress Bar

It is important that the user has completed the questionnaire before moving on to the sketch, since

returning to the questionnaire at a later stage results in the sketch being re-instantiated (for reasons

discussed in section 7.1.2). The user will be able to visualise their progress through the questionnaire

with the progress bar. The progress bar has six buttons, each of which corresponds to a stage in the

questionnaire. The background colour of the button indicates the user's progress [14]:

� A red button shows that the user is currently at this stage of the questionnaire. For example in

�gure 5.1 the size stage is active.

� A light grey button indicates that the user has not yet visited this stage.

� A cyan button indicates that the user has visited this stage, and has changed at least one of the

options from the default.

� A blue button indicates that the user has visited this stage, but left without changing any of the

options from the default value.

Many usability challenges were addressed when SEACOP was designed. One of these was how to balance

the seemingly con�icting objectives of using sensible defaults (to allow the user to make rapid progress)

and to avoid errors due to inattentiveness (which could result in designs which do not conform to the

speci�cation). Since accepting all of the default values can be an indicator of inattentiveness, the progress

bar di�erentiates between whether a user has changed anything or not.

5.2.3 Stitch Patterns

Depending on the questionnaire options, the user will be asked to choose stitch patterns for speci�c parts

of the garment, e.g. the pockets. At least one pattern must always be speci�ed: the background stitch5.

Stitch patterns are also used sometimes in the sketch editor, for example in the case of panels; this is

explained in section 5.2.4.3.

There are several common stitch patterns which have become standard in knitting patterns, e.g.

stocking stitch. However, it is very rare for a commercially produced knitting pattern to feature only

stocking stitch. One of the most di�cult aspects of pattern design is �tting a pattern to a shape. So,

in order to avoid placing arti�cial limitations on the designer, both standard and bespoke stitch patterns

are available in SEACOP. The following sections explain how to specify stitch patterns in SEACOP; for

more information about the use of stitch patterns in knitting, see section 4.5.

5The background stitch is usually the most common pattern in the garment, and it is the default pattern, used where
no other pattern is speci�ed.

115



Figure 5.2: New stitch pattern

5.2.3.1 Choosing Stitch Patterns

SEACOP uses a standard dialogue box which allows users to specify stitch patterns, as shown in �gure

5.2. Tensions are an important aspect of knitting patterns, since they control how many stitches are

needed to make the required height and length. The left side of the �Choose tensions and pattern� box is

dedicated to tensions. If the �Use Background Stitch Tensions� box is ticked, then the tensions for this

pattern will be set to the same as the background stitch; otherwise the user must enter a row tension

and stitch tension.

The right hand side is dedicated to setting the pattern; this is done via the drop-down list at the top.

In this example, reverse stocking stitch has been chosen, but a variety of other standard stitch patterns

are o�ered. If the user picks the 'rib' option, then the two boxes below become enabled, they allow the

user to set the parameters for an m× n rib (see section 4.5). Alternatively, if the user picks the 'other'

option, then this indicates they require a non-standard stitch pattern. Other patterns, stored on the user's

computer6, can be accessed by clicking on the 'Choose other' button. Finally, another option is to click

on the 'Create New' button, which will result in a new stitch pattern being created. More information

about the latter is given in the next section.

5.2.3.2 Creating Stitch Patterns

A new stitch pattern can be created by �lling the options in a corresponding dialogue box (see �gure 5.3)

and subsequently editing its knitting chart (see �gure 5.4). The size of the pattern will be determined by

the number of stitches (width) and number of rows (height). The two labels starting with �Repeat� are

used to specify if there is a non-repeating edge; if the user presses the All button then there will be no

such edge. In the example shown, the pattern is a repeat of 7 rows and 7 stitches in each row. In the

bottommost section, the most important box is the one which requires the designer to enter a unique and

descriptive name (�crosses� in this example). The 'bottom row knitted left to right' check box speci�es

the direction of knitting (see section 4.5).

The user interface which allows the editing of bespoke stitch patterns is divided into three rectangular

6or a network location accessible to it

116



Figure 5.3: Specifying a new pattern

Figure 5.4: Editing a new stitch pattern

regions, as shown in �gure 5.4. The leftmost region has buttons which have miscellaneous functionality

that improves usability, e.g. Undo. The central region contains the knitting chart for the pattern; each

yellow square represents a stitch. The rightmost region is the stitch palette, which allows access to all

the stitches.

The user can edit the knitting chart by �rst selecting a region in the chart; this can be either an

individual stitch, or a range of stitches. Then, they click on a button in the stitch palette; the stitch(es)

that were selected will be changed to those corresponding to the button. The stitch palette is arranged in

groups according to the type of stitch, as per feedback from knitwear designers. Designers will typically

know which type of stitch they are looking for, e.g. a decrease at the edge, and having them arranged in

this way makes it easy to browse through all the stitches of a particular type.

117



Figure 5.5: Right-click menu on the knitting chart

The procedure for adding cable stitches is slightly di�erent; as these are wider than standard stitches

the software ensures that the user can only add them in places that do not violate the integrity of the

pattern.

Another means of editing the chart is via the right-click menu, as shown in �gure 5.5. Standard

operating system clipboard operations are supported, for example: clear, cut, copy and paste. The editor

also supports some specialist operations, such as re�ection: horizontal re�ection uses a vertical axis of

symmetry, and vice versa. The user can also employ the right-click menu to alter the size of the pattern.

The �Insert Row Below� option is valid whenever an entire row has been selected, and likewise the �Insert

Column Right� option is valid when a column is selected. The �Set Repeat� option is valid if whole

columns are selected; it sets the repeat period of the pattern, marking any columns not selected as

non-repeating edges.

When the designer is satis�ed with their pattern they can press OK and it will be created; pressing

OK again (see �gure 5.3) will set the stitch pattern for that region to the newly created one. The stitch

pattern editor is multi-functional and it is comparatively easy to create quite sophisticated stitch patterns.

5.2.4 Sketch Editor

The sketch provides a visual depiction of the shape of the garment which the user can manipulate. As well

as the visual objects that make up the shape, the sketch editor contains two kinds of intelligent objects

which have specialist functionality: these will be called move advisers and constrainers. These objects

are described in detail in sections 5.2.5.2 and 5.2.5.3, but since they have very profound and far-reaching

e�ects on the interface, a brief description is given below.

Move advisers ensure that the structure of the garment is preserved, e.g. they might restrict a corner

to being a right angle. Constrainers reinforce constraints on the design, such as restrictions on how a

Bézier curve [135] is allowed to be distorted. In some cases, the sketch tool enforces the constraints by

disallowing edits which would violate the constraints. In other situations, it is able to �repair� an edit

to the sketch so that the constraints are not violated. There are numerous complications; constraints

can con�ict with each other, they can reinforce each other, and some constraints have a higher priority

118



than others. SEACOP provides a mechanism for turning o� some constraints and move advisers (this is

presented in section 5.2.4.4).

The algorithms for controlling the sketch are invoked by objects which are added when the sketch

is instantiated. The process of instantiating the sketch is discussed in more detail in section 5.2.7.1.

However, before these algorithms are discussed, a thorough treatment of the user interface is given

below.

5.2.4.1 Moving points

The sketch represents the shape of the pieces in a garment using points, which are joined with lines and

curves. The primary means of modifying a sketch is via dragging points. A marker denotes points that

are able to be dragged by the user. The majority of knitted cardigans and sweaters have a vertical axis

of symmetry. Therefore, the sketch is symmetric by default and only points on one side of the sketch

can be dragged; the others are positioned automatically by symmetry. Markers are either small magenta

squares or red circles, as shown in in �gure 5.6. The magenta squares are used to indicate the end of

lines and Bézier curves. The red circles are used for the control points of Bézier curves; dragging these

alters the character of the curve. Sketches can also contain elliptical curves, these do not require control

points and thus only have markers at both ends.

When the mouse cursor is moved so that it is su�ciently close to a point, it changes7 into a hand

symbol, as shown in �gure 5.6, to indicate that the point can be dragged. Also, a tooltip appears with

information about the point, as shown in the pale blue rectangle.

One of the challenges faced during the design of SEACOP was allowing the user to work accurately

and also giving them the �exibility to change shapes by eye. Dragging points works well in the latter

scenario, when precision is not essential. However, if the user wants to move a point by an exact distance,

SEACOP has an alternative mechanism. The user clicks on the point and it is highlighted; they can then

move it by exactly either 1mm (or 1cm if they have also hold the shift key down) by pressing an arrow key.

This can be useful, for example, in changing the width of a garment so that the measurement exactly

meets some predetermined goal. Also, it is di�cult to facilitate non-diagonal movement without this

feature.

Often when a point is moved, other points must move with it. For example, the default behaviour in

the example shown in �gure 5.6 is that the right angle between the point being moved, the one above

it (which forms the bottom of the armhole), and the ones to the right of it (which form the bottom of

the garment) must be preserved. This behaviour is guaranteed by move advisers, which can be turned

o� (see section 5.2.4.4). Move advisers are explained in section 5.2.5.2.

7During normal operation of SEACOP, the default cursor will be in use; this may be operating system dependent but is
typically an arrowhead in Microsoft Windows.

119



Figure 5.6: Dragging points

Sometimes, a point cannot be dragged to a particular place. For example, the curve for the neck

should be a concave region of the sketch, since this will create a hole when the pieces are sewn together.

Enforcing constraints (such as this) in SEACOP minimises user error. These constraints are built into the

sketch although, as with move advisers, some types of constraints can be turned o�.

In addition to the constraints, points cannot be moved outside of their bounding box. The purpose

of the bounding boxes is to ensure that points cannot be moved so far that pieces overlap each other. As

discussed in section 4.1, a garment typically consists of pieces of knitwear which are knitted separately,

then sewn together afterwards. The sketch in �gure 5.7 shows three pieces. The size and location of the

bounding boxes is not �xed, however. If the user clicks the Resize bounds button, then whilst it remains

depressed the bounding boxes are highlighted. During this mode, the user is able to drag the corners of

these in order to resize them, as shown in �gure 5.7.

5.2.4.2 Adding points

Whilst moving points is the primary means of editing the sketch, it has obvious limitations: unless new

points are added, the number of line segments remains static. SEACOP does not restrict designers to

only simple shapes, and complex shapes tend to require more line segments (than are created by default)

to de�ne them. Allowing the user to draw complex shapes enables the software to cope with changes

120



Figure 5.7: Resizing bounding boxes

121



Figure 5.8: Adding a point

in fashion; shapes which are currently unusual may become more common in the future and the users

will not be restricted from using these. It also increases the variety of garments that can be produced in

SEACOP, providing more scope to demonstrate the application of case based design.

When a new point is added to a line segment, it then becomes two line segments. The user can

add a point anywhere8 on the line, as shown in �gure 5.8. Currently, points cannot be added to curves;

this limitation could be overcome with further work, since algorithms to subdivide Bézier curves do exist.

After a point has been added, it is normally dragged to a new position, in order to modify the shape.

The line segments that result from adding a point can, in turn, have points added to them. It would

be possible to change a straight line into an e�ective approximation to a curve, if su�cient points were

added.

If a point which has been added9 (through this procedure) is subsequently not required, then it can

be deleted. When the user right-clicks on a point, an option to delete that point is available. Once a

point is deleted, the two line segments are replaced with one line segment which joins the points that

where connected to it; thus deletion is the reverse of adding a point.

5.2.4.3 Elements

The simplest possible sketch of a piece (of knitwear) will consist of a single polygon. However, more

commonly there will be a series of shapes; some will be interconnected, whereas others will be located

inside another shape. The boundary between shapes indicates a change of stitch pattern, tension, yarn,

direction of knitting, or more than one of these things. Several stitch patterns can coexist in the same

piece, allowing the user to create complex garments. The questionnaire contains some options which can

result in the creation of extra shapes: these are cu�s (at the end of a sleeve), or borders (on the edge of

a piece).

The user can add extra shapes to the sketch through the creation of elements. An element is a feature

that is added to a piece of knitting; elements tend to be functional or decorative. Bands and panels are

decorative, they are added in order to make the garment appear more fashionable or attractive. Buttons

and pockets are functional elements; buttons act as a fastener and pockets can be used to store items.

Of course, buttons and pockets may have a decorative e�ect also. Elements increase the complexity

8As long as the point they want to add is not very close to an end point
9Only points which have been added by a user can be deleted. If the user was able to delete the points which were

created by default, then the sketch may be changed so much that it becomes inconsistent with the questionnaire.

122



Figure 5.9: Specifying pockets

of the garment. Commercially produced knitting patterns tend not to be overly simple, otherwise they

would be seen as not challenging enough for the knitter. Allowing this complexity ensures that SEACOP

is capable of producing the sort of complex garments that are encountered in the real world.

A panel is simply an area which has a di�erent stitch pattern to the area that surrounds it. Panels

are initially rectangular, but they can be made into other shapes through the process of adding points (as

described in section 5.2.4.2). A panel is used to create motifs or patterns, and can be added to any piece,

in any location that the user desires. The user indicates whether the panel is automatically re�ected or

not; this gives them the �exibility to create asymmetric garments.

Pockets are described in more detail in section 4.6. When the user sets the stitch pattern for a pocket,

it is only the top layer which is a�ected; the designer may wish to change the stitch pattern to achieve a

decorative e�ect. The bottom layer of pockets is always stocking stitch, since this is the simplest stitch

to knit, and the bottom layer cannot be seen from the front of the garment.

Another di�erence between panels and pockets is that pockets have a more restricted location; they

can only be added to the front. Pockets are initially positioned according to a heuristic which uses the

questionnaire option. For example, �gure 5.9 shows the questionnaire stage for pockets; two pockets

have been speci�ed, and each one uses the stocking stitch pattern. The heuristic is used to create two

pocket elements with a position corresponding to the questionnaire choice, as shown in �gure 5.10. Since

each pocket can have its own individual stitch pattern10, it makes sense that each pocket is individually

editable. Thus in �gure 5.10 both pockets have markers, which indicates that they are editable, despite

the fact that the piece has symmetry enforced (the main shape only has markers on one side). However, by

10Although in the questionnaire if a second pocket is speci�ed, its stitch pattern will default to that of the �rst.

123



Figure 5.10: Pockets applied to front

default, they are positioned symmetrically through the user of a move adviser. Thus, SEACOP maximises

choice by allowing for rare situations (such as a pocket on only one side), but also maximises convenience

through the user of intelligent defaults.

There are two types of button in SEACOP: standard and ad-hoc. By allowing both ad-hoc and

standard buttons, SEACOP provides for automatic enforcement of common constraints (such as buttons

being lined up), but also gives the designer freedom to be creative. Like pockets, standard buttons are

speci�ed in the questionnaire and positioned according to a heuristic. By default they are aligned with

each other using a move adviser, as if positioned on an imaginary vertical line. However, the user can

disable this restriction (see section 5.2.4.4). Ad-hoc buttons are speci�ed outside of the questionnaire,

by clicking on a button in the side panel. As their name suggests, the user can place them anywhere,

since they usually occur on one side of the front only.

Lastly, the user is able to add bands to the garment. A band is represented as a pair of parallel lines,

which are either horizontal or vertical. A band could be used, for example, to make horizontal stripes on

the front of a sweater. The lines begin and end at the edge of the piece of knitting. Each line has one

marker on it, which the user can drag to set the horizontal position if the line is vertical, or the vertical

position if the line is horizontal. As with panels, the user can set whether or not a band is re�ected,

although this option is not applicable if the band is perpendicular to the axis of symmetry.

A comparative summary of the characteristics of the elements is given in table 5.1. There are very

124



type of element added via has own
stitch

pattern?

is re�ected? can be
added to

panel
side panel

yes
user-con�gurable

any piece
band user-con�gurable

or not applicable
pocket

questionnaire
via move adviser

front
standard button

no no
ad-hoc button side panel any piece

Table 5.1: Elements

few restrictions on the adding of elements, so the designer is able to enhance the aesthetic appeal by

placing multiple elements to the same garment. SEACOP maximises convenience through automating

heuristics (e.g. buttons are evenly spaced), but also places as few limits on the designer's creativity as

possible.

5.2.4.4 Relaxing controls and symmetry

As brie�y discussed at the start of section 5.2.4, SEACOP contains intelligent objects which enforce

constraints (constrainers) and preserve the integrity of shapes (move advisers); these are discussed in

detail in sections 5.2.5.2 and 5.2.5.3 . The objective of this section is to show the �exibility in the sketch

editor that results from being able to �turn o�� the functionality of move advisers, constrainers, and

automatic symmetry. These mechanisms enforce soft constraints that are appropriate in the majority of

circumstances.

It would be di�cult to maintain symmetry by eye in a purely �freehand� sketch editor. If inaccuracies

in the sketch were present, it is possible that these could be made more obvious when the sketch was

discretised to a chart. This might manifest itself, for example, in having an extra row of knitting on one

side of the neck, compared to the other. However, in contrast to hard constraints, soft constraints are

not universally applicable, and the user needs the reassurance that they are able to deactivate them.

As �gure 5.11 shows, when the user right-clicks on a marker they are presented with a standard

right-click menu. Of the two options which are applicable, the topmost one (labelled �front�) relates to

the piece, and the other (labelled �bottom left�) is about the point. Each option invokes a sub-menu.

The menu for the point contains options that are equivalent to those described below for the piece11,

except the scope of the e�ects is local to that point. Thus, the designer has a high level of control as

to which constrainers and move advisers are applied; they can turn them all o� to produce a garment

with an unusual shape, or turn only some of them o� to produce a more standard garment which has an

unusual shape in one speci�c location.

11There is no localised option to remove symmetry, since the points are interconnected it may not make sense to have
control over the symmetry of only some of those points.

125



Figure 5.11: Right-clicking on a point

Figure 5.12: Pop-up menu for a piece

126



The sub-menu for the piece is shown in �gure 5.12; it applies changes to the whole piece (in this

case, the front):

� The Size Information option opens up a new window which is laid out on a grid (like a spreadsheet).

It shows the measurements of key regions of the garment, in all the sizes. The designer can use

this to check that their garment conforms to established rules about garment sizing (see section

4.3).

� The e�ect of the Relax Symmetry option is to remove the automatic symmetry mechanism, so that

there would be markers on both sides of the shape. Initially the shape remains unchanged, but the

user is able to drag points on one half of the shape without equivalent points being a�ected on

the other half. This means asymmetric garments can be created, increasing the variety of designs

which SEACOP is capable of generating.

� The Make ALL points free style option removes most12 of the the move advisers from the piece.

This leaves the user free to distort the shape; for example, the angle at corners where two lines

join will no longer necessarily be 90 degrees. This allows the designer to create garments which are

unconventional or unusual, for example acute angles may be a feature of a particular style. In fact

this option can have quite far reaching e�ects, e.g. buttons might not necessarily be aligned with

each other.

� The Remove restrictions from ALL option will remove all of the constrainers from the piece. This

means, for example, that the user will be able to distort the Bézier curves without restriction.

� The Remove links from ALL option will remove the linked points which involve this piece. This

would allow, for example, the back to become larger than the front.

� Reset Bounds automatically re-adjusts the bounding box (see section 5.2.4.1) so it accommodates

the editable region of the piece, plus a margin.

� Adjust Cardigan Gap is an option only available to the front of cardigans; it adjusts the gap between

the two halves.

The objects which are deactivated by these menus cannot then be re-activated, except by forcing the

whole sketch to become re-instantiated. If the user is given virtually total control over the shapes, they

can manipulate the points so that the constrainers are violated in multiple ways, and it may be di�cult

or impossible to write a general algorithm to restore the move advisers, constrainers and symmetry. It

may be tempting for a naive user to relax everything in order to give them maximum �exibility. However,

12Linked Points are not e�ected by this, neither are some high priority move advisers which preserve the basic integrity
of the shape (see 5.2.5.1 for an explanation of co-located Shape Points).

127



Figure 5.13: Topmost part of side panel

with experience and training they will learn that over-zealous approach to turning o� controls only leads

to an unnecessary increase in their responsibility.

The lack of ability to re-activate the controls or symmetry may not be an impediment, since designers

are expected to relax as few controls as possible, and relax them as late as possible in the design process. It

is envisaged that designers will use the sketch tool in the following way. Firstly, they use the questionnaire

which instantiates the sketch to shapes which are hopefully not too dissimilar to their goal. Then, they

will change the sketch until it is as similar to their desired shape, without relaxing any of the controls.

After this, they will relax only the minimum number of controls that they need to, in order to achieve

their shape. Finally, they will progress to the chart tool.

5.2.4.5 Preferences

SEACOP allows designers to set visual preferences. These support the design process by a�ecting how

the sketch is displayed, rather than its content. The preferences are mostly controlled from the side panel,

shown in 5.13.

The gridlines settings control the regularly spaced lines which appear behind the sketch in �gure

5.1. The user controls whether gridlines are used, what the spacing between them is, and how regularly

major gridlines appear. As gridlines have an appearance similar to graph paper which is often used by

designers for sketching, they are familiar with their use. Designers can use gridlines to line up objects by

eye. Although move advisers line up many objects by default, if these are turned o� then the user might

require the grid for manual alignment.

The gridlines give a continuous indication of scale. Since they are visible whilst points are being

dragged, they provide instant feedback of the measurements which are a�ected by the changes. If

128



points lie in between the gridlines, then only an approximation of the distance between them is provided.

However, SEACOP includes an additional tool (which is accessed by right-clicking on the sketch with the

mouse) which can provide the exact measurement between any two points. The scale can be altered by

the designer through the use of a slider bar or the mouse wheel button.

During scaling, the invariant point is in the centre of the window. Therefore, in order to focus on

one area, translation is also necessary. The user can move the sketch around by using the arrow keys.

Pressing the button marked Arrange resets the sketch to the default arrangement.

The scale is also a�ected by One Piece Mode. When the user presses the One Piece Mode Button,

they are asked to choose a piece, and sketch editor 'zooms in' on this piece. This allows the designer to

focus on just one piece; for example they might want to change the shape of the sleeve without being

distracted by the back and front. Alternatively, there is a list of tick boxes with one option for each piece

(in �gure 5.13, all options are ticked), and this can be used to show or hide particular pieces.

The Size box does not a�ect scaling but allows the user to specify which size of garment is being

viewed. Only the lowest size is editable, as the larger sizes are obtained from it via an algorithm (see

section 5.2.7.2).

The Reset button (which is not shown in �gure 5.13) causes the sketch to be re-instantiated, undoing

changes that the user has made using the sketch editor.

5.2.5 Sketch Features

The representation of a garment is illustrated in �gure 5.14. A garment consists of a set of pieces; each

piece in turn can contain one or more elements. Both elements and pieces consist of a series of Shape

Points. Section 5.2.5.1 explains the Shape Point representation. A shape point can be thought of as an

item in a list of instructions of how to draw the sketch. It is designed to simplify the representation of

a sketch, since only one type of object needs to be allowed for, rather than having separate objects for

points, lines, curves etc.

Following from the de�nition of a shape point, there is a description of the types of object which

control Shape Points; these will be called sketch controls. As �gure 5.15 shows, there are two types of

sketch control: move advisers (see section 5.2.5.2) and constrainers (section 5.2.5.3). All the features

of the sketch (pieces, elements, and sketch controls) are created using the sketch instantiation algorithm

that is described in section 5.2.7.1. The sketch controls are an integral part of a piece, in the same way

as a Shape Point.13

Users are able to 'turn o�' sketch controls as was described in section 5.2.4.4. Sketch controls are

implemented in a �exible way that could facilitate (with further work) the ability of users to create their

13Linked Points (see section 5.2.5.2) a�ect more than one piece and are therefore a part of the garment as a whole, not
a speci�c piece.

129



Figure 5.14: Class Diagram of Garment

Figure 5.15: Class Diagram of sketch control

130



own move advisers and constrainers. This would permit the automatic enforcement of constraints which

were unexpected at the time SEACOP was created.

5.2.5.1 Shape points

A Shape Point contains two key pieces of information: the location of the point and its purpose. Each

piece has its own Cartesian coordinate system. When the user hovers over this location with a mouse, the

coordinates are displayed. SEACOP allows users access to this information so that they have con�dence

in the measurements in the sketch.

In addition to the location, a shape point also contains its purpose. Shape points are stored within

pieces and elements as an ordered list. A shape point and its predecessor in the list act as the speci�cation

of part of the shape of the sketch. The most common purpose of a shape point is the end point in a

line. However, shape points are seen wherever there are markers in the sketch; the example in �gure 5.6

shows shape points being used for the control points in a Bézier curve, and the end point of an elliptical

quadrant. A Shape Point can have any one of the following as its purpose:

1. The end of a line segment.

2. The end of an elliptical quadrant.

3. A control point for a Bézier curve.

4. A new start point for a line segment, elliptical quadrant or Bézier curve.

5. A button.

6. To specify a horizontal or vertical band.

7. To specify a curved neck band.

If a Shape Point is the end of the line, the start point will be the location of the previous shape point

in the list. In categories 1-4, the location of the previous Shape Point is signi�cant.14 However, if the

preceding Shape Point (from one of these categories) would be in an incorrect location, a starting point

(category 4) is inserted �rst instead. Unfortunately, in order to avoid a non-intersect (see section 5.2.6.5)

this leads to the presence of co-located Shape Points in the sketch; the �nal Shape Point in a shape is

typically in the same location as the �rst one. Co-located Shape Points are kept in a consistent location

through an alignment (see sections 5.2.5.2 and 5.2.6.3).

5.2.5.2 Move advisers

A move adviser is a heuristic which causes Shape Points to move in response to changes in the location

of other Shape Points. The name �move adviser� arises from a metaphor: the move adviser suggests

movement (as a consequence of other movement). Move advisers enforce soft constraints in the design

such as corners being right angles. It would be awkward to expect the designer to ensure these were

14In categories 6 and 7, only one point is required so specify the line as the other information is calculated by an algorithm.

131



Figure 5.16: Class Diagram: Move Advisers

Type Function

Move
Adviser

A type of rule which causes shape points to move in response to the
movement of other Shape Points.

Abstract

Mirror

Has two reference points and symmetry is relevant but the move adviser is not

designed to be re�ected.

Slaves
Adviser

Has a set (of indeterminate size) of Shape Points that may move.

Box Mover Keeps one or more shape points in a position relative to a notional rectangle that

is de�ned by two Shape Points.

Table 5.2: Abstracted move advisers

adhered to through manual means. Through the enforcement of these constraints, SEACOP ensures that

patterns adhere to common conventions (such as corners being right angles) unless the designer speci�es

otherwise.

Figure 5.16 shows the hierarchy of di�erent types of move adviser. Each type of move adviser

is explained in tables 5.2 and 5.3. A move adviser cannot insist that movement happens, since such

movement may violate a constrainer (see section 5.2.5.3). It may also violate a fundamental constraint,

or move advisers may contradict each other; the resolution of these issues is explained in section 5.2.6.

Figure 5.17 illustrates a proportional mover with a single slave. If either of the two master Shape

Points are moved, then the slave Shape Point will be moved so that both xs
xm

and ys
ym

are invariant. The

exception to this is where xs = 0 or ys = 0, in which case there is no change in the relevant coordinate

of the slave. Typically, the master Shape Points are the end points in a Bézier curve, and the slave is a

132



Type Function Example Application

Alignment Keeps the horizontal and/or vertical
coordinate of a set of Shape Points equal,
should any one of the points in that set be

moved.

If the bottom corner of the
front or back is moved, it

moves the other points so it is
always a right angle.

Box Mirror Used where there are two sets of Shape
Points which are in positions that are

normally re�ections of each other, and each
set includes one point de�ned as the origin.
If a Shape Point other than the origin is
moved, its counterpart in the other set is
moved to the same position relative to its
origin, taking symmetry into account.

In a pair of pockets, keeps the
dimensions the same. When
shape points on one side are
dragged, a change is made to
the corresponding point on the

other side.

Double
Shape
Follower

Two 'parts of a shape', two Shape Points
and a direction are speci�ed. When either
of the shape points is moved, it ensures
that the other is aligned with it in the
direction speci�ed, and that each shape

point lies on its 'part of a shape'.

When either end of a border is
moved, the other is moved so
that it remains a straight line
and both ends connect with

the end of the piece.

Line Hugger Used where there are two Shape Points
which each should be the same distance
from their reference shape point along a
line which runs parallel to the x or y axis.

Keeps the two lines parallel
where there is a neck band for

a 'V' neck garment

Line Mover Used where a set of Shape Points are
arranged on a line parallel to an axis, and
there are two additional master shape

points. If the masters are moved parallel to
the axis, or a point in the set is moved

perpendicular to the axis, then the relative
position of the shape points in the set is

preserved.

Keeps the buttons lined up;
also keeps them in the same
relative position if the height

of the front is changed.

Linked
Points

Keeps a point in a location which is
consistent with a corresponding point in
another piece, relative to its surrounding

Shape Points.

Keeps the armhole depth
consistent between back and

front.

Mirror Where there are two Shape Points that are
re�ections about an axis of symmetry,
moving one shape point updates the
position of the other so it remains a

re�ection.

Each pocket has a local origin
point. If one is moved, the

other one in the pair is moved
to a corresponding position.

Proportional
Mover

If two master Shape Points de�ne a
notional rectangle, then it keeps a set of
shape points which are located inside this
rectangle in the same relative position,

when either one of the masters is changed.

Preserves the character of
Bézier curves (by moving the
control points) when they are

resized.

Relative
Mover

When the master Shape Point is moved, a
set of shape points moves with it so they
stay in the same position relative to the

master.

When the local origin of a
pocket is moved, the rest of
the Shape Points on that
pocket move with it.

Table 5.3: Functions of Move Advisers

133



Figure 5.17: Proportional Mover

(a) In the default position (b) At limit of upward movement

Figure 5.18: Armhole bottom

control point.

5.2.5.3 Constrainers

Constrainers, as their name suggests, forbid particular Shape Points from being moved, according to some

in-built logic. Constrainers disallow unconventional edits, which are often the result of user error. There

are two types of constrainers, rules and Bézier shape preservers.

A rule prevents a Shape Point from moving in a certain way, relative to another Shape Point. For

example, the bottom of the armhole cannot be moved vertically beyond the end of the curve. Figure

5.18a shows the default position of the armhole bottom. In �gure 5.18b, the bottom has been moved

up as far as it can go. The rule is preventing the shape from being distorted to the point that the shape

ceases to be a functioning armhole.

A Bézier shape preserver places restrictions on the position of one or both of the two control points

that are associated with Bézier curves. A Shape Point that is subject to a Bézier shape preserver will

134



have its location restricted to a rectangle which is de�ned by the relative positions of the end points of

the curve.

A description of move advisers and constrainers has been presented in this section. However, the

sketch controls cannot be understood in isolation. As previously discussed, move advisers can 'propose'

moves that would violate the constrainers. Conversely, move advisers can propose moves that stop the

constraints from being violated; e.g. a proportional mover can move the control points so that a Bézier

shape preserver is not triggered. More information about how the features work together is given in the

next section.

5.2.6 Managing Movement

Sketch controls and fundamental constraints are part of a coherent system for managing movement in

SEACOP. The system ensures common sense and fashion speci�c constraints are adhered to. However, it

also aims to carry out the user's intended action (the dragging of Shape Points) with minimal deviations,

in a way which is as consistent and intuitive as possible. All this is automated without the user having

to get consciously involved, meaning that they can concentrate on achieving their design goal, and leave

most of the details of maintaining integrity to SEACOP.

5.2.6.1 Challenges of constraints and heuristics

Movement is managed in SEACOP through the application of constraints and heuristics. The management

of constraints typically poses a number of challenges, for example constraints can have di�ering priorities.

Also, design problems often have both �hard� and �soft� constraints; the latter are not always applicable,

and are more like guidelines than constraints.

Constraints can be impractical or impossible to satisfy. They can be mutually exclusive or incompatible,

i.e. the system of constraints can be impossible to satisfy.

Heuristics are used to ensure constraints are satis�ed in SEACOP. When such heuristics are formulated,

it is sometimes di�cult to envisage their e�ect in a particular situation. This is particularly true in a

system like SEACOP, where a system of constraints is managed by a system of heuristics, whose e�ects

can cancel out or reinforce each other. Applying a heuristic to �x one constraint can cause another to be

violated.

The constraints which are described in this remainder of this chapter were formulated following

observation of knitwear designers, and study of the outputs of the existing design process at Sirdar.

Algorithms for �xing constraints were devised using a pragmatic approach; ideally the �xes will be simple

to implement, will make as few changes to the design as possible, and be able to repair any violation.

135



5.2.6.2 Exploring the consequences

When the user tries to drag a Shape Point, this is known as a proposed move. Proposed moves can also

be instigated by move advisers, rather than the user directly. The reason for the term proposed move is

that they may be disallowed, if they violate any of the restrictions in place (e.g. bounding boxes). The

object of the exploring the consequences algorithm is to build the list of proposed moves (LPM). The �rst

entry in the LPM will be the user's attempt to drag the Shape Point. Subsequent entries, if any, will be

supplied by the move advisers. Any of the proposed moves can violate restrictions, and depending on the

nature of those violations this may result in the whole movement operation being disallowed. Therefore,

no changes to the sketch are made until the LPM as a whole is checked, as an atomic operation.

A move adviser is said to �re if it leads to one or more proposed moves. The speci�cation of a

proposed move consists of the shape point to be moved, and the x and y coordinates of the proposed

location. Some move advisers are designed to only supply one of the x or y coordinates; in this case the

missing coordinate is una�ected unless it is supplied by another move adviser. For example, an Alignment

may line points up vertically but their horizontal position could be una�ected.

As well as the LPM, the exploring the consequences algorithm takes the set of proposed move advisers

(SAMA) as its input. Initially, this just consists of all the move advisers for the garment, but move advisers

can be removed from SAMA without actually being removed from the garment (as described below).

Exploring the consequences is detailed as algorithm 5.1. It begins with an LPM with one proposed

move, then iterates through the SAMA, which is prioritised according to the algorithm described in section

5.2.6.3. The move advisers are listed in descending order of priority so the most important are examined

�rst. If a move adviser �res then this means the priorities have to be reassessed, since the prioritisation

algorithm is dependent on the state of the LPM. So, a move adviser �ring causes another iteration of

the algorithm to begin with prioritisation again. Thus, an initial proposed move by the user can trigger

further proposed moves, which can in turn cause more proposed moves to be added the LPM, and so on.

Exploring the consequences terminates when all move advisers are examined and none have �red.

Exploring the consequences is of quadratic complexity. If SAMA is of size n, then assuming move

advisers only �re once, and it is the lowest priority adviser which �res each time, then a move examiner

will be examined n
2 (n+ 1) times. However, in a typical scenario the high priority move advisers �re;

and as there are only a small number of move advisers (25 for the default garment), usually only a small

number of iterations are required before the algorithm terminates.

Note that a move adviser can only �re once since when it �res it is removed from SAMA; this prevents

the algorithm from being stuck in an in�nite loop. Since the �ring of a move adviser causes the priorities

to reset, then in order for exploring the consequences to terminate, it must have examined all the move

advisers in SAMA without any of them �ring. This ensures that the LPM which is output is complete,

136



Algorithm 5.1 Exploring the consequences

p rocedu r e e xp l o r eCon s equence s
i n p u t s : SAMA, LPM

i := 0
wh i l e i < s i z e o f SAMA

p r i o r i t i s e (SAMA)
f i r e d := f a l s e
wh i l e not f i r e d and i < s i z e o f SAMA

i f SAMA[ i ] f i r e s then
f i r e d := t r u e
add the moves from SAMA[ i ] to the LPM
remove move a d v i s e r i from SAMA
i := 0

e l s e
i := i+1

end i f
end wh i l e

end wh i l e

as no further moves were added during the �nal iteration of the algorithm. The LPM then needs to be

checked against the constraints before any actual changes to the sketch are made.

5.2.6.3 Prioritisation

The prioritisation algorithm compares move advisers by considering three important values: level, relevance

and extent. The level is designed to re�ect the inherent importance of a move adviser:

� Level two move advisers are those alignments which are used to �x two Shape Points as being in

the same location. See section 5.2.5.1 for a description of co-located points.

� Level one move advisers a�ect more than one piece; in practice this means linked points.

� Level zero refers to all other move advisers.

The relevance is a value in the range [0,1], which is designed to re�ect the extent to which the move

adviser is in�uenced by shape points which are in the LPM. The relevance approximately correlates with

the proportion of the points that the move adviser is dependent on that are found in the LPM. Thus, if all

of the points that a move adviser are dependent on are in the LPM, the relevance will typically be 1, and

if none are it will typically be zero. The relevance is a heuristic; it is not a simple matter of determining

which of the shape points that trigger a move adviser are included in the LPM, because multiple changes

can cancel out or reinforce each other. It is not feasible to factor in all these combinations of interactions

as the calculations need to be e�cient.

The extent of a move adviser is a count of the number of shape points that are potentially a�ected

by it. Unlike relevance, extent does not take into account the current state of the LPM.

137



Algorithm 5.2 Prioritisation of move advisers

f u n c t i o n : p r i o r i t i s e −move−a d v i s e r s
i n p u t s : move a d v i s e r m1, move a d v i s e r m2, LPM
output : move a d v i s e r which has the h i g h e s t p r i o r i t y

i f l e v e l (m1)= l e v e l (m2) then
i f r e l e v a n c e (m1, LPM)= r e l e v a n c e (m2, LPM) then

i f e x t e n t (m1)=ex t e n t (m2) then
( i t i s u n l i k e l y t ha t l e v e l , r e l e v a n c e and e x t e n t a r e a l l e qua l )
output an a r b i t r a r y c ho i c e between m1 and m2

e l s e
output wh i cheve r o f {m1,m2} has the g r e a t e s t e x t e n t

end i f
e l s e

output wh i cheve r o f {m1,m2} has the g r e a t e s t r e l e v a n c e
end i f

e l s e
output wh i cheve r o f {m1,m2} has the g r e a t e s t l e v e l

end i f

Figure 5.19: Line Mover change level

Exploring the consequences considers move advisers in descending order of priority, since later moves

cannot overwrite earlier ones.15 In order to sort SAMA, it is necessary to determine which of any two

move advisers have the highest priority; an algorithm 5.2 accomplishes this. Move advisers are prioritised

by comparing their level, then their relevance, then their extent, as necessary.

The level is designed to re�ect the inherent importance of some move advisers; level two move advisers

cannot be turned o� by the user and are therefore the most important. Level one move advisers can

a�ect more than one piece so deserve precedence over level zero advisers, which just a�ect a single piece.

The relevance is important as move advisers will only '�re' once (per invocation of exploring the

consequences), so it is important that the e�ect of a move adviser is delayed until the maximum applicable

information has been obtained. Move advisers which are less relevant (because fewer points that they

are dependent on are in the LPM) will be invoked later on in the execution of the algorithm. However,

crucially, it is possible that their relevance will increase as more shape points are added to the LPM.

15Except if only one coordinate has been supplied, then a later �ring can supply the other.

138



Since each type of move adviser works di�erently, the relevance is necessarily calculated in di�erent

ways. An example is shown in �gure 5.19 for a Line Mover. A general description of how a Line Mover

operates was given in section 5.2.5.2. The implementation of LineMover is designed to be generic in the

sense that it can be used to keep any set of points arranged in a line. However, this functionality is only

currently utilised in the context of buttons, as described below.

On the left there are two reference points; the topmost of these is known as the margin point. On the

right, located on a notional vertical line segment, is a row of buttons; there is one shape point per button.

There are three situations which trigger movement, as listed below. For a Line Mover, a contribution of

1
3 to the relevance is made for whichever of the below conditions are true.

1 If the margin point is moved horizontally then line segment (i.e. row of buttons) is moved so that

the horizontal distance between it and the reference point remains invariant.

2 If either of the reference points is moved vertically then the line segment is moved vertically, i.e.

the buttons move closer together or farther apart on the same line. Note that the topmost and

bottommost buttons do not necessarily have to be aligned vertically with the reference point. The

buttons are moved so that the position of the topmost and bottom and end points remains the

same, relative to the reference points. The buttons do not have to be equally spaced but their

spacing relative to the topmost and bottommost button is kept the same during vertical moves of

the reference point.

3 If any of the buttons are moved horizontally then the line segment is moved horizontally so that

the other buttons follow it.

Unlike relevance, extent does not take into account the current state of the LPM. The move adviser with

the greatest extent has the highest priority, since they typically result in more potential moves added to

the LPM. This can mean that the relevance of more then one move adviser in SAMA increases; the earlier

that this happens the better, since the algorithm can then make better decisions about prioritisation of

those move advisers.

In the example of an alignment, the extent is is s− 1, where s is the size of the set of shape points

that it controls. The reason for this is that when one shape point in alignment moves, the others in the

set follow. The relevance of an alignment is one if any of its points have moved perpendicular to the

axis of alignment, and zero otherwise. Thus, alignments tend to �re early as they often have both a high

extent and relevance.

The overall e�ect of the prioritisation scheme is that linked points tend to be considered �rst, as they

are level one; so movement spreads out from the front to the back or vice versa. Then the alignments

tend to �re, followed �nally by the more complex move advisers such as proportional movers and line

movers.

139



Algorithm 5.3 Testing a LPM

f u n c t i o n : testLPM
inpu t : LPM
output : s t r i n g i n d i c a t i n g s u c c e s s o r f a i l u r e

i f LPM v i o l a t e s any c o n s t r a i n e r then
output " u n f i x a b l e f a i l "

e l s e
i f LPM v i o l a t e s any bounding box then

output " u n f i x a b l e f a i l "
e l s e

i f LPM v i o l a t e s any fundamenta l c o n s t r a i n t then
output " v i o l a t e s fundamenta l "

e l s e
output " s u c c e s s "

end i f
end i f

end i f

The actual sorting of SAMA is implemented using a Java API [153] method which uses a modi�ed

merge sort. Merge sorts have worst case execution time of n log n [154], where n is the size of SAMA.

5.2.6.4 Movement

SEACOP takes a LPM (which was output from exploring the consequences) as its input and checks it

against the restrictions that are in e�ect, as indicated in algorithm 5.3. If any of these checks results in

failure, then the remaining checks are skipped. The result of the test is used in the movement algorithm,

as explained below.

The key movement process in SEACOP is shown as algorithm 5.4. If the result of testing the algorithm

was success, then the user will see the markers move in response to their actions. However, if the test

resulted in a failure, then SEACOP may attempt to remedy the situation by �nding a non-diagonal

alternative (see below) or a �x (as described in section 5.2.6.5). If these are unsuccessful then the move

will fail, and the user will see no change. Failure could mean that SEACOP has successfully prevented an

error. However, if the move was intentional then the user can override the bounding boxes or constraints

(as explained in sections 5.2.4.1 and 5.2.4.4), and attempt the move again.

If a proposed move is unsuccessful and diagonal, then SEACOP attempts to �nd a non-diagonal

alternative (NDA), where the user's proposed move is substituted for one which is parallel to the horizontal

or vertical axis. If the proposed move is shown as a vector, then the two NDAs will each use only one of

the components of that vector. Figure 5.20 shows a simple example of a pentagon which exists inside a

bounding box, shaded in grey. There is an attempt to drag a shape point to a new location, labelled a

and this move fails since it violates the bounding box; however the non-diagonal alternatives b and c are

considered. Since b is inside the bounding box, it is chosen instead.

140



Algorithm 5.4 Movement

p rocedu r e : movement
i npu t : LPM

i n i t i a lOu t c ome := testLPM (LPM)
i f i n i t i a lOu t c ome = " s u c c e s s " then

app l y the moves i n LPM to the s k e t ch
e l s e

i f LPM has d i a g on a l i n i t i a l move then
s u c c e s s := nonD i a g on a lA l t e r n a t i v e (LPM)

e l s e
s u c c e s s := f a l s e

end i f
i f not s u c c e s s and i n i t i a lOu t c ome=" v i o l a t e s fundamenta l " then

fundamenta lF i x (LPM)
end i f

end i f

Figure 5.20: Finding a diagonal alternative

141



Algorithm 5.5 Non-diagonal alternative

f u n c t i o n : n o nD i a g on a lA l t e r n a t i v e
i n pu t : LPM
output : t r u e i f a non−d i a g on a l a l t e r n a t i v e was found and app l i e d ,

f a l s e o t h e rw i s e

( lpmX and lpmY i n i t i a l l y c o n s i s t o f j u s t one move )
lpmX := LPM with j u s t the h o r i z o n t a l component
lpmY := LPM with j u s t the v e r t i c a l component

e xp l o r eCon s equence s ( lpmX)
exp l o r eCon s equence s ( lpmY)

i f number o f moves i n lpmX = number o f moves i n lpmY then
i f d i s t a n c e ( lpmX) = d i s t a n c e ( lpmY) then

f i r s tLPM := a r b i t r a r y c ho i c e o f {lpmX , lpmY}
e l s e

f i r s tLPM := wh i cheve r o f {lpmX , lpmY} has the l owe s t d i s t a n c e
end i f

e l s e
f i r s tLPM := wh i cheve r o f {lpmX , lpmY} has the l owe s t number o f moves

end i f

secondLPM := wh i cheve r o f {lpmX , lpmY} was not a s s i g n e d to f i r s tLPM

i f testLPM ( f i r s tLPM ) = " s u c c e s s " then
app l y the moves i n f i r s tLPM to the s k e t ch
output t r u e

e l s e
i f testLPM ( secondLPM) = " su c c e s s " then

app l y the moves i n secondLPM to the s k e t ch
output t r u e

e l s e
output f a l s e

end i f
end i f

Algorithm 5.5 shows the process of attempting to �nd a successful non-diagonal alternative. When

exploring the consequences is invoked for the �rstLPM and secondLPM, these are equivalent but entirely

separate process (starting with a new SAMA) to when it was invoked for the original proposed move. It is

possible for the NDAs to fail for reasons apart from the bounding boxes; for example they might violate

a constrainer or one of the moves that is a consequence of a move adviser could do so.

5.2.6.5 Fixing violations of fundamental constraints

Once exploring the consequences has produced an LPM, this must be checked against constraints to

ensure that all the moves are permissible. Moves may be disallowed because they violate constrainers

(see section 5.2.5.3), or a fundamental constraint. Fundamental constraints consist of two types of

con�guration: crossovers and non-intersects.

The aim of the repair process is to modify a LPM so that violations of the fundamental constraints

142



(a) Allowed (b) Non-
intersect

(c) Cros-
sover

(d) Allowed (e) Allowed

Figure 5.21: Example shapes

are removed. The preliminary to this process is the compilation of the list of shapes. Each line, Bézier

curve or elliptical quadrant from the sketch, forms a shape, and it will have a shape point at either end.

A shape may be involved in a crossover or non-intersect.

Figures in the sketch represent the outline of the outside of the piece, or a boundary between one stitch

pattern and another16. Figure 5.21a illustrates a simple rectangle, which is an allowed con�guration; it

might represent a pocket, for example. Non intersects, as shown in �gure 5.21b, are disallowed since they

leave it unclear as to what the outline or boundary is.

By de�nition, the boundary of the outside of a shape can never cross over itself, so a crossover in

the boundary should not be allowed. Neither is there a need to allow crossovers in shapes inside of the

piece, since the same e�ect can be achieved without crossovers. The kite shape shown in �gure 5.21c

has a thickness of zero17 at the point of crossover, and this cannot be realised in stitches. It would be

implemented as either two separate shapes or one shape with a narrow 'bridge' area, as per �gures 5.21d

and 5.21e.

In addition to constrainers and fundamental constraints, bounding boxes are also a constraint on

movement. Bounding boxes were explained in section 5.2.4.1. The di�erences between the three concepts

are summarised in table 5.4. The proposed moves in the LPM will be subject to all three types of

restriction.

Algorithm 5.6 shows the process for �xing violations of fundamental constraints. The �rst stage is

crossover repair. The algorithm repeatedly �nds the highest priority shape which has a crossover; if this

does not exist then it moves on to non-intersect repair, which again utilises a prioritisation scheme. Either

repair process may encounter a violation which cannot be �xed, in which case the process terminates with

no moves being applied. Otherwise, the algorithm terminates with the moves in the repaired LPM being

applied to the sketch.

Each time a violation is repaired, exploring the consequences is invoked. In reality, fundamental

violations tend to only occur when the move advisers and constrainers have been turned o�. Therefore,

16Or a change in tension, colour or yarn.
17Since the lines in the sketch are assumed to be of zero thickness.

143



Aspect Constrainer Fundamental
Constraint

Bounding Box

Scope As de�ned; in
practice, local
(although linked
points a�ect two

pieces)

Global A piece, e.g. the
front

Speci�cation
and creation

Speci�ed when
created, during the
sketch instantiation

algorithm

Speci�ed as general
principles; see
explanations of
non-intersect and

crossover

Created during sketch
instantiation

algorithm, using a
default margin

Can be turned
o�?

Yes, by the user No No, but the user can
edit the box

Table 5.4: Di�erences between a constrainer, fundamental constraint and bounding box

Algorithm 5.6 Fixing violations of fundamental constraints

p rocedu r e : f undamenta lF i x
i n pu t : LPM, l i s t o f shapes

wh i l e t h e r e a r e c r o s s o v e r s
p r i o r i t y C r o s s o v e r := h i g h e s t p r i o r i t y c r o s s o v e r i n the l i s t o f shapes
i f p r i o r i t y C r o s s o v e r i s a curve−cu r ve c r o s s o v e r then

t e rm i n a t e the p rocedu r e w i th no moves be i ng a p p l i e d
e l s e

i f the l i n e i s c r o s s e d ove r once then
move wh i cheve r o f the end p o i n t s i s c l o s e s t to the c r o s s o v e r p o i n t

e l s e
f i n d l a r g e s t l i n e segment on the l i n e bounded by c r o s s o v e r p o i n t s
s ho r t e n the l i n e to become i d e n t i c a l to the l i n e segment
exp l o r eCon s equence s (LPM)

end i f
end i f

end wh i l e

wh i l e t h e r e a r e non− i n t e r s e c t s
p r i o r i t y N o n I n t e r s e c t := h i g h e s t p r i o r i t y non− i n t e r s e c t i n l i s t o f shapes
i f p r i o r i t y N o n I n t e r s e c t i s u n f i x a b l e then

t e rm i n a t e the p rocedu r e w i th no moves be i ng a p p l i e d
e l s e

s t r e t c h the l i n e i n both d i r e c t i o n s u n t i l both ends i n t e r s e c t
e xp l o r eCon s equence s (LPM)

end i f
end wh i l e

app l y the moves i n LPM

144



(a) Before (b) After

Figure 5.22: Crossover repair

the move advisers that �re (if any) tend to be level two, which are used to manage co-located points.

A crossover is �xed by shortening the shape (line):

� If the line is crossed over once, then the �x is to move one of the shape points (at the end) to the

crossover point; the one which is closest is chosen.

� If the line is crossed over two or more times, then the �x is to �nd the largest line segment which

is bounded by crossover points, and to move the end shape points to the ends of this line segment.

Figure 5.22a shows an example of two intersecting shapes (only the relevant part of each shape is

shown). The resulting repair is shown in �gure 5.22b; the shape point labelled 2 has been moved back

towards 1, to avoid the crossover. Note that �xing one crossover can eliminate others; �gure 5.22a

features 3 shapes with crossovers.

As with crossovers, non-intersects in SEACOP tend to occur where the move advisers and constrainers

have been turned o�. More speci�cally, a common cause of a non-intersect is where there is a border,

and the end of the border has been moved away from the outline of the piece. Figure 5.23a shows

such a typical scenario: a bottom border. In �gure 5.23b, the e�ect of the non-intersect can be seen:

note that the user will never actually see a sketch like this since it is invalid. The process of repairing

non-intersects involves moving the shape point (which has become disconnected) so the line becomes

longer and intersects with something. Figure 5.23c shows the e�ect of the repair.

It is possible for the 'repair' process for a non-intersect or crossover to simply revert all or part the

sketch back to the situation before the move was proposed. For example, an attempt may be made to

change the shapes in �gure 5.23a to those in 5.24. The 'repair' e�ectively disallows the move.

Algorithm 5.7 shows how the highest priority crossover is found. Only lines are changed, curves remain

static unless they happen to be moved by a move adviser. Curve-curve crossovers are (currently) un�xable

so the output does not matter; line-curve crossovers take precedence over line-line since the latter normally

has more options for �xing them (either line can be moved). Repairs involving less movement of the

145



(a) Before the non-intersect (b) E�ect of non-intersect (c) After repair

Figure 5.23: Non-intersect repair

Figure 5.24: Fix which will revert

end points take precedence since part of the goal is to have minimal deviation from the user's intended

actions.

Algorithm 5.8 for prioritising non-intersects is similar; as with crossovers, only lines are altered. A

non-intersect is un�xable if the line that its line segment lies on intersects with no other line.

It would be possible, with further work, to extend the repair algorithms to include the ability to '�x'

curves, and perhaps to �nd more intuitive solutions. For example, in �gure 5.22, a better '�x' may be to

move point 2 a little towards 3. However, it is di�cult to envisage every possible geometric con�guration.

Most moves the user makes will be valid; a small proportion of these will be disallowed by the constrainers.

If the user turns o� the constrainers, then these repair algorithms are invoked as a last resort, so that the

integrity of the sketch is preserved.

Although it is envisaged that the repair algorithms are only rarely invoked, they are important. If

there were no non-intersect �xing algorithm, in a situation when the move advisers are turned o� and

the sketch is as shown in �gure 5.23a, it would be impossible to alter the width of the garment. This

is because only one of the two points on the left could be moved at a time, and the scenario shown in

�gure 5.24 could never be allowed, since it would cause an ambiguity as to where the bottom border

ends and the background stitch begins. Such ambiguities could be problematic when the knitting chart

is generated.

146



Algorithm 5.7 prioritising crossovers

f u n c t i o n : p r i o r i t i s e −c r o s s o v e r
i n p u t s : c r o s s o v e r x1 , c r o s s o v e r x2
output : c r o s s o v e r which has the h i g h e s t p r i o r i t y

i f both c r o s s o v e r s have the same c o n f i g u r a t i o n then
i f the c o n f i g u r a t i o n i s curve−cu r ve then

output an a r b i t r a r y c ho i c e
e l s e

( d1 and d2 measure the change i n the l i n e when i t i s f i x e d )
d1 := combined d i s t a n c e which end p o i n t s o f x1 move on f i x
d2 := combined d i s t a n c e which end p o i n t s o f x2 move on f i x
i f d1<d2 then

output x1
e l s e

output x2
end i f

end i f
e l s e

i f one o f {x1 , x2} i s l i n e−cu r ve then
output wh i cheve r o f {x1 , x2} i s l i n e−cu r ve

e l s e
output wh i cheve r o f {x1 , x2} i s l i n e− l i n e

end i f
end i f

Algorithm 5.8 prioritising non-intersects

f u n c t i o n : p r i o r i t i s e −non− i n t e r s e c t
i n p u t s : non− i n t e r s e c t n1 , non− i n t e r s e c t n2
output : non− i n t e r s e c t which has the h i g h e s t p r i o r i t y

i f both non− i n t e r s e c t s a r e c u r v e s OR both non− i n t e r s e c t s a r e u n f i x a b l e then
output an a r b i t r a r y c ho i c e

e l s e
i f one o f them i s a l i n e then

output the l i n e
e l s e

( d1 and d2 measure the change i n the l i n e when i t i s f i x e d )
d1 := combined d i s t a n c e which end p o i n t s o f n1 move on f i x
d2 := combined d i s t a n c e which end p o i n t s o f n2 move on f i x
i f d1<d2 then

output n1
e l s e

output n2
end i f

end i f
end i f

147



5.2.7 Sketch Issues

In the existing manual process at Sirdar (see section 5.1.1.1), a written speci�cation of the design is

produced. The speci�cation in SEACOP is dual-purpose: it provides a valuable mechanism for case-

based reasoning, and it is also the means by which the sketch is generated. Designers are free to modify

SEACOP's sketches in order to produce what is in their mind's eye, in response to fashion trends and

market demand. However, the sketch generation process, as explained below is carefully designed to

produce a sketch that is as close as possible to their end goal, to minimise the editing that the user will

have to perform manually.

This section also explains the heuristics which automate the re-sizing of the garment (sketches are

typically produced in a range of sizes). When sketches are generated, by default they are symmetrical

and both sleeves are identical, however this can be changed if required. Finally, SEACOP's method of

ensuring armhole consistency is discussed.

5.2.7.1 Instantiation

Making the user generate a sketch completely from scratch would be deemed to be unacceptably labor-

ious, since cardigans and sweaters tend to have a similar structure. It is far more e�cient to be given

an object, to which small changes are required, than to start with nothing at all. Also, for the ques-

tionnaire to be useful in case based reasoning, there should be an approximate correspondence between

the options in the questionnaire and the features in the sketch. Therefore, SEACOP generates a sketch

from the questionnaire which is a useful starting point from which the designer can make their creative

modi�cations.

As described previously, SEACOP's sketch instantiation algorithm takes a set of questionnaire re-

sponses as its input. Its output consists of a sketch in the default size (which is the smallest size that

SEACOP is capable of working with). The sketch has a set of pieces (front, sleeve etc.), and the as-

sociated sketch features: shape points, move advisers and constrainers. The algorithms used are not

particularly sophisticated and consist of conditional programming.

The complexity of the operation lies in the questionnaire, which contains at least 30 questions. Some

of the questions do not a�ect the sketch, for example the choice of background stitch. However, other

options (such as neck shape) have a substantial e�ect. Some combinations of options are not applicable,

for example it is not possible to add a centre pocket to a cardigan since it is divided down the middle.

Other options are highly interactive, such as the options for bottom border, front border, yoke and neck

band; the composition of the move advisers and constrainers which are added depends on the combination

of options chosen.

Figure 5.25 shows some example con�gurations of how the front may appear; each one arises from a

148



(a) Default (b) V neck and a yoke (c) Scoop neck with
a bottom border, yoke
and 2 pockets

(d) Slash neck and one
central pocket

(e) Simple cardigan with round
neck and 4 buttons

(f) Cardigan with v-neck, bot-
tom border, neck band, front
border, yoke, two front pockets
and 6 buttons

Figure 5.25: Example combinations of options for the sketch of the front

149



Stretch Front Back Sleeves

Armhole depth ! ! !

Straight part at the top !

Raglan !

Width at back of neck ! !

Neck depth !

Table 5.5: Localised Stretches

di�erent set of questionnaire options. Further examples are given in appendix D. An explanation of the

conventions and heuristics used for neck shape and other design choices is given in chapter 4.

The designer may use the questionnaire to changes the range of sizes so that the smallest size is

di�erent from the default size. In this situation, the sketch is generated in the default size, then the

resizing algorithm is invoked to transform the sketch into the smallest size in the range that the designer

has speci�ed.

5.2.7.2 Resizing

Commercially produced knitting patterns typically work with a range of sizes, since it is possible to produce

garments from the same design to �t a wide size range of wearers. Therefore, SEACOP is capable of

producing sketches which are consistent with each other, but correspond to di�erent sizes of garment.

The instantiation algorithm generates a sketch in one size which the user is free to edit, subject to the

restrictions mentioned earlier in this chapter. To ensure consistency, only the smallest size can be edited

by the user; the other sizes are generated from this using the resizing algorithm. Whereas the sketch

instantiation algorithm produces a sketch from questionnaire responses, the resizing algorithm produces

a sketch from another sketch. The goal is that key measurements adhere to established guidelines for

garment sizing (see section 4.3 for more information), with as little qualitative distortion in the shapes as

possible.

The resizing algorithm �rst employs a global uniform scaling ; the scale factor is simply the increase in

bust or chest size. Thus, to scale from a 32� waist garment up to 34�, the scaling would be 34
32 . Secondly,

there are localised stretches, which ensure that the garment conforms to knitwear sizing guidelines. These

stretches are applied to localised regions of certain pieces, as indicated in table 5.5. Within the region,

points are subjected to the same scale factor, with the exception of the Bézier curve control points; these

are moved in such a way that the character of the curve is not distorted.18

18In the same way as if they were being controlled by a Proportional Mover.

150



5.2.7.3 Symmetry and Sleeves

Symmetry Garments are symmetrical by default, so only one half of a symmetrical piece is generated

by the sketch instantiation algorithm. The shape points in the other half are generated 'on the �y' by

re�ection. The vast majority of garments are symmetrical, so it is appropriate for symmetry enforcement

to be the default option.

There are some exceptions to symmetry, as explained in section 5.2.4.3. Buttons are never re�ected,

and panels are sometimes not (depending on the user's preference and their geometry). Pockets are not

re�ected, but they are kept consistent by default with move advisers.

Symmetry can be �turned o�� (as explained in section 5.2.4.4), giving the designer the freedom to

create asymmetric garments in order to respond to fashion trends. When symmetry is turned o�, the

Shape Points in the �missing� half are generated by re�ection, in the same way as a symmetrical piece,

but crucially they are then are stored in the piece. Any sketch controls (move advisers or constrainers)

are copied so that they involve the Shape Points on the �missing� half, and any parameters that are

applicable to those sketch controls are obtained by re�ection from the sketch control which it is copied

from.

Identical Sleeves As explained in section 5.2.2.1, by default both sleeves are identical, and only the

left sleeve is editable. The vast majority of patterns have identical sleeves so (as with symmetrical pieces)

this is chosen as the default option. For the purposes of generating a knitting chart (see appendix B),

the sketch for the right sleeve is generated 'on the �y' by copying and re�ecting that of the left sleeve.

If the user opts to make both sleeves editable, then the sketch for the right sleeve is generated

by copying and re�ecting that of the left sleeve, including sketch controls. Once the sleeve is copied,

maintaining consistency between the sleeves is the responsibility of the user. Therefore, if objects (such

as rectangular panels) are required to be present on both sleeves in similar or identical positions, then the

user will add them to the left sleeve before making the right sleeve editable, so that the objects will be

guaranteed to be consistently placed at that point. This explains why making the right sleeve editable

does not cause the sketch to be re-instantiated, since this would lead to a loss of any features that had

been added (to the left sleeve) by the user.

Garment Relationships SEACOP stores the relationships between the pieces of the garment using a

graph. A place is one half of a piece, i.e. the left or right of a body piece, or the top or bottom of a

sleeve19. Two places may be involved in a relationship. The relationships graph consists of places as its

vertices and relationships as edges.

19The places are described from the point of view of the user viewing the sketch on screen. For example, the highlighted
regions in �gure 5.27 belong to the bottom of the sleeve and the left of the body.

151



(a) Default garment (b) Fully editable garment

Figure 5.26: Garment Relationships Graph

The principal purpose of the relationships graph is for the propagation of linked points. In the default

garment, the back-left and front-left places are linked, since those are the only editable places available

(this is known as an arti�cial relationship). The e�ect of symmetry is to then make all four body places

consistent. If either the front or the back are made asymmetric, then the linked points will be changed

to include the newly editable place instead of the arti�cial relationship. The pairs of points that are to

be linked in the newly editable place are obtained using the relationships graph, as described below.

If there is a relationship between two places, this means that a 1:1 mapping can be de�ned between

Shape Points in one place and those in the other. A relationship may (or may not) be between two places

that are linked via a set of linked points. In �gure 5.26a, editable places are shown with a solid circle,

and non-editable with a hollow circle. Relationships which involve linked points are shown in bold. There

are four types of relationship:

� Re�ection: where the sketch on one of the places is (or could be) obtained by re�ecting that in the

other; this occurs in symmetrical pieces (see the discussion of symmetry, above).

� Copy: where the sketch in one of the places is (or could be) obtained by copying that of the other;

this happens when the user makes the sleeves non-identical (see the discussion about identical

sleeves, above).

� Connection: where the two places are not linked by a re�ection or copy, but nevertheless are

physically sewn together when the garment is made.

� Arti�cial: where there is in fact no natural relationship but one had to be assumed in order to

create linked points. This is shown by a thick dashed diagonal line in �gure 5.26a.

The propagation of linked points occurs whenever either the front-right or back-right become editable.

152



The �rst stage is to perform a search for cycles20 on the relationship graph. The object of the search is

to �nd a cycle in which:

� one edge corresponds to a connection with linked points (the source)

� one edge corresponds to a connection which does not have linked points (the sink)

� all the vertices correspond to editable places.

If a suitable cycle is found, the linked points in the source are copied to those in the sink, using the

1:1 correspondences between the places. If the source was an arti�cial connection, this will be removed,

i.e. the linked points objects will be deleted. For example, in the default garment, the user may decide

to make the front asymmetric, hence the front-right place becomes editable. A suitable cycle is found:

{front right}-{front left}-{back left}-{front right}. A new set of linked points is created between {back

left}-{front right}, and those between {front left}-{back left} are removed.

Each relationship may also be associated with an a�ne transformation, so that SEACOP is aware of

the geometric relationships that exist between the places when the sketch is realised as an actual garment.

5.2.7.4 Armhole Consistency

Armhole consistency is a soft constraint in SEACOP that is handled independently of the movement

process. So that the body and sleeve pieces can be sewn together, the length of the sleeve head and

armhole must be roughly equal. This ensures that the sketch corresponds to a design which is knittable

and a garment which is usable.

The regions in the sleeve and body that must match are delineated by two speci�c points in the

sketch, as shown by the bold lines in �gure 5.27. In between those will be lines, Bézier curves and

elliptical quadrants; the total lengths of these on the two pieces that must be equal.

SEACOP comes with the means to both detect and repair violations of armhole consistency. Table

5.6 shows an example of information which is available to the user, about the default garment. Each row

of data represents a sleeve-body pairing that ought to be kept consistent. In a garment where all pieces

are asymmetric (i.e. the sleeves are non-identical), there will be four rows, as per table 5.7.

In tables 5.6 and 5.7, the body place (1) refers to the region on the front or back, which can be resized

automatically on user request. The ideal is that place (1) should be consistent with place (2), which will

be a sleeve. Sometimes, place (2) is not available, due to piece symmetry; in which case the consistency

algorithm will work with the equivalent place, which is (3). The deviation between the lengths of places

(1) and (3) is given by:

d = 100
|l1 − l3|
l3

20The algorithm for �nding cycles is not sophisticated but the graphs are fairly small so the issue of combinatorial
explosion is a manageable one.

153



Figure 5.27: Regions that must have a consistent length

(1) Body place : resizeable (2) Sleeve
place:
connected to
(1)

(3) Sleeve place Deviation
%Place

name
Length,
cm

Place
name

Length,
cm

front, left 19.6
left sleeve,
bottom

left sleeve,
bottom

19.6 0.004

back, left 19.6
right sleeve,

top
left sleeve,
bottom

19.6 0.004

Table 5.6: Consistency information for default garment

The regions which are being measured consist of lines, Bézier curves and elliptical quadrants. The

length of a Bézier curve is estimated by approximating it as a series of line segments, and summing the

length of these. The length of an elliptical quadrant is estimated as:

length =


π
4 (a+ b)

(
1 + 3h

10+
√
4−3h

)
if h < 0.16

π
4 (a+ b)

(
4
π

)h
if h ≥ 0.16

where a is the semi-major axis and b is the semi-minor axis of the underlying ellipse, and:

h =
(a− b)2

(a+ b)2

The formula for h < 0.16 is from Ramanujan [155], and that for h ≥ 0.16 was devised by Zafary

[156]. Both formulas are approximations but the Zafary formula appears to be more accurate when the

ellipse is �attened and the Ramanjuan one when it is not �attened.

The equalisation algorithm works by performing a localised stretch of the armhole region. A binary

154



(1) Body place : resizeable (2) Sleeve
place:
connected to
(1)

(3) Sleeve place Deviation
%Place

name
Length,
cm

Place
name

Length,
cm

front, right 21.0
right sleeve,
bottom

right
sleeve,
bottom

19.6 7.5

front, left 19.6
left sleeve,
bottom

left sleeve,
bottom

19.7 0.8

back, left 19.6 left sleeve, top left sleeve,
top

19.6 0.0

back, left 17.4
right sleeve,

top
right

sleeve, top
19.3 9.4

Table 5.7: Consistency information for fully editable garment which has been edited to introduce some
asymmetry

search is used to optimise the scale factor used in the stretch, the search terminates when the body region

has approximately the same length as the sleeve region, within an acceptable tolerance.

Through the armhole consistency mechanism, the designer can be con�dent that the sleeve and

armhole are compatible. Through the use of linked points, the length of the body pieces can also be kept

consistent. Thus the designer is assured that the sketch they are producing is realisable as a functional

garment.

155



Chapter 6

Representing and comparing designs

This chapter discusses both knowledge representation and similarity. The two concepts are related since

any measure of similarity must take into account the knowledge representation. When determining how

to represent knowledge, the main consideration (apart from the nature of that knowledge itself) should

be the use that knowledge will be put to. In SEACOP there are two uses: for case based reasoning

(CBR) and computer-aided design (CAD). The two uses are interlinked, as the CAD functionality (which

is discussed in chapter 5) is used to view and edit the output of the CBR.

Thus, the di�erence between case representation in SEACOP and that in other CBR systems (see

section 2.2.1) is that the requirements are partly determined by the needs of CAD. Also, the representation

of cases in SEACOP is probably more complex than in many other CBR systems, since it includes features

from di�erent stages of the design process.

Zeleny [157] explained knowledge by analogy: data is like the atoms and molecules in food ingredients,

information is like the ingredients themselves, knowledge is like a recipe, and wisdom is the insight into

whether (or when) to make the food. From this analogy, it seems reasonable that the representation

described in this chapter is a form of knowledge, since it contains not just the structure of a garment,

but also its constraints.

As discussed in section 2.2.2.2, similarity is arguably the most important concept in CBR, since it is

assumed to be a guide to adaptability [4]. If we have a query case (Q) and a retrieved case (R), then

we assume that the similarity of Q to R is a predictor of how likely it is that R can be adapted into Q.

Thus, the success of adaptation is partly dependent on having an e�ective similarity algorithm; such an

algorithm is explained in section 6.2, which describes how questionnaires can be compared.

Section 6.3 discusses the comparison of sketches. It is more di�cult to construct an algorithm to

compare sketches than questionnaires. Such an algorithm can be used as an objective assessment of the

success of adaptation, by comparing the output of CBR with the goal or �nished version of the garment.

156



6.1 Knowledge Representation

This section begins with a 'high-level' discussion of the scope of the knowledge, and the features of a

good representation. Finally, section 6.1.3 discusses how the knowledge is represented in practice.

6.1.1 Levels of detail

The knowledge represented by SEACOP is in three levels of detail: questionnaire, sketch and chart. The

sketch is derived from the questionnaire, and is more detailed. Similarly, the chart is the most detailed

detail, and is derived from the sketch.

A garment consists of pieces; each piece corresponds to a separate piece of fabric. The options for

types of piece are chosen from the set {front, back, left sleeve, right sleeve, collar, hood}. Each sketch

and chart is associated with a particular piece.

A garment must have a questionnaire. The questionnaire does not relate to a speci�c piece but to

the garment as a whole. It is possible for individual questionnaire options to a�ect only one piece, but

some a�ect more than one, e.g. the armhole style a�ects the front, back and both sleeves.

� The questionnaire consists of high-level choices made by the user, early on in the design stage. For

example, the user will choose the type of neck, style of armhole and length of sleeve. Many of

these options are selected from a discrete list of choices; others are numeric or textual values.

� The sketch consists of a series of points; these have a location in the 2-D Euclidean plane. The

points represent the shape of a piece. Additional data is also associated with the points, such as a

textual description.

� The chart consists of knitting stitches, arranged in rows. Each stitch is unique by virtue only of

its location in the garment; however the stitch has a type. The number of types of stitch is fairly

small (circa 40).

Since the structure of the questionnaire simply approximates to a series of attribute-value pairs, it does

not warrant detailed discussion. The important features of the questionnaire are listed in section 6.2.2.3.

Some other attributes are present but are not listed, for example a short textual description of the garment;

these other attributes do not have an e�ect on the sketch and are for the designer's convenience only.

The details of the representation of the sketch is discussed in section 5.2.5. A piece consists of an

ordered list of Shape Points; these de�ne key points in the sketch such as the ends of line segments, and

specify the curves. Move advisers and constrainers are also an integral part of the structure of a piece;

these implement soft constraints such as corners being right angles.

Since the case based reasoning functionality developed as a part of this project does not involve

knitting charts, they are discussed in appendix B.2.7.

157



6.1.2 Features of a good representation from the domain perspective

6.1.2.1 Heterogeneity: coping with di�erences in composition

The composition of a completed garment is heterogeneous, in several respects:

� At the highest level, a garment must have a front and back, but the other pieces are optional. A

garment will have between zero or one pieces from the subset {collar, hood}. The constraints on

the subset {left sleeve, right sleeve} are explained in section 6.1.2.2.

� The questionnaire may be described as a set of attribute-value pairs. However, not all attributes

are present: the applicability of some is dependent on the values of others. For example, the choice

of front border stitch is only relevant in cardigans. Also, the range of applicable values for one

attribute bay be a�ected by the value of another attribute. For example, a cardigan cannot have a

centre pocket.

� The set of points that comprise the sketch is di�erent from garment to garment. The set of points

that are created automatically is determined by the questionnaire (as described in section 5.2.7.1)

therefore not all points may be present in every sketch, and the locations may be di�erent depending

on the options chosen in the questionnaire. Also, users can edit the sketch by moving the existing

points and adding additional points (as described in section 5.2.4.2).

� The chart is generated from the sketch (as described in appendix B), however the user can edit the

chart; hence its composition is not completely predetermined.

As well as completed garments, SEACOP needs to be able to represent incomplete garments at various

stages of the design process. Therefore, it is optional for a piece to have a sketch. If the piece has

a sketch, it may also optionally have a chart. A piece will not have a chart without an accompanying

sketch.

6.1.2.2 Symmetry

Symmetry is a soft constraint in knitwear design which is commonly applicable. Symmetry is a feature of

two levels of the representation: questionnaire and sketch. In the questionnaire, the user is asked whether

the sleeves are symmetrical. If the answer is yes, then the right and left sleeves are mirror images of each

other; in this scenario, only one sleeve needs to be represented, as the other can be derived from it. For

consistency, the left sleeve is always present in a sleeved garment, as per table 6.1.

Symmetry is also a feature of most garments at the sketch level. In a symmetrical sketch, only half

of the points need to be represented; the positions of the others can be derived. One point is de�ned as

the origin, and this is used to de�ne the axis of symmetry. Front and back pieces have a vertical axis,

158



Questionnaire option Piece composition

has sleeves? sleeve symmetry? left sleeve right sleeve

no n/a absent absent

yes
no present present
yes present absent

Table 6.1: Sleeves and symmetry

and sleeves a horizontal axis of symmetry. If the user requires an asymmetrical garment then this fact

needs to be recorded and all of the points will feature in the sketch representation.

6.1.2.3 Flexibility: coping with changes in requirements

The representation will need to have some �exibility at all three levels: questionnaire, sketch and chart.

A good representation will be �exible enough to cope with changes in requirements, with modi�cations

to the structure being as minimal as possible. Some of the attribute value pairs in the questionnaire contain

data that could be used to generate a textual preamble for the knitting pattern. The format of this may

change if the user's requirements change, and thus the questionnaire format must not be too rigid.

In addition to the points, the sketches have sketch controls, which enforce soft constraints. There

are di�erent types of sketch control; the controls a�ect a variable number of points and also contain

parameters. So, sketch controls are not simply a type of functionality, they contain knowledge which

must be represented somehow. The sketch controls are added when the sketch is created, depending on

the options in the questionnaire; thus, each garment has a di�erent set of sketch controls. If the user

decides to 'turn o�' a sketch control (as explained in section 5.2.4.4), it is removed from that set. There

are two options for representing sketch controls:

1 The representation of the sketch controls could be separate to that of the garment, and if each

control is given a unique identi�er then the sketch simply needs to record which controls are active.

2 Alternatively, the sketch controls can be an integral part of the sketch representation.

Option 2 gives the greatest �exibility. It would make it easier to extend the system (if required in future)

for users to be able to alter the parameters of the sketch controls, or even to create their own sketch

controls dynamically. This would permit the automatic enforcement of constraints which were unexpected

at the time SEACOP was created.

More limited �exibility is required at the chart level. As discussed in section 4.4, the chart is composed

of stitches: a large number of types of stitch are theoretically possible, but in practice a relatively small

number are in regular use. To try to represent everything that is possible to achieve with a knitting needle

would be virtually impossible, and would unnecessarily over-complicate the system, since the majority of

stitches would not be used.

159



However, the stitch types that are employed are used in many di�erent garments. Therefore, it makes

sense for the representation of the types of stitch to be separate from that of the chart. All the chart needs

to record is which types of stitch are used where; those stitches are de�ned elsewhere. The representation

of stitch types needs to be �exible, however. It must be possible to de�ne new types of stitch, should the

existing ones be insu�cient. In particular, new types of cable stitch are not uncommon.

6.1.2.4 Redundancy

The inclusion of three levels in the representation may appear to be redundant: if the sketch is derived

from the questionnaire, then why is the questionnaire not then �thrown away� ? Redundancy is avoided

in other ways, for example when garments are symmetrical (see section 6.1.2.2), so why not be consistent

and avoid redundancy altogether?

In fact, there are good reasons why the representation needs to include all three levels. The ques-

tionnaire contains information unconnected to the sketch, such as a description of the yarns used; this

information would be essential if the system were to output knitting patterns. The questionnaire is also

needed for de�ning the measure of similarity in CBR (see section 5.2.2). Furthermore, the sketch is

needed to act as a measure of success of CBR (see section 6.3). The sketch and chart can be edited

by the user, which means that it is not necessarily possible to reverse the process and obtain a unique

questionnaire from a sketch, or a sketch from a chart.

6.1.2.5 Persistence

The representation must allow conversion to persistent means, i.e. a �le on a computer's hard disk.

Therefore there are two implementations of the representation: a volatile one, and a persistent one.

When the garment is being edited by the user or involved in CBR, it is the volatile version that is being

read or manipulated. It must be possible to convert from volatile to persistent, and vice versa, without

loss of integrity. It is advantageous (but not absolutely essential) if the persistent representation ful�ls

these two criteria:

� Readability. If the persistent data is stored in a format that is intelligible to a human, this can

facilitate debugging.

� Compactness of charts. The questionnaire and sketch do not contain a lot of duplication. In

contrast, charts consist of thousands of knitting stitches, and there is extensive duplication. For

example, many rows of knitting consist of several (30-100) copies of the same �stitch�, and when

a part of the piece is rectangular it is often the case that the instructions for a row are duplicated

many times.

160



6.1.3 Implementation

To summarise the discussion in the previous sections, the knowledge to be represented is complex as it is

multi-level and contains both structure and constraints. Both volatile (in-memory) and persistent storage

of the knowledge must be facilitated. SEACOP requires a �exible way of representing garment knowledge

which supports both CAD and CBR.

When considering the choice of implementation, compartmentalising the problem into a CAD system

and a CBR system is one solution, but it could lead to signi�cant duplication of e�ort. Therefore, a

systemic approach is taken and the problem considered holistically.

6.1.3.1 Volatile (in-memory)

The easiest decision to make is the means of implementing CAD. The criteria for purchasing an existing

system were:

1 Available at low (or no) cost.

2 Functionality is for hand knitting (not machine knitting or general CAD).

3 Ability to integrate with a CBR system (either the CAD system must be open-source and extensible,

or an API provided).

If general CAD functionality had been required, it may have been possible to link this to CBR, as this

has been done previously (e.g. [158]). However, no existing system ful�ls the above criteria; therefore

the task was to create one.

In order to implement CBR, CBR shells were considered. The most natural candidate would be

jCOLIBRI (which was discussed in section 2.2.5.1) because it is extensible and �exible. However, due to

the specialised nature of the functionality required (as discussed in section 6.2 and chapter 7), it seems

likely that jCOLIBRI would add little value to the project. This was con�rmed by a personal conversation

with a member of the GAIA group at Complutense University, who developed jCOLIBRI. Much of the

functionality would have to be written using bespoke program code, which reduces the bene�t that would

be gained signi�cantly. Also, ensuring that the existing program interfaced with jCOLIBRI would be an

additional burden. The software engineering aspects of the project would be constrained by the needs of

jCOLIBRI, and the bene�ts are likely to be minimal since much of the functionality would be bespoke

anyway. jCOLIBRI is a powerful tool and a signi�cant contribution to CBR research, but it is not an

appropriate means of delivering the functionality discussed here.

So, the requirements of CBR and CAD suggest the construction of a bespoke piece of software,

presumably written in a high-level language to aid productivity. Java was chosen because it is freely

161



available, comes with access to free integrated development environments (IDEs) which can quickly

create user interfaces, and has a built-in library for functionality such as mathematical functions.

6.1.3.2 Persistent

Choice of technology

In order to implement the persistent storage of the knowledge, several options were considered:

� Databases: have the advantage that concurrent access is well managed; however this is not a

feature of the problem in hand. To store an entire garment in a relational database may have

a signi�cant performance overhead, due to the joins required. Although software is available to

facilitate the editing and viewing of data in databases, only one table is typically seen at a time. It

would be very di�cult to construct a single view of an entire garment.

� Ontologies: these are �exible and powerful in that they represent the semantics between terms,

however this functionality is not required. Ontologies were rejected as the time spent in de�ning

the concepts would not be well spent, and as with databases it might be di�cult to get a single

view of an entire garment.

� Object serialisation: Java comes with a facility to serialise objects so that persistent storage is

achieved with minimal e�ort on the part of the programmer, making this an apparently very at-

tractive option. However, the resulting �les are binary (not intelligible to a human). Also, exper-

iments showed that Java's object serialisation failed with knitting charts; the implementation was

memory-hungry and knitting charts contain thousands of objects.

� CSV or text �les: these have the advantage that they are very �exible, since the software engineer

or knowledge engineer decides the structure. They can be read in or written out from a program

very quickly. They can also be modi�ed manually using text editors. However, the �les are not

self-describing and have no in-built structure; it is up to the programmer to de�ne a structure. It

would be very easy to corrupt a text �le using an editor, and this corruption would not be apparent

until the program accessed the �le.

� Extensible Markup Language (XML) was selected as the best means of implementing persistent

storage, since it o�ers the key advantage that it is possible for a human to read the contents of

an XML �le, in one place, and understand the data (it is self-describing). Also, XML o�ers some

protection from corruption in that it is easy to check if an XML �le is well-formed, without having

to access the SEACOP. Thus, the use of XML facilitates testing and debugging.

162



Interfacing XML and Java

Three technologies for interfacing Java and XML were evaluated:

� DOM (Document Object Model) - this reads the entire �le into a special data structure in memory.

The program can then access all or any part of this data structure, in any order.

� SAX (Simple API for XML) - this parses the �le and as each node is read, it raises an event which

the programmer can trap. Although not explicitly speci�ed, it is the convention that SAX parsers

read the �le from beginning to end, working forwards.

� JAXB (Java Architecture for XML Binding) - this allows the user to de�ne an XML Schema, then

automatically generates Java classes to hold the data in persistent storage. Reading to and from

those classes is then done when required by the program, with very little coding required by the

programmer.

All three technologies were applicable. The disadvantage of JAXB is that it approaches the whole software

development problem primarily from the point of view of persistent storage. If the schema is changed,

then the data classes will change and any other parts of the program that references these classes could be

incompatible, causing compiler errors. The change cannot be tested until those errors are �xed. However,

SEACOP was not developed in this way: iterative development was used, with the user interface and

algorithms completed �rst, and then �nally persistent storage. When developing a computer-aided design

program, it is more intuitive to see how features look �rst, before worrying about how their data would

be saved in a �le. JAXB automates some aspects, but it causes the programmer to lose some control

over part of the code.

SAX was chosen since it is faster and requires less memory than DOM. Also, a decision was taken to

only read in whole garments from �les; thus, the advantages of DOM were not applicable. The decision

to choose SAX came at a price: out of approximately 90000 lines of code in SEACOP, 2275 lines were

directly concerned with writing garment to XML or reading them from XML.

Example of XML

Figure 6.2 shows a sample portion of an XML �le for a garment. The �le begins at the garment node with

questionnaire information being speci�ed. Then, there are some de�nitions: of yarns, tensions and stitch

patterns. As with many features, these are given a unique identi�er to enable the object relationships to

be created accurately when the �le is read. In the piece node, the start of the speci�cation of the front

piece is shown; this also has some associated questionnaire information. Then, the patterns used in the

front are de�ned: the bottom border and neck edge use pater ID 1, which has been de�ned previously as

a 2x2 rib. Then, in the sketch node, there follows a list of shape points.

163



Figure 6.1: Sample portion of the XML �le for a garment

Figure 6.2: Sample portion of an XML �le showing move advisers

Move advisers are an integral part of the XML �le for a garment, as illustrated in �gure 6.2. This

shows a proportional mover, two Bézier shape preservers, and a rule being de�ned. The integers are the

IDs of shape points which were de�ned elsewhere.

Charts are also an integral part of the XML �le. A simple form of run-length encoding is used

when a stitch occurs a number of times consecutively in a row; only the type of stitch and an integer

corresponding to the number of occurrences needs to be stored.

Representing knowledge shared between garments

As well as the individual garments, SEACOP needs to store two additional types of data: stitches and

stitch patterns. Storage of stitches is the simplest: these are all kept in one comma separated values

(CSV) �le. Before SEACOP undertakes CBR or CAD functionality, it �rst loads this �le into memory.

The data in the �le roughly corresponds to the table of stitches in appendix A. Each stitch has a unique

string identi�er. The �le is extremely compact and is loaded quickly into memory. Although CSV lacks

the elegance of XML, this �le rarely requires editing so this is not important.

Stitch patterns are stored as XML �les. As with stitches, stitch patterns are shared between garments,

so it is appropriate to store them separately. Three methods are used for storing stitch patterns:

164



� Standard patterns are those shown in the table in appendix A, e.g. �rice stitch�. There are a

small number (8) of standard patterns, they have very small knitting charts, and they are used very

commonly. Therefore, these patterns are 'hard-coded', i.e. de�ned using literals in the Java code.

� Ribs are parametric and have a knitting chart which is very simple to create algorithmically. An

example of a 2x4 rib is shown in appendix A. Therefore, there is no need to store rib patterns and

they are generated on demand.

� Bespoke stitch patterns, i.e. those created by the user (as described in section 5.2.3.2) are stored

as CSV �les. The �le consists of a header row which speci�es which columns of stitches form the

repeat period. After the header row, there is a matrix of textual symbols, each one consisting of

the unique identi�er of a stitch. The rows and columns in the CSV �le correspond directly to those

in the knitting chart. This is a compact and e�cient way to store the stitch pattern data. The

path and �le name of the CSV �le is used as an identi�er for the pattern, in the XML �le for the

garments that use it.

This chapter has explained how the representation of garment knowledge has been implemented after

carefully considering the complexities of knowledge itself, and the requirements of the system that will

use it. The representation chosen is e�cient and reliable, and supports both the needs of CBR and CAD.

6.2 Questionnaire Similarity

6.2.1 Similarity for e�cient retrieval in CBR

In the discussion of questionnaire similarity, Q refers to the query case and R to a retrieved (or potentially

retrieved) case. There are two types of similarity between Q and R:

� It is essential that an indication of relative similarity is provided. If we have a query case Q, and

two other cases R1 and R2, then the algorithm must be able to judge the relative similarity of R1

and R2 to Q. Thus, if we have a case base (R1, .... Rn) then the case (or subset of cases) with a

maximal similarity to Q can be retrieved.

� Absolute similarity is not essential but important: a bounded numeric score for the similarity of R

to Q indicates if R is a close match to Q, or a not-so close match. Of course, if the algorithm

outputs an absolute similarity, then this is su�cient to provide relative similarity.

As stated above, it is important that the similarity is bounded, and for convenience we de�ne those

bounds to be [0,1]. We refer to similarity rather than distance since the former is more intuitive in this

problem domain. Similarity is the opposite of distance:

165



S(Q,R) ≡ 1−D(Q,R)

6.2.1.1 Why questionnaires are compared

It is common practice in CBR to index cases in order to improve the performance of retrieval (as discussed

in section 2.2.2.1). However, this is not necessary in SEACOP since the questionnaire part of a case acts

as an inbuilt index1; it avoids the need to arti�cially construct one. Since the sketches are derived

from the questionnaire, we know that the questionnaire data is relevant to garment similarity. Thus,

the need to arti�cially construct an index is avoided. Comparing questionnaires is an e�cient process

since a questionnaire is a relatively small data structure that mostly consists of discrete attributes chosen

from a range of values. This e�ciency means that we can use a simple retrieval algorithm; complex

optimisations are not required. This is useful since SEACOP does not work within a metric space, which

is an assumption required for many such optimisations (e.g. �sh and shrink, see section 2.2.2.2).

In contrast, comparing sketches is complex, for a number of reasons, for example the sketches are not

polygons and are invariant under translation: see section 6.3.1 for an explanation of sketch comparison.

Comparing charts is likely to be a particularly complex and slow process, since charts typically consist of

several thousand knitting stitches. Also, if CBR is actually used to create knitting patterns, then only

the questionnaire is likely to exist at the start of the process, so the sketch and chart are unlikely to be

available.

6.2.1.2 Similarity function de�ned

The conditions necessary for a metric are classically cited [159] as:

1 non-negativity : D(Q,R) > 0

2 identity : D(Q,R) = 0 ⇐⇒ Q = R

3 symmetry : D(Q,R) = D(R,Q)

4 triangle inequality : d(Q,R1) ≤ d(Q,R2) + d(R2, R1)

The similarity function de�ned here is not a metric [97], but it satis�es the non-negativity and identity

conditions. Non-negativity is a consequence of our choice of [0,1] as bounds. Identity is important,

otherwise what can be more similar to an object than itself?

Symmetry does not hold in our domain, since we have heterogeneous cases. In general, there are

several places in the questionnaire with optional features. In each of these places, the similarity algorithm

must incorporate two factors:

1The questionnaire is not literally a form of index as it does not provide a means of excluding cases from the retrieval
process (as per section 2.2.2.1). However, since it facilitates an e�cient similarity measure, it removes the need for indexing.

166



� Whether there is agreement on the presence of the feature in Q and R, and

� If the feature is present in both Q and R: the similarity of the feature.

For example, if a query case Q has sleeves, then a sleeveless case will have a similarity dependent on the

complexity of sleeves. The reverse is not true; if Q is sleeveless then when compared to an existing case

with sleeves, the complexity of the sleeves is irrelevant [14]. Note that the situation with heterogeneous

cases is not the same as with missing data. It is not appropriate to use statistical methods (such as

substitution with the mean or modal value) to impute values which are not applicable.

6.2.1.3 Weighted sum approach

The knitwear domain is characterised by not being associated with an inherent similarity function. There

is no e�ective and purely objective way to assess the similarity of two garments. There is no practical

way, for example, to represent a garment as a graph (in order to utilise a transformation based measure

such as the edit distance). Also, due to issues of dimensionality, retrieval methods that utilise the Pareto

front or require extensive training (such as random forests) are not practical.

However, the composition of a questionnaire, with its attribute-value pairs, naturally lends itself to

a simple weighted sum algorithm. Such an algorithm takes localised similarity scores, weights them to

re�ect their relative importance, and sums them to give a single overall similarity score.

S =

∑n
i=1wisi∑n
i=1wi

S refers to the overall similarity score, wi refers to a weight associated with a local similarity value and si

is the local similarity value.

6.2.2 Calculating the similarity

As explained above, the similarity function will be an asymmetric weighted sum approach which compares

the questionnaires in the two garments. The major challenge in this is in obtaining the weights, and the

way in which this challenge has been overcome is explained below.

6.2.2.1 Obtaining the weights

The primary disadvantage of an approach involving weights is that users and domain experts typically

�nd it di�cult to provide them. Many people are uncomfortable with estimating a numerical value which

correlates to the importance of a particular feature. Therefore, our approach is to ask users to rank the

features in order of importance, which is something that users tend to �nd more intuitive.

167



Description Function

gentlest (n+ 1)logm(s+1)

gentler sm
sm+n(1−m)

gentle m
n
s

regular 1 + n
s (m− 1)

steep (1−m)
√
1− n

s +m

steeper (1−m) logs+1 (s+ 1− n) +m

steepest 1− n(1−m)
s(s+1−n)

Table 6.2: weight generation functions

Firstly, the user divides the features into three groups. The priority group and irrelevant group are

unsorted, but the features in the ranked group are arranged in order of importance by the user.

� Priority group: these features are all given the maximum weight.

� Ranked group: these features are given a weight in the range (0,1) as determined by their rank and

the weight generation function (see below).2

� Irrelevant group: these features are all given a weight of zero.

The user is asked to choose the weight of the least important feature in the ranked group. Also, they

must choose the weight generation function. The options are given in table 6.2, where:

� m is the weight of the least important feature in the ranked group.

� s is the number of features which are not in the irrelevant group, and which have a lower importance

than another feature.

� n is an integer which re�ects the relative importance of the feature.

In all situations, 0 ≤ n ≤ s :

� If the priority group is empty, then n is the position of the feature within the ranked group; the

most important feature has n = 0, the next n = 1 and so on. s is the size of the ranked group.

� Otherwise, n = 0 for the features in the priority group; n = 1 for the most important feature in

the ranked group, and so on. s is the size of the ranked group minus one.

The weight generation functions have been given descriptive names which refer to their gradient when

n takes large values. They have been chosen because they exhibit the following characteristics3:

� They are all de�ned when s is positive, n ≤ s and m is in the range (0,1).

2Or in the range (0,1] if the priority group is empty.
3The functions are all continuous but this is of lesser importance since n only takes integer values.

168



Figure 6.3: Example output from the di�erent weight generation functions

� If n = 0 then the output is 1.

� If n = s then the output is m.

� They are all strictly decreasing; it is important that within the ranked group, a lower ranked feature

should always have a lower weight than a higher ranked feature.

Figure 6.3 shows example output from these functions when s = 28 and m = 0.2 [14, 97].

6.2.2.2 Assessment of similarity

The overall similarity of a query case relative to an existing case is given by:

S(Q,R) =

∑n
i=1w(i)s(Q,R, i)∑n
i=1w(i)δ(Q, i)

Where:

� w(i) is the weight of the ith feature, obtained as described in section 6.2.2.1.

� s(Q,R, i) is the local similarity.

� δ(Q, i) is the relevance of the ith feature to the query case, as explained below.

169



Relevance

The term δ(Q, i) relates to the relevance of a particular feature.

δ(Q, i) =


1 if the ith feature is relevant to Q

0 otherwise

For example, the relevance of the stitch pattern used for the cu� will be:

� 1 (relevant) in a query case with cu�s

� 0 (irrelevant) in a query case with no cu�s (or no sleeves).

If a particular feature is irrelevant to a particular query case, then it is necessary that the local similarity

calculation for that feature results in zero, regardless of which case Q is being compared with, i.e.:

δ(Q, i) = 0 =⇒ s(Q,X, i) = 0

If features are relevant, then the assessment of the local similarity depends on the nature of those

features. Several types of local similarity function are used in SEACOP: each of these is described below.

Real number

The similarity between real numeric values is assessed using:

s(a, b) = max (1− ln(|a− b|+ 1), 0)

This function is chosen because it is smooth, monotonic, and has the codomain [0,1]. Also, it does

not rely on either a or b being bounded.

Logical biconditional

Logical biconditional is used when an option is either true or false in both cases.

s(bQ, bR) =


1 if bQ ⇐⇒ bE

0 {otherwise}

For example, one particular feature is the presence of the bottom border:

� If both query case and existing case have a border then the local similarity is 1,

� If neither have a border then the local similarity is 1,

� Otherwise, the local similarity is 0.

170



Description Likert Score Similarity

very di�erent 1 0.00
quite di�erent 2 0.25
some similarities 3 0.50
many similarities 4 0.75

identical 5 1.00

Table 6.3: Likert score translations

Entire front Top part only Bottom part only Middle only

Entire front 5 2 2 3
Top part only 2 5 1 2

Bottom part only 2 1 5 2
Middle only 3 2 2 5

Table 6.4: Example of the use of a Likert matrix for symbolic features

Equality

Equality similarity is used when a contribution to the similarity is only appropriate if there is an exact

match between two attributes.

s(vQ, vR) =


1 if vQ = vR

0 {otherwise}

Equality similarity will be used:

� For a symbolic attribute, where there are only two choices of symbol, e.g. {sweater, cardigan}.

� For an attribute which takes integer values, where the real number comparison (as described above)

is not appropriate. For example, the number of buttons in a cardigan.

Set-theoretic binary

Some set-theoretic comparisons are used to comparing sizes and the positions of the pockets. This is

explained in section 6.2.2.3.

Symbolic: Likert Matrix

Symbolic features are compared using a matrix of values. By de�nition, the values in the leading diagonal

will be set to the maximum score. The remaining values are provided by the user as Likert scores (see

table 6.3), and are symmetric about the leading diagonal. For example, the options for button position

might be as shown in table 6.4.

171



Stitch Patterns

There are three sub-components to the similarity of a stitch pattern:

� The type of pattern (t)

� The stitch tension (h)

� The row tension (v).

The user provides weights to re�ect the importance of these, and the similarity is calculated thus:

s(pa, pb) =
wts(ta, tb) + whs(ha, hb) + wvs(va, vb)

wt + wh + wv

6.2.2.3 List of features

The global similarity is obtained by summing the local similarity of the features in table 6.5, as described

above. The options for the Likert matrix features are given in appendix C.

The size match (3) works by comparing the set of sizes from each of the two garments. If these sets

are disjoint then the local similarity score is 0, otherwise it is 1.

Features 26-27 concern the pockets, and these work by comparing the set of options for pocket

positions that the two garments possess. The possible options for pocket position are given below (the

centre option is only available on sweaters):

� left side

� left front

� centre

� right front

� right side.

Let PQ be the set of options for the query case, and PR for the retrieved case.

� A garment is more similar to another if they have the same number of pockets. If PQ and PR have

the same cardinality then the score for feature 26 is one, otherwise it is zero.

� A garment is more similar to another if the pockets are in the same position. If PQ is a subset4 of

PRand PQ is not an empty set, then the score for feature 27 is one, otherwise it is zero.

� A garment is more similar to another if it has no super�uous pockets. If PR is a subset4 of PQ then

the score for feature 28 is one, otherwise it is zero.

4it is not necessary to be a proper subset

172



Ref Category Description Type Relevance

1

general

Type of background stitch SP universal

2 The option for wearer LM universal

3
Whether or not at least one of the sizes

matches
STB universal

4 Length adjustment RN universal

5 Width allowance RN universal

6 Armhole style LM universal

7

body

Shape of neck LM universal

8 Waist �tting option LM universal

9 Whether there is a bottom border or not LB universal

10
The stitch pattern used on the bottom

border
SP if Q has a bottom border

11 Whether or not there is a yoke LB universal

12 The stitch pattern used on the yoke SP if Q has a yoke

13
The type of garment (cardigan or

sweater)
E universal

14 Whether there is a front border or not LB if Q is a cardigan

15
The stitch pattern used on the front

border
SP

if Q is a cardigan with a front

border

16 Fastener type LM if Q is a cardigan

17 Number of buttons E if Q is a cardigan with buttons

18 Button position LM if Q is a cardigan with buttons

19

sleeves

Has sleeves, or is sleeveless? LB universal

20 Straight part at the top of the sleeve LB if Q has sleeves

21 Straight part at the bottom of the sleeve LB if Q has sleeves

22 Whether it is fully fashioned or not LB if Q has sleeves

23 Sleeve length LM if Q has sleeves

24 The option for cu�s LM if Q has sleeves

25 The stitch pattern used on the cu�s SP if Q has sleeves and cu�s

26

pockets

How many pockets there are E universal

27 Position of the pockets STB if Q has at least one pocket

28
Whether there are no super�uous

pockets
STB universal

29

collar,

hood or

neck band

Choice of neck option LM universal

30 The stitch pattern used on the collar SP if Q has a collar

31 The stitch pattern used on the hood SP if Q has a hood

32 The stitch pattern used on the band SP if Q has a neck band

33 Style of collar E if Q has a collar

34 Style of hood E if Q has a hood

(a) List of features

E Equality
LB Logical Biconditional
LM Likert Matrix
RN Real Number
SP Stitch Pattern
STB Set-Theoretic Binary

(b) Legend for the types

Table 6.5: Features that are compared

173



Figure 6.4: Sample portions of the similarity �le

6.2.3 Implementation Issues

6.2.3.1 Persistence

SEACOP stores the similarity preferences in volatile memory for fast access by the garment comparison

algorithm. The preferences consist of:

� The lowest non-zero weight

� The function used to generate the remaining weights

� The composition of the priority group

� The composition of the irrelevant group

� The ranks of the ranked group

� The scores for Likert matrices. Due to symmetry and identity, values are only stored where i > j.

For persistent storage, the preferences (as listed above) are kept in an XML �le. Sample portions of such

a �le are shown in �gure 6.4.

6.2.3.2 User Interface

SEACOP includes a GUI-based editor so that the user can change the preferences [14, 97], as shown in

�gure 6.5.

174



Figure 6.5: User interface for setting similarity preferences

Figure 6.6: Likert matrix example

Each button in the column towards the right of the window corresponds to a Likert matrix. If the

user presses a button then a new window appears, allowing the user to set the Likert scores, as shown in

�gure 6.6.

6.3 Sketch Similarity

6.3.1 Sketch similarity contrasted with related problems

A sketch in SEACOP is implemented as a list of so-called Shape Point objects; these are points in the 2-D

Euclidean plane, which contain additional contextual information as described in section 5.2.5.1. Most

Shape Points are connected to the adjacent Shape Points in the list by a line segment, Bézier curve or

175



elliptical quadrant.5 Sketch comparison is di�erent from the comparison in many problems discussed in

the literature, in the following ways:

� It is not image comparison: the important points are already de�ned by the Shape Points, so

keypoint extraction [160] is not necessary. For our purposes there is no colour, shading or texture

and therefore histogram-based techniques are not relevant [161].

� It is not a 3-dimensional problem such as the analysis of point clouds [162].

� The only transformation which is invariant is translation. Therefore, any techniques which ignore

rotation or scaling [163] are not applicable.

� Sketches are not graphs; although they share some characteristics of a labelled graph, the location

of the Shape Points (vertices) is relevant. Therefore it is not a graph matching or editing problem

[164].

� Sketches are not polygons; they often have connectors which are not lines. Also, to use a graph-

theoretic metaphor, they may have more than one cycle (e.g. if there is a yoke). Therefore

techniques which assume they are are polygons [165] are not applicable. Even if two sketches were

polygons, they would not necessarily have the same number of line segments (�sides�). It is also

worth noting that the sketches can contain concave regions.

Additionally, sketches are heterogeneous; they do not necessarily contain exactly the same features.

However, sketch comparison is not the same problem as comparing random shapes; in general each type

of piece has speci�c features. A sleeve, for example, will be distinguishable from a front.

6.3.2 Measures based on translation

The �rst stage in determining sketch similarity is mapping; the details of this are described in section

7.2.2. This process is invoked for each type of piece that the two garments have in common; for each

such piece it outputs a set of pairs of Shape Point objects. Within each pair, the two Shape Points will be

from di�erent garments. The measure of sketch similarity is based on the distances between the Shape

Points in each pair.

6.3.2.1 Translation issues

A naive measure of similarity might average the distances between pairs of points, however this approach

ignores issues of translation. It is unlikely that a user would translate a whole piece, since that would

5There are other Shape Points that are not connected in this way, which are used for buttons or for other implementation
purposes.

176



mean moving each individual Shape Point.6 However, when editing a piece, there is often more than one

way to achieve the same goal. For example, shortening a sleeve can be done by editing either end; the

cu� can be moved towards the crown, or vice versa. These two methods would result in the same shape,

but several Shape Points would have locations that di�er from one version of the sketch to the other.

One option for dealing with translation issues is to apply one translation to each of the pieces in a

garment, so that they map as closely as possible on to the equivalent piece in the other garment. The

sketch would not actually be changed, but the translation would be taken into account when calculating

the distances between the Shape Points in the pairs; the distance that is used in the calculation is the

one between a translated version of one of the Shape Points, and the other Shape Point.

The issue then is how such a translation is determined. Each piece has one of its Shape Points

designated as the origin, so it is possible to translate one piece such that the origins have the same

coordinate. However, the user can move the origin; its location is not necessarily at (0,0) and does not

hold any special signi�cance (other than the fact that it de�nes the axis of re�ection).

6.3.2.2 Bounding box distance (BBD)

The bounding box distance (BBD) process is de�ned as follows. BBD scales one of the pieces, so that

its bounding box has the same dimensions as the other piece. The translation that is applied is the one

required to align the bounding boxes. The translation is ignored, so the output of the BBD process is

the average distance between the points in the pairs and the scaling.

A simple test rig was constructed (outside of SEACOP) to test this algorithm. One of the shapes used

is shown in �gure 6.7. The points are numbered A to J and the integers refer to the distances between

these points, e.g. I is 17cm to the right of G. The tests subjected the shape to an operation which

involves translations, and then compared the resulting shape with the original. In each of the operations,

the same translation was used for each of the points that were a�ected. The operations were:

1 Move border down: The y-coordinate of points C and D is translated.

2 Move bottom down: The y-coordinate of points A and B is translated.

3 Move both down: The y-coordinate of points A, B, C and D are translated.

The results of the testing are shown in table 6.6. Each column relates to a progressively larger

translation. The rows give the results for BBD (both scale and distance) compared to another distance

measure which is referred to here as the Minimum Average Distance (MAD is explained in section 6.3.2.3).

The results show that MAD increases with the magnitude of the translation. Also, the MAD for

operations 1 and 2 are the same, but that of operation 3 is double. These results are intuitively what is

6The exception is a cardigan front; the user interface provides an easy means to translate this laterally (see section
5.2.4.4).

177



Figure 6.7: Example shape

Operation Datum
Parameter Value

0.5 1 1.5 2 2.5 3

1. Move border down

MAD distance 0.0938 0.1875 0.2812 0.375 0.4688 0.5625
BBD scale-X 1 1 1 1 1 1
BBD scale-Y 1 1 1 1 1 1
BBD distance 0.1 0.2 0.3 0.4 0.5 0.6

2. Move bottom down

MAD distance 0.0938 0.1875 0.2812 0.375 0.4688 0.5625
BBD scale-X 1 1 1 1 1 1
BBD scale-Y 1.0083 1.0167 1.025 1.0333 1.0417 1.05
BBD distance 0.1942 0.3883 0.5825 0.7767 0.9708 1.165

3. Move both down

MAD distance 0.1875 0.375 0.5625 0.75 0.9375 1.125
BBD scale-X 1 1 1 1 1 1
BBD scale-Y 1.0083 1.0167 1.025 1.0333 1.0417 1.05
BBD distance 0.1075 0.215 0.3225 0.43 0.5375 0.645

Table 6.6: E�ect of changing the bottom of the example shape

expected; the distance is increasing with the amount of change.

The BBD results also show a distance that increases with the magnitude of the translation. However,

in contrast to MAD, the distance for operation 3 is about the same as that of operation 1, and it is that

of operation 2 which is approximately double. The reason for the low distance in operation 3 (compared

to MAD) is that points A and B lie on the bounding box, therefore only points C and D are included in

the distance.

Operation 2 has higher BBD distances than operation 3. Both operations involve the same scaling.

However, in operation 3, the translations do not a�ect the width of the bottom border. The scaling has

only a small e�ect on the border width in operation 3 and hence the distance mainly comes from points

E to J. In contrast, operation 3 a�ects the border width and this results in points C and D also making

178



Algorithm 6.1 Determination of MAD

procedu r e MAD( i npu t L i s t o f o r d e r ed p a i r s o f ShapePo in t s )
t r a n s l a t i o n := (0 , 0 )
s t e p := 1
be s t := Ave rageD i s t ance ( l i s t , t r a n s l a t i o n )
wh i l e ( s tep >0.001)

c l e a r changes f l a g
f o r each ne i ghbou r o f the t r a n s l a t i o n

c and i d a t e := Ave rageD i s t ance ( l i s t , n e i ghbou r )
i f ( cand ida t e<be s t ) then

be s t := cand i d a t e
t r a n s l a t i o n := ne i ghbou r
s e t changes f l a g

end i f
end f o r
i f changes f l a g not s e t then

s t ep := s t ep / 2
end i f

end wh i l e
output b e s t

end

a substantial contribution to the overall distance.

The results indicate that (in contrast to MAD) the distances in BBD cannot be used in isolation, but

only within the context of the scaling. Although the scaling can be combined into a single value7, the

obvious disadvantage of the BBD approach is that it yields at least two outputs for each piece. It is likely

that the scalings will be di�erent for each piece, and it is not clear how these can be combined into one

value (for a garment) or used otherwise.

6.3.2.3 Minimum average distance (MAD)

The approach that was taken to determining sketch similarity was to use a translation as discussed above;

the translation is obtained using a simple search, as per algorithm 6.1. The algorithm takes as its input a

list of ordered pairs of Shape Points, these are the output of the mapping process. In each pair, the �rst

Shape Point is from the garment to be kept �xed, the second Shape Point is from the garment containing

the pieces that will be translated. The output of the algorithm will be the minimum average distance

(MAD).

Algorithm 6.1 begins with the identity transformation, and calculates the average distance according

to algorithm 6.2. Then, the algorithm iterates through a procedure which is similar to a binary search.

At each iteration, it compares the best translation so far with all its neighbours. If the best translation

is (x, y) then the neighbours will be the set {(x − s, y − s), (x, y − s), (x + s, y − s), (x − s, y), (x +

7By taking the square root of the sum of the squares of the horizontal and vertical scale factors.

179



Algorithm 6.2 Determination of average distance

p rocedu r e Ave rageD i s t ance ( i n p u t s : L i s t o f o r d e r ed p a i r s o f ShapePoints ,
t r a n s l a t i o n )

t o t a l D i s t a n c e := 0
f o r each p a i r i n the l i s t

pA := the f i r s t ShapePoint i n the p a i r
pB := the second ShapePoint i n the p a i r
pB ' := pB which has been s u b j e c t e d to the t r a n s l a t i o n
d := d i s t a n c e from pA to pB '
t o t a l D i s t a n c e := t o t a l D i s t a n c e + d

end f o r
output t o t a l D i s t a n c e /( s i z e o f the l i s t )

end

s, y), (x+s, y+s), (x−s, y+s), (x+s, y+s)} where s is the step value. The step value s is initialised to

1cm. The translation starts as (0,0) but if any of the neighbours proves to be better than the (previously

found) best translation, the record is updated accordingly.8 A better translation is de�ned as one with a

lower average distance (as determined by algorithm 6.2). After all the neighbours have been examined,

if the best translation was not updated then the step value is halved. Algorithm 6.1 terminates when the

step value falls below a preset (small) value.

Algorithm 6.1 can be visualised thus: if two similar shapes are drawn on two transparent sheets, and

those sheets are overlaid on each other, then one can be manually manipulated until the two shapes are

in as similar position to each other as possible. A simple example is shown in �gure 6.8a; there are two

shapes which resemble sketches of the front of a v-neck sweater. The shape shown in the dashed outline

is shorter and wider than the one presented with a solid line; it also has a shallower neck and less of an

arm inset than the other shape. Figure 6.8b shows the results of applying the translation used to calculate

MAD.

Since the pieces are all subjected to the same translation, the result can be aggregated for the garment

as a whole. A key advantage of MAD is that there is only one numerical output (the translation values

are ignored after they have been used to calculate MAD). This contrasts with the bounding box algorithm

in section 6.3.2.2.

6.3.2.4 MAD and local minima

MAD was de�ned in section 6.3.2.3, and an example illustrated in section 6.3.2.2 where it seemed to give

intuitive results. However, algorithm 6.1 assumes that there is only one local minimum. So, a simple

experiment was required to provide evidence for (or against) this assumption.

The experiment took the form of a Monte-Carlo simulation [166]. For each run of the experiment, the

8Updating the record of the best translation whilst the iteration of the neighbours has not been completed does not
a�ect the locations of the remaining neighbour points.

180



(a) Before (b) After

Figure 6.8: Simple example of a translation used to implement MAD

181



Figure 6.9: Coordinate system

# Operation A B C D E F G H I J

i Lengthen y+ y+ y+ y+
ii Widen x-* x-* x-* x-* x-* x-*
iii Thicken bottom border y- y-
iv Move yoke down y+ y+
v Decrease armhole depth y- y-
vi Decrease armhole inset x-*
vii Decrease neck depth y-

Table 6.7: Operations

shape in �gure 6.7 was subjected to a change. The MAD between the original and the changed version

was then calculated. The experiment was conducted using a test rig, as per the experiment in section

6.3.2.2. The following conventions were adopted:

� The unit is centimetres.

� The coordinate system is as shown in �gure 6.9.

� Point A is the origin.

The changes to the shape that were made using the operations are listed in table 6.7; each one takes

a single numeric parameter which a�ects a coordinate of one or more points. The code refers �rst to

the coordinate which is changed (x or y), then to the e�ect on that coordinate (- or +). If the code is

su�xed by an asterisk (*) then the coordinate is a�ected by only half the parameter value.

The operations are subject to constraints as shown in table 6.8; each constraint takes the form of

a permissible range for its parameter. The shapes also have constraints, as shown in table 6.9; each

constraint a�ects only two points.

In each run of the simulation, a copy of the shape was made, which was then subjected to changes.

# Operation minimum maximum

i Lengthen -6 6
ii Widen -6 6
iii Thicken bottom border -3 6
iv Move yoke down -6 6
v Decrease armhole depth -6 6
vi Decrease armhole inset -2 2
vii Decrease neck depth -6 6

Table 6.8: Constraints on operations

182



# Constraints Explanation

1 B.x < A.x body cannot have negative thickness
2 C.y < A.y bottom border cannot have negative thickness
3 E.y < C.y yoke must be above the bottom border
4 H.y < F.y yoke must be below the armhole
5 I.y < E.y yoke must be below the neckline
9 J.y < I.y neck must have a depth
11 J.x < I.x neck must have a non-negative width

Table 6.9: Constraints on shapes

Algorithm 6.3 Random MAD Algorithm

Procedure Random−Search ( shapeA , shapeB )
best−t r a n s l a t i o n := (0 , 0 )
r e s u l t :=0

f o r 100 i t e r a t i o n s
t r a n s l a t i o n := ( randomly chosen x , randomly chosen y )
run MAD with ( shapeA , shapeB , t r a n s l a t i o n )
i f the output o f MAD i s b e t t e r than r e s u l t then

best−t r a n s l a t i o n := t r a n s l a t i o n from MAD output
r e s u l t := r e s u l t o f MAD output

end f o r

output best−t r a n s l a t i o n and r e s u l t
End

Each of the operations in table 6.7 had a 50:50 probability of being selected, thus there was usually more

than one change. Then, the constraints in table 6.9 were checked. If any were violated, the changed

shape was discarded and the random changes process was then repeated with a new shape, as necessary,

until a valid (changed) shape was obtained.

The MAD between the valid shape and the changed shape, using algorithm 6.1, was recorded. The

output of the Random MAD Algorithm (algorithm 6.3) was also recorded; this is a form of random

search which invokes algorithm 6.1 repeatedly. When algorithm 6.1 is ran in isolation, a null translation

is normally passed as a parameter to form the starting point of the search. In contrast, algorithm 6.3

uses a random translation on each search, and returns the best result.

The result of algorithms 6.1 and 6.3 were compared, for 10000 successful iterations of the simulation.

The maximum absolute di�erence between the two values was 7 x 10-7 cm (to 1 signi�cant �gure). In

76.48% of results, the two outputs were identical, to within the accuracy allowed by a Java double-

precision decimal. The di�erences between the outputs of the two algorithms are so small that they

lead to the conclusion that it is likely that there is only one global minimum for the problem that was

investigated in this experiment. Small di�erences may arise simply due to rounding errors.

The experiment was then repeated for three other shapes (which are not shown). The shape in �gure

183



6.7 was intended to approximate to the front of a Raglan garment. The other shapes were:

� Round-neck front with a set-in shoulder and a yoke

� Round neck front with a dropped shoulder

� Round neck garment with a set-in shoulder and a �tted waist.

Similar results were obtained with the other three shapes: the maximum deviation was of the order of

10-7 cm. From this it can be concluded that the random search in algorithm 6.3 is unnecessary. Algorithm

6.1 is likely to return a value that represents one global minimum, and is therefore used where MAD is

referred to hereafter.

6.3.3 Proportion of Common Shape Points (PCSP)

One of the drawbacks of algorithm 6.1 (MAD) is that it only takes into account the Shape Points

that are in common to the two pieces. If Shape Points are present in one garment but not another,

then presumably this makes them di�erent, however that is not taken into consideration when MAD is

calculated. For example, if a copy was made of a back of a sweater, and a yoke added to the sweater,

then MAD between the back and its copy would be zero, indicating that the two garments are identical

(which is obviously wrong).9

One way around this is to include Shape Points in the mapping where there is no equivalent in the

other garment. In lieu of an actual distance for the pair, the calculation could use a penalty value instead.

The drawback of this approach is that the choice of penalty value is arbitrary.

Another approach is to develop an additional measure of sketch similarity, the Proportion of Common

Shape Points (PCSP). This is given by:

p =
m

m+ u1 + u2

Where:

� m is the number of mapped Shape Points

� u1 is the number of unmapped Shape Points from garment (1)

� u2 is the number of unmapped Shape Points from garment (2).

The primary reason for computing sketch similarity is as a measure of solution similarity, and in PCSP

presented a number of implementation di�culties in this regard. Firstly, assume that the conditions on

9Although, as explained in chapter 7 and the �nal paragraphs of this section, this situation will not arise in adaptation.
If the user speci�es that a yoke is required, the result of adaptation will include a yoke; however there is no guarantee that
the yoke will be exactly in the location that the user required.

184



mapping for MAD (as described in section 7.2.2.2) are used with the PCSP algorithm. Then, if the

output of adaptation (as explained in chapter 7) is compared with the ideal output, the result of PCSP

would always be 1. This is because SEACOP's adaptation (as explained in chapter 7) does not add

user added points, bands or panels, and these types of Shape Points are excluded from the similarity

mapping by the conditions in section 7.2.2.2. When using the adaptation algorithms described in chapter

7, the questionnaires of the output of adaptation and the ideal result are the same. The questionnaire

composition determines which Shape Points are part of the garment. Hence, every Shape Point that is

eligible to be mapped is in fact mapped, giving a result of 1.

An alternative to applying the conditions is to map every Shape Point between the two sketches. This

becomes problematic if any two sketches can be used, because it means that user added points, bands

and panels are included. How can the Shape Points in panels in two di�erent garments be mapped to

each other? Panels have much less well de�ned roles than the Shape Points that are created by the sketch

instantiation algorithm. For example, the user is free to add extra Shape Points to the boundary of a

rectangular panel, and to translate, re�ect and rotate it. In general, it is di�cult to devise an algorithm

that determines if a Shape Points on panels are equivalent to each other.

Since sketch comparison is used as a means of comparing solutions, another option would be to include

panels, bands and user-added points, but to stipulate that only one of the two garments may have these.

This then introduces a complication that the PCSP algorithm cannot necessarily be used to compare a

garment with itself; thus, we cannot verify if it meets the identity constraint for a metric. As chapter 7

explains, the compositions of the output of adaptation and the goal of adaptation are qualitatively very

similar. The only di�erence between the two is the presence of panels, bands and user-added points; these

may be present in the goal but will not be present in the output. A PCSP calculation with all types of

Shape Points included would simply measure the presence of these specialist features, and thus is likely

to be of restricted bene�t. Therefore, PCSP was not adopted as a measure of sketch similarity.

185



Chapter 7

Adaptation

The phrase �adaptation is the Achilles heel of CBR� is so common in research [110, 167, 168, 169] that

it has become a cliché. However, it is true that adaptation is the most di�cult stage of CBR. This

chapter describes how adaptation was designed and then performed in SEACOP. Section 2.1.1 describes

the factors which make adaptation particularly complex in the knitwear domain, and introduces a strategy

(called rule di�erence replay) which is designed to cope with that complexity. Finally, in section 7.2, the

speci�c way in which the strategy is implemented in SEACOP is explained.

7.1 Introduction

Section 7.1.1 describes the factors which make adaptation particularly complex in this domain. Adaptation

in SEACOP is a challenging problem because of the size of the search space, the constraints that apply

to the cases, and the heterogeneous nature of those cases. Section 7.1.2 explains why null adapation is

not applicable. Then, section 7.1.3 introduces a new type of adaptation operator called rule di�erence

replay.

7.1.1 Knitwear design speci�c aspects of adaptation

The size of the case base is relevant since in reality it will always be small in comparison to the problem

space, as de�ned by the number of questionnaire options. Similarity for retrieval is based on comparing

questionnaires, and there are at least 1015 possible combinations of questionnaire options. Not all of these

options are likely to occur, but even if a small proportion are used the search space is still very large, and

is likely to be several orders of magnitude larger than the size of any case base. This is highly relevant

since in CBR, similarity is assumed to correlate with adaptability [4]. If the coverage of the case base is

sparse and so the nearest neighbour is very distant, then adaptation will presumably be more di�cult.

The various constraints in knitting are discussed in section 4.3. The changes instituted by adaptation

may violate those constraints, and then it could be di�cult to 'repair' those violations without simply

186



undoing the changes. For example, if the query case was a sleeved garment and a sleeveless one is

retrieved, reuse of the armhole may violate sleeve-armhole consistency.

Heterogeneity is a notable feature of the questionnaires in SEACOP. Some questionnaire options

a�ect which values are permissible for other options, for example a cardigan cannot have a centre pocket.

Other options determine which features are present in the sketch. For example, the location of the ends

of the front border will be di�erent depending on whether a neck band or bottom border are present. If

the retrieved and query cases are composed of di�erent features, reuse may be not applicable.

Adaptation operators were discussed in section 2.2.3.1. It would presumably be possible to accomplish

adaptation in SEACOP using a combination of substitution and transformation. For example, if the query

case speci�es a pocket but the retrieved case lacks one, then the pocket could be added (substitution)

by an adaptation rule. However, the locations of the pocket(s) might depend on the option for the waist:

a �tted waist is tapered, and hence if the pocket is intended to be at the edge of the garment, this

will a�ect its position. Also, the positions of buttons could be reused, but by convention the location

of buttons is a�ected by the gender of the wearer1. The retrieved case and query case might have a

di�erent waist option, or a di�erent gender.

It would be necessary to build the knowledge required to cope with heterogeneity into the adaptation

mechanism. The resulting knowledge engineering and software engineering process would likely be lengthy,

complex and risky. The large number of combinations of scenarios would make the resulting program

di�cult to test, and there would be a high risk of error due to incompatibilities between the set of features

in the query and retrieved cases. SEACOP's sketch instantiation algorithm (described brie�y in section

5.2.7.1) is an illustration of such complexity; it took many person-months to implement. It consists of

over 1600 lines of complex program code. The complexities of dealing with the combinations in one case

(such as in the sketch instantiation algorithm) are di�cult, and those of dealing with two are likely to be

harder still.

Knowledge intensive CBR systems arguably negate the main advantage of CBR: the elimination of

the knowledge elicitation bottleneck. Often, the reason why CBR is used is because rules are di�cult

to formulate; if so, these di�culties will hinder the development of a knowledge-intensive system. In a

domain such as fashion, �exibility is important and a important advantage of CBR is that it can respond

dynamically to fashion trends. However, the knowledge contained in the adaptation rules of a knowledge-

intensive system is typically �xed, as per the structure created by the knowledge engineer. The di�culty

in formulating adaptation rules and their lack of �exibility were the reasons why a knowledge-intensive

approach was not implemented in SEACOP. Also, knowledge-intensive CBR systems have been around

for about 25 years (e.g. JULIA [170]), and so it is questionable whether the construction of a new one

would add scienti�c value to this thesis.
1A woman's buttons are on the left side of a cardigan, but the man's are on the right

187



Case merging (as explained in section 2.2.3.3) was considered as a possible means of implementing

adaptation. Its main advantage to the problem discussed in this thesis is that the individual parts,

by de�nition, have less features than the case as a whole; therefore the search space becomes smaller.

Knitwear is naturally partonomic; it is conceivable that individual pieces could be retrieved, then assembled

into one garment afterwards. However, the problem of incompatibility between the parts is a serious

disadvantage of case merging. Also, the issues highlighted above about substitution and transformation

would also apply to the individual pieces. It is conceivable that the rule di�erence replay strategy

introduced in this chapter could be implemented with case merging. However, the decision was taken to

investigate the e�cacy of the strategy with retrieval of whole cases �rst. The implementation of case

merging is left for future work, as discussed in section 9.3.

7.1.2 Null adaptation is not applicable

The option of null adaptation is chosen in many CBR systems, however it would be inappropriate in

SEACOP. It is unlikely (due to the large search space compared to the size of the case base), that the

retrieved and query cases would have the same set of features. In a null adaptation scenario, it would

be the responsibility of the designer to change the features (in the retrieved case), via the questionnaire,

so that the required ones were present. One of the limitations of SEACOP is that questionnaire changes

cause the sketch to be re-instantiated.2 This would completely nullify the bene�t of CBR, since editing

the questionnaire of the retrieved case would cancel any edits made to the sketch.

The reason why this limitation exists is because coping with any arbitrary questionnaire change without

resetting the sketch would be an onerous software engineering task, involving many di�erent rules for the

di�erent scenarios. For example, if the user changes the armhole style, what should SEACOP do if this

now causes it to cross over the neck? If the user wants to add a yoke, what happens if it crosses over

a pocket? The sketch instantiation algorithm avoids these issues by using heuristics; the elicitation of

these heuristics is simpli�ed by the fact that the sketch is always instantiated in a consistently predictable

manner. This assumption would not be valid if the user's edits were required to be preserved.

In order to preserve the sketch during questionnaire changes, the software would need to be augmen-

ted with rules. For example, if adding a yoke would mean it crosses over a pocket, then the pocket could

be translated so that the problem no longer occurs. However, the process of developing and implement-

ing those rules could be a complex one, involving similar issues to those described in section 7.1.1 for

knowledge intensive adaptation. In the previous example, what if the translation then caused the pocket

to cross over the bottom border, or the edge of a �tted waist? The rules would presumably be imperfect,

since it would be di�cult to cater for every scenario. Failure of the rules would mean that the user would

2There are a few exceptions to this, e.g. the designer can make the garment sleeveless or change the stitch patterns
used without resetting the sketch.

188



be left with either a corrupted sketch, or a sketch which has been reset (this nullifying their edits). For all

these reasons, null adaptation would be (paradoxically) a di�cult option to implement; also, it is unlikely

to be of use.

7.1.3 Rule di�erence replay (RDR)

Section 7.1.1 explained the di�culties in implementing adaptation in SEACOP with substitution or trans-

formation, and with case merging. At �rst glance it is also di�cult to see how derivational replay could

be used to adapt garment designs, since the literature consistently refers to it being used in planning

[54, 171]. Derivational replay replays the sequence of decisions that were made, but in design the order

that edits are made is irrelevant.

If the order in which the edits were made is ignored then we are left with just the nature of those

edits themselves. The edits are relevant, but only useful if they can be applied in a new scenario. Rule

di�erence replay (RDR) is de�ned here as an adaptation operator conceived during this project. RDR is

inspired by derivational replay, but as the following sections show, the two techniques are distinct.

RDR works as part of hybrid CBR systems; the other component of the system is called the supporting

process. In order for RDR to be applicable, a number of assumptions must hold; these are explained in

section 7.1.3.1. RDR works by invoking the supporting process �rst, and then secondly by replaying the

edits which were previously made to the retrieved case. This is explained in more detail in section 7.1.3.2.

7.1.3.1 Criteria for RDR

The criteria for RDR to be applicable are:

� Case-based design: RDR is best suited to synthesis tasks. In planning, derivational replay would

be the natural choice. In classi�cation tasks, the emphasis is on similarity rather than adaptation,

so RDR is unlikely to be required.

� Rules: RDR must be supported by a deterministic generative process (the supporting process),

which is capable of producing a solution with the correct features in it. The supporting process

could be a rule-based system, or conditional programming such as SEACOP. RDR is unlikely to be

used with stochastic generative systems such as evolutionary algorithms.

� Inferior rules: RDR is only applicable when the rules tend to produce inferior results. Although there

is typically no one unique correct answer to design problems, this criterion means that the output

of rules will usually be of lower quality than that produced by an expert designer. If the output of

the rules was as good as a human expert, then the rules would be su�cient by themselves, and

thus no hybridisation with CBR would be required. Although the supporting process will add the

189



correct features to the solution, the assumption is that quantitative changes will often be required

to produce a good solution.

� Possible to improve: it must be possible to improve the designs from the inferior state produced by

the rules, by altering the features that are present. Also, such changes must normally be easier than

producing the design from �rst principles. If the rules output a solution that is a local minimum,

and there is a big distance between this and the global minimum, then this assumption may not

hold.

� Supporting process output recoverable: there must be a way to recover the output of the supporting

process; this is explained in the next section.

� Commonality : for RDR to work, there needs to be some common features between the artefacts

being produced. RDR would not be an appropriate way to produce art, for example, since it is

easily possible for two works by the same artist to have nothing in common.3

� Partial changes possible: if the designs are heterogeneous, then by de�nition some features will not

be common (see the commonality assumption). In this situation, it must be possible to change

only some of the features of the design, leaving others as per the output of the supporting process.

Also, such changes (where applicable) must normally be bene�cial.

The role that these assumptions play in the execution of RDR is explained in the next section.

7.1.3.2 How RDR Works

RDR works using a modi�ed version of the classical CBR cycle [1], as depicted in �gure 7.1. As with

the classical cycle, we begin with the problem being represented as a new case, the query case. However,

the key di�erence with RDR is that the supporting process (see the rules assumption) is then invoked on

that query case; by the inferior rules assumption this output will often be inferior (to that which a human

designer would produce). The next step is then for a case to be retrieved, as per the classical CBR cycle.

Then, the changes that were previously made to the retrieved case are replayed on the rules output

case (which was generated by the supporting process). This is possible because the supporting process

output recoverable assumption makes it possible to gain visibility to the changes that occurred in the

retrieved case, from when it was originally itself the output of rules. Due to the commonality assumption,

there will be common features between the retrieved case and the rules output case; a mapping can

therefore be obtained between the two cases and the way in which the features were changed in the

retrieved case can be applied to the rules output case. Due to the possible to improve and partial

3It is unlikely that CBR in general would be a good way of producing art, so the commonality assumption not unique
to RDR.

190



Figure 7.1: CBR Cycle modi�ed by RDR

changes possible assumptions, we know that all or part of the rules output case will be editable, and the

edits can be carefully chosen to improve the quality of the case.

In �gure 7.1, a comparison case is shown; one way to implement RDR is to make a copy of the

retrieved case, and undo the changes that were made to it to form the comparison case. Then, the

retrieved case and comparison case are compared. However, RDR could also be implemented without

the comparison case: it may be su�cient to keep a record of the changes that occurred and to then

determine the inverse of the changes in the record.

The result of RDR is known as the replayed case. We do not necessarily assume that this is ideal, so

the replayed case is checked to see if it can be improved; this is step 6 in �gure 7.1. If necessary, it is

improved and then the edited case is retained in the case base for future use. Presumably the methods

of editing in step 6 are manual; if an algorithm could be used then it may be possible to combine that

algorithm with the supporting process to avoid the use of CBR altogether. The objective of RDR is to

reduce the amount of manual editing through the application of CBR.

Step 6 is the only one that involves intervention from the user. It may be possible to reduce the

burden of this intervention if an objective assessment of �tness can be formulated; this is the same issue

as occurs in evolutionary algorithms. However, the ��tness� of a design is often determined by a variety

of factors including aesthetics; these could be impossible to measure objectively.

191



7.1.3.3 RDR is a method of hybridisation

In hybrid systems in general, the two components of the system normally4 complement each other and

work symbiotically. In RDR, the predictability of the rules is enhanced by the �exibility of CBR. In the

sort of problems that are amenable to RDR, rules are unlikely to be used alone as they are not likely to be

sophisticated or �exible enough. RDR is bene�cial in problems which are di�cult to specify completely,

or where the speci�cation is often vague. In these situations the knowledge engineering exercise is likely

to be frustrating and incomplete.

If the engineer tries to solve the problem using rules alone, there is a danger that the rules will be

made inappropriately speci�c; this is akin to the phenomenon of over�tting in machine learning [172].

This danger is particularly acute in tasks involving a lot of tacit knowledge, as experts often explain things

by giving speci�c examples, rather than general principles.

RDR is particularly applicable to situations where most of the domain knowledge is general and static,

but the details are subject to change; the rules can implement the static knowledge and CBR can do the

rest.

Another advantage of RDR is that it could be used to alleviate a common problem with CBR:

insu�cient case base coverage. Where there is insu�cient coverage, it is unlikely that a case will be

obtained that has the required features; this is the role of the rules. Those features do not have to be

arranged or con�gured perfectly, since this is the role of the CBR.

A further advantage of RDR is that it has the �exibility to assist with the initial 'seeding' of the case

base. When the system is new and there are insu�cient cases, then the rules output case can be edited

directly by the user if required. Then, the result of this editing is stored in the case base as the edited

case, bypassing RDR to start with. As the case base grows, RDR can be be invoked and hopefully the

requirement for editing will be reduced.

The classi�cation system for hybrid systems of Prentzas and Hatzilygeroudis [5] was discussed in

section 2.3. Systems using RDR are most likely to be classed as having sequential processing, since the

CBR is invoked after the rules. The co-processing category refers to systems with interleaved processes;

although it is possible for the rules to be applied after CBR retrieval occurs, the two are independent of

each other and thus cannot be said to be interleaved.

Prentzas and Hatzilygeroudis also discussed coupling and conditionality. RDR systems are tightly

coupled, because the CBR depends crucially on the output of the rules. They may have either a conditional

or compulsory sequence. A conditional sequence implies that an assessment is made of the output of the

rules, to determine if CBR is invoked or not. If a human is responsible for this assessment, then this risks

causing user fatigue. A compulsory sequence means that CBR is invoked automatically; this works on

4Unless the �standalone� category applies [172], in which case the two systems are separate and the user chooses which
output to utilise. However, standalone is arguably not a form of hybridisation.

192



the assumption that the changes made by CBR are positive ones, and reduce the requirement for further

manual editing. The conditional sequence mode could refer to the way of seeding the case base, which

is suggested above.

7.1.3.4 Challenges in RDR

RDR is intended to work only in situations where the assumptions which were outlined in section 7.1.3.1

hold. It is a signi�cant deviation from the classical CBR cycle. Therefore, although the issues encountered

in constructing any CBR system apply, there are special considerations for RDR.

As with any CBR system, a good measure of similarity is important. Ideally, the similarity measure

should correlate with the proportion of features that are in common between the retrieved and rules

output cases; or possibly it should be weighted towards the presence of the more important features in

both cases. If the two cases have few features (or only features of low importance) in common then the

rule di�erence replay will have limited e�ect; the performance of the system will therefore be close to

the use of the rules alone. This highlights an advantage of RDR however: the rules can be used as an

insurance for outlier cases, where CBR performs poorly.

Finally, the mapping of common features could be challenging, depending on the type of case rep-

resentation used, and whether the cases are homogeneous or not. In reality, designs tend to be hetero-

geneous, unless the problem is a very speci�c and limited one.5 The similarity algorithm, the need for

feature mapping and the requirements of the supporting process should all be borne in mind when the

case representation is designed.

7.2 Sketch adaptation in SEACOP

Rule di�erence replay (RDR) was introduced in section 7.1.3; it was designed with the needs of SEACOP

in mind. SEACOP meets the assumptions of RDR since it is a complex design process that can be

partially supported by rules.6 The output of the rules is normally inferior, but the designs can be edited

and improved by the users using the functionality described in chapter 5. The remainder of this chapter

explain how adaptation is implemented to produce sketches of garments using RDR. Section 7.2.1 explains

how the supporting process output recoverable assumption is met by SEACOP. Section 7.2.2 then explains

how the commonality assumption is met via a process which maps the common features between two

garments. Finally, since SEACOP meets all the criteria for RDR, section 7.2.3 shows how it is implemented.

5If artefacts are homogeneous then the process is more accurately referred to as con�guration (rather than design), as
per section 2.1.3.2.

6The word 'rules' here is used in the sense of conditional programming, rather than a rule-based system which is
partitioned into separate components (inference engine, rule base etc.).

193



7.2.1 Obtaining the comparison case

In SEACOP, the query case consists of a questionnaire, which acts as a statement of the problem. This is

then subjected to the sketch instantiation algorithm, which takes the role of the supporting process. This

algorithm is, as required by the assumptions of RDR, a deterministic process which creates the correct

features in the design, resulting in the rules output case. The results of the sketch instantiation algorithm

are unlikely to be ideal: fashion changes and the designers like to 'tweak' the measurements and shapes

a little; this is the job of the CBR part of the process.

Then, the retrieved case is located, using the similarity algorithm described in section 6.2. The

questionnaire from the retrieved case is copied, to form the comparison case. The editable size of the

comparison case is changed to be the same as that of the query case, as the sketches need to be of the

same garment size for comparisons to be meaningful. Then, the sketch instantiation algorithm is invoked

on the comparison case, so that it consists of a sketch as well as a questionnaire.

The questionnaire copying is done in order to preserve the integrity of the retrieved case; the two

distinct cases are required as the retrieved case and comparison case need to be compared in order for

RDR to work. In some ways, obtaining the comparison case is a reversal of the normal CAD process;

an alternative would be to store the unedited version of the sketch as well as the edited one. However,

questionnaires are small data structures and are easy to copy, and the implementation described here

avoids storing data unnecessarily, when that data can easily be obtained algorithmically.

7.2.2 Mapping sketches

The mapping between the Shape Points in the sketches of two di�erent garments is essential for rule

di�erence replay; it is also used to implement the sketch similarity algorithm, which is explained in section

6.3.

The reason why mapping is non-trivial is that sketches are heterogeneous: it is not just that they

contain features in di�erent places, they contain di�erent sets of features. This di�culty is overcome, as

described below, by labelling Shape Points with roles. The output of the mapping process is to establish

a list of pairs of Shape Point objects, with each one in the pair from a di�erent garment.

7.2.2.1 Roles

As discussed in section 5.2.5.1, Shape Point objects contain information other than a location; amongst

this information is a set of roles. The roles codify the purpose of the Shape Point, for example

NECK_BOTTOM occurs at the bottom of the neck. Roles are allocated to Shape Points when they are

created by the sketch instantiation algorithm. It is possible for the set to contain more than one role, but

currently this only occurs in one situation: a Shape Point in a Raglan body piece has both NECK_TOP

194



(a) Non-Raglan (b) Raglan

Figure 7.2: Armhole and neck roles in the front

and ARMHOLE_TOP roles; this is illustrated in �gure 7.2.

The roles that are present are dependent on the questionnaire options chosen. For example, the roles

RAGLAN_TOP and RAGLAN_BOTTOM are only present in Raglan garments. However, some roles

are ubiquitous, for example every sleeve will have a Shape Point with the CROWN role (although some

garments are sleeveless). There is one important constraint: with some documented exceptions7, each

role will be present only once in a piece.

The roles are used for implementing mapping, for adaptation and sketch similarity (as is explained in

the next section). Also, they are used whenever speci�c Shape Points need to be located for a purpose,

for example �nding speci�c points for localised stretches in resizing (see section 5.2.7.2)8. Some examples

of sketches, annotated with the roles, are shown in appendix D.

7.2.2.2 Criteria for mapping9

Roles were explained in section 7.2.2.1. The mapping between two sketches works by comparing the

Shape Points in each sketch and pairing together those which have roles in common. However, roles

have several purposes (for example, resizing) and so are not necessarily optimised for use in adaptation.

Therefore, some additional logic is used during both adaptation and sketch similarity, to ensure that it is

appropriate to add a particular pair to the mapping. A mapping is only created if the criteria stipulated in

table 7.1 are satis�ed. For example, in Raglan garments a point holds the dual role of ARMHOLE_TOP

7For example buttons and user-added points all have the same role, so these are not unique; other roles are unique
within an element, such as in pockets or panels.

8Another example of the use of roles is the retrieval of the Shape Points that are normally located on the left edge of
the garment, to determine whether the pocket should be positioned.

9In addition to the logic described in this section, some changes are made to the mapping relating to the cu� region
of the sleeve, if appropriate. This problem arises because the end of the sleeve has points with the roles CUFF_EDGE
and CUFF_MIDDLE in a sleeve with cu�s, whereas in a sleeve without cu�s the corresponding roles are ORIGIN and
LEFT_EDGE. If one garment has cu�s and it is being compared to a garment without cu�s, then the mappings are altered
to circumvent this problem. In the majority of situations, both garments or neither garments will have cu�s, so this issue
will not arise.

195



ROLE(s)
Reuse for

Comments
Similarity Adaptation

BOTTOM_BORDER_RIGHT

yes no

In adaptation, only one end

is set as we assume move

advisers set the other.

YOKE_BORDER_RIGHT

FRONT_BORDER_TOP

NECK_BAND_RIGHT

ARMHOLE_TOP Yes where there is agreement on

whether the armhole style is
See text.

NECK_TOP Raglan or not.

FITTED_OR_BAGGY_WAIST Yes where there is agreement on

the waist option.

The same role is used for

both �tted and baggy

waists.

ARM_CURVE yes

As long as there is

agreement on the

armhole style.

Semi set-in sleeves have a

smaller armhole than set-in

but the two are

comparable.

ORIGIN
In the front: where there is

agreement on whether the

garment type is a cardigan.

In a cardigan front, the

origin is detached from the

garment; this is not

comparable to a sweater

front.

Other pieces: yes.

POCKET_BOTTOM_LEFT

The centre point
functions as a �handle�
in the user interface.

POCKET_BOTTOM_RIGHT Yes where there is agreement on

POCKET_CENTRE the position of the pocket.

POCKET_TOP_LEFT

POCKET_TOP_RIGHT

STANDARD_BUTTON no

Yes where there is

agreement on the

number of buttons

and the button

position.

As button reuse is quite

trivial, it is excluded from

the similarity assessment.

BAND no no Horizontal and vertical

bands are excluded from

both symmetry and

adaptation.

RECT_PANEL_1

no no

Rectangular panels are

excluded from both

symmetry and adaptation.

RECT_PANEL_2

RECT_PANEL_3

RECT_PANEL_4

USER_ADDED no no User added points are

excluded from both

symmetry and adaptation.

other roles yes yes 26 other roles are not

speci�cally mentioned

above.

Table 7.1: Criteria for whether mapping occurs

196



and NECK_TOP (�gure 7.2b), whereas in other types of garments the two are separate (�gure 7.2a).

The two situations are not comparable and so the ARMHOLE_TOP point is not mapped unless either

both sketches are Raglan, or neither is.

Some other types of Shape Points are excluded from the scope of sketch similarity and adaptation,

and are therefore not mapped. It is di�cult to assess what e�ect panels and bands have on sketch

similarity, and they may be di�cult to recreate in adaptation due to the heterogeneity of sketches, so

these are excluded. Also, adaptation does not create user-added points, as it is di�cult to formulate rules

about whether adding points is appropriate.

7.2.2.3 Implementing mapping

This section explains how the roles and the criteria discussed previously are used in the execution of the

mapping of Shape Points.

Obtaining the set of Shape Points

The mapping process iterates through each piece in a garment, and obtains a set of Shape Points that

belong to that piece. The set which is obtained will consist of the Shape Points that are from the part of

the piece that is normally editable. The signi�cance of this is that if a symmetric piece is made asymmetric,

then only the Shape Points which were editable before the symmetry was removed are relevant because

adaptation only creates symmetrical pieces10. This set will exclude Shape Points from rectangular panels

and bands; as discussed previously these are not relevant to adaptation and they are stored as part of

the element (panel or band) itself and not the piece. However, the set will include standard buttons11 if

mapping is being implemented for the purposes of adaptation (but not similarity, since buttons are not

involved in similarity as per the previous section).

Eligibility and disambiguation

Once the set of Shape Points has been obtained, the mapping process iterates over each Shape Point

and examines its set of roles. The primary role is discerned from the set, by the following process:

� In the particular scenario involving Raglan garments described in section 7.2.2.1, the ARMHOLE_TOP

role is retained. The NECK_TOP role is discarded, for implementation reasons (the process is sim-

pli�ed by working with only one role, rather than a set). As discussed previously, this is the only

situation in which a Shape Point has two roles.

10Except in the case of collars or hoods.
11But not user-added buttons.

197



� If the role set is empty, that Shape Point is discarded. Shape Points without roles cannot take part

in the mapping process as there is no way to determine their equivalent. In reality, this applies only

to a very small number of circumstances such as co-located points.

� If the role set has only one role, then this becomes the primary role.

Each pair of Shape Point is then examined to determine eligibility, by making reference to and primary

role. A Shape Point is deemed eligible if, in a situation where its parent piece was being mapped to

itself, it would pass the rules in section 7.2.2.2. For example, a Shape Point with a primary role of

ARM_CURVE will be eligible since a garment always has the same armhole style as itself. However a

user-added Shape Point will never be eligible, since the USER_ADDED role is excluded from mapping

without any reference to comparison of the attributes of the two garments.

Mapping

For each type of piece in common to the two garments, a mapping is created. This is done by taking the

set of eligible Shape Points from each piece, and comparing each element based on their key. Only pairs

which meet the criteria described in section 7.2.2.2 are incorporated into the mapping. The key will be:

� In the case of a standard button, its integer index. The indices are consecutive non-negative integers

which are assigned by ordering the buttons by the unique ID of their Shape Points. The Shape

Point with the lowest ID is assigned an index of 0, and so on.

� In the case of a pocket, the combination of the pocket position option and the primary role.

� In all other cases, the primary role.

The output of the mapping process is a set of ordered pairs of Shape Points; each item in the pair will

have an identical key but belong to a di�erent garment. Once the mapping process has been completed,

the keys can be discarded as they are no longer relevant.

7.2.3 Implementing RDR

This section explains how the concepts introduced previously in this chapter form part of a novel strategy

which is implemented for sketch adaptation in SEACOP. As explained in section 7.2.1, adaptation begins

with the query case, but then the retrieved case is obtained and the rules output case and comparison

case are created.

7.2.3.1 Mapping the cases

For adaptation to use RDR, it is necessary for the comparison case and retrieved case to be compared,

and the di�erences between the two are then applied to the rules output case. For this to be e�ected,

198



there needs to be a mapping between the equivalent Shape Points in all three cases. The mapping

between comparison case and rules output case is created by invoking the process discussed in section

7.2.2. As explained above, this produces a set of pairs of Shape Points; in each pair, one will be from

the comparison case and one from the rules output case.

The mapping between the retrieved case and comparison case will be more straightforward; these

cases contain the same questionnaire, and so will have the same set of features. Each Shape Point has an

integer identi�er (ID) which is unique within that garment. The sketch instantiation algorithm guarantees

that the allocation of IDs will be consistent, i.e. if it is invoked multiple times, each Shape Point will be

given the same ID. Therefore, the Shape Points in the retrieved case and comparison case are mapped

simply by comparing their IDs. In fact, the Shape Points from the retrieved case are not necessarily those

that are stored in the sketch, since for comparison to be meaningful the garment must be the same size as

the query case. So, if the editable sizes of the retrieved and query case di�er, then the resizing algorithm

(see section 5.2.7.2) is invoked to obtain copies of the retrieved case in the correct size. Since a similar

check is carried out for the comparison case (as explained in section 7.2.1), then all three cases relate to

garments of the same size.

If there are di�erences between the retrieved case and comparison case, this will be because the

user has created user-added Shape Points, bands or panels. These things are not features of the sketch

instantiation algorithm, but rather are added on demand when the user edits the garment. If present,

these features are ignored as they will be found in the retrieved case only and so will not be mapped.

However this is not a problem since, as table 7.1 speci�es, these particular features are outside of the

scope of adaptation.

7.2.3.2 Building up the list of proposed moves

As explained above, the mapping process is used to generate a list of pairs of Shape Points, linking the

comparison case and rules output case. We refer to these as pC and pS respectively. The ID-based

mapping also provides a link between the comparison case and retrieved case and we refer to each Shape

Point in the latter as pR, and its location as (xR, yR). The Shape Points in the replayed case (referred

to as pP) are therefore de�ned thus:

xP =


xS + xR − xC if there is amapping

xS otherwise

yP =


yS + yR − yC if there is amapping

yS otherwise

199



Figure 7.3: Example of a situation in which an adaptation rule will apply

Replay only occurs when a mapping exists between both {pC, pS} and {pC, pR}, otherwise (where

there is no such mapping between the three shape points), the locations remain unchanged.

In reality, the rules output case and replayed case are not separate objects; the rules output case

becomes the replayed case. This is accomplished by building up a list of proposed moves (LPM). Each

proposed move is from pS to pP. The remainder of this chapter explains how the entries are added to

the LPM , and then how it is checked for validity. If it is deemed valid, then the pP locations prevail and

adaptation succeeds; otherwise the pS locations are retained and adaptation fails.

7.2.3.3 Adaptation rules

Within the context of SEACOP's implementation of CBR12, an adaptation rule is something that prevents

distortion which can arise because of a partial match of the features between the comparison case and

rules output case. As previously discussed, cases in SEACOP are heterogeneous and in order to ensure

that the partial changes possible assumption (described in section 7.1.3.1) holds, sometimes additional

changes have to be added to the list of proposed moves (LPM).

Figure 7.3 shows an example in which an adaptation rule is applied. The comparison case is shown

on the left with a Raglan armhole style. The rules output case, however, has a set-in armhole style.

There is nothing in the criteria for mapping in adaptation (as listed in section 7.2.2.2) which prevents

the armhole bottom point from being mapped. However, the arm curve point cannot be mapped since

it has no counterpart in the comparison case. Therefore, without the adaptation rule, when the armhole

bottom is moved as a result of RDR, the curve of the armhole is in danger of being distorted.

The adaptation rule used in this situation is a coordinate di�erence preserver (CDP). The e�ect of a

coordinate di�erence preserver is to ensure that one of the coordinates of its subject Shape Point remains

the same distance from the corresponding coordinate of its reference Shape Point. In the example in

�gure 7.3, a proposed move would be added to the list (if necessary) to ensure that the signed di�erence

12This de�nition of �adaptation rule� used here is more speci�c than those used in the general CBR community.

200



Piece type Subject Reference Coordinate

Sleeve

RAGLAN_TOP CROWN Y
RAGLAN_BOTTOM CURVE_EDGE Y
TOP_OF_SHAPING CURVE_EDGE X

BOTTOM_OF_SHAPING LEFT_EDGE X

Body (front, back)

ARM_CURVE ARMHOLE_BOTTOM Y
YOKE_BORDER_LEFT ARMHOLE_BOTTOM Y

BOTTOM_BORDER_LEFT BOTTOM_LEFT Y
RAGLAN_BODY ARMHOLE_BOTTOM X

FRONT_BORDER_BOTTOM BOTTOM_OF_DIVIDE X
FITTED_OR_BAGGY_WAIST BOTTOM_LEFT X

LEFT_EDGE CUFF_EDGE X

Table 7.2: Coordinate di�erence preservers

in the y-coordinates of the arm curve and armhole bottom Shape Points remained the same after RDR

(as it was before).

A list of all the possible coordinate di�erence preservers is shown in table 7.2; however a CDP is

only created if both its subject and reference exist. The roles which exist depend on the features in the

garment; example sketches annotated with the roles are shown in appendix D.

The are two other types of adaptation rule. A line di�erence preserver (LDP) is similar to a CDP in

that it also proposes a move (if necessary) to keep the distance between its subject and reference points

invariant. However, the di�erence is that in a LDP the distance referred to is along a line, which is de�ned

by a third point known as the reference. Currently, LDPs are only used to preserve the thickness of the

neck band.

The �nal type of adaptation rule is known as a pockets mover . The purpose of a pockets mover

is to ensure that pockets that are positioned at the edge of a cardigan front are moved, if there are

proposed moves which a�ect the shape of the edge of the piece. For example, if the �tted waist is made

narrower, then the pockets may have to be moved slightly towards the centre of the piece. The sketch

instantiation algorithm has some simple rules for positioning pockets at the edge, and a pockets mover

reuses these, ensuring that they take into account the changed locations of the boundary of the piece.

Only one pockets mover is ever required per garment. Pockets movers a�ect the location of pockets, but

not their size; the size is determined through reuse via RDR.

It may also be desirable to invoke move advisers during adaptation, because these can also prevent

distortions that arise from heterogeneity. For example, if a proposed move would make the neck of a

round neck sweater deeper, then the control points of the Bézier curve should be moved to preserve the

character of that curve. If both the comparison and rules output cases have a round neck then this issue

does not arise because, presumably, the control points will be moved by RDR along with the neck bottom.

However, if the comparison case is a V-neck, those control points will not be present and therefore since

201



Figure 7.4: Abstract Move Adviser - hierarchy

they are not part of the mapping they are unchanged by RDR. Hence, a move adviser can be used to

remedy this.

The move advisers that may apply during adaptation are those that are part of the representation of

the rules output case; they will have been created by the sketch instantiation algorithm in the same way

as if the garment was going to be created outside of CBR. Unlike the situation with adaptation rules, no

special logic about features being absent in the comparison case is used in move advisers. The reason for

this can be explained with reference to the example in the preceding paragraph. If both cases were round

neck, then when the neck bottom was moved in the retrieved case, the control points would presumably

be moved with it. Therefore, as the control points will be mapped to the rules output case, they will be

part of RDR and entries will be added to the list of proposed moves for them. Move advisers will only

propose new moves, they do not overwrite existing ones, and therefore in this case the move advisers will

be automatically deemed not applicable.

Adaptation rules are implemented by reusing the mechanism for exploring the consequences (ETC),

as described in section 5.2.6.2. During sketch editing, the input to ETC is the user's proposed edit; during

adaptation the input is the list of mapped points with changes from RDR, as described in section 7.2.3.2.

In fact, as �gure 7.4 shows, both move advisers and adaptation rules are types of abstract move

adviser. Abstract move advisers have the core functionality required to participate in ETC; they can add

entries to a list of proposed moves. The use of exploring the consequences allows �exibility; move advisers

can be included, or CBR can be implemented with only adaptation rules.13

Despite having common functionality, there are di�erences between move advisers and adaptation

rules, as listed in table 7.3. Adaptation rules have a higher priority than most move advisers as they

are deemed to be particularly important during the adaptation process. The exception is pockets mover,

which only has a standard priority; the intention is that the pockets are not positioned until changes

a�ecting the outline of the garment have been actioned. As discussed in section 6.1, move advisers are

13It is always necessary to include the move advisers which preserve co-located points (which are explained in section
5.2.5.1), otherwise the integrity of the sketch may be violated.

202



Adaptation Rule Move Adviser

Scope Operates during adaptation Operates during adaptation and user
editing (CAD)

Application to
adaptation

Whenever the features is present in
the rules output case and absent in

the comparison case

When the feature is present in the
rules output case.

Prioritisation

Coordinate di�erence preserver: high
priority (1)

Co-located points: very high priority
(2)

Line di�erence preserver: high
priority (1)

Linked points: high priority (1)

Pockets mover: standard priority (0) All others: standard priority (0)
Further prioritisation is done using the notion of how much what it
depends on has changed, and how many shape points it a�ects.

Function in
symmetry

Not applicable since adaptation only
uses the editable part.

When a piece is made asymmetric by
the user, the move advisers are

copied, re�ected and applied to the
newly editable part.

Volatile
(in-memory)
representation

Has a temporary existence in a set
that is built especially for adaptation;

this set is destroyed afterwards.

An integral part of the piece.

Persistent (�le)
representation

Part of the program code Stored in XML

Optionality Not applicable User can deactivate them

Table 7.3: Di�erences between adaptation rules and move advisers

an integral part of the structure of a garment. However, adaptation rules only exist during adaptation;

they are relatively few in number and so are hard-coded into the Java program, for simplicity.

The list of proposed moves will consist of entries added by RDR, as explained in section 7.2.3.2. In

addition, further entries will be added by adaptation rules and move advisers, in order to preserve integrity

of certain key features. The addition of these further entries is automated by exploring the consequences;

thus, a key algorithm from the CAD aspect of SEACOP is reused to assist with adaptation.

7.2.3.4 Checking and failure of adaptation

The output of the processes discussed previously is the rules output case, and a list of proposed moves

(LPM). The next stage is to apply the moves in the LPM to the rules output case, to produce the replayed

case.

Before this is done, however, a check is carried out to ensure that the LPM would not introduce any

violations of the fundamental constraints. There are two types of violation: crossovers and non-intersect;

these are explained in section 5.2.6.5. The algorithm which checks this is the same one that is used for

movement (see section 5.2.6.4). However, there is a key di�erence: violations of fundamental constraints

which may occur during adaptation are not �xed in the same way as they are during movement. This

di�erence is deliberate: �xing violations uses heuristics and during movement, the user receives visual

203



feedback of the e�ect of these. Adaptation is di�erent as it is a (semi) automated process and the

user would not be able to di�erentiate between changes that have occurred during RDR, changes from

abstract move advisers, or those from �xes.

If the fundamental constraints check is not passed, then adaptation has failed - this is referred to as

a technical failure. Otherwise, the result is presented to the user and a subjective judgement is made as

to whether adaptation is a success, or a user-decided failure.

If the result is a technical failure or user-decided failure, then CBR can move on to retrieving another

case from the case base. Alternatively, the algorithm can output the rules output case; the user is then

free to edit this manually to produce the edited case. Thus, the hybrid nature of the system has provided

the implementer with �exibility in how to deal with adaptation failure: there is the option of using the

rules as a fall-back.

204



Chapter 8

Experiments

�All of science is nothing more than the re�nement of everyday thinking.� - Albert Einstein

This chapter describes some experiments that were conducted using the algorithms described in chapters

6 and 7. The experiments are designed to establish how the algorithms �t into the theoretical framework

of CBR (as presented in the literature), to gather evidence to describe how the algorithms may be used

in practice, and to show how they may be improved through further work.

Section 8.1 outlines some questions which are relevant to the way in which CBR can be used in

SEACOP. Section 8.2 explains how an experiment was devised to help answer these questions, and the

results of this experiment are shown in section 8.3. All experiments have limitations, and a simulation

that overcomes some of these limitations is presented in section 8.4.

8.1 Hypotheses

This section details the hypotheses that the experiments are designed to prove (or disprove); each hypo-

thesis is then discussed below.

1 CBR will produce designs that are more often accepted by the domain expert (than rules alone).

2 The use of all move advisers will be the best mode of operation.1

3 The minimum average distance (MAD) can be used as an indication of quality.

4 As the distance between retrieved and query cases increases, the e�ectiveness of CBR will decrease.

5 Questionnaire similarity can be used as a guide to whether to invoke CBR or not, i.e. as an estimate

for the success or otherwise of CBR.

6 As questionnaire similarity increases, the amount of change in adaptation will decrease.

205



7 The performance of SEACOP will improve as the case base grows, good performance will be

achieved with a few hundred cases.

8 SEACOP will normally be capable of producing output within an acceptable time (less than a

minute).

Obviously, where any research involves the creation of new techniques or algorithms, an important part

of that research will be to test their e�ectiveness. SEACOP is no exception, and therefore the central

hypothesis being tested is that the output of CBR should outperform rules (hypothesis 1). Rules are

in�exible, and in some domains such as fashion design they are often interpreted liberally in practice. The

hypothesis implies that the CBR has the �exibility to respond to deviations from those rules.

The adaptation algorithm described in chapter 7 can be used in two main modes: by invoking all

move advisers in the replayed case during the adaptation phase, or using only adaptation rules.1 These

two modes of operation must be contrasted to determine their relative e�ectiveness. Hypothesis 2 arises

from the belief that the use of move advisers will improve the output by enforcing constraints.

In order to answer questions about performance, it is necessary �rst to decide how quality can be

measured. Some measures for sketch similarity (e.g. MAD) were discussed in section 6.3. Hypothesis

3 asserts that can can be used as an indication of quality, since it can be used to objectively compare

the sketches of the output and goal cases. Increased values of MAD are expected to correspond to lower

quality outputs.

The perceived relationship between similarity and the e�ectiveness of CBR arises from the assumption

that similarity correlates with adaptability [4]. Therefore, hypothesis 4 states that as the distance between

retrieved and query cases increases, the e�ectiveness of CBR will decrease.

These experiments are conducted using the assumption that the questionnaire similarity can be used

as the measure of similarity between the retrieved and query cases. Since the sketches are derived from the

questionnaire, there is clearly a link between the two, so it is reasonable to assume that similarities in the

questionnaire will correlate to similarities in the sketch, and these in turn will correlate with adaptability.

If the assumption about questionnaire similarity holds, and hypothesis 4 is true, then it is also expected

that the questionnaire similarity can be used as a guide to whether to invoke CBR or not (hypothesis 5).

If the similarity falls below some preset value (which is derived through experimentation), then it may be

that the output of the rules can be expected to be better than that of CBR.

Hypothesis 6 arises from the intuitive response that the more similar two objects are, the less change

should be required to turn one into another. However, it is uncertain how this hypothesis �ts into the

RDR paradigm.

1And level 2 move advisers for co-located points.

206



The relationship between case base size and e�ectiveness is a popular theme in CBR research [173].

Assuming that there is su�cient coverage of the case base, hypothesis 7 is concerned with SEACOP's

performance (as de�ned by 'excellence' in section 8.4.2) when the case base has grown to a few hundred

cases.

E�ciency in the knitwear domain is not as important as in others, since the existing manual processes

(see section 5.1.1) are slow and the emphasis is on quality rather than productivity. However, it is still

important that the system provides an output within a reasonable amount of time, in order to obtain

the acceptance of users. Hence, hypothesis 8 states that SEACOP must be capable of producing output

within an acceptable time.

8.2 Methodology

Section 8.2.1 explains how the case base was built up. 'Seeding' the case base is a common issue in

CBR, but fortunately in SEACOP the output of the rules can be used to assist with this. Section 8.2.2

explains how the automated experiments were designed, and section 8.2.3 describes how the results were

evaluated.

8.2.1 Case base

In order to evaluate SEACOP, it is necessary to �rst populate the system with a test case base. The

composition of this case base is given in appendix E. It was possible to obtain 26 cases from the sponsors

of this research, Sirdar Spinning Ltd. Twelve designs were obtained from two knitting books [6, 174]. A

further twelve designs were created by myself.

In total, the case base is populated with 50 garments. Maximising the number of garments is important

for CBR research, as it is well known that performance increases with case base size, at least for small

case bases. In [173], a study was conducted on the e�ect of case base size on the accuracy of CBR using

four di�erent case bases; the results were presented as line graphs. Using 50 cases appeared (on manual

inspection of the graphs) to achieve between approximately 70 to 85% accuracy, dependent on the case

base and experimental method chosen. The shape of the graph indicated that performance increases very

rapidly with case base size for small case bases (i.e. less than 20 cases), but the improvements gradually

decrease until the graph reaches an asymptote. In all four case bases, 50 cases appeared to be close to

the optimum value (which was less than 100% accuracy). Of course, results will vary from domain to

domain.

Several factors make it di�cult to gather cases, e.g. it was only possible to obtain a limited number

from the sponsor. Knitwear literature can be another sources of cases. However, the majority of knitting

books concentrate on topics such as basic techniques in knitting. Sketches are the focus of this research,

207



and very few knitting books or patterns feature sketches, as (understandably) they are aimed at knitters,

and sketches are deemed to be unnecessary, because they do not explain how to knit the garment. Also,

sketches are thought of as too complex or confusing for ordinary knitters, because a 2-dimensional sketch

does not always correspond exactly to the appearance of a 3-dimensional garment.

So, in order to obtain sketches from knitting books or patterns, a process of reverse engineering is

usually necessary. This involves translating the written instructions into measurements. Sometimes the

measurements are stated explicitly in the pattern, but often only a number of stitches is quoted and the

measurement is obtained using the tension. From the measurements, a rough drawing is made using

pencil and paper. Then, inconsistencies in the measurements are resolved; these inconsistencies arise

from rounding errors in the instructions. Then, the questionnaire attributes are entered into SEACOP

and the resulting sketch is edited to ensure it is consistent with the drawing. The consistency referred to

is in the measurements and not the shape: it is unlikely that the rough drawing will be perfectly accurate.

It typically takes three hours to create a case using this process.

8.2.2 Design of automated experiments

The design of these experiments is di�erent to the design of a system which would be used in practice,

since in the former it is desirable to collect data from which the research questions and hypotheses

discussed in section 8.1 can be addressed.

The main2 experiment was conducted as follows. The garments that comprise the case base were

loaded into volatile memory. The questionnaire similarities of each pair of garments were computed and

saved to a �le.

Then, each garment from the case base was obtained and used as the query case. For each query

case, adaptation was attempted with all the other garments in the case base. This is a form of leave-

one-out testing, which has been utilised in CBR research by others, e.g. [173]. The key advantage of the

leave-one-out methodology is that it allows all the cases to be used, which is important when the case

base has a limited size (as per section 8.2.1). Each adaptation attempt was given one of three category

labels:

� Failure: if adaptation was a technical failure (see section 7.2.3.4).

� Success: if adaptation was not a technical failure, but another successful attempt had a higher

similarity than this.

� Retrieved : otherwise, i.e. if adaptation was not a technical failure, and the questionnaire similarity

was greater than any other for this query case. For each retrieved case, the sketch similarity

2The e�ciency experiments and simulation had di�erent methodologies which were explained in sections 8.3.6 and 8.4.2
respectively.

208



measured using MAD (see section 6.3) to the goal was recorded.

The experiments were performed twice, once using all move advisers during adaptation, and once using

only the level 2 move advisers (which are necessary to maintain the integrity of the sketch). Thus, the

use of move advisers in adaptation, which was explained in section 7.2.3.3, was explored.

The results from both invocations were stored as separate XML �les. Additionally, results were also

produced as image �les. Each image �le contains the sketch of the output superimposed on the goal. Up

to three images per query case were produced: one for the output of the rules, and the other two for the

modes of CBR (as discussed above). The superimposition is non-trivial since the two garments are not

necessarily composed of the same types of pieces (e.g. one may be sleeveless and the other not), and

the pieces each have their own coordinate system. The superimposition works by translating each piece

until their coordinates coincide. The bounding box of each pair of pieces is calculated, and a heuristic is

used to arrange these within the image. This heuristic algorithm is the same one used to arrange pieces

in the sketch editor, as depicted in �gure 5.1. Thus, an algorithm from the computer-aided design part

of the project is being reused to implement the experiments.

8.2.3 Evaluation of results

The evaluation of the quality of the output of CBR is important, in order to be able to judge the e�ect-

iveness of the system as a whole, and to make decisions about how it can be used in practice. The MAD

between the goal and output may provide an objective measure of the quality of the output. However,

MAD has several shortcomings. Firstly, it does not take into account di�erences in the composition of

the pieces; if a Shape Point is present in one garment, and there is no corresponding object in the other,

then it is ignored.

Secondly, MAD is an unsophisticated measure of similarity. As an illustrative example, consider the

situation in which the origin of a sweater front is moved down by 10cm. As a consequence, move advisers

would subject the origin of the back and the bottom left of both pieces to the same translation. Thus,

the back and front would be lengthened by 10cm, which is likely to result in a large MAD between the

two garments. However, the edit is easy to revert, so clearly MAD does not always correlate with the

di�culty of editing (as discussed below).

In addition to MAD, the results were scored subjectively (by a human) using a Likert [64] scale, as

shown below. Various sources were considered for the category labels, e.g. [175]. The words (below)

were chosen because they were descriptive, and each label consists of only one word (unlike, e.g. �very

good�). Also, despite its appearance in the literature, �average� was not used here as a label as it carries

an implication of statistical signi�cance, which could be misleading.

1 Bad : although a technical success (in the sense discussed in section 7.2.3.4), the result is probably

209



not feasible as a garment. It may have shapes that are di�cult to knit, and that would not form

part of a practical, wearable garment.

2 Poor: has some good features but also signi�cant di�erences; the result is unlikely to be considered

a close match to the goal.

3 Fair : could be converted into the goal, but would require several non-trivial edits.

4 Good : is recognisably similar to the goal.

5 Excellent: is very similar or identical to the goal; only one edit, or a small number of edits are likely

to be required.

Only integer scores were permitted, and when determining the score several factors were taken into

account, as listed below. The factors are not mutually exclusive and were not used in isolation: good

performance in one area may make up for poor performance in others. In approximate descending order

of importance, the factors are:

� Di�culty in editing: the e�ort required to transform the result into the goal is relevant; if the output

is something which is di�cult to edit into the goal, it will receive a low score. For example, it is

easier to change straight lines than curves. This is the most important factor, since it is likely that

the user will be involved in correcting the output of CBR when it is not judged that improvements

are required.

� Number of errors: the number of deviations in the positions of the points is important. It is easier

to correct one large error than 3 small errors, for example.

� Correctness of shapes: the result should have similar angles and curves to the goal.

� Distances: the di�erence between the locations of equivalent Shape Points in the output and goal

are relevant. This is what is being measured in MAD, but it is an aspect of the subjective score

also. If the distances are high, the two shapes will appear di�erent and so the output will tend to

receive a lower score.

� Size of the pieces: di�erences between the areas of the bounding boxes are relevant.

In order to apply these criteria the human judge would not need to be an expert, but would require

some specialist knowledge. Apart from the obvious visual ability to distinguish shapes, they need a some

knowledge of knitwear design, for example, so that they recognise that a sketch is corrupted (e.g. as

shown in �gure 8.8). Also, they need some experience in the sketch editing software, which is described

in chapter 5. This is necessary in order to fully appreciate the relative di�culty of making edits. For

210



Score
CBR

Rules All
All move
advisers

Only level 2
move

advisers

failure 2 6 0 8
1 4 9 1 14
2 18 19 15 52
3 13 13 20 46
4 10 2 10 22
5 3 1 4 8
Total 50 50 50 150
Mean (2 d.p.) 2.79 2.25 3.02 2.70

Table 8.1: Distribution of Scores: CBR versus rules

example, an evaluator may be experienced in other software which allows the users to manipulate curves

directly, which is not the case in SEACOP (which uses control points). Due to the di�culty in obtaining

people with such experience and knowledge, it was decided that I should evaluate the results myself. The

obvious disadvantage of this is the lack of impartiality. However, as the examples in section 8.3.2 show, I

believe the scores given can be justi�ed by the characteristics of the result, according to the criteria listed

above.

8.3 Results

The results of the experiments are presented in this section. Unless stipulated otherwise, non-integer

results are rounded to 4 decimal places.

8.3.1 Hypotheses 1 and 2: CBR compared with the rules

The results of CBR are compared with the rules to test hypothesis 1, that the use of CBR should

outperform rules. Also, it is possible to contrast the two modes of operation of CBR (hypothesis 2).

Table 8.1 and �gure 8.1 show the distribution of scores where CBR is run in two di�erent modes,

compared to the rules alone. The topmost row in table 8.1 indicates the cases that failed and thus

were not scored. The remaining rows show the number of cases which were given the score shown in

the column on the left hand side. The bottom two rows show summary information; the mean score is

rounded to two decimal places. The total number of results is 150, as each of the 50 cases was run in

the three di�erent modes (as indicated by the column headings).

The mean score for CBR is lower than that of the rules. However, the mean score with all move

advisers is higher than those with just level 2 move advisers, being closer to that of the rules. Therefore,

all results presented in subsequent sections as being CBR will relate to the all move advisers mode.

211



Figure 8.1: Distribution of Scores: CBR compared to Rules

Table 8.2 shows the scores grouped by the source of the query (or goal) case, for both CBR and rules.

Each column represents one source. The values in the cells refer to the number of cases which were given

the score shown in the leftmost column. The results for the rules are all fairly similar across the sources,

with the exception of the 'PR' cases, where the mean3 scores of the rules are signi�cantly higher than

the others. This suggests that in those cases, the goal is probably fairly similar to the rules output. In

the CBR results, the Budd cases are higher than the overall mean and the Badger ones lower, but as the

sample sizes are quite low there may not be signi�cant.

8.3.2 Examples

In this section, selected examples of adaptation are presented. Three examples were chosen: each one is

representative of an excellent, fair or poor result. Speci�c examples help to illustrate the decision making

during the scoring process, provide some intuitive evidence of the accuracy of the questionnaire similarity

algorithm, and examine how RDR works in more detail than can be provided by statistics alone. The

important attributes of the cases in question are listed in appendix E.

8.3.2.1 budd58b: an excellent result

With budd58b as a query case, the most similar other case was budd58c, with a questionnaire similarity

of 0.9596. Since the two questionnaire are the same except for the neck style and depth, the very high

similarity value is as expected.

Adaptation was technically successful. The result shown in �gure 8.2 indicates a perfect match on

3Mean scores were rounded to 2 decimal places.

212



Score Sirdar PR Budd Badger All

1 1 2 0 1 4
2 13 3 0 2 18
3 4 5 3 1 13
4 5 1 4 0 10
5 1 1 1 0 3

Total 24 12 8 4 48
Mean (2 d.p.) 2.67 2.67 3.75 2.00 2.79

(a) CBR

Score Sirdar PR Budd Badger All

1 0 0 0 1 1
2 10 0 4 1 15
3 14 0 4 2 20
4 1 9 0 0 10
5 1 3 0 0 4

Total 26 12 8 4 50
Mean (2 d.p.) 2.73 4.25 2.50 2.25 3.02

(b) Rules

Table 8.2: Scores grouped by source of garment

the sleeve and back, and only two defects on the front: the neck band is too narrow and the neck is too

deep. However, these defects are easy for the user to remedy, and because of the perfect sleeve and back

the output of CBR scores a 5.

The adaptation replays 26 changes to the garment. The only Shape Points in the garment that are

unmapped are the two neck Bézier control points. However, these have been set to appropriate positions

by move advisers in the replayed case. Thus, distortion that otherwise would have occurred (since the

retrieved case has no Bézier curves in the front) has been prevented by the use of move advisers. This

constitutes evidence in favour of hypothesis 2.

The defects arise because the V neck in the retrieved case has a narrower band and deeper neck. It

would be possible to create new conditions on mapping (see section 7.2.2) which forbid reuse of changes

to the neck bottom point. However, the more conditions that are added, the less adaptation takes place

so the composition of the conditions is a balance between control and reuse. With such an additional

condition in place, the neck bottom point on the front would be as per the rules, and there is no guarantee

that this would be better, as �gure 8.3 shows.

8.3.2.2 s3014: a fair result

With s3014 as a query case the most similar other case was s3003, with a questionnaire similarity of 0.8406.

The di�erences in the questionnaire attributes relate to the bottom border, neck style and tensions. The

similarity value, which is high but not exceptionally high, seems sensible given these di�erences.

213



Figure 8.2: budd58b: CBR result in magenta, goal shown in black

Figure 8.3: budd58b: rules output in magenta, goal shown in black

214



Figure 8.4: s3014: CBR output in magenta, goal shown in black

Adaptation was technically successful and the results are shown in �gure 8.4. The results bear some

resemblance to the goal, and although there are many di�erences, the sizes of the pieces are similar, so

it was scored as a 3.

The result of the rules is shown in �gure 8.5. The sizes of the pieces are a poor match (except for

the height of the body). The neck band width is also poorly matched. Therefore, it scored a 2.

The most interesting part of the adaptation of s3014 is the sleeve length. SEACOP has four options

for sleeve length; in order of increasing length they are: very short, above elbow , three quarter length,

and wrist. However, despite its name, the �very short� sleeve length is not the shortest possible (realistic)

sleeve. Ideally there should have been another option, possibly called �cap sleeve� which was shorter

still. However, this requirement was missed at the modelling stage. In many systems with a more rigid

architecture, this would cause ongoing problems for users. However, SEACOP has replayed the shortening

of the sleeve from s3003, as shown in �gure 8.6.

8.3.2.3 s3041: a poor result

When s3041 is the query case, adaptation fails with the 41 most similar cases. The most similar successful

case is s3011, which has a similarity of 0.3975. There are many di�erences between the two cases, so the

low similarity is as expected.

The result was technically successful and is shown in �gure 8.7. The bands and borders in the output

are too narrow, the sleeve length is too short, the front is too narrow and it has not captured the shape

of the front well, hence it was scored as a 2.

The goal case in s3041 is a garment which is on the limit of SEACOP's capabilities. It is shown in

�gure 8.7 as having a separate front border, bottom border and neck band; in reality these were not

215



Figure 8.5: s3014: rules output in magenta, goal shown in black

Figure 8.6: s3003: rules output in magenta, goal shown in black

216



Figure 8.7: s3041: CBR output in magenta, goal shown in black

separate and formed one long continuous curved border (an option which is not available in SEACOP).

The design utilises user-added points, and these are never created during adaptation. The complexity of

the query case is presumably the reason why it is so di�cult to adapt.

Figure 8.8 shows the result of adaptation where the retrieved case is s3311, which is the most similar

(with a questionnaire similarity of 0.8400). Adaptation was deemed to have failed because the neck of

the back is corrupted.

s3041 is a noteworthy example because of the low similarity rank of the retrieved case. The garment in

the case base which has the greatest questionnaire similarity to the query case (other than the query case

itself) is assigned a rank of 1. The ranks then increase in descending order of questionnaire similarity4,

until the garment with the lowest similarity which has a rank of 49. As table 8.3 shows, the majority of

adaptations (37 out of 48) succeed with one of the two most similar cases. s3041 is the most extreme

example in the case base, with a retrieved rank of 42 (this is the row in the table that is third from

bottom).

Figure 8.9 shows a scatter-plot of adaptation attempts with s3041 as the query case. Each point

represents an adaptation attempt (which is not necessarily successful). The horizontal axis shows the

questionnaire similarity between s3041 and the retrieved case. The vertical axis shows the number of

changes that are made to the replayed case, after exploring the consequences (ETC) has been invoked.

The red diamond indicates the datum corresponding to s3011 (the retrieved case with the highest similarity

4Ties (where two di�erent garments have the same similarity value with respect to a third garment) are very rare.

217



Figure 8.8: Replayed case where s3041 is the query, and s3311 is retrieved

Rank Number of query cases

1 28
2 9
3 1
4 2
5 3
7 3

8 to 14 0
15 1

16 to 41 0
42 1

43 to 49 0
Total 48

Table 8.3: Distribution of ranks of questionnaire similarity of retrieved cases

218



Figure 8.9: Changes in s3041 after ETC versus questionnaire similarity

which was associated with successful adaptation).

The data depicted in �gure 8.10 has a Pearson's r of 0.4816. The level of signi�cance for this (two-

tailed test for 50 cases) is 0.0004. This indicates that there is a positive correlation between questionnaire

similarity and the number of changes, in the case of s3041. Section 8.3.5.1 shows similar data for the

case-base as a whole. The signi�cance of this is discussed in more detail in section 8.5.1.

8.3.3 Hypothesis 3: Comparing score and MAD

The objective of comparing scores and MAD is to determine whether MAD can be used as an indication

of quality, as per hypothesis 3. Figure 8.10 shows a scatter plot of the score versus the MAD between the

goal and result. The graph shows a negative correlation: higher scores are associated with lower values

of MAD. Also, with the exception of the 4 cases which scored 1, the range of MAD values decreases as

the score increases. The Pearson product-moment correlation coe�cient (Pearson's r) is -0.4206, with

signi�cance level of 0.0024 (two-tailed test for 50 cases). Therefore, the negative correlation between

score and MAD is very unlikely to have occurred by chance.

The question can be formulated: what score is typically associated with a given questionnaire simil-

arity? Figure 8.11 shows a scatter plot of Score versus MAD, with a logarithmic trend-line added. Other

functions (exponential, linear, power and polynomial) were tried for the trend line but all had a higher

error rate, with the exception of a quintic function.

If the logarithmic function shown in �gure 8.11 is rounded to the nearest integer, then an estimated

value for the score can be obtained from the MAD. Table 8.4 shows the distribution of absolute di�erences

between the projected and actual scores. In 88% of cases, the estimated score is within ±1 of the actual

219



Figure 8.10: MAD versus score

Figure 8.11: score versus MAD, with trend-line

220



Di�erence Cases

0 24
1 18
2 6
3 0
4 0

Table 8.4: Distribution of di�erences between estimated score based on MAD, and actual score

score. The signi�cance of this is discussed further in section 8.5.1.

8.3.4 Hypothesis 4: Score and questionnaire similarity

The purpose of comparing questionnaire similarity with score is to investigate the relationship between

similarity and quality, as per hypothesis 4. Furthermore, the use of the questionnaire similarity as a guide

in retrieval (hypothesis 5) can be investigated.

8.3.4.1 Comparison

The scatter plot in �gure 8.12 compares questionnaire similarity (between query case and retrieved case)

and the score. The graph looks similar to a vertical re�ection of �gure 8.10. There is a clear positive

correlation between questionnaire similarity and score, although there are a few outliers such as the one

with a score of 5 and a questionnaire similarity circa 0.65. Pearson's r = 0.5793, at the signi�cance level

0.000038 (to 2 signi�cant �gures; two-tailed test for 44 cases, as the 6 failures are not shown). Therefore,

the correlation between score and questionnaire similarity is extremely unlikely to have occurred by chance.

8.3.4.2 Using the questionnaire as a guide

Table 8.5 and �gure 8.13 show the distribution of cases divided into three categories: where the CBR

(with all move advisers) has the maximum score, where the rules have the maximum score, and where

there is a tie.5 The results show that the majority of cases in which CBR gives the best output are where

the questionnaire similarity exceeds 0.93.

8.3.5 Hypothesis 6: Questionnaire similarity and the amount of change

In order to investigate the amount of change (hypothesis 6), some de�nitions are necessary:

� Map size � is the number of entries in the mapping between the query and retrieved case.

5If both modes of CBR are considered, then the 17 tied cases result from 5 di�erent types of scenario. The most
common of these (with 6 cases) is where the 'all move advisers' mode and the rules score are identical, but the 'level 2
move advisers only' score is lower. There are three cases in which the 'level 2 move advisers only' score is equal to that of
the rules, but the 'all move advisers' score is the lowest. There are cases in which the 'level 2 move advisers only' score is
better than the 'all move advisers' one; however in these scenarios, the score for the rules is always equal or better than
that of the 'level 2 move advisers only' score.

221



Figure 8.12: Questionnaire similarity versus score

Questionnaire Similarity Range CBR Rules Tie

0.3 < s ≤ 0.37 0 2 0
0.37 < s ≤ 0.44 0 0 1
0.44 < s ≤ 0.51 0 0 0
0.51 < s ≤ 0.58 0 2 0
0.58 < s ≤ 0.65 0 4 2
0.65 < s ≤ 0.72 1 1 1
0.72 < s ≤ 0.79 0 7 4
0.79 < s ≤ 0.86 0 1 2
0.86 < s ≤ 0.93 1 3 4
0.93 < s ≤ 1 11 0 3
0 ≤ s ≤ 1 13 20 17

Table 8.5: Breakdown of results for CBR, rules and tied situations

222



Figure 8.13: Breakdown of results for CBR, rules and tied situations

� Changes � is the number of changes in the replayed case brought about directly because of the

map.

� Changes with ETC � the changes after exploring the consequences has been invoked.

Hence:

map size ≤ changes ≤ changeswithETC

Null change refers to the situation where there was a mapping which did not result in a change, so:

null changes = changes−map size

The proportion of null changes refers to the proportion of map entries which result in no change, i.e.:

proportion of null changes =
null changes

map size

8.3.5.1 Map size, changes and changes with ETC

Figure 8.14 shows scatter plots of map size, changes and changes with ETC versus questionnaire similarity.

Each point in the scatter plot relates to one of the 2450 unique pairs of garments in the case base. Figure

8.14a shows a clear positive correlation between questionnaire similarity and map size. The shape of

�gure 8.14b is similar but with more of a spread, indicating a positive (but reduced) correlation. The

223



Datum Pearson's R Signi�cance (two-tail)

Map size 0.6032 <0.0000001
Changes 0.5189 <0.0000001

Changes with ETC 0.0238 0.2390

Table 8.6: Correlations with Questionnaire Similarity

spread is larger still in �gure 8.14c, which shows no obvious correlation from a visual inspection. These

observations are consistent with the correlation data in table 8.6.

Figure 8.15 visualises the same data in a histogram; this con�rms that map size and changes clearly

increase as similarity increases. However, the changes with ETC values show no such correlation and are

relatively constant at around 25-30.

8.3.5.2 Proportion of null changes

Figure 8.16 shows a scatter plot of the proportion of null changes versus questionnaire similarity; no

obvious relationship is apparent. However, when the data is summarised in �gure 8.17, it looks as if there

is a possible weak negative correlation.

8.3.6 Hypothesis 8: E�ciency

In this section an investigation into how long SEACOP will take to typically produce an output (hypothesis

8) is presented. Some indicative times taken to perform speci�c tasks are given below. These tests were

performed on a computer running Windows 7 on an Intel Core® i5-2410M 2.3GHz processor, with 6GB

of RAM.

For operations 1 and 2, 11 iterations were performed, and the �rst iteration was discarded as it was

consistently found to have a longer execution time, and this is attributed to implementation issues within

Java.6 For opening a �le, the �rst iteration took typically 2-3 times longer than subsequent iterations.

Operations 3, 4 and 5 require signi�cantly more processing and so only two iterations were performed,

and the �rst was discarded.

1 Opening a �le: 0.0023 seconds. Given a Java File object7, this is the mean time taken to create a

Garment object in memory. This value was obtained by �rst building an array of File objects within

the case base. Then, the array was iterated through. The time taken for the last 10 iterations were

averaged and divided by the number of garments (50).

2 Computing a questionnaire similarity: 1.7 x 10-6 seconds (to 2 signi�cant �gures). All unique pairs

of garments were computed, where the garment objects had previously been loaded into memory.

The time taken for the last 10 iterations were averaged and divided by the number of pairs (2450).

6These could include, for example, the global caching of String objects.
7Java File objects hold no signi�cant data other than the �le name and path.

224



(a) Map size

(b) Changes

(c) With ETC

Figure 8.14: Scatter plots with Questionnaire similarity

225



Figure 8.15: Questionnaire similarity histogram

Figure 8.16: Proportion of null changes versus questionnaire similarity

226



Figure 8.17: Mean proportion of null changes versus questionnaire similarity

3 Determining the e�ects of adaptation: 0.0073 seconds. Adaptation was attempted with all unique

pairs of garments, where the garment objects had previously been loaded into memory. This

operation determines the e�ects of adaptation, and whether it is technically successful or not;

however, the changes are not actually made to the query case at this stage. The time taken for

the last iteration was divided by the number of pairs (2450).

4 Apply the e�ects of adaptation: 0.0004 seconds. The methodology was as per test 3, except a

record was formed of pairs of garments, where adaptation would be successful. The record included

the list of changes that adaptation proposed. Then, the successful records were iterated over and

the output of adaptation was obtained in volatile memory. The time taken for the last iteration

was divided by the number of pairs for which adaptation was a technical success (1562).

5 Save a �le: 0.0032 seconds. The methodology was as per the test 4, except an array of garments

that formed the result of successful adaptations was compiled. The array was iterated over and

each garment was saved using a unique �le name. The time taken for the last iteration was divided

by the number of pairs for which adaptation was a technical success (1562).

The tests show that the times taken for operations 2 and 4 are insigni�cant. However, these operations

may have to be invoked for all cases in the case base. The time taken for operation 5 is much greater,

but this is typically performed only once per query case. The combined duration of operations 1 and 3 is

approximately 0.01 seconds.

227



8.4 Estimating the e�ect of case base size

As discussed previously, the experiments presented in section 8.3 were conducted with a case base of 50,

which gives an e�ective size of 49 using the leave one out methodology. One of the assumptions made

in section 8.1 is that performance would improve with case base size. Unfortunately, this assumption is

impossible to test without more cases. However, it is an assumption that is normally shown to be correct

in the literature (e.g. [173]), given that there is su�cient case base coverage and the cases are of good

quality.

The assumption normally applies because CBR is normally used in domains in which similarity correl-

ates with adaptability. In SEACOP, this implies that it is assumed that questionnaire similarity correlates

with score. If the assumption holds, then it may be possible to extrapolate a relationship between case

base size and score, based on the existing data about the distribution of questionnaire similarities. Using

this extrapolation, an estimate of the number of cases required to yield good results (hypothesis 7) from

SEACOP can be obtained.

In section 8.4.1, some results from the experiment (described earlier in this chapter) are presented,

and then assumptions are stated and justi�ed based on those results. Using those assumptions, a Monte

Carlo simulation is performed, as explained in section 8.4.2.

8.4.1 Assumptions

8.4.1.1 Normally distributed questionnaire similarities

Figure 8.18 shows a histogram of the questionnaire similarities for all pairwise comparisons.

� Number of pairs: 2450

� Mean: 0.5560

� Median: 0.5546

� Standard deviation: 0.1477

� Kurtosis: -0.1299

� Adjusted Fisher-Pearson standardized moment coe�cient (skewness): 0.0814

From the kurtosis value, it is apparent that the distribution of questionnaire similarities is approximately

Gaussian. For the purposes of the simulation, it is assumed this distribution applies to the problem domain

in general.

228



Figure 8.18: Distribution of questionnaire similarities

8.4.1.2 Relationship between questionnaire similarity and score

The relationship between questionnaire similarity and score was discussed in section 8.3.4.1. In this section,

a function is sought which takes the questionnaire similarity as its input, and outputs an approximate value

for the score. A regression analysis of score on questionnaire similarity was performed, but unfortunately

all the models yielded a maximum score of 4 within the range (i.e. 0 ≤ sim ≤ 1). Since the models

ignored results with a score of 5, they were rejected.

Instead, an invertible function which takes score values in the range 1 to 5 (inclusive) as inputs, was

sought. This function should be monotonic, since this exercise is based on the assumption that there

is a correlation between questionnaire similarity and score (and a non-monotonic function would not be

invertible).

Figure 8.19 shows a regression analysis of questionnaire similarity on score, using a logarithmic func-

tion. Table 8.7 shows the di�erent models that were used, the function within that model that was the

best �t, and the respective error value. The logarithmic model was chosen, since it is monotonic, and

has a higher R² value than the exponential, linear or power models. The polynomial functions were not

used as they are not monotonic, even within the range required (i.e. 1 ≤ score ≤ 5).

Table 8.8 and �gure 8.20 show a comparison of the results of the logarithmic regression with the

mean values for questionnaire similarity. The cases with a score of 5 have an estimated value (which is

229



Model Equation Error R²

exponential sim = 0.6022e0.0989score 0.2958
linear sim = 0.0766sim+ 0.5935 0.3356

logarithmic sim = 0.2033 ln(score) + 0.615 0.3633
power sim = 0.6183score0.2637 0.3235

polynomial
sim = −0.0263score2 + 0.2324score+ 0.3933 0.3902

sim = −0.0156score3 + 0.1115score2 − 0.1352score+ 0.6814 0.4216

Table 8.7: Regression analyses: questionnaire similarity versus score

Figure 8.19: Questionnaire similarity versus score, showing logarithmic regression model

230



Score
Actual Estimate

Mean Number of Values Value Deviation (2 d.p.)

1 0.6416 4 0.6150 4.15%
2 0.7330 18 0.7559 3.13%
3 0.8583 13 0.8383 2.32%
4 0.9297 10 0.8968 3.54%
5 0.8477 3 0.9422 11.15%

Table 8.8: Comparison of estimated and actual values for questionnaire similarity, given the score

Figure 8.20: Comparison of estimated and actual values for questionnaire similarity, given the score

based on the logarithmic function given above), which deviates from the actual mean value by 11.15%.

This deviation is fairly high, but the sample size is very small: there are only three cases. Also, the model

performs well for the other cases, with the maximum deviation being 4.15%. The percentage deviation

is simply calculated as:

|estimate− actual|
actual

× 100

The logarithmic function is deemed a good approximation, since it �ts well (except for the 3 high

scoring cases). The inverse of this function is:

score = e
sim−0.615

0.2033

This value is bounded and rounded to the nearest integer thus:

231



Questionnaire Similarity Technical Success Technical Failure Proportion Success

0<s≤ 0.05 0 0
0.05<s≤ 0.1 0 0
0.1<s≤ 0.15 0 1 0
0.15<s≤ 0.2 5 7 0.4167
0.2<s≤ 0.25 24 9 0.7273
0.25<s≤ 0.3 35 13 0.7292
0.3<s≤ 0.35 78 28 0.7358
0.35<s≤ 0.4 104 62 0.6265
0.4<s≤ 0.45 156 89 0.6367
0.45<s≤ 0.5 172 96 0.6418
0.5<s≤ 0.55 193 119 0.6186
0.55<s≤ 0.6 200 111 0.6431
0.6<s≤ 0.65 190 112 0.6291
0.65<s≤ 0.7 153 87 0.6375
0.7<s≤ 0.75 107 66 0.6185
0.75<s≤ 0.8 70 47 0.5983
0.8<s≤ 0.85 35 22 0.6140
0.85<s≤ 0.9 16 9 0.6400
0.9<s≤ 0.95 10 4 0.7143
0.95<s≤ 1 14 6 0.7000
0.95≤s≤ 1 1562 888 0.6376

Table 8.9: Proportion of technical successes versus questionnaire similarity

integerscore =


1 if score < 1.5

5 if score ≥ 4.5

round(score) otherwise

The e�ect of the rounding function is to create boundaries with approximate values {0.6974, 0.8013,

0.8697, 0.9208}. These boundaries delineate 5 intervals which correspond to the scores 1 to 5, respectively.

8.4.1.3 Constant probability of technical success

Table 8.9 and �gure 8.21 show the proportion of adaptations which were technically successful, for

all pairs of cases in the case base, grouped by questionnaire similarity. Technical success means that

an output was produced without violating the fundamental constraints (crossovers and non-intersects),

being the opposite of technical failure, when no output was produced. However, technical success does

not necessarily mean that the output was good.

Figure 8.21 shows that, apart from the 7 pairs with a similarity below 0.2, the proportion of technical

successes lies in the range 0.5983 to 0.7358. The overall mean is 0.6376. As discussed in section 8.4.1.1,

the distribution of questionnaire similarities is approximately Gaussian. This means that the high and low

similarity bands, which have a proportion that is visibly di�erent from the mean, represent very few cases.

232



Figure 8.21: Proportion of technical successes versus questionnaire similarity

The histogram does not indicate that there is an obvious correlation between the two factors and it

seems reasonable to assume a constant probability of technical success of 0.6376 (the value of the overall

mean from table 8.21).

8.4.2 Monte Carlo simulation

Monte Carlo simulations use the repetition of stochastic techniques to make generalisations about the

long-run outcome of events [166]. The object of the Monte Carlo simulations discussed here was to

estimate the e�ect of the case base size (n) on the score. Each run of the simulation worked by

generating an array of n numbers with a Gaussian distribution as per section 8.4.1.1, to simulate the

questionnaire distances. These numbers were then sorted in descending order.

The process iterated through the array (starting with the maximum value) in a way that simulated

retrieval. Upon each iteration, a pseudo-random number with uniform distribution was generated; if this

exceeded a preset value (0.6376, as per section 8.4.1.3) then adaptation was deemed to be successful.

Otherwise, the next largest value from the array was obtained and the process repeated, until adaptation

was deemed successful or all the values in the array have been �retrieved�. The latter situation represented

technical failure.

If adaptation was deemed technically successful, then the similarity was converted into an integer

score as per the formula at the end of section 8.4.1.2. The results were collated over 10000 runs of the

233



Case base size Failure
Proportion with score

1 2 3 4 5

25 0 0.0580 0.4012 0.3035 0.1338 0.1036
50 0 0.0032 0.2052 0.3762 0.2219 0.1935
75 0 0.0002 0.0947 0.3489 0.2793 0.2769
100 0 0.0000 0.0445 0.2948 0.3085 0.3523
125 0 0.0000 0.0196 0.2387 0.3229 0.4188
150 0 0.0000 0.0090 0.1896 0.3248 0.4766
175 0 0.0000 0.0041 0.1496 0.3181 0.5283
200 0 0.0000 0.0019 0.1131 0.3069 0.5782
225 0 0.0000 0.0008 0.0884 0.2926 0.6183
250 0 0.0000 0.0004 0.0666 0.2719 0.6611
275 0 0.0000 0.0001 0.0511 0.2511 0.6977
300 0 0.0000 0.0001 0.0385 0.2319 0.7296
325 0 0.0000 0.0000 0.0304 0.2170 0.7525
350 0 0.0000 0.0000 0.0224 0.1980 0.7796
375 0 0.0000 0.0000 0.0179 0.1809 0.8012
400 0 0.0000 0.0000 0.0140 0.1651 0.8209
425 0 0.0000 0.0000 0.0105 0.1479 0.8416
450 0 0.0000 0.0000 0.0075 0.1358 0.8566
475 0 0.0000 0.0000 0.0054 0.1217 0.8729
500 0 0.0000 0.0000 0.0045 0.1113 0.8842

49 0 0.0035 0.2118 0.3737 0.2195 0.1915

Table 8.10: Monte Carlo Simulation results

experiments; they are shown in table 8.10. The results indicate that if the case bases is larger than around

175 cases, the system can be expected to give an excellent result (score of 5) the majority of the time.

An investigation was performed to determine the e�ect of the probability of technical success on case

base size which is required to achieve 'excellence'. Excellence is de�ned as the state in which at the score

is 5 for at least half the query cases. This means that a very good score is being obtained the majority

of the time.

The investigation took the form of a search. For a given case base size (n), the simulation was run

1000 times for n=100 cases, and then n was increased by 100 each time (if necessary) until excellence

was achieved. Then a second search was conducted with n starting at the output of the previous search,

and using runs of 10000 simulations and changing the case base size in (either positive or negative)

increments of 10. Finally, there was a third search which incremented or decremented n in steps of 1,

using runs of 100000 simulations. The lowest value of n from the third search which achieved excellence

was output.

The results are shown in �gure 8.22. The relationship is clearly a reciprocal or inverse power one.

This indicates that if there is a small error in the probability of success, there is only likely to be a small

error in the cases required for excellence, as long as the probability of success is not too low (e.g. if it is

> 0.4).

234



Figure 8.22: E�ect of the probability of success on the cases required for 'excellence'

235



8.5 Discussion

This section discusses the signi�cance of the results of the experiment and simulation. Care has been

taken in the interpretation of the results for a number of reasons. For example, non-uniform distributions

a�ect the analysis; when Gaussian data is grouped in a histogram this gives a di�erent correlation to the

use of the raw data. And even if a correlation is present, this does not necessarily imply causation. Also,

sample sizes have to be taken into consideration: smaller samples mean that trends or relationships may

be less obvious or those that are apparent may actually be spurious.

The domain of knitting tends to lend itself more to heuristics rather than formal logic, and this

chapter contains no proofs.8 However, there is substantial evidence that hypothesis 1, 2, 4, 5, 7 and 8

are correct. There is some evidence to support hypothesis 3 (use of MAD as an indication of quality).

There is substantial evidence that hypothesis 6 is incorrect, as explained in section 8.5.1.

Algorithms for implementing similarity and adaptation were described in section 6.2 and chapter 7.

However, no coherent strategy for implementing these and integrating them with the computer aided

design (discussed in chapter 5) has been presented so far. Such a strategy can only be stated with

con�dence when it is accompanied by evidence of its e�cacy; such evidence is discussed in section 8.5.2.

8.5.1 Signi�cance of the results

As discussed in section 8.3.1, the 'all move advisers' mode gave the best results, so this provides clear

evidence that hypothesis 2 is correct. In the alternative mode, the only way that move advisers are

involved in RDR is indirectly, via the retrieved case.9 For example, if both retrieved and query cases have

a round neck, then the action of making that neck deeper will be a part of the RDR. When the neck

was made deeper in the retrieved case, presumably a move adviser would have been invoked to move the

Bézier curve control points, and thus the action of that move adviser will then be replayed.

However, if the retrieved case had a V neck and the query case a round neck, then the neck deepening

will be replayed, but there would be no Bézier curve control points in the mapping, as these are not present

in the retrieved case. Therefore, the character of the curve is in danger of being distorted by RDR. This

phenomenon is presumably responsible for the improved results when all move advisers are being used (as

per hypothesis 2). It is better to involve the move advisers that are known to be appropriate to the query

case (as per the example in section 8.3.2.1), than try and use move advisers directly from the retrieved

case, which may have di�erent features.

Hypothesis 3 was that MAD could provide an indication of quality. The results in section 8.3.3 show

a negative correlation between MAD and score. Additionally, as the scores increase, the range of MAD

8Although, proving a hypothesis is notoriously di�cult since it is necessary to disprove any alternative causes of the
phenomenon.

9With the exception of the level 2 move advisers which maintain the integrity of the sketch.

236



values decreases. This is to be expected, as it indicates that excellent results have a very low MAD.

Evidence suggests that MAD provides an indication of quality, but is not synonymous with the score. As

discussed in section 8.2.3, MAD and the score measure di�erent things.

The most appropriate use for MAD might be to validate the score in future experiments. After the

score has been input by reviewers, this could be checked against the MAD. An example of a function that

may help to implement this was shown in section 8.3.3. In the case base shown, 12% of user-provided

scores deviated from the estimated score by 2 or more points. In these scenarios, a warning could be

�agged to prompt the user to re-evaluate the result, or pass it to another reviewer for an extra opinion.

Hypothesis 1 was that the use of CBR should outperform rules. The results in section 8.3.1 suggest

that this would not be true if CBR was used exclusively, in a small case base. In this scenario, rules

produced outputs with the best mean score. However, for some cases the CBR output was better, so

it is possible that the designer could be o�ered both alternatives, and invited to make a choice. The

combination of rules and CBR would then be better than rules alone (by de�nition). This is discussed

further in section 8.5.2.

The results in section 8.3.4.1 suggest a positive correlation between questionnaire similarity and score,

con�rming hypothesis 4 that the e�ectiveness of CBR decreases with increased distance. There are outlier

cases which indicates that the questionnaire similarity is not a perfect measure, but this is to be expected.

Section 8.3.5.1 contained some thought-provoking results about the relationship between the ques-

tionnaire similarity and the amount of change. It is clear that the number of changes before ETC correlates

with questionnaire similarity. This result appears odd because an intuitive response would be that the

more similar two objects are, the less change is required to adapt one into the other (as per hypothesis

6).

However, it is also intuitive that the map size should correlate with questionnaire similarity, since map

entries can only be added if features are in common to the two cases. Changes (before ETC) can only

occur because of map entries; this means that when two garments are similar to each other, there are

more features in common and therefore more opportunity to change one into the other. Conversely, two

dissimilar garments will have less features in common and there is less opportunity for change. This is

strong evidence for the contrary of hypothesis 6: in fact as questionnaire similarity increases, the amount

of change in adaptation will increase.

This phenomenon is the most likely explanation for the high rank (i.e. low similarity) of the retrieved

case for s3041, as presented in section 8.3.2.3. The sketch instantiation algorithm guarantees that the

rules output case will not contain any violations of the fundamental constraints. This could explain why

adaptation was successful with such a dissimilar garment: because there were fewer (18) changes, there

were less opportunities for the rules output case to be made invalid. The situation in �gure 8.8, where

adaptation failed, involved 33 changes.

237



A negative correlation between similarity and the probability of technical success seemingly contradicts

one of the established principles of CBR: that similarity has a positive correlation with adaptability. It

is important to recognise, however, that technical success is di�erent from the score, which tends to

increase with increasing similarity.

8.5.2 Recommendations for Use

The results in section 8.3.4.2 suggest that CBR tends to perform better than the rules where the ques-

tionnaire similarity exceeds a threshold of 0.93. In fact, the rules were never better (than CBR) above

this threshold. This is good evidence to support hypothesis 5: the threshold on similarity could be used

as the basis for an automated decision about whether to invoke CBR or not.

The recommended strategy for using the similarity and adaptation algorithms, supported by the

experimental results, is as follows:

1 The user enters the query case (Q), which consists only of a questionnaire.

2 The similarities of all existing cases with the query case are computed.

3 The set of cases (s) with a similarity value of 0.93 or greater is formed.

4 If (s) is empty, the result of the rules is output and the process moves to step 10.

5 The most similar case (R) is removed from (s).

6 Adaptation is attempted with (Q) and (R).

7 If adaptation is unsuccessful, the algorithm moves back to step 4. Otherwise, it moves to step 8.

8 The user is asked whether they accept the case. If they do not, the process moves to step 4.

Otherwise, it moves to step 9.

9 The result of CBR is output to the user.

10 If necessary, the user edits the output.

11 The output is retained as a new case.

The adaptation process is fully automated, but is only attempted with similarities over the threshold.

This means that the likelihood that the output of adaptation will be acceptable to the user is high. If the

threshold is not met, then the output of the rules is used as the evidence in section 8.3.4.2 suggests this

is likely to be better. In the case base of 50 garments, 16 had at least one other case with questionnaire

similarity above the threshold. However, as the case base increased in size, this proportion would increase.

238



This threshold should be subject to review, but my expectation is that it will remain in the range 0.8 to

0.95.

The simulation in section 8.4.2 assumed the system would always use the output of CBR. It also

made several other major assumptions, as detailed in section 8.4.1. Because of these assumptions, the

results of the simulation must be interpreted liberally, rather than literally.

The absence of failure is notable in table 8.10. However, it is easily explained by the assumption

in section 8.4.1.3, and the methodology of the simulation which treats each instance of adaptation (for

the same query case) as statistically independent.10 For 25 cases the probability of adaptation failure is

assumed to be (1 − 0.6376)25 ' 10−11, and for 500 cases it is ' 10−221. The assmption of statistical

independence is naive, since some of the factors that lead to adaptation failure are dependent only on the

nature of the query case (as explained in section 8.3.2.3), and therefore the events are not independent.

A more sophisticated version of the simulation (which was not implemented) might assume that the

probability of technical success varies from query case to query case, using pseudo-random numbers.

However, it is worth noting that the assumption about the relationship between questionnaire similarity

and score in section 8.4.1.2 is pessimistic. For scores of 5, the regression model gives a questionnaire

similarity that is higher than the mean of the three values. The simulation suggests that excellent results

will be obtained with a case base of 175 cases. However, even if this �gure lies in the range 100-300

cases, this would still mean that CBR should signi�cantly outperform the rules (for the production of

sketches) within a year in an organisation such as Sirdar Spinning Ltd, which produces approximately 300

patterns annually.

The decision on whether to accept the output of CBR must lie with the user since there will always

be outlier cases where CBR performs poorly, even with a high questionnaire similarity. Through the use

of the threshold, the situation where the user is presented with a succession of poor cases is likely to be

rare. Such a situation could to disillusion the user with CBR and induce them to reach for the safety of

the rules.

The study on e�ciency in section 8.3.6 indicates that the time taken to compute questionnaire

similarity is negligible. In a hypothetical scenario where the case base has 1000 garments and it is

necessary to open and check adaptation for all of them with the same query case, this would be expected

to take of the order of 10 seconds. Whilst 10 seconds may be an acceptable time frame, the scenario

presented is pessimistic. As discussed in section 8.5, realistically a lot less processing than this would be

performed, as the strategy outlined above restricts attempts at adaptation to cases that have a similarity

exceeding the threshold. Through the use of this strategy, it is likely that case base maintenance would

10False assumptions of statistical independence are sometimes widely accepted and lead to erroneous conclusions. For
example, Professor Sir Roy Meadow famously stated that the chances of 3 babies dying naturally were 1 in 73000000, a
�gure obtained by cubing the probability of one cot death (1 in 8543). However, the events were not necessarily independent
and the murder conviction (in which this evidence was cited) was overturned on appeal [176].

239



Figure 8.23: Illustration of function which increases threshold with age

not be required for reasons of e�ciency alone, even if the case base contained thousands of garments.

E�ective retrieval can be guided by factors apart from similarity. Newer garments are more relevant

than older garments, as design trends change with fashion. So, it may prove bene�cial to alter the

threshold on questionnaire similarity according to the age of the retrieved garment. Figure 8.23 gives an

example of such a function.11 Design departments typically want to retain a record of all their designs,

for operational purposes (e.g. they may be required to o�er customer support on old designs). Through

the use of a variable threshold, the system could store designs inde�nitely, whilst maintaining good

performance.

The results and analysis in this chapter have shown how RDR �ts in to the general framework of CBR.

Some aspects of the results agree with those found in the CBR literature, for example similarity being a

guide to retrieval. Others are surprising, such as the amount of change increasing with similarity. The

results also show that, at least in this domain, RDR is dependent on the supporting process for dealing

with outlier cases and as an adjunct to CBR when the case base is small.

It has been shown that, for very similar cases, the use of RDR can outperform the rules alone.

This has the potential advantage of saving labour, i.e. allowing designs to be produced more quickly.

However, RDR has one disadvantage that has not yet been discussed. The user carries a heavy burden

with SEACOP, since they are responsible for ensuring the quality of the output. Some users may prefer

the predictability of rules; the rules give them a sketch which is usually inaccurate but forms a consistent

starting point. In contrast, CBR provides a sketch with an inconsistent starting point which is, for large

case bases, often better than the rules.

11The function used in this example is threshold = 0.99− 0.06√
age+1

.

240



Chapter 9

Conclusions

�Some problems are so complex that you have to be highly intelligent and well informed

just to be undecided about them.� - Laurence J. Peter

The main challenges in this PhD were the subjective nature of success, design constraints, the complexity

of the objects, and the lack of readily available and usable data as examples. It has been demonstrated

that a good solution to the problem can be obtained with a hybrid CAD-CBR system.

9.1 Main contributions

This research made a number of contributions to knowledge, and satis�ed the objectives listed in the

introduction chapter (section 1.4).

A CAD system which meets many user requirements and also facilitates CBR

One practical outcome of this PhD dissertation is a CAD system that automates the knitwear design

process. The system responds to the user's requirements, as expressed in the questionnaire. The system

also supports automatic enforcement of constraints such as sleeve-arm consistency, so the designer can

be assured their work constitutes a knittable garment. This thesis documents the prioritisation scheme

that is used to enforce and �x constraints in the sketches.

Rather than utilising an existing CAD package, the decision was taken to develop a bespoke system.

Whilst this has obvious drawbacks in development time, it has many advantages. With a third party

system, access may be restricted to only the data �les, or perhaps to selected volatile data, via an API.

However with SEACOP, the full object model and program code is available for use in experiments and

in developing a hybrid CBR system. This ensures that the more di�cult aspects of the implementation,

such as the implementation of the rules about mapping Shape Points, were not fettered by limitations of

access to data.

241



There was a strong symbiosis between CAD and CBR, both in the functionality and the program code

that was used to implement them. The concepts of move advisers and exploring the consequences are

used for both managing constraints in the sketch editor, and for implementing changes in adaptation.

The sketch instantiation algorithm is able to produce a consistent starting point for either user editing

or CBR. The CAD functionality supports CBR in two additional ways: it helps with initial seeding of the

case base, and it provides a fall-back for outlier cases, when CBR gives a poor result. A strategy for

combining CAD and CBR was proposed, and evidence of its e�cacy presented; this ful�ls objective (i) of

section 1.4.

The use of a 2-level structure as a design speci�cation, and self-index for CBR

SEACOP represents designs on three levels: questionnaire, sketch and chart. The speci�cation is dual-

purpose. As its name suggests, it speci�es the design, and therefore provides a means of generating

the sketch via the rules in the sketch instantiation algorithm. It consists of su�ciently few questions to

be completed relatively rapidly by a user. However, there is enough information in the speci�cation to

generate a sketch which provides an approximate solution to the user's requirement.

More importantly, the questionnaire provides a means of implementing a similarity measure for CBR.

The measure is e�cient to execute, taking of the order of a microsecond to compare two cases. It is a

data structure that is inherent to the problem, and avoids the need for an arti�cially constructed index.

An algorithm for comparing questionnaires was presented; this ful�ls objective (ii) of section 1.4.

The use of ranked attributes for similarity

A simple algorithm and accompanying GUI has been constructed; this is capable of generating weights

from a list of features that are ranked in order of importance. Many domain experts �nd the idea of

providing weights di�cult, but it is much easier to rank features in order of importance. A choice of

several functions was provided to map ranks to weights; this a�ords �exibility. The algorithm is also

�exible enough to deal with irrelevant attributes and those that are of equally high priority. It has been

shown how the global similarity measure can be used with di�erent local similarity measures, e.g. a Likert

matrix.

Rule di�erence replay: a novel generative adaptation operator

A particularly signi�cant outcome of this research has been the development of a novel generative adapt-

ation operator, rule di�erence replay (RDR). It has been demonstrated that RDR can produce positive

results in the knitwear problem. The assumptions that underpin RDR have been clearly stated and jus-

ti�ed, so that the wider relevance of the technique (beyond the knitwear problem) can be established.

242



It has been shown that RDR is capable of correcting de�ciencies in rules, where those de�ciencies have

previously been corrected manually.

RDR can be implemented without an onerous knowledge engineering task. Therefore, in situations

where it is applicable, it may be an attractive alternative to knowledge-intensive adaptation. The biggest

burden in RDR is likely to be establishing common features between the objects. However, if a system

is constructed with the requirements of RDR in mind from the start, this may not be too di�cult. The

way in which the burden was overcome within SEACOP (by labelling points in the designs with roles) has

been described and demonstrated. RDR enables the solutions to problems to be reused, thus ful�lling

objective (iii) of section 1.4.

Minimum average distance: a measure of solution similarity

Minimum average distance (MAD) was devised: it is simple algorithm for comparing shapes, drawings

or sketches. MAD is dependent only on the ability to derive common features between the shapes, and

makes no other assumptions apart from there being only one global minimum.

It has been shown how MAD can be used to validate subjective success scores, so that more con�dence

can be attributed to those scores. The way in which deviations between actual and predicted scores are

highlighted has been demonstrated. It has also been shown how the combination of subjective scoring and

validation with MAD allows success to be measured; thus objective (iv) of section 1.4 has been ful�lled.

When similarity does not correlate with adaptability

An anomalous situation in which similarity does not correlate to adaptability was encountered, and

explained. The situation can arise where an object starts in a valid state, where that starting point

is very close to an invalid state (i.e. it is a very sensitive solution), where adaptation can potentially make

it invalid, and when only features that are in in common to the query and retrieved cases are changed.

This can result in a negative correlation between similarity and adaptability. This phenomenon could occur

in other domains with RDR; however this could be remedied, by using similarity as a guide to retrieval.

The situation is noteworthy because it is a �nding of this research that apparently contradicts with one

of the established assumptions of CBR: that similarity has a positive correlation with adaptability.

A simulation for estimating the e�ect of case base size

A simulation which estimates the e�ect of case base size on the performance of the system was presented.

The simulation is useful in problems such as the knitwear one, where access to cases is limited. The results

indicated that a relatively modest increase in case base size is likely to mean that the CBR part of SEACOP

yields excellent results in the majority of cases. This answers the question posed in objective (v) of section

243



1.4.

9.2 Applicability to other domains

Much of the functionality developed as part of this thesis could be reused for other purposes, for example

the computer-aided design tool could be adapted for other 2-D design problems. The concept of comparing

speci�cations in order to measure the similarity of domains could also be extended to other domains.

The most promising opportunities to extend this work to domains arise from RDR. The assumptions

on which RDR relies on have been carefully documented in this thesis. RDR has the potential to be

reused in design problems as architecture or interior design.

RDR could also be applied to other domains, for example metal cutting. In order to meet the

assumptions, there would need to be common features between the objects being manufactured. However,

it is easy to see how this could be achieved if the objects came from the same family of products, e.g. if

they were all types of spanner or angle bracket.

There is no reason why RDR should be restricted to 2D-CAD; di�erences along three dimensions could

be replayed. Also, RDR could potentially be used with commercial CAD systems, provided su�cient access

to meta-data about the drawings (e.g. the function of objects and of parts of those objects) is available.

Interior design is applied to domestic, commercial or industrial environments. Similarly to knitting,

it is a weak theory domain it is hard to formulate rules about what constitute a good design, but most

people know a bad design when they see it. One aspect of interior design that is particularly amenable

to RDR is the placement of objects within a room. The objects could be decorative (e.g. ornaments or

indoor plants), or functional (such as chairs or commercial o�ce furniture). The representation of these

objects in a computer could take several forms: as a pictorial image, but also as dimensions, and codes

to indicate their function.

Interior designs could be created using simple domain rules. There is also the possibility to incorporate

interesting variations on these rules, e.g. feng shui. But the rules are likely to be incomplete, or produce

outputs that may be considered naive in some situations. So, the di�erence between the output of the

rules and the resulting design could be replayed with RDR. The replay could take the form of alterations

in the positions of objects, or changes to their dimensions or size. As with the knitwear design problem,

this has the potential to be able to make up for shortcomings in the rules. For example, the rules may

place the same size of desk in every o�ce, but RDR may make the desk bigger in an executive o�ce, if

this change was previously made manually to a design in the retrieved case.

244



9.3 Further work

Computer-aided design

Experience has shown that computer-aided design can take considerably longer to implement than CBR.

In fact, it has been said that some commercial knitting systems have had of the order of 150 person-years

of development time devoted to them [151]. Since perhaps only 2% of this time has been spent on

SEACOP's CAD functionality, there are obviously many improvements that could be made.

However, many of these improvements would add little scienti�c value to the research. For example,

the CAD functionality could be extended to produce other types of garments such as hats, gloves and

scarves. These garment types are rarer than cardigans and sweaters, and so it may be that attempts to

use CBR with the new designs are fruitless.

Grading is one area in which improvements could be fruitful. Only one way to �t knitting patterns

into a shape was implemented; in reality there are several alternative options. If CBR was extended to

include knitting charts, this could become more relevant, since for adaptation to work, the retrieved case

is often resized to match the query case.

Similarity

Various experiments could be made to try variations on the way questionnaires are compared. For example,

the experiments could be repeated with di�erent options chosen for the function that converts ranks to

weights. Also, it may be possible to use machine learning techniques to obtain the weights, as discussed

in section 2.2.2.2. Finally, the way in which the weights are aggregated could be changed, for example

using the Manhattan or cosine angle distance.

Case merging

Case merging has been discussed previously in this thesis, but not implemented as it was felt that the

concepts in RDR needed to be veri�ed �rst with retrieval of intact cases. Case merging has the advantage

that smaller data structures are being retrieved, this means that there is a smaller search space and the

mean similarities of the individual components tend to be greater than those of the object as a whole.

The �rst step in implementing case merging would be developing similarity measures which apply to

individual pieces. Then, a retrieval algorithm and method of repairing incompatibilities between pieces

would need to be formulated. Some suggestions for this are given in [14].

Adaptation Failure

When checking for violations of the fundamental constraints in the sketches, the algorithms test whether

line segments, Bézier curves, and elliptical quadrants intersect with each other. Some tolerance is allowed

245



in these tests, and it may be pro�table to experiment with the threshold values on these tolerances. If

the tolerances were increased so that the sketch was still valid, then adaptation would succeed more

often, which could yield better results. Implementation of this would be non-trivial since there are several

algorithms that would need to be changed, and not all of these currently use a threshold, i.e. it is not a

simple matter of changing a literal in a program.

In this work the results of adaptation failure were not repaired, as the sketch violation repair algorithms

can produce results which are unexpected. However, it is also possible that they could make small changes

to an otherwise invalid sketch, to produce a valid output from adaptation. The algorithms could be invoked

with a caveat: if the total amount of change during the repair operation exceeds a preset threshold, the

repair is not invoked and adaptation is deemed to have failed. The threshold would need to be determined

empirically.

Sketch Adaptation

The use of move advisers has been shown to be bene�cial during adaptation. However, it may be that

conditions should be placed on this, i.e. selected move advisers could be disabled during adaptation.

The adaptation rules have been drawn up using heuristics, but their e�cacy has not been tested in

detail. It may be desirable to test adaptation with various combinations of the rules being disabled. It is

not practical to test all all combinations, but the relevance of the rules to the test cases can be used as

a guide.

Similarly, the conditions on mapping could be experimented with, either by being made stricter or

relaxed. If the conditions are too strict, very little mapping will occur, and the output of RDR will be

similar or identical to that of the rules. Alternatively, if the conditions are too relaxed then there will be

many changes as a result of RDR, but the danger is that these are detrimental changes and the rules

output will be better than the RDR output. Experimentation can determine if the current conditions are

optimal.

It may also be fruitful to explore mixing RDR with knowledge-intensive adaptation rules. Con�icts

between the two would have to be managed, but it is possible that the latter brings greater accuracy to

adaptation, albeit with a greater knowledge engineering cost.

Experimental methods

The experiments are performed on a small case base and involve subjective scoring. To increase the

case base, commercially available patterns can be 'reverse compiled' to yield sketches. To enter another

50 cases would be expected to take of the order of 100-150 hours. Having a case base of 100 cases

would give more con�dence in the results of the experiments. It would also validate the results of the

Monte-Carlo simulation.

246



Of course, success in CBR is about more than just the size of the case base; it needs to have good

coverage of the problem space. The coverage does not need to be uniform, but representative of the sort

of cases that are presented to the system, with scope to deal with outliers. Ideally, some analysis of the

coverage would be performed, to determine whether there are any areas that need to be strengthened

with more cases.

Ideally, the results of SEACOP would be evaluated by a group of trained users. If 5-10 volunteers

could be found, they could be given approximately 3-4 hours of training (as a group) on the user interface,

and then left to evaluate the results individually using the �ve point scale. Depending on the skill level of

the volunteers, the whole exercise could be completed in a day. Access to volunteers would be the most

di�cult aspect; ideal candidates would be design students or those studying for degrees in knitwear. The

mean of the individual values could be used as the score. Using less than 5 people would incur the risk

that the training might have to be repeated if users withdrew from the programme, since I believe at

least three scores would be required per case.

Some improvements could be made to the MAD measure of solution similarity. Firstly, to improve

con�dence in the algorithm an in-depth investigation into the issue of local minima could be undertaken.

Perhaps a mathematical proof could be formulated that there is only ever one global minimum. Altern-

atively, if some shapes do have local minima, then the nature of these shapes could to be established, so

that modi�cations can be made to the search strategy.

The use of a penalty in MAD to take into account unmatched Shape Points could be attempted.

This would circumvent the issue that MAD only focusses on features in common, so that it ignores things

such as the addition of a yoke.

As suggested previously in this thesis, MAD could be used to validate the subjective scores. This may

be even more relevant if these scores were provided by external reviewers.

Simulation

The idea of varying the threshold on questionnaire similarity that decides if CBR is used with the age of

the retrieved garment was suggested. This could be incorporated into the Monte-Carlo simulation. If it is

assumed that the number of cases added to the system each year is constant, the e�ect of this parameter

on the predicted success of CBR could be investigated. The e�ect of this is that it is likely that if only

a small number (e.g. 25) of cases is added every year, the probability of retrieving garments that are

su�ciently recent or have a su�ciently high similarity will become very low. Thus, the variable threshold

should not be used in situations where very few cases are added annually; an improved simulation could

quantify this.

247



Chart Adaptation

To maximise the real-world relevance of SEACOP, ideally adaptation should include knitting charts. The

functionality to create charts has already been developed, and this could be extended to work with CBR.

It may be possible to formulate a method of adaptation that could be described as chart di�erence replay.

The edits that were made to the knitting chart that was produced from the rules could be applied to a

new chart.

Chart di�erence replay is likely to be more di�cult to implement than RDR, because charts have more

complex constraints than sketches. As an alternative, some form of substitution or transformation may

be appropriate. For example, the type of edging stitch or the method of grading could be reused.

9.4 Dissemination

Part of the work detailed in this thesis has been published in three papers: two conference papers and a

journal article.

[152] �Automating a Knitwear Design Process Using Case-Based Reasoning�

Proceedings of the 10th International Conference on The Modern Information Technology in the Innov-

ation Processes of the Industrial Enterprises (MITIP), 2008.

This paper focussed on the automation of the knitwear design process, as outlined in chapter 5. The

paper also explained the relevance of CBR to knitwear design. A system was proposed whereby CBR was

used to create designs, and if this failed then the CAD rules were used as a fall-back. It was suggested

that adaptation would be knowledge-intensive, using transformation and substitution.

[97] Supporting Knitwear Design Using Case-Based Reasoning

Proceedings of the 19th CIRP Design Conference � Competitive Design, 2009.

The case representation was described, consisting of three levels of detail (questionnaire, sketch and

chart). The similarity algorithm was explained, this included a simple equation for normalising similarity

values.1 The conditional applicability of some attributes in the similarity calculation was explained. The

paper described the way in which the user is able to enter preferences for similarity, and how these are

converted into weights, as per section 6.2.

A new version of the classic 4REs cycle [1] was suggested; this had particular applicability to case

merging. The steps in the cycle were: repartition, retrieve, reuse, revise, recompose, repair and retain.

The repartition step involved decomposition, with recompose being the reverse of this. The repair step

was were inconsistencies between the parts were remedied.

1This was not used as it normalised the values relative to one particular case, rather than globally.

248



[14] Hierarchical Case Based Reasoning to Support Knitwear Design

CIRP Journal of Manufacturing Science and Technology, 2010.

This journal article describes SEACOP as a hybrid system which represents cases on �ve levels of

detail (speci�cation, sketch, linked regions, chart and pattern).2

The similarity algorithm was explained in detail. A worked example of how similarity was calculated

and then normalised was presented.1

Retrieval was described as involving individual pieces, with the result being formed by case merging.

Garments which contributed a piece to the result were described as being placed in a set called the

matched pool. Subsequent retrievals prioritised garments in the matched pool over the rest of the case

base. This was to ensure that the correct balance was struck between accuracy and compatibility. If each

piece comes from a di�erent garment then this may mean that the similarities of the individual pieces

are high; however it may be hard to ensure compatibility as the di�erent pieces must �t together into

one garment. If all the pieces come from the same garment then incompatibility is less of issue but the

similarities of the individual pieces may be low. Resizing pieces was cited as a one method of repairing

incompatibility between pieces from di�erent garments.

Adaptation was described as being knowledge intensive and many examples of adaptation rules were

given. The article also discussed how patterns how constraints are managed, and how patterns are created

and edited as per chapter 5.

Not all the ideas presented in these three papers were implemented, but some were discussed in section

9.3. For example, the ideas about case merging can be combined with RDR, and have the potential to

produce a system with even more accurate adaptation, whilst still having only a light knowledge

engineering burden.

2The speci�cation is termed the questionnaire in this thesis. Linked regions were not implemented. Chart production
was automated but is not a part of the CBR. Patterns were left for further work.

249



Appendix A

Knitting stitches and patterns

Name Knitting chart

Box stitch

Bramble stitch

Double moss stitch

Garter stitch

Moss stitch

Reverse stocking stitch

Rice stitch

Stocking stitch

Rib (e.g. 2x4 rib)
Other as de�ned by the user

Table A.1: Standard stitch patterns

250



Abbreviation Size Stitch
count
ef-
fect

Category Instructions Icon

3from1 1 +3 bobble or knot Knit 1, purl 1, knit 1) all in the same stitch

b5 1 bobble or knot Knot: (k1, p1, k1, p1, k1) in st to make 5 sts from

1, then pass 2nd, 3rd, 4th and 5th sts, one at a

time, over 1st st

C3L 3 cable or twist Slip next st to cable needle and hold to front of

work; k2 from left needle, k1 from cable needle

C3R 3 cable or twist Slip next 2 sts to cable needle and hold to back of

work; k1 from left needle, k2 from cable needle

C4B 4 cable or twist Slip next 2 sts to cable needle and hold to back of

work; k2 from left needle, K2 from cable needle

C4F 4 cable or twist Slip next 2 sts to cable needle and hold to front of

work; k2 from left needle, k2 from cable needle

C5B 5 cable or twist Slip next 3 sts to cable needle and hold to back of

work; k2 from left needle, k3 from cable needle

C5F 5 cable or twist Slip next 3 sts to cable needle and hold to front of

work; k2 from left needle, k3 from cable needle

C6B 6 cable or twist Slip next 3 sts to cable needle and hold to back of

work; k3 from left needle, K3 from cable needle

C6F 6 cable or twist Slip next 3 sts to cable needle and hold to front of

work; k3 from left needle, k3 from cable needle

casto� 1 cast on/o� Cast o� 1 st

caston 1 cast on/o� Cast on 1 st

hole 1 +1 increase Yarn forward and over needle to make a
st

incr1p 1 +1 increase Increase 1 st by working p in back then
front of st

k_p 1 standard K1 on right-side rows, p1 on wrong-side
rows

k1tbl_p1tbl 1 standard K1 tbl (aka KB1) on right-side rows, p1
tbl (aka PB1) on wrong-side rows

k1tblws 1 standard K1 tbl on wrong-side rows

k2tog_p2tog 1 -1 decrease K2 tog on right-side rows, p2 tog on
wrong-side rows

k2togtbl 1 -1 decrease K2 tog tbl

k3tog 1 -2 decrease K3 tog

k4tog 1 -3 decrease K4 tog

k4togtbl 1 -3 decrease K4 tog tbl

Table A.2: List of stitches used

251



Abbreviation Size Stitch
count
ef-
fect

Category Instructions Icon

largebobble 1 bobble or knot Large bobble: (k1, p1, k1, p1, k1) in st to make 5

sts from 1, turn, p5, turn, k5, turn, p5, turn; pass

2nd, 3td, 4th and 5th sts over 1st st then k in back

of this st

largeknot 1 bobble or knot Large knot: (K1, p1, k1, p1, k1, p1, k1) in st to

make 7 sts from 1, pass 2nd, 3rd, 4th and 5th sts,

one at a time, over 1st st then k in back of this st

m1 1 +1 increase Make a st by picking up strand in front of next st

and p it in back

m1p 1 +1 increase Make a st by picking up strand in front of next st

and p it in back

m2 1 +2 increase Make 2 sts by picking up strand in front of next st

and p it in back

m2p 1 +2 increase Make 2 sts by picking up strand in front of next st

and p it in back

p_k 1 standard k1 on wrong-side rows

p2tog_k2tog 1 -1 decrease P2 tog on right-side rows, k2 tog on wrong-side

rows

p2togtbl 1 -1 decrease P2 tog tbl on right-side rows

p3tog 1 -2 decrease P3 tog

purlbobble 1 bobble or knot Purl bobble: (p in front, back, front, back, front) of

st to make 5 sts from 1, turn, k5, turn, p5, turn,

k5, turn; pass 2nd, 3rd, 4th and 5th sts, one at a

time, over 1st st then k in back of this st

s1k1psso_p2togtbl 1 -1 decrease Skpo on right-side rows, p2 tog tbl on wrong-side

rows

s1k2togpsso 1 -2 decrease Sl 1 knitwise, k2 tog, psso

s1p 1 standard Sl 1 st purlwise, taking yarn behind work

s2ask2togk1psso 1 -2 decrease Sl 2 sts as if to work k2 tog; k1, psso

sl1 1 standard Slip the next stitch onto the right hand needle

without knitting it

slleftonright 1 standard St left on right-hand needle after casting-o�

smallbobble 1 bobble or knot Small bobble: (k1, p1, k1, p1, k1) in st to make 5

sts from 1, turn, p5, turn; pass 2nd, 3td, 4th and

5th sts over 1st st then k in back of this st

smallbobblek5 1 bobble or knot Small bobble k5: (k1, p1, k1, p1, k1) in st to make

5 sts from 1, turn, k5, turn; pass 2nd, 3td, 4th and

5th sts over 1st st then k in back of this st

T2B 2 cable or twist Slip next st to cable needle and hold to back of

work; k1 from left needle, p1 from cable needle

T2F 2 cable or twist Slip next st to cable needle and hold to front of

work; k1 from left needle, p1 from cable needle

Table A.3: List of stitches used, continued

252



Appendix B

Chart Tool

SEACOP realises the detail of the design as a knitting chart. The chart stage is equally as important
as the sketch since it explicitly determines which stitches the knitter must use to produce the garment.
Many knitters are able to take a knitting chart and produce a garment from this, without requiring any
knowledge of knitwear design. In contrast, a sketch on its own would be of limited use to a non-designer.
For a de�nition and introduction to the concepts involved in knitting charts, see section 4.5.

The way that charts are dealt with in SEACOP is explained below, starting with a description of the
user interface. The user is provided with the means to view and edit charts. They cannot create new
charts but this is done for them by SEACOP, by using simple rules that take the sketch and discretise
it as knitting stitches. Finally, section B.3 explains how SEACOP ensures that charts are correct, using
rules that tally with established conventions in knitting.

B.1 User Interface

Figure B.1 shows an example of the chart user interface. In this example, the chart (shown on the right)
is for the front of a sweater with a bottom border. The bulk of the garment is stocking stitch, and
the border is a rib stitch. SEACOP shows the patterns in di�erent colours so that the user is able to
distinguish between them. These colours do not necessarily correspond to the colours of the actual yarns
used. However, as section B.1.1 explains, the user can change the colours. The user is able to edit the
chart via right-click menus, and this is detailed in section B.1.2.

B.1.1 Changing preferences

The controls on the left hand side of the chart window allow the user to change a number of preferences.
The topmost option allows them to change which piece is viewed. Below this, the size option allows the
user to select the size shown; by default the smallest size is shown.

The Detail button in �gure B.1 allows the user to toggle between detail and overview modes. Overview
mode is designed to allow the whole piece (or a substantial part of a piece) to be visible in the window
(as in in �gure B.1), however individual stitches are simply shown as plain rectangles. In detail mode
(shown in �gure B.2), icons are shown to indicate the composition of individual stitches. Only stocking
stitch is shown as plain rectangles, as per an established convention.

If the show row number box is ticked, then an integer is displayed to the right of each row, indicating
the row number; this is useful for any issues with correctness (see below). The aligned stitches box
controls the presentation of the stitches; if the box is ticked then stitches are aligned in columns wherever
possible. If it is not ticked then stitches are aligned as closely to their position in the sketch as possible.

When aligned stitches is ticked, the preserve outline at neck option becomes available. This option
controls the positioning in the row immediately above the neck divide, as shown in �gure B.3. If the box
is ticked (as it is by default) then the shaping at the edges will be consistent with that in the outline of
the sketch. Otherwise, the rounding error between the chart and the sketch will be distributed equally

253



Figure B.1: Chart tool showing a sweater with a bottom border

Figure B.2: Detail mode showing the row number

254



(a) Ticked: Rounding errors are applied towards the centre, so outline is
preserved

(b) Not ticked: Rounding errors are applied evenly at either end

Figure B.3: E�ect of preserve outline at neck

either side of each group of portions. The e�ect of having the box unticked is that the integrity of the
outline will be broken, but the size of the gap for the neck will be more realistic.

Towards the bottom of the window is the legend. Although only the stitch patterns are displayed, if
the user clicks the adjacent button the full information about yarn, tension, colour and needle is available.
The user is o�ered the opportunity to change the colours.

Correctness

The chart is generated (as per section B.2) before the chart window is displayed. The correctness
algorithms are subject to limitations (described in section B.3.5). If the chart cannot be made completely
valid or there is a shaping problem, an advisory message is displayed with the row number so that the
user can manually make the required corrections.

The user can re-run the validity algorithm by pressing the Make Valid button. This is particularly
useful if they have edited a row and want to ensure the chart is still valid. If the algorithm cannot ensure
validity then an advisory message is displayed.

B.1.2 Editing Charts

Ideally, the charts that are automatically generated should be what is required. However, the rules used
to generate charts are not perfect and it is impossible to envisage every possible combination of garment.
Similarly, the correctness algorithms have limitations. Therefore, SEACOP includes the capability for
users to manually edit charts. The editing operations have a fairly localised scope, since the idea is that
if major changes are required (e.g. adding 3cm to the length), then they would be accomplished in the
sketch tool.

If the user right-clicks on a stitch it is highlighted and a pop-up menu appears: this has Insert, Delete,
Edit and Reset options. There is then a further option to choose the scope of the operation: it can a�ect
a single Stitch or a whole Row. The exception to this is Reset: this is only applicable to a whole Row.

255



Stitch Row

Insert User must choose the new
stitch, all stitches are available.
Also they must pick whether

the new stitch is to the right or
left of the highlighted one.

The user must choose whether
the new row is above or below

the highlighted cell.

Delete The user must choose whether
the remaining stitches are
shifted to the left or to the

right.

No further choices are
necessary.

Edit User must choose the stitch;
all stitches are available.

The user must choose the
stitch; the row will then consist
solely of the stitch the user has
chosen. Shaping stitches and
cable stitches are not available.

Reset Not applicable. No further choices are
necessary.

Table B.1: Options for editing charts

Then, the user may be asked to make further choices, as per table B.1. An example is inserting a stitch,
as per the example shown in �gure B.4. Note that when editing a row, shaping and cable stitches are
excluded because it would not make sense to have a whole row of these.

B.2 Generating Charts

The chart generation process starts with a single sketch and produces a knitting chart. It automates a
particularly tedious stage in pattern production, in a consistent and repeatable manner. There can be
several charts corresponding to the same sketch, and to di�erent sizes. Due to the limitations of the
sketch tool, and hence the chart generation process can make few assumptions about what sort of a
sketch it will receive as its input. However, using a series of common sense heuristics, it is able to cope
with most sketches.

During chart generation, various intermediate objects are generated. Firstly, undirected graph rep-
resentations of the sketch (known as the simpler graph and full graph) are produced. Cycles from these
graphs are extracted so that each cycle (which is known as a cycle-polygon) corresponds to a polygon
in the sketch. Each polygon is examined to determine which stitch pattern lies within it, in a process
called coding. Then, any ambiguities about row tension are resolved through the creation of objects
called tension boxes. Some areas are marked as being 'no cut areas', which means that the integrity of
the pattern must be preserved, i.e. the width of these areas must be a discrete multiple of the pattern
repeat width.

In the latter stages of chart generation, the composition of the stitches is ascertained. To begin with,
the pattern is just naively repeated across the shape. Then, algorithms are invoked to make the chart
correct, as per section B.3.

B.2.1 Simpli�ed representation for identifying polygons

An important prelude to generating the sketch is the production of an alternate, simpli�ed representation
of the sketch. The simpli�ed representation is in the form of an undirected graph which hides (but does
not remove) unnecessary complications in the sketch, facilitating the polygon discovery algorithm that is
described below.

As explained in section 5.2.5.1, the sketch contains a list of shape points. Each shape point includes
both a purpose and a location and acts as an instruction on how to draw a part of the sketch on the screen.

256



Figure B.4: Inserting a stitch at the edge of a sleeve in detail mode

The list of shape points is loosely analogous to a directed graph, with each shape point representing both
an arc (the purpose) and a vertex (the location). This is very sensible from the point of view of rendering
sketches on the screen, but it is not a form which is suitable for discovering polygons, an activity which
is necessary to determine the areas of the knitting that will be covered by the di�erent stitch patterns.

Constructing the undirected graph

Firstly, for every location in which there is a shape point in the list (for a particular piece), a planar point
is created. Whilst a shape point has both a location and purpose, a planar point consists of a location
and a set of zero, one or two shape points. The set will consist of the shape points which are in the
same location as the planar point; there will usually be one but if there are co-located points (see section
5.2.5.1) then there may be two. The purpose of the set is to provide a link between the sketch and the
undirected graph representation; this link will be important during coding, as described in section B.2.3.

The location of the planar point will be the same as that of the equivalent shape point(s), except if
the piece is a sleeve. The sleeves are laid out horizontally on the sketch, since this is the best use of space
on the screen. However, charts are traditionally shown with the direction of knitting being horizontal, so
for sleeves the location is subject to a 90º anticlockwise rotation.

A graph corresponding to the sketch is then constructed. The vertices in the graph are planar points,
and the edges have one of three possible labels: line, curve or redundant (see �gure B.5):

� A line edge corresponds directly to a line segment from the sketch.

� A curve edge links two planar points that are created when a curve is discretised. Curves are
discretised because constructing the directed acyclic graph (DAG) in section B.2.2 involves checking
if a polygon is inside another polygon. This is considerably easier to implement than testing if a
shape involving curves is inside another similar shape.

� A redundant edge is equivalent to a series of curved edges, and is used in the polygon discovery
(see below).

The list of shape points is processed and when the nth is encountered:

257



Figure B.5: Line, redundant and curve edges

1 If the nth shape point is the end of a line then a line edge is added to the graph between the planar
points corresponding to shapepoints n and n-1.

2 If the nth shape point is for a vertical or horizontal band, then two new planar points are created1,
corresponding to the ends of the line that is making up the band. Each planar point will have the
nth shape point in its set. A line edge is added to the graph between the two new planar points.

3 If the nth shape point is part of a Bézier curve, arc or neck band then the curve is discretised as
a series of straight lines. New planar points are created1 for the intersections of these lines, and
they are connected with curve edges. The �rst and last planar points will have the corresponding
shape point in their set, but the intermediate ones will have an empty set. Then, a redundant edge
will be inserted between the �rst and last shape points. Figure B.5 shows a portion of a sketch
which illustrates this; three2 new planar points (coloured blue) have been added to facilitate the
discretisation of the curve. The redundant edge is shown as a dashed line.

4 If the nth shape point is a button, then it is ignored, as buttons do not feature in the charts.

The next stage is where intersect points are dealt with. The fundamental constraint about non-intersects
ensures that the end of a line segment will always intersect with another line segment (or curve, but curves
have been discretised for these purposes). The graph will be modi�ed for each planar point px which
corresponds to a leaf vertex3. px will lie on another line segment that the line it terminates intersects
with. This line segment will correspond to a line edge in the graph which is incident to vertices pn and
pn+1. The edge from pn to pn+1 will be removed and replaced with two line edges. One of these is
incident to pn and px, and the other is incident to px and pn+1. Figure B.6 shows an example where
the newly created edges are labelled a and b. Beforehand, pn and pn+1 would have been linked with one
edge, ab (not shown).

1For a sleeve, the planar points that are added in steps 2 and 3 will be subject to a 90º anticlockwise rotation.
2This is for illustrative purposes only; typically more than three line segments would be used to discretise a curve.
3A leaf vertex has a degree of 1.

258



Figure B.6: Dealing with leaf vertices via intersects

Object Sketch Full Graph Simpler Graph

Edge

line 8 8
curve 66

redundant 4 4
total edges 74 12

Shape Points 20
Planar Points 74 12

Table B.2: Statistics for a simple sweater front

The end result of the process described above is an undirected planar graph, called the full graph. In
the sketch, shape points can have a variety of purposes, they can be part of a line or a curve or neither;
and if they are part of a curve they are not necessarily at an end point of that curve. However the
full graph is more straightforward since it consists of just two types of entity: planar points and their
connecting edges. The addition of edges to leaf vertices (as shown in �gure B.6) ensures that each vertex
has a degree of at least two, which is important for �nding cycles in the polygon discovery.

Polygon discovery

A copy is made of the full graph, from which all of the curve edges are removed from the simpler graph,
leaving only line and redundant edges. The copy will be known as the simpler graph. Then, the set of
simple cycles4 in the simpler graph are found. Since each redundant edge is equivalent to a series of
curve edges, the simpler graph is equivalent to the full graph with the redundant edges removed, but it
has far less vertices and therefore computations such as cycle detection are far more e�cient. Table B.2
gives an indication of the sizes of the graphs for a simple sweater front (as per �gure 5.25a).

Each cycle that has been found will be referred to as a cycle-polygon. Each cycle-polygon consists
of a list of planar points. Any redundant edges that are present in the cycle-polygons are replaced with
their equivalent series of curve edges, from the full graph. The set of cycle-polygons which results from
this process will be known as the shape set. With the redundant edges removed, the cycle-polygons in
the shape set correspond as close to possible (given that the curves are discretised) to shapes in the
sketch. This is important as cycle-polygons will (later in the chart generation process) give rise to regions
of knitting stitches.

4A simple cycle is a path which has the starting and ending vertices the same; no other vertices may be repeated and
the edges are all unique.

259



B.2.2 Understanding the geometry of cycle-polygons

Constructing the DAG

The next stage in the chart production algorithm is the production of a directed acyclic graph (DAG) of
cycle-polygons. The shape set is examined; each pair of cycle-polygons {CA, CB} is checked to ascertain
their geometric relationship. Three types of relationship are possible:

� inside-connected : CA is inside of CB and they have at least one planar point in common.

� inside: CA is inside of CB but they have no planar points in common

� separate: where neither inside-connected nor inside applies

If the relationship is not separate, then CA and CB are added to the graph as vertices; an arc is added
between them and this is labelled either inside or inside-connected as appropriate. When all pairs have
been examined, the DAG is simpli�ed to remove redundant arcs: if there is an arc from CA to CB and
CB to CC then the arc from CA to CC is redundant.

Establish which cycle-polygons need coding

Coding is the process of assigning a stitch pattern to a region of knitting. The next step is the identi�cation
of the codable set, which consists of cycle-polygons which need coding.

� All vertices with an outdegree5 of zero are included in the codable set. These leaf vertices have
nothing inside of them and so correspond directly to a region of knitting which will have only one
stitch pattern.

� Where an edge labelled with inside is incident to a vertex V, then V is added to the codable set. V
will have an indegree6 of one, due to the removal of redundant arcs which was described above.

Cycle-polygons which are not added to the codable set will consist of �composite regions�, which have an
outdegree greater than one. Such cycle-polygons are not coded since they potentially consist of a mix of
stitch patterns; their direct successors will be coded instead.

B.2.3 Coding

Assigning the codes

Each code is associated with a feature of the pattern that is associated with a stitch pattern. Most shape
points in the sketch will carry a code. The codes are added when the shape points are created, during
the sketch instantiation algorithm. The associated feature could be:

� one of the patterned pieces: the collar or hood

� a patterned element: a particular panel or pocket, or the region behind a pocket

� a region on the body: neck band, bottom border, front border or yoke

� the cu�

� a region which is knitted in the background stitch.

5The outdegree of a vertex is the number of arcs leading away from it
6The indegree of a vertex is the number of arcs leading towards it

260



Coding is the process in which a code is assigned to a cycle-polygon (known as C). The principal use of
the codes is that they indicate which regions of the piece are to be knitted in which stitch patterns and
at what tension. The �rst step in algorithm B.1 is the enumeration of the frequencies of the set of codes
which are carried by the shape points that are linked to the planar points that make up C (this set is
known as T). Coding �rst attempts to �nd a code from T by utilising the frequency of those codes. For
example, C may be a pocket region delineated by four planar points; these planar points will be associated
with shape points. If all of these carry a code for the pocket region then T will consist of just that one
code and as the situation is ambiguous then the cycle-polygon is coded as a pocket region.

However, sometimes the situation may not be so clear-cut; for example in a cardigan front with a
front border, the cycle-polygon that makes up the largest part of the front may carry codes for both
the background stitch and front border. If T contains more than one code then algorithm B.1 resolves
the situation, �rst by checking if C is part of larger region that has been previously been coded as per
the previous paragraph (as it was unambiguous); in this case the code for the �container� region is used.
Otherwise, the relative frequency of the codes in T is utilised; for example if 8 shape points are coded as
background stitch and only 2 as the front border, then the former would be applied as it is more common
within C.

Algorithm B.1 is designed to produce an output in all circumstances. In the very unlikely event that
none of the points are coded (i.e. T is an empty set), the background stitch is applied.

If the situation is still unresolved then by de�nition there must be a tie: a subset of T (called S) will
be equally prevalent. The tie is broken by choosing the code (from S) which occurs the least amongst
cycle-polygons that have been previously coded. For example, if �ve shape points are coded for the yoke
and �ve for the background stitch, and a di�erent cycle-polygon has previously been coded as yoke but
none have been coded as the background stitch, then the background stitch would apply.

Post-coding processing

The codes are used to facilitate some further processing which are prerequisites for the latter stages of
the chart generation process. Firstly, the cycle-polygon corresponding to each pocket is copied. The new
cycle-polygon is given a special tag to indicate it is 'behind the pocket'. As this region of knitting is not
seen, it will be knitted in the background stitch, irrespective of the pattern used on the pocket. When
the chart is viewed, the behind pocket regions will be the ones that are visible, since those correspond to
the ones that are actually adjacent to their neighbours in the knitting.

Secondly, redundant cycle-polygons are removed from the DAG. A redundant cycle-polygon is one
which has the same tag as its direct predecessor7. Cycle-polygons tagged as neck band or front border
are not shown in the chart tool. The front border is usually knitted in a perpendicular direction to the
rest of the garment, and is normally a thin strip of material with no special features, so its chart would
be quite simple anyway. The neck band is not shown as the geometry of its corresponding cycle-polygon
does not correspond to reality. Although the band may be curved, in reality it is more likely to be a
trapezium8 in shape, as fabric stretches.

The algorithms for shaping (as described in section B.3) assume that they are working with a con-
tinuous piece of knitting, and this will not be the case for the cardigan front. So, if necessary, the DAG
is decomposed into a set of weakly connected digraphs. There will be one element in this set, unless
the piece happens to be the front of a cardigan, in which case there will be two. The purpose of the
decomposition is to be able to distinguish the two halves of a cardigan front.

B.2.4 Assigning row tensions

The previous sections have shown how the sketch can be mapped to a series of regions known as cycle-
polygons. The latter stages of the chart generation process are concerned with how these cycle-polygons

7A vertex P is the direct predecessor of vertex Q if there is an arc from P to Q.
8The traditional British de�nition of a trapezium is used in this thesis: a convex quadrilateral with one pair of parallel

sides.

261



Algorithm B.1 Coding

Procedure : cod ing
I n pu t s : codab l e se t , DAG

f o r each cy c l e−po lygon C i n the codab l e s e t
l e t T be the s e t o f t ag s c a r r i e d by the p l a n a r p o i n t s i n C
enumerate the f r e q u e n c i e s i n which e l ement s o f T occu r i n C
i f T has a c a r d i n a l i t y o f one then

app l y t h i s tag to C
e l s e

s e a r c h DAG to see i f C i s c on t a i n ed w i t h i n a c y c l e−po lygon
tha t i s a l r e a d y coded

i f s e a r c h was s u c c e s s f u l then
app l y the tag o f the c o n t a i n e r to C

e l s e
i f one tag i n T has a h i g h e r p r o p o r t i o n than o t h e r s then

app l y the tag wi th the h i g h e s t p r o p o r t i o n to C
e l s e

i f T i s an empty s e t then
app l y the background s t i t c h tag to C

e l s e
i f one tag i n T i s the s c a r c e s t from a l r e a d y coded cy c l e−po l ygons
then

app l y the s c a r c e s t tag to C
e l s e

the c ho i c e o f tag i s a r b i t r a r y from w i t h i n T
end i f

end i f
end i f

end i f
end i f

end f o r

262



Figure B.7: Tension Boxes

can be used to determine the composition of stitches. The cycle-polygons can have di�erent tensions
and can potentially exist side-by-side; the problem with the latter con�guration is that in SEACOP, we
assume that each row has a uniform row tension9. If this assumption were to be violated, portions would
be rendered on the screen with di�erent heights, and as the e�ects of this would be cumulative, the user
might not be able to distinguish which portions were part of which rows.

In cases where there is only one cycle-polygon, or all the cycle-polygons have the same row tension,
then the situation is unambiguous. Otherwise, a heuristic is needed to derive an assumed row tension.
For each piece (or half of the piece, in the case of a cardigan front), its set of cycle-polygons is examined.
The y-coordinates of the vertical extremities of each cycle-polygon are listed and the list is sorted. For a
list of coordinates y0, y1...yn there are n − 1 intervals; each interval is known as a tension box. Where
0 ≤ a ≤ n − 1 , each tension box ta is associated with a set of cycle-polygons, all of which contain at
least one planar point p with a y-coordinate in the range [ya, ya+1] . Figure B.7 shows an example where
n = 5.

A tension box is associated with a series of rows of knitting. Since every row in the tension box is
likely to consist of the same set of cycle-polygons, it is reasonable to apply the same assumed row tension
to every row that is part of the tension box.

The important step in deriving the assumed row tension is the determination of the most prevalent
subset (of cycle-polygons). The most prevalent subset is intended to consist of the cycle-polygons which
have the largest area that is included within the region delimited by the tension box. The rationale is that
these cycle-polygons should be the ones which actually determine the assumed row tension; if a large
part of an area has one tension then this may actually apply since most yarns are capable of stretching
to some extent.

The shapes associated with the cycle-polygons are not necessarily rectilinear and could be concave,
so an exact determination of the areas is non-trivial. Therefore, a simple heuristic is employed. Three
notional lines are de�ned as being on the 5th, 50th and 95th percentile of the interval associated with
the tension box. The line segments which are formed when these notional lines cross the cycle-polygons
are examined and the sums of the lengths of the line segments associated with each cycle-polygon are
enumerated. The cycle-polygons which are associated with the greatest line length(s) are members of
the most prevalent subset. Often there will be just one cycle-polygon in this set. However, in general
the assumed row tension is deemed to be the greatest row tension of those cycle-polygons in the most
prevalent subset. Thus, all stitches are assumed to be as tall as the tallest; given that most yarns are
capable of some stretching this is not unreasonable.

9There is no such assumption made about the stitch tension: stitches in a row can vary in width.

263



B.2.5 Creating portions

A row consists of a series of portions, each of which is associated with its own stitch pattern and tension.
The stitch pattern and tension are obtained from the cycle-polygons as follows.

For each tension box (see section B.2.4), where x is the assumed row tension expressed as the number
of rows to a centimetre, and ya and ya+1 are the vertical bounds of the tension box, then the number of
rows (s) in a tension box will be:

s = round (x (ya+1 − ya))

The rows are assumed to be evenly distributed, since we assume a constant row tension inside a
particular tension box. Therefore the (h) height of each row will be:

h = ya+1−ya
s ' 1

x

For each tension box, a series of horizontal lines are de�ned by the arithmetic sequence shown below.
Each horizontal line will correspond to the centre of a row ;

y = ya +
h
2 , ya +

3h
2 , ya +

5h
2 ..... ya+1 − h

2 .

Every time the line which corresponds to the row passes through a cycle-polygon, a portion is created.
A portion is associated with a the stitch pattern (and tension) that is determined by coding the cycle-
polygon. The line segment that lies inside that cycle-polygon10 will be associated with that polygon and
(later in this process) used to determine the number of stitches that the portion will hold, and the nature
of any edge shaping. This line segment will be known as the raw line.

The next stage in the chart production process is where the number of stitches in a portion is
determined; this is referred to as the size of the portion. Once this is known, then the stitches can be
created and the knitting chart is then complete. The size is obtained by multiplying the length of the
raw line by the stitch tension and rounding to the nearest integer.

Patterns which have edge stitches pose a complication. These patterns are designed to be applied
with an integer number of repeats; further information about this is given in section 4.5. In order to
preserve the integrity of these patterns, SEACOP creates a no cut area (NCA); within the NCA, the size
is adjusted so that the number of stitches is a multiple of the number of repeat stitches (plus the number
of edge stitches).

It is important that an accurate record of the position of each portion is kept, since this is needed
for shaping, later in the chart production process. So, �nal adjustments are made to the raw line.
The adjusted line is derived from the raw line. The �rst adjustment is to compensate for rounding
errors. The adjusted line is stretched (from the dimensions of the raw line) until its length is equal
to the combined width of the stitches in its portion. Finally, if necessary, surrounding adjusted lines
are translated horizontally, to prevent the lines overlapping. When the line segments associated with
two portions share an end-point, they are said to be butted. The main constraint on the stretch and
translation operations are that if two portions are butted according to their raw lines, then they shall
remain so according to their adjusted lines. To violate this might disrupt the composition of the groups
(see section B.3.1).

10Since the cycle-polygons can be concave, care is taken in the implementation of this step in the process. Where the
line intersects with the boundary of a cycle-polygon P, then a test is performed to ensure that the line segment that this
delimits is actually contained within P. If it is inside, then a further check is performed to see if the line segment is contained
within another cycle-polygon that is contained within P; this is repeated recursively until the smallest cycle-polygon that
contains the line segment is found. If the line segment is not contained within P then a search is performed on the other
cycle-polygons until the correct one (if any) is found.

264



Algorithm B.2 Determining the pattern row number

f u n c t i o n : pa t t e rn−row−number
i npu t : garment row number g , s t i t c h p a t t e r n S , number o f rows

i n s t i t c h p a t t e r n n

i f g>0 and t h e r e i s an e q u i v a l e n t p o r t i o n on row g−1 then
r := the pa t t e rn−row−number o f the e q u i v a l e n t p o r t i o n + 1

e l s e
i f g mod 2 = 0 then

i f the f i r s t row o f S i s k n i t t e d r i g h t to l e f t then
r := 0

e l s e
r := 1

end i f
e l s e

i f the f i r s t row o f S i s k n i t t e d r i g h t to l e f t then
r := 1

e l s e
r := 0

end i f
end i f

end i f

output r mod n

B.2.6 Assigning stitches

The objective of the next phase in the chart production process is to assign stitches to the portions; thus
a knitting chart is created, although it might not be a correct chart (but this is dealt with afterwards,
as explained in section B.3). Fitting a pattern to a shape is one aspect of knitwear grading ; the other is
how the sketches are resized (as explained in section 5.2.7.2).

The computations in the previous sections have provided the size (number of stitches) of each portion,
and the stitch pattern which applies to it. Stitch patterns have their own knitting chart composed of rows
and stitches, as does the garment. The �rst step in setting the stitches for a particular portion (P) is:
given the garment row number (g), calculate the pattern row number (p). SEACOP follows a convention
in numbering the bottommost row of a knitting chart as zero, and therefore the topmost row in the stitch
pattern will be numbered n-1, where n is the number of rows in that stitch pattern.

For rows in the garment other than the bottommost, algorithm B.2 begins by looking for an equivalent
portion (Q) in row g-1. Two conditions must hold for portions to be equivalent:

� They must have the same stitch pattern and tension.

� The x-coordinates of the ends of the raw line of the two portions must be the same, or similar.

If Q is found then the pattern row number is that of Q, incremented by 1, modulo n. However there
will be no equivalent portion if g = 0 or if, for example, g refers to the bottommost row of a rectangular
panel; in these cases p is solely determined by g. There is an assumption that the bottommost row of the
garment is always knitted right to left; therefore all rows where g is an even number will be knitted right
to left and those where g is an odd number will be knitted left to right. However, no such assumption
can be made about a knitting chart, and for the integrity of the pattern to be preserved the direction
of knitting of the portions in g must be the same as that in row p of the relevant stitch pattern. If the
direction of knitting of the bottommost row is the same as that in g then p=0; otherwise p=1 as the
next row in the stitch pattern will be used.

If the portion P is part of a no cut area (see section B.2.5), then the edge stitches in P will be those
from the pth row of the stitch pattern; the remaining stitches in the middle of the portion will contain

265



Figure B.8: Representation of charts

as many repeats of the pattern as needed. If the portion P is not part of a no cut area, the maximum
number of integer repeats of the pattern are used for P. If there are any unassigned stitches at the edge,
these are �lled in with plain stitch (stocking stitch or reverse stocking stitch; see section 4.5).

B.2.7 Representation

After all the processes in section B.2 have been applied, a series of complex objects will have been created
which enable a chart to be produced, with the correct tensions and stitch pattern. Figure B.8 shows the
model that is created. There are some simpli�cations in the diagram, e.g. the representation of no cut
areas and the graph is not included, and only a small number of the attributes are shown.

B.3 Correctness of Charts

There are two distinct (but related) aspects to the correctness of a knitting chart: shaping, and validity.

266



Figure B.9: Raw shaping

� Shaping uses shaping stitches (increases and/or decreases) to make the piece non-rectangular, for
example to make an armhole or tapered sleeve. If the shaping in the chart is incorrect, then this
will mean that the shapes in the �nished garment are not in accordance with those in the sketch.
In this case, the designer's intentions will not be ful�lled and the resulting garment may not be
aesthetically pleasing and could even be unwearable (e.g. if the pieces cannot be sewn together).

� A valid chart is one in which any change in stitch numbers is balanced out by shaping stitches.
An invalid chart will be syntactically correct (because it contains rows and stitches) but it will be
semantically incorrect: it does not correspond to a garment that could actually be knitted.

Section B.2 explains how a knitting chart is produced from the sketch. The chart production process
culminates in the determination of the row tension, stitch pattern, position (via the adjusted line) and
the composition (i.e. the stitches) of each portion; this is what is required to produce a knitting chart.
If the stitch patterns used in the garment contained no shaping stitches, and the piece was perfectly
rectangular, then this would constitute a correct chart. However, this is not realistic since pieces of
sweaters and cardigans are not rectangular, and shaping stitches (see section 4.4) are often used in stitch
patterns to create lace or other e�ects.

Since the output of section B.2 is unlikely to be correct, SEACOP contains algorithms to detect
and repair problems with both shaping and validity. The fundamental assumption in SEACOP's shaping
algorithm is that shaping stitches at the very edge of a group will produce the change in width necessary
to make the chart consistent with the shapes in the sketch. A description of how the shaping is calculated
is presented in B.3.1. Applying the shaping is not completely straightforward due to the zigzag nature of
knitting, but this is explained in section B.3.2.

The shaping and validity algorithm operates on a group of portions. A group consists of a series of
portions, all of which are butted (see section B.2.5). Thus, each row will ordinarily consist of one or two
groups; there will be two groups per row in the region at the top of the body, above the neck divide.
Ordinarily, a group will have an equivalent preceding group in the row below it.

B.3.1 Determining the shaping

A group is normally shaped with reference to the preceding group, as per algorithm B.3. The terms used
in this algorithm are explained in table B.3.

If there is no preceding group, then the shaping is deemed to be zero; this will be the case for the
bottommost row. It will also apply where the neck divides11.

Algorithm B.3 compares the line segments associated with the group (G) and its predecessor (P) to
give the raw shaping, as depicted in �gure B.9. The raw shaping is then corrected by including an error
term which represents the di�erence between the ideal and actual shaping which was achieved in group
P. If this rounding error is not carried forward, then the shaping in the chart tends to di�er markedly from
that in the sketch. This is particularly so in the tapered region of the sleeve, where the shaping often
happens to be less than half a stitch, which would be rounded to zero unless the error is carried forward.

11The procedure for creating the neck involves casting o� many stitches. This is outside of the scope of the shaping
algorithm; the chart will not show these cast o� stitches. Similarly, the user needs to create a cast on row at the bottom of
the piece and to cast o� all the stitches at the top. These situations are also outside of the scope of the shaping algorithm.
However, since these are fairly standard processes, it would not be di�cult to implement these things at the stage where the
written pattern is produced from the chart. Production of written patterns is also outside of the current scope of SEACOP.

267



Algorithm B.3 Determining the shaping

i n p u t s : a group G

i f t h e r e i s no p r e c e d i n g group to G then
l e f t s h a p i n g (G) := 0
r i g h t s h a p i n g (G) := 0

l e f t e r r o r (G) := 0
r i g h t e r r o r (G) := 0

e l s e
P := the p r e c e d i n g group to G

l e f t r a w (G) := l e f t x (P) − l e f t x (G)
r i g h t r aw (G) := r i g h t x (G) − r i g h t x (P)

l e f t c o r r e c t e d (G) := l e f t r a w (G) − l e f t e r r o r (P)
r i g h t c o r r e c t e d (G) := r i g h t r aw (G) − r i g h t e r r o r (P)

l e f t e x a c t (G) := l e f t c o r r e c t e d (G) x l e f t t e n s i o n (G)
r i g h t e x a c t (G) := r i g h t c o r r e c t e d (G) x r i g h t t e n s i o n (G)

i f a l l p o r t i o n s i n G and P have the same s t i t c h t e n s i o n then
s t i t c h d i f f (G) := numbe r o f s t i t c h e s (G) − numbe r o f s t i t c h e s (P)

e l s e
l e f t d i f f (G) := l e f t r a w (G) x l e f t t e n s i o n (G)
r i g h t d i f f (G) := r i g h t r aw (G) x r i g h t t e n s i o n (G)
s t i t c h d i f f (G) := round ( l e f t d i f f (G) + r i g h t d i f f (G) )

end i f

exactsum (G) := l e f t e x a c t (G) + r i g h t e x a c t (G)

i f exactsum (G)=0 then
l e f t a p p o r t i o n (G) := s t i t c h d i f f (G)/2
r i g h t a p p o r t i o n (G) := s t i t c h d i f f (G)/2

e l s e
l e f t a p p o r t i o n (G) := ( l e f t e x a c t (G) x s t i t c h d i f f (G) )/ exactsum (G)
r i g h t a p p o r t i o n (G) := ( r i g h t e x a c t (G) x s t i t c h d i f f (G) )/ exactsum (G)

end i f

l e f t s h a p i n g (G) := round ( l e f t a p p o r t i o n (G) )
r i g h t s h a p i n g (G) := round ( r i g h t a p p o r t i o n (G) )

l e f t e r r o r (G) := l e f t s h a p i n g (G)/ l e f t t e n s i o n (G) − l e f t e x a c t (G)
r i g h t e r r o r (G) := r i g h t s h a p i n g (G)/ r i g h t t e n s i o n (G) − r i g h t e x a c t (G)

end i f

268



Term Description Unit Integer?

leftx Leftmost x-coordinate on a line segment cm
rightx Rightmost x-coordinate on a line segment cm
leftraw Raw shaping on the left edge cm
rightraw Raw shaping on the right edge cm
lefterror Error on the left edge cm
righterror Error on the right edge cm

leftcorrected Shaping on the left edge, corrected for
previous errors

cm

righttcorrected Shaping on the right edge, corrected for
previous errors

cm

lefttension Stitch tension of the leftmost portion stitches/cm
righttension Stitch tension of the rightmost portion stitches/cm
leftexact Unrounded exact shaping on the left stitches
rightexact Unrounded exact shaping on the right stitches
exactsum Sum of the exact shapings stitches

numberofstitches Count of the stitches stitches yes
stitchdi� Stitch di�erence stitches yes

leftapportion The part of stitchdi� allotted to the left
edge

stitches

rightapportion The part of stitchdi� allotted to the right
edge

stitches

leftshaping Finalised shaping on the left edge stitches yes
rightshaping Finalised shaping on the right edge stitches yes

Table B.3: Terms used in algorithm B.3

Next, the corrected shaping is multiplied by the tension to give the exact shapings, expressed in
stitches. It is possible but not inevitable that the tensions of all the portions are equal. SEACOP makes
the assumption that only the edge tensions are relevant, which is compatible with the main assumption
stated in the opening paragraph of section B.3.

The next step in the algorithm is the calculation of the stitch di�erence. If the tensions in all portions
of G and P are equal, then this is the di�erence in the number of stitches12. If tensions are unequal
then the di�erence in the number of stitches may not actually correlate to the shaping at the edges; for
example there may be a rectangular panel in the centre which has wider stitches and therefore there will
be less stitches in G (compared to P), irrespective of the shaping. So, the stitch di�erence in this case
is made by multiplying the raw shaping by the tension (of the relevant portion at the edge).

The goal of algorithm B.3 is that the shapings at the edge should add up to give the stitch di�erence.
If this goal were not achieved, it could cause extra work for the validity algorithm. If the exact shapings
cancel each other out, then a pragmatic approach is taken and the stitch di�erence is simply divided
between both edges. Otherwise, the stitch di�erence is split between the edges in direct proportion to
the value of the exact shapings. The result of either calculation is rounded to the nearest integer, and
then a check is performed to ensure that the goal has been achieved. Rounding errors are the only source
of failure, and if necessary one of the values is rounded up or down by 1 in order to satisfy the goal. The
choice of which value to change is determined by which would result in the lowest rounding error.

Finally, the error at each side is noted, ready for the next invocation of the algorithm. Then, the
shapings are ready to be applied to the garment.

12Cable stitches are treated as being more than one stitch for these purposes as they are wider than standard stitches

269



Shaping applies to

Start of group in row i End of group in row i

Shaping
strength

n > 3 add n cast on stitches to
the end of row i-1

replace the last n stitches of
row i with cast on

n ≤ -3 add n cast o� stitches to
the beginning of row i

replace the �rst n stitches
of row i-1 with cast o�

Table B.4: Shaping using cast o� or cast on

B.3.2 Applying shaping

A general description of how shaping can be e�ected in knitting is given in section 4.4. The comments
here explain how shaping is done in SEACOP.

For each piece in the garment, SEACOP starts with the bottommost row, working upwards, applying
the shaping for a particular group once it has been determined (as per section B.3.1). The shaping is
implemented by changing the edge stitches in a group (if necessary). A positive shaping will usually mean
an increase stitch is placed at the edge, a negative shaping a decrease, and a zero shaping will mean that
the edge stitch is not a shaping stitch. An appropriate stitch is chosen; for example, SEACOP might
utilise k2tog (�knit two together�) to make a decrease of 1, and k3tog (�knit three together�) to make a
decrease of 2.

In theory, in�nitely powerful shaping stitches are possible. However, in practice stitches such as k4tog
(�knit four together�) are possible, but they are di�cult for a knitter to accomplish. Therefore, it is
common practice to implements shapings with a magnitude of 3 stitches or greater by casting o� (as a
means of decreasing) or casting on (as a means of increasing). The complication with this method is
that it is not possible to cast o� at the end of a row, and not standard practice to cast on at the start
of a row. Therefore the actions are applied to the previous row instead, as explained in table B.4. Note
that due to the zigzag nature of knitting, a particular side of the chart will alternate from being the start
of the row to the end of the row, as discussed in section 4.5.

If SEACOP applies a shaping to the previous row, care is taken to ensure this does not nullify the
e�ect of shaping which was previously applied to that row. This is relevant, for example, if the �rst stitch
of row i is changed to single decrease, but then processing row i+1 determines that the �rst 3 stitches
of row i are to be replaced with a cast o�. In this example, the �rst 4 stitches of row i would be replaced
with cast-o�s; the additional cast o� stitch compensates for the 'lost' decrease.

B.3.3 Determining validity

A general description of validity and shaping stitches in knitting is given in section 4.5. The comments
here explain how validity is determined in SEACOP.

After the shaping in a group has been determined and applied, the group is assessed for validity.
The validity of group G is determined with reference to its predecessor (P). Group G is valid if it has a
discrepancy of zero. The discrepancy is calculated thus:

discrepancyG = stitchesG − stitchesP + castoffsP − castonsG − shapeG

The terms are de�ned as follows:

� stitches - this is the count of stitches; cable stitches are wider than standard stitches and therefore
count as more than one stitch

� casto�s - this is the count of the cast o� stitches; if these are present they will have been added
by the shaping algorithm

� castons - this is the count of the cast on stitches; if these are present they will have been added
by the shaping algorithm

270



� shaping - this is the cumulative e�ect of shaping stitches, where increases are positive and decreases
are negative.

If discrepancyG 6= 0, then SEACOP invokes an algorithm to make the group valid, as described below.

B.3.4 Making a group valid

If the discrepancy of a group is non-zero, then SEACOP seeks to remedy this by modifying the internal
stitches of a group. The internal stitches are those which are not involved in the shaping process, i.e.
all stitches except the two edge stitches and any cast o� or cast on stitches (which only occur near the
edges).

The algorithm is an iterative one; the �rst step is to �nd the optimum internal stitch; this is the one
that is judged as most suited to being substituted (for another stitch). This stitch is replaced by another
stitch, which reduces the absolute value of the discrepancy. The replacement stitch will have a di�erent
�changing e�ect�. The algorithm is repeated if necessary until the discrepancy is zero. The process is
di�erent depending on whether the discrepancy is positive or negative, as explained below.

Negative discrepancy

If discrepancyG < 0, this means there are too few stitches in G. Algorithm B.4 is followed (without loss
of generality, see below) to �nd the optimum stitch. The �rst priority is to locate a decrease stitch, since
this stitch could be replaced by a non-changing stitch or reduced in strength. The next priority is to �nd
a single increase; this could be turned into a double increase in order to increase the discrepancy by 1.

As a last resort, a non-changing stitch is sought since this can be turned into an increase. The
reason why non-shaping stitches are given the lowest precedence is that shaping stitches tend to have a
distinctive appearance and are often part of a pattern. Therefore, it is perhaps undesirable to introduce
new shaping stitches unless there is no alternative.

If there is more than one decrease then they are prioritised according to algorithm B.5. The �rst
priority is to �nd a decrease with a strength equal to the discrepancy; this stitch can be made to a
non-shaping stitch and this will result in a zero discrepancy. If there is no such decrease then ones with a
strength lower than the discrepancy; making a single decrease into a non shaping stitch will increase the
discrepancy by one.

When other means fail, both algorithms B.4 and B.5 use the stitch that is closest to the end of the
row to determine the optimum stitch. This stitch will still be an internal stitch, as the endmost ones are
excluded from the inputs to these algorithms.

Positive discrepancy

In the event of a positive discrepancy, the inverse of algorithms B.4 and B.5 applies, by substituting
�increase� for �decrease� and vice versa.

B.3.5 Limitations of correctness algorithms

SEACOP is capable of making most charts correct. However, the algorithms described above have
limitations. Indeed it cannot be assumed that it is possible to devise perfect algorithms for the correctness
of charts; such a problem may be undecidable (as in Turing's famous halting problem). Also, more
elaborate algorithms (than are presented here) may cause the system to deviate from the user's intentions.

As explained previously, the correctness algorithms work on a piece by processing each row one at
the time, starting at the bottom and working upwards; �rst the shaping is done and then the validity. If
either algorithm encounters a problem, then the details of the problem are recorded, and the algorithm
then attempts to continue with subsequent rows.

A problem is deemed to have occurred with the shaping algorithm if either leftraw and leftshaping or
rightraw and rightshaping (as de�ned in table B.3) have opposite signs. This means one or both of the
following must be true:

271



Algorithm B.4 Rectifying discrepancy<0

l e t D be the s e t o f d e c r e a s e s
l e t cD be the c a r d i n a l i t y o f S
when cD i s 1 then

output the e l ement i n S
t e rm i n a t e

when cD i s 0 then
l e t I be the s e t o f s i n g l e i n c r e a s e s
l e t c I be the c a r d i n a l i t y o f S
when c I i s 1 then

output the s t i t c h i n I
when c I i s 0 then

l e t N be the s e t o f non−shap i ng s t i t c h e s
l e t cN be the c a r d i n a l i t y o f N
i f cN i s 1 then

output the s t i t c h i n N
e l s e

output the s t i t c h i n N which i s c l o s e s t to
the end o f the row

o t h e rw i s e ( i . e . c I >1)
output the s t i t c h i n I which i s c l o s e s t to
the end o f the row

o t h e rw i s e ( i . e . cD>1)
output the p r i o r i t y d e c r e a s e from D

Algorithm B.5 Prioritising decreases

i n pu t : a non−empty s e t o f d e c r e a s e s (D)

l e t E be the s ub s e t o f s t i t c h e s w i th s t r e n g t h equa l to d i s c r e p a n c y
l e t cE be the c a r d i n a l i t y o f E
when cE i s 1 then

output the s t i t c h i n E
when cE i s 0 then

l e t L be the s ub s e t o f s t i t c h e s w i th s t r e n g t h l owe r than d i s c r e p a n c y
l e t cL be the c a r d i n a l i t y o f L
when cL i s 1 then

output the s t i t c h i n L
when cL i s 0 then

E must c o n s i s t o f s t i t c h e s w i th a s t r e n g t h g r e a t e r than d i s c r e p a n c y
output the s t i t c h i n E which i s c l o s e s t to the end o f the row

o t h e rw i s e ( i . e . cL>1)
output the s t i t c h i n L which i s c l o s e s t to the end o f the row

o t h e rw i s e ( i . e . cE>1)
output the s t i t c h i n E which i s c l o s e s t to the end o f the row

272



� (leftraw < 0 ∧ leftshaping > 0) ∨ (leftraw > 0 ∧ leftshaping < 0)

� (rightraw < 0 ∧ rightshaping > 0) ∨ (rightraw > 0 ∧ rightshaping < 0)

This safeguard is intuitive since it does not make sense for the shaping that is applied to be the opposite
of that which is derived from the sketch.

A problem is deemed to occur with the validity algorithm if none of the stitches in the row is capable
of being transformed into a stitch that will reduce the magnitude of the discrepancy. In algorithm B.4, if
discrepancyG < 0, a problem would arise when D, I, and N were all empty sets. The possible causes of
this are:

� If the group consists of only one or two stitches. Since the outer stitches are not changed, there is
nothing the algorithm can do.

� If the internal stitches of the group consist of only double increases, and discrepancyG < 0, or
only double decreases where discrepancyG > 0.

� If the group consists of only cast o� stitches.

The solution to shaping and validity problems is the same: the user will have to manually edit the chart.
For example, if the group consisted of just two stitches because it was at the very end of the piece, then
those two stitches would have to be altered to make the chart valid, since validity takes precedence over
shaping issues. Alternatively, it may be possible to �x the situation by changing the previous row.

Thus, even if the inbuilt algorithms cannot produce a valid knitting chart then manual methods exist
whereby a competent user can complete the process. Since the user is able to re-run the validity algorithm
at any time, is provides instant feedback as to the success of their editing.

273



Appendix C

Questionnaire Similarity Settings

Description Code Rank Weight

The type of garment SIM_GARMENTTYPE priority 1
Has sleeves or is sleeveless? SIM_HASSLEEVES priority 1

Armhole style SIM_ARMHOLESTYLE priority 1
Shape of neck SIM_NECKSHAPE priority 1

Type of background stitch SIM_STITCHBG 0 0.96
Fastener type SIM_FASTTYLE 1 0.92

Waist �tting option SIM_FITWAIST 2 0.88
Choice of neck option SIM_NECKOPTION 3 0.84

Whether there is a front border or not SIM_FRBORDER 4 0.8
Whether or not there is a yoke SIM_YOKE 5 0.76

Whether there is a bottom border or not SIM_BOTBORDER 6 0.72
The option for cu�s SIM_CUFFS 7 0.68

Who is the intended wearer ? SIM_WEARER 8 0.64
How many pockets there are SIM_POCKETNUMBER 9 0.6

Position of the pockets SIM_POCKETPOS 10 0.56
Straight part at the top of the sleeve SIM_STRTOP 11 0.52

Straight part at the bottom of the sleeve SIM_STRBOTTOM 12 0.48
Sleeve length SIM_SLEEVELENGTH 13 0.44
Style of collar SIM_COLLARSTYLE 14 0.4
Style of hood SIM_HOODSTYLE 15 0.36

The stitch pattern used on the front border SIM_FRBORDERSTITCH 16 0.32
The stitch pattern used on the bottom border SIM_BOTBORDERSTITCH 17 0.28

The stitch pattern used on the collar SIM_COLLARSTITCH 18 0.24
The stitch pattern used on the hood SIM_HOODSTITCH 19 0.2

The stitch pattern used on the neck edging SIM_NECKEDGESTITCH 20 0.16
The stitch pattern used on the yoke SIM_YOKESTITCH 21 0.12
The stitch pattern used on the cu�s SIM_CUFFSTITCH 22 0.08
Whether it is fully fashioned or not SIM_FULLFASH 23 0.04

Width allowance SIM_WIDTHALLOW irrelevant 0
Length adjustment SIM_LENGTHADJUST irrelevant 0

Whether there are no super�uous pockets SIM_POCKETSNOEXTRA irrelevant 0
Number of buttons SIM_BUTTONNUMBER irrelevant 0
Button position SIM_BUTTONPOSITION irrelevant 0

Whether or not at least one of the sizes matches SIM_ASIZEMATCH irrelevant 0

Table C.1: Weights used for features

274



Table C.1 shows the descriptions and weights for the features. The remainder of the tables in this
appendix give the �raw score� for the Likert settings; the key for this is table 6.3.

Dropped Raglan Semi set in Set in

Dropped 5 1 2 2
Raglan 1 5 2 2

Semi set in 2 2 5 4
Set in 2 2 4 5

Table C.2: Armhole styles

V Round Straight Scoop Slash

V 5 3 1 3 2
Round 3 5 1 4 2
Straight 1 1 5 1 3
Scoop 3 4 1 5 1
Slash 2 2 3 1 5

Table C.3: Neck shapes

Entire Front Top part only Bottom part only Middle only

Entire Front 5 2 2 3
Top part only 2 5 1 2

Bottom part only 2 1 5 2
Middle only 3 2 2 5

Table C.4: Button positions

Very Short Above Elbow 3/4 length Wrist

Very Short 5 3 2 1
Above Elbow 3 5 3 3
3/4 length 2 3 5 4
Wrist 1 3 4 5

Table C.5: Sleeve lengths

275



st
o
ck
in
g
st
it
ch

re
ve
rs
e
st
o
ck
in
g
st
it
ch

m
os
s
st
it
ch

ga
rt
er

st
it
ch

br
am

b
le
st
it
ch

d
ou
b
le
m
os
s
st
it
ch

b
ox

st
it
ch

ri
ce

st
it
ch

ri
b

ot
h
er
..
.

stocking stitch 5 4 2 3 2 2 2 1 2 3
reverse stocking stitch 4 5 2 3 1 2 2 3 2 2

moss stitch 2 2 5 2 1 3 3 1 3 2
garter stitch 3 3 2 5 1 2 2 2 2 2
bramble stitch 2 1 1 1 5 1 1 1 1 1

double moss stitch 2 2 3 2 1 5 4 1 4 2
box stitch 2 2 3 2 1 4 5 1 3 2
rice stitch 1 3 1 2 1 1 1 5 1 1

rib 2 2 3 2 1 4 3 1 5 2
other... 3 2 2 2 1 2 2 1 2 5

Table C.6: Stitch patterns

Baby Child Man Woman

Baby 5 1 4 1
Child 1 5 1 1
Man 4 1 5 2

Woman 1 1 2 5

Table C.7: Wearers

normal �tted baggy

normal 5 3 1
�tted 3 5 3
baggy 1 3 5

Table C.8: Waist options

Buttons Zip Belt Other None

Buttons 5 2 2 1 2
Zip 2 5 2 1 3
Belt 2 2 5 1 2
Other 1 1 1 5 1
None 2 3 2 1 5

Table C.9: Fastener options

276



none normal loose tight

none 5 1 1 1
normal 1 5 3 3
loose 1 3 5 2
tight 1 3 2 5

Table C.10: Cu� options

Nothing Collar Hood Band

Nothing 5 1 1 1
Collar 1 5 2 3
Hood 1 2 5 2
Band 1 3 2 5

Table C.11: Neck options

277



Appendix D

Example Sketches

Table D.1 lists all roles in a garment, with the exception of those in the collar or hood. Where there is
a cross ('X') in the cell, that role is featured in the sketch of the appropriate �gure. Figures D.1 and
D.2 show the front of a garment, whereas �gures D.4 and D.5 show a sleeve. The sleeves are depicted
with a vertical axis of symmetry for presentation purposes: SEACOP shows them with an orientation
perpendicular to this. Collars and hoods are not shown as these pieces are deliberately created with very
few constraints, leaving the user to edit the shapes to suit their requirements.

278



D.1 D.2 D.3 D.4 D.5

ARMHOLE_BOTTOM X X X
ARMHOLE_TOP X X X
ARM_CURVE X

BAND X
BOTTOM_BORDER_LEFT X X
BOTTOM_BORDER_RIGHT X X

BOTTOM_LEFT X X X
BOTTOM_OF_DIVIDE X
BOTTOM_OF_SHAPING X X

CROWN X X
CUFF_EDGE X

CUFF_MIDDLE X
CURVE_EDGE X X

FITTED_OR_BAGGY_WAIST X X
FRONT_BORDER_BOTTOM X

FRONT_BORDER_TOP X
LEFT_EDGE X X

NECK_BAND_LEFT X
NECK_BAND_RIGHT X
NECK_BEZIER_1 X
NECK_BEZIER_2 X
NECK_BOTTOM X X X

NECK_TOP X X X
ORIGIN X X X X X

POCKET_BOTTOM_LEFT X
POCKET_BOTTOM_RIGHT X

POCKET_CENTRE X
POCKET_TOP_LEFT X
POCKET_TOP_RIGHT X

RAGLAN_BODY X X
RAGLAN_BOTTOM X

RAGLAN_TOP X
RECT_PANEL_1 X
RECT_PANEL_2 X
RECT_PANEL_3 X
RECT_PANEL_4 X

SLEEVE_BEZIER_1 X
SLEEVE_BEZIER_2 X

STANDARD_BUTTON X
TOP_OF_SHAPING X X

USER_ADDED X
YOKE_BORDER_LEFT X
YOKE_BORDER_RIGHT X

Table D.1: Roles

279



Figure D.1: Front of a round-neck sweater with a yoke and bottom border and a �tted waist

280



Figure D.2: Front of a v-neck cardigan with a yoke and a bottom border and a �tted waist (3 buttons)

281



Figure D.3: v-neck Raglan sweater with a large centre pocket and horizontal band

282



Figure D.4: Raglan sleeve with rectangular panel

283



Figure D.5: Set-in sleeve

284



Appendix E

Case Base Composition

In table E.1, the pre�x of the name indicates the source. Badger[6] and Budd [174] are knitting books.
The remaining designs (pre�xed 'PR') were created by myself. Table E.2 consists solely of cases supplied
by Sirdar Spinning Ltd. For brevity, only the most important questionnaire attributes are shown in the
table.

285



N
am

e
T
yp
e

F
as
te
n
er

H
as

fr
o
n
t

b
or
-

d
er
?

W
ai
st

H
as

b
o
tt
o
m

b
or
-

d
er
?

Y
o
ke ?

N
ec
k

N
ec
k

O
p
ti
o
n

P
o
ck
et
s

A
rm

h
o
le

S
le
ev
e

st
ra
ig
h
ts

S
le
ev
es

C
u
�
s

b
ad
g
er
1
2
3

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

ye
s

n
o

V
b
an
d

ye
s

se
m
i
se
t-
in

n
/
a

n
/
a

n
/
a

b
ad
g
er
1
2
3
a

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

ye
s

n
o

V
b
an
d

ye
s

se
m
i
se
t-
in

n
/
a

n
/
a

n
/
a

b
ad
g
er
1
2
8

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

ye
s

n
o

ro
u
n
d

co
lla
r

n
o
n
e

se
t-
in

to
p

w
ri
st

n
or
m
al

b
ad
g
er
1
2
8
a

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

ye
s

n
o

ro
u
n
d

co
lla
r

n
o
n
e

d
ro
p
p
ed

to
p

w
ri
st

n
or
m
al

b
u
d
d
3
0

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

ro
u
n
d

b
an
d

n
o
n
e

d
ro
p
p
ed

b
o
tt
o
m

w
ri
st

n
o
n
e

b
u
d
d
3
0
a

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

V
b
an
d

n
o
n
e

d
ro
p
p
ed

b
o
tt
o
m

w
ri
st

n
o
n
e

b
u
d
d
3
0
b

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

ro
u
n
d

b
an
d

n
o
n
e

d
ro
p
p
ed

b
o
tt
o
m

w
ri
st

n
o
n
e

b
u
d
d
3
0
c

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

V
b
an
d

n
o
n
e

d
ro
p
p
ed

b
o
tt
o
m

w
ri
st

n
o
n
e

b
u
d
d
5
8

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

ro
u
n
d

b
an
d

n
o
n
e

se
m
i
se
t-
in

b
o
th

w
ri
st

n
o
n
e

b
u
d
d
5
8
a

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

V
b
an
d

n
o
n
e

se
m
i
se
t-
in

b
o
th

w
ri
st

n
o
n
e

b
u
d
d
5
8
b

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

ro
u
n
d

b
an
d

n
o
n
e

se
m
i
se
t-
in

b
o
th

w
ri
st

n
o
n
e

b
u
d
d
5
8
c

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

V
b
an
d

n
o
n
e

se
m
i
se
t-
in

b
o
th

w
ri
st

n
o
n
e

pr
1

sw
ea
te
r

n
/
a

n
/
a

b
ag
g
y

n
o

ye
s

sl
as
h

co
lla
r

ye
s

se
t-
in

to
p

ab
o
ve

el
b
ow

n
o
n
e

pr
1
0

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

sc
o
o
p

n
o
th
in
g

n
o
n
e

se
t-
in

b
o
th

w
ri
st

n
or
m
al

pr
1
1

ca
rd
ig
an

b
o
th
er

n
o

n
or
m
al

n
o

ye
s

V
n
o
th
in
g

n
o
n
e

R
ag
la
n

b
o
th

w
ri
st

n
or
m
al

pr
1
2

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

ye
s

n
o

sl
as
h

b
an
d

n
o
n
e

se
m
i
se
t-
in

b
o
th

w
ri
st

n
or
m
al

pr
2

ca
rd
ig
an

b
o
th
er

n
o

b
ag
g
y

n
o

n
o

sc
o
o
p

n
o
th
in
g

ye
s

d
ro
p
p
ed

n
/
a

n
/
a

n
/
a

pr
3

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

b
ag
g
y

ye
s

n
o

st
ra
ig
h
t

co
lla
r

n
o
n
e

se
t-
in

b
o
th

ab
o
ve

el
b
ow

lo
o
se

pr
4

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

n
o

ye
s

sl
as
h

n
o
th
in
g

ye
s

se
t-
in

to
p

¾
le
n
g
th

n
or
m
al

pr
5

ca
rd
ig
an

n
o
n
e

ye
s

n
or
m
al

ye
s

n
o

ro
u
n
d

n
o
th
in
g

n
o
n
e

se
t-
in

n
/
a

n
/
a

n
/
a

pr
6

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

ye
s

ye
s

ro
u
n
d

co
lla
r

n
o
n
e

se
t-
in

n
/
a

n
/
a

n
/
a

pr
7

sw
ea
te
r

n
/
a

n
/
a

b
ag
g
y

n
o

n
o

sc
o
o
p

n
o
th
in
g

n
o
n
e

se
t-
in

b
o
th

¾
le
n
g
th

lo
o
se

pr
8

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

ye
s

ye
s

sl
as
h

co
lla
r

n
o
n
e

d
ro
p
p
ed

b
o
th

w
ri
st

n
or
m
al

pr
9

sw
ea
te
r

n
/
a

n
/
a

b
ag
g
y

ye
s

n
o

V
n
o
th
in
g

n
o
n
e

R
ag
la
n

to
p

w
ri
st

lo
o
se

Table E.1: Miscellaneous cases

286



N
am

e
T
yp
e

F
as
te
n
er

H
as

fr
o
n
t

b
or
-

d
er
?

W
ai
st

H
as

b
o
tt
o
m

b
or
-

d
er
?

Y
o
ke ?

N
ec
k

N
ec
k

O
p
ti
o
n

P
o
ck
et
s

A
rm

h
o
le

S
le
ev
e

st
ra
ig
h
ts

S
le
ev
es

C
u
�
s

s2
6
7
5

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

sc
o
o
p

n
o
th
in
g

n
o
n
e

d
ro
p
p
ed

b
o
th

w
ri
st

n
or
m
al

s2
6
7
8

ca
rd
ig
an

n
o
n
e

ye
s

n
or
m
al

ye
s

n
o

ro
u
n
d

co
lla
r

n
o
n
e

d
ro
p
p
ed

b
o
th

w
ri
st

lo
o
se

s2
9
3
0

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

ye
s

n
o

ro
u
n
d

b
an
d

n
o
n
e

d
ro
p
p
ed

n
o
n
e

w
ri
st

n
or
m
al

s2
9
6
7

ca
rd
ig
an

b
o
th
er

ye
s

n
or
m
al

ye
s

n
o

st
ra
ig
h
t

n
o
th
in
g

n
o
n
e

se
m
i
se
t-
in

b
o
th

w
ri
st

lo
o
se

s2
9
8
0

ca
rd
ig
an

n
o
n
e

ye
s

n
or
m
al

ye
s

n
o

V
b
an
d

n
o
n
e

se
m
i
se
t-
in

b
o
tt
o
m

w
ri
st

n
or
m
al

s2
9
9
9

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

ye
s

n
o

V
b
an
d

ye
s

R
ag
la
n

n
o
n
e

w
ri
st

n
or
m
al

s3
0
0
3

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

ye
s

n
o

st
ra
ig
h
t

b
an
d

n
o
n
e

se
m
i
se
t-
in

n
o
n
e

ve
ry

sh
or
t

n
o
n
e

s3
0
1
1

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

n
o

ye
s

st
ra
ig
h
t

n
o
th
in
g

n
o
n
e

se
m
i
se
t-
in

n
/
a

n
/
a

n
/
a

s3
0
1
1
a

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

n
o

ye
s

st
ra
ig
h
t

n
o
th
in
g

n
o
n
e

se
m
i
se
t-
in

b
o
tt
o
m

¾
le
n
g
th

n
or
m
al

s3
0
1
4

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

sc
o
o
p

b
an
d

n
o
n
e

se
m
i
se
t-
in

n
o
n
e

ve
ry

sh
or
t

n
o
n
e

s3
0
1
4
a

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

n
o

n
o

sc
o
o
p

b
an
d

n
o
n
e

se
m
i
se
t-
in

n
/
a

n
/
a

n
/
a

s3
0
1
5

ca
rd
ig
an

b
u
tt
o
n
s

n
o

n
or
m
al

n
o

n
o

st
ra
ig
h
t

n
o
th
in
g

n
o
n
e

se
t-
in

b
o
tt
o
m

w
ri
st

n
o
n
e

s3
0
1
7

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

ye
s

n
o

ro
u
n
d

b
an
d

n
o
n
e

d
ro
p
p
ed

b
o
tt
o
m

w
ri
st

lo
o
se

s3
0
2
1

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

ye
s

n
o

sc
o
o
p

b
an
d

n
o
n
e

se
m
i
se
t-
in

n
o
n
e

ve
ry

sh
or
t

n
or
m
al

s3
0
2
1
a

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

ye
s

n
o

sc
o
o
p

b
an
d

n
o
n
e

se
t-
in

n
/
a

n
/
a

n
/
a

s3
0
4
1

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

�
tt
ed

ye
s

n
o

V
b
an
d

n
o
n
e

R
ag
la
n

b
o
tt
o
m

w
ri
st

n
o
n
e

s3
0
6
5

sw
ea
te
r

n
/
a

n
/
a

n
or
m
al

ye
s

n
o

V
n
o
th
in
g

n
o
n
e

se
m
i
se
t-
in

n
o
n
e

ve
ry

sh
or
t

n
or
m
al

s3
1
3
2

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

n
o

n
o

ro
u
n
d

co
lla
r

n
o
n
e

se
m
i
se
t-
in

b
o
tt
o
m

w
ri
st

n
o
n
e

s3
1
6
6

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

ye
s

ye
s

ro
u
n
d

b
an
d

n
o
n
e

se
m
i
se
t-
in

n
o
n
e

ve
ry

sh
or
t

n
or
m
al

s3
2
1
3

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

ye
s

n
o

V
co
lla
r

n
o
n
e

R
ag
la
n

to
p

¾
le
n
g
th

n
or
m
al

s3
2
1
3
a

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

ye
s

n
o

V
co
lla
r

n
o
n
e

R
ag
la
n

n
o
n
e

ve
ry

sh
or
t

n
or
m
al

s3
2
2
4

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

ye
s

n
o

sc
o
o
p

b
an
d

n
o
n
e

se
t-
in

n
o
n
e

¾
le
n
g
th

lo
o
se

s3
2
2
4
a

sw
ea
te
r

n
/
a

n
/
a

�
tt
ed

ye
s

n
o

sc
o
o
p

b
an
d

n
o
n
e

se
t-
in

n
o
n
e

w
ri
st

lo
o
se

s3
2
2
5

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

n
o

n
o

st
ra
ig
h
t

n
o
th
in
g

n
o
n
e

se
m
i
se
t-
in

b
o
tt
o
m

¾
le
n
g
th

n
o
n
e

s3
2
2
5
a

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

n
o

n
o

st
ra
ig
h
t

n
o
th
in
g

n
o
n
e

se
m
i
se
t-
in

n
o
n
e

ve
ry

sh
or
t

n
o
n
e

s3
3
1
1

ca
rd
ig
an

b
u
tt
o
n
s

ye
s

n
or
m
al

ye
s

n
o

V
b
an
d

n
o
n
e

R
ag
la
n

n
o
n
e

w
ri
st

n
or
m
al

Table E.2: Cases from Sirdar Spining Ltd

287



Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological vari-
ations, and system approaches. Arti�cial Intelligence Communications, 7(1):39�59, 1994.

[2] Klaus-Dieter Altho�, Eric Auriol, Ralph Barletta, and Michel Manago. Review of Industrial Case-
Based Reasoning Tools. AI Intelligence, 1995.

[3] Ralph Bergmann, Janet Kolodner, and Enric Plaza. Representation in case-based reasoning. The
Knowledge Engineering Review,, 20(3):209�213, 2005.

[4] David B. Leake. CBR in Context: The Present and Future (in Case-Based Reasoning: Experiences,
Lessons, and Future Directions), chapter 1. AAAI Press/MIT Press, 1996.

[5] Jim Prentzas and Ioannis Hatzilygeroudis. Categorizing approaches combining rule-based and case-
based reasoning. Expert Systems, 24(2):97�122, 2007.

[6] Ros Badger. Knitting (Instant Expert). MQ Publications Limited, 2005.

[7] Roger C. Schank. Dynamic Memory: A Theory of Reminding and Learning in Computers and
People. Cambridge University Press, 1983.

[8] Mehmet Göker, Thomas Roth-Berghofer, Ralph Bergmann, Thomas Pantleon, Ralph Traphöner,
Stefan Wess, and Wolfgang Wilke. The development of HOMER: A case-based CAD/CAM help-
desk support tool. In B Smyth and P Cunningham, editors, Advances in Case-Based Reasoning,
Proceedings of the Fourth European Workshop on Case-Based Reasoning EWCBR98, 1998.

[9] Ian Watson and Farhi Marir. Case-based reasoning: A review. The Knowledge Engineering Review,
9(4):335�381, 1994.

[10] Janet L Kolodner. Maintaining organization in a dynamic long-term memory. Cognitive Science,
7:243�280, 1983.

[11] Ralph Bergmann, Wolfgang Wilke, Ivo Vollrath, and Stefan Wess. Integrating general knowledge
with object-oriented case representation and reasoning. In Fourth German Workshop: Case-Based
Reasoning-System Development and Evaluation, 1996.

[12] Wolfgang Wilke and Ralph Bergmann. Techniques and knowledge used for adaptation during case-
based problem solving. In 11th International Conference on Industrial and Engineering Applications
of Arti�cial In telligence and Expert Systems: Tasks and Methods in Applied Arti�cial Intelligence,
pages 497�506, 1998.

[13] Gavin Finnie and Zhaohao Sun. R5 model for case-based reasoning. Knowledge-Based Systems,
16(1):59�65, 2003.

[14] Paul Richards and A Ekárt. Hierarchical case based reasoning to support knitwear design. CIRP
Journal of Manufacturing Science and Technology, 2(4):299�309, 2010.

[15] David Wilson. CBR Noir. In AIII08, 2008. Retrieved from http://www.aivideo.org/2008/accepted-
videos.html, 6 February 2011.

288



[16] L Wittgenstein. Philosophical investigations. Blackwell, 1953.

[17] Janet. L. Kolodner and Robert L. Simpson. The mediator: Analysis of an early case-based problem
solver. Cogni, 13(4):507�549, 1989.

[18] William M. Bain. A case-based reasoning system for subjective assessment. In Proceedings of
AIII08, pages 523�527, 1986.

[19] Kristian J. Hammond. Chef: A model of case-based planning. In Proceedings of the Fifth National
Conference on Arti�cial Intelligence (AAAI-86), 1986.

[20] Phyllis Koton. Using Experience in Learning and Problem Solving. PhD thesis, Massachusetts
Institute of Technology, 1988.

[21] Phyllis Koton. A medical reasoning program that improves with experience. Computer Methods
and Programs in Biomedicine, 30(2-3):177�184, 1989.

[22] E. Ray Bareiss, Bruce W Porter, and Craig C. Wier. Protos: an exemplar-based learning apprentice.
International Journal of Man-Machine Studies, 29(5):549�561, 1988.

[23] David B. Leake. Creativity by case-based reasoning (CBR): Swale project home page. Accessed
from http://www.cs.indiana.edu/ leake/projects/swale/ on 6 February 2011.

[24] Roger C. Schank and David B. Leake. Creativity and learning in a case-based explainer. Arti�cial
Intelligence, 40(1-3):353�385, 1989.

[25] Pete Tierney. Developing a strategic platform for searching and retrieving cor-
porate knowledge. Technical report, Inference Corporation, 1995. retrieved from
http://www.riskinfo.com/tech/wpfull1.htm, 12 February 2011.

[26] Bradley P. Allen and S. Daniel Lee. A knowledge-based environment for the development of software
parts composition systems. In Proc. 11th ICSE, pages 104�112, 1989.

[27] S.Daniel Lee, Trung D Nguyen, and Mary P. Czerwinski. Integration of case-based search engine
into help database (Inference Corporation patent 5701399), 1997.

[28] Problem-solving software. Technical Report 20020083260, NASA, 1992.

[29] William Cheetham and John Graf. Case-based reasoning in color matching. In ICCBR '97 Proceed-
ings of the Second International Conference on Case-Based Reasoning Research and Development,
pages 1�12, 1997.

[30] William Cheetham. Tenth anniversary of the plastics color formulation tool. AI Magazine, 26(3):51�
61, 2005.

[31] Xijun Wang. A web-based case-based reasoning tool. Master's thesis, University of Wyoming, 2000.

[32] Cynthia Marling, Mohammed Sqalli, Edwina Rissland, Hector Muñoz-Avila, and David Aha. Case-
based reasoning integrations. AI Magazine, 23(1):69�86, 2002.

[33] Andrew M. Dearden and Derek G. Bridge. Choosing a knowledge based system to support a help
desk. Knowledge Engineering Review, 8(3):201�222, 1993.

[34] R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. In 2nd International Joint Conference on Arti�cial Intelligence, pages 608�620,
1971.

[35] Dana Nau. Automated planning: Theory and practice. Retrieved from
http://www.cs.umd.edu/ nau/planning/slides, 25 February 2011.

289



[36] H Munoz-Avila and M.T. Cox. Case-based plan adaptation: An analysis and review. Intelligent
Systems, 23(4):75 � 81, 2008.

[37] Santi Ontañón, Kane Bonnette, Praful Mahindrakar, Marco Gómez-Martin, Katie Long, Jai
Radhakrishnan, Rushabh Shah, and Ashwin Ram. Learning from human demonstrations for real-
time case-based planning. In Proceedings of the IJCAI-09 Workshop on Learning Structural Know-
ledge from Observations, 2009.

[38] Bernhard Nebel and Jana Koehler. Plan reuse versus plan generation: A theoretical and empirical
analysis. Arti�cial Intelligence, 76:427�454, 1995.

[39] Claudia Eckert. The communication bottleneck in knitwear design: Analysis and computing solu-
tions. Computer Supported Cooperative Work, 10:29�74, 2001.

[40] Janet L. Kolodner. Improving human decision making through case-based decision aiding. AI
Magazine, 12(2):52�68, 1991.

[41] I. Watson. Case-based reasoning is a methodology not a technology. Knowledge-Based Systems,
12:303�308, 1999.

[42] Marvin Minsky. A framework for representing knowledge. In P.H. Winston, editor, The Psychology
of Computer Vision, pages 211�217. McGraw-Hill, 1975.

[43] Sylvie Salotti and Véronique Ventos. Study and formalization of a case-based reasoning system
using a description logic. In EWCBR '98 Proceedings of the 4th European Workshop on Advances
in Case-Based Reasoning, 1998.

[44] Barry Smyth, Mark T. Keane, and Pádraig Cunningham. Hierarchical case-based reasoning integ-
rating case-based and decompositional problem-solving techniques for plant-control software design.
IEEE Transactions on Knowledge and Data Engineering, 13(5):793 � 812, 2001.

[45] Michael Redmond. Distributed cases for case-based reasoning; facilitating use of multiple cases. In
AAAI-90 Proceedings, pages 304�309, 1990.

[46] D. Navinchandra, K. P. Sycara, and S. Narasimhan. Behavioral synthesis in CADET, a case-based
design tool. In Proceedings., Seventh IEEE Conference on Arti�cial Intelligence Applications, 1991,
pages 217 � 221, 1991.

[47] Bassant Mohamed El-Bagoury, Abdel-Badeeh Salem, and Hans-Dieter Burkhard. Hierarchical case-
based reasoning behavior control for humanoid robot. Annals of the University of Craiova - Math-
ematics and Computer Science Series, 36(2):131�140, 2009.

[48] Andrea Bonzano and Pádraig Cunningham. Hierarchical CBR for multiple aircraft con�ict resolution
in air tra�c control. In Proceedings of 13th European Conference on Arti�cial Intelligence, pages
58�62, 1998.

[49] L.Karl Branting and David W. Aha. Stratifed case-based reasoning: Reusing hierarchical problem
solving episodes. In IJCAI-95, pages 384�390, 1995.

[50] Fong-Ching Yuan and Chaochang Chiu. A hierarchical design of case-based reasoning in the bal-
anced scorecard application. Expert Systems with Applications, 36(1):333�342, 2009.

[51] Rainer Schmidt, Stefania Montani, Riccardo Bellazzi, Luigi Portinale, and Lothar Gierl. Case-
based reasoning for medical knowledge-based systems. International Journal of Medical Informatics,
64:355�367, 2001.

[52] Brian Knight, Miltos Petridis, and Fei Ling Woon. Case selection and interpolation in CBR retrieval.
Expert Update, 10(1):31�38, 2010.

290



[53] David B. Leake and David C. Wilson. Combining CBR with interactive knowledge acquisition,
manipulation and reuse. In Proceedings of the Third International Conference on Case-Based
Reasoning and Development, 1999.

[54] Manuela M. Veloso and Jaime G. Carbonell. Derivational analogy in prodigy: Automating case
acquisition, storage and utilization. Machine Learning, 10:249�278, 1993.

[55] Mykola Galushka and David Patterson. Intelligent index selection for case-based reasoning.
Knowledge-Based Systems, 19:625�638, 2006.

[56] Barry Smyth and Pádraig Cunningham. The utility problem analysed a case-based reasoning per-
spective. In Proceedings of the Third European Workshop on Case-Based Reasoning, pages 392�
399, 1996.

[57] Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers Inc, 1993.

[58] J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81�106, 1986.

[59] Pádraig Cunningham. A taxonomy of similarity mechanisms for case-based reasoning. Technical
report, University College Dublin, 2008.

[60] John Kelleher and Brian Mac Namee. Instance-based learning (2). retrieved from
http://www.comp.dit.ie/bmacnamee/materials/ml/lectures/Instance-Based-Learning-2.pdf.

[61] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. Similarity between Euclidean and
cosine angle distance for nearest neighbor queries. In Proceedings of 2004 ACM Symposium on
Applied Computing, 2004.

[62] Jörg Walter Schaaf. Fish and shrink. a next step towards e�cient case retrieval in large scaled case
bases. In EWCBR '96 Proceedings of the Third European Workshop on Advances in Case-Based
Reasoning, 1996.

[63] Amos Tversky. Features of similarity. Psychological Review, 84(4):327�352, 1977.

[64] R Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[65] Dietrich Wettschereck and David W. Aha. Weighting features. In Proceedings of the First Inter-
national Conference on Case-Based Reasoning., 1995.

[66] Ramon Lopez De Mantaras, David McSherry, Derek Bridge, David Leake, Barry Smyth, Susan Craw,
Boi Faltings, Mary Lou Maher, Michael T. Cox, Kenneth Forbus, Mark Keane, Agnar Aamodt, and
Ian Watson. Retrieval, reuse, revision and retention in case-based reasoning. Knowledge Engineering
Review, 20(3):215�240, 2005.

[67] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover's distance as a metric for
image retrieval. International Journal of Computer Vision, 20(5):99�121, 2000.

[68] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707�710, 1965.

[69] Miltos Petridis, Soran Saeed, and Brian Knight. An automatic case based reasoning system using
similarity measures between 3D shapes to assist in the design of metal castings. Expert Update,
10(2):43�51, 2010.

[70] B.T. Messmer and H. Bunke. Subgraph isomorphism in polynomial time. Technical report, Uni-
versity of Bern, 1995.

[71] T.A. Welch. A technique for high-performance data compression. IEEE Computer, 17(6):8�19,
1984.

291



[72] Xin Chen, Brent Francia, Ming Li, Brian McKinnon, and Amit Seker. Shared information and
program plagiarism detection. IEEE Transactions on Information Theory, 50(7):1545�1551, 2004.

[73] Andrej Bratko, Gordon V. Cormack, Bogdan Filipic, Thomas R. Lynam, and Blaz Zupan. Spam
�ltering using statistical data compression models. Journal of Machine Learning Research, 7:2673�
2698, 2006.

[74] Leo Breiman. Random forests. Machine Learning, 45:5�32, 2001.

[75] Tor Gunnar Houeland. An e�cient random decision tree algorithm for case-based reasoning systems.
In Twenty-Fourth International FLAIRS Conference, pages 401�406, 2011.

[76] Brian Sheppard. World-championship-caliber scrabble. Arti�cial Intelligence, 134(1-2):241�275,
2002.

[77] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd International Conference on Machine Learning, 2006.

[78] Barry Smyth and Elizabeth McKenna. Footprint-based retrieval. In Proceedings of the Third
International Conference on Case-Based Reasoning and Development (ICCBR '99), pages 343�
357, 1999.

[79] Mario Lenz, Hans-Dieter Burkhard, and Sven Brückner. Applying case retrieval nets to diagnostic
tasks in technical domains. In In Proceedings of the Third European Workshop on Case-Based
Reasoning, pages 219�233, 1996.

[80] Evangelos Simoudis and James Miller. Validated retrieval in case-based reasoning. In Proceedings
of the Eighth National Conference on Arti�cial Intelligence, pages 310�315, 1990.

[81] Katy Börner. Structural similarity as guidance in case-based design. In Proceedings of the First
European Workshop on Case-Based Reasoning, pages 197�208, 1993.

[82] Barry Smyth and Mark T. Keane. Adaptation-guided retrieval: questioning the similarity assumption
in reasoning. Arti�cial Intelligence, 102:249�293, 1998.

[83] Sarah Jane Delany, Pádraig Cunningham, and Lorcan Coyle. An assessment of case-based reasoning
for spam �ltering. Arti�cial Intelligence Review, 24(3-4):359�378, 2005.

[84] Andres Gomez de Silva Garza and Mary Lou Maher. Using evolutionary methods for design case
adaptation. In W. Jabi, editor, Reinventing the Discourse - How Digital Tools Help Bridge and
Transform Research, Education and Practice in Architecture, Proceedings of the Twenty First
Annual Conference of the Association for Computer-Aided Design in Architecture, pages 180�191,
2001.

[85] Lisa Purvis and Pearl Pu. Adaptation using constraint satisfaction techniques. In Proceedings of
the First International Conference on Case Based Reasoning, pages 289�300, 1995.

[86] Susan Craw, Nirmalie Wiratunga, and Ray C. Rowe. Learning adaptation knowledge to improve
case-based reasoning. Arti�cial Intelligence, 170:1175�1192 1175�1192, 2006.

[87] David McSherry. Demand-driven discovery of adaptation knowledge. In Proceedings of the 16th
International Joint Conference on Arti�cial Intelligence, pages 222�227, 1999.

[88] David B. Leake, Andrew Kinley, and David Wilson. Acquiring case adaptation knowledge: A hybrid
approach. Proceedings of the Thirteenth National Conference on Arti�cial Intelligence, pages 684�
689, 1996.

292



[89] Katia P. Sycara and D. Navinchandra. Index transformation techniques for facilitating creative use
of multiple cases. In Proceedings of the 12th International Joint Conference on AI, pages 347�352,
1991.

[90] Mary Lou Maher and Dong Mei Zhang. CADSYN: A case-based design process model. Arti�cial
Intelligence for Engineering, Design, Analysis and Manufacturing, 7:97�110, 1993.

[91] Mary Lou Maher. Engineering design synthesis: A domain independent representation. Arti�cial
Intelligence for Engineering, Design, Analysis and Manufacturing (AI EDAM), 1:207�213, 1987.

[92] Edmund K. Burke, Bart L. MacCarthy, Sanja Petrovic, and Rong Qu. Multiple-retrieval case-based
reasoning for course timetabling problems. Journal of Operations Research Society, 57(2):148�162,
2005.

[93] Manuela M. Veloso. Merge strategies for multiple case plan replay. In Proceedings of the Four-
teenth National Conference on Arti�cial Intelligence and Ninth Innovative Applications of Arti�cial
Intelligence Conference, pages 413�424, 1997.

[94] Michael E. Helms, Swaroop Vattam, and Ashok Goel. Compound analogical design, or how to make
a surfboard disappear. In 30th Annual Meeting of the Cognitive Science Society, pages 781�786,
2008.

[95] Elena I Teodorescu and Miltos Petridis. An architecture for multiple heterogeneous case-based reas-
oning employing agent technologies. In 1st International Workshop on Combinations of Intelligent
Methods and Applications (CIMA 2008), pages 65�68, 2008.

[96] Daniel Hennessy and David Hinkle. Applying case-based reasoning to autoclave loading. IEEE
Expert, 7(5):21�26, 1992.

[97] P. Richards and A Ekárt. Supporting knitwear design using case-based reasoning. In Proceedings
of the 19th CIRP Design Conference - Competitive Design, pages 388�395, 2009.

[98] Jerry Slocum and Dic Sonneveld. The 15 Puzzle. Slocum Puzzle Foundation, 2006.

[99] Aaron F. Archer. A modern treatment of the 15 puzzle. American Mathematical Monthly, 106:793�
799, 1999.

[100] Pádraig Cunningham. CBR: Strengths and weaknesses. In Proceedings of 11th International
Conference on Industrial and Engineering Applications of Arti�cial Intelligence and Expert Systems,
1998.

[101] Ian Watson. A case study of maintenance of a commercially �elded case-based reasoning system.
Computational Intelligencee, Vol. 17 No. 2: pp., 17(2):387�398, 2001.

[102] Barry Smyth and Mark T. Keane. Remembering to forget: A competence-preserving case deletion
policy for case-based reasoning systems. In IJCAI'95 Proceedings of the 14th international joint
conference on Arti�cial intelligence, volume 1, pages 377�383, 1995.

[103] David C Wilson and David B. Leake. Maintaining case based reasoners: Dimensions and directions.
Computational Intelligence, 17(2):196�213, 2001.

[104] Tor Gunnar Houeland and Agnar Aamodt. The utility problem for lazy learners - towards a non-
eager approach. In I Bichindaritz and S Montani, editors, Case-Based Reasoning Research and
Development, pages 141�155, 2010.

[105] Donald E. Knuth. Structured programming with go to statements. Computing Surveys, 6(4):261�
301, 1974.

293



[106] William A. Wulf. A case against the goto. In Proceedings of the 25th National ACM Conference,
volume 2, pages 791�797, 1972.

[107] Juan José Bello-Tomás, Pedro A. González-Calero, and Belén Díaz-Agudo. JColibri: An object-
oriented framework for building CBR systems. In P.A. González-Calero and P. Funk, editors, ECCBR
2004, pages 32�46, 2004.

[108] Belén Díaz-Agudo, Pedro A. González-Calero, Juan A. Recio-García, and Antonio A. Sánchez-Ruiz-
Granados. Building CBR systems with jCOLIBRI. Science of Computer Programming, 69(1-3):68�
75, 2007.

[109] Juan A. Recio-García, Belén Díaz-Agudo, and Pedro A. González-Calero. Boosting the performance
of CBR applications with jCOLIBRI. In 21st IEEE International Conference on Tools with Arti�cial
Intelligence, 2009.

[110] Juan. A. Recio-García, Belén Díaz-Agudo, Pedro González-Calero, and Antonio Sánchez-Ruiz-
Granados. Ontology based cbr with jCOLIBRI. In R. Ellis, T. Allen, and A. Tuson, editors,
Applications and Innovations in Intelligent Systems XIV. Proceedings of AI-2006, the Twenty-sixth
SGAI International Conference on Innovative Techniques and Applications of Arti�cial Intelligence,
pages 149�162, 2006.

[111] Armin Stahl and Thomas R. Roth-Berghofer. Rapid prototyping of CBR applications with the open
source tool myCBR. In Proceedings of ECCBR 2008, 2008.

[112] Michel Jaczynski and Brigitte Trousse. An object-oriented framework for the design and the imple-
mentation of case-based reasoners. In In 6Th German Workshop on Case-Based Reasoning, pages
33�42, 1998.

[113] J. A. Recio-García, Derek Bridge, Belén Díaz-Agudo, and Pedro. A. González-Calero. CBR for
CBR: A case-based template recommender system for building case-based systems. In Advances in
case-based reasoning: 9th European conference, ECCBR, pages 459�473, 2008.

[114] Juan A. Recio-García and Belén Díaz-Agudo. An introductory user guide to jCOLIBRI 0.3. Technical
report, Universidad Complutense de Madrid, Spain, 2004.

[115] Cindy Marling, Edwina Rissland, and Agnar Aamodt. Integrations with case-based reasoning. The
Knowledge Engineering Review, 20:241�245, 2005.

[116] J. Sabater, J. L. Arcos, and R. López de Mántaras. Using rules to support case-based reasoning for
harmonizing melodies. In Papers from the 1998 AAAI Spring Symposium, pages 147�151, 1998.

[117] Jody J. Daniels and Edwina L. Rissland. What you saw is what you want: Using cases to seed
information retrieval. In Proceedings of ICCBR 97, pages 325�336, 1997.

[118] Ioannis Hatzilygeroudis and Jim Prentzas. Combinations of case-based reasoning with other intel-
ligent methods. International Journal of Hybrid Intelligent Systems, 6(4):189�209, 2009.

[119] Pablo Gervás, Belén Díaz-Agudo, Federico Peinado, and Raquel Hervás. Story plot generation
based on CBR. Journal of Knowledge Based Systems, 18:2�3, 2005.

[120] Belén Díaz-Agudo and Pedro A. González-Calero. A declarative similarity framework for knowledge
intensive CBR. In Int. Conf. on Case-Based Reasoning ICCBR-2001, pages 158�172, 2001.

[121] Florentino Fdez-Riverola and Juan M. Corchado. FSfRT: Forecasting system for red tides. Applied
Arti�cial Intelligence, 17(10):251�264, 2003.

[122] B.G. Farley and W.A. Clark. Simulation of self-organizing systems by digital computer. Institute
of Radio Engineers Transactions on Information Theory, 4:76�84, 1954.

294



[123] Rare condition named after twins, October 2005. BBC News article retrieved from http://news.

bbc.co.uk/1/hi/wales/south_west/4335454.stm on 13 July 2011.

[124] Bruce W. Porter, Ray Bareiss, and Robert Holte. Concept learning and heuristic classi�cation in
weak-theory domains. Arti�cial Intelligence, 45(1-2):229�263, 1990.

[125] John Stillwell. Mathematics and Its History. Springer, 2010.

[126] Martin Müller. Computer Go. Arti�cial Intelligence, 134:145�179, 2002.

[127] Linda Adams. Learning a new skill is easier said than done. Re-
trieved from http://www.gordontraining.com/free-workplace-articles/

learning-a-new-skill-is-easier-said-than-done, 13 July 2011.

[128] Michael M. Richter. The knowledge contained in similarity measures. In Invited talk, ICCBR-95,
1995.

[129] Nigel Cross. Forty years of design research. Design Research Quarterly, 1(2):3�5, 2006.

[130] Nigel Cross. Design Thinking. Berg, 2011.

[131] Ann Heylighen, W. Mike Martin, and Humberto Cavallin. How to teach and archive tacit design
knowledge. Design Intelligence, 11(6), 2005.

[132] W Ju, L Neeley, and L Leifer. Design, design & design; an overview of Stanford's center for design
research. In Position paper for Workshop on Exploring Design as a Research Activity, CHI 2007,
2007.

[133] Autodesk website, http://usa.autodesk.com/company, retrieved 21st July 2012.

[134] Wei-Cheng Xie, Xiu-Fen Zou, Jian-Dong Yang, and Jie-Bin Yang. Iteration and optimization
scheme for the reconstruction of 3D surfaces based on non-uniform rational b-splines. Computer-
Aided Design, 44(11):1127�1140, 2012.

[135] P.E. Bézier. How Renault uses numerical control for car body design and tooling. Technical Report
SAE Paper 680010, Society of Automotive Engineers, 1968.

[136] Yuki Kineria, Mingsi Wang, Hongwei Lin, and Takashi Maekawa. B-spline surface �tting by iterative
geometric interpolation/approximation algorithms. Computer-Aided Design, 44(7):697�708, 2012.

[137] Dong-Ming Yan, Wenping Wang, Yang Liuc, and Zhouwang Yang. Variational mesh segmentation
via quadric surface �tting. Computer-Aided Design, 44:1072�1082, 2012.

[138] Yong Tsui Lee and Fen Fang. A new hybrid method for 3D object recovery from 2D drawings and its
validation against the cubic corner method and the optimisation-based method. Computer-Aided
Design, 44(11):1090�1102, 2012.

[139] Alan Sullivan, Huseyin Erdim, Ronald N. Perry, and Sarah F. Frisken. High accuracy NC milling
simulation using composite adaptively sampled distance �elds. Computer-Aided Design, 44(6):522�
536, 2012.

[140] W. Anotaipaiboon and S.S. Makhanov. Minimization of the kinematics error for �ve-axis machining.
Computer-Aided Design, 43(12):1740�1757, 2011.

[141] Ashok K. Goel, Swaroop Vattama, Bryan Wiltgen, and Michael Helms. Cognitive, collaborative,
conceptual and creative - four characteristics of the next generation of knowledge-based CAD
systems: A study in biologically inspired design. Computer-Aided Design, 44(10):879�900, 2012.

295



[142] Yan Liang, Ying Liu, Chun Kit Kwong, and Wing Bun Lee. Learning the 'whys': Discovering design
rationale using text mining - an algorithm perspective. Computer-Aided Design, 44(10):916�930,
2012.

[143] Claudia Eckert and Martin Stacey. CAD systems and the division of labour in knitwear design.
In Proceedings of the IFIP TC9/WG9.1 Fifth International Conference on Woman, Work and
Computerization: Breaking Old Boundaries - Building New Forms, pages 409�422, 1994.

[144] Claudia Eckert. Generic and speci�c process models: Lessons from modelling the knitwear design
process. In Proceedings of the Sixth International Symposium on Tools and Methods of Competitive
Engineering (TMCE 2006), pages 681�692, 2006.

[145] Claudia Eckert. Intelligent Support for Knitwear Design. PhD thesis, The Open University, 1997.

[146] C.M. Eckert, M.K. Stacey, and P.J. Clarkson. Algorithms and inspirations: Creative reuse of design
experience. In Proceedings of the Greenwich 2000 Symposium: Digital Creativity., pages 1�10,
2000.

[147] A. Ekárt. Genetic programming for the design of lace knitting stitch patterns. In R. Ellis, T. Allen,
and M. Petridis, editors, Applications and Innovations in Intelligent Systems XV, Proceedings of AI-
2007, the Twenty-seventh SGAI International Conference on Innovative Techniques and Applications
of Arti�cial Intelligence, pages 261�274, 2007.

[148] Brendon Woodford. The DesignAdvisor: An intelligent knitwear design aid. Master's thesis, The
University of Otago� 1997.

[149] Joel Peterson, Jonas Larsson, and Rudrajeet Pal. Co-design tool for customised knitwear. In
AUTEX 2009 World Textile Conference, 2009.

[150] Dictionary.com entry on "Raglan", http://dictionary.reference.com/browse/raglan, retrieved 24th
July 2012.

[151] Personal conversation with Dr Claudia Eckert, 3rd March 2009.

[152] Paul Richards and Anikó Ekárt. Automating a knitwear design process using case-based reasoning. In
10th International Conference on The Modern Information Technology in the Innovation Processes
of the Industrial Enterprises, pages 390�395, 2008.

[153] Java API documentation, retrieved from http://docs.oracle.com/javase/7/docs/api on 14 July
2012.

[154] Jyrki Katakainen and Jesper Larsson Trä�. A meticulous analysis of mergesort programs. In
Proceedings of the 3rd Italian Confrence on Algorithms and Complexity, Lecture Notes in Conputer
Science 1203, pages 217�228. Springer-Verlag, 1997.

[155] S Ramanujan. Modular equations and approximations to Pi. Quarterly Journal of Mathematics,
45:350�372, 1914.

[156] Shahram Zafary. A single term formula for approximating the circumference of an
ellipse, 2009. http://mathforum.org/kb/servlet/JiveServlet/download/128-1921864-6683056-
551607/circumference retrieved on 14th July 2012.

[157] M. Zeleny and FA von Hayek. Management support systems: Towards integrated knowledge
management. Human Systems Management, 7(1):59�70, 1987.

[158] K. S. Lee and C. Luo. Application of case-based reasoning in die-casting die design. International
Journal of Advanced Manufacturing Technology, 20:284�295, 2002.

296



[159] Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di
Palermo, 22:1�74, 1906.

[160] Jung-Eun Lee, Rong Jin, Anil K. Jain, and Wei Tong. Image retrieval in forensics: Tattoo image
database application. IEEE Multimedia in Forensics, Security, and Intelligence, 19(1):40�49, 2012.

[161] Fazal Malik and Baharum Baharudin. Median and Laplacian �lters based feature analysis for content
based image retrieval using color histogram re�nement method. Journal of Applied Sciences,
12(5):416�427, 2012.

[162] Facundo Mémoli and Guillermo Sapiro. Comparing point clouds. In SGP '04 Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 32�40, 2004.

[163] Remco C. Veltkamp and Michiel Hagedoorn. State-of-the-art in shape matching. Technical report,
Department of Computer Science, Utrecht University, 1999.

[164] Derek Justice and Alfred Hero. A binary linear programming formulation of the graph edit distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1200�1214, 2006.

[165] Eric C. McCreath. Partial matching of planar polygons under translation and rotation. In Proceed-
ings of the 20th Canadian Conference on Computational Geometry, pages 47�50, 2008.

[166] Shlomo S. Sawilowsky. Invited debate: Target article you think you've got trivials? Journal of
Modern Applied Statistical Methods, 2(1):218�225, 2003.

[167] S. Srinivasan, Jagjit Singh, and Vivek Kumar. Multi-agent based decision support system using data
mining and case based reasoning. International Journal of Computer Science Issues, 8(4):340�349,
2011.

[168] Ibrahim Adepoju Adeyanju. Case Reuse in Textual Case-Based Reasoning. PhD thesis, Robert
Gordon University, 2011.

[169] Fadi Badra, Amélie Cordier, and Jean Lieber. Opportunistic adaptation knowledge discovery. In
Proceedings of the 8th International Conference on Case-Based Reasoning: Case-Based Reasoning
Research and Development, 2009.

[170] Thomas R. Hinrichs. Problem Solving in Open Worlds: A Case Study in Design. Lawrence Erlbaum
Associates, 1992.

[171] T.-C. Au, H. Muñoz-Avila, and D. S. Nau. On the complexity of plan adaptation by derivational
analogy in a universal classical planning framework. In In European Conference on Case-Based
Reasoning (ECCBR), pages 13�27, 2002.

[172] Douglas M. Hawkins. The problem of over�tting. J. Chem. Inf. Comput. Sci., 44:1�12, 2004.

[173] David Leake and Mark Wilson. How many cases do you need? Assessing and predicting case-base
coverage. In Case-Based Reasoning Research and Development: Proceedings of the Nineteenth
International Conference on Case-Based Reasoning, ICCBR-11, pages 92�106, 2011.

[174] Ann Budd. The Knitter's Handy Book of Sweater Patterns: Basic Designs in Multiple Sizes and
Gauges. Interweave Press LLC, 2004.

[175] Hershey H. Friedman and Taiwo Amoo. Rating the rating scales. Journal of Marketing Management,
9(3):114�123, 1999.

[176] Gene �nd casts doubt on double 'cot death' murders, John Sweeney and Bill Law, The Observer,
15 July, 2001.

297



Index

abduction, 88
ad-hoc button, 124
adaptation, 54, 186
adaptation guided retrieval, 53, 58
adaptation rules, 200
adding points, 120
adjust cardigan gap, 127
advantages (of CBR), 83
adversarial reasoning, 31
alignment, 133
armhole consistency, 153
armhole shapes, 97
arrange button, 129
assessment, 31
assumptions (of CBR), 81
auxiliary case, 70

Bézier curves, 118
Bézier shape preserver, 134
background stitch, 103, 115
bad (score category), 210
baggy waist, 96
band, 124
bottom border, 103
bounding box, 120
bounding box distance, 177
box mirror, 133

C4.5, 58
cable stitches, 100
CAD, 88
CADET, 38
cardigan, 96
case base, 23
case base maintenance, 24, 67
case based adaptation, 59
case based reasoning, 22
case merging, 53, 60
case retrieval net, 37
case retrieval networks, 51
CASEY, 26
cast o�, 100
cast on, 100
category and exemplar model, 36
CBR-Express, 28

CBR-lite, 18
CBROnto, 81
CELIA, 60
Chebyshev distance, 45
CHEF, 26
choice and ordering based interleaved replay, 63
classi�cation, 29
co-located Shape Points, 131
co-processing, 78
comparison case, 191
compositional adaptation, 60
compression-based similarity, 48
compulsory sequence, 78
computer-aided design, 88
concept mapping, 40
conclusions, 241
conditional sequence, 78
conscious competent, 84
conscious incompetent, 84
consistency, 98
constrainer, 134
constraint satisfaction, 58
constraint satisfaction problems, 80
constraints, 186
contributions, 241
cooperation oriented, 78
coordinate di�erence preserver, 200
cosine angle distance, 46
coupling, 77
cover trees, 51
coverage, 70
creative design, 92
crossover, 57, 142
cu�, 103
CYRUS, 25

Déjà Vu, 38
Darmok, 33
data, 156
decision tree, 43
decrease (stitch), 100
deduction, 88
default size, 148
derivational replay, 40

298



description logic, 36
design, 88
design (as a task for CBR), 33
design brief, 88
design studies, 88
Diagnosis, 30
direct adaptation, 55
disadvantages (of CBR), 86
discussion, 236
DOM, 163
double shape follower, 133
DRAMA, 40
dynamic memory, 24

eager learning, 71
earth mover distance, 48
edging, 103
edit distance, 48
edited case, 191
e�ciency, 67, 224
elements, 122
embedded processing, 77
emergent features, 89
episodic memory organisation packet (e-MOP), 25
Euclidean distance, 46
evolutionary algorithms, 57, 79
excellent (score category), 210
expectation, 24
expectation failure, 25
experiments, 205
exploring the consequences, 136
extent (of a move adviser), 137

failure (of adaptation), 65
fair (score category), 210
fastener (questionnaire stage), 114
fault recovery, 31
feature vector, 36
�re (move adviser), 136
�sh and shrink, 46
�tness function, 57
�tted waist, 96
�exibility, 159
footprint-based retrieval, 51
forecasting, 31
FormTool, 28
frame-based, 36
front border, 103
fundamental constraint, 142
further work, 245
fuzzy logic, 80

GENCAD, 80

general (questionnaire stage), 114
generalised cases, 39
generative adaptation, 55
good (score category), 210
grading, 99
granularity, 33

hard constraints, 125
head (sleeve), 96
help desks, 30
heterogeneity, 158, 187
heterogeneous cases, 65
heuristic, 86
hierarchical representations, 38
HOMER, 36
hybrid system, 76
hypothesis, 205

ID3, 43
increase (stitch), 100
index, 24
indexing, 42
induction, 88
information, 156
information entity, 37
information gain, 43
information retrieval, 80
interior design, 244
interpolation, 40
intractable, 83
inverse, 83
irrelevant group, 168

JAXB, 163
jCOLIBRI, 73
JUDGE, 26

k-d tree, 43
knitting chart, 101
knitting needles, 95
knitting pattern, 95
knowledge, 156
knowledge containers, 87
knowledge elicitation bottleneck, 84
knowledge heavy (adaptation), 58
knowledge light (adaptation), 58
knowledge representation, 157

lace, 101
lazy learning, 71
least common subsumer, 81
leave one out, 58, 208
level (of a move adviser), 137

299



Levenshtein distance, 48
line di�erence preserver, 201
line hugger, 133
line mover, 133
linear retrieval, 41
linked points, 133
local search, 56
logical biconditional, 170
loosely coupled, 78

machine knitting, 104
Manhattan distance, 45
mapping sketches, 194
marker, 119
mechanistic design, 92
MEDIATOR, 25
memory organisation packet, 25
methodology (of experiments), 207
metric, 46, 166
minimum average distance (MAD), 179
Minkowski distance, 45
mirror, 133
model based adaptation, 57
model based reasoning, 79
Monte Carlo simulation, 233
move adviser, 131
moving points, 119
multiple case based reasoning, 65
mutation, 57
myCBR, 75

nearest neighbour, 28, 45
neck band, 103
neck shapes, 97
neural networks, 81
non-diagonal alternative, 140
non-intersect, 142
normalisation, 46
null adaptation, 24, 56

object-oriented, 36
one piece mode, 129
ontology, 80
ordering based interleaved replay, 63

panel, 104, 123
parameter adjustment, 56
pattern writing, 107
perfect (theory), 83
persistence, 160
pivotal case, 70
place (garment relationships), 151
planning, 32

pocket, 104
pockets (questionnaire stage), 114
pockets mover, 201
poor (score category), 210
prediction, 31
priority group, 168
proof-reading, 107
proportional mover, 133
PROTOS, 27

quality, 68
query case, 23

Raglan, 97
random forests, 49
ranked group, 168
RDR, 189
reachability, 70
recommender system, 54
reconciliation oriented, 78
redundancy, 160
reinstantiation, 56
relationship (garment), 151
relative mover, 133
relax symmetry, 127
relevance (of a move adviser), 137
repair, 145
replayed case, 191
representation, 35
reset bounds, 127
reset button, 129
resizing, 150
results (of experiments), 211
retain, 23
retrieval, 41, 51
retrieve, 23
reuse, 23
revise, 23
rib, 101
right side, 101
roles, 194
round (neck shape), 97
row tension, 103
rule, 134
rule based reasoning, 78
rule di�erence replay, 189
rules output case, 190

satis�cing problem, 87
SAX, 163
scene, 24
scheduling, 32
scoop (neck shape), 97

300



script, 24
SEACOP, 106
seeding, 72
sequential processing, 78
sequential replay, 63
serial replay, 63
shape point, 131
shaping stitches, 100
shell, 73
similarity, 44
size (questionnaire stage), 113
size information, 127
sketch editor, 118
sketch similarity, 175
slash (neck shape), 97
sleeves (questionnaire stage), 114
soft constraints, 125
spanning case, 70
stage, 114
standalone, 77
stitch pattern, 100
stitch tension, 103
stitches, 99
stocking stitch, 100
strong theory, 83
sub-graph isomorphism, 48
substitution, 56
support case, 70
supporting process, 189
SWALE, 27
sweater, 96
symmetry, 98, 151, 158
synthesis, 29

tacit knowledge, 84
technical failure, 204
tension, 103
thematic organisation packet, 25
tightly coupled, 78
tractable, 83
transformation, 56
trigram, 28, 31
typesetting, 107

unconscious competent, 84
unconscious incompetent, 84
user-decided failure, 204
utility problem, 42

validity, 102
variant design, 96

weak theory, 83

weaving, 104
weighted sum, 167
weights, 47
wisdom, 156
wrong side, 101

XML, 162

yarn, 95
yoke, 104

301


