
Loughborough University
Institutional Repository

Autoselective regeneration of
gelcast ceramic foam

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�lment of the requirements for
the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/12526

Publisher: c© A. M. Williams

Please cite the published version.

https://dspace.lboro.ac.uk/2134/12526


 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



University Library 

~ Loughborough 
• University 

.. W,LL/riMS ~.M Author/Filing TItle ......................................... f. .............. : 

........................................................................................ 

-r Class Mark ................................................................... .. 

Please note that fines are charged on ALL 
overdue items. 

0403604966 

I11 111111111111111111111111111111111111 



----_._--



Autoselective Regeneration of 
Gelcast Ceramic Foam 

Diesel Particulate Filters 

By 
Andrew M. Williams 
MEng (Hons) DIS 

A Doctoral thesis submitted in partial fulfilment of the 
requirements for the award of Doctor of Philosophy of 

Loughborough University 

June 2007 

© A.M.Williams, 2007 



~ .... m .. Loughhorough 
'..... Unh'l'I"S!h' -,- -~ . 

Filkingll'I' \ hr~rV 

Date <2>/ ~~O&t-"~"'="-""I 

Class 

Ace 
No. --------' 



ABSTRACT 

This thesis describes the development and application of an electric discharge for 
regenerating gelcast ceramic foam diesel particulate filters (DPF) for effective and 
efficient reduction of particulate matter (PM) emissions from diesel fuelled le 
engmes. 

The combustion in diesel compression igmtlOn engines generates a number of 
unwanted by-products including PM. The PM from diesel engines is believed to be 
potentially carcinogenic when inhaled into the lungs and, therefore, needs to be 
controlled. Emission legislation has made it increasingly difficult for engineers to 
reduce PM emissions whilst meeting NOx targets by combustion optimisation alone, 
leading to the requirement for exhaust gas aftertreatment, most notably exhaust gas 
filtration. Filtration and regeneration (filter cleaning) technology must be robust, filter 
high amounts of PM, be compact, energy efficient and cost effective. A large number 
of published solutions do not meet all of these criteria. This research has developed a 
compact, efficient, robust and cost effective solution: The Autoselective regeneration 
of gelcast ceramic foam DPFs. 

Ge1cast ceramic foam geometry can be optimised on a microscopic and macroscopic 
scale with a large number of material characteristics. This thesis develops and applies 
new methodology for rapid optimisation of geicast ceramic foam DPFs. The optimum 
foam geometry is found to be highly application-dependent. Filters with >95% 
filtration efficiency and a low filtration volume have been demonstrated, although are 
limited in their PM mass holding capacity. It was found that filters with higher PM 
mass holding capacity require larger pore sizes and filtration volume. Design maps 
were produced to allow rapid optimisation of gel cast ceramic foams with a novel 
methodology that can be applied to all forms of deep bed filtration, saving both time 
and cost in future filter development. 

Investigation and optimisation of Autoselective regeneration demonstrated that the 
regeneration system is most effective when the electric discharge is active within the 
filter volume. Using modelling and novel methods for measuring heat flux from 
electrical discharges, thermal optimisation of the heat flows in the system were 
achieved. Rig tests increased the robustness of the regeneration system and developed 
profiled mesh electrodes to maximise the effective regeneration volume. An engine 
test programme demonstrated regeneration effectiveness of -12 g kW·1 h-I which is 
equivalent to -333 W for a typical 56 kW heavy duty diesel engine. Alternatives such 
as fuel burners and electrical resistance heaters typically consume between I and 
5 kW of fuel energy for filter regeneration. Multiple electrode prototypes are 
presented and evaluated for efficient and effective on-engine and on-vehicle PM 
control. 
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CHAPTER 1 

INTRODUCTION 

1.1 Internal Combustion Engines 

Generation of motive power is of interest to society for commercial, industrial aod 

personal reasons, in particular improving traosportation aod communication 

throughout the world. It is essential to have a power source that is compact aod 

efficient. Generally speaking, motive power sources have two main components, 

normally the energy store aod the meaos of energy conversion. In the case of an 

electric motor system this could be in the form of a battery aod DC motor. Likewise, 

in the case of internal combustion (IC) engine systems the two components are the 

fuel aod the engine. In this introduction it will become clear as to why the IC engine 

is one of the most effective solutions for generation of motive power aod why 

compression ignition (Cl) internal combustion engines have a significaot share of the 

market. The customer driven aod legislatively imposed technological challenges 

arising with the increased use of diesel Cl engines are introduced. 



CHAPTER 1 INTRODUCTION 

This thesis presents research on a novel technology that allows the use of diesel Cl 

engines with significantly reduced particulate emissions that meet future legislation, 

while maintaining a compact and adaptable geometry, reliability and low input 

energy requirement. The following introduces some background to put this research 

into context. 

Table 1.1 shows a selection of energy sources and compares their energy densities, 

which is a measure of how compact or lightweight the energy source is. This table 

shows that hydrocarbon based fuels offer >450 times the energy density of electrical 

energy stores such as batteries. The low energy density in the electrical energy 

sources mean that for an energy store comparable to a fuel tank on a vehicle they 

would be unfeasibly large. Interestingly, 71 % of the electrical energy production in 

the UK is derived from burning fossil fuels with average fuel conversion efficiencies 

of -39% (calculated from DUKES, 2006). When this is combined with 50% 

optimum charging efficiency of storage devices such as capacitors, for example, the 

maximum energy conversion efficiency from fossil fuels to stored electrical energy is 

approximately 20%. As an alternative, direct conversion of fossil fuel to motive 

power offers efficiencies of typically 45% (calculated from Heywood, 1988). 

Table 1.1 Comparison of the energy density of a range of energy sources 

Energy Source 

Gasoline 
Diesel 
Natural Gas 
Coal (Lignite) 
Super Capacitors 
Lead Acid Batteries 
Alkaline Batteries 

Typical Energy 
Density 
kJ kg-1 

44000 
42500 
45000 
14800 

20 
123 
422 

Reference 

Heywood (1988) 
Heywood (1988) 
Heywood (1988) 
Forsythe (2003) 
Maxwell Technologies (2007) 
Sonnenschein (2007) 
Energizer (2007) 

Table 1.2 provides a comparison between alternative methods for converting stored 

energy into motive power. Power density (in this context) gives a measure of how 

small and lightweight a motive power source is for a given power output. The 

example of an IC engine shows the highest power density when compared to external 

combustion steam engines and electric motors. This means that the smallest and 
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lightest power source will be the IC engine. Electric motors offer power densities of 

the same order of magnitude as IC engines, but remain unfeasible due to the 

additional weight of the energy source. 

Table 1.2 Comparison of power density of a range of motive power 
sources 

Power Density 
Power Source Wkg·' kWm-3 Reference 

Diesel Engine 
Steam Engine 
DC Motor 
AC Induction Motor 

317 291 
40.4 37.2 
75.9 110 
136 167 

Perkins Engines (2005) 
Wikipedia (2007) 
Farnell (2007) 
Electrodrives (2007) 

The energy density of the fossil fuel source, combined with the power density of the 

IC engine explain their widespread use in motive applications. With this interest 

comes a wide range of technological developments, all offering different advantages 

and disadvantages. Some of these options will be stated here before discussing the 

reason why Cl diesel engines have a significant share of the IC engine market. 

The range of le engines in use can be grouped broadly into categories based on 

ignition source, combustion type and fuel-air mixture type. Table 1.3 shows how four 

commonly known engine types fit into these categories. Due to the variations in 

ignition, combustion and mixture types these engines all have varying properties 

such as efficiency, emissions, torque and speed characteristics, which have effects on 

the target markets. 

Table 1.3 Classification of internal combustion engines (Adapted from Robert Bosch 
GmbH 2004) , 
Internal Combustion Engines 

Combustion Continuous Cyclic 
Ignition External Ignition Source Auto-ignition 
Type of Heterogeneous Homogenous Heterogeneous 
Mixture 
Type of Gas Turbine Spark Ignition Homogenous Compression 
Engine Charge Ignition 

Compression 
Ignition 
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Continuous combustion gas turbines are used commonly for aircraft propulsion since 

they can be easily designed to generate an exhaust flow with significant momentum 

to apply a nett forward force to the engine. They are also used for electricity 

generation offering high power density and direct generation of rotary motion. For 

land motive applications, their high rotor speed can make the design of the 

transmission more difficult because of the requirement of reducing from -30 000 

rpm to as little as -60 rpm that is required for vehicle traction wheel rotation. Cyclic 

combustion processes, using oscillating pistons and converting the oscillatory motion 

to rotary motion through a connecting rod and crankshaft assembly, offer slower 

speeds, higher torques and improved thermal management. Cyclic combustion is 

most often used for vehicle applications but are also used for electricity generation 

by direct connection to a generator. 

Due to the ease of ignition and combustion control, spark ignition and compression 

ignition engines are the most widely accepted IC engine technologies. Adequate 

transient control of homogeneous charge compression ignition (HCCI) engines limits 

their use currently to research and development. To reduce the load with the spark 

ignition (SI) engines while maintaining an ignitable air-fuel mixture, it is normally 

necessary to throttle the intake air, reducing the intake manifold air density in 

proportion to the reduction in fuel delivery. Since the exhaust pressure is still close to 

atmospheric pressure, the work done to exchange the gases is larger than if the intake 

manifold was at atmospheric pressure. This work is referred to as pumping losses. 

The turbulent nature ofthe gas flow within the cylinder leads to noticeable variations 

in cylinder pressures between one cycle and the next, which results in a less 

pleasurable experience for those using the engine (i.e. noise, harshness and vibration) 

and also a higher risk of misfire. Thermodynamic analysis of the IC engine shows 

that increasing the compression ratio leads to increased energy conversion efficiency 

(and hence fuel economy) (Heywood, 1988). Increasing the compression ratio in the 

spark ignition engine can lead to the premature auto-ignition of the premixed charge 

(i.e. knock) setting an upper limit on the compression ratio of -12: 1. 

Considering the Cl engine where the load is controlled only by the quantity of fuel 

injected into the cylinder, the air flow does not need to be limited by throttling. This 

immediately improves the efficiency of the engine by reducing pumping losses, 
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especially at part loads. The injection of fuel into the cylinder immediately prior to 

combustion eliminates the risk of knock allowing higher compression ratios and 

boosting (charge pressurising), therefore, increasing the fuel efficiency and torque 

capability of the engine respectively. The combustion within a diesel engine is also 

more repeatable than in spark ignition engines (because of the multiple ignition sites) 

and the robustness of the diffusion flame combustion process significantly reduces 

the risk of misfire. Load control is improved with compression ignition direct 

injection engines (subject to turbocharging characteristics) since the load can be 

changed within one cycle whereas spark ignition engines have a small delay as the 

intake manifold pressurises or depressurises. 

Despite their advantages over spark ignition combustion, compression ignition 

engines are traditionally more noisy limiting their use in passenger car applications 

until recently. Walsh (1999) presents data stating that European new diesel car sales 

increased from 7.2% of all new car sales in 1980 to 22.1 % in 1995. Diesel engines 

are also heavier than the equivalent spark ignition engine to allow for the higher 

combustion pressures, related to the higher compression ratio and boosting. The 

production of smoke when burning with a diffusion flame close to stoichiometric 

overall mixtures limits the maximum fuel-air ratio that can be used. Typical diesel 

engines have a richest overall air-fuel ratio of approximately 18: 1 by mass, which is 

equivalent to over 35% excess air (more than the minimum needed to oxidise the 

fuel). This means that for the same air delivery, a compression ignition engine will 

have a lower peak mean effective pressure (MEP) than an equivalent swept volume 

spark ignition engine. 

Despite a mix of advantages and disadvantages related to Cl diesel engines the 

improved fuel economy and high torque capability make the Cl diesel engine a 

promising option for industrial and agricultural applications where NVH issues are 

less important. Compression ignition engines, especially those powered with diesel 

fuel, are used in tractors, back hoe loaders, trucks, marine applications, diggers, 

construction machinery and generator sets. Improved noise management, fuel 

economy and perceived driveability (relating to torque characteristics) is leading to a 

rapidly expanding diesel engine passenger car market. 
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1.2 Diesel Engine Emissions 

With such widespread use of diesel engines they are considered to be a significant 

contributor to a number of unwanted pollutants and emissions including carbon 

dioxide, carbon monoxide, nitrogen oxides, unburnt hydrocarbons and particulate 

matter. The following sections describe the reasons these major pollutants need to be 

minimised, the mechanism of their formation and comments more specifically on 

diesel engine emissions. 

1.2.1 Carbon Dioxide (COv 

Carbon dioxide (C02) is a greenhouse gas, meaning that it acts as insulation in the 

atmosphere for longwave infrared radiation emitted from the earth. In 1996 

anthropogenic (i.e. man made) emissions of C02 contributed approximately 3.5% of 

the worldwide CO2 emissions (Lenz and Cozzarini, 1999) and are considered to have 

a significant impact on the thermal equilibrium of the Earth. For this reason they are 

considered important to minimise. 

C02 is formed during the burning of any fuel containing carbon. A complete 

oxidation reaction for a general hydrocarbon fuel in ambient air is 

C"Hm +a(O, +3.76N,)~ nCO, + O.5mH, 0 + 3.76aN, 

a = n+0.25m 

where a, n and m are constants. This reaction shows the production of CO2 when 

releasing energy from the fuel. Most of the focus on reducing C02 emissions is on 

improving energy conversion efficiency of IC engines and also reducing the 

dependence on carbon based fuels in electrical power generation. 

1.2.2 Carbon Monoxide (CO) 

Carbon monoxide is a colourless, odourless and poisonous gas, and it is considered 

dangerous in quantities of more than 50 parts per million (ppm) (US Department of 

Labor, 2007). As well as the risk of local high concentrations of CO in enclosed 

spaces it is known to react with solar radiation as one of the precursors to 
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photochemical smog, often affecting densely populated regions such as large cities 

(Lenz and Cozzarini, 1999). It is, therefore, a regulated emission. 

CO is formed during incomplete combustion when there is not enough oxygen 

present to completely burn the fuel. Figure 1.1 shows the dependence of CO 

production on oxygen availability. There are low emissions when there is a 

stoichiometric or lean mixture. 

8 

6 Stoichiometric 
air-fuel ratio 

~ 

~ c 
~ 

(5 
4 > 

0 
'-' 

2 

0.8 0.9 1.0 1.1 1.2 

Relative air/fuel ratio 

Figure 1.1 Dependence of eo emissions on air/fuel ratio (Adapted ITom Heywood, 1988) 

Diesel engines operate with an overall lean mixture (i.e. excess air) meaning that the 

exhaust CO emissions are minimal. Within the diffusion flame CO will be formed in 

the fuel rich region, however, most of this will oxidise in the oxygen rich regions as 

the flame spreads through the unburned air. 

1.2.3 Nitrogen Oxides (NO,) 

Like carbon monoxide, nitrogen oxides (NO, N02, N20 etc hereafter referred to 

collectively as NOx) are greenhouse gases. In high concentrations and with exposure 

to solar radiation they also contribute to photochemical smog. They also affect 

respiration (e.g. asthma). These are recognised to be of concern and hence are also a 

regulated emission from IC engines. 
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Significant nitrogen oxides are formed at temperatures typical of those within the 

combustion chamber during combustion processes (e.g. Liiffler et aI, 2006). In a 

diesel engine, the highest local temperatures within the combustion chamber occur 

between the onset of combustion (when the cylinder pressures are high) and the peak 

combustion pressure (Heywood, 1988). After the peak combustion pressure the local 

temperature drops at a sufficiently fast rate such that the NOx component of the gas is 

chemically frozen. To reduce NOx emissions it is, therefore, preferential to limit peak 

cylinder temperatures. This has a direct influence on the efficiency of the engine and 

therefore on C02 emissions. 

1.2.4 Unburnt Hydrocarbons (He) 

The emission of hydrocarbon compounds, especially volatile organic compounds 

(VOCs) are precursors of photochemical smog (Geiger et aI, 2002) and, therefore, 

there is legislative pressure to minimise the exhaust emissions of hydrocarbon 

compounds. 

Hydrocarbon emissions can be generated from a number of sources including the 

engine lubrication system and the combustion event. During Cl combustion in diesel 

engines there is a small region of the fuel air mixture that has a air fuel ratio beyond 

the lean limit of combustion. This results in a small amount of the fuel in the cylinder 

failing to bum and being emitted in the exhaust gases. These emissions can be 

reduced by increasing combustion pressures and temperatures and by tight control of 

mixing properties. Post-cylinder control techniques that have proven effective 

include flow through oxidation catalysts to oxidise unburnt HC. 

1.2.5 Particulate Matter (PM) 

In diesel engines a small amount of the fuel forms solid particles during combustion 

that are emitted from the exhaust. These tend to be predominantly elemental carbon 

with organic compounds and adsorbed water (Kleeman et aI, 2000). Typical sizes of 

diesel particulates are 10 to 1000 nm. Further discussion of the formation and 

properties of particulate matter (PM) foHow in Section 1.3. Public concern with the 

potential health and environmental impacts of inhaled PM emissions have driven a 

number of detailed biological studies into the effects of PM exposure. Testing by 

Iwai et al (2000) on rodents has shown that diesel particulates are small enough to be 
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inhaled deep into the lungs and can lead to tumor (or cancer) formation. Other 

identified effects of diesel particulates are discussed by Ma and Ma (2002) and 

include localised DNA damage and sensitization of the immune response systems 

(leading to asthma). Despite recent studies indicating that it is possible for a 

biological immune system response to limit the effect of inhaled PM (Matschulat et 

ai, 2006) it is still important to reduce the quantity of PM emissions from internal 

combustion engines. 

More PM is formed in diffusion flames than with premixed combustion, due to the 

presence of large fuel rich regions and is, therefore, a major concern with diesel 

engines. Emission legislators have recognised this concern and are limiting the PM 

(mass based) emissions from diesel engines (e.g. EPA, 1997). Expectations are that 

this legislation will be extended to include particle number based as well as mass 

based limits (J ohnsson, 2006) and is resulting in a significant amount of research into 

reducing PM emissions from IC engines. The area of PM emission reduction is the 

focus of this research and will be introduced further in the remainder of Chapter 1 

and discussed in greater detail in Chapter 2. 

1.3 Diesel PM Characteristics 

The current understanding of the soot formation process within diesel engines has 

been summarised by a number of authors (e.g. Heywood, 1988) and the general 

understanding of the formation process is summarised in this thesis from information 

published by Setten et al (2001). It is illustrated schematically with typical timescales 

for each formation stage in Figure 1.2. 
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Figure 1.2 Diagram showing the formation process of soot particulates from diesel engines - Setton 
et al (2001) 

Within a diffusion flame the air-fuel mixture exists in a range of equivalence ratios 

from very rich through to beyond the lean combustion limit. Within the fuel rich 

regions there occurs incomplete combustion (due to lack of available oxygen). The 

complex hydrocarbon fuel molecules pyrolise to form simpler hydrocarbons such as 

ethyne, which subsequently polymerize to form polycyclic hydrocarbons. These 

plate-like structures (known as platelets) coalesce to form crystallites. Crystal lites 

coalesce to form soot nuclei. The nucleated particles grow by a combination of 

coagulation (joining with other nucleate particles) and surface growth which fills the 

voids in the soot nucleus. As surrounding conditions change (i.e the engine cycle 

continues) the surface growth stops and primary soot spherules in the region of 

10-30 nm do not grow any further. These spherules, however, combine creating 

chain like aggregates in the region of 0.1 to 10 llm which can join further to create 

larger agglomerates. 

Micrographs of real soot particles are shown in Figure 1.3. The randomly oriented, 

turbostratic (random) structure of the crystaIlites within the individual spherules is 

almost distinguishable in Figure 1.3 (a). On a larger scale, the irregular and open 
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shape of the soot aggregate is clearly visible in Figure 1.3 (b), forming a relatively 

long thin chain of approximately 30 run diameter soot spherules. 

(b) 

Figure 1.3 (a) Electron micrograph of diesel particulate spherules - Clague et at (1999) 
(b) Micrograph ofa diesel particulate agglomerate - Song et at (2004) 

Figure 1.4 shows the typical size distribution of diesel particulates based on their 

overall mass and also the number present. Since legislation currently limits the mass 

emitted from the engine, the broken line is more commonly seen in published 

literature concerned with diesel particulate analysis. There are two distinct modes of 

particulate size corresponding to different stages shown in Figure 1.2. The nucleation 

mode consists of particles tens of nanometers in size and accounts for most of the 

particles emitted from the engine. However, since they are small, a large number of 

these particles have a relatively small mass. The second mode is the agglomeration 

mode. The agglomerated particles are typically> 1 00 J.lm size and form most of the 

mass of PM emitted from diesel engines. This results in a second peak and 

distribution observable in the broken line in Figure 1.4 at approximately 200 run 

diameter. Since this size of particulate contributes the most to the mass emitted in the 

exhaust, this is the size of particulates most engine developers are focusing on 

reducing to meet government legislation. 
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Figure 1.4 Qualitative plot of volume and number distributions of PM emitted from diesel engines­
Kittleson (1998) 

Experimental studies carried out by Harris and Maricq (200 I) yielded results that can 

be used as a comparison between diesel, port fuel injected (PFI) SI and direct 

injected spark ignition (OlSI) engines. Both OlSI and diesel engines showed clear 

agglomeration peaks with sizes between 50-100 nm and 80-100 nm respectively. PFI 

engines tested showed no agglomeration peak but a clear nucleation mode peak. The 

number of particles emitted from the PFI engine was over three orders of magnitude 

lower than from both the DISI and diesel engines. 

In all the samples tested by Kleeman et at (2000) the majority of the soot consisted 

of elemental carbon and organic compounds. Figure 1.5 shows that, in diesel 

engines, 60-80% of the PM is elemental carbon with a much smaller fraction of 

organic compounds than seen in the gasoline engines. 

NOUDt MOUDI 

(a) 

1 ~ 
d' d' 

I I 

Figure 1.5 Composition distribution of different size particulates from (a) a medium duty diesel and 
(b) an un-catalysed gasoline engine - Kleeman et a/ (2000) 
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As particulates cool, volatile components and water condense and adsorb onto the 

surface of the particulates. Particulates with little or no adsorbed volatile compounds 

or water are often referred to as 'dry particulates' while those with the adsorbed 

substances are referred to as 'wet particulates'. Large amounts of the organic 

components and adsorbed water can be removed from the surface of the particulate 

by heating. Collura et al (2005) observed increases in specific surface area of the 

soot from 168 m2 g-l to 229 m2 g-l during heating of PM in an inert atmosphere. 

1.4 Diesel Engine Emission Legislation 

Government recognition of the potential health threat of engine-out emissions has led 

to legislation being put in place in many major countries around the world. Europe 

has implemented the EURO emission standards, the Environmental Protection 

Agency (EPA) in USA has implemented its own legislation, often led by the strict 

limits set in California. 

It has long been recognised that diesel engine NOx or PM emissions can be reduced 

by optimising the combustion process. Higher in-cylinder temperatures promote 

oxidation of PM before the exhaust valve opens but increases in gas temperatures 

significantly increase NOx formation and hence NOx emissions. To achieve a 

noticable reduction in either NOx or PM emissions often means a significant increase 

in the other. Legislation of NOx and PM emissions combined offers a challenge to 

engine developers that is now leading to the necessity of exhaust aftertreatrnent 

methods as well as tight control of combustion processes. 

Figure 1.6 shows how the emission legislation has developed through until 2008 in 

Europe and the USA. Engines with no more than an oxidation catalyst have achieved 

2000 European standards and European truck engines have met Euro IV (in 2005) 

emission standards. Methods for further reducing PM emissions without significant 

cost are becoming harder to develop and diesel particulate filters offer a promising 

solution to reduce PM levels if energy efficient and reliable regeneration (i.e. filter 

cleaning) can be achieved. The effect of some different techniques for treating NOx 

and PM that are currently being studied is also shown on Figure 1.6. More details on 

the advantages and disadvantages of each type of system are discussed later in this 
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thesis. A large number of the proposed systems, however, do not meet 

manufacturers' needs in terms of some or all of the following: 

I. Cost 

2. Reliability 

3. Robustness 

4. Efficiency 

5. Size. 

The research presented in this thesis has aimed to develop a novel PM filtration and 

regeneration technology that is low cost, reliable, robust, compact and energy 

efficient. 

1.5 The Future of PM Emissions from Diesel Engines 

Until recent emission legislation, engine developers have been able to achieve 

acceptable PM and NOx emissions with in-cylinder controls. Further reductions of 

legislative limits means exhaust aftertreatment methods are now needed. Filtration 

technology developed, for example by Coming (e.g. Howitt and Montierth, 1981) 

and NGK, are known to be capable of achieving> 99% reduction in PM emissions in 

the exhaust gas (Liu et aI, 2005). The exhaust gas pressure increases as the filter fills 

up with PM and without periodic or continuous cleaning, the exhaust pressure would 

become unacceptable. The difficulty with this filtration technology is maintaining 

low exhaust pressures by cleaning (regenerating) the filter while being energy 

efficient, compact, low cost, compact and reliable. New methods that offer benefits 

in these areas are needed to make diesel exhaust filtration an effective means of 

reducing particulate emissions. This thesis investigates, applies and evaluates a 

promising new concept that solves some of the major issues with current filtration 

and regeneration technology. The remainder of Chapter 1 surmnarises the structure 

of the thesis and the contribution to knowledge this research has made. 
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1.6 Thesis Overview 

Chapter 1 of this thesis has discussed the need for internal combustion engines and 

more specifically diesel fuelled compression ignition engines. The significant 

emissions that are of concern for current engine development have been introduced 

and PM emissions from diesel engines have been discussed in more detail. Examples 

of government legislation were presented to highlight the demand for novel, efficient 

and effective particulate matter control technologies. 

Chapter 2 reviews the current state of the art PM control technologies. It critically 

evaluates the available filtration and regeneration strategies independently to form a 

foundation for evaluation of the filtration and regeneration technology developed 

during the research presented in this thesis. This review of the current literature 

provides an understanding of the challenges faced during the development of exhaust 

aftertreatment technologies to reduce PM from diesel engines. This gives enough 

background to put the new work that is presented in the following chapters into 

perspective. 

Chapter 3 introduces a range of experimental techniques that are used throughout the 

work in this thesis. It begins by discussing ways of characterising gelcast ceramic 

foams and follows with methods for evaluating the regeneration performance during 

testing. Experimental rig and engine test methods are then introduced to provide 

understanding of the generic methodology used in the subsequent testing. 

The research and optimisation of gelcast ceramic foams used as diesel particulate 

filters (DPFs) is presented in Chapter 4. Investigations into the filtration properties of 

gelcast ceramic foams leads to models that allow evaluation of conceptual foam 

DPFs and, in addition, can be applied to any deep bed filtration study. The chapter 

concludes by discussing and presenting the optimisation process applied to gelcast 

ceramic foams. 

In Chapter 5 the Autoselective regeneration technology is introduced covering 

previous work in this area before investigating the fundamental mechanism of PM 
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oxidation with the Autoselective electric discharge. New techniques to measure the 

heat flux from electrical discharges are developed and used to optimize the 

regeneration process for the exhaust gas flow environment. 

The challenges involved in integrating the geicast ceramic foam and Autoselective 

regeneration technology are described in Chapter 6. Equivalent circuit electrical 

models and experimental investigations are used to understand the effect of a range 

of variables and to optimize the regeneration for geicast ceramic foam DPFs. 

Chapter 7 exammes the thermal energy flows involved with Autoselective 

regeneration of geicast ceramic foams, developing understanding and leading to 

informed design decisions with respect to material choices, durability and energy 

useage. 

Chapter 8 incorporates the proposed technology into a real engine exhaust system 

and investigates a number of important design factors on the performance of the 

regeneration system for all the major success criteria. 

Chapter 9 discusses the implementation of the Autoselective regeneration of geicast 

ceramic foam DPFs. A prototype system is presented before discussing the 

practicalities of the complete filtration and regeneration technology. Potential 

limitations of the technology are investigated and found to be tractable. 

Chapter 10 summarises the major conclusions of this thesis and outlines potential 

areas of further work. 

1.7 Contributions to Knowledge from the Work Presented in this Thesis 

The work presented in this thesis has made novel contributions to both experimental 

methodology and technological developments. The new methodology includes: 

1. A method for accurately measuring the average pore size of a porous 

structure without the need for complex and expensive three dimensional 

scarming technologies. This is proven to give a more accurate description of 
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gelcast ceramic foams than methods that have been previously reported in the 

published literature on gelcast ceramic foams. 

2. A simple and effective method to increase productivity and reduce the time 

needed for tests that required weighing of porous structures of non-ambient 

temperatures. This allowed the correction of errors associated with the 

buoyancy of the air within the filter material when measuring at a 

temperature different to ambient conditions, that has not been reported in 

detail in the published literature. 

3. A method for understanding the effect of local PM loading on the 

back-pressure across a depth bed particulate filter. All experimentally based 

methods discussed in the literature (to the author's knowledge) have 

presented data or analysis based on average PM loadings and have not 

considered the effect of PM distribution on the back-pressure across the filter. 

This new method combined with other physical relationships allows the 

optimisation of depth bed filters based on a small amount of experimental 

data, which saves time and money during product development. 

4. A novel non-intrusive method for determining the heat flux from an electrical 

plasma. This method has been used to understand the heat flux from the 

discharge and offer a tool that can be used in the plasma physics field for 

optimization of heat flux in a number of technological applications of 

plasmas. 

As well as developing techniques to support research and development work, the 

research in this thesis contributes significantly towards the engineering solutions and 

physical understanding of the Autoselective regeneration of gelcast ceramic foam 

DPFs. The contributions include: 

5. Optimisation of 80% porous gelcast ceramic foams used as diesel particulate 

filters Design maps are proposed and an example of the design maps is 

demonstrated. 

6. Optimisation of Autoselective regeneration of PM from a diesel engine 

considering system geometries, gas flow rates and direction as well as 

electrical characteristics of the plasma. 

7. Demonstration of the successful integration of gelcast ceramic foam and 

Autoselective regeneration technologies both on a rig and on a real engine. 

- 18 -



CHAPTER 1 INTRODUCTION 

The system is evaluated with respect to regeneration rate, energy usage and 

blow off rates (non-oxidised PM removal from the filter). 

1.8 Concluding Remarks 

This first chapter has introduced le engine emissions and highlighted the need for 

technologies to reduce the harmful emissions, especially carbonaceous PM. The 

steps taken by legislative bodies to promote investment in developing such 

technologies have been summarised to highlight some of the difficulties engineers 

have in meeting suitable emission levels. This demonstrates the need for new 

technologies that offer compact, efficient, effective and low cost solutions to reduce 

PM emissions. The novel technologies investigated and presented in this thesis offer 

such a solution. Following an introduction to diesel engine emissions, the structure of 

the thesis was outlined and a list stating the contributions of this research to both 

scientific and engineering methodology, as well as technological developments were 

presented. The next chapter reviews the published literature on PM reduction 

strategies before presenting the case for investment in Autoselective regeneration of 

gelcast ceramic foams. 
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CHAPTER 2 

REVIEW OF PM REDUCTION STRATEGIES 

Chapter I introduced the pollutant emissions from diesel engines and described the 

need for reducing PM emissions from diesel engines. Chapter 2 reviews the current 

literature and summarises PM emission control methods investigated in an attempt to 

reduce the diesel engine PM emissions. This chapter concludes with a summary and 

evaluation of the current state of the art technologies, highlighting the need for a 

compact, low energy usage, efficient filtration system. 

2.1 In-Cylinder Strategies 

Particulate matter in the exhaust system can be reduced by lowering the PM 

produced during combustion. The formation of PM within the cylinder is affected by 

the quality of the burning including, more specifically, the presence of localised fuel 
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rich regions and gas temperature. A selection of methods that were investigated to 

reduce the PM produced within the cylinder follows. 

2.1.1 Injection Strategies 

Fuel injection strategies can have a significant impact on the mixing properties of the 

fuel and as a result, the combustion and PM formation and oxidation. There are a 

variety of injection strategies that have been investigated and these include: 

1. Fuel heating Heating of fuel lines has been investigated by, for example, 

Burley and Rosebrock (1979) and Temple-Pediani (1973) to improve fuel 

vaporisation and hence combustion quality. Promoting the vaporisation of the 

fuel improves mixing and reduces the amount of fuel rich regions in which 

the PM platelets form. Burley and Rosebrock's (1979) findings showed an 

11 % reduction in PM emissions from diesel engines by electrically heating 

the fuel delivery lines to 127 DC demonstrating that this method can be 

effective. Issues were experienced with injector reliability as the injector was 

not designed for fuel delivery at elevated temperatures. The cost and energy 

consumption associated with maintaining these temperatures was not 

commented on in the paper. 

2. Injection timing Injection timing affects the cylinder temperatures during 

combustion. Most of the PM that is produced is oxidised as the flame burns 

the fuel and, therefore, the emitted PM emissions are strongly dependent on 

the cylinder and flame temperatures during combustion. Late injections burn 

fuel at lower temperatures and were shown by Dec and Kelly-Zion (2000) to 

lead to notable increases in PM emissions. 

3. Injection pressure Increases in injection pressure from 400 to 1000 bar were 

found to reduce PM emissions by >80% by Singh et af (2003). This was 

attributed to improved atomisation and turbulent mixing reducing the 

formation of PM precursors. Benefits of increased injection pressure are 

already realised on production engines. 

4. Injector hole geometry Singh et af (2003) demonstrated that reducing the 

injector hole size generally reduced PM emissions. This was thought to be a 

result of increased atomisation of the fuel when forced through smaller 

injector holes. 

- 21 -



CHAPTER 2 REVIEW OF PM REDUCTION STRATEGIES 

In summary, Injection strategies with heated fuel, relatively early injection, high 

injection pressure and small injector holes offer reductions in PM emissions by 

improving combustion quality. 

2.1.2 Oxygenated Fuels 

Kitamura et al (2002) and Miyamoto et al (1998) are two examples of studies of the 

effect of oxygenated fuels on emissions from diesel engines. Both studies found that 

increasing the oxygen content of the fuels led to reductions in PM emissions from 

diesel engines. The oxygen availability aids the reduction of the precursors of soot 

formation. Miyamoto et al (1998) found the reduction of PM to be dependent on the 

amount of oxygen present in the fuel rather than the type of fuel itself. With -30% 

oxygen content by mass they demonstrated negligible Bosch Smoke Units (a 

measurement of PM emissions). 

Increasing the oxygen content of hydrocarbon based fuels reduces the heating value 

of the fuel. This means that the quantity of fuel needed for each combustion cycle 

must be increased to achieve an equivalent load to using diesel fuel. This leads to 

increased injection quantities (and duration, pressure or hole size etc) and also either 

increased fuel tank size or reduced operating durations. These considerations along 

with issues with implementation and infrastructure associated with oxygenated fuels 

need to be overcome for the use of oxygenated fuels to be a viable widespread 

solution to reduce PM emissions from diesel engines. 

2.1.3 Fuel Additives and Blends 

Burley and Rosebrock (1979) presented results from using a variety of fuel blends on 

the emissions from diesel engines. They found that when the aromatic content of the 

fuel reduced, the PM emissions were also reduced. This is because the aromatic 

components are a significant precursor to soot formation. Highly volatile (i.e. Iow 

boiling point) fuels showed lower PM emissions than fuels with high boiling points. 

This was related to the improved atomisation and mixing of the fuel during injection. 
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Burley and Rosebrock (1979) also mentioned the positive effect of a water-fuel 

emulsion on the PM emissions. Adding water to the fuel led to vaporisation of the 

water during injection. The rapid expansion of the vaporising water helped to break 

up the fuel droplets, improving mixing and resulting in reduction of PM emissions. 

Unfortunately water addition also led to a 100% increase in HC emissions. Methanol 

within the fuel was found to have a similar effect on PM emissions although no 

detrimental effects on the HC emissions. 

2.1.4 Gas Flow Control 

Konno et al (2007) utilised a secondary gas injector (7% of the clearance volume) to 

inject gas into the combustion chamber during the main combustion event. This 

injection of gas increased the turbulence within the mixing regions and resulted in 

between 40 and >90% reduction in smoke emissions without increasing NO. 

emissions. Increasing the swirl volume in the engine has been shown by Hotta et al 

(1997) to reduce PM emissions at medium loads by improving fuel and gas mixing 

during combustion. These publications demonstrate the effect gas flow control can 

have on the PM emissions, although the effect was not repeatable over the entire 

engine operating range. 

2.1.5 Plasma Treatments 

A study by Cha et al (2005) concerning the interactions between non-thermal 

electrical plasmas and diffusion flames demonstrated that PM production can be 

significantly reduced. Optical methods showed that the presence of a non-thermal 

plasma in the diffusion flame suppressed the formation of polycyclic aromatic 

hydrocarbons (P AH) and soot precursors without measured changes in bulk gas 

species or flame temperature. This technology may offer interesting avenues for 

future in cylinder PM suppression in compression ignition engines. 

2.1.6 Summary of In-Cylinder Methods 

Positive steps towards reducing PM emissions can be taken by reducing the amount 

of PM formed in the cylinder by the use of oxygenated fuels, improved mixing, 

improved fuel atomisation and reduction of aromatic content of the fuels. 

Maximising the amount of PM oxidised within the cylinder also has a large effect on 
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the exhaust PM emissions. This can be achieved by increasing cylinder temperatures 

during combustion, for example by optimising the injection timing. 

In cylinder methods that have been dependent on technological advances alone have 

made it into production and have allowed engine manufacturers to meet early 

emission legislation without the need for exhaust aftertreatment methods. These 

include increased injection pressures and injector nozzle geometry design. 

Techniques that rely on significant changes to the infrastructure relating to fuel 

supply and delivery (such as oxygenated fuels and fuel blends) have not yet been 

implemented on a large scale. 

2.2 Non-Obstructive Exhaust Strategies 

Non-obstructive exhaust strategies for reduction of PM refers to methods that do not 

lead to significant increases in exhaust back pressure by removing the particulates 

without significant obstruction of the exhaust flow. This section summarises some 

basic principles of such methods highlighting some advantages and disadvantages of 

each. 

2.2.1 Electrostatic Precipitators and Agglomerators 

Electrostatic precipitators operate by using an electric charge trapped on particulates 

within an aerosol to apply an electric force which moves the particulates to a 

trapping surface. Figure 2.1 shows a schematic of an electrostatic precipitator which 

includes: 

I. A particle charger (optional) which is often in the form of a coronal electric 

discharge. This applies charge to the particles. Without an applied charge the 

particles will not be affected by the electric field in the precipitator. 

2. The electrostatic precipitator with an applied voltage, generating the electric 

force on the particulates. The precipitator requires a large enough trapping 

area and long enough particulate residence time for the particles to be able to 

reach the trapping surface. The residence time (and size of the trap) is greatly 

affected by the gas flow rate, with higher gas flow rates requiring larger trap 

volumes. 
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Figure 2.1. Schematic ef a generic electrostatic precipitater. 

In practice, the PM emitted from diesel engines carries a residual charge meaning 

that an electrostatic agglomerator can theoretically work without the need of a 

particle charger. However, Farzaneh et al (1994) and Ciach and Sosnowski (1996) 

showed that pre-charging can increase PM trapping efficiencies from -20% to >90%. 

Figure 2.2 summarises some data presented by Farzaneh et al (1994) with estimated 

power consumptions. Trapping efficiencies of up to 95% were observed, although 

large amounts of electrical power were required for the pre-charging of the 

particulates. To achieve this trapping efficiency, residence times needed to be large 

requiring approximately a 6 litre trap system (excluding power supplies) for a 0.219 

litre displacement engine. This compares poorly with filtration trap systems 

(discussed in Section 2.3) that typically have a trap volume smaller than the engine 

displacement. 
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Figure 2.2. Summary of effect of electrical power requirement on the trapping efficiency of an 
electrostatic precipitator. (Adapted from Farzaneh et ai, 1994) 

Ciach and Sosnowski (1996) also presented promising filtration efficiency results, 

achieving >90% both with and without particle charging, shown in Figure 2.3. No 

information was presented that allowed evaluation of power consumption but the 

system was enhanced greatly by maximising the trapping area by combining the 

electrostatic precipitator concept with a fibrous filter. However, once a filtering 

system is being used, issues with filter cleaning (regeneration) must be considered, 

and are discussed later. 
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Figure 2.3. Effect ofprecipitator applied voltage and pre charging on the trapping efficiency of the 

electrostatic precipitator and fibrous filter combination. 
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In summary, the use of electrostatic precipitators is unsuitable for diesel engines due 

to the large trap volume required to achieve large residence times and trapping 

efficiencies. Use of electrostatic agglomeration to enhance performance of filtration 

media may offer some advantages if energy requirements and packaging volumes are 

kept low. 

2.2.2 Cyclones 

Cyclones are designed to separate aerosol particulates from gas streams usmg 

centrifugal forces. Figure 2.4 shows a schematic of a typical cyclone with a 

tangential gas entry generating a rotating gas flow before the gas exits at the top of 

the cyclone. During the rotation, the centrifugal forces move the particulates towards 

the outer edge where they are trapped and fall to the bottom into a hopper. The 

higher the gas flow the higher the centrifugal force yet the shorter the residence time 

in the cyclone. The cyclone is also better suited to larger particles where the high 

inertial-drag force ratio improves the rate of separation. This has implications with 

diesel engine exhaust flows where future regulations are expected to limit the smaller 

particle sizes as well as the larger ones. 

dirty 
gas flow in 

removed 
particulate 
flow out 

clean 
gas flow out 

Figure 2.4. Schematic of a typical cyclone particulate separator. 
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Crane and Wisby (2000) investigated the use of a multicyclone system on diesel 

engines and found trapping efficiency (by mass) of up to -60%. To achieve this 

trapping efficiency the exhaust gas was cooled prior to the cyclones to promote 

particulate agglomeration (i.e. the production of larger particles). Their modelling 

showed that the smaller particulates were not trapped which will cause some issues 

with future emission legislation. If these issues can be overcome, the size and 

complexity of multiple cyclones and exhaust gas coolers makes this a less attractive 

option for commercialisation. As with all of the non-obstructive exhaust strategies 

for reduction of PM the low back pressure in the exhaust system is a major 

advantage. 

2.2.3 Plasma Treatments 

The generation of electrical plasmas results in direct conversion of electrical to 

thennal energy in the gas as well as highly effective oxidants such as ozone (03). 

The use of non-thennal plasmas, with gas temperatures close to the bulk gas 

temperature utilise the oxidants generated in the plasma to oxidise particulates 

without having to significantly increase the exhaust gas temperature. 

An example of such a system is presented by Dan et al (2005) who achieved PM 

removal rates, by number, of between 25 and 50%. The reduction ofparticulates was 

relatively even for all size ranges presented meaning that the mass based removal 

efficiency would be comparable to the number based efficiency. The peak removal 

efficiency of close to 50% was achieved with energy densities of 35 J litre·'. A 

typical 92 kW engine at full load, with an exhaust flow of -550 kg h-' would require 

over 10 kW (> 1 0% of engine out power) of energy for a low PM trapping rate. This 

high power requirement for a low removal rate renders the non-obstructive low 

temperature plasma treatment of diesel engine exhaust unfeasible. 

2.2.4 Summary a/Non-Obstructive PM Reduction Strategies. 

A selection of non-obstructive methods for PM removal from diesel engine exhaust 

has been discussed. The main advantage with these systems is the low back pressure 
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as the exhaust system has no major obstructions. Generally, they suffer from the 

disadvantage of large size, high energy requirement or low PM removal rates. Large 

size systems will not be viable on vehicles where there are stringent packaging 

requirements. A large energy requirement is unfeasible as this will lead to reduced 

engine out power, potentially increased alternator size and complexity as well as 

increased fuel consumption and CO2 emissions. For these reasons non-obstructive 

exhaust gas PM reduction strategies are unlikely to be commercially realised on most 

diesel engine applications. 

2.3 Diesel Particulate Filtration 

Diesel engine exhaust filtration systems use a range of trapping mechanisms to get 

the particulates to collide with a filtration surface where the inter-surface forces are 

large enough to overcome forces attempting to remove the particle (for example drag 

forces). Examples of forces that can lead to trapping of particulates on the filter 

surface include 

I. Impaction The inertia and momentum of a suspended particle under 

acceleration (e.g. gas flowing around an obstruction) cause the particulate to 

deviate from the flow streamline. In the case of the gas flowing around an 

obstruction, the particulate will tend to move closer to the obstruction than 

the streamline. This can lead to the particle impacting with the trapping 

surface causing the particle to be filtered from the gas flow. Impaction 

trapping tends to become more significant with increasing flow velocity, 

higher particle mass/size ratio and increased flow tortuosity. 

2. Interception In the cases where the streamlines take the particle close enough 

to the surface to make contact, the particles can become trapped. This will 

tend to occur when there is a very large trapping area and subsequently a 

restricted gas flow. In reality there will always be some element of impaction 

with interception for any finite mass particle. 

3. Diffusion Random motion of particles in a gas can lead to the particle coming 

into contact with the trapping surface and hence becoming trapped. The 

random motion of solid particulates depends on the repeated random 

collisions with surrounding molecules and particles. To be affected by these 
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collisions the particle must have a low mass meaning that the particles most 

affected by collisions tend to be the smaller particles «0.2 Ilm diameter). 

4. Electrostatic attraction It has already been mentioned in Section 2.2.1 that an 

electric force can be applied to charged particles. This can be used for 

filtration to promote the motion of suspended particulates towards a trapping 

surface. This has the disadvantage of requiring electrical power and 

complexity of managing high voItages. 

Figure 2.5 shows a summary of the predominant trapping mechanism for different 

size ranges of suspended particulates in air flow. To put the sizes into context, 

examples of particles of each size range are also shown. This highlights that as the 

particle size increases, diffusion trapping becomes less significant, with larger 

amounts of interception. As particle size increases further interception becomes less 

significant and impaction becomes the predominant trapping mechanism. 
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Figure 2.5. Size ranges of different common particles and predominant trapping mechanisms for 
different particle sizes. (Adapted from Schnell and Brown, 2002) 
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The theory of fi ltering the ex haust gas requires obstructions in the ex haust now that 

act as trapping surfaces (a filter) . The following di scuss ion describes the main types 

of fil ters that have been app lied lO diesel engine ex haust filtration . 

2.3. 1 Monolithic Wall Flow Filters (WFF;,) 

Wall now DPFs consist of an extruded porous ceramic structure that creates a series 

of channels that the exhaust nows into, shown in Figure 2.6. Alternate ends of the 

channels are blocked with ceramic plugs that force the gas to now through the 

porous ceramic wa ll s of the filter. It is thi s porous ceramic layer that filters the 

particu lates fro m the exhaust gases. 

Figure 2.6. (a) Schematic orthe now path through a cross sect ion ora wa ll now DPF (based on 
marketing images by Coming GMB H) and (b) A photograph of a se lection of cord ierite monolithic 

wa ll now DPF (NGK, 2003). 

The pore size and porosity of a wall now DPF is typicall y \ 0-20 ~m and 50% 

respectively (Adler. 2005, Mil ler et ai, \ 983) whi ch is an order of magnitude larger 

than the typical particulate size in the gas stream . This leads to a period of depth bed 

filtration in which the particulates are trapped predominantly by impaction and 

interception within the porous structure . As the particulates collect on the surface 

they bridge the gap across the pore and form a fin er filtration medium which fi lter 

out a large number of panicles by cake filtration . The cake is a continuous, high ly 

porous layer of paniculates that act as the filtering medium. Cake filtration offers a 

significantly higher filtration effici ency and is demonstrated in Figure 2.7 and by 

Liu et al (2005). Figure 2.7 shows that within the first five minutes the filtration 

efficiency can be seen lO be close to 100% (by smoke number) compared lO 
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approxi mately 80% during depth bed filtrati on. The methodology by which these 

measuremen ts have been taken is di scussed in Chapter 3. 
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Figu re 2.7. Fi ltrat ion efficiency as a fUllction of lime for a 100 cpsi 2.5 litre wa ll now diese l 

paniculalc fi Iter on the Perkills I 100 series 4 cyl inder diesel engine operat ing at 1000 rpm 130 Nm 
(melhodology desc ribed ill Chapler 3) 

As wel l as high fi ltration effi ciency, the monolith ic structure of the wall now filter 

offers a large fi ltration area that helps to reduce the exhaust back pressure . A 100 

ce ll s per square inch (c ps i) ( 15 .5 ce ll s per cm2
) 5.66 inch (144 mm) diamete r filter 

has a filtration area of approximate ly 1.4 m1 The back pressure of the clean filter, 

shown in Figure 2.7, is below I kPa for typica l now rates with a filter vo lume of 

approximate ly 2.5 litres. 

The effect of PM load ing on the backpressure of wa ll now filte rs is shown in 

Figure 2.8. The change in slope in the plots at approximate ly 0.5 g li tre-I PM loading 

corresponds to the change of filtrati on mechanism from depth bed filtrati on to cake 

filtration which was fou nd by Konstadopoulos el al (2000) to typica ll y occur w ith 

PM load ings in the region o f I g litre-I o f filter vo lume. lt can be seen that a small er 

ce ll size filler has a lower back pressure and higher PM holding capac ity. 
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Figu re 2.8. Effect orPM loading on [he back pressure orlhe wall flow filters (Coming, 2006). 

This combinati on of high fi ltration effi ciency and low back pressure makes wa ll flow 

filters an attracti ve option fo r engi ne manu fac turers. Unfortunately, during 

regeneration the thin structure of the monolith ic WITs makes them pro ne to fa ilure 

through melting and thermal shock (Kitagawa et al. 1990) In the event of fai lure of 

the ceramic fi lter an open path is created that all olYs PM to fl ow di rect ly through the 

filter significant ly reducing the filt ration e ffi ciency. 

Recent deve lopmellls published by Li et al (2004) and Pyzik and Li (2005) 

demonstrated further improvements in mechanical strength and filtration properti es 

by growing the monolithic WFF shape fro m a crystal structure. However, the small 

scale of the wa ll s and consequences of local materi al fai lure still remain. 

The wall fl ow fi lters offer high fi ltrat ion efficiency and 101Y back pressures in a 

compac t way making them currently the pre ferred option fo r industry. although the 

implications of filter fa ilu re leave potential for more durable filters to off er an 

improved solution to PM emiss ion reduction. 
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2.3.2 Foam Fillers 

Foam fi lters refer quite genera ll y to porous structures that the gas Oows through, 

with the foam. or porous structure filtering out the particul ates. In di ese l engine 

applications, the termino logy is more commonl y used to describe filters that trap the 

pan iculates with depth bed fi ltration, meaning the panic les a re trapped th roughout 

the fi lter, or foam vo lu me. The foams have a large number of interconnecti ng pores 

to allow the gas to Oow through, and a se ries of struts to maintain the foam structure, 

and to act as the trapping surface. Figure 2.9 shows an example of a ceramic foam 

with the struts, pores and windows (holes interconnecting the pores) hi ghlighted. 

Figure 2.9. I::~;i,';;;'::(yp i ca l struts, pores and windows in ceramic foams. 
Sepu lveda and Bi nner, 1999) 

Foam fi lters capab le o f high work ing temperatures for di esel parti culate app lications 

have been made predominantly in two ways: 

I. Form coating Readily ava il able porous foa m structures such as sac rifi c ia l 

packed beds (T hij s el ai, 2003, Isobe el ai, 2006) and po lymer sponges 

(Montanaro el al. 1998 , Jayas inghe and Ediri singhe. 2002) can be coated in a 

ceramic slurry and sin tered. During the sintering process the fo rm that was 

orig inall y coated is typicall y burnt out leav ing the ceramic foa m. 

2. Direct foaming Foaming of ceramic slurries by mixing in bubbles from 

chemical reactions or gas injecti on (Sepul veda and Binner, 1999, Hughes, 

2003, Zhang el al 2006, Menchavez el ai, 2007) can form ce ramic foa ms 

without the need for sacri fi cial cores. The same resul t can be achieved by 

foam ing o f a polymer-ce ramic mix and subsequent firing (Peng et ai, 2000) 
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although the resulting ceramIc IS less dense. The direct foaming methods 

have the advantage of producing so lid foam struts and result in a stronger 

foam filter (Sepul veda and Binner, 1999). 

Reti cul ated ce ramic foams ( form coated) are widely used due to the ease of their 

manu fac ture and hi gh porosity and have been tested as di esel particul ate filters as far 

back as the earl y 1980s (for exam ple, Wa tabe el ai, 1983 and Tutko el ai, 1984). The 

pore structure. demonstra ted in Figure 2. 10, is reasonably uni form and well de fined 

by the polymer form structure all owing predi ctable and repeatable fl ow propert ies . 

S ince the foam struts are ho ll ow they tend to be much li ghter than gelcast foams and 

likewise much weake r. The ho llow struts also influence electri cal and therm al 

properti es due to the lower bulk density. 

Figure 2. 10. PhoLOgraph ora typica l ret icu lated ceramic foalll Slructure. (Haugen et 01.2004) 

A signifi cant ad vantage of using a form for creating the porous ceramic foam is the 

abi lity to optim ise the foa m geometry. Thijs et al (2003) utili sed bio log ical fo rms to 

produce regul ar, spheri cal shaped stru ts whil e Isobe el al (2006) ,,&b used fibres to 

generate ax ia lly a li gned directi onal pores to optimise th e porous structure. 

Optimisation of the pore structure can gen · rate directi ona l vari ati ons in th erm al, 

electrical , mechani cal and flo w properti es that can be benefi c ial to exhaust gas 

fi ltrati on. 
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More recent advances in ceramic foam manufacturing a llow the direct production of 

foamed ceramic slurri es using the gelcasting process described by Sepulveda and 

Binner ( 1999) and presented here in Figure 2.1 I . The use of surfactan ts to control 

bubble growth and decay allow openly porous foam structures to be sintered, 

gen erating roam structures like that shown in Fi gure 2. 12. 

Ceramic Powder. Organic Monorncrs. \Valcr and Dispersants 

ICeramic Suspension I 

I Surfacwnl i---

In it iator. Catalyst 

Polymerisation 

I Removal from Mould I 

IDrying and Smlcring/ 

Figure 2. 11 . Flow chart showing (he manufactu ring process of a gelcasl ceramic foam . (Sepul veda 
and B inner ( 1998) 

The foam struclllre of gelcast ceramic foams is less open than the reticulated ceramic 

foams and they tend to be o f a higher dens ity. Deve lopments of the techno logy and 

preliminary app li cati on of the ge lcast ceramic foam s to diesel paniculate filters is 

presented by Hughes (2003) cons idering how the manufacturing process is capable 

of independentl y varying the pore size, density and window size allowing more 

porous structure opt imisal ion than earl ier methods. 
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Figure 2. 12. SEM image or a gelcast ceramic f03m . 

Table 2.1 compares typical properti es of ge Jcast and reti cul ated cerami c foams. It can 

be seen that both types o f foams can be made in a large range of pore sizes and 

porosity. The strength of ge l cast ceramic foams can be seen to be typi ca ll y notabl y 

higher than the reticul ated foams, due to the so li d struts. 

Table 2.1. Comparison of the propen ies o f re ti cu lated (form made) ceramic foams 
and gelcast ceramic foams. 

Propen y Reticulated Foams Gelcast Foams 
Pore size I 00-1 920 ~tm 50- 1150 ~tm 

Open Poros ity 64-97% 80-90% 
Compress ive Strength 1.3-4.44 MPa 2. 1-1 1.2 MPa 

1)"h1 summ arised fro m: Barris el ClI ( 1987). Boreno el ClI (1999). Bykowsk i (1987), C iambe ll i el al 
(2002), Gabathuler el ClI ( 199 1). Helferi ch and Schenck (1989), Malsunuma el al ( 1996), Monta naro el 

ClI (1998), Sepul veda and Binner ( 1999) 

The nexi bility o r manu facturing the foams with diffe rent pore structures makes the 

anal ys is of the current state of tbe an ce ramic foa m DPF technology more in vo lved. 

To compare publi shed data on the fi ltrati on e ffi ciency of ceramic foa ms it is 

necessary to make some assumptions about the fi lt rat ion trends. Loading with in a 

depth bed filter fol lows an exponent ial re lat ionship which can be exp lained by 

cons idering the fi lter as a seri es of comparable elements. This means that a unit 

le ngth of filter med ium will trap a given fracti on of the particul ates that now through 

it. This all ows tbe effect of changing tbe fi ltrati on length on fi ltrati on effi ciency to be 

estimated mathemati ca ll y as 
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(2. 1 ) 

where '71 is the est imated filtrati on effic ie ncy, '71 is the known filtration efficiency, L 

is the filter length for which the estimate is required and I is the filtrati o n length of 

the filter with a known fi ltration efficiency. This relati onshi p does not account for 

any vari ation in filtration effic iency with now rate or loading which are not as 

commonl y publi shed in the literature. Where it has been reported, thi s effect has been 

relati ve ly small compared to the effect of varying the pore size (e.g. Pontikak is el al. 

200 I). Applying this equation to avai lable published data provides the results shown 

in Figu re 2. 13. The filtration efficiency can be seen to reduce fo r larger pore sizes as 

the tortuosity of the fl ow path and s iles for panicu late capture are reduced in number. 

8 

6 0 

4 \ 
\ 

\ 

2 0 \" 
eI ' , , ,Q _ -0 

500 1000 1500 2000 

Pore Size (;Im ) 

Figure 2.13. Plot of fil lration efficiency per unit length as a function of pore size for reticulated 
ceramic foam pub lished dala. References used are: Ambrogio el al (2001). Barris el al ( 1987), Mizrah 
el al (1989), Shinozaki e/ al ( 1990). TUlko el al (1984), Walabe el al (1983). Xiaoguang el al (200 I). 

A sim il ar analysis can be carri ed out to compare the back pressure fi'om d ifferent 

publications. The assumptions required to analyse the data are : 

I . The back pressure is a linear fu ncti on of fi ltration length . Thi s is true if the 

now can be approx imated as incomp ress ible . 
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2. The back pressure can be approximated as a linear function of space velocity 

wi thin the typica l flow range. Test resu lts published by Adigio (2005) show a 

linear fit with R2 - 0.75. This al lows a general comparison considering the 

low availability of detailed publi shed data. 

Mathematica ll y, these assumptions can be written as 

Pal 

jj.Pa1l 

(2.2) 

(2.3) 

where P is the back pressure. I is the filtrati on length and 11 is the space velocity. 

Convening the published data to give an estimate of the back pressure per unit length 

per unit space velocity gives the results shown in Figure 2. 14. There are less data 

here as the majority of publications on ceramic foam technology lack the information 

on fl ow rate to generate these comparisons. As the pore size increases, the back 

pressure reduces since the obstructio n the pores cause to the fl ow is significant ly 

reduced . 
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Figu re 2.1 4. Plot of back pressure per unillellgLh per unit space veloc ity for reticulated ceramic foam 
publi shed data. References used are: Ciambelli el CI/ (2002). He lferich and chenck ( 1989), Shinozaki 

el a/ ( 1990), Watabe el CI/ ( 1983). 
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The approxi mate fit lines for the data shown in Figu re 2. 13 and Figure 2.14 can be 

combined to produce a plot that a ll ows evaluati on of different cerami c foam fi ltra ti on 

technologies. Thi s is shown here in Figure 2. 15. The performance of ge l cast ce ram ic 

foams presented later can be compared to thi s anal ysis of published data to evaluate 

their performance re la ti ve to reticu lated ceramic foams. 
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Figure 2.1 5. Filtration performance plol for reticulated ceram ic foams based 0 11 ava ilable publ ished 
dala . 

From the data presented by Hughes (2003) an example data point has been used to 

calcul ate a back pressure indicator and filtratio n efficiency ind icator comparable to 

th at used in Figure 2. 15. This is shown with the data from Figure 2. 15 in Figure 2. 16. 

It can be seen that the ge1cast foam properties led to improved fil tra tion effi ciency 

per unit length , with an associated increase in back pressure. The gelcast work of 

Hughes (2003) showed that the ge lcast foam filtration efficiency/back pressure trade­

off is comparab le to the publ ished data on reticu lated ceramic foam s. 
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8 

Typical gelcast ceramic 
foam performance, analysed 
from data In Hughes (2003) 

Typical reticulated 
ceramic foam 
performa nee 

worse DPF 

10 12 14 16 

Back Pressure Indicator [ kPa m·' (m s·')"' 1 

Figure 2.16. Comparison of i-Iughes (2003) gelcast foam filt er perfo rmance with Pll blished l iterature 
on reticulated ceramic foam s. 

Thi s review of ceramic foam technology has demonstrated that ge lcast ceramic 

foams have significant advantages over reti culated ceramic foams when considering 

their strength. compactness and ab il ity to independently vary faclO rs such as window 

size. pore size and densi ty. In comparison to WFF the filtrati on effici ency/back 

pressure trade-off is not as good but the fi lter durability and small impact of minor 

damage lO ceramic foam fi lters makes them a sui ta ble fi lter for many applications. 

) , , 
_ . J . J Fibrous Fillers 

Fibrous fi lters operate in a similar fas hion to foam fi lter but are made in a different 

way. Bloom (1995) demonstrated fi brous filters that were formed by winding fibres 

around a perfora ted stainless steel tube. Fi ltration effic iencies of >90% were 

presented. Due to the nexibility of the fi bres exce llent thermal durabil ity was 

achieved. Due to the natm e of fib rous fil te rs. high porosi ti es are difficult lO achieve. 

This resu lts in ei ther a high back pressure or large fi lter vo lume. In the data 

publ ished by Bloom (1995) a 26 litre filter was tested on a 14.6 litre turbocharged 

engine. Thi s compares poorl y with the size of ceramic filters such as the WFFs and 

ceramic foams. 
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Stud ies by X iao and Liu ( 1994) Wilh signifi canll y larger fl ow areas ac hi eved with 

bag fill ers a lso demonslraled fi ltra ti on e ffic iencies >90%. The regenerati on of th ese 

fillers was e ffec ti ve although required complex mechanica l moving pan s. Allhough 

nOl highl ighled in the paper, the vol ume of such a fi ller syslem makes il unfeas ible 

fo r mob il e applications. A 104 lilre filler can isler was demonslraled on a 2.27 litre 

37 kW engine. 

2.3.-/ Partial Fi/lralion 

Developments of parti al fi ltralion of the exhausl gas offer syslems lhal wi ll not clog 

in the eve lll of excessive amounlS of trapped PM . The filler, deve loped by Johnson 

Mallhey, ulili ses a composite stamped foi l and s inlered meta l fl eece shown in Figure 

2.17. A fracli on o f the fl ow is directed through the fl eece materi al where the 

pan iculales are trapped. As the lrapped panicul ale quantity increases. the fracti on of 

gas fi ltered wi ll decrease minim ising the effect on the exhaust back pressure. 

o 

Figure 2.17. Diagram of the panial filler system developed by Johnsoll Mauhey (Jacobs et ai, 2006) . 

Tests by Jacobs el a/ (2006) on a Caterpil lar 3126 engi ne demonstra ted 

approxi mate ly 42% reducti ons in PM emiss ions as a di rect resull of adding a panial 

fil te r into the exhaust system. There is no data showing the effect on the eng ine back 

pressure ma kin g it di ffi cull to full y evaluate thi s fi ltrati on techno logy . 

) , -_.J .J • 1I111111W)' of Ex hails I Fi/lralion SlrCllegiesfor PM COl1lro/ 

Filtrati on of diesel engine exhaust gas offers the advantage of reliab le and repeatable 

filtration pro pert ies over a wide range of engine conditions with a hi gh lrapping 
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efficiency. This is at the expense of engine exhaust back pressure which acts to 

reduce the fuel conversion efficiency of the engine by increasing pumping losses. 

One significant issue with all filtration systems is the need for filter cleaning 

(regeneration) to maintain acceptable exhaust back pressures. Without cleaning the 

filters the back pressure would continue to rise as the amount of trapped particulates 

increases. In many ways, effective, efficient and reliable regeneration of particulate 

filters has offered a greater challenge to engineers than the filtration itself. The 

following section therefore reviews the literature relating to filter cleaning strategies 

and highlights that there is a strong need for regeneration methods that are efficient, 

compact and effective. 

2.4 Filter Regeneration Strategies 

A large fraction of particulate matter is carbon based. This allows oxidation of 

particulate matter into carbon dioxide in an environment with high enough 

temperature and oxygen concentrations. Filter regeneration strategies can be 

classified into passive and active systems. Passive systems are those which 

continuously oxidise PM trapped on the filter under normal engine conditions. 

Active regeneration systems are those which periodically initiate a regeneration 

event during which a majority of the trapped PM is oxidised. As well as increasing 

the PM temperature, to promote oxidation, there are methods to reduce the 

temperature at which PM rapidly oxidises, typically using catalysts. The following 

text reviews the literature and current state of the art DPF regeneration methods. 

2.4.1 Catalytically Assisted Regeneration 

Catalysts act to increase reaction rates without changing the overall reaction, 

although they are usually involved in producing short lived intermediate species. 

Active catalysts do this by reducing the energy barrier needed for a reaction to occur, 

with species adsorbed onto the surface of the catalytic material (in the case of a solid 

catalyst). Solid catalysts have a direct influence on molecules within about 1 atomic 

distance from the solid surface (Twigg, 1989), giving a small volume of influence, 
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however, coupled with diffusion and convection can lead to significant 

improvements in reaction rates. 

Tao et al (2003) demonstrated catalytic coatings on monolithic wall flow filters that 

promoted hydrocarbon and coluble organicfraction (SOF) oxidation, using the heat 

released from these reactions to initiate the main PM combustion. Regeneration of 

the filter was evident but required engine conditions giving exhaust temperatures 

above 400 QC, which is only over a small region of the engine operation. The catalyst 

on the filter also produced limited amounts of N02 from engine out NO which 

promoted low temperature oxidation of soot. 

Gieshoff et al (2001) investigated a number of different oxidising catalysts to 

evaluate their effect and found promising reductions in soot ignition temperatures 

using vanadia based salts. A large contact region was achieved as the salts tested 

became molten at temperatures lower than the normal soot ignition temperatures. 

Ignition temperatures of diesel soot were reduced by approximately 100 QC, which 

would still require active means of regeneration. During soot oxidation the vanadia 

salts were observed to decompose, limiting the catalyst life in a real engine. 

An alternative to solid or coated catalysts are fuel borne catalysts. Fuel borne 

catalysts consist of one or more metals (for example iron) which are chemically 

reacted with hydrocarbons to produce fuel soluble organo-metallic compounds. 

These are then added to the fuel before being injected into the cylinder. During 

combustion, the hydrocarbon portion of the organo-metallic compounds is burnt off 

leaving the metal based compound predominantly intact (e.g iron oxide). This then 

forms an integral part of the PM, resulting in the distinct advantage of an evenly 

dispersed catalyst regardless of how the soot is trapped. In comparison with 

catalyzed soot filters the catalyst contact region is significantly larger. The result of 

adding the catalyst is a reduction in the ignition temperature of the soot to 

approximately 400 QC from the uncatalyzed 550 QC. Issues and complexities of fuel 

dosing systems can discourage implementing such a system although 250,000 km 

tests (performed by Richards and Kalischewski, 2004) on heavy duty truck engines 

have shown some success. 
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To the author's knowledge, there are no diesel PM oxidation catalysts available that 

reduce the oxidation temperature of PM enough to allow passive regeneration under 

all engine conditions. This leads to some requirements on the user for speed and load 

cycles to achieve successful regeneration, that many manufacturers do not wish to 

impart on their customers. The catalyst coating, therefore, offers a means to reduce 

the energy requirement during regeneration but not a means of regeneration in itself. 

2.4.2 Electrical Heating 

The heat flux from the porous filters to the air flow through the filter under typical 

exhaust conditions is high enough that the trapped PM will be kept at a temperature 

close to the exit air temperature (e.g. Law, 2006). This means that with full exhaust 

flow through the filter during regeneration, enough energy must be input to the filter, 

PM and exhaust gas to raise them to typical regeneration temperatures of 550°C 

(Heywood, 1988) for non-catalysed systems. A calculation ofthe energy requirement 

for a 300 kg h- l gas flow at 250°C shows that 26 kW of energy is needed. For a 

typical - 100 kW diesel engine this power demand is not feasible, therefore, electrical 

heating systems typically require the gas flow to be reduced (the filter bypassed). 

The electrical heater can be used to heat the PM to a temperature where the energy 

released from the PM is enough to sustain the regeneration event. The gas flow can 

then be controlled to manage the burning rate and filter temperatures. 

Arai et al (1987) applied a 1.5 kW electrical heater regeneration system to a 

monolithic WFF on a 3.9 litre DI turbocharged engine. The arrangement is shown 

schematically in Figure 2.18. They stopped the air flow through the filter during the 

heating stage and once the front face of the filter was above the PM ignition 

temperature, the airflow was increased to begin self-sustained combustion of the PM. 

To minimise the electrical demand on the engine during the heating, the filter was 

bypassed and the PM ignition temperature reduced to between 350 and 450°C by 

applying a catalyst coating. Similar systems using fuel borne catalysts instead of 

filter coatings have been investigated by Zikoridse et al (2000), relying on the 

catalyst to reduce the ignition temperature of the PM. Non-contact methods such as 

infrared heating have also been proposed (Xiaoguang et aI, 2001) which used 

infrared radiation to couple thermal energy to the PM on the front face of the filter. 
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gasflo....-

WFF 

electrical heater 

Figure 2.18. Schematic of a typical electrical heater regeneration system. 

Further energy savings can be made by spot heating of the filter (heating localised 

regions) and relied further on self-sustained burning of the trapped PM. Zelenka et at 

(2001) fixed four 100 W spot heaters to the front face ofa 5.66 inch diameter WFF, 

filter to initiate self-sustained combustion. For regeneration of a large volume of the 

filter, PM mass loadings of> 109 litre-' were required. Such loadings would lead to 

excessive exhaust back pressure or large filter volume. 

Typical electrical regeneration strategies successfully ignited the PM but often 

struggled to regenerate the entire filter volume. Self-sustained regeneration, such as 

electrical heating methods, are highly dependent on the amount of trapped PM, 

oxygen concentration and gas flow rate through the filter. Trapped PM rates are 

difficult to measure on-engine and with the dynamic nature of the engine operation, 

oxygen concentration and gas flow rates can be difficult to accurately control. Failed 

regeneration events therefore occur with only part of the filter being regenerated or 

with filter damage due to excessive temperatures or thermal gradients. 

- 46-



CHAPTER 2 REVIEW OF PM REDUCTION STRATEGIES 

2.4.3 Microwave Heating 

Microwave heating is known to preferentially heat up certain materials, including 

PM (e.g. Gamer, 1989). This allows the direct application of energy to the PM within 

the filter volume, heating up the PM more evenly than electrical heaters. Early 

application of microwave regeneration of diesel particulate filters by Gamer and 

Dent (1989) used a conventional magnetron to direct microwave radiation at the 

front face of a loaded particulate filter, heating the PM to self-ignition temperatures 

and controlled the gas flow using a bypass to manage the PM combustion process. 

Such a setup is shown schematically in Figure 2.19. 

bypass valve 

magnetron WFF 

Figure 2.19. Schematic showing a typical microwave regeneration system. 

Nixdorf et al (2001) made use of the microwave absorption of silicon carbide to 

increase the coupling of energy. They demonstrated heating of the filter to 800 QC in 

3 minutes, but still relied on a bypass system for successful regeneration. The more 

even distribution of the energy was shown by Xiaoguang et al (2001) to cause 

difficulty in regenerating the front face of a ceramic foam DPF, attributed to the 

cooler temperatures of the gas flow during regeneration. Issues with failure to 

regenerate the periphery of the filter were observed by Palma et al (2002). The 

success of the regeneration was shown to be strongly dependent on the flow 

properties (e.g. Ning and He, 1999) in a similar way to the electrical heating methods 
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discussed earlier. Without tight control of the PM loading, uncontrolled regeneration 

and filter damage were observed by, for example, Gautam et al (1999). 

Instantaneous energy input requirements for microwave systems are typically I to 

3 kW with regeneration times and frequency typically estimated between 2 minutes 

every 6 hours (by Nixdorf et aI, 200 I) and 10 minutes every several hours (by Ning 

and He, 1999). The fuel consumption penalty will be small due to the low duty cycle 

however instantaneous power requirements can lead to issues with alternator size and 

capability. Further reduction of energy requirements can be achieved with the use of 

a catalyst (Ma et aI, 1997) although the issue of bypassing and precious metal 

dependence remain. 

2.4.4 Fuel Based Heating 

It is clear that raising the temperature of the PM requires energy. With internal 

combustion engines the main energy store on the vehicle is the hydrocarbon fuel. 

Conversion of fuel to electrical energy with an alternator results in -40% of the fuel 

energy being lost due to alternator inefficiencies (Robert Bosch GmbH, 2004). 

Burning of the fuel to generate the required heat, therefore, offers a potentially more 

efficient regeneration from a readily available energy source with high instantaneous 

power capabilities. The fuel is oxidised upstream of the filter to raise the air 

temperature to the required PM oxidation temperature. The air then heats up the filter 

and oxidises the PM. 

Zelenka et al (2001) demonstrated trap regeneration with PM loadings as low as 

2.5 g litre'! with such a fuel burner system, as the heat is evenly distributed 

throughout the filter, and self sustained combustion is not a requirement. Running on 

a 3 litre diesel engine required (fuel) power inputs between 10 and 35 kW, much 

larger than that which can be achieved from on vehicle electrical supplies. 

Issues with fuel burners include the quality of combustion and, in the event of a 

misfire, the unacceptable hydrocarbon emissions that would result. There is also a 

need for a secondary air supply to ensure the oxygen availability for fuel and PM 

oxidation. More energy is needed for heating using fuel burners as the air quantity 

that is heated is more than with bypassed systems although this can be improved by 
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partial bypassing of the filter during regeneration, demonstrated by Ludecke and 

Dimick (1983). 

Ignition problems can be overcome by oxidising the fuel using an oxidation catalyst 

instead of burning the fuel. This is shown schematically in Figure 2.20. Late 

injection can increase the hydrocarbon content of the exhaust or, alternatively, a 

secondary injector can be used. Further air supplies are still required under certain 

engine conditions. 

gasflo_ 

ignitor WFF 
oxidation catalyst 

fuel injector 

Figure 2.20. Schematic of an oxidation catalyst and fuel injection regeneration strategy. 

Singh et al (2006) presented such a system that utilised an oxidation catalyst 

upstream of a catalysed diesel particulate filter. They successfully demonstrated 

regeneration of a loaded filter with upstream temperatures of -300 QC. Hydrocarbon 

slip through the oxidation catalyst would make such a system unfeasible without 

further catalyst on the DPF. Potential issues with catalyst oxidation also occur at low 

temperatures when only a small amount of fuel oxidises as if flows through the 

catalyst leading to inefficient heating. This may lead to demands on the engine cycles 

that must be imposed on the consumer. 

2.4.5 Other Regeneration Methods 

Lakkireddy et al (2006) presented work that used an oxidation catalyst, in a 

configuration similar to Figure 2.20, to oxidise the engine out NO to N02. The N02 

oxidised diesel PM between 250 and 380 QC, significantly lower than that for PM 
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oxidation with molecular oxygen (02). The presented regeneration system is limited 

in the range of working temperatures. At low temperatures the PM oxidation is slow 

and at temperatures of above 400°C, the N02 formation is thermodynamically 

limited. In addition to a narrow operating window, the amount of NOx required (-8 

times the PM) may necessitate further NOx controls downstream of the DPF. 

The use of electrical plasmas or discharge systems has received increasing interest in 

a variety of forms including low temperature plasmas (close to room temperature) 

and non-thermal plasmas. A summary of typical features of such systems follows. 

Further discussion of plasma properties and definitions are in Chapter 5. 

Okubo et al (2004)' presented the benefits of generating pulsed dielectric (Iow 

temperature) discharges in the exhaust flow to increase the quantity of PM oxidants, 

most notably N02 and applied it both directly and indirectly to the exhaust gas 

(Okubo et ai, 2004b). The N02 promoted the oxidation of the PM while still, 

however, requiring appropriate exhaust temperatures which are not achieved over the 

entire engine operating range. Similar work by Levendis and Larsen (1999) 

considered the effect of other species such as Ozone (03) and found their effect to be 

small relative to N02 and potentially monatomic oxygen (0). A significant issue 

highlighted by Okubo et al (2004)b is the energy consumption associated with 

treating the exhaust gas, indicated -12% fuel consumption penalty. 

Studies by Yang (1981), Gamer et al (2006) and Proctor (2006) have shown that the 

application of non-thermal plasmas to diesel PM leads to rapid PM oxidation. Yang 

(1981) considered oxidising PM within the gas flow, and determined that 

agglomeration is required for efficient PM oxidation with non-thermal plasmas. 

Application of non-thermal plasmas directly to DPFs was proposed by Garner and 

Harry (2003) who demonstrated the feasibility and potential low energy requirement 

of such a system. Further work by Proctor (2006) showed that stable, non-thermal 

plasmas can be used to automatically and selectively oxidise PM trapped on a 

cordierite wall flow filter while being insensitive to temperature, oxygen 

concentration and water concentration typical of diesel engine exhaust. The 

possibility of a regeneration system capable of working over the entire engine 
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operating range warranted further investigation and forms part of the research 

presented in this thesis. 

2.5 Summary of PM Control Strategies 

A selection of PM control strategies have been presented, highlighting the need for 

future diesel exhaust PM filtration. Filtration technology has been summarised and 

shows the need for regeneration (filter cleaning) methods to maintain acceptable 

exhaust pressure. Most of the regeneration strategies discussed require energy input 

to raise the exhaust temperature. This is manifested as a fuel consumption penalty 

and must be minimised to be competitive. Figure 2.21 shows data from a selection of 

published literature that has been summarised for the case of a 5 g h-' average PM 

output with 300 kg h-' flow rate. The data is presented in the form of the fuel energy 

which, in the case of electrical systems, is calculated based on 60% alternator 

efficiency. Most notably, bypassing the gas flow during regeneration has a 

significant effect on reducing the energy requirement of most systems due to the 

lower mass of air being heated. The exception is the work by Proctor (2006) which 

applied a non-thermal plasma to PM trapped on a wall flow diesel particulate filter. 

The ability to regenerate without bypassing is important since emission legislators 

are introducing 'not to exceed' (NTE) limits (Johnson, 2006). This means that at any 

test condition, the emissions from the engine should not exceed a legislated limit. 

The result is that any regeneration system requiring a bypass will need a dual filter 

system, with added cost, complexity and size. 
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Figure 2.21. Comparison of published data on energy requirements of typical regeneration methods. 
Sources:- Arai et al (1987), Gautam et a1 (1999), Levendis and Larsen (1999), Ludecke and Dimick 

(1983), Matsui et al (2001), Okubo et al (2004), Palma et al (2002), Proctor (2006), Yang (1981), Yao 
et al (2004). 

Table 2.2 compares the main regeneration strategies, highlighting their advantages 

and disadvantages. In summary: 

1. Bypassing the airflow during regeneration leads to lower energy requirement, 

with the added size of a dual filtration system 

2. Catalytic systems are limited in their working temperatures and, therefore, 

limited in the engine speeds and loads they are effective 

3. Regeneration that relies on self-sustained oxidation of trapped PM is difficult 

to control and can often result in incomplete regeneration or filter damage. 
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Table 2.2. Summary of the main advantages and disadvantages of typical DPF 
regeneration strategies 

Regeneration Strategy Advantages Disadvantages 

Catalyst No moving parts Limited working temperature 
No energv requirement Precious metal dependence 

Electrical heating without bypass No moving parts High energy requirement 
Additional air requirement Difficult to control 

Electrical heating with bypass Low energy consumption Moving parts 
Additional air requirement Difficult to control 

Microwave heating with bypass Low energy consumption Moving parts 
Additional air requirement Difficult to control 

Fuel burners without bypass No moving parts High energy requirement 
Compact Robustness 
Additional air requirement 

Fuel burners with bypass Low energy consumption Moving parts 
Additional air requirement Robustness 

Catalytic fuel oxidation No moving parts High energy requirement 
Compact Limited working temperature 
Additional air requirement Precious metal dependence 

Dielectric barrier discharges No moving parts High energy requirement 
Limited working temperature 

Non-thennal stable plasmas No moving parts 
Low energy consumption 
Effective over all speeds/loads 

2.6 Concluding Remarks 

This chapter has reviewed the current literature discussing current state of the art 

filtration and DPF regeneration strategies for the reduction of diesel engine PM 

emissions. It has shown that the potential of a regeneration system based on non­

thermal stable plasmas developed by Gamer and Harry (2003), Gamer et al (2006) 

and Proctor (2006), combined with the robustness and configurability of gel cast 

ceramic foam diesel particulate filters offers a promising technological solution for a 

complete and effective diesel particulate filtration system. 

The remainder of this thesis presents the original research carried out in developing 

the Autoselective electric discharge regeneration of gelcast ceramic foam DPF 

system. Chapter 3 introduces the experimental methodology used throughout the 

following chapters before Chapter 4 discusses the development and optimisation of 

gelcast ceramic foam DPFs. 
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CHAPTER 3 

DESIGN OF EQUIPMENT AND 
MEASUREMENT PROCEDURES 

Throughout the work presented in this thesis there were numerous experimental 

methods used. A number of techniques and considerations that were applicable to the 

work throughout the subsequent chapters are presented in this chapter. Techniques 

relevant to specific parts of the thesis are discussed in the appropriate chapters. 

Methodology used throughout the thesis includes: 

I. improved methods for characterising the gel cast ceramic foams 

2. methods for evaluating the regeneration system performance 

3. an introduction to the experimental rig used for prototype testing 

4. an introduction to the on-engine test setup 
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3.1 Characterising Gelcast Ceramic Foams 

The spherical nature of the pores of gelcast ceramic foams has been shown in 

Chapter 2. Where neighbouring spherical pores overlap, open windows are formed 

that allow gas to flow through the porous structure. There have been a number of 

descriptions of gelcast ceramic foams including face centred cubic lattices (Peng et 

ai, 2000) with 12 windows for each pore and multiple orifice flow models based on 

two windows per pore (Adigio, 2005). The scanning electron microscopy (SEM) 

image of a loaded gelcast ceramic foam in Figure 3.1 shows that there is a more 

random nature to the pore size distribution than considered in these models. 

Individual pores are often characterised by their window size and pore diameter. The 

window size is defined as the diameter of the openings between the cells, and the 

pore size is defined as the diameter of the spherical shape of the pore. This is 

illustrated in Figure 3.2 for an ideal spherical pore with six windows. These 

descriptors, along with knowledge of the porosity of the ceramic foam can give an 

indication of how the foam will behave with respect to gas flow through the pores, 

and its bulk mechanical behaviour. The open porosity (defined as the ratio of the 

interconnected volume to the overall volume) of gelcast ceramic foams is typically 

close to the overall porosity (defined as the ratio of open volume to overall volume). 

When this is not the case, the open porosity is used most appropriately for flow 
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discussions while the overall porosity IS most appropriate for discussions of 

mechanical strength. 

w 

p 

Figure 3.2. (a) Cross section ofthe ideal pore showing the pore diameter (P) and window size (w). (b) 
Pictorial representation of the ideal pore. 

Due to the random nature of the foams it is necessary to take a large number of 

measurements of pore size and window size to find suitable averages. The large 

spread of pore size is demonstrated by measurements taken on a reconstructed micro­

CT (computed tomography) scan of a sample of gelcast ceramic foam that was 

supplied by Dytech Corporation as a 400-500 ~m pore diameter foam. This data is 

shown as a histogram in Figure 3.3 from a CT scan using a Skyscan 1172 system. 
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600 800 1000 

Pore Diameter (,..m) 
Figure 3.3. Histogram ofthe range of pore diameters measured from a reconstructed micro-eT scan 

of a sample of gelcast ceramic foam. 

To allow an accurate description of the foam samples used in this project it was 

necessary to define a suitable methodology for estimating rapidly the average pore 

size. Pore diameters can be measured from images of filter cross sections using 

various forms of microscopy, or in three dimensions from eT scanning data. The 

cost and time involved in collecting eT scan data was not suitable for day to day 

measurements where up to 20 or 30 samples need to be measured, since 

reconstruction of a single series of images takes a number of hours. For this work, 

optical microscopy using a Nikon SMZ-2T microscope and JVe colour digital 

camera was used to measure visible diameters of filter cross sections. 

Measurements of the visible pore diameter from a two dimensional (2D) cross 

section of the same sample that was used for the eT scanning data in Figure 3.3 is 

shown in the form ofa histogram in Figure 3.4. A comparison of Figures 3.3 and 3.4 

showing data from the same sample indicates that measuring the average visible 

diameter from a two dimensional cross section leads to an underestimate of the actual 

average pore diameter. This can be explained by considering the effect of a randomly 

placed cutting plane on the visible diameter of a single pore. Figure 3.5 shows three 

example cutting planes on an ideal pore of the same form as Figure 3.2 and 

demonstrate how they affect the visible diameter. It is clear that the further the 

cutting plane is from the centre of the pore, the smaller the visible diameter is 

relative to the actual pore diameter. By assuming that the cutting plane position is 
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random it is possible to correct the mean measured visible pore diameter to give an 

estimate of the actual mean pore diameter. The determination of the value of this 

correction factor follows. 

600 800 1000 

Pore Diameter (flITl) 

Figure 3.4. Histogram of the average visible pore diameter measured from a two dimensional cross 
section of a sample gelcast ceramic foam. 

SE[TION A-A SE[TION B-B SECTION [-[ 
Figure 3.5. Schematic showing the effect of the randomly placed cutting plane on the measured 

visible pore diameter. 
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To carry out the analysis, the geometry was simplified and considered as a single 

spherical pore. This can be represented graphically in two dimensions as shown in 

Figure 3.6. The cutting plane in this image is considered to be vertical (i.e. constant 

x). If the cutting plane is located at a random value of x there is an equal probability 

that it will be at any given value of x. Therefore, the probability of measuring a given 

radius can be calculated. 

y 
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Figure 3.6. Graphical representation of the model of the random cutting plane for understanding the 
effect of the cutting plane position on the measurement of pore diameter. 

The probability of the cutting plane lying between the coordinates Xl and X2 is 

defined as 

(3.1) 

where p is the actual pore diameter and x, Xl and X2 have the same meanings as in 

Figure 3.6. Since the relationship between X andy is known from the geometry of the 

pore, the probability of the visible radius being between Y2 and Yl is the same as the 

probability of the cutting plane lying between Xl and X2. This gives 
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The average visible pore size can be found by finding the probability for constant 

size intervals of y between 0 and p12. This was converted into a probability 

distribution as shown in Figure 3.7. As the interval size is reduced the validity of this 

approximation increases. The ratio of the average measured pore size to the actual 

pore size can be found from 

Pmea.l'ured 

~IP(Y'+1 < y<y,{Y, +/'+1 )] 
(3.3) 

p P 

where n is the number of discreet intervals. The effect of interval size on the average 

measured pore diameter relative to the actual pore diameter is shown in Table 3.1. 

This demonstrates that as the interval size reduces, the mean visible pore diameter 

tends towards 79% (2 s.f.) of the actual pore diameter. 
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Figure 3.7. Probability distribution of measuring a given pore diameter. 
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Table 3.1. Effect of interval size on the calculation of the 
correction factor for the measured pore size. 

Interval Size Mean Measured Diameterl Actual Diameter 
pllO 0.759 
pl20 0.776 
pl40 0.782 
pllOO 0.785 
pllOOO 0.785 

If this result is used to correct the mean from Figure 3.4, the corrected diameter 

(208 Ilm) is very close to the measurement of 211 Ilm taken from the 3 dimensional 

(3D) reconstructed image. This shows that the visible mean pore diameter can be 

corrected to give an approximation of the actual pore diameter by dividing it by a 

factor of 0.79. 

When considering previous work (e.g. Hughes, 2003) where no correction was made 

to visible pore diameter, the actual pore size will be larger than quoted. This 

therefore offers a methodology that can be used for future research involving 

measurements of gelcast (or similar) porous structures. 

3.2 Methods for Evaluating Regeneration Performance 

When developing an integrated filtration and regeneration system for diesel engine 

exhaust afiertreatment the system must be evaluated. Methods for evaluating 

regeneration performance are: 

I. Regeneration Rate 

The aim of a regeneration system is to remove PM from the DPF to maintain 

acceptable exhaust flow back pressures. The regeneration system, therefore, 

needs to be capable of regenerating the proposed filter at a rate at least equal to 

the average engine PM production rate and preferably at the maximum engine 

production rate to prevent risk of filter clogging. Details of the typical magnitude 

of the PM output from an example engine will be given later in Section 3.4. The 

regeneration rate needs to be measured in a repeatable and reliable way in order 

to evaluate the system performance. A summary of the advantages and 
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disadvantages of the available techniques for measuring the regeneration rate are 

discussed later in this chapter. 

2. Regeneration Effectiveness 

The power supplied to a regeneration system is derived from the fuel on board a 

vehicle and has a direct impact on engine fuel economy and CO2 emissions. 

Regeneration effectiveness considers the energy consumption required and is 

defined as the amount of PM burnt off per unit electrical energy input to the 

regeneration system, given by 

(3.5) 

where ER is the regeneration effectiveness (g kW' h"), R is the regeneration rate 

(g h") and W is the electrical power used (kW). 

The following sub-sections describe the range of techniques that are available for 

measuring regeneration rate and power consumption, leading to calculation of 

regeneration effectiveness. 

3.2.1 Pre- and Post-Filter Weighing 

Using analytical balances, the change of weight over a short period of time can be 

measured by weighing the sample before and after a known regeneration period. This 

will give an average regeneration rate during that test period. Factors that can lead to 

errors in the regeneration rate measurement using this method include: 

1. weighing scale errors 

2. handling effects 

3. environmental conditions 

4. damage during filter mounting and dismounting 

5. filter temperature. 

Each of these error sources need to be considered to identify how much they affect 

the measured mass, and as a result, the measured regeneration rate. 
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Weighing Scale and Handling Errors 

The general handling and measurement errors were evaluated using a KERN ARJ 

220-4NM (0-220 g +/- 0.2 mg) analytical balance by repetitive weighing of a single 

sample, removing the sample from the balance enclosure prior to each weighing. 

This therefore includes errors originating from balance repeatability, positioning of 

the sample on the balance and sample contamination during handling. 

Figure 3.8 shows a histogram of 300 measurements of a ceramic filter sample that 

was typical of those used during this work. The weight of the ceramic filter sample 

was found to approximate a normal distribution with a 95% confidence interval of 

1.6 mg. 
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Figure 3.8. Histogram showing results of repetitive weighing of a ceramic filter sample. 

Environmental Conditions 

To determine the environmental effects on the weighing of PM and filter samples, 

clean and loaded ceramic foam DPF samples were stored in a desiccator for a period 

of one month prior to being weighed. Supporting research work carried out by R. 

Bull (2006) showed that for typical PM used for this work, the water and volatile 

component of the PM was -5% of the PM mass. This means that oven preparation of 

the samples is not essential. 
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Figure 3.9 shows the weight of the samples after being removed from the dessicator. 

It can be seen that both the ceramic foam DPF and the trapped PM are insensitive to 

the desiccation and exposure to atmospheric conditions on a short timescale. This 

means that environmental effects will not affect the weight measurements of samples 

that have been stored in a controlled humidity environment. 
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Figure 3.9. Transient mass measurements of clean and loaded ceramic foam OPFs. 

Mounting and Dismounting Ettects 

Errors originating from mounting and dismounting the filter in the rig can be caused 

by filter damage or material addition (for example gasket material adhering to the 

filter). To evaluate these errors, 9 ceramic filters were pre-weighed, mounted and 

dismounted in the rig and then post-weighed to identifY any trends. The 

measurements are shown in Table 3.2. Samples 1 to 4 are control samples that were 

not mounted on the rig. 
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Table 3.2. Effect of mounting and dismounting of filters on filter mass. 

Ceramic Filter 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Pre mounting 
mass (g) 
98.3164 
89.1488 
89.9729 
91.1317 
101.1436 
92.3303 
93.9422 
92.6382 
102.8650 

Post mounting 
mass (g) 
98.3178 
89.1446 
89.9734 
91.1299 
101.1413 
92.3276 
93.9400 
92.6386 
102.8604 

Difference (mg) 

1.2 
-4.2 
0.5 
-1.8 
-2.3 
-2.7 
-2.2 
0.3 
-4.6 

The mean variations were compared statistically using a T-test and, within a 95% 

confidence interval, there was found to be no effect of mounting and dismounting. 

Filter Temperature 

Variations in temperature of the ceramic foam sample were observed during this 

research, to affect the mass reading from an analytical balance. An error of >0.1 g 

was observed when measuring PM loadings of 0.2 g. To explain this temperature 

dependence it is necessary to consider the open pore ceramic foam as a porous 

structure for which gas flow through the pores is restricted enough that the gas heats 

up (or cools down) relative to the ambient temperature, depending on the temperature 

of the ceramic. If the structure is openly porous the time taken for the pressure to 

equalize when the gas is heated or cooled is negligible, resulting in the air within the 

foam being less dense than the surrounding air, in the case of a hot filter. The less 

dense air is buoyant in the ambient air and acts to reduce the mass reading observed 

on the analytical balance. 

There are two possible methods for overcoming this problem: 

1. Allow the sample to cool to ambient temperatures before taking any mass 

measurements. Experience has shown that this can take up to several hours, 

which limits the amount of testing that can be completed in any given time. 
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2. Develop a mathematical relationship that allows the correction of the mass 

measurement for temperature variations assuming ambient and filter 

temperatures are known. 

The latter approach was developed and adopted here to enable significantly higher 

data rates and good knowledge of potential errors. Applying the ideal gas law to the 

gas within the ceramic foam allows the mass, rn, of air in a known volume to be 

calculated from 

PV 
rn=--

Ra;,T 
(3.6) 

where P is atmospheric pressure, V is the volume of air, Rair is the gas constant for 

air and T is the absolute temperature of the air. 

Applying this to the reference temperature and actual temperature cases respectively, 

and noting that the pressure and volume in each case can be considered to be equal, 

Equation 3.7 can be derived. This allows the prediction of the error in mass 

measurement reading from analytical scales resulting from non-ambient filter 

temperatures. 

where G is the porosity of the ceramic foam, V;-is the filter volume, Tr is the reference 

temperature (normally ambient) and Ta is the actual filter temperature. This 

relationship does not account for temperature variations throughout the ceramic or 

the flow of the gas through the ceramic. 

To validate this relationship, sample filters were heated up to a known temperature 

(measured with a 0.5 mm diameter K-type thermocouple) and weighed using 

analytical balances with a resolution of 0.01 g. Each filter sample was tested three 

times across a range of temperatures. 
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The results are shown in Figure 3.10 and Figure 3.11 along with a predicted variation 

based on Equation 3.7. The relationship shows good agreement with experimental 

data. The level of agreement shows that such a relationship could be used in future 

testing to correct for buoyancy errors in mass measurement resulting from ceramic 

temperature variations, the temperature is known. This saved a significant amount of 

testing time during parts of this research and is of longer term value. 
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Figure 3.10. Variation in analytical balance reading resulting from changes in filter substrate 

temperarnre. 143 x 50 mm sample, 80% porous. 
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Figure 3.11. Variation in analytical balance reading resulting from changes in filter substrate 
temperarnre. 143 x 20 mm sample, 80% porous. 

Summary 

To summarise and complete the mass measurement methodology, the following 

guidelines were followed during the testing presented in this thesis: 
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I . Samples were hand led with tweezers or d isposable g loves (as gu ide lines in 

EPA Testing Procedure §86.131 2-2007, 2006) . 

2. Where the filter temperature is non-ambient, corrections fo r temperature 

effects were made using Equati on 3.7. 

It has been shown that mounting effects are neg li gible and that using th e prev iously 

desc ri bed methods, vari ations in mass of 10 mg could be confi dentl y measured 

(based on the results from the mounting effect tests) . 

3.2.2 Visual Observaliol7s 

Visual observat ions of filter surfaces are a simple and effec ti ve quali tati ve method to 

eva luate regeneration performance. The more common DPF materials such as 

cordieri te, a luminium titanate and alumina are pa le in co lour wh ich means that as the 

PM load ing increases the fil ter surface becomes darker. An example o f thi s is shown 

in Figure 3.12 showing scanned filter surfaces of di ffe rent PM mass load ing. This is 

a qualitative evaluation but is use fu l as a simp le method to compare different tests 

and was, there fore. used throughout thi s work to support analys is and concl usions. 

HIGHER PM LOADING LOWER PM LOADING 

Figure 3. 12. Scanned images of filters of vary ing loading. 

3.2.3 Back Pressure MeaslIremel1ls 

As the amount of PM trapped on a DP F increases, the now pressure drop across the 

DPF increases. Increasing back pressure in the exhaust system leads to increases in 

pumping losses whi ch, in turn , results in loss of power output and fuel effi ciency of 

the engine . To maintai n acceptab le exhaust now back pressure the PM must be 

continuously or pe ri odicall y removed fro m the filte r. Measuring th e pressure drop 

across a DPF is the most appropri ate method for evaluating regeneration systems on-
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engine and can be carri ed out usmg readi ly avail able equipment such as di gital 

manometers. 

The pressure d rop cannot eas il y be related to regeneration rate but supplements other 

performan ce measures to understand phenomena relating to th e regenerati on system. 

3.2. -I POlller Consllmption 

Power measurements between the e lectrodes of the Autoselecti ve regenerati on 

system are made d ifficult by the presence o f high voltages. The electri c potential was 

measured using a high vo ltage 1000: 1 rati o probe (Tektroni x P60 15) and the current 

was measured us ing a 1: I rati o current pro be (Pearson 2877) on the grounded side of 

the transform er. This type o f current probe cannot be used e ffec ti ve ly on the hi gh 

voltage (HY) side of the transformer since the electric fi e ld becomes concentrated 

within the pro be vo lume leadin g to corona d ischarges which can affect the 

AUlose lec ti ve di scharge. The vo ltage and current probe can then be monitored using 

an osc illoscope. 

Figure 3. 13 shows a typica l hi gh vo ltage current and vo ltage trace . Th is case is for a 

predominantl y capac itive current but the technique for measuring the power 

consumption is app li cab le to any waveform. 
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Figure 3. 13. Example high voltage capaci ti ve voltage and current waveform. 
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At any given time the instantaneous power being di ssipated between l\VO points in a 

circuit can be ca lcul ated as 

w" = IV"~ (3 .9) 

where W el is the installlaneous electrical power, J is the instantaneous current and Vel 

is th e instantaneous vo ltage. The resulting calcul ati on based on the data in F igure 

3.13 is shown in Figure 3. 14. It can be seen in thi s case that some energy is cycling 

backwa rds and fo rwa rds through the elec trodes. 
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Figu re 3. 14. PIOl of calcu laled inslanlaneous power. 

The ca lculati on of ave rage power di ss ipated between the e lectrodes is then 

- 1 ~, +" ., ~,) 

W" = -- J IV" dt 
nTeI 

(3.10) 

where Tel is the time peri od of the signal and 11 is an integer describin g the number of 

cycles the ave rage is taken over. Integrating with a non integer value of n gives 

mi sleading results as the cycling energy will not be adequately considered. 
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3.3 Controlled Hot Flow Rig (HFR) Test Methods 

A large part of the initi al development work on th e Autose lective system by Proctor 

(2006) used a purpose built hot fl ow ri g (HFR) that was capable of generating a hot 

gas fl ow to si mulate a diesel engine ex haust in a controll ed manner. This concept 

formed the basis of the new ri g development for the investigation of ceram ic Foam 

propert ies that allows re li ab le, repeatable and controll ed conditions for prototype 

testing. T he use of ceramic foams introduced a num ber of add itional requirem ents 

relating to the adaptabi lity, temperatu re and pressure capability of the HFR . 

The design requirements re la ting to the second ge neration hot flo w rig are di scussed 

before hi gh lighting the important detai ls and key features of the des ign. 

3.3.1 HOI FlolV Rig Design 

The most important requi rements of the hot flow ri g for thi s work were: 

I . Visual Access When in vestigating electrical discharges a lot of information 

could be obta ined by observing the li ght emitted from the disc harge . It is 

therefore essentia l to have visual access to the electrodes and fi lter surfaces 

wherever poss ible. 

2. Mass Flow Rate Peak flow rates in di ese l engtne ex hausts that are 

appropri a tely sized for 5.66 inch diameter wall flow filt ers are typica ll y 

150 kg h-I (based on data presented by Cornin g, 2006). With hi gh pressure 

centri fuga l blower systems the peak flow rate that can be ac hi eved is a 

function of back pressure. The back pressure is a combi nation of the pressure 

drop across the filte r and the pressure drop across the pipework and heater 

(initiall y est imated at around 15 kPa) . To allow investi gation with higher 

fl ow rates, the centrifuga l blower on the hot fl ow ri g shou ld be capable of 

achi eving fl ow rates of 225 kg h-I (150% of the requ ired fl ow rate) with back 

pressures in excess of approxi mately 30 kPa (the sum of the pipework and 

typ ica l maximum filter back press ure). 

3. Gas Temperature Although exhaust temperatures of diesel engtnes are 

commo nl y be low temperatu res needed For the PM to ox id ise without ex terna l 

stimuli , they can operate with exhaust gas temperatures up to - 550 QC. The 

hot fl ow ri g should, therefore, be capable of generating ex haust gas 

temperatures between am bient temperatures and - 550 QC. 
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4 . Gas Addition Diese l engine exhaust gas contains hi gher leve ls of carbon 

dioxide (C0 2) and water (l-hO) and lower leve ls of oxygen (02) than the 

ambient envi ronment. The hot fl ow rig should be capable of s imulati ng these 

cond itions. 

5. Adaptabi li tv The ceram ic foam DPFs can be produced in a configurable 

geometry and size. The ri g s hould be capable of investigating a range offi lter 

geometries and easil y adaptable should an unusual geometry fi lter need 

testing. 

6. Electrical Feedthrough The behav iour of the Autose lecti ve syste m can vary 

depending on the side (upstream or downstream) of the fi lter the e lectrodes 

are placed. The ho t fl ow ri g should, therefore, be capable of achiev ing a hi gh 

vo ltage electrical feedthrough without comprom ising the flow rate through 

the fi Iter. 

Any such ri g should also consider: 

7. Measurements Flow rate. back pressure and temperature are essenti a l 

measurements durin g the majority o f testing with the hot flow ri g. 

8. Mobi litv If th e rig is se lf conta ined and mobile it can be more easil y 

transported and located for a spec ifi c series of tests. 

9. arety Any non-essential meta llic parts need to be gro unded to reduce the 

risk of electri c shocks from hi gh vo ltage eq ui pment. 

Figure 3. 15 shows the key components of the HFR. A high pressure centrifuga l 

blower was used to generate the required mass fl ow rate . A ser ies of valves were 

used to contro l the fl ow rate whil e minimi sing the pressure on the blower outl et. This 

mai ntained the blower outl e t air temperature closer to am bient cond itions. The air 

flowed th rough an electrica l air heater that raised the air temperature. The power 

input to the heater was 100% PWM modulated to control the temperature. The ho t air 

fl owed into the test chamber section of the ri g where gas species such as water or 

ni trogen cou ld be added prior to fl owing through the filter and regeneration system. 

The net result was a hot gas !low potentia ll y wi th reduced oxygen and hi gh humid ity 

representati ve of a diesel engine ex haust gas fl ow. 
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FLOW 

CONTROL 

HEATER 

CONTROLLER 

GAS ADDITION 

(E.G. H20 , N2 ) 

CENTRIFUGAL 

BLOWER 

AIR HEATER 

OBSERVATION 
CHAMBER 

FILTER 

Ambient Air 

Figure 3. 15. Flow chart showing the key pans or the hot flow rig. 

It was est imated initial ly that th e pressure at the outl et of the blower would be 

- 30 kPa with a peak flo\,\~'ate of 225 kg h'l when using the ceramic foam filters, This 

is higher than the pressure drop across the filter alone due to the add itiona l losses 

through the pipework and heater. The maxilllulll flow rate and back pressure test 

po int is show n as a ci rcle in Figure 3. 16 (b), The li nes plotted on Figure 3. 16 (b) are 

the fl owrate pe rforma nce characteri stics of a series of centri fuga I blowers of the type 

shown in Figu re 3.16 (a) of varying power and size. It can be seen that the 7.5 kW 

blower is tile on ly one of the th ree shown that can achieve the target fl ow rate and is 

therefore the one chosen as part of the hot flow rig. 
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Figu re 3. 16. (a) PhoLOgraph of a high pressure centrifugal blower (A irtec A ir Syste ms, 200 I) and (b) 
plot of flow rate as a fUllction of differentia l pressure for d ifferel1l s ize blowers. 

A similar analysis was performed for a range of air process heaters as shown in 

Figure 3. 17 (a). The curves in Figure 3. 17 (b) show the peak temperature as a 

function of flow rate that can be achi eved wi th di fferen t size a ir process heaters from 

Osram Sylvani a. The hatched region is the specifi ed operating region required to 

simulate a diese l engi ne exhaust. The 36 kW heate r can achieve temperanlres 

corresponding to the majority of the req uired test area, miss ing only the maximum 

temperatures at the hi ghest fl ow rate. If required, thi s test condition could be 

simulated by reducing the area of the filte r to red uce the flow rate through the heater, 

therefore the 36 kW heate r was chosen. 
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Figure 3.1 7. (aJ Photograph ofth. ai r heater (Osralll Sylvania, 2001 J and (b) plot of peak 

temperatures as a fu nction of now rate . 
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The control of the flow temperature was ac hieved uSing feedback contro l to 

modulate the input power to the heating elemellls. The feedback control unit was 

des igned and assembled in-house. 

Figure 3. 18 shows an ex ploded view of the observation chambe r and modular 

enclosure. The individual parts that form the ri g are listed in Table 3.3 . The 

observation chamber was based around a cubic frame with a series of panels that 

could be fined to an y side of the cubic shape. There were three different length fi lter 

holders (25 mm. 50 mm and 100 mm) that could be combined together to make 7 

different length cylind rical filter ho lders. Visual access was provided with a fused 

sili ca wi ndow mounted in one of the side panels. The electrical feed through was 

achieved with a Macor plate fitted to one of the side pane ls. M acor is a high 

temperature electrica ll y insulating ceramic that has the advantage of being 

machineable, therefore a llowing complex geometries to be manufactured. The inlet 

and out let conical sections had fittings matching the fi lter holder to increase the 

fl exibility o f configurat ions. Thi s modular des ign allowed the ri g to be assembled 

with or without the window. e lectrical feed through or observation chamber. 

Seali ng of the joi ns was ac hieved using a I mm Supergraf1'M graphite based gasket 

material that could be cut to any shape and withstand operating temperatu res of 

500 QC (.lames Walker, 1997). 
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Tablc 3.3. List of modul ar enclosure parts shown in Figure 3. 18 
Part Number Description Quantity 

I Heater Outlet/Observation Chamber Inlet I 
2 Ci rcular Gasket 6 , 
J 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Coverplate (Circular Hole) 
Coverplate Gasket 
Coverplate (Square Hole) 
Square Gasket 
Macor Feedthrough Plate 
Observation Chamber Frame 
Coverplate (Plain) 
Filter Holder (Large) 
Fil ter Holder (Medium) 
Filter Holder (Small) 
Retaining Plate 
Observation Chamber Outlet 
Wi ndow 
Window Frame 

2 
6 
2 
2 

2 
I 
I 
I 

The observat ion chamber was surrounded by an interl ocked polycarbonate encl osure 

that cut off the electri ca l supply to any high vo ltage equipmem within the enclosure 

if the door was opened. During high temperature tests the polycarbonate wa 

protected from the heat of the metal parts using glass fibre insulati on matt ing 

wrapped around the heater outlet and laid across the upper panel of the observation 

chamber. The rig was assembled on a purpose bui lt castor mounted steel table that 

included an empty shelf for equipment used during testing. The assembled hot flow 

rig is shown in Figure 3. 19. The rig was set up in thi s photograph for low to mid 

temperature tests so the glass fibre matting insulati on was not present. 
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interlocked enclosure 

centrifilgal blower 

heater contro ll er 

bypass valve 

Post commi ssioning tests evaluated the performance of the ri g in compar ison to the 

design speci fications. The blower performance and heater performance were found to 

match the manufacturer 's spec i fi cati ons shown in Fi gure 3. 16 and 3. 17 respecti vel y. 

Figure 3.20 shows the pressure drop across the pipe work which was the main 

unknown quantity. The back pressure of the pipe wo rk and heater was in line with 

earl y estimati ons. The Sllin of thi s pressure drop and the pressure drop across the 

filter was the pressure di fferenti al the blower experi enced and hence determined the 

max imum possible now rate which was found to be adequete. 
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Figure 3.20. COll LOUr plOl of pressure drop lhrough the pipe work and heater as a function of flow rale 
and temperaru re . 

3.3.2 MeaslIrements lII i! iJ !he Ho! FlolII Rig 

Measurements required during rig testing include gas now rate, temperature and 

pressure. The now rate was measured us ing a ca librated in-line pilOt " Flo-bar" pipe 

secti on (manu factured by RM&C. UK) that used a di gital manometer with I Pa 

reso lution to measure the dynamic pressure . The n ow rate was then ca lculated from 

. C) PM 111 = --
T 

(3. 11 ) 

where 1;1 is the mass now rate (kg S- I), C is a constant that is a function of the gas 

constant and pi tot tube calibration, P is the absolute pressure (Pa). P is the dynamic 

pressure (Pa) and T is the gas temperature (K). For the measurement sel1lp used in 

thi s testing the calibrated constant. supp lied by the manufacturer, C = 0.0001 252 

(S2 KO 5 m- I). 

Locations of temperature and pressure measurements in the modu lar enc losme are 

shown in Figure 3.2 1. T1 is a fas t response K-type thermocouple that formed part of 
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the feedback control for the heater. It was located close to the heater oUllet to 

minimi se thermal delay between vari ations in temperature and con trol acti on from 

the heater controll er. T2 and T3 were mineral insu lated semi-fl ex ible k-type 

therm ocouples that measure the filter inl et a ir temperature. The rel evance of 

measurement locations depended on the Sel11p of the modular encl osure. P1 and P2 

were pressure tappings that were conn ected to a U-tube di gital manometer to 

measure the pressure drop across the fi lter. Without the conical secti on P2 was 

considered to be ambient pressure. 

T3 

P1 T2 P2 

Air Outlet--

i..!"!-- T1 Filter 

Air Inlet 

Figu re 3 .2 t . Schematic cross section of the rig showing the location of key I11casuremenls. 

3.3.3 Pre-Laading aIresl Fillers 

Testing on a rig requ ired pre- Ioading of a DPF on an engine before mounting in the 

ri g. PM composit ion and density are kno"~l to change as a function of engine 

condition and , therefo re, to achieve typica l PM properti es it was necessary to 

eva luate and understand the effects of engine use. Typ ica l engi ne cyc le data from a 

Cate rpi llar C7 engine were supplied by Caterp illar Inc for a concrete mi xer, fuel 

haule r. garbage truck and line hauler. To protect confidenti ality, these are not 

presented in thi s thesis. The cycle data was used together with ava il able litera ture to 

determine s uitab le steady-state load ing conditi ons for pre-Ioading of DPFs and are 

d iscussed in the fol lowing text. 
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The first factor that was considered was the PM density. The mass fractal dimension 

of PM is a term that describes the effecti ve density of the PM produced from diesel 

engines. It was defined by Schmidt-Ott ( 1988) as 

oc cl d,-' 
P c h (3.12) 

where Pe is the effective density of the PM , ch is the mobility diameter of the 

panicl es and cl,. is the fractal dimension. cl,. can take va lues between I and 3. A value 

for cl,. of I represents a simple chain of nuclei mode parti cles. A va lue for cl,. of 3 

represems a so lid , compact particle. Figure 3.22 shows results, presented by Vinanen 

et al (2004) , that show how the fractal dimension was affected by engine load for a 

range of di esel eng ines. 
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Figu re 3.22. Effect of engine load on the fraclal dimension of diesel engine sool (V irtane n el ai, 2004) 

Approx imating the PM as carbon. the effecti ve densi ty with a fractal d imens ion of 3 

(i.e. so lid) wi ll be, 2270 kg 111-
3 (S hackelford and Alexander. 200 1). This means that 

the density of the PM is 

= ??70 1 ",- 1 Pe -- ( h (3.13) 
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The linear approximati on of fractal di mension with load was estimated by the author 

from the broken line in Figure 3.22 as approx imately 

d, = 2.8 15-0.020 IP llu' (3.14) 

where PIIEP is the mean effecti ve pressure (BMEP) of the combustion cyc le. The 

majority of particu lates are anticipated to be - OJ flm in d iameter (Virtanen et ai, 

2004). Thi s means thalthe effective density can be calcu lated as a fun ction of engi ne 

load as 

(3. 15) 

This gives an engine load to PM relati onship shown in Figure 3.24. These numbers 

a re of the order of magnitude often reported fo r PM densi ti es (e.g. Park et ai, 2003). 
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Figure 3.23. Predicted effect or enginc load on effect ive PM density using Equation 3. 15. 

The average PM densities calcul ated from the ava ilable cycle data are shown In 

Table 3 .4. They vary between 116 and 177 kg mol , co rresponding to a BMEP of 

between approx imately 13 and 16 bar (5 8 and 74% load). This indicates that to 
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achieve a representative PM layer density, the fil ter should be loaded at 

app roximately 2/3 engine load. 

Tablc 3.4. Ca lcul ated average PM densities for a range of load cycles 
supp li ed by Caterpi ll ar Inc. 

Ve hicle 

Concrete Mixer 
Fue l Haul er 

Garbage Truck 
Line Haul 

Ca lculated average 
PM density 

kg m·3 

133 
177 
130 
11 6 

Equivalent 
Steady State 
Engine Load 

% 
70 
58 
70 
74 

PM composi ti on can also vary de pending on the engine and fue l used. To try to 

understand the possible e ffects of engine load on pre-Ioadin g fi lters. data has been 

taken fi'om Sharma et a! (2005) and reproduced here in Figure 3.24. Their work 

suggested that the engine load has a large affec t on elemental carbon and so luble 

organi c fracti on (SOF) o f the PM, and a sma ll affect on the meta l components of the 

PM . The SOF and elemental carbon are eva luated here for the load cycles supplied 

by Caterpill a r. The trends are shown in Figure 3.24. Elemental carbon increases with 

increas ing engine load and SOF tends to reduce. 
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Figure 3.25. Effec[ of engine load on SOF and elemental carbon (adapted from Shanna et ai, 2005) 
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The cycle data fo r the carbon and SOF a llows ca lcu lat ion of average va lues simi lar 

to the density. Like the data on density, the average composition is close to the high 

load case due to the large r amount of PM produced under hi gh load conditions . The 

summary of the eq ui va lent load is shown in Table 3. 5. This shows that to get 

representati ve SOlO and elemental ca rbon content in a pre-Ioaded DPF loaded at a 

co nstant load, the engine should be between 59-74% load. 

Table 3.5. Average SOF and elemental carbon compos itions of PM over 
cycles supplied by Caterpillar. 

Average Equi va lent Average Eq ui va lent 
SOF Engine Elemental Engine 

Vehicle Load Carbon Load 
% we ight % full load % weight % fu ll load 

Concrete Mixer 37.9 58 47.5 62 
Fue l Haul er 38.7 57 46.3 59 

Garbage Truck 32. 1 66 50.0 69 
Line .Haul 3 1.0 68 51.6 74 

We can therefore say: 

1. To achi eve representative average PM layer densiti es, SOlO and elemen ta l 

carbon fract ion the pre-Ioaded filters should be loaded at between 60 and 

74% engine load. 

2. Local PM distribution trends cannot be ac hieved for thi s work as a transient 

dynamometer is not ava ilabl e. 

3.3.'; Summar)1 

The design and im plementati on of a controll ed d iesel exhaust fl ow simulator capable 

of achi eving 225 kg h-I air fl ow with up to 15 kPa filter back pressure has been 

presented. Its use and typica l measurements were shown. Analysis determining 

appropri ate methods of pre-Ioadi ng filter samples for ri g testing has indicated that the 

engine should be operated at between 60 and 74% engi ne load. 
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3.4 On-Engine Test Methods 

Although ri g testing offered a fast, efficient and re li able method for developing 

di ese l particulate filtrat ion systems, the techno logy should ultimately be 

demonstrated in the environment it will be used. There are a lso a number of 

differe nces remai ning between the ri g and the engi ne, most notab ly that the ri g does 

not continuously produce soot to be trapped by the filter. For these reasons the latter 

seri es of tests we re carried out in an engine test cel l with a heavy duty diese l engine 

and purpose built fi lter cani ster. The engine and its characteri stics are introduced 

before descri bing the filter cani ster and basic measurement techniques used during 

on-engine testing. 

3..1.1 Tes! Engine 

The test engine was a Perkins 1100 seri es, heavy duty 4.4 litre diese l engine (shown 

in Figure 3.25). wi th specifications shown in Table 3.6. It was connected to a Froude 

AG400-I-IS steady state eddy current dynamometer. The engi ne was used to produce 

PM and rea l diese l engi ne exhaust whic h was forced through a purpose built filter 

canister where the regenerati on tests were carri ed out. 

Table 3.6. Test engine spec ifi cations. (Perkins, 2005) 

Model Number 1104C-44TA 
Peak Power (at engine speed) 92 kW (2200 rpm) 
Peak Torque (at engine speed) 475 N m ( 1400 rpm ) 
Num ber of Cy li nde rs 4 
Swept Volume 4.4 litres 
Aspiratio n Turbo charged 
Charge cooling Si mulated air to air 
Compression Ratio 18.2: 1 
Bore x Stroke 105 x 127 mm 
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Figure 3.25. Photograph of the [est engine: a Perk ins I 100 series. 4 cylinder, 4.4 lilre lurbocharged. 
charge-cooled diesel engine. 

The flow rate of the engi ne over the majority of its speed load range has been 

calculated based on test bed data from the engine ce ll at Loughborough Uni versity. 

The intake manifold pressure (Pm/.,) and temperature (Tm/,,) we re used to estimate the 

in let air density. Assum ing a vo lumetri c effic iency of 90% the fl ow rate can be 

esti mated as 

. 0 9 N 60 [I"",,, 
111mh_/ = . x 2 x x 1000 X P mll·/ 

(3. 16) 

0.027 NV\wI'JI' ~1I11'1 
= 

Rm/('/ T,IIIc'/ 

where 1;/ is the ai r mass fl ow rate (kg h- I
) , N is the engine speed (rpm), V,wepl is the 

swept vo lume of the engine (litres), Pm/e, is the intake manifold air dens ity (kg m-3) 

and R"d" is the gas constant for the imake air. The fuel mass flow rate was measured 

by timing the consumption of 150 ml of hlel. and Illultip lying by an estimated h le l 

densi ty of 0.86 kg m-J This was then added to the ai r fl ow rate to give the exhaust 

mass fl ow rate. A contour plot of the est imated exhaust gas mass fl ow rate is shown 

in Figure 3.26. The flow rate can be seen to increase wi th engine speed as the vo lume 
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swept by the engi ne per unit time increases. It also increases with engine load as the 

intake a ir density increases. 
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Figure 3.26. Contour plOl of estimaled exhausl gas mass fl ow rate as a fu nction of engine speed and 

load. 

Ex haust gas te mperatu re was measured uSlllg a K-lype thermocouple mounted 

upstream of the DPF cani ster. Figure 3 .27 shows the temperature measurements, 

which increase with engine speed and load. The temperatllre is low due to the filter 

be ing mounted - 6 m from the nlrb ine outl e t. 
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Figul'c 3.27. Comour plO{ of exhaust gas temperatures as a fu nction of engine speed and load. 
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PM content in the ex haust gas was measured using an A VL 415 Smokemeter which 

allowed estimati on of the PM concentration in a sample of exhaust gas. The smoke 

meter measurement (A VL smoke number) was converted to a soot concenlration 

us ing the manufacntrer supplied co rrelation (A VL, 2002) 

(3.17) 

where Pn N is the soo t concentration in the exhaust gas (kg m
03

) and NFSN is the AVL 

smoke number from the smoke meter. The soot concentrat ion was used with the 

ex haust mass fl ow rate data to ca lculate the engi ne out PM production rate from 

(3. 18) 

where li1 /,,, is the PM mass fl ow rate (g h
ol

), li1« is the ex haust mass fl ow rate 

(kg hol) and Ro rand P are the gas constant, temperature and pressure respecti vely, at 

the smoke meter inlet. The estimated PM fl ow rate in the ex haust gas ca lculated from 

Equation 3. 18 is plotted in Figure 3.28. 
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Figure 3.28. Contour plOl or estimated smoke production rates as a function of engine speed and load. 
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This key information has been used to idemify test poi nts with suitable soot flow 

rates. exhaust temperatures and exhaust gas mass fl ow rates fo r a g iven test. 

3.-1.2 Engine Canister Design and Capability 

The engi ne rig was designed to have simi lar capabi liti es to the hot flow ri g di scussed 

in Section 3.3, and an ex ploded view is shown here in Figure 3.29. The individ ual 

parts are li sted in Table 3.7. Where a number of optional pans could be fitted , they 

are differenti ated by an additiona l letter. There was scope for optical access both 

upstream and downstream of the fi lter by using fused silica windows (parts I or 8 on 

the ex ploded view). The fi lter was housed in a cyli ndrical section fi xed with qu ick 

release clamps and sea led with Supergraf gaskets. The inl et cons isted of a conical 

section to maintain relati vely even flow di stribution. The outl e t was at 90 degrees to 

the filter ex it fl ow to allow electri ca l feed lh roughs on the clean side of the filter. Two 

coni ca l inlet and cyli ndrica l filter holders were des igned and manufactured to fit 5.66 

inch and 7.5 inch diameter wa ll fl ow filters respect ive ly and could be interchanged 

by removing and replacing four bolts. 
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o 

Figure 3.29. Exp loded and assembled view of the engine test canister. 

Table 3.7. Li st ortest eng ine fi lter cani ster parts shown in Figure 
3.29 

Part Number 
l a 
Ib 
I c 
2 
3 
4 
5a 
5b 
6a 
6b 
7 
8a 
8b 
Se 
9 

Description 
downstream electri ca l feed through 
downstream optical wi ndow 
downstream coverpl ate 
downstream coverplate gasket 
canister outlet 
gasket 
7.5 inch diameter filter holder 
5.66 inch diameter filter holder 
7.5 inch diameter cani ster inl et 
5.66 inch cani ster inlet 
upstream access adaptor 
upstream electrical feedthrough 
upstream optica l window 
upstream coverplate 
upstream access securing plates 

Quantity 

2 

The filter cani ster assembl y was made fi'om 3 16 sta inl ess stee l to avo id corrosion. A 

nex ible secti on was included in the outl et pipe to assist assembly, although it is not 
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shown In Figure 3.29. The 5.66 inch cani ster assembl y is shown In situ in Figure 

3.30. 

3..1.3 lvleasurements During Engine Tests 

When testing on the engine electrical measuremen ts were carried ou t using the same 

methods descri bed in Section 3.2.5. Figure 3.3 1 shows a cross section of the filter 

ca ni ster on the engine wi th the pressure and temperature measurements that were 

taken before and after the fi lter. The back pressure and abso lute pressure were 

measured using ca librated pressure transducers (Transinstruments Series 2000 1.6 

bar abso lute pressure transducer) and the temperanlres were measured us ing semi­

nexible K-type thermocouples. 
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figure 3.31. Cross section of the engine canister showing the location of pr cs sure and temperature 
measurements. 

Filtration Effi ciency Measurements 

Experimental setups that are capab le of measuring fil tration effi ciency include: 

1. A VL 415 smoke meter 

2. Seri es filter arrangements. 

A VL smokemeters are robust and widely used pieces of equipment that offer quick 

and repeatable results. Wi th the smokemeter, the fil tration efficiency is ca lculated as 

'7 = ( 1 - lil"O"".''''o", J x 100% 
III 

(3. 19) 

where '7 is the filtrati on effi ciency, liJ"""""" "",,, is the PM mass fl ow rate downstream 

of the fi lter and lil is the PM mass flow rate from the engine. With a series filter 
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arrange ments, if a filter with known filtration efficiency is avai lab le, pre- and post­

mass measurements can a llow calcul ati on of the unknown fi ltra ti on efficiency. The 

gas flow is fo rced through the unknovlIl filter and then through the filter with the 

known fi ltrat ion efficiency. The mass trapped on the unknown filter is 

(3.20) 

where 111""*"0""" is the unknown filter ' s trapped PM mass (measured by pre and post 

we igh ing). /;/ is the PM mass flow rate from the engine. 1';/ is the duration of the test 

and 1]""*"0""" is the unknown fi ltrati on effic iency. The PM trapped on the downstream 

fi lter can then be ca lculated from 

(3.2 1 ) 

where 11'/*"0"'" is the known filter's trapped mass and '7k"""," is the known filters 

filtration efficiency. Solving these two eq uations to find the unknown filt ra ti on 

efficiency gives 

In llnk"'JliIl 'l'molill/ 
'l ,mkll,,"1I = ---"'====--

Il'l klll)'1111 + JH llllkmJlI lI '7kmll'o 1/ 

Eva luation of Filtration Efficiencv Measurement Methods 

(3,22) 

During thi s work an A VL 415 smokemeter was used to determ ine fi ltra tion 

effic iency using Eq uation 3. 19. A ty pi ca l spread of smokemete r data is +/- 10%. 

Analysis of example data shows that the error is a functi on of the filtrat ion efficiency 

of the sample. This is shown in Figure 3.32. As the sample filtration efficiency 

increases the accuracy of the measurement increases. At ant icipated filtration 

effic iencies of >70% the error is <10%. The smoke meter has the advantage that it 

can take man y readi ngs in a short space of time, especially in com parison to 

weighi ng methods. 
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Fig" re 3.32 . Effect of samp le fi Itral ion effic iency on smoke meter method of estimating fi ltration 
effic iency. Broken lines indicate error bands. 

A wa ll flow fi lte r was mounted downstream of the foam fil ter sample to determine 

fi ltration effic iency using Equat ion 3.22, with the mass being measured to +/- 2 mg. 

Ana lysis of example data showed that the accurac y of the pre- and post-we ight 

measuremen t method (Eq uati on 3.22) was independent of fil trat ion effi cie ncy of the 

sample but dependent on the test duratio n. Thi s is shown in Figure 3.33. For short 

duration tests the error is large meaning that trans ient fi itrati on effic iency 

measurements using thi s method were very difficu lt. Also testing large number of 

samples would not be possib le due to the amount of ti me requi red. 
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Figure 3.33. Effect aftest duration oll lhe accuracy of the pre- and post-weighing method of 
estimating fihration efficiency . Broken lines indicale error bands. 

3.-1.-1 Suml/1m)' afOn-engine Test Methods 

The test engine has been introduced, fo ll owed by desc riptions of th e filter can ister 

used for regeneration test ing. Methods for measuring ti ltration effic iency of a sample 

have been described with the error ana lysis indicating that, of the avai lab le methods, 

the use of an A VL 4 15 Smokemeter offers low errors and high data capl1I re rates. 

3.5 Concluding Remarks 

Experimen tal methodology that has been used throughout thi s wo rk has been 

described in th is chapter. The fo ll owi ng chapte rs d iscuss the deve lopment of the 

combined regenerati on and li ltration system using experimental methods presented 

in th is chapter. Experimental methodology that is lIsed for specific tests only is 

presented in the appropriate pan of the following chapters. Chapter 4 now discusses 

the use of ge lcasl ceram ic foam s as DPFs, including new optim isation methodology, 

evaluation and example optimi sation of gelcast foam DPFs. 
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CHAPTER 4 
STUDY AND QPTIMISATION OF GELCAST 

CERAMIC FOAM DPFs 

Gelcast ce ramic foam used as a parti culate filter has been demonstrated previous ly 

on a rig by Hughes (2003) using Printex U as a di esel particulate substitute. Ge lcast 

foam s have the advantage over reticul ated ceramic foam s and monolithic WFFs of 

geometri c optimisati on both on a macrosco pic (through machining of the 'green' 

form ceramic substrate) and microscopic scale (by optimising the pore sizes and 

wi ndow sizes) . The work presented here describes the behaviour of ge lcast ceramic 

foam DPFs with new experimentall y based methodology. Based on previous work 

(e.g. Hughes, 2003), an init ial porosity of 80% was chosen to fo rm the basis of these 

studies to achieve suitable filter strength . The effect of the choice of pore size and 

filter topology ( i.e. fi ltration thickness and filtratio n area) was investi gated and 

evaluated to optimise an 80% porous gel cast ceramic foa m DPF. The eva luati o n and 

opt imisat ion is presented in thi s chapter. 
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The evaluation of ge l cast ceramic foam DPFs considers: 

I . Filtration Effic iencv The reduction of PM requ ired depends on specific 

engine technology. although Johnson (2006) suggests that a minimum 

filtrati on effi ciency of - 60% will be needed for typical engi nes to meet US 

20 10 emission standards with 2007 and 20 10 projected eng ine technology. 

2. Back Pressure Exhaust back pressure leads to increased pumping losses and 

reduced fuel conversion effic iency and , therefore, should be min imised . Back 

pressure refe rs genera ll y to the pressure drop across the entire exhaust 

system. a lthough here is used to eva luate the pressure drop across the filter 

section only. 

3. Filtrati on Vo lume Packaging requirements and cost push for reductions in 

fi ltration vo lume. Cani ster volume is not considered separately in thi s work 

due to the range of geometri es a filt er can be manufactured. 

The optimisation of filtration effici ency, back pressure, filtration vo lume and cani ster 

vo lume cannot be achieved independently because: 

I . increasing the filtration effi ciency leads to higher back pressure or large r 

fi ltration vo lume. 

2. reducing the back pressure requIres lowering the filtration e fficienc y or 

increasing the filtration vo lume. 

3. reducing the fi ltration vo lume leads to lower filtration effi ciency or hi gher 

back pressure. 

These conflicting requirements create a complex system to optimise when 

considerin g variabl e foam parameters such as pore size. Thi s optimisation process is 

the main subj ect of thi s chapter, whi ch ends with an eva luation of ceramic foam 

DPFs in compari son with current state of the art filtration technology. 

4. 1 Filtration of the Exhaust Gas with Gelcast Cera mic Foams 

An imaging study of PM loaded ge l cast ceram ic foams has been carri ed out to 

understand the trapping characteri stics of the DPFs. An SEM image showing typical 

PM distribution around a number of pores is shown in Figure 4.1. The PM 

distribution cove rs a large area of the pore wall , mainl y aro und the windows. This 
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agrees with earli er obse rvations by Adigio (2005) and Hughes (2003). The PM 

appears to be in the form of large agglomerates - 10 Ilm in diameter. The lack of 

colour on the SEM image makes it difficult to clearl y identify the continuity of the 

PM laye r and it was, therefore, also obse rved using optica l microscopy techn iques. 

Figure 4.1 . SEM image showing typical PM distribution within the pores. 

Figure 4.2 shows microscopy images of ge lcast ceramic foam s with varying PM 

loadings. A typ ica l microscope image of a gel cast DPF onl y all ows a small part of 

the image to be in focus as the depth of the image is comparab le to the planar 

distances, which is beyond the capability of conventional microscope arrangements. 

The images in Figure 4.2 are. therefo re, reconstructed images using z-stepping 

techn iques (e.g. Automontage by Synchroscopy). It can be seen that wi th PM 

loadings of between I and 2 g li tre,l the PM is captured in di screte locations on the 

fi lter surface. The di screte locations beg in to merge at around 3 g litre, l and can be 

seen to form a continuous layer in ex treme loadings of arou nd 12 g li tre,l. The pa le 

surfaces vis ible in the extreme load ing case are the cutting planes through the 

ceram ic generated when preparing the sample. The change at hi gher loadings implies 

that there wi ll be a change in electrical behaviour of the PM layer as the 

interconnecting discrete PM clusters create a continuous conducting laye r. Th is may 

have signi ficant effects on the interaction of the PM and regenerati on system at high 

load ings. 
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Z-slepped microscope image showing PM distribut ion on (a) a 1 g Ii 
2 g litre' loadi ng (c) a 3 g litre" loading and (d) a 12 g litre" load ing. 

4.2 Detumining Filtnltion Efficiency of Gelcast Cera mic Foams 

The fi ltrati on effi ciency of the fi lter is a description of how much of the PM is 

filt ered from the ex haust, and can be measured with respect to parti cle num ber or 

mass. Current legislati on is defined on a mass basis (e.g. EPA, 1997) and , therefore, 

filt ration effi ciency in th is work is described re lati ve to the mass of PM removed 

from the ex haust gas. 

On-engine tests uSlllg an AVL smoke meter to measure filtrati on effi ciency for a 

range of pore size foams prov ided data such as that shown in Figure 4.3. Reducing 

the pore size increased the filtration effi ciency, with the 30 mm thick 250 f1m pore 

size foam achieving >95% tiltration effi ciency. The filtrati on effici ency increased 

with time. co rresponding to the increase in PM loading, surface area for trapping and 

reduction in window size, as previously reported by authors such as Cal1 e et al 

(2002). To characteri se the filters for thi s study, the average filtration effici ency from 

the last 15 minutes of the test was used. 
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Figure 4.3. Filtra tion effi ciency as a fun ction of time for a range of pore s izes at 1300 rpm, 120 NIll. 

The filtration effi iency can be predicted for a different length of fi lter, /"i'om test data 

using Eq uation 2. 1. The filtrat ion effic iency is compared typicall y with the 

equ ivalent fi ltration effic iency for a I mm filtration thi ckness. Tab le 4. 1 shows the 

filtration efficiency ca lculated from the data in Figure 4 .3. Thi s will be used directly 

in the foam DPF opti misati on presel1led later. 

Table 4.1. Fi lter data showing filtration 
efficiency for test fi lters. 

Pore diameter Filtration Efficiency 

J.lm I'/ lesl , 0/0 ' l Jmm) % 
290 98.0 12.2 
450 84.6 6.04 
550 80.8 5.34 
680 71.6 4. 11 

4.3 Dctermining Back Prcssul'c of Gelcast CCI'amic Foams 

The effect of fl ow rate, gas temperature, pore size, fi ltra tion length and PM loading 

on the back pressure of gelcast ceramic foam DPFs is reviewed and ex panded he re to 
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develop a mode l to predict back pressures for various filter geomelries with a range 

of PM load ing. 

Figu re 4.4 shows the e ffect of flow rate on the pressure drop across clean, 30 mm 

thick, 5.66 inch diameter geicasl ceramic foam filters of different pore s izes w ith a 

gas temperature of _ 50 °C. Increasing the pore size led to reducti ons in back pressure 

fo r a given flo w rate, as previously de monstrated by Hughes (2003) and Adigio 

(2006). The back pressure follows the Fo rcheimer relationship, 

d? 11 p , 
- =-\1 + -\1 
dx k, k, 

(4.1 ) 

where x is the pos ition through the filter, JI is the dynamic viscos ity, v is the gas 

space veloc ity, p is the gas density and k, and k2 are constan ts. The li near term is due 

to th e viscous losses and the quadratic term is due to the kinet ic losses w ith in the 

fi lter (Ergu n, 1952). 
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Figu re -'-4. Plot of back pressure as a function of flow rate for a range of pore s ize gelcast ceramic 
foams at - 50 'c 

Gas temperature has a noti ceab le effect on the back pressure of the ge lcast ceramic 

foam s (Figure 4.5) by affecting the space ve locity, gas density and gas viscos ity. 
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Increasing temperature leads to increasing back pressure. This can be accounted for 

in the Forcheimer equation by considering the velocity and density relationships, 

V m RTm 
v=-=-=--

A pA PA 
(4.2) 

where v is the gas velocity, V is the volumetric flow rate, A is the flow area, m is 
the mass flow rate, p is the gas density, R is the gas constant, T is the gas temperature 

and P is the gas pressure. The dynamic viscosity is also a function of gas temperature 

which can be described between 296 and 1023 K (Forsythe, 2003) as 

- k TO.754 
f.l- J (4.3) 

Where fl is the dynamic viscosity and k3 is a function of the fluid properties. The 

Forchiemer Equation (4.1) can hence be rewritten in terms of mass flow rate and 

temperature as 

dP kJRT I754 m RTm 2 
= + 2 

dx k,PA PA k2 
~(k T1754 m +k Tm2) 
P 4 A 5 A2 
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Figure 4.5. Plot of filter back pressure for a sample 680 I'm clean filter at gas different temperatures. 
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Data showing k4 and k5 for the data in Figure 4.5 is shown in Figure 4.6. It shows that 

Equation 4.4 accounts for the temperature effects on the back pressure. 
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Figure 4.6. Plot showing the dependence of (a) Ilk, and (b) Ilk, on gas temperature and showing the 
independence of k, and k, on gas temperature. 

The effect of PM loading on the back pressure is more difficult to describe from 

fundamentals and is hence evaluated using a polynomial expansion such that 
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(4.5) 

and 

(4.6) 

where Ci are constants and () is the specific local filter loading (g litre-I). 

This study considers the final fonn of the Forcheimer equation when considering a 

quadratic approximation for the effect of PM loading. The derivation of the final 

equations follows. 

4.3.1 Quadratic Loading Relationships 

Considering the constants to be a quadratic function of PM loading means 

(4.7) 

ks = C'k + C'k B + C1kB' (4.8) 

The filtration efficiency can be calculated from Equation 2.1. Given that a filter of 

length x has a filtration efficiency of 

and the filtration efficiency of a filter of length (x+ L) is 

\( x+L) 
1], = 1- (1-1]')\-' 

the mass of PM trapped in the section between x and L is 

(4.9) 

(4.10) 
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(4.11) 

where a is the mass of PM that was incident through the front face of the filter per 

unit area (g mOz). The specific loading between x and L is therefore 

(4.12) 

where L is the filter thickness (mm). As L approaches zero, this becomes 

(4.13) 

where t is the thickness (mm) of the test filter (used to find the filtration properties), 

1'/1 is the filtration efficiency of the tested sample and x is the position in the filter 

(mm) measured from the dirty side. This means the Forcheimer equation becomes 

(4.14) 

Rearranging gives 

(4.15) 
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Which, following integration becomes 

(4.16) 

k6 can be found by considering the case where x = 0, i.e. P = p; giving 

+ - C'ka+ C3k ~ln(I-17I) T m, --p;' ( 

, )., 1 

21 A 2 

(4.17) 

giving the F orchiemer equation as 

p' -p' , 
2 

(4.18) 

For a complete filter where x = I, the average PM loading is 

(4.19) 

which can be rearranged to give 
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Bt 
a=- (4.20) 

17, 

Replacing a in Equation 4.18 and letting x = t gives a final fonn of the quadratic 

version of the F orcheimer equation as 

Po - P, - B ( X ) 1754 m , , [ -, ]. 
.....!'-_'-= Ch +C"B +c,,-ln 1-17, 17, -2 T -

2t 217, A 

(4.21) 

If the quadratic tenn is significant, the pressure drop is not a direct function of the 

average PM loading but it also depends on the distribution of PM within the filter, 

included in the equations using the t and 1'/1 tenns. The constants can be found 

obtaining base data from a foam sample at different flow rates and PM mass 

loadings. 

4.3.2 Back Pressure Data Analysis 

Figure 4.7 shows the linear curve fits to the 550 Ilm pore size foam where the 

gradient is equal to the kinetic coefficient for that loading. The back pressure 

indicator, I BP, is calculated as 

, 2 

I =Po -P, 
BP 2t 

(4.22) 

and the flow rate indicator, Ij/ow, (the x-axis) is calculated as 

(4.23) 
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The viscous loss term was found to be negligible over the flow rates and filter 

properties tested. The back pressure increased with loading. Similar linear fits were 

made for five loadings of each pore size sample. 
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Figure 4.7. Example graph showing the calculation of the kinetic flow loss coefficients. 

Plotting the kinetic coefficients, k5, against the average specific loading allows a 

curve fit to find the constants C;. The quadratic curve fits and kinetic coefficients for 

all the tested samples are shown in Figure 4.8. The constants of the quadratic curve 

fit are shown in Table 4.2, where AI, A2 and A3 are the constant, linear coefficient 

and quadratic coefficient of the curve fit respectively. Using Equation 4.21, the 

constant C3 has been calculated and is also shown. 
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Figure 4.8. Effect of average specific loading on the bulk kinetic flow loss coefficient. 

Table 4.2. Coefficients for describing the back pressure of 
loaded gelcast ceramic foams. 

Pore Size 
flm 
290 
450 
550 
680 

4.3.3 Validation 

A,. e,k 
-1.734 
-1.260 
-1.224 
-0.836 

-5.557 
-1.912 
-1.468 
-0.698 

0.683 
0.308 
0.264 
0.129 

0.336 
0.241 
0.217 
0.113 

To validate the use of this empirical model a 10 mm thick 5.66 inch diameter filter 

section with a measured pore size of 356 flm was loaded and the back pressure 

measured for a range of flow rates and PM mass loading. The filter properties shown 

in Table 4.1 and Table 4.2 were used to predict the filter properties of the validation 

sample by curve fitting. The curve fits and associated filter properties are shown in 

Figure 4.9 and Table 4.3 respectively. 

- 109-



CHAPTER 4 STUDY AND QPTIMISATION OF GELCAST FOAM DPFs 

3.0 

10 2.5 

2.0 

1.5 
o 

1.0 

0.5 

0.0 

-0.5 

-20 
-1.0 

-1.5 

-30 I--'--'---'--_L--'-...J.--............ --' 
300 400 500 600 

-2.0 
700 

Average Pore Diameter (",m) 

Figure 4.9. Curve fits to foam data from Table 4.1 and 4.2, used for predicting foam properties. 

Table 4.3. Predicted foam properties for an 
80% porous 356 Ilm pore size foam. 

Property Value 
'7lmm 8.81 
Clk -1.56 
C2k -3.58 
C3k 0.50 

The predicted filter properties were used with Equation 4.21 to predict the back 

pressure characteristics of the foam sample. The experimental data and model 

predictions are shown in Figure 4.1 O. The agreement with the experimental data can 

be seen to be acceptable, improving as the PM loading increases. 
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Figure 4.10. Comparison of predicted foam back pressure and actual foam back pressure. 

Figure 4.11 compares the predictions from Equation 4.21 with the case when the 

assumption is made that the back pressure is independent of PM distribution and is 

only a function of the average PM loading, i.e. 

Po'-p,' [ - '-']r1.754 m [ - '-']rm' = Cl, +c"B +c3, B -+ Clk +C'kB +C3k B -, 
2t A A 

(4.24) 

Including the effect of the PM distribution in the analysis leads to a higher predicted 

back pressure. This is a result of the more even PM loading with the thinner filter, as 

will be discussed later. 
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Figure 4.11. Graph showing the effect of accounting forthe PM distribution in the back pressure 
predictions. 

This comparison of the modelling prediction with experimental data shows that the 

empirical model is adequate for investigating conceptual foam designs. Where 

improved accuracy of the model predictions is needed, it is expected to be achievable 

by increasing the number oftest points used for the foam property predictions. 

4.3.4 Effect of PM Distribution 

With the calculation of the effects of local PM loading, the effect of the PM 

distribution on the back pressure can be seen. Figure 4.12 shows the effect of the PM 

loading on the deviation in back pressure due to the PM distribution, calculated as 

(4.25) 

where Dd;" is the deviation due to distribution (%), I1Pexp is the projected back 

pressure of an exponentially loaded foam, Meven is the projected back pressure of an 

evenly loaded foam. Figure 4.12 shows that with no loading, there is no effect. The 

deviation becoming increasingly large in magnitude as the loading increases, up to 
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>5% with 2 g litre-1 loading. The maldistribution of PM loading tends to reduce the 

back pressure for a given average specific loading. This results from the first stages 

of loading having a greater effect on back pressure than the later stages, meaning that 

the more localised the PM concentration is, the lower the overall back pressure for a 

given filter. 
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Figure 4.12. Predicted effect of mal distribution ofloading on the back pressure ofa 20 mm thick, 
-400 ~m pore size foam. 

Figure 4.13 shows the deviation resulting from considering the changes in PM 

distribution (i.e. the effect of using the corrected kinetic coefficient from Equation 

4.21) as the conceptual foam filter thickness is varied, calculated as 

(4.26) 

where Dcarr is the deviation due to the correction (%), Mcarr is the projected back 

pressure with the correction and I:1P uncarr is the projected back pressure without the 

correction for changes in PM distribution. Figure 4.13 shows that proj ections for 

filtration thickness equal to the tested sample are independent of the correction, as 

the kinetic coefficient remains valid. For smaller filtration thickness the correction 

results in increased back pressure which is explained by considering the PM 
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distribution. With smaller filtration thickness, the variation of PM loading from 

upstream face to downstream face of the filter is lower than with higher filtration 

thickness, shown in Figure 4.14. Due to the higher sensitivity of the back pressure to 

low PM loadings, this increases the overall back pressure, an effect which is not 

considered without the correction used in Equation 4.21. Similarly, with higher 

filtration thickness than the tested sample, consideration of the changes in PM 

distribution result in reduced overall back pressure. By a similar argument, this is a 

result of the increased variation in PM loading. 
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Figure 4.13. Predicted effect of considering changes in PM distribution with filtration thickness. 
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Figure 4.14. Graph showing the effect of filtration thickness on PM distribution. 

4.4 Optimising the Gelcast Ceramic Foam DPF 

There are three significant factors that are evaluated for optimisation of the Ge1cast 

foam DPFs: 

1. Back pressure 

2. Filtration Efficiency 

3. Filter Size 

Optimising anyone of these parameters tends to have a detrimental effect on the 

others. Minimising back pressure can easily be done by making a large filter with 

large pores. This leads to an undesirable filter with respect to filter size and filtration 

efficiency. Maximising filtration efficiency can be achieved by minimising pore size 

or making the filter thicker, leading to higher back pressure and larger filters 

respectively. Filter size can be minimised by making the filter thinner or reducing its 

diameter, reducing filtration efficiency or increasing back pressure respectively. 

These relationships can be summarised graphically by the triangle, shown in Figure 

4.15. Design solutions can be found within this triangle, requiring a trade-off 

between all three of the parameters, but not optimum in more than one. 
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Figure 4.15. Design space relating to compromising between filtration efficiency, back pressure and 
filter size when designing a ceramic foam diesel particulate filter. 

The compromise depends on design parameters such as pore size. Using the filtration 

efficiency and back pressure models discussed earlier in this chapter, a design space 

can be defined to make predictions of the perfonnance that is achievable. 

4.4.1 Design Limitations 

There are a number of external factors that limit the macroscopic and microscopic 

geometry of gelcast ceramic foam diesel particulate filters. A thin filter is more likely 

to fracture under the high exhaust gas back pressures anticipated. Dytech 

Corporation (the gelcast ceramic sample manufacturer) recommended a minimum 

thi~kness of 10 mm based on a combination of their predictions of manufacturing 

losses and vibrational mechanical strength. 

A reasonable upper limit for the back pressure in the exhaust system of a heavy duty 

engine is approximately 15 kPa (Heaton, 2007). To account for other losses in the 

exhaust system, the target upper limit of the back pressure across the filter at rated 

speed and load ofthe engine (i.e. maximum flow space velocity) is considered to be 

10 kPa. 
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4.4.2 The Design Space 

The back pressure and filtration efficiency relationships have been used to generate 

design spaces for conceptual foam filter designs. The design spaces for a 0.03 m2 and 

0.06 m2 area filter are shown in Figure 4.16. The 0.03 m2 design space can be seen to 

be significantly smaller than the 0.06 m2 design space due to the increased back 

pressure and consequently the reduced PM holding capacity at peak allowable back 

pressure. The 0.06 m2 plot shows that: 

1. For a given filtration efficiency, the larger pore size foams require a larger 

filtration volume (i.e. filtration thickness). 

2. For a given filtration efficiency the larger pore size foams offer a higher 

specific PM holding capacity than smaller pore sizes. 

3. For a given pore size foam, reducing the required filtration efficiency reduces 

the filtration volume and increases the specific PM holding capacity. 

With any rwo design requirements (out of filtration efficiency, filtration volume, pore 

size and specific loading capacity) the design space can be used to determine the 

other two design parameters. For example, if a filter must have an 80% filtration 

efficiency and be able to hold up to 3 g litre'l PM then the design space can be used 

to establish that with a 0.06 m2 filter, the filter would need -550 !lm average pore 

size, giving a filtration volume of approximately 1.8 litres. 
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Figure 4.16_ Design space for 0.06 rn' (black) and 0.03 rn' (red) flow area filters. 

As with many engineering applications, the optimum design is application 

dependent. The new design space and methodology presented, however, offers a 

comprehensive tool to support the design process of a gelcast ceramic foam filter_ 

4.5 Comparison of Gelcast DPFs with Current State of the Art 

The data in Figure 4.16 can be used to compare the performance of a number of 

conceptual foams to current DPF state of the art. Table 4.4 shows a comparison of a 

gelcast ceramic foam filter with a comparable size and PM holding capacity to a 

monolithic WFF_ The gelcast foam clean filter back pressure can be seen to be 175% 

that of the WFF, although the PM loading capacity (an indication of the effect of PM 

on the absolute back pressure) is comparable_ The 80% filtration efficiency of the 

gelcast ceramic foam concept is considered sufficient for 2007 and 2010 engine 

technology to meet 2010 US emission standards (based on J ohnson, 2006) with the 

advantage of geometric optimisation of the filters to suit consumer packaging 

requirements. 
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Table 4.4. Comparison of an example gelcast ceramic foam with monolithic WFF. 
Comparator Monolithic WFF Comparable Gelcast Foam 

Clean Filter Back Pressure (kPa) -2 -3.5 
Loading Capacity (g litre-I) -6 -6 
Filtration Size (litres) -2.5 -2.5 
Filtration Efficiency (%) >95 -80 

The design space in Figure 4.16 also shows the capability of thin filter sections to 

achieve high filtration efficiency, for example 90% filtration efficiency can be 

achieved with a 17.5 mm filtration thickness and 290 Ilm foam. This is a 1.05 litre 

filtration volume reducing filter cost and filter canister volume when compared to the 

equivalent WFF. 

The two conceptual foams discussed in this section have been compared to previous 

foam technology in Figure 4.17. This shows that the gelcast ceramic foams do offer 

comparable performance to alternative foams with the advantage of reduced filtration 

thickness and increased strength. The previous gelcast work presented by Hughes 

(2003) shows better performance than the current projections. This is attributed to the 

porosity of the foam samples since this research has optimised 80% porous gelcast 

ceramic foams while Hughes considered foams samples of up to 94%. The 

methodology developed in this research can be applied effectively to other foam 

porosities in the future. 
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Figure 4.17. Comparison of gelcast foam projections to state of the art foam DPF performance. 

4.6 Concluding Remarks 

Chapter 4 has investigated the performance of gelcast ceramic foams. A new method 

for predicting the performance of PM loaded gelcast ceramic foams has been 

developed and applied to create a design space for future gelcast foam DPF design. 

The methodology can also be applied to any depth bed type filters. Chapter 5 now 

discusses and develops the fundamentals of the electric discharge regeneration 

technique which aimed to increase regeneration effectiveness and improve 

understanding. 
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CHAPTERS 

FUNDAMENTALS OF AUTOS ELECTIVE 

REGENERATION OF PM 

5.1 Previous Work 

The use of atmospheric pressure electric discharges by Garner and Harry (1998) 

demonstrated that electrical discharges could effectively remove PM from a filter 

surface and led to an EPSRC grant to further investigate the potential of the 

Autoselective technology. Subsequent work by Proctor (2006) demonstrated that 

atmospheric pressure glow discharges have the potential for regenerating a filter with 

a regeneration efficiency of up to -40 g kW' h", which is more competitive than 

most systems reported in the literature discussed in Chapter 2. This compared to 
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efficiencies of up to 0.1 g kW'! h'! and 9 g kW'! h'! when using atmospheric pressure 

dielectric barrier discharges and corona discharges respectively. 

Proctor (2006) developed a prototype regeneration system for regenerating 

monolithic wall flow diesel particulate filters. Rig tests demonstrated that the 

Autoselective regeneration was tolerant to the flow rates, gas temperatures, oxygen 

concentration and moisture concentration typical in diesel engine exhaust allowing 

the regeneration to be effective at all engine operating conditions. Monolithic WFFs 

were found to be sensitive to damage and required tight control of thermal flux into 

the ceramic material to achieve damage free regeneration. 

The work presented in this chapter develops further the Autoselective regeneration 

technology with the aim of improving fundamental understanding and achieving 

gains in energy efficiency. An introduction to electric plasmas is followed by a 

description and investigation of the plasma characteristics pertinent to the 

Autoselective regeneration system. New methods for measuring heat flux from 

atmospheric pressure electric discharges are developed and used to determine the 

effect of gas flow, electrode spacing and electrode current on the heat flux 

characteristics of the Autoselective discharge. 

5.2 Introduction to Plasmas 

For efficient PM oxidation by heating, without the need for bypassing the flow 

through the filter, rapid heating is needed. Due to high instantaneous power demands, 

it is not suitable to heat up the entire filter in a fraction of a second, instead, small 

areas of the filter can be regenerated at a time. An electric discharge or plasma is 

often very hot, and focused in a localised region (e.g. lightning) and can be generated 

on a small scale with commonly available electronic components. This makes it an 

interesting solution for achieving efficient regeneration of DPFs without the need for 

by-passing the exhaust gas around the filter. 

Solids, liquids and gases are considered the three most common states of matter, with 

plasmas as the fourth. In most solids, liquids and stable gases, the matter can 

normally be considered to be electrically neutral. Gas in plasmas are ionised, 
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meaning that a significant fraction of the atoms have less electrons than their neutral 

state, i.e. a plasma consists of neutral atoms, ions (positively charged atoms) and free 

electrons. The electrons can be freed from the orbit of an atom if they possess 

enough energy, often referred to as a temperature which can be achieved by heating 

or by applied electric fields. Figure 5.1 shows the gas temperatures needed to achieve 

varying degrees of ionisation from heating alone. When the entirety of the gas is at 

the same temperature the plasma is considered to be in thermal equilibrium and is 

called a thermal plasma. Temperatures of thermal plasmas limit their direct use on 

common DPF materials. 
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Figure 5.1. Degree of ionisation of Nitrogen as a function of temperature of thermal plasmas (adapted 
from Gross, 1968) 

Applying an electric field to a non-ionised gas can accelerate the small number of 

free electrons in the gas to temperatures (or kinetic energies) high enough to free 

other electrons during electron-atom collisions. In this way gases can be ionised by 

creating large numbers of energetic electrons with only a small amount of energy 

input into the ions. In such electrical plasmas the average gas temperature (and ion 

temperature) can be close to room temperature, as observed in common technology 

such as fluorescent lighting. Due to the imbalance in energy between the electrons, 

ions and neutral gases these plasmas are called non-thermal plasmas, cold plasmas or 

non-equilibrium plasmas. Electrically generated plasmas can be in thermal 
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equilibrium if eno ugh energy is coupled into the gas, for example with arc 

di scharges. The generati on of electrical plasmas allows direct conversio n of electrica l 

energy to concentrated thermal ene rgy in a gas which cannot be achieved with other 

methods. 

The range of energies and density of typical plasmas are shown in Figure 5.2. Most 

o f the electrical ly generated plasmas can be seen to occur with electron energies 

between approx imately I and 20 eV, since thi s is the range of energy required to free 

electrons in electron-ion co llisions, causing a cascade of ioni sation events, known as 

an electron ava lanche. The e lectron density varies over a wide range corresponding 

to varying average gas temperanIres. 
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Figure 5.2. Di ffere nt ty pes of plasI1l3s as a fU llction of electron density and energy (Grill , 1994) 

To create a stab le glow di scharge in a controlled manner an alternating e lectric fi eld 

is used (i.e. an AC power suppl y). The di scharge itself is not continuous a lthough 

the re is enough ionised gas in the discharge space to reduce the break down vo ltage 

of subseque nt di scharges. How the di scharge is generated and typical current vo ltage 

characteri sti cs are di scussed in Section 5.3. 
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There is a vast amount of inform atio n in th e literature regarding detai led plasma 

theory whic h is not reproduced in thi s wo rk. Genera l texts on electrical plasmas such 

as Grill , 1994 offer a more com plete background and theory re lating to [hi s complex 

fi eld. Here the focus will be on specific properties of plasmas pertinent to the 

Autoselective regeneration process . 

5.3 Oxidation of PM with Plasmas 

The electrica l plasma is initi ated at an e lectrode where the electric field is foc used by 

the electrode geometry. The di scharge then trave ls through the air to local conductive 

s ites. the trapped PM. shown in Figure 5.3. At thi s contact poi nt the environment is 

suitab le to oxidise rapid ly the local PM . 

Electrode 

Electric Discharge 

Discharge Contact 
wi rh Surface 

Conductive (PM) 
surface 

Figure 5.3. Pho(ograph showing the fu ndamenta l fea lUres of the Autoselective regeneration of PM 
with plasmas. 

There are a nu mber of featllres of atmospheric pressure electrical di scharges that can 

con tribute to the regeneration of a DPF. These can be grouped in to three main areas : 

I . Thermal effects Heating of the filtered PM leads to hi gh reaction rates with 

oxygen in the exhaust gas. 

2. Chemical effects Generation of reactive gas spec ies and ions within the 

di scharge column can increase oxidation rates, for example, generation of 
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monato mic oxygen which has been shown by Ros ner and A ll endo rf (1965) to 

be up to 80 times more reacti ve with carbon than di atomic oxygen, 

3, Phvsica l effects Diesel parti cles can accumulate charge and experi ence a 

fo rce due to the electri c fie lds generated by the high vo ltage on the 

electrodes, I f the electrostati c fo rces are large enough, trapped PM can be 

released bac k into the gas stream , Electron and ion bombardment can also 

erode the surface o f the PM, 

It is li ke ly that the PM experi ences a combination of these effects, For example, the 

phys ica l removal of trapped PM from the filter sur face into the hot di scharge column 

increases the PM temperature and leads to ox idati on through thermal effects, 

Ident ifying the re lative importance of these effects is necessary to direct the 

optim isation of the regeneration system , The fo ll owing secti ons in vesti gate the 

characteri sti cs of the Autose lecti ve di scharge and , using new methods for measuring 

heat nux from electric di scharges, shows that the thermal effects are a major cause o f 

regenerati on us ing the Autose lecti ve system, 

5,3, I Plasma Characlerislics 

The electrica l di scharge is created between a high vo ltage and ground electrode using 

a resonating power supply designed and manu fac tured by Ladha (2007), The main 

components are shown in Fi gure 5.4, A typica l hi gh vo ltage circuit that re lies only on 

the turns ratio of' the transformer to reach electrode voltages up to 10 kV can be 

downsized signifi callll y by using a resonating elec tri cal circuit where the output 

voltage (or ga in) is a strong functi on of frequency, For a ty pica l e lectrode 

arrangement the effect of frequency for the transformers (Sho\\~l in Figure 5.4) dri ven 

by a square wave is shown in Figure 5,5, achievi ng vo ltage gains of lip to 10 times 

more than from the turns ratio a lone, The magnifi cation due to resonance is a strong 

functi on of the electrica l load on the circuit and changes for differe nt electrode 

arrangements, 
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Figure 5.4. Schematic showing the electrica l system used to generate the plasma. 
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Figure 5.5. Power supply gai n (proport iollal lo vo ltage) as a fu nction of frequency for a typical 
electrode arrangement. 

This type of power supply creates a glow discharge comprising of an ionised co lumn 

of gas that va ries in di ameter depend ing on the current fl owing through the 

discharge. C lose to the electrode the diameter o f the discharge column reduces 

signi fi can tly increasing the current density and gas temperamre in these regions. 
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Operating at frequencies - 20 kHz leads to the d ischarge operating 

semi -intermittently. Thi s means that each time the vo ltage ri ses the di scharge strikes 

and every time the voltage fa ll s the d ischarge ex tinguishes, al though it may leave 

ioni sed or exc ited part icles that reduce th e break down vo ltage fo r th e next cycle. A 

typi cal vo ltage and current wave form are shown in Figure 5.6. The c urrent shows a 

nu mber of features: 

I . W ith ri sing and fal ling vo ltage there is a minimum vo ltage required be fore 

any signi fi cant current fl ows. This is the vo ltage required to break down the 

gas afte r the previous d ischarge was ex tingui shed. 

2. The current is not d irectly proportional to the vo ltage. This is a result of the 

effecti ve res istance of the di scharge changing throughout the cycle. 
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Figure 5.6. Typical vo llage and current waveforms for atlllospheric pressure glow discharges 
generated lIsing a resonat ing ci rcuil. "1. ' and '2.' refer to the numbered points in the text. 

An im proved understanding of the in teractions o f the di scharge with the electrodes 

was achieved by analysing the li ght emitted fro m the system usi ng a ca librated 

optica l emission spectrometer. The detail s of the equipment and calibration 

procedure is given in Ap pendi x A. Figure 5.7 (a) shows the typical wavelength 

composition of the li ght emitted from the di scharge contact regions showing the 

broad band Li ght with a num ber of spectra l lines generated by the plasma. Figure 5.7 
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(b) shows the light from the plasma column as mostl y spectral peaks, w ith a major 

peak in the ye llow wavelengths and a series of peaks in the blue and violet 

wavelengths. This shows that the surface tem peratures are high , and can be 

quantified by comparing the curve with pred icted spectral em ission fro m black body 

rad iation. 
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Black body radiatio n can be predicted by the Planck Radiation Formula: 

Energy ex _21_1~_' [-----ee,,, 1_] 

), e )~1' - I 
(5 .1 ) 

where h is the Planck constant (6.626 x I 0.34 m2 kg S· I), c is the speed of light 

(2.998 x I 08 m S·I). i. is the wave length of the e lectrom agnetic radi ation, k is the 

Bo ltzsman n constant (1.38 1 x I 0.23 J K· I
) and T is the temperature of the black body. 

Adj ust ing the magn itude to suit the units of the ex perimental data and the 

temperature to achi eve a best fit gives the dashed line shown in Figure 5. 8 (a). This 

corresponds to a surface temperature of approx imate ly 2600 K which is enough to 

rap idly ox idi se the loca l PM in atmosp heric gas or diesel exhaust gas. This suggests 

that therma l effects on ox idati on of the PM wi ll be s ignificant a lth ough thi s 

temperature wou ld be strongl y dependent on a number of factors such as material , 

contact duration and di scharge power and current. 

To confirm thi s theory it was necessary to quanti fy the amount of the rmal energy 

app lied to the soot and confirm whether thi s a lone could oxid ise the PM at the 

observed rates. A new method for measuring the heat nux from the electri c di scharge 

to so li d surfaces was developed and the knowledge used to compare the di scharge 

system wi th a com parable system that applies thermal energy w ithout the chem ical 

or physica l effec ts associated with e lectr ica l plasmas. This method is now described. 

5.3.2 Methodology/or Measuring Heat Fluxfi·oll1 Electric Discharges 

Common techniques for measuring heat flu x include energy balances, thin and thick 

film sensors and circu lar fo il gauges. Electroni c sensor technology has been 

developed that a ll ows measurements on scales down to < 10 mm2 wi th thin film 

gauges (Rencz et al. 2004). w hich depend on measurement of thermal gradients 

ac ross the senso r. A di scussion of errors wi th thi s technique by Trethowen ( 1986) 

hi ghli ghted the importance o f maximis ing the surface area and min imising the 

thickness of the senso r to mini m ise errors. To apply thi s to an electri c di scharge with 
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a surface area of less than I mm2 wi ll lead to signifi cant errors in the measurement. 

A major problem wi th surface mounted sensors. circul ar foi l gauges and 

therm ocouple based measuremeI1lS ap plied to electri c di scharges is the necessi ty to 

measure IlV magni nlde s ignals in an environment with hi gh osc illating e lectric fi e lds 

and potent ia ls. T hi s leads to a la rge amount of signal interference that prevents 

reliable measurements. 

Use of non-contact thermal imaging techniques with thin and thi ck fi lm surface 

senso r approx imati ons has been di scussed by Astarira et CI/ (2005) who describe 

steady state and transient heat fl ow theory to deri ve heat flu x from temperature 

measurements. Appl ying thi s technique to a specifi c geometry in the d ischarge 

environment a ll owed measurement of plasma to surface heat fl ux without the need 

for approx imat ions of conduction, convecti on or radiation fro m the surface . 

A co nLro I vo lume can be defi ned an ywhere wi thi n the so lid electrode, with a surface 

that co incides with the d ischarge-electrode contact area. The intern al energy of the 

control vol ume is 

u = J,oc..TdV (5.2) 

where U is the iI1lernal energy of the contro l volume, p is the materi a l dens ity, Cv is 

the spec ifi c heat capac ity, T is the materi a l temperature and V is th e vo lume. When 

thi s system is in therm al equili brium the net heat flu x into the contro l vo lume is ze ro. 

If the system is in therm al equ ilibrium when the d ischarge is in contact wi th it, at the 

instant the d ischarge is switched off the convective, radi ati ve and conductive heat 

flux away from the control vo lume will rema in the same as duri ng the previous 

thermal equ ilibrium . Thi s is because all the heat fl ux to and fro m the system, with the 

except ion of that from the di scharge is a functi on of the materi al temperatures which 

are constant until just after the instant the d ischarge is ex tingui shed. 

This interrupti on to one of the modes of heat flu x il1[o the cO I1lro l vo lume leads to an 

imbalance where the contro l vo lume is losing interna l energy at a rate equal to the 

imbalance in heat flu x. The heat flu x fro m the di scharge can now be descri bed as 
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1':.0 = dUI (5.3) 
- dl 'co 

where l!.Q is the step change in power. equal to the heat fl ux from the discharge and I 

is the time after ex tinguishing the discharge. Thi s can be represeJ1led graphically as 

the gradieJ1l of the transieJ1l plot of internal energy at the instant the di scharge is 

extinguished. shown schemati ca ll y in Figure 5.8. 
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Figure 5.8. Schematic ortlle idea l transient behaviour orthe internal energy or llle control vo lume 
during a heat flu x measurement 

Since thi s calcul ation requi res knowledge of the internal energy of the COJ1lro l 

vo lume, and the iJ1lernal energy is a function of temperature as in Equation 5.2, it 

was necessary to measure the temperatu re tilroughoutthe contro l vo lume. In practice 

a thermal imaging camera can on ly measure the surface temperature. The sur face 

temperature can give a good approximation of the bul k temperature of the material if 

the so lid is a thi n structure where the heat flux is predominaJ1l ly in the plane of the 

thin structure. This approx imati on is j ustified in Appendix B. For thi s reason the 

electrodes are produced out of sheet metal, approx imating a two-dimensional (2 D) 

structure with the contro l vo lume being defined as covering a given area of the 2D 

electrode. A schemati c of the electrode arrangement is shown in Figure 5.9. The 

electrodes have a small rad ius at the closest poiJ1l to locate the discharge which 
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prevented the di scharge contact point movll1g during the test. Discharge motion 

during the test wo uld result in a quasi steady state, infiuencing the test va li dity . 

Sym metrica l electrodes I .. ,m. m ''''''~ 
,-__ ---''----, ll7\lar

g
e ~----"-----, 

Electric 
Discharge 

AC Power Supply 

Figure 5.9. Schematic of the electrode arrangclllclll highlighting key fearures req uired for measuring 

heat nux from electrica l discharges. 

The FUR Thennovis io n A40M therma l imaging camera offered hi gh reso luti on 

(320x240) temperarure measuremelllS across the electrode surface. For a constant 

thi ckness homogeneous materi a l contro l vo lume, Equati ons 5.2 and 5.3 reduce to 

0= . V
clT 

- pc" I 
(, I , ,,,0 

(5.4) 

where V is the size o r the control vol ume and T is the vo lume averaged temperature 

of the control vo lume. 

To the author' s knowledge the calorimeter technique has not been appl ied in thi s way 

to measure di scharge heat nux using thermal imaging camera. It is, therefore, 

necessary to va lidate the techn ique ro determine its accuracy and to understand the 

experimenta l errors. To do thi s a layered assembl y with an embedded heating 

element, shown in Figure 5. 10. was used. The heating element was positioned 

between two PTF E laye rs whi ch themselves were between two mild stee l layers. The 

assembly was held together using high temperature si li cone adhesive. The 

arrangement was th in enough that the two-dimens ional approximat ion was still valid 
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and that the su rface temperature was a good approx imation of bulk temperature. The 

symmetrical nature of the seulI) meant thm the surface temperatures should be the 

same regard less of the side they were viewed from. 

silicone I 

PTFE I~ v,.r ~~ 

mild steel l ~v,.r ~~ 

Figu re 5. 10. Schematic showing the cross section and sectioned picrorial view of the layered structure 

llsed for the val idat ion. 

The heating element spanned <25% of the surface area of the test sample, as shown 

in Figure 5. 11 . The element was made from 50 n m-I resi stance wire connected to 

low resi stance copper wire at the edge of the structure. This ensured that the heat 

generated by current flow through the wire was nearly all within the layered 

st ructure, meaning it should be able to be measured using the calorimeter method 

described previously. The power input measured using the thermal imagi ng 

equipment was then compared to the power measured by calculating the product of 

the current and vo ltage app lied to the heating element. 
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high resistance wire 

(heating element) 

layered structure 

low resistan ce wire 

precision DC power su pply 

Figure 5. 11 . Schematic of the layercd structure with the heating element lIsed for the ca lorimeter 

va lidation tests. 

A DC powe r suppl y was used to de liver between 2 and IOW to the heating element. 

The surface emiss ivity was cali brated by a test point on the surface by compari son of 

the thermal imaging camera temperature with a K-type thermocouple reading. The 

power was applied until a steady state had been reached and the power supp ly 

switched off. A typi cal thermal image from the test is shown in Figure 5 .1 2 . The 

control volume bounda ry is highli ghted, with a surface that was prepa red by rubbing 

the ox ide layer off with 150 grit emery cloth . The other reg ions in the image were not 

cali brated . 

Support' oxide layer 

150 ,O· C background 
140 temperature 

120 

layered structure 
100 

80 control volume 

60 boundarv 

40 
limits of heating 

20.1 -C element 

power supply cables 

Figure 5.12. Exa mp le in frared thermal image from proof of concept tests. * denotes regions for which 
the em issivi ty was not cal ibrated. 
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An example plot of the vari a ti on in average temperature over time during the test is 

shown in Figure 5. 13. The steady state was reached before the data was recorded so 

the average temperature remained constant until the power to the heater was 

swi tched ofr. 

380 

g 370 

~ 
il 

heater power switched off 

~ 
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E 360 
~ 
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I 
initial gradient 

340+---__ ----~--__ ----_.----~--_r----~--_, 
·20 o 20 

Time (s) 
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Figu re 5.13. Example average temperature data as a function ofli mc for the proof of concepllcsLS 

The rate of change of volume-averaged temperature of the control volume was 

ca lcul ated from the first 5 seconds of the test directly from the thermal image. In thi s 

example it was equal to -0.73 K S·I. Applying relevant materi al data and geometric 

data. shown in Table 5. 1, allowed the calculation of the power fro m Equation 5.4 to 

be 9.07 W. This was comparable to the electrica l inpu t power, ca lculated from the 

app li ed vo ltage and current as 9. 12 W. 

Table 5.1 . Summary of the data used for the proo f of concept ca lcul at ions. 
Spec ific Heat 

Width Height Depth Volume heat capac ity 
of layer of layer of layer of layer Density capacity c,. Number (lII e,,) 

Material Imlll / 111111 Imlll /m3 Ikn m 'l 
p 

/J ko"1 K-1 
p of layers IJ K" 

Mild Steel 35 35 1.0 12.3x I 0" 7870' 480111 
2 9.256 

PTFE 35 35 0.25 3.06x 10·' 2200' 1050' 2 1.415 
Silicone 35 35 0.35 4.28x 10·' 1020" 1030' 4 1.801 

Overa ll heat capac ity for use in ca lculation (J K·I) 12.472 

Sources: I Shacke lford and Alexande r (200 1) 11 Dow Com ing materia l datashec t (2002) III Ja nna (2000) 
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A compari son of the electri cal heating power and power measured using the thermal 

imaging system is shown in Figure 5. 14 for varying powers of the same order of 

magnitude expected from the electri ca l discharges. If both measurements had 

negli gib le errors, the data points would co incide with the so lid line. Across the range 

of power the two measurements are close ly comparable indicating that the thermal 

imaging based measurement technique is a va lid no n-contact method fo r calculati ng 

heat flu x. 
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Figu re 5.14. Compari son of electrica l energy input and measured energy input using the thermal 
imaging technique. 

Uncertainties in measurements of the heat flux from the electric di scharge are 

1. Calibration of thermal imag ing equipment (i.e. emiss ivity). 

2. Error in material properti es (i.e. density and spec ific heat capacity) 

3. Reso lution of thermal imaging equipment (mani rested in the definiti on of the 

control vo lume) 

4. Signal noise on the temperature data. 

Analys is of these uncertainties, shown in Appendix C, determined that the effec t of 

signal noi se and resolution of the thermal imaging equipment vari ed with the defi ned 

control vo lume size. Figure 5. 15 shows the cumulative effect of these errors as a 

function of the control volume size. The minimuJll error was calculated to occur wi th 
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a control vo lume of between approximately 150 and 300 111m3 for the proposed 

configuration. Control volul11es above 350 111m3 or below 150 1111113 showed 

increas ing errors l11 ainly due to signal noise and poor definiti on of the control vo lume 

respectively. 
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Figure 5. 15. PI Ol of overall pred icted error as a funct ion of control volume. 

For thi s reason. the control vo lume lIsed for the study of heat transfer frol11 electrical 

discharges was set at approx il11atel y 300 1111113 encompass ing the discharge electrode 

contac t point and following the ex ternal boundary of the electrode. This is illustrated 

in Figure 5. 16. 

electrode 

L 

optimum control volume 

Electric 

Discharge 

Figu re 5. 16. Chosen contro l vo lume boundary for heat flux measurements. 

- 138 -



CHAPTER 5 FUNDAMENTALS OF AUTOSELECTIVE REGENERATION OF PM 

Measurements of heat nux usi ng Eq uation 5.4 were taken for 24 d ischarges over a 

di stance of approx imate ly 5 mm with no fo rced convecti ve now, The results have 

been converted into a heating effi ciency, defined as the amount of therma l nux into 

the electrodes di vided by the electrica l power consumed within the di scharge, 

W 
I] 

- tlrernwl 
,, - W 

det 

(5.5) 

where 1711 is the heating effi ciency, W,llen"at is the thermal power input to the 

electrodes and Wetec is the electr ical power input to the di scharge , The hi stogram of 

the results is shown in Figure 5, 17, The sample can be seen to approximate a normal 

di stribution with an average va lue ca lcu lated as 24,8% and a standard deviation of 

2.4% (i,e, plus o r minus one standard deviation gives a span between 22.4% and 

27,2%), Thi s means th at an e lectric di scharge consuming approx imately 40 W under 

the same conditions wi ll typical ly have 5 W of therma l energy transferri ng into each 

electrode fro m the di scharge, 

6 

5 

4 

2 

o '--~---'" 
18 20 22 24 26 28 30 32 

Heating Efficiency (%) 

Figu re 5.17. 1-liSLOgram of hea ling efficiency measurements ora discharge over a 5 Illlll air gap Wi lh 
no airflow. 
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5.3.3 Thermal Healing Effecl on PM Ox idation 

A continuous wave low power green lase r (532 nm Nd- Y AG 5W) was used to apply 

a comparable thermal energy to an e lectric discharge to a carbon sample. Comparing 

the lase r regenerati on with electric di scharge regeneration allowed confirmation that 

thermal effects are the major cause of regeneration. Thi s testing is now descri bed. 

To simpli fy these experiments a single condition considering a typical stati onary air 

di scharge with a thermal heating power o f 5 W was used which was comparable to 

the 5 W laser that was ava ilable for thi s testing. This corresponded to an overal l 

discharge power of 40 W. Applyi ng the discharge to a loaded filter fo r approx imately 

half a second resulted in a relatively well defin ed regenerated area of 2. 54 mm2 

(shown in Figure 5. 18), whi ch was taken to be an approx imati on of the area through 

which the majority of heat flux takes place. The specific power was calcul ated as 

P 5 
Specifi c Power = - = 1.96 W mm-2 

A 2.5447 
(5.6) 

Figure 5.18. Affected area by a ""' .• ';0'" n"a,.,.'n - approximating rhe area through wh ich heal 
nux takes place. 

Blocks of carbon blac k were prepared to allow the regeneration rate to be measured 

using pre- and post-weighing of the sample without the influence of the ceramic 

subsl1·ate. They were prepared by compress ing carbon black (a soot substitute) in to a 

mi ld steel holder of d imensions shown in Figure 5. 19. The holder was fil led with the 

PM compressed under a pressure of 25 0 kPa +/- 40 kPa to agglomerate the particl es 

and a ll ow the sample to be easil y handled. Each sampl e was we ighed before and 

after the tests to an accuracy of I mg using a chemica l ba lance. Each sample had the 
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same environmental hi story and was we ighed at each stage to ensure that the on ly 

mass loss was assoc iated with regeneration. 

5 W laser 

Figure 5. 19. Test serup for laser regeneration lesls including sample dimensions. 

Figure 5.20 shows the surface of the regenerated carbon blocks from both (a) the 

laser regeneration and (b) the plasma regeneration. Due to the mobility of the electric 

discharge the plasma regenerated area is larger. The pre- and post-weighing data is 

shown in Table 5.3. It can be seen that during transportation there is negli gible mass 

loss meaning that the measured change in mass is a result of app lying the electric 

di scharge or laser. Comparing the effect of the electri c di scharge and laser 

regeneration indicated that the direct thermal effects account for approxi mately 60% 

of the regeneration. 
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Figure 5.20. Regenerated carbon blocks using (a) 532 nllt laser and (b) 40 W electrica l discharge. 

Table 5.2. Weight measurements of samples be fore and after regenerati on tests. 

Ini tia l Mass after Mass after Regenerated 
Regeneration mass laser tests di scharge tests mass 

method /g /g /g /g 
Laser 63. 174 63.166 63. 166 0.008 
Laser 63. 179 63. 171 63. 170 0.009 
Lase r 62.763 62. 755 62.755 0.008 

Discharge 63.595 63.595 63.5 81 0.014 
Discharge 62. 734 62.735 62. 720 0.014 
Discharge 63.57 1 63.57 1 63. 558 0.01 3 

The mobility o f the di scharge, lead ing to a larger regenerated area than with the laser 

test, was shown to have li tt le e ffect on the result. This was confirmed by repeating 

the laser test by dividing the two mi nute regeneration period into e ight 15 second 

regenerat ion peri ods each on un tested carbon (i.e. no previous regenerati on). The 

mass loss was the same as the previous test to the degree of resoluti on of the scales. 

The main errors assoc iated with this comparison are related to experimental errors in 

matching the heat fl ux from the laser and di scharge. Thi s arose from variations in 

heat flux pro files. absorpti on characteri stics of the carbon and errors in measuri ng the 

heat flux from the discharge. These differences mani fested themselves as diffe rences 
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in the distri bution of regnerated PM, an estimate of which is shown in Figure 5.2 1. 

Despite these di fferences, these tests gave a strong indication that thermal effects 

we re the major cause o f regene ration when using the Autoselective di scharge to 

regenerate diesel PM . This res ult di rected the subsequent effort to oplim ise the 

regeneratio n rate by optim is ing the heating effect of the electrical d ischarge on the 

substrate. and is now discussed. 
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Figure 5.2 1. Estima led profiles of discharge and laser regeneratioll . 

5.4 Maximising Regene,"ation Efficiency 

The Autose lecti ve di scharge was shown by Proctor (2006) to be robust to the range 

of temperature, pressure and compos ition of diese l exhaust gases. Other 

enviro nmental fac tors including fl ow directi on and fl ow rate are known to have an 

effec t on elec trica l di scharges which needed understandi ng and relat ing to 

rege neration of P M. The study of the factors affecting the electric di scharge follows. 
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5.-1 . 1 Experimental Method 

The influence on heating effici ency of the foll owing factors were in vesti gated : 

I . Electrode spacing 

2. Di scharge current 

3. Ax ia l fl ow ve locity 

4. Perpendicul ar flow ve loc ity 

A typical fl ow rate for a ge1cast ceramic foam filter discussed earli er is between 0 

and I m S·I depending on the engine speed, and load (and whether a bypass is being 

used). Cani ster design can affect the fl ow direction and it was therefore important to 

investi gate the e ffect o f the ang le of the flow as well as the magnitude . 

A two leve l ful l facto ri al ex periment design was used and is summari sed in Tab le 

5.3. This test a ll owed the main effects and interacti ons between the facto rs to be 

identi fi ed . 

Table 5.3. Variab les and levels chosen for the heat flu x ex periment. 

Variab le Low Value High Va lue 

Air gap size 
Current 

Ax ial flow ve loc ity 
Perpendicul ar fl ow ve loc ity 

5 mm 
13 mA 

o 
o 

10 mm 
20 Ill A 

0.6 m S·I 

0.6 III S·I 

An estimati on of the number of replicates required to have a 95% confidence of 

recogni s ing an effect of magninlde (j was found by using the stati stical relat ionship 

(descri bed in more detail by authors such as John, 1972) 

(}" ' 
N = 7.942 - , o· (5.7) 

where er is the typical standard deviation, (j is the required resolution (in the same 

units as er) and N is the number of replicates required. This mea11lthat to be con fidem 

that effects of greater than 0.05 (i.e. a resolution of 5% heating efficiency) will be 

recogn ised with a typica l standard deviat ion on the data of 0.05 (found during 

preliminary tests) then approx imately 8 rep li cates of each test po int were needed. 
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The testing was carried out in blocks of 8 tests in a randomised run order to allow 

valid ana lysis using Stat-ease (Design of Experiments software). 

The thermal imagi ng camera was set up to face the electrodes and the emiss ivity 

ca librated using a surface mounted thermocouple. The di scharge conditions were set 

and the di scharge operated unti l the e lectrode temperatures were close 10 the ir 

thermal equili brium . Thi s was defined by observi ng the temperature in real ti me at a 

po int close to the discharge with the thermal imaging camera. The steady state 

criteri on was defi ned in these tests as the observed temperaulre changing by less than 

2 K in three minutes. An example image from the thermal imaging camera is shown 

in Figure 5.22. 
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Figure 5.22. Example thermal image from discharge heat ing effi ciency tests. 

Once an equ il ibrium cond ition was reached the di scharge was ex tingui shed by 

Sv itching off the power supply while recording the thermal images at a rate of 

50 Hz. The contro l vo lume and subsequent ca lcul ati on of the thermal flux into the 

electrodes was carried out based on the theo ry desc ribed in Section 5.3 .2. 

The tabulated results of the measurements are shown in Appendix D. as well as the 

rando mised run order and the settings for the faclOrs of each test po in t. A discuss ion 

of what these results mea n and how it di rected fu ture work follows. 
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5. -I. 2 Dala Analysis 

The Design Expert so ftware calculated the half normal plot for the facto rs and 

interactions shown in Figure 5.23. The plot shows the magnimde of the effect present 

in the data against the likelihood that the facto r is stati sti ca ll y significanl. The most 

important factors are those towards the top ri ght hand corner of the pial. In thi s case 

the stati sticall y significant facto rs have been highlighted and labelled. These are the 

factors that fo rmed a model to predict the behaviour of the system. A square roo t 

transformation of the heating effic iency data was carri ed out to improve the model 

fit. 

DESIGN-EXPERT Plot Half Normal plot 
Sqrt(Overall Heati ng Eff) 
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Figure 5.23. Half norma l plot or the effects influenc ing the heat ing efficiency or lhe electrica l 
discharge. 

The fi nal form of the fac torial model representing the experiment, with the 

insignificant facto rs removed was 

'h = llO.28-7.82211" -3.42u" -0.2300 1 -0.4644x 

+6.33 311"U" +0.3 198uJ + 0.532311"x + 0. 11 45u ,, 1 + 0.0 1672 lx 

- 0.27 1711,, 11 ,,I - 0.0269011 .,Ix J' 
(5.8) 
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where tla is the ax ial fl ow veloc ity, up is the perpendicular fl ow ve loc ity, I is the 

current. x is the air gap size and 17" is the pred icted heating effic iency. The data 

shows that a ll the factors had an important effect on the heating effici ency of the 

di scharge. A ll of the interacti ons identified, with the exception of that between ax ial 

fl ow and cross fl ow were small (a lthough still present). The most signi ficant 

observat ions were: 

I. Increasing elec trode spacing reduced the heating effi c iency 

2. Increasing current reduced the heating effici ency 

3. Increasing fl ow rate reduced the heating e ffi ciency 

The residuals (diffe rence between pred icted and tested data) shown in Figure 5.24 for 

these tests a ppear randoml y scattered impl yi ng that all major fac tors have been 

accounted for in the model and the res idua ls were a result of random experimental 

error. This supports the va lidity of the model wi thin the tested range. 
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Figure 5.24. Pl ot of re si duals versus pred icted for the heat nux test data. 
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5.-1.3 Effec/ ofElee/rode Spacing 

Figure 5.25 shows the effect of electrode spac1l1g In Equation 5.8. Increas ing the 

electrode spac ing reduces the heating efficiency under all conditions. This can be 

explained by considering the high temperarure column of gas that forms the 

di scharge. The heat will onl y now from the di scharge to the electrodes where it is in 

close proximity to it. As the electrode spac ing increases, the fraction of the di scharge 

in close proximity to the electrode reduces resulting in less efficient use of the 

electrica l energy for heating. Maximising the di scharge/material contact area will 

therefore max imise the heating effi ciency and energy use. 

50 
--no flow, 13 mA current 

- - - 0.3 m 5 ' axial and perpendicular flow, 13 mA current 
- .. - . no flow, 20 mA current 

. . . . . - -- ....... . . --- ... . . . ..... . --- . -'" --- ........ . . --- -- ---
10 

5 6 7 8 9 10 

Electrode Spacing (mm) 

Figure 5.25. Effect of electrode spacing, based on DoE investigation. 

5. -I . -I Effec/ of Curren/ 

Increasing the current also reduces the heating effi ciency under all conditions tested. 

Thi s is shown in Figure 5.26. Thi s can be ex plained by considering the restriction of 

the discharge at the electrode contacts. As the di scharge current increases, the 

vo lume of the discharge increases more than the contact area at the electrodes. 

Therefore a larger fract ion of the electrica l energy will be used in the regions farther 

from the electrode, hence reducing the heating effi ciency. The heating effi ciency is 

more sensiti ve to current with no gas now and small electrode spac ing. 
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Figu re 5.26. Effect of discharge current 011 the heat ing efficiency of the electric discharge. 

5.-1.5 E[{ecl a/Gas Flail' 

Axia l and perpendicu lar flow ve locity was considered separately in the DoE 

investi gation . The effect of these parameters are shown in Figures 5.27 and 5.28. 

Both the axial flow and perpendicular flow act to reduce the heating efficiency. As 

ei ther flow rate increases. the heating efficiency becomes less sensitive to the other 

flow direc ti on. This implies the directi on of the now is not as signi ficant as the 

magnitude of the now ve loc ity. 
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Figure 5.27. Effect of perpendi cular flo w velocity on the heating effi ciency of the e lec tr ic discharge. 
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Figure 5.28. Effect of ax ial flow velocity on the heat ing effici ency of the electric disc harge. 

The behaviour of the heating efficiency for varying flow velocity can be explained 

by considering the heat fl ow to and from the electric discharge. Figure 5.29 shows a 

schematic of a hot column of gas which is constant ly mai nta ined at a fi xed 
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temperature by energy input (e lectrical energy in the case of the discharge). Heat can 

now away from the hot discharge either by conducti on through the so lid contacts, 

natural convection through the gas or fo rced convecti on through the gas. Radiation 

and conducti on through the gas will also be present but is likely to be small in 

comparison. As the forced convective heat nux from the discharge co lumn increases 

(i.e. increasing now veloc ity) the fracti on on electri ca l energy input to the electrodes 

reduces. 

~47L:1-- electrode 

Natural Convection 

• 
Forced Convection 

discharge 

/ _'-r-r-;~- electrode 

Figure 5.29. Schematic showing the model that explains the behaviour oflhe heating effect oflhe 
electric discharge. 

5.5 Concluding Rcmat'ks 

Thi s chapter has studied the Autose lecti ve di scharge and its interacti ons with so lid 

surfaces. It has identifi ed that the heating effect of the discharge is a major effect 

responsib le for PM ox idatio n. A nove l method fo r measuri ng the heat flu x fro m 

electric discharges has been used to study the effect of electrode spacing. discharge 

current and gas flow ve locity on the heating efficiency of the electric discharge. A 

conceptual model of the di scharge as a hot co lumn of gas has been shown to expla in 

the observed behaviour of the heating effect of the discharge. This model can be used 

to improve the heati ng effic iency by maxi misi ng [he heat nux to the desired surfaces 

and min imising other heat losses sllch as forced convecti on. 
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CHAPTER 6 

AUTOSELECTIVE REGENERATION OF GELCAST 

FOAM DPFs 

Chapter 4 has di scussed and deve loped ge lcast ce ramic foam s as DPFs introducing 

new methodology [Q allow rapid optimisation of depth bed filtration DPFs. Chapter 5 

presented ana lys is o f the AUlose lecti ve regeneration of PM considering the 

behav iour of the regene rati ve e lectri c di scharge under a vari ety of conditions. This 

chapter now describes the research and knowledge related to integrating the two 

technologies to achi eve a feasib le fi ltration and regeneration technology. 

6.1 Genera l Obscl"Vations 

Figure 6.1 shows two examples of typical Autose lective di scharges in contact with 

ge lcast ceramic foams. The first consists of a g low di scharge col umn in contact w ith 
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a si ngle point on the foam. The ceramic surface reaches hi gh enough temperatures to 

give off a ye llow or white glow at the d ischarge fi lter contact point. These 

temperatures are hi gh enough for rapid regeneration. The second type shows a series 

of bl ue discharge co lumns and a number of small white spots on the filter surface. 

The white spots are hi gh temperature regions where particulate ox idati on is taking 

place. In the case shown in Figure 6.1 there is unlike ly to have been more than one 

single di scharge at any one time but due to the air motion moving th e d ischarge it 

str ikes, exti nguishes and then strikes again in another locati on. The effect of airflow 

is considered in further detail in Section 6.7. 

Figure 6.2 shows how these twO types of discharge typically affect the ceramic 

material. Case (a) leads to highly focused energy in one spot for an indefin ite 

duration and can often lead to melting damage of the ceramic materia l. The cleaning 

of the surface is very rapid « 100 ms) and the filter materi al that is not damaged is 

returned to its original state . Case (b) was not fo und to lead to any damage to the 

fi lter surface . The regenerati on occured to a lesser ex tent and over a much large r area 

resulting in a grey ing of the urface. The fi lter took longer to reach its clean state « I 

minute) but showed no signs of damage. 
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Figure 6.2. FXillllrlles cleaned surfaces ofGe lcasl foa m filters wilh (a) no fl ow and (b) gas flow . 

The behaviour of the AUlOse lecti ve regeneration of ge l cast ceramiC foam s (e.g. 

where the regeneration occurs) is a strong functi on of a number of facto rs such as 

PM loading, power suppl y characteristics and system geometry. To beg in to predict 

the behaviour of the di scharge, an understanding of the e lectri ca l phenomena, and 

their interactions with the filter and PM was needed. Thi s was achi eved us mg 

eq ui valent electrica l circui t modell ing, described in the fo ll owing sections. 

6.2 Equivalent Electrica l Circuit Modell ing 

Generating HV with a compact power supply was achieved by resonating an 

inductance and capacitance (a transformer). To consider resonating and damping 

effects it was therefore necessary to model the transformer characteristics, as 

opposed to an ideal transformer. This was done using a combined resi stance, 

capac itance and inductance shown in Figure 6.3. These eq ui valent circu it properties 

do not ex ist in iso latio n. The res ista nce, capac itance and inductance of the 

transformer exist distributed across the secondary wi nding of the HV transformer. 

The res istance, inductance and capacitance of the primary co il were neg li g ible 

because of the 40: 1 winding ratio of the transform er. They can be measured using a 

variety of techniques described in texts such as Warnes ( 1998). Table 6. 1 shows 

typica l values measured on the research project by other researchers. The DC 

resistance of the secondary coil was measured uSing a multi meter. The AC 

inductance was measured using an LCR bridge and the capactitance calcul ated fro m 

the open circuit resonant frequenc y. 
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yyy 

ru 

Figure 6.3. Equi va lent circuit of lhe lransformer and power supply. 

Table 6. 1. Typical equivalent circuit properti es. 

Factor Typical Value 
Resistance 900 Q 

Inductance 
Capaci tance 

21-1 
II pF 

The load connected to the power suppl y changed depending on the state o f the 

di scharge. Thi s wo rk considered the steady states during pre-break down, air gap 

only break down and break down within the filter. The equi va lent circuits are shown 

in Figure 6.4 . 

...L J 

L J 
I 

Figure 6.4. Equiva lent circuit or the transfo rmer load for stales (a) no discharge. (b) a discharge 
within the air gap only and (c) a continuous discharge between the electrodes. 

The pre-break down load represents everything connected to the I-IV side of the 

transformer in terms of equi va lent capacitance, inductance and res istance. Before the 

break down occurs there is no direct conducti ve path between the electrodes meaning 

that there is no resistive connecti on. The inductance was found to be sma ll due to the 

low coupling between the electrodes. The capac itance was comparable to the 

transformer di stributed capacitance and found to be signi fi cant to the resonant 

properti es or the circuit. This was measured using an LCR bridge. 
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When a steady state di scharge is operating in the ai r gap, the current flows through 

the capacitance and resistance of the PM loaded fi lter section. The res istance was 

found to be negli gibl e fo r typica l PM load ings and the capacitance est imated from 

direct measurements. The equi va lent circuit therefore consists of a discharge model, 

load capacitance and fi lter capacitance (i ncluding res istance when the PM load ing is 

hi gh). 

When the di scharge is active wi thin the fi lter vo lume, there is a conductive path 

between the two electrodes and the effect or the filter properties become neg li g ible. 

The model then consisted of the load capac itance and the di scharge model. The 

eq ui va lent circuit properties were measured and are di scussed in the fo llowi ng 

subsect ion. 

6.2./ Erperimen/a/ DC/la Co/lee/ion 

The open circu it load capac itance was measured for a 30x3 0 mm mesh electrode 

with a 2 mm ai r gap and 9 mm fi lter section, shown schematica ll y in Figure 6.5. 

high voltage electrode 

filter 

ground electrode 

Figu re 6.5. SchemaLic of mesh eleclrode experimenlal serup. 

The capacitance of the arrangement was fo und by applying a sinuso idal vo ltage to 

the HV electrode. The vo ltage was kept low enough to avoid a d ischarge be ing 

initi ated. The cu rrent was measured using a current probe. Considering th e circuit as 

a paralle l resistance and capaci tance, the overa ll (measu red) current was 
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(6. 1) 

where I is the overa ll current, le is the capaci ti ve curren t, IR is the res isti ve current, 

Vel is the app li ed vo ltage, l e is Ihe capacitive im pedence, l R is the resisti ve 

im pedence, OJ is the angular ve loc i ty, e el is the capacitance, j is (-I ) 0.5 and ReI is the 

res istance. The magni tude of l was 

By measuring the peak vo ltage, current and phase angle it was possible to find e and 

R for the equivalent circui t. The peak vo ltage and current during the test were 6 kY 

and 18.4 mA respecti ve ly. The phase angle was measured as - 85.1 5 degrees. So lving 

fo r e and R gave va lues of 20 pF and 3.9 MD respective ly. The resi sti ve current 

could be considered negligible. 

The d ischarges can be descri bed electricall y by two dimensional current-vo ltage 

relationships. Thi s is known to be a sim plification of the real case in which there are 

hysteres is and di rectional d iscontin uiti es relati ng to cyclic break down although thi s 

wil l not affect the ge neral analys is of the interactions between the di scharge current 

and the resonating transformer circuit. 

The di scharge cu rrent-vol tage relationships were measured by capturing current and 

vo ltage waveforms for a pin to plate or pin to pin discharge in air. The results for the 

pi n to plate tests are shown in Figure 6.6 fo r the fi lter plasma and air gap plasma. 

Within the current ranges under investi gation , the change in stab le plasma Cllrrent­

vo ltage re lationships with changing rms currents were fou nd to be small. 
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-- airgap discharge 
3000 - - -I n fi lter dischar e 
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< 1000 \ 
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-2000 
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-3000 

Figu re 6.6. Vo ltage gradielll - currenl re lationship for ai r gap and in fi lter discharges under 
investigation. 

6.2.2 lv/ode! Implementation 

The transiem mode lling of electrica l ci rcuits has been carri ed out using fundamenta l 

current and vo ltage relati onships fo r resistance. capac itance and ind uctance, 

implemented in Simu link (Matlab). The details of such use of Si mulink is shown in 

Appendi x E. This a ll ows transielll mode lling of the eq ui valent circuits described in 

Section 6.2 

6.2.3 lv/ode! Validation 

The resonant behaviour of the electrica l circuit model was compared to the 

ex perimental data shown in Chapter 5. A frequency sweep was carri ed out with a low 

vo ltage square wave input to the primary side of the trans fo rm er bo th on the real 

circui t and on the equivalent model. The gain of the resonant circuit model can be 

seen in Figure 6.7. The resonant freque ncy matched was in good agreement with the 

ex perimental case (Figure 5.6) although the model predi cted hi gher amplitudes at 

resonance. Th is is anributed to the presence of HVs during the experimental case 

where corona di scharges and initi ati on of streamers (micro di scharges) further damp 

the electri cal ci rcui t. 
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Figure 6.7. Resonant circu it gain as a function of frequency for the mode lled transformer and load . 

The two cases of an air gap on ly di scharge and a spatially continuous discharge are 

now considered and compared to experimenta l data. 

Figure 6.8 and Figure 6.9 show the predicted waveforms for the measured vo ltage 

and currel1l for the case with two a ir gap discharges (i.e. no break down through the 

filter) and the acul3l measured cu rrent and vo ltage. They show reasonably good 

agreement with phase angle, shape and magnitude of the wavefo rms. It can be seen 

that the current is not sinuso idal and is approx imate ly 90 degrees out of phase with 

the measured potential. Thi s is because the current now is limited by the capaci ti ve 

now through the filter section , and the capacitance is acti ng as a form of stabili sati on 

a ll owing mul tiple discharges to exist simultaneously. 
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Figure 6.8. Plot of model predicted clIrrent and vol tage waveforms for an air gap only discharge. 
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Figure 6.9. Experimental current and vo ltage measurements for an air gap only discharge. 

Figure 6. 10 and Figure 6. 11 show the modelling results and measured results for a 

spatiall y conti nuous di scharge (i.e. through the filter material as we ll as the air gap) 

respective ly. The agreeme nt of phase angle, shape and magnitude of rhe current and 
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vo ltage agree well with the experimental case. In case of a spatiall y continuous 

discharge the curren t now through the di scharge dom inates. The resonant circuit is, 

therefore, significan tl y damped reducing the electrode vo ltages and limiting the 

current through the di scharge. 
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Figure 6.10. Plot of model predicted current and vollage waveforms for a spatia lly cOlllinuotls 
discharge. 
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Figure 6.11 . Experimenta l currelll and voltage measurements for a spat ially c011linuous discharge. 
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This va li dation demonstrates that the eq ui valent circuit model ling of electric 

di scharges for these purposes is suitable for improv ing the understanding of the 

Autoselective regenerati on system and giving direction to achi eve desired effects. 

6.3 Break Down Processes 

The di scharge was obse rved to exist ei ther in the air gap to the filter surface or 

between the electrodes, through the filter materi a l. To understand when various gaps 

wi ll break down it was necessa ry to understand at what vo ltages each part wo uld 

break down. 

The breakdown vo ltage is measured by appl ying an increas ing AC vo ltage 

(generated from the resonating power suppl y) to a mesh electrode using a simil ar 

arrangement to Figure 6.5, with varying gap sizes. A Tektroni x TDS5034B 

oscilloscope was used to monitor the applied vo ltage and at the poi nt of breakdown 

(where the vo ltage signifi cantl y reduces) the peak vo ltage was recorded. An example 

of such a measurement is shown in Figure 6. 12. 
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Figure 6. 12. Example waveform showing measurement of breakdown Vo ltage. 
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The measured break down vo ltage of the air gap as a function of di stance fo r a pin to 

plate arrangement is shown in Figure 6.13. Th is can be compared to the break down 

voltages for the filter section which, as shown in F igure 6. 14, were found to be very 

similar. This implies that the open highl y porous structure of the foam does not 

interact s ignifi cantl y with the break down vo ltage of th e di scharge. The va lues fo r 

the break down vo ltage can be used to provide an indication of the like lihood of a 

break down occurring in any one part of the lxe-break down transfo rm er load of the 

equivalent circuit model. 
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Figure 6.1 3. PIOl of measured air gap break down vo llages. 
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Figure 6. 14. PIOl of measured filler block break down voltages. 

The air gap wi ll a lways break down before the filte r section due to its lower 

di e lectri c perm ittivity (- I ) in comparison to a loaded filter (>2). This leads to 

concentration of the e lectric fi eld in the a ir gap. ex pl a ined by considering two seri es 

medi a in between an infini te ly long plate e lec trode. The different mate ri a ls can be 

considered as series capacitors w here the capaci tance is equal 10 

c = "o",A 
, I c , 

(63) 

where C, is the capacitance of section i , en is the permilliv ity of free space, c,· is the 

relati ve permitti vity of secti on i, A is the area considered and d, is the thi ckness of the 

secti on. The charge sto red on series capac itors, Qel, wi ll be equal, therefore 

Q" = C,V, = C,V, (6 .4) 

Combi ning these two eq uati ons leads to 
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GoG,A V, = GOG, A V, 
cl, cI , -

(6.5) 

Noting that 

(6.6) 

where E is the electri c fi eld strength , Eq uati on 6.5 becomes 

G,£, =G, £ , (6.7) 

Thi s shows that for such a seri es die lectric arrangement, the e lectri c fi eld w ill be 

hi ghest in the materi al with the lowest di electri c constant and, therefore, the a irgap 

will breakdown first. 

6.4 Discussion of Ai ,· Gap Only Discharges 

The discharge may break down in the air gap onl y (i. e. not wi th in the filter vo lume). 

This is possible when the capac itance of the fi lter secti on is hi gh enough to allow the 

current to fl ow capac iti ve ly without reaching break down vo ltages. This would 

happen as increased cu rrent fl ow acts to reduce the ga in of the resonant circuit, hence 

reducing the output vo ltage. Thi s means that the discharge wil l extinguish at the 

surface of the filter. Thi s problem can be exacerbated by the occurrence of multiple 

air gap di scharges resulting from the capaciti ve stabili sati on of the discharge tllrough 

the fi lter. Thi s occurs, for example. when one air gap discharge is present since the 

vo ltage on the electrodes can still be hi gh enough to break down the air gap in a 

di ffe rent locati on without break ing down the fi lter secti on. When thi s happens, the 

add itional resisti ve load further damps the resonant circu it reduci ng the like lihood of 

the di scharge propagating inlO the fi lter. This would result in regenerating the surface 

of the fi lter onl y, as demonstrated in Figure 6. 15. Since the majori ty of trapped PM is 

within the filter vo lume, and not at its surface , th is will not noticeably reduce the 

back pressure of the loaded ge lcast ceramic foa m filt ers. To regenerate the fi lter it is 

necessary to ge nerate the di scharge within the filter vo lume. 
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Figure 

6.5 Discussion of Spatially Continuous Discharges 

Where the current now through the fi I ter section is not enough to reduce the 

electrode vo ltage below the break down vol tage of the filter section then the 

d ischarge will be spatially continuous between the HV e lectrode and the ground 

electrode. When the discharge is continuous, th e circuit is further damped and the 

vo ltage drops be low the break down vo ltage o f th e air gap resulting in no multiple ai r 

gap di scharges. The di scharge current waveform becomes predominantl y resist ive, as 

shown in the example in Figure 6. 1 I . A spati a ll y continuous di scharge enables 

regenerati on of the filter vo lume. Thi s gives the potentia l of complete cleaning and 

restoring the back pressure ac ross the fi lter to the clean state. In addition , it wi ll 

increase the heating effi ciency of the d ischarge by increasing the contact area 

between the so lid and plasma. An example of the cleaning resulting from a spa ti a ll y 

cont inuous di scharge is shown in Figure 6. 16. 

Figu re 6. 16. Cross section of regenerated fi Iter section after spatially cont inuous discharge. 

Further advantages of spatia ll y continuous d ischarges include the improved transfer 

of thermal energy from the gas phase to the so lid phase. This shou ld result in reduced 

energy usage. 
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6.6 Promoting Spatia lly Contin uous Dischal'gcs 

The like lihood of a break down within the filter vo lume is a function of the electri c 

fi eld strength generated by the !-I V power suppl y. It fo llows that the vo ltage 

generated by the supply, and the peak electri c field strength (for a given supply 

vo ltage) are the two main considerat ions. To increase the like lihood of a spatia ll y 

continuous di scharge, the vo ltage generated by the supply can be increased, or the 

vo ltage required to achieve the break down red uced. 

Consideration of the variables that could eas il y be changed resulted in the li st shown 

in Table 6.2. There is no clear solution as each of the vari ab les has advantages and 

di sadvantages assoc iated with it. These vari ables were investigated uSing the new 

modelli ng lOo ls lo find which have the most beneficial effect. Each variable 

investi gated is di scussed in the followi ng secti ons. 

Table 6.2. Summary of factors under investi gation with potential advantages and 
d isadvantages of the proposed methods of increasing the likelihood ofa spatiall y 

. d' I continuous ISC large. 
Change Melhod Potential Advalllages Potential Di sadvanrages 

Increase the voltage Reduce the filter PM I . Higher impedance of I . Less effi cient 
drop across the fi ller loading the filt er section (i.e. regeneration. 
section higher voltage drop 2. More frequent 

across the fi Iter regeneration required. 
sect ion) 3. Higher break down 

vohages. 
Increase the I . Higher voltage drop 1. Higher peak currents -
stabilisation current across the filter section more difficul t lO comrol 
limit damage 
Lower freque ncy J. Higher impedance of I. 1-1 igher break down 

the filter sect ion vo ltaoes 

Lower the break Increase the fi lter PM I . Lower break down I. Low filter section 
down vol tage of the load ing voltages. impedance (which wi ll 
fil ter section 2. Higher regeneration lower the voltage drop 

effi ciency. across the filter section). 
3. Less frequ ent 
regeneration . 

Alter ceramic material 1 . Lower break down I. Lower filter section 
- c.g. electr ica l vo ltages. impedance. 
conductiv ity or 2. Filter strength . 
dispersed metal 3. Life/ageing of 
particles conductive part icles. 
Reduce the filler I . Lower break down I. More filter layers are 
Ih icklless vo ltages. needed. 

2. Lower filter section 
impedance. 
(3. Difficult to 
manufacture) 

I-I igher frequency I . Lower break down I. Lower fi Iter section 
vol tage impedance. 
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6.6. I c.lfect afFilter PM Loading 

The break down vo ltages of a 10 mm thick clean and loaded filter section were 

measured as 17.9 kV and 16. 1 kV with standard deviat ions of 2.5 kV and 1.0 kV 

respective ly. Thi s ind i a te that load ing only has a small effe t on the break down 

vo ltage of the filter secti on. Thi s can be ex plained by considering the air vo lume 

within the filter. The main factor affecting the break down of this gas is the electric 

fi eld strength , which initiates e lectron ava lanches. To ac hi eve hi gh electri c field 

strengths, a high potenti a l grad ient is required, which is independent of PM load ing. 

The loading grad ient and conduct ive part icles within the media appear to have a 

re la ti ve ly small effect on the break down vo ltages, but a large effect on the resonant 

ci rcuit characteri sti cs. 

When there is a spati al PM loadin g gradient present, the electri c fi e ld strength wi th 

idea l plate o r mesh electrodes is a function of location in the fi lter. In the regions 

with hi gher PM loadin gs, the e lectric fi e ld strength is lower than regions with low 

PM loadings, due to the vari a ti on in effecti ve d ielec tric constant of the materia l. This 

variati on in effect ive dielectric constant leads to the fract ion of current flo wing 

through the d ielec tric and the fi'action nowing th rough the ionised gas to vary 

spat ially through the fi lter, eventua ll y leading to the ex tingui shing of the d ischarge 

once a region of 100 hi gh PM load ing is encountered. The current nowing through 

the di scharge reduces as the local PM loadi ng increases meaning that the local 

temperatu res also reduce along with the regeneratio n. It is, there fore, important to 

consider which side of the fi lter the HV electrode is located. I f the e lectrode is 

located on the clean side of the filter. due to the lower PM load ing, the e lectri c fi e ld 

strength w il l be hi gher meaning that there is more like li hood of the di scharge 

trave lli ng into the filte r vo lume. 

6.6.2 Effect aj"Changing the Transformer Core Gap 

The leakage inductance (and hence the stabil isation of the transformer) was altered 

by varying the gap size between the two sections of trans former core, shown in 

Figure 6. 17. The e ffect on the trans form er equi valent circuit was used in the 

modell ing IQ estimate its e ffect. 
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magnetic core airgap 

secondary winding 

Figure 6. 17 Diagram showing a cross section orIhe transformer core gap arrangement. 

The inductance was measured at 100 Hz using a LCR bridge with the secondary of 

the trans former short ci rcu ited. The low freq uency made the effect of the d istr ibuted 

capac itance small. The res istance was measured at DC across the secondary, as the 

primary wind ing has onl y a small effect on the overa ll resistance. The capaci tance is 

calcul ated from the inductance and se lf resonant freq uency (i tself measured using a 

low freq uency square wave input while mi nimising load capac itance). 

The results are shown in Tab le 6.3. It can be seen that the capacitance and resistance 

were not affected by changing the core gap, as expected, but the inductance reduced 

as the core gap was increased in size. 

Table 6.3. Effect of co re gap size on trans former characteris ti cs. 

Inductance Res istance Capaci tance 
Core gap thi ckness (mm) H Q pF 

0 2.06 900 11 .4 
0 2. 12 900 11. 0 

0.06 20 1 900 11. I 
0.06 206 900 10.2 
0.13 1.7 1 890 11.3 
0. 13 1. 83 900 10.9 

To eva luate the effect of co re gap size on limiting the suppl y current, the following 

definitions we re made. The input vo ltage was such that when the ci rcuit is resonatin g 

(open circuit) it gene rated an output vo ltage of 1000 V. A res istive load was then 

app li ed until the outpu t vo ltage had red uced to 500 V. Th is 500 V current li mit was 

then used to compare the current limiting effect of the changes using the modelling. 
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The mode ll ing predi cti ons of the effect of changing the core gap size is shown In 

Tab le 6.4. Each tape laye r was - 0 .064 mm thick 

Table 6.4. Effect of core gap size on current li miting of the suppl y. 

Eq ui va lent Number of 
Tape Layers 

o 

2 

Inductance 
H 

2.09 
2.0 1 
1.77 

500V curre11llimit 
A 

2.625 x 10·> 
2.7 19 x 10·; 
3.092 x 10·; 

T he vari at ion of the effect of the co re gap thi ckness, Figure 6. 18, on the vo ltage 

across the fi lter secti on shows that the larger core gaps gave s li ght ly increased 

vo ltages. Thi s meant tha t the reduc ti on in current limiting was more s ignificant th an 

the effect of inc reased resonant frequency on the impedance of the fi lter secti on, but 

the overall e ffect was neg li g ible in compari son to, for example, the effect of filter 

thickness, di scussed later. 
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Figure 6. 18. Effect or core gap thickness on the voltage generated across [he filler. 

6.6.3 Efleel of Arli{ieiai Load Capaeilanee 

Adding art ific ial load capaci tance to the transformer circuit a lte rs the resonant c ircuit 

w ithout add ing additiona l d ischarge sites which cou ld act to further dampe n the 

- 170-



CHAPTER 6 AUTOSELECTIVE REGENERATION OF GELCAST FOAM DPFs 

circuit at hi gh vo ltages. This was ac hi eved in thi s study by attaching a HV capacitor 

in paralle l to the filter section bet\',een the HV wire and ground electrode. 

Addin g add itional capacitance reduces the resonant frequenc y of the supply, as 

predi cted by 

f . = I 
. 0 ) ""-;:;-C 

_J[ v LdL d 

(6.8) 

where .f~ is the resonant freque ncy. This means that at resonance, fo r a give n 

transfo rm er, the tilter section impedance wi ll be hi gher, givi ng hi gher vo ltage drops 

for a given current, increasi ng the like lihood of a spati al ly continuous di scharge. 

In add ition 10 thi s effect, the add itional capac itance reduces the impedance of the 

resonant c ircu it meaning that the current limit ing of the supply is lower (i.e . higher 

currents can fl ow at a given vo ltage). This is demonstrated in Figure 6. 19 w hich 

shows the mode ll ed effect of the additi ona l capac itance on the current I imi ting of the 

suppl y. 
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Figure 6. 19. Model ling results showing the effect of add itional capacitance 011 the current limiring of 
lhe supp ly. 
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These two effects are cumula ti ve , both Increasll1 g the like lihood of a spatia ll y 

continuous di scharge. 

The magnetic saturation of the trans fo rm er co re sets an upper limit on the ac hi evable 

current throu gh the secondary. As th e capacitance is increased , and the impedance 

reduced, the vo ltage of the secondary a t satura ti on wil l decrease. Therefore, if the 

capacitance is 100 hi gh, the co re wi ll sat1l1'ate be fo re the break down vo ltage is 

reached and no di scharge will OCCUI'. 

Figure 6.20 shows some measurements made of outp ut peak voltage and current 

through the secondary of the trans form er with a 250 pF load. This load was enough 

to prevent continuo us break do wn between the I-I V and ground electrodes. It shows 

that the peak current of the seconda ry wind ing was lim ited to approx imate ly 300 mA 

(peak to ground). This is a current lim it set by the saturation of the core, and not a 

vo ltage li mit on the secondary. 
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Figure 6.20. PI Ol of measured peak currenl and vo ltage on the secondary of the trans former as a 
funct ion of supp ly voltage. 

With thi s current limit known an upper li m it on the load capacitance is defined by the 

capac iti ve current limit of the transformer secondary. 
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6.6.-1 E./fecl of Filter Thickness 

The thickness of the filter section affects the break down voltage of the filter secti on 

and the capacitance between the HV electrode and ground plane. The break down 

voltages we re measured on 80% porous fi lters of different th icknesses, the data for 

wh ich was shown in Figure 6. I 4. The break down vo ltage was shown to be a linear 

functi on of di stance between the e lectrodes for short distances « I 0 mm) wi th the 

break down vo ltage becom ing less se nsitive to electrode separations at larger 

distances. 

The e ffect on fi lter capac itance has been measured and the results are shown in 

Figure 6.2 I . As the separation increased, the capac itance decreased. The magnitude 

of the measured capaci tance showed that the electrode capacitance contributes o nl y a 

small fi·action of the load capacitance. The capacitance between the I-IV w ire and the 

ground plane was in the region of 20-30 pF, approx imately 5 times that of the 

electrode . Th is means that the re lati ve variati on in overall load capacitance with 

varying filter thi ckness was sma ll . 
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Figure 6.21. Effect of fi lter thickness on load capac itance. 
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The change in resonanl frequency is therefore small due to the rel ativel y constanl 

electrode capacitance. but the reduction in break down vo ltage is significam 

(approxi matel y 1.8 kV mm''). Th is is the dominant change when considering filter 

thickness and leads to an increased likelihood of spatially continuous di scharges with 

thinner filter sam ples. 

6.6.5 SUll'lmwy 0/ £ffeCls 

To al low a comparison of the d ifTerem var iables with respect to their effect on the 

likelihood of a break down. E (hereafter refe rred to as the breakdown effect) wi thi n 

the filter volume. an effect term has been defined as 

11 -11 E = cl 0 

Vh 

(6.3) 

where Vel is the modelled vo ltage drop prior to break down, 110 is the mode ll ed 

vo ltage drop at the centre poim conditions and Vh is the break down vo ltage . This 

means that if changing a variable leads to an increased vo ltage across the gap or a 

reduced break down vo ltage. the break down efTect is pos iti ve. and there is a higher 

likelihood of achievi ng a spatially comi nllous di scharge. If the voltage ac ross the gap 

reduces or the break down vo ltage increases. the breakdown effect is negative, and 

there is a lower likelihood of ach ieving a spatia ll y continuous di scharge . The results 

of thi s analysis using the data presented earli er is shown in Figure 6.22. Thi s shows 

that core gap s ize is expected to have only a small effect on the like lihood of a 

spat ia ll y cominuous discharge. The filte r thi ck ness and artific ial load capac itance 

lead to signifi cant changes in likelihood through the changes in break down vo ltage 

and currem limiti ng of the supply respectively. 
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Figure 6.22. Sensit ivity analysis of the three main factors investigated. 

6.6.6 Tesl Results 

The effects of adding add itional load capacitance and altering the filter thickness 

we re tested in stationary air to confirm the predicted benefits that coul d be achieved. 

A discharge was generated between a mesh HV e lectrode and plate g roun d electrode 

s imilar 10 the arrangement shown in Figure 6.5 . The lilter section was regenerated for 

a peri od of 30 minutes with intermittent di scharges. This prevented tilter damage and 

mainta ined di scharge mobil ity. described in Section 6.7. Figure 6.23 shows the effect 

of varying the filter thi ckness on the penetration illlo the fi lter or the regenerati ve 

discharge . The thi nner filters led to regenerati on or more of the fi lter vo lume (i.e. 

increased penetration) confirm ing the modelling predi cti on. 
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Figure 6.23. Effect of" filtration thickness on discharge penetration. 

The increase of the capaci ti ve load of - 60 pF led to - 25% increase in the current 

now through the d ischarge, wi th a corresponding increase in peak vo ltages pri o r to 

break down. It demonstrated enough effect to cause a spati ally conlinuous di scharge 

when it was not achieved without the add iti onal capac itance. 

6. 6. 7 S UI11I11W)' 

The equi valent electri c c ircuit modelling tool has been used to in vestigate the effect 

o f varying design parameters on the interacti ons between the Autose lective d ischarge 

and the ge lcast ceramic foam DPF. The mode lling predicted that reducing the 

filtra ti on th ickness and increasing the additi onal load capacitance woul d increase the 

like lihood of the di scharge penetrating into the filter vo lume, hence being more 

effecti ve at removing PM. This has been confirmed by ex perimental observati on 

hi ghlighting that thin filter sections and contro l of the load capacitance are needed to 

optimise the Autose lecti ve regenerati on of ge lcasl ceramic foa ms. 

6.7 Maintaining Discharge Mobili ty 

The Autose lecti vity of the d ischarge regenerati on system relies on the trapped PM 

causing the di scharge to preferenti a ll y strike in th e region surrounding the PM. The 
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concept relie s on the effect of the trapped PM on the local electric fi eld , controlling 

the di scharge initi atio n site. When considerin g the who le system, the likelihood of 

the di scharge striking in a si ngle location, when factors such as filter and electrode 

geometry are kept consrant, is a f,lnctio n of: 

I . the loca l PM Local PM distorts the electri c fie ld , tending to increase the 

electri c field strength in the vicini ty of PM (i.e. more PM leads to a more 

preferential location for the d ischarge) 

2. the loca l ionisation frac tions Presence of ion ised particles and free electrons 

in a loca l region reduce the break down vo ltage and hence these regions 

become preferenti al for the di scharge. 

3. the material temperatures (and phases) Conductivity of ceram ics increases 

with temperature (Shackel ford and Alexander, 200 I). Loca l regions of 

materia l with hi gh temperatures and. hence, higher conductiviti es increase the 

electri c field strength in that region. This resu lted in highe r temperature 

regions ohhe filter being prefe rential sites for the di scharge. 

The Autose lect ivity of the regenerati ve discharge was prevented if the local 

ioni sation or material temperatures led to a clean locat ion of the fi lter being a 

preferential site for the discharge when compared to a PM loaded locati on. 

Ex peri ence has shown that thi s can regularly occur when the local ceramic 

temperatures are hi gh. 

Prev ious studies by Proctor (2006) desc ribed intermittent switching of the di scharge 

to control ceramic damage, with the add iti onal benefit of promoting Autose lectivity. 

The use of an off-period leads to dissipati on of ioni sed particles in the region 

surrounding the previo us discharge and reduction of local materia l temperattlre to be 

closer to ambient. Both of these effects lead to a reduced likelihood of the discharge 

striking in the same place aga in . 

Observations have shown that gas fl ow also has a large effect on discharge mobility, 

as demonstrated in Figure 6.24. A discharge between a pin HV electrode and a 

loaded foam filter surface with varying perpendicular gas fl ow rates is shown, where 

the gas fl ow rate was measured using a hot wi re anemometer. 
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f igure 6.24. Photographs showing visual appearance of discharges experienci ng different gas flow 
veloc ities. 

With flo w rates of 0.4 m S·1 the discharge was noticeably affected by the gas flow. 

As the flo w rate inc reased. fo rced convection caused the ionised part icles to be 

moved rapid ly from the di scharge co lumn , changing the location , and potentially the 

fi lter contact po int of the discharge. This demonstrated the infl uence of flo w on the 

mobi li ty of the di scharge and that it can dominate the effect of loaded PM on the 

di scharge locati on. There IS potentia l to ut ili se flow as a contro l for the 

Autose lect ivity. howeve r, the ba lance between achieving Autose lectiv ity and 

domi nance of fl ow is difficu lt to achieve, espec ially in a variab le environment such 

as a di ese l engine ex haust system with varyi ng flo w rates and flow velocities. 

Other potential methods fo r ma intaining di scharge mobi li ty and affecting the 

Autoselectivity of the regeneration include magnetic c011lrol and mec hani cal contro l. 

T he former works on the theory that the cu rrent flow through the di scharge co lum n 

wi ll . in a magnetic fie ld, produce a perpend icu lar fo rce on the moving charged 

part icles g iv ing d irect contro l of the di scharge location. In practice thi s is d iffic ul t to 

achi eve due to the hi gh frequency osci l lating current and the magn itude of the 
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magnetic fi eld required to affect the discharge. Tests with a 50 Hz electromagnet 

identifi ed that magnet ic fields of >0. 14 T were needed to affect the discharge 

mobility for a typical setup. These tests are summari sed in Appendix F. Mechanical 

c011lrol refers to physica l movement of the elect rodes to control the electri c field 

strength again giving direct control of the initiation sites of the discharge. This was 

an unatlractive option due to the complex ity of moving pans within a PM laden 

exhaust system . 

The use of on- and off-times was chosen for the remai ning work presented as it 

offered a high level of control that could be optimised to suit a range of conditions 

whereas controls such as fl ow rates are unpredictable and difficu lt to control in the 

exhaust environme nt. Al though a thorough optimisat ion of the on- and off~time 

together is beyo nd the scope of thi s work. it is poss ible to describe some 

specifications for the on- and off-time: 

I. The on-time shoul d be long enough to ox idise PM provided that it would not 

be long enough to damage the filter material (d iscussed in Chapter 7). 

2. The off-time should be long enough to achi eve Autose lectivity of the 

discharge. 

6.8 Electrode Design 

Generating a di scharge is most simply ach ieved usi ng a pin electrode arrangement to 

focus the electri c field around a sing le poi11l where the di scharge initi ates. Thi s 

generates a single discharge co lumn that can regenerate a cy lindri cal shape between 

itse lf and a flat ground electrode. Thi s means a single pin electrode is limited in the 

filter vo lume that it can regenerate and hence the use of mUltiple pins connected to a 

single power suppl y is required. This increases the vo lume of the filter that a single 

power suppl y can regenerate. This idea can be simplified to consider a mesh 

electrode which will act as multiple discharge sites allowing the di scharge to move 

across a large area and hence regenerate a large vo lume while still allowing gas flow 

through the electrode mesh. For these studies a stainless steel woven mesh electrode 

was used whi ch is ava il able in a wide range of sizes and weaves as we ll as at a low 
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cost. Examples of a lternative e lectrodes tri a l led are shown In Figure 6.25 and 

include: 

I . Pin e lectrode Ideal fo r s tud ies of regeneration characte ri stics. Limited III 

vo lume of filte r that can be regenerated. 

2. Woven mesh electrode Behaves like multiple pin e lectrodes . 

3. Ex panded mesh electrode Also behaves like multi ple pin e lectrodes but 

higher cost in smal l quantities. 

4. Honevcom b electrodes Behaves li ke a mi x between multip le pins and plate 

e lectrode. Can be used to straighten n ,,·bulent fl ow in region surrounding the 

fi Iter. 

5. Impregnated electrodes Behaves like plate e lectrode but no air gaps present. 

Durability of metalli c layers is difficu lt due to either ox idation or separation 

fi·om the surface. 

6. Plate e lectrode Used fo r stationary air tests to achi eved la rge area of 

regeneration a lthough blocks the gas fl ow if applied to fl ow regeneration 

tests. 

aluminium honeycomb 

pin electrode 

aluminium mesh 
V,'" \,'vv'",\,'v V 

Figure 6.25. Phmograph of typical electrode materials. 

The conceptua l case of an infi nitely long plate or fine mesh electrode a ll ows the 

same electric fi e ld strength to be present at each point on the mesh or plate. Al though 
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in rea lity. where the mesh or plate is a finite size there is a di storti on of the electric 

fi eld at the edge of the electrode. Thi s is demonstrated in the electrostati c model ling 

results fo r a pl ate electrode shown in Figure 6.26. The modelling assum ptions for the 

electrostati c modelling are presented in Appendix G. The consequence of th is 

di stortion of the electric fi eld is that it becomes a preferentia l location for the 

di scharge to strike. In most cases the concentration of electric fi eld at the edge of the 

electrode has a stronger innuence on the locati on of the discharge than the PM 

meaning that a pract ical so luti on had to be fo und to maintai n the discharge mobili ty 

across the entire surface area. 

high voltage electrode 

PM loaded DPF 

axis of rad ial 
symmetry 

cross section 

AXIS of ra dial 
symmetry ~. 

increaSing 
electric field 
strength 

Figu re 6.26. Electrostatic modelling of the concentration of electric field at the edge or the electrode. 

The simplest way to control the elec tri c fi eld is to alter the geometry of the 

electrodes, typi ca lly by changing the electrode spacing. By increas ing the electrode 
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spacing towards the edge of the electrode, the electri c fi e ld strength can be reduced 

to match or be lower than the electri c fi e ld stre ngth over the majority orthe electrode 

surface, also shown in Figure 6.26. Th is maintains the autose lectivity of the electri c 

di scharge. 

The mounting of the e lectrodes poses its own difficulti es. The electrod e mounts need 

to: 

I . Ma intain the appropriate electrode spac ing ac ross their entire area. 

2. A llow for variati ons in thermal ex pans ion of the electrode and filter material. 

3. A llow e lectri cal connection to the power suppl y or ground electrode. 

There are at least two possibi lities that a llow all of these requirements to be met, both 

o f which are conside red for the remai nder of thi s research. The first uses the 

electri ca l connection as the electrode support. An example of such an idea is shown 

in Figure 6.27. The electri ca l feedthrough . similar to spark plug technology, is ri g id 

enough to support the electrode. The electrode spac ing will be fi xed by the mounting 

position and the electrode is free to expand and contract without leadin g to potential 

damage of the filte r or electrode. This has the di sadvantage that the electrode spacing 

wil l be more prone to misalignment during manufactu re and operati on which will 

have a signifi cant impact on d ischarge mob ility. 

grounded can ister 

spark plug type 
electrical feedthrough 

HV electrode rig idly 
fixed to the feedthrough 

Figure 6.27. Eleclrode mOUTHing design Proposal I. 
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Figure 6.28 shows the second proposal which involves direct mounting of the 

electrodes to the fi lter surface with a fl ex ible electrical connection so that minimal 

forces are app lied to the electrode once in place. The electrodes are fi xed ri gidly in 

one direction only. perpendicular to the filter surface, to maintain the required 

elec trode spac ing. There is a limited range of movement in the two axes paral lel to 

the filter surface to allow for variati ons in thermal expansion. Such electrode mounts 

can be moulded into the filt er surface duri ng production to reduce number of pans 

and manufacturing compl ex ity. 

grounded canister 

spark plug type 
electrical feedthrough 

HV electrode fi xed 
in one direction to the fi lter 

electrode mounts 

Figure 6.28. Eleclrode mounting design Proposal 2. 

6.9 Unwanted Secondary Emissions 

This section reports the work carried out to confi rm that unwanted secondary 

emissions such as NO,. 0 3 and eN are not sign ificant. The experimenta l 

methodology is introduced followed by the resul ts and di scLlss ion of the 

measurements of secondary emi ssions. 

6.9.1 Methodology 

Transient measurements of the gas compositi on can be carri ed out using a mass 

spectrometer such as the Hiden Analytical HPR-20 shown in Figure 6.29. By 

observing changes in appropriate signal predictions can be made of the emissions 

from the fi lter regeneration. The I-IPR-20 spectrometer had a sensitivity of 
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ap proxi mately 5 parts per bi ll ion (ppb) if the ambient signal is of the same order of 

magnitude as the generated signal. 

ion isation 
__ ----;. - chamber 

flow splitter 

vacuum pump 

QMS and 
detector 

heated quartz 
sampling capillary 

diagnostic 
displays 

flow pumps 

Figure 6.29. Photograph of the Hiden Analytica l HPR-20 mass spectromcter. 

Initi al attempts to measure the generation of unwallled secondary em issions in the 

bu lk gas downstream of the regenerat ing filter were unsuccessful due to the di lution 

of PM in the bu lk gas. To overcome thi s issue, although achi eve a less quant itative 

result, the probe was positioned immediate ly downstream of the electri c di scharge, 

shown in Figure 6.30. A single electric discharge between a hi gh vo ltage pin 

electrode and ground mesh electrode was used to regenerate trapped PM . 
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• 
• 
• 
• 
• 
• eleclric discharge 

• 
Mass Spectrometer Probe--"'~~~~1I'o.. 

• 

• high voltage electrode 

• 
• gas flow • 

• 
• 

/ foam fi lter 
ground mesh electrode 

Figure 6.30. Probe and discharge arrangement for mass specrrome(er measurements. 

The signals of interest are generall y equa l to the atomic mass units (amu) of the 

wal1ted spec ies. For eN and 0 3 thi s is 26 amu and 48 amu respecti ve ly. The NO, 

species (N0 2, NO and N20) generate peak signals at 30 amu (I-liden Analytical, 

2005). The signal from the mass spectrometer was based on the partial pressure (of 

the vacuum chamber pressure) of the spec ies being measured. The pressure in the 

vacuum chamber was noted [Q vary during the tests which directly affected the s igna l 

magn itude. Figure 6.3 1 demonstrates how the signa l vari es with the vacuum chamber 

pressure whi ch was used to compensate fo r th is va ri at ion during data analysis. 
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Figure 6.31. Plot of va riation illlllass spec lromeler signal wilh vacuum chamber pressure 

6.9.2 i?esuils 

With the correction for vacuum chamber pressure, the data was ploned as pans per 

million (ppm) in the gas sample during the test, and is shown here in Figure 6,32, 

The background s ignals, which can vary during the testing, were estimated using a 

linear fit between the initi al period and final peri od when the di scharge system was 

inactive , The difference between the actual read ing and th e background s ignal was 

taken as bei ng a direct result of the Autoselecti ve regeneration, 
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Figure 6.32 . Plm of signals from the mass speClrometer fo r the pOLential by-products 0 ], eN and 

0 ,. 

The noise on the signal makes it d ifficult to visualise the effecl directl y from Figure 

6.32. The large num ber of data points was used to ca lcul ate cumul ative produced 

emi ss ions throughou t th e test. shown in Figure 6.33. T he production rate is near zero 

befo re and after the Autose lecti ve regenerati on but shows a clear production (or 

destruction) duri ng the regeneration. The C (26 am u) and Ox (30 amu) signal 

show sli ght product ion rates while the Ozone (48 amu) s ignal shows it is being 

reduced by the AlIloselecti ve di scharge. 
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Figure 6.33. Plot of cumulative mass spectrometer signal for the potential by-products 0 3, eN and 

NOx. 

Table 6.5 summarises the production rates of the secondary emissions at the sample 

point. These values indicate the production rates in the vicinity of the discharge and 

not in the bulk exhaust gas. An estimate is made of the production rates in the 

exhaust gas in the following section. 

Table 6.5. Mass spectrometer secondary emission measurement results. 

Signal 
Calculated 100% gradient 
Mass 26 (CN) 
Mass 30 (NOx) 
Mass 48 (03) 

6.9.3 Discussion 

Cumulative Gradient 
(4 d.p.) 

7.8651x109 

5.6400x102 

6.2244x105 
-1.2753x I 03 

Equivalent production rate 
ppm (2 s.f.) 

1.0xl06 

7.2xI0-2 

8.0xI0! 
-1.6xlO·! 

To broadly estimate the engine out secondary emissions, the following assumptions 

are needed: 

I. the flow area in which the discharge generates secondary emissions is known 

(-10 mm diameter circle) 
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2. the space velocity, gas temperature and pressure is known (0.86 m S-I, 320 K 

and 1.013xl0s Pa respectively) 

3. the production rates are proportional to the PM oxidation rates 

An example calculation of the estimated engine out secondary emissions of eN is 

shown to demonstrate the methodology used for all the secondary emissions. The 

molar density of the bulk gas is 

!: = _p_ = 1.013 X 10
s 

= 38.07 mol m-3 

V RoT 8.3144x320 

The molar density of the produced secondary emissions are therefore 

(!:) = 38.07x 72 9 2.741xl0-6 molcN m-3 

V eN lxlO 

The mass density of eN in the gas is then 

2.741 X 10-6 molCNm-3 =7.127xlO-S gCNm-3 

The volumetric flow rate affected is given as 

The eN production rate is estimated as 

meN = 6.754 x 10-s x 7.127 X 10-s x 60 x 60 = 1.733 x 10-s g h-I 

For regeneration rates of 0.2 g h- I per discharge, the eN production rate is -8.7xl0-s 

gCN gPM-1
• Table 6.6 summarises similar calculations for 0 3 and NOx• 
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Table 6.6. Summary of calculations of estimated secondary emission production. 

Mass 26 (CN) 
Mass 30 (NOx) 
Mass 48 (03) 

Molar Mass Density Production Production 
Density Imol Ig m-3 Rate Ig S-I Quantities Ig 

m-3 gPM-1 

2.74IxI0-6 7.127xl0-' 6.13xlO- iO 8.7xW-' 
3.046xlO-3 0.1401 (max) 1.20xW-6 1.7x10-1 

-6.09IxI0-6 -2.924xl0-4 -2.51xl0-9 -3.6xI0-4 

For a 56 kW engine producing -5 g h- I PM, the emissions are summarised as in 

Table 6.7. The estimated engine out emissions can be seen to be negligible. 

Table 6.7. Estimated engine out secondary emissions 

Emission 
Engine out emissions 

h-I g 
4.4xI0'" 
8.5xlO-1 

1. 8x 10-3 

6.10 Concluding Remarks 

Specific engine out emissions 
gkW1h-1 

7.8xl0-6 

1.5xlO-2 

3.2xlO-5 

Chapter 6 has discussed the main issues related to integrating the Autoselective 

regeneration technology with geicast ceramic foams. The discharge behaviour and 

interactions with the gel cast foams have been discussed and the need for spatially 

continuous discharges highlighted. Spatially continuous discharges allow 

regeneration ofthe filter volume as opposed to the surface and potentially offer more 

efficient oxidation of PM. Modelling led development of the integrated system has 

given a number of solutions that promote spatially continuous discharges which have 

subsequently been proven during rig testing. Issues relating to mobility of the electric 

discharge have been introduced and solutions proposed. Electrode materials and 

designs have been demonstrated that are low cost and effective. Secondary unwanted 

emissions of 03, CN and NOx have been shown to be negligible. 

The following chapter considers the thermal flow through the integrated system, 

optimising the ceramic material properties and investigating the potential of filter 

damage. 
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ANALYSIS OF THERMAL ENERGY FLOWS 

Chapter 4,5 and 6 discussed the developments of the Autoselective system including 

optimisation of the electric discharge for PM regeneration in the exhaust flow. This 

Chapter makes use of finite volume modelling techniques to study, understand and 

optimise the heat energy flow within the filter. The model is introduced and applied 

to study the effect of material choices, exhaust gas temperature and on- and off­

times. The experimental and modelling investigations of the risk of damage to the 

filter during regeneration follow. 

7.1 Thermal Effects 

Observation of thermal effects within the filter volume are difficult due to the 

restricted depth of view into the filter. Combined with the duration needed to carry 

out a large number oftests to investigate a range of variables it is more time effective 

to develop thermal models to give an insight into the thermal behaviour of the gelcast 

ceramic foams with Autoselective regeneration. Commercial modelling packages are 
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available but those readily accessible for this project had some limitations that 

prevented adequate modelling of the Autoselective system (e.g. COMSOL 

Multiphysics general heat flux boundary condition applied a fixed heat flux to an 

entire boundary rather than as a function of the local temperatures). For this reason a 

two dimensional finite volume thermal model of the gelcast ceramic foams was 

developed to study the Autoselective regeneration system on porous ceramics. The 

model was then used to understand the effects of material choices on energy usage, 

the effect of ambient temperature on maximum on time and the effect of discharge 

power density on the required off-times. 

7.1.1 Model Derivation 

The thermal conduction equations for two dimensional transient problems with radial 

symmetry can be written as 

(7.1) 

where p is the medium density, cp is the specific heat capacity, k is the thermal 

conductivity, T is the temperature, t is the time, r is the radius, y is the height and S 

includes any source terms e.g. heat sources. The conceptual model that was used is 

shown in Figure 7.1. The cells resulting from discretisation are rings of rectangular 

cross section. 
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Figure 7.1. Schematic ofthe finite volume model discretisation. 

Discretising the above equation and integrating with respect to the cell volume 

results in 

(7.2) 

where the subscripts refer to the locations shown in Figure 7.1, Vp is the volume of 

the cell, A is the connecting area between two cells, /5t is the discretisation time step, 

or is the cell width, oy is the cell height and S' is the source term heat flux. 

Rearranging this gives 

(7.3) 

where 
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(7.4) 

s' pcpVpT/ 
= q cO/weelion + q radialion + q lIealsource + 5t 

These equations can be solved for either the north-south direction or east-west 

direction independently. Iterating the solution by alternately solving north-south and 

east-west directions converges on a solution for that time step. When solving in the 

north-south direction, the east and west terms on the right hand side of the re­

arranged equation form part ofthe source terms. Similarly, when solving in the east­

west directions, the north south terms form part of the source terms. The equations 

have been implemented in Matlab to allow easy solution of the equations in matrix 

form. Special consideration for the boundary conditions are of the form discussed by 

Versteeg and Malalasekera (1995). At the northern and southern boundaries there is a 

heat flux equal to 

q = hAt:.T (7.5) 

where q is the heat flux, h is the heat transfer coefficient, A is the area through which 

heat flux takes place and t:.T is the difference between the bulk gas temperature and 

the surface temperature, At this boundary there is no conduction. The coefficients, a, 

then become 
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and 

pc pVp kA, kAw kA" 
ap = +--+--+--

8t br br "y 

kA, 
aR = br 

kAw aw =--
br 

aN =0 

kA" 
as = "y 

, pcpVpT/ ( ) 
S = q convection + q radialioll + q lIea/so1lree + ot + hA" Tg - Tp 0 

pc P Vi' kA, kAw kA" 
ap = +--+--+--

8t br br "y 

kA, 
aE = br 

kAw 
a =--

w br 

kA" 
aN = "y 

as = 0 

, pcpVpT/ ( 0) 
S = qctJllvec/uJn +qradJal/oll +q"eal.murce + 81 + hAs Tg -Tp 

for the northern and southern boundaries respectively. 

(7.6) 

(7.7) 

At the symmetry axis the area is zero meaning that conduction on the central 

boundary is zero. This leads to the coefficients being 
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pc p Vp kAw kA" kA" 
a = +--+-+-

p Of or 0'0' 
aE =0 

kAw aw =--
or 

kA" 
aN = 0' 

(7.8) 

kA" 
as = 0' 

pcpVpT/ 
S' = q convection + q radiation + q hea/source + 01 

At the western boundary there is a continuous ceramic foam medium through which 

conduction can still take place. A known temperature boundary condition applies at 

the edge boundary which leads to the coefficients becoming 

kA, 
aE =-

or 
2kAw 

aw =--
or 

kA" 
aN = 0' 

kA 
a.=-" 

s 0' 

s' pcpVpT/ 
= q COllvection + q radtaln)1J + q heofsOllrce + 81 

(7.9) 

where Aw is the known temperature at the boundary. Similar analysis for the corner 

cells provides boundary conditions for these locations. 

To solve these equations it is necessary to define the material parameters to represent 

the foam structure. The following required defining: 

1. Density 

2. Specific heat capacity 
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3. Thermal conductivity 

4. Surface to gas heat transfer coefficient. 

The density was defined by making the approximation that the foam structure can be 

represented by a homogeneous medium. This defines the bulk density as 

(7.10) 

where p / is the density of the ceramic, P2 is the density of the air and <: is the porosity 

of the ceramic foam. The specific heat capacity can be found in a similar way 

assuming that the trapped air is at the same temperature as the solid, giving 

(7.11) 

which when P2<<P /, and epsilon is not close to 1 or 0, can be approximated by: 

(7.12) 

The thermal conductivity is based on the relationships defined by Brailsford and 

Major (1964) for heat flow in porous materials with spherical pores 

k = k 2k, + ka - 2(k, - k.}c 
, 2k, +ka +(k, -k.}c 

(7.13) 

where ks and ka are the thermal conductivity of the solid and the air respectively. The 

surface to gas heat transfer coefficient is more difficult to define and is estimated as 

approximately 30 W m-2 Kt based on typical values for natural convection in air 

(Janna, 2000). 

The material properties used for the simulations are shown in Table 7.1 with the 

calculated bulk ceramic foam properties included. 
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Table 7.1. Material properties used for the modelling (based on 80% porous foams) 

Material 
Cordierite 
Alumina 
Zircon 
Silicon Carbide 
Cordierite Foam 
Alumina Foam 
Zircon Foam 
Silicon Carbide Foam 

Thermal Specific Heat Melting 
Conductivity Densitv Capacity Temperature 
(W m'! K'!) (kg rn'S) (J kg'! K'!) (K) 

1.59 2100 753.6 1650 
8, 6.3 3980 1103.4 2050 
4.2 4600 538 2400 
59.8 3210 31.4 2700 
0.25 420 754.1 1650 
1.17 796 11 03.3 2050 
0.62 920 538.4 2400 
8.57 642 32.6 2700 

Sources:- CRC Handbook of Chemistry and Physics (2003). Shackelford and Alexander (2001). 
Ahrens (1995) 

7.1.2 Model Validation 

To validate the model a comparison was made with a cordierite foam test sample that 

was exposed to comparable thermal energy to the discharge. The model was then 

used to identify the time taken to cause damage with the measured thermal energy 

input and the results were compared. Figure 7.2 shows the results of this comparison 

with promising agreement. This demonstrates that the model is capable of reasonable 

agreement with the thermal flows in the ceramic foams. 
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Figure 7.2, Comparison of modelling predictions and experimental measurements of exposure 
duration before onset of damage. Experimental results taken from Figure 7.7. 
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7.1.3 Effect a/Material Choices on Regeneration Efficiency 

If thennal damage becomes a problem it is commonly suggested to choose a material 

with a higher working temperature, such as changing from cordierite foams to 

alumina foams. Due to the increased thennal conductivity and heat capacity this has 

a significant influence on the flow of thennal energy through the foams. This is 

clearly demonstrated in Figure 7.3 which shows the predicted amount of energy 

required from a single discharge to raise material temperatures to 1000 K It can be 

seen that significantly more energy (which would be input as longer on-times) would 

be required to increase zircon and alumina to 1000 K than cordierite. Under the same 

thennal heat flux, it was predicted that silicon carbide foam would not reach 1000 K 

at steady state. The conclusions are that an optimum material will have a melting 

temperature high enough for rapid PM oxidation, low thennal conductivity and low 

heat capacity. Cordierite has a melting temperature higher than that required for rapid 

oxidation of PM and requires minimal energy to raise the local temperatures meaning 

this offers a good compromise allowing rapid oxidation of PM and low energy 

consumption. 
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Figure 7.3. Effect of material choices on energy required to heat the local material. 
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7.1.4 Effect of Bulk Temperature on Maximum On-time 

Figure 7.4 shows the predicted effect of bulk gas temperature on the maximum on­

time before the onset of damage for a fixed energy input. It shows that over the range 

of ambient temperatures that will be experienced in the exhaust system a significant 

variation in the maximum on-times is present. The relationship is almost linear (the 

dashed line demonstrates a slight deviation from linearity). This implies that control 

of the discharge system on vehicle will need to be a function of engine operating 

conditions. It is important to note that this is the equivalent ofthe on-time required to 

reach a given temperature showing that at higher ambient temperatures, shorter on­

times are needed to rapidly oxidise the local PM . 
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Figure 7.4. Effect of ambient temperature on maximum on time. 

7.1.5 Effect of Discharge Power on Required Off-times 

To highlight the complexity of optimising the off-time, an example showing the 

predicted effect of the discharge power on the required off-time is shown in Figure 

7.5. This figure shows three different discharge powers with on times needed to 

reach 1100 K peak material temperatures. The discharge was then extinguished and 

the material temperatures noted as it cooled. 
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Figure 7.5. Plot showing the transient (peak) temperature for a range of power densities. 

The cool down rate is summarised in Figure 7.6, giving an indication of the cool­

down period as a function of the input power density showing that as the input power 

density reduced, the cool-down time increased due to the reduction in thermal 

gradients in the material at the time the discharge was extinguished. 
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Figure 7.6. Effect of power density on the cool down time constant. 
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When optimising the on- and off-time considerable effort needs to be made to 

understand the interactions of the thermal effects being optimised. In this work 

appropriate on- and off-times of typically 100 ms and 800 ms respectively have been 

used to regenerate trapped PM, avoid thermal damage and maintain Autoselectivity. 

Thorough optimisation, however, has not been carried out. This modelling highlights 

the complexities and identifies some important considerations that must be made 

when optimising the discharge on- and off-times. 

7.2 Filter Damage 

Preliminary tests regenerating ceramic foam DPFs in stationary air showed that filter 

damage can be caused by either melting or thermal shock. Characteristics and factors 

affecting melting and thermal shock are discussed in the following text supported by 

modelling and experimental testing. 

7.2.1 Consequences of Filter Damage 

Filter damage was found to occur mainly through melting of the ceramic and thermal 

shock. The effect of the two types of damage can be summarised as: 

1. Melting Local melting of the ceramic foam substrate on a scale smaller than 

the pore size alters the shape of the struts. On larger scales (-1 mm) the pore 

structure collapses reducing the porosity and changing the filtration 

properties. 

2. Thermal shock Thermal shock leads to breaking of the ceramic filter into a 

coarse powder (-500 !lm particles) which will either be lost in the exhaust 

gas or trapped in the remaining filter. The filtration efficiency will be slightly 

reduced and the back pressure increased. 

For isolated cases of damage the bulk filtration and regeneration properties of the 

filter will not be affected. For the lifetime of an engine the cumulative effect of 

repetitive damage in the form of either melting or thermal shock will be unacceptable 

and would potentially lead to filter failure. On- and off-times must be used to control 
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of both thermal shock and melting damage and must be optimised before the 

Autoselective system is ready for production. 

7.2.2 Melting 

High temperatures are a pivotal requirement for effective oxidation of trapped PM. If 

high enough thermal flux is applied to a small enough volume (i.e. high enough 

power density) the material temperatures are capable of exceeding the melting 

temperature of the ceramic filter material. Preliminary testing showed that such an 

effect is typically observed to be the major cause of damage with materials that have 

relatively good thermal shock properties, such as cordierite. 

Thermal heat flux was applied to the surface of the ceramic to allow measurements 

of on-times before melting for different heat flux density using a Coherent S48 

continuous wave C02 laser (\ 0.6 ~m wavelength). The diameter of the laser beam 

was varied to achieve different power densities of the same order of magnitude as the 

heat flux density of an electric discharge. The typical heat flux from the discharge 

was measured as ~ 2 W mm-2 surface area. Single exposures of varying durations 

then allowed investigation of the effect of discharge contact duration on filter 

damage. The onset of damage was determined visually by observing reflections from 

the glass phase ceramic that results from melting damage. 

The calculated power densities are summarised in Table 7.2 and the effect of 

exposure time on cordierite foam is shown in Figure 7.7. The top of each dataline 

indicates a test point where damage was observed. The bottom of the dataline 

indicates the closest test point where damage did not occur. It can be seen that with 

specific power in the region of -2 W mm·2 the onset of melting occurred at 

approximately 350 ms. As the specific power is increased to approximately 

6 W mm·2 the onset of damage occurred between 60 and 80 ms. This data allowed 

determination of the discharge mobility that is required to avoid filter damage 

without airflow. 
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Table 7.2. Determination of the specific power. 
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Figure 7.7. Effect of shot duration on the occurrence of melting of cordierite ceramic foam for 
different power densities. 

Figure 7.7 shows that there is an inverse type relationship between the applied power 

density and the maximum exposure time before the onset of melting of the ceramic 

material. The constant power density asymptote corresponds to the power density at 

which the steady state material temperature is the melting temperature of the 

ceramic. 

Effect of Material on Likelihood of Melting 

The thermal model described earlier was used for the investigation of effects of 

material properties on the maximum discharge on-time for a range of available 
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ceramic foams. The heat source was considered to be localised in a region small 

compared to the overall volume of interest. 

A number of ceramic materials that can be produced as ceramic foams have been 

investigated using this model to gain an insight into how their durability with regards 

melting compare. Cordierite, alumina, zircon and silicon carbide are considered with 

melting temperatures shown in Table 7.1. These are typical materials available in 

geIcast ceramic foam form. The modelling is not intended to give definitive values 

for maximum stationary discharge times but instead to guide material choices during 

design and development of this regeneration system. 

Figure 7.8 shows the predicted durations for which the heat flux can occur in one 

position before the onset of damage using the heat transfer model for this selection of 

materials. The durability of the materials regarding melting varies significantly. The 

largest effect is due to variations in thermal conductivity which act to reduce both the 

rate of increase of surface temperatures and the steady-state temperatures. This also 

varied over a wider range than the specific heat capacity and so the effect dominates. 

It is worth noting that although this study focused on 80% porous ceramics, the 

thermal conductivity of the ceramic foam, and hence resistance to melting, can be 

manipulated by altering the porosity. Cordierite was shown to be the most likely to 

be damaged out of the four materials investigated, with Zircon and Alumina being 

significantly more resistant to the heat flux. This information acts not only as a guide 

to material durability but allows an estimate of the maximum exposure time of a 

filter site to the discharge. Choosing a material purely for its durability will lead to an 

inefficient system since, although alumina can handle significantly higher power 

densities before melting, the thermal energy is removed from the surface faster, 

leading to lower surface temperatures and less PM oxidised for higher energy inputs. 

This needs to be considered since regeneration effectiveness is a vital aspect of 

regeneration systems. 
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Figure 7_8_ Time before melting temperatures are reached as a function of input power density. 

Considering that a typical discharge power density is in the region of 4 W mm-3 it 

can be seen that on cordierite, if the discharge is left stationary for more than 

approximately 150 ms then the material is likely to melt In the case of alumina and 

zircon the melting temperatures are never reached with power densities of this 

magnitude. Testing on alumina and zircon samples supported this finding as the 

discharge could be sustained indefinitely without melting the ceramic. This identifies 

materials that offer improved durability, however, cordierite was proposed due to the 

energy efficiency benefits, since careful control of power density can be used to 

avoid filter damage_ 

7.2.3 Thermal Shock 

Another significant mode of material failure is a result of thermal shock. The highly 

focused heat flux from an electric discharge can lead to thermal gradients of the 

order of 500 K mm- I
_ This imparts significant stresses on the ceramic due to thermal 

expansion of a very localised region and was observed in this research with alumina 

filters_ Due to the complex nature of analysing localised thermal stress in the random 

structure of the ceramic foam the understanding of the system was achieved by 

experimentation_ 
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A Coherent S48 continuous wave CO2 (10.6 Ilm wavelength) laser with varying 

exposure time was used to investigate the effect of different power densities on 

thermal shock damage of alumina filters. This was identified by the breaking up of 

the ceramic surface into a coarse powder. 

The results of the onset of damage are presented in Figure 7.9 which showed similar 

trends to the melting damage, shown in Figure 7.8. It highlights that as the power 

density increased the threshold duration for damage to be observed reduced 

significantly. This is a result of the thermal gradients increasing as the material 

temperatures increase more rapidly. If the heat flux is switched off before the 

temperatures become excessive, the thermal stresses can be controlled. It was 

necessary to test this effect on the material being used since the limit of time or 

power density will depend not only on the material but also the pore structure (e.g. 

size) of the foam. Alumina is known for poor thermal shock properties and 

preliminary testing demonstrated that thermal shock is a concern on alumina filters. 
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Figure 7.9 Effect of power density on the onset of damage with Alumina filters. 
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The thennal stress failure of ceramic foams is a complex area. Typical thennal stress 

resistance parameters presented by Richerson (1992) have been used to compare 

some available ceramic materials. These are resistance to fracture initiation: 

R, = £T(l-v) 
aE 

and resistance to fracture propagation: 

(7.14) 

(7.15) 

where (J is the tensile strength, v is the Poisson ratio, Cl is the coefficient of thennal 

expansion and E is the Young's modulus. The material data used is shown in Table 

7.3. 

Table 7.3. Material data used for thennal shock analysis. Source: Shackelford 
and Alexander, 2002 

Young's Thermal Expansion 
Modulus Poisson Coefficient Tensile Strength 

Material IGPa Ratio /K" x1O·6 /MPa 

Silicon Carbide 303 0.19 5.48 86.2 
Alumina 379 0.25 9.00 241 

Cordierite 138 0.17 2.70 24.1 
Zircon 165 0.20 5.50 60.0 

Table 7.4 shows the calculated resistance to thennal shock. All the filter materials 

demonstrate comparable resistance to fracture initiation although their resistance to 

fracture propagation varies notably. Alumina showed the least resistance with 

cordierite showing the most resistance to fracture propagation. This implies that 

when evaluating the resistance to thennal shock from the Autoselective discharge, 

resistance to fracture propagation is a more appropriate measure than resistance to 

fracture initiation. Cordierite is shown to offer an effective and durable filter material 

providing peak material temperatures can be controlled below the melting 

temperature. 
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Table 7.4 Resistance to thermal shock of selected ceramic materials. 
Parameter (for constant thermal gradient) 

Resistance to fracture Resistance to fracture 
initiation propagation 

Material (K) (Pa·') 
Silicon Carbide 42 50x10·6 

Alumina 53 9x10·6 

Cordierite 54 285x10·6 

Zircon 53 57x10·6 

7.3 Concluding Remarks 

Chapter 7 has investigated the thermal flow through the ceramic foams when the 

Autoselective regeneration system is active. Modelling investigations of available 

materials have highlighted that cordierite has a low melting resistance to high power 

densities, however, requires less energy to heat the filter up to temperatures that 

rapidly oxidise PM. Cordierite is proposed as a promising material as the low 

thermal conductivity, heat capacity and reasonable working temperature allow 

efficient localised heating of the ceramic and trapped PM. Modelling and 

experimental investigations into melting and thermal shock identify design limits and 

further support for material decisions. The following chapter presents single 

electrode regeneration of a gelcast ceramic foam DPF on a 4.4 litre turbo charged 

heavy duty diesel engine. Effects of artifical load capacitance, applied voltage, 

electrode spacing and on- and off-times have been studied during the on-engine 

testing and are presented in Chapter 8. 
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CHAPTER 8 

ON-ENGINE TESTING 

8.1 Aims 

Following successful investigation of the principles of regenerating gelcast ceramic 

foam filters with the Autoselective technique the concept has been investigated on an 

engine. This introduces a number of different factors not simulated in the hot flow rig 

such as continuous PM loading. The aim of the on-engine testing was to investigate 

the effect of a number of unknown factors on the performance of the regeneration 

system under real engine conditions as an initial optimisation of the design factors. 

Smoke measurement equipment on engine is also suitable for measuring blow-off 

(non-oxidised PM removed from the DPF) during regeneration. This chapter 

described the experimental methodology for the on-engine tests not already 

discussed in Chapter 3. This is followed by a description of the data analysis and 

presentation of the test results. There is then a discussion of the results and potential 

causes of the observed trends. 
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8.2 Experimental Method 

For simplicity, a single HV electrode was mounted parallel to the surface of a 7.5 

inch diameter, 10 mm thick disc filter. This avoided the complexities of electrode 

interactions when investigating the effect of the factors of interest. A CAD image 

demonstrating the electrode arrangement is shown in Figure 8.1. The high voltage 

electrode was smaller in diameter than the ground electrode to simulate a continuous 

ground across the entire filter surface. The electrode spacing increased around the 

edge of the electrode to maintain discharge mobility. This has been described in 

more detail on page 182. The electrodes were mounted by inserting a wire of the 

mesh through a protrusion of the ceramic foam filter. This fixed the electrode rigidly 

in the direction perpendicular to the filter surface, maintaining the electrode spacing, 

but allowed movement in the plane of the filter surface to allow for thermal 

expansion of the mesh and filter materials. 

ground 
electrode 

power supply 
connection 

Figure 8.1. CAD image showing (a) the mesh ground electrode arrangement and (b) the high voltage 
electrode arrangement. 

The mesh ground electrode was connected directly to the grounded exhaust canister. 

The HV electrode was connected to the power supply through a Macor electrical 

feedthrough on the downstream side of the filter. 

The 4.4 litre Perkins I 100 series test engine and canister has been described in more 

detail in Chapter 3. The filter was mounted against the retaining ring with the high 

voltage electrode on the downstream side of the filter and the grounded electrode on 
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the upstream side of the filter. The location and key features of the experimental 

setup are shown in Figure 8.2. The test condition was chosen to be 1000 rpm and 

between 0 and 15 Nm load. This condition generated approximately 0.2 g h·1 PM out 

of the engine which was anticipated as a typical regeneration rate that could be 

achieved by a single electrode. The space velocity at this test condition is comparable 

to a cylindrical filter arrangement that forms the integrated prototype concept in 

Chapter 9. 

t 

HV elec:trode--II-

Macor feedthrough 

filter 

grounded canister 

• exhaust flow 

ground electrode 
filter support 

filter seal 

Figure 8.2. Filter setup and electrical feedthroughs for on-engine testing 

Secure filter mounting and edge sealing was achieved using Interam gasket material 

An example of the seal is shown in Figure 8.3. The Interam provided an airtight seal 

that offered secure positioning of the filter sample with low risk of damage. 
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.. 

Interam seal 

Figure 8 .3. Photograph of the edge seal around filter section 

Factors that have not yet been full y in ves ti gated include the on-time, off-time, input 

vo ltage (d irectly linked to power), electrode spac ing and additi onal load capacitance 

(varying th e resonant elec tri ca l circuit). These are a ll continuous quantitative 

vari ables. The range of facto rs under investigation is shown in Table 8.1. On-t ime 

was expected to have an effect on the peak temperamre of the ceram ic, how much 

PM is bu rnt off each time the di scharge strikes and the di scharge mobility. Typica l 

on-times fo und to be suitable durin g ri g testing were approx imately 100-1 50 ms. Off 

time affects the di scharge mobility by determ ining how much the local ceramic 

temperatures coo l befo re the di scharge stri kes again . The optimum va lues for the off­

time are un known so a range between 500 and 800 ms was used, known to be of the 

order of magnitude of the coo l down time constant of the ceramic. Ri g testing has 

shown input voltage to have a signifi cant innuence on discharge behaviour, being 

more successfu l at vo ltages above 220 V. Electrode spac ing has an affect on 

di scharge mobility due to now turbul e nce, and also heating effi ciency of the 

discharge (Chapter 5). To increase effici ency th e spac ing needs to be minimised. A 

range of I to 3 ml11 was chosen as thi s can be ach ieved reli ably in the laboratory 

environment and is reasonab le fo r produc ti on implementation. Modelling has shown 

that adding additio nal e lectrode capacitance can increase the chance of a spati ally 

continuous regenerat ive discharge through the filter (C hapter 6). A range of 55 to 

- 2 13 -



CHAPTER 8 ON-ENGINE TESTING 

100 pF was investigated here to determ ine if any further advantage could be 

ach ieved. 

With 5 factors at 2 leve ls, a full fac torial investi ga ti on would require 32 ex periments. 

To quantify ex perimental errors, repeat runs would be needed as we ll as further tests 

(cente r points) to find any non-linear relati onshi ps. Us ing computer gene rated 

experimental designs (D-Optimal designs), it was possible to begin to quanti fy the 

effects, interact ions and no n-lineari ties of the facto rs listed in Table 8. 1, w ith 5 

repeat tests fo r quanti fy ing experimenta l errors. with onl y 3 1 tests. Due to time 

limitations and avail abil ity of filter samples thi s offered the most promising 

experimental des ign for th is investigation. 

Table 8.1. Summary of facto rs and leve ls in vesti gated w ith the on 
engi ne testing. 

Factor 
On-Time (ms) 
Off-Time (ms) 
Input Voltage (V) 
Electrode Spac ing (mm) 
Add iti ona l Load Capac itance (pF) 

Low Setting 

50 
500 
220 

I 
55 

High Setting 
200 
800 
260 
3 

100 

The performance of the regenerati on system was eva luated wi th respect to 

regenerati on rate, regeneration effectiveness (energy usage) and blow-off rate. The 

blow-off rate is defi ned as the difference between the downstream PM mass now rate 

wi th the discharge active and the downstream PM mass now rate when the discharge 

is inact ive. The regeneration rate was estimated by considering the rate of increase in 

back pressure fi'om when the system becomes acti ve to when it is not. The test was 

carri ed out with the discharge swi tched o ff and a fter 45 minutes the Autose lecti ve 

regenerati on system was switched on. The general assumption was made that if the 

regenerati on system is regenerating 0 g h· 1 of PM, the rate of increase in back 

pressure will be equi va lent to when the di scharge system is not acti ve. Likewise, if 

the regenerati on system was regenerating at a rate equal to the trapping rate of PM, 

the rate of increase in back pressure wou ld be approx imate ly 0 kPa h· l
. For 

compan son purposes between the facto rs, in between these two ex tremes the 

relationshi p between regenerati on rate and back pressure ri se was considered to be 

linear. 
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As the fac tors were varied, the energy consumption of the system also vari ed. The 

power consumption at the electrodes can be ca lculated from the current and vo ltage 

waveforms measured usi ng methods descri bed in Chapter 3. The regenerati on 

effect iveness was then ca lculated as the mass of PM regenerated per unit energy 

consumed. 

Blow-off rate was estimated using pre- and post-filter smoke meter measurements. 

By comparin g the downstream PM quantity with the discharge system on and off. an 

estimate of the amount of trapped PM leaving the fi Iter when the regenerati on system 

was acti ve could be made. 

Table 8.2 summari ses the responses that were required and the measurements during 

the test that were needed to calcul ate the response. More detail s of the calculati ons 

fo llow in Secti on 8.3. 

Tablc 8 2 Summary of responses and measures required .. 
Response Units Measures Requ ired 
Regenerati on Rate g h-' Pre- and post-smoke numbers, 

back pressure measurement. 

Regeneration Effecti veness " kW" h" 
" 

Electrode current and vol tage waveforms, 
ca lcu lated regenerati on rate 

Blow-off Rate g h- Pre- and post-smoke num bers 

8.3 Data Analysis 

A typica l dataset showing the di ffe ren ti al pressure ac ross the fi lter is shown in 

Figure 8.4. There are fo ur mai n sect ions to th is plol. Secti on (i) is the first peri od 

wi th the regeneratio n system off. Secti on (ii) and (iii ) are when the regenerati on 

system is on. Secti on (iv) is the final period wi th the regeneration system switched 

off. Fo r approx imately 30 seconds in between the on and off sections the engine is 

switched off. Peri od (ii ) shows a signi fi cant in itia l drop in back pressure associated 

with the initi al switch on of the di scharge, which is do ne whil e the engine is off. The 

discharge loosens the PM and can redi stri bute it within the fi lter meaning that a sma ll 

amount is blown off the fi lter when the engine is restarted. The system then settl es to 

equili brium (secti on (ii i)) where the blow-off and regenerati on rates have stab ili sed. 
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Figure 8A. Typical back pressure dataset from the engine testi ng. 

The PM load ing rate of the fi lter can be estimated using the pre- and post-smoke 

meter measurements. The load ing rate will vary during the test as the engine back 

pressure. fi lter filtrati on properties and bl ow-off conditions vary. By repl oll ing the 

back pressure data agai nst cumulati ve load ing, the effects of varyi ng load ing rates 

will not affect th e gradient analys is described earl ier. Importantl y. the reducti on of 

PM on the fi Iter due to any blow-off will not affect the gradient of the pressure data. 

The dataset shown above conve rted in thi s way is shown in Figure 8.5. The key 

features o f Figure 8.4 are sti ll clearl y visible. 
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Figure 8.5. Back pressure dalasel plotted agai nst cumulative trapped PM. 

With the assum pti ons outlined in Sec ti on 8.2 , it is now poss ible to use a linear 

regression of sec ti ons (i), (iii ) and ( iv) on Fi gure 8.5 to find the gradi ents of the lines. 

The reducti on in gradi ent, A, can be found from 

[
(111, +2111".) ] 

111" , ? 
A ==---_____ ~= 1- _ 111", (8.1 ) 

where 111" 111", and 111,,, are the gradi ents of the rate o r back pressure ri se from Figure 

8.5 for peri od (i). (iii ) and (iv) respecti vely, The regenerati on ra te can th en be found 

as a fracti on of the PM loading rate of the fi lter. Thi s means that 

.[ 2111 ] r = R 1- 11/ 

111 , + m,v 
(8 .2) 

where /' is the regenerati on rate and i? is the PM fi lter load ing rate. To calculate the 

regeneration effec ti veness it is necessary to fi rst calcul ate the power consumption o f 

the system. Since power suppl y developmenl is being continuously carri ed out by 
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other researchers, thi s study focused on the power consumption at the electrode . 

Us ing the methods outlined in Chapter 3 the current and vo ltage flowin g through the 

electrodes was measured , an example of which is shown in Figure 8.6. Instantaneous 

powers can be calculated by the product of rhe current and vo ltage, giv ing typical 

results as shown in Figure 8. 7. 

10 

5 

o 
QJ 
Cl -5 
.l!l o 
> -10 

-15 

-20 

-0.2 -0 .1 0.0 

Sample Time (ms) 

0.1 

Figure 8.6. Example current and voltage waveforms 
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It can be seen that the instantaneous power in the di scharge in thi s test was typicall y 

reaching 600 W. Thi s was onl y for short durations « I 0 ~L S) during the repet iti ve 

break downs o f the air gap betw·een the electrodes. There was also a cycl ing power 

flowing between the load capaci tance and the transformer inductance which is visible 

in Figure 8.7. 
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Figure 8.7. Typical instantaneous power consumption plot, at the electrodes during AUlose leclive 
regeneration . 

The cyclic average of the instantaneous power provides an average power for the 

di scharge. P. while the di scharge is acti ve. The average power whil e the regenerati on 

system is on must also consider the on and o ff-time, giving 

(~) 
P =--,,10,,-0 _ P =( I"" )1 fvV)dl 

' 01/ + 101f ' OIl + ' of! J1 0 

(8.3) 

where 11 is an intege r. P is the average power consum pti on. Ion is the on-time of the 

di scharge. loif is the off-tim e of the di scharge, P is the average power consumption 

during the on-time. l is the discharge frequency. I is the instantaneous current and V 

is the instantaneous vol tage. 

The regeneratio n effec tiveness (with respect to energy consumption) can then be 

defined as 

,. 
E == , P (8 .4) 
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where Er is the regenerat ion effec ti veness and r is the regenerati on rate. 

The filtration efficiency was calcu lated as 

In 
I d 

'7 (111 = --.-
Ill " 

(8.5) 

whe re the downstream and upstream PM mass fl ow rates (dId and liJ" respectively) 

are ca lculated fro m the A VL 415 smokemeter read ings in accordance with the 

manufacturer' s guidel ines (AVL, 2002). Figure 8.8 shows a plot of the ca lcul ated 

filtration effic iency as a fun ction of' time. An exponential curve fit to the filtration 

efficiency data during the off periods was used to predict the filt ers effi ciency durin g 

the on peri od. Any difference between the ac tual fil tration effi c iency and the 

predi cted filtra ti on e ffici ency wi ll be a result o f' e ither experimenta l errors or PM 

blow-ofT from the filter. Ex perimellla l errors we re eva luated with in the DoE software 

and estimated errors on the results are shown in the following sec ti on. The amount of 

PM that is being blown off, as a function of the incident PM rate is then g ive n as 

(8.6) 
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Figure 8.8. Example filtration efficiency data during the test period. 

8.4 Res ults 

The data was analysed us ing Stat-Ease Design Expert so ftware. This software was 

designed to analyse errors and indicate the statisti ca l significance of any proposed 

models. The data in Table 8.3 fo rmed the resul ts lIsed in the DoE software , rounded 

to 3 decimal places (d.p.) , 4 d.p. and 2 d.p. for the regenerati on rate, blow-off rate 

and regeneration effectiveness respectively. 

- 22 1 -



CHAPTER 8 ON-ENGINE TESTING 

Table 8.3. DoE Software input data 
On- Off- Elec trode Applied Addit ional Regeneration Blow Regeneration 
lime time Spaci ng Vo ltage Capaci tance Rate Offl~ate Effecti veness 

Run 111 5 ill S 111111 V pF g l,-I g If I g kW-1 h-1 

I 125 650 2 260 77.5 0.099 0.0047 6.92 

2 200 800 I 260 55 0.105 0.0182 7.26 

3 50 650 2 240 77.5 0.079 0.0176 11.03 

4 50 650 2 240 77.5 0.118 0.0269 26.02 

5 50 500 3 220 55 0.039 0.0096 

6 50 800 3 260 55 0.054 0.0 15 1 6.77 

7 50 800 
, 

220 100 0.003 -0.00 19 0.62 0 

8 200 500 I 260 100 0.092 -0.00 13 3.03 

9 200 800 I 220 77.5 0.074 0.0046 4 .29 

10 50 800 2 220 55 0.045 0.0 102 7. 14 

11 50 500 I 220 77.5 0.093 0.0 146 11.77 

12 125 800 I 220 100 0.077 0.0 11 0 6.64 

13 125 500 2 240 77.5 0.077 0.0 149 4. 13 

14 50 800 I 260 100 0. 101 0.0 140 24.30 

15 50 500 1 260 55 0.075 0.0198 6.81 

16 200 500 1 260 55 0.079 0.0039 2.97 

17 125 800 I 220 100 0.086 0.0016 8.24 

18 200 800 2 260 100 0.067 0.0074 2.96 

19 50 800 1 260 55 0. 100 0.0 173 14.37 

20 125 650 2 260 77.5 0. 11 0 0.0 136 7.93 

2 1 50 500 2 260 100 0.063 0.0 132 3.26 

22 200 500 3 260 100 0.027 0.0069 0.93 
)' _ 0 50 500 3 260 55 0.086 0.02 10 7.68 

24 50 800 3 220 100 0.04 1 0.0051 3.95 

25 200 500 3 260 55 0.040 0.0024 1.33 

26 200 500 3 220 55 0.025 0.0037 0.77 

27 200 800 3 220 55 0.044 0.0 136 1.40 

28 200 800 3 260 55 0.074 0.0 183 4.80 

29 125 500 2 240 77.5 0.039 0.0254 1.20 

30 200 500 2 220 100 0.036 0.0006 

3 1 200 500 I 220 55 0.076 0.0009 4.61 

A general factoria l interacti on mode l was used initi a ll y. Anova analys is of the model 

fit to the ex perimental data ind icated which facto rs showed the least significant fit 

(i.e. most likely to be a result of errors). The least signifi cant fac tor was removed 

from the model and fo ll owed by Anova analysis of the updated mode l. Th is process 

was continued until all the vari ables had >90% confidence o f a sta tistica ll y 

signi fi cant e ffect. The proposed models to describe the behaviour of the regenerati on 

system was 
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I. Regeneration Rate: 

r = -0.02852 - 0.02 11 7 x + 0.000573 * V 

(8.7) 

2. Regeneration Effectiveness: 

R = 73.98642 - 0.03 I 94t"" - 0.06733/ "11 - 12.6823x - 0.25585V - 0.03774e 

+0.000306t "o.v + 0.043808xV 

(8.8) 

3. Blow-off Rates: 

lil." = 0.020725-0.0002St"" -0.000037/"0 +0.000 117V -o.ooo le 
+0.0000003I S/".,I ,ifj 

(8.9) 

where the electrode spacing, x, the app li ed voltage, 11, the on time, Ion, the off time, 

toff, and the addi ti onal capaci tance, e, are l11easured in mm, V, ill S, illS and plO 

respecti ve ly. 

8. -1. 1 Regenerat ion Rate 

Graph ica l representation o f the behaviour of the regeneration rate IS shown in 

Figures 8.9 and 8. 10. In al l the fi gures the standard errors calcul ated usi ng the 

stati stica l DoE so ftware are shown as the error bars. Figure 8.9 shows the effect of 

electrode spacing on the regeneration rate . Reducing elec trode spaci ng resulted "' 

increasing regeneration rates if a ll other factors were kept constant. 
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Figure 8.9. The predicted effect of electrode spac ing on the regeneration rare 

The effect of app lied vo ltage, shown in Figure 8.10. shows [hat increasi ng the 

applied vo ltage led to increasing regeneration rates. The effect of the electrode 

spacing and applied vo ltage are large relative to the standard errors. 
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Figure 8. 10. The predicted effect of power supply input vo ltage all the regeneration rate 
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The other factors had small effects relative to the errors and are consequently not 

di scussed further here since any effect in the model could be a result of experimental 

error and noi se . 

8. -I. 2 Regeneralion E,ffecliveness 

Figures 8. 11 to 8.13 show the effect of the facto rs on regeneration effect ive ness. Thi s 

is a more complex model and involves two interactions between the factors. Figure 

8.11 shows the effect of on-time. Lower on-times offered noticeab le improvements 

in regeneration effecti veness, increas ing the regeneration effect iveness from 8 to 

12 g kW- I h·1 over the test range. 
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Figure 8. 11. The predicted eITect of oil-lime on the regeneration effectiveness 

Figure 8. 12 shows the effect of oFf-time. This factor had an interaction with the 

app li ed voltage meaning that the e ffect of the off-time depends on the appli ed 

vo ltage. At lower vo ltages the off-time had litt le effect. At hi gher vo ltages, 

increasing the off-time resulted in improvements in regeneration effectiveness. 
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Figure 8. J 2. The predicted effect of off Lime on the regenerat ion effectiveness. 

Electrode spac ing, shown in Figure 8.13 also invo lved an interaction with app li ed 

vo ltage. At higher vo itages, the regenerati on effecti veness became less dependent on 

e lectrode spacing, although over the test range there was generally a trend of 

reduci ng regenera ti on effectiveness with increas ing elec trode spac ing. 
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Figure 8.1 3. The pred icted effect of electrode spacing on the regcncrarioll effect iveness. 
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Other fac tors had a neg li g ible e ffect on the regenerati on effecti veness relati ve to the 

ex perimental error and noise. 

8. -I. 3 Blow-oIl 

Figures 8. 14 to 8. 17 show the e ffect of the fac tors on the amount of PM that is blown 

o fT the filter when the d ischarge system is acti ve . The e ffect of on-time, shown here 

in Figure 8.] 4 included an interaction with the off-time. With short off-times, the 

blow o ff ra te was hi ghl y dependenl on the on-time. Under these conditions, the 

shorter o ff limes led to hi gh rates of blow-off. With long off-tim es, the blow-o ff rate 

became independenl of the on-time. 

0.020 

~ 0.016 -:re 
~ 
Ql 0.012 -cu 
~ 

iI:: 
0 800 ms off-l ime , 

0.008 ;;: 
.Q 
CD 

:;;; 0.004 
0-

0.000 

40 60 80 100 120 140 160 180 200 220 

On-Time (ms) 

Figure 8.1 4. The predicted e ffec t of Oil-ti me on the blow-off rate 

Figure 8. 15 shows the effecl of off-time on the blow-off rate. This is a rep roduction 

of the information shown in Figure 8. 14 to aid interpretati on. With short on-times, 

increasing o ff-time led to a reducti on in blow-off ra te. With longer on-times, 

increasing the off-tim e led to an increase in blow-off rate . 
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Figure 8.1 5. The predicted effect of orr-l ime on the blow-off rate 

The effect of applied vo ltage was smaller than the previous effects and was not 

interacting with the other vari ab les. Increasing the applied vo ltage led to increased 

amounts of blow-oft: shown in Figure 8.16. 
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Figure 8. 16. The predicted effect of app lied voltage on blow-ofT ra te. 

- 228 -



CHAPTER 8 ON-ENGINE TESTING 
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The applied capac itance had a small er effect agalll and was getting close to the 

confidence limits, indicated here by the standard errors in Figure 8. 17. Genera ll y, 

reducing the add itional capacitance led to increasi ng blow-off. 

Additional CapaCitance (pF) 

Figu re 8.1 7. The predicted effect of addi tional load capac itance 011 the blow-off rate 

8.5 Discuss ion 

8. 5.1 0" Time 

The negli gibl e effect of on-time on the regenerati on rate impli es that the majo ri ty of 

the regeneration activ ity occured in the earl y stages of the on-time (within the fi rst 

50 ms). Thi s has a signi fi cant im pact on the regenerati on effecti veness s ince when 

the on-time is increased, littl e addili onal benefit was gained but th e amount of energy 

used increased almost li nearl y. This is a strong indi cati on that a target on time of 

50 ms or less is preferred in a proto type ai med at achiev ing effi cient regeneration. 

The effect of on-ti me on the blow off was a result of the break down behav iour of the 

system. There we re two di stinct periods durin g a single on-time, shown in Figure 

8. 18. T he first period which can last for approxi mate ly 40 ms was a hi gh vo ltage, 

unstable di scharge peri od prior to a lower vo ltage, stable di scharge. The blow-off 

was predi cted to occur during the hi gh voltage peri od when th e electrostat ic forces 
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on the trapped PM will be hi ghest. The duration of the unstab le discharge period was 

a function of the combined on- and off-time. This means, for example, that with short 

off limes, the electrode gap could break down more easi ly and become stab le in a 

shorter length of time. Likewise, with long on-times, the ease of break down was 

improved and the unstable region became shorte r in duration. The effect of on-time 

on blow-off shown in Figure 8.14 was expected to be a manifestation of thi s effect 

where for the shorter oft~ti m es. the on-time had a significant effect on the duration of 

the unstable period while at longer off-times, the duration of the unstable period was 

determined almost pure ly by the off-time. 
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Figure 8.1 8. PIOl of electrode voltage as a function of time showing the two distinct operating 
reg ions. 

8.5.2 OflTime 

The effect of off-time with low app li ed vo ltages on the regeneration rate was 

negligib le, showing that (over the tested range) the oxidation during the on-period 

was more important than during the off-period. With high applied vo ltages, the off­

time became more important. This coul d be exp lained by considering the 

autose lectivity of the di scharge. It has already been mentioned that at long off-times, 

the unstable di scharge period was longer since the di scharge fo und it harder to 
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become stab le. This effect is shown in Figure 8. 15 as the easier the di scharge finds it 

to become stab le, the more likely it is to break down in the same place as the 

previous di scharge due to presence of higher temperaUtres and rem nant charge (both 

in the gas phase and dielectric charge). If longer off-times lead to increased di scharge 

mobility then the di scharge is going to focus more on regions of high PM loading, 

hence increas ing the regeneration rate (per strike) and regenerati on effecti veness. 

The effec t of off-time on blow-off fo ll owed the trends described in the on-t ime 

di scussion. With short on-times, the unstable peri od duration was independent of the 

off-t ime meaning that the blow-off rate reduces as the number of unstab le peri ods 

reduces. With longer on-times, the off-time had a big influence on the unstable 

period duration, wi th increas ing off-times leadi ng to increasing unstab le period 

durations and hence blow-off rates. 

I f a short on-time is used for optimum regeneration effecti veness then a long off-time 

is proposed as thi s offers minimal blow-off without adverse ly affecti ng the 

regeneration effectiveness. 

8. 5.3 Et/eel of Eleelrode Spacing 

The study of the effec t of electrode spacing on the heating efficienc y of the di scharge 

exp lained the increasi ng regenerati on rate and regeneration effectiveness wi th 

reduc ing electrode spacing. If the electrode spacing was small enough to begin to 

affect the autoselecti vity the results wou ld have shown a reducing regeneration rate 

with reducing electrode spacing. Since thi s is not observed then an electrode spac ing 

of 1 mm is proposed fo r a prototype system. The electrode spacing had a negligib le 

effect on blow-off rates which could be understood by cons idering the electric fie ld 

strength be tween two plate electrodes. Although with larger electrode spacing, the 

electrode vo ltage requi red to achieve a break down would be higher, the electri c fi eld 

strength in the vicinity of the di scharge wi ll be the same meaning the e lectrostatic 

forces on the trapped PM are not go ing to change signifi cantly with increasing 

electrode spaci ng. 
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8. 5. -1 Effecl of Applied Vo/rage 

The applied vo ltage had a direct relationship with the amount of power fl owing 

through the di scharge. This means that increasi ng the applied vo ltage increased the 

regenerati on rate, but due to the increased power had a neg li gib le effect on the 

regeneration effecti veness. It could however increase the electrode vol tage during the 

unstable disc harge period and hence increase the blow-off rates. Provided that a 

stable discha rge can be achieved it is therefore proposed to use the lower app li ed 

voltage of the tested range. 

8.5.5 E[fecl of Addiliona/ Load Capacirance 

The range of add itional load capac itance tested was found to have a lmost no effect 

on the regeneration rates and regeneration effectiveness. This implies that the 

minimum capac itance of 55 pF altered the resonant circuit enough to produce the 

requ ired break down. The blow-off was fou nd to reduce a small amount with 

increasing capacitance which can be attributed to the reduced ga in o f the resonant 

ci rcuit wi th the increasing load . This will act in a s imilar way to reducing the applied 

vo ltage by limiting peak electrode vo ltages during the unstab le di scharge period. For 

a prototype system a 55 pF capacitance is proposed which can be increased further to 

reduce blow off provided transformer saturation is avoided. 

8.6 Concl uding Rema r ks 

Successful demonstrati on of the e ffect of the Autoselective regeneration of gel cast 

ce ram ic foam s on the filter back pressure on-engine has been presented. The effec ts 

of on-time, oft~t im e , additional load capacitance, app lied vo ltage and electrode 

spacing have been eva luated to give initial direction for system optimisation. 

Chapter 9 concludes the main discussion in the thes is by presenting a prototype 

design proposa l for an Autose lecti ve regenerating ge l cast cerami c foam DPF. 
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CHAPTER 9 

PROTOTYPE DESIGN 

9.1 Introduction 

This chapte r describes the prolOtype design of an AUlOse lecti ve regenerating gelcast 

ceramic foam diese l particulate fi lter. The prototype des ign follows from the 

deve lopments earli er in thi s thesis. Its projected performance is evaluated and 

compared to the cu rrent state of the a rt. 

The prolOtype design is based around the engine data shown in Tab le 9. 1. The peak 

now rate is calcul ated by the a irnow through the engi ne with 90% vo lumetric 

effi c iency and a 20: I air fuel ratio (by mass) with the intake conditions at I bar, 

40 QC. 
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Table 9 1 Engine specification used for pro[Qtype filter des ign . . 
Target engine Perk i ns I I 040-44 
Aspi rat ion NA 
Engine displacement 4.4 litres 

Bore and stroke 105 mm x 127 mm 
Compression ratio 16.2: 1 
Peak engine power (at engine speed) 56 kW (at 2200 rpm) 
Estimated peak engi ne exhaust fl ow rate - 305 ko 1'-' 

" Estimated average PM generati on rate - 5 g h-

9.2 The Prototype Design 

To more easil y achieve spatia ll y continuous di scharges the design has two 8 mm 

th ick filt er layers, as shown in the exploded view in Figure 9. 1. The cy li ndrica l shape 

of the foam s allows increased fl ow area per unit can ister vo lume. Between the filter 

layers is the ground electrode and on the inner and outer surface of the irll1 er and 

outer filter respectivel y are HV electrodes. The HV eleco'odes (with profil ed edges) 

are moun ted d irectl y [Q the filter surface as described in Chapter 7. The ground 

electrode is mounted direc tly to the gro unded cani ster. The filter arrangement is such 

that the fl ow trave ls from the outer edge to the inner axi s, shown in the cross section 

in Figure 9.2. Th is acts [Q generate more even PM di stribution as more PM will be 

trapped on the upstream s ide of the fi lter. 

outer carlistl~c 

HVelectrodes 

outer '"" "'-~ 

ground ele:ctrodl=-_ 

inner fiilter·-__ ~AI' 

HVelectrodes 

plate 

Figure 9. 1. Computer generated image orthe electrodes, filter and canister making the prototype 
design. 
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gas flow 

Figure 9.2. Cross seclion orlhe illlcgraled prolOtype concept 

The design parameters are summari sed in Table 9.2. The target filtratio n effic iency 

was set at 80% to remain competitive with alternative filtration systems. Each fi lter 

sec ti on must, therefore, have 55% fil tration effi ciency. With 5 g h-I incident PM , the 

outer fi lter will trap 2.76 g h-I and the inner laye r will trap 1.24 g h- I
. With an 8 mm 

th ickness fo r each later, thi s corresponds to a va lue of 'l ' mm = 9.57% and, by curve 

filling to the data in Table 4.1_ a pore size of 340 f.UTI. The estimated achievable 

regeneration rate is approximately 0.2 g h-I per di scharge . Due to the di scharge and 

power suppl y characteristi cs, onl y one di scharge can be generated per high vo ltage 

electrode. The outer fi lter therefore needs - 14 HV mesh electrodes and the inner 

fi lter - 6 HV mesh electrodes. For tesse ll a ti on , 15 and 6 electrodes are proposed for 

the outer and inner surface respectively. This arrangement is shown in Figures 9. 1 

and 9.2. The electri cal feedthroughs, although not yet full y investigated, are like ly to 

be based on spark plug techno logy. feed ing the high voltage through the grounded 

cani ster. 
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Table 9 2 Prototype system design parameters 

Outer section fi ltrati on area 0.0574 m-

Inner secti on fi ltrati on area 0.0452 m" 
HV electrodes on outer surface 15 
HV electrodes on inner surface 6 
Electrode Spac i ng I mm 
Pore size 340 !lm 

9.3 Integrated Prototy pe Performance 

Table 9.3 shows the pred icted performance of the integrated prototype concept. The 

predi cti ons a re based on the best results achieved during thi s research which may be 

improved upon with further study and optimisati on. The fi lt rati on effici ency, as 

already mentioned, is 80 %. This is ex pected to be enough to meet 20 I 0 legislati on 

(.I ohnson. 2006). The power requirement. based on a regenerati on effecti veness of 

- 12 g kW·1 h· 1 (on-engine test results, Chapter 8) is 333 W at th e electrodes . If a 70 

% transf"o rm er e ffi ciency and 60 % altern ator e ffi ciency are assumed thi s trans lates 

to a 794 W (o r - 65 g h· l
) fuel consumpt ion penalty. The PM holding capac ity, to 

mai ntai n back pressure below 10 kPa at ra ted now is 0. 162 g, calculated using 

methodology described in Chapter 4. Thi s would therefore require continuous 

operati on of the regeneration system to maintain PM loading below thi s va lue. The 

cani ster vo lume is comparab le to a WFF, although is not limited to the cy lindri cal 

geometry. 

Table 9 3. Pred icted prototy pe performance 

Filtra tio n Effi ciency 80% 
Continuous power requirement 333 \1\' 
PM holding capacity 0. 162 g for 10 kPa at rated n ow 
Clean filte r back pressure at ra ted now 7. 13 kPa 

Canister vo lume 2.65 litres (as ShO"~l in Figure 9. 1) 

9.4 Compa.-ison with State of the Art Regeneration Sys tems 

The integrated prototype design offers comparable cani ster vo lumes to WFFs. The 

nex ibility in the shape of the cani ster is beyond that commerciall y ava il able w ith 
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WFFs. The filtration effic iency and PM holding capaci ty are lower and the clean 

back pressure is higher. These tradeoff the benefits with adaptability, robustness of 

the fil ter and filter strength . Compared to alternative foa m filters, the filtration 

performance is comparab le, the filter is more compact and mechanically stronger. 

Autoselecti ve regeneration offers average energy demands comparab le to fue l 

burners and electri cal heati ng, shown in Figure 9.3. Since it is continuous 

regeneration, Autose lecti ve regeneration does not ri sk uncontrol led regeneration 

events with se lf sustained burning of the trapped PM . The instantaneous energy 

demand is comparab le to systems that re ly on bypass ing the gas flo w around the 

filter. Thi s has significant benefits as there will be no need for a dua l filter system to 

achieve NTE emission limits. The regenerati on is more robust than any other 

regeneration system in vesti gated whi ch require a min imum temperature (in the case 

of catal ysts), contro ll ed ai rfl mv (in the case of electrica l heating, microwave heating 

and fuel blll'n ing) o r only operate within a small range of PM filter loading. The 

re liance of many systems on precious metals makes systems sllch as the 

Autoselecti ve discharge attractive options to limi t the dependence of cost on the 

precious metal market. 
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0 Fuel Burner (with bypass) 
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6 10 0 Electri ca l Heati ng (wi th bypass) 
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Figure 9.3. Comparison of Lhe energy requirement of tile AUloselective regenerarion ofgelcasl 
ceramic foams to typical regeneration systems. 
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9.5 Concluding Remal'ks 

Chapter 9 has preselHed an ilHegrated prototype design using knowledge from the 

earlier chapters to spec ify design parameters. The system energy effi ciency is 

prom ising whi ch, combined with the capabili ty of regenerating at fu ll exhaust fl ow 

over the entire engine operati ng range, makes Autoselective regeneration of gelcast 

ceramic foam s an anractive opti on for commercial explo itation. Chapter 10 

summari ses the ma in conclusions that have been drawn from thi s wo rk and discusses 

potent ia l future work related to thi s researc h. 
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CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER WORK 

The research presented in this thesis has optimised gelcast ceramic foam diesel 

particulate filters (DPFs) and applied to them the new Autoselective electric 

discharge regeneration (filter cleaning) technique. This demonstrated reliable 

regeneration over the entire engine speed and load range, with low energy and power 

requirements. The Autoselective regeneration process uses the direct conversion of 

electrical to thermal energy in an electric glow discharge for rapid local heating of 

PM trapped on the gelcast ceramic foam DPFs. 

This research has developed empirical models to evaluate the performance of 

conceptual foam DPFs and applied this model to optimise the gelcast ceramic foam 

geometry. Design maps were presented as a tool to understand the large number of 
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application dependent variables that affect the design of an optimum ceramic foam 

DPF. Examples of gelcast ceramic foam DPFs were presented. 

The Autoselective regeneration system was developed to work effectively with the 

gel cast foam DPF both on dedicated exhaust flow simulation rigs and on an engine. 

Autoselective regeneration was shown to efficiently reduce the back pressure of 

gelcast ceramic foam DPFs on a heavy duty diesel engine at low exhaust 

temperatures making it an attractive option for future application. 

This final chapter summarises the major findings and conclusions of the research to 

develop an Autoselective regenerating gelcast ceramic foam diesel particulate filter. 

This is followed by recommending some opportunities for future research resulting 

from this work. 

10.1 Conclusions 

This research has developed the novel Autoselective regeneration system to 

effectively and efficiently regenerate gelcast ceramic foam DPFs through generating 

understanding and knowledge of the physics involved. In addition, during these 

investigations a number of experimental techniques have been developed that 

supported this work and that can support similar future research and development. 

The important conclusions from this research are: 

I. Measuring the pore diameter of gelcast ceramic foams using planar imaging 

of a filter cross section requires a correction to account for the sectioning 

effect on the visible pore diameter. The visible pore diameter divided by 0.79 

(2 s.f.) was shown to correct the average visible pore diameter to give the 

average pore diameter. 

2. Pre- and post-weight measurements of filter samples at non-ambient 

temperatures led to errors in the mass measurement resulting from the 

buoyancy of the trapped air. Ideal gas relationships that allow the correction 

of the weight measurement have been presented, allowing mass 

measurements without needing long durations for cooling of the sample to 

near ambient temperatures. 
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3. Considering the PM density and composition, pre-loading of filter samples 

should be carried out with engine loads between 60 and 74% peak load for 

PM properties representative of real world engine cycles. 

4. New methodology has been developed that allowed analysis of the effect of 

local PM mass loading within the filter on the generated back pressure. The 

relationship was derived by considering PM loading distribution with 

pressure drop relationships for flow through porous media. This allows 

predictions of filtration efficiency and back pressure characteristics of any 

conceptual foam filter designs that previously could not be estimated 

accurately. 

5. The optimum microscopic and macroscopic geometry of a gelcast ceramic 

foam DPF is highly application dependent. To support the design of gelcast 

ceramic foam DPFs, an example design space was presented for a 0.06 m2 

flow area filter. Similar design maps can be readily produced from the 

derived relationships describing the loaded filter exhaust gas flow back 

pressure. 

6. Filtration efficiencies >95% have been demonstrated with significantly 

smaller filtration volumes than current state of the art filters, although they 

were limited in their PM mass holding capacity. With a comparable filter size 

and PM holding capacity to a monolithic WFF, a filtration efficiency of 

-SO% is achievable. 

7. Gelcast ceramic foam DPFs PM mass holding capacity can be increased by 

either reducing the filtration efficiency or increasing the foam pore size. This 

allows optimisation of the gelcast ceramic foam to suit PM loading 

requirements for alternative regeneration systems such as microwave heating. 

S. Autoselective regeneration of diesel PM was shown to be a result of heating 

of the PM to temperatures at which rapid PM oxidation occurs. Generation of 

highly reactive species are expected to have a lesser effect. 

9. New non-contact methods of measuring heat flux from atmospheric pressure 

electric discharges have been developed and used to investigate the effect of 

gas flow, electrode spacing and discharge current on the heating effect of the 

discharge. Increasing gas flow velocity (in any direction), increasing the 

electrode separation and increasing the discharge current reduces the heating 
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efficiency (i.e. the amount of electrical energy that is converted to thermal 

energy in the solid). 

10. The efficiency of the conversion of electrical energy to thermal energy in the 

discharge-solid contacts was described by considering the discharge as a 

heated column of gas. Increasing heat flow from the discharge to the 

surrounding gas (e.g. forced convection) reduces the heating efficiency of the 

discharge. 

11. Modelling showed that using filter materials with low thermal conductivity 

and low heat capacity improved significantly the effectiveness of the 

Autoselective regeneration of gelcast ceramic foam DPFs by reducing the 

energy needed to heat up the substrate and local PM. Of the materials 

considered, cordierite offered the best compromise between peak material 

working temperatures and heat flow properties. 

12. Control of local material temperatures (affecting discharge autoselectivity 

and risk of damage) was achieved by intermittent application of the electric 

discharge. The optimum settings for the duty cycle and period were shown to 

be exhaust gas flow condition dependent. 

13. For effective PM regeneration, the electric discharge must penetrate into the 

filter volume. With high PM loadings the resonant circuit must be capable of 

driving more current than with lower PM loadings, to achieve a discharge 

within the filter volume. This was achieved by adding additional load 

capacitance between the high voltage (HV) electrodes. 

14. To achieve typical regeneration rates, multiple Autoselective discharges were 

required. This was done by using discrete high voltage mesh electrodes 

connected to independent power supplies. 

15. Mesh electrodes on either side of a thin filter section offered regeneration of 

the entire filtration volume. To promote autoselectivity it was necessary to 

have a small air gap between the electrode and the filter surface, typically -1 

mm. The electrode spacing was required to be increased towards the 

perimeter of the electrode to improve the distribution of the electric field. 

16. The use of atmospheric pressure glow discharges for rapid local oxidation of 

PM from gelcast ceramic foam DPFs has been shown to be an efficient and 

effective method for regenerating DPFs under full exhaust gas flow. 
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Regeneration effectiveness of -12 g kW' h-' was demonstrated during real 

engine testing. 

17. An integrated prototype of an Autoselective regenerating gelcast ceramic 

foam DPF for a 56 kW heavy duty diesel engine has been presented_ The 

projected filtration efficiency is 80% with a canister volume comparable to a 

5.66 inch diameter monolithic wall flow filter. The predicted average 

electrical energy requirement was 333 W (which is -794 W of fuel power 

requirement). This was shown to be comparable with current state of the art 

filtration and regeneration systems. The instantaneous energy requirement of 

333 W is significantly lower than comparable systems such as fuel burners or 

electric resistance heaters. 

10.2 Recommendations for Further Work 

This research has successfully developed and demonstrated the Autoselective 

regeneration of 80% porous gelcast ceramic foam DPFs. During the process of this 

research a number of interesting areas worthy of further work have been identified; 

these are: 

I. Optimisation of discharge on- and off-times. This research has identified 

some of the complex effects the choices of discharge on- and off-times have 

on the regeneration, filter damage and discharge behaviour. Initial values that 

proved effective have been proposed but were not optimised. Optimisation 

would offer further energy efficiency benefits and allow optimised 

regeneration under all engine conditions. 

2. Extension of foam DPF optimisation. The gelcast foam DPF optimisation 

presented considers only 80% porous gelcast ceramic foams due to their 

expected strength. Expanding the gelcast ceramic foam DPF optimisation to 

consider a range of foam densities may offer improved filtration performance, 

PM holding capacity and exhaust system flow back pressure. 

3. Investigation of alternative filtration substrates. The Autoselective 

regeneration technique has been applied here to gelcast ceramic foam DPFs 

and earlier to monolithic WFFs (Proctor, 2006). The availability of other 
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types of filtration substrate, such as fibrous filters should be investigated to 

determine the full potential of the Autoselective regeneration technique. 

4. On engine multiple electrode prototype demonstration. An integrated 

prototype design has been presented which should be capable of 

demonstrating multiple electrode regeneration of a geicast ceramic foam DPF 

on an engine. Manufacture and application of this prototype design will 

demonstrate the concept and for potential commercialisation of this 

promising technology. 
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ApPENDIX A: OPTICAL EMISSION SPECTROSCOPY 
EQUIPMENT AND CALIBRATION 

The Princeton Instruments PI320 Spectrometer with the PI ICCD-1024-E camera 

was used for this research. The equipment was loaned from the EPSRC instrument 

pool. 

A two stage calibration was carried out. The first stage calibrated the wavelength 

using a Hg-Ar lamp which generated emissions at known wavelengths. The known 

wavelengths were used to calibrate the instrument based on linear fits between the 

known points. The second stage. used a calibrated tungsten lamp to generate a 

broadband emission spectrum of known intensity at given wavelengths. This light 

source was used to calibrate the signal magnitude. The emission spectra from the 

calibration lamps is shown in Figure A.l. 

--Hg-Ar Calbration Lamp 
- -- -- Tungsten Calibration Lamp 

--------------------- -

, 

300 400 500 600 700 800 900 

Wavelength (nm) 

Figu re A.I Calibration lamp spectra 
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ApPENDIX B: HEAT FLUX MEASUREMENTS­
JUSTIFICATION OF 2-D ApPROXIMATION 

The heat flux measurement in Chapter 5 relies on the surface temperature measured 

with the thermal imaging camera to be representative of the bulk material 

temperarure. The appendix shows the calculations that justifY the use of 1 mm thick 

aluminium to approximate a two dimensional strucrure. 

Under steady state, a one dimensional heat flux calculation can give an 

approximation of the difference between the average material temperature and the 

surface material temperarure. The one dimension heat flux equation is 

dT 
q=-kA­

dx 
(B.1) 

where q is the heat flux, k is the thermal conductivity, A is the area, T is the 

temperature and x is the distance. Re-arranging and integrating gives 

T=- qx 
kA 

(B.2) 

The heat flux, q, throughout the layer will be equal to the heat flux from the surface. 

The heat flux from the surface is 

q = -hA(T - T.) (B.3) 

where h is the heat transfer coefficient, T is the surface temperature and Tg is the bulk 

gas temperature. The average temperarure can be calculated as 
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- hAlT, -Tg} 
T = T + --'---=---"-'-., 4kA (B.4) 

where f is the average material temperature and t is the material thickness. The 

error between the average temperature and surface temperature, ET is therefore 

(B.S) 

Figure B.l shows the effect of temperature on the error associated with a given 

surface temperature for a 1 mm thick aluminium section. This error is less than 1 % 

of the material temperature and is therefore negligible compared to other 

experimental errors. In addition, this error is not random, and the surface temperature 

will always underestimate the average temperature. 

~ 
::J - 3.5 CIl 
~ 

Cl)~ 
a.~ 
E~ 3.0 
2 ~ 
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OlCll 2.5 CIl ~ 
~ Cl) 
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CIl Cl) 2.0 
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Cl)'t: 
..c iil 
Cl)1:J 1.0 
l.l c: c: CIl 
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~ 0.5 
~ 
Cl 

0.0 
300 320 340 360 380 400 

Surface Temperature (K) 

Figure B.l Variation of error in average temperature measurement using the thermal imaging camera 
for a range of surface temperature. 
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ApPENDIX C: HEAT FLUX MEASUREMENTS­
UNCERTAINTY ANALYSIS 

Uncertainties in the measurement of heat flux from electrical plasmas are: 

1. Calibration of thermal imaging equipment (i.e. emissivity). 

2. Error in material properties (i.e. density and specific heat capacity) 

3. Resolution of thermal imaging equipment (manifested in the definition of the 

control volume) 

4. Signal noise on the temperature data 

The emissivity was calibrated to within 0.01 by matching the surface temperature 

measured using the thermal imaging equipment to the surface temperature measured 

with a k-type thermocouple at approximately 200 QC. The absolute value of the 

emissivity for the aluminium electrodes was 0.23. The material properties were taken 

from Shackelford and Alexander (200 I) and are estimated to be accurate to within 5 

%. The effect of the resolution of the thermal imaging camera resulted in errors in 

the defined control volume. For an arbitrary shape control volume such as that shown 

in Figure C.l, the maximum error in definition of the control volume size is equal to 

the area of the outer most pixels (the shaded region). 

arbitrary 
control volume 

maximum 
error in area 
(and volume) 

1 pixel 
thickness 
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Figure C.I Schematic showing the error in defining the control volume resulting from the resolution 
of the thermal imaging camera. 

This means the error in volume is equal to 

C 2 
El" =-xp xt=cpt (C.l) 

P 

where c is the circumference of the control volume, t is the electrode thickness and p 

is the dimension of the pixel (mm per pixel). Applying this calculation to a range of 

control volume sizes for a sample set of data results in Figure C.2. As the control 

volume reduces in size to less than 50 mm3
, which corresponds to a smaller number 

of pixels, the associated error in the calculated thermal flux can increase to greater 

than 30%. Focusing the area of interest to fill the field of view of the thermal 

imaging equipment will maximise the resolution and minimise the resulting errors. 

40 

~ 35 
!t.. 
c: 0 0 30 
'" '" '" 0) 

25 " 0) 

E 
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g 15 0 
c: 
0 
t) 

E 10 

g 
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o o o o 
W 

0 
0 100 200 300 400 500 600 700 800 

Control Volume Size (mm') 

Figure C.2 Effect of control volume size on the errors from defmition of the control volume. 

The signal noise is magnified during the calculation of heat flux due to taking the 

derivative of the temperature signal with respect to time. Figure C.3 shows a sample 

test case of the rate of change of average temperature for a 39 mm3 control volume. 
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Figure CA shows data calculated from the same test with a 781 mm3 control volume. 

The signal noise is clearly visible on both plots. 
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Figure C.3 Plots of typical transient data for the derivative of average temperature with respect to 

time for a control volume of39 mm'. 
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Figure C.4 Plots of typical transient data for the derivative of average temperature with respect to 

time for a control volume of781 mm'. 

The absolute magnitude of the noise on the temperature measurement reduces as the 

control volume increases in size. The magnitude of the signal also reduces with 

increasing control volume size, although at a faster rate than the noise resulting in the 
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relative error caused by the noise to be minimised with the smallest control volume. 

Figure C.5 shows how the chosen control volume size affects the signal to noise ratio 

during these experiments taken from a single, characteristic dataset. It can be seen 

that for control volumes above approximately 300 mm3 the effect of signal noise 

does not increase significantly. As the control volume size is reduced, the signal 

becomes increasingly large relative to the noise resulting in an error of 

approximately 5 % when control volumes of75 mm3 are used. 

16 
0 ,. 0 0 

~ 12 

C 
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~ 10 
'" '0 
c 0 
~ 8 .., 
E 6 ,g 0 
g • W 
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0 
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Control volume size (mm~ 

Figure C.S. Effect of control volume size on the error of the power measurement resulting from signal 

noise. 

These two causes of error with conflicting control volume size requirements results 

in a compromise of control volume size that requires optimization to minimise the 

overall errors. To do this there is a need to understand how the errors propagate to 

give an overall estimated error on the measurement technique. The methodology 

described by Coleman and Stee1e (1995) for a general uncertainty analysis was 

therefore applied. This lead to the calculation of the overall uncertainty given by 

.! 

UQ' = I (B,U,)' (C.2) 
/=) 

where 
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B = dr 
, di (C.3) 

and U is the uncertainty, subscript Q refers to the calculated power, and i refers to the 

measurement that forms part of the calculation to the result (e.g. i = p for density). 

An example of the calculation of B; is shown for the case of the uncertainties from 

the signal noise on the data for the case of 312 mm3 control volume. It is equally 

applicable to the other measurements for which the values of B and U are 

summarised in Table C.l. Since the relationship between the temporal temperature 

gradient and heat flux is given in Chapter 5, differentiation of this with respect to the 

temperature gradient gives 

Br = (Q) =,ocpV=2700x900x312xlO-9 =0.75816 WK"' 
d dT 

dt 

The effect of uncertainties in emissivity can be introduced as 

d(dT) 
B = dQ x dt 

& d( ~) de 

where the d(dT/dt)/de term is found by analysis of a typical dataset. 

(CA) 

(C.5) 
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Table C.I. Values used for uncertainty analysis. 

Control e!kg m·' IJ k ·1 KI CR g 
Volume B~ U~ B, U, 
39mm3 5.72xI0·' 100 l.72xI0·3 50 
156 mm' l.24x10·' lOO 3.73xlO·' 50 
312 mm' 1.65x10·' lOO 4.96xI0·' 50 
468 mm' 2.08x I 0·' lOO 6.24xI0·' 50 
624 mm' 2.37x I 0·' lOO 7.llxI0·' 50 
780 mm' 2046x10·' lOO 7.38xlO·' 50 

dT IK s·' 
Control Vim' dl t 
Volume Bv Uv eT UT e, U, 
39mm3 3.96xI0' 4404x10·9 0.095 0.857 4.91 0.01 
156mm' 2.15x1O' 39.5xI0·9 0.379 0.749 1004 0.01 
312 mm' 1.43xlO' 34.5xI0·9 0.758 0.707 13.3 0.01 
468 mm' 1.20xlO' 29.2xI0·9 1.137 0.699 17.8 0.01 
624 mm' 1.02xlO' 2404xlO·9 1.516 0.611 19.9 0.01 
780 mm' 8.5IxI0' 12.2xI0·9 1.895 0.543 21.3 0.01 

The overall uncertainty can now be evaluated from 

Figure C.6 shows the cumulative effect of these errors as a function of the chosen 

control volume size. The minimum error was found to occur with a control volume 

of between approximately 150 and 300 mm3
• Control volumes above 350 mm3 or 

below 150 mm3 have increasing errors mainly due to signal noise and poor definition 

of the control volume respectively. 
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Figure C.6 Plot of overall predicted error as a function of control volume. 
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ApPENDIX 0: HEATING EFFICIENCY TESTS­
TABULATED RESULTS 

Table D.I Tabulated results of dischar~e heatin~ efficiency DoE investi~ation. 

Axial Cross Electrode Heating 
Standard Run Flow Flow Current Spacing Efficiency 

Order Order Block ms-I m s-I mA mm % 
105 Block I 0.6 0 20 10 9.387 
49 2 Block I 0 0.6 20 5 17.46 
I 3 Block I 0 0 13 5 39.825 

57 4 Block I 0.6 0.6 20 5 9.97 
41 5 Block I 0.6 0 20 5 18.475 
17 6 Block I 0 0.6 13 5 23.295 
73 7 Block I 0.6 0 13 10 \3.955 
89 8 Block 1 0.6 0.6 13 10 16.29 
97 9 Block I 0 0 20 10 19.965 
25 10 Block I 0.6 0.6 13 5 18.855 
65 II Block I 0 0 \3 10 22.06 
9 12 Block I 0.6 0 13 5 23.645 

121 I3 Block I 0.6 0.6 20 10 9.395 
113 14 Block I 0 0.6 20 10 17.76 
33 15 Block I 0 0 20 5 25.795 
81 16 Block I 0 0.6 13 10 17.6 
18 17 Block 2 0 0.6 13 5 26.565 
34 18 Block 2 0 0 20 5 23.02 
106 19 Block 2 0.6 0 20 10 11.845 
90 20 Block 2 0.6 0.6 13 10 I 1.8 I 
50 21 Block 2 0 0.6 20 5 17.96 
122 22 Block 2 0.6 0.6 20 10 10.08 
2 23 Block 2 0 0 I3 5 40.16 
82 24 Block 2 0 0.6 13 10 12.235 
66 25 Block 2 0 0 I3 10 25.54 
98 26 Block 2 0 0 20 10 20.42 
58 27 Block 2 0.6 0.6 20 5 14.47 
114 28 Block 2 0 0.6 20 10 15.985 
74 29 Block 2 0.6 0 13 10 11.935 
IO 30 Block 2 0.6 0 13 5 18.99 
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Standard 
Order 

42 
26 
123 
51 
83 
75 
99 
11 
59 
3 

91 
115 
43 
107 
19 
67 
27 
35 
108 
68 
36 
52 
116 
60 
12 
44 
92 
28 
76 
20 
4 

lOO 
84 
124 
117 
101 
13 
77 
53 
93 
37 
5 

45 
69 
109 

Run 
Order 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

Block 

Block 2 
Block 2 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 3 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 4 
Block 5 
Block 5 
Block 5 
Block 5 
Block 5 
Block 5 
Block 5 
Block 5 
Block 5 
Block 5 
Block 5 

Axial 
Flow 
ms-I 
0.6 
0.6 
0.6 
o 
o 

0.6 
o 

0.6 
0.6 
o 

0.6 
o 

0.6 
0.6 
o 
o 

0.6 
o 

0.6 
o 
o 
o 
o 

0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
o 
o 
o 
o 

0.6 
o 
o 

0.6 
0.6 
o 

0.6 
o 
o 

0.6 
o 

0.6 

Cross 
Flow 
ms-I 

o 
0.6 
0.6 
0.6 
0.6 
o 
o 
o 

0.6 
o 

0.6 
0.6 
o 
o 

0.6 
o 

0.6 
o 
o 
o 
o 

0.6 
0.6 
0.6 
o 
o 

0.6 
0.6 
o 

0.6 
o 
o 

0.6 
0.6 
0.6 
o 
o 
o 

0.6 
0.6 
o 
o 
o 
o 
o 

Current 
mA 

20 
13 
20 
20 
13 
13 
20 
13 
20 
18 
14 
20 
20 
12 
13 
13 
13 
20 
20 
13 
20 
20 
20 
20 
13 
20 
15 
13 
13 
13 
18 
20 
14 
20 
20 
20 
13 
14 
20 
15 
20 
18 
20 
13 
20 

Electrode 
Spacing 

mm 

5 
5 
10 
5 
10 
10 
10 
5 
5 
5 
10 
10 
5 
10 
5 
10 
5 
5 
10 
10 
5 
5 
10 
5 
5 
5 
10 
5 
10 
5 
5 
10 
10 
10 
10 
10 
5 
10 
5 
10 
5 
5 
5 
10 
10 

ApPENDIX 0 

Heating 
Efficiency 

% 

17.04 
23.47 
9.85 
20.3 

14.355 
16.895 
23.335 
20.075 
19.695 
34.055 
14.18 

14.035 
17.42 
13.66 

30.025 
21.94 
18.985 
26.38 

14.36574 
25.24638 
22.66667 
18.44017 
16.73713 
15.23843 
18.45635 
17.06944 
12.67742 
18.44444 
14.09556 
22.16667 
28.88889 
16.24132 
11.33519 
9.02584 

9.479167 
21.81424 
19.52778 
11.83532 
17.9537 

10.81145 
23.12434 
32.59722 
16.94686 
23.08466 
12.59048 
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Standard 
Order 

85 
29 
125 
21 
61 
86 
110 
126 
94 
118 
14 
54 
22 
46 
30 
38 
78 
6 
70 
102 
62 
119 
15 
23 
7 

127 
31 
95 
79 
63 
47 
71 
55 
103 
39 
87 
111 
112 
80 
64 
72 
32 
128 

Run 
Order 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
lOO 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 

Block 

Block 5 
Block 5 
Block 5 
Block 5 
Block 5 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 6 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 7 
Block 8 
Block 8 
Block 8 
Block 8 
Block 8 
Block 8 

Axial 
Flow 
ms-I 

o 
0.6 
0.6 
o 

0.6 
o 

0.6 
0.6 
0.6 
o 

0.6 
o 
o 

0.6 
0.6 
o 

0.6 
o 
o 
o 

0.6 
o 

0.6 
o 
o 

0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
o 
o 
o 
o 
o 

0.6 
0.6 
0.6 
0.6 
o 

0.6 
0.6 

Cross 
Flow 
ms-I 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
o 

0.6 
0.6 
0.6 
o 

0.6 
0.6 
o 

0.6 
o 
o 
o 
o 
o 

0.6 
0.6 
o 
o 

0.6 
0.6 
0.6 
0.6 
o 

0.6 
o 
o 

0.6 
o 
o 

0.6 
o 
o 
o 

0.6 
o 

0.6 
0.6 

Current 
mA 

15 
13 
20 
13 
20 
15 
20 
20 
15 
20 
13 
20 
13 
20 
15 
20 
13 
13 
13 
20 
20 
20 
13 
17 
13 
20 
13 
15 
15 
20 
20 
13 
20 
20 
20 
15 
20 
20 
15 
20 
13 
15 
20 

Electrode 
Spacing 

mm 
10 
5 
10 
5 
5 
10 
10 
10 
10 
10 
5 
5 
5 
5 
5 
5 
10 
5 
10 
10 
5 
10 
5 
5 
5 
10 
5 
10 
10 
5 
5 
10 
5 
10 
5 
10 
10 
10 
10 
5 
10 
5 
10 

ApPENDlxD 

Heating 
Efficiency 

% 

15.13072 
16.19444 
9.168022 
17.25309 
14.75855 
13.67937 
12.89028 
11.22619 
11.13814 
11.09444 
18.01235 
22.67874 
23.26263 
18.08333 
19.60802 
29.49495 
14.27778 
34.54545 
22.39683 
18.83681 
12.68056 
14.92735 
18.53571 
29.2284 
22.4183 

9.808943 
14.74444 
7.838542 
16.30556 
15.06746 

15.75 
19.6087 

20.45726 
18.19524 
21.93478 
9.367284 
10.09383 
11.97721 
13.33681 
15.33532 
24.69949 
11.7601 
9.9677 
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Axial Cross Electrode Heating 
Standard Run Flow Flow Current Spacing Efficiency 

Order Order Block m s-1 m s-1 mA mm % 

48 119 Block 8 0.6 0 20 5 17.66889 
8 120 Block 8 0 0 15 5 28.79012 

104 121 Block 8 0 0 20 10 17.43673 

56 122 Block 8 0 0.6 20 5 17.45333 
40 123 Block 8 0 0 18 5 25.14251 
88 124 Block 8 0 0.6 13 10 15.37593 

120 125 Block 8 0 0.6 20 10 9.754522 

96 126 Block 8 0.6 0.6 16 10 13.13194 
16 127 Block 8 0.6 0 13 5 19.19231 

24 128 Block 8 0 0.6 15 5 25.14815 
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ApPENDIX E: ELECTRICAL MODELLING WITH SIMULlNK 

Modelling circuit elements 

Electrical circuit modelling In simulink is achieved by considering individual 

electrical circuit components, typically capacitors, inductors and resistors. The 

method for modelling the main components of the equivalent circuit follows. 

Capacitors 

One equation in two forms has been used to model capacitance, depending on 

whether a voltage or current calculation is required. 

These are: 

i=C
dv 

dt 
(E.1) 

(E.2) 

The equivalent Simulink models for continuous problems are as shown in Figures 

E.1 and E.2. 
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Inductors 

Voltage 
Current 

20.·9 f---' 

Capacitance (C) 

Figure E.!. Simulink model representing Equation E.I 

Current 

Capacitance 
u 

Reciprocal 

Voltage Drop 

Figure E.2. Simulink model representing Equation E.2 

ApPENDlxE 

The equivalent equations for inductance have been used to calculate instantaneous 

current flows and voltage drops. These are: 

L
di 

V= -
dt 

(E.3) 

i = ~ JVdt (EA) 

These equations can be represented in Simulink with the block combinations shown 

in Figure E.3 and EA. 
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Voltage 

Resistors 

x 

Product 
Voltage Drop 

Inductance 

Figure E.3. Simulink model representing Equation E.3 

Inductanoe 
u 

Reciprocal 

x 

Product 
Current 

Figure E.4. Simulink model representing Equation E.4 

ApPENDIX E 

Following from the previous examples, equivalent relationships for resistances can 

be found from Ohm's law such that: 

v=iR 

. V 
1=-

R 

(E.S) 

(E.6) 

These are represented in Simulink using the block combinations in Figure E.S and 

E.6. 

Current 

Product 
Voltage Drop 

Figure E.5. Simulink model representing Equation E.5. 

- 278-



--------------------------------- ~-

Voltage 

100000 

Resistance 
u 

Reciprocal 

Product 

Figure E.6. Simulink model representing Equation E.6. 

Electric Discharge 

ApPENDlxE 

Current 

Modelling the discharge is somewhat more complicated than the electrical circuit 

elements discussed previously. Although any conceivable model should be able to be 

incorporated into the Simulink environment a simple resistance/voltage relationship 

was used for this research. Resistance/voltage relationships can be found from 

measurements of transient current and voltage directly from a discharge. An 

interpolating lookup table in Simulink is used for model calculations. 

Modelling Parallel Components with Applied Potential 

In all of the above mentioned circuit elements it is possible to calculated current from 

a known applied voltage across any given circuit element. We can therefore assemble 

the Simulink elements in a parallel arrangement with a known applied voltage, for 

example Figure E.7. 
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Electrical Circuit: 

'----<J D 0-----' 

Simulink Model: 

\A:lltage 
(i) 

CUITOnt f---"'------, 

Capacitor 

+ Overall Current 
11-'\-7I-----++I\.tlltage CUm!nt I-'-'--J>(. ---------) 

(ii) 
Voltage Source Resi:s1:or 

\.tIltage 
(i) 

CUITOnt f---"'-----' 

Discharge 

Figure E-7_ Example of modelling parallel circuit components with an applied potential using each of 
the circuit elements discussed earlier. 

The voltage across any ofthe circuit components is equal to the applied voltage. The 

current through any individual component can be found from points (i) and overall 

current from point (ii). 

Modelling Series Components with Applied Potential 

When a number of circuit elements are in series there is a potential drop across each 

element. There is however an overall current which must flow through each circuit 

element. Within Simulink, the arrangement shown in Figure E.8 can be used to 

model such a system. 

- 280-



Electrical Circuit: 

Simulink Model: 

Voltage Source 

(i) 

(i) 

(ii) 
CUm!ntl--'"--'-i 

Capaoitor 

ApPENDIX E 

Current \tIltage Orop 

Inducto. (3a) 

Current \tltage Drop 

Resisto. (3b) 

Figure E.S. Simulink example model for series circuits with applied potential. Numbering refers to 
points in the text. 

At point (1), the potential is the applied potential. At point (2) the potential drop 

across all but one of the circuit elements is taken from the applied potential leaving 

the potential drop across the final circuit element as the output. The current through 

this element is then calculated using the previously described blocks giving the 

current flow through each series component. This current flow is then used to 

calculate the voltage drop through the other series components, (3a) and (3b) which 

feed back to the initial summation at point (2). 

The voltage drop across any individual circuit element can be found from points (i) 

in Figure E.8. The current through the circuit can be found from point (ii). 

Modelling Parallel Components with Applied Current 

This case is modelled in a similar way to the series components with an applied 

potential. We know that the current will be different through each element but must 

combine to give the applied current. We also know that the potential drop across all 

of the circuit elements must be the same. The block arrangement in Simulink is 

shown in Figure E.9. 
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Electrical Circuit: 

Y T Y 

i 

$ 
Simulink Model: 

(ii) 

\.bltage Current [-

Capacitor (3a) 
(1) r 

IV\l - (ii) 
+ Current \tltage f---

(i) 
~urce -

Resistor Curr 

(2) 

\lbltage Current -

(ii) 
Induct., (3b) 

Figure E.9. Simulink example model for parallel circuits with applied current. Numbering refers to 
points in the text. 

The current through one of the circuit components is calculated by taking the 

difference of the applied current and current flows through all other circuit 

components [at point (1)]. The resulting current flow is used to calculate the potential 

drop across a single circuit element at point (2). We have already said that the 

potential across each component must be the same so this value of voltage is used to 

calculate the current flow through the other circuit components at point (3a) and (3b). 

The current flow calculated here is then fed back to find the current flow through the 

circuit element at point (2). 

The potential across the circuit elements can be found from point (i) in Figure E.9. 

The current flow through individual circuit elements can be found from points (ii). 
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Modelling Series Components with Applied Current 

Modelling of series components with an applied current can be achieved in a similar 

way to modelling parallel components with an applied potential. The current flow 

through each circuit element will be the same, and equal to the applied current. The 

Simulink components can then be set up in a parallel arrangement to calculate the 

potential drop across each element, an example of which is shown in Figure E.lO. 

Electrical Circuit: 

1 

Simulink Model: 

(i) 
Current \.tltage 

Resistor 

, 

Iii\l (i) + 

ll.JLI 
Current \.tIltage + 

+ 

Overall Voltage 
......... --> 

(ii) 
Curr ent Source 

Capacitor 

Current \.bltage 
(i) 

Inductor 

Figure E.IO. Simulink example model for parallel circuits with applied current. Numbering refers to 
points in the text. 

The current through each component is simply the applied current. The potential 

drop across individual components can be found from points (i) in Figure E.l O. The 

overall applied potential can be found from point (ii). 
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ApPENDIX F: MAGNETIC FIELDS FOR DISCHARGE 
MOBILITY CONTROL 

This appendix summarises preliminary testing of using magnetic fields to affect the 

mobility of the Autoselective discharge. 

Test Setup 

A pre-wound coil with non-magnetic bobbin with an open core diameter of 

approximately 30 mm was used with a concentric electrode filter arrangement shown 

schematically in Figure F.l. The electrode distance was approximately 5 mm. 

Solenoid coil 

Aluminium ground electrode 

,"-1r----1r--Loaded foam filter sample 

Air gap 

Copper HV electrode 

Figure F.I. Cross section of electrode arrangement when testing the effect of magnetic control. 

General Observation 

With rms currents less than approximately 2.8 A rms through the coil the magnetic 

field is not strong enough to have any visually discernable affect on the discharge. 

The discharge still locked onto a single point on the filter after a short period of time 

and subsequently remained as a single discharge column. 
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Above 2.8 A rms the discharge could be seen to move typically through a region 

with an angle of approximately 80 degrees. Inaccurate positioning of the electrode is 

the likely cause of it not covering 360 degrees. 

Subsequent Predictions 

Magnetic Field Strength:-

The applied voltage required to achieve approx 2.8 A rms is 140 V rms at 50 Hz. 

Assuming that the resistance is negligible in comparison to the inductive impedance 

the inductance of the coil can be estimated from the following relationship: 

L = V,,,., __ 1_ 
I,,,., 2Jif 

which gives us an inductance of 0.159 H. 

(F.I) 

The coil is approximately 70 mm long with an inner diameter of 38 mm and an outer 

diameter of 70 mm. We know an approximate relationship between physical solenoid 

coil properties and inductance, L, as: 

(F.2) 

where n is the coil density, I is the coil length, Jl is the permeability of the core 

material (air) and A is the area of the core. This allows us to estimate the coil density, 

n as 40000 coils m-I. 

The magnetic field, B, can be approximated from the relationship: 

B = nJil (F.3) 
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where 1 is the current through the coil. This gives us an rms magnetic field strength 

of 0.14 T as the minimum field strength required to have a noticeable effect on 

moving the discharge in stationary air from a cordierite filter. 

Permanent magnets are available with field strengths in the region of 0.2 T but are 

costly (in the region of £350-400 each) and have very localised fields. 

Using 1 mm2 solid core annealed copper wire to make a full size coil would mean a 

maximum current of 13 A (based on supplier recommendations). The coil density 

with this maximum current would be 8600 coils m". The coil density per layer is 770 

coils m". This means that there would need to be 12 layers of coils which would lead 

to a thickness of less than 16 mm which is reasonable from a packaging point of 

view. 

Power Consumption: 

The resistivity of copper is known to be around 1. 7x 1 0'8 ohm m. The number of coils 

is the coil density multiplied by the length, 150 mm, giving 130 coils in total. The 

length of the wire required will be approximately 70 m with an area of 1 mm2
• 

The resistance of the coil is 

R = pi = 1.7 x 1 0-' x 70 = 1.19 n 
A lxl0-6 (F.4) 

The power dissipated through this resistance is calculated as 

P = I'R = 13' x 1.19 = 200 W (F.5) 

This is approximately half the target power consumption for the regeneration system 

meaning that it is less attractive option at the current time. Options using permanent 

magnets or alternative techniques for moving the discharge can be used. 
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ApPENDIX G: ELECTROSTATIC MODELLING 
ASSUMPTIONS 

Electrostatic modelling has been used to improve understanding of the effect of 

general design decisions regarding electrode shape. It has not bee used as a design 

tool for definitive and quantitive use. This Appendix summarises the assumptions 

and boundary conditions that have been used in the electrostatic modelling using 

terminology typical of that used within the COMSOL multiphysics software that was 

used for the modelling. 

Modelling assumptions 

The modelling assumptions include: 

1. The electrodes are ideal conductors at a known potential. 

2. The air and filter can be considered as homogeneous media with known 

dielectric properties. 

3. The electrostatic fields give an indication of the most likely areas for the 

discharge to break down the air. 

Boundary conditions 

The boundary conditions are described, depending on the location, as: 

1. Electrodes - known potential relative to ground 

2. Svrnmetry line - axial symmetry 

3. Non-conductive boundaries - zero charge/symmetry boundary (these 

boundaries are located where the change in electric field strength is 

negligible. 
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