
 
Application of Mineral Magnetic Measurements 

as a Pollution Proxy for Urban Road Deposited Sediment. 
 

 

 

 

CHRISTOPHER JAMES CROSBY 
BSc (Hons) (University of Wolverhampton) 

 

 

 

A thesis submitted in partial fulfilment of the  
requirements of the University of Wolverhampton  

for the degree of Doctor of Philosophy 
 
 
 
 

September 2012 
 
 
 
 

This work or any part thereof has not previously been presented in any form to the 
University or to any other body whether for the purposes of assessment, publication 
or for any other purpose (unless previously indicated). Save for any express 
acknowledgements, references and/or bibliographies cited in the work, I confirm 
that the intellectual content of the work is the result of my own efforts and of no 
other person. 
 
The right of Christopher James Crosby to be identified as author of this work is 
asserted in accordance with ss.77 and 78 of the Copyright, Designs and Patents 
Act 1988. At this date copyright is owned by the author. 
 
 
 
 
Signature   
 
 
 
 
Date   10/ 09 /2012 

 
 
 





i 

 

Abstract 
Application of mineral magnetic measurements 

as a pollution proxy for urban road deposited sediment 
 

Road Deposited Sediment (RDS) is an important pathway of pollution material in the urban 

environment. Traditional particulate matter (PM) monitoring methods are typically expensive and 

time consuming. To date, urban sediment studies have not fully explored the application of 

mineral magnetic technologies as an alternative to characterise RDS or, perhaps more 

importantly, their use as particle size proxy. Therefore, this study addresses these issues by 

determining the extent of any linkages between magnetic properties and the physio-chemical 

concentrations of RDS. Investigations have focussed on a spatial temporal study (2008-10) of 

RDS from the City of Wolverhampton (n = 546) and a similar ‘snap-shot’ study of eight selected 

town and cities across the UK (n = 306), plus a comparison investigation linked to regional 

monitoring of air sampling units (ASU) (n = 208). A suite of analytical approaches, namely 

mineral magnetism, laser diffraction, X-Ray Fluorescence spectroscopy (XRF), Scanning 

Electron Microscopy (SEM) and Loss on Ignition (LOI), were employed to characterize sample 

properties. Data interrogation identified mainly weak correlations exist between most mineral 

magnetic parameters and particle size classes (i.e. sand, silt and clay) and respiratory health-

related size classes (i.e. PM10, PM2.5 and PM1.0). The few strongest correlations (p <0.001) were 

found between mineral magnetic concentration and <PM10 parameters. In Wolverhampton this 

occurred for samples collected during the spring months (March and May), indicating possible 

seasonal influences on RDS dynamics and sources. Elsewhere in the UK, and at ASU stations, 

results revealed mainly limited or insignificant (p >0.05) correlations exist between mineral 

magnetic parameters and particle size. However, for some locations (most notably, London and 

Scunthorpe), results exhibit signatures perceived to be associated with environmental factors. 

Detailed multivariate Factor Analysis plots and Geographical Information System (GIS) images 

have been used to explore these findings further. These illustrate RDS properties of road types 

(arterial and residential) display significantly different characteristics, with raised mineral 

magnetic concentrations for arterial roads, compared to lesser concentrations for residential 

roads, which corresponds to traffic flow data. This is supported by SEM analyses that reveal 

elevated concentrations of iron oxide spheres in samples collected from arterial roads, which 

are indicative of inputs from anthropogenic combustion sources. Contextualising these findings 

within the framework of existing knowledge, a conceptual approach has been presented that 

explores factors (i.e. sampling area, topography, land use, sediment source and potential 

mixing), which influence the reliability of using mineral magnetic techniques a particle size 

proxy. This demonstrates that any increase in the complexity of these factors (sampling area 

dynamics) can be used to predict the likelihood of being able to employ mineral magnetic 

measurements as a proxy. To surmise the work overall, despite mineral magnetic technologies 

offering an inexpensive and rapid means of analysing RDS, its use as a proxy measure for 

particulate matter appears to be limited by a series of site-related factors but the technique 

seems to offer valuable insights for pollution source studies.  
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Chapter 1 
Introduction, aims and objectives 

 
1.1 Overview 
Road Deposited Sediment (RDS) is an important pathway of pollution material in the urban 

environment, acting as a sink for vehicle exhaust, weathered material, soil and as a source of 

atmospheric particulate matter (PM) (Perry and Taylor, 2007). There is growing interest in the 

study of PM because of its potential acute and chronic human health implications (Harrison et 

al., 2004; COMEAP, 2010; DEFRA, 2012). PM emissions are monitored in areas of concern, but 

traditional monitoring methods are static, expensive and time consuming (AQEG, 2005). 

Therefore, this study investigates the use of a rapid and inexpensive magnetic method to 

determine PM and geochemical concentrations in RDS. 

 

1.2 Particulate Matter 
Particulate matter has long been cause for concern to the air quality management community, 

because of its wide-ranging effects. These include health problems (Dockery et al., 1993; 

Seaton et al., 1995; COMEAP, 2010; DEFRA, 2012), impacts on crops and soils (Chameides et 

al., 1999; Mitra et al., 2002; Luo et al., 2011), effects on visibility (Jacobson, 1997; Chen and 

Xie, 2012), buildings and water bodies (Peters et al., 2002; González and Aristizábal, 2012), 

atmospheric heat transfer rates and the formation of precipitation (Ricci et al., 1996).  

 

Airborne particulate matter is made up of a collection of solid and/or liquid materials of various 

sizes that range from a few nanometres in diameter to ~100 µm, originating from both 

anthropogenic and natural sources. Particulate material is classified by size. PM10 identifies 

particles <10 µm diameter; similarly, PM2.5 describes the concentration of particles <2.5 µm 

diameter. An older, but still useful method, measures blackness of particulate matter and is 

termed black smoke. Particulate matter consists of primary and secondary components (Table 

1.1). Primary components are released directly from source into the atmosphere, and secondary 

are formed in the atmosphere by chemical reactions. Primary and secondary particles with 

linkages to sources are shown in Table 1.1. Primary sources of particulate matter can be 

divided into natural and anthropogenic sources. Natural sources include wind-blown soil, sea 

spray, plant pollen and spores. Anthropogenic sources are highly varied and include motor 

vehicle emissions, road dust re-suspension and industrial emissions (Table 1.2).  

 

1.3 Particle size 
Atmospheric particles vary greatly in size. For example, pollen can be <10 μm, clay particles in 

soil are <2 μm, tobacco smoke is <0.01 μm, and smog (primarily resulting from automobile 

combustion) <0.001 μm. The particle size distribution of total suspended particles (TSP) is 

trimodal, including coarse particles (comminution mode), fine particles (accumulation mode) and 

ultrafine (nucleation mode) particles (Table 1.3). 
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Table 1.1  Components of particulate matter. Primary and secondary particles with 
corresponding source 

 

Primary Particles  Sources 
 

Sodium chloride   Sea salt. 

Elemental carbon Black carbon (soot) is formed during high temperature combustion of fossil 
fuels, such as coal, natural gas and oil (diesel and petrol), and biomass fuels, 
such as wood chips. 

Trace metals These metals are present at very low concentrations and include lead, 
cadmium, nickel, chromium, zinc and manganese. They are generated by 
metallurgical processes, such as steel making, or by impurities found in or 
additives mixed into fuels used by industry. Metals in particles are also 
derived from mechanical abrasion processes, e.g. during vehicle motion and 
break and tyre wear. 

Mineral components These minerals are found in coarse dusts from quarrying, construction and 
demolition work and from wind-driven dusts. They include aluminium, silicon, 
iron and calcium. 

Secondary Particles Sources 
 

Sulphate Formed by the oxidation of sulphur dioxide (SO2) in the atmosphere to form 
sulphuric acid, this can react with ammonia (NH3) to give ammonium 
sulphate. 

Nitrate Formed by the oxidation of nitrogen oxides (NOx – which consists of nitric 
oxide (nitrogen monoxide, NO) and nitrogen dioxide (NO2) in the 
atmosphere) to form nitric acid, which can react with NH3 to give ammonium 
nitrate. Also present as sodium nitrate. 

Water Some components of aerosols, such as ammonium sulphates and 
ammonium nitrates, take up water from the atmosphere. 

Primary and Secondary 
Components 

Sources 
 
 

Organic Carbon Primary organic carbon comes from traffic or industrial combustion sources. 
Secondary organic carbon comes from the oxidation of volatile organic 
compounds (VOCs). There may be several hundred individual components. 
Some of these trace organic compounds, such as certain polycyclic aromatic 
hydrocarbons, are highly toxic. 
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Table 1.2 Typical sources and composition of PM10 divided into particle diameter ranges 
(Source: Harrison et al., 1997; Cyrys et al., 2003; D’Alessandro et al., 2003) 

 

PM Classification Composition Examples of source 
 

PM 10 

 

Coarse particles 

(2.5 µm–10 µm) 

Minerals Soil, road dust, industrial dust 

Trace Metals Soil, oil and coal combustion 

Organic Carbon Tyre rubber and asphalt wear 

Bioaerosols Animals, plant, fungi, bacteria 

Aqueous droplets Fogs, water sprays 

Associated gases Ammonia, sulphur dioxide (SO2), hydrogen sulphide 
(H2S), carbon dioxide (CO2) 

PM 2.5 

 

Fine (<2.5 µm) 

Minerals Oil, road dust, industrial dust 

Trace metals Oil and coal combustion, machinery wear, industrial 
processes (e.g. smelting, welding) 

Carbonaceous Wildfires, liquid fuel, soild fuel and waste combustion, 
cooking, engine exhaust, tyre wear 

Sulphates and nitrates Volcanoes, oceans, oxidation of SO2  and nitrogen 
oxides (NOx), fires, engine exhaust 

Ammonium compounds Reactions of ammonia produced by animals, sewage, 
fertilizers and engine exhaust 

Bioaerosols Viruses and bacteria 

Associated gases Formaldehyde, SO2, NOx, ozone (O3), carbon monoxide 
(CO) 

PM 0.1 

 

Ultrafine 

(<0.1 µm) 

Trace metals Incombustible constituents of fuel 

Organics Condensation of volatile emissions from complex 
plants, microbes, fuel combustion 

Carbon Fuel combustion 

Miscellaneous Gas-to-particle conversion reactions 
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Table 1.3 Particle size distribution of Total Suspended Particles (TSP) 

 

Total (TSP) Total amount of airborne particles (TSP) is defined as the part of the dust which can be 
suspended in the air for a longer period of time (Figure 1.1), and are particles with, aerodynamic 
diameter <75-100 μm. Particles above this size are named ‘dust downfall’ because they will 
sediment relatively rapidly (i.e close to the source). The TSP was defined by the design of the 
high volume sampler (Wilson and Suh, 1997). 

Respirable 
100 μm 

PM10 represents the standard measure for respirable (thoracic) particles used to describe ambient 
air particulates. It is the mass of particles having a 50% cut-off for particles with an aerodynamic 
diameter of 100 μm. Respirable dust is airborne PM which can penetrate to the gas-exchange 
region in the lungs (alveoli). In occupational settings it is defined as PM4.0 which is the mass of 
particles present in the air having a 50% cut-off for particles with an aerodynamic >4 μm. Particles 
<4 μm impact onto the surface of the upper respiratory tract and cannot reach the lungs. It is 
usually meant PM10 when ambient airborne particles is referred to, since this is the fraction for 
which limit values are set in connection to requirements for ambient air quality. Approximately 9-
10% of TSP is <10 μm (Wilson and Suh, 1997; Chen et al., 2007). 

Coarse 
PM10 – 2.5 

The coarse part, PM10-2.5, contains mainly mechanically-generated and emission particles 
(Schwartz et al., 1996). According to Wilson and Suh (1997) “fine and coarse particles are 

separate classes of pollutants and should be measured separately in research”. Some authors 
describe particles >1 μm as course e.g. (Wilson and Suh, 1997; Claiborn et al., 2000). 

Fine 
PM2.5 

The fine mode PM2.5 is formed mainly by chemical reactions predominantly from combustion 
processes, nucleation, and condensation of gases and coagulation of smaller particles, and is the 
mass of particles having a 50% cut-off for particles with an aerodynamic diameter of 2.5 μm. 
These particles are very numerous and represent large surface areas compared to mass. Fine 
particles produced by combustion processes are usually <1 μm. Schwartz et al. (1996) and 
Claiborn et al. (2000), therefore, proposed that the cut point be 1 μm to avoid bias during wind-
blown dust storms. 

Ultrafine 
PM0.1 

Ultrafine particles (PM0.1) are particles <0.1 μm. The number of particles and total surface area 
are large compared to mass. Ultrafine particles are mainly produced by combustion processes 
and the probability for production of ultrafine particles by road abrasion is very low (Dybing et al., 
2005). The atmospheric lifetime of these particles in high concentrations is very short. 
Concentrations observed in urban air can be a few hours (Katsouyanni et al., 2005). This makes 
exposure assessment for them more demanding than for accumulation mode particles. 

Nanoparticles 
PM0.001 

Nanoparticles (PM0.001) are particles <0.001 μm (= 1 nm), and they are generated mostly from 
combustion processes (road traffic). Some of these particles are likely to originate from rubber in 
tyres (Dahl et al., 2006). Humans inhale airborne particulate matter while breathing. An adult 
breathes ~10 000 litres of air every day, and air quality is therefore important for human health. 
Figure 1.2 illustrates inhalability of particles as a function of particle size, ~75% of 10 µm particles 
can be inhaled, and ~90% of particles 2.5 µm are inhalable.  
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Figure 1.1 Calculated time for particles to fall 1 m in stagnant air as a function of size and 

origin (Source: Corn et al., 1971). 
 

 
 

 
 
Figure 1.2 Inhalability as a function of particle size, illustrating the smaller particle size, the 

greater chance of inhalation (Schwartz et al., 2004). 
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In general, particle diameter implies a diameter of a sphere, but for non-spherical particles, 

there is no unique diameter. According to Matsuyama and Yamamoto (2004) a certain basis will 

be defined and on that basis some reading relating to particle size will be measured. Particle 

size is often defined by the aerodynamic diameter, which is determined by the actual particle 

size, the particle density, and an aerodynamic shape factor. The aerodynamic diameter is a 

theoretical diameter to a spherical particle with density 1 g/cm3, which will have the same falling 

velocity in air as the real particle (Stein et al., 1969; DeCarlo et al., 2004). It is somewhat 

different from the geometric diameter; different densities give different aerodynamic diameters 

of particles which are alike geometrically. For comparison of deposition probabilities for particles 

with various sizes, shapes and densities, the aerodynamic diameter is used (Skaug, 2001). 

Airborne particles are defined based on their size as PM (Skaug, 2001; Schwartz et al., 2004). 

 
1.4 Particle shape 
The particle shape is an important factor with regard to particle motion and deposition 

probabilities. It is often assumed that the particles are spherical, but ambient air particles are 

seldom so. Urban particles have large daily variations in the frequency of occurrence of different 

particle shapes (Stein et al., 1969). Three different but related properties determine particle 

shape: form, roundness and surface texture. Particle form is the overall shape of particles, 

typically defined in terms of the relative lengths of the longest, shortest and intermediate axes. 

Particles can be cubic, spherical, elliptical, elongated, flat, tubular, platy or needle shaped 

(Dodds, 2003). The global shape or form of a particle is determined during formation, and is 

later affected by weathering. 

 

Weathering mechanisms are related to mineral cleavage. Weathering changes roundness and 

roughness. Roundness or angularity is a measure of the large-scale smoothness of particles, 

while surface texture defines local roughness features (Barrett, 1980). Particle roughness is 

environmentally determined, as specific surface textures are characteristic of specific 

environments (Dodds, 2003). Fourier analysis is often used for defining particle shape, since it 

captures the shape of a particle at many different scales.  

 

Freshly crushed mineral particles are more angular with a rougher surface texture and usually 

flakier and more elongated compared with particles which have been eroded for some 

considerable time. The roundness of rock particles normally increases through abrasion, and 

can change greatly without much effect on form (Barrett, 1980). The hardness, micro-cracks 

and structure of minerals will influence the particle shape after crushing. The fracture strength 

and the specific fracture energy of most minerals increase with the decrease of their size in the 

range of ~10 μm to 120 mm.  However, <10 μm, the fracture strength decreases with 

decreasing particle size (Ryu and Saito, 1991). More energy is required to break particles into 

smaller units, which establishes a lower limit of 1 µm for coarse particles (mechanically 

generated) (Wilson and Suh, 1997). 
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1.5 Particles in the atmosphere 
The behaviour of particles in the atmosphere is determined largely by their physical properties, 

which strongly depend on particle size. Figure 1.3 shows in schematic form, the typical size 

distribution of airborne particles. Sizes range over several orders of magnitude. The smallest, 

freshly nucleated particles are only 1–2 nm in diameter and contain only tens of molecules. At 

the other extreme, particles may be ≤100 µm in diameter, particles as large as this rapidly settle 

out from the air. Once aerosol is suspended in the atmosphere it is altered, removed or 

destroyed. It cannot stay in the atmosphere indefinitely, and average lifetimes are in the order of 

a few days to one week. The lifetime of any particular particle depends on its size and location. 

Larger aerosol settle out of the atmosphere very quickly under gravity, and some surfaces are 

more efficient at capturing aerosols than others. 

 

i. Nucleation 
Nucleation mode particles occur within <50 nm and are newly formed particles by means of 

homogeneous nucleation in the atmosphere or by nucleation processes that occur within the 

emissions from high temperature sources. These lead to the emission of primary nucleation 

mode particles. Harrison and Jones (1995) described the smallest particles, <10 nm, as the 

nucleation mode and the particles falling between 10-50 nm as the Aitken mode. The nucleation 

mode in urban areas often contains comparatively few particles. Very close to local sources 

significant numbers may be found, but in urban areas there is generally adequate supply of 

species to rapidly condense onto small aerosols, moving them into the accumulation mode. 

Further accumulation mode concentrations tend to be very high, so that available precursor 

gases will condense onto those particles without the need to nucleate fresh particles, in most 

circumstances. 

 

ii. Coagulation 

Coagulation is the sticking together of two particles which collide and coalesce together. It is the 

result of particles coming into contact due to Brownian diffusion or some force (electrostatic, 

phoretic effects). Contact does not necessarily lead to coagulation, but must happen as a pre-

requisite. This happens more quickly for nucleation mode particles (Aitken mode) with large 

aerosols than for coagulation of two nucleation mode particles (Seinfeld and Pandis, 1998). 

Coagulation is also enhanced in shearing or turbulent flows, as these induce relatively rapid 

particle motion. 

 

iii. Accumulation / Condensation mode 

Growth of nucleation mode particles, primarily by vapour condensation but also as a result of 

coagulation processes, leads to the formation of accumulation mode particles. These particles 

are typically between 50 nm and 1 µm. Such particles are too large to be subject to rapid 

Brownian motion and too small to settle from the air rapidly under gravity. Their further growth is 

inhibited because they do not coagulate rapidly as fine and coarse particles. There are also 

diffusion barriers to their growth by condensation.  
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Figure. 1.3 The behaviour of particles in the atmosphere with the typical size distribution of 
airborne particles (Source: AQEG, 2005). 
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Particulate size, emission source, meteorological and topographical conditions influence the 

ambient concentrations, transport and deposition of PM (Wu et al., 2006). Due to greater 

settling velocities PM >10 µm are effectively removed from the atmosphere under gravity and 

therefore deposit close to source (~10 km) (Alloway and Ayres, 1997; Morwaska and Zhang, 

2002; Phalen, 2002; AQEG, 2005; Zheng et al., 2010). Although airborne particulates can also 

be removed via wet deposition (Alloway and Ayres, 1997), finer PMs (<10 µm) remain 

suspended in the atmosphere for longer periods (days to months) and, therefore, can be 

transported great distances from source (hundreds to thousands of km) (Phalen, 2002; 

Harrison, 2004; AQEG, 2005). Particles <1 µm are even less effectively removed from the 

atmosphere and have longer residency times and are therefore subject to long-range (trans-

boundary) transport (ApSimon et al., 2001). Coarse particles tend to be mechanically 

generated, but are composed of materials such as tyre dust, sea salt and certain dust. Fine 

particles (accumulation and nucleation mode) tend to be produced either directly from 

combustion sources, or by gas to particle conversion involving reaction products of sulphates, 

nitrates, ammonium and organics. 

 

The falling velocity of particles is important for evaluating the retention time of particles in air. 

According to Stokes Law the falling velocity (vStokes) in stagnant air for a spherical particle is 

shown and explained (Eq 1.1). The estimated time for particles to fall 1m is shown in Figure 1.1. 

The result from the calculation shows that the ultrafine and fine fractions of the dust take much 

longer to fall and settle, even in stagnant air. However, in urban areas the air is usually turbulent 

and suspension time of particles can be longer. Table 1.4 links particle size with deposition, time 

and potential health impacts. 

 

Climatic and seasonal conditions are important for the amount of atmospheric dust. When 

pavements are wet, dust is bound by water. Harrison et al. (1997) found differences between 

PM concentrations and adjacent seasons. In winter months PM2.5 comprised ~80% of PM10 and 

was strongly correlated with NOx indicating the importance of road traffic as a source. In 

summer months, fine particles (PM1.0-PM2.5) account for ~50% of PM10 and the influence of re-

suspended surface dusts and soils and of secondary particulate matter was evident. Other 

processes influence particle counts, such as rain and melting water from ice and snow can flow 

onto the pavement binding dust and reducing particle counts. Dry pavements increase dust 

raised by vehicles and dispersed in the air more easily. Salt has a similar effect as water, and is 

often used as a dust binding measure to prevent high dust concentrations. The hygroscopic 

properties of salt contribute to keeping pavements wet. However, salting can lead to wear of 

pavement surfaces and an enhanced need for cleaning, since moist pavements are worn 2-6 

times faster than dry pavements (Harrison et al., 2004). 
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VStokes = d2g (pparticle – pair) / η (air) 
 
Where: 
d = diameter of the particle (µm) 
g = gravitational constant (9.80665 m/s2) 
ρ = density (µg) 
η = viscosity (18.6 μPa s for air) 
 
Stoke’s Law can be used to estimate the time needed by particles of different size to fall 1 m. The following particle 
densities are employed: 
 
ρparticle = 2.65 g/cm3 for quartz (Hinds, 1999). 
 
ρparticle = 1.1-1.2 g/cm3 for diesel exhaust particles (Virtanen et al, 2002). 
 
ρair = 0.0012 g/cm3  for air (Hinds, 1999). 

 
Eq. 1.1 Stokes Law equation of the falling velocity in stagnant air for a spherical particle 

(Hinds, 1999; Virtanen et al, 2002). 
 
Table 1.4 Size classifications and physical behaviour of PM (Alloway and Ayres, 1997; 

Morawska and Zhang, 2002; Harrison, 2004; Kingham et al., 2005) 
 

PM size Aerodynamic 
diameter (µm) 

Transport and deposition Time to 
deposition 

Health Impacts 

Total suspended 
particulates 
(TSP) 

 

<100 Settle quickly from the 
atmosphere and therefore deposit 
close to source: <10 km 

Hours Filtered by the nasal 
tract 

PM10 (Coarse) 
 

<10 Remain suspended in the 
atmosphere and therefore can 
deposit hundreds to thousands of 
km from source 

Days Penetrate the lower 
respiratory system 

PM 2.5 (Fine) 

 

 

PM1 (Fine) 

PM0.1 (Ultrafine) 

<2.5 

 

 

<1.0 

<0.1 

Less effectively removed from the 
atmosphere and therefore subject 
to long-range transport 

 

 

Months 

 

 

Years 

Deposit deep in the 
lung (gas-exchange 
portions). 
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1.6 Particulate matter in the urban environment 
Composition of urban air in large cities consist mostly of organic particles from combustion 

processes (Dockery et al., 1993; Harrison., et al., 2000; Parekh et al., 2001; Curtis et al., 2006; 

Husain et al., 2007), anthropogenic emissions are more numerous than natural sources and add 

more particulate matter to the atmosphere (Alloway and Ayres, 1997; Harrison and Grieken, 

1998; Morwaska and Zhang, 2002; Phalen, 2002; Artiola and Warrick, 2004; COMEAP, 2012). 

 

The general interactions are shown in Figure 1.4. PM2.5 and PM10 are closely related to urban 

sites but not to rural, due to the close proximity and traffic density of urban areas (Chen, 2007). 

In urban areas spatial distributions of finer particles (PM1.0 to PM2.5) are relatively more 

uniformly distributed than coarser particles (Monn, 2001; Wilson and Suh, 1997). In addition to 

spatial variation, particle concentrations fluctuate over time (Chow et al., 1994; Ito et al., 1995; 

Adgate et al., 2002; Bari et al., 2003; Brimblecombe, 2011). Many urban areas experience 

diurnal cycles of air pollution concentrations, as anthropogenic sources contribute most pollution 

(Chow et al., 2002). Over short sampling durations (hourly or daily), concentrations between 

sites in a city will usually differ to a greater degree than measurements averaged over longer 

periods (annually) (Monn, 2001). It is important to note that there are major differences between 

total emissions of pollutants and local air quality. 

 

In concentration calculations, the amount of particles available for inhalation is considered and 

the altitude for emission is essential (i.e. particles from wood burning for heating purposes are 

more diluted when they reach inhalation altitude since they are emitted higher up than e.g. 

exhaust from vehicles). Road traffic contributes to emissions affecting local air quality and 

concentrations of airborne PM (Harrison et al., 1997; Abu-Allaban et al., 2003; Harrison et al., 

2003; Li et al., 2004; Kumar and Britter, 2005; Fuller and Green, 2006; Kittleson et al., 2006; 

Perry and Taylor, 2007; Thorpe and Harrison, 2008). 

 

1.7 Road deposited sediment 
Compared with sediment in natural environments, RDS has a wide and diverse range of 

sources (Figure 1.5). Sources are either intrinsic to the road surface, which are predominantly 

anthropogenic in nature, or extrinsic, which are predominantly naturally derived. Intrinsic 

sources include vehicle exhaust emissions, vehicle tyre, brake and body wear, building and 

construction material, road salt, road paint and pedestrian debris (Table 1.5). Extrinsic sources 

are soil material, plant and leaf litter and atmospheric deposition. RDS is an important pathway 

of pollution in the urban environment and is subject to constant disturbance and re-suspension 

from vehicle traffic and weather events (Apeagyei et al., 2011). Health related PM are 

components of RDS from anthropogenic and natural source deposition (Harrison et al., 2004) 

and are prone to re-suspend in populated areas (Chen, 2007). 
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Figure 1.5 Sources of sediment comprising road-deposited sediment; (Source: adapted 
from Perry and Taylor, 2007) 

 
Table 1.5 Contaminant sources of road-deposited sediment (Source: Perry and Taylor, 

2007) 
 

Contaminant Source 

Pb Petrol combustion, paint, smelters, coal combustion 
Zn, Cd Tyre wear, galvanised roofs, abrasion of vehicles, lubricating oils, alloys 
Cu Brake linings, alloys, metal industry 
Fe Car exhaust particulates, corrosion of vehicle body work, background geology 
Mn Tyre wear, brake linings, background geology 
Cr Engine wear, vehicle plating and alloys, road surface wear 
Ni Engine wear, metal industry, background geology 
Asbestos Brake clutch linings 
Cl, Na Road salt 
PGEs (Pt, Pd, Os) Catalytic convertors 
Pesticides / herbicides Garden application 
PAHs Biomass burning, petroleum combustion 
PCBs Petroleum combustion, industry 
Bacteria Sewage treatment works, animal faeces 
Pharmaceutical compounds Sewage treatment works 

 

Atmospheric Input

Construction 
material

Building wear

Vegetation and soil

Exhaust emissions

Vehicle wear

Tyre and road wear
Pedestrian debris
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1.8 Health implications 
PM can affect our health and particle size is considered to be a primary concern in terms of 

health effects (COMEAP, 2009). Decreasing PM particle size generally creates greater 

probability of inhalation and deep penetration of the lungs (Figure 1.2). It is when the smallest 

particles enter the sensitive lung areas that a secondary concern becomes apparent over time, 

with composition and toxicity of particles (AQEG, 2005; COMEAP, 2009). Available evidence 

suggests that it is the fine components of PM, which have a diameter <2.5 μm and are formed 

by combustion, that are the main cause of the harmful effects of PM (AQEG, 2005; COMEAP, 

2009) causing triggering mechanisms linked to respiratory problems (such as asthma) (Hetland 

et al., 2001; Perera, 2008). These fine particles consist of carbon, trace metals (such as Cu and 

Zn) and organic compounds, which are potentially toxic and pose a greater risk to health with 

decreasing particle size (Dockery et al., 1993; Kelly and Fussell, 2012). Studies in the USA 

(Dockery et al., 1993; Pope et al., 1995) showed that individuals living in less air polluted cities 

live longer than those living in more air polluted cities. In the UK, the London smog of December 

1952 proved a turning point in the history of air pollution and attempts at its control. As a result 

of a dense fog lasting nearly a week, when black smoke reached a daily average concentration 

of 4000 μg/m3 and sulphur dioxide concentrations (daily mean) reached 3000-4000 μg/m3, at 

least 4000 deaths occurred in excess of those expected in a two week period. All age groups 

were affected, although infants and the elderly were found to be most at risk. The main causes 

of death were respiratory and cardiac disease. Recent analyses have stressed that the effects 

of the smog on health persisted longer than two weeks and that the total number of deaths may 

have significantly exceeded 4000. As a direct consequence of this event, the UK Clean Air Act 

(1956) aimed to control both industrial and domestic emissions. It was very effective: the mean 

urban black smoke concentration in the UK fell from >200 μg/m3 in the 1950s to 20 μg/m3 in 

1980 (Department of the Environment, 1997).  

 

There is less evidence to connect secondary inorganic PM (such as sulphates and nitrates) or 

larger particles with adverse health effects, although they cannot be eliminated as probable 

causes. Particles cause the most serious health problems among those susceptible groups with 

pre-existing lung or heart disease and/or the elderly and children. There is evidence that short 

and long-term exposure to particulate matter cause respiratory and cardiovascular illness and 

even death. It is likely that the most severe effects on health are caused by exposure to 

particles over long periods of time. However, UK estimates indicate that short-term exposure to 

the levels of PM10 that we experienced in 2002 led to 6,500 deaths and 6,400 hospital 

admissions being brought forward that year, although it is not possible to know by what length of 

time those deaths were brought forward (COMEAP, 2001). Studies conducted by the 

Committee on Medical Effects of Air Pollution (COMEAP) found for every 1 μg/m3 decrease in 

PM2.5 over the lifetime of the current population of England and Wales, between 0.2-0.5 million 

years of life will be gained (COMEAP, 2010). This is equivalent, on average, to 1.5–3.5 days for 

every individual in England and Wales. The effect is unlikely to be evenly spread across the 

population, however, and some people will gain much more. Due to these effects in 2003, the 

UK Government set strict limits for fine particle concentrations, as discussed in section 1.9. 
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1.9 Current regulation/legislation 
PM emissions and concentrations are subject to several national and international agreements 

and initiatives. EU directives relate directly to PM emissions and concentrations1.  

 
i. The First Air Quality Daughter Directive (1993/30/EC) sets limit values for 24 hours and 

annual average PM10 that had to be achieved throughout the European Community 

(EC) by 1 January 2005 (Table 1.6). The Directive also contained Stage II limit values 

for both 24 hour and annual average PM10 to be achieved by 1 January 2010 (Table 

1.7). This Directive is more commonly known as the The National Air Quality Objectives 

(Air Quality Strategy V1, 2007). 

 

ii. The Auto-Oil Programme set a stringent series of emission and fuel quality standards 

(Euro III) to apply to all new cars and light vans sold from January 2000 and to all new 

heavy duty vehicles from October 2001. This included the ban on the general sale of 

leaded petrol from 1 January 2000. Tighter standards were further introduced for cars, 

vans and heavy duty vehicles, in January 2006. 

 

iii. The Large Combustion Plant Directive (2001/80/EC) established controls on emissions 

from particulates and the secondary particle precursors sulphur dioxide and nitrogen 

oxides. This controlled emissions from large combustion plants, power stations, oil 

refineries and large energy producers within industry. 

 

iv. The Integrated Pollution Prevention and Control (IPPC) Directive (96/61/EC). This 

Directive takes into consideration the location and state of the local environment so 

individual industrial plants take the necessary measures to comply with any relevant EC 

legislation (AQEG, 2005). 

 

Current EU legislation only controls the mass concentration of particles with a diameter <10 µm 

(PM10) in ambient air (Council Directive, 1999/30/EC). Until recently this is implemented by 

imposing two health-based limit values: (i) a 24 hour mean concentration of 50 µg/m3 not to be  

exceeded more than 35 times during a calendar year; and (ii) an annual mean concentration of 

40 µg/m3. Currently (post 2010) stringent PM10 objectives have been achieved by most EU 

countries: (i) a 24 hour mean concentration of 50 µg/m3 not to be exceeded seven times during 

a calendar year; and (ii) an annual mean concentration of 20 µg/m3.  

 

To protect health in the UK, the Department for Environment Food and Rural Affairs (DEFRA) 

and the Devolved Administrations of the UK, have set two air quality objectives for PM10 in their 

Air Quality Strategies: 

 

 

 

1This thesis concentrates mainly on the first EU Directive (1993/30/EC). 
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Table 1.6 The First Air Quality Daughter Directive (1993/30/EC) limit values 24 hour and 
annual average PM10 that had to be achieved throughout the UK by 1 January 
2005 (Air Quality Strategy V1, 2007) 

 

 Objective Measured 
as UK Target EU Target 

Particles (PM10) 
(gravimetric) 
All authorities 

50 µg/m3 
Not to be exceeded more than 35 times 

per year 

24 hour 
Mean 

31 December 
2004 

1 January 
2005 

40 µg/m3 Annual 
Mean 

31 December 
2004 

1 January 
2005 

Particles (PM10) 
Authorities in Scotland 
only 

50 µg/m3 
Not to be exceeded more than 7 times 

per year 

24 hour 
Mean 

31 December 
2004 

1 January 
2005 

18 µg/m3 Annual 
Mean 

31 December 
2004 

1 January 
2005 

 
 
Table 1.7 The First Air Quality Daughter Directive (1993/30/EC) limit values 24-h and 

annual average PM10 for UK regions (Air Quality Strategy V1, 2007) 
 

Region Objective Measured 
as 

To be 
achieved by 

Greater London 50 µg/m3 not to be exceeded >10 times per 
year 24 hour Mean 31 December 2010 

Greater London 23 µg/m3 Annual Mean 31 December 2010 

Greater London 20 µg/m3 Annual Mean 31 December 2015 

Rest of England, Wales and 
Northern Ireland 

50 µg/m3 not to be exceeded >7 times per 
year 24 hour Mean 1 January 2010 

Rest of England, Wales and 
Northern Ireland 20 µg/m3 Annual Mean 1 January 2010 
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1. The 24-hourly objective, which is the concentration of PM10 in the air averaged over 24 

hours, is designed to ensure that we are not exposed to high concentrations of PM10 for 

short periods of time. High concentrations can arise during pollution episodes, which 

are short periods of high levels of pollution that are usually associated with particular 

weather conditions. 

 

2. The annual objective, which is the concentration of PM10 in the air averaged over one 

year, aims to protect us from being exposed to PM10 over prolonged periods. 

 

The EU also recommended implementing stricter limit values from 1 January 2010. These plans 

involved a reduction of the number of allowed exceedences of the 24 hourly limit value from 35 

to seven and a decrease in the annual limit value from 40 to 20 μg/m3. EU Directive 2008/50/EC 

member states that are having difficulty complying with these values (including the UK) a 

postponement date limit of January 2015. Member states will be subject to further assessment 

and discussion by experts and policy-makers before a decision is made on whether to adopt 

them. In its Addendum to the Air Quality Strategy, the UK Government and local Administrations 

are striving to adopt these stricter indicative limit values as provisional objectives to be achieved 

in the UK by January 2015 (European Commission, 2012). 

 

Currently, the main source of airborne fine particulates in the UK is road traffic emissions 

(AQEG, 2005). Road traffic is responsible for 41% of particles <2.5 µm in urban areas 

(Greenwood et al., 1996; Allen et al., 2001). However, it is estimated that road transport 

emissions of fine particles will fall by two-thirds of those a decade ago. Moreover, the European 

Commission has proposed that the legislation on particulate matter should be supplemented by 

setting a limit value of 35 µg/m3 for PM2.5 particles and an interim reduction target of 20% to be 

attained between 2010–2020. The UK has been unable to attain these limits (as of mid-2011) 

and have notified (24 April 2009) to the European Commission to secure additional time to meet 

the limit values (DEFRA, 2011). Assessment of the extent and severity of urban dust 

concentrations requires thorough investigation before ‘Air Quality Management Plans’ and 

remediation can be instigated, which means that there is scope for new PM monitoring 

technologies. 

 

1.10 UK monitoring of airborne particulate matter 
There are over 1500 monitoring sites across the UK, which monitor air quality. Due to the 

stringent legislations on PM concentrations, the UK currently has a network of 64 automatic 

monitoring sites and an additional seven gravimetric analysers2 that measure PM. These sites 

use a Tapered Element Oscillating Microbalance (TEOM) filter baser gravimetric method and 

sequential gravimetric analyser (Partisol) or ß-attenuation monitor to measure PM. The 

networks form the Automatic Urban and Rural Network (AURN), operated by DEFRA. As well 

as PM10 the monitoring sites also observe PM2.5, particulate nitrate, particulate sulphate, 

elemental and organic carbon, polycyclic aromatic hydrocarbons (PAHs), ‘black smoke’, heavy 

2 www.uk-air.defra.gov.uk/networks/network-info?view=aurn 
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metals and particle numbers. The collective measurements of the automatic monitoring sites 

provide a valuable resource of temporal and spatial variations of PM, extending over 10 years of 

monitoring (AQEG, 2005). 

 

Although road traffic emissions are a major source of particulate matter near roads, the regional 

contribution to PM is substantial. Controlling background particulate matter must, therefore, be a 

central part of any UK strategy to control exposure to particulate matter. In addition, because 

there is no known safe level for exposure to PM, it is not appropriate to rely solely on the use of 

air quality objectives. They focus attention on ‘hotspots’ for example close to busy roads, but 

where relatively few people tend to reside (AQEG, 2005). Static TEOM systems record reliable 

data for busy roads and hotspots, but can be unreliable recording PM concentrations for larger 

areas due to interference from weather systems and long range transport of particulates 

(AQEG, 2005). This limitation potentially leaves populated areas unchecked, and exposed to 

uncertain PM concentrations. 

 

1.11 Scope of this research 
It is timely for innovative PM technologies to be considered as an alternative, or in tandem, to 

those already employed to determine PM2.5 and PM10 concentrations. Moreover, ideally, they 

need to be rapid, reliable, dynamic and inexpensive. However, to assess the suitability of any 

analytical technique as an efficient particle size proxy, it is necessary that the nature of the 

relationship between the proposed parameters and particle size follow predictable patterns. 

 

It is well documented that particle size plays a significant role in controlling pollution 

concentrations in sediments; whereby, concentrations tend to increase with declining particle 

size (Rae, 1997). Magnetic concentrations have been used for the normalization and 

identification of heavy metal concentrations and particle size effects in several environments 

(Booth et al., 2005; Zhang et al., 2007). A recent pilot investigation between magnetic and 

particulate matter parameters within urban settings (Booth, 2007) has already identified 

significant relationships (r = 0.701; p <0.001; n = 50). These associations indicate mineral 

magnetic measurements have considerable potential as a particle size proxy for determining 

urban roadside particulate matter concentrations. 

 

Anthropogenic Particles in urban settings display distinctive magnetic properties such as 

magnetic enhancement (Thompson and Oldfield, 1986), some studies have found strong 

relationships between certain magnetic properties (magnetic susceptibility χ) and heavy metal 

concentrations (Clifton et al., 1999; Petrovský and Ellwood, 1999; Xie et al., 2001).  Despite 

these advances, the approach of using mineral magnetic properties in the study of 

environmental pollution has not been fully explored.  

 

Booth et al. (2005)  suggested if a particle size proxy could be measured in an efficient fashion, 

with shorter analysis time, lower cost, and following a universal pattern of relationship, it would 

offer potential advantages. Compared with other geochemical techniques, mineral magnetic 
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methods are relatively quick and simple to prepare and analyse (Walden, 1990). Measurements 

of magnetic susceptibility (χLF) can be made in ~1 minute, within either a laboratory or field 

environment (Booth et al., 2005). This allows relatively large data sets to be acquired, adding 

statistical weight to any data collected (Walden, 1990). Initial costs of magnetic susceptibility 

(χLF) instrumentation are low (Bartington MS2 susceptibility meter and sensor £3,960 

(Bartington, 2011, 2012 (Appendix 7.4))) when compared to XRF and ICP-MS. TEOM systems 

operated by the AURN, cost tens of thousands of pounds to operate and maintain (Appendix 

7.5).  

 

Given the speed, low-cost, sensitivity and application range of mineral magnetic measurements, 

magnetic techniques can potentially be used as an alternative and/or complementary 

exploratory technology for particulate pollution investigations. Furthermore, in certain instances, 

mineral magnetic methods could potentially examine linkages between respiratory health, PM 

size, composition and anthropogenic emissions. 

 

1.12 Aims and objectives 
Mineral magnetic measurements as a PM particle size proxy is the primary interest of this study    

(Aim 1). PM properties associated with size, shape and surface area can cause acute health 

problems. Essentially, the probability of PM penetrating deep into the lungs increases with 

decreasing particle size. As a result, the finer fraction of PM can potentially trigger respiratory 

problems in sensitive and vulnerable groups (children, elderly). As a secondary strand to this 

research, geochemical composition is also addressed due to chronic health incidences 

associated with particle composition when particles are inhaled deep into the lungs over time 

(Aim 2). Therefore the aims and objectives of this research are:  

 

Aim 1: Investigate the extent to which mineral magnetic concentration parameters can be 
used as a proxy for indicating RDS PM particle size. 

Objectives:  

• To conduct an extensive literature review on PM it’s health effects and mineral 

magnetic methods to determine proxy potential.  

• To devise a sampling strategy based on previous research and actual existing 

database of PM levels, traffic counts, multiple land uses and health data. 

• Generate a wide range of new data for areas in the West Midlands and UK.   

• Perform laboratory experiments including mineral magnetic, SEM, particle size, and 

organic loss on ignition. 

• Thoroughly characterise the RDS and determine the state in which mineral magnetic 

methods can be used as a PM proxy for RDS by using statistical and GIS methods. 

• Assess the reliability of using mineral magnetic methods as a proxy for particle size  
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Aim 2: Investigate the extent to which mineral magnetic concentration parameters can be 
used as a proxy for geochemical composition of RDS at local, and national scales 
within the UK, and whether these data associations follow the predictable trends 
of other studies. 

Objectives:  

• Investigate elemental concentrations in RDS using XRF and SEM-EDX for roadside, 

city and national scales.  

• Compare results of mineral magnetic and geochemical data with previous studies 

conducted on RDS. 

• Determine from data whether mineral magnetic methods can be used reliably as a 

proxy for geochemical composition at different spatial scales. 

 

 This work will develop from previous research in the following ways: 
 

• By establishing mineral magnetic and particle size associations over time and at varying 

spatial scales (road, city, regional and national) as a review of literature suggests that 

previous research has not fully explored urban RDS relationships and only concentrates 

on small sampling areas. 

 

• Investigating linkages of roadside particle size, airborne PM (through ASU data) and 

mineral magnetic associations, as there is a lack of research and available data in this 

area. 

 

• Compare geochemical parameters to infer influencing factors and sources, but at 

various spatial scales as previous research has only concentrated on hot spots and 

small scales.  

 

• Establishing and investigating the reliability of mineral magnetic measurements as an 

urban geochemical pollution indicator within RDS at a number of spatial scales, as only 

small scales have been investigated in previous research.  

 

• Investigate the factors that influence the reliability of mineral magnetic methods as a 

particle size proxy, as a lack of research and data have failed to provide explanations 

for the success or failure of these methods. 
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1.13 Thesis Overview 
Chapter 1 outlined the overall rationale for research and the scope of research undertaken. 

Chapter 2 reports the outcome of previous research on health effects, sources and methods for 

measuring PM and RDS. Previous work highlights the potential advantages over established 

techniques and limited scope of work already conducted using mineral magnetic methods. 

Chapter 3 outlines the practical methodologies used in the field and laboratory. Data confidence 

is explored as a pilot study investigating reliability of the proposed methods for RDS analysis 

and potential limitations.  

 

Chapter 4 presents the main results from the experiments used in this research and a statistical 

treatment of the data for the temporal, local and regional viewpoint. Chapter 5 presents results 

for the larger UK spatial study with an investigation of towns and Cities in the UK. Data is 

explored in terms of spatial application and introduces geochemical data.  

 

Chapter 6 discusses the results and compares to previous research further developing the 

findings, evaluating the application and implications of the methods. Chapter 7 relates the aims 

of the work to the results and success/failure of the methods. Limitations of the study are 

discussed, and recommendations are stated for future work. 
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Chapter 2 
Health effects, proxy measurements and mineral magnetic methods 

 

This chapter details the health issues associated with PM and the rationale for this research 

which aims to investigate mineral magnetism as a quick, cost effective alternative PM proxy 

method. 

 
2.1 Health effects of particulate matter  
Airborne particulate matter is receiving world-wide attention due to its impact on air quality, with 

cases of particulate matter exposure linked with respiratory illness, diabetes and other health 

problems (COMEAP, 2010; DEFRA, 2012). Airborne particulate matter affects human health in 

different ways and it is important to identify how and why these particles can be harmful. 

According to Pope and Dockery (2006), four factors affect the toxicity of PM hence the risk of 

developing disease: 

 

1) Amount of dust retained in the lung. 

2) Duration and intensity of exposure. 

3) Individual sensitivity. 

4)  Dust properties. 

 

Several studies (Oberdörster et al., 1994; Fubini, 1997; Harrison and Yin, 2000; Hetland et al., 

2000; Hetland et al., 2001; Skaug, 2001; Muhle and Mangelsdorf, 2003; Moreno et al., 2004; 

Nygaard et al., 2004; Brunekreef and Forsberg, 2005; Dybing et al., 2005; Perry and Taylor, 

2007) indicate that the most important characteristics of particles are: 

a) Particle size, shape, surface area and number of particles. 

b) Particle composition, substances attached and solubility of particles. 

 
2.2 Particle mass and number exposure 
Fine particles have a much higher total surface area compared to coarser particles at a given 

dose in mass. Biological effects of particles are believed to depend on how much of the particles 

are in direct contact with human cells (Klemm et al., 2000; Hetland et al., 2001). Some particles 

are smooth and the geometric surface area can be calculated from the size distribution. With 

indented particles the true exposed surface may be evaluated only by means of physical 

adsorption of gases (BET). 

 

Findings indicate that toxic effects of particles have a higher correlation with the particle number 

or surface area concentration than with the mass concentration (Granum et al., 2001; 

Katsouyanni et al., 2005). Particle exposure has traditionally been monitored as mass 

concentration of PM10. However, mass concentration is strongly influenced by large particles. 

Therefore mass concentration is a poor measure for characterizing the fine, and possibly more 

biologically potent particles (Nygaard et al., 2004). Studies in Sweden show 70-80% of total 

particle number concentration in a large city is caused by local sources compared to only 30-

23



40% for PM10 (mass concentration) (Johansson et al., 2007). Johansson et al. (2007) also found 

particle number concentration is highly correlated with vehicle exhaust particles. Figure 2.1 

illustrates the ratio between a coarse, fine and ultrafine particle, and Table 2.1 shows relative 

surface area and relative number of particles for a given mass of spherical particles. There is an 

enormous difference in the total number of particles (one million ultrafine particles compared to 

one individual coarse particle for the same mass), but also the relative surface area is much 

larger for small particles (Figure 2.2). On the surface of some particles, especially with large 

specific surface area, such as carbon particles from combustion processes, allergic agents, 

gases, fungal spores and endotoxins can become attached (Schwartz et al., 2004). These 

compounds can potentially have triggering effects, where the body reacts to the particles. 

Human cells will not recognize what is inside an insoluble particle, but only react with the 

molecules according to their structure at the particle surface. Donaldson and Borm (1998) and 

Fubini et al. (1997) studied impurities on silica particles, especially iron and aluminum which is 

the most commonly found metal ion contaminants on these specimens. These impurities can 

enhance or decrease the intensity of pathogenic responses, and the reactive surface can be 

inactivated by various common minerals e.g. aluminum salts.  

 

 
 

Figure 2.1 Ratio between a particle with diameter 0.1 µm (e.g. a diesel particle), 2.5 µm 
and 10 µm (e.g. mineral particle). 

 

 

Table 2.1 Relative surface area and number of particles for a given mass of spherical 
particles with different diameter (Source: Kittleson, 1998) 

 
Particle diameter Mass Relative surface area Relative number 

0.1 1 100 1 000 000 
1.0 1 10 1 000 
2.5 1 4 64 
10.0 1 1 1 

 

10 µm 

2.5 µm 0.1 µm 
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Figure 2.2 Illustration of surface area and number of particles with same total mass 
(Source: Kittleson, 1998). 

 
Aerosols have integral properties that depend upon the concentration and size distribution of 

the particles (Figure 2.3): 

 

 
 

Figure 2.3 Typical urban aerosol number, surface and volume distributions (Source: 
Seinfeld and Pandis, 2006). 

 

• Number concentration, which is the total number of airborne particles per unit volume of 

air, without size distinction. 

 

• Surface concentration, which is the total external surface area of all particles in the 

aerosol, may be of interest when surface catalysis or gas adsorption processes are of 

concern. Aerosol surface is one factor affecting light-scatter and atmospheric visibility 

reductions. 
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• Mass concentration (volume), which is the total mass of all particles in the aerosol, is 

frequently of interest. The mass of a particle is the product of its volume and density. If 

all particles have the same density, the total mass concentration is simply the volume 

concentration times the density. In some cases, such as respirable, thoracic and 

inhalable dust sampling, the parameter of interest is the mass concentration over a 

restricted range of particle sizes. 

 

According to Nygaard et al. (2004) the particle number concentration mainly reflects the amount 

of ultrafine particles (<0.1 µm), the surface area best reflects the particles between 0.1-1 µm, 

whereas the particle mass reflects particles >0.1 µm. Small particles have a larger total surface 

area compared to the same volume of larger particles. This means more substances can 

adhere to the particles and can be transported into the human body. A high volume of particles 

inside macrophages, blockading further phagocytosis and allowing particles to interact with the 

epithelium, was believed to be the mechanism of overload (Donaldson and Tran, 2002). More 

recently work has emphasized the role of particle surface area in the initiation of overload. By 

experiments on rats, one can confirm this by testing same mass deposition of different 

particulate substances in the lungs with respect to adjustment to same surface area of the 

particles deposited (Donaldson and Tran, 2002). A single response to surface area was evident, 

while the inflammatory response was different for the substances. Donaldson and Tran (2002) 

concluded, that a mass burden of ultrafine particles is more likely to cause overload than the 

same mass burden of larger particles of the same material. The smaller the particle size, the 

lower the mass of particles needed to initiate overload. Cardiovascular causes and lung cancer 

seemed to have threshold effects, while chronic obstructive pulmonary disorder (COPD) 

appeared to have linear effects (Næss et al., 2006). 

 

2.3 Particle size effects on health 
The primary aim of this work investigates particle size due to acute health effects. The amount 

of dust retained in the lung depends on the physico-chemical properties of the dust (particle 

size, shape, density and solubility) and where in the respiratory tract the particles are deposited 

(Raabe and Yeh, 1976; Schwartz et al., 2004). Figure 2.4 presents the structure of the human 

respiratory tract. The way of breathing (nasal/oral, breathing frequency and volume), physical 

activity, possible existing diseases and particle properties determine the location in the 

respiratory system of particle deposition (Schwartz et al., 2004). The potential for health risk 

depends on if, and how rapidly the particles are removed from the respiratory system. The 

human respiratory tract can be considered as a series of filters starting with the nose or mouth, 

via the various diameters of airways to the alveoli, Figure 2.5 presents deposition efficiency in 

the airways as a function of particle diameter. Efficiency is related to particle mass inhaled. 

According to Dybing et al. (2005), three mechanisms determine deposition in the respiratory 

tract: (1) sedimentation by gravitational forces acting on particles >0.5 µm in aerodynamic 

diameter; (2) impaction caused by their inertial mass in branching airways acting on particles 

>1.5 µm; and (3) diffusional motion of particles <0.5 µm by thermal motion of air molecules. 
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Figure 2.4 Diagram of the human respiratory tract (Source: National Health Service, 2009). 
 

 

Figure 2.5 Deposition of particles in the airways (Source: Schwartz et al., 2004). 
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These mechanisms work through three important components during breathing: (a) particle 

dynamics, including the size and shape and its possible dynamic change during breathing; (b) 

geometry of the branching airways and alveolar structures; and (c) breathing pattern 

determining airflow velocity and the residence time in the respiratory tract, including breathing 

through the nose compared with breathing through the mouth. Different cells with various 

properties exist in our respiratory system and air sacs (Schwartz et al., 2004): 

 
• Some cells produce mucus and secrete compounds to counteract effects of particles 

and other foreign matter. The thickness of the mucus layer (lining fluid) is least in the 

deep lung (air sacs, terminal airways and small air ducts). If sufficient foreign matter 

reaches the lungs, cells will send out signaling substances which summon other cells 

(i.e. different types of leucocytes such as granulocytes and lymphocytes) that create 

inflammation to render the foreign matter harmless. Inflammation is important to block 

infections by destroying foreign matter, but can also result in injury to adjacent tissue. 

Strong and persistent inflammatory reaction may lead to cell damage and create areas 

sensitive to illness in the lungs. 

 

• Other cells are covered with cilium and are involved in the transport of mucus to the 

gullet. In this way, particles, microbes and other foreign matter can be transported away 

from the respiratory system. 

 

• Specialized cells (macrophages) take up and break down foreign matter in the gas 

exchange areas of air sacs. 

 

2.3.1 Particles inhaled and absorbed by the body 
Particles can be divided into three categories, depending on their solubility (Schwartz et al., 

2004); soluble, partly soluble and low solubility. The main part of urban airborne PM is partly 

soluble. Particle size is important for removal of the low solubility fraction. Particles of different 

size are removed in different ways and the place of deposition also determines in what way the 

particles are removed. Particles deposited in the upper and middle part of the respiratory tract 

are removed relatively fast (hours, days), while it may take much longer (months, years) for 

particles deposited in the lower part. Deposited particles are removed in different ways, 

depending on solubility and where they are deposited in the respiratory tract (Schwartz et al., 

2004): 

 
• Soluble particles or components are removed fast. A protecting liquid layer covers the 

surface of the respiratory system and has different composition in different parts of the 

respiratory tract. Soluble particles or components attached can be partly or completely 

dissolved, and the components may reach blood vessels often via the lymphatic 

system. This may cause effects far from the place they were deposited. 
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• Coarse low solubility particles >5 μm which are deposited in the upper part of the 

respiratory tract are removed by coughing, sneezing or by muccociliary clearance to the 

gullet, where the particles can reach the gastrointestinal tract. They are either secreted 

with excrements or taken up in the gut. The muccociliary transport is slower and 

particles are deposited further down in the respiratory tract. Low solubility particles with 

size between 5-0.1 μm can be taken up by macrophages. Ultrafine particles (<0.1 μm) 

can enter into the blood stream and reach other organs, but the effect of these particles 

is not yet established.  

 

The activation state of the target lung in terms of the response to particle exposure reflects an 

important issue. Differences in the activation state of the macrophages dictate the extent of their 

pro-inflammatory response (Salvi et al., 1999; Donaldson and Tran, 2002). The sequence of 

effects in lungs after exposure to low solubility particles is inflammation, fibrosis and then cancer 

(Muhle and Mangelsdorf, 2003). Inflammation is crucial to the development of adverse health 

effects associated with particle exposure. There are several implications for health connected to 

inhalation of airborne PM. The particles can affect the heart and blood vessel system. The heart 

is the organ that receives the blood stream from the respiratory system first. According to 

Dybing et al. (2005), air pollution may result in diminished oxygen supply, increased blood 

coagulation and possible clot formation in the vessels supplying the heart muscle, with 

deleterious heart rhythm effects (Gold  et al., 2000).  Ultrafine particles can be found in the liver, 

spleen, kidneys, brain and nerves (Dybing et al., 2005). Lung inflammation, heart variability, 

changes in blood viscosity and oxygen deprivation can result in exacerbating the symptoms of 

pre-existing lung disease, such as asthma, as well as heart and blood vessel disease and 

probably induction of lung cancer (Dybing et al., 2005; Katsouyanni et al., 2005). 

 

2.3.2 Duration and intensity of exposure 
The length and intensity of exposure to PM are important factors that influence effects on 

health. Both short-term (hours, days) and long-term (weeks, months, years) exposure to PM can 

enhance existing disease in a population. Long-term exposure can directly contribute to the 

development of disease and subjects living in cities with higher long-term average PM10/PM2.5 

concentrations die earlier than subjects living in cities with low air pollution. Short-term exposure 

has been linked to increased daily mortality and numbers hospitalized due to respiratory and 

cardiovascular diseases (Harrison et al., 1996; Katsouyanni et al., 2005; COMEAP, 2009).  

 

Relatively few studies have documented effect of long-term exposure on local air pollution on 

health (Pope and Dockery, 2006; COMEAP, 2009). However, it is documented that the relative 

risk due to long-term exposure is greater than short term exposure (Seaton et al., 1995; 

Soloman et al., 2003; Pope and Dockery, 2006). Studies on effects of outdoor air pollutants on 

human health have included both epidemiological and toxicological studies. Toxicology aims to 

understand the processes of how pollutants affect people’s health and to identify the factors 

influencing those processes, while epidemiology identifies disease by studying its occurrence in 

a population and employs statistical methods to assess whether exposure and disease are 
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related. The AIRNET network project on air pollution and health (2002-2005) founded by the 

EU, has tried to create a foundation for public health policy that can improve European air 

quality (Dybing et al., 2005; Katsouyanni et al., 2005).  

 

Epidemiological studies show a connection between short-term exposure to PM10 and acute 

health effects. An increase in PM10 of 10 µg/m3 resulted in an increase in relative risk of 0.6% 

for all causes of death, and 0.9% and 1.3% for death by cardiovascular and respiratory 

diseases, respectively (Soloman et al., 2003). There is also evidence of cardiac infarction in 

response to very short changes (hours) in PM10 concentration (Gold et al., 2000; Zanobetti and 

Schwartz, 2007). It is difficult to separate health effects of PM10 from short and long-term 

exposures. However, for long-term exposure an increase in PM2.5 of 10 µg/m3 resulted in an 

increase in relative risk of 4% for all causes of death, and 6% and 8% for death by 

cardiovascular disease and lung cancer respectively (Soloman et al., 2003). The risk for 

developing health effects increases linearly even at very low concentrations of air pollution in 

general and PM in particular, and it was not possible to establish a level of concentration 

beyond which there is no health effect (Schwartz et al., 2004). There are different opinions on 

whether a threshold level for exposure to airborne PM exists (de Kok et al., 2006). Donaldson 

and Tran (2002) assumed all particles have a threshold effect level where the lung can deal with 

them, while Dybing et al. (2005), Katsouyanni et al. (2005) and de Kok et al. (2006) reported no 

support for general thresholds for PM-induced adverse health effects at a population level, even 

though general toxicology understanding makes thresholds for individuals biologically plausible. 

 

2.3.3 Individual sensitivity  
Individual sensitivity towards the actual dust is important for evaluation of health effects from PM 

air pollution. Risk or susceptibility depends on the specific health end point being evaluated and 

the level and length of exposure (Pope and Dockery, 2006). Some groups of the population are 

particularly susceptible to PM. Fetuses, children, elderly people and groups with chronic 

diseases (respiratory disorders like asthma, allergy and chronic obstructive pulmonary disorder 

(COPD), cardiovascular disease, cancer and diabetes) are more susceptible than healthy 

people (Soloman et al., 2003; Schwartz et al., 2004; Næss et al., 2006; Pope and Dockery 

2006; Kelly and Fussell, 2012). There is also evidence of increased infant mortality rates and 

various birth defects because of particle exposure (Pope and Dockery, 2006). In addition, risk 

for worsening of asthma and allergy because of air pollution is larger for children than adults 

(Perera, 2008). Age is an important factor when evaluating individual sensitivity. Children have 

narrower bronchia and different breathing patterns compared to adults, which may result in 

different places of deposition for inhaled particles (Heinrich and Slama, 2007). Increased 

sensitivity with elderly people may be caused by diseases as a consequence of age and not 

age itself. Characteristics that have been shown to influence susceptibility include pre-existing 

respiratory or cardiovascular disease, diabetes, medication use, age, gender, race, socio-

economic status, health care availability, educational attainment, housing characteristics and 

genetic differences (Pope and Dockery, 2006). Geographical and socio-economic variation 

magnify these effects within susceptible groups, for instance, children living alongside main 
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roads are more likely to develop asthma (Duran-Tauleria and Rona, 1999; Edwards et al., 1994; 

Oosterlee  et al., 1996; Wilkinson et al., 1999). Poverty is also linked with child asthma and 

urban areas (Duran-Tauleria and Rona, 1999). But gaps in knowledge still exist for who is most 

at risk or susceptible to PM. The number of those susceptible to less serious health effects may 

be larger than the risk of dying or hospitalization. For most people those effects are likely to be 

small, transient and largely unnoticed (Pope and Dockery, 2006). 

 

2.4 Particle composition effects on health 
The secondary aim of this work investigates particle composition and is secondary due to 

potential chronic health effects of particles. Urban dust generally causes more health effects 

than rural dusts. Emissions produced by motor vehicles appear to be most dangerous to human 

health (Kelly and Fussell, 2012). Health issues are primarily due to particle size effects and 

secondary long-term effects of geochemical composition and potential toxicity of particles 

(Katsouyanni et al., 2005; Molfino et al.,1991; Sandstrom, 1995; Kelly and Fussell, 2012). In 

urban air the fine fraction (<2.5 μm) mainly consist of organic components, such as sulphur 

aerosols and soot particles, while the coarse fraction (2.5-10 μm) is predominantly composed of 

inorganic mineral matter such as silicates (Harrison and Yin, 2000; Granum et al., 2001; Dybing 

et al., 2005).   

 

Mineral particles can be divided into crystalline and non-crystalline (amorphous) forms. In 

crystalline phases, the molecules make a three-dimensional repeating pattern forming the 

mineral structure. Amorphous minerals have no such pattern; the molecules are arranged 

randomly. Crystallinity seems to be an important factor in the toxicity of mineral particles 

(Øvrevik, 2006). Studies of mineral particles have demonstrated that toxic and carcinogenic 

effects are often related to the surface area of inhaled particles and their surface activity (Fubini 

1997; Donaldson and Borm, 1998; Donaldson et al., 1998, 2006; Harrison and Yin, 2000). 

Particle surface characteristics are key factors in the generation of free radicals and reactive 

oxygen species formation and in the development of fibrosis and cancer by quartz (crystalline 

silica) (Fubini, 1997).  

 

Particles are capable of generating or inducing generation of free radicals in humans, thereby 

leading to increased oxidative stress (Sørensen et al., 2003). Oxidative stress may damage 

cells and important molecules (Donaldson and Tran 2002; Dybing et al., 2005). Donaldson and 

Borm (1998) emphasized the ability of quartz to generate free radicals causing oxidative stress, 

modifying a range of substances that affect quartz surfaces in the process. Transition metals 

contribute to this reactive oxygen species generation through the Fenton reaction, thus 

enhancing particle toxicity (Fubini, 1999). In an experiment on human epithelial lung cells, 

Hetland et al. (2000) reported that the most potent particle samples exhibited a relatively high 

content of transition metals, such as iron. In this study the size distribution on different materials 

was the same, but the mineral content and metal composition differed. In the same experiment 

it was concluded that exposure to identical masses or surface areas resulted in the same order 

of potency among the different particle samples. Donaldson and Borm (1998) argued that it is 
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only the surface layer that interacts with lung cells and fluids. A change in chemistry of the layer 

could alter particle reactivity, but might impact only minimally on the bulk chemistry of the 

quartz. Experiments with external agents not in the dust have shown that such agents may coat 

the quartz surfaces and decrease its toxicity (Donaldson and Borm, 1998). Metals need only be 

present in trace amounts to generate inflammation via receptor mediated cell activation or via 

oxidative stress pathways (Donaldson and Tran, 2002). 

 

The mineral particle itself needs not to be harmful to human health, but may act as a transporter 

of other substances into the body via inhalation (Gomes and Silva, 2007; COMEAP, 2010). 

These substances attached on the mineral particles can be endotoxins, metals and other 

substances, such as polycyclic aromatic hydrocarbons (PAH) from combustion processes, 

pollen and fungi. The chemical composition of the coarse PM is likely to vary spatially and 

temporally in addition to climate and time of day (Harrison and Yin, 2000; Brunekreef and 

Forsberg 2005, Wilson et al., 2005). Both the particle core, organic and inorganic substances on 

the particles, particle composition and biosolubility have shown to affect allergic sensitization 

(Nygaard et al., 2004). Specific chemicals present in PM such as metals and polycyclic aromatic 

hydrocarbons (PAH) and their derivates, largely determine the toxic potency of PM (de Kok et 

al., 2006).  

 

Airborne particles are recognized as important carriers of metals, and in urban areas road traffic 

is an important source both for particles and certain metals (Sternbeck et al., 2002; de Kok et 

al., 2006). The vehicle itself (e.g. wear products from brake linings, tyres, coach and combustion 

products from fuel and oil) and the pavement wear contribute to the composition. Resuspension 

processes have major effects on the presence of many metals and larger particles in air close to 

roads (Berube et al., 1997; QUARG, 1996; Sternbeck et al., 2002). Transition metals contribute 

to particle-induced reactive oxygen species (ROS) through the Fenton reaction (Hetland, 2001).  

 

Specific heavy metals attribute to the toxicity of PM as seen in many recent studies. These 

studies provide evidence that particle-associated metals contribute to health effects of PM 

(Armistead and Brunkreef, 2009; Donaldson and Borm, 2010; Lipman, 2010). Heavy metals are 

considered toxic components of PM and they are responsible for a variety of pathological 

changes in living organism (Donaldson and Borm, 2010). Particles inhaled or ingested pose a 

substantial threat with potential of releasing accumulated heavy metals into the bloodstream 

and distributed within the body.  

 

Research has linked lead, cadmium, nickel and arsenic in consequence of their toxicity and 

potential adverse health effects to an exposed population (Armistead and Brunkreef, 2009; 

Donaldson and Borm, 2010; Lipman, 2010). Exposure to such metals has been linked to 

substantial health risk in terms of their carcinogenic effects. Risks of developing cancer due to 

PM has become one of the most serious and relevant issues in air pollution health risk 

assessment (WHO, 2007; Sadovska, 2012). Lead exposure has been linked to possible source 

of tumors, developmental and neuro-behavioural effects on fetuses, infants and children, there 
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is also evidence of elevated blood pressure in adults (WHO, 2007). Cadmium is recognized as 

one of the most noxious pollutants in the environment (Yu, 2001). Toxicity of Cadmium leads to 

accumulation in soft tissues (liver and kidneys) and mineralizing tissues (bones). Key health 

endpoints include kidney, bone damage and cancer. Chronic exposure from inhalation can also 

cause chronic pulmonary effects (Kampa and Castanas, 2008; Donaldson and Borm, 2010). 

Effects of nickel Inhalation may lead to nasal and pulmonary tumors (Donaldson and Borm, 

2010).  

 

2.5 Airborne particulate matter 
This study concentrates on anthropogenic sources of particles released into the atmosphere 

due to the potential health effects discussed. Several stationary and mobile sources can be 

attributed to this with the major mobile source being road transport (Greenwood et al., 1996; 

Allen et al., 2001; Kumar and Britter 2005). The other main sources are from burning of fuels for 

industrial, commercial and domestic purposes. Anthropogenic activities related to construction 

and quarrying also produce high concentrations of particulate matter. Natural contributions of 

particulate are produced from sea spray, volcanic activity, forest fires and dust from the Sahara 

Desert travelling vast distances (Namdeo and Colls, 1996). These particles tend to be coarse 

compared to finer anthropogenic-formed particles. Secondary particulate matter is formed from 

chemical reactions of the gases NH3, SO2 and NOx released into the atmosphere (Phalen, 2002; 

Wilson et al., 2004). The chemical composition includes sulphates, nitrates, ammonium, sodium 

chloride, elemental and organic carbon, magnetic spherules and several minerals (Allen et al., 

2001; Phalen, 2002; Kukier et al., 2003; Matthias, 2007).  

 

The composition of atmospheric particles is influenced by a balance between sources, chemical 

transformations in the atmosphere, long-range transport effects and removal processes 

(Harrison et al., 1997; Morwaska and Zhang, 2002; Celis et al., 2004; Schmeling, 2004). 

Particulate pollution episodes are influenced in several ways with strong traffic related 

emissions regularly attributed to pollution episodes in urban environments (Charron, 2007). This 

combined with poor atmospheric conditions (e.g. calm winds and temperature inversions); and 

natural sources of particles (e.g. wind-blown dust, sea salt) can further increase particle 

concentration levels (Deacon et al., 1997; Smith et al., 2001; Vardoulakis, 2008; Mugica et al., 

2009).  

 

2.5.1 Anthropogenic sources of particulate matter 
All combustion and metallurgical processes and many other industrial operations lead to the 

emission of particles into the atmosphere. Road traffic contributes on average 25% of total PM10 

concentrations in the UK. However, with a marked increase in high traffic density in urban 

areas, concentrations can reach 80% (AEAT / NETC, 2004). PM2.5 and PM10 have also been 

closely related to urban sites, but not to rural due to the close proximity and traffic density of 

urban areas (Chen, 2007). Stationary sources can be classed as industrial, commercial and 

domestic processes, these include power stations, refineries, iron, steel, oil and gas industries. 

High temperature metallurgical processes, coal burning and refuse incineration cause the 
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formation of fine metal-rich particles by the condensation of cooling vapours. The inorganic ash 

spheres are amorphous, comprising mostly of aluminsilicate glass and containing calcium, iron, 

magnesium and alkali metals. Within this matrix, there are mineral phases, consisting of high 

temperature phases of quartz (SiO2), magnetite (Fe3O4), hematite (Fe2O3) and maghemite 

(γFe2O3) (Fly Ash Resources Centre, 1999). Despite the best efforts of arrestment plants, a 

small proportion of such particles inevitably enter the atmosphere (AQEG, 2011). Construction 

activities and weathering of building material within urban areas contributes quartz sand, 

concrete and cement particles to PM. In urban areas undergoing extensive development, the 

volume of building material of PM can be large, and may have important consequences for air 

quality (Perry and Taylor, 2007). AQEG (2005) identified road traffic emissions as the main 

primary contributor of PM10 in urban areas and will be discussed further. 

 
2.5.2 Road traffic contribution 
Road transport is the major contributor of PM in urban areas (Quarg, 1996; COMEAP, 2012). 

Forming 25% of PM nationally, it should be noted that this is a national average, and in urban 

areas, high traffic density can increase this value to <80%. Diesel fuel combustion is the single 

most significant contributor of fine particulate material to urban areas (Berube et al., 1997). 

Diesel engines are of particular significance as they emit particulates at a far greater rate than 

petrol or spark ignition engines, with typical emissions being 10-100 times greater than 

comparable petrol engines (Sagai and Ichinose, 1994; Kittleson, 1998). The combustion of 

hydrocarbons is ideally represented by the conversion of fuel primarily to CO2 and H2O 

(Bockhorn, 1995). However, combustion is often incomplete due to insufficient oxygen to 

convert all available fuel, which leads to the formation of by-products such as hydrogen, carbon 

monoxide and particulates. Haywood (1988) described particle formation beginning with the 

creation of carbonaceous material (soot) in the cylinder. In addition, several studies show that 

almost 100% of diesel particulates are <10 µm in diameter (Kleeman et al., 2000). Figure 2.6 

illustrates the typical sources and types of PM from road traffic. 

 
Although the efficiency of diesel is well noted with higher calorific values during combustion, 

particulate emissions from diesel engines are high due to incomplete combustion, when there is 

insufficient oxygen to completely burn a droplet of fuel.  This typically only happens at full power 

or heavy load conditions.  The outside of the fuel droplet starts to burn but then oxygen levels 

inside the engine drop to the point that the inside of the droplet forms into a tiny lump of carbon 

rather than being burnt.  A cloud of these lumps of carbon coming from the tailpipe then 

constitutes diesel smoke. The EU have implemented regulations to control diesel emissions (EU 

715/2007), which regulates the fitting of catalytic converters and particle filters and controls 

emissions of PM to 0.005 g/km for passenger vehicles (Figure 2.7).  

 

Condensation reactions of gas-phase species, such as unsaturated hydrocarbons and PAHs, 

lead to the appearance of the first recognizable solid material (soot spheres) at combustion 

temperatures of 730–2530oC. A phase of particle growth then follows inside the cylinder that 

includes surface growth of spherules by absorption of gas-phase components.  
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Figure 2.7 Mean PM10 emission factors for exhaust, tyre and brake wear in the UK 
(Source: AQEG, 2005). 

 
 

At temperatures of 500oC particles are principally clusters of spherules with individual diameters 

of 15–30 nm. Once these clusters have left the cylinder they are then subject to a further mass 

addition process as the exhaust gases cool. As temperatures fall <500oC, particles become 

coated with absorbed and condensed high-molecular weight organic compounds. A part by-

product of particulate matter are polycyclic aromatic hydrocarbons (PAH) and are a major health 

concern, with several PAHs known to be carcinogenic and capable of forming more toxic 

compounds when metabolised (Riddle, 2007). Harrison (1995) described four primary pollutants 

from motor vehicles: 

 

1. Carbon monoxide. 

2. Oxides of nitrogen (NO and NO2). 

3. Particulate matter. 

4. Volatile organic compounds (e.g. benzene, 1-3-butadiene). 

 

Road traffic emissions generally emit particles in the PM10 size range of which 25% are <10 μm, 

38% <1.0 μm and 52% <1.0 μm (by volume). Most (>90%) particulates emitted from diesel 

engines are in the <1 µm particle size fraction (McClellan, 1989). Most mass is in the 0.1–1.0 

µm “accumulation” size fraction, while most particles are in the <0.1 µm “ultrafine” or 

“nanoparticle” fraction (Kittelson, 1998). A given mass of very small particles contains more 

particles with a corresponding larger surface area, than an equivalent mass of larger particles. 

Consequently, a given mass of ultrafine particles will impact a larger surface area of lung tissue 

than will an equal mass of larger particles, leading to more extensive exposure of lung tissue 

(Oberdörster, 1995).  
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The following factors affect the final physico-chemical characteristics of diesel engine particulate 

(DEP) (Bartlett et al., 1992): 

 
i. Chemical composition of fuel and lubricating oil. 

ii. Operating conditions of the engine (i.e. engine revolutions and load). 

iii. Engine design and wear. 

 
Automobiles also produce particulates through tyre and brake wear. Particles are produced 

mechanically due to the rolling shear of the tyre on the road surface. Tyre tread which wears to 

produce dust, is normally composed of co-polymers of natural rubbers, polyisoprene rubber, 

butadiene rubber and styrene-butadiene rubber. The composition is obviously one of the main 

determinants of the chemical composition of road particulates. The type of rubber or the blend 

of rubbers used in manufacture of the tyre depends on factors such as the physical strength and 

wear resistance required by the vehicle. The quantity of particulate generated is highly 

dependent upon several factors, including driving conditions (e.g. acceleration, average speed, 

braking), tyre conditions (pressure, age of tyres,) and type of road surface (asphalt or concrete) 

(Abu-Allaban et al., 2003). Several authors have attempted to quantify the amount of 

particulates generated by tyre wear. The Air Quality Expert Group (AQEG, 2005) gives values 

for PM10 emissions from car tyres as 0.00874g km-1 (Figure 2.7), whilst values as high as 0.09 g 

km-1 have been reported (Wolfgang et al., 1993). Nicholson (2000) estimated a mean PM10 

emission factor of 40 mg km-1 for the UK, based on the current UK mix of vehicles. In general it 

is believed that particulates produced from tyre wear are unlikely to be <2.5µm diameter due to 

the physical nature of the mechanisms leading to their generation. Brake lining dust is produced 

under forced deceleration, vehicle brake linings are subject to large frictional heat generation 

and associated wear. This mechanical process generates particles from both brake linings and 

brake surfaces. Because brake manufacturers use many different materials for the manufacture 

of brake linings, the dust may contain various contaminants. AQEG (2005) attempted to quantify 

emissions from brake linings and suggested a value for cars of 0.0177 g km-1.  

 
2.6 RDS in the urban environment 
PM10 and PM2.5 have been measured extensively in urban air, and a major component of these 

particles, especially those >2.5 µm, can be derived from road deposited sediment (RDS) 

(Hosiokangas et al., 1996; Allen et al., 2001). RDS is composed of a wide range of sediment 

grains, which are typically dominated by quartz, clay and carbonates, due mainly to underlying 

parent material (Perry and Taylor, 2007). In addition, abundant anthropogenic grains are 

present, including glass particles from industrial processes and high temperature combustion, 

metal slags, cement grains, metallic fragments and iron oxide particles (Perry and Taylor, 2007).  

 

Road deposited sediments are characterized by short residence times, although they may 

contain substantial metal concentrations, RDS represent only rather recent accumulation of 

pollutants (Harrison et al., 1981). Allott et al. (1990) computed residence times of <250 days for 

street dusts in Barrow-in-Furness, UK, and statement that residence times ‘‘will be site specific 
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due to variations in the local processes’’. However, material constituting street dust includes 

eroded urban soils, which may have historical associated metal pollution.  

 

Currently, there is limited understanding of pathways that sediments take from their source to 

receiving water bodies, rate of transport and the location of short and long term sinks. The 

movement of sediment through the urban environment can be represented by the ‘urban 

sediment cascade’ (Figure 2.8) (Charlesworth and Lees, 1999). The urban sediment cascade is 

a dynamic system which recognizes relationships between sediment sources, transport 

mechanisms and sediment deposition. The bulk of sediment transport in the urban environment 

occurs through the action of water, but local distribution upon street surfaces may also occur by 

wind (Perry and Taylor, 2007).  

 
RDS characteristically exhibits high metal concentrations, in most cases significantly above 

average natural background levels, an aspect of which most research has been directed 

(Harrison, 1979; Beckwith et al., 1986; Leharne et al., 1992; De Miguel et al., 1997; Kim et al., 

1998; Robinson et al., 2000; Charlesworth et al. 2003; Robertson et al., 2003; Sutherland, 2000; 

Shi et al., 2008; Fujiwara et al., 2011; Trang and Lee, 2011). These metals consist of iron rich 

combustion particles (mostly iron-oxides), lead, copper, zinc and other trace metals (Please 

refer to Table 1.5). Studies show clear spatial distributions of metal concentrations in RDS (De 

Miguel et al., 1997; Charlesworth et al. 2003; Robertson et al., 2003). Spatially metal 

concentrations are higher in inner city sites compared to outer city, with different hotspot 

locations for different metals, reflecting the contrasting levels of vehicular activity (Nageotte and 

Day, 1998; Charlesworth et al., 2003; Robertson et al., 2003; Perry and Taylor, 2007; COMEAP, 

2012).  RDS also has the potential to reflect historical episodes of anthropogenic activity, as well 

as current traffic movements, industrial and urban processes.  

 

The correlation of Fe, Pb, Zn, Cu and Ni are good indicators of anthropogenic sources within 

RDS (Robertson et al., 2003; Harrison et al., 2004). These elements contribute to RDS from 

combustion sources and mechanical abrasion (Perry and Taylor, 2007). In most cases, 

enhanced geochemical concentrations compared to background levels indicate anthropogenic 

influences. However, it is not necessarily high values that indicate anthropogenic influences, but 

the comparative ratios of elements. Correlations between geochemical concentration 

parameters can be used in urban studies to establish influencing factors (Harrison et al., 2003; 

Robertson et al., 2003). Due to the abundance and ease of collecting RDS, it is considered an 

ideal medium when investigating urban pollution. 

 

2.6.1 Techniques used in RDS studies 
Various techniques have been used to determine characteristics and provenance of RDS. 

Measurements of soil, street dust and sediments have been used to map areas polluted by 

industrial emissions, such as coal-burning power plants, lead ore smelters, and roadside 

pollution due to automotive traffic and other atmospheric pollution.  
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Figure 2.8 The urban sediment cascade, showing the pathways of, and change in, urban 

sediment particulates from sources to sink (Source: Charlesworth and Lees, 

1999). 
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The most widely used techniques are: Inductively Coupled Plasma-Mass Spectroscopy (ICP-

MS) (Amato et al., 2009; Anagnostopoulo and Day, 2006; Ferreira-Baptisa and Miguel, 2005; 

Herngren et al., 2006; Manno et al., 2006; De Miguel, 1997). Inductively Coupled Plasma-

Atomic Emission Spectroscopy (ICP-AES) (Murakami et al., 2007; Al-Khashmann, 2004; 

Sutherland and Tolosa, 2000), Scanning Electron Microscope (SEM) techniques (Abu-Allaban 

et al., 2003; Robertson et al., 2003), sequential extraction methods (Kartal et al., 2006; Tessier 

et al., 1979; Charlesworth et al., 2003; Robertson et al., 2003), Graphite Furnace Atomic 

Absorption Spectrometry GFAAS (Anagnostopoulou and Day, 2006), Flame Atomic Absorption 

Spectrometry (FAAS) (Kartal et al., 2006) and X-Ray Fluorescence (XRF) spectrometry (Abu-

Allaban et al., 2003; Amato et al., 2009; Han et al., 2008; Xie et al., 2001). The results from a 

wide range of studies which investigated the geochemical composition of RDS are shown in 

Appendix 2.1. These studies successfully revealed heavy metal concentrations in soil and RDS, 

with a range of intensities indicating local and regional pollution. However, traditional 

geochemical methods (e.g. AAS, ICP-MS) are relatively complex, time-consuming and 

expensive due to the expensive instrumentation and additional expertise to operate. These 

instruments are bound to static locations and require specific laboratory environments and are 

therefore unsuitable for mapping or monitoring of large-scale pollution. Magnetic methods have 

also been used within similar investigations with success. 

 

2.7 Proxy methods 
A proxy method is an alternative approach that overcomes many of the problems associated 

with prospective studies. The advantages in urban sediment studies would be an alternative 

method which follows a universal trend, takes shorter analysis time, costs less and could be 

used non-destructively. Urban pollution detection using environmental magnetism may be a 

suitable tool for such studies, due to its ability to identify magnetic particles produced from 

anthropogenic processes. The use of mineral magnetic measurements follows some of the main 

advantages required for a reliable proxy, requiring short analysis time and being non-destructive 

and inexpensive. 

 

Sediment-related analytical data can be strongly affected by particle size effects. Sediment 

contamination by heavy metals, radionuclides or persistant organic pollutants, can influence 

particle size effects and give false readings (Forstner and Salomons, 1980; Alloway, 1990). It is 

necessary, therefore, to first remove this influence by either normalizing data relative to the 

abundance of a specific particle size interval or fractioning samples. 

 

Generally the finer a sediment, the greater its concentration of both natural and anthropogenic 

pollutants (Forstner and Salomons, 1980). This is typically due to finer grained sediments 

possessing larger specific surface areas, surface charges and cation exchange capacities, 

which enhance the extent of their preferential chemical absorption (Forstner and Salomons 

1980). Because of the non-uniform distribution of pollutants over the range of sediment sizes, 

this causes variations in the chemical composition of sediments and thus the samples need to 

be corrected.  
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A range of processes have been developed to minimise these effects. The most accepted 

method is to normalize data, either relative to the abundance of a specific particle class or to 

conduct the analyses on a specifically separated particle size fraction e.g. <16 μm (Klamer et al. 

1990), <20 μm (Ackerman et al. 1983), <50 μm (Aston and Stanner, 1982), <60 μm 

(Ackermann, 1980), <63 μm (Araujo et al. 1988), <75 μm (Clifton and Hamilton, 1982), <100 μm 

(Langston, 1986), <150 μm (Jones and Turki, 1997) or <250 μm (Hornung et al. 1989). Although 

these methods are considered reliable, they require additional, and in the case of fractioning 

samples into specific size ranges, time-consuming laboratory work.  

 

Other techniques have also been adopted involving comparison with ‘conservative’ elements 

(such as aluminium (de Groot et al., 1982; Ergin et al., 1996), iron (Lapp and Balzer, 1993), 

caesium (Ackermann, 1980), rubidium (Middleton and Grant, 1990), or titanium (Forstner and 

Wittman, 1979)) or a correction factor for inert or organic material (Williams et al., 1978). In 

general these approaches employ extrapolation from regression curves or a mathematical 

formulation of correcting particle size effects after analysis of bulk samples (de Groot et al., 

1982; Covelli and Fontolan, 1997; Szava-Kovats, 2002). 

 

Where a particle size proxy can be measured efficiently (that is, shorter analysis time or lower 

cost), it can offer potential advantages. However, to assess the suitability of an efficient particle 

size proxy, it is necessary that the nature of the relationship between the proposed parameters 

and particle size follow predictable patterns (like those of trace metals, radionuclides and BCPs 

with particle size). 

 

Recently a magnetic approach has been suggested (Oldfield et al., 1993; Oldfield and Yu, 1994; 

Clifton et al., 1999; Booth et al., 2005; Zhang et al., 2007) for particle size proxy purposes. In 

the study of coastal sediments (Oldfield et al., 1993), marine, estuarine and fluvial sediments 

(Booth et al., 2005, Zhang et al., 2007), soil (Schmidt et al., 2005), road deposited sediments 

(Booth et al., 2007) and roadside dust on tree leaves (Power et al., 2006), mineral magnetic 

methods have been used as indicators of particle size and pollution. Although magnetic 

methods are simple, quick and non-destructive, such studies are relatively sparse (Zhang et al., 

2007) with findings in current and other areas of study remaining to be validated. 

 

2.8 Mineral magnetic techniques 
Magnetic particles produced from anthropogenic processes have increased in abundance within 

the environment since the industrial revolution (circa 19th century), primarily from the 

combustion of fossil fuels (Petrovský and Ellwood, 1999; Dekkers, 1997; Dearing, 1999). Iron 

occurs as an impurity in fossil fuels which unburned, has low magnetization (Flanders, 1994). 

However, on combustion (industrial, domestic, vehicular) carbon and organic material are lost 

by oxidation and highly magnetic iron oxide (magnetite and haematite) spherules are produced 

(Kukier et al., 2003; Muxworthy et al., 2003; Petrovský and Ellwood, 1999). Combustion 

temperature and fuel type determines the magnetic grain size, mineralogy and concentration of 

these particulates (Flanders, 1984; Robertson et al., 2003; Matzka and Maher, 1999). The 
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magnetic signature of anthropogenic combustion particulates can be separated from natural 

inputs within road deposited sediment to produce a pollution ‘signal’ (Locke and Bertine, 1986; 

Oldfield, 1991; Hay et al.,1997; Dearing, 1999; Rose et al., 2004; Shilton et al., 2005; Manno et 

al., 2006; Booth et al., 2005, 2007). 

 

2.8.1 Magnetic minerals 
Iron oxides are abundant in RDS and mineral magnetic analysis has been applied to study 

source apportionment in these sediments. Road deposited sediments receive a range of mineral 

magnetic grains originating from: 

 

• Subaerial: detrial material originating from erosion of bedrock, subsoil and 

topsoil (Oldfield, 1999b; Hay et al., 1997; Xie et al., 1999b). 

 

• Atmospheric: direct atmospheric fall-out of particulates from natural sources 

such as volcanic activity (Haberle and Lumley, 1998; Hallett et al., 2001), 

cosmic sources (Thompson et al., 1980; Taylor et al., 1996) and dust from 

storms (Dinarès-Turell et al., 2003). In addition there are anthropogenic 

pollutants from burning fossil fuels (Hunt et al., 1984; Oldfield et al., 1983; 

Oldfield and Richardson, 1990; Charlesworth and Lees, 1999; Xie et al., 2001). 

 

• Authegenic (in situ) magnetic formation: subsequent to deposition of magnetic 

minerals, post-depositional diagenetic processes can alter magnetic 

assemblages, e.g. bacterial magnetosomes (Oldfield, 1999; Bazylinski, 1996; 

Snowball, 1994). 

 

The application of environmental magnetic techniques can discriminate between these sources, 

by investigating mineral assemblages within sediments. The application of particularly heavy 

mineral analysis in road deposited sediments has enabled determination of anthropogenic 

contributions (Xie et al 1999; Charlesworth and Lees, 2001; Kim et al., 2009) and explored 

relationships of heavy minerals to source areas and their influence on urban sediments 

(Beckwith et al., 1986; Charlesworth and Lees, 2001).  In the absence of other influences, the 

assemblage of minerals (and their magnetic behaviour) within a sediment represents a mix of all 

the source components from which it is derived. As such, it should be possible to use the 

magnetic character of sediment to relate it to its source or sources. In a similar manner, it 

should be possible to correlate sediments that are separated spatially but derived from the 

same source.  

 

Mineral magnetic methods of sediment correlation or provenance determination use the same 

underlying principle as other geochemical or petrological approaches. Some measurable 

mineralogical or elemental property of the sediment is compared to an equivalent sediment for 

correlation purposes, or compared to potential source components to establish provenance 

(Walden, 1990). The expansion of geophysical technology for measuring the magnetic 
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remanence of rocks has enabled a series of techniques to evolve, which has allowed the 

magnetic properties of minerals to be interrogated. This advance in analysis of geological 

materials means that mineral magnetic studies can be used in other contexts. These include 

forensic techniques for examining diverse sedimentary environments (e.g. urban, desert, glacial, 

lakes, fluvial, coastal and estuarine. All geological substances possess magnetic properties, and 

it is the compositional characteristics of these materials that environmental magnetic 

measurements attempt to classify. With appropriate instrumentation these properties can be 

measured. Different mineral types have distinct magnetic properties, allowing identification and 

differentiation of rock and sediment types based purely on their magnetic characteristics 

(Thompson and Oldfield, 1986).  

 
Figure 2.9 shows the sources of magnetic minerals in the terrestrial environment. Mineral 

magnetic analysis (Thompson and Oldfield, 1986; Oldfield, 1991; Walden et al., 1999) has now 

become established as a means of characterizing sediment samples and recent rapid growth 

has occurred in the application of mineral magnetic measurements as a means of studying 

environmental processes (Walden et al., 1999). 

 
2.8.2 Types of magnetic behaviour  
The magnetic characteristics of rocks and minerals are extensively detailed in several applied 

physics texts (e.g. Nagata, 1961; Stacey and Banerjee, 1974; McElhinny, 1973; O'Reilly, 1976, 

1984; Dunlop and Özdemir, 1997). Therefore, the aim of this section is to outline the types of 

physical magnetic behaviour possessed by geological materials.  
 

The origins of the magnetic properties in any 'natural' substance are held within its constituent 

atoms. The behaviour of the electrons enables them to orbit the nucleus of an atom and to spin 

on their own axes. Both of these 'spins' produce magnetic moments (Smith, 1999). This 

magnetic phenomenon which occurs at the atomic-scale, is responsible for regimenting the 

entire magnetic behaviour of any natural material. As a result, the assorted combinations of 

atoms that compose the crystallographic structure of each mineral species promote distinct 

magnetic properties. These magnetic properties of individual minerals contribute to the overall 

magnetic properties of a sediment. 

 
Three types of magnetic behaviour have been recognized: diamagnetic; paramagnetic and 

ferromagnetic (which includes anti-ferromagnetic, ferrimagnetic and canted anti-ferromagnetic). 

Summaries of the types of magnetic behaviour are presented in Table 2.2, together with 

examples of some of the mineral species that are indicative of each particular type of magnetic 

behaviour. These atomic and crystallographic structures exert only partial controls on the 

existence and behaviour of magnetic materials, as ferromagnets are also controlled by magnetic 

domains. These are regions of parallel atomic magnetic moment in a crystal (Smith, 1999). 

Essentially, this means that magnetic domains represent areas inside the crystal structure of 

materials, which can be magnetized in a particular direction.  Consequently, magnetic domains 

are influenced by the size and shape of the magnetic domains within a crystal and by the 

boundaries (walls) between neighbouring magnetic domains in any particular assemblage.  
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There are three principal forms of magnetic domains in ferromagnetic materials: multidomain 

(MD), stable-single-domain (SSD) and superparamagnetic (SP). Summaries of the types of 

magnetic domains are presented in Table 2.3. Detailed explanations of magnetic domains are 

provided by Nagata (1961), Thompson and Oldfield (1986), Jiles (1991), Butler (1992), Lees 

(1994) and Smith (1999). 

 
2.8.3 Mineral magnetic parameters 
Those variables used in this study to characterise the mineral magnetic properties of 

environmental materials and an explanation of their interpretation are presented in Table 2.4. 

 

2.8.4 Mineral magnetic methods as an indicator of particle size. 
Relationships between mineral magnetic measurements and sediment properties have been 

explored, and studies have identified mineral magnetic measurements as a suitable tool for 

determining sediment provenance (Oldfield and Yu, 1994; Booth et al., 2005), sediment 

transport pathways (Lepland and Stevens, 1996), and as proxies for geochemical, radioactivity, 

organic matter content and particle size data (Bonnett et al., 1988; Oldfield et al., 1993; 

Hutchinson and Prandle, 1994; Clifton et al., 1997, 1999; Xie et al., 1999, 2000, 2001; Zhang et 

al., 2001, 2007; Shilton et al., 2005; Power et al., 2006; Booth  et al., 2005, 2007; Pye et al., 

2007).  

 

An association has been found between different sediment sizes and magnetic concentrations. 

Anhysteretic remanent magnetization (ARM) identifies fine grained magnetite (<0.1 μm) in clay 

and χLF  measurements identify coarser multi-domain magnetite (<1.0 μm) in sands and coarse 

silts (Oldfield et al., 1993). Clifton et al. (1999) investigated the relationship between χLF and 

sediments and found a close relationship between sand, medium silts and χLF.  Susceptibility of 

anhysteretic remanent magnetization (χARM) was strongly linked with clay and fine silts. 

Saturated isothermal remanent magnetisation (SIRM) was strongly associated with fine to 

medium silts (Table 2.5).  

 

Booth et al. (2005) demonstrated an association between high magnetic concentration 

measurements and fine grained sediments (Table 2.6a). Zhang et al. (2007) found that χARM and 

other mineral magnetic parameters could be used very effectively to normalise intertidal 

sediments for particle size effects (Table 2.7). Studies of Carmarthan Bay, the Gwendraeth 

Estuary and the Rivers Gwendraeth Fach and Fawr found that mineral magnetic data could be 

used as a particle size proxy (Booth et al., 2005). However, its recommended the methods are 

used with caution, as the relationship between magnetic parameters (χLF, χARM, and SIRM) and 

particle size was not strictly universal between different environmental settings (Table 2.6b). 

Research conducted on an investigation of mineral magnetic properties and soil; suggested 

magnetic measurements are unsuitable as a proxy for particle size normalization (Booth et al., 

2008).  The unsuitability was attributed to mineral magnetic concentration measurements and 

textural property differences for particular sedimentary environments, even if the sample has 

been taken within the same sedimentary system. 
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Table 2.5 Significant particle size and mineral magnetic concentration associations found 
by Oldfield et al., (1993) and Clifton et al., (1999) 

 
 χLF χARM, SIRM 

Clay (<2µm)     
Silt (2-63µm)       
Sand (63-2000µm)     

 
 
Table 2.6 Significant particle size and mineral magnetic concentration associations found 

in marine, estuarine (a) and fluvial environments (b) (Booth et al., 2005) 
 

(a) χLF χARM, SIRM 
Clay (<2µm)       
Silt (2-63µm)       
Sand (>63µm)       

 
(b) χLF χARM, SIRM 
Clay (<2µm)    
Silt (2-63µm)    
Sand (>63µm)    

 
Table 2.7 Significant particle size and mineral magnetic concentration associations found 

in intertidal sediments by Zhang et al., (2007) 
 

 χLF χARM, SIRM 
Clay (<2µm)      
Silt (2-63µm)       
Sand (>63µm)      

 

Mineral magnetic methods can become unsuitable as a particle size proxy depending on the 

nature of the environment. However, the relationship between magnetic and textural properties 

should be fully explored within differing sedimentary environments and field settings, and 

models should be further supported by fractionated samples and geochemical evidence before 

use as a proxy for particle size (Booth et al., 2005). 

 

Few studies have investigated the particle size and mineral magnetic associations in RDS. 

Mineral magnetic and particle size associations have been investigated on a small scale using 

RDS in the town of Southport (UK) (Booth et al., 2007). A pilot study was conducted (n = 50 

samples) where χLF had the strongest associations with RDS class sizes (Table 2.8).  Power et 

al. (2006) used a novel approach by collecting particles from tree leaves. This proved a 

successful way of determining pollution concentrations along busy roads and analysing mineral 

magnetic and particle size associations (Table 2.9).  Although initial studies proved successful, 

Booth et al. (2005, 2007, 2008) identified the need for further research in different sedimentary 

environments to check the consistency of the relationships. 
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Table 2.8 Particle size and mineral magnetic concentration associations found in RDS by 
Booth et al., (2007) 

 

(a) χLF χARM, SIRM 
Clay (<2µm)       
Silt (2-63µm)      
Sand (63-2000µm)      
PM1.0       
PM2.5       
PM10     

 

Table 2.9 Significant particle size and mineral magnetic concentration associations found 
on tree leaves (Tilia europaea) by a roadside by Power et al. (2006) 

 

 χLF χARM, SIRM 
PM10       

 

 

To assess the appropriateness of mineral magnetic methods as an efficient particle size proxy it 

is necessary that the nature of the relationship between the proposed parameters and particle 

size follow a universal pattern. To date most work has not examined the extent to which mineral 

magnetic parameters could be used as a soil and road-sediment indicator of texture, which in-

turn could possibly be linked as an airborne indicator of ambient PM. If associations are found 

and can be linked to airborne PM by ground collection methods, this could suggest the use of 

mineral magnetic measurements as a particle size proxy method. This would enable PM 

measurements to be taken with shorter analysis time, non-destructively and costing less than 

current methods. Therefore, this study addresses the primary issue of whether particle size-

mineral magnetic associations exist within urban RDS over time and at different spatial scales. 

 

2.8.5 Mineral magnetic methods as an indicator of composition. 
As geochemical composition is also an important issue in regards to health, this study 

demonstrates an additional proxy addressing mineral magnetic and geochemical (heavy metal) 

associations. Correlations between mineral magnetic and geochemical concentration 

parameters have previously been used effectively as a proxy for heavy metal pollution and 

anthropogenic source in RDS (Guatam et al., 2005; Kim et al., 2007; Yang et al., 2010) (Table 

2.10).  

 

In recent years the use of magnetic parameters as proxies for quantifying the contents of certain 

contaminants such as heavy metals in street dust, atmospheric particles or soil have been 

demonstrated on relatively small scales (road – inner city) (Shu et al., 2001; Robertson et al., 

2003; Kim et al., 2007, 2009; Duan et al., 2010). Strong correlations were found between heavy 

metals and magnetic concentration parameters for topsoil, stream and marine sediments    

(Chan et al., 2001; Wang and Qin, 2006; Lu et al., 2006, 2008, 2009; Yang et al., 2007;            

Chaparro et al., 2008; Canbay et al., 2010). Robertson et al. (2003) studied the geochemical 
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and mineral magnetic characteristics of Manchester (UK) where he found high concentrations of 

heavy metals at road sides linked with ferromagnetic multi-domain (MD) mineral magnetic 

composition. These results also exhibited a clear spatial trend, whereby concentrations are 

enhanced in inner city samples. Table 2.11 shows typical χLF and SIRM concentrations found in 

urban areas.  

 

Other studies have shown similar results where MD ferromagnetic characteristics are linked with 

urban RDS samples (Xie et al., 1999, 2001; Gautam et al., 2005; Kim et al., 2007; Blundell et 

al., 2009; Yang et al., 2010). These MD characteristics are indicative of anthropogenic sources 

and are a consequence of the initial formation of particles during combustion. These studies 

prove that quantified relationships between magnetic parameters and heavy metals can be 

constructed based on appropriate indexes, but is an area of research that has not been fully 

explored. The reliability of mineral magnetic methods as an additional geochemical proxy has 

shown potential at small scales but must therefore be investigated at larger scales to access the 

suitability of wider spatial investigations. Advantages of further study will benefit the 

understanding of larger catchment characteristics and RDS dynamics. Proxy measurements 

could also provide vital pollution indexes of larger areas. This study will investigate the 

application of mineral magnetism to develop further associations with geochemical relationships 

at city wide, national and smaller localized spatial scales 

 

Table 2.10 Mineral magnetic concentration and geochemistry correlations found in 
previous studies. (*p <0.05; **p <0.01; ***p <0.001) 

 
Location (χ) Fe Mn Zn Cu Pb Ni Author 

Kathmandu (Nepal) 0.84*** 0.76*** 0.86*** 0.74*** 0.64** 0.60** Gautam et al. (2005) 
Seoul (Korea) 0.72*** 0.41* 0.90*** 0.79*** 0.09 / Kim et al. (2007) 
Wuhan (China) 0.740** 0.349* 0.106 0.486* 0.035 0.351* Yang et al. (2010) 

        

Table 2.11 Mineral magnetic concentrations found in selected UK urban areas. 
 

Location  χLF x 10-7m3kg-1 SIRM x 10-4Am2kg-1 Author 

London 34.5 – 72.8 510 Beckwith et al, (1986) 
Liverpool 50.28 / Xie et al, (2001) 
Manchester 27.1 286 Robertson et al, (2003) 
Wolverhampton 58.83 595 Booth et al, (2005) 
Southport 27.95 / Booth et al, (2007) 
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Chapter 3 
Methodology 

 
Chapter 3 introduces details of the research, and methodological framework. Materials and 

analytical methods used during the project are presented. The sections are described in 

sequential order of completion, beginning with initial desktop urban environment determinations, 

followed by field sampling techniques, laboratory analyses, both statistical and geographical 

information (GIS) computation and subsequent modelling. Laboratory procedures were 

conducted at the University of Wolverhampton (UK) with random samples tested against known 

standard values at Birmingham University (UK) and Edge Hill University (UK). All techniques 

and procedures used for the duration of this work followed standard field and laboratory 

practises.  

 

3.1 Site description and rationale for selecting Wolverhampton as main study area. 
Wolverhampton is located to the north of the West Midlands conurbation, and lies on the edge 

of the Black Country, some 25km from the regional centre of Birmingham. Wolverhampton 

functions as a major centre within the Black Country and the northern part of the West 

Midlands, with an estimated population of 239,100 (Wolverhampton.gov.uk, 2012). The City 

benefits from good communication links, with access to the national motorway network provided 

by the M6 to the east, the M54 to the north, and the newly completed M6 Toll, which runs 

around the northern and eastern edges of the conurbation. Wolverhampton also has a mainline 

railway station which provides direct trains to Birmingham, London, the West Country and the 

north. Proposals are currently underway to introduce improvements to the railway station and its 

environment through the City Interchange Project. The Midland Metro a light railway system, 

currently connects Wolverhampton to Birmingham Snow Hill station. The City of Wolverhampton 

consists of the traditional central business district containing a portion of commercial industries. 

This central area is surrounded by the major road network which connects all surrounding 

areas. Surrounding the CBD are major residential areas which consist of pre-1900s housing 

and was originally housing for the engineering industries within the central city. Historically 

Wolverhampton's economy has been dominated by engineering and manufacturing industries 

but has now been replaced by the service sector, and is one of the main retail sectors within the 

West Midlands region.  

 

Housing within the City centre mainly consists of terraced properties with frontages on the main 

walkways and roads. It is noted that the residential areas within the City are closely packed 

areas along main roads. Away from the central city area, the housing changes to semi-detached 

and detached housing with front gardens, including more spacious and pre-planned residential 

areas. Due to previous research, it has been noted that residents housed along and close to 

main roads are more susceptible to health complaints due to urban pollution (Edwards et al., 

1994; Oosterlee et al., 1996; Wilkinson et al., 1999). Since 1998, the City Council has 

completed periodic 'Review and Assessment' reports of air quality in Wolverhampton. This 

process has culminated in the decision of the Council to declare the whole City an ‘Air Quality 
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Management Area (AQMA)’. These reports are available on the Wolverhampton MBCs own 

Web site at: http://www.wolverhampton.gov.uk/ environment/pollution/air/quality/default.htm  

 

The Environment Act (1995) provides local authorities (in Part IV) with duties in respect of local 

air quality management. District councils are required to periodically review and assess local air 

quality against the standards specified in national objectives, and where necessary, to declare 

air quality management areas (AQMA). In 1998 Wolverhampton City Council started a review of 

air quality in conjunction with the six partner Authorities in the former West Midlands County 

Area. The purpose of the review was to determine if the air quality objectives set out in the 

Government’s Air Quality Strategy were being met. The third stage of the Review and 

Assessment (July 2001) concluded that ‘there were no significant sources of benzene, 1,3-

butadiene, carbon monoxide, and lead in Wolverhampton’. Levels of these pollutants already 

meet the air quality objectives. The review completing the First Review and Assessment, 

concluded that there were significant sources of nitrogen dioxide, particles and sulphur dioxide 

within Wolverhampton.  

 

The Assessment of Air Quality report in May 2004 featured a comprehensive assessment of air 

quality in Wolverhampton, using a combination of real-time continuous analysers and 

sophisticated dispersion modelling techniques. The report states ‘The findings of the detailed 

assessment have confirmed that the objectives for PM10 and nitrogen dioxide were not being 

met at Lichfield Street Wolverhampton (City centre) and surrounding areas, and was deemed 

therefore necessary to declare this part of the City Centre an Air Quality Management Area 

(AQMA)’. The Detailed Assessment also established that the PM10 objectives are being met at 

the junctions of Birmingham Road/Parkfield Road and Willenhall Road/Neachells Lane. The 

area studied (in the Detailed Assessment of Air Quality 2004) included Lichfield Street, Broad 

Street, Stafford Street, Princess Square, Princes Street and Queen Street within the City 

Centre. Lichfield Street is the City’s main access route into the bus station with some 4000 bus 

movements per day and is included in the area to be affected by the City Interchange Project. 

The surrounding roads are also subject to high numbers of bus movements, as well as local 

shopping traffic using the many routes of the City. A comprehensive network of nitrogen dioxide 

diffusion tubes was established in this area for the first Review and Assessment. In addition, a 

further automatic monitoring station was located in Lichfield Street in order to undertake the 

Detailed Assessment of nitrogen dioxide (NO2) and particles (PM10). 

 

The Detailed Assessment concluded that the annual EU 1999/30/EC NO2 objective was 

exceeded at the diffusion tube intensive survey areas (ISAs) along Lichfield Street, Princess 

Street and Queen Street. The EU 1999/30/EC 24hr PM10 objective was exceeded at the 

Lichfield Street automatic monitoring site. On the basis of this conclusion, an air quality 

management area, to comprise at least this area of the City, was required. The City Council 

also acts as a Local Site Operator for DEFRA in respect of the urban background site at St. 

Peter’s Square, Wolverhampton (which contributes to the UK Automatic Urban and Rural 

Network,) and maintains further sites at the road junctions of Stafford Road (A449) and Church 
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Road, Bushbury; and Penn Road (A4039) and Goldthorn Hill, Penn Fields. With the exception 

of 2003 (exceptionally adverse weather conditions being responsible for poor air quality) these 

sites have continually shown compliance with air quality objectives. The 2008 Annual Progress 

Report (on air quality in Wolverhampton (Appendix 7.1)) confirmed potential exceedences of the 

annual nitrogen dioxide and PM10 objective at the Birmingham New Road, Stafford Road, St 

Peters Square and Lichfield Street. These additional areas are incorporated into the declaration 

of the whole City as an Air Quality Management Area (AQMA). 

 
With the introduction of stricter legislation from EU 2008/50/EC, existing levels of PM10, nitrogen 

dioxide and sulphur dioxide reach upper limits and in some areas (Lichfield Street) have 

exceeded the new EU 2008/50/EC objectives for pollution. Within the City of Wolverhampton, 

as with most urban environments (including much of the West Midlands conurbation), the 

principal source of these air pollutants is transport. Whilst, in recent years, there has been 

increasing use of emissions control technology in vehicles (for example catalytic converters,) 

the number of vehicles on roads is continually increasing. In short, technological improvements 

only partially mitigate the effects of increased road traffic.  

 

The study area chosen for this work has taken into account areas noted for air quality within 

Wolverhampton. This work will assess the appropriateness for using mineral magnetic 

techniques to determine particle size associations within RDS, developing an insight into the 

characteristics and linkages of RDS in Wolverhampton and the potential use of mineral 

magnetic measurements as a particle size proxy. 

 
3.1.1 Sample design 
As discussed in Chapter 2, RDS consists of a wide range of sources and can reflect land use 

and traffic intensity (Zhao, 2010; Chen et al., 2010). To address the potential mineral magnetic–

particle size and geochemical relationships within urban areas, a strategy is used that 

incorporates a representative mix of land uses and traffic conditions.  

 
Previous research shows spatial variability of mineral magnetic and geochemical concentrations 

within urban RDS environments. Several studies have used spatial design to identify sites of 

specific interest, Booth et al., (2006) used city roads to contrast with  rural roads, and examples  

by Yin et al. (2005), Banerjee, (2003) and Yang et al. (2010) used industrial and residential 

areas to analyse differences in RDS within unique environments. Some studies have 

investigated high volume traffic areas to develop a study area, with sampling taking place along 

busy urban roads (Abu-Allaban et al., 2003; Giugliano et al., 2005; Harrison et al., 1981; Kim et 

al., 2007), city centres (Charlesworth et al., 2003; Anagnostopoulou and Day, 2006; Haugland 

et al., 2007) and urban street canyons (Kumar and Britter, 2005). In addition to urban sampling 

design there have been numerous studies involving specific sites, such as schools, day care 

centres, parks and hospital gardens, which have been incorporated into sampling strategies 

(Anagnostopoulou and Day, 2006; Haugland et al., 2007). Gautam et al. (2005) used arterial 

and inner roads as a focus within urban areas, while Sutherland and Tolosa (2000) based their 

strategy on a representative mix of traffic conditions. 
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Various sampling strategies and techniques have been employed when collecting RDS, some 

of the most common methods have utilized grid networks over an area, with the mid-point of 

each grid being used as the exact sampling point. Grid techniques have been used in various 

ways. Charlesworth et al. (2003) used a grid network to collect RDS from Coventry City centre, 

but also used specific points to further build on their data set. Ferreira-Baptista and De Miguel 

(2005) used a grid system, but sampled randomly within the grid squares (Figure 3.1); whereas, 

Hanesch et al. (2003), McIntosh et al. (2007) and Shah and Shaheen (2007) used a grid centre 

specific approach (Figure 3.2).  

 

3.1.2 Sampling strategy selected in this work. 
The sampling strategy used in this study included a combination of design features that have 

shown to work successfully in other studies (Sutherland and Tolosa, 2000; Banerjee, 2003; 

Charlesworth et al., 2003; Gautam et al., 2005; Yin et al., 2005; Anagnostopoulou and Day, 

2006; Booth et al., 2006; Haugland et al., 2007, and Yang et al. 2010). The urban area has 

been considered, with a mix of industrial, commercial and residential areas (Appendix 3.1). 

Traffic volumes and vehicle movements within the study area have also been considered, 

where influencing factors found in other studies (Sutherland and Tolosa, 2000; Haugland et al., 

2007), show spatial and diurnal traffic patterns.  

 

Spatial and diurnal variation of traffic has been investigated as part of the sampling 

methodology for this study (Figure 3.3 Appendix 3.2). The data for traffic counts in 

Wolverhampton shows distinct areas of high and low activity, diurnally and spatially. Figure 3.3 

shows high levels of traffic on the main arterial routes of the city. To the north and east, roads 

have high levels of traffic and suggest that these are the main entry routes into the city. In 

comparison most of the side roads display low vehicle numbers and suggests considerably 

quieter traffic conditions. The data suggest that most side roads in Wolverhampton are access 

routes to homes and that most vehicle traffic comes in from outside of the city.  

 

Strategies involving grid techniques were explored but failed to provide sample points across all 

roads and areas of interest. Figures 3.1-3.2 show these sample arrangements with land use for 

Wolverhampton (Appendix 3.1). To include a representative mix of roads with differing traffic 

conditions a radial system was developed, using the city-hall as the centre point, and then 

incorporating the arterial road network leading out of a city or town to pinpoint sample sites. The 

system used takes into account the ‘in’ and ‘out’ traffic routes, which are seen within the traffic 

data. A radius increment of 500 m – to – 1 km – to – 2 km from the city centre was used and 

sample points were plotted at intersection points with main roads. This system enables all major 

road networks within the study area to be identified and studied. It also enables a system where 

a road could be monitored along its length over time, this successfully incorporated all arterial 

highways and, thus, supplied an even number of sample points along each of the roads. In-

between the main road network a series of sample points were plotted, these were located as 

near to central in-between the main roads. The in-between points provided a series of low traffic 

urban roads to be included within the study area (Figure 3.4).  
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Figure 3.1 Random grid technique used for spatial sampling (as used by Ferreira-Baptista 

and De Miguel, 2005). 
 

 

 
Figure 3.2 Central specific grid technique used for spatial sampling (as used by 

Charlesworth et al., 2004). 

Sample point

Sample point
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Figure 3.3 Spatial distributions of vehicle numbers per day (approx) in Wolverhampton 
during May 2007 (Data: Wolverhampton MBC 2008). 
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Figure 3.4 Radial sampling technique utilized in this research investigation. 

 
3.1.3 Sample collection methods 

High and low volume sequential samplers (Figure 3.5) have been used extensively to study 

airborne particles. Traditionally pollutants and particulate levels have been monitored and 

measured using specialist equipment, Tapered Element Oscillating Microbalance (TEOM is a 

registered trademark of Rupprecht and Patashnick, Inc.) filter baser gravimetric method and 

sequential gravimetric analysers (Partisol) or ß-attenuation monitors are used to measure PM. 

Table 3.1 shows the location and monitoring capabilities of monitoring stations in 

Wolverhampton. 

 
Table 3.1 Air sampling unit information for Wolverhampton (West Midlands Air Quality 

Group, 2009) 
 

Area ASU 
 

Grid Reference Pollutants 
Measured 

Station type 

Wolverhampton Lichfield Street 391641 - 298785 PM10, NOx. 

 
Roadside 

 Penn Road 390375 - 302200 PM10, NOx, SO2 
 

Roadside 

 Stafford Road 391259 - 298785 PM10, NOx, SO2 
 

Roadside 

 Pendeford 390724 - 302697 PM10 
 

Background 

Sample point
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The TEOM is a gravimetric-based method for near-continuous measuring of PM10 or PM2.5 

concentrations. For this reason, it is also frequently used in epidemiological studies when daily 

or hourly concentrations are needed for the assessment of health effects of PM. The TEOM 

method measures the mass collected on an exchangeable filter cartridge by monitoring the 

corresponding frequency changes of a tapered element. The sample flow passes through the 

filter, where particulate matter is collected. As more mass collects on the exchangeable filter, 

the tube’s natural frequency of oscillation decreases. A direct relationship exists between the 

tube’s change in frequency and mass on the filter. Complete details of the TEOM method 

operation are available (Patashnick and Rupprecht, 1991). These are static sites which are 

used to monitor areas for long periods. However, these systems are costly due to initial 

equipment outlay, sensor arrays, power supply and air conditioning of the units, telephone 

connection for data links and service and maintenance contracts. Appendix 7.5 highlights the 

cost of operating such systems and is dependant on different factors which include, location, 

range of pollutants monitored and duration of operation. 

 
More versatile and mobile methods have been used to study particulates and atmospheric 

pollution levels. High volume air samplers (GMWL-2000H, USA) (Shah et al., 2004; Shah and 

Shaheen, 2007) have been used to analyse atmospheric trace metals in particulate fractions. 

The air sampler is statically placed on top of a building, but could be relocated if necessary. The 

use of microbalances have been used to determine PM2.5 and PM10 mass in city centres utilizing 

Whatman PTFE filters using Rupprecht and Pataschnick Dichotomous Partisol-Plus Model 

(2025) Sequential Air samplers at ground level (1.0-2.0 m) (Yin et al. 2005). Abu-Allaban et al. 

(2003) used a Sierra-Anderson 254 PM10 inlet-cyclone to determine size fractions using 

sampling protocols as described by Watson et al. (1994). Various techniques have been 

employed when collecting sediment samples linked with anthropogenic pollution. Methods 

range from collection of top soils (Hay et al., 1997; Haugland et al., 2007) and bio-monitoring by 

use of dust settlement on vegetation (Lehndorff and Schwark, 2004; Hanesch et al., 2003; 

McIntosh et al., 2007). Beckwith et al. (1986) used a combination of vacuum and sweeping 

techniques, and the most effective method was road sweeping (Harrison et al., 1981) (Table 

3.2). Road sweeping techniques have been used successfully due to the ease and cost 

effectiveness of collecting RDS. However, there are some limitations in respect to collection due 

to the loss and re-suspension of small particles when sweeping. Although there is some loss of 

material, this is a negligible amount within the bulk sample. The method is a quick and 

adaptable approach, due to the availability of material at ground level. Therefore, RDS can be 

collected easily and efficiently at any location where particles settle. 

 
3.1.4 Sample collection method selected in this work. 
Sweeping techniques have been applied in this study, due to speed, cost and non-destructive 

methods that had been used in previous studies (Table 3.2). Typically road surface dust 

samples of 10-50g representing the net accumulation (Figure 3.6) (irrespective of weather 

conditions and foot traffic during the month), were collected by brushing with a small paint brush 

inside a 1 m2 quadrat. RDS was transferred to clean, pre-labeled, self-seal, airtight plastic bags. 
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Table 3.2 Road deposited sediment, collection methodology of previous studies 

Author Method Sampling Location 
Harrison (1981) Dust pan and 

Brush 
Edge of road Cumbria (UK) 

Fergusson (1984) Dust pan and 
Brush 

Footpath or gutter 
 

London (UK) 
New York (USA) Halifax 
(Canada) Kingston 
(Jamaica) Christchurch 
(New Zealand) 

Leharne et al. (1992) Dust pan and 
brush 

Gutter 
 

London (UK) 

Akhter and Madany (1993) Dust pan and 
brush 

Gutter Bahrain 

De Miguel et al. (1997) Dust pan and 
brush 

Path, road and 
gutter 

Madrid (Spain) 

Charlesworth and Lees (1999) Dust pan and 
brush 

Pavement and 
gutter 

Coventry (UK) 

Sutherland and Tolosa (2000) Nalgene 
(Plastic) scoop 

Gutter Honolulu (Hawaii) 

Xie et al. (2000) Dust pan and 
brush 

Pavement and 
gutter 

Liverpool (UK) 

Charlesworth  et al.(2003) Dust pan and 
brush 

Pavement and 
gutter 

Birmingham (UK) 

Banerjee (2003) Dust pan and 
brush 

Road 
 

Delhi (India) 

Goddu et al. (2004) Dust pan and 
brush 

Gutter Visakhapatnam (India) 

Al-Khashman (2004) Dust pan and 
brush 

Kerb 
 

Jordan 

Ferrerira and de Miguel (2005) Dust pan and 
brush 

Road, pavement 
and gutter 

Luanda (Angola) 

Shilton et al. (2006) Dust pan and 
brush 

Unknown Wolverhampton (UK) 

Anagnostopoulou and Day 
(2006) 

Scraping Road Athens (Greece) 

Booth et al.(2006) Dust pan and 
brush 

Pavement Wolverhampton and Dudley 
(UK) 

Booth et al.(2007) Dust pan and 
brush 

Pavement Southport (UK) 

Han et al. (2008) Dust pan and 
brush 

Unknown Xi’an (China) 

Christoforidis and Stamatis 
(2009) 

Dust pan and 
brush 

Pavement Kavala (Greece) 

Taylor (2009) Dust pan and 
brush 

Gutter and road Manchester (UK) 

Lu et al. (2010) Dust pan and 
brush 

Pavement edge  Baoji (China) 

Yang et al. (2010) Dust pan and 
brush 

Road Wuhan (China) 

Fujiwara et al. (2011) Dust pan and 
brush 

Pavement edge Buenos Aires (Argentina) 
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RDS was collected on a bi-monthly basis for two years (January 2008–January 2010 (n = 504 

samples)), and followed the Construction Industry Research and Information Association 

guidelines (Butler and Clark, 1995). These guidelines state that the build-up of sediment on 

road surfaces reaches a maximum within 6-8 weeks, where sediment supply to road surfaces 

reaches an equilibrium state of sediment loss equaling sediment influx. 

 

3.1.5 Wolverhampton study area 
Sample collection within Wolverhampton City (West Midlands, UK) (specific sample sites are 

shown in Chapter 4, Figure 4.2; Appendix 3.3)) was undertaken on dry days throughout the 

study period (2007-09), following Xie et al. (1999). To ensure a constant and reliable collection 

method, it was necessary to collect after a minimum of two days of dry weather. This allowed 

time for accumulation of solids at ground level. Local meteorology was recorded at the 

University of Wolverhampton urban meteorological station located at Compton Horticultural Unit, 

so meteorological conditions could be included if appropriate in the final analyses. 

 
3.1.6 West Midlands air sampling unit study area 
Road Deposited Sediment (RDS) was collected from four Air Sampling Units (ASU) (Figure 3.7) 

within the West Midlands area (UK). Wolverhampton, Birmingham, Coventry and Leamington 

Spa were chosen due to their spatial location and PM10 monitoring capabilities (Table 3.3). 

Accessibility was important so that all samples could be taken within a 4-hour period, and 

ensured consistency of collection under environmental conditions. Four samples were taken 

from within close proximity of each site, ensuring a good cross section of material from the area, 

and represent the particulate fallout around the ASU. Sediment was collected at two-month 

intervals over a two year period using the same methods used in the Wolverhampton study. 

Published data for each ASU was also collected to form part of the data set (www.wmair.org). 

 

Table 3.3 Air Sampling Unit Information for West Midland towns and cities (Source: 
Veritas, 2008) 

 

ASU Grid Reference Pollutants Measured Station type 
Wolverhampton SP916987 PM10, NOx. 

 
Urban Centre 

Birmingham SP063869 PM10, NOx, SO2, CO, O3. 
 

Urban Centre 

Coventry SP328773 PM10, NOx, CO, O3. 
 

Urban Background 

Leamington Spa SP319657 PM10, NOx, CO. 
 

Urban Background 

 

3.1.7 Selected towns and places in the UK 
Seven separate study areas were chosen within the UK (Figure 3.8) to investigate wider spatial 

patterns. Each site has either high, medium or low potential of PM concentrations (Figure 3.9, 

appendix 3.4), PM exceedences (Figure 3.10, Appendix 3.4 (Directive 1993/30/EC Table 1.6-

1.7)), hospital admissions (asthma, cardiovascular diseases) (Figure 3.11), any other previously 

noted problem areas and the availability of data for the area, was also taken into consideration.  
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Figure 3.8 UK map of towns and places sampled in this study1. Grid references (a) NX 29 

57; (b) SJ 34 37; (c) TQ 52 18; (d) TG 62 30; (e) SO 32 32; (f) SD 37 39; (g) TA 
48 10; (h) SO 38 29. 

 

 

1Colours link to towns and places throughout the thesis. 
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Figure 3.9 Annual mean hourly measured PM10 µg m3for UK study area (Source: AEA, 

2008). 
 

 

 

Figure 3.10 Air quality strategy standard (PM10) daily mean >50 µg m3 for UK study area 
(Source: AEA, 2008). 
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Figure 3.11 Asthma admission to hospitals per 100,000 population, 1998-2003 for UK study 
area (Source: Goldacre et al., 2005). 

 
Street dust was collected at 30-40 spaced locations (Appendix 5.5), using the same 

methodology as the Wolverhampton sampling. The number of samples depended on the size of 

the town. Consistent spacing of samples was used in all towns using the radial approach, this 

resulted in larger towns-cities having more sampling points due to area size. This ensured that 

all major land-use areas (centre, inner and outer fringes – commercial, industrial and 

residential), were accounted for within the sampling area. This approach was true for all but 

Marylebone Road, where a specific area was chosen to reflect a localised sample area in a 

known pollution hotspot. 

 
3.2 Laboratory methods 
All samples were subjected to the same techniques throughout the study period. All laboratory 

equipment and experimentation was undertaken at the University of Wolverhampton during the 

period January 2008-February 2010. 

 

3.2.1 Sample preparation 
Walden et al. (1999) recommends samples awaiting analyses are not kept in long-term storage, 

as some workers observed significant changes in sediment properties with time (Snowball and 

Thompson, 1988; Hilton and Lishman, 1985; Oldfield et al., 1992). In the laboratory, samples 

were visibly screened to remove macroscopic traces of hair, animal and plant matter, to ensure 

that material analysed was not contaminated with foreign material. Appendix 3.5 shows typical 
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RDS collected with evident differences of material between each of the samples, colour and 

grain sizes. Each sample was oven dried at 40oC for 72h so not to thermally alter the magnetic 

properties. Samples were then dried-out, sieved to separate the <1000 µm fraction from the 

bulk material, stones, glass, organic matter and other similar large debris (Banerjee, 2003). 

 
3.2.2 Procedure for mineral magnetic analysis 
Each sample was separately packed into pre-weighed 10 cc styrene pot (Appendix 3.5) and 

then re-weighed to calculate mass specific values. All weights were measured on pre-calibrated 

balances, to three decimal places. This yielded samples of ~8–5 g dry weight. Walden et al. 

(1999) suggested that a larger sample weight, such as those used in this study, generally 

improve the resulting data quality during analysis. Each sample was subjected to a series of 

routine mineral magnetic analyses (Thompson and Oldfield, 1986; Walden et al., 1999). Figure 

3.12 shows a flow diagram to illustrate the stages and order of mineral magnetic 

measurements.  

 
3.2.3 Susceptibility measurements 

Single sample mass specific magnetic susceptibility (χ) measurements were made using a 

Bartington MS2 magnetic susceptibility meter connected to a Bartington MS2B dual frequency 

susceptibility sensor (Appendix 3.6.1). Measurements were taken at low frequency (0.47 kHz; 

(χLF)) and high frequency (4.65 kHz; (χHF)). Both low and high frequency susceptibilities were 

measured (χLF  and χHF) to allow frequency dependent susceptibility to be calculated (χFD%).  

 

3.2.4 Remanence measurements 
The instruments used included a Molspin alternating field demagnetiser with an Anhysteretic 

Remanent Magnetization (ARM) attachment; a Molspin ‘small-field’ pulse magnetizer; a Molspin 

‘large-field’ pulse magnetizer; and a Molspin magnetometer (Appendix 3.6.2) connected to a 

personal computer, which is controlled by Winspin software supplied to the University of 

Wolverhampton by John Walden, University of St. Andrews. The use of each instrument is 

discussed by Thompson and Oldfield, (1986) and Walden et al. (1999). 

 

An ARM was induced in the samples (Appendix 3.6.1), using steady biasing 0.04 mT field, and 

the resultant remanence measured by the magnetometer, as were all subsequent remanence 

measurements. The samples were then exposed to a demagnetization field in order to remove 

induced ARM. Samples were then placed into pulse magnetizers and exposed to successively 

increasing sizes of ‘forward’ magnetic fields (20, 40, 300, 500 and 1000 mT) until a total 

saturation field of 1000 mT was generated. This field was chosen to represent the Saturation 

Isothermal Remanent Magnetisation (SIRM1000 mT), as it was the largest magnetic field that 

could be produced on the ‘large’ pulse magnetizer. Once saturation had been obtained a 

reverse field (-100 mT) was applied, which destroyed the saturation effect on the sample. After 

each forward and reverse field, Isothermal Remanent Magnetisation (IRM) was measured. 

69



 
 

Figure 3.12 Flow-chart outlining the stages of the mineral magnetic procedures used for 
analysing the magnetic properties of sediments. 

 
3.2.5 Textural analysis techniques 
As discussed in section 3.1.3 methods used by the AURN include the Tapered Element 

Oscillating Microbalance (TEOM) filter baser gravimetric method and sequential gravimetric 

analyser (Partisol) or ß-attenuation monitor to measure PM. This method generally gives a bulk 

reading of a particular particle size, but limitations of the equipment prove problematic when 

data for specific particle size fractions are needed.  

 

The technological development of laser diffraction has developed techniques which can be used 

quickly and precisely to measure all particles in the size range 0.1–2000 µm. The method 

employed for determining the textural properties of sediments in this study was laser diffraction 

analysis (Syvitski, 1991; Tucker, 1991), or more precisely, Low Angle Laser Light scattering 

(LALLS). Traditionally more classical techniques (i.e. sieves, sedimentation, electrozone 

sensing and microscopy) have been used to analyse the textural properties of sediments.  

Magnetic Susceptibility

Anhysteretic Remanence 
Magnetisation

Demagnetisation

Forward Field isothermal 
Remanence Magnetisation

Reverse Field Isothermal 
Remanence Magnetisation
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Laser diffraction and sieving can provide similar results when characterizing spherical or semi-

spherical particles. However, significant differences can be observed for non-spherical particles 

due to the different particle properties measured by each technique. The reason for the 

difference between the two techniques can be shown by assuming that both are used to 

measure a rectangular particle with dimensions of 100 x 100 x 200 µm. During the sieve 

analysis a 110 µm sieve is used. The particle will fall through this sieve, because the particle is 

classified according to its second largest dimension (100 µm). Laser diffraction will however, 

report a spherical equivalent size relating to the volume of the particle. In this case the diameter 

of the sphere that has the same volume as the particle being measured is 156 µm (Malvern, 

2008). Figure 3.13 shows the distribution comparison of sieving and laser diffraction. 

 

 
 

Figure 3.13 Typical comparison between laser diffraction and sieving showing how different 
properties measured by each technique changes the reported size distribution 
(Source: Malvern, 2008). 

 

3.2.6 Textural measurements 
The laser diffraction instrument used to analyse sediments was a Malvern Mastersizer Long-

bed X with a MSX17 sample presentation unit (Appendix 3.6), connected to a PC governed by 

Malvern v1.2 software. Malvern Instruments’ laser diffraction systems meet or exceed the 

requirements in ISO13320, which conform to international standards for laser diffraction 

measurements. The technique is based on the principle that, as a particle passes through a 

laser, light is diffracted and the diffraction angle is inversely proportional to particle size. A 

schematic diagram shows the arrangement of the internal hardware of the Malvern Mastersizer 

(Figure 3.14). This set-up is based on Fourier-optics and involves a laser light passing through 
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cell windows that receive a constant flow of dilute sediment suspension. As the suspended 

particles travel through the laser beam, they cause light to be diffracted, with the resulting 

diffraction pattern being focused onto a series of detectors. The diffraction patterns received by 

the detectors are then averaged over a fixed time period and deconvolved into particle size 

values. These values are then arranged into discrete size ranges, given by the size of the 

detector areas. Unfortunately, this approach (using Fraunhofer theory) assumes that all sizes of 

particles scatter with equal efficiencies, and that all particles are opaque and transmit no light 

(Bohren and Huffman, 1988; Lehner et al., 1998).  

 

Since these assumptions are not always correct, the latest Malvern instrumentation and 

software has been designed to compensate for these influences and (using Mie theory (Bohren 

and Huffman, 1988; Lehner et al., 1998)) allows the refractive index of materials to be taken into 

account when calculating particle size values. 

 

Mie Theory predicts the primary scattering response observed from the particle surface, with the 

intensity predicted by the refractive index difference between the particle and the dispersion 

medium. It also predicts how the particle’s absorption affects the secondary scattering signal 

caused by light refraction within the particle. This is especially important for particles <50 µm in 

diameter and is extremely important when the particle is transparent, as stated in the 

international standard for laser diffraction measurements (ISO13320-1, 1999; ISO, 2008;  

Malvern, 2008). The procedure used for performing laser diffraction measurements is shown as 

a flow-chart in Figure 3.15. 

 

Sample analysis initially involves configuration of the appropriate Mastersizer hardware, 

followed by laser alignment, and then recording the background reading of water. Macroscopic 

traces of organic matter were removed from representative sub-samples before being 

dampened by the drop wise addition of a standard chemical solution (40 g/l solution of sodium 

hexametaphosphate ((NaPO3)6) in distilled water) to disperse aggregates. The sub-sample 

slurry was then added to the water chamber of the sample presentation unit. The sample was 

stirred and particles pumped past the laser-beam, causing beam scatter. The diffraction pattern 

was received by a series of detectors, which enabled the computer to calculate particle sizes, 

and generate a distribution graph with descriptive statistics (Median Particle size (PS), Mean-

PS, Mode-PS, Sorting, Skewness and Kurtosis) for each sediment sample.  

 

3.2.7 Textural parameters 
Variables used to characterize the textural properties of sediments and an explanation of their 

interpretation is presented in Table 3.4. To ensure reliable results over the sampling period, 

samples were subject to regular re-runs and the Malvern instrumentation was regularly 

calibrated using latex beads of known size. 
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Figure 3.15 Flow-chart outlining the stages of laser diffraction procedure used for analysing 
the texture of sediments. 

 

3.2.8  Organic matter 
Sequential loss-on-ignition (LOI) is a common and widely used method to estimate the organic 

content of sediments (Ball, 1964; Dean, 1974; Xie et al., 2000; Shilton et al., 2005; Heiri et al., 

2001). Igniting samples at high temperatures oxidizes organic carbon to carbon dioxide and 

ash; therefore, organic matter is calculated by measuring weight loss. Dean (1974) evaluated 

the method and concluded that LOI provides a fast and inexpensive means of determining the 

carbonate and organic contents of sediments. Depending on the ignition temperature, various 

losses of volatile salts, structural water and inorganic carbon may occur (Dean, 1974; Ball, 

1964). Using temperatures >375oC showed that most weight loss was due to water loss from 

clay minerals and below this temperature removed appreciably less carbonaceous matter and 

was therefore unsuitable. 

Sample Preparation

Installation of Hardware

Software Set-up

Analysis Routine

Final Output

As detailed in section 3.2

Install the appropriate lens size for the 
required particle size distribution

Select the appropriate analytical 
presentation code, lens size and style of the 
final report

Input the sample details, set the presentation 
unit controls, set the beam alignment, take 
background water reading, inspect, reset the 
presentation unit controls, insert sample, 
measure the particle sizes and calculate particle 
size distribution and appropriate statistics.

Save the data and print the final report.
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Table 3.4 (a) shows those textural variables used in this research (after Tucker, 1991); (b) 
shows descriptive terms applied to size values (after Friedman and Sanders, 
1978); (c) shows descriptive terms applied to Sorting values (after Folk and 
Ward, 1957); (d) shows descriptive terms applied to Skewness values (after 
Folk and Ward, 1957); and (e) shows descriptive terms applied to Kurtosis 
values (after Folk and Ward, 1957). All textural results referred in this thesis are 
expressed to three decimal places. This is done for consistency of the work, 
rather than an indication of the detection limits of the instruments employed or 
the variables used 

 

(a) Textural variables Interpretation 
Median-PS The median particle size is when half of the grains are coarser and half finer than the median diameter, 

whose size is most readily determined from the 50% line of the cumulative distribution curve. Although 
useful for many unimodal sediments, in polymodal distributions the median may fall in the tails of two sub-
populations of grains, in a size fraction that is scarce. 
A listing of the size descriptions for the values obtained are presented in Table 3.5b. 

Mean-PS The mean particle size in the best measure of average grain size, the mean is computed from sizes of 
particles spread through a range of percentile values. 
A listing of the size descriptions for the values obtained are presented in Table 3.5b. 

Mode-PS The modal particle size is the size class on a size frequency histogram in which the greatest percentage 
of grains is represented. Alternatively, on a size frequency distribution plot the highest point on the curve 
provides the modal value. The modal size is, therefore, the commonest grain size in a distribution. 
A listing of the size descriptions for the values obtained are presented in Table 3.5b. 

Sorting 
 
 

In many forms of analysis the full range of sizes present is of relevance. However, it is rarely possible to 
define the size of the largest or the smallest particles precisely in a size distribution. Of more importance 
is an assessment of the spread of particles about the average, to define the dispersion or sorting of the 
sediment, as represented by the breadth of the frequency curve or the shape of the cumulative frequency 
distribution. A listing of the descriptions for the values obtained are presented in Table 3.5c. 

Skewness 
 
 

In a normal distribution with a bell-shaped frequency curve the median and mean values coincide. Any 
tendency for a distribution to lean to one side, i.e. to deviate from normality, leads to differences between 
the median and mean values. These differences are used to characterize the asymmetry or skewness of 
the curve. The skewness has a positive or negative value when more fine or coarse materials are present 
than in a normal distribution, seen as tails to the right or left respectively on frequency distribution plots. 
Again, although skewness may be computed for the central segment of the distribution, for most 
purposes broader spreads are used. Effectively skewness is determined from the value of the mean less 
the median, all divided by the range used in defining the mean. 
A listing of the descriptions for the values obtained are presented in Table 3.5d. 

Kurtosis 
 
 

The kurtosis is related to both the dispersion and the normality of the distribution. Very flat curves of 
poorly sorted sediments or those with bimodal frequency curves are platykurtic, whereas very strongly 
peaked curves, in which there is exceptionally good sorting of the central part of the distribution, are 
leptokurtic. 
A listing of the descriptions for the values obtained are presented in Table 3.5e. 

 
 (b) Size description Size scale  (c) Sorting description Sorting σ1 scale 
PM 0.1 <0.1 µm  Very well sorted <0.35 
PM 1.0 <1.0 µm  Well sorted 0.35 to 0.50 
PM 2.5 <2.5 µm  Moderately well sorted 0.50 to 0.70 
PM 10 <10µm  Moderately sorted 0.70 to 1.00 
PM 100 <100 µm  Poorly sorted 1.00 to 2.00 
Clay <2 µm  Very poorly sorted 2.00 to 4.00 
Fine Silt 2 – 6 µm  Extremely poorly sorted >4.00 
Medium Silt 6 – 20 µm    

Coarse Silt 20 – 60 µm  (e) Kurtosis description Kurtosis KG scale 
Silt 2 – 60 µm  Very platykurtic <0.67 
Fine sand 60 – 200 µm  Platykurtic 0.67 to 0.90 
   Mesokurtic 0.90 to 1.11 
(d) Skewness description Skewness SK1 scale  Leptokurtic 1.11 to 1.50 
Very positively skewed +0.3 to +1.0  Very leptokurtic 1.50 to 3.00 
Positively skewed +0.1 to +0.3  Extremely leptokurtic >3.00 
Symmetrical +0.1 to -0.1    
Negatively skewed -0.1 to -0.3    
Very negatively skewed -0.3 to -1.0    
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It has been demonstrated that to avoid losses of clay structural water an optimum temperature 

of 375oC for 16 hours was needed to remove >90% of carbonaceous material without loss of 

structural water (Keeling, 1962). Ball (1964) further supported this theory concluding that the 

375oC 16h method was of greater accuracy compared to higher temperature shorter period 

methods. Therefore, LOI at 375oC as applied to street dust by Xie et al. (2000); and Shilton et 

al. (2005) was used. LOI values compliment magnetic measurements, by allowing data 

normalization for the diluting effects of organic content on the magnetic signal (Maher et al., 

1999). LOI data are also required for determining X-ray fluorescence spectrometry (XRF) values 

in order to understand sample composition, and to calculate effects of mass attenuation 

(process of absorption of fluoresced x-rays) by samples during XRF measurements. 

 
3.2.9 Loss on Ignition technique 
Ceramic crucibles were labelled, weighed and filled with a 0.5 mg–1 g subsample of sediment 

and re-weighed (W1). To assure result consistency, the same analytical balance was used for 

all measurements. Sample were then oven-dried overnight (105oC), in order to remove any 

moisture. Following this, samples were allowed to cool in a dessicator at room temperature, to 

prevent absorption of atmospheric moisture, and then re-weighed (W2). Samples were then 

placed in a muffle furnace and ignited at 375oC for 16 hours. Samples were then cooled in the 

dessicator and re-weighed (W3). Organic matter content was then calculated for each sample 

(Eq.3.1). 

Eq.3.1:    LOI% = 100 x (W2 – W3) / W2 

 

3.2.10 Geochemical and X-Ray Fluorescence Spectrometry techniques 
RDS geochemical composition can be analysed in several ways and have been discussed in 

section 2.6.1. The technique used in this study is X-Ray Fluorescence (XRF) and is a widely 

used technique for both qualitative and quantitative analysis, particularly for solid samples, and 

is a popular choice often because of the limited sample preparation required and rapid rate of 

analysis (Adams and Allen, 1998). The technique exhibits wide elemental coverage, good 

detection limits (typically mg kg-1) and an extensive working range (to high percentage of pure 

materials). XRF is a good method used for characterizing the elemental composition of 

sediments and can reveal natural and anthropogenic inputs (Xie et al., 2001; Lu et al., 2010). 

Elevated levels beyond natural background concentrations and accumulation rates can also be 

calculated, to assess the impact of pollution (Allen and Rae, 1986; Xie et al., 2001; Abu-Allaban 

et al., 2003; Dearing and Jones, 2003; Lu et al., 2010). Furthermore, the elemental composition 

of particulate pollution is an important factor in understanding the impact of particulate pollution 

on health (Harrison, 2004; Johnson et al., 2005; Xie et al., 2001).  

 

Energy dispersive radioisotope-source X-Ray Fluorescence (XRF-ED) has been used to 

characterize the elemental composition of road-deposited sediment (RDS). XRF analysis is 

based on the photoelectric fluorescence of secondary x-rays generated within a sample by 

irradiation. The secondary x-rays produced are characteristic of source elements within the 
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sample, and the emission rates are a function of concentration (Boyle, 2000). Therefore, 

elemental composition can be determined directly by allowing for instrument geometry, detector 

efficiency, fluorescence yield of elements and absorption of radiation by samples (Boyle, 2000). 

XRF analysis has been widely applied to sediments, to interpret elemental characteristics of 

pollution and temporal contamination trends (Versteeg et al., 1995; Lee and Cundy, 2001; Xie et 

al., 2001; Abu-Allaban et al., 2003; Robertson et al., 2003; Canepari et al., 2009; Lu et al., 

2010).  

 

XRF-ED is a highly precise, reliable and rapid (~70 samples per day) method for total elemental 

sediment analysis of bulk samples (Al-Merey et al., 2005). Compared to alternative techniques 

(for example, energy dispersive x-ray spectrometry), XRF-ED has higher detection limits; 

however, for many elements, observed levels are above this detection limit (Boyle, 2000). 

Analysis was undertaken at the University of Wolverhampton using an ARL 8410 XRF 

spectrometer. XRF is non-destructive and there is minimal handling of samples. Prior to 

measurements, the instrument was calibrated using a range of reference materials, which 

contain certified levels of element concentrations (Boyle, 2000). 

 

3.2.11 Scanning electron microscopy 

Scanning electron microscopy (SEM) is a common and effective technique which can be used 

to examine particle and geochemical characteristics of sediments and PM, it was therefore 

chosen (SEM observations were carried out at magnifications <x1500) with the aid of an energy 

dispersive X-ray spectroscopy (SEM-EDAX), to identify particles of specific interest.  

 

The physical characteristics of PM can be analysed in conjunction with particle counts and 

compared to known particles from similar environments, where SEM analysis has been used in 

several mineral magnetic studies on RDS (Pina et al., 1999; Robertson et al., 2003; Kim et al 

2007). Figure 3.16a-c shows SEM micrographs of typical Fe oxide particles found within urban 

sediments in Manchester. The spherical Fe oxide particles observed within the Manchester 

RDS have been identified as being probably derived from high temperature combustion 

processes. Robertson et al. (2003) supported this by mineral magnetic data from the 

Manchester RDS samples, which characterized magnetic particulates as being of multi-domain 

ferrimagnetic mineralogy, therefore, resulting from high temperature combustion processes. 

This association has been found in other studies (Pina et al., 1999; Kim et al., 2007) where 

mineral magnetic concentrations and the use of SEM micrographs and particle counts have 

identified anthropogenic sources. 

 

3.3 Statistical analysis 

Descriptive statistics were calculated using Microsoft Excel (2007) and Graph Pad Prism 5.03 

(2009) software. The Anderson- Darling normality test was performed on all data, the outcome 

of which was usually non-normally distributed data. Therefore, non-parametric data analyses 

were performed. Using MINITAB PC (version 15), sample comparisons were determined by 

Spearman’s rank.  
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Figure 3.16 SEM micrographs of typical Fe oxide combustion particles originating from 
urban RDS. 
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The statistical approaches, including Mann-Whitney and Kruskal-Wallis tests, are routine for 

random samples and are presented in Table 3.5. Thorough explanations are available in 

standard texts (e.g. Ebdon, 1978; Davis, 1986; Stuttard, 1994). Some techniques that have 

been adopted in this thesis are less common and therefore merit further discussion. 

 
3.3.1 Box-plots 
To graphically demonstrate the degree of statistical variation in the distribution of any variable, 

many measurements used in this study have been replicated, either as field samples, laboratory 

sub-samples or as analytical measurements. When this information is expressed graphically, it 

is common practise to plot the data, using standard deviation whiskers above and below the 

sample mean. However, this style of plot fails to show whether a distribution is skewed or the 

position of minimum and maximum values. A box-plot can be used to summarize these 

distributions, with each individual sample-set represented by a rectangular box with whiskers 

(Figure 3.17). The horizontal lines that define the top and bottom of the box portray the ranges 

of the upper and lower inter-quartile limits, while the median value is shown by a line that is 

positioned within the box. The extreme values are shown by the upper and lower point of 

termination of the vertical whisker lines, which extend above and below each box. A useful 

alternative is to add notches (Figure 3.18) these are calculations of data confidence. If the 

notches of the boxes do not overlap, this offers evidence of statistically significant differences 

between medians (Wessa, 2011). 

 
3.3.2 Multivariate statistics: simultaneous R- and Q-mode factor analysis 
The data-sets produced by the mineral magnetic and laser diffraction techniques are 

multivariate (i.e. each observational unit is characterized by several variables). For provenance 

purposes, this means that data-sets could be explored on a univariate basis using repeated F- 

tests. However, this simple approach does not give a visual perception of the relationships 

between groups, and can fail to indicate the more complex or subtle relationships that may 

simultaneously exist within several groups of variables.  

 

Multivariate methods can alternatively be used for this type of data examination, such that data 

are simplified and major trends become emphasized and minor variations ignored (Kovach, 

1995).The nature of multivariate data is usually a two-dimensional matrix, of n samples by m 

variables (Johnson, 1980; Manly, 1994; Walden and Smith, 1995), which can be visualized as 

scatter-plots. In scatter-plots the data can either be viewed in 'variable space' or 'sample space'. 

In 'variable space' points on a diagram represent the samples and the axes correspond to the 

variables. The opposite scenario is observed in 'sample space'.  

 

As the number of samples and variables increase, so do the number of axes, making it 

increasingly difficult to visualize any increase in the dimensions involved. In some instances, 

these problems can be overcome by multivariate methods, particularly factor analysis.  
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Figure 3.17 An example box-plot to accompany the explanatory text in Section 3.3.1 (after 

Tukey, 1977; McGill et al., 1978; Walden, 1990). 
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Figure 3.18  An example notched box-plot (after McGill, 1978; Walden, 1990). 
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These are widely used in geological literature (Klovan, 1966; Allen et al., 1972; Temple, 1978; 

Johnson, 1980; Zhou et al., 1983; Shaw and Wheeler, 1985; Oldfield and Clark, 1990; Walden, 

1990; Walden et al., 1992, 1997; Walden and Smith, 1995; Booth et al., 2005, 2006; Lu et al., 

2010). They were described by Kovach (1995) as being 'invaluable' for studying complex 

systems, while Davis (1986), referred to them as being an 'extremely powerful' method, that 

allows researchers to manipulate more variables than they can assimilate by themselves. 
 

Multivariate methods and factor analysis have been applied to several environmental media 

including RDS (Tahri et al., 2005; Booth et al., 2005, 2006; Han et al., 2006; Kartal, et al., 2006; 

Tokahoğlu and Kartal, 2006; Al-Khashman et al., 2007; Lu et al., 2010). Booth et al. (2005, 

2006) used multivariate analysis to differentiate between RDS in the West Midlands, which 

successfully aided interpretation of dust variations and simplified inter-relationships between 

magnetic parameters. Lu et al. (2010) successfully used correlation coefficient analysis and 

multivariate methods to identify possible sources of heavy metals in RDS. 

 

The main function of simultaneous R- and Q-mode factor analysis is to reduce the 

dimensionality of data by extracting the common factors, so that the remaining variance can be 

attributed to error (Davis, 1986). The R-mode analysis is very similar to Principal Components 

Analysis (PCA), except the factors are chosen to maximize the correlation between the original 

variables rather than to maximize variance (Kovach, 1995; Walden and Smith, 1995; 

Schneeweiss and Mathes, 1995). Q-mode analysis is very similar to cluster analysis in that it 

locates groups of samples, but in numerical terms is similar to PCA (Kovach, 1995; Walden and 

Smith, 1995). 

 

Both R- and Q-mode factor analysis are based on eigenvector methods and can be performed 

separately. R-mode factor analysis detects interrelations between variables, whereas Q-mode 

factor analysis attempts to identify patterns or groupings of the samples within their 

arrangement in 'multivariate space' (Walden, 1990) or 'multidimensional factor space' (Walden 

and Smith, 1995).  Table 3.6 shows the mathematical steps of the procedure (Walden and 

Smith, 1995; Davis, 1986, 2002), involving a range of basic matrix algebra operations on the 

original raw data matrix (of n samples by m parameters). 

 

In this case, analysis is carried out using MINITAB PC (version 15). However, because this 

technique is mathematical and not statistical, the results are not subjected to any significance 

testing. Factor analysis cannot quantify the relative proportions of each variable, as it only 

shows changes in the balance between sources.  

 

Figure 3.19 (Table 3.7) shows a hypothetical factor plot to illustrate how factor analysis results 

can be interpreted in an environmental situation. In this example, factor analysis was performed 

on a multivariate dataset of 12 parameters, which were measured on five sample populations 

(AE) each containing different numbers of samples (perhaps representing RDS samples from 

different road side environments). The parameter and sample loadings for the first two factors  

83



Table 3.6 Procedure for simultaneous R- and Q-mode factor analysis (after Davis, 1986, 
2002; Walden and Smith, 1995) 

 

Step Procedure 

1 Compile a raw data matrix of n samples (rows) by m parameters (columns) denoted by [x], as in 
convential matrix algebra. 

 

2 [x] is standardized to give [w]. Each element of [x] has its column (parameter) mean subtracted from it. 
It is then divided by the product of the column (parameter) standard deviation (s) and the square root of 
n. 

 

3 [W]’ is created by transposing [W]. This involves turning the rows of [W] into the columns of [W]’ and the 
columns into rows. 

 

4 [R] is created by matrix manipulation of [W]’ · [W]. The matrix [R] represents a correlation matrix 
between parameters. 

 

5 Eigenvectors and eigenvalues (distinct properties of the matrix) are extracted from [R]. The 
eigenvectors are used to form a matrix [U]. The eigenvalues can be used to compute the percentage of 
the total variance in the original data set explained by the new ‘underlying’ factors. 

 

6 The square roots of the eigenvalues are placed in the top left to bottom right diagonal elements of a 
matrix are set to zero. 

 

7 [AR] is computed by multiplication from [U] · [^]. The matrix [AR] contains the R-mode (parameter) factor 
loadings. Each column represents the loadings of the original parameters on an individual factor (e.g. 
column 1 on factor 1). These values are used when plotting the parameters in ‘factor space’ in the form 
of scatter diagrams. 

 

8 [AQ] is computed by multiplication from [W] · [U]. The matrix [AQ] contains the Q-mode (sample) factor 
loadings. Each column represents the loadings of the original parameters on an individual factor (e.g. 
column 1 on factor 1). These are the values used when plotting the samples in ‘factor space’ in the form 
of scatter diagrams. 
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extracted from analysis (Factor 1 and Factor 2) have been used to generate the factor plot. 

Attempts are made at identifying underlying causes to, subsequently, ‘label’ or ‘name’ each 

factor (expressed in brackets after the factor is first mentioned in the text). 

 

Table 3.7 shows that the first two factors extracted explain 74.29% of variation in the 

parameters. Factor 1 (‘name’ (e.g. representing distance from kerb)) has broadly separated the 

sample populations C, D and E from sample populations A and B. This indicates that Factor 1 

(distance) provides a means of discriminating these groups, suggesting that those sample 

populations negatively loaded on Factor 1 have different characteristics to those positively 

loaded on Factor 1. The spread of sample loadings along Factor 2 (‘name’ (e.g. representing 

road type)) separates sample population A from sample populations C and D. This indicates 

that Factor 2 (road type) provides an effective means of discriminating between these groups, 

suggesting that those sample populations negatively loaded on Factor 2 have different 

characteristics to the group positively loaded on Factor 2. However, Factor 2 has failed to 

separate sample populations B and E, which have both positive and negative Factor 2 loadings.  

 

The distribution of parameter loadings shows that the parameters are influenced by Factors 1 

and 2. Parameters 2, 3, 5, 6, 7, 8, 9, 11 and 12 are influenced by Factor 1, while parameters 1, 

4 and 10 are influenced by Factor 2. This suggests that Parameters 2, 3, 6, 7 and 9 provide the 

strongest means of discriminating between sample populations. As parameters 9 and 3 have 

plotted close together, this suggests that the sample populations are responding to these two 

variables in a similar manner (i.e. they are strongly positively correlated). Parameter 2 plots 

opposite parameter 3, suggesting parameter 2 has a negative correlation with parameter 3.  

 

Theoretically, if sample population A represented a main arterial road sediment and sample 

population D represented a residential road sediment, the factor plot could be applied as a 

semi-quantitative approach for assigning such road types to another sample population (F). In 

these circumstances, any population F samples plotted amongst population A samples are 

probably dominated by RDS characteristics associated with main arterial roads and any 

population F samples plotting amongst population D samples are more probably dominated by 

residential road characteristics. Any population F samples plotting between populations A and D 

represent a mixture of characteristics. 

 
3.3.3 Geographical information systems 
A Geographic Information System (GIS) is a computer-assisted system for the acquisition, 

storage, analysis and presentation of geographic data (Tomlin, 1990). In this study the software 

program Arcview GIS, ESRI V10 (2010) was used for spatial modelling of mineral magnetic and 

textural data. Essentially, IDRISI consists of two components, a spatial database and an 

attribute database, which are combined into a single entity. Around this main database are 

sequences of software components that allow selected constituents of the database to be used 

for map production. A georeferenced base map (using a co-ordinate system, in this case, 

OSGB)) for given sampling areas was created, and the constituents of the spatial database 
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plotted on the base map as points. A software routine was then performed to allow attribute 

values for the selected variable to be attached to each of the points. From this, an interpolated 

surface of the specific variable was created. The generated image, in raster format, was then 

overlaid by a mask, so as to display only the sample area. Finally, a text layer was applied to 

depict individual localities on each GIS map. 

 

3.4 Data confidence 
Prior to experimentation and analysis, it is useful to be aware of the limitations in the data 

collected. Any researcher needs to be able to demonstrate the extent to which confidence can 

be shown in any interpretations that are derived from their data. However, in most mineral 

magnetic studies, the reliability of the environmental magnetic data is not formally stated (Booth 

et al., 2004).  The most obvious sources of uncertainty are likely to be due to: 

 

1. Failure of the field sampling strategy to account for natural spatial variability in the 

material being sampled. Such variability may occur at a range of spatial scales. 

2. Sub-sampling of bulk field samples within the laboratory during the sample preparation 

stage. 

3. Instrument error, particularly in terms of calibration accuracy. 

4. Operator error in using analytical equipment. 

 

Lees (1994, 1999) provided a thorough examination of (1) at the large and intermediate spatial 

scales and Booth et al. (2004) at the (2) sub-sampling of bulk field samples. The work focused 

on the spatial variability of sediment samples when used to characterize the environmental 

magnetic properties of particular sediment types as part of a catchment-scale sediment-source 

study. Lees (1994) demonstrated that considerable spatial variability can exist in the magnetic 

properties of a single sediment type over scales of several 100 m to ~10 m, whereas Booth et 

al. (2004) demonstrated variability within individual samples. Lees (1994, 1997) and Booth et al 

(2004) proposed a comprehensive field sampling strategy in order to fully quantify this variability 

but, to date, few published studies have adopted such a rigorous approach.  

 

This investigation focuses on the first three of the above sources of uncertainty.  As Lees (1994, 

1997) provided an excellent analysis of: (1) large and intermediate scales and Booth et al. 

(2004) investigated (2) small scales. Only intermediate scale spatial variability (i.e. at the scale 

of the individual sampling location) is considered here. Operator error within the laboratory (4) is 

likely to be reduced with experience, as inconsistencies or problems with the data are more 

likely to be identified as data are obtained.    

 

Samples were collected from five field sites within the Wolverhampton area (Figure 3.20; Step 

1). Sites were selected to include contrasting traffic and sedimentological conditions. At each 

individual field site, five field samples were collected, taken from the four corners (10 m corner 

to corner) and centre of the road (Figure 3.20; Step 2), using the methods detailed in section 3.2 

and stored, as described in section 3.2.  
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Figure 3.20 An explanation of how the field (step two), sub-samples (step three) and 

machine (step four) variations were established in this study. Grid references 
(A) SO 390685 297213; (B) SO 390941 299175; (C) SO 391261 296772; (D) 
SO 392870 300359; and (E) SO 393314 297346. 
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In addition, to assess intra-sample variability, five sub-samples were taken from one of the field 

samples from each of the five field sites (Figure 3.20; step 3).  Finally, one of these sub-

samples from each of the five field locations was selected for repeat measurements (Figure 

3.20; step 4) to assess instrument error. The resulting 25 bulk field samples were then analysed 

using procedures detailed in section 3.2.  

 

There are several statistical approaches used to highlight data variability. Such analyses are 

particularly important, as it is possible for two data sets to have identical mean values, but 

extremely different data distributions. The simplest approach is to quote the data range (i.e. the 

minimum and maximum values). However, a more conventional approach is to quote the 

standard deviation and/or the standard error and/or the 95% confidence limits. Alternatively, the 

data can be displayed graphically using the mean values as data points with their standard 

deviation or standard error or the 95% confidence limits as distribution bars, or simply by 

plotting all the data as boxplots.  

 
For brevity, only selected mineral magnetic variables (χLF and SIRM) and textural variables 

(Mean-PS and PM10) are reported. Figure 3.21 indicates that the mineral magnetic and textural 

characteristics of the sediments throughout the urban environment are more diverse than the 

characteristics of the sediments at any one-sample site. There is clearly a measurable degree 

of compositional variability over spatial areas <1 m2 at each field sampling site. While in these 

samples, this intra-site variability is of a smaller magnitude than inter-site variability, 

comparisons between some individual samples between sites demonstrates the problems that 

may occur if a single field sample is taken as representative for each sampling location. For 

example, while the mean magnetic properties from sample site B and sample site C are 

statistically different, taking the individual field samples with the most extreme magnetic 

properties from each 1 m2 quadrat sample, grids would suggest these two locations had very 

similar χLF (Figure 3.20a) and SIRM (Figure 3.20b) values.  

 

Figures 3.22–3.25 suggest that the degree of intra-sample variability (Stage 3) is somewhat less 

than the intra-site variability, although this is not so in all cases (i.e.χLF) values for sample site 

E). Again, failure to homogenize an individual field sample prior to sub-sampling for analysis 

could lead to errors of a similar magnitude to those resulting from use of an individual field 

sample to represent the magnetic properties of a field site. 

 

Figures 3.22-3.25 also suggest that, for these magnetic and textural variables at least, error due 

to instrument variability is low (i.e. the level of repeatability of the measurements for individual 

samples seem to be high) compared to both intra-sample and intra-site variability. The relatively 

high inter-site, as opposed to intra-site, variability displayed by these data suggests that any 

environmental magnetic variations and subsequent interpretations of the sediments within this 

particular field setting can be identified with confidence.  Inter-site variations are likely to 

represent ‘real’ differences between sample sites and are unlikely to be due to intra-site 

variations.  
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Figure 3.21 Boxplots of the quadrat variations for each of the five locations in 
Wolverhampton. (A) SO 390685 297213; (B) SO 390941 299175; (C) SO 
391261 296772; (D) SO 392870 300359; and (E) SO 393314 297346. (a) 
boxplots of the χLF  variable; (b) boxplots of the SIRM variable; (c) boxplots of 
the mean-PS variable; and (d) boxplots of the PM10 variable. 
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The degree of intra-site variability shown by these samples could, of course, be a more 

significant problem in other field contexts. This level of intra-site variability could be large 

enough to mask inter-site variability in a sediment system with more subtle inter-site magnetic 

variations. Lees (1994, 1997) outlined methods to ensure that the degree of inter-site variability 

is fully assessed at scales from 100s to a few 10s of metres. The current data demonstrate that 

care must also be exercised at a smaller spatial scale appropriate to the individual field-

sampling site. Combining multiple samples taken over a small area (~1 m2) is likely to prove 

more representative of the sediment body being sampled than a single sample taken from a 

specific point. 

 

These data also demonstrate the need for care in sub-sampling field samples in the laboratory. 

Again, where inter-site variability in a sediment system is relatively low, the magnitude of intra-

sample variability may become significant. Thorough mixing of field samples prior to sub-

sampling and correct use of a sample splitter is therefore required to reduce such possible 

sources of error. For these samples, the degree of machine error is relatively low. 

 

Nevertheless, to have confidence in data collected and subsequent interpretations, it seems 

highly desirable that standard practise should include regular replicate sub-samples and re-runs 

of samples to ensure that both representative and accurate data are obtained (Lees, 1994; 

1999; Booth et al., 2004). 
 

Three general conclusions can be drawn from the analysis. 

 

I. Levels of intra-site variability should be assessed routinely in sampling sediments for 

environmental magnetic analysis, particularly where relatively low inter-site variability 

exists (preferably established using the rigorous approach of Lees (1994; 1999). 

 

II. Field samples need to be thoroughly homogenized within the laboratory prior to 

extracting sub-samples for analysis, as intra-sample variability can be as great as small 

scale (~1 m2) intra-site variability (Booth et al., 2004). 

 

III. For environmental magnetic measurements made on the types of equipment used here, 

the level of instrument variability seems relatively small. Even so, good practise should 

include regular duplicate measurements of samples to ensure confidence in the final 

data. 

 

In light of these conclusions, to have confidence in the data collected throughout the duration of 

this work, it was considered necessary to generate frequent replicate sub-samples and re-runs 

of samples to ensure precision. 
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Chapter 4 

Mineral magnetic and textural characteristics of Road Deposited Sediment (RDS) from 
Wolverhampton (UK) 

 
4.1 Introducing road deposited sediment results for the City of Wolverhampton 
Chapter 4 characterizes the mineral magnetic and textural properties of RDS collected from the 

City of Wolverhampton (n = 546 samples). Figure 4.1 maps the framework for this investigation 

and highlights the fundamental principles of this methodology by examining proxy methods 

temporally and spatially. The use of statistical and graphical techniques has determined the 

mineral magnetic properties of RDS and the possible influence of texture on characteristics. 

From these linkages the use of mineral magnetic measurements for PM identification in 

Wolverhampton will be assessed for its suitability as a PM particle size proxy.  

 

4.2 Characteristics of RDS in Wolverhampton 

RDS was collected from 42 pre-selected sampling points (Figure 4.2, Appendix 3.3) in 

Wolverhampton on 13 occasions over a period of two years (2008-2010, n = 546). The material 

collected consists a mixture of organic matter, soil and building material consisting of sand, silt 

and clay particles, which was collected from a wide range of differing environments (urban, 

industrial, commercial, residential, urban-rural).  Initial RDS characteristics for Wolverhampton 

are presented in Table 4.1 and consist of (a) mineral magnetic and (b) textural data. The data 

presented are discussed in this chapter, with the potential use of mineral magnetic methods for 

PM particle size proxy purposes.  

 

4.2.1 Mineral magnetic data of RDS in Wolverhampton 
Magnetic concentration-dependent parameters indicate Wolverhampton RDS contains a 

moderate to high concentration of magnetic minerals ((mean values χLF 43.999 x 10-7m3kg-1; 

χARM 0.094 x 10-5 m3kg-1; SIRM 689.830 x 10-4Am2kg-1) when compared to other studies (Table 

2.11 (Xie et al., 2001; Booth et al., 2007)). When these results are compared to published 

values for other environmental materials (Dearing, 1999), they indicate that the magnetic 

properties of sediments are similar to intermediate igneous rocks, basic/ultra-basic rocks and 

ferromagnetic minerals. The SIRM values indicate relatively high variation between sites 

(57.575-6045.963 x 10-4Am2kg-1).  

 

The Soft (IRM20mT) parameter, indicating the content of ferrimagnetic ‘magnetite-type’ minerals 

(low coercivity), range from 1.674-41.155%, and the Hard (IRM300mT) parameter, indicating the 

content of canted antiferromagnetic ‘hematite-type’ minerals (high coercivity), range from 1.095-

27.459%. These values Indicate that most samples have a greater influence of magnetically-soft 

minerals (e.g. magnetite (Fe3O4) and maghaemite (γFe2O3)), than magnetically-hard minerals 

(e.g. hematite (αFe2O3) and goethite (αFeOOH)), but do contain mixed magnetic mineralogy’s 

of both soft and hard types of minerals. 
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Figure 4.2 Map of the Wolverhampton sampling area. Each of the 42 points were sampled 
on 13 occasions between January 2008 and January 2010. ASU locations are 
shown and formed part of the 42 points. 
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Table 4.1 Summary RDS analytical data* for Wolverhampton (January 2008–January 
2010) (n = 546) 

 

 Parameters Units Mean Median SD CV (%) Min Max Range 
(a) χLF 10-7m3kg-1 43.999 39.704 22.104 50.236 5.403 131.240 125.837 
 χFD % 1.270 1.221 0.750 59.044 0.053 4.930 4.877 
 χARM 10-5m3kg-1 0.094 0.074 0.086 91.491 0.012 0.824 0.812 
 SIRM 10-4Am2kg-1 689.830 543.314 624.961 90.596 57.575 6045.963 5988.388 
 S-Ratio Dimensionless -0.799 -0.797 0.059 -7.431 -0.979 -0.593 0.386 
 SOFT%20mT % 17.415 16.781 4.017 23.065 1.674 41.155 39.481 
 SOFT%40mT % 41.906 41.589 5.087 12.139 5.060 89.953 84.894 
 HARD%300mT % 9.421 8.898 3.901 41.406 1.095 27.459 26.364 
 HARD%500mT % 4.502 3.875 3.075 68.307 0.007 21.105 21.097 
 SOFT IRM20mT 10-4Am2kg-1 117.516 89.494 114.105 97.097 8.166 1324.087 1315.921 
 SOFT IRM40mT 10-4Am2kg-1 288.451 221.955 321.366 111.411 25.635 5438.547 5412.912 
 HARD IRM300mT 10-4Am2kg-1 65.598 46.501 74.391 113.405 3.327 836.084 832.757 
 HARD IRM500mT 10-4Am2kg-1 30.196 20.444 41.192 136.416 0.084 606.889 606.804 
 ARM/χ 10-1Am-1 0.685 0.593 0.463 67.629 0.113 5.369 5.256 
 χARM/SIRM 10-3Am2kg-1 0.152 0.133 0.113 74.463 0.011 1.467 1.457 
 SIRM/ARM Dimensionless 251.027 235.806 155.024 61.756 21.404 2956.467 2935.063 
 SIRM/χ 10-1Am-1 15.230 13.797 10.391 68.231 1.668 197.360 195.692 
(b) Mean - PS µm 293.801 295.259 88.701 30.191 44.747 594.311 549.564 
 Median - PS µm 358.015 358.442 88.833 24.813 119.033 801.405 682.372 
 Sorting  σ1 2.153 2.136 0.395 18.362 1.168 3.178 2.010 
 Skewness SK1 0.459 0.464 0.136 29.617 -0.065 0.784 0.849 
 Kurtosis KG 1.390 1.299 0.596 42.904 0.721 10.020 9.299 
 Sand % 77.879 78.831 7.627 9.793 42.714 93.596 50.882 
 Silt % 19.412 18.407 7.450 38.380 5.085 54.618 49.533 
 Clay % 2.709 2.297 1.313 48.464 0.061 7.668 7.607 
 PM1.0 % 1.631 1.330 0.946 58.018 0.000 6.137 6.137 
 PM2.5 % 3.158 2.709 1.477 46.768 0.567 8.192 7.625 
 PM10 % 7.866 7.213 3.393 43.136 1.643 18.716 17.073 
 PM100 % 25.578 24.067 8.841 34.564 10.791 67.762 56.971 
 LOI % 1.080 1.063 0.090 8.371 2.041 0.816 1.225 

 
SD = Standard Deviation; CV = Percentage coefficient of variation; Min = Minimum value; Max = maximum value. Values are shown to 3 decimal 
places for consistency, not accuracy. 

100



This is further supported by the S-ratio parameter, which shows values ranging from -0.979 to     

-0.593. Given that most S-ratio values are >-0.7, they are described by Robinson (1986) as 

intermediate values (~-0.4 to -0.6), and therefore, indicate that some samples contain either 

magnetically soft minerals with a fine magnetic grain size or an assemblage with a small canted 

antiferromagnetic component, or both. However, samples with low negative S-ratio values      

(<-0.7) may be dominated by magnetically soft minerals with a coarse magnetic grain size. 

The ARM/χ values range from high to low (0.113-5.369 x 10-1Am-1), indicating a predominately 

coarse grained magnetic material (mean 0.685 x 10-1Am-1). The SIRM/ARM values range from 

21.40-2956 (SD 155.024; mean 251.027) and are high compared to other environmental 

materials (Yu and Oldfield, 1993). This supports the ARM/χ values, by indicating a coarse 

magnetic grain size. SIRM/χ values are low (mean 15.23 x 10-1Am-1), with a wide range     

(1.668-1973.60 10-1Am-1). High SIRM/χ values suggest the presence of fine grained magnetic 

material. 

 

4.2.2 Textural data for RDS in Wolverhampton 
Results indicate that RDS are moderately sorted (mean 293.801 µm; 2.153 σ1), with moderate 

to high sand concentrations (77.879%), smaller silt concentrations (19.412%), and low clay 

concentrations (2.709%) (Table 4.1b). The RDS particle size data also suggests a moderate 

level of sediment beneath the PM100 boundary (25.578%), with lesser PM10 concentrations 

(7.866%), low concentrations of PM2.5 (3.158%) and PM1.0 (1.631%). The LOI values are 

typically low ((mean 1.080%), Xie et al., 2001) (range 2.041-0.816%; SD 0.090). 
 

4.2.3 Relationships between mineral magnetic and textural parameters  
To determine mineral magnetic methods as a particle size proxy, statistical tests were carried 

out on the Wolverhampton RDS samples. Relationships between mineral magnetic and textural 

parameters were examined. The data set was interrogated by correlation statistics (Spearman 

Rank) and graphically displayed with bivariate plots. Table 4.2 displays correlation values for 

every possible pairing of parameters. 

 

Table 4.2 summarizes correlation statistics between the mineral magnetic parameters and 

textural parameters for Wolverhampton and shows some relationships between the mineral 

magnetic and textural parameters. Although there is some indication of inter-parameter 

linkages, these relationships are relatively weak (i.e. most correlation of coefficient values are 

ca. r =≤-0.001–0.182 and not significant). This suggests that texture of RDS has very limited 

control on the mineral magnetic assemblages in Wolverhampton. However, the stronger 

relationships appear related to magnetic concentration and mineralogy (χLF versus PM1.0 – 

PM100, r = 0.109-0.125; χARM/χ versus PM1.0–PM10,  r = -0.193- -0.232 and PM100, r = -0.144; S-

ratio versus PM1.0–PM100, r = -0.162-0.135 (p <0.05 to <0.001)). The relationships shown 

between these parameters are weak (p <0.05) with χLF  versus PM1.0 (Figure 4.3a (r = 0.109; p 

<0.05)) and SIRM versus PM1.0 (Figure 4.3b (r = 0.120; p <0.01)).  
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The strongest correlations are between the S-ratio and RDS fraction (((PM1.0 and PM2.5)             

r = -0.163 to -0.159; p <0.001), Figure 4.3c-d) with S-ratio decreasing with increasing PM1.0. This 

suggests that a decrease in hard magnetic minerals is associated with a corresponding 

decrease in PM1.0. At p <0.05 the statistical tests indicate a weak significant correlation exists 

between the mineral magnetic and textural parameters. The data suggests that mineral 

magnetic measurements are unlikely to be useful at this scale for particle size proxy purposes.  

 
4.2.4 Relationships between the mineral magnetic parameters 
To assess whether relationships exist between the mineral magnetic parameters, the data set 

was interrogated by correlation statistics (Spearman Rank). The results are summarized in 

Table 4.3. The results for the Wolverhampton samples show that most of the mineral magnetic 

parameters exhibit strong and significant correlation values, which are statistically significant at 

the p <0.05-0.001 confidence level (Table 4.3). The strongest correlation coefficients exist 

between each of the magnetic concentration dependent parameters (r = 0.768-0.907; p <0.001), 

with χLF   and SIRM being strongest (r = 0.907; p <0.001). 

 

Figure 4.4a, shows χLF versus SIRM, an exceptionally strong positive correlation exists between 

these parameters. Increases in χLF values are associated with corresponding increases in SIRM 

values. This indicates that the mineral magnetic signals of the sediment samples in 

Wolverhampton are dominated by remanence type of magnetism (ferrimagnetic and/or canted-

antiferromagnetic). Since, none of the data-points have high SIRM values and corresponding 

low χLF values, canted-antiferromagnetic behaviour is considered insignificant in these sediment 

samples, and the main type of magnetic remanence is ferrimagnetism. 

 

Figure 4.4b and c shows χARM versus χLF and χARM versus SIRM (Table 4.3). Strong positive 

correlations (r = 0.768-0.783; p <0.001) exist between these parameters. Any increases in χARM 

values are associated with corresponding increases in SIRM and χLF values. This further 

confirms that the mineral magnetic signals of the Wolverhampton sediment samples are 

dominantly ferrimagnetic and their magnetic grain sizes are predominantly ultrafine. Figure 4.4d, 

shows, χLF and χFD% plots, which have been used in several studies (Dearing et al., 1996; 

Walden et al., 1999) to demonstrate the domain size of the magnetic material within a sample. 

The plot indicates that samples are predominantly coarse grained material, with very little or no 

SP grains present. The weakest correlation coefficient values are associated with correlation 

between the χARM/χ parameters and most other mineral magnetic parameters (r = -0.285-0.218). 

All other parameters are quite strongly correlated, with most correlation coefficient values being 

r = ≤0.5–0.8.  

 
4.2.5 Mineral magnetic and textural data for sampled months 
Magnetic properties of the individual sampling months have distinct differences, with relative 

highs and lows of magnetic material present temporally (Figures 4.5 and 4.6).  
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Figure 4.3 Bivariate plots of selected mineral magnetic and textural parameters for 
Wolverhampton RDS samples (n = 546). 
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Figure 4.4 Bivariate plots of selected mineral magnetic parameters for Wolverhampton 

RDS samples (n = 546). 
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Figure 4.5 Box plots of RDS sample population distributions for selected mineral magnetic 

parameters for Wolverhampton, January 2008–January 2010. 
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Figure 4.6 Box plots of RDS sample population distributions for selected mineral magnetic 

parameters for Wolverhampton, January 2008–January 2010.  
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The magnetic concentration parameters for January and November are relatively low compared 

to other months (Figure 4.5 a,b,c) and are moderate compared to other urban RDS (χLF 31.980-

39.250 x 10-7m3kg-1; χARM 0.057-0.20094 x 10-5m3kg-1; and SIRM 419.000-662.995 x                

10-5Am2kg-1). May and July 2008 display high concentrations of χLF (52.410-53.050 x 10-7m3kg-1) 

with other months showing relatively consistent mean values. High variation exists over the 

sampling area in all months. 

 

Figure 4.5b shows concentrations of χARM to be relatively consistent in all months but with high 

variation in most months apart from January 2008 and January 2009. Moderate variations exist 

for July 2009. Figure 4.5c shows SIRM values were relatively consistent over the sampling 

period, with high levels of variation during May 2008, July 2008, September and November 

2008 and again in May, September and November 2009. Low variability existed during January 

2008, 2009 and 2010, with moderate levels of variation over the sampling areas during the 

months March 2008, 2009 and July 2009. 

 

Figure 4.6a shows relative consistency in mineral magnetic grain size and suggests a 

predominantly multi-domain characteristic, with little to no SP grains present. Some variation 

exists with all months with November 2009 showing least variation. Some months display 

differences with the S-ratio parameters (Figure 4.6b), but all months suggest the dominance of 

soft ferromagnetic material within RDS. The S-ratio variance suggests a mixture of soft and hard 

minerals within RDS, whereas September 2009 displays elevated soft concentrations of 

mineralogy. SIRM/χ (Figure 4.6c)) values display relatively consistent levels across the sampled 

months. High variation existed over the sampling areas during May 2008, 2009, July 2008, 

September 2008 and November 2008 and 2009, with low variation during January 2008 and 

2009.  The steady levels of multi domain, soft magnetic minerals suggest a consistent source of 

magnetic material. 
 
Figure 4.7 and 4.8 shows the textural box plots for the sampled periods. Figure 4.7a shows the 

mean values and variation over the sampling periods. Each pairing of months display similar 

results with a relative pattern between the months that is also evident in Figure 4.7b. Particle 

size classes PM1.0 (Figure 4.7c), PM2.5 (Figure 4.8a), PM10 (Figure 4.8b) and PM100 (Figure 4.8c) 

varied over the sampling periods, with March 2008 and March 2009 displaying high readings of 

PM2.5 and January 2008, May 2008 and May 2009 displaying low levels (Figure 4.8a). March 

2008 also displayed high PM10 levels with decreased levels during January and May 2008 

(Figure 4.8b). September and November 2008 show lower levels of PM100 compared to other 

months. All sampling periods showed moderate to high variation across the sampling areas. 

 

4.2.6 Distinguishing sampling periods using Wolverhampton RDS characteristics 
Statistical and graphical techniques indicate significant variations in physical characteristics of 

Wolverhampton RDS. However, visually there are obvious relationships between months. 

Statistical analysis using Kruskal Wallis and Mann Whitney U tests determined possible cross 

linkages of sampling periods.  
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Figure 4.7 Box plots of RDS sample population distributions for selected textural 

parameters for Wolverhampton, January 2008–January 2010. 
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Figure 4.8 Box plots of RDS sample population distributions for selected textural 

parameters for Wolverhampton, January 2008–January 2010. 
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Tested Hypotheses  

 

Null Hypothesis (H0) There are significant differences between the parameters 

during sampling periods.  

      

Alternative Hypothesis (H1) There are no significant differences between the parameters 

during sampling periods. 

 

Summary data for the physical characteristics of each of the Wolverhampton sampling periods 

are described and both null (H0) and alternative (H1) hypotheses are tested. The result of the 

non-parametric Kruskal-Wallis tests (data not presented) show differences between more than 

two of the Wolverhampton sampling periods RDS sample populations for each parameter, 

independent of each other (H0). Non-parametric Mann-Whitney U tests (Appendix 4.2.1-4.2.5) 

compared difference of the medians of each of the Wolverhampton sampling periods RDS 

sample populations for each parameter.  

 

4.2.7 Distinguishing sampling periods using mineral magnetic characteristics 
The mineral magnetic characteristics for RDS in Wolverhampton over the sampling period 

2008–2010 (n = 13) display significant differences (H0). Mineral magnetic concentration 

parameters (Appendix 4.2.1-4.2.2 (χLF, χ/ARM, SIRM and χFD% )) are significantly different over 

several months. χLF January 2008 (Figure 4.5-4.6) is significantly different (p <0.001) for months 

March to September but the same for November and respective January months. March 2008 

was different from November 2009 (p <0.05) and January 2008, 2009 and 2010 (p <0.01), but 

similar to other months. May and July is significantly different to September, November and 

January (p <0.05-<0.001). During September significant differences were found between and 

January, November and May (p <0.05-<0.001). χ/ARM (Figure 4.5b) has significant differences 

between the months of May, September, November and January. Similar relationships were 

found with χFD%  (Figure 4.6a) and May with November and January being significantly different 

to May (p <0.05-<0.001).  

 

January months were found to be significantly different (p <0.001) to March 2008, May 2008, 

July 2008 and May 2009, July 2009, and September 2009 (p <0.05-<0.001). July months are 

significantly different (p <0.05-0.001) to September 2008, November 2008, January 2008 and 

November, January 2009 (p <0.05-<0.01). SIRM (Figure 4.5c) had very similar linkages, most 

notably May and July months being significantly different (p <0.05-<0.01) to September 2008, 

November 2008, January 2009 and November 2009 and January 2010 (p <0.001). January also 

displays very strong difference with months (March-September 2008 (p <0.01-<0.001) and 

March-September 2009 (p <0.001)).  

 

These observations show distinct groups of months which have differences and suggest 

linkages with time of year and possibly weather conditions when compared to weather data 

(Appendix 4.3a-d). January is significantly different to months March-September and suggests a 
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possible seasonal influence. This is supported by the warm months of May and July being 

significantly different to the cooler months of November and January (χLF, χ/ARM and SIRM ). The 

use of interrogating the data via Mann Whitney tests has showed the potential to distinguish 

differences and relationships between months, sampling periods and possible seasons. This will 

now enable the investigation to analyse possible effects of mineral magnetic concentrations on 

seasonality. 

 

4.2.8 Distinguishing sampling periods using textural characteristics 
Textural characteristics display significant differences (Appendix 4.2.3-4.2.5 (p <0.05-<0.001)) 

over a range of months and parameters (H0). Mean and median particle size (Appendix 4.2.3 

and Figure 4.7 a-b) shows significant differences (p <0.05-<0.001) with January compared to 

March, July and September. July is significantly different (p <0.01-<0.001) to September and 

November 2008 and 2009. November is consistently different (p <0.05-<0.001) to all months 

during the sampling period. Selected separate particle sizes (Appendix 4.2.4-4.2.5 (PM1.0 PM2.5, 

PM10, and PM100)) display significant differences throughout the sampling period. Particle class 

size PM1.0 (Figure 4.7c) and PM2.5 (Figure 4.8a) during January months and July 2009 months 

had significant differences (p <0.05-<0.001) within all months, except July 2008. Particle class 

size PM10 (Figure 4.8b) during March and May show significant differences (p <0.05-<0.001) 

with July, September and November. Particle class size PM100 (Figure 4.8c) during September 

and November show significant differences (p <0.05-<0.001) to all other months over the 

sampling period. The textural parameters display similar behaviour to mineral magnetic data, 

with groupings of months associated with each other, again indicating a possible seasonal 

influence on RDS in Wolverhampton. 

 

4.2.9 Factor analysis using selected parameters 
To further clarify temporal relationships, multivariate factor analysis was used. In each case, 

parameter and sample loadings extracted from Factors 1 and 2 were used to generate factor 

plots. 

 

Factor analysis was initially performed using all mineral magnetic and textural parameters; 

however the resultant plot (not presented) was chaotic and did not appear to show clear 

patterns. Factor analysis was reapplied to relevant parameters (mineral magnetic and textural) 

to distinguish between parameters and sample groupings. The resultant plot (Figure 4.9) 

includes the main parameters and displays loadings. The first two factors extracted explain 

32.20% of variation. Factor 1 explains 25.56% of variation in parameters, while Factor 2 

explains 6.64%. The spread of parameter loadings along Factor 1 indicate mineral magnetic 

concentration parameters are the major influencing factor, with some particle size influence with 

PM10 closely linked. The spread of parameter loadings along Factor 2 suggests textural 

parameters are the main influencing factor. Sample loadings in its present form appear chaotic. 
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 Parameters         
1 χLF 6 SoftIRM40mT 11 χARM/SIRM 16 Sorting 21 Clay 
2 χFD 7 HardIRM300mT 12 SIRM/ARM 17 Skewness 22 PM1.0 

3 χARM 8 HardIRM500T 13 SIRM/χ 18 Kurtosis 23 PM2.5 

4 SIRM 9 S-ratio 14 Mean 19 Sand 24 PM10 

5 SoftIRM20mT 10 ARM/χ 15 Median 20 Silt 25 PM100 

          
 
Figure 4.9 Simultaneous R- and Q mode factor analysis plots of Factor 1 versus Factor 2, 

based on characteristics and cumulative Wolverhampton parameters. 
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4.2.10 Spatial characterization of mineral magnetic concentration characteristics using 

Arcview GIS (version 10) 

Statistical and graphical techniques indicate significant variations in physical characteristics of 

Wolverhampton RDS. However, bivariate plots and Mann-Whitney U tests used thus far failed to  

show geographical relationships between adjacent samples. Therefore, the mineral magnetic 

concentration data (LFARM and SIRM) was used to generate GIS images, determining the 

nature of spatial variations. Baseline maps were created in Arcview GIS (version 10). The 

masked boundary excludes unsampled areas. Figure 4.10a shows mean LF to vary across the 

sampling area. 

 

There are several high concentration of LF directly associated with the main road system and 

these have been highlighted by an outlined circle (Figure 4.10a). To the north, east and south-

east of the sampling area there are high concentrations of magnetic material (LF 95.148-

102.310 x 10-7m3kg-1) and these high concentrations are directly related to the main road 

network entering the City. To the west of the City centre there are several lower concentrations 

of magnetic minerals (LF 6.856-18.493 x 10-7m3kg-1) which can be directly associated with 

residential side roads. This pattern can be observed throughout the concentration parameters 

(Figure 4.10b,c) for the sampling period with main roads displaying higher readings than the 

side road networks. These concentrations reveal similar patterns to the road traffic data (Figure 

3.3, Appendix 3.2.1) when compared. 

 

Spatial distributions of ARM (Figure 4.10b) highlight the main arterial road network to the north, 

south and east of the City. This association also corresponds well with traffic levels at these 

locations (Figure 3.3, Appendix 3.1). Figure 4.10d shows the S-ratio and the relative even 

distribution of soft ferrimagnetic minerals across the sampling area. Towards the south there are 

high levels of mineral magnetic concentrations. When compared to land use maps (Appendix 

3.1) the areas appear to be linked to heightened anthropogenic activity due to local industry. 

When comparing LF values (Figure 4.10) to road traffic and land use data (Appendix 3.1) there 

appears to be distinct visual similarities with corresponding highs and lows. This observation 

suggests road traffic and land use as an influencing factor to mineral magnetic concentrations in 

Wolverhampton.  

 

4.2.11 Further assessment of road profiles using mineral magnetic bivariate plots of 

Wolverhampton Cumulative RDS 

Bivariate plots were used to determine relationships or patterns between the arterial and 

residential road systems, as observed within Figure 4.10. Figure 4.11 (a-d) show groupings of 

similar readings, which are associated with residential roads and arterial road networks. There 

is little mixing throughout the graphs and remain consistent with the relationships found. The 

sample points highlighted in Figure 4.11 (a-d) display a narrow band of similar concentrations 

(highlighted area) of mineral magnetic material, whereas the main road systems display a broad 

band of concentrations which are spread throughout the range. 
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Figure 4.10 Spatial distributions of the Wolverhampton RDS mean value mineral magnetic 
concentrations ((a, LFbARM; c, SIRM and d, S-ratio). Highlighted circles 
indicate areas of high mineral magnetic concentrations). 

 

116



 
 

Figure 4.11 Bivariate plots of selected mineral magnetic parameters for Wolverhampton 
cumulative RDS samples (n = 546), with road types identified (red points are 
arterial and blue points are residential roads). Areas of highlighted rings identify 
sample groups.  
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Results are reflected by traffic volumes with lower mineral magnetic concentrations associated 

with side roads. Main roads have a combination of high and low concentrations of mineral 

magnetic behaviour and are possibly a result of higher concentrations of vehicles inputting 

combustion and mechanical abrasion particulates. Figure 4.11d further supports the suggestion 

that main road RDS is dominated by MD ferromagnetic mineralogy. 

 
4.2.12 Further investigation of the Wolverhampton samples 
Statistical and graphical techniques indicate significant variation between the sampling 

intervals of Wolverhampton RDS. Results presented suggest some limited relationships 

exist between the mineral magnetic and textural parameters and require further 

investigation. Section 4.3–4.5 will break down the data into component parts (seasons and 

separate sampling intervals) to further explore temporal relationships. 

 

4.3 Seasonal Characteristics of Wolverhampton RDS (Summer, Autumn, Winter, 
Spring) 

A complete series of relationships between the mineral magnetic and textural parameters has 

not been evident so far from the cumulative Wolverhampton samples. Mann-Whitney U test 

investigations into individual months (Appendix 4.2) suggested possible linkages between 

groups of months. This has suggested that seasonality may play a part in distinguishing 

Wolverhampton RDS relationships. Therefore, to distinguish potential relationships, seasonal 

data have been combined using specific months to determine characteristics. The Roman 

calendar has been used to determine which month belonged to each season (Summer: June, 

July, August; Autumn; September, October, November; Winter; December, January, February; 

Spring; March, April, May) which is the most commonly used seasonal system. Kim et al. 

(2009) utilized a similar approach to assess the magnetic properties of urban road dust during 

seasons. Kruskal Wallis and Mann-Whitney U tests were applied to these specific month 

combinations (Table 4.4-4.5) to assess the potential for using grouped months in this study.  

 

4.3.1 Distinguishing seasons using mineral magnetic characteristics 
Mann Whitney U and Kruskal Wallis tests were carried out to determine if any of the sampling 

seasons were different. The tests were applied to the mineral magnetic and textural data. 

Summary data for the physical characteristics of each of the Wolverhampton seasonal periods 

are described and both null (H0) and alternative (H1) hypotheses are tested.  

 

Tested Hypotheses  

 
Null Hypothesis (H0) There are significant differences between parameters during 

seasons.  
      
Alternative Hypothesis (H1) There are no significant differences between parameters during 

seasons. 
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To determine whether the variations between the sources are statistically significant, non-

parametric Kruskal-Wallis tests were performed on the four seasonal groups for each of the 

magnetic and textural parameters (Table 4.4). P-values show that for each of the parameters 

the alternative hypothesis is rejected and, therefore, the medians of each of the seasonal 

populations are significantly different (H0). Non-parametric Mann-Whitney U tests (Table 4.5) 

compared the difference of the medians of each of the Wolverhampton sampling season RDS 

sample populations for each parameter. Seasonal samples for Wolverhampton are also 

presented as box-plots (Figure 4.12-4.13) and readings suggest a close consistency for all 

parameters throughout the seasons, with some overlap. 

 

By comparing the box-plots (Figures 4.12-4.13) for each selected magnetic and textural 

parameter, it is clear that there is some variation. This suggests that the characteristic 

properties of the seasons are dissimilar. For most other cases, only the whiskers overlap 

between seasons. This indicates differences between seasons, except for a few samples which 

possess similar values. 

 

Using Mann Whitney U value tests the mineral magnetic concentration parameters (χLF, χARM 

and SIRM ) display fairly consistent relationships throughout the seasons (Table 4.5), with 

significant differences (p <0.05-<0.001) between spring and autumn-winter months. χLF 

parameters (Figure 4.12a) during summer are significantly different to winter (p <0.001) 

whereas spring is significantly different to autumn and winter (p <0.001). This relationship is 

replicated with the χARM (Figure 4.12b) SIRM (Figure 4.12c) and S-ratio (Figure 4.12d)  (p <0.05-

<0.001) parameters.  

 

Table 4.4 Kruskal Wallis ‘p’ values for Wolverhampton RDS seasons 
 

Parameters P Value 

χLF <0.001 

χFD% <0.001 

χARM <0.001 

SIRM <0.001 

S-Ratio <0.001 

SOFT IRM20mT <0.001 

SOFT IRM40mT <0.001 

HARD IRM300mT <0.001 

HARD IRM500mT <0.05 

SIRM/χ <0.05 

Mean - PS <0.001 

Median - PS <0.001 

PM1.0 <0.001 

PM2.5 <0.001 

PM10 <0.001 

PM100 <0.001 
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Table 4.5 Mann-Whitney U test ‘p’ values for mineral magnetic seasonal data for 
Wolverhampton RDS (January 2008–January 2010) 

           

χLF  Spring Summer Autumn  χFD%  Spring Summer Autumn 

 Summer 0.649     Summer 0.526   

 Autumn <0.001 0.053    Autumn <0.001 <0.001  

 Winter <0.001 <0.001 <0.001   Winter 0.453 0.948 <0.001 

           

χARM  Spring Summer Autumn  SIRM  Spring Summer Autumn 

 Summer 0.450     Summer 0.490   

 Autumn <0.05 0.208    Autumn <0.05 <0.05  

 Winter <0.001 <0.001 <0.01   Winter <0.001 <0.001 <0.01 

           

Soft IRM20mT  Spring Summer Autumn  Soft IRM40mT  Spring Summer Autumn 

 Summer 0.348     Summer 0.867   

 Autumn <0.01 <0.001    Autumn <0.01 <0.05  

 Winter <0.001 <0.001 <0.05   Winter <0.001 <0.001 <0.05 

           

Hard IRM300mT  Spring Summer Autumn  Hard IRM500mT  Spring Summer Autumn 

 Summer <0.001     Summer 0.118   

 Autumn 0.944 <0.001    Autumn 0.103 0.958  

 Winter 0.702 <0.001 0.817   Winter <0.01 0.244 0.175 

           

S-ratio  Spring Summer Autumn  SIRM/χ  Spring Summer Autumn 

 Summer <0.05     Summer <0.01   

 Autumn <0.001 <0.001    Autumn <0.01 0.534  

 Winter 0.080 <0.01 <0.001   Winter <0.01 0.747 0.774 
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Figure 4.12 Box plots of RDS seasonal sample population distributions for selected mineral 
magnetic parameters for Wolverhampton.  
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Figure 4.13 Box plots of RDS seasonal sample population distributions for selected mineral 
magnetic parameters for Wolverhampton. 
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Significant differences are evident for autumn and winter compared to spring within the 

SoftIRM20/40mT (Figure 4.13a-b) magnetic characteristic (p <0.01-<0.001). HardIRM300mT parameters 

(Figure 4.13c) show that months are the same, apart from spring and summer months               

(p <0.001). HardIRM500mT (Figure 4.13d) display significant differences between spring and winter 

(p <0.01). Other seasons have significant relationships (H1).  

 

The Mann-Whitney U test results for seasons showed that there are differences between all 

parameters. Opposite seasons (spring, autumn and summer, winter) are significantly different in 

various mineral magnetic parameters, whereas some seasons have shown similarities within 

certain parameters (spring and summer with χLF, χARM and SIRM).  

 

Seasonal variability suggests conditions may be responsible for the different values. The mean 

daily rainfall and overall rainfall patterns over the sampling periods influence mineral magnetic 

concentrations of RDS (Appendix 4.3a). However the results for mean temperature and χLF 

(Appendix 4.3b) also appear to influence the mineral magnetic characteristics of RDS. These 

results suggest that weather conditions play an important role in concentration parameters.  

 

The contribution of magnetic material from road and industry generally does not fluctuate over 

seasons (Kulshrestha, 2009) whereas concentrations of crustal material can be affected by 

weather due to the weathering contributing to RDS loads during these periods. The contribution 

of weathered crustal material potentially has a diluting and mixing effect, thus weakening the 

magnetic signal during seasons with increased weather activity (Appendix 4.3). 

 

4.3.2 Further assessment using multivariate factor analysis plots 
Results of Mann-Whitney U tests identified two-dimensional key seasonal characteristic 

associations with each of the mineral magnetic parameters. However, these data cannot identify 

the role of each mineral magnetic parameter within the seasonal characteristics.  

 

To achieve this, multivariate factor analysis was used to provide multi-dimensional details on 

seasonal changes in mineral magnetic behaviour. The main advantage of using multivariate 

factor analysis, over Mann Whitney U tests, is the reduction of parameters, by combining two or 

more variables into one single factor to identify hidden dimensions that would not have been 

apparent from direct analysis. The resultant plot identifies groups of inter-related parameters. 

Factor analysis is used to estimate how much variability between parameters is due to common 

factors. In each case, parameter and sample loadings extracted from Factors 1 and 2 were 

used to generate factor plots. 

 

4.3.3  Factor analysis of the mineral magnetic data to classify seasons   
Figure 4.14 is split into five factor plots. Each display key mineral magnetic parameters for all 

seasons during the sample period (January 2008–January 2010).  The first two factors 

extracted explain 41.40% of variation. Factor 1 explains 23.34% of variation in parameters, 

while factor 2 explains 18.06%. The spread of parameter loadings along Factor 1 indicate 
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magnetic concentration parameters as the major influencing factors, with χFD% displaying limited 

influence. Factor 2 shows the spread of loadings influenced by magnetic domain size. Figure 

4.14(b) displays the sample loadings for the spring season. Most samples are fairly compacted 

and spread along a positive Factor 2 with cross over into Factor 1. There is indication of 

influence from mineral magnetic concentration and domain size parameters in the resultant plot.  

Figure 4.14(c) displays the sample loadings for summer. The sample loading are spread evenly 

across all factors with no apparent pattern or behaviour. Figure 4.14(d) displays sample 

loadings for autumn, with a wide spread of loadings over both Factors 1 and 2, and some 

mineral magnetic domain size influence is apparent. Figure 4.14(e) displays sample loadings for 

winter which show uniform patterns indicating mineral magnetic domain size influences. 

 

4.3.4 Factor analysis of selected mineral magnetic and textural data to classify 
seasons   

Figure 4.15 is split in to five factor plots, each displaying key mineral magnetic and textural 

parameters for all seasons during the sampling period. The first two factors extracted explain 

50.80% of variation. Factor 1 explains 29.72%, while Factor 2 explains 21.08%. The spread of 

parameter loadings along Factor 1 indicate textural parameter influences. Factor 2 shows the 

spread of loadings being influenced more by mineral magnetic characteristics.  

 

Figure 4.15(b) displays the sample loadings for spring. Most samples are spread along a 

positive Factor 2 with some cross over into Factor 1. The sample spread indicates the influence 

of particle size.  Figure 4.15(c) displays sample loadings for summer. The sample loading are 

spread across negative Factor 1, indicating mineral magnetic concentration influence. Figure 

4.15(d) displays sample loadings for autumn, with a wide spread of loadings over Factor 2, the 

spread of samples indicate textural and limited mineral magnetic influence. Figure 4.15(e) 

displays sample loadings for winter with a wide spread of loadings over Factor 2. The spread of 

samples indicate textural and limited mineral magnetic influences. 

 

4.3.5 Characteristics and linkages of separate seasons 
Use of statistical and graphical techniques has enabled a basic understanding of seasonal 

characteristics and proves to be effective in discriminating seasonal factors, with clear 

differences between the seasons Identified. Relationships between land use, traffic and weather 

conditions appear to influence the concentrations of magnetic minerals found in RDS temporally 

and spatially. Seasonal linkages between mineral magnetic, textural parameters and particle 

size proxy potential will now be explored. 

 

4.3.6 Seasonal mineral magnetic and textural relationships 
The cumulative Wolverhampton RDS samples show limited success in accessing linkages 

between mineral magnetic and textural parameters. The seasonal arrangement has been 

subjected to identical interrogation with each season checked for linkages. Selected 

relationships are shown in Table 4.6.  
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Table 4.6 Summary mineral magnetic concentration (χ, χARM, and SIRM and textural 
(<PM10) parameter spearman rank correlation relationships for all seasons 
(bold text is significant (*p <0.05; **p <0.01; ***p <0.001 (n =546))). 

 

Parameters Clay PM1.0 PM2.5 PM10 

χLF 0.353*** 0.330*** 0.356*** 0.376*** 

χARM 0.312*** 0.298*** 0.311*** 0.316*** 

SIRM 0.387*** 0.371*** 0.387*** 0.371*** 

     

χLF 0.172 0.086 0.173 0.192 

χARM 0.109 0.083 0.098 0.107 

SIRM 0.257* 0.158* 0.246* 0.079 

     

χLF 0.001 -0.035 -0.003 -0.003 

χARM -0.113 -0.104 -0.121 -0.151 

SIRM 0.005 -0.041 -0.003 -0.067 

     

χLF -0.098 -0.020 -0.110 -0.036 

χARM -0.153 -0.149 -0.140 -0.040 

SIRM -0.107 -0.005 -0.124 -0.066 

 

Spring  Summer  Autumn  Winter 

 
 

The results show that during autumn and winter there are no significant relationships between 

the mineral magnetic and textural parameters, with no potential for particle size proxy purposes. 

Few linkages are found during summer, with SIRM and <PM2.5 values (p <0.05) showing weak 

relationships. The strongest linkages are found between the mineral magnetic and textural 

parameters during spring (p <0.001) with <PM10 and all magnetic concentration parameters 

(χLF , χARM, and SIRM) showing a consistent pattern with all particle size fractions. When 

compared to all other seasons results for spring have shown the greatest potential for particle 

size determination. However, these results are still weak and display the limited particle size 

proxy potential, over these periods and at these scales.  

 

4.4 Detailed investigation of potential proxy season (Wolverhampton Spring 
samples) 

Spring samples are further discussed, due to the consistent linkages between mineral magnetic 

and particle size parameters. Results for the Wolverhampton spring months are presented 

(Table 4.7 and Figures 4.12-4.13) with summary data of RDS sample physical characteristics 

during this period (n = 168).  
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Table 4.7 Summary RDS analytical data* for Wolverhampton (spring) (n = 168) 
 

 Parameters Units Mean Median SD CV (%) Min Max Range 
(a) χLF 10-7m3kg-1 50.563 44.593 23.736 46.943 6.856 131.240 124.384 
 χFD % 1.438 1.354 0.780 54.248 0.191 4.930 4.739 
 χARM 10-5m3kg-1 0.104 0.079 0.091 87.722 0.015 0.660 0.645 
 SIRM 10-4Am2kg-1 782.979 594.770 706.396 90.219 98.135 6045.963 5947.828 
 S-Ratio Dimensionless -0.789 -0.789 0.044 -5.569 -0.900 -0.668 0.232 
 SOFT%20mT % 21.091 18.369 22.075 104.665 9.922 197.887 187.965 
 SOFT%40mT % 46.344 43.108 32.332 69.766 33.192 389.261 356.069 
 HARD%300mT % 7.436 7.031 2.583 34.740 1.925 18.337 16.412 
 HARD%500mT % 3.305 2.786 2.278 68.911 0.000 14.359 14.359 
 SOFT IRM20mT 10-4Am2kg-1 158.303 110.543 213.868 135.100 13.248 1791.693 1778.445 
 SOFT IRM40mT 10-4Am2kg-1 366.021 257.799 526.420 143.822 39.852 5438.547 5398.695 
 HARD IRM300mT 10-4Am2kg-1 7.436 7.031 2.583 34.740 1.925 18.337 16.412 
 HARD IRM500mT 10-4Am2kg-1 28.583 17.949 57.606 201.536 1.021 606.889 605.868 
 ARM/χ 10-1Am-1 0.002 0.002 0.001 60.368 0.001 0.011 0.010 

 χARM/SIRM 10-3Am2kg-1 0.000 0.000 0.000 87.699 0.000 0.001 0.001 
 SIRM/ARM Dimensionless 248.116 240.339 77.681 31.308 21.404 716.667 695.262 
 SIRM/χ 10-1Am-1 15.195 13.645 9.805 64.532 1.668 100.645 98.977 

(b) Mean - PS µm 291.050 293.796 93.876 32.254 87.141 507.135 419.994 
 Median - PS µm 358.960 359.539 87.704 24.433 165.742 582.702 416.960 
 Sorting  σ1 2.306 2.272 0.341 14.795 1.507 3.178 1.671 
 Skewness SK1 0.477 0.510 0.136 28.475 0.137 0.702 0.565 
 Kurtosis KG 1.265 1.139 0.393 31.065 0.759 2.246 1.487 
 Sand % 75.034 75.665 7.240 9.649 56.717 88.334 31.617 
 Silt % 21.964 21.198 7.213 32.839 10.318 40.990 30.672 
 Clay % 3.002 2.645 1.306 43.517 1.127 6.965 5.838 
 PM1.0 % 1.857 1.592 0.877 47.226 0.719 4.404 3.685 
 PM2.5 % 3.509 3.139 1.483 42.266 1.316 8.027 6.711 
 PM10 % 9.128 8.445 3.179 34.827 2.921 16.825 13.904 
 PM100 % 28.154 27.304 8.912 31.655 12.763 53.277 40.514 

 
*SD = Standard Deviation; CV = Percentage coefficient of variation; Min = Minimum value; Max = maximum value.  
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4.4.1 Wolverhampton Spring RDS mineral magnetic data 
Magnetic concentration parameters indicate RDS contains high concentrations of magnetic 

minerals (mean χLF 50.563 x 10-7m3kg-1; χARM 0.104 x 10-7m3kg-1; SIRM 782.979 x 10-4Am2kg-1). 

When these results are compared to published values for other environmental materials 

(Dearing, 1999), they indicate that the magnetic properties of the sediments are similar to 

intermediate igneous rocks, basic/ultra-basic rocks and ferromagnetic minerals. SIRM values 

indicate high variation between sites (98.135-6045.963 x 10-4Am2kg-1). The ARM/χ values range 

from high to low (0.001-0.011 x 10-1Am-1), indicating a predominately coarse grained magnetic 

material (mean 0.002 x 10-1Am-1). SIRM/ARM values range from 21.404-716.667 (SD 77.681; 

mean 248.116) and are high compared to other environmental materials (Yu and Oldfield, 

1993). This supports the ARM/χ values, by indicating a coarse magnetic grain size. SIRM/χ 

values are also low (mean 15.195 x 10-1Am-1), with a range of values (1.668-100.645 x           

10-1Am-1). The high SIRM/χ values suggest the presence of fine grained magnetic material. 

 

4.4.2 Wolverhampton Spring RDS textural data 
Results of descriptive statistics (Table 4.7b) have identified key particle size parameters, 

indicating that RDS contains moderately sorted sediment (2.306 σ1; mean 291.050 µm), with 

moderate to high concentrations of sand (75.034%), moderate concentrations of silt (21.964%), 

and low concentrations of clay (3.002%). The RDS particle size data for Wolverhampton also 

suggests a moderate level of sediment within the PM100 boundary (28.154%), with lesser PM10 

concentrations (9.128%), low concentrations of PM2.5 (3.509%) and minimal concentrations of 

PM1.0 (1.857%). 

 

4.4.3 Relationships between mineral magnetic and textural variables  
Table 4.8 summarizes correlation statistics between the mineral magnetic variables and textural 

variables for the Wolverhampton spring samples. Almost all mineral magnetic concentration and 

textural variables show some relationships (i.e. most correlation of coefficient values are r = 

≤0.330-0.376 (p <0.05). This suggests that RDS texture may have some influence on mineral 

magnetic assemblages in Wolverhampton during spring months. The statistical tests indicate 

that a weak significant relationship exists between mineral magnetic and textural variables. χLF, 

χARM and SIRM all display strong relationships (p <0.001) with PM10. 

 
Figures 4.16 a-d show magnetic concentration dependent parameters versus selected textural 

parameters (χLF, SIRM versus PM2.5, PM10). The graphs display a wide spread of sample points 

across the plot area, but does show patterns which can then be verified via statistical analysis. 

The patterns are consistent throughout the graphs and suggest that, increases in magnetic 

concentration values (χLF and SIRM) are associated with corresponding increases in the amount 

of PM1.0 to PM10. This suggests that there is a relationship between the mineral magnetic 

concentration and textural parameters, although weak, which could relate to inter parameter 

dependencies. However, the relationship is not strong enough to infer that the methods could 

be used as a proxy for PM particle size during this time period.  
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Figure 4.16 Bivariate plots of selected mineral magnetic and textural parameters for 
Wolverhampton Spring RDS samples (n = 168). 
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4.4.4 Factor analysis using mineral magnetic and textural parameters 
To further clarify environmental relationships, multivariate factor analysis was used. In each 

case, parameter and sample loadings extracted from Factors 1 and 2 were used to generate 

factor plots. Factor analysis of key Spring characteristics is used to distinguish inter-parameter 

and sample loading relationships. 

 

Figure 4.17(a) is the resultant factor plot for Spring key mineral magnetic and textural 

parameters. The first two factors extracted explain 49.47% of variation. Factor 1 explains 

28.77% of variation in parameters, while Factor 2 explains 20.70%. The spread of parameter 

loadings along Factor 1 indicate magnetic concentration, domain size and some textural 

parameters as major influencing factors, with χFD% displaying limited influence. Factor 2 shows 

the spread of loadings influenced by larger sized textural properties (sand and silt). Figure 

4.17(a) displays sample loadings for Spring. Most samples are quite compacted and spread 

within both factors. There is some indication of influence of textural parameters from the 

resultant plot. 

 
4.4.5 Factor analysis using mineral magnetic parameters 
Figure 4.17(b) is the resultant factor plot for Spring key mineral magnetic parameters. The first 

two factors extracted explain 33.41% of variation. Factor 1 explains 25.90% of variation in 

parameters, while Factor 2 explains 7.51%. The spread of parameter loadings along Factor 1 

indicate magnetic concentration parameters as the major influencing factors. Factor 2 shows the 

spread of loadings being influenced by magnetic domain size. The distribution of samples 

indicate that magnetic domain size is the main influence and, to a lesser extent, mineral 

magnetic concentration parameters. 

 

4.4.6 Re-analysis data with additional factors 
To further expand the understanding of RDS during seasons it was necessary to further 

investigate the data. With the use of GIS and traffic data, mineral magnetic concentrations have 

been analysed according to road types (Figure 3.3 and 4.10). Figure 4.18 displays the road 

types and samples used for the additional analysis.  

 
4.4.7 Bivariate plots utilizing road type data 
Figure 4.19 shows the bivariate plots with data sorted into two key groups, classified in terms of 

daily use and traffic numbers. Figure 4.19a distinguishes between road types, with a clear 

grouping of residential roads within the PM2.5 <3% and χLF ~<50 x 10-7m3kg-1. Figure 4.19b 

displays a grouping of residential road samples associated with lower concentrations of SIRM, 

whereas arterial roads are associated with a mix of high and low concentrations. The bivariate 

plots for χLF and SIRM parameters show that residential roads have relatively low 

concentrations (Figure 4.19c,d). There is some mixing throughout the graphs, but they are fairly 

consistent with low concentration residential and medium to high concentration arterial.
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Figure 4.18 Sample map of Wolverhampton showing road types (red markers represent 
arterial roads and blue markers represent residential roads). 
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Figure 4.19 Bivariate plots of selected mineral magnetic and textural parameters for 
Wolverhampton Spring RDS samples (n=168), with road types identified (red 
points are arterial and blue points are residential roads). Highlighted rings 
identify sample groups. 
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The sample points highlighted in Figure 4.19(a-d) display a narrow band of similar 

concentrations of mineral magnetic material, whereas the arterial road systems display a broad 

band of concentrations which are spread throughout the range. Results suggest that low 

mineral magnetic concentrations are associated with residential roads, whereas arterial roads 

have a variation of values which is a combination of high and low concentrations of magnetic 

minerals. 

 
4.4.8 Distinguishing Wolverhampton Spring road profiles using RDS characteristics 
Table 4.9 compares the medians of each mineral magnetic component of the road populations 

for each parameter; while, Figures 4.20 and 4.21 (box-plots) presents population distributions 

for selected mineral magnetic and textural parameters. To distinguish road profiles, both null 

(H0) and alternative (H1) hypotheses were tested. Non-parametric Mann-Whitney U tests are 

used to compare the differences of these medians. 

 

Tested Hypotheses  

Null Hypothesis (H0) There are significant differences between the road types.  

      

Alternative Hypothesis (H1) There are no significant differences between the road types. 

 

4.4.9 Distinguishing road profiles using mineral magnetic and textural characteristics 
By comparing boxplots (Figures 4.20-4.21) for each selected variable, it is clear that road types 

overlap. This indicates that the characteristic properties of road types are dissimilar (H0). To 

determine whether the variations between road types are statistically significant, non-parametric 

Mann-Whitney tests were performed on arterial and residential roads for each of the magnetic 

and textural variables (Table 4.9). The ‘p’ values show that for each variable the alternative 

hypothesis has been rejected and, therefore, the medians of each road type population are 

significantly different (Table 4.9 (p <0.001)). Using Mann Whitney U value tests the mineral 

magnetic concentration parameters (Figure 4.20 (χLF, χARM and SIRM/χ)) display consistent 

relationships throughout the seasons (Table 4.9), with significant differences (p <0.001) 

between road systems.  There are significant associations (H1) for χFD% (p =0.842) and 

SIRM/χ (p =0.372), which indicate consistency of multi-domain ferromagnetic grains between 

road types. All mineral magnetic concentration parameters on residential roads are significantly 

different to arterial roads (p <0.001), with high concentrations associated with main roads and 

low concentrations with residential roads.  Textural parameters (Figure 4.21) display coarser 

particle sizes associated with arterial roads. These results further support the correlations within 

the mineral magnetic and textural data. Differences were not significant between mineralogical 

parameters (χFD%, SIRM/χ and S-ratio), which suggests that mineralogy across road types is 

fairly consistent. 
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4.4.10 Distinguishing road profiles during all seasons 
The results for all other seasons (data not shown (Summer, Autumn and Winter)) showed 

relationships consistent with those found with Spring samples, with significant differences 

between road types (H0). The results suggest that although concentrations vary throughout the 

year, the mineralogy (χFD%, SIRM/χ) between road types remain fairly consistent (H1).  

 

4.4.11 Mineral magnetic and particle size relationships of arterial and residential roads 
for Spring months 

To further investigate the potential for particle size determination by mineral magnetic 

measurements, Spearman rank correlation tests were applied to the arterial and residential road 

data. Results (Table 4.10) show that the mixed road samples display strong relationships 

throughout the particle size range, whereas on independent road types there is a significant loss 

in relationships (all parameters) on residential roads. Mineral magnetic and textural parameters 

on arterial roads remain fairly consistent, with slight loss in associations (r) across all 

parameters. 

 
The results suggest that mineral magnetic concentration parameters have a stronger influence 

on arterial, than residential roads. Table 4.10a,b show χLF  and χARM linkages to be consistent, 

showing a moderate to weak relationship (r = 0.247-0.318;p <0.05-<0.01), whereas SIRM 

(Table 4.10c) displays the highest r values (r = 0.324-0.345;p <0.001) and is consistently higher 

than other parameters when road types are mixed. The greater potential for a particle size proxy 

shown on arterial roads, suggests the greater concentration of magnetic material may be an 

influencing factor. Although there are some significant relationships, the results are weak and 

thus inappropriate for particle size proxy purposes.  

 
Table 4.10 Summary mineral magnetic concentration (χLF, χARM, SIRM and textural (<PM10)) 

parameter spearman rank correlation relationships for Wolverhampton road 
types (Mixed, n = 168; Arterial, n = 108; Residential, n = 60) during Spring 
(bold text is significant (*p <0.05; **p <0.01; ***p <0.001) 

 

(a)  χLF Clay PM1.0 PM2.5 PM10 

Mixed 0.353*** 0.329*** 0.356*** 0.376*** 

Arterial 0.274** 0.247* 0.270** 0.318** 

Residential 0.202 0.159 0.197 0.078 

 

(b)  χARM Clay PM1.0 PM2.5 PM10 

Mixed 0.311*** 0.298*** 0.310*** 0.316*** 

Arterial 0.261** 0.252* 0.257** 0.285** 

Residential 0.125 0.090 0.124 0.025 

 

(c) SIRM Clay PM1.0 PM2.5 PM10 

Mixed 0.386*** 0.370*** 0.386*** 0.370*** 

Arterial 0.345*** 0.329*** 0.340*** 0.324*** 

Residential 0.196 0.170 0.190 0.047 
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4.5 Relationships between the mineral magnetic and textural variables for individual 
months. 

The seasonal data suggest weak relationships exist between mineral magnetic and textural 

parameters during specific periods. With Spring and Summer months displaying  limited proxy 

potential, further investigation into individual months (Appendix 4.4.1-4.4.12) have explored 

intra-month associations to determine which periods offer the greatest proxy potential. This 

further analysis will establish limitations/success for mineral magnetic particle size proxy use 

over time in Wolverhampton. Table 4.11 presents linkages of separate months for selected 

mineral magnetic and textural parameters.  

 

Spearman rank correlation tests conducted on all sampling months show limited success (Table 

4.11).  Results for January, July and November have no linkages between parameters, whereas 

September displays some weak relationships with χLF  versus PM1.0 (r = 0.452; (n = 42) p <0.001 

(Table 4.11a)), χARM versus PM1.0 (r = 0.671; (n = 42) p <0.001 (Table 4.11b)) and SIRM versus 

PM1.0 (r = 0.910; (n = 42) p <0.001 (Table 4.11c)). The best parameter linkages are shown 

through March and May with χLF versus textural variables <PM10 (Table 4.11a) displaying 

moderately strong relationships (May r = 0.118-0.560; p <0.05-<0.01, and March r = 0.338-429; 

p <0.05-<0.01). Linkages between parameters and months of May and March reflect the 

relationships found within the spring investigation, this has shown that the combined months 

contribute to the individual spring linkages. When the monthly data is compared to weather data 

for the periods (Appendix 4.3) relationships appear to improve during warm, dry periods (stable 

conditions). Increased temperatures and decreased rainfall also shows an increase in magnetic 

material in Wolverhampton RDS during these periods. This observation appears to indicate that 

stable conditions and accumulation of magnetic material improve mineral magnetic-particle size 

proxy potential.  

 

4.5.1 Detailed investigation of May 2008 RDS Wolverhampton samples 
Table 4.12 presents summary data for the physical characteristics of Wolverhampton RDS 

samples (n = 42). The magnetic concentration parameters are considered high compared to 

urban topsoils (Dearing, 1999), and moderate compared to other urban road deposited 

sediments (Charlesworth, 2003; Robertson, 2003; Booth, 2006; Kim , 2009), with relatively high 

values of magnetically soft minerals (Soft IRM20mT, 167.645 x 10-4Am2kg-1; Soft IRM40mT, 494.383 x 

10-4Am2kg-1).  

 

4.5.2 Relationships between mineral magnetic and textural variables  
Table 4.13 summarizes correlation statistics between mineral magnetic and textural variables 

for Wolverhampton during May 2008. Magnetic concentration parameters show relatively weak 

positive correlation. Figure 4.22a shows a strong relationship between χLF  versus clay. This 

relationship is also evident within the finer textural size fractions (PM1.0–PM10) with consistent 

strengthening of the relationships as the particle size increases (χLF, r = 0.341-0.560; p <0.01 

(Figure 4.22b,c,d)) and weakening of the relationship with χARM (r = 0.354-0.707; p <0.01) and 

SIRM (r = 0.374-0.627; p <0.01). 
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Table 4.11 Summary Wolverhampton RDS mineral magnetic concentration ((a) 
χLF, (b) χARM, and (c) SIRM and textural (<PM10)) parameter Spearman rank 
correlation relationships for all months sampled (bold text is significant (*p 
<0.05; **p <0.01; ***p <0.001 (n = 42))) 

 
(a)  χLF Clay PM1.0 PM2.5 PM10 

January 2008 x x x x 
March 0.324* 0.338* x x 
May (a) 0.443* 0.341** 0.457* 0.560** 
July x x x x 
September  x 0.452*** x x 
November x x x x 
January 2009 x x x x 
March (b) 0.429** 0.420** 0.420** 0.408* 
May 0.308* x x 0.381* 
July x x x x 
September x x x x 
November x x x x 
January 2010 x x x x 

 

(b) χARM Clay PM1.0 PM2.5 PM10 

January 2008 x x x x 
March x x x x 
May (a) 0.334* 0.707*** 0.328* 0.354* 
July x x x x 
September  x 0.671*** x x 
November x x x x 
January 2009 x x x x 
March (b) 0.382* 0.382* 0.371* 0.406* 
May 0.295* x 0.284* 0.285* 
July x x x x 
September x x x x 
November x x x x 
January 2010 x x x x 

 

(c) SIRM Clay PM1.0 PM2.5 PM10 

January 2008 x x x x 
March 0.332* 0.347* x x 
May (a) 0.372* 0.627** 0.364* 0.374* 
July x x x x 
September  x 0.910*** x x 
November x x x x 
January 2009 x x x x 
March (b) 0.501** 0.503** 0.492** 0.459** 
May <0.05* <0.05* <0.05* <0.05* 
July x x x x 
September x x x x 
November x x x x 
January 2010 x x x x 

 
Months presented May March 
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Table 4.12 Summary RDS analytical data* for Wolverhampton May 2008 (a) (n = 42) 
 

 Parameters Units Mean Median SD CV (%) Min Max Range 

(a) χLF 10-7m3kg-1 53.050 45.370 22.860 43.100 6.860 102.310 95.450 
 χFD % 3.110 1.510 9.300 299.400 0.270 6.850 6.120 
 χARM 10-5m3kg-1 0.113 0.080 0.103 91.360 0.034 0.660 0.626 
 SIRM 10-4Am2kg-1 873.000 610.000 832.000 95.290 102.000 5439.000 5337.000 
 S-Ratio Dimensionless -0.807 -0.811 0.044 -5.455 -0.900 -0.676 0.223 
 SOFT%20mT % 17.577 16.084 3.888 22.119 11.872 25.514 13.642 
 SOFT%40mT % 46.984 44.751 8.308 17.683 37.636 89.953 52.318 
 HARD%300mT % 6.763 6.494 1.765 26.092 3.585 11.088 7.504 
 HARD%500mT % 2.640 2.229 1.732 65.611 0.391 10.038 9.647 
 SOFT IRM20mT 10-4Am2kg-1 167.645 113.131 212.841 126.959 13.248 1324.087 1310.839 
 SOFT IRM40mT 10-4Am2kg-1 494.383 287.036 869.604 175.897 42.343 5438.547 5396.204 
 HARD IRM300mT 10-4Am2kg-1 66.328 39.392 97.897 147.595 7.013 607.055 600.042 
 HARD IRM500mT 10-4Am2kg-1 34.070 15.660 99.045 290.707 3.233 606.889 603.656 
 ARM/χ 10-1Am-1 0.696 0.554 0.514 73.870 0.282 3.498 3.217 
 χARM/SIRM 10-3Am2kg-1 0.138 0.131 0.044 31.680 0.077 0.332 0.255 
 SIRM/ARM Dimensionless 244.600 239.450 61.720 25.230 94.720 409.500 314.780 
 SIRM/χ 10-1Am-1 16.360 13.490 13.050 79.760 7.860 90.540 82.680 
(b) Mean - PS µm 295.300 294.300 101.800 34.460 87.100 507.100 420.000 
 Median - PS µm 362.200 364.100 93.000 25.690 165.700 582.700 417.000 
 Sorting  σ1 2.274 2.266 0.318 13.990 1.507 2.902 1.395 
 Skewness SK1 0.471 0.510 0.149 31.620 0.137 0.702 0.565 
 Kurtosis KG 1.300 1.153 0.417 32.050 0.759 2.246 1.487 
 Sand % 75.430 76.660 7.430 9.860 57.160 88.330 31.170 
 Silt % 21.710 20.610 7.550 34.750 10.320 40.990 30.670 
 Clay % 2.856 2.621 1.209 42.320 1.127 5.787 4.660 
 PM1.0 % 1.760 1.598 0.816 161.526 0.719 3.520 2.801 
 PM2.5 % 3.344 3.132 1.370 40.964 1.316 6.792 5.476 
 PM10 % 8.789 8.224 2.836 32.265 2.921 15.190 12.269 
 PM100 % 27.863 27.116 9.490 34.058 12.763 53.277 40.514 
 LOI % 1.012 1.050 0.330 -32.591 1.168 1.035 2.203 

 
*SD = Standard Deviation; CV = Percentage coefficient of variation; Min = Minimum value; Max = maximum value.  
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Figure 4.22 Bivariate plots of selected mineral magnetic and textural parameters for 

Wolverhampton May 2008 (a) samples (n = 42). 
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Associations were found within some of the mineralogical parameters and the fractions (PM1.0), 

(Soft IRM 20mT and 40mT, Hard IRM 20mT and 40mT (r = 0.550-0.601; p <0.01).  Almost all other mineral 

magnetic and textural parameters weakly correlated (i.e. most correlation coefficients are ca r= 

0.106–0.234 (p >0.05). Results suggest that mineral magnetic concentration parameters have 

some influence on finer sediment fractions in Wolverhampton during May.  

 
Correlation between concentration measurements and finer particle size fractions (PM1.0-PM10) 

suggests consistent correlations through the particle size range, whereas an increase in 

magnetic concentration is associated with an increase in particle size concentration (%).χLF, 

χARM and SIRM also show relatively weak positive correlations with finer fractions of RDS (PM1.0-

PM10) (χLF shown in bivariate graphs). Plots show a distinct relationship, which is consistent 

through the particle size range, whereas an increase in magnetic concentration is associated 

with an increase in particle size concentration (%). Moderate correlations (r = ≤0.560; p <0.01) 

exist between these parameters. This pattern is consistent with all other concentration 

parameters (χARM and SIRM,) with any increase (Table 4.13) in magnetic concentration 

associated with a corresponding increase in PM1.0 - PM10. Mineral magnetic measurements 

have limited potential as a particle size proxy at these scales. 

 
4.5.3 Spatial characterization of mineral magnetic and textural data 
The coefficient of variation ((CV) = standard deviation (SD) / mean)) is used to analyse spatial 

variation between parameters. So far, it has been demonstrated ‘how’ the samples vary, in 

terms of their mineral magnetic and textural properties over time, and that some variation is 

associated with differences in sedimentary environments. However, geographical relationships 

between adjacent samples have not been addressed, nor has an environmental explanation for 

‘why’ variations exist. Therefore, selected GIS images are used to analyse spatial variations.  

 
4.5.4 Spatial characterization of physical-characteristics using Arcview GIS (v 10) 

χLF  values are used to generate the GIS images due to the potential use in field conditions. The 

quick and easy application of susceptibility measurements has clearly shown the potential to 

map areas of interest (Figure 4.10a), highlighting potential hot-spots for RDS investigation. 

Figure 4.23 shows χLF variation across the sampling area, with several high concentrations of 

χLF directly associated with the arterial road system (Table 4.14). To the north and east of the 

sampling area there are high concentrations of magnetic material (χLF 95.148-102.310 x           

10-7m3kg-1) and these high concentrations are directly associated with the arterial roads. To the 

west of the City centre there are several lower concentrations of magnetic minerals (χLF 6.856-

18.493 x 10-7m3kg-1) which appear to be directly associated with residential side roads. This 

pattern can be observed throughout the map, with main roads displaying higher readings than 

side roads. When compared to road traffic data (Figure 3.3, Appendix 3.2.1) there appears to be 

similarities between traffic volumes and χLF concentrations as previously observed in section 

4.2.10. Land use also simulates the previously observed patterns (Appendix 3.1) with high χLF 

concentrations to the east suggesting links to industrial sources and low concentration to the 

west suggesting natural background and anthropogenic sources. 

 

145



0 1,500 3,000750 Metres N

131.240

5.403

χLF x 10-7m3kg-1

(ii)

(i)

(iii)

(vi)

(v)

(iv)

(vii)

 
 

Figure 4.23 Spatial distributions of χLF in Wolverhampton during May 2008.  
 
Table 4.14 Selected parameters for specific sites in Wolverhampton during May 2008. 
 

 Sample χLF  Sample χLF 

i 7 100.507 v 15 6.856 
ii 32 102.310 vi 38 85.734 
iii 29 95.148 vii 9 18.493 
Iv 42 86.764    
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4.5.5 Further assessment using bivariate plots 

Bivariate plots were again used to analyse spatial patterns between the arterial and residential 

road systems (Figure 4.23). Figure 4.24(a-d) show groupings of similar readings (highlighted 

circle) which are associated with residential roads and arterial road networks. There is some 

mixing, but they remain fairly consistent with groups of data. The sample points highlighted in 

Figure 4.24(a-d) display a narrow band of similar concentrations (highlighted area) of mineral 

magnetic material, whereas the arterial road systems display a broad band of concentrations, 

spread throughout the range. Results suggest that lower mineral magnetic concentrations are 

associated with residential roads, whereas arterial roads have a combination of both high and 

low concentrations. 

 
4.5.6 Distinguishing road profiles using RDS characteristics 
Table 4.15 compares the medians of each mineral magnetic component of the road populations 

for each parameter; while, Figures 4.25 and 4.26 presents population distributions for selected 

parameters.  

 
Tested Hypotheses  

 
Null Hypothesis (H0) There are significant differences between road types.  

      
Alternative Hypothesis (H1) There are no significant differences between road types. 

 
4.5.7 Distinguishing road profiles using mineral magnetic parameters 

By comparing boxplots (Figure 4.25 – 4.26) for each magnetic and textural parameter, it is clear 

that road types overlap (H0). To determine whether the variations between the road types are 

significant, non-parametric Mann Whitney U tests were used. 
 
Selected mineral magnetic parameters of main and side roads are significantly different (Table 

4.15 (p <0.001)). Using Mann Whitney U tests, the mineral magnetic concentration parameters 

(χLF, χARM and SIRM) and fine particle class parameters display significant differences               

(p <0.001) between the road systems. All mineral magnetic concentration parameters on 

residential roads are significantly different to arterial roads (p <0.001), with higher 

concentrations associated with arterial roads and lower concentrations associated with 

residential roads (Figure 4.25). Textural parameters display limited differences with some 

particle sizes showing no differences (sand, silt and PM100 (Figure 4.26)). SIRM/χ results 

suggest that road types have similar mineralogy with a weak χFD% relationship. 

 
4.5.8 Road type magnetic grain size 

Bivariate plots (Figure 4.27) show χLF versus χFD%, indicating arterial and residential roads in 

May are dominated by multi-domain magnetic grain sizes. Mann Whitney U tests indicate 

differences, which are evident within the bivariate plots.  
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Figure 4.24 Bivariate plots of indicated road types. χLF versus PM1.0 to PM10, of 
Wolverhampton in May 2008 RDS samples (n = 42). (Red points are arterial 
and blue points are residential roads). Areas of highlighted rings identify sample 
groups.  
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Figure 4.27 Bivariate plots for Wolverhampton May 2008 RDS; χLF versus χFD% of road type 

(a) arterial road (n = 27) (b) residential road (n = 15)) samples, indicating 
magnetic grain size. 

 

Arterial road samples (Figure 4.27a) include some SSD/PSD or coarse and fine ferrimagnets. 

Figure 4.27b suggests that residential roads contain a consistently low ratio and are dominated 

by multi-domain grain sizes. The bivariate plots suggest that within the road type samples, there 

is little to no presence of SP ferrimagnets. This further validates the Mann Whitney results which 

show a relatively weak χFD% relationship due to the influence of SSD grains (Figure 4.27a). 

 

4.5.9 Further assessment using factor analysis plots 
To further clarify environmental inter-relationships, multivariate factor analysis was used. In 

each case, parameter and sample loadings extracted from Factors 1 and 2 were used to 

generate factor plots. Factor analysis was performed initially using all parameters. However, the 

resultant plot (not shown) did not appear to show any clear patterns. Factor analysis was re-applied 

to various parameter combinations until sample groupings and separations became apparent. 

 

4.5.10 Factor analysis using selected key parameters 
Simultaneous R- and Q-mode factor analysis was performed using selected mineral magnetic 

parameters. Factors 1 and 2 explain 30 and 9% respectively of the variation in all 13 original 

magnetic parameters. Parameter and sample loadings extracted from Factors 1 and 2 were 

used to generate a factor plot (Figure 4.28a). 
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The χLF, χFD%, SIRM and χARM/SIRM parameters have positive loadings on Factor 1. The S-ratio 

and SIRM/χ parameters have negative loadings on Factor 2. These relationships suggest that a 

combination of Factors 1 and 2 are influenced by a magnetic concentration gradient (top right to 

bottom left, Figure 4.28a) and magnetic mineralogy gradient (top right to bottom left, Figure 

4.28a). 

 

Sample loadings suggest samples are influenced by Factors 1 and 2. Distributions of samples 

indicates similar magnetic properties between samples. Sample groupings are identified by 

indication of road types and geographical location (Figure 4.28a). Arterial road samples show 

some overlap with residential road samples, with samples grouped predominantly and 

influenced negatively within Factor 2. Residential road samples suggest an influence from 

magnetic mineralogy and concentration parameters. Arterial road samples are positively 

influenced within Factor 1 by concentration (χLF, χFD%) and mineralogy (χARM/SIRM)gradients. 

 
4.5.11 Road factor plots of selected key mineral magnetic and textural parameters 
Simultaneous R- and Q-mode factor analysis was performed by reducing the parameters further 

and using selected mineral magnetic and textural parameters. Factors 1 and 2 explain 21 and 

9%, respectively of the variation in all 10 original magnetic and textural parameters. Parameter 

and sample loadings extracted from Factors 1 and 2 were used to generate a factor plot (Figure 

4.28b).  

 

The χLF, and SIRM parameters and textural properties have positive loadings on Factor 1. These 

relationships suggest that Factor 1 influences the magnetic concentration and textural gradient 

(top right to bottom right, Figure 4.28b). From the spread of sample loadings, the samples are 

influenced mainly by Factor 1. The distribution of sample points indicates similarities of 

magnetic properties between samples. Sample groupings are identified by road types and 

geographical location (Figure 4.28b). The main arterial road samples (highlighted in red) do 

overlap with residential road samples, but do show a cluster (highlighted in blue) of samples. 

 

4.5.12 Further investigation using SEM 
Figure 4.29a shows a spherical Fe oxide particle observed in the arterial road samples and is 

likely to have been derived from high temperature combustion. Note the orange peel texture 

which is typical of combustion particles. Residential road samples contain almost identical Fe 

oxide particles and size ranges (<60 µm). Figure 4.29b shows a typical spherical Fe oxide 

particle with a non-uniform surface texture. Particle counts have shown that samples taken from 

arterial roads are more likely to have higher counts of these glassy iron spherules (Figure 4.30 

(For help interpreting figure 4.30 please refer to appendix 3.6.3)). In some sample locations, 

arterial sample particle counts are two to three times that of residential roads. The types and 

frequency of particles suggest that they derive from traffic and industrial combustion processes. 

Figure 4.30 shows a higher contribution of particles <20 µm on arterial roads compared to 

residential roads, which suggests that the higher traffic numbers could be responsible for higher 

particle counts.   
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Figure 4.29 SEM micrographs of Wolverhampton RDS. Typical spherical particles found 
within RDS (Fe oxide glassy spheres a-d).
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Figure 4.30 SEM particle counts and particle size (%) for (a) arterial roads and (b) 
residential roads. 

 
This assertion is supported by the mineral magnetic data which shows elevated concentrations 

at high volume traffic areas, and is characterized as multi-domain ferrimagnetic mineralogy. 

Figure 4.29c shows a double sphere within the <20 µm size range. Figure 4.29d shows a typical 

smooth small (<10 µm) Fe oxide particle most likely derived from vehicle combustion. 

Differences in surface texture are evident from the variation of particles found here and later on 

in this work. Surface texture can be attributed to conditions when the particles are formed, so no 

particle is ever the same. Combustion temperature, pressure, cooling and solidification rates all 

influence the appearance of the Fe oxide particles (Kim et al., 2007). Conditions in each 

combustion process is never identical (petrol, diesel, compression ratios, engine size, age of 

engine and time run are some of the many variables), hence differing appearances of particles.   

 
4.5.13 Mineral magnetic and particle size relationships of arterial and residential roads 
To investigate the potential for particle size determination by mineral magnetic measurements, 

Spearman rank correlation tests were applied to arterial and residential road data sets. Results 

(Table 4.16) show that the mixed road samples display strong relationships through the particle 

size range, whereas when road types are split into two groups there is a significant loss in the 

relationship (χLF ,  χARM  and SIRM  versus clay and PM2.5) across both road types.  
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Table 4.16 Summary mineral magnetic concentration (χLF, χARM and SIRM and textural 
(<PM10)) parameter Spearman rank correlation relationships for Wolverhampton 
road types (Mixed, n = 42; Arterial, n = 27; Residential, n = 15)  during May 
2008 (bold text is significant (*p <0.05; **p <0.01; ***p <0.001)) 

 

(a)  χLF Clay PM1.0 PM2.5 PM10 

Mixed 0.443** 0.341** 0.457** 0.560** 
Arterial 0.350 0.573** 0.363 0.490** 
Residential 0.418 0.907*** 0.379 0.363 

 

(b)  χARM Clay PM1.0 PM2.5 PM10 

Mixed 0.334* 0.707** 0.318* 0.354** 
Arterial 0.286 0.887*** 0.290 0.234 
Residential 0.055 0.764** 0.049 0.165 

 

(c) SIRM Clay PM1.0 PM2.5 PM10 

Mixed 0.372** 0.627** 0.364** 0.374** 
Arterial 0.262 0.864*** 0.269 0.238 
Residential 0.313 0.852*** 0.269 0.225 

 

Arterial road relationships remain consistent with PM1.0 through all mineral magnetic 

parameters, with some strengthening associated with   χARM (a) and SIRM (b). This is further 

supported by Figure 4.28b, in which arterial roads appear to be influenced by mineral magnetic 

and fine-fraction particles. This suggests that PM1.0 and mineral magnetic concentration 

parameters have strong influences on arterial roads. Residential road relationships decrease 

through the coarser particle size range, but have strong relationships with the finer fraction 

(PM1.0) of RDS. 

 

4.5.14 Cumulative, season and individual month summary of Wolverhampton RDS 
The characteristics of Wolverhampton RDS show a wide range of variation over time with 

significant variation between the sample months. The characteristics and relationships for 

Wolverhampton RDS can be summarized as: 

 

• Magnetic properties of RDS in Wolverhampton are predominantly ferromagnetic. 

• Mineral magnetic grain size remains consistently multi-domain within the study area. 

• Mineral magnetic concentration parameters vary over time but also display significant 

relationships for similar time periods (May-May; March-March). 

• Seasonal weather patterns appear to influence the mineral magnetic concentrations 

and mineral magnetic-particle size proxy potential during warm-dry periods.  

• Road types display clear differences in concentrations, but remain multi-domain in 

nature. 

• Road traffic conditions and land use appears to be an additional influencing factor of 

mineral magnetic concentrations. 

• No proxy potential is found during the time at the city-wide scale for Wolverhampton. 
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4.6 Investigation of Wolverhampton sample sites 
Individual samples sites have been investigated to assess the mineral magnetic–particle size 

proxy potential over time at small scale specific sites. All 42 Wolverhampton sample sites have 

been investigated using methods previously discussed over 24 months. Results have shown 

limited potential for particle size proxy purposes.  The site with the greatest potential is further 

discussed (site 15). 

 

4.6.1 Detailed investigation of Wolverhampton sites (site 15) 
Sample point 15 is located in south Wolverhampton (SO389297). The area is within a small 

residential cul-de-sac surrounded by 1920s semi-detached and detached housing and forms 

part of the Bradmore area. There are no thoroughfares through to main roads and, as a result, 

the road only experiences local traffic. The main road is ~140 m north-west of the sample point. 

The road network is an enclosed system with no evidence of considerable input of material from 

outside areas. There is no significant history to the area other than residential housing (1880–

present) and was previously agricultural land. Figure 4.31 shows the site profile. Site 15 

displayed significantly lower concentrations of magnetic material within the study period and 

was thus chosen to investigate differences in sample point characteristics. Figure 4.31 shows 

the GIS profile graph for the study period for location 1. There are relatively consistent 

concentrations of χLF.  Table 4.17 presents the summary data for the physical characteristics of 

Wolverhampton site 1 RDS samples (n = 13). The magnetic concentration parameters are high 

compared to urban topsoils, with relatively high values of magnetically soft minerals (Soft 

IRM20mT, 158.303 x 10-4Am2kg-1; Soft IRM40mT, 366.021 x 10-4Am2kg-1). Figure 4.31 shows site 

variations of χLF over the sampling period. 

 
4.6.2 Wolverhampton site mineral magnetic data 
Mineral magnetic data for the Wolverhampton Site (WLV 15) samples is summarized in Table 

4.17a. Magnetic concentration-dependent parameters indicate RDS contain low to moderate 

concentrations of magnetic minerals and a predictable signature compared to other sampling 

points in Wolverhampton (mean values χLF 9.493 x 10-7m3kg-1; χARM 0.031 x 10-7m3kg-1; SIRM 

117.664 x 10-4Am2kg-1). Compared to published values for other environmental materials 

(Dearing, 1999), they indicate that the magnetic properties of the sediments are similar to 

intermediate igneous rocks, basic/ultra-basic rocks and ferromagnetic minerals. SIRM values 

indicate some variation over time (57.575-261.061 x 10-4Am2kg-1; SD 48.955). ARM/χ values 

range from high to low (0.184-2.544 x 10-1Am-1), indicating a predominately coarse grained 

magnetic material (mean 0.725 x 10-1Am-1). SIRM/ARM values range from 132.291-443.387 

(mean 254.443; SD 96.156) and are high compared to other environmental materials (Yu and 

Oldfield, 1993). This supports the ARM/χ values, indicating a coarse magnetic grain size. 

SIRM/χ values are also high (mean 12.859 x 10-1Am-1, 5.178-16.813 x 10-1Am-1). The high 

SIRM/χ values suggest the presence of fine-grained magnetic material. 
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Figure 4.31 Wolverhampton site 1 time-series profile showing mean χLF concentrations over 
the sampling period, map and photograph of sampling location.  
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Table 4.17 Summary RDS analytical data* for Wolverhampton (WLV 15) (n = 13) 
 

 Parameters Units Mean Median SD CV (%) Min Max Range 
(a) χLF 10-7m3kg-1 9.493 7.440 4.239 44.652 5.403 19.730 14.327 
 χFD % 1.737 1.758 0.561 32.308 0.858 2.881 2.023 

 χARM 10-5m3kg-1 0.031 0.028 0.010 31.234 0.019 0.052 0.033 
 SIRM 10-4Am2kg-1 117.664 105.428 48.955 41.606 57.575 261.061 203.486 
 S-Ratio Dimensionless -0.742 -0.741 0.044 -0.059 -0.809 -0.673 0.136 
 SOFT%20mT % 16.350 15.705 3.071 18.783 12.970 23.337 10.409 
 SOFT%40mT % 41.193 41.676 2.886 7.005 34.115 44.524 9.844 
 HARD%300mT % 8.907 8.977 3.076 34.530 4.512 14.356 10.522 
 HARD%500mT % 3.941 3.182 3.008 76.342 0.072 10.594 38.152 
 SOFT IRM20mT 10-4Am2kg-1 19.668 16.370 10.080 51.251 8.166 46.318 86.371 
 SOFT IRM40mT 10-4Am2kg-1 48.516 42.343 21.387 44.082 25.635 112.006 13.692 
 HARD IRM300mT 10-4Am2kg-1 10.086 8.409 4.238 42.021 4.428 18.120 13.272 
 HARD IRM500mT 10-4Am2kg-1 4.297 3.618 3.499 81.431 0.099 13.371 0.136 
 ARM/χ 10-1Am-1 0.511 0.356 0.618 1.209 0.184 2.544 2.360 

 χARM/SIRM 10-3Am2kg-1 1.849 0.261 5.689 3.077 0.131 20.780 20.649 
 SIRM/ARM Dimensionless 120.673 120.403 29.324 24.300 71.641 156.463 84.822 
 SIRM/χ 10-1Am-1 12.859 13.518 3.255 25.310 5.178 16.813 11.635 

(b) Mean - PS µm 325.809 305.831 65.096 19.980 250.941 419.250 168.309 
 Median - PS µm 364.297 329.336 53.375 14.652 316.716 441.820 125.104 
 Sorting  σ1 

2.115 2.134 0.171 8.110 1.851 2.309 0.458 
 Skewness SK1 

0.547 0.557 0.073 13.332 0.406 0.632 0.226 
 Kurtosis KG 

1.376 1.307 0.348 25.312 0.903 1.864 0.961 
 Sand % 78.721 79.679 3.778 4.799 72.539 83.508 10.969 
 Silt % 19.220 18.644 3.848 20.020 14.362 25.492 11.130 
 Clay % 2.059 2.056 0.239 11.611 1.381 2.332 0.951 
 PM1.0 % 1.158 1.157 0.183 15.785 0.617 1.381 0.764 
 PM2.5 % 2.448 2.419 0.281 11.461 1.627 2.764 1.137 
 PM10 % 7.014 7.399 1.209 17.232 3.939 8.522 4.583 
 PM100 % 23.825 24.562 3.886 16.310 18.560 29.735 11.175 

 
*SD = Standard Deviation; CV = Percentage coefficient of variation; Min = Minimum value; Max = maximum value.  

 

 

 

 

 

 

 

 

 

 

 

 

159



4.6.3 Wolverhampton site textural data 
Textural data for the Wolverhampton Site (15) samples is summarized in Table 4.17b. Particle 

size parameters indicate that RDS contains moderately sorted sediment (2.115 σ1; mean 

325.809 µm), with high concentrations of sand (78.721%), moderate concentrations of silt 

(19.220%) and low concentrations of clay (2.059%). The RDS particle size data also suggest a 

moderate amount of sediment beneath the PM100 boundary (23.825%) with lesser PM10 

concentrations (7.014%) and low concentrations of PM2.5 (2.448%) and PM1.0 (1.158%). LOI 

values are low (mean 1.084%; range 0.816-1.547; SD 0.123). 

 
4.6.4 Relationships between the mineral magnetic and textural parameters  
Table 4.18 summarizes correlation statistics between mineral magnetic and textural parameters 

for Wolverhampton sample site 15. Most all mineral magnetic and textural parameters are 

weakly correlated (i.e. most correlation coefficients are ca. r = -0.050–0.333), with the exception 

of mineral magnetic concentration parameters (χLF, χARM and SIRM) and fine textural properties 

(<10µm) which are statistically significant (r = -0.581-0.911 p <0.05-<0.001). This suggests that 

mineral magnetic concentration parameters and fine texture of RDS does have some potential 

for proxy purposes.  

 

Overall, statistical tests indicate a weak significant relationship between mineral magnetic and 

textural parameters (p <0.05). However, only strong correlation coefficients have been selected 

for further study through bivariate plot analysis. Figures 4.32a-d show the spread of the sample 

points for each set of bivariate data and show magnetic concentration dependent parameters 

versus selected textural parameters. Figure 4.32a shows a moderate negative correlation 

between χLF versus PM1.0 (r = -0.656; p <0.05, n = 13) with a strong correlation between SIRM 

versus PM1.0 (r = -0.894; p <0.01, n = 13 (Figure 4.32b)). Figure 4.32c shows the moderate 

negative correlation between SIRM and PM2.0 (r = -0.582; p <0.01, n = 13) with also a strong 

correlation between SIRM versus PM10 (r = -0.715; p <0.01, n = 13 (Figure 4.33d)). χLF and 

SIRM have strong negative correlations with the finer fractions of RDS (PM2.5–PM1.0) (χLF and 

SIRM shown in bivariate graphs (Figure 4.32a-d)). The plots show a distinct strong correlation             

(r = ≤-0.894; p <0.01) existing between these parameters (Table 4.18). The patterns are 

consistent with all other concentration parameters (χARM and SIRM), with any increase in 

magnetic concentration values being associated with a corresponding decrease in PM1.0, PM2.5 

and PM10. Mineral magnetic concentrations show strong relationships with the finer fraction of 

PM and indicate that SIRM could potentially be used as a size proxy for PM1.0. 

 

4.6.5 Site specific potential for particle size proxy purposes 
Few sites have shown potential for particle size proxy purposes. The sites that do have potential 

are relatively isolated in terms of location and influencing factors. Mineral magnetic 

concentrations are unique to each site and reflect local environmental and anthropogenic 

conditions. The concentrations show a consistent pattern through the time period of 

observation, with highs and lows corresponding to time of year (Figure 4.31). The site results 

showing variation in proxy potential illustrate the need for further study to establish reliability. 
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Table 4.18 Correlation coefficients between mineral magnetic and textural parameters for 
Wolverhampton site 15 (bold text is significant (*p <0.05; **p <0.01;              
***p <0.001)) (n =13) 

 

Parameters Median-PS Mean-PS Sand Silt Clay PM1.0 PM2.5 PM10 PM100 

χLF 0.177 0.266 0.083 0.000 -0.449 -0.656** -0.751** -0.675** -0.083 

χFD% 0.155 0.454 -0.017 -0.011 0.371 0.174 0.582* 0.404 0.017 

χARM -0.031 0.058 -0.461 0.669** -0.911*** -0.675** -0.650** -0.581* 0.461 

SIRM -0.100 0.116 -0.011 0.127 -0.582* -0.894*** -0.715** -0.656** 0.011 

Soft % 20mT 
 

-0.030 0.219 0.280 -0.008 -0.235 -0.515 -0.424 -0.335 -0.280 

Soft % 40mT 0.490 0.335 0.163 -0.125 -0.058 0.116 0.042 0.186 -0.163 

Hard % 300mT 0.147 0.186 0.324 -0.562* 0.629** 0.166 0.363 0.175 -0.324 

Hard % 500mT 0.518 0.368 0.108 -0.280 0.269 0.149 0.269 0.457 -0.108 

Soft IRM20mt -0.166 0.094 0.105 0.078 -0.527 -0.884*** -0.727** -0.283 -0.105 

Soft IRM40mT -0.255 -0.094 -0.083 0.133 -0.527 -0.751** -0.638** -0.172 0.083 

Hard IRM300mT -0.191 0.069 0.169 -0.269 0.008 -0.556* -0.235 -0.058 -0.169 

Hard IRM500mT 0.344 0.316 0.194 -0.310 0.017 -0.268 -0.094 0.238 -0.194 

S-ratio 
 

0.017 0.133 -0.230 0.133 -0.036 -0.143 0.158 0.336 0.230 

ARM/χ 
 

-0.370 -0.591* -0.092 0.016 -0.061 0.045 -0.225 -0.344 0.092 

SIRM/ARM -0.482 -0.244 0.360 -0.416 0.094 -0.382 -0.249 -0.493 -0.360 

SIRM/χ 
 

-0.069 -0.091 -0.053 0.042 -0.125 -0.119 -0.224 -0.047 0.053 

χARM /SIRM -0.039 -0.039 0.428 -0.428 0.117 -0.350 -0.350 -0.350 -0.428 
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Figure 4.32 Bivariate plots of selected mineral magnetic and textural parameters for 
Wolverhampton site 15 (n = 13). 
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4.7 Site specific West Midlands (UK) Monitoring station sites (Regional analysis) 
Air sampling monitoring sites (Air Sampling Unit: ASU) have been investigated. Four sites 

(summary results presented) were sampled, but only one is presented. This shows potential 

firstly for mineral magnetic and textural relationships and secondly for mineral magnetic and 

recorded PM data linkages at site and regional scales. The sites investigated were monitored 

over 24 months. The method for sampling air sampling monitoring stations is discussed in 

Chapter 3.1.6, with an overview of the air sampling monitoring station capabilities in Table 3.3. 
 
4.7.1 Description of the Wolverhampton ASU site (a) 
Wolverhampton ASU is located north of Wolverhampton City centre (Grid ref SO 391 261 

302206). The area is open, within a mix of residential and commercial properties and forms part 

of the Oxley area. To the immediate west of the monitoring station (~5 m) is a busy main road 

(A449:  Stafford Road (dual carriageway) which experiences ~30,000 vehicles per day. The 

main carriageway serves Wolverhampton to the south (~3 km) and the main motorway network 

to the north (M54–M6), which links the north, west and south of England. The ASU (Figure 3.5a) 

is housed within a self-contained, air conditioned cabin on the west corner of a junction situated 

on the main road. The height of the particle inlet is ~3.5 m above ground level and is the input 

for ambient PM levels. 

 

4.7.2 Description of the Birmingham ASU site (b) 
Birmingham ASU is located to the north west of Birmingham City centre near the A456 (Broad 

Street). The monitoring station (Figure 3.7b) is within a self-contained, air conditioned housing 

located within a pedestrianized area of the City centre. The nearest road is ~10 metres 

(Cambridge Street) away and is used for access to the adjacent car park. The nearest heavily 

trafficked urban road (A456) is ~60 metres from the ASU. The particle inlet is 3.5 metres above 

ground level. The surrounding area is generally open and comprises the International 

Convention Centre (ICC), Symphony Hall and the Birmingham Reparatory Theatre. Trees and 

vegetation occur within 2 metres of the monitoring station. 

 

4.7.3 Description of the Coventry ASU site (c) 
Coventry ASU is located within Memorial Park which is 1.6km south of Coventry City centre. 

Memorial Park is predominantly open parkland with large trees, shrubs and vegetation and 

surround the park. The ASU site is situated within an aviary building (Figure 3.7c). The height of 

the particle inlet is ~3.5 m above ground level and is the input for ambient PM levels. The site is 

close to two major roads, Kenilworth Road (150m) with a traffic flow of 22058 vehicles per 24 

hours and Leamington Road (250m) with a mean traffic flow of 12,990 vehicles per 24 hours 

(wmair.org, 2012).  

 

4.7.4 Description of the Leamington Spa ASU site (d) 
Leamington Spa ASU is located within a self-contained, air conditioned housing located at the 

rear of a three-storey regency terrace near the town centre (Figure 3.7d). The nearest road is 

used for access to nearby office and public buildings car park. The nearest urban road is ~50 m 
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from the station and is generally free flowing. There are no trees within 50 m from the 

monitoring station. The surrounding area is generally built up, with commercial and residential 

properties. At the time of sampling, construction and demolition activities were taking place ~80 

m from the ASU, which have affected recorded PM data. 

 

4.7.5 Detailed investigation of West Midlands (ASU) sites (a-d) 
Selected West Midlands ASU sites have been investigated to reveal a spatial perspective of 

RDS characteristics and mineral magnetic–particle size proxy potential within the region. 

Results for the West Midlands (ASU) sites (Wolverhampton (a), Birmingham (b), Coventry (c) 

and Leamington Spa (d)) (Figure 3.7) are presented. Table 4.19 and Figures 4.33–4.34 

presents summary data for the physical characteristics of West Midlands (ASU) sites. The 

magnetic concentration parameters are high compared to urban topsoils, with relatively high 

values of magnetically soft minerals (Soft IRM20mT, Table 4.19 (a) 114.243; (b)156.773; (c) 

211.025; (d) 243.297 x 10-4Am2kg-1  and Soft IRM40mT. Table 4.19 (a) 332.087; (b) 469.091; (c) 

501.493; (d) 529.931 x 10-4Am2kg-1).  

 

4.7.6 West Midlands (ASU) site mineral magnetic data 
Mineral magnetic data for the West Midlands site is summarized in Table 4.19a. Magnetic 

concentration-dependent parameters indicate RDS contain a high concentration of magnetic 

minerals (mean values χLF 25.790  x 10-7m3kg-1; χARM 0.139 x 10-7m3kg-1; SIRM 246.300 x              

10-4Am2kg-1). Mineral magnetic values show large differences over the sample area (Figure 

4.33), with Wolverhampton samples showing greatest concentrations (χLF 41.880  x 10-7m3kg-1) 

compared to other sites (mean over b, c and d, χLF 16.72  x 10-7m3kg-1(Figure 4.33 a)). Site a 

displays high concentrations when results are compared to values for other environmental 

materials (Dearing, 1999), site b, c and d display moderate concentrations. The samples 

indicate that magnetic properties are similar to intermediate igneous rocks, basic/ultra-basic 

rocks and ferromagnetic minerals. SIRM values indicate some variation with sites (Figure 4.33b 

(117.212–481.678 x 10-4Am2kg-1). The S ratio values remain fairly consistent (Figure 4.33c       

(-0.706-0.797)) indicating a predominately magnetically soft material. SIRM/ARM values range 

from 152.527-292.411 (mean 201.525) and are high compared to other environmental materials 

(Yu and Oldfield, 1993). This supports the ARM/χ values, indicating a coarse magnetic grain 

size. SIRM/χ values are also high (mean 46.764 x 10-1Am-1, range 15.596-69.568 x 10-1Am-1; 

SD 2.833). The high SIRM/χ suggests the presence of fine-grained magnetic material. 

 

West Midland sites display inter-site variation, with Wolverhampton displaying higher mineral 

magnetic concentrations than Birmingham, Coventry and Leamington Spa. Wolverhampton also 

displays typical multi-domain coarse grained characteristics derived from anthropogenic sources 

with low χFD% and SIRM/χ values. In comparison Birmingham, Coventry and Leamington Spa 

display similar χFD% but relatively higher SIRM/χ values, indicating the presence of fine grained 

magnetic material, which is usually derived from naturally occurring magnetic sources.  When 

comparing site locations the proximity to roads and surrounding environments suggest 

influences to mineral magnetic concentrations.  
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Table 4.19 Summary mean RDS analytical data for West Midlands (ASU) RDS (n = 208) 
 

 Parameters Units Wolverhampton (a) Birmingham (b) Coventry (c) Leamington Spa (d) 

(a) χLF 10-7m3kg-1 41.880 11.376 16.193 22.592 

 χFD% % 1.150 1.924 1.630 1.127 

 χARM 10-5m3kg-1 0.162 0.086 0.148 0.160 

 SIRM 10-4Am2kg-1 481.678 210.324 117.212 176.100 

 S ratio Dimensionless -0.791 -0.746 -0.797 -0.763 

 SOFT IRM20mT 10-4Am2kg-1 243.297 156.773 211.025 114.234 

 SOFT IRM40mT 10-4Am2kg-1 529.931 469.091 501.453 332.087 

 HARD IRM20mT 10-4Am2kg-1 86.190 57.832 36.844 93.639 

 HARD IRM40mT 10-4Am2kg-1 45.439 35.552 17.811 33.590 

 ARM/χ 10-1Am-1 0.165 0.103 0.995 0.685 

 χARM/SIRM 10-3Am2kg-1 1.648 0.530 1.250 2.115 

 SIRM/ARM Dimensionless 292.411 157.233 152.527 203.932 

 SIRM/χ 10-1Am-1 15.596 69.568 49.682 52.212 

(b) Mean - PS µm 168.313 290.147 265.478 253.674 

 Sand % 72.332 72.620 77.243 71.264 

 Silt % 26.085 24.454 18.846 24.169 

 Clay % 1.583 2.926 3.911 4.567 

 PM1.0 % 1.181 1.832 2.097 1.965 

 PM2.5 % 2.301 3.292 3.981 3.778 

 PM10 % 7.027 7.471 12.137 5.278 

 PM100 % 36.598 19.014 25.193 17.546 

(c) PM10 Mean 2 µg m3 16.340 22.310 22.465 24.101 

 1 month µg m3 16.080 13.560 14.564 22.193 

 1 Week µg m3 16.358 20.280 20.631 19.197 

 3 Day µg m3 16.940 26.341 25.697 25.231 

 2 Day  µg m3 16.620 26.075 23.409 22.224 

 1 Day µg m3 16.011 22.341 22.345 22.0833 

 Hour µg m3 16.270 19.854 20.114 21.078 

 PM10 Median 2 µg m3 15.166 13.542 15.921 22.116 

 1 month µg m3 15.002 11.212 12.001 21.017 

 1 Week µg m3 15.189 18.257 20.675 17.952 

 3 Day µg m3 15.582 23.333 25.991 25.542 

 2 Day  µg m3 15.600 22.752 23.552 23.693 

 1 Day µg m3 15.641 21.850 21.597 23.639 

 Hour µg m3 16.320 15.647 23.112 15.991 

*SD = Standard Deviation; CV = Percentage coefficient of variation; Min = Minimum value; Max = maximum value.PM10 Mean/Median 2 = 2 month 
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Figure 4.33 Box plots of West Midlands ASU-RDS for selected mineral magnetic 

parameters. 
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4.7.7 West Midlands (ASU) site textural data 

Textural data for the West Midlands site samples is presented in Figure 4.34 and Table 4.19b. 

Particle size parameters indicate RDS contains moderate sand concentrations (71.264-

80.631%), moderate silt concentrations (17.538-26.085%), and low clay concentrations (1.583-

4.567%). Particle size data for the RDS West Midlands (ASU) sites also suggests a high level of 

sediment within the PM100 boundary (17.546-36.598%), with mean values of PM10 

concentrations of 7.970% and low mean concentrations of PM2.5 (3.338%) and PM1.0 (1.768%).  

All sites display consistent textural distributions, with the exception of the clay content in 

Leamington Spa, which is slightly higher than the mean (4.567%, clay mean 3.246%). 

 

4.7.8 West Midlands PM10 (ASU) data 
Air sampling monitoring PM10 data for Wolverhampton, Birmingham, Coventry and Leamington 

Spa is summarized in Table 4.19c. Data has been collected from the West Midlands Air 

Monitoring Group website (wmair.org), which records and publishes hourly PM10 data for air 

monitoring stations in the West Midlands. Mean, median, maximum and minimum values were 

recorded for the 2 months, 1 month, 3, 2 and 1 days and hour prior to sampling. Mean PM10 

values for the sampling period were low (18.32 µg m-3) (index 1) compared to the air pollution 

index (Tables 4.20 and 4.21) and remains consistent over the sampling period (SD 3.900). 

Some variation exists between the ASU sites, but do not deviate from the low levels as reported 

in Tables 4.20 and 4.21 (UK National Air Quality Archive, 2012). Table 4.22 shows 

recommendations when experiencing effects to corresponding pollution bands.  

 

Table 4.20 Boundaries between index points for PM10 (Source: UK National Air Quality 
Archive, 2012) 

 

Band Index PM10 µg m-3 
Running 24 hr 

mean 
Low 1 0-16 
 2 17-33 
 3 34-49 
   
Moderate 4 50-58 
 5 59-66 
 6 67-74 
   
High 7 75-83 
 8 84-91 
 9 92-99 
   
Very High 10 >100 
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Figure 4.34 Box plots of West Midlands ASU–RDS for selected textural parameters. 
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Table 4.21 Air pollution bandings and index and the impact on the health of people 
sensitive to air pollution (Source: UK National Air Quality Archive, 2007) 

 

Banding Index Health Descriptor 

Low 1, 2, or 3 Effects are unlikely to be noticed, even by individuals who know they are 
sensitive to air pollutants. 

Moderate 4, 5, or 6 Mild effects, unlikely to require action, may be noticed amongst sensitive 
individuals. 

High 7, 8, or 9 Significant effects may be noticed by sensitive individuals and action to 
avoid or reduce these effects may be needed (e.g. reducing exposure by 
spending less time in polluted areas outdoors). Asthmatics will find that their 
'reliever' inhaler is likely to reverse the effects on lungs. 

Very High 10 The effects on sensitive individuals described for 'High' levels of pollution 
may worsen. 

 

 
 
Table 4.22 Air pollution bandings and index guide recommendations for outdoor activities 

(Source: UK National Air Quality Archive, 2012). 
 

                                                 Health Message  

Banding Index At-risk – sensitive individuals* General population 

Low 
 

1, 2, or 3 
 

Enjoy your usual outdoor activities. 
 

Enjoy your usual outdoor activities. 
 

Moderate 
 

4, 5, or 6 
 

Adults and children with lung problems, and adults 
with heart problems, who experience symptoms, 
should consider reducing strenuous physical 
activity, particularly outdoors. 
 

Enjoy your usual outdoor activities. 
 

High 
 

7, 8, or 9 
 

Adults and children with lung problems, and adults 
with heart problems, should reduce strenuous 
physical exertion, particularly outdoors, and 
particularly if they experience symptoms. People with 
asthma may find they need to use their reliever 
inhaler more often. Older people should 
also reduce physical exertion. 
 

Anyone experiencing discomfort such 
as sore eyes, cough or sore throat 
should consider reducing activity, 
particularly outdoors. 
 

Very High 10 Adults and children with lung problems, adults with 
heart problems, and older people, should 
avoid strenuous physical activity. People with asthma 
may find they need to use their reliever inhaler more 
often. 

Reduce physical exertion, particularly 
outdoors, especially if you experience 
symptoms such as cough or sore 
throat. 

 
*Adults and children with heart or lung problems. 
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4.7.9 Relationships between the mineral magnetic and textural parameters  
Table 4.23 summarizes correlation statistics between the mineral magnetic and textural 

parameters for the West Midlands samples. Almost all mineral magnetic concentration 

parameters and textural parameters show no significant associations (p <0.05) (Table 4.23). 

This suggests that the texture of RDS has no influence on mineral magnetic assemblages. The 

results support the indication that using mineral magnetic methods for proxy purposes are 

limited and constrained to specific sites. 

 

Table 4.23 Statistical relationships between selected mineral magnetic and textural 

parameters for West Midlands air sampling units. (bold text is significant (*p 

<0.05; **p <0.01; ***p <0.001)) (n = 208) 

 

χLF PM1.0 PM2.5 PM10 PM100 

Wolverhampton 0.364 0.318 0.260 0.108 

Birmingham 0.264 0.289 0.247 0.205 

Coventry 0.098 0.193 0.101 0.126 

Leamington Spa 0.068 0.057 0.085 0.085 

SIRM     

Wolverhampton 0.393 0.339 0.339 0.243 

Birmingham 0.310 0.293 0.128 0.751 

Coventry 0.117 0.293 0.098 0.651 

Leamington Spa 0.301 0.235 0.226 0.198 

 

4.7.10 West Midland relationships between the mineral magnetic and PM10 (ASU) data 
The ASU data were compared with textural and mineral magnetic data. The relationships 

between the West Midlands ASU and mineral magnetic data (data not presented) was not 

significant (p <0.05) within all West Midland ASU sites. This suggests that ambient PM10 levels 

do not influence mineral magnetic concentrations. Table 4.24 shows results for mineral 

magnetic and ASU parameters for Wolverhampton. There are no significant parameter pairings. 

Results for ASU and mineral magnetic data suggest that such analysis is unsuitable for 

determining RDS mineral magnetic particle size effects within ASU data sets. 

 
4.7.11 Summary of West Midlands (Regional) sites 
Mineral magnetic and textural data for the West Midlands is similar to that investigated within 

Wolverhampton, suggesting a consistency of magnetic material within RDS. Some differences 

are found between sites and reflect regional locations and site specific environments. No site 

has shown any potential for using mineral magnetic methods for PM particle size proxy 

purposes. 

 

• PM10 levels at all the sites are low and are unlikely to be noticed by individuals. 

• Mineral magnetic concentrations vary between sites. 
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• Coarse grained multi-domain characteristics are apparent at all sites. 

• Fine grained ferromagnetic material is also indicated at some sites, indicating a mixture 

of magnetic material from anthropogenic and natural background sources. 

• The sites are unsuitable for mineral magnetic PM size proxy purposes. 

• PM10 (WMAIR) data shows no association with mineral magnetic-textural data. 

• Site location and proximity to roads appear to influence RDS characteristics with 

increased mineral magnetic concentrations closer to roads. 

 
4.8 Overall summary of Wolverhampton RDS samples 
Analysis of RDS collected during January 2008-January 2010 suggests a moderate to high 

concentration of mineral magnetic parameters. There are indications that magnetic properties of 

sediments are similar to intermediate igneous rocks, basic/ultra-basic rocks and ferromagnetic 

minerals. 

 

Results for Wolverhampton RDS indicate low χFD% values, which suggest samples are not 

dominated by SP ferrimagnets (χFD%) and suggest the presence of ultra-fine superparamagnetic 

ferromagnetic grains (diameter <0.03 µm, (Dunlop,1973)), particularly grains between 0.01-

0.025 µm (Dearing et al., 1997; Maher, 1988)). This is also reflected in the SIRM/ARM 

(172.200) and χARM/SIRM (0.199 x 10-3Am2kg-1) ratios, which indicate the presence of multi-

domain grains within samples. SEM analysis supports this indication, with the presence of 

glassy Fe oxide spheres, which can be attributed to combustion processes. Correlation between 

χFD% and χARM further suggests low concentrations of SP grains within samples.  

 

Results over the sampling period indicate these observations are consistent for all sampling 

periods in Wolverhampton and suggest that the mineral magnetic signature of Wolverhampton 

RDS is predominantly due to anthropogenic input. Magnetic signatures when compared to other 

data sets (traffic, land use), suggest that relationships exist for concentration and anthropogenic 

activity (Appendix 3.1-3.2.2). 

 

Road types have been identified and results suggest that mineral magnetic techniques could be 

used to distinguish road environments. The magnetic concentration parameters (χLF, χARM and 

SIRM) of the Wolverhampton samples showed that they are statistically different over the 

sampling area and can be categorized into two differing road types. Although mineral magnetic 

concentration parameters are different, domain size parameters remain fairly consistent 

between road types. This suggests that the loading of magnetic material is different between 

road types, but the source of magnetic material is possibly the same. SEM analysis has further 

supported this, with increased Fe oxide particle counts on arterial road sample points. Textural 

parameters are consistent throughout the sampling area, with similar <PM100 levels in 

Wolverhampton RDS.  
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There are few linkages between Wolverhampton RDS parameters. Only when data has been 

split into individual seasons, months and specific sites can some relationships be identified. The 

results for Spring months (March-May) have shown strong relationships between mineral 

magnetic concentration and textural (<PM10) parameters and shows some potential for pollution 

proxy purposes. Seasonal weather patterns appear to influence the mineral magnetic 

concentrations and mineral magnetic-particle size proxy potential during warm-dry periods. 

Individual sites have also shown some potential, with strong correlations between parameters. 

Isolated sites with limited sediment inputs have shown most potential for these parameter 

linkages.  

 

Regional variations within the West Midlands are high. RDS characteristics at sites are similar to 

Wolverhampton. Although magnetic concentrations vary, results suggest the presence of MD 

ferromagnetic grains within all samples and SSD fine grained material at some sites. The West 

Midlands site samples are unsuitable for particle size proxy purposes and appear to be 

influenced by site location and proximity to roads. 

 

Results for the ASU data have shown similar characteristics to Wolverhampton RDS data, but 

without significant linkages between parameters. This is also the case when collected data is 

used in conjunction with published monitoring site data. This study did not find any linkages 

between ASU sites and the collected data and therefore shows no potential for particle size 

proxy purposes. 

 

In Summary: 

• Mineral magnetic properties of RDS in Wolverhampton is predominantly ferromagnetic. 

• Mineral magnetic concentration parameters vary over time and display significant 

relationships for similar time periods. 

• Mineral magnetic concentrations vary at specific sites and regional scales. 

• Mineral magnetic grain size remains predominantly multi-domain over the study area. 

• Several sites contain a mixture of coarse and fine grained magnetic material, indicating 

a range of sources. 

• Road types display clear differences in concentrations but remain multi-domain in 

nature. 

• Land use appears to be an additional factor influencing mineral magnetic 

concentrations. 

• No relationships are evident between PM10 (ASU) and analytical data. 

• No proxy potential has been found in Wolverhampton over the study period. 

• Proxy potential increases during warm dry stable conditions, but relationships are still 

weak. 

• Mineral magnetic methods used as a proxy for PM at city and site specific scales 

appear to be limited. 
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Chapter 5 

Physico-chemical characteristics of road deposited sediment (RDS) from selected towns 
and cities in the UK 

5.1 Introduction 
Chapter 5 further investigates the potential for using mineral magnetic measurements as a PM 

particle size and pollution (geochemical) proxy. Whereas Chapter 4 illustrated the temporal and 

spatial linkages, Chapter 5 further investigates spatial characterisation and potential for proxy 

methods at different spatial scales (UK wide, city, road (Figure 4.1)). Chapter 5 characterizes 

the mineral magnetic, textural and geochemical properties of eight selected locations in the UK 

(n = 306) (Figure 3.8). RDS proxy methods will be investigated in Dumfries, Halton, Marylebone 

Road (London), Norwich, Oswestry, Salford, Scunthorpe and for comparison purposes 

Wolverhampton (UK).  

 

5.1.2 Mineral magnetic data for the selected towns and cities of the UK 
Mineral magnetic data for selected towns and cities in the UK is summarized in Table 5.1. 

Magnetic concentration-dependent parameters indicate UK RDS contain a moderate to high 

concentration of magnetic minerals (mean values χLF 34.590 x 10-7m3kg-1; χARM 0.217 x             

10-5m3kg-1; SIRM 545.291 x 10-4Am2kg-1). When these results are compared to published values 

for other environmental materials (Dearing, 1999), they indicate that the magnetic properties of 

the sediments are similar to intermediate igneous rocks, basic/ultra-basic rocks and 

ferromagnetic minerals. The χLF values display high variation between locations (3.377-123.341 

x 10-7m3kg-1 (Figure 5.1a)). The ARM/χ values range from high to low (0.158-7.111 x 10-1Am-1 

(Figure 5.1b)) indicating a predominately coarse grained magnetic material (mean 0.660 x      

10-1Am-1). SIRM values indicate high variation between sites (37.069-9686.424 x 10-4Am2kg-1 

(Figure 5.1c)). The SIRM/ARM values range from 17.525-992.035 (mean 228.269) and are high 

compared to other environmental materials (Yu and Oldfield, 1993). This supports the ARM/χ 

values, by indicating a coarse magnetic grain size. The SIRM/χ values are also high (Mean 

13.415 x 10-1Am-1 (Figure 5.2b)), with a wide range of values (6.281-45.821 x 10-1Am-1). The 

SIRM/χ values suggest a presence of fine-grained magnetic material. 

 

Magnetic properties of the individual towns (Table 5.2) show distinct differences, with relative 

high and low concentrations of magnetic material when compared to other studies (Table 2.11 

(Figure 5.1. and 5.2)). Detailed tables for all selected UK location summary data can be found in 

Appendix 5.1.1-5.1.8. The magnetic concentration parameters for Dumfries are considered 

moderate compared to other urban RDS (Table 2.11) (χLF 21.510 x 10-7m3kg-1; and SIRM 

298.600 x 10-5Am2kg-1 (Soft IRM20mT, 40.419 x 10-4Am2kg-1; and Soft IRM40mT, 117.185 x               

10-4Am2kg-1)). Dumfries RDS contains a mixture of coarse and fine-grained magnetic minerals 

(SIRM/χ 13.870 x 10-1Am-1; and SIRM/ARM = 228.160). Results for Halton indicate relatively 

moderate values of magnetically soft minerals (χLF 24.910 x 10-7m3kg-1; and SIRM 384.000 x 10-

5Am2kg-1 (Soft IRM20mT, 49.452 x 10-4Am2kg-1; and Soft IRM40mT, 143.607 x 10-4Am2kg-1). 
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Table 5.1 Summary RDS analytical data* for the selected towns and cities in the UK  
(July 2008) (n = 306) 

 
Parameters Units Mean Median SD CV (%) Min Max Range 

χLF 10-7m3kg-1 34.950 30.424 21.716 62.134 3.377 123.341 119.964 
χFD% % 1.592 1.659 0.917 57.628 0.051 4.549 4.599 
χARM 10-5m3kg-1 0.217 0.059 0.467 214.948 0.007 2.460 2.454 
SIRM 10-4Am2kg-1 545.291 371.773 770.718 141.341 37.069 9686.424 9649.355 
S-Ratio Dimensionless -0.782 -0.783 0.060 -7.671 -0.980 -0.292 0.688 
Soft%20mT % 16.239 15.392 5.267 32.433 5.702 33.020 27.318 
Soft%40mT % 40.840 40.829 6.107 14.954 12.624 88.508 75.884 
Hard%300mT % 9.243 9.063 3.826 41.393 1.626 25.207 23.581 
Hard%500mT % 4.320 3.835 2.733 63.261 0.310 12.857 12.547 
Soft IRM20mT 10-4Am2kg-1 78.354 51.316 133.109 169.882 2.617 1833.835 1831.218 
Soft IRM40mT 10-4Am2kg-1 195.344 137.040 318.172 162.878 10.205 4455.850 4445.646 
Hard IRM20mT 10-4Am2kg-1 40.707 27.078 46.594 114.461 3.686 542.110 538.424 
Hard IRM40mT 10-4Am2kg-1 18.908 11.608 20.811 110.065 0.813 142.610 141.797 
ARM/χ 10-1Am-1 0.660 0.556 0.508 76.944 0.158 7.111 6.953 
χARM/SIRM 10-3Am2kg-1 0.175 0.151 0.181 103.625 0.032 1.792 1.760 
SIRM/ARM Dimensionless 228.269 217.947 96.014 42.062 17.525 992.035 974.510 
SIRM/χ 10-1Am-1 13.415 13.157 4.737 35.313 6.281 45.821 39.540 
Mean - PS µm 274.476 273.817 88.341 32.185 88.591 598.063 509.472 
Median - PS µm 350.251 357.051 81.587 23.294 193.200 612.120 418.920 
Sorting  σ1 1.919 1.901 0.334 17.397 1.124 3.239 2.115 
Skewness SK1 0.358 0.360 0.156 43.546 0.003 0.760 0.757 
Kurtosis KG 1.321 1.243 0.371 28.112 0.700 3.044 2.344 
Sand % 80.489 81.757 6.821 8.474 53.446 93.875 40.429 
Silt % 17.458 16.177 6.793 38.911 4.450 43.801 39.351 
Clay % 2.053 1.819 1.006 49.011 0.111 8.503 8.392 
PM1.0 % 1.208 1.059 0.738 61.098 0.000 5.394 5.394 
PM2.5 % 2.400 2.129 1.118 46.593 0.968 9.818 8.850 
PM10 % 5.537 4.969 2.717 49.070 1.718 23.992 22.274 
PM100 % 23.104 21.873 7.857 34.008 9.446 51.956 42.510 
LOI % -1.047 -1.027 0.106 -10.094 -2.000 -0.234 1.766 
Mg mg g-1 7.442 6.600 4.474 60.121 0.990 45.260 44.270 

Al mg g-1 19.167 19.180 6.564 34.247 3.387 49.580 46.193 

S mg g-1 2.545 2.071 1.475 57.978 0.574 7.099 6.525 

K mg g-1 6.410 6.342 1.676 26.146 2.289 11.870 9.581 

Ca mg g-1 29.925 24.735 22.175 74.103 3.808 142.000 138.192 

Ti mg g-1 1.643 1.640 0.515 31.341 0.457 4.439 3.982 

V mg g-1 0.056 0.052 0.027 47.989 0.013 0.193 0.180 

Cr mg g-1 0.146 0.117 0.107 73.602 0.029 0.761 0.732 

Mn mg g-1 0.528 0.359 0.601 113.820 0.116 3.602 3.486 

Fe mg g-1 29.809 27.430 12.917 43.332 10.470 109.100 98.630 

Ni mg g-1 0.021 0.019 0.022 102.031 0.006 0.250 0.244 

Cu mg g-1 0.148 0.093 0.137 92.313 0.011 0.570 0.559 

Zn mg g-1 0.487 0.290 0.458 94.043 0.056 2.078 2.022 

Cd mg g-1 0.008 0.007 0.001 19.412 0.005 0.012 0.006 

Sb mg g-1 0.015 0.013 0.006 42.265 0.006 0.038 0.031 

Pb mg g-1 0.140 0.098 0.135 96.637 0.025 0.999 0.973 

 

*SD = Standard Deviation; CV = Percentage coefficient of variation; Min = Minimum value; Max = maximum value.  
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Figure 5.1 Box plots of RDS sample population distributions for selected mineral magnetic 

parameters for selected towns and cities in the UK  
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Figure 5.2 Box plots of RDS sample population distributions for selected mineral magnetic 

parameters for selected towns and cities in the UK 
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Table 5.2 Selected summary mineral magnetic data for UK samples: χLF x                      
10-7m3kg-1; χFD%; χARM x 10-5m3kg-1; SIRM x 10-4Am3kg-1; ARM/χ x 10-1Am-1; 
χARM/SIRM x 10-3Am2kg-1 

 
Parameters Wlv Dum Hal MBR Nor Osw Sal Scu 
χLF 52.410 21.510 24.910 47.880 17.730 22.920 35.570 61.720 

χFD% 1.510 1.862 1.688 2.183 2.106 1.797 1.565 1.379 

χARM 0.119 0.042 0.057 0.072 0.040 0.035 0.072 0.183 

SIRM 859.000 298.600 384.000 377.900 237.100 248.800 485.700 1286.000 

ARM/χ 0.690 0.640 0.853 0.497 0.720 0.496 0.702 0.818 

χARM/SIRM 0.139 0.150 0.188 0.199 0.173 0.127 0.165 0.143 

 

Norwich results display low values of magnetically soft minerals (χLF 17.730 x 10-7m3kg-1; and 

SIRM 237.100 x 10-5Am2kg-1 (Soft IRM20mT, 29.775 x 10-4Am2kg-1; and Soft IRM40mT, 103.506 x      

10-4Am2kg-1). In Oswestry low values of magnetically soft minerals (χLF 22.920 x 10-7m3kg-1; and 

SIRM 248.800 x 10-5Am2kg-1 (Soft IRM20mT, 49.452 x 10-4Am2kg-1; Soft IRM40mT, 143.607 x            

10-4Am2kg-1) were recorded. Salford results show moderate values of magnetically soft minerals 

(χLF 35.570 x 10-7m3kg-1; and SIRM 485.700 x 10-5Am2kg-1 (Soft IRM20mT, 79.655 x 10-4Am2kg-1; 

Soft IRM40mT, 191.311 x 10-4Am2kg-1).  

 
Scunthorpe and Wolverhampton display high mineral magnetic concentrations (mean χLF 

52.410-61.720 x 10-7m3kg-1 (Figure 5.1a); χARM 0.119-0.183 (Figure 5.1b); SIRM 859.000-

1286.000 x 10-4Am2kg-1 (Figure 5.1c), compared to the low values of Dumfries, Halton, Norwich 

and Oswestry (mean χLF 17.730-24.910 x 10-7m3kg-1 (Figure 5.1a); χARM 0.035-0.057 (Figure 

5.1b); SIRM 237.100–384.000 x 10-4Am2kg-1 (Figure 5.1c)). Consistent values of χFD% (Figure 

5.2a) in all selected UK towns and cities suggest a relatively uniform magnetic grain size for UK  

RDS. S-ratio (mean -0.782 (Figure 5.2b)) and SIRM/χ (mean 13.415 (Figure 5.2c)) values 

indicate concentration parameters are variable when compared. Consistent levels of magnetic 

mineralogy and grain size suggest a consistent source of magnetic material to RDS over the 

sampling areas. Mineral magnetic concentration parameters in this case, show the intensity of 

the source material. 

 

Results show that London, Salford, Scunthorpe and Wolverhampton have the highest 

concentrations and variability of χLF (Figure 5.1a, Table 5.2) across the sampling areas (SD 

16.120-28.350), compared to the moderate levels in Dumfries, Halton, Norwich and Oswestry 

(SD 7.90-13.22). Scunthorpe and Wolverhampton display high variability of χARM (SD 0.115-

0.209 (Figure 5.1b)) and SIRM (SD 737- 1660 (Figure 5.1c)), compared to low levels of 

variability in Dumfries, Halton, London, Norwich, Oswestry and Salford (χARM, SD 0.019-0.045; 

SIRM, SD 119.800-310.500). Mineral magnetic results indicate a unique concentration is 

present for each location, with consistent mineralogy and magnetic grain size.  
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5.1.3 Textural data for UK towns and locations 
Textural data for selected towns and cities of the UK are summarized in Table 5.1. Particle size 

parameters indicate that RDS contains moderately sorted sediment (1.919 σ1; mean 274.476 

µm), with moderate to high sand concentrations (80.489%), moderate silt concentrations 

(17.458%), and low clay concentrations (2.053%). The RDS particle size data for the UK also 

suggests a moderate level of sediment within the PM100 boundary (23.104%) with lesser PM10 

concentrations (5.537%), low concentrations of PM2.5 (2.400%) and PM1.0 (1.208%). The LOI 

values are typically low (mean 1.047%; SD 0.106).  

 

The textural data shows the mean particle size as fairly consistent (209.521-336.000µm (Figure 

5.3a)) across all selected UK sampling locations. This trend is also evident within the <PM100 

fractions (Figures 5.3c and Figures 5.4a,b,c). All locations show some mean particle size 

variability (Figure 5.3a) with Dumfries, Oswestry, Salford and Wolverhampton with the least 

variation (SD 61.960-71.400) compared to the higher variation of Halton, London, Norwich and 

Scunthorpe (SD 79.670-97.600). Fine particles <PM10 display consistent patterns throughout 

the selected UK sampling locations, with mean concentrations of PM1.0, PM2.5 and PM10 steady 

throughout. Some variation does apply to the selected UK sites and fine particles <PM2.5, with 

London, Norwich, Salford and Scunthorpe showing the highest degree of variation (PM1.0, SD 

0.933-1.206; PM2.5, SD 1.418-1.728) compared to lower variation in Dumfries, Halton, Oswestry 

and Wolverhampton (PM1.0, SD 0.317-0.409; PM2.5, SD 0.547-0.612). Textural results for each 

selected location indicate that RDS particle sizes are relatively consistent spatially, with little 

variation between sample points. 

 

5.1.4 Geochemical data for UK towns and locations 
Geochemical data for selected towns and cities of the UK are summarized in Table 5.1. When 

compared to other studies (Appendix 2.1), element analysis indicates RDS contains moderate 

levels of Fe (mean 29.809 mg g-1; SD 12.917) and Al (mean 19.167 mg g-1; SD 6.564) and low 

levels of Pb (mean 0.140 mg g-1; SD 0.135) and Ni (mean 0.021 mg g-1; SD 0.022). Dumfries 

RDS contains proportional amounts of Iron, and aluminium, compared to other studies. 

Moderate levels of Fe (mean 27.258 mg g-1; SD 4.122) and Al (mean 23.316 mg g-1; SD 4.213), 

K (mean 8.369 mg g-1; SD 1.133), Ca (mean 8.243 mg g-1; SD 2.732) with low levels of Pb 

(mean 0.115ppm; SD 0.174). Results for Halton indicate that inter-element ratios within RDS 

were consistent for Fe, Al, Ca, Cu and Pb. Moderate concentrations of Fe (mean 22.630 mg g-1; 

SD 7.983) and Al (mean 15.704 mg g-1; SD 7.146) and low levels of Pb (mean 0.089 mg g-1; SD 

0.085) and Ni (mean 0.022 mg g-1; SD 0.032) were found. Geochemical analysis in London 

indicates that RDS contains a high amount of Ca (mean 36.430 mg g-1; SD 7.502) and 

consistent inter-element ratios of Fe, Al, Cu and Pb. Moderate levels of Fe (mean 27.332 mg g-

1; SD 5.930), Al (mean 18.053 mg g-1; SD 4.319) and Pb (mean 0.227 mg g-1; SD 0.181) and 

low levels of Cd (mean 0.012 mg g-1; SD 0.016) were found. Norwich results show RDS 

contains a moderate amount of Calcium (mean 19.706 mg g-1; SD 7.515) with proportional 

amounts of Iron (mean 17.183 mg g-1; SD 3.587) and Al (mean 9.312 mg g-1; SD 3.918) and low 

levels of Pb (mean 0.080 mg g-1; SD 0.016) were found.  
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Figure 5.3 Box plots of RDS sample population distributions for selected textural 
parameters for selected towns and cities in the UK. 
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Figure 5.4 Box plots of RDS sample population distributions for selected textural 
parameters for selected towns and cities in the UK.  
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Oswestry RDS contains consistent inter-element ratios of Fe, Zn, Cu and Pb compared to other 

sites. Moderate levels of Fe (mean 29.809 mg g-1; SD 12.917) and Al (mean19.167 mg g-1; SD 

6.564) and low levels of Pb (mean 0.140 mg g-1; SD 0.135) and Ni (mean 0.021 mg g-1; SD 

0.022) were found. Salford RDS contains a high amount of Fe (mean 34.333 mg g-1; SD 3.830) 

with consistent inter-element ratios of Al (mean 23.387 mg g-1; SD 3.846), moderate levels of 

Mg (mean 9.892 mg g-1; SD 2.999). Low levels of Pb (mean 0.085 mg g-1; SD 0.026) were 

found. Scunthorpe RDS contains very high amounts of Fe (mean 49.704 mg g-1; SD 20.336) 

and Ca (mean 73.134 mg g-1; SD 20.336) moderate levels of Al and Mg and low levels of Pb 

(mean 0.085 mg g-1; SD 0.038) and Ni (mean 0.014 mg g-1; SD 0.006) were found. 

 

The selected sample locations appear to display relatively consistent mean values of Fe 

(28.996 mg g-1 (Figure 5.5a)), with the exception of higher values in Scunthorpe (49.704 mg g-1) 

and the low values in Norwich (17.183 mg g-1). Concentrations of Ni and Cd (Figure 5.5b and c) 

are consistent, with the greatest variation in London for Ni (SD 0.038) and Oswestry for Cd (SD 

0.001), which is minimal. Concentrations of Zn (Figure 5.6a) are consistent throughout most 

sampling locations, with the exception of Halton which shows much higher readings (0.229 mg 

g-1; SD 0.138) than the mean (0.487 mg g-1; SD 0.458). High levels of Cu are reported (Figure 

5.6b) in London (0.337 mg g-1; SD 0.125) compared to the mean values of all sites (0.148 mg   

g-1; SD 0.458). All sites appear to display an individual geochemical signature either 

predominantly anthropogenic, natural back ground, or a mixture of both suggesting differences 

could be due to environmental factors. These potential differences will be explored further using 

mineral magnetic and textural parameters. Differences will be statistically investigated using 

Kruskal Wallis and Mann Whitney tests. 

 

5.1.5 Distinguishing towns using RDS characteristics 
The boxplots and summary data for the selected UK samples show the physico-chemical 

characteristics of Dumfries, Halton, MBR (London), Norwich, Oswestry, Salford, Scunthorpe and 

Wolverhampton. The null (H0) and alternative (H1) hypotheses were tested. Summary data for 

individual sites are presented in Appendix 5.1.1-5.1.8. Non-parametric Mann-Whitney U tests 

(Appendix 5.2.1-5.2.5) compare the difference of the medians of each of the sites RDS sample 

populations for each parameter. The result of the non-parametric Kruskal-Wallis tests (data not 

presented) show significant differences between the UK town RDS sample populations for each 

parameter (H0). 

 

Tested Hypotheses  

 

Null Hypothesis (H0) There are significant differences between the towns mineral 

magnetic characteristics.  

      

Alternative Hypothesis (H1) There are no significant differences between the towns mineral 

magnetic characteristics. 
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Figure 5.5 Box plots of RDS sample population distributions for selected geochemical 

parameters for selected towns and cities in the UK. 

184



Cu
 (m

g g
-1

)
Pb

 (m
g g

-1
)

Zn
 (m

g g
-1

)

1.5

1.0

0.5

0.0

0.5

0.4

0.3

0.2

0.6

0.5

0.4

0.3

0.2

0.1

0.1

a)

b)

c)

 

Dum
frie

s
Halto

n

Lon
don

 (M
BR)

Norw
ich

Osw
est

ry
Salfo

rd

Scun
tho

rpe

Wolv
erh

am
pto

n

 
Figure 5.6 Box plots of RDS sample population distributions for selected geochemical 

parameters for selected towns and cities in the UK. 
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By comparing boxplots (Figure 5.1–5.6) for each selected mineral magnetic, textural and 

geochemical parameter, it is clear there is some overlap between the towns. This indicates that 

the characteristic properties of the towns are in some cases different (H0). To determine 

whether variations between the towns are statistically significant, non-parametric Mann Whitney 

tests were performed on the sites for each of the mineral magnetic and textural parameters 

(Appendix 5.2.1-5.2.5).  

 
The ‘P’ values show that for each of the parameters the null hypothesis can be rejected and 

therefore, the medians of each of the location populations are significantly different (H0).  Mann 

Whitney U tests show comparisons between all locations. Selected mineral magnetic 

parameters of Dumfries, Halton, Marylebone Rd (London), Norwich, Oswestry, Salford, 

Scunthorpe and Wolverhampton were significantly different (Appendix 5.2.1-5.2.3 (p <0.001)) 

using Mann Whitney U tests (H0). 

 

5.1.6 Distinguishing towns using mineral magnetic and textural characteristics 
The mineral magnetic characteristics for RDS in Dumfries, Halton, Marylebone Road, Norwich, 

Oswestry, Salford, Scunthorpe and Wolverhampton display significant differences (Appendix 

5.2.1-5.2.3). Mineral magnetic concentration parameters (χLF, χARM and SIRM (Figure 5.1a,c,d)) 

were significantly different over several towns. χLF (Appendix 5.2.1a) in Dumfries samples were 

significantly different (p <0.001) from Marylebone Road, Salford, Scunthorpe and 

Wolverhampton (H0) but not significantly different for Halton (p = 0.493), Norwich (p = 0.072) or 

Oswestry (p = 0.778) (H1). Halton, Norwich and Oswestry displayed similar characteristics to 

Dumfries. Scunthorpe and Wolverhampton were significantly different from Dumfries (p <0.001), 

Halton (p <0.001), Norwich (p <0.001), Oswestry (p <0.001) and Salford (p <0.05), but not 

significantly different to each other (p = 0.855). Similar relationships were found with χARM and 

SIRM with significant differences between Dumfries, Halton and Oswestry with Marylebone 

Road, Salford and Scunthorpe. Wolverhampton was significantly different to all other towns 

except Scunthorpe (p = 0.814-0.919). Soft and Hard mineralogy (Figure 5.4a-d, Appendix 

5.2.2a-d) indicates that sites were different, with Scunthorpe and Wolverhampton displaying 

similarities with each other but significant differences with all other locations. The results 

suggests linkages and similarities for parameters between the more developed towns, which 

could be linked to industry, land-use and population. Mineral magnetic grain size parameters 

indicate a relative consistency of magnetic material (Figure 5.2c, Appendix 5.2.3a). The results 

display less frequent differences between the towns when compared to mineral magnetic 

concentration and mineralogical parameters. The most significant differences are found with 

MBR (Appendix 5.2.3a-d) and display significant differences between all of the other locations 

and suggests that all other selected UK locations RDS have a common source of magnetic 

material. 

 

Textural parameters (Appendix 5.2.4-5.2.5) indicate some differences between the selected UK 

locations with mean particle size (Figure 5.3a) between locations showing differences between 

Salford and all other locations. Appendix 5.2.4c shows sorting to be significantly different in 
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Scunthorpe and London (MBR) when compared to other towns, although there are differences it 

should be noted that all RDS in the selected UK locations are poorly-very poorly sorted (1.00-

4.00). Differences in PM1.0 (Figure 5.3c) to PM10 (Figure 5.4b) shows Wolverhampton 

significantly different to Scunthorpe (p <0.001). Scunthorpe displays significant differences 

between most of the other locations through the particle size range (Appendix 5.2.5b-f) but with 

similarities to Norwich which also has significant differences with other locations (Appendix 

5.2.5b-d). Interrogating data via Mann Whitney tests has shown the potential to distinguish 

differences between sample locations, and identified groups of towns with similar parameter 

properties.  

 

5.1.7 Relationships between the mineral magnetic and textural parameters  
Relationships between the mineral magnetic and textural parameters were further interrogated 

by correlation statistics and graphically with the aid of bivariate plots. Statistical tests indicate 

that few weak significant correlations exists (p <0.05) between some mineral magnetic and 

textural parameters. However, it is only those relationships with the strongest correlation 

coefficients that have been selected for further examination through bivariate plot analysis. 

Rather than displaying all possible combinations, selected parameters are presented to reduce 

the volume of bivariate plots (Figures 5.7–5.8).  

 

Table 5.3 (Figures 5.7 and 5.8) show magnetic concentration dependent parameters versus 

selected textural parameters with weak correlations (r = ≤0.260, n = 306) between these 

parameters. Mineral magnetic concentration and textural parameters display weak relationships 

with χFD% and Clay (r = -0.178; p <0.05), PM2.5 (r = -0.162; p <0.05 (Figure 5.7a)), PM10 (r =         

-0.148; p <0.05 (Figure 5.7b)), with negative weak linkages and sand (r = 0.191; p <0.01) with a 

weak positive relationship and positive linkages to the mean (r = 0.150; p <0.01) and median (r 

= 0.201; p <0.01) RDS particle size concentration. Other weak relationships exist with χARM 

median (r = -0.205 (Figure 5.7c)) and mean (r = -0.204 (Figure 5.7d) particle size 

concentrations. This indicates that there is an increase of fine magnetic material as the mean 

and median particle sizes of RDS decreases. The S-ratio displays weak relationships within the 

finer fraction of RDS <PM2.5. Figure 5.8a shows S-ratio to decreases when concentrations of  

clay decrease (r = -0.219; p <0.01), these patterns are concurrent with other fine size fractions 

of RDS. This relationship suggests that a decrease in hard magnetic minerals is associated with 

a corresponding decrease in fine PM. Other mineral magnetic concentration parameters have 

shown very weak or no associations. Figure 5.8b and c shows χLF versus PM2.5 (r = -0.044; p = 

0.530) and PM10 (r = -0.053; p = 0.440) with no indication of any linkages, a very weak positive 

relationship does exist between χLF versus PM100 (r = 0.125; p <0.05). None of the SIRM versus 

textural parameters indicate any linkages.  

 

Mineral magnetic concentration dependent parameters versus selected textural parameters 

show very few correlations that are significant. Therefore results suggest mineral magnetic 

measurements have no potential for use as a particle size proxy at the national scale (UK). 
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Figure 5.7 Bivariate plots of selected mineral magnetic and textural parameters for 

selected towns and cities (n = 306). 
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Figure 5.8 Bivariate plots of selected mineral magnetic and textural parameters for 
selected towns and cities (n = 306). 
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5.1.8 Relationships between the mineral magnetic parameters 
Relationships between the mineral magnetic parameters were interrogated by correlation 

statistics (Spearman Rank). The results are summarized in Table 5.4. The results show that 

most mineral magnetic parameters exhibit strong correlation coefficients between each other    

(p <0.05-<0.001) (Table 5.4). The strongest correlation coefficients exist between each of the 

magnetic concentration dependent parameters (r = 0.747-0.923; p <0.001), with χLF  and Soft 

IRM 20mT being the strongest (r = 0.923; p <0.001). The weakest correlation coefficient values are 

associated with correlation between the ARM/χ parameters and most of the other mineral 

magnetic parameters (r = -0.028-0.056). All other parameters are quite strongly correlated, with 

most of the correlation coefficient values being ca. r = ≤0.3-0.6. The strength of these 

correlations suggests that the characteristics of the mineral magnetic properties are highly 

dependent upon each other. 

 
Figure 5.9a shows χLF versus SIRM, χLF versus χARM (Figure 5.9b) as shown in Table 5.4 an 

exceptionally strong positive correlation (r = 0.747-0.904; p <0.001, n = 306) exists between 

these parameters. Any increases in χLF values are associated with corresponding increases in 

SIRM values. This indicates that the mineral magnetic signals of all the sediment samples are 

dominated by remanence type of magnetism (ferrimagnetic and/or canted-antiferromagnetic). 

Since, none of the data-points have high SIRM values and low χLF values, canted-

antiferromagnetic behaviour is considered to be insignificant in these sediment samples, and 

the main type of magnetic remanence is ferrimagnetism.  

 
Figure 5.9c shows χARM versus SIRM, and as shown in Table 5.4 a strong positive correlation   

(r = 0.770; p <0.001) exists between these parameters. Any increases in ARM values are 

associated with corresponding increases in SIRM values. These results suggest that the mineral 

magnetic signals of the sediment samples in Wolverhampton are dominantly ferrimagnetic and 

that their magnetic grain sizes are predominantly ultrafine. The indication of χLF versus χFD% 

(Figure 5.9d), suggests that the samples are dominated by multi domain magnetic grain sizes. 

 
5.1.9 Relationships between mineral magnetic and geochemical parameters 
Bivariate plots of specific geochemical properties have been selected for analysis due to their 

influence in urban settings with specific significance relating to anthropogenic activity (Table 

1.5). Table 5.5 summarizes the correlation statistics between mineral magnetic and elemental 

parameters for the selected locations. Almost all mineral magnetic and geochemical parameters 

are correlated (i.e. most correlation of coefficients are ca. r = ≤0.221-0.517, p <0.05-<0.001, n = 

306). This suggests that the chemistry of RDS has some influence on mineral magnetic 

assemblages. Those relationships that are statistically significant appear to be related to 

magnetic mineralogy parameters. Selected significant correlations are presented in Figures 

5.10–5.15. Mineral magnetic concentration (χLF, χARM and SIRM) and selected geochemical 

parameters show some strong positive correlations (p <0.001, n = 306). 

 

191



   Ta
bl

e 
5.

4 
St

at
is

tic
al

 r
el

at
io

ns
hi

ps
 b

et
w

ee
n 

th
e 

m
in

er
al

 m
ag

ne
tic

 p
ar

am
et

er
s 

of
 t

he
 c

um
ul

at
iv

e 
U

K 
sa

m
pl

ed
 l

oc
at

io
ns

 (
bo

ld
 t

ex
t 

is
 s

ig
ni

fic
an

t  
   

   
(*

p 
<0

.0
5;

 **
p 

<0
.0

1;
 **

*p
 <

0.
00

1)
) (

n 
= 

30
6)

  
 

Pa
ra

me
ter

s 
χ L

F  
χ F

D
%

 
χ A

R
M

 
SI

RM
 

So
ft %

 20
mT

 
So

ft %
 40

mT
 

Ha
rd

 % 
30

0m
T 

Ha
rd

 % 
50

0m
T 

So
ft I

RM
20

mT
 

So
ft I

RM
40

mT
 

Ha
rd

 IR
M

 

30
0m

T 
Ha

rd
 IR

M
 

50
0m

T 
S-

ra
tio

 
A

R
M

/χ
 

SI
RM

/ 
AR

M 
SI

RM
/χ

 
 

χ F
D

%
 

-0
.24

3*
** 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

χ A
R

M
 

0.7
47

***
 

-0
.38

5*
** 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

SI
RM

 
0.9

04
***

 
-0

.31
3*

** 
0.7

70
***

 
 

 
 

 
 

 
 

 
 

 
 

 
 

So
ft %

 20
mT

 
 

0.2
83

***
 

-0
.09

5 
0.2

73
***

 
0.0

97
 

 
 

 
 

 
 

 
 

 
 

 
 

So
ft %

 40
mT

 
0.3

22
***

 
-0

.03
9 

0.2
84

***
 

0.1
84

** 
0.6

15
***

 
 

 
 

 
 

 
 

 
 

 
 

Ha
rd

 % 
30

0m
T 

-0
.16

5*
* 

-0
.20

0*
* 

0.0
46

 
0.0

26
 

-0
.37

0*
** 

-0
.43

0*
** 

 
 

 
 

 
 

 
 

 
 

Ha
rd

 % 
50

0m
T 

-0
.17

4*
* 

-0
.24

3*
** 

0.0
19

 
-0

.06
0 

-0
.19

4*
* 

-0
.26

3*
** 

0.5
78

***
 

 
 

 
 

 
 

 
 

 

So
ft I

RM
20

mt
 

0.9
17

***
 

-0
.32

9*
** 

0.7
89

***
 

0.8
98

***
 

0.4
86

***
 

0.4
02

***
 

-0
.12

2 
-0

.12
6 

 
 

 
 

 
 

 
 

So
ft I

RM
40

mT
 

0.9
23

***
 

-0
.30

9*
** 

0.7
83

***
 

0.9
79

***
 

0.1
97

** 
0.3

49
***

 
-0

.03
6 

-0
.09

6 
0.9

31
***

 
 

 
 

 
 

 
 

Ha
rd

 IR
M3

00
mT

 
0.5

88
***

 
-0

.33
3*

** 
0.5

98
***

 
0.7

65
***

 
-0

.10
1 

-0
.07

6 
0.4

97
***

 
0.2

20
** 

0.6
16

***
 

0.7
17

***
 

 
 

 
 

 
 

Ha
rd

 IR
M5

00
mT

 
0.5

15
***

 
-0

.39
0*

** 
0.5

68
***

 
0.6

64
***

 
-0

.03
6 

-0
.03

1 
0.4

21
***

 
0.6

52
***

 
0.5

56
***

 
0.6

26
***

 
0.7

26
***

 
 

 
 

 
 

S-
ra

tio
 

 
-0

.26
6*

** 
0.1

12
 

-0
.21

2*
* 

-0
.28

7*
** 

-0
.13

6 
-0

.29
7*

** 
0.0

82
 

0.1
53

 
-0

.30
6*

** 
-0

.33
5*

** 
-0

.21
0*

* 
-0

.13
0*

 
 

 
 

 

A
R

M
/χ

 
 

-0
.19

1*
* 

0.0
56

 
0.2

70
***

 
-0

.02
1 

-0
.05

1 
0.0

20
 

0.1
52

* 
0.0

89
 

-0
.06

6 
-0

.02
8 

0.0
55

 
0.1

05
 

-0
.08

4 
 

 
 

SI
RM

/A
RM

 
0.0

84
 

-0
.19

0*
 

-0
.18

5*
* 

0.2
52

***
 

-0
.29

0*
** 

-0
.26

4*
** 

0.1
93

** 
0.1

03
 

0.1
00

 
0.1

97
** 

0.3
37

***
 

0.2
48

***
 

0.0
00

 
-0

.57
4*

** 
 

 

SI
RM

/χ
 

 
-0

.12
0 

-0
.14

7*
 

0.1
04

* 
0.2

44
** 

-0
.38

5*
** 

-0
.31

4*
** 

0.4
06

***
 

0.2
34

***
 

0.0
21

 
0.1

67
** 

0.4
32

***
 

0.4
00

***
 

-0
.05

7 
0.4

54
***

 
0.3

60
***

 
 

χ A
R

M
/S

IR
M 

-0
.08

4 
0.1

90
** 

0.1
85

** 
-0

.25
2*

** 
0.2

90
***

 
0.2

64
***

 
-0

.19
3*

* 
-0

.10
3 

-0
.10

0 
-0

.19
7*

* 
-0

.33
7*

** 
-0

.24
8*

** 
0.0

00
 

0.5
74

***
 

-1
.00

0*
** 

-0
.36

0*
** 

  

192



a)

b)

d)

c)

r = 0.904
p <0.001 

r = 0.747
p <0.001 

r = -0.243
p <0.001 

r = 0.770
p <0.001 

0 50 100 150
0

1000

2000

3000

4000

5000

χLF x 10-7m3kg-1
SI

RM
 x 

10
-4

Am
2 kg

-1

0 50 100 150
0.0

0.2

0.4

0.6

0.8

χLF x 10-7m3kg-1

χ A
RM

 10
-5

m3 kg
-1

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

SIRM x 10-4Am2kg-1

χ A
RM

 10
-5

m3 kg
-1

χLF x 10-7m3kg-1

χ F
D

%

0 50 100 150
0

2

4

6

 

 
Figure 5.9 Bivariate plots of selected mineral magnetic parameters for the selected towns 

and cities (n = 306). 
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Results for χLF  versus geochemical parameters are shown in Figure 5.10 and 5.11, with the 

strongest relationship between χLF versus Fe (r = 0.673 (Figure 5.10a)), Pb (r = 0.473 (Figure 

5.10b)), Cr (r = 0.626 (Figure 5.10c)), Ni (r = 0.394 (Figure 5.10d)), Zn (r = 0.599 (Figure 

5.11a)), Mn (r = 0.656 (Figure 5.11b)), and Cu (r = 0.347 (Figure 5.11c)). These relationships 

are replicated within the χARM (r = 0.284-0.595 (Figure 5.12 a-d and 5.13 a-c)) and SIRM (r = 

0.276-0.629 (Figure 5.14a-d and 5.15a-c)) parameters. These results indicate that mineral 

magnetic concentration parameters do have potential for proxy purposes as RDS geochemical 

indicators at the national scale (UK). 

 

5.1.10 Relationships between geochemical parameters 
Relationships between geochemical parameters are presented in Table 5.6 and boxplots 

(Figure 5.16-5.17). Specific geochemical correlations in urban environments can indicate 

specific sources (Hopke et al., 1980; De Miguel et al 1997; Robertson et al., 2003; Omar and Al-

Khashman, 2004; Manno et al., 2006; Christofordis and Stamatis, 2009. The results for the 

selected locations show that most geochemical parameters exhibit strong correlation values 

between each other (p <0.05-<0.001) (Table 5.6). The largest correlation coefficients exist 

between Pb, Fe, Mg, Ti, Ni and Cu, with Mg and Al (r = 0.697; p <0.001, n = 220), Ma and Ca (r 

= 0.707; p <0.001) being the strongest, suggesting the influence of crustal material. 

Anthropogenic input is evident with strong correlations of Pb versus Cu (r = 0.659; p <0.001), Pb 

versus Zn (r = 0.605; p <0.001), Zn versus Cu (r = 0.771; p <0.001) Fe and Pb (r = 0.325;          

p <0.001 (Figure 5.16a)), Cr (r = 0.379; p <0.001 (Figure 5.16b)), Ni (r = 0.389; p <0.001 (Figure 

5.16c)), Zn (r = 0.382; p <0.001 (Figure 5.17a)),  Mn (r = 0.731; p <0.001 (Figure 5.17b)),  Cu (r 

= 0.362; p <0.001 (Figure 5.17c)), and Ti respectively. The weakest correlation coefficient 

values are associated between Sb and most other elemental parameters (r = -0.157–0.315). 

Other parameters show to display strong relationships, Fe and Mg (r = 0.597), Fe and Ni (r = 

0.529; p <0.001) and Fe and Cu (r = 0.522; p <0.001). Other parameters exhibit strong 

relationships between each other, Mg, Al, Ti, Ni, have correlation coefficients ca. r =  ≤0.5–0.8 

(p <0.001).  

 

5.2 Summary mineral magnetic and textural relationships of selected UK sample 
locations 

The application of mineral magnetic measurements as a proxy for RDS so far, has had limited 

success with selected UK samples. All eight selected locations have been investigated 

individually using previous methods discussed. To assess whether relationships exist between 

the mineral magnetic and textural parameters, the data sets of all eight locations were 

interrogated by correlation statistics (Spearman Rank). Results are detailed in Appendix 5.3.1-

5.3.5 and summarized in Table 5.7. Results for individual UK locations show that most of the 

mineral magnetic and textural parameters do not exhibit many significant correlations between 

each other (Table 5.7). No significant relationships exist for Dumfries, Oswestry, Salford and 

Wolverhampton during the sampling period. Weak relationships exist for Halton and Norwich, 

strongest correlations exist for Scunthorpe and London.  
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Figure 5.10 Bivariate plots of selected mineral magnetic and geochemical properties for the 

selected towns and cities (n = 306). 
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Figure 5.11 Bivariate plots of selected mineral magnetic and geochemical properties for the 

selected towns and cities (n = 306). 
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Figure 5.12 Bivariate plots of selected mineral magnetic and geochemical properties for the 

selected towns and cities (n = 306). 
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Figure 5.13 Bivariate plots of selected mineral magnetic and geochemical properties for the 

selected towns and cities (n = 306). 
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Figure 5.14 Bivariate plots of selected mineral magnetic and geochemical properties for the 

selected towns and cities (n = 306). 
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Figure 5.15 Bivariate plots of selected mineral magnetic and geochemical properties for the 

selected towns and cities (n = 306). 
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Figure 5.16 Bivariate plots of selected mineral magnetic and geochemical parameters for 

selected towns and cities (n = 306). 
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Figure 5.17 Bivariate plots of selected mineral magnetic and geochemical parameters for 

selected towns and cities (n = 306). 
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Table 5.7 Summary UK town Spearman rank correlation results for mineral magnetic and 
textural parameters (bold text is significant (*p <0.05; **p <0.01; ***p <0.001)) 

 
a)       χLF Sand Silt Clay PM1.0 PM2.5 PM10 PM100 

Cumulative (n = 306) -0.050 0.068 -0.037 -0.010 -0.044 0.053 0.155* 
Dumfries (n = 38) -0.173 0.174 -0.057 -0.030 -0.053 0.026 0.230 
Halton (n = 36) 0.204 -0.252 0.282* 0.349* 0.258 0.073 -0.231 
MBR (n = 61) 0.076 0.010 -0.453*** -0.456*** -0.420** -0.399** 0.035 
Norwich (n =30) -0.408 0.368 0.227 0.191 0.215 0.335 0.268 
Oswestry (n = 32) -0.095 0.119 0.032 -0.031 0.007 -0.058 0.135 
Salford (n = 33) -0.223 0.254 -0.295 -0.286 -0.308 -0.189 0.305 
Scunthorpe (n = 34) 0.024 -0.110 0.053 0.048 0.067 0.120 -0.032 
Wolverhampton (n = 42) 0.069 -0.110 0.281 0.149 0.294 0.278 -0.099 
 

b)       χFD% Sand Silt Clay PM1.0 PM2.5 PM10 PM100 

Cumulative 0.191** -0.166* -0.178* -0.213 -0.162* -0.148* -0.154* 
Dumfries -0.038 0.028 -0.119 -0.030 -0.090 0.032 -0.013 
Halton -0.036 0.062 -0.389** -0.358*** -0.377* -0.152 0.027 
MBR 0.174 -0.170 -0.166 -0.167 -0.157 -0.180 -0.083 
Norwich 0.224 -0.068 -0.382*** -0.459*** -0.356** -0.211 -0.023 
Oswestry -0.038 0.028 -0.119 -0.030 -0.090 0.032 -0.013 
Salford -0.313 0.275 0.006 0.048 0.011 0.137 0.253 
Scunthorpe 0.227 -0.224 -0.162 -0.137 -0.177 -0.275 -0.241 
Wolverhampton -0.333 0.346 -0.183 -0.180 -0.276 0.019 0.416* 
 

c)       χARM Sand Silt Clay PM1.0 PM2.5 PM10 PM100 

Cumulative -0.117 0.132 -0.019 0.007 -0.028 0.081 0.195** 
Dumfries -0.090 0.107 0.074 0.061 0.078 0.066 0.094 
Halton 0.225 -0.254 0.216 0.214 0.216 0.180 -0.277 
MBR -0.017 0.109 -0.384** -0.392** -0.355** -0.365** 0.101 
Norwich -0.325 0.329 0.156 0.035 0.191 0.208 0.371 
Oswestry -0.090 0.107 0.074 0.061 0.078 0.066 0.094 
Salford -0.154 0.178 -0.221 -0.215 -0.201 0.012 0.144 
Scunthorpe 0.086 -0.198 0.250* 0.146 0.262* 0.295* -0.132 
Wolverhampton 0.123 -0.146 0.274 0.204 0.283 0.169 -0.074 
 

d)       SIRM Sand Silt Clay PM1.0 PM2.5 PM10 PM100 

Cumulative -0.029 0.041 0.025 0.048 0.000 0.045 0.127 
Dumfries -0.076 0.091 0.127 0.078 0.101 0.021 0.124 
Halton 0.203 -0.248 0.264 0.325 0.238 0.066 -0.210 
MBR 0.135 -0.049 -0.553*** -0.554*** -0.550*** -0.519*** -0.076 
Norwich -0.474 0.432 0.257 0.205 0.260 0.364 0.374 
Oswestry -0.076 0.091 0.127 0.078 0.101 0.021 0.124 
Salford -0.227 0.251 -0.265 -0.259 -0.274 -0.117 0.305 
Scunthorpe 0.109 -0.209 0.678*** 0.537*** 0.689*** 0.609*** -0.145 
Wolverhampton 0.082 -0.122 0.360 0.277 0.350 0.235 -0.028 
 
 
 
 
 
 
 

205



Results for Dumfries, Norwich, Oswestry, Salford, Scunthorpe and Wolverhampton show no 

significant correlations with χLF versus all textural fractions (Table 5.7a). Correlations do exist for 

χLF versus <PM10 in London (r = -0.526 to -0.589; p <0.001, n= 61), and weak correlations   (r = 

0.282-0.349; p <0.05, n= 36) for χLF versus <PM2.0 in Halton. Table 5.7b summarizes the 

correlation statistics between χFD% versus <PM100 and displays significant relationships for 

Halton <PM2.5 (r = 0.358-0.389; p <0.01). Significant relationships exist between χFD% versus 

<PM2.5 for Norwich (r = -0.356 to -0.459; p <0.001). Wolverhampton displays a moderately weak 

relationship with χFD% versus <PM100 (r = 0.416; p <0.01, n= 42). Results for Scunthorpe and 

London show that there are moderate relationships between χARM versus PM2.0 to PM10 for 

Scunthorpe (r = 0.250-0.295; p <0.05, n= 34) and χARM versus PM1.0 to PM10 for London (r = 

0.355-0.392; p <0.01 (Table 5.7c)). London and Scunthorpe exhibit moderate relationships with 

SIRM versus <PM10 (r = 0.353-0.413; p <0.01 and 0.537-0.689; p <0.001 (Table 5.7d)). All other 

mineral magnetic parameters and textural parameters are not strongly related (ca. r =  ≤-0.050–

0.212, p <0.05). 

 

The results show few significant correlations between mineral magnetic and textural 

parameters. Variation exists between the locations, with most towns having no proxy potential 

for PM identification. The strongest potential for proxy purposes exist between London and 

Scunthorpe. To further access the suitability of using mineral magnetic methods as a pollution 

proxy, these relationships will be further explored in London and Scunthorpe.  

 

5.3 Relationships between the mineral magnetic and textural variables for London 
(Marylebone Road) 

To assess the relationships between the mineral magnetic and textural variables for London, the 

data set was further interrogated using correlation statistics and bivariate plots. Statistical tests 

indicate that significant relationship exists between some of the mineral magnetic and textural 

parameters (p <0.05). However, it is only those relationships with the strongest correlation 

coefficient values that have been selected for further examination through bivariate plot 

analysis. These are presented in Figures 5.18–5.20. 

 

Table 5.8 summarizes correlation statistics between the mineral magnetic and textural 

parameters for London. Strongest correlation coefficients were evident between magnetic 

concentration dependent parameters χLF versus PM 1.0 (r = -0.589; p <0.001, n = 61 (Figure 

5.18a)). Mineral magnetic concentration values show strong correlations with the finer fraction of 

RDS as magnetic concentration parameters show good negative correlation with the smaller 

textural fractions (PM1.0–PM10). However, the weakest correlation coefficients are associated 

with Hard % parameters (r = 0.050; p = 0.727), suggesting hard mineralogy has no influence. 

Sand, silt and PM100 particles are not significantly correlated to any mineral magnetic parameter. 

Figure 5.18a-c shows strong negative correlation between χLF versus textural parameters     

<PM 10, all display significant correlations (r = -0.526 to -0.589; p <0.001).  
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Figure 5.18 Bivariate plots for selected mineral magnetic and textural parameters for 
London (Marylebone Road) RDS (n = 61). 
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Figure 5.19 Bivariate plots for selected mineral magnetic and textural parameters for 
London (Marylebone Road) RDS (n = 61). 
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Figure 5.20 Bivariate plots for selected mineral magnetic and textural parameters for 
London (Marylebone Road) RDS (n = 61). 
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Figure 5.19a-c shows the bivariate relationships between magnetic concentration parameters 

χARM  versus textural parameters <PM10, all display significant correlations (r = -0.355 to -0.392; 

p <0.01). Figure 5.20 a-c shows bivariate relationships between magnetic concentration 

parameters SIRM versus textural parameters <PM10, all displaying significant correlations (r =     

-0.519 to -0.554; p <0.001).  

 

The correlations between the mineral magnetic concentration and textural parameters have 

shown relative consistency. Consistent weakening of the correlation is evident through the 

particle size range (χLF, r = 0.589-0.526; χ/ARM, r = 0.511-0.402; SIRM, r = 0.554-0.519; p 

<0.001). Mineral magnetic concentration parameters display moderate negative correlations with 

RDS sorting (p <0.01). The strongest correlation is with χLF  versus sorting (r = -0.414; p <0.01), 

with similar correlations with χARM (r = -0.388; p <0.01), and SIRM (r = -0.357; p <0.01). This is a 

good indication that the greater the concentration of magnetic material the more it is well sorted.   

 

Relationships between magnetic mineralogy dependent parameters Soft% and Soft IRM versus 

textural parameters <PM10, all display significant correlations (p <0.05-<0.01). The weak 

correlations found between hard and textural parameters suggest that hard mineralogy has no 

influence on mineral magnetic and textural relationships. Almost all other mineral magnetic and 

textural parameters are not strongly correlated (i.e. most correlation of coefficient values are ca. 

r = ≤-0.044-0.297). This suggests that the mineral magnetic concentration parameters do have 

some control on finer fractions of sediments on Marylebone Road.  

 

The strength of the correlations suggests that the characteristics of the mineral magnetic and 

textural properties could be dependent upon each other. The statistical tests indicate that 

significant relationships exist between mineral magnetic concentration parameter and fine 

particle class sizes <PM10 (p <0.05). These relationships indicate that mineral magnetic methods 

on Marylebone road could potentially be used as a particle size proxy, with low levels of mineral 

magnetic concentrations used to estimate higher levels of fine PM (<10 µm). High levels of fine 

PM on Marylebone Road suggests a dilution effect, which indicates mixing of magnetic and non-

magnetic materials.  

 
5.4 Further investigation using Spatial, SEM and factor plot characterization of 

London physical-characteristics. 
Statistical and graphical techniques indicate that significant variations exist in the 

sedimentological characteristics of the contemporary surface sediments in the sample locations. 

So far, it has been demonstrated ‘how’ the samples vary, in terms of their mineral magnetic and 

textural properties, and that some variation is associated with differences in sedimentary 

environments. However, the geographical relationships between adjacent samples have not 

been addressed, nor has an environmental explanation for ‘why’ these variations exist. These 

points when addressed may lead to further understanding as to why mineral magnetic and 

textural relationships exist. Therefore, the mineral magnetic and textural data was used to 

generate a selection of GIS images and determine the nature of spatial variations. 
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5.4.1 Spatial characterization of mineral magnetic and geochemical data 
Statistical and graphical techniques indicate significant variations in physical characteristics of 

London (Marylebone Road) RDS. However, bivariate plots and Mann-Whitney U tests failed to 

show geographical relationships between adjacent samples. Therefore, the mineral magnetic, 

textural and geochemical data have been used to generate GIS images, determining the nature 

of spatial variations. Baseline maps were created in Arcview GIS (version 10), forming visual 

representations of characteristics and patterns. The masked boundary excludes unsampled 

areas. Spatial variation for other UK locations can be found in Appendix 5.5.1-5.5.5 

 

GIS images are presented of mineral magnetic concentration parameters (χLF, χARM and SIRM). 

Both sides of Marylebone Road have been sampled to produce a representation of bi-

directional traffic. Figure 5.21 shows χLF to vary across the sampling area. There are several 

moderate concentrations of χLF directly associated with the main road system within the 

sampling area, these are highlighted in Figure 5.21 (up to χLF 87.971 x 10-7m3kg-1). There are 

several high and low concentrations along the road. The higher concentrations appear to 

coincide with stop-start points associated with traffic lights and pedestrian crossings.  

 

High concentrations of magnetic material (χLF 87.971 x 10-7m3kg-1) is found near Marylebone 

Road ASU (~50 m east of Madame Tussards) and highlights the monitoring importance of this 

site (Appendix 7.2 shows ‘The West Minster Council Air Quality Progress Report 2010’). Figure 

5.22a χARM shows concentrations also vary across the sample area, with similar patterns of 

highs and lows associated with traffic stop-start points. This pattern is also evident in Figure 

5.22b, with SIRM concentrations varying at these sample points. High SIRM concentrations 

could be due to being west of the sampling area where there is a convergence of roads into a 

bottle-neck, which experiences high traffic flows. Figure 5.23a shows concentrations of Cu 

along Marylebone Road and identifies high concentrations at the road interchange at the west 

of the road. Highs and lows can also be identified with pedestrian crossings, junctions and traffic 

lights. High concentrations are at the junctions of Baker Street and Regents Park and also 

within close proximity of the ASU. Figure 5.23b shows concentrations of Zn to vary across the 

sampling area, with similar spatial patterns to χARM concentrations. Concentrations of Zn show 

highs and lows across the sampling area, with increased high readings at the junctions of Baker 

Street, Regents Park and high readings close to Marylebone Road ASU.  

 
5.4.2 Assessing the potential linkages 
The GIS images highlighted the variability of parameters over the study area and suggest 

environmental influences. By investigating variability using GIS it has been possible to identify 

these potential factors. The main observation is high concentrations of magnetic material 

associated with junctions, traffic lights and pedestrian crossings. These are areas that are 

subjected to high volumes of traffic undergoing start-stop manoeuvres, the consequence of 

such activity is the increase of fuel consumption and CO2 emissions when pulling away and 

increased brake wear when stopping. 
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Figure 5.22 Spatial distribution of ARM and SIRM concentrations on MBR (London). 
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Figure 5.23 Spatial distribution of Cu and Zn concentrations on MBR (London).  
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Figure 5.24a shows the bivariate relationship between LF versus Distance to stopping points 

(SP). The correlation shows a strong negative relationship which indicates the increase in 

magnetic material the closer to the SP (r = -0.541; p <0.001). This relationship is also apparent 

within other mineral magnetic parameters, ARM (r = -0.459; p <0.001 (Figure 5.24b)) and SIRM 

(r = -0.374; p <0.01 (Figure 5.24c)). These correlations show that proximity to SP’s are an 

important factor for mineral magnetic concentrations on Marylebone Road. An assumption 

based on road proximity can be made from the results found in Wolverhampton and can be 

applied to this setting with relative confidence.  The road experiences dense road traffic and 

therefore suggests increased concentrations of magnetic material in RDS from this source. To 

further explore and confirm the source of magnetic material, selected parameters were used to 

access variability.  

 

The S-ratio confirms that the mineralogy of the samples does not change with distance from 

SPs (Figure 5.25a). SIRM/ (Figure 5.25b) values also indicate a consistent source. Figure 

5.25c displays no correlation between FD% versus distance to SP (r = 0.175; p = 0.182) and 

demonstrates a good indication of a constant source of mineral magnetic material along 

Marylebone Road. Mineral magnetic and geochemical correlations for all other location can be 

found in Appendix 5.4.1-5.4.10. Selected geochemical parameters show the relatively 

consistent concentration of Fe (Figure 5.26a) and Pb (Figure 5.26b) across the sample area. 

These elements are commonly found in higher concentrations within urban and industrial areas 

due to being combustion by-products.  No significant correlation was found between Fe and SP 

(r = -0.188; p = 0.243) and Pb and SP (r = -0.159; p = 0.324). The weak relationships found 

between Fe and Pb could be due to daily street washing, cleaning and the settlement times of 

combustion particulate (hours - days). Another explanation could be that geochemical analysis 

cannot distinguish between Fe2O3 (haematite) and Fe3O4 (magnetite), thus, not obtaining a true 

indication of the magnetite phase of Fe. LF and SP correlations suggest higher concentrations 

of Fe3O4 at the SPs. Figure 5.27a-c shows Zn, Mn and Cu, which can be directly associated 

with tyre wear, abrasion of vehicles, lubricating oils and brake-linings. Moderate negative 

correlations exist for Zn and SP (r = -0.384; p <0.01 (Figure 5.27a)), Mn and SP (r = -0.347; p 

<0.01 (Figure 5.27b)) and CU and SP (r = -0.355; p <0.01 (Figure 5.27c)). These correlation 

coefficients suggest that SP has some influence on concentrations of Zn, Mn and Cu, with 

increase of these elements closer to SPs. This association is likely to be a function of vehicles 

slowing and stopping, due to friction and impact particles as they deposit directly on the road 

surface. Marylebone Road had the highest concentration of Cu (0.337 mg g-1) out of all the 

selected towns and cities and reflects the traffic movements in this area. 

 

5.4.3 Relationships between the geochemistry parameters 

To further access the likelihood that geochemical composition on Marylebone Road is due to 

predominantly road traffic, the relationships between elements can be accessed. Previous 

research found that certain correlations between selected parameters can indicate potential 

sources.  
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Figure 5.24 Bivariate plots of χLF, χARM  and SIRM versus distance to stopping points (SP) on 
MBR (London). 
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Figure 5.25 Bivariate plots of S-ratio χFD% and SIRM/χ versus distance to stopping points 
(SP) on MBR (London) (n = 61). 
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Figure 5.26 Bivariate plots of Fe and Pb versus distance to stopping points (SP) on MBR 

(London) (n = 61). 
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Figure 5.27 Bivariate plots of Zn, Mn and Cu versus distance to stopping points (SP) on 

MBR (London) (n = 61). 
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The mineral magnetic measurements identify that mineralogy within RDS on Marylebone Road 

is likely to be from a single source. As a result, Marylebone Road RDS exhibit strong 

correlations between specific geochemical parameters (p <0.05-<0.001) (Table 5.9). The 

strongest correlation coefficients exist between Fe, Mg, Al, Ti, Cu and Zn. 

 

The strongest correlations are between Mg and Al (r = 0.835; p <0.001), Ti and Mn (r = 0.820; p 

<0.001) and Fe and Mn (r = 0.818; p <0.001). The weakest correlation coefficients are 

associated with Ca (r = 0.019–0.292), Cd (r = 0.004-0.111) and most other geochemical 

parameters. Other geochemical parameters show significant correlations. Fe versus Pb shows a 

relatively weak correlation between (r = 0.299; p <0.05 (Figure 5.28a)), where Cr (Figure 5.28b) 

and Ni (Figure 5.28c) have strong correlations (r = 0.413-0.526; p <0.01-<0.001). Other 

significant geochemical correlations include Fe versus Zn (r = 0.742; p <0.001 (Figure 5.29a)), 

Fe versus Mn (r = 0.818; p <0.001 (Figure 5.29b)), Fe versus Cu (r = 0.695; p <0.001 (Figure 

5.29c)) and Fe versus Ti (r = 0.742; p <0.001 (Figure 5.29d)).  

 

Other parameters exhibit strong inter-relationships, Mg, Al, Ti, Cu and Zn, ca. r = ≤0.5–0.8. 

These key parameters (Fe, Pb, Cr, Ni, Zn, Cd, Mn, Ti and Cu), further indicate the main source 

of elements are from anthropogenic combustion processes. The inter-correlation of Mg, Al, S, K 

and Fe indicate an additional natural background source (soils) of elements in the RDS cocktail. 

The geochemical correlation coefficients indicate several sources contributing to the physical 

properties of RDS with anthropogenic sources dominating the mineral magnetic signal.  
 

5.4.4 Relationships between the mineral magnetic and geochemistry parameters 
To further access the source of magnetic material within Marylebone Road RDS, geochemical 

and mineral magnetic parameters were interrogated by correlation statistics (Spearman Rank). 

Table 5.10 summarizes correlation statistics between the mineral magnetic and geochemical 

parameters for Marylebone Road. A large proportion of mineral magnetic concentration 

parameters and geochemical parameters are strongly related (i.e. most correlation coefficients 

are ca. r = ≤0.382–0.764). This suggests that the chemistry of RDS does have some control on 

mineral magnetic assemblages on Marylebone Road. 

 

The strongest relationships that are statistically significant appear to be related to mineral 

magnetic concentration parameters, χLF versus Fe (r = 0.764; p <0.001) (Figure 5.30a), χARM 

versus Fe (r = 0.740; p <0.001) and SIRM versus Fe (r = 0.651; p <0.001). Figure 5.30b shows 

a weak correlation between χLF versus Pb (r = 0.120; p = 0.460), whereas Figure 5.30c,d shows 

moderate correlation coefficients between χLF versus Cr (r = 0.382; p <0.01) and χLF versus Ni (r 

= 0.313; p <0.05). Figure 5.31 shows strong correlations between significant SP elements. χLF 

versus Zn (r = 0.646; p <0.001 (Figure 5.31a)). χLF versus Mn (r = 0.598; p <0.001 (Figure 

5.31b)). A very strong correlation was found between χLF versus Cu (r = 0.720; p <0.001 (Figure 

5.31c)) and a good correlation between χLF versus Ti (r = 0.604; p <0.001 (Figure 5.31d)). 
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Figure 5.28 Bivariate plots for selected geochemical parameters, Fe versus Pb, Cr and Ni 

for MBR (London) RDS (n = 61). 
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Figure 5.29 Bivariate plots for selected geochemical parameters, Fe Versus Zn, Mn, Cu and 
Ti for MBR (London) RDS (n = 61). 

 

224



Ta
bl

e 
5.

10
 

St
at

is
tic

al
 r

el
at

io
ns

hi
ps

 b
et

w
ee

n 
th

e 
m

in
er

al
 m

ag
ne

tic
 a

nd
 g

eo
ch

em
ic

al
 p

ar
am

et
er

s 
fo

r 
M

BR
 (

bo
ld

 t
ex

t 
is

 s
ig

ni
fic

an
t 

(*
p 

<0
.0

5;
 *

*p
 

<0
.0

1;
 **

*p
 <

0.
00

1)
) (

n 
=6

1)
  

 

Pa
ra

me
ter

s 
χ L

F  
χ F

D
%

 
χ A

R
M

 
SI

RM
 

So
ft %

 20
mT

 
So

ft %
 40

mT
 

Ha
rd

 % 
30

0m
T 

Ha
rd

 % 
50

0m
T 

So
ft I

RM
20

mT
 

So
ft I

RM
40

mT
 

Ha
rd

 IR
M

 

30
0m

T 
Ha

rd
 IR

M
 

50
0m

T 
S-

ra
tio

 
A

R
M

 /χ
 

SI
RM

/ 
AR

M 
SI

RM
/χ

 
 

χ A
R

M
 /S

IR
M 

 
Mg

 
0.1

12
 

0.2
82

 
0.1

34
 

0.1
42

 
-0

.06
9 

-0
.16

4 
-0

.05
2 

-0
.22

3 
0.3

10
 

0.2
98

 
0.1

51
 

-0
.13

7 
0.1

62
 

-0
.27

3 
-0

.07
9 

-0
.47

2*
* 

0.0
44

 

Al
 

0.2
12

 
0.2

18
 

0.2
43

 
0.2

38
 

-0
.18

1 
-0

.30
8 

0.1
50

 
-0

.18
7 

0.2
76

 
0.3

21
* 

0.3
61

* 
-0

.09
5 

0.1
78

 
-0

.23
7 

0.0
57

 
-0

.18
6 

-0
.10

4 

S 
0.1

57
 

0.2
01

 
0.1

72
 

0.1
81

 
0.2

17
 

0.1
98

 
0.0

60
 

-0
.27

9 
0.2

87
 

0.1
04

 
-0

.17
6 

-0
.20

1 
0.2

17
 

-0
.15

2 
-0

.09
5 

-0
.46

1*
* 

0.1
75

 

K 
0.1

23
 

0.1
05

 
0.1

76
 

0.1
82

 
-0

.08
0 

-0
.19

4 
0.1

00
 

-0
.11

3 
0.2

05
 

0.1
72

 
0.1

70
 

-0
.04

4 
0.2

37
 

0.0
28

 
-0

.18
3 

-0
.31

2 
0.2

28
 

Ca
 

-0
.14

8 
-0

.21
5 

-0
.09

1 
-0

.23
9 

0.4
81

** 
0.4

07
** 

0.1
07

 
-0

.01
9 

0.0
54

 
-0

.11
3 

-0
.02

6 
-0

.05
0 

-0
.51

5*
** 

0.1
20

 
-0

.19
9 

-0
.24

8 
0.2

92
 

Ti 
0.6

04
***

 
0.2

17
 

0.4
38

** 
0.4

74
** 

-0
.19

3 
-0

.25
6 

-0
.04

7 
-0

.17
4 

0.3
53

* 
0.4

10
** 

0.2
76

 
-0

.05
5 

0.2
60

 
-0

.31
0 

0.0
83

 
-0

.24
7 

-0
.14

3 

V 
0.3

89
* 

0.1
38

 
0.2

36
 

0.3
07

 
-0

.17
9 

-0
.39

9*
 

0.0
69

 
-0

.11
3 

0.1
97

 
0.1

90
 

0.2
52

 
-0

.01
8 

0.1
67

 
-0

.28
6 

0.0
37

 
-0

.19
7 

-0
.17

4 

Cr
 

0.3
82

* 
0.3

70
 

0.4
14

** 
0.2

75
 

0.1
00

 
0.1

57
 

-0
.38

5*
 

-0
.51

7*
** 

0.3
16

 
0.3

14
** 

-0
.15

0 
-0

.46
7*

* 
-0

.23
0 

-0
.00

7 
-0

.14
5 

-0
.20

9 
0.1

52
 

Mn
 

0.5
98

***
 

0.1
51

 
0.4

31
** 

0.5
14

***
 

-0
.23

8 
-0

.23
8 

-0
.13

7 
-0

.19
3 

0.3
44

* 
0.4

56
** 

0.2
68

 
-0

.02
1 

0.0
93

 
-0

.29
5 

0.0
65

 
-0

.17
9 

-0
.16

3 

Fe
 

0.7
64

***
 

0.1
70

 
0.6

51
***

 
0.7

40
***

 
-0

.31
8*

 
-0

.21
2 

-0
.06

3 
-0

.11
4 

0.4
91

** 
0.6

74
***

 
0.4

43
** 

0.0
57

 
0.2

02
 

-0
.24

3 
0.0

67
 

-0
.02

6 
-0

.19
1 

Ni
 

0.3
13

* 
0.0

76
 

0.1
71

 
0.2

19
 

0.0
84

 
0.0

95
 

-0
.22

9 
-0

.11
5 

0.0
74

 
0.0

43
 

-0
.16

5 
-0

.09
5 

0.0
12

 
0.0

72
 

-0
.13

3 
-0

.20
6 

0.2
36

 

Cu
 

0.7
20

***
 

0.1
88

 
0.6

18
***

 
0.6

74
***

 
-0

.13
9 

-0
.06

5 
-0

.33
9*

** 
-0

.07
0 

0.5
43

***
 

0.6
48

***
 

0.1
52

 
0.0

67
 

0.2
80

 
-0

.22
8 

0.0
68

 
-0

.05
8 

-0
.17

9 

Zn
 

0.6
46

***
 

0.1
19

 
0.6

67
***

 
0.4

96
** 

0.1
55

 
0.1

59
 

-0
.54

0*
** 

-0
.09

1 
0.5

75
***

 
0.5

42
***

 
-0

.12
2 

0.0
08

 
0.2

90
 

-0
.02

9 
-0

.13
5 

-0
.25

9 
0.1

62
 

Cd
 

0.0
27

 
0.1

48
 

0.1
59

 
0.1

47
 

-0
.22

7 
-0

.03
6 

0.2
20

 
0.0

51
 

-0
.03

1 
0.1

33
 

0.2
57

 
0.0

76
 

-0
.07

2 
0.1

74
 

-0
.04

1 
0.2

29
 

0.0
04

 

Sb
 

0.0
21

 
0.0

63
 

0.0
97

 
0.1

57
 

-0
.35

5*
 

-0
.10

7 
0.2

72
 

0.1
39

 
-0

.08
0 

0.1
26

 
0.3

15
* 

0.1
84

 
0.0

49
 

0.0
94

 
0.0

94
 

0.2
38

 
-0

.08
0 

Pb
 

0.1
20

 
0.3

18
* 

0.1
83

 
0.1

30
 

-0
.42

6*
* 

-0
.37

6*
 

0.0
10

 
-0

.07
3 

-0
.11

9 
0.0

17
 

0.0
86

 
-0

.03
9 

0.2
53

 
0.0

72
 

-0
.08

5 
0.0

59
 

0.0
32

 

   

225



a)

b)

d)

c)

r = 0.764
p <0.001 

r = 0.120
p =  0.460

r = 0.313
p  <0.05 

r = 0.382
p <0.01 

χLF x 10-7m3kg-1

Pb
 (m

g g
-1

)

0 20 40 60 80
0.00

0.05

0.10

0.15

χLF x 10-7m3kg-1

Cr
 (m

g g
-1

)

0 20 40 60 80
0.00

0.02

0.04

0.06

0.08

χLF x 10-7m3kg-1

Ni
 (m

g g
-1

)

0 20 40 60 80
0.000

0.002

0.004

0.006

0.008

χLF x 10-7m3kg-1
Fe

 (m
g g

-1
)

0 20 40 60 80
0

10

20

30

40

 

Figure 5.30 Bivariate plots for selected mineral magnetic and geochemical parameters for 
MBR (London) RDS (n = 61). 
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Figure 5.31 Bivariate plots for selected mineral magnetic and geochemical parameters for 
MBR (London) RDS (n = 61).
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Weak relationships are found between χARM/SIRM, SIRM/ARM versus all other geochemical 

parameters and indicate that mineral magnetic grain size is not influenced by the geochemical 

composition of Marylebone Road RDS. This is further supported by the few linkages found with 

χFD%, SIRM/χ and most geochemical parameters. χLF, χARM and SIRM versus Fe correlation 

suggest an increase in mineral magnetic concentration leads to an increase in the magnetic 

phase of Fe (Fe3O4). However, those relationships with the strongest correlation coefficient 

values suggest that the magnetic material present in Marylebone Road RDS derives from 

anthropogenic activity, most notably road traffic. 
 
5.4.5 Further investigation using SEM 
A visual comparison of SEM micrographs taken of Marylebone Road RDS illustrates the 

differences and similarities between the RDS collected at each location and for other studies 

(Figure 3.16). Figure 5.32a shows spherical Fe oxide particles observed from an SP road 

sample and has probably been derived from high temperature combustion processes. All other 

road samples contain almost identical Fe oxide particles and are present in various sizes (<60 

µm). Particle counts (Figure 5.33) have shown that samples taken from SP locations are more 

likely to have higher counts of fine (<20 µm) glassy iron spherules. In some sample locations, 

SP sample particle counts are two-three times that of other SF location samples. The types and 

frequency of particles suggest that they derive from traffic and industrial combustion processes. 

The results are supported by the mineral magnetic data which characterized magnetic 

particulates of RDS as being of multi-domain ferrimagnetic mineralogy and geochemical data 

which has shown the inter-relationships of specific geochemical parameters. Figure 5.32b and c 

shows typical spherical Fe oxide particles found within Marylebone Road RDS. SEM samples 

display common characteristics and are comparable to combustion particles found in this 

(Section 4.5.12) and other studies (Figure 3.16). Figure 5.32d and e shows an incomplete 

cratered sphere with recognisable surface characteristics found in other Fe oxide particles. 

Figure 5.32f shows two particles combined to produce a binary particle. 

 

5.4.6 Further assessment using factor analysis plots 
To further clarify the between-environment and physico-chemical relationships, multivariate 

factor analysis was used. In each case, parameter and sample loadings extracted from Factors 

1 and 2 were used to generate factor plots. Initially all parameters were used to generate factor 

plots. However the resultant plots (not presented) were chaotic and did not appear to show any 

clear patterns. Factor analysis was re-applied to various parameter combinations, in some 

cases excluding some parameters from the data-set, which has then resulted in the factor plots 

presented in this section. 

 

5.4.7 Factor analysis using mineral magnetic parameters 
Simultaneous R- and Q-mode factor analysis was performed by using selected mineral 

magnetic parameters. Figure 5.34 shows a factor plot created from parameter and sample 

loadings from Factors 1 and 2. The first two factors explain 57% of variation in 13 parameters, 

indicating strong positive and negative loadings on both factors. 
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Figure 5.32 SEM micrographs of Fe oxide particles in MBR (London) RDS
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Figure 5.33 SEM particle counts and particle size (%) for MBR (London) (a) SP locations 

and (b) SF locations. 
 

Loading spread indicates influence by mineral magnetic concentration, mineralogy and 

magnetic grain size parameters. Factors 1 explains 35% of variation in the parameters, with 

negative loadings of χFD%, ARM/χ and χARM/SIRM, but positive loadings of χ, χARM, 

SIRM,SoftIRM20mT, SoftIRM40mT, HardIRM300mT, HardIRM500mT, S-ratio, SIRM/ARM and SIRM/χ. Factors 

2 explains 22% of variation, suggesting a lesser influence than Factor 1. χFD%, ARM/χ and 

χARM/SIRM, HardIRM300mT, HardIRM500mT and χARM have negative loadings on Factor 1, with all 

remaining parameters having positive loadings. From the spread of sample loadings, the 

samples are influenced by both Factors 1 and 2. The distribution of the SP sample points 

indicates some similarities of magnetic properties between the samples, with positive loadings 

in line with mineral magnetic concentration parameters along Factor 1. The spread of SF 

samples indicates a positive and negative across Factor 1, with the influence of concentration, 

grain size and soft mineral magnetic parameters. The spread of samples across Factor 2 

indicates the influence of harder minerals, with an association with grain size and mineral 

magnetic concentration parameters. 

 

5.4.8 Factor analysis using selected textural parameters 
Simultaneous R- and Q-mode factor analysis was performed by using selected particle size and 

distribution parameters. Figure 5.35a shows a factor plot created from parameter and sample 

loadings from Factors 1 and 2.  
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 Parameters     
1 χLF 6 Soft IRM40mT 11 χARM/SIRM 
2 χFD 7 Hard IRM20mT 12 SIRM/ARM 
3 χARM 8 Hard IRM40mT 13 SIRM/χ 

4 SIRM 9 S-ratio   
5 Soft IRM20mT 10 ARM/χ   

      

Figure 5.34 Simultaneous R- and Q mode factor analysis plots of Factor 1 versus Factor 2, 
based on selected mineral magnetic parameters for MBR (London) RDS. 
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The first two factors extracted explain 68% of variation in the 12 parameters, indicating strong 

positive and negative loadings on both factors.  Factors 1 and 2 explain 51% and 17% of the 

variation in 10 mineral magnetic and textural parameters. The spread of loadings indicates 

some influences by both particle size and distribution. 

 

Factor 1 explains 51% of variation in parameters, with negative loadings of mean, median, 

sorting, skewness, kurtosis, sand and PM100, with all other parameters having positive loadings. 

Factor 2 explains 17% of variation, suggesting limited influence. Particle size classes (<60 µm) 

are positively loaded on Factor 2 with all remaining parameters being negatively loaded on 

Factor 2. There is no apparent separation between the loadings of the SP and SF samples due 

to mixing of samples. The loadings of the SP samples appear to be more influenced by Factor 1 

with positive loadings, whereas the SF samples appear to be influenced by Factors 1 and 2. 

The positive loadings of the SP samples along Factor 1 could indicate that the particle size 

classes (<60 µm) are the main influencing parameters.  

 

5.4.9 Factor analysis using selected geochemical parameters 

Simultaneous R- and Q-mode factor analysis was performed by using selected geochemical 

parameters. Figure 5.35b shows a factor plot created from parameter and sample loadings from 

Factors 1 and 2. The first two factors extracted explain 50% of variation in the 15 parameters.  

 

The geochemical parameters have positive and negative loadings on both extracted factors, the 

spread indicates they are influenced by various chemical association gradients. Factor 1 

explains 38% of variation in parameters, with positive loadings of Mg, Al, S, K, Ca, Ti, V, Cr, Fe, 

Ni, Cd and Pb along Factor 1 and Mn, Cu and Zn negatively loaded along Factor 1. Factor 2 

explains 12% of variation suggesting limited influence. Ti, V, Cr, Fe, Ni, Cd and Pb have positive 

loadings along Factor 2 whereas the remaining parameters are negatively loaded. 

 

The spread of samples indicates influence from both Factors 1 and 2, with sample loadings of 

SP and SF showing some separation and groupings. The SF sample loadings indicate the main 

influencing factor being on a positive Factor 1 leading into negative Factor 1. The spread of 

samples indicates the influence being pulled between Cr, Ni, V, Fe, Cd, Pb (positive Factor 1) 

and Mn, Cu, Zn (negative Factor 1). The spread of SF samples show  loadings on Factors 1 and 

2, with the main influencing factor being along a distinct geochemical gradient of Ti, V, Cr, Fe, 

Ni and Cd positive to Mn, Cu and Zn negative Factor 1 (top right to bottom left). Sample 

loadings across Factor 1 for SP and SF samples indicate an influence of a predominantly 

anthropogenic, geochemical cocktail. 

 

5.4.10 Factor analysis using key physico-chemical parameters 
Factor analysis was initially performed using the physico-chemical parameters analysed in the 

previous sections 5.4.7-5.4.9, with selected parameters used to produce an additional plot (Figure 

5.36). The first two factors extracted explain 51% of variation in the 18 parameters. 
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 Parameters       
1 χLF 6 SIRM/χ 11 Fe 16 Cd 
2 χFD 7 PM1.0 12 Pb 17 Mn 
3 χARM 8 PM2.5 13 Cr 18 Cu 
4 SIRM 9 PM10 14 Ni   
5 S-ratio 10 PM100 15 Zn   

        

Figure 5.36 Simultaneous R- and Q mode factor analysis plots of Factor 1 versus Factor 2, 
based on all selected parameters for MBR (London) RDS. 
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association gradients. Factor 1 explains 31% of variation in the parameters, Fe, Pb, PM1.0, PM2.5, 

PM10, PM100, S-ratio and SIRM/χ and have positive loadings. χ, χFD%, χARM, SIRM, Cr, Ni, Zn, Cd, 

Mn and Cu have negative loadings. Factor 2 explains 20% of variation in all 18 parameters, with 

χ, χFD%, χARM, SIRM, Fe, Pb, Cr, Ni and particle size classes (<PM10) having positive loadings 

and Mn, Zn, Cd, Cu, χFD%, S-ratio and SIRM/χ having negative loadings. 

 

The spread of samples indicates influence from both Factors 1 and 2, with sample loadings of 

SP and SF showing some separation and groupings. The SF sample loadings indicate the main 

influencing factor being on a negative Factor 1. The spread of samples indicates the influence 

being pulled between mineral magnetic concentration parameters χ, χFD%, χARM, SIRM and 

geochemical parameters Zn, Cd, Mn and Cu with the main influencing factors being along a 

distinct mineral magnetic and geochemical gradient. This grouping of elements suggests the 

influence of mechanically worn brake and tyre particles from vehicles. The spread of SF 

samples show loadings being mostly influenced by Factor 1 with the spread of samples 

concentrated within a negative Factor 1 and positive Factor 2, this indicates a mineral magnetic 

gradient of concentration and mineralogy – grain size parameters. These groupings suggest an 

influence from combustion particles, with patterns suggesting high influence of mineral magnetic 

concentration and mineralogy. The combination of SP and SF samples show a split which 

indicates samples along positive and negative Factor 2 and suggests a geochemical – particle 

size gradient. The patterns seen within Figure 5.36 reinforce the findings of Figures 5.24-5.31. 

The use of factor plots have developed knowledge of the relationships by showing relationship 

groupings of multiple parameters. This further supports the suggestion that RDS characteristics 

on Marylebone road is highly influenced by mineral magnetism and geochemistry. 

 

5.4.11 Summary for Marylebone road 
The characteristics of Marylebone road RDS show a wide range of variation over the sampling 

area. Marylebone road shows some potential for mineral magnetic and particle size proxy 

purposes to work successfully. However, geochemical correlations have given a good indication 

that mineral magnetic methods can work very well as a geochemical pollution proxy. The 

characteristics and relationships for Marylebone road RDS can be summarized as: 

 

• Magnetic properties of RDS on Marylebone road are predominantly ferromagnetic. 

• Mineral magnetic grain size remains consistently multi-domain within the study area. 

• Moderate correlations between χLF, SIRM and <PM10 (p <0.01-0.001) 

• No correlations exist between hard minerals and particle class sizes, suggesting soft 

sources only contributing to significant correlations (soft magnetic material can be 

directly linked with anthropogenic combustion sources) 

• Strong mineral magnetic and geochemical correlations (p <0.01-0.001) 
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• High mineral magnetic and geochemical concentrations found at specific locations. 

Locations can be linked to vehicle activity (start-stop points). 

• Declining concentrations spatially from start-stop points. 

• Specific geochemistry linked with start-stop points (indication of road traffic influence). 

• Inter geochemical correlations, SEM and Factor plots further suggest road traffic 

source. 

 
5.5 Relationships between mineral magnetic and textural parameters for Scunthorpe 
To assess the relationships between mineral magnetic and textural variables for Scunthorpe, 

the data set was further interrogated using all mineral magnetic and textural parameters by 

correlation statistics (Table 5.11) and graphically with the aid of bivariate plots (Figure 5.37-

5.38). Statistical tests indicate that significant (p <0.05) relationships exist between some 

mineral magnetic and textural parameters. However, it is only those relationships with the 

strongest correlation coefficients that have been selected for further examination through 

bivariate plot analysis. These are presented in Figures 5.37–5.38, which show the spread of the 

sample points in relation to the line of best fit for each set of bivariate data. Table 5.11 

summarizes the correlation statistics between the mineral magnetic variables and textural 

variables for Scunthorpe. The textural fraction of RDS displays a strong positive correlation with 

SIRM (PM1.0–PM10) with consistent weakening of the relationship through the particle size range 

(r = -0.537 to -0.689; p <0.001, n = 34). Strongest correlation coefficients were evident between 

magnetic concentration dependent parameters SIRM versus PM 2.5 (r = 0.689; p <0.001 (Figure 

5.37a)). Some mineral magnetic concentrations have strong negative correlations with the finer 

fraction of RDS (PM1.0–PM10). 

However, the weakest correlation coefficients were associated with Hard% parameters (r = 

0.043; p = 0.805 (NS)), suggesting that hard mineralogy had no influence on the relationships 

found. Sand, silt and PM100 -sized particles were not significantly correlated with any mineral 

magnetic parameters. Figure 5.37a-c shows strong negative correlations between SIRM versus 

textural parameters <PM 10, all displaying significant correlations (p <0.001). Figure 5.38a shows 

bivariate relationships between Soft%20mT and PM2.5 which shows a moderate positive 

correlation (r = 0.346; p <0.01). Figure 5.38b shows strengthened correlation with Soft%20mT and 

PM10 (r = 0.459; p <0.01). This relationship is also evident with other magnetic mineralogy 

dependent parameters, SoftIRM20mT and SoftIRM40mT correlate with fine textural parameters 

(<PM10). The strongest correlation coefficient for SoftIRM20mT is with PM10 (r = 0.267; p <0.05) 

and SoftIRM40mT  with PM2.5 (r = 0.289; p <0.05). 

 

Figure 5.38c shows the strong negative correlation between the S-ratio and PM10 (r = -0.529; p 

<0.01). The negative correlation is also evident throughout the <PM10 size range (r = -0.406 to -

0.480; p <0.01) and successively increases in strength with increasing particle size. SIRM/χ 

displayed some weak correlations with the median (r = 0.223; p <0.05) and mean (r = 0.306; p 

<0.05) for RDS and also PM1.0 (r = 0.234; p <0.05). Almost all other mineral magnetic variables 

and textural variables are not strongly correlated (i.e. most correlation coefficients are ca. r = 

≤0.1 to -0.3 and are not statistically significant (p <0.05).  
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Figure 5.37 Bivariate plots for selected mineral magnetic and textural parameters for 

Scunthorpe RDS (n = 34). 
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Figure 5.38 Bivariate plots for selected mineral magnetic and textural parameters for 

Scunthorpe RDS (n = 34). 
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This suggests that the texture of RDS does not strongly control the mineral magnetic 

assemblages in Scunthorpe. However, those few relationships that are statistically significant 

appear to be related to the magnetic mineralogy variables. Mineral magnetic concentration 

parameter SIRM has shown the greatest potential for particle size relationships. The statistical 

tests indicate that a low significant relationship exists between all other mineral magnetic and 

textural variables (p <0.05). 

 

5.6 Further investigation using spatial, SEM and factor plot characterization of 
Scunthorpe physical-characteristics. 

Statistical and graphical techniques indicate that significant variations exist in the 

sedimentological characteristics of the surface sediments in Scunthorpe. So far, it has been 

demonstrated ‘how’ the samples vary, in terms of their mineral magnetic and textural properties, 

and that some of this variation is associated with differences in sedimentary environments. 

However, the geographical relationships between adjacent samples have not been addressed, 

nor has an environmental explanation for ‘why’ the variations exist been given. Therefore, the 

mineral magnetic and textural data were used to generate GIS images to determine the nature 

of any spatial variation.  

 

5.6.1 Spatial characterization of mineral magnetic and textural data 
Statistical and graphical techniques indicate significant variations in physical characteristics of 

Scunthorpe RDS. However, bivariate plots and Mann-Whitney U tests used failed to show 

geographical relationships between adjacent samples. Therefore, the χLF data have been used 

to generate GIS images (Figure 5.39–5.40), determining the nature of spatial variations. 

Baseline maps were created in Arcview GIS (version 10), forming visual representations of χLF 

characteristics and patterns. The masked boundary excludes unsampled areas. 

 

Variation of χLF is show in Figure 5.39. There are several distinct observations that can be made 

regarding concentrations of χLF in the sampling area. There are very high concentrations of 

magnetic material to the east of the town and this can be distinctly seen by a clear line which 

divides the east and west of the town. These are highlighted in Table 5.12, with high 

concentrations to the east (χLF 123.341 x 10-7m3kg-1) and low to the west (χLF 14.589 x           

10-7m3kg-1). There are consistently low mineral magnetic concentrations associated with the 

west of the town with a few exceptions which can be linked to the main road system (viii and ix), 

which display high χLF concentrations (90.564-96.259 x 10-7m3kg-1).  The higher concentrations 

of magnetic material to the east of the town appear to be widespread and not solely contained 

to any particular road system, as previously discovered in other towns. The concentrations are 

also higher than any other found within the sampled towns. The mineral magnetic 

concentrations within the west side of the town appear to be low to moderate levels compared 

to other sampled towns. Details of Scunthorpe land use can be seen in Appendix 5.5.6. Figure 

5.40 shows how the east of the town is dominated by mineral magnetic and geochemical highs, 

with the west of the town experiencing relative lows. 
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Figure 5.39 Spatial distribution of χLF concentrations in Scunthorpe RDS. 
 

Table 5.12 χLF concentrations for specific sites in Scunthorpe 
 

 Sample χLF   Sample χLF 

i 12 25.501  vi 33 14.589 

ii 7 94.044  vii 24 20.875 

iii 2 95.036  viii 21 96.259 

iv 5 123.341  ix 19 90.564 

v 26 26.899     
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Figure 5.40 Spatial distributions of selected mineral magnetic and geochemical parameters 

from Scunthorpe RDS. 
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Figure 5.40a shows the high and low χARM concentrations across the sampling area and 

indicates that most fine mineral magnetic material is located due east, near the steel works and 

to the south-east of the A18 main carriageway. Figure 5.40b shows a similar GIS image with 

high concentrations of SIRM directly to the east of the town, a solitary high point can be 

observed to the west on the A18 main carriageway. This sample point is close to the rail 

network line which may be an influencing factor. Figure 5.40c shows the high concentrations of 

Fe to the south-west and the moderate concentrations throughout the central and eastern parts 

of the town. Figure 5.40d shows high concentrations of Cr north and east of Scunthorpe. The 

high concentrations of Fe and Cr to the west suggest that the steel works (SW) may be a major 

influencing factor to the geochemical environment. East of Scunthorpe has major steel 

industries which are renowned for contributing to poor local air quality which are detailed in the 

Action Plan for Scunthorpe AQMA (North Lincolnshire Council, 2008, Appendix 7.3). Appendix 

5.5.7 shows the Air quality Management Area (AQMA) for Scunthorpe and the coinciding 

samples which fall within and close to this catchment area. Appendix 5.5.7 also shows the 

radius from the main foundry stack moving out towards the edge of the AQMA and 

encompassing a further area to the south west. The eastern side of Scunthorpe has been 

identified as steelworks (SW) due to the proximity of industry and physico-chemical 

characteristics (high mineral magnetic and geochemical concentrations). The west is identified 

as road network (RN) (due to comparable concentrations of mineral magnetic and geochemistry 

found at other UK road sites) for graphical purposes. In comparison non-combustion 

geochemistry (Al, Ca, K and Si) displays opposite patterns (Appendix 6.1-6.4) to that of 

combustion geochemistry, with higher concentrations within the West and South of the town. 

The concentrations of Al, Ca, K and Si suggest natural background and non-anthropogenic 

sources and show some mixing into areas of anthropogenic activity. This is also evident in 

appendix 6.5-6.8 when geochemistry is compared in Wolverhampton.  

 

Figure 5.41a shows the bivariate relationship between χLF versus Distance to steel works. The 

correlation shows a moderate negative correlation, which indicates increased magnetic material 

closer to the SW (r = -0.462; p <0.01). This relationship is also apparent within other mineral 

magnetic parameters, χARM (r = -0.459; p <0.01 (Figure 5.41b)) and SIRM (r = -0.447; p <0.01 

(Figure 5.41c)). Figure 5.41b shows a cluster of high values of χARM in close proximity to the SW 

and suggests that higher concentrations of fine magnetic material is deposited close to industry. 

 

Figure 5.42a shows the bivariate plot of the S-ratio versus distance to SW (r = 0.055; p = 0.756) 

and indicates a relative uniform dispersion of soft magnetic minerals across the sampling area. 

This is also seen in Figure 5.42b with SIRM/χ versus distance to SW (r = -0.252; p = 0.157) with 

a group of two clusters, which show that samples closer to the SW have higher values. Particle 

class sizes relative consistency in terms of distance to SW. Figure 5.42c shows the median 

particle size versus distance to SW and displays no significant correlation (r = 0.114; p = 0.519). 

From the bivariate plot it can been seen that the spread of samples is relatively uniform. 
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Figure 5.41 Bivariate plots of selected mineral magnetic concentration parameters versus 
distance from the main Scunthorpe industrial steel works. 
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Figure 5.42 Bivariate plots of selected parameters versus distance from the main 
Scunthorpe industrial steel works. 
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Figure 5.43a shows the bivariate spread of Fe versus distance to SW, a moderately strong 

correlation exists (r = -0.584; p <0.01) and suggests the concentration of Fe increases closer to 

the SW. Figure 5.43b shows a similar relationship with Cr versus distance to SW (r = -0.450; p 

<0.01) and further supports the indication that the SW is a major influencing factor in physico-

geochemical characteristics of Scunthorpe RDS. 

 
5.6.2 Relationships between geochemical parameters 

The results for Scunthorpe samples show some of the geochemical parameters exhibiting 

strong inter-correlations (p <0.05-<0.001) (Table 5.13). The strongest correlation coefficients 

exist between Al, Ti, V versus Ca, with Al versus V being the strongest (r = 0.850; p <0.001), Al 

and Ti (r = 0.843; p = <0.001) and Ti and V (r = 0.821; p <0.001). The relationships between Al 

versus K, Al versus Ca and Mg versus Ca (p <0.01-<0.001) suggest some influence from crustal 

sources to Scunthorpe RDS. The weakest correlation coefficients are associated between Cd 

and all other geochemical parameters (r = 0.036–0.310; p <0.05). 

 

Figure 5.44a shows strong positive correlation of Fe versus Cr (r = 0.636; p <0.001), increasing 

Fe concentrations indicate an increase in Ni (Figure 5.44b) with strong correlation (r = 0.637; p 

<0.001). This is also apparent in Figure 5.44c with additional increase of Fe and Mn (r = 0.630; 

p <0.001) and Figure 5.44d with Fe versus Cu (r = 0.523; p <0.001). The results for Figure 5.44 

show strong positive correlation between selected geochemical parameters and suggest an 

influence of combustion–industrial particles on Scunthorpe RDS. The strength of these 

correlations suggests the characteristics of specific geochemical properties are highly 

dependent upon each other. The statistical tests indicate that significant relationships exist 

between groups of geochemical variables (p <0.05), most notably crustal and combustion 

related geochemical combinations. 

 

5.6.3 Relationships between the mineral magnetic and geochemical parameters 
Table 5.14 summarizes the correlation statistics between mineral magnetic and geochemical 

parameters for Scunthorpe. Many mineral magnetic concentration and geochemical parameters 

are strongly related (i.e. most correlation of coefficient values are ca. r = ≤0.382–0.764). Strong 

positive correlation coefficients exist between χLF and some geochemical parameters. Figure 

5.45a shows the strong positive correlation between χLF versus Fe (r = 0.789; p <0.001), 

indicating an influence of ferromagnetic grains. Figure 5.45b shows strong positive correlation 

between χLF versus Cr (r = 0.637; p <0.001) and χLF versus Ni (r = 0.738; p <0.001 (Figure 

5.45c)). Strong positive correlations were also found with χLF versus Mn (r = 0.568; p <0.01 

(Figure 5.46a)) and χLF versus Cu (r = 0.533; p <0.01 (Figure 5.46b)). These positive 

relationships are also apparent for other mineral magnetic concentration parameters, χARM and 

SIRM. χARM versus Fe (r = 0.791; p <0.001), SIRM versus Fe (r = 0.652 p <0.001) (Figure 

5.46c)). Weak correlations were found between the crustal elements Al, S, Ca and mineral 

magnetic concentration parameters. Results indicate mineral magnetic concentration 

parameters identify the soft ferromagnetic phase of anthropogenic particles and suggest the 

chemistry does influence mineral magnetic assemblages in Scunthorpe RDS. 

246



a)

b)

r = -0.584
p <0.01 

r = -0.450
p <0.01

Distance from steel works (Metres)

Fe

0 2000 4000 6000
0

50

100

150

Distance from steel works (Metres)

Cr

0 2000 4000 6000
0.00

0.02

0.04

0.06

 
 

Figure 5.43 Bivariate plots of selected geochemical parameters versus distance from the 
main Scunthorpe industrial steel works 
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Figure 5.44 Bivariate plots of selected geochemical parameters for Scunthorpe RDS (n = 34).  
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Figure 5.45 Bivariate plots of selected mineral magnetic concentration (χLF) versus 
geochemical parameters for Scunthorpe RDS (n = 34). 
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Figure 5.46 Bivariate plots of selected mineral magnetic concentration (χLF) versus 
geochemical parameters for Scunthorpe RDS (n = 34). 
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5.6.4 Further investigation using SEM 
Figure 5.47a shows a spherical Fe oxide particle observed from west Scunthorpe RDS samples 

and is likely to have been derived from high temperature combustion processes. RDS samples 

contain almost identical Fe oxide particles and ranges (<60 µm). Figure 5.47b shows a typical 

spherical Fe oxide particle which is comparable to those found in other studies (Figure 3.16). 

Not all spheres were identical but do display common characteristics. Figure 5.47c shows a 

typical particle found in Scunthorpe. Particle counts (Figure 5.48) show that samples taken from 

near the SW tend to have higher counts of glassy iron spherules. Overall, limited differences 

have been found within the physio-chemical appearance of particles found in and around the 

sampling area. The main differences are in distinctive sample locations, Fe oxide particles close 

to the SW are up to five times that of west Scunthorpe. The types and frequency of particles 

suggest that they derive from traffic and industrial combustion processes. The results support 

the mineral magnetic and geochemical data, which characterized magnetic particulates of RDS 

as being of multi-domain soft-ferrimagnetic mineralogy. Figure 5.47d shows an Fe oxide particle 

which is virtually identical to those found in west Scunthorpe. Figure 5.47e and f show particles 

observed in west Scunthorpe and display mutated appearance, with droplet shapes and surface 

characteristics of combustion particles. 

 
5.6.5 Further assessment using factor analysis plots 
Initially all parameters were used to generate Factor Plots. However, the resultant plots (not 

presented) did not show any clear patterns. Factor analysis was re-applied to various parameter 

combinations, in some cases excluding some parameters from the data-set. 

 
5.6.6 Factor analysis using mineral magnetic parameters 
Simultaneous R- and Q-mode factor analysis was performed by using selected mineral 

magnetic parameters. Figure 5.49 shows a factor plot created from parameter and sample 

loadings from Factors 1 and 2. The first two factors explain 50% of variation in 13 parameters, 

indicating strong positive and negative loadings on both factors. The spread of loadings 

indicates influence by mineral magnetic concentration and mineralogy and magnetic grain size 

parameters.  

 

Factors 1 explains 32% of variation in the parameters, with negative loadings of S-ratio and 

SIRM/ARM, but positive loadings of χ, χFD%, χARM, SIRM, SoftIRM20mT, SoftIRM40mT, HardIRM300mT, 

HardIRM500mT, ARM/χ and χARM/SIRM, and SIRM/χ. Factors 2 explains 18% of variation, suggesting 

a lesser influence than Factor 1.S-ratio and SIRM/ARM and χARM/SIRM, HardIRM300mT have 

negative loadings on Factor 2 with all χFD%, χARM, HardIRM500mT, ARM/χ, SIRM/χ parameters having 

positive loadings. 

 

From the spread of sample loadings, the samples are influenced by both Factors 1 and 2. The 

distribution of the SW sample points indicates a major influence along Factor 1 with some 

similarities of magnetic properties between the samples and display positive to negative 

loadings along Factor 1 (top left to bottom left).  
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Figure 5.47 SEM micrographs of Fe oxide particles in Scunthorpe RDS
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Figure 5.48 SEM particle counts and particle size (%) for a) Steel Works, b) Road Network. 

 

There is an indication of influence from grain size and mineralogy parameters for the SW 

samples. The spread of samples across the RN samples indicates an influence from Factors 1 

and 2. The sample loadings for the RN samples shows a positive to negative influence along 

Factor 1, suggesting some mineral magnetic concentration, magnetic grain size and mineralogy 

influence. 

 
5.6.7 Factor analysis using selected textural parameters 
Simultaneous R- and Q-mode factor analysis was performed using selected particle size and 

distribution parameters. Figure 5.50a shows a factor plot created from parameter and sample 

loadings from Factors 1 and 2. The first two factors extracted explain 73% of variation in the 12 

parameters, indicating strong positive and negative loadings on both factors.  Factors 1 and 2 

explain 58% and 15% of the variation in 10 mineral magnetic and textural parameters used. The 

spread of loadings indicate some influences by both particle size and distribution. Factor 1 

explains 58% of variation in parameters, with positive loadings of all parameters mean, median, 

sorting, skewness, kurtosis, sand, silt clay, PM100, PM10, PM2.5 and PM1.0, Factor 2 explains 15% 

of variation, suggesting limited influence. Distribution parameters include, mean, median, 

skewness, sorting, kurtosis and PM100. Sample loadings are influenced by Factors 1 and 2 

appearing more influenced by Factor 1. Sample groupings show separation with SW samples 

(positively-negatively loaded along Factor 1) and display no influence on any parameter. 
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 Parameters     
1 χLF 6 Soft IRM40mT 11 χARM/SIRM 
2 χFD 7 Hard IRM20mT 12 SIRM/ARM 
3 χARM 8 Hard IRM40mT 13 SIRM/χ 

4 SIRM 9 S-ratio   
5 Soft IRM20mT 10 ARM/χ   

      

Figure 5.49 Simultaneous R- and Q mode factor analysis plots of Factor 1 versus Factor 2, 
based on selected mineral magnetic for parameters Scunthorpe RDS.
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RN sample loadings show a positive sample loading along Factor 1, with some positive 

influence along Factor 2. RN sample loadings display weak influences from distribution and 

particle size parameters. 

 

5.6.8 Factor analysis using selected geochemical parameters 

Simultaneous R- and Q-mode factor analysis was performed using selected geochemical 

parameters. Figure 5.50b shows a factor plot created from parameter and sample loadings from 

Factors 1 and 2. The first two factors extracted explain 53% of variation in the 15 parameters. 

The geochemical parameters have positive and negative loadings on both extracted factors, the 

spread of which indicated they are influenced by various chemical association gradients. 

 

Factor 1 explains 36% of variation in parameters, with positive loadings of Mg, Al, S, K, Ca, Ti, 

V, Cr, Fe, Ni, Cd, Mn, Cu and Zn along Factor 1 with no parameters negatively loaded along 

Factor 1. Factor 2 explains 17% of variation, suggesting limited influence Fe, Mn, Cr, Ni, Cd, Zn 

V and Pb. These all have positive loadings along Factor 2, with no parameters negatively 

loaded. The spread of samples indicates influence from both Factors 1 and 2, with sample 

loadings of SW and RN showing some separation and groupings. The SW sample loadings 

indicate the main influencing factor as positive Factor 1, leading into negative Factor 1. Sample 

spread indicates the influence of anthropogenic geochemical influences (Cr, Me, Ni and Fe). 

The RN sample loadings indicate a similar influence along Factor 1, but also  negative-positive 

Factor 2, with indication of natural background (Al, Ca, K and S) influences.  

 
5.6.9 Factor analysis using key physico-chemical parameters 
Factor analysis was initially performed using the physico-chemical parameters analysed in the 

previous plots (Sections 5.6.6–5.6.8). The first two factors extracted explain 58% of variation in 

the 18 parameters. Figure 5.51 shows a factor plot created from parameter and sample 

loadings from Factors 1 and 2. The physico-chemical parameters have positive and negative 

loadings on both extracted factors. Factor 1 explains 37% of variation in the parameters: 

χ, χARM, SIRM, PM1.0, PM2.5, PM10, PM100, Fe, Zn, Ni, Mn, Cd, Pb and  Cu, where all have positive 

loadings. However χ FD%, S-ratio, SIRM/χ and Cr have negative loadings. Factor 2 explains 21% 

of the variation in all 18 parameters, with χ, χARM, SIRM,  Fe, Zn, Ni, Mn, Cd, Pb and  Cu having 

positive loadings and the S-ratio having negative loadings. 

 
The spread of samples indicates influence from both Factors 1 and 2, with sample loadings of 

SW and RN showing some separation and groupings. The SW sample loadings indicate the 

main influencing factor being positive leading into a negative Factor 1 (top right to bottom left). 

The spread of samples indicates the influence being pulled between mineral magnetic 

concentration parameters χ, χARM, SIRM, geochemical parameters Fe, Zn, Ni, Mn, Cd, Pb and  

Cu and the S-ratio. The spread of RN samples show loadings mostly influenced by a positive-

negative Factor 1 with main influencing parameters indicating a mineral magnetic gradient of 

mineralogy and grain size parameters. None of the particle size parameters appear to have 

detectable influencing factors. 
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 Parameters       
1 χLF 6 SIRM/χ 11 Fe 16 Cd 
2 χFD 7 PM1.0 12 Pb 17 Mn 
3 χARM 8 PM2.5 13 Cr 18 Cu 
4 SIRM 9 PM10 14 Ni   
5 S-ratio 10 PM100 15 Zn   

        

 
Figure 5.51 Simultaneous R- and Q mode factor analysis plots of Factor 1 versus Factor 2, 

based on characteristics for selected parameters for Scunthorpe RDS. 
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5.6.10 Summary for Scunthorpe 
The characteristics of Scunthorpe RDS show a wide range of variation over the sampling area. 

Scunthorpe shows some potential for a mineral magnetic - particle size proxy. Geochemical 

correlations give a good indication that mineral magnetic methods can work very well as a 

geochemical pollution proxy in this area. The characteristics and relationships for Scunthorpe 

RDS can be summarized as: 

 

• Magnetic properties of RDS in Scunthorpe are predominantly ferromagnetic. 

• High concentrations of magnetic minerals found (Highest within UK samples). 

• Mineral magnetic grain size remains consistently multi-domain within the study area. 

• Good correlations between SIRM and <PM10 (p <0.001). 

• No Hard minerals correlate with particle class sizes, suggesting soft sources 

contributing to significant correlations (soft magnetic material can be directly linked with 

anthropogenic combustion sources). 

• Strong mineral magnetic and geochemical correlations (p <0.01-0.001). 

• High mineral magnetic and geochemical concentrations found at specific locations 

(found within the Scunthorpe AQMA).  

• East-west concentration boundary, with high concentrations of magnetic material found 

within close proximity to industry. 

• Specific geochemistry linked with east side and industry. GIS and statistical analysis of 

geochemistry show a combination of natural background and anthropogenic sources 

which suggest mixing in areas. 

• Inter geochemical correlations, SEM and Factor plots further suggest road traffic and 

industrial sources. 

 
5.7 Selected towns and cities of the UK sample summary 

All town samples indicate a large proportion of coarse grained particles (χFD% mean 1.379-

2.183) with relatively high χLF (17.730-61.720 x 10-7m3kg-1) and soft behaviour, with low 

concentrations of hard minerals. Levels of χARM/SIRM suggest the dominant magnetic 

component comprises multi-domain (MD) grains of ferromagnetic minerals, with 

superparamagnetic (SP) and stable single domain (SSD) ferromagnetic grains and non-

ferrimagnetic minerals present in low concentrations. The RDS in the selected UK towns and 

cities is an admixture of natural and anthropogenic components, both contain magnetic mineral 

fractions with specific magnetic properties. Results suggested a low to high level of mineral 

magnetic parameter concentrations, with an indication that the magnetic properties of the 

sediments are similar to intermediate igneous rocks, basic/ultra-basic rocks and ferromagnetic 

minerals with moderate to high concentrations of magnetically soft minerals. Organic matter 

content was low in all samples. Due to the low values the diluting effect on the magnetic 

concentrations was not significant. 
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Few mineral magnetic and particle size linkages have been found in the selected towns and 

cities. Those locations which have shown potential show that geochemical parameters and the 

environment could be influencing factors for mineral magnetic and particle size relationships. By 

further investigating the potential proxy locations (London and Scunthorpe), it has been 

demonstrated that mineral magnetic concentration parameters can be used with confidence to 

identify potential sites of specific anthropogenic pollution. Sample analysis of London (MBR) 

has shown the potential for mineral magnetic measurements to identify ‘start-stop’ vehicle 

locations, via increased concentrations of Zn, Mn and Cu. Mineral magnetic concentration 

parameters have also shown the potential to identify relationships with other anthropogenic 

geochemical influences, notably from combustion (Fe, Pb). Investigation of the geochemical 

relationships have suggested the presence of crustal and predominantly anthropogenic sources 

of elements.  

 

Spatial analysis for Scunthorpe displayed a distinct difference in mineral magnetic 

concentrations between the east and west. Mineral magnetic concentration parameters, when 

used in conjunction with geochemical parameters, have successfully determined specific 

environmental magneto-physico signatures. Scunthorpe has been identified as a sink for 

anthropogenic combustion and industrial particles, due to local steel works. Mineral magnetic 

concentration parameters identified high concentrations of magnetic material with an associated 

particle size linkage.  

 

The geochemical compositions for both locations are mainly anthropogenic, but do posses 

differing signatures due to location activity. The resulting correlations found within London and 

Scunthorpe suggests that unique environments, which are dominant and relatively isolated, 

have large influences on mineral magnetic and particle size associations. 

 

SEM micrographs and multivariate techniques supported some of the assumptions that the 

samples are influenced by mineral magnetic and geochemical parameters, but have also shown 

the limited influence particle size has on RDS and the other parameters. 

 

The use of mineral magnetic techniques in the analysis of RDS for selected towns and cities 

has shown good potential for identifying sites of localized geochemical pollution, but very limited 

potential for mineral magnetic concentration parameters to be used as a particle size proxy. 

This has been shown through analysis of all parameters which have displayed weak or no 

relationships. It is only sites with a dominant anthropogenic activity that have shown some 

potential. The results show that there are complex linkages between particle size, mineral 

magnetic and geochemical parameters that differ, depending on location and environmental 

circumstances. 
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In Summary:  

• Magnetic properties of RDS in UK towns are predominantly ferromagnetic. 

• Mineral magnetic concentrations vary spatially and appear to reflect anthropogenic 

activity in the locality. 

• Mineral magnetic grain size remains predominantly multi-domain within the study areas 

• Several sites contain a mixture of coarse and fine grained magnetic material suggesting 

a number of influences. 

• The predominantly coarse / multi domain magnetic material appears to be related to 

higher mineral magnetic concentrations and anthropogenic sources. 

• Results suggest linkages and similarities for parameters between the more developed 

towns, which could be linked to industry, land-use and population. 

• Few correlations have been found within the study areas and are not suitable for 

particle size proxy purposes. 

• Correlations that are evident appear to relate to the direct environmental conditions of 

the location and justify further investigation to establish if suitable for proxy purposes.  

• Specific geochemistry linked with locations. Anthropogenic and crustal geochemistry 

showing distinct areas of dominance and some mixing. 

• Results suggest mixing of geochemical sources, shown within the GIS of Scunthorpe 

and Wolverhampton.  

• Strong mineral magnetic and geochemical correlations (p <0.01-0.001) have been 

found at various sites and suggest the suitability of mineral magnetic measurements as 

a geochemical pollution proxy. 

• Inter geochemical correlations, SEM and Factor plots further suggest road traffic and 

industrial sources at most locations. 
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Chapter 6 
Mineral magnetic measurements as a proxy for evaluating pollution and sediment texture  
 

6.1 Introduction 
Chapter 6 collates the findings of Chapters 4 and 5 and contextualises the information within the 

framework of existing knowledge. Moreover, factors influencing sediment relationships and 

proxy reliability are further examined to create a means of determining whether users can be 

certain of relationships between RDS and mineral magnetic properties. This is achieved through: 

(i) examining spatial and temporal patterns to provide linkages to urban sediment systems; (ii) 

exploring magnetic–textural proxy relationships to reveal insights into sediment dynamics; and 

(iii) investigating the factors that influence the reliability of mineral magnetics as a texture proxy, 

so as to create a conceptual appreciation for its application. 

 

6.2 Insight from spatial and temporal patterns 
This Section compares the findings of Wolverhampton, the West Midlands air monitoring 

stations and the selected towns and cities with those of other UK and global studies, which 

facilitates linkages to built environment sediment systems. 

 
Concentrations of magnetic material in this study are notably high compared to other 

Wolverhampton data sets (Booth et al., 2006; Power et al., 2006), double those of Manchester 

(Robertson et al., 2003), yet similar to Liverpool (Xie et al., 2001). Compared to global studies, 

Wolverhampton values are similar to other large cities, such as Kathmandu (Gautam et al., 

2005), Madrid, (McIntosh et al., 2007), Seoul (Kim et al., 2007), Shanghai (Tanner et al., 2008), 

Beijing (Zheng and Zhang, 2008) Lanzhou (Wang et al., 2012) and Loudi  (Zhang et al., 2012). 

 

Spatial data comparisons have highlighted distinct concentration anomalies, which may be 

associated with intensities of traffic volume and industrial land use. Moreno et al. (2003) and 

Sheng-Gao et al. (2008) indicated high magnetic concentrations and relatively larger domain 

sizes of magnetic particles alongside roads with high volumes of vehicle traffic. The same 

relationships are evident at Wolverhampton sites, with highest concentration values associated 

with high volume traffic roads and near railways. Moreno et al. (2003) also found a decrease in 

concentration and grain size of magnetic particles with distance from roadsides, which 

supported the inference of particulate pollution linked to vehicle emissions. Applying the same 

analogy, lowest concentration values are associated with residential roads with low volumes of 

traffic, which illustrate mineral magnetic methods could be used as a potential pollution proxy. 

However, this would necessitate a further study, separate from the aims and objectives of this 

study. 

 

Concentrations of magnetic material for some Wolverhampton sites illustrate low intra-site 

variability with time and can be mostly predicted (e.g. site 15 always contained low 

concentrations). Similarly, high inter-site variability can also be predicted (e.g. site 15 always 

has lower concentrations than sites 27 and 29). This evidence suggests there is minimal wider 
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source ingress or loss of RDS at the sites and/or source volumes are kept relatively constant 

with time. Based on the earlier pollution assumption, this indicates minimal differences in levels 

of anthropogenic activity with time (i.e. traffic levels are not seasonal dependent-residential 

roads (e.g. site 15) do not get any busier than corresponding arterial roads (e.g. site 29) during 

specific seasons.  

 

Trends within intra-site variability reveal possible seasonal influences, which appear to be 

associated with specific weather conditions (Appendix 4.3). For instance, there are increases in 

magnetic material during the warmer drier months, compared to decreases in magnetic material 

during the cooler wetter months. Ideally, a longer study would be needed to verify this statement. 

However, this observation is supported by Xie et al. (2001), who found χLF concentrations were 

higher during summer months (χLF  74.5 x 10-7m3kg-1) than winter months (χLF 55.8 x 10-7m3kg-1) 

in Liverpool. Conversely, Kim et al. (2009) found highs of magnetic material during cooler 

months (SIRM 596.25 x 10-4Am2kg-1) than warmer months (SIRM 283.85 x 10-4Am2kg-1) Seoul 

has a monsoonal climate: dry cool winters; warm wet summers. So, in winter in Seoul, RDS 

would accumulate and not be washed much. Wolverhampton has rainfall all year round. Either 

way, in line with other studies, this indicates weather conditions may play important roles in the 

build-up and dilution effect of RDS (Figure 2.13); whereby, rainfall can dilute or washout 

particulates, via surface runoff to gully pots and other drainage systems (Lee et al., 2005; Kim et 

al., 2009). Davis and Birch (2010) identified significant pollutants in storm-water runoff 

associated with busy urban roads. Similarly, prolonged dry spells influence residence times of 

ground-level street dusts (Akhter and Madany, 1993). 

 

Concentration of ASU magnetic material in this study is relatively consistent between sites 

(Birmingham (mean χLF 11.376  x 10-7m3kg-1), Leamington Spa (mean χLF  22.592 x 10-7m3kg-1) 

and Coventry (mean χLF  16.193 x 10-7m3kg-1) are similar), with the exception of Wolverhampton 

(mean χLF 41.880  x 10-7m3kg-1). This is probably because the Wolverhampton ASU site is 

located within a busy city centre; whereas, the other sites are adjacent to car parks, urban back 

streets and parks. Therefore, site proximity to busy arterial roads is a probable influencing factor. 

Similar results have been found in other major cities, Kim et al. (2009) and Yang et al. (2010) 

reported high χLF concentrations in RDS near main roads and lower concentrations near green 

open park areas, which allowed the inference of anthropogenic sources from vehicles.  

 
Mineral magnetic concentrations of the selected towns and cities in this study show a wide 

range of values (Scunthorpe, mean χLF   61.720 x 10-7m3kg-1 and Norwich, mean χLF 17.730  x 

10-7m3kg-1), but the range is comparable to other UK studies. For instance, χLF values range 

from 16.8-116.6  x 10-7m3kg-1 for Liverpool (Xie et al., 2001), range from 14.33-27.95 x            

10-7m3kg-1 for Southport (Booth et al., 2007) and range from 14.91-111.21 x 10-7m3kg-1 for 

Wolverhampton (Shilton et al., 2005). This is further supported by the similarity of the Salford 

values (mean 35.570  x 10-7m3kg-1) of this study compared to those of a nearby study (χLF  27.8 

x 10-7m3kg-1) conducted by Robertson et al. (2003), who proposed vehicle-derived particles as 

the principal sediment source.  
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Despite the towns and cities having comparable values to other UK places, the range of values 

for individual places reveals unique signatures that indicate discrete characteristics, which may 

reflect particular sources and distinct environmental surroundings. For instance, Scunthorpe is a 

predominantly industrial town and has exceptionally high values (mean 61.720 x 10-7m3kg-1); 

Salford is a densely populated city with high volume major transport routes and moderate to 

high values (mean 35.570 x 10-7m3kg-1). In contrast, Oswestry and Dumfries are small towns 

situated away from major transport routes, have no sizeable industry and have low values 

(means 21.510, 22.920  x 10-7m3kg-1, respectively). 

 

Charlesworth et al. (2003) studied RDS in Birmingham and Coventry and found high 

concentrations of magnetic material associated with industrial and high traffic volume areas, 

and low mineral magnetic concentrations associated with residential and park areas. Despite 

both cities having similar variability, their concentrations were notably different. Elsewhere, 

Yang et al. (2010) showed park areas with low mineral magnetic concentrations (SIRM 112.91 x 

10-4Am2kg-1) compared to industrial areas (SIRM 162.60 x 10-4Am2kg-1). Kim et al. (2009) found 

high variability (χLF) in Seoul (South Korea) when traffic flow into the City exceeded an 

estimated 90,000 vehicles per day. The size of urban areas appears to elevate concentrations, 

with Charlesworth et al. (2003) demonstrating linkages between population size and potential 

input of heavy metals to RDS in urban areas. 

 

To surmise the spatial and temporal patterns section, it has been shown that this study has 

comparable values to previous studies, which suggest specific sediment sources may play 

significant roles in the magnetic signatures of individual places and their site-related variability. 

Furthermore, both natural and built environment processes influence RDS properties and their 

dynamics within the urban sediment system. 

 

6.3 Magnetic-textural proxy relationships 
This Section compares the proxy findings of Wolverhampton, the West Midlands air monitoring 

stations and the selected towns and cities with those of other UK and global studies. These 

comparisons may reveal insights into urban sediment transport dynamics that may influence the 

potential use of magnetic measurements as a pollution and/or texture proxy. 

 

With the exception of a few relatively weak significant correlations between mineral magnetic 

and textural parameters (χLF versus clay r = 0.125; p <0.01), no significant strong relationships 

are evident from the Wolverhampton data sets. Detailed analysis of the seasonal data set 

revealed the spring months exhibited the strongest  correlations (χLF versus PM10 r = 0.376; p 

<0.001), but the all year round reliability of using mineral magnetic as a proxy tool is doubtful 

because the autumn and winter months display insignificant relationships. Unfortunately, there 

are no previous published studies to compare with these findings. However, given the nature of 

the sampling periods, it is assumed that differences maybe reflect weather conditions, which 

accords with the findings of Xie et al. (2001) and Kim et al. (2009). 
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West Midlands (ASU) sites show no significant correlations between mineral magnetics-RDS 

and air-borne PM sizes. However, this may be a reflection of the difference between samples 

collected directly from the ground compared with those measured by the ASU above the ground. 

For instance, Saragnses et al. (2011) collected material derived from filters directly linked to the 

positioning of above-ground analytical instruments. They found significant correlations between 

magnetic particles, which were dominated by ferromagnetic minerals, and NOx emissions, which 

were derived from vehicles. ASU data and filters also had significant associations with PM10. 

Muxworthy et al. (2003) also used filters and revealed mineral magnetic and particle size 

linkages (<100 nm), with the main source believed to be from vehicles. 

 

Several studies (Matzka and Maher, 1999; Power et al., 2006; McIntosh et al., 2007; Maher et 

al., 2008) have identified tree leaves as effective receiver-surfaces of anthropogenic magnetic 

material and could be used as natural filter media for airborne particles. Power et al. (2006) 

found that by using tree leaves as a settlement medium for urban particulates, particle size and 

mineral magnetic associations could be determined. These studies provide valuable insights 

into the potential for the techniques to be used in localised settings to determine nearby 

contaminant conditions, particularly where direct access to ASUs is unavailable. Thus, it may be 

possible to sample tree leaves at similar heights to ASU monitoring devices. However, tree leaf 

particle deposition does experience environmental changes, due to precipitation and washing of 

leaves (McIntosh et al., 2007).  

 

Very few of the towns and cities in this study have shown significant correlations between 

mineral magnetic and particle size parameters. However, Marylebone Road demonstrates the 

greatest proxy potential (χLF versus PM1.0 r = 0.589; p <0.001; χARM versus PM1.0 r = 0.392; p 

<0.01; SIRM versus PM1.0 r = 0.554; p <0.001). When compared to the other UK sample sites, 

Marylebone Road represents a much smaller sample area with a limited diversity of land uses. 

Unlike the other towns and cities, Marylebone Road represents a semi-secluded catchment, 

where sediment sources are likely to be derived from a limited number of sources that are 

presumably derived locally. In contrast, given the larger size of the sampling areas, the towns 

and cities are likely to contain a range of sediment sources derived from various land uses over 

the sampling areas.  

 

Previous research has demonstrated significant relationships between mineral magnetic and 

particle size data. Oldfield et al. (1993) and Clifton et al. (1999) found χLF versus silt and sand 

held the greatest proxy for their site study, whereas Booth et al. (2005) demonstrated that χLF 

χARM and SIRM could show significant proxy potential over a series of textural classes in one 

environmental setting, but no potential in another. Zhang et al. (2007) found χARM and SIRM to 

work well with a range of textural classes (clay, silt, sand), but χLF had limited proxy potential 

within the silt textural fraction. Booth et al. (2007) had further success with χLF versus PM 

classes (PM10, PM2.5 and PM1.0), whereas χARM and SIRM were found to only correspond with 

the finer fraction of PM (PM2.5 and PM1.0). These studies have explored the relationships 

between mineral magnetic methods and particle size, with a variety of inconclusive results 
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which show that the methods are unreliable. Booth et al. (2008) further demonstrated this by 

identifying differing sedimentary systems for those areas that do and do not work. Furthermore, 

the strength and significance of χLF, χARM and SIRM parameter associations with sand, silt and 

clay content can be different for specific environments within an individual setting (Booth et al., 

2005). 

 

To surmise the magnetic textural proxy section, it has been shown that significant correlations 

are rarely evident for large towns and cities, plus ASU sites, but there may be opportunities to 

utilise the kinship during particular times of the year. Furthermore, the size of the sampling area 

is an important factor influencing the significance of magnetic-textural relationships, which is 

presumed to be linked to the number of sediment sources contributing to RDS at each site.  

 

6.4 Magnetic-geochemical proxy relationships 
This Section compares the proxy findings of geochemical and mineral magnetic measurements 

for the selected towns and cities with those of other UK and global studies. Insights are 

revealed into urban sediment transport dynamics that may influence the potential use of 

magnetic measurements as a proxy. 

 

Strong associations (p <0.01-0.001) have been found between specific geochemical and 

mineral magnetic parameters over various scales (national, town, road). Associations have 

been found between specific geochemical and mineral magnetic parameters. 

 

Previous research has demonstrated significant associations between specific geochemical 

parameters. Robertson et al. (2003) found associations between Pb, Fe, Mn and Cu in 

Manchester, which were attributed to vehicular sources (Table 2.8). A similar study in Jordan 

found urban sediments on an industrial estate with strong associations between Cu, Pb and Fe 

from anthropogenic sources (Al-Khashman, 2004). Lopez (2005) and Apeagyei et al. (2011) 

also attributed the linkages of Zn, Pb, Fe and Cu to combustion and vehicles. The geochemical 

proxy associations with the UK locations are similar to those in other urban sediment studies. 

These associations add to the evidence and support the view that anthropogenic input is a 

major influencing factor influencing RDS characteristics. 

 

Detailed analysis of the UK town data reveal significant associations between Fe, Ni, Cu, Zn 

and Pb (r = 0.325-0.771; p <0.001). When individual towns are investigated, results reveal that 

these associations do not apply to all towns and cities. The strongest associations exist in 

London (MBR) (r = 0.472-0.717; p <0.01-0.001); Salford (r = 0.652-0.767; p <0.001); and 

Wolverhampton (r = 0.436-0.677; p <0.05-0.01). Due to activities occurring in these towns (busy 

commercial and industrial areas) results support the assumption that associations between 

these geochemical elements are related to anthropogenic sources, probably combustion 

particles (Robertson et al., 2003; Harrison et al., 2004). The geochemical results for the UK 

sample locations show distinct relationships within their environmental setting and spatial 

analysis of geochemistry data show distinct patterns across the sampling areas. Both 
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anthropogenic and ‘natural’ background source materials are proposed to influence these 

trends and sediment source mixing is probable throughout the different locations. Marylebone 

Road shows significant correlations between Fe, Zn and Cu, amongst other associations, which 

can be attributed to vehicular contributions (Ti, Mn and Cr). Table 2.8 indicates that the sources 

of contaminants to RDS may be directly related to traffic conditions and activity. The presence 

of Fe, Zn and Cu indicate sources from vehicle tyres, brakes and combustion particles. 

Scunthorpe geochemical properties possibly show different signatures, which reflect the main 

industrial activity, with associations between Fe, Cr, Mn and Ni. The geochemical indicators 

successfully show that source can be linked with specific element ratios, which are evident in 

other studies.  

 

Several studies have identified mineral magnetic and geochemical linkages (Beckwith et al., 

1986; Hay et al., 1997; Georgeaud et al., 1997; Schmidt et al., 2005; Lu and Bai, 2006; Sheng-

Gao et al., 2008). Strong associations have been found with anthropogenically-produced 

particles (Mn, Cu, Fe, Ni, Zn and Pb) (Beckwith et al., 1986; Schmidt et al., 2005; Lu and Bai, 

2006; Sheng-Gao et al., 2008). Wang et al. (2012) found strong correlations (p <0.01) between 

heavy metals (Fe, r = 0.770; Zn, r = 0.481; Cu, r = 0.464; Mn, r = 0.546; Pb, r = 0.458) and χLF. 

Schmidt et al. (2005) found strong correlations between χLF and heavy metals, when χLF 

was >17.6 x 10-7m3kg-1. Beckwith et al. (1986) and Schmidt et al. (2005) found this association 

was due to the enhanced magnetic signature of the samples, which indicated anthropogenic 

sources. Varied results have shown linkages between mineral magnetics and geochemical 

composition in the environment. For example, Charlesworth and Lees (2001) failed to find any 

linkages between heavy metals and mineral magnetic properties, but did find other linkages. 

Mixing of contaminants contributed to weak correlations of mineral magnetic and geochemical 

parameters. Wang et al. (2012) showed that the strongest correlations occurred within areas of 

anthropogenic activity, with high magnetic and geochemical signatures attributed to combustion 

particles. 

 

The results from the UK locations in this study reveal moderately strong correlations with 

selected geochemical parameters (Fe, Ni, Cu, Zn and Pb) and χLF (r = 0.394-0.673; p <0.001). 

When individual towns are investigated, results reveal that these associations do not apply to all 

towns and cities. The strongest correlations exist in London (MBR) (r = 0.313-0.764; p <0.05-

0.001); Salford (r = 0.565-0.817; p <0.01-0.001); and Wolverhampton (r = 0.467-0.686; p <0.01-

0.001). These results support Beckwith et al. (1986) and Schmidt et al., (2005) and reveal  

similar patterns, with correlations between magnetic susceptibility and selected geochemical 

properties (Mn, Fe, Cu, Ni and Zn) only in towns with mean χLF concentrations >35.57 x          

10-7m3kg-1 (MBR, Salford, Scunthorpe and Wolverhampton). Results suggest that towns with 

associated high anthropogenic activity have better proxy potential than those with relatively 

limited anthropogenic input. Sites deemed to comprise chiefly of ‘natural’ source materials 

showed very weak associations with mineral magnetic measurements. For instance, those 

towns (such as Dumfries and Oswestry) with a likelihood of minimal anthropogenic sources of 

activity will be masked or diluted by natural sources. This also probably explains why Booth et al. 
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(2008) found that proxy relationships were problematic for soils, but were clearly apparent in 

places with high activity (Charlesworth et al., 1997; Shilton et al., 2006).  

 

To surmise, the magnetic-geochemical proxy section has shown strong correlations in towns 

and cities dominated by anthropogenic inputs and geochemical kinships may indicate specific 

environmental activity. Towns and cities with high values of magnetic material appear to be 

associated with anthropogenic and combustion particles and is a plausible reason for their 

proxy potential. 

 

6.5 Linking observations to urban sediment sources and sinks 
This Section investigates the factors that may influence the reliability of mineral magnetic as a 

proxy. Charlesworth and Lees (2001) suggested disturbance (weather events) of catchments 

and complexity of the urban environment, create a ‘pulsing effect’ over time from environmental 

changes (Wolman, 1967, 1975; Douglas, 1985). Surfaces are subjected to erosion, sediment 

transport, removal of atmospheric dusts and particulates from wash-out; thus, removing 

contaminants from road surfaces. Seasonal variations alter concentrations of magnetic 

particulates, but also weather and topographical conditions transport magnetic particles from 

industries (Kim et al., 2009). Concentrations during high rainfall seasons suggest only a fraction 

of particulates are removed-deposited to storm sewers/gully pots (Figure 2.8). This also 

supports the findings of Butler and Clark (1995) with the input-output state of RDS; that is not all 

sediment is removed by fluvial or aeolian action during weather events but is ‘moved’ rather 

than ‘removed.’ Figure 6.1 suggests how this could potentially affect the sediment loads of RDS, 

with influencing factors being attributed to site-specific conditions and the external influence of 

weather events.  

 

Figure 6.1 is a modified version of the urban sediment cascade (Figure 2.8) and suggests the 

importance of changes that RDS experience within its environment. The cascade has been 

developed into a theoretical sediment cycle, which undergoes continual change; whereby, RDS 

is trapped in this cycle after primary source ingredients are input into the system (sources: 

mixing and deposition). Once primary source material integrate and deposit, the material 

undergoes a continual process of change and recycling. RDS is continually under the influence 

of gravity and weather conditions. Sediment is eventually deposited in a sink, where it 

undergoes deposition processes, continual change in other systems (rivers, canals, lake, 

atmosphere), or recycled back into the cycle via re-suspension and deposition.  

 

Detailed examination of the data reveals several Wolverhampton sites may be subject to 

recycling and mixing, due to location and environmental conditions. The mixing of soil, building 

material, historical pollution and sources could be attributed to the urban sediment cycle, 

resulting in the continual mixing of various materials. Constant changing of sediment properties, 

as it is modified by physico-geochemical conditions in large urban areas, makes the ability to 

find inter-parameter relationships unlikely. 
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Figure 6.1 The urban sediment cycle showing potential pathways of, and changes in, road 
deposited sediments from sources to sinks (modified from the ‘urban sediment 
cascade’ (Charlesworth and Lees, 1999; Perry and Taylor, 2007)). 
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Compared to previous studies, where mineral magnetic-textural properties showed significant 

correlations, it is apparent that sampling area size; landscape and land use, together with 

several potential sources and mixing, are factors that influence the likely success of the 

application of mineral magnetic as a proxy. For instance, Oldfield et al. (1993) used a small flat 

sample site with minimal diversity of land use and sediment sources. Muxworthy et al. (2003), 

Power et al. (2006) and Booth et al. (2007) also had small sample sites with minimal land uses 

and sediment sources (Figure 6.2).  

 

Based on the characteristics outlined in these cited works, when the places used in this study 

are scrutinised in the same manner, it highlights potential reasons for both the success and 

failure of mineral magnetics as a proxy instrument. For instance, Marylebone Road can be 

described as having similar characteristics to those of Muxworthy et al. (2003), Power et al. 

(2006) and Booth et al. (2007). Whereas, those sites with large sample areas and variable 

topography, together with variable land uses and multiple sediment sources, are unlikely to 

exhibit significant correlations between mineral magnetic and particle size parameters. This is 

highlighted in Figure 6.2. To further support this proposal, when individual sites (such as some 

Wolverhampton sites) are examined on an individual seasonal basis, the correlation significantly 

improves. Charlesworth and Lees (1999) identified that time was an important factor in the 

speciation of urban sediments, due to the stability of Fe and Mn over time (Forstner and 

Wittman, 1981).  

 

It is postulated that in environments where sediments are in continual flux (Figure 6.1) the 

mineral magnetic-particle size proxy potential is weaker, due to continual changes in sediment 

properties (large catchment area + mores sources + time (weather conditions) = mixing). Booth 

et al. (2008) found magnetic measurements were not always suitable for particle proxy 

purposes. Observations from this and other studies (Figure 6.2) suggest that physical 

environmental differences influence the potential mineral magnetic-textural associations. 

Sample area size appears to be an important factor when investigating mineral magnetic–

textural associations. The greater the sampling area, the greater sediment mixing potential; this 

also appears to be true for time-frames used for sampling.  

 

This work has highlighted the methods do not work: 

 

• Over large areas (due to the high potential of sample mixing and samples having different 

provenances). 

 

• Over time periods at large and small scales (Figure 6.2-6.3) (due to factors attributed to 

Figure 6.1, mixing and weather conditions contributing to RDS movement). 
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Figure 6.2 Comparisons of characteristics for this and previous studies, detailing area 

characteristics and RDS particle mixing potential for sample locations. Muxworthy et al. (2003); 

Power et al. (2006); Booth et al. (2007) and Oldfield et al. (1993) all showed some particle size 

proxy potential. (Green = few variables (<2) and little mixing potential; Blue = 2-3 variables; 

Orange = multiple variables (>3); Purple = high mixing potential). 
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Figure 6.3 The affects of spatial and time scales on the mineral magnetic-textural proxy 
potential. 

 
The methods do show some potential when sampling small areas and in a brief time-frame 

(hours and day) (Figure 6.3), as there is less chance of mixing, and samples are relatively 

homogenous. 

Table 6.1 establishes the site size index, which could be considered when assessing the 

potential sample sites for particle mixing and mineral magnetic-particle size associations. Road, 

city, regional and national scales have been assessed in this study and appear to show the 

strength of mineral magnetic-particle size associations decreasing in that order. Micro-

environments have been included, due to the strong correlations reported by Muxworthy et al. 

(2003) and Power et al. (2006). Although the material of Muxworthy et al. (2003) and Power et 

al. (2006) is not RDS specific, as collected in this study, it is a constituent of RDS particulates 

and consists of PM collected at road sides. The smaller sample area sites appear to be a major 

influencing factor when investigating mineral magnetic-textural associations. 

 

Land use appears to be another influencing factor. Identified land use of Marylebone Road is 

predominantly commercial, and Scunthorpe is mostly industry and residential. These 

environments have been identified as the dominant land use activities of an area, and with 

activity, a coinciding source can be estimated. Table 6.2 lists the four main sources of RDS 

input. 

 

Each source can be identified as a main contributor to airborne PM10, which have negative 

effects on air quality (AQEG, 2005). Land use of sampled areas display predictable 

characteristics (residential = low mineral magnetic concentrations; industrial and commercial = 

moderate-high mineral magnetic concentrations (Table 6.3)). Because of the linkages observed, 

results reveal the importance of identifying these areas when evaluating the particle mixing 

potential of a specific site. 
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Table 6.1 Area size index categories used to establish area size for site RDS particle 
mixing potential 

 

Area  Area size Index Score 

Point Micro-environment 0.5 

Road Small 1 

Small town Medium 2 

City Medium-Large 3 

Region Large 4 

National Very Large 5 

 

Table 6.2 Four sources of sediment input used to evaluate RDS particle mixing potential 
 

Soil and vegetation(si) 

 

Parks, embankments or rural locations, potential high levels of 

soil and vegetation eroded and added to RDS. 

 
Building wear/  

Construction material(sii) 

 

Commercial locations with urbanised street canyons or areas 

undergoing construction activities. 

Atmospheric input(siii) 

 

Industrial locations with the potential to input particulates (steel 

mills, power plants, incinerators, solid fuel burning systems). 

 
Vehicle particulates(siv) 

 

Locations with high traffic density, arterial road networks or road 

systems with slow moving, ‘stop-start’ traffic. 

 

 

Table 6.3 Land use types used in evaluating site RDS particle mixing potential 
 

Industrial Areas of industrial activity, steel, oil, power industries. 

 
Commercial 

 

Commercial locations with urbanised street canyons. 

 

Residential Residential areas, with dense housing and park areas 

 

To support this interpretation Figure 6.4a shows a theoretical particulate arrangement for 

particle size-mineral magnetic relationships. This example shows how potentially, a single 

source magnetic material with high magnetic concentrations corresponds with particle sizes. 

The bivariate plot indicates a strong positive correlation between these two parameters (p 

<0.001). When a secondary source (Figure 6.4b) with a negative mineral magnetic correlation is 

added, the correlation coefficient becomes insignificant. However, although the concentration 

and mineralogy can be specifically identified through the methods used in this study, the mineral 

magnetic-particle size correlations cannot be retrieved when there is mixing of particulates.  
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Figure 6.4 Theoretical potential particle mixing conditions and mineral magnetic-particle 
size effects: (a) single source with strong positive correlation (b) two contrasting 
sources mixed, with weak correlation (c) multiple sources with weak correlation. 
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Figure 6.4a-b could potentially be found in environments where there are dominant sources of 

particulates and little to no mixing (MBR). The results in this study suggest that RDS is made up 

from several sources of magnetic material. Results show the dominance of ferromagnetic multi- 

domain, soft mineralogy, with an indication of fine, super-paramagnetic and hard mineralogy in 

RDS. This is illustrated in Figure 6.4c where several sources of magnetic material 

(anthropogenic and natural) potentially dilute the textural-mineral magnetic correlations. Figure 

6.4 is based on the theoretical assumption that there are universal relationships in regards to 

separate source mineral magnetic concentrations and particle size in urban RDS. Further work 

could make a more accurate assessment of the source particle size-mineral magnetic 

relationships, where particles directly from sources are analysed to determine individual 

relationships. 

 

To surmise, several factors are proposed to influence proxy relationships. Large catchment 

areas are potential sinks for multiple sources of particulates, because of the likelihood to have 

mixed land uses. The larger areas provide seasonal weather conditions opportunities to disturb 

RDS where it is subject to transport, mixing and deposition. This mixing dilutes mineral 

magnetic material and results in a heterogeneous cocktail of sources. The smaller areas are 

likely to have fewer sources, less seasonal influence, less mixing and more homogenous 

source(s) of RDS.  

 

6.6 Predicting the likelihood of proxy success 

This Section discusses a conceptual model which attempts to reveal the likelihood of proxy 

success at sample sites based on those of this and previous studies. The consistent and 

accurate prediction of RDS movement has proved elusive. Modelling has focused on the 

transport of sediment into drainage and affects on storm-water quality. Reviews of available 

models have consistently stated that no model is best for every situation, complex models are 

difficult to verify and calibrate, and that even the most physically-based models contain much 

uncertainty (Huber and Heaney, 1980; Bertrand-Krajewski et al., 1993, 2007; Ahyerre et al., 

1998).   Consequently, there are a variety of approaches to predict the quality of urban runoff, 

with the choice of approach being largely based on the reason for modelling.  

 

Descriptions of the processes involved can be grouped into atmospheric deposition (wet and 

dry), interception by plants and buildings, build up, wash-off and transport (Duncan, 1995; 

Charlesworth and Lees 1999; Zheng et al., 2012). Of course, these processes are intimately 

related to the cycling of pollutants throughout the environment and, in turn, affected by the 

production of atmospheric pollution and the capacity of the urban environment to assimilate 

pollutants. Many authors have divided models into groups based on the modelling approach 

(Huber, 1992; Bertrand-Krajewski et al., 1993; Zoppou, 2001). Models are generally grouped 

according to their level of complexity; physical representation attempted or planned use, with 

numerous sediment models developed in recent decades utilising different scientific methods 

and modelling approaches. In general, three different kinds of model exist: 
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• Empirical models are a simplified representation of natural processes based on empirical 

observations. They are based on observations of the environment and thus, are often of 

statistical relevance (Nearing et al., 1998). Empirical models are frequently utilised for 

modelling complex processes and, in the context of erosion and soil erosion, are 

particularly useful for identifying sediment sources (Walden et al., 1997; Merritt et al., 2003). 

 

• Physically-based models represent natural processes by describing each individual 

physical process of the system and combining them into a complex model. Physical 

equations describe natural processes, such as sediment transport (Merritt et al., 2003). 

This complex approach requires high resolution spatial and temporal input data. Physically-

based models are therefore often developed for specific applications, and are typically not 

intended for universal utilisation. Physically-based models are able to explain the spatial 

variability of most important land surface characteristics (such as topography, slope, aspect, 

vegetation and soil) and climate parameters (including precipitation, temperature and 

evaporation) (Legesse et al., 2003). 

 

• Conceptual models are a mixture of empirical and physically-based models and their 

application is therefore more applicable to answer general questions (Beck, 1987). These 

models usually incorporate general descriptions of catchment processes without specifying 

process interactions that would require very detailed catchment information (Merritt et al., 

2003).These models therefore provide an indication of quantitative and qualitative 

processes within an urban catchment. 

 

To establish linkages at sample sites it would be useful to assess the likelihood of a working PM 

identification method at the site. Pre-testing of the potential of a specific site would reduce the 

cost and time of sampling, by only testing areas or methods of greater potential. Modelling of 

the established influences could predict areas sensitive to proxy methods. Figure 6.1 suggests 

the influence of the mixing of material on the physical properties of RDS. A pre-testing model 

could provide an initial assessment of a location’s potential for mineral magnetic-textural 

relationships, due to land use, size and source influences on RDS.  

 

Due to the continual flux of RDS (Figure 6.1), it is inappropriate to apply a mixing model using 

mineral magnetic, geochemical or textural data. Walden et al. (1997) stated that the magnetic 

parameters used in any numerical un-mixing model ideally need to meet fixed criteria. Primarily, 

all parameters should be linearly additive (i.e. mineral magnetic mass specific parameters only, 

and not mineral magnetic ratio parameters).That is, if two source sediments have values for a 

particular magnetic variable of x1 and x2, respectively, and are subsequently mixed in known 

proportions of p1 and p2, the resultant sediment mixture should have a value of this variable (xr) 

(Eq. 6.1). Due to the many parameters and unknowns due to constant mixing and adding of 

new material that apply to urban RDS, this was not a suitable approach. 

 
Eq. 6.1:   xr= p1 x1+ p2 x2 
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Studies have shown some mineral magnetic-particle size associations but have not 

demonstrated why the associations are present. Power et al. (2006) found significant (p <0.001) 

particle size (PM10) and mineral magnetic (χLF, χARM, SIRM) associations on tree leaves. The 

micro-environment studied by Power et al. (2006) is illustrated in Figure 6.2a. This example 

shows how associations could be due to settled particles from dominant sources with little to no 

mixing with other particles. At a slightly larger scale, Booth et al. (2007) found similar 

associations within RDS along short lengths of roads, suggesting low mixing potential over 

small areas.  

 

To surmise, by incorporating the findings and influences to mineral magnetic-particle size proxy 

methods, a pre-testing model could be used to assess the potential for RDS mixing in sample 

areas.  
 

6.7 Sediment mixing factors 
Eq. 6.2 illustrates the culmination of findings in this study, which has produced a site mixing 

model (m) (Figure 6.5). Factors 1 (l1), Factors 2 (s1) and Factors 3 (a1) are presented as the 

main influencing factors for RDS mixing. Land use (l1) is estimated by investigating the study 

area and calculating the land use total (industrial, commercial and residential (Table 6.3)). If any 

of the three land uses are present, the number is then added together (one land use = 1, two 

land uses = 2, three land uses = 3). 

 

Eq. 6.2   m =(l1)+(s1)+(a1) 

 
s1 represents the total estimated input of particulates from the four main sources (Table 6.3; soil, 

construction-building material, atmospheric input and vehicle particulates). By estimating the 

input types for a sampling area, the input can be calculated into a total source score (s1) (one 

source = 1, two sources = 2, three sources = 3, four sources = 4). To distinguish the size (a1) of 

the sample area the area size index is used as a guide ((Table 6.2). Size 0.5 = micro-

environment, 1 = small scale (road), 2 = medium (small town), 3 = medium-large (city), 4 = large 

(regional) 5 = very large (national)).  

 

The resultant l1, s1 and a1 are added to produce m. The result (m) scores the risk of a site to 

particulate mixing and shows potential for a location to provide mineral magnetic and particle 

size associations. The index shows high m scores, as highly complex systems, with high mixing 

potential and offering little to no proxy potential.  

 

Low m scores are simple systems, with little mixing and better chances for proxy methods to 

work successfully. Table 6.4 illustrates this and is based upon typical values found at different 

area size classifications. These classifications are examples of typical characteristics found at 

the listed locations. For example, a typical road would be expected to cross either 1 or 2 land 

uses, which would reflect the sources of magnetic material deposited (Zhang et al., 2012).  
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Figure 6.5 Site mixing model, shows the potential of a specific location to particle mixing, 
based on source inputs, area size and land use characteristics. 
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When compared to a small town, the larger area size would indicate several areas incorporating 

differing land uses and more input sources. 

 

To surmise, city, regional and national area sizes indicate the maximum potential for numbers of 

source inputs and land uses, producing high mixing potential (m) values. This model only takes 

into account physical properties of a location and deems the less input, use and limited 

variability of physical characteristics better chances of establishing a mineral magnetic-particle 

size proxy. This model does not take into account other parameters, such as environmental 

conditions and RDS residence time, this is a strand of potential further work identified by 

Charlesworth and Lees (1999) (Figures 2.8 and 6.1). 

 
6.8 Validating the conceptual model 
To validate the model, it has been applied to the UK locations in this study (Table 6.5). Towns 

showing the most promising potential have low m values. The results also suggest that 

Marylebone Road is the most likely location to display mineral magnetic-particle size 

associations. This result is due to the location’s specific characteristics, with the area being 

dominated by a specific land use source and small size.  

 

The results for Scunthorpe have shown that a larger area with more potential inputs of sources 

due to land use has reduced the likelihood of detecting mineral magnetic-particle size 

associations, because of the high mixing potential of RDS particulates. The other selected UK 

locations show high levels of potential mixing, which are due to large areas, number of land 

uses and potential sources. When compared to the mineral magnetic and particle size results of 

this study, Marylebone Road and Scunthorpe are the most probable candidates to find 

associations due to dominant anthropogenic activity.  

 

The proposed model cannot be used exclusively to predict trends, as the factors are open to 

individual estimation and interpretation (number of land uses and sources), but as a guide the 

model does show some potential use as a tool for study area identification. The more dominant 

the environmental factor and the smaller the area, the more likely a mineral magnetic–particle 

size association could be evident. Figure 6.5 is based on fixed sources and physical conditions 

to predict the potential of determining particle size associations. To further understand possible 

linkages of urban sedimentary particles, the model could be used in conjunction with the 

sedimentary cycle, with the addition of physical parameters (weather conditions and time 

factors), as described in Figure 6.1. 

 

To surmise, the site mixing model has shown some potential to predict likely areas of proxy 

potential based on findings in this and other studies relating to environmental factors within 

study areas. By using the environmental characteristics of an area, the model can potentially 

determine the potential for RDS mixing and mineral magnetic-textural associations. Figure 6.6 

displays how a simple flow diagram using the results from this investigation can predict the 

particle mixing potential of a sample area. 
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Table 6.4 Score classification for specific area types (Table 6.1 (Bold * = potential site 
with low mixing rate)) 

 
Location Land use (l1) Source (s1) Area (a1) m 

Point (Power et al., 2006)  1 1 0.5 2.5* 
Road (Booth et al., 2007)  2 2 1 5* 
Small town 3 3 2 8 
City 3 4 3 10 
Regional 3 4 4 11 
National 3 4 5 12 

 
 
Table 6.5 Mixing model results for the UK selected locations sampled in this study (Bold * 

indicates some partial success found in this study) 
 

Location Land use (l1) Source (s1) Area (a1) m 

Dumfries 3 4 3 10 

Halton 3 4 3 10 

MBR 1 2 1-2 4-5* 

Norwich 3 4 3 10 

Oswestry 3 4 3 10 

Salford 3 4 3 10 

Scunthorpe 3 3 3 9* 

Wolverhampton 3 4 3 10 

Regional 3 4 4 11 

National 3 4 5 12 

 

6.9 Chapter summary 
The use of mineral magnetic methods as a particle size proxy is a complex problem. Few 

significant correlations have been found and this indicates that the use of mineral magnetic 

methods as a proxy is unsuitable at most places and scales investigated in this study. However, 

the study has identified factors which affect the likelihood of associations at different scales. The 

methods work best with few identified influencing factors. The methods also appear to work best 

when sampling in short time periods with potentially less impacts from weather conditions which 

influence particle transport. 

 
Results clarify that further work should attempt to identify the effectiveness of the methods at 

the micro-scale. RDS is perhaps not the best medium for determining PM using mineral 

magnetic methods, whereas, tree leaf and micro-environments potentially have the right 

conditions (small scale, influenced by direct source) for PM identification.  

 

281



Area Topography

Land use

Dominant source

Low mixing potential

High

Small

Large

Flat

Variable

Variable

Specific

Multiples 

1 or 2

High-Moderate

Moderate

Mixing potential

 
 
Figure 6.6 Theoretical flow diagram to establish potential mineral magnetic-particle size 

proxy sites, based upon low RDS particle mixing rates. 
 

At the scales shown in this study (road, city, region, national) mineral magnetic methods as a 

particle size proxy cannot be used reliably and should be investigated further using the mixing 

model (Figure 6.5-6.6) to identify likely areas of study. Once areas are identified, the use of 

mineral magnetic-textural methods should be re-applied. In-addition, steps should be 

considered to identify specific particle sources, by use of additional geochemical methods (such 

as XRD). If separate mineral magnetic sources can be identified, then mixing models could be 

applied to identify sediment transport and mixing. 

 

Spatial variability found with individual towns show that using mineral magnetic methods for PM 

monitoring is unlikely to produce reliable results. It is because of this variability that point 

sampling is not appropriate for establishing a towns PM concentrations, nor is it appropriate for 

indicating single point PM concentrations. Ideally, monitoring techniques need to show results 

that represent a specific sampled area.  
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The advantages of pursuing alternative techniques to detect health related PM is clear. It would 

be appropriate to apply further research of PM monitoring techniques to small homogenous land 

use areas to establish likely PM-Mineral magnetic links and PM concentrations. For example 

Appendix 3.1 shows the land use for Wolverhampton, future studies could potentially segregate 

the land uses identified (polygons) on the map and sample within the areas. Alternatively, traffic 

data (Appendix 3.2.1) could be used to target areas of interest and sampled in a similar manner 

to that of Marylebone Road. This study has shown that traffic data can indicate areas with high 

concentrations of mineral magnetic material and reveal mineral magnetic methods to have 

potential which need to be fully explored. 

 

Mineral magnetic methods are mainly an unreliable indicator of PM particle size for RDS over 

time or at national, regional, city, road or site scales. However, mineral magnetic methods have 

shown strong correlations with geochemical parameters and suggest that these methods could 

be used reliably as a pollution indicator in RDS studies. The results show areas with distinct 

geochemical concentration which can be attributed to specific sources. The application of a 

geochemical proxy would prove useful in identifying high-risk concentration areas within the 

urban environment. These high concentration areas could be easily, quickly and cheaply 

monitored using mineral magnetic methods. The resultant data could aid health, urban studies 

and urban planning. 

 

Mineral magnetic methods are a reliable tool for anthropogenic geochemical indication: 

 

• Operates effectively at large and small scales. 

• Works very well using established RDS collection methods. 

• Recommended for use in RDS, health and urban studies. 

 

Advantages of using mineral magnetic methods for RDS investigations include ease of 

collection and availability of RDS throughout the year. In environmental studies, using RDS is 

distinctly advantageous due to its interactions with human health. This makes mineral magnetic 

investigations best suited for effective geochemical pollution monitoring in urban areas. 
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Chapter 7 
Conclusions 

 
This Chapter restates the aims and objectives of this research project in relation to the main 

findings. The scientific contribution to the research is evaluated. Limitations of the study are 

discussed and suggestions made for further research. 

 

PM (particle size) was the primary interest of this study, due to health implications associated 

with size, shape, surface area and number of particles potentially inhaled into the lungs and 

triggering respiratory problems. Mineral magnetic and textural linkages have proven complex, 

as results for Wolverhampton and UK sample locations show some weak associations between 

mineral magnetic and textural properties. Spatial and temporal patterns have also been 

identified using mineral magnetic parameters. The research can conclude that mineral magnetic 

methods are unreliable indicators of particle size for urban PM RDS studies over time or at 

differing spatial scales. 

 

As a secondary objective, geochemical composition has also been investigated and adds 

additional findings which enable further understanding of the behaviour of RDS. The 

geochemical composition reveals the close relationship an area has with its activity and 

provides insights into sources of particulates, the inter-geochemical–mineral magnetic 

associations and concentrations which appear to influence the PM proxy potential. As a proxy, 

geochemical and mineral magnetic analyses appear to be reliable indicators of pollution at the 

investigated scales and when compared to other studies. 

 

7.1 Research findings 
From the results discussed in previous chapters, several conclusions can be drawn: 

 

1) Mineral magnetic methods do not indicate any potential for linkages between ground or 

airborne PM and ASU data. 

2) Geochemical analysis indicates distinct associations between geochemical groups and is a 

good indicator of both anthropogenic and natural sources. 

3) Mineral magnetic methods are a good indicator of urban anthropogenic pollution at small 

and large spatial scales. 

4) The associations are influenced by the direct environment. Land use, size of area and 

potential sources are primary influences. Differing weather patterns can lead to disturbance, 

dilution and mixing of RDS and magnetic material. The conceptual model integrates these 

factors and identifies areas where sampling strategies could be improved when 

investigating mineral magnetic-particle size associations. To successfully apply these 

methods, this research suggests sampling of RDS should occur within small, specific land 

use areas, where urban activity is a significant factor (e.g. Marylebone Road and 

Scunthorpe illustrate this).  
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5) The use of mineral magnetic techniques has shown great potential in the analysis of urban 

environments. Specific road systems have shown strong magnetic signatures. Mineral 

magnetic concentrations on arterial roads were nearly double the concentration of 

residential roads. The PM loadings on arterial and residential roads have been well 

documented, along with the effects on the health of individuals living near busy arterial 

roads (Oosterlee et al., 1996; Edwards et al., 1994; Duran-Tauleria and Rona, 1999). The 

use of mineral magnetic techniques as an RDS particle size proxy clearly merits further 

investigation, but the potential for a pollution proxy is evident. These methods have the 

potential to be used in relation to PM problems, with the identification of highly polluted 

areas, which could then be used in urban planning.  

6) The mineral magnetic approach used in this work has proved reasonably successful. It 

could be employed in other urban contexts as a geochemical pollution proxy, but has 

limitations for a particle size proxy. 

 

7.2  Regional, national and international implications 
Air sampling monitoring stations have proved a useful asset in the analysis of urban pollutants, 

but only provide data for the station location.  Currently the AURN techniques are not versatile, 

due to static constraints, cost and no ability to determine PM size fractions. Given scientific and 

public concerns regarding the effects of particulate matter, the analysis of polluted roads via 

mineral magnetic investigations appear to be limited in investigations of PM pedestrian 

exposure. The use of mineral magnetic techniques could alternatively be employed as an 

indicator tool for anthropogenic pollution, which is flexible and non-site specific. It is possible for 

mineral magnetic techniques to identify potential pollution ‘hotspots’ and could, in theory, be 

used in conjunction with air monitoring data. If these methods were employed in areas where air 

monitoring stations cannot be situated, mineral magnetic testing could give indications of areas 

meriting further investigation. These methods are non-destructive, rapid and efficient in any 

location, with low cost and high sensitivity of measurements. 

 
7.3  Application of the mineral magnetic approach 
The reported research contributes to further understanding and has developed from previous 

research in the following ways: 

 

• By establishing that mineral magnetic measurements over time and at varying spatial 

scales (road, city, regional and national) are an unreliable indicator of PM size at the 

roadside or compared to ASU data. 

• Determined influences on the reliability for mineral magnetic methods as a particle size 

proxy, concluding that sample area size, land use and source are contributing factors to 

proxy potential. 

• Establishes specific geochemical parameters linked to source and mixing of RDS at small 

– large spatial scales, in addition to identifying factors that influence the dynamics. 

• Establishing mineral magnetic measurements as a reliable indicator of anthropogenic 

pollution within RDS at several spatial scales. 
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This work further emphasises the potential for applying mineral magnetic measurements and 

addressing potential environmental problems. In doing so, it highlights the limitations of using 

mineral magnetic methods as an indicator of PM particle size, but does provide an alternative or 

complementary approach to studies of urban and atmospheric depositional environments, such 

as predicting pollution loads in sediments. It also demonstrates that the mineral magnetic 

technique permits sediment transport theories to be inferred for urban roadside environments. It 

also shows that when utilised in conjunction with other data, the techniques could be used to 

help validate urban sediment models. 

 
7.4 Limitations of the study 
1) The analysis of large scale sampling areas has shown limited potential for investigating 

mineral magnetic-particle size associations. To further understanding of potential 

relationships, small-scale sampling areas could provide insights into the micro-

environments of RDS. 

2) The bi-monthly sampling of Wolverhampton and other locations could have been improved 

with daily-weekly sampling. This is also an apparent weakness of the UK study, where only 

a ‘snap-shot’ was investigated. Sampling at shorter intervals and over longer periods would 

provide more information on seasonal changes in RDS. Nevertheless, this was not 

possible within the restrictions of time and resources. 

3) Mineral magnetic material and geochemical associations suggest a mix of anthropogenic 

sources. The use of more detailed chemical analysis could be employed to determine 

specific sources. The use of XRD and ICP-MS could identify organic compounds, such as 

Polycyclic Aromatic Hydrocarbons (PAH) and distinguish between Fe2O3 and Fe3O4, which 

could be used to identify significant sources of anthropogenic emissions. 

4) Monitoring several specific environmental variables at a site over a prolonged period of 

time is recommended. Important variables include weather conditions, pedestrian and 

vehicle volumes, vegetation density, plant species and building densities.   

  

7.5 Suggestions for further research 
The complex nature of RDS requires further investigation. Future research should include 

investigations into: 

 

• RDS magnetic minerals and sources, the individual sources of mineral magnetic materials 

and their textural and geochemical characteristics. 

• RDS transport and flow modelling. 

• RDS mixing and interaction of source particulates. 

• Further testing and development of the mixing model at the spatial scales identified. 

• Incorporate individual source, transport and mixing into a complex physically-based model 

which uses seasonal conditions and the framework of Charlesworth and Lees (1999).  

 

 

287



In light of the findings and limitations in this work, these recommendations could be deployed in 

the following ways:  

 

1) The collection of magnetic particles from air sampling unit filter papers proved successful in 

investigating RDS pollution. Marylebone Road is renowned for its large traffic volumes and 

high particle counts, making it an ideal site for magnetic particle filter collection and long-

term study. 

2) Considerable inter-site magneto-geochemical variation has been shown. Concentrations of 

mineral magnetic material could be analysed by collecting RDS from various locations 

within the road vicinity. The results could provide truly representative values for RDS at that 

location. This could include collection of RDS from gully-pots, kerbs, pavements, other 

depositional catchments, and road surfaces, to determine magneto-geochemical 

concentrations.   

3) Magnetic extract analysis (Hounslow and Maher, 1999) is becoming a relatively routine 

aspect of mineral magnetic studies. Therefore, it would also be appropriate to extract 

bacterial magnetite from road sediment samples and characterise their magnetic properties. 

These characteristics could then be used to further identify sediment sources (Stolz et al., 

1989). 

4) The additional use of other mineral magnetic detection equipment has considerable 

research potential. This could include hand-held susceptibility meters to quickly identify 

urban pollution. 

5) It would be appropriate to re-apply this research to other regional, national and 

international urban RDS, to investigate the broader applicability of the work. 

6) Mineral magnetic methods could be used to develop a national and international urban 

RDS database. This could encourage an international effort to map mineral magnetic 

concentrations of RDS. 

7) To further validate the site mixing model, random locations should be tested and scored, 

with a full site investigation carried out to further establish the reliability of predicting sites 

with magneto-particle size trends. This approach should focus on long-term study areas. 

8) Accumulate long-term daily data for specific land use areas and size, this could include 

methods applied in this work, used in conjunction with ASU data. Apply detailed physical 

(DTM, infrastructure), social (traffic and movement) and environmental (weather, 

vegetation) characteristics to develop urban sediment flow models within a GIS.  
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