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Abstract 

 

Over the last 50 years populations of certain farmland birds have undergone severe 

declines over the same timescale that agriculture has intensified. The larvae of grassland 

sawflies (Hymenoptera, Symphyta) are a key component of the fledgling diet and it is 

thought that agri-intensification has reduced the numbers of these insects to such an extent 

that the populations of bird species dependent on them are limited. Sawfly populations 

may be more than usually susceptible to disturbance because firstly, their adult stages are 

poor dispersers and secondly, some species possess Complementary Sex Determination 

(CSD), a mechanism which can produce sterile males under inbreeding conditions. 

 This study has produced a sawfly transcriptomic library through the use of 454 

pyrosequencing, the first genetic resource for any farmland sawfly. From this library, a set 

of 13 polymorphic microsatellite markers were isolated for use in the common farmland 

sawfly Dolerus aeneus. Using these markers, three Scottish populations of D. aeneus, a 

species common to all six UK sites sampled in this study, exhibited similar levels of 

genetic diversity and low levels of genetic differentiation. However, evidence of 

inbreeding was detected in each of the three populations. In addition, potential diploid 

males were detected in D. aeneus using microsatellite markers, a primary indication that 

CSD may be operating in this species. 

 The population genetic analysis in the current study suggests that fragmentation of 

suitable sawfly habitat as a result of agricultural intensification has not yet acted to isolate 

D. aeneus populations, although some genetic effects (inbreeding and low diversity 

compared with non-threatened hymenopterans) are apparent. In addition, diploid males 

have been detected which may have compromised fertility. This study will be of interest 

to research groups working on the genetics of the Hymenoptera and on the conservation 

and management of sawflies and the bird species dependent on them. 

 

 

 

 

 



 1 

1. General Introduction 

 

1.1 Agricultural intensification and the declining populations of farmland birds 

 

1.1.1 Overview 

 

Over recent decades, agriculture has intensified throughout the UK as farmers combine 

new technologies with more intensive practices in an attempt to meet the food and energy 

demands of an ever-increasing human population. This is generally referred to as 

―agricultural intensification‖. In Britain, intensification has involved changes in a number 

of practices, including the increased use of agro-chemicals, both pesticides and fertilisers, 

widespread switching on lowland farms to crops such as oilseed rape, while spring-sown 

cereals, root crops, hay crops and fallow periods (periods where the land is uncultivated) 

have all declined, and there is a general trend towards crop monoculture (Chamberlain et 

al.  2000). The trend towards homogenization of the landscape has been exacerbated by 

the removal of hedgerows and other uncultivated land to produce larger fields for crop 

production. As a consequence the amount of semi-natural habitat present in the 

agricultural environment has declined with the overall result of greatly reduced farmland 

biodiversity (Benton et al. 2003; Newton 2004).  

 Many types of farmland wildlife have been adversely affected in terms of their 

population size by the multivariate process of agricultural intensification including 

mammals, arthropods and flowering plants (Benton et al. 2003). However, farmland birds 

have long been the major focus of research into the ecological effects of land-use changes. 

Their conspicuous nature makes them easy to research and their patterns of behaviour, 

distribution and seasonal life cycle track closely the temporal and spatial changes in the 

agricultural landscape (Ormerod and Watkinson 2000).  

 The effects of agricultural intensification can be difficult to quantify as the process 

consists of a number of different components each of which affect different species in 

different ways. Also, the fact that the component processes of intensification have 

occurred concurrently and are co-dependent makes it difficult to separate the effects of 

one change from that of another (Newton 2004). The main mechanisms proposed to affect 

farmland birds are a lack of nutritious invertebrate food sources, a lack of suitable nesting 
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habitat or direct mortality due to farming operations (Newton 2004; Chamberlain et al. 

2000; Brickle et al. 2000; Chamberlain and Crick 1999; Crick et al. 1994; Potts 1986). 

 The Grey Partridge (Perdix perdix) in particular has been studied extensively with 

reference to agricultural intensification. A long-term monitoring study in the Sussex 

Downs in southern England started by Dick Potts in 1968 was designed to continuously 

monitor changes in the abundance and diversity of weeds, insects and birds on farmland 

with the intention of explaining long-term changes in the arable environment (Potts 1986; 

Potts et al. 2010). Prior to World War I, gamekeepers in the region recorded an average of 

50 breeding pairs per km
2 

each spring. In the first year of the study, numbers of breeding 

pairs were shown to have declined to 20% of the pre-war density (Potts 1986). The main 

cause for the decline in the number of Grey Partridges was identified as a herbicide-

induced reduction in the abundance of cereal-crop invertebrates leading to reduced chick 

survival (Potts 1986).  

Research has confirmed that, like the Grey Partridge, other farmland bird species 

have experienced severe population declines due to changes in farmland management. 

Some species have experienced reductions of 80% or more in numbers and thus exhibit 

reduced geographical range over a period of less than 20 years (Fuller et al. 1995). 

Newton (2004) reviewed the declines of 30 such bird species closely associated with the 

farmland environment. He found that in the vast majority of these species, habitat 

reduction and/or a reduction in food supply were the main factors limiting population size.   

The widespread reduction of invertebrates present in modern cereal crops, in terms 

of both abundance and diversity, is largely attributed to the increased use of agro-

chemicals (Newton 2004; Potts 1986). Insecticides directly deplete arthropods that are 

taken by adult birds or fed to the young during the breeding season whereas herbicides 

indirectly deplete the food source by reducing the abundance of weeds that are host-plants 

for the arthropods (Boatman et al. 2004). The declining practice of undersowing 

temporary grassland within a mixed arable/ grass ley rotation (Sotherton 1998) and the 

reduction in the area of uncultivated field margins (Wilson et al. 1999) are also thought to 

be contributing factors in invertebrate decline.  
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1.1.2 The invertebrate food source of farmland birds including sawflies 

 

In a review of farmland bird diets (Holland et al. 2006) invertebrates comprised 65 – 

100% of the diet of 15 of the most common farmland birds in Europe. The list includes 

the Grey Partridge (Perdix perdix), the Corn Bunting (Miliaria calandra), the Skylark 

(Alauda arvensis) and the Yellowhammer (Emberiza citronella) all of which inhabit 

British farmland and are of conservation concern. Wilson et al. (1999) noted that during 

the breeding season when invertebrates are a more highly sought-after food source, 

especially on behalf of dependent young, that the following groups were the most 

important: Orthoptera: Acrididae (grasshoppers); Hymenoptera: Symphyta (sawflies, 

more specifically the larvae): Arachnida: Araneae (spiders); Coleoptera (beetles); 

Lepidoptera (butterflies, more specifically the larvae); Hemiptera: Aphididae (aphids); 

Diptera; and Tipulidae (crane-flies and their larvae). It was found that grasshoppers, 

sawflies, leaf-beetles and spiders were all significantly more important in the diet of bird 

species in population decline compared to non-declining bird species. All four of these 

important invertebrate groups were found to be particularly sensitive to insecticide 

applications and are likely to be affected by declines in marginal habitats and increased 

tillage.  

Sawflies (Hymenoptera: Symphyta) were reported to be of particular importance 

to the Grey Partridge as they are a highly nutritious food source for the chicks (Potts 

1986; 1970). Preliminary investigations suggested that the average sawfly larva is the 

nutritional equivalent of 20 cereal aphids (Potts 1970). Since then, research has 

highlighted the significance of sawflies in the diet of other farmland birds, particularly in 

the nestlings, including the corn bunting (Aebischer and Ward 1997) and the skylark 

(Poulsen et al. 1998). 

It is important to note that although some invertebrate groups have suffered as a 

result of the intensification of cereal farming others, such as cereal aphids, have thrived 

(Borg and Toft 1999; 2000). An experiment carried out by Borg and Toft (1999) 

illustrated that Grey Partridge chicks perform less well on a diet entirely composed of the 

cereal aphid Rhopalosiphum padi as opposed to a diet of mixed insect species containing 

those individuals of higher nutritional value. Chicks that fed on diets composed entirely of 

cereal aphids, or with a higher proportion of cereal aphids than would be preferentially 
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selected by the birds, exhibited poor growth rates and poor flight feather development. 

This experiment demonstrates that although there may be a larger biomass of alternative 

insect species present as a result of agricultural intensification, this is no substitute for a 

diet of insects such as sawflies that are of higher nutritional value. 
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1.2 Biology of sawflies 

 

1.2.1 Taxonomy 

 

The insect order Hymenoptera, comprising over 120,000 species worldwide (Chinery 

1993), is split into two distinct sub-orders; the Apocrita containing the familiar wasps, 

bees and ants, and the Symphyta consisting of the sawflies alone. The Symphyta is by far 

the smaller sub-order (10,000 species worldwide) and its members are the most primitive 

of the Hymenoptera as a whole (Wright 1990). The Sawfly family Tenthredinidae is the 

predominant sawfly family in all parts of the world and over 380 of the 500 British 

species belong to this family. The remaining British species are distributed among eleven 

other families (Benson 1950). 

The common name ―sawfly‖ is derived from the shape of the female ovipositor, 

which takes the form of a pair of serrated appendages or ―saws‖ held within a sheath, 

which is used to slice into plant material to create a space to lay eggs (Benson 1950) 

(Plate 1.1). 

The Symphytans can be easily distinguished from their Apocritan counterparts by 

the lack of a marked constriction between the 1
st
 and 2

nd
 abdominal segments (Quinlan 

and Gauld 1981),  the characteristic ―wasp-waist‖. Also, all adult sawflies, with the 

exception of those in the family Cephidae, possess a pair of structures known as the 

cenchri located posterior to the scutellum. The cenchri come into contact with a rough 

area on the underside of the wings holding them in place when folded. It is thought that 

members of the Cephidae, who also display signs of a constricted waist, form a link 

between the primitive Symphytans and the more ―advanced‖ Apocrita.  

 

1.2.2 Life history 

 

Sawfly adults emerge during the spring and summer period, with the flight of individuals 

spread over weeks or months depending on the species. In some species individuals 

appear at staggered intervals throughout the season (Benson, 1950). The peak season for 

adult sawflies in the UK is May (England) or June (Scotland), although 
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Plate 1.1: Female sawfly (Dolerus nitens) using her ovipositor to slice into a leaf. Image © Bruce Marlin.  
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individuals of the Dolerus, Amauronematus and Aglaostigma genera (common 

Tenthredinid sawflies) have been known to appear as early as March (Benson 1950).   

 When the adult initially emerges from the pupal skin it remains some days within 

its shelter allowing the sclerotinous covering to develop and harden. The length of time 

spent in this activity varies from 1–7 days between species. Upon emergence the adults 

will feed. Sawflies are very specific in their choice of foodplant, with many species 

feeding only on one tissue type of a single plant species. Shortly after emergence females 

will begin to oviposit, often without waiting for males to mate with them (Benson 1950). 

 Eggs are laid in the chosen food plant using the saw-like ovipositor to make a slit 

in the plant material. Eggs may be found entirely, or at least partly, embedded in the tissue 

with typically one egg per slit, although there may be many of these slits or pockets per 

leaf or stem. The oviposition habits of female sawflies are naturally closely related to the 

size and shape of their ovipositor, as are the size, shape and number of eggs laid. The 

length of incubation period varies within and between species according to environmental 

factors such as temperature and humidity. Hatching after a period of 9–14 days is 

considered normal. Sawfly eggs are generally very sensitive to excessive drought, heat, 

damp or cold and are easily killed (Benson, 1950). 

 Sawfly larvae can be found in abundance from June through to late autumn in the 

UK, first appearing typically two to three weeks after the flight of the adults. The majority 

of larvae feed on leaves, either in groups and conspicuous, or solitary and inconspicuous. 

Camouflage is achieved in two ways: the larvae can resemble the leaves of their food 

plant in colour and stay close to the leaf surface while feeding; or the larvae can feed only 

on the underside of leaves. Some sawfly larvae only come out to feed after dark or in wet 

weather, although the likely cause of this behaviour is probably driven by their humidity 

requirements. It is common for the solitary larvae to be more cryptic in appearance than 

the gregarious larvae. The gregarious individuals tend to be more vividly marked and rear 

up when provoked, using ―scare tactics‖ as a defence mechanism (Benson, 1950; Wright, 

1990). 

The larvae feed over a few weeks, although in some species, for example 

Tenthredopsis species, larvae can be found late in the year feeding over the course of two 

or three months. When the larvae are fully grown, they pass into the pre-pupal resting 

state, which is how the vast majority of sawfly species over-winter. During this stage, the 
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pre-pupae either burrow into soil or leaf-litter, into galls (sometimes the galls of other 

insects), under soft bark or attach themselves to the stems or leaves of a living plant. The 

choice of location is directly linked to the humidity and desiccation levels preferable to 

the species. The pre-pupa is much like the larva in form except that the colour patterns, 

spines and hairs are much reduced (Benson 1950; Wright 1990). 

In the spring, a pupa is formed from the pre-pupa, the change probably stimulated 

by shifts in temperature and humidity, and the adult soon sheds the pupal case and takes 

flight. Although a single brood per year is common in most sawfly species, there are some 

species that produce up to 3 generations per year in which case the life cycle is greatly 

accelerated. In the UK, the majority of sawflies are univoltine (Benson 1950; Wright 

1990).  

 

1.2.3 Sex determination in sawflies 

 

1.2.3.1 Haplodiploidy and Complementary Sex Determination (CSD) 

 

The dominant mode of sex determination in the Hymenoptera (Symphyta) is 

arrhenotokous haplodiploidy (arrhenotoky). This is a form of haplodiploidy by which 

males develop from unfertilized eggs (by parthenogenesis) and are haploid and females 

develop from fertilized eggs and are diploid (Heimpel and de Boer 2008). Mated 

hymenopteran females have control over fertilization by choosing whether or not to 

release stored sperm from the spermatheca at the point of oviposition, meaning that 

females can actively adjust the sex ratio of their offspring (van Wilgenburg et al. 2006). 

The other main form of haplodiploid sex determination known in insects is paternal 

genome elimination (PGE) whereby males develop from fertilised eggs and are diploid in 

the first instance but lose their paternal chromosome set early in development (Heimpel 

and de Boer 2008). 

The two methods by which arrhenotoky can be achieved that have received 

empirical support are genomic imprinting, under which activation of the female 

developmental pathway requires paternally derived genes, and Complementary Sex 

Determination (CSD) (Heimpel and de Boer 2008). CSD is the system that is best 

understood and has been confirmed, since its discovery by Whiting (1943), using a variety 
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of methods, in more than 60 species of Hymenoptera including three Symphytans: Athalia 

rosae, Neodiprion nigroscutum and Neodiprion pinetum (Heimpel and de Boer 2008; van 

Wilgenburg et al. 2006; Stahlhut and Cowan 2004).  

Under CSD, the sex of an individual not only depends upon ploidy, but also upon 

the allelic composition at a single sex-determining locus. Heterozygotes at this locus 

develop as females, whereas homozygous individuals develop as males. Haploid 

individuals develop normally into males due to being hemizygous at this locus (Heimpel 

and de Boer 2008; van Wilgenburg et al. 2006). When only one locus is involved, the 

process is referred to as single-locus Complementary Sex Determination (sl-CSD), but 

incidences of multi-locus CSD (ml-CSD) have also been reported. Under the ml-CSD 

model, males are produced only if diploid individuals are homozygous at all of the sex 

determining loci; a female will be produced if one or more of the multiple sex-

determining loci is heterozygous (Heimpel and de Boer 2008).  

The sex determination locus (SDL) has recently been sequenced in the honeybee 

Apis mellifera (Hasselmann et al. 2008; Beye et al. 2003). The SDL contains five known 

genes, two of which have sex determination function: the complementary sex determiner 

gene (csd) and the newly discovered feminizer (fem) gene (Gempe et al. 2009; 

Hasselmann et al. 2008) (Figure 1.1). Heterozygosity at csd leads to a female-specific 

splice-variant at fem which encodes a functional protein allowing female development to 

progress. Homo- or hemizygosity at csd leads to the production of the default male-

specific splice variant at fem which contains a premature stop codon and yields no 

functional protein; therefore male development ensues (Hasselmann et al. 2008). 

However, little is known about the regulation linking sex determination to sexual 

differentiation. RNAi knockdown experiments indicate that the other mRNA-producing 

genes present in SDL (GB11211, GB13727 and GB30480) (Figure 1.1) do not have 

sexual differentiation function and that the paralogous gene pair fem and csd is required 

for the control of female differentiation in both the somatic and the germ cells (Gempe et 

al. 2009). On the basis of the protein amino acid sequence, csd appears to be homologous 

to the tra protein in Drosophila melanogaster (Beye et al. 2003) which plays a role in sex 

determination by regulating the downstream sex-specific splicing of the doublesex (dsx) 

gene at the end of the sex determining pathway. 
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Figure 1.1: Position of known genes within the sex determining locus (SDL) of Apis mellifera. Genes are 

orientated 5’ to 3’ according to the direction of the arrows. The names of the functionally characterised 

genes are underlined.  
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Dsx controls the activity of the final target genes necessary for both male and female 

somatic differentiation. It has been confirmed that dsx in honeybees (Am-dsx) is sex-

specifically spliced and is a potential target for the signal initiated by csd (Cho et al. 

2007). In addition, it has been shown that heterozygosity at csd is only required to initiate 

female development in early embryogenesis whereas fem maintains this course of action 

throughout development. Expression of the female-specific fem protein directs further 

female-specific splicing of fem in a positive feedback splicing loop maintaining the 

female signal (Gempe et al. 2009). 

 

1.2.3.2 Evolution of arrhenotoky and Complementary Sex Determination (CSD) 

 

Arrhenotoky is not exclusive to the Hymenoptera; at least 12 independent origins have 

been proposed. The most likely precursor to haplodiploidy in the Hymenoptera is thought 

to be standard diplodiploidy (both males and females are diploid) and a number of 

evolutionary routes to arrhenotoky from a diplodiploid ancestor have been suggested. 

These routes have been broadly grouped into those that invoke inbreeding (breeding 

amongst closely related individuals) as a precursor and those that invoke outbreeding 

(Reviewed by Heimpel and de Boer 2008).  

 Early models suggested that inbreeding may have been involved in the evolution 

of arrhenotoky due to the fact that persistent inbreeding creates a situation in which males 

compete for access to their sisters as mates thus selecting for a female-biased sex ratio. 

Arrhenotoky provides a mechanism by which these sex ratios can be achieved (Hamilton 

1967). Also, inbreeding in diplodiploid ancestors and the purging of deleterious alleles 

associated with inbreeding was seen as a possible preadaptation to arrhenotoky (Borgia 

1980; Brown 1964). However, in the Hymenoptera at least two lines of reasoning suggest 

that this was not the case. Firstly, inbreeding does not seem prevalent in the ancestral 

Hymenoptera (the Symphyta) (Coppel and Benjamin 1965; Walter et al. 1994) and 

secondly inbreeding depression as a result of the deleterious effects of Complementary 

Sex Determination (CSD) is widespread in ancestral hymenopterans (discussed in Section 

1.2.3.3) (Heimpel and de Boer 2008). 

 There are also models of arrhenotoky evolution that do not assume inbreeding as a 

precursor and are based on the fact that haploid sons are more closely related to their 
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mothers under arrhenotoky than diploid sons to their mothers under diplodiploidy. This 

asymmetry in relatedness could cause a rare arrhenotoky allele to spread in an ancestral 

diplodiploid population and with continued outbreeding this allele could become fixed. 

Arrhenotoky would only spread under these conditions if the fitness of the haploid males 

was sufficient (Borgia 1980; Smith 2000; Bull 1979). 

 Normark (2003) reviewed the evolution of alternative genetic systems in insects 

and examined the evolution of haplodiploidy from an ecological perspective. He noted 

that haplodiploid lineages were very few and ancient and appeared to arise in lineages that 

used woody plants and stems as a food source (either the wood itself or the sap within the 

plant). Woody plants are a nutritionally poor food source and the insects that rely on them 

usually also rely on maternally inherited bacterial endosymbionts. Some of the basal 

lineages of the Hymenoptera feed on dead wood and harbour intracellular bacteria but the 

correlation between the bacteria and haplodiploidy is unclear. Hamilton (1993) speculated 

that haplodiploidy may have been the outcome of a history of conflict over sex 

determination between the intracellular bacteria and their hosts. The endosymbiont seeks 

to feminize the host and in response the host multiplies and/or moves the sex-determining 

elements around the genome. This in turn presents more targets for the endosymbiont 

until finally all surviving X chromosomes behave as autosomes and sex determination is 

based on chromosome dosage alone. More recent models also lend support to the 

―endosymbiont-induced haplodiploidy‖ hypothesis but the conditions for this to occur are 

very specific and/or the endosymbiont must confer some additional direct benefit to the 

host to allow it to persist in the population (Kuijper and Pen 2009). 

 To summarise, a wide range of models for the evolution of arrhenotoky have been 

put forward and because of the fact that arrhenotoky has evolved independently on several 

occasions there is no requirement for a ―one-size-fits-all‖ hypothesis, although, it is 

unlikely that inbreeding was involved in the evolution of arrhenotoky in the Hymenoptera 

due to the lack of inbreeding in the ancestral hymenoptera and the inbreeding depression 

brought about as a result of CSD. The presence of CSD in a representative of every major 

hymenopteran group has led to the assumption that CSD is the ancestral mode of sex 

determination in the order. However, knowledge of the phylogenetic distribution of CSD 

is incomplete and interestingly species with and without CSD occur within the same 

genus (Cotesia; de Boer et al. 2007; Zhou et al. 2007; 2006; Niyibigira et al. 2004; Gu 
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and Dorn 2003). An expansion of the search for CSD into the more primitive members of 

the Hymenoptera, including the Symphyta, will help to determine whether CSD is in fact 

the ancestral mode of sex determination (van Wilgenburg et al. 2006; Cook and Crozier 

1995).   

 

1.2.3.3 Complementary Sex Determination (CSD) and the consequences of diploid male 

production 

 

Diploid males produced as a result of CSD have been shown to be inviable or sterile in 

the vast majority of hymenopteran species studied (Elias et al. 2009; Heimpel and de Boer 

2008; van Wilgenburg et al. 2006). For example, diploid males of the sawfly Neodiprion 

nigroscotum are incapable of mating properly (Smith and Wallace 1971) whereas diploid 

males of the sawfly Athalia rosae ruficornis mate with females without any difficulty, 

although the resulting offspring are triploid and sterile (Naito and Suzuki 1991). It had 

become a general assumption that diploid males perform poorly across a range of traits 

associated with reproductive fitness and that if they did succeed in fathering surviving 

offspring, these offspring in turn were sterile, but this generalization was called into 

question when new research highlighted functionally reproductive males in the solitary 

wasp Euodynerus foraminatus (Cowan and Stahlhut 2004) and more recently in the 

parasitoid Cotesia glomerata (Elias et al. 2009). 

It is generally accepted that haplodiploids are less susceptible to the effects of 

inbreeding due to the fact that deleterious alleles are more effectively expelled from the 

population via the haploid males (Zhou et al. 2007; Butcher et al. 2000). However, those 

haplodiploid species possessing the Complementary Sex Determination (CSD) system 

and producing reproductively compromised diploid males will be prone to inbreeding 

depression (Zayed and Packer 2005). This is because inbreeding increases the chance of 

homozygosity at the sex determining locus (loci) and therefore increases diploid male 

production (DMP) (Cook and Crozier 1995; van Wilgenburg et al. 2006). Increased DMP 

initially reduces population growth rate and effective population size (the number of 

individuals in a theoretically ideal population exhibiting the same level of genetic drift as 

the actual population (Hartl and Clark 1997)). In small closed populations, genetic drift 

combined with demographic and environmental stochasticity leads to a reduction in the 
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number of sex alleles and therefore higher DMP. The cycle continues in a process termed 

the ―diploid male vortex‖ which ultimately leads to extinction (Zayed and Packer 2005).  

Selection against inbreeding is to be expected in species that are CSD positive 

(Zhou et al. 2007) with a range of strategies being applied to combat DMP. Indeed, the 

mating systems of many species with CSD appear to be characterized by outbreeding with 

both temporal and spatial segregation of offspring to reduce the occurrence of sib-mating 

(Heimpel and de Boer 2008). For example, females of the sawfly Athalia rosae lay 

fertilised eggs early in life and unfertilised eggs later on resulting in a temporal 

segregation of opposite-sex kin (Lee et al. 1998). In the gregarious wasp Bracon hebetor 

females and males are unreceptive to mating for the first two hours after emergence, and 

thus disperse from their natal area before mating (Ode et al. 1995) 

Many species with CSD have mechanisms, which may or may not have arisen in 

response to CSD, that counteract DMP as described above. However, DMP levels are 

necessarily dependent on the sex allele diversity within a population. Estimates of the 

number of sex alleles (for a single sex-determining locus) in hymenopteran populations lie 

generally between nine and 20 corresponding to levels of DMP production of 5–11% 

(Cook and Crozier 1995), although, up to 86 alleles at the sex locus have been detected in 

natural populations of the fire ant Solenopsis invicta (Ross et al. 1993). Large 

haplodiploid populations can maintain many sex alleles and therefore have lower levels of 

DMP. However, in small, isolated populations, genetic drift reduces sex allele richness 

and increases DMP (Zayed and Packer 2005). 
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1.3 Susceptibility of sawflies to agri-intensification 

 

Studies carried out as part of a long-term monitoring project of farmland flora and fauna 

in the Sussex Downs, run by the Game and Wildlife Conservation Trust, have shown that 

sawfly numbers declined steadily over the period 1970–1991. Over the same period of 

time, the use of fertilizers and pesticides has increased, hedgerows and marginal areas 

have declined, field sizes have increased and traditional ley farming and crop rotations 

have been largely abandoned (Aebischer 1991). A combination of the sawfly life cycle 

and the potential presence of CSD in these species could mean that sawflies are more 

susceptible to the effects of agricultural intensification than other invertebrates occupying 

the same habitat. 

 As discussed in Section 1.2.2 the vast majority of sawfly species overwinter as 

pupae in the soil. Mechanical disturbance of the overwintering pupae due to increased 

levels of winter cropping could increase sawfly mortality by 50% (Barker et al. 1999). In 

addition, sawflies have suffered as a result of increasing pesticide application. As a 

general rule sawflies are slow-reproducing insects (many species are univoltine) and 

research has shown that populations can take up to four years to recover from a single 

summer application of a broad-spectrum insecticide (Sotherton 1990; Aebischer 1990). 

The increased use of herbicides and a decline in the practice of undersowing (the use of 

cereals as a nurse crop for grass) is thought to have eliminated a number of sawfly host 

plants from the agricultural landscape (Sotherton 1998, 1990). This may be a particular 

problem as sawflies are very specific in their choice of foodplant (Section 1.2.2). 

 The processes described above could be acting in combination to fragment 

suitable sawfly habitat. Given that sawflies are thought to disperse poorly (Benson 1950), 

and could therefore struggle to colonise new habitat, it is possible that sawfly populations 

could become isolated and subject to inbreeding depression. The potential presence of 

CSD, and possibly of sterile diploid males, could compound the effects of inbreeding 

(Cook and Crozier 1995) and ultimately lead to local extinction of sawfly populations 

(Zayed and Packer 2005). 
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1.4 Conservation genetics 

 

1.4.1 The importance of genetic variation 

 

Small, endangered populations differ from larger populations in two main respects. The 

level of inbreeding is increased and the importance of genetic drift (stochastic loss of 

alleles) in relation to the population genetic structure is increased. Both processes lead to 

a loss of genetic diversity which means reduced evolutionary potential and reproductive 

fitness and a heightened extinction risk (Spielman et al. 2004). Small, potentially 

threatened populations should exhibit lower genetic diversity as compared to 

taxonomically related non-threatened populations (Höglund 2009). In an extensive 

analysis of the genetic diversity of 170 endangered species and taxonomically related non-

threatened species, 77% of threatened species exhibited lower heterozygosity, and 

heterozygosity was 35% lower, on average, in threatened taxa compared with non-

threatened taxa (Spielman et al. 2004). 

  In addition to estimating genetic diversity levels within populations it is also 

important to determine the extent of population fragmentation to identify threatened 

populations. Loss or fragmentation of habitat induces higher population substructuring in 

endangered species through reduced migration between remaining habitat fragments. 

Isolation of groups of individuals in this fashion is a major cause of inbreeding and can 

potentially lead to local extinction (Höglund 2009), which may be of particular 

consequence for species that are thought to disperse poorly, such as sawflies (Benson 

1950). 

Therefore, estimates of genetic diversity and levels of population substructure are 

commonly determined in population genetics and provide important information for 

conservation genetics studies (Väli et al. 2008). Principally, it is the genetic diversity at 

loci with functional importance that will affect the ability of a population to respond to 

selection. Thus, genetic variability measured from within these regions is useful for 

conservation (Höglund 2009; Väli et al. 2004). For example, information relating to 

allelic diversity at the complementary sex determiner (csd) locus, recently characterised in 

the honeybee Apis mellifera, would be particularly useful in assessing the reproductive 

fitness of sawfly populations in light of the consequences of CSD discussed in Section 



 17 

1.2.3.3. However, in the absence of genome-wide information in a species of interest, 

molecular markers can be used as useful indicators of overall variability in the genome 

(Höglund 2009; Väli et al. 2004; Beebee and Rowe 2004) to facilitate estimates of 

population extinction risk.  

 

1.4.2 Molecular markers 

 

1.4.2.1 Available molecular markers 

 

In early studies of genetic variation, allozyme (or isozyme) loci, assayed at the protein 

level via starch electrophoresis, were the marker of choice. Allozyme studies required 

large amounts of tissue and often the destructive sampling of individuals of the target 

species for conservation. In addition, it was suspected that a large amount of variation was 

not detected due to redundancy in the genetic code; therefore the use of this marker type 

has been superseded by DNA-based markers (Höglund 2009; Beebee and Rowe 2004). 

RFLP (Restriction Fragment Length Polymorphism) (Botstein et al. 1980) was the 

first of the genomic DNA-based markers to be developed and RFLPs are considered to 

have marked the beginning of a new era in this field (Liu and Cordes 2004). The principle 

of RFLP is simple: genomic DNA is digested with restriction endonucleases and results in 

fragments whose number and size can vary between individuals, populations and species 

due to mutations in the restriction site. Traditionally, fragments are separated and 

analysed using Southern blots (Southern 1975) whereby digested genomic DNA is 

subjected to agarose gel electrophoresis, transferred to a membrane and visualised by 

hybridisation to specific probes. More recent uses of RFLP have replaced time-consuming 

Southern blot methods with PCR-based analyses, although the latter method requires 

sequence information for the target species (Liu and Cordes 2004). 

One of the first methods that used the PCR-based technique was RAPD 

(Randomly Amplified Polymorphic DNA). With this method, short universal primers are 

used that randomly anneal to the target DNA and amplify the DNA between any two 

random primer pairs. If the primers anneal to the template DNA and the region between 

two primer pairs is short enough, an amplification product will be produced known as a 

RAPD profile for each individual sample. Genetic variation between individuals and 
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groups of individuals or populations is then assessed by the presence or absence of each 

product in a RAPD profile (Höglund 2009; Beebee and Rowe 2004; Liu and Cordes 

2004). The RAPD method does not require any prior knowledge of genetic sequence of 

the target species. However, due to the low annealing temperature required to allow the 

universal primers to amplify, the reproducibility of this method is questionable (Liu and 

Cordes 2004). 

By the mid-1990s (Vos et al. 1995), a more reliable descendant of the RAPD and 

RFLP methods was developed (Höglund 2009; Beebee and Rowe 2004) known as AFLP 

(Amplified Fragment Length Polymorphism). With AFLP, restriction enzymes are used to 

digest genomic DNA in the first instance. Complementary double-stranded adaptors are 

then ligated to the ends of the restriction fragments and PCR is performed using primers 

complementary to the adaptor sequences (Höglund 2009). The result is a series of PCR 

products forming an AFLP profile for each individual that can be analysed in a similar 

way to a RAPD profile. 

In recent years microsatellites or Simple Sequence Repeats (SSRs) have become 

the marker of choice for population genetic studies (Squirrel et al. 2003; Zane et al. 

2002). Microsatellites are tandemly repeated motifs of 1-6 bp sequences found in coding 

and non-coding regions of all prokaryotic and eukaryotic genomes analysed to date (Zane 

et al. 2002; Tautz 1989). These tandem repeat sequences are subject to a high level of 

single-motif insertion or deletion mutations resulting in a high level of polymorphism in 

the length of the repeat sequence (Metzgar et al. 2000). The length of a microsatellite 

repeat sequence can therefore vary between individuals, and populations, and it is these 

length variants (alleles) that are used to analyse genetic diversity (Figure 1.2). 

The characteristically high level of polymorphism, along with the Mendelian co-

dominant mode of inheritance, makes microsatellite markers a powerful tool for 

population genetic studies (Zane et al. 2002). However, the use of microsatellites requires 

a high amount of initial investment as each locus has to be identified and sequenced to 

facilitate the design of PCR primers. Only then can the alleles at each locus be identified 

following the determination of the size of the PCR products (Beebee and Rowe 2004; Liu 

and Cordes 2004). Microsatellites have the highest level of polymorphism of any of the 
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Allele 1 – 16 repeat units (48 bp) 

TGACTGCTCACACACACACACACACACACACACACACACAGTTTCGGA 

ACTGACGAGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTCAAAGCCT 

 

Allele 2 – 9 repeat units (34 bp) 

TGACTGCTCACACACACACACACACAGTTTCGGA 

ACTGACGAGTGTGTGTGTGTGTGTGTCAAAGCCT 

 

Allele 3 – 12 repeat units (40 bp) 

TGACTGCTCACACACACACACACACACACACAGTTTCGGA 

ACTGACGAGTGTGTGTGTGTGTGTGTGTGTGTCAAAGCCT 

 

Figure 1.2: Example of three alleles from a single microsatellite locus. Microsatellite repeat regions are 

shown in green and the microsatellite flanking regions are shown in red.  Alleles are normally described 

by their length (repeat + flanking region) in base pairs (bp).  

 

 

 

 

 

 

 

 



 20 

molecular markers due to the large number of alleles that can occur at each locus (Liu and 

Cordes 2004).  

Although microsatellites are the common tool for population genetic analysis, 

Single Nucleotide Polymorphisms (SNPs) have been developed more recently as an 

alternative type of marker for population genetic studies (Coates et al. 2009). SNPs are 

single-base substitutions found at a single genomic locus. Theoretically within a locus a 

SNP can produce up to four alleles but typically SNPs are considered bi-allelic and are 

restricted to either the two pyrimidines (C/T) or the two purines (A/G) (Liu and Cordes 

2004) due to the low probability of two independent base changes occurring at a single 

position (Vignal et al. 2002). In a genetic diversity study the lack of polymorphism at 

SNPs has to be compensated for by using a larger number of these markers, which in turn 

can be complicated to isolate (Höglund 2009). 
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1.4.2.2 Choosing a molecular marker 

 

There is a range of molecular markers available with varying characteristics, and no single 

marker is suitable for all applications (Beebee and Rowe 2004). For population genetic 

studies it is important that the chosen marker is selectively neutral to ensure that the 

genetic structure observed within and between populations is solely due to the frequency 

of inbreeding and gene flow (Höglund 2009). 

 As a general rule, the marker chosen for a population genetic study is (1) 

polymorphic and evenly distributed throughout the genome, (2) provides adequate 

resolution of genetic differences, (3) has multiple, independent and reliable markers, (4) is 

simple, quick and inexpensive to use, (5) requires small amounts of tissue/DNA and (6) 

requires no prior information about the genome of the species in question (Agarwal et al. 

2008). The choice of any DNA-based marker involves a trade-off between precision and 

convenience with expense being a significant factor (Agarwal et al. 2008; Sunnocks 

2000). 

The pros and cons of each popular marker type introduced in Section 1.4.2.1 

(RFLP, RAPD, AFLP, SSRs and SNPs) are listed in Table 1.1. The drawback of all three 

of the random amplification techniques is that the subsequent analysis cannot distinguish 

between heterozygotes and homozygotes. So-called ―dominant‖ markers are inherently 

less informative than ―co-dominant‖ markers for population genetic studies as the vast 

majority of genetic diversity analyses rely on comparisons of heterozygosity levels within 

and between populations (Beebee and Rowe 2004). Therefore, the decision not to use 

RAPD, RFLP or AFLP analysis in the current study was made in spite of the fact that the 

use of these markers requires no information relating to the target DNA (Table 1.1). 

Furthermore, it was decided to use microsatellite markers as opposed to SNPs (both are 

technically difficult to isolate) due to the fact that microsatellite markers are characterised 

by a high degree of polymorphism and that fewer markers should be required in 

comparison to SNPs (Table 1.1). In addition, the utility of microsatellite markers in non-

model species such as that in the current study is well-documented (Coates et al. 2009; 

Zane et al. 2002) whereas SNP discovery and genotyping is still a challenging endeavour 

(Höglund 2008; Liu and Cordes 2004). 



Table 1.1: The benefits and disadvantages of five popular marker types in terms of their utility for population genetic studies. 

 

Marker type 

Dominant/Co-

dominant Pros Cons 

RAPD Dominant 

No knowledge of target DNA required. Sensitive to laboratory conditions. 

Relatively inexpensive to use. High quality template necessary. 

Straightforward system. Poor reproducibility. 

RFLP Dominant 

No knowledge of target DNA required. Can be labour-intensive. 

Considered more reliable and reproducible than RAPD. High concentrations of high quality DNA required. 

Straightforward system. Relatively low polymorphism. 

Restriction sites abundant throughout the genome. 

To use the PCR-based method sequence information is 

required. 

AFLP Dominant 

Considered more reliable and reproducible than RAPD. Slightly more technically difficult than RAPD and RFLP. 

No knowledge of target DNA required. Can be labour-intensive. 

Amount and quality of DNA required less than that for RFLP.   

Microsatellites 

(SSRs) 
Co-dominant 

Highly polymorphic. Long development time. 

Reliable and reproducible. Labour-intensive. 

Relatively low number of markers required compared to 

RAPD/AFLP/RFLP/SNPs.  

Abundant within the genome. 

Can be expensive to establish.  

Specific primers required.  

Complicated mutation process. 

 Questionable neutrality 

SNPs Co-dominant 

Abundant within the genome. Low polymorphism. 

Simple mutation process as compared to microsatellites. 

Reliable and reproducible. 

Questionable neutrality. 

High no. of markers required. 

 Can be expensive to establish. 

 Complex isolation procedure. 

  

High volume of sequence information required relating to 

target DNA. 
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1.4.3 Microsatellite markers 

 

1.4.3.1 Properties of microsatellite markers 

 

Microsatellite sequences can range in length up to a few hundred base pairs (Beebee and 

Rowe 2004) and are present in both coding and non-coding regions of the genome 

(Chistiakov et al. 2006). However, as compared to a random distribution pattern, 

microsatellites have been shown to be more abundant in the non-coding regions (Metzgar 

et al. 2000). In addition, the abundance and distribution of certain repeat types varies 

between genomic region and between taxa; in arthropods the most common repeat motif 

is (CA)n (Toth et al. 2000).  

 The high degree of polymorphism associated with microsatellite sequences arises 

due to insertion or deletion mutations resulting in the addition or removal of repeat units 

(Section 1.4.2.1). The origin of these mutations is still under debate (Zane et al. 2002). 

However, slipped-strand mis-pairing during DNA replication, which results in the 

replicated strand possessing a different number of repeats from the template strand, is 

thought to be the predominant mutational mechanism (Schlötterer and Tautz 1992). 

During DNA replication, longer sequences of repeated units will pose more of a problem 

to DNA polymerases than shorter sequences making longer sequences more prone to 

slipped-strand mis-pairing (Chistiakov et al. 2006) generating the higher levels of allelic 

diversity associated with longer repeat sequences (Primmer et al. 1996). 

Mutation rates also vary between repeat type, with dinucleotide repeats exhibiting 

higher mutation rates and therefore being the most polymorphic of the repeat types (Lee et 

al. 1999; Chakraborty et al. 1997). However, variability in mutation rate is also present 

between repeat motifs. In a study comparing the relative mutation rates of dinucleotide 

repeat motifs in Drosophila melanogaster CA repeats appeared to have the highest 

mutation rate and AT repeats the lowest (Bachtrog et al. 2000). The authors suggest that 

this may be due to preferences in the DNA mismatch repair system and could also 

account for differences in the proportions of dinucleotide motifs represented in the 

genome between organisms. For example, in an AT-rich genome an adaptation of the 

mismatch repair system to AT mismatches would be selectively advantageous. If AT 
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mismatches are then repaired more efficiently the mutation rate in AT repeats will be 

reduced (Bachtrog et al. 2000).  

Importantly, mutation via slipped-strand mis-pairing allows the same 

microsatellite allele to arise multiple times, resulting in size homoplasy (similarity of 

genes or traits for reasons other than co-ancestry).  This can violate the basic assumptions 

of analysing genetic markers in that alleles are assumed to be derived from a common 

ancestor. Several mutational models that account for this homoplasy have been proposed. 

Determining which model is most appropriate is important because the estimation of 

genetic distances between populations based on microsatellite data relies on the 

underlying assumptions of the chosen model (Chistiakov et al. 2006).  

 

1.4.3.2 Selective neutrality of microsatellite markers 

 

As previously stated (Section 1.4.2.2) molecular markers for use in population genetics 

should ideally be selectively neutral to allow the researcher to determine that observations 

of genetic structure and diversity are due to levels of inbreeding and gene flow and are not 

biased by selection. Microsatellites are typically considered to be neutral markers, in 

which case no deviation from the expectations under a neutral model is expected by 

selection acting on a microsatellite itself (Chistiakov et al. 2006; Schlötterer et al. 1997). 

However, some research groups have linked microsatellites to functional properties 

(Chistiakov et al. 2006) and there have been reports of associations between allelic length 

variants and gene expression (reviewed in Kashi and King 2006), and therefore the 

potential for selection on microsatellites cannot be ignored (Väli et al. 2008). 

 However, as more researchers are beginning to use EST-SSRs (microsatellites 

derived from transcriptomic regions of the genome), due to the increasing amount of 

publicly available sequence data (Ellis and Burke 2007), the effects of selection on 

microsatellite analysis of population genetics have been considered in more detail. A 

study by Woodhead et al. (2005) showed a significant correlation in the rank order of 

population diversities in ferns as determined by EST-SSRs and genomic (anonymous) 

SSRs. Another study by Väli et al. (2008) showed that genetic diversity estimated by 

anonymous microsatellite markers and by sequence variation in non-coding regions of the 

genome were correlated at the population level. The results of these studies may indicate 
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that the effects of selection on microsatellites are negligible in some cases. Ellis and 

Burke (2007) suggest in their review that the effects of selection can best be minimized by 

increasing the number of markers utilised in population genetic studies and by using a 

common set of markers across taxa when working in a comparative manner. 
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1.5 Project Objectives 

 

The aim of this study was to quantify levels of genetic diversity in populations of 

common farmland sawfly species and to assess the population substructure. Conservation 

research in graminivorous sawflies has been census-based to date and this study 

represents the first step into molecular research in the taxon. The four key objectives of 

the study were as follows: 

 

1. Sample sawflies on a UK-wide scale in order to identify a suitable study species 

(Chapter 3). 

2. Develop a set of microsatellite markers for use in the chosen study species 

(Chapter 4). 

3. Determine the presence or absence of Complementary Sex Determination in the 

same species (Chapter 5). 

4. Estimate the levels of genetic diversity present in populations of the chosen study 

species and gain an understanding of how these populations are structured 

(Chapter 6). 
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2. General Methods 

 

2.1 Sawfly collection and processing 

 

2.1.1 Collection of adult sawflies 

 

Adult sawflies were collected using a Malaise trap (Plate 2.1). The Malaise trap, 

originally developed by Rene Malaise (1937) and later modified in 1972, is a form of 

neutral flight-interception trap (Townes 1972). In appearance the trap is similar to a ridge 

tent, but with open walls and a central barrier. Flying insects are directed upwards by the 

shape of the structure into a collecting vessel located at the highest point of the trap; the 

collection vessel contains 70% ethanol, which kills and preserves the trapped insects. The 

trap is designed to catch insects with an innate tendency to fly upwards upon encountering 

a barrier making it particularly useful for trapping the Hymenoptera or Diptera. Malaise 

traps generally have white roof panels and navy or black side panels; these neutral colours 

are chosen so that the trap does not specifically attract insects (Southwood 1978). This 

type of trap can be left unattended in the field for one to two weeks and is therefore both 

convenient and cost-effective to use. 

 Malaise traps are designed to be positioned across insect flight paths 

(Southwood 1978). All Malaise traps used in the following studies were positioned with 

the open sides of the trap facing into the grass margin and with the tallest side of the trap 

(containing the collection bottle) facing into the cropped area of the field. Collection 

bottles containing approximately 200 ml of 70% ethanol were replaced weekly and 

captured insects were taken back to the lab for storage and identification. 
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Plate 2.1:  Malaise trap in side-view identical to those used in the study. 
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2.1.2 Identification of adult sawflies 

 

As the Malaise trap is not insect-specific, it was first necessary to separate sawflies 

from the total catch. The contents of the collection bottle (ethanol + insects) were emptied 

into a glass Petri dish for easier viewing. Hymenopteran insects were identified by the 

presence of two membranous pairs of wings with the hindwings usually smaller in size 

than the forewings. In flight, the forewings are linked to the hindwings by a series of 

interlocking hooks known as hamuli (Plate 2.2). When a dissection microscope is used to 

magnify the specimen (approx. ×10), this row of minute hooks is clearly visible on the 

front edge of the hindwings in all Hymenoptera and is the defining characteristic of the 

order (Chinery 1993).  

The Hymenoptera comprises two distinct sub-orders: the Apocrita, which includes 

the wasps, bees, ants, ichneumons and other groups; and the Symphyta, which contains 

only the sawflies. The Symphyta were segregated from all other hymenoptera due to the 

lack of a marked constriction between the thorax and the abdomen, otherwise known as a 

―wasp waist‖ (Plate 2.2). Also, with the exception of those in the family Cephidae, all 

adult sawflies possess a pair of structures known as cenchri (singular ―cenchrus‖) (Plate 

2.2) situated posterior to the scutellum. These structures come into contact with a scaly 

area on the underside of the forewings holding them in position when the insect is at rest 

(Wright 1990) and were easily recognisable with the naked eye.  

Individuals were viewed under a dissection microscope and microdissection 

forceps and fine-tipped paintbrushes were used to manipulate the specimen to visualise 

characteristics more clearly. Sawflies were identified to genus level using the AIDGAP 

guide (Wright 1990). Subsequent identification to species was carried out using the 

relevant sections of ―Handbooks for the Identification of British Insects‖ (Benson 1952; 

Benson 1958; Quinlan and Gauld 1981). Once identified, sawflies were preserved 

individually in vials of 70% ethanol and stored at 4 ºC. 
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B      C 

 

 

Plate 2.2: (A) Diagram of an adult female sawfly, note the position of the cenchri (Wright 1990). (B) left: 

an example of a hymenopteran with the characteristic “wasp-waist”, right: a sawfly with no “wasp-waist” 

(www.bumblebee.org). (C) Row of hamuli on the front edge of the hind wing of a hymenopteran. 

(http://allencentre.wikispaces.com/Junior+Insects+in+Close-up). 
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2.1.3 Sexing of adult sawflies 

 

Sexing of adult sawflies is relatively simple; in females the last segment of the abdomen 

is longitudinally divided on the ventral surface by the sawsheath containing the saws 

(Plate 2.3). The corresponding last segment of male sawflies has a smooth surface as the 

male insects lack saws and therefore have no sawsheath division (Wright 1990).  

 

2.1.4 Collection of sawfly larvae 

 

Sawfly larvae resemble the larvae of butterflies and moths (Lepidoptera) but sawfly larvae 

can be distinguished by the presence of at least six pairs of abdominal prolegs (Chinery 

1993) (Plate 2.4).  

Sawfly larvae were collected by sweepnetting the vegetation in the grass and 

wildflower margin of a cereal field at New Gilston Farm, Fife, Scotland (Grid Reference: 

NO 443 067). A sweep net made from thick cotton mesh with a round mouth of diameter 

c. 0.5 m was used to sweep the vegetation in the field margin. Any invertebrates present 

in the top half of the vegetation were knocked into the net as it was swept across the plant 

material. Sawfly larvae were collected throughout May and June in 2009, with sampling 

beginning a few weeks after the first observed emergence of adult sawflies. 

 Captured sawfly larvae were transferred to plastic 5ml vials and live insects were 

frozen at -80 ºC upon return to the laboratory. 
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Plate 2.3: The terminal ventral segments of an Aglaostigma fulvipes female (left) and male (right) 

showing the sawsheath of the female longitudinally dividing the terminal segments of the abdomen and 

the smooth undercarriage of the male. 
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Plate 2.4: Sawfly larva (Dolerus species) (GWCT 2010). 
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2.2 Preparation of sawfly DNA 

 

2.2.1 Extraction of genomic DNA from sawfly tissue 

 

Genomic DNA was extracted from the heads of adult sawflies using the DNeasy
©

 Blood 

and Tissue Kit (QIAGEN Ltd.; Crawley, UK) following the manufacturers instructions 

for extracting from chitinous tissue. DNA was extracted only from the sawfly heads to 

minimise the presence of bacterial DNA in the sample, particularly bacteria from the gut. 

 Heads were excised from the bodies of individuals using a scalpel previously 

sterilised with 100% ethanol. The head(s) (including antennae) were placed into a 1.5 ml 

microcentrifuge tube containing 180µl Buffer ATL and the sample was homogenised 

using a micropestle. Following addition of Proteinase K (20 µl of 20 mg/ml), the sample 

was mixed by vortexing and incubated for 4 hours at 56 °C to ensure adequate lysis of the 

tissue. RNase A (4 µl of 100 mg/ml) was added to remove RNA and the sample was 

mixed by vortexing. Following incubation at room temperature for 2 minutes, the sample 

was vortexed, and Buffer AL (200 µl) was added and mixed again. An aliquot of 100% 

ethanol (200 µl) was added and the sample was thoroughly mixed to yield a homogeneous 

solution.  

The sample was centrifuged at 5,900 rcf for 2 minutes to pellet the exoskeleton 

debris, which can interfere with the function of the spin columns in subsequent steps.  The 

supernatant was transferred to a DNeasy
©

 Mini spin column placed in a 2 ml collection 

tube and centrifuged for 1 minute at 5,900 rcf. The DNeasy
©

 Mini spin column containing 

bound DNA was placed in a clean 2 ml collection tube and the DNA sample was washed 

by adding Wash Buffer AW1 (500 µl) to the column and centrifuging for 1 minute at 

5,900 rcf.  The flow-through was discarded and the wash step was repeated by the 

addition of Buffer AW2 (500 µl) to the column followed by centrifugation at 15,700 rcf 

for 3 minutes. 

The DNeasy
©

 Mini spin column was transferred to a clean 1.5 ml microcentrifuge 

tube for DNA elution. Buffer AE (150 µl) was added directly to the column membrane 

and the sample was incubated at room temperature for 1 minute prior to centrifugation at 

5,900 rcf for 1 minute.  A second elution step was performed with Buffer AE (50 µl) to 

increase yield. DNA samples were stored at -20 ºC until required. 
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2.2.2 Estimation of DNA concentration and quality 

 

DNA fragments were separated by gel electrophoresis in 1% (w/v) agarose gel (―Hi-Pure‖ 

Low EEO agarose, BioGene Ltd.; Kimbolton, UK) suspended in 1 X TBE buffer (89 mM 

Tris-HCl pH 8.3, 89 mM Boric Acid, 2 mM EDTA). Gels were stained with SYBR
®

 Safe 

DNA gel stain (Invitrogen Ltd.; Paisley, UK) at 1X concentration.  

 Concentration of DNA samples was determined by absorbance at 260 nm using a 

Nanodrop Microphotometer ND-1000 (Fisher Scientific UK Ltd.; Loughborough, UK).  

 

2.2.3 PCR conditions 

 

All Polymerase Chain Reactions (PCR) were carried out in a GeneAmp
®
 PCR System 

9700 thermocycler (Applied Biosystems; Warrington, UK). Taq DNA polymerase used in 

all reactions was sourced from Roche Applied Science (Burgess Hill, UK) supplied at 

5U/µl and used according to the manufacturer‘s instructions. 10X PCR buffer used in all 

reactions was supplied with the Taq and consisted of 100 mM Tris-HCl, 15 mM MgCl2 

and 500 mM KCl, pH 8.3. Deoxyribonucleotides (dNTPs; Roche Applied Science; 

Burgess Hill, UK) were prepared as 2 mM stocks and final concentration in the reaction 

for each dNTP (dATP, dCTP, dGTP, dTTP) was 200 µM. 

 

2.2.4 Purification of the PCR product 

 

Purification of PCR products was performed using the MinElute
®
 PCR Purification Kit 

(QIAGEN Ltd.; Crawley, UK) following the microcentrifuge protocol provided by the 

manufacturers.  

 The MinElute
®
 Gel Extraction Kit (QIAGEN Ltd.; Crawley, UK) was used to 

isolate DNA fragments after electrophoresis through agarose gel. Fragments of gel 

containing PCR product of the required size were excised using a clean, sharp scalpel 

whilst viewing the gel under UV light.  The products were isolated and purified following 

the manufacturer‘s instructions. 
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 For both of these procedures, the product was routinely eluted in a final volume of 

15µl, as opposed to the recommended 10µl, which did not adversely affect the samples 

and provided a larger sample volume for subsequent procedures. 

 

2.2.5 Whole genome amplification 

 

The illustra™ Genomiphi™ V2 DNA Amplification Kit (GE Healthcare; 

Buckinghamshire, UK) was used in some circumstances to amplify genomic DNA post 

extraction.  

 Due to the nature of the sawfly life cycle and the relative rarity of these insects, 

sample collection in the spring and summer months frequently yielded only small 

numbers of each species, which limited the availability of sawfly tissue for the 

development of molecular markers. Using the Genomiphi™ Kit to amplify genomic DNA 

allowed the molecular techniques to be optimised with only a small number of tissue 

samples.  

 Approximately 15 ng of sawfly DNA extracted using the DNeasy
© 

Kit was used in 

one Genomiphi™ reaction (20 µl) following the manufacturer‘s instructions. Aliquots of 

the reaction could be used in downstream applications without the need for further 

purification. 
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3. Species composition of farmland sawfly (Hymenoptera, Symphyta) 

populations  

 

3.1 Introduction 

 

3.1.1 Introduction 

 

The primary aim of the current study was to develop molecular markers to facilitate 

population genetic analyses in a common British farmland sawfly. In the first instance this 

required identifying a study species common to the arable landscape in the UK and is 

therefore most likely to be a food source for farmland bird species. Secondly, it was 

necessary to obtain enough individuals of the study species to optimise the stages 

involved in molecular marker development (Chapter 4).  

In the agricultural landscape sawflies are most likely to be found in the grass and 

wildflower margins surrounding the cropping areas where suitable host plants are located. 

Therefore, these habitats were the focus of the field studies. Furthermore, as discussed in 

Section 1.2.2, the majority of British sawflies are only present in the adult form for one to 

two months of the year during the spring to summer period (Benson 1950). Sawfly larvae 

are present for a few weeks after the emergence of the adults (Benson 1950) but are 

notoriously difficult to identify due to the absence of clear taxonomic keys (Barker 1998). 

Therefore, to be sure of the identity of the individuals sampled, attention was focused on 

sampling adult sawflies. 

Sampling was initially implemented in sites where sawflies were known to be 

present. Data from studentships funded by the Game and Wildlife Conservation Trust 

(GWCT) to study sawflies has highlighted such areas including Mains of Glamis Farm 

(north of Dundee) and New Gilston Farm in Fife. These sites, along with a well-

established wildflower strip at the James Hutton Institute, provided an ideal starting point 

to concentrate sampling effort. 

A flight interception trap is a simple but effective method of sampling flying adult 

insects. The Malaise trap was deemed suitable for this study as it should not attract one 

species more than any other and should therefore allow unbiased determination of the 
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most common species present at the sampling sites. The Malaise trap can be left 

unattended in the field for periods of 7–10 days, depending on weather conditions, 

allowing insect catches to be accumulated and then collected at regular intervals. 

As discussed in Section 1.2.3 it is possible that farmland sawfly species sampled 

during the current study could exhibit Complementary Sex Determination (CSD). One of 

the primary indications that CSD is present in a species is an exceptionally high male-

biased sex ratio (van Wilgenburg et al. 2006; Johns and Whitehouse 2004). For this 

reason, the sex ratio was documented for the most common species sampled as part of this 

study. 

The sampling programme described in this chapter was designed, in the first 

instance, to identify a single study species and latterly to facilitate population genetic 

analysis of that species on a range of spatial scales. However, during the course of the 

sampling a wealth of data was accumulated regarding species composition at each 

sampling site. To make use of these data preliminary comparisons were drawn between 

sampling locations in terms of species composition and diversity. 

 

3.1.2 Chapter summary 

 

Sawflies were collected from three main localities in Scotland over three consecutive 

years (2008 to 2010). In the final year, sampling was extended to include three additional 

locations in England. A range of sawfly species was captured from all sites and 

successfully identified facilitating the selection of a single study species for molecular 

marker development. The sex ratios observed in the study species are discussed. In 

addition, tentative comparisons are drawn between sampling locations in terms of species 

composition and species diversity using commonly-used diversity indices. 
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3.2 Materials and Methods 

 

3.2.1 Location of sampling sites 

 

Sawflies were sampled during the spring/summer periods of 2008, 2009 and 2010 at a 

number of field sites. Three sites in Scotland were visited in each year of the study: Mains 

of Glamis Farm at the ―Behind the Houses‖ field (NO 396478); New Gilston Farm at the 

―Harewheel‖ (NO 445068) and ―Exercise‖ (NO 450070) fields, either singly or in 

combination; and The James Hutton Institute at the ―mini-rotation‖ field (NO 337298) 

(Plate 3.1). In 2008 only, an additional Scottish site was used, which was a private 

grassland site near Old Meldrum (NJ 823279) (Plate 3.1). 

During 2010 sampling was extended to include three further sites located in 

England: ―Field B‖ at Down Farm near Dorset (SU 000147); a field on farmland 

belonging to Harper Adams University College (SJ 708208); and a field at Willoughby 

Farms in Claxby St Andrew (TF 452707) (Plate 3.1). 
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Plate 3.1: Map of Britain showing the positions of the Old Meldrum (A), Mains of Glamis (B), James 

Hutton (C), New Gilston (D) Claxby St Andrew (E), Harper Adams (F) and Down Farm (G) sampling 

sites. 
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3.2.2 Sampling strategy 

 

3.2.2.1 Spring/summer 2008 

 

One Malaise trap (Section 2.1.1) was positioned in the north grass/wildflower margin of 

the ―Behind the Houses‖ field at Mains of Glamis Farm (Plate 3.2), one in the 

grass/wildflower margin adjacent to the ―mini-rotation‖ field on farmland belonging to 

The James Hutton Institute (Plate 3.3) and one in the grass/wildflower margin 

surrounding the ―Exercise‖ field at New Gilston Farm (Plate 3.4).  One Malaise trap was 

positioned in roughly the centre of private grassland at the Old Meldrum site. All Malaise 

traps were erected 5
th

 May 2008 and remained in place until they were dismantled on 14
th

 

July 2008. 

 

3.2.2.2 Spring/summer 2009 

 

In 2009 a sampling programme was again implemented at the three main sites in 

Scotland. In this sampling year, Malaise traps were repositioned on a weekly basis to a 

new random position within their respective sampling sites. Random positions were 

chosen by superimposing 10 m × 10 m grid-squares onto scaled drawings of the field 

margin area or beetle bank where sampling was to take place. Grid squares were 

numbered and a random grid square was chosen each week with the use of a random 

number generator. The Malaise trap was then moved to the flattest area within the 

designated 10 m × 10 m square. After a grid square had been used once it was not 

permitted to be used again following a sampling without replacement strategy 

(Southwood 1978). 

Two Malaise traps were erected at Mains of Glamis, one in the grass margin on 

the northern edge of the ―Behind the Houses‖ field and one in the margin on the southern 

edge of the field (Plate 3.2). One Malaise trap was erected at the James Hutton Institute in 

the grass margin adjacent to the ―mini-rotation‖ field (Plate 3.3). One Malaise trap was 

erected at New Gilston Farm in the beetle bank crossing the ―Harewheel field‖ (Plate 3.4) 

and two additional Malaise traps were erected in the margin surrounding the ―Exercise‖ 

field (Plate 3.4). The ―Exercise‖ field was split into two halves and one of the Malaise 
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traps was used to sample the margin surrounding the northern half of the field and the 

second to sample the margin surrounding the southern half of the field. All Malaise traps 

were erected on 21st April 2009, repositioned on a weekly basis as described, and taken 

down on 4
th

 September 2009. 
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Plate 3.2: Section of Ordnance Survey© Map showing the “Behind the Houses” field at Mains of Glamis 

Farm and indicating the position of the north and south field margins. 

 

 

 

 

Plate 3.3: Aerial image of the “mini-rotation” field on The James Hutton Institute farmland indicating 

the positions of the four cropping quadrants and the grass margin where trapping took place. 
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Plate 3.4: Aerial image showing the “Exercise” and “Harewheel” fields at New Gilston Farm. The 

dashed line indicates where the “Exercise” field was split into north and south sampling areas labelled N 

and S respectively. The Beetle bank used for sampling the “Harewheel” field in 2010 is shown. 
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3.2.2.3 Spring/summer 2010 

 

In the third field season, the three main sites in Scotland were sampled again and 

sampling was extended to include three sites in England. During this season all Malaise 

traps remained stationary, without weekly repositioning. 

Two Malaise traps were erected at the Mains of Glamis site, both positioned 

randomly in the northern margin of the ―Behind the Houses‖ field (Plate 3.2). Two 

Malaise traps were deployed at the James Hutton Institute, both positioned randomly in 

the margin adjacent to the ―mini-rotation‖ field (Plate 3.3). Two Malaise traps were 

erected at the New Gilston site; one was positioned in the northern half of the margin 

surrounding the ―Exercise‖ field and the second in the southern half of the margin (Plate 

3.4). Malaise traps were erected at these sites week beginning the 12
th

 April 2010 and 

taken down on the 17
th

 August 2010.  

The three additional sites in England were as follows. One Malaise trap was 

positioned in an area of grassland adjacent to a cereal field at Willoughby Farms by 

Claxby St Andrew (Plate 3.5). One Malaise trap was erected in a grass margin adjacent to 

a set-aside field on land belonging to Harper Adams University College (Plate 3.6). 

Finally, a third Malaise trap was deployed in a grass field at Down Farm, Dorset (Plate 

3.7). The Malaise traps at Claxby St Andrew, Harper Adams and Down Farm were in 

operation from 12
th

 April to 17
th

 August, 10
th

 May to 1
st
 August and 8

th
 April to 11

th
 June 

respectively.  
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Plate 3.5: Aerial view of the grassland where the Malaise trap was positioned at Willoughby Farm by 

Claxby St. Andrew. 

 

 

 

 

Plate 3.6: Aerial image of the field at Harper Adams University College indicating the position of the 

margin where the Malaise trap was sited. 
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Plate 3.7: Aerial image showing the position of the field at Down Farm, Dorset where the Malaise trap 

was positioned. 
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3.2.3 Collection, identification and sexing of sawflies 

 

Insects captured by the Malaise traps were collected on a weekly basis and returned to the 

laboratory for storage as described in Section 2.1.1. Sawflies were separated from the total 

catch and identified to genus and, where possible, to species as described in Section 2.1.2. 

The total number of individuals of each species collected by each Malaise trap was 

recorded. Individuals were sexed as described in Section 2.1.3 and deviation from a 50:50 

male to female sex ratio, at each sampling site and in each sampling year, was analysed 

using a Chi-squared test. A Chi-squared test was performed only when the ―expected 

value‖ for each sex was five individuals or more. 

 

3.2.4 Characterisation of sampling sites 

 

The Mains of Glamis and New Gilston sampling sites are representative of land under 

Integrated Farm Management practices whereby crop production is segregated from 

biodiversity by reducing weed abundance in the cropped areas and managing for 

biodiversity in the field margins (Hawes et al. 2010). The field used for sampling at The 

James Hutton Institute, although part of a long-term research project, is still representative 

of integrated farming approaches; the spraying of pesticides and other agro-chemicals is 

confined to the cropped area and the marginal areas are managed to maximise vegetation 

biodiversity. 

Information relating to the cropping and general management practice at the 

sampling sites was only available for the sites in Scotland. Cropping records for the 

period 2005–2011 were made available for the ―Behind the Houses‖ field at Mains of 

Glamis (Table 3.1), 2001–2010 for the James Hutton ―mini-rotation‖ field (Table 3.2) and 

2001–2010 for the ―Exercise‖ and ―Harewheel‖ fields at New Gilston (Table 3.3). The 

cropping history of the fields at Mains of Glamis and New Gilston was dominated by 

cereals (particularly winter barley and wheat), which typifies many cropping systems in 

the lowland arable areas of Eastern Scotland (Hawes et al. 2010).  The James Hutton site 

exhibited a more diverse history of crop types, including brassicas, potatoes and 

grass/fallow, due to the nature of the experimental field (i.e. a mini-rotation).  Set-aside 

was only present in the cropping history of the New Gilston field sites. 
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The ―Behind the Houses‖ field at Mains of Glamis has a total area of 12.98 Ha 

with an 11.85 Ha average working area (91.3%) per year. The ―mini-rotation‖ field at The 

James Hutton Institute measures 2.8 Ha in total with 2 Ha per year working area (0.5 Ha 

per quadrant) (71%). At New Gilston the ―Exercise‖ field measures 15.2 Ha and the 

―Harewheel‖ field 16.7 Ha with an average of 9.4 Ha (61.8%) and 13.0 Ha (77.8%) 

working area per year respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 50 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Cropping records for the “Behind the Houses” field at Mains of Glamis Farm for the period 

2005-2011 inclusive. 

 

Mains of Glamis - "Behind the Houses" 

Year Crop Working area (Ha) 

2005 Winter Wheat 12.67 

2006 Broccoli 12.67 

2007 Spring Oats 11.10 

2008 Winter Wheat 11.10 

2009 Potatoes Not available 

2010 Winter Wheat 11.70 

2011 Winter Barley Not available 
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Table 3.2: Cropping records for the “mini-rotation” field at The James Hutton Institute for the period 

2001-2011 inclusive. 

 

The James Hutton Institute - "mini-rotation" field 

  Quadrant (0.5 Ha each) 

Year 1 2 3 4 

2001 Spring Barley Potatoes Grass Oilseed Rape 

2002 Oilseed Rape Winter Barley Potatoes Grass 

2003 Grass Oilseed Rape Winter Barley Potatoes 

2004 Potatoes Grass Rape and Swedes Spring Barley 

2005 Spring Barley Potatoes Grass Brassica 

2006 Potatoes Spring Barley Swedes Fallow 

2007 Fallow Potatoes Spring Barley Swedes 

2008 Swedes Fallow Potatoes Spring Barley 

2009 Spring Barley Swedes Fallow Potatoes 

2010 Potatoes Spring Barley Swedes Fallow 
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Table 3.3: Cropping records for the “Exercise” and “Harewheel” fields at New Gilston Farm for the 

period 2001-2010 inclusive. 

 

New Gilston 

Field Year Crop 

Working area 

(Ha) 

Exercise 

2001 Spring Barley 9.97 

2002-03 Winter Barley 9.97 

2004 Spring Barley 8.70 

2005 Spring Barley 8.70 

2006 Spring Barley 8.70 

2006-07 Winter Barley 9.70 

2007-08 Set-aside 9.70 

2008-09 Winter Wheat 9.70 

2010 Spring Oats 9.40 

Harewheel 

2001 Set-aside Not available 

2001-02 Winter Barley 15.46 

2003 Spring Barley 7.07 

2003-04 Winter Barley 15.31 

2004-05 Set-aside 13.47 

2005-06 Winter Barley 14.59 

2006-07 Winter Barley 14.59 

2007-08 Spring Barley 14.59 

2008-09 Winter Oats 8.40 

2009-10 Winter Wheat 13.46 
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3.2.5 Quantifying sampling effort 

 

For each sampling site and year, the total sampling effort was calculated. Sampling effort 

was quantified in terms of sampling units, where one sampling unit was equal to one full 

day of one Malaise trap being in continuous operation within a field. Due to the 

susceptibility of Malaise traps to high winds and the fact that some traps were maintained 

by others on our behalf, sampling effort was quantified post-hoc. 

In 2008, the Malaise traps at all four sampling sites (Mains of Glamis – North 

Margin, The James Hutton Institute, New Gilston ―Exercise‖ field and Old Meldrum) 

were in continuous operation for the period 5
th

 May to 14
th

 July, corresponding to a 

cumulative total of 70 sampling units per field. 

In 2009, all six Malaise traps were in operation for the period 21
st
 April to 4

th
 

September potentially corresponding to a cumulative total of 136 sampling units per trap. 

However, bad weather caused some of the traps to collapse at points during the sampling 

season resulting in loss of sampling units. Data for Malaise traps positioned in the same 

field or ―locality‖ were combined, namely those at Mains of Glamis (―Behind the Houses‖ 

field; North and South Margins) and at New Gilston (―Exercise‖ field; North and South 

trapping areas). In total, 265 sampling units were accumulated for Mains of Glamis 

(North and South margins), 134 for The James Hutton Institute, 265 for New Gilston 

―Exercise‖ field (North and South sampling areas) and 129 for New Gilston ―Harewheel‖ 

field (Table 3.4). 

In 2010, six Malaise traps were erected at three localities in Scotland on varying 

days of the week beginning 12
th

 April (Mains of Glamis, The James Hutton Institute and 

New Gilston ―Exercise‖) and taken down 17
th

 August. However, on the 7
th

 July 2010 high 

winds caused the collapse of and damage to one of the Mains of Glamis traps and to both 

of the James Hutton traps. To compensate for this, the trap originally positioned in the 

north sampling area of the New Gilston ―Exercise‖ field was relocated to the James 

Hutton site to allow sampling to continue with one Malaise trap at each of the three 

localities. In total, 205 sampling units were accumulated at Mains of Glamis, 208 at the 

James Hutton and 203 at New Gilston ―Exercise‖ (Table 3.4). No sampling units were lost 

from any of the sites in England resulting in a total of 126 sampling units accumulated at 

Claxby St. Andrew, 82 at Harper Adams and 63 at Down Farm (Table 3.4). 
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Table 3.4: Total sampling effort per trap and locality for sampling years 2009 and 2010. 

 

 

  

 

 

 

 

 

 

 

Year Site Field and trap position 

Sampling 

effort per 

trap 

Total sampling 

effort per locality 

2009 

Mains of Glamis "Behind the Houses" (North margin) 129 
265 

Mains of Glamis "Behind the Houses" (South margin) 136 

The James Hutton "Mini-rotation" 134 134 

New Gilston "Exercise" (North trapping area) 129 
265 

New Gilston "Exercise" (South trapping area) 136 

New Gilston "Harewheel" (Beetle bank) 129 129 

2010 

Mains of Glamis "Behind the Houses" (North margin) 122 
205 

Mains of Glamis "Behind the Houses" (North margin) 83 

The James Hutton "Mini-rotation" 124 
208 

The James Hutton "Mini-rotation" 84 

New Gilston "Exercise" (North trapping area) 81 
203 

New Gilston "Exercise" (South trapping area) 122 

Claxby St. Andrew grassland adjacent to cereal field 126 126 

Harper Adams margin adjacent to set-aside field 82 82 

Down Farm, Dorset grass field 63 63 
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3.2.6 Species diversity measures 

 

Every biological community has an attribute known as ―species diversity‖ and there have 

been many different suggestions for measuring this accurately (Southwood 1978; Krebs 

1989). Methods range from looking at the ―species richness‖ of a community (simply the 

number of species present) to the use of different species diversity indices which take into 

account both the number of species present and the abundance of these species (Speight et 

al. 2008). There is much discussion over which of the diversity indices is the best and 

caution is urged in the use of all diversity indices (Magurran 2004; Krebs 1989). 

Therefore, for the data presented here two of the most widely-used indices of diversity 

(Shannon-Wiener and Simpson‘s) were calculated in addition to species richness. 

 

3.2.6.1 Species richness 

 

In the current study species richness is defined as the number of sawfly species present in 

a locality. A rarefaction method was employed to compare species richness between 

localities, within each sampling year, to take into account differences in the number of 

individuals sampled. The following rarefaction algorithm, originally proposed by Sanders 

(1968) and later modified by Hurlbert (1971) and Simberloff (1972), was used (Krebs 

1989) and computed using the online rarefaction calculator provided by the University of 

Alberta (http://www.biology.ualberta.ca/jbrzusto/rarefact.php): 

 

E(Sn) = 

n

N

n

NiN

1  

                       (Eq. 1) 

 

where E(Sn) = Expected number of species in a random sample of n individuals 

 S = Total number of species in the entire collection 

 Ni = Number of individuals of species i 

 N = Total number of individuals in collection = Σ Ni 
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 n = Value of sample size chosen for standardisation (n ≤ N) 

n

N
 = number of possible combinations of n individuals from a set of N = 

         N!/n!(N-n)! 

 

3.2.6.2 Shannon-Wiener diversity index 

 

The commonly-used Shannon-Wiener function was used to compare species diversity 

between localities. This function is sensitive to the number of rare species in the 

community (Krebs 1989). Due to the differences in sampling strategy between years, the 

data for different sampling years were analysed separately for each locality. The Shannon-

Wiener function is as follows (Krebs 1989): 

 

H = -  (pi)(log2(pi)) 

  (Eq.2) 

 

where H  = the information content of the sample, i.e. the index of species diversity 

            pi  = proportion of total sample belonging to the ith species 

 

3.2.6.3 Simpson’s diversity index 

 

Simpson‘s diversity index was also used to estimate species diversity between localities. 

In contrast to the Shannon-Wiener function, this index is more sensitive to the abundance 

of the common species in a community (Krebs 1989). Again, to compensate for the 

differences in sampling strategy between years, the data for different sampling years were 

analysed separately for each locality. To estimate the complement of Simpson‘s original 

measure the following equation was used (Krebs 1989): 

 

 

1-D = 1 – Σ (pi)
2 

                       (Eq. 3) 

 



 57 

Where 1-D = index of diversity 

 pi = proportion of individuals belonging to species i in the community 
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3.3 Results 

 

3.3.1 Rank abundance 

 

Tenthredopsis excisa, T. nassata and Dolerus aeneus were consistently present amongst 

the three or four most abundant sawfly species in Malaise trap catches at the Scottish sites 

in 2008, 2009 and 2010 (Figures 3.1, 3.2 and 3.3).  In addition, relatively high numbers of 

Pachyprostasis rapae were collected at Mains of Glamis in 2009 and 2010 and of 

Ametastegia equiseti at New Gilston ―Exercise‖ in 2010. A similar dominance by these 

species (T. excisa, P. rapae and D. aeneus) was observed at the Harper Adams site in 

2010, but these species were far less dominant at the other two English sites (Figure 3.4). 

Interestingly, at Down Farm, six species of a single genus (Dolerus) were collected, with 

Dolerus picipes being the most abundant (Figure 3.4). Dominance by a single genus was 

not observed at any of the other localities in any sampling year. Furthermore, at Claxby St 

Andrew neither Tenthredopsis nor Dolerus were represented in the three most common 

species. 
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Figure 3.1: Rank abundance of sawfly species sampled at four localities in 2008. 
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Figure 3.2: Rank abundance of sawfly species sampled at four localities in Scotland in 2009. 
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Figure 3.3: Rank abundance of sawfly species sampled at three localities in Scotland in 2010.  
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Figure 3.4: Rank abundance of sawfly species sampled at each of three localities in England in 2010.  
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3.3.2 Sex ratios of common species 

 

The most common species sampled across all localities and sampling years were 

Tenthredopsis excisa, Tenthredopsis nassata and Dolerus aeneus (Section 3.3.1). For each 

of these species, in all cases where a Chi Square test was permissible, a significant 

deviation from a 50:50 male:female sex ratio was detected (Figures 3.5, 3.6 and 3.7). 
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Figure 3.5: Numbers of male (blue bars) and female (red bars) individuals of Tenthredopsis excisa 

collected at each of the Scottish sites in 2008–2010. Missing data for some localities indicates that no 

individuals of this species were sampled. Outcome of Chi Square test shown where applicable, NS = not 

significant. 
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Figure 3.6: Numbers of male (blue bars) and female (red bars) individuals of Tenthredopsis nassata 

collected at each site in 2008–2010. Missing data for some localities indicates that no individuals of this 

species were sampled. Outcome of Chi Square test shown where applicable, NS = not significant. 
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Figure 3.7: Numbers of male (blue bars) and female (red bars) individuals of Dolerus aeneus collected at each 

site in 2008–2010. Missing data for some localities indicates that no individuals of this species were sampled. 

Outcome of Chi Square test shown where applicable, NS = not significant. 
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3.3.3 Species diversity 

 

3.3.3.1 Species richness 

 

Across all three sampling years species richness did not appear to differ markedly 

between localities (Figure 3.8). In 2008, species richness was highest at The James Hutton 

Institute and lowest at New Gilston. In 2009, Mains of Glamis exhibited the highest level 

of species richness and New Gilston ―Harewheel‖ the lowest. In 2010, species richness 

was highest at Claxby St. Andrew and lowest at Down Farm. 

 

3.3.3.2 Heterogeneity measures, Shannon-Wiener and Simpson’s 

 

The Shannon-Wiener (H) and Simpson‘s (1-D) indices of diversity were calculated as 

described in Section 3.2.6 for all localities and sampling years. The diversity values 

produced from the indices were closely correlated with each other (Pearson product-

moment correlation coefficient; r
 
= 0.914, p<0.01) and with the values for species richness 

(Shannon-Wiener, r = 0.897, p<0.001; Simpson‘s, r= 0.833, p<0.001 respectively) lending 

weight to any observed differences between sampling localities. 

 In 2008, The James Hutton Institute was ranked as the most diverse by both 

indices whereas in 2009 and 2010 the New Gilston ―Exercise‖ locality was ranked as 

most diverse (Table 3.5). Of the three localities sampled in England, Claxby St Andrew 

was ranked as the most diverse by both indices (Table 3.5). In all but one case the 

Shannon-Wiener function ranked the localities in the same order as the Simpson‘s index; 

in 2009 The James Hutton Institute and New Gilston ―Harewheel‖ localities were ranked 

the opposite way round by each index (Table 3.5). 
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Figure 3.8: Species richness at each site in 2008–2010. 95% confidence intervals are given for species 

richness values that were calculated by rarefaction. 
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Table 3.5: Shannon-Wiener (H) and Simpson’s (1-D) indices of diversity. For each year of the study, the 

localities are ranked from 1-4 (1 being the most diverse) according to the H index. *Note that Simpson’s 

1-D ranked these two localities the other way round.    

 

Year Site H 1-D Rank 

2008 

The James Hutton 2.431 0.760 1 

Mains of Glamis 2.231 0.702 2 

Old Meldrum 1.921 0.678 3 

New Gilston Exercise 1.706 0.511 4 

2009 

Mains of Glamis 3.460 0.853 1 

New Gilston ―Exercise‖ 2.866 0.813 2 

The James Hutton* 2.172 0.710 3 

New Gilston ―Harewheel‖* 2.086 0.715 4 

2010 

(Scotland) 

Mains of Glamis 3.505 0.871 1 

New Gilston Exercise 2.980 0.802 2 

The James Hutton 2.485 0.727 3 

2010 

(England) 

Claxby St Andrew 3.336 0.876 1 

Harper Adams 2.984 0.821 2 

Down Farm 2.311 0.760 3 
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3.4 Discussion 

 

3.4.1 Tenthredopsis excisa identified as a study species 

 

Tenthredopsis excisa was the dominant species at all of the main localities sampled in 

Scotland in 2008 at the beginning of the study, suggesting that this species could 

contribute significantly to the sawfly diet of farmland birds in the region. Thus, attention 

was initially focused on T. excisa for molecular marker development (Chapter 4). 

 

3.4.2 Male-biased sex ratios observed in common farmland sawfly species 

 

Extreme male-biased sex ratios were observed at most or all of the localities for the three 

most common species detected in the current study (Tenthredopsis excisa, Tenthredopsis 

nassata and Dolerus aeneus respectively) across all sampling years. There are several 

explanations for this. It is possible that the male-biased sex ratios observed here are 

simply consequences of male preference for the position of the Malaise traps and 

therefore males were caught more frequently. However, in 2009 Malaise traps were 

moved around the sampling sites in order to compensate for any bias in the preference of 

a particular species for a particular area of the site. By proxy, this should minimise any 

bias induced by male preference for a particular area. In addition, it is possible that the 

male-biased sex ratios observed in the current study could be attributed to the fact that 

males of most insect species exhibit higher activity levels than that of females (Speight 

2008) and were therefore represented in higher numbers in the Malaise trap catches 

regardless of sampling regime. The difference in activity levels between males and 

females could be accounted for by sampling using a method such as sweep netting which 

captures stationary insects from vegetation. However, this method of sampling is time-

consuming and labour-intensive and was therefore not used in the current study due to 

time constraints. 

It is also possible that variation in resource quality, insect population structure, and 

differential mortality of the sexes can contribute to biased sex ratios (Godfray 1994). This 

is a consequence of the fact that Hymenopteran females typically have control over 

fertilisation of their eggs, facultatively adjusting the sex ratio of their progeny (Heimpel 
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and de Boer 2008; van Wilgenburg et al. 2006). For example, females of Athalia rosae 

(the turnip sawfly) allocate the sex of their progeny in response to growth of the host 

plant, with male-biased sex ratios prevailing in populations where plant growth is slow 

and female-biased ratios where plant growth is rapid (Craig et al. 1992). At the present 

time there are no studies which document such behaviour in T. excisa, T. nassata or D. 

aeneus. 

In addition, genetic factors could also explain male-biased sex ratios. The presence 

of Complementary Sex Determination (CSD; Section 1.2.3), combined with conditions 

that promote inbreeding, can lead to the production of diploid males. Additional (diploid) 

males in a population could cause the sex ratio to become male-biased. The operation of 

CSD in the study species is investigated in Chapter 5. 

 

3.4.3 Species diversity at three localities in Scotland ranked in the same order across 

two sampling years 

 

Two commonly-used diversity indices, Shannon-Wiener and Simpon‘s, ranked the three 

main localities in Scotland in the same order in 2009 and 2010 (Section 3.3.3.2); Mains of 

Glamis was ranked the most diverse in terms of sawfly species diversity followed by New 

Gilston ―Exercise‖ and then The James Hutton Institute. It is difficult to explain why this 

is so with the limited amount of information available relating to the sampling localities.  

Sawfly survival is known to be affected by the level of winter-cropping due to 

disturbance of the over-wintering pupae (Barker and Reynolds 2004). It is possible that 

this would have a faster, more significant effect on the rarer species within a community 

which would be detectable in species diversity indices. However, species diversity at the 

sampled localities did not appear to be related to incidence of winter-cropping; Mains of 

Glamis ranked higher than the James Hutton Institute in terms of species diversity 

(Section 3.3.3) yet the cropping area was more often cultivated during winter at Mains of 

Glamis than at The James Hutton Institute (Section 3.2.4). In addition, species diversity 

did not appear to correlate with the proportion of the field put into set-aside (in this case 

grass margin area; a suitable habitat for sawflies). Mains of Glamis, which ranked highest 

in terms of species diversity, had the highest working area to set-aside ratio in the sampled 

field (Section 3.2.4).  
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The information regarding the cropping history at the collection sites was limited 

to recent years and only available for the fields where sawflies were collected making it 

difficult to explain any differences in diversity between sites. Furthermore, the sampling 

regime was not specifically designed to analyse differences in species composition and 

diversity resulting in unequal sample duration across sites. Therefore, the conclusions that 

can be drawn explaining the differences in species composition and diversity between 

localities based on the available information are minimal. Importantly, there are a number 

of other factors relating to management practices which could be affecting sawfly species 

diversity including the frequency and intensity of agrochemical use, the range of host-

plants available in set-aside land, the cropping history of neighbouring fields and the 

presence or absence of landscape features such as woodland or bodies of water. 

Thus, sawfly species diversity in each of the sampled localities, indeed any 

locality in the arable landscape, will be regulated by a large number of factors. As a result, 

it is likely that species diversity estimates for each locality will change on a yearly basis 

even with consistency of sampling effort and methodology. To gain a true estimate of 

how sawfly populations are affected by their environment, it would likely be more 

productive to take a rigorous approach with a single study species, for example using 

molecular markers to examine in detail the genetic variation and population structure of 

these insects. 
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3.5 Conclusion 

 

This chapter reports the sawfly species composition of three main localities in Scotland 

facilitating the initial selection of Tenthredopsis excisa as a study species. Preliminary 

comparisons were drawn between localities in terms of their species diversity and this did 

not appear to be correlated with the incidence of winter-cropping in the fields used for 

sampling or to the proportion of the field put into set-aside. However, this conclusion 

should be treated with caution as the sampling regime was not specifically designed to 

assess species diversity.  

Extremely male-biased sex ratios were observed for T. excisa and for another two 

common species, Tenthredopsis nassata and Dolerus aeneus, at most or all localities 

sampled. Although this could be a consequence of the sampling method or sex allocation 

strategies by female sawflies, it is also possible that this result could be due to the 

presence of Complementary Sex Determination (CSD) in combination with inbreeding in 

sawfly populations. The presence of CSD in the study species is examined in Chapter 5. 
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4. Isolation and characterisation of microsatellite loci in a common 

farmland sawfly 

 

4.1 Introduction 

 

4.1.1 Methods for the isolation of microsatellite markers 

 

Microsatellites have become the marker of choice for population genetic studies due to 

their multi-allelic nature, reproducibility, co-dominant mode of inheritance and abundance 

within the genome (Schlötterer 2004). Characterised by a high level of polymorphism, 

they are powerful genetic markers. However, their widespread use has been hindered due 

to the time-consuming and expensive methods required to isolate them (Squirrel et al. 

2003; Zane et al. 2002).  

The main drawback to using microsatellites is that, traditionally, they need to be 

isolated de novo from most species, involving the complex, laborious process of 

constructing an enriched genomic library (Zane et al. 2002). Briefly, DNA fragments are 

digested with restriction enzymes and then preferentially size-selected and cloned into a 

plasmid vector. Enrichment for microsatellite-containing sequences takes place before or 

after the cloning step using repeat-containing probes (Zane et al. 2002). In spite of the 

difficulties, microsatellites have been successfully isolated using this method for many 

insect species including the bumblebee Bombus terrestris (Stolle et al. 2009) and the 

harvester ant Messor structor (Arthofer et al. 2005). To date microsatellites have been 

isolated for only one sawfly species, Cephus cinctus or wheat stem sawfly (Hartel et al. 

2003). 

 More recently, the public availability of huge volumes of sequence data for 

numerous eukaryotic genomes has accelerated microsatellite-based research (Sharma et 

al. 2007). Mining microsatellites from existing sequence databases significantly reduces 

the time and costs involved in isolating these markers in the target species. However, 

existing genetic resources for sawflies are scarce, with less than 1,500 nucleotide 

sequences available in the public database (NCBI 2011). 

Within the last decade, new high through-put sequencing technologies referred to 

as ―Next Generation Sequencing‖ (NGS) have revolutionized the field of molecular 
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biology. NGS enables the generation of enormous volumes of data relatively cheaply and 

on a far shorter timescale than was previously possible (Morozova and Marra 2008; Wall 

et al. 2009; Metzker 2010). In some cases, in excess of one billion short sequence reads 

can be generated per instrument run (Metzker 2010). Technologies range from the 

pyrosequencing method commercialized by Roche 454 to sequencing by ligation, a 

platform available from Life/APG (Metzker 2010).  

Each NGS technology or ―platform‖ has a distinct profile in terms of the average 

read length generated and the run time of the instrument. Additionally, one technology 

may be more suited for a specific application than another (Metzker 2010). The field of 

NGS development is fast-moving and, as new technologies emerge and existing platforms 

improve, it is necessary for researchers to match their study to the appropriate NGS 

platform. 

The applications of NGS data seem limitless, ranging from comparative genomics 

to RNA expression profiling (Morozova and Marra 2008). However, the use of genome or 

transcriptome NGS to identify molecular markers, including microsatellites, is relatively 

novel with only a few studies reporting this approach in detail, especially for non-model 

insect species. Nonetheless, authors using this approach for marker development have 

published encouraging results. For the water strider Gerris incognitus (Insecta: 

Hemiptera) a one-quarter 454 pyrosequencing run yielded 30,820 (16.8 %) sequence 

reads from the total sequence set containing microsatellite repeats with 3 weeks of 

development time (Perry and Rowe 2011). NGS as a method of isolating microsatellite 

markers, when compared with the traditional genomic library-based approaches, is fast, 

efficient and less technically demanding. 

  

4.1.2 Utility of microsatellite markers in related species 

 

Transfer of primer sequences between closely related species can help to minimise the 

effort and/or cost involved in isolating microsatellites. The success of this ‗cross-

amplification‘ of microsatellite loci into other related species depends on the level of 

conservation of the flanking primer regions between species and is therefore inversely 

related to evolutionary distance between the species (Rico et al. 1996; Moore et al. 1991; 

Schlötterer et al. 1991).  Cross-species amplification of microsatellite loci is well 
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documented in insect species including within the Hymenoptera. Examples include loci 

isolated for use in the bumblebee Bombus terrestris of which 25 were polymorphic in at 

least 1 of 9 other Bombus species (Stolle et al. 2009). The microsatellite loci isolated for 

the sawfly Cephus cinctus cross-amplified into 2 closely related Cephus species and the 

more distantly related Trachelus tabidus (Hartel et al. 2003). 

 

4.1.3 Chapter summary 

 

This chapter reports on the isolation and characterisation of microsatellites in a common 

farmland sawfly species via a traditional enriched genomic library method and latterly via 

an NGS transcriptome sequencing approach. The relative success of these two methods is 

analysed and the isolated microsatellites are considered in terms of their utility for 

population genetic studies and their ability to cross-amplify into other closely-related 

species. 
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4.2 Materials and Methods 

 

4.2.1 The development of a genomic library enriched for microsatellite sequences in the 

species Tenthredopsis excisa 

 

4.2.1.1 Preparation of genomic DNA for enriched-library construction 

 

Genomic DNA was isolated from the heads of Tenthredopsis excisa individuals (Section 

2.2.1) and in some cases amplified using the Genomiphi™ kit (Section 2.2.5) to increase 

the concentration of total genomic DNA. Two approaches were then used to prepare 

genomic DNA for the enrichment step. Either a standard single enzyme restriction digest 

was performed or a digest using two enzymes, one rare and one frequent cutter, in 

combination.  

Briefly, genomic DNA was digested (37 ºC overnight) with either Sau3AI (1 

unit/1 µg DNA) (Promega UK Ltd.; Southampton, UK) in a 50 µl reaction or with the 

frequent cutter MseI (1 unit/500 ng DNA) and the rare cutter EcoRI (5 units/500 ng DNA) 

(New England Biolabs (UK) Ltd.; Hitchin, UK) simultaneously in a 250 µl reaction. 

Sau3AI digest reactions were purified using the MinElute
®
 Kit (Section 2.2.4) into a 15 µl 

volume prior to running on a 1% (w/v) agarose gel (Section 2.2.2). A gel slice containing 

fragments in the size range 300-1000 bp was excised and purified using the MinElute
®
 Kit 

(Section 2.2.4) into a 15 µl volume. EcoRI/MseI digest reactions were neither size-

selected nor purified prior to downstream applications as indicated in the FIASCO 

protocol (Fast Isolation by AFLP of Sequences Containing repeats) (Zane et al. 2002). 

Subsequently, size-fractionated DNA was ligated to double stranded 

oligonucleotide adaptor sequences depending on the restriction enzyme used (Table 4.1). 

The adaptor sequences were prepared prior to use as follows. In the case of Sau3AI, 10 µl 

each adaptor (50 µM) was added to 79.2 µl TE buffer (10 mM Tris-HCl pH 8.0, 1 mM 

EDTA) and 0.8 µl 5M NaCl. The mixture was then placed in a thermocycler and 

incubated at 95 °C for 3 minutes, 65 °C for 2 minutes, 45 °C for 2 minutes and 25 °C for 

1 minute followed by a 4 °C hold.   EcoRI adaptors were prepared by combining 3 µl 

Eco-F adaptor (100 µM), 3 µl Eco-R adaptor (100 µM) and 54 µl SDW, placing the 

mixture in a 65 °C water bath and allowing the mixture to cool slowly to room 
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temperature. MseI adaptors were prepared by combining 30 µl Mse-F adaptor (100 µM) 

and 30 µl Mse-R adaptor (100 µM) and heat treating to 65 ºC as described above. After 

heat-treatment, the adaptors should have formed double-stranded adaptor sequences via 

complementary base-pairing. 

Ligation reactions were performed in a 50 µl volume at 12 ºC for 12 hours. In the 

case of Sau3AI-digested fragments, size-fractionated DNA (10 µl) was ligated to 1.25 

nmol Sau3AI adaptor (12.5 µl adaptor mix) using 2 units T4 DNA ligase and 5X ligase 

buffer (10 µl) (Promega Ltd.; Southampton, UK). In the case of fragments double-

digested with EcoRI and MseI, size-fractionated DNA (30 µl) was ligated to 5 pmol 

EcoRI adaptor (1 µl adaptor mix) and 50 pmol MseI adaptor (1 µl adaptor mix) using 1 

unit T4 DNA ligase, 5X ligase buffer (10 µl) (Promega Ltd.; Southampton, UK) and 10 

mM ATP (1 µl). 

Ligated DNA was then amplified by PCR. In the case of Sau3AI ligated DNA, 10 

µl ligation reaction mixture was used per PCR (5 reactions) with 20 pmol Sau3AIA as the 

primer (Table 4.1) in each reaction. In the case of MseI/EcoRI ligated DNA, 2.5 µl 

ligation reaction mixture was used per PCR (5 reactions) with 300 ng universal EcoRI 

primer E00 (5'GACTGCGTACCAATTC3') and 300 ng universal MseI primer M00 

(5'GATGAGTCCTGAGTAA 3') in each reaction. PCR was performed according to the 

conditions described in Section 2.2.3 with the following programme: denaturation at 

94 ºC for 5 minutes, 35 cycles of 94 ºC for 30 seconds, 55 ºC for 30 seconds, 72 ºC for 1 

minute, then a 7 minute final extension at 72 ºC and 4 ºC hold. Replicate PCRs were 

combined and purified using the MinElute
®
 Kit as described in Section 2.2.4 eluting into a 

15 µl final volume. 
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Table 4.1: Recognition sites and adaptor sequences for restriction digest enzymes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enzyme Recognition site Adaptor sequences 

Sau3AI GATC Sau3AIA 5'GCGGTACCCGGGAAGCTTGG3' 

  Sau3AIB 5'CGCCATGGGCCCTTCGAACCCTAG3' 

MseI TTAA Mse-F 5'GACGATGAGTCCTGAG3' 

  Mse-R 5'TACTCAGGACTCAT3' 

EcoRI GAATTC Eco-F 5'CTCGTAGACTGCGTACC3' 

    Eco-R 5'AATTGGTACGCAGTCTAC3' 
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4.2.1.2 Enrichment for microsatellite sequences using magnetic particle separation 

 

A total of 200 pmol of biotinylated oligonucleotide probe (either (CA)13 alone or (CA)13 

and (GA)13 in equal amounts) (Sigma-Aldrich Co. Ltd.; Poole, UK) was hybridised to the 

15µl of combined PCR product from the previous step in 6X SSC (0.9 M NaCl, 90 mM 

trisodium citrate, pH 7.0) and 1% SDS (1% w/v sodium dodecylsulphate). Hybridisation 

was carried out in a microcentrifuge tube placed at 42 ºC with rotation overnight. Isolation 

of microsatellite-containing fragments from the PCR product was then carried out using 

Dynabeads
® 

M-280 Streptavidin magnetic beads (Invitrogen Dynal; Paisley, UK) in 

conjunction with a Dynal
®
 magnetic stand. 

 Dynabeads were prepared according to the manufacturer‘s instructions. Briefly, 1 

mg of beads were washed prior to use in 2X Binding and Washing (B&W) Buffer (10 

mM Tris-HCl pH 7.5, 1 mM EDTA, 2 mM NaCl) and resuspended in 200 µl 1X B&W 

Buffer. The hybridisation reaction mixture was then made up to a volume of 200 µl with 

SDW before adding to the 200 µl washed beads in suspension. The mixture was incubated 

at room temperature for 15 minutes with rotation to allow the biotinylated molecules to 

bind to the streptavidin beads.  

The magnet was applied for 2 minutes and then the beads were washed twice in 

1X B&W Buffer to remove any unbound fragments prior to resuspension of the beads in 

100 µl of 10 µM EDTA, pH 8.2. Subsequently, the beads were incubated at 90 ºC for 2 

minutes to release the annealed fragments, which were separated from the beads by re-

applying the magnet; the released fragments were then purified using the MinElute
®
 Kit 

as described in Section 2.2.4 and eluted into 10 µl of Buffer EB. 

 

4.2.1.3 Sequencing of a fragment library enriched for microsatellite repeats 

 

4.2.1.3.1 Cloning of enriched fragments using pGEM
®
-T Easy Vector 

 

Fragments from the enriched library were ligated with pGEM
®
-T Easy Vector (Promega 

UK, Southampton, UK) for 12 hours at 4 ºC at a molar ratio of 1:1 (insert DNA:vector) in 

a reaction volume of 10 µl containing 3 units T4 DNA ligase and 1X Ligase Buffer 

(Promega Ltd.; Southampton, UK). Subsequently, 2 µl of ligation reaction was 
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transformed using ElectroMAX™ DH10-B™ electrocompetent cells (Invitrogen, Paisley, 

UK). Briefly, 2 µl of ligation reaction was mixed on ice with 18 µl of competent cells for 

1 minute. This mixture was transferred to a 0.2 cm electroporation cuvette (Invitrogen, 

Paisley, UK) and pulsed at 1.6 volts using an E. coli pulser (Bio-Rad Laboratories Inc.; 

Hemel Hempstead, UK). The cuvette was then removed from the pulser and 1 ml of SOC 

(peptone 20g/l, yeast 5g/l, NaCl 0.584g/l, KCl 0.186g/l, MgCl2 2.03 g/l, MgSO4 2.46 g/l, 

glucose f/s 3.60 g/l) was added to the cuvette. The resulting mixture was transferred to a 

15 ml conical tube and incubated with shaking at 37 ºC for 1 hour.  

The cells were spread onto 1.5 % ―LB AIX‖ agar plates containing peptone (10 

g/l), yeast (5g/l) and NaCl (5g/l) supplemented with 0.5 ml Ampicillin (100 µg/ml), 1.6 

ml IPTG (32 µg/ml) and 1.6 ml X-gal (32 µg/ml). The plates were incubated at 37 ºC 

overnight to allow blue/white colony selection. Individual white colonies were picked 

from the plates by hand using a pipette tip and placed into individual wells of a 96-well 

deep block containing 1 ml LB (peptone 10 g/l, yeast 5g/l, NaCl 5g/l, glucose 1g/l) 

supplemented with Ampicillin (100 mg/l) and grown overnight at 37 ºC with shaking. 

 

4.2.1.3.2 Preparation of plasmids for large-scale sequencing 

 

Plasmids from individual colonies were prepared for sequencing using an adaptation of 

the Millipore Multiscreen Plasmid Preparation Protocol (Millipore UK Ltd., Watford, 

UK) for large scale sequencing.  

Incubated transformed cells were pelleted by centrifuging the 96-well blocks at 

1,811 rcf for 5 minutes to and the supernatant was discarded. Pellets were resuspended in 

80 µl of Solution I (30 mM glucose, 15 mM Tris-HCl pH 8.0, 30 mM EDTA pH 8.0, 60 

µg/ml RNase A) using a vortex. Solution II (80 µl) was added (0.2 M NaOH, 1% SDS) 

and mixed thoroughly by vortexing before incubation at room temperature for 2 minutes. 

Solution III (80 µl) was added (3.6 M potassium acetate, 14% (v/v) acetic acid) before 

vortexing for 1 minute to yield a homogeneous bacterial lysate.  

 A Multiscreen MAFBNOB plate was positioned in the base of a vacuum manifold 

(both Millipore UK Ltd; Watford UK) and 160 µl binding solution (8 M guanidine 

hydrochloride) added to each well of the plate. The upper part of the manifold was 

replaced and a Multiscreen MANANLY clearing plate (Millipore UK Ltd.; Watford UK) 
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positioned on top. The bacterial lysate (130 µl) was transferred to each well of the 

clearing plate. Vacuum (10 ″Hg) was applied to the manifold for 3 minutes to draw the 

lysate through to the binding plate. The lysate and the binding buffer were thoroughly 

mixed and the binding plate transferred to the upper part of the manifold. Vacuum was 

applied for 1 minute (30 ″Hg) to bind plasmids to the plate and remove waste solution.  

 A 200 µl volume of ethanol (70%) was added to each well and vacuum (30 ″Hg) 

was applied for 1 minute followed by an identical wash with vacuum (30 ″Hg) applied for 

3 minutes to remove ethanol. The membranes of the binding plate were dried by spinning 

at 1,811 rcf for 10 minutes and the plate was incubated at room temperature for 10 

minutes to allow the ethanol to evaporate. The binding plate was then transferred to a 

microtitre storage plate and SDW (100 µl) applied to each well. Plasmids were eluted by 

spinning the plate at 1,811 rcf for 5 minutes. 

Plasmid preparations (5 µl) were double-checked for inserts by digesting with 

EcoRI (New England Biolabs (UK) Ltd.) in a total reaction volume of 10 µl with 1X 

digest buffer (supplied with enzyme) and 0.1 µg BSA at 37 ºC for 1 hour. Digest reactions 

were then run on a 1% (w/v) agarose gel (Section 2.2.2) to determine the presence of 

inserts. Inserts are present if two bands can be visualised on the gel; one very large band 

around 3,000 bp in size representing the plasmid and another smaller band (approximately 

100-800 bp in size) representing the insert. 

 

4.2.1.3.3 Large-scale sequencing of plasmids 

 

Preparations of plasmids known to contain inserts were sequenced. Plasmid template (5 

µl) was placed in a sequencing reaction containing 0.5 µl Big Dye v3.1, 1.75 µl 5X 

dilution buffer (both Applied Biosystems Inc.; Warrington UK) and 1 µl universal M13F 

primer (10 µM) (Eurofins MWG Operon; London, UK). Reactions were then subjected to 

the following thermocycling programme: 96 ºC for 1 minute, followed by 25 cycles of 

96 ºC for 10 seconds, 50 ºC for 5 seconds and 60 ºC for 4 minutes, followed by a 4 ºC 

hold. 

Sequencing reactions were purified by EDTA/Ethanol precipitation. Briefly, 125 

mM EDTA (2.5 µl) was added to each reaction followed by 95 % ethanol (30 µl). The 

reactions were incubated at room temperature for 15 minutes followed by centrifugation 
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at 1,811 rcf for 45 minutes at 4 ºC. Plates were then inverted and centrifuged at 100 rcf for 

10 seconds to remove the supernatant. The plasmids were then washed twice by the 

addition of 70 % ethanol (150 µl) and centrifugation at 1,811 rcf for 10 minutes at 4 °C 

followed by inversion of the plate onto a tissue to remove the supernatant. Finally, the 

plate was incubated at room temperature for 1 hour. 

  Sequencing of the purified plasmids was performed using an ABI PRISM
®
 3730 

Genetic Analyzer (48 capillary). 

 

4.2.1.3.4 Discovery of microsatellite loci 

 

The vector sequence was trimmed from the individual sequence data files using 

Sequencher 4.9 sequence analysis software (Genecodes, Ann Arbor, MI, USA). 

Microsatellite loci were found by manually screening the sequences. The initial 

oligonucleotide probe used to enrich the fragments was either (CA)13 or (CA)13 and 

(GA)13 together. Therefore, the sequences were searched for (CA)n or the reverse 

complement (GT)n and (GA)n or the reverse complement (CT)n. Primers were designed to 

amplify the microsatellite loci using Primer3 (v. 0.4.0) software (Rozen and Skaletsky 

2000) employing the default settings. 

 

4.2.1.4 Amplification of microsatellites and testing for polymorphism 

 

DNA was extracted from the whole bodies of 8 Tenthredopsis excisa individuals as 

described in Section 2.2.1 and used to test the potential microsatellite loci. Individuals of 

both sexes were represented in this test population along with those from different 

sampling years and sites (Table 4.2). PCR was carried out in a total reaction volume of 10 

µl containing approximately 15 ng total genomic DNA from each individual with 1 µM 

forward and 1 µM reverse primer under conditions described in Section 2.2.3. PCR 

reactions were subjected to an initial hold of 94 ºC for 5 minutes followed by 35 cycles of 

94 ºC for 30 seconds, 55 ºC for 30 seconds and 72 ºC for 1 minute, followed by a 72 ºC 

final extension and a 4 ºC hold. PCR products were visualised on a 1% (w/v) agarose gel 

(Section 2.2.2) to determine whether amplification was successful across the test 

population. 
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Table 4.2: Tenthredopsis excisa test population used in the initial amplification of microsatellite loci. 

 

Test population: Tenthredopsis excisa 

Sex Collection site Year collected 

M SCRI 2008 

M SCRI 2008 

M GLAMIS 2008 

M GLAMIS 2008 

F SCRI 2009 

F GLAMIS 2009 

F GLAMIS 2009 

F GLAMIS 2009 
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If the locus was amplified in all or most of the test population then the forward 

primer of the pair was 5‘ fluorescently-labelled with 6-FAM (6-Carboxyfluorescein). PCR 

was performed again, as described above, using the same test population, the original 

reverse primer and the new fluorescently-labelled forward primer. Fluorescent PCR 

products were then diluted 1 in 10 and combined with 8.84 µl Hi-Di
TM

 Formamide and 

0.16 µl GeneScan
TM

 500 Rox
TM

 internal size standard (both Applied Biosystems Inc., 

Warrington, UK) and visualized using the ABI PRISM
®
 3730 Genetic Analyzer (48 

capillary). Fragments were analysed using GeneMapper
®
 software (Applied Biosystems 

Inc., Warrington, UK). Microsatellites were considered to be polymorphic if 2 or more 

alleles were present in the test population. Any polymorphic loci were assayed on a larger 

test population of 79 T. excisa individuals collected from a range of field sites in 2009. 

 

4.2.2 The development of a sawfly transcriptomic library utilising next-generation 

sequencing technologies 

 

4.2.2.1 Extraction of total RNA from sawfly larval tissue 

 

Total RNA was extracted from 5 pooled sawfly larvae of mixed species (310 mg tissue) 

using the ―RNeasy
©

 Mini Kit‖ (QIAGEN Ltd., Crawley, UK) with some modifications. 

Briefly, larvae were ground in liquid nitrogen using a mortar and pestle, Buffer RLT (6.18 

ml) was added (600 µl per 30 mg of tissue as recommended) then the mixture was 

aliquoted into QIAshredder columns placed in 2 ml collection tubes. This was centrifuged 

at 15,700 rcf for 2 minutes; the flow-through was centrifuged for a further 3 minutes at 

15,700 rcf and the supernatants transferred to clean microcentrifuge tubes.  

To each, 1 volume of 70% ethanol was added and mixed thoroughly by pipetting. 

A 700 µl volume of each sample, including any precipitate that had formed, was then 

transferred to an RNeasy spin column placed in a 2 ml collection tube. The samples were 

centrifuged at 9,300 rcf for 15 seconds and the flow-through was discarded. Wash Buffer 

RW1 (700 µl) was added to each of the RNeasy spin columns and centrifuged for a 

further 15 seconds at 9,300 rcf. Flow-through was discarded and the columns washed with 

Buffer RPE (500 µl) followed by centrifugation at 9,300 rcf for 15 seconds. Wash Buffer 
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RPE (500 µl) was added a second time and the sample was centrifuged at 9,300 rcf for 2 

minutes. 

 The spin columns were then transferred to new 1.5 ml collection tubes and RNase-

free water (40 µl) was pipetted directly onto each spin column membrane. The columns 

were centrifuged for 1 minute at 9,300 rcf to elute the RNA. RNA concentration and 

quality was determined using the Agilent 2100 Bioanalyzer (Agilent Technologies UK 

Ltd.; Cheshire, UK).  

 

4.2.2.2 mRNA enrichment from total RNA 

 

Total RNA was enriched for mRNA using the Oligotex
©

 mRNA Mini Kit (QIAGEN Ltd., 

Crawley, UK). The volume of total RNA was adjusted to 250 µl with RNase-free water as 

directed by the manufacturer and Buffer OBB (250 µl), pre-heated to 37 ºC, was added 

with 15 µl Oligotex suspension also pre-heated to 37 ºC. This was mixed thoroughly by 

pipetting and then incubated at 70 ºC for 3 minutes in a water bath to disrupt the 

secondary structure of the RNA. The sample was then incubated at room temperature for 

10 minutes. The Oligotex:mRNA complexes, formed during incubation, were pelleted by 

centrifugation at 15,700 rcf for 2 minutes. The supernatant was then carefully removed.   

To reduce rRNA contamination the pellet was resuspended in RNase-free water 

(125 µl)  and Buffer OBB (125 µl)  and subjected to a second round of incubation at 70 ºC 

for 3 minutes followed by 10 minutes at room temperature. The sample was centrifuged 

again for 2 minutes at 15,700 rcf to pellet the Oligotex:mRNA complexes and the 

supernatant carefully removed. 

The Oligotex:mRNA pellet was then suspended in Buffer OW2 (400 µl) to wash. 

The suspension was transferred to a small spin column (provided with the kit) and placed 

in a 1.5 ml RNase-free collection tube. The spin column set-up was then centrifuged for 1 

minute at 15,700 rcf and the flow-through was discarded. This step was repeated to wash 

the complexes thoroughly 

 The spin-column was transferred to a new 1.5 ml RNase-free collection tube and 

40 µl of Buffer OEB (pre-heated to 70 ºC) was pipetted directly onto the column 

membrane and pipetted up and down 3–4 times to maximise contact between the 

Oligotex:mRNA complexes and the elution buffer. This was then centrifuged for 1 minute 
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at 15,700 rcf. To ensure maximal yield a second 40 µl volume of pre-heated Buffer OEB 

was applied and the procedure repeated. The 80 µl elution was then stored at -80 ºC. 

 

4.2.2.3 cDNA synthesis 

 

Complementary DNA (cDNA) was synthesised from poly A
+
 RNA (isolated as described 

in Section 4.2.2.2) using the SMARTer™ PCR cDNA Synthesis Kit (CLONTECH UK 

Ltd, Hampshire, UK) following the manufacturer‘s instructions with some modifications. 

In the first instance, 3.5 µl of  poly A
+
 RNA (approximately 168 ng) was placed in 

a 0.5ml microcentrifuge tube with 1 µl of 3‘ SMART CDS Primer II A (12 µM). The 

contents of the tube were mixed by pipetting gently prior to spinning the tube briefly in a 

microcentrifuge. The tube was then incubated at 72 ºC for 3 minutes and then 42 ºC for 2 

minutes in a thermal cycler. 

 For one cDNA synthesis reaction the following Master Mix was prepared: 2 µl of 

5X First-Strand Buffer, 0.25 µl of DTT (100 mM), 1 µl of dNTP Mix (10 mM), 1 µl 

SMARTer™ II A Oligonucleotide (12 µM), 0.25 µl RNase Inhibitor, 1 µl of 

SMARTscribe™ Reverse Transcriptase (100 U) for a total volume of 5.5 µl. The Master 

Mix was prepared at room temperature and the reverse transcriptase added immediately 

prior to use of the Master Mix. This was added to the reaction tube giving a total volume 

of 10 µl. The tube was then incubated at 42 ºC for 90 minutes and the reaction terminated 

by incubation at 70 ºC for 10 minutes. The first-strand reaction product was diluted by 

adding 90 µl of TE buffer (10 mM Tris pH 8.0, 0.1 mM EDTA).  

A 3 µl volume of the diluted single-stranded cDNA was aliquoted into a 0.5 ml 

microcentrifuge tube and made up to a volume of 10 µl using deionised water. The 3 µl 

volume is chosen relative to the starting amount of poly A
+ 

RNA used in the initial stages 

of cDNA synthesis. 

 A thermal cycler was pre-heated to 95ºC whilst the PCR Master Mix was 

prepared. One reaction required: 74 µl of deionised water, 10 µl of 10X Advantage 2 PCR 

Buffer, 2 µl 50X dNTP Mix (10 mM), 2 µl 5‘ PCR Primer II A (12 µM) and 2 µl of 50X 

Advantage 2 Polymerase Mix for a total volume of 90 µl per reaction. The Master Mix 

was vortexed thoroughly and then spun briefly in a microcentrifuge to collect the contents 
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at the bottom of the tube. At this point, 90 µl of Master Mix was added to the 10 µl 

diluted single-stranded cDNA for a total reaction volume of 100 µl. 

 The reaction mixture was then subjected to the following thermal cycling 

programme: 95 ºC for 1 minute followed by 27 cycles of 95 ºC for 15 seconds, 65 ºC for 

30 seconds and 68 ºC for 6 minutes. The full reaction mixture was subjected to 15 

complete cycles at which point the program was paused and 70 µl of the reaction mixture 

was stored at 4 ºC while the remaining 30 µl of the reaction mixture was subjected to 

further PCR cycling for a total of 27 cycles with 5 µl of reaction mixture removed after 

every third cycle. These 5 µl aliquots were analysed by gel electrophoresis to determine 

the optimum number of PCR cycles for good quality double-stranded cDNA. The 

optimum number of PCR cycles was 15, after which there was no improvement or 

increase in product with further cycling. The 70 µl of reaction mixture initially stored 

after 15 cycles was purified using the MinElute
® 

Kit (Section 2.2.4) and eluted in Buffer 

EB (20 µl).  

 

4.2.2.4 Next-generation sequencing and sequence assembly 

 

Double-stranded cDNA (4 µg) was submitted to the Department of Biology Technology 

Facility (University of York; UK) for standard transcriptome sequencing on a 454 

Genome Sequencer FLX Instrument, Titanium series (Roche Applied Science; Burgess 

Hill, UK). Fragmentation and library preparation were carried out as recommended by the 

manufacturer prior to the sequencing run whereby a half-plate was utilised. The resulting 

reads were screened for the presence of adaptor sequences originating from both the 

cDNA preparation and the 454 experimental procedures. Raw SFF files were generated 

using GS FLX on-board software. Reads lacking the adaptor sequences are removed by 

the sequencer software. 

 Prior to assembly into contiguous sequences (contigs) the sequence reads were 

screened a second time for the presence of adaptor sequences originating from both the 

cDNA preparation and the 454 experimental procedures. Adaptor contamination was 

masked using CROSS_MATCH (http://www.phrap.org/phredphrapconsed.html), and then 

trimmed from the reads using custom perl scripts. The matching quality scores for the 

reads were also removed. Any reads that had adaptor contamination in the middle were 
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discarded as possible chimeric sequences. After adaptor trimming, the remaining 

sequences were assembled using the TGICL suite 

(http://compbio.dfci.harvard.edu/tgi/software) running on a single CentOS Linux machine 

with four processors. The assembly CAP3 parameters used were –p 75 –d 200 –f 250 –h 

90.   

 

4.2.2.5 Homologies to known sequence 

 

Contigs and singletons were annotated with descriptors of their closest homologues using 

BLAST (Altshul et al. 1990) (with an e-value cut off of 1.00 e-10) to search them against 

the non-redundant nucleotide sequences located within the NCBI database (accessed 

17/08/11). 

 All sequences were then compared using BLAST (Altshul et al. 1990) (with an e-

value cut off of 1.00 e-10) with the Drosophila melanogaster proteins listed in the 

―Annotated Proteins‖ database within FlyBase: A Database of Drosophila Genes and 

Genomes (Tweedie et al. 2009). Each hit was then compared to the generic GO (gene 

ontology) data on the Gene Ontology Consortium website (The Gene Ontology 

Consortium 2000) (accessed 02/09/11). The GO database has developed three structured 

vocabularies or ―ontologies‖ which enable researchers to describe gene products in terms 

of their associated (1) biological processes, (2) cellular components and (3) molecular 

functions in a species independent manner. Rather than using a full GO (gene ontology) 

analysis, a generic ―GO Slim‖ classification was used to give a broad overview of the 

ontology content within these three classifications. 

 

4.2.2.6 Microsatellite discovery and primer design 

 

Microsatellites of repeat length 2–5 were discovered in the final assembly by searching 

with Sputnik software (Abajian 1994). Primers were designed using Primer3 software v. 

0.4.0 (Rozen and Skaletsky 2000) employing the default settings. Primer pairs were 

grouped into those that amplified di-, tri-, tetra- and pentanucleotide repeat sequences 

respectively. Primer pairs designed to amplify 48 and 24 of the longest di- and 
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trinucleotide repeat regions respectively were synthesised (Sigma Aldrich; Gillingham, 

UK). 

 

4.2.2.7 Amplification of microsatellite loci in Tenthredopsis excisa and Dolerus aeneus 

 

Each of the 72 primer pairs (Section 4.2.2.6) were run against the same test population of 

eight Tenthredopsis excisa individuals used previously (Table 4.2) and on a test 

population of 15 Dolerus aeneus individuals, comprising 14 males and one female, 

collected during the 2008 field season (Table 4.3). Different PCR conditions were 

employed to allow amplification of the microsatellite loci. Firstly, identical PCR 

conditions to those used previously (Section 4.2.1.4). Secondly, an identical 

thermocycling programme as the first but with an increased annealing temperature of 

58 °C. Finally a touchdown PCR programme beginning with a 94 °C incubation for 5 

minutes followed by 7 cycles of 94 °C for 30 seconds, 65 °C for 30 seconds (reducing by 

1 °C/cycle) and 72 °C for 1 minute. This was followed by 25 cycles of 94 °C for 30 

seconds, 58 °C for 30 seconds and 72 °C for 1 minute and finished with 72 °C incubation 

for 7 minutes and an 8 °C hold.  

If a single product was amplified in all or most of the test population then the 

forward primer of the pair was 5‘ fluorescently-labelled with 6-FAM (6-

Carboxyfluorescein). PCR was then performed again using the same test population, the 

appropriate thermocycling programme, the original reverse primer and the new 

fluorescently-labelled forward primer. Genotyping was performed as described in Section 

4.2.1.4.  

Microsatellite loci were considered to be polymorphic if two or more alleles were 

present at a locus. Polymorphism Information Content (PIC) values were calculated for 

microsatellite loci according to Botstein et al. (1980) using the Microsatellite Toolkit add-

in (Park 2001) for Microsoft Excel. 

 

 

 

 

 



 91 

 

 

 

 

 

 

 

 

Table 4.3: Test population of Dolerus aeneus individuals (sampled 2008) used in the initial amplification 

of microsatellite loci. 

 

Test population: Dolerus aeneus 

Sex Collection Site 

M SCRI 

F New Gilston 

M New Gilston 

M SCRI 

M Glamis 

M Glamis 

M Glamis 

M Glamis 

M New Gilston 

M SCRI 

M SCRI 

M Glamis 

M Aberdeen 

M Aberdeen 

M Aberdeen 
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4.2.2.8 Scoring of microsatellite loci 

 

Scoring of microsatellite alleles using the GeneMapper
®
 software (Applied Biosystems 

Inc., Warrington, UK) can result in the presence of wrongly-scored alleles. To screen for 

the presence of insertion or deletion mutations accounting for the presence of erroneous 

alleles (i.e. alleles scored one base pair apart for a dinucleotide repeat sequence) a 

selection of alleles were sequenced for each microsatellite locus where suspect alleles 

arose. 

 Microsatellite loci were amplified as described in Section 4.2.2.7 and resulting 

PCR products purified by combining 5 µl PCR product with 2 µl ExoSAP-IT (USB 

Corporation; Cleveland, USA). The resulting mixture was incubated at 37 °C for 15 

minutes followed by 80 ºC for 15 minutes according to the manufacturer‘s instructions. 

Approximately 5 ng of purified PCR product was placed in a 10 µl sequencing reaction 

containing 0.5 µl Big Dye v3.1, 1.75 µl 5X dilution buffer (both Applied Biosystems Inc.; 

Warrington UK) and 1 µl of the correct forward primer (10 µM) (Eurofins MWG Operon; 

London, UK). Reactions were then subjected to the following thermocycling programme: 

96 ºC for 1 minute, followed by 25 cycles of 96 ºC for 10 seconds, 50 ºC for 5 seconds 

and 60 ºC for 4 minutes, followed by a 4 ºC hold. 

Sequencing reactions were purified by EDTA/Ethanol precipitation. Briefly, 125 

mM EDTA (2.5 µl) was added to each reaction followed by 95 % ethanol (30 µl). The 

reactions were incubated at room temperature for 15 minutes followed by centrifugation 

at 1,811 rcf for 45 minutes at 4 ºC. Plates were then inverted and centrifuged at 100 rcf for 

10 seconds to remove the supernatant. The reaction products were then washed twice by 

the addition of 70 % ethanol (150 µl) and centrifugation at 1,811 rcf for 10 minutes at 4 

°C followed by inversion of the plate onto a tissue to remove the supernatant. Finally, the 

plate was incubated at room temperature for 1 hour. Sequencing of the purified reaction 

products was performed using an ABI PRISM
®
 3730 Genetic Analyzer (48 capillary) and 

the resulting sequences were screened using Sequencher 4.9 sequence analysis software 

(Genecodes, Ann Arbor, MI, USA). 

 

 

 



 93 

4.2.2.9 Cross-species amplification of microsatellite loci 

 

Polymorphic dinucleotide microsatellite primer pairs (three alleles or more) were tested 

on eight randomly chosen individuals of the following 11 species: Dolerus puncticollis, 

Dolerus nigratus, Dolerus picipes, Dolerus gonager, Aglaostigma aucupariae, 

Aglaostigma fulvipes, Halidamia affinis, Ametastegia glabrata, Pachyprotasis rapae, 

Athalia cordata and Tenthredopsis nassata. 

 PCR was performed using the conditions described in Section 4.2.1.4 with an 

increased annealing temperature of 58 ºC. PCR products were visualised on a 1% (w/v) 

agarose gel (Section 2.2.2) to determine whether or not the loci amplified successfully. 
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4.3 Results 

 

4.3.1 The development of a genomic library enriched for microsatellite sequences 

 

4.3.1.1 Overview of enriched genomic library construction 

 

The enriched genomic library construction procedure is summarised graphically in Plate 

4.1. Total genomic DNA was extracted (Step 1) and subsequently digested with restriction 

enzymes; both MseI and EcoRI were used simultaneously or Sau3AI alone (Step 2). The 

fragments were size-selected (300–1000 bp) and compatible, double-stranded adaptors 

were ligated to the ends of the fragments (Step 3). PCR was then performed to increase 

the concentration of the DNA using primers homologous to the known adaptor sequences 

(Step 4). Fragments containing microsatellite repeats were then separated from the rest 

using a biotinylated oligonucleotide probe in conjunction with magnetic, streptavidin-

coated beads (Step 5). A second PCR was then performed to increase the number of 

microsatellite-containing fragments (Step 6). The enriched fragments were then cloned 

and sequenced (Step 7). Sequences were searched manually for microsatellite loci and 

primers designed using suitable software (Step 8).  

 

4.3.1.2 Isolation and characterisation of microsatellite loci 

 

A total of 768 clones were sequenced during the construction of the enriched 

library, 336 of which were derived from enriched genomic libraries arising from the 

Sau3AI digestion method and 432 of which were derived from the MseI/EcoRI digestion 

method.  Twenty-seven microsatellite loci were discovered within these sequences, of 

which it was possible to design primers for 23 (Table 4.4). Twelve of the primer pairs 

amplified a single product in all or most of the test population of eight Tenthredopsis 

excisa individuals), one of which yielded a polymorphic microsatellite locus with two 

alleles (Table 4.4). When this locus (Texcisa11) was assayed on the larger 2009 T. excisa 

population of 79 individuals there was no increase on two alleles. Due to the lack of 

polymorphism in the discovered loci no diversity statistics were performed. 
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In addition to the expected (CA/GT/GA/CT)n repeats, several other dinucleotide 

repeat motifs were discovered, along with some tri-, tetra- and pentanucleotide repeats, in 

the sequenced clones. Seventeen of the repeat sequences found were dinucleotide repeats, 

seven were trinucleotide repeats and the rest were tetra- or pentanucleotide repeats (Table 

4.4). Thirteen of the sequences were composed of perfect tandem repeats with the 

remaining 14 sequences composed of imperfect tandem repeats. 
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1. Extract Sawfly DNA 2. Fragment DNA 3. Ligate adapters

4. First PCR

5. Magnetic separation6. Second PCR7. Cloning and Sequencing

8. Primer Design!

5’-GCTAATACGCACACACACACACACAGCTCATTAC-3’

 

 

Plate 4.1: Outline of the process of enriched genomic library construction. In Step 2 the microsatellite 

region of the DNA is marked in red. In Step 3 the blue sections represent the adaptor sequences. In Step 

5 the oligonucleotide probe is shown in red adjacent to the microsatellite region. The probe is biotinylated 

represented by the green ellipse, and hybridised to a streptavidin bead represented by the red circle. 
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Table 4.4: Twenty-seven microsatellite loci isolated for Tenthredopsis excisa using an enriched genomic library method. 

 

Locus name Repeat Sequence Motif type Repeat type 

Expected 

product 

size (bp) Primers designed 

Single 

products 

amplified Y/N 

Polymorphic 

Y/N 

SawCAGA1 (CT)13 Dinucleotide Perfect 140 
F 5'TGACTGCGTACCAATTCACC3' 

N N/A R 5'CGTACTACGGAGGGACTCCA3' 

SawCAGA1a (CTT)3 Trinucleotide Perfect N/A No - SSR too short. N/A N/A 

SawCAGA1b (CA)4…(AC)3A Dinucleotide Perfect/Compound N/A No - SSR too short. N/A N/A 

Saw CAGA1c (CT)4 Dinucleotide Perfect N/A No - SSR too short. N/A N/A 

SawCAGA2 G(GT)5(GA)5GG(GA) Dinucleotide Imperfect 173 
F 5'CGCACACGTTACACACAACC3' 

N N/A R 5'TCCTGAGTAACCCCGACAAC3' 

SawCAGA3 GAAAA(GAAGA)3GAAAA Pentanucleotide Imperfect 184 
F 5'CTCGAAAGCAAGGGAACAAG3' 

N N/A R 5'TTCCTGAGACTTTGCGCTTT3' 

SawCAGA3a (CCG)3 Trinucleotide Perfect N/A No - SSR too short. N/A N/A 

SawCAGA4 (GA)10 Dinucleotide Perfect 169 
F 5'TGATGAGTCCTGAGTTAACGAGA3' 

N N/A R 5'TCCATATAACGGGGAAATCG3' 

SawCAGA5 (GA)11 Dinucleotide Perfect 132 
F 5'TGACTGCGTACCAATTCACC3' 

N N/A R 5'ATGCTCAGGTTCGGTGTCTC3' 

SawCAGA6 (GA)10 Dinucleotide Perfect 165 
F 5'TCCTGAGTAACGAGAGAGAGAGAGA3' 

N N/A R 5'ACTGCGTGCCAATTCCATA3' 

SawCAGA7 (AAAG)3(GAAG)(AAAG) Tetranucleotide Imperfect 124 
F 5'CCTCCAAAAGCCAACGAATA3' 

N N/A R 5'TGACTGCGTACCAATTCCAA3' 

Texcisa1 GG(GT)6(GG)2 Dinucleotide Imperfect 207 
F 5'TGACTGCGTACCAATTCG3' 

N N/A R 5'GGAAGCTGTCCAGCCTACTG3' 

Texcisa2 (GT)4 Dinucleotide Perfect 205 
F 5'GTAATGATCCTTCCGCAGGT3' 

Y N  R 5'AAGCTCGCGTTGATTACGTC3' 

Texcisa3 (TG)4T Dinucleotide Perfect 168 
F 5'AGGGGGAACTGGGTGAATAA3' 

Y N  R 5'GCCGTATCCTACCACGAGAC3' 

Texcisa4 (GA)4GC(GA)4T(AG)5 Dinucleotide Imperfect 155 
F 5'TTCCGGACCGAAATAAATGT3' 

Y N  R 5'CGGTCGTCGAAGAGGAATAA3' 

Texcisa5 (GT)2 TT(GT)2(GTTTGT)2 Dinucleotide Imperfect 211 
F 'AATCGCCGCACTATAACCAC3' 

Y N  R 5'ACCTCATTTGACCCAGAACG3' 

Texcisa6 (TA)3 Dinucleotide Perfect 94 
F 5'GGCTTTTAGCGCGTATTCAG3' 

N N/A R 5'CCCGTGGATTACTCAGGA3' 
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Texcisa7 (CA)5 Dinucleotide Perfect 163 
F 5'TGACTGCGTACCAATTCTGG3' 

N N/A R 5'GTAATCGGGGTAAGCTGCTG3' 

Texcisa8 (TAA)2CAATAA Trinucleotide Imperfect 166 
F 5'TACGCCGGTGAAGGGTATAG3' 

Y N R 5'GGTTACGCGACGAATCAACT3' 

Texcisa9 (CAC)6 Trinucleotide Perfect 162 
F 5'ACGATCGCGAATCTTACACC3' 

Y N R 5'ACCAATTCCCGACATAAACG3' 

Texcisa10 (GTT)(GT)(GTT)2 Trinucleotide Imperfect 170 
F 5'TGACTGCGTACCAATTCCAC3' 

N N/A R 5'TTAGGCCAGAAAAACGGAAA3' 

Texcisa11 (CA)6…TAGA(TGGA)7TGTA Tetranucleotide Compound/Imperfect 184 
F 5'TTTTTCGCTGCAGTTACACG3' 

Y Y R 5'AGGGGAAGACAATCCCTGTC3' 

Texcisa12 (CTT)3CTC(CTT)6TTT(CTT)2 Trinucleotide Imperfect 206 
F 5'CCAAGCTTCGGATCTGTACG3' 

Y N R 5'CCCGTGTTGAAAACAATCCT3' 

Texcisa13 (CG)8….(CA)5CG(CA)4(CG)3(CA)2CG(CA)11 Dinucleotide Imperfect 151 
F 5'CCCAAGCTTCGAGTCGAGTA3' 

Y N R 5'AGACGCGGGGAGGTTAAGT3' 

Texcisa14 (ACG)3ACA(ACG)3C(ACG) Trinucleotide Imperfect 235 
F 5'ACGGGGAGAGTGTGTTTGTC3' 

Y N R 5'CTTCGGATCCATCTGGGTTA3' 

Texcisa15 (GT)2(AT)2(GT)11AT(GT)3 Dinucleotide Imperfect 207 
F 5'ATCTGTTCGAGCGCGTAGTT3' 

Y N R 5'TTTATCCCAGTTCGCAGTCC3' 

Texcisa16 (GC)2(GT)8GA Dinucleotide Imperfect 154 
F 5'TTTGCAACAGCTCCTGATGT3' 

Y N R 5'CCAACAGCGTCTCGAATACA3' 
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4.3.2 The development of a sawfly transcriptomic library using next-generation 

sequencing technologies 

 

4.3.2.1 Transcriptome sequencing and contig assembly 

 

Using 454 pyrosequencing 150,725 high quality sequence reads were assembled de novo 

into 18,539 contigs and 260 singletons representing 7 Mbp of transcriptome (Figure 4.1). 

The mean contig length was 372 nucleotides. The longest contig in the assembly was 

3916 bp in length and was composed of 124 individual reads. The contig with the largest 

number of component reads was 2344 bp in length and contained 1597 individual reads.  

 

4.3.2.2 Homologies to known sequences 

 

Of the 18,799 total sequences (contigs + singletons), 8,809 had significant matches in the 

public sequence databases (NCBI) at the 1.00 e-10 e-value cut off level. These blast 

matches correspond to 6,714 unique accession numbers, 4,273 (63.64 %) of which were 

insect sequences. Of the insect sequences, 3,574 (83.64 %) were hymenopteran sequences 

(Figure 4.2). 

 When all sequences were annotated by comparison with the Annotated Proteins 

present in Flybase (Tweedie et al. 2009) and then compared with the Gene Ontology 

database (The Gene Ontology Consortium 2000) 19,998 GO hits to the sequences were 

grouped under ―biological processes‖ and 11,396 hits were grouped under ―cellular 

components‖ totalling 31,394 hits (note that one contig can match a single protein in 

FlyBase but that protein can have more than one GO term attached to it). Within the 

―biological processes‖ group the two main sub-groups of gene products were ―biological 

processes‖ (21 %) and ―anatomical structure development‖ (10 %) (Figure 4.3). Within 

the ―cellular components‖ group the two main sub-groups of gene products were ―protein 

complex‖ (22 %) and ―cytoplasm‖ (14 %) (Figure 4.4). 

 

 



 100 

 

 

Figure 4.1: Number of reads per contig within a transcriptome sequence assembly constructed from 

cDNA isolated from five sawfly larvae of unknown species. Data are shown for contigs containing 1-50 

reads, representing approximately 97.9% of all sequences (contigs + singletons). 
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Figure 4.2: Characterisation of BLAST hits to hymenopteran sequences in the NCBI non-redundant 

protein sequence database. 
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Figure 4.3: Sub-groups of GO terms with more than 500 hits to our sequences under the heading 

“biological processes” accounting for 53.42 % of the total hits under this heading. 

 

 

 

Figure 4.4: Sub-groups of GO terms with more than 500 hits to our sequences under the heading 

“cellular components” accounting for 78.41 % of the total hits under this heading. 
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4.3.2.3 Isolation and characterisation of microsatellite loci 

 

After the final assembly, 1,030 of the 18,539 contigs and 9 of the 260 singletons were 

found to contain one or more SSRs. This gave a total of 1,284 isolated SSRs, of which 

17% were dinucleotide repeats, 52% were trinucleotide repeats and the rest were tetra- 

and pentanucleotide repeats (Table 4.5). Primer pairs were designed for 847 of the 1,284 

loci discovered. As previously stated, 72 of these primer pairs were synthesised (Table 

4.5). 

 

4.3.2.3.1 Amplification of microsatellite loci in Tenthredopsis excisa and Dolerus aeneus 

 

Each of the 72 primer pairs was run on test populations of 8 Tenthredopsis excisa (Table 

4.2) individuals and 15 Dolerus aeneus individuals (Table 4.3) as stated in Section 

4.2.2.7.  

In the T. excisa test population, 18 of the 72 primer pairs amplified a single 

product in all or most of the test population. The remaining 54 primer pairs did not 

amplify a product at all or produced multiple products or smears. Of the 18 primer pairs 

that gave single PCR products, nine were fluorescently-labelled. Four of these fluorescent 

primer pairs produced polymorphic microsatellite loci with two alleles. When assayed on 

the larger test population of 79 T. excisa individuals, there was no increase on two alleles 

for any of the four loci. 

In the D. aeneus test population, 43 of the 72 primer pairs amplified a single 

product in all or the majority of the test population. Nineteen of these primer pairs were 

fluorescently-labelled and subsequently 14 of these loci were found to be polymorphic 

exhibiting two or more alleles. One of the 14 polymorphic loci failed to amplify a 

fragment in four individuals over multiple attempts suggesting the presence of null alleles 

and this locus was removed from further analysis.  

For the 13 remaining polymorphic loci, the number of alleles per locus ranged 

between two and eight and diversity (PIC) values ranged from 0.117 to 0.850 (mean 

0.527) (Table 4.6). Six of the thirteen microsatellite loci had matches in NCBI with 

known insect sequences, five of which were hymenopteran sequences (Table 4.6). 
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Table 4.5: Summary of microsatellite sequences isolated via sawfly transcriptome NGS (Reproduced in 

part from Cook et al. 2011). 

 

a  
The number of possible primer pairs designed using the default settings in Primer3 (Rozen and Skaletsky 

2000). 
b
 The number of primer pairs synthesised and tested. 

 

 

 

 

 

 

 

 

 

 

 

SSR type 

Total no. 

each SSR 

type 

Repeat number range Primers designed
a 

Primers tested
b 

Dinucleotide 212 5-16 137 48 

Trinucleotide 662 4-54 460 24 

Tetranucleotide 210 3-15 128 0 

Pentanucleotide 200 2-8 122 0 

Total 1284 N/A 847 72 
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Table 4.6:  Primer sequences of 13 microsatellite loci for use in Dolerus aeneus (Reproduced from Cook et al. 2011). 
 

 

   a 
GenBank Accession numbers are given in parentheses. 

b
 one dot indicates one base. 

c 
all forward primers are 5‘ labelled with 6-FAM. 

 

Locus namea Repeat motifb Primer sequence 5'-3'c 
Allele size 

range (bp) 

No. of 

alleles 

PIC 

values Homologies 

SAW454_1 
(JF304726) 

(AG)5(AT)(AG)6(GG)(AG)3 
F GTAGCTGAATGGGATTAAGCGAAGC 

197-229 8 0.809 None 
R AGTGATTTTCAGTGAATGTTCCATCC 

SAW454_2 
(JF304727) 

(AC)14 
F TCGCTTATAGTACGCAGATACCCGT 

203-230 4 0.425 
Cyclic AMP-dependent transcription factor 

ATF-4 [Camponotus floridanus]. GenBank 

Accession number: EFN64595.1   R CAAGTGGCTCTCTGCTCCTATGCT 

SAW454_3 
(JF304728) 

(AC)9(GC)(AC)3 
F AAACGTCACAATCATCACCGA 

210-220 4 0.524 None 
R AGGGTATGTATAGCGACACAGAATAAG 

SAW454_4 
(JF304729) 

(AG)5……(AG)3 
F TTTTTGGTTGAATTATTATCACGGG 

235-254 8 0.850 None 
R GGATAGAGACGATATAAGCAATCTCCA 

SAW454_7 
(JF304730) 

(GA)6(GC)(GA)4 
F GGAGTCCGTAAGCGGTCCCT 

209-228 4 0.335 
hypothetical protein EAG_13038 

[Camponotus floridanus] GenBank Accession 

number: EFN60563.1 R TCCGTTTCCCTTGGCACACT 

SAW454_11 
(JF304731) 

(AT)11 
F CGGAGGGAATCGAGTCGAAC 

234-242 7 0.786 None 
R CACCCGAGTACCTCTCCCGA 

SAW454_14 
(JF304732) 

(AT)10 
F TTGCTGCACAGCTTTTGATCC 

198-200 2 0.117 
ACYPI008213 [Acyrthosiphon pisum] 

Accession number: BAH72837.1 
R GTTCGCCGGCAAGTTCTTTG 

SAW454_16 
(JF304733) 

(GT)10 
F CCGAAAAGGGGGAATTACGG 

188-204 5 0.629 None 
R TGGCGGTGAAGAAAAACCCA 

SAW454_19 
(JF304734) 

(AT)9 
F CAAGCCGGAGTTGCACAAGA 

214-220 3 0.370 
Vacuolar proton pump subunit G [Camponotus 

floridanus] GenBank Accession number: 

EFN71124.1 R TGACCGATTGATAGACACATCATAGG 

SAW454_23 
(JF304735) 

(TA)8 
F CGCTACGCCTTAAGAAGTTCAATCC 

197-214 4 0.550 None 
R AAATCTCACGTGCGAGTACCGA 

SAW454_24 
(JF304736) 

(TG)8 
F GAAGTGCGGATGATACTGCGA 

232-245 7 0.783 
Cleft lip and palate transmembrane protein 1-

like protein [Harpegnathos saltator] GenBank 

Accession number: EFN88050.1 R AAAGATGAGGCGGAAAAGAAAAA 

SAW454_31 
(JF304737) 

(TAT)2(TAA)(TAT)15 
F TCAGTCGATCCTTGCCGTCTC 

224-234 3 0.370 None 
R CGAGGAAACACAATGCCTAATGC 

SAW454_41 
(JF304738) 

(ATA)6………(ATA)4 
F CACCGCCGTCCTCTCTCTTT 

197-198 2 0.309 
PREDICTED: similar to CG17927-PF 

[Nasonia vitripennis] GenBank Accession 
number: XP_001607303.1 R CGCGATTGTATCGATGTCTTCTTG 
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4.3.2.3.2 Scoring of microsatellite loci 

 

Sequencing of microsatellite repeat regions within loci showed that erroneous alleles were 

attributable to insertion or deletion mutations in differing regions outwith the 

microsatellite repeat sequence. Therefore, scoring of microsatellite alleles was not altered 

in any way from that observed in the GeneMapper
®
 software (Applied Biosystems Inc., 

Warrington, UK).  Sequencing of several individuals at locus Saw454_1 is shown as an 

example (Plate 4.2).  

 

4.3.2.3.3 Cross-species amplification of microsatellite loci 

 

Nine of the most polymorphic microsatellite loci (three alleles or more) (Table 4.6) were 

tested on a range of other sawfly species and genera as listed in Section 4.2.2.9. The nine 

loci were amplified successfully in other closely related Dolerus species with minimal 

presence of multiple products or smearing (Table 4.7). However, none of the loci 

produced single products in the more distantly related genera of the Tenthredinidae.  
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Plate 4.2: Screenshot taken from Sequencher 4.9 sequence analysis software. Part of the reference sequence (200 bp total (119 shown); containing a GA repeat 

region) for locus Saw454_1 is represented by the first row. The two rows directly below the reference sequence represent two individuals that were scored as 200 

bp followed by two individuals scored as 199bp, followed by two individuals scored as 201 bp and finally one individual scored as 206 bp. Insertion/deletion 

mutations are highlighted. Variation in the length of the microsatellite sequences can be attributed to regions other than the repeat sequence thus accounting for 

the presence of one bp differences between alleles. 
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Table 4.7: Within-genus cross-species amplification of nine Dolerus aeneus microsatellite loci 

(Reproduced from Cook et al. 2011). 

 

+ indicates a clear PCR product of the expected size in at least 7 out of the 8 individuals tested for that 

species, - indicates no product amplified in any individual, MP indicates multiple products or smears. 

 

Locus 

Saw454 

1 

Saw454 

2 

Saw454 

3 

Saw454 

4 

Saw454 

11 

Saw454 

16 

Saw454 

19 

Saw454 

23 

Saw454 

24 

D. puncticollis + + + + + + + MP + 

D. nigratus - + + + + + + - + 

D. picipes + + + + + + + + + 

D. gonager + + + + + MP - - + 
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4.4 Discussion 

 

4.4.1 A genomic library derived from sawfly DNA and enriched for microsatellite 

sequences produced low marker yield 

 

In spite of the difficulties involved in using enriched genomic libraries to isolate 

microsatellite markers (Section 4.1.1) variations on this method have been used 

successfully to produce microsatellites for numerous species including those belonging to 

the Hymenoptera (Stolle et al. 2009; Arthofer et al. 2005; Hartel et al. 2003). However, 

the protocol described in this chapter for the isolation of microsatellites from sawfly DNA 

produced markers with very low yields. 

 The DNA used to construct the libraries was extracted solely from the heads of the 

sawflies in order to minimise the presence of contaminant DNA in the sample i.e. DNA 

from bacterial populations in the gut. Extracted sawfly DNA was of good quality but 

present at low concentrations and therefore the Genomiphi kit was trialled to amplify the 

genomic DNA. However, due to the tendency of the Genomiphi enzyme to amplify 

smaller fragments preferentially, its use resulted in amplification of the small fraction of 

degraded, fragmented DNA present in the initial extraction and the use of Genomiphi was 

therefore discontinued. 

In spite of low DNA concentrations, restriction digests were successful and 

progression to ligating known adaptor sequences to the digested DNA fragments was 

possible. However, subsequent PCR amplification of adaptor-ligated DNA fragments was 

inconsistent suggesting that the adaptor-ligation step of the protocol was not optimal. 

Fragments of DNA digested simultaneously with MseI and EcoRI and then ligated to the 

appropriate adaptor sequences were found to amplify slightly more consistently than those 

digested with Sau3AI. 

Across all of the libraries generated here, 768 clones were sequenced of which 27 

contained microsatellite sequences (3.5 %) (Section 4.3.1.2). This low frequency suggests 

that CA and GA repeats are uncommon in Tenthredopsis excisa or that the enrichment 

step of the protocol described in this chapter was unsuccessful. The first explanation is 

unlikely given that these repeat types are known to be common in other Hymenoptera 

(Estoup et al. 1993; Thorén et al. 1995). It is, however, highly plausible that the 
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enrichment protocol was not functioning optimally. Arthofer et al. (2005) reported 6.9 % 

of clones containing microsatellite repeats when using an enrichment protocol to isolate 

CA and GA repeat sequences from the ant Messor structor, which is nearly double the 

value obtained in the present study. 

Overall, the main problem with the genomic library protocol was the quantity of 

DNA obtained in the initial extractions, which had a knock-on effect on the success of 

subsequent steps. To optimise the protocol using larger quantities of DNA would have 

necessitated destructive sampling of a large proportion of the sawfly material collected 

from field sites. Collection of additional sawfly samples at this stage of the project was 

constrained by the short season when sawfly adults are on the wing and available for 

collection (Section 1.2.2). Therefore, effort was focussed on the alternative approach of 

constructing an RNA library, which requires much smaller quantities of starting material 

(Hedley pers. comm.) 

 

4.4.2 Next-generation sequencing (NGS) of a sawfly transcriptomic library yields large 

numbers of microsatellite markers 

 

The enriched library method gave low returns in terms of polymorphic microsatellite 

markers isolated (1 from 768 sequenced clones) for the expense (approximately £5,000) 

and level of effort involved (18 months work) (Section 4.4.1).  The increasing availability 

of new sequencing methods was explored as an alternative approach. The next-generation 

pyrosequencing technology, commercialised by Roche/454 (Margulies et al. 2005), 

generates large volumes of sequence data very quickly. Most importantly, sequence data 

generated by 454 pyrosequencing can be assembled de novo i.e. the short sequence reads 

generated can be assembled into contigs without relying on an existing sequenced genome 

for alignment, making it ideal for insects, such as sawflies, for which there is little 

existing genetic information. 

 In eukaryotes, microsatellites are known to be more abundant in the non-coding 

regions of the genome compared to the coding regions (Hancock 1995). However, any 

markers isolated from the transcriptome should more readily cross-amplify as these 

regions are likely to be more highly conserved between species.  This provided another 

reason to pursue an RNA library. 
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As reported in Section 4.2.2, cDNA synthesised from sawfly larval mRNA was 

submitted for 454 pyrosequencing as opposed to that from sawfly adult tissue. The sawfly 

adult samples available were unsuitable for RNA extraction as they were automatically 

ethanol-fixed by the Malaise trap sampling method (Section 2.1.1). Therefore, sawfly 

larvae, captured by sweepnetting and stored live at -80 ºC (Section 2.1.4) were used. 

Unfortunately, sawfly larvae are difficult to identify due to a lack of full published 

descriptions and illustrated keys (Barker 1998). In addition, storage at -80 ºC affected the 

morphological characteristics of the larvae therefore the actual species used were not 

identified. 

After the final assembly, 1,039 of the resulting sequences (contigs + singletons) 

were found to contain one or more microsatellite sequences (6.9 SSRs identified for 100 

ESTs), which was double the yield achieved with the enriched genomic library method 

and on a much shorter timescale (12 weeks compared to 78 weeks, respectively). In the 

first instance, the isolated markers (72 microsatellite loci) were tested on the same 

Tenthredopsis excisa population used for the genomic library method. T. excisa had been 

selected as the study species as it was the most abundant species present at all sampling 

sites in the 2008 field season (Section 3.3.1) and it was likely that the larval samples used 

to isolate SSRs belonged to the same species. When difficulties arose in amplifying the 

markers in T. excisa, a second test population of Dolerus aeneus individuals was used, 

which was the second most abundant species present at all of the 2008 sampling sites, and 

the markers amplified successfully. 

Cross-amplification of the isolated markers into other sawfly species was tested 

and was successful in the four Dolerus species but not in the more distantly related genera 

of the Tenthredinidae (Section 4.3.2.3.3). Lack of cross-amplification outwith the genus 

Dolerus in the present study does not rule out cross-amplification in other more closely-

related sawfly genera that were not tested.  

Due to the small numbers of markers obtained from the enriched genomic library 

method, i.e. only one detectable polymorphic microsatellite locus, these were not tested 

for cross-amplification in closely-related species. Therefore, it is not possible to compare 

the utility of markers isolated using the genomic and transcriptomic approaches directly in 

terms of cross amplification. However, when the clonal sequences (those containing 

microsatellites) isolated using the genomic library method were BLAST searched against 
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the public sequence database (NCBI), no hits to insect sequences were obtained. In 

contrast, 89.8 % of the microsatellite-containing contigs from the 454 pyrosequencing had 

hits to insect sequences suggesting that these sequences are conserved among the class 

Insecta and therefore more likely to yield cross-amplifying markers. 

 

4.4.3 A polymorphic set of microsatellite markers for the farmland sawfly Dolerus 

aeneus 

 

The 13 polymorphic microsatellite loci reported in this chapter generated diversity (PIC) 

values (min: 0.117, max: 0.850) indicating that the majority of these loci are sufficient for 

population genetic analysis. PIC values of greater than 0.5 indicate highly informative 

loci, 0.5>PIC>0.25 indicates reasonably informative and PIC values less than 0.25 

indicate slightly informative (Botstein et al. 1980). Microsatellite loci isolated from the 

mosquito Aedes aegypti showed a similar range of PIC values to those reported here (min: 

0.171, max: 0.867) and were useful in revealing genetic differentiation between 

populations of the species (Lovin et al. 2009). 

The commonly used diversity statistics, observed and expected heterozygosity, 

were not calculated using this test set of individuals as this statistic can only be generated 

when there is a significant proportion of diploid individuals in the test population. 

However, only one diploid female individual was present in this test population.  Due to 

the presence of haplodiploidy in Dolerus aeneus, the other sampled individuals were most 

likely to have been haploid males. If Complementary Sex Determination (CSD) (Section 

1.2.3) also operates in this sawfly species (i.e. in addition to haplodiploidy), it is possible 

that some of these males were in fact diploid. Unfortunately, the GeneMapper
®
 software 

used to type the microsatellite loci is not capable of distinguishing between a haploid 

individual and a diploid homozygote and, based on the 13 SSR loci, did not detect any 

heterozygous males (which would have confirmed the existence of diploid males). For the 

purposes of this study, the male individuals were therefore assumed to be haploid.  

However, the diploid female displayed heterozygosity at six of the 13 loci tested 

indicating that greater sampling effort to collect more diploid individuals could have 

allowed calculation of observed and expected heterozygosity, as has been reported for the 

sawfly Cephus cinctus (Hartel et al. 2003). 
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4.5 Conclusion 

 

This chapter compares the efficiency of the traditional enriched genomic library method 

and the relatively new Next-generation Sequencing method for the isolation of 

polymorphic microsatellite markers. This study has demonstrated that 454 

pyrosequencing is a fast, cost-effective and low labour method of microsatellite discovery 

in a non-model species. The transcriptome assembly presented here, in addition to its 

primary function as a marker resource, serves as the first large-scale sequencing project in 

any sawfly species and a stepping-stone to further molecular research in sawflies, for 

example in gene expression studies and comparative genomics. 

The 13 polymorphic microsatellite loci described in this chapter will now be used 

to determine the presence of diploid males in Dolerus aeneus (Chapter 5) and to 

determine the levels of genetic variation and the dynamics of gene flow in Dolerus aeneus 

populations (Chapter 6). 
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5. Detecting Complementary Sex Determination (CSD) in Dolerus 

aeneus 

 

5.1 Introduction 

 

5.1.1 Complementary Sex Determination 

 

Insects of the order Hymenoptera are characterised by haplodiploid sex determination 

where males are haploid and females are diploid (Section 1.2.3). Complementary Sex 

Determination (CSD), as described in Section 1.2.3.1, is one such mechanism by which 

haplodiploidy can be achieved and, under conditions that promote inbreeding, can lead to 

the production of diploid males (Heimpel and de Boer 2008).  Diploid males can be 

effectively sterile or exhibit reduced reproductive success (Armitage et al. 2010; Cook 

and Crozier 1995; Whiting 1943). The presence of diploid males can, therefore, have far-

reaching consequences at the population or species level including an increased extinction 

risk (Zayed and Packer 2005). Detecting the presence or confirming the absence of CSD 

in Dolerus aeneus is likely to be significant for predicting any threat to the survival of this 

species. 

 

5.1.2 Detecting diploid males 

 

If arrhenotokous haplodiploidy was the sex determination mechanism for a given species 

(within the Hymenoptera) then all individuals present should be either diploid females or 

haploid males (Heimpel and de Boer 2008). The presence of diploid males indicates that 

Complementary Sex Determination (CSD) operates within the species. 

A number of methods have been employed to detect diploid males in the 

Hymenoptera to determine whether CSD is in operation. In a search of the recent 

literature, two methods were found to be common practice for the detection of diploid 

males; flow cytometry and microsatellite analysis. Both of these methods can be applied 

to detect diploid males in sawfly populations.  
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5.1.2.1 Flow cytometry 

 

The term flow cytometry is derived from the measurement (metre) of single cells (cyto) as 

they flow within a liquid stream through a focused light source. Cells to be analysed are 

stained with different fluorescent dyes depending on the target cell structure.  

When fluorescently stained cells are passed through the light source, termed 

―events‖, they produce signals in the form of light scatter and emitted fluorescent light. 

These light signals (photons) are detected and converted to a voltage pulse which is 

proportional to the original number of photons. The voltages are amplified on a linear 

scale prior to passing through an analogue-to-digital converter which automatically 

assigns each signal a specific channel number (between 0 and 1023). This channel number 

is proportional to the original amount of fluorescence or light scattered. In the present 

study, nuclear DNA is the cellular component of interest and the amount of fluorescence 

emitted by a cell stained with a DNA-binding fluorescent dye is directly related to the 

nuclear DNA content. 

Dolerus aeneus females are diploid, irrespective of the presence or absence of 

CSD. Therefore, the nuclear DNA content of a D. aeneus female determined by flow 

cytometry can be used as a reference value for determining the relative nuclear DNA 

content of D. aeneus males. It should then be possible for the males to be designated as 

haploid or diploid. 

  

5.1.2.2 Microsatellite analysis 

 

Microsatellites, currently the most popular source of genetic marker (Sharma et al. 2007; 

Zane et al. 2002), are traditionally used for genetic diversity studies. However, 

microsatellite loci have also been used to detect diploid males in the Hymenoptera 

including the leaf-cutting ant Atta sexdens (Armitage et al. 2010) and the solitary wasp 

Euodynerus foraminatus (Stahlhut and Cowan 2004).  Male individuals are genotyped at a 

defined number of microsatellite loci (Chapter 4) and are classified as diploid if two 

alleles are detected at one or more microsatellite loci. 
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5.1.3 Chapter summary 

 

In this chapter two methods are tested to determine the level of ploidy in Dolerus aeneus 

males. Firstly, a direct measure of ploidy level is attempted using flow-cytometric 

analysis of nuclear DNA content. Secondly, diploidy is inferred from observations of 

heterozygosity at a number of microsatellite loci.  The relative success of each method is 

evaluated and the likelihood of Complementary Sex Determination operating in D. aeneus 

is discussed. 
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5.2 Materials and Methods 

 

5.2.1 Flow-cytometric analysis 

 

5.2.1.1 Dissection of sawfly brain tissue 

 

Sawfly heads were excised from the bodies with a sharp sterile scalpel and placed into a 

Petri dish half-filled with 1X PBS (137 mM NaCl, 1.5 mM KH2PO4, 8.1 mM 

Na2HPO4.12H2O, 2.7 mM KCl). The Petri dish was then placed under a dissection 

microscope set to approximately X40 magnification. The head of the sawfly was held in 

place with a dissection needle, and the exoskeleton removed from the ventral surface of 

the head using microdissection forceps. Exposed brain tissue was recognised with the aid 

of a 3-dimensional image of the honeybee brain (Plate 5.1) (Haddad et al. 2004). Brain 

structures were easily distinguished due to their smooth texture and white colouration. 

Brain tissue from each individual was excised with microdissection forceps, 

placed into a separate sterile 1.5 ml microcentrifuge tube and covered with a drop of 1X 

PBS to prevent desiccation.  

 

5.2.1.2 Preparation of a single-cell suspension 

 

Sawfly neuronal cells were prepared for flow-cytometric analysis working with two 

samples at a time (i.e. two microcentrifuge tubes each containing brain tissue from a 

different individual). This helped to keep to the strict timing required in this process to 

ensure that cells were not ruptured due to overexposure to enzymatic activity.   

The brain tissue was suspended in Drosophila Ringer‘s Solution (DRS) (100 µl) 

(130 mM NaCl, 5 mM KCl, 1.5 mM CaCl2, 2 mM Na2HPO4 supplemented with 0.25 

mg/ml Trypsin, 0.25 mg/ml Chymotrypsin and 0.1 mg/ml BSA) (Butcher 1998). Each 

sample was drawn up and down a 25 gauge needle (i.e. a needle with an inner diameter of 

0.26 mm) several times, occasionally using the tip of the needle to disperse any larger 

tissue clumps. At this stage and throughout the protocol a different needle was used for 

each sample.  
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Plate 5.1: Volume rendering of a 3-dimensional dataset from an NMR (nuclear magnetic resonance) 

image of the honeybee brain (Haddad et al. 2004). Surface reconstructions have been overlain onto the 

semi-transparent image to show the relative orientation of the brain structures in relation to the bee’s 

head capsule.   

 

 

 

 

 

 

 



 118 

Ice-cold 70% ethanol (500 µl) was added to each sample and the mixture was 

immediately drawn up and down the 25 gauge needle to prevent re-aggregation of the 

cells. The addition of the ethanol halts enzyme function, fixes the cells and permeabilises 

them. Cell suspensions could be stored at this point for several hours to facilitate the 

preparation of multiple samples in the following steps. 

Each mixture was then pipetted into a 12×75 mm polypropylene tube (BD 

Pharmingen, Oxford, UK) and wash buffer (1X PBS + 1% BSA) (500 µl) was added. The 

tubes were then centrifuged at 400 rcf for 5 minutes and the supernatants discarded. This 

wash step was repeated a second time and the supernatants again discarded. Stain solution 

(1X PBS + 1% BSA supplemented with 50µg/ml Propidium Iodide and 50 µg/ml RNase 

A) (250 µl) was then added to each tube and very slowly pipetted up and down to 

resuspend the cells. The cell suspensions were then incubated at room temperature for 20 

minutes in darkness to allow the RNase to act and the Propidium Iodide to bind to the 

DNA. 

 

5.2.1.3 Flow-cytometric analysis 

 

Single-cell suspensions were prepared, as described in Section 5.2.1.2, from the 

brain tissue of 150 Dolerus aeneus individuals sampled in 2010 (Section 3.2.2.3) and 

were analysed using a FACSCalibur flow cytometer (Becton, Dickinson and Company, 

Oxford, UK). Excitation of propidium iodide bound to DNA was achieved using a 488 nm 

laser light source and fluorescence was detected in the FL2 parameter (585 40 nm). 

CellQuest Pro software was used to acquire the data (Becton, Dickinson and Company, 

Oxford, UK) and FlowJo software (Tree Star, Inc., Oregon, USA) was used to interpret 

the data.  

Due to time constraints it was not possible to prepare and run all samples on the 

same day therefore it was necessary to prepare control samples to run at the beginning of 

each batch to calibrate the instrument. In this case the control samples were single-cell 

suspensions from the brain tissue of Dolerus aeneus females, which are known to be 

diploid. As is common practice when using flow cytometry to analyse DNA content, the 

2N peak (in diploid female controls) was set at channel 400 in the FL2-Area parameter to 

allow good resolution of 1N (haploid) peaks and doublet peaks. 
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For each sample, events representing connective tissue cells or ―debris‖ (i.e. 

material from lysed cells) were excluded from the final analysis by plotting forward 

scatter (FSC) against side scatter (SSC) for each event and gating to exclude these events 

(Figure 5.1). Forward scatter is light scattered in the direction of the laser beam and gives 

an indication of cell size. Side scatter is light scattered perpendicular to the laser beam and 

gives an indication of shape/texture. These parameters are commonly used in flow 

cytometry for the identification of cells and the exclusion of debris. 

―Doublet‖ events (cells joined together) were also excluded from the final analysis 

as they can contribute to inaccurate readings of DNA content i.e. a doublet of two 1N 

cells will have the same nuclear DNA content as a single 2N cell. Doublet events have a 

greater pulse width than a single cell event as doublets take longer to pass through the 

laser beam and can thus be detected and excluded from the analysis. The area (FL2-A) of 

the emitted fluorescent light pulse was plotted against the width (FL2-W) of the light 

pulse for each event and doublets were removed by gating to exclude them (Figure 5.2).  

After debris and doublet events had been excluded, the DNA content of the 

remaining events was plotted on a graph for each sample. The position of the 2N peak for 

the control sample (i.e. a diploid female) was recorded and all other samples processed in 

the batch were characterised by the position of their DNA peaks relative to that of the 

control (Figure 5.3). Haploid males will have a DNA content approximately half that of 

the control and a diploid male should have a DNA content more or less identical to the 

control. Samples were deemed to have ‗failed‘ when either no events were detected in the 

sample at all, or there was no discernable DNA peak after gating. 
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Figure 5.1: Example of a forward scatter (FSC) versus side scatter (SSC) plot for the exclusion of debris 

and connective tissue. The gate was set to ensure that the majority of DNA-containing material was 

located in the gated region. In this example 49% of events have been gated by the red line and are 

selected for further analysis. 

 

     

   

                         
 

 
Figure 5.2: Example of a plot used to identify single cells showing the area of the emitted light pulse 

(FL2-A) versus the width of the emitted light pulse (FL2-W). FL2-A represents a measure of the 

fluorescence intensity (i.e. DNA content) whereas FL2-W indicates the time taken for a particle to 

traverse the laser beam. Doublets and clumps of cells will have higher FL2-W than single cells and can 

therefore be excluded from further analysis. In this example 61.3% of events were selected within the red 

line for analysis of DNA content. 
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Figure 5.3: Left: relative number of cells plotted against DNA content (FL2-A) for a sample taken from a 

Dolerus aeneus female individual (diploid control). Right: the same data for a sample taken from a male 

Dolerus aeneus individual. The DNA content is approximately half that of the control sample and 

therefore the individual is haploid. 
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5.2.2 Microsatellite analysis 

 

5.2.2.1 Microsatellite genotyping 

 

Thirteen polymorphic microsatellite loci (Chapter 4; Table 4.6) isolated for use in Dolerus 

aeneus as described in Chapter 4 were assayed on 44 male Dolerus aeneus individuals 

sampled in 2009 and 130 D. aeneus males sampled in 2010. 

PCR was carried out in a total reaction volume of 10 µl containing approximately 

15 ng total genomic DNA from each individual with 1 µM fluorescently-labelled forward 

primer and 1 µM reverse primer under conditions described in Section 2.2.3. PCR 

reaction mixtures were subjected to an initial hold of 94 ºC for 5 minutes followed by 35 

cycles of 94 ºC for 30 seconds, 58 ºC for 30 seconds and 72 ºC for 1 minute, followed by 

a 72 ºC final extension and a 8 ºC hold. Fluorescent PCR products were then diluted 1 in 

10 and combined with 8.84 µl Hi-Di
TM

 Formamide and 0.16 µl GeneScan
TM

 500 Rox
TM

 

internal size standard (both Applied Biosystems Inc., Warrington, UK) and visualized 

using the ABI PRISM
®
 3730 Genetic Analyzer (48 capillary). Fragments were analysed 

using GeneMapper
®
 software (Applied Biosystems Inc., Warrington, UK). 

Individuals were designated diploid if two alleles were detected at one or more of 

the thirteen loci. Any detected diploid individuals were re-amplified and alleles scored 

using the same protocol along with a subset of haploid individuals to determine the 

genotyping error rate. 

 

5.2.2.2 Calculating the power of microsatellite markers for diploid male detection 

 

Non-detection of diploid males can occur if the subset of microsatellite markers used 

exhibit low allelic diversity (low heterozygosity). To calculate the power of the subset of 

microsatellite markers, namely the probability that a diploid individual will be 

heterozygous at one or more of the markers (Phet), the following equation was used (Souza 

et al 2010): 
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where L = the number of loci, 

 N = the number of alleles at a locus and, 

 x  = the frequency of allele i. 

 

Phet was calculated using both a diploid female dataset (all D. aeneus females sampled in 

2010) and a haploid male dataset (all D. aeneus haploid males sampled in 2010) 

independently. Null alleles were detected by MicroChecker within the diploid female 

dataset (Section 6.3.2) at loci (Saw454_4, Saw454_7, Saw454_11, Saw454_24, 

Saw454_31 and Saw454_41). Therefore when using the diploid female dataset the 

following equation, number four from Brookfield (1996), was used to calculate the null 

allele frequency (r) at each of these loci: 
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where  He  is the expected heterozygosity and, 

 Ho  is the observed heterozygosity. 
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5.3 Results 

 

5.3.1 Flow cytometric analysis 

 

A total of 150 single-cell suspensions prepared from Dolerus aeneus neuronal tissue were 

analysed by flow cytometry, comprising 130 males and 20 female controls. The mean 

number of events acquired per sample was 3,470 (range: 300–10,000 events). Of the 130 

male samples processed, 76 (58.5 %) were ―successfully analysed‖; cell populations of a 

statistically robust size were not achieved. However, the data for these individuals was 

examined in order to give a preliminary indication of ploidy. For these 76, the mean 

number of events analysed after gating was 507 (range: 69-1530 events). Seventy-four of 

the males were designated haploid and two were designated ―hyperhaploid‖ (DNA 

content higher than that of a haploid individual but lower than that of a diploid individual) 

(Table 5.1). No diploid males were detected. 

Notably, the control sample for batch 3 failed (Table 5.1) therefore it was not 

possible to determine the ploidy of the male samples in that batch by comparison with a 

diploid control in the normal fashion.  Two strategies were employed to overcome this 

issue. Firstly, flow cytometer instrument settings were recalled from the previous batch of 

analysis and these were used to analyse the samples. Although this is not ‗proper 

practice‘, due to slight variations in instrument sensitivity on a day-by-day basis, it did 

allow us to ensure similar signal intensity from the samples analysed in this batch 

compared to others. Secondly, it was possible to compare the 14 successfully analysed 

male samples from batch 3 with each other and it was clear that 13 of these samples were 

very similar to each other in terms of DNA content and one had higher DNA content. 

Given that the frequency of diploid males is likely to be very low (Heimpel and de Boer 

2008) it is more likely that these samples are all haploid rather than all diploid. Therefore, 

it was concluded that these 13 samples were haploid individuals and one was 

―hyperhaploid‖. 

 The two ―hyperhaploid‖ individuals exhibited nuclear DNA content higher than 

that of a haploid individual but lower than that of a diploid individual. Hyperhaploid 

individuals were detected in batches 1 and 3. Elevated DNA content of the hyperhaploid 
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individual in batch 1 was identified by comparison with diploid and haploid individuals 

(Figure 5.4) in a plot of the DNA content against relative number of cells.  

 As the diploid control for batch 3 failed, hyperhaploid individuals were detected 

by calculating the percentage increase in DNA content of each individual from the 

haploid level, rather than the decrease in DNA content from the diploid level. Haploid 

samples with more than 100 cells in the final DNA analysis were selected and the modal 

DNA content for each sample determined. (Samples with fewer than 100 cells were 

omitted in order to limit increased variance in the mode due to low numbers.) The mean 

of these modal values was then calculated (Table 5.2). The percentage increase in DNA 

content was determined by comparing the modal DNA content of the hyperhaploid 

sample with this calculated (haploid) mean. For the hyperhaploids from batch 1 and 3, the 

percentage increase in DNA content was 25.1 % and 23.0% respectively (Table 5.2).  
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Table 5.1: Summary of male samples of D. aeneus analysed by flow cytometry. 

 

Batch 

No. 

No. male samples 

tested 

No. successfully 

processed samples 

No. 

haploids 

No. 

hyperhaploids 

Valid 

control 

1 39 34 (87.2 %) 33 1 Y 

2 18 9 (50.0 %) 9 0 Y 

3 40 14 (35.0 %) 13 1 N 

4 33 19 (57.6 %) 19 0 Y 
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Figure 5.4: Nuclear DNA content of the hyperhaploid from batch 1 in comparison with that of a female 

control (diploid) and a haploid male from the same batch. The hyperhaploid male individual has DNA 

content approximately 25% higher than that of a haploid individual. 
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Table 5.2: The modal DNA contents of haploid male samples from batches 1 and 3 and the mean DNA 

content values compared to hyperhaploid male individuals. 

 

Batch 

Sample 

Index 

Number* 

Modal DNA 

content 

Mean of Modal DNA 

contents 

Modal DNA content of 

hyperhaploid** 

1 

9 185 

199 249 (25.1 %) 

12 197 

21 196 

22 195 

24 179 

39 196 

40 205 

43 167 

44 200 

45 189 

52 214 

53 200 

55 189 

60 195 

61 192 

64 208 

69 208 

70 215 

71 204 

73 198 

74 207 

79 207 

86 211 

87 199 

102 205 

107 213 

120 196 

121 208 

122 200 

124 200 

3 

170 276 

300 369 (23.0 %) 

173 278 

180 321 

190 323 

193 328 

201 303 

219 278 

220 314 

226 307 

227 285 

234 308 

241 338 

243 236 

* Only successfully processed haploid samples with more than 100 events in the final analysis are 

included. **Figures in parenthesis give the percentage increase in DNA content of the hyperhaploids 

relative to mean haploid DNA content. 
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5.3.2 Microsatellite analysis 

 

5.3.2.1 Microsatellite genotyping 

 

Of the 44 Dolerus aeneus males sampled in 2009 and assayed across 13 polymorphic 

microsatellite loci, five displayed heterozygosity at either locus 2 or 4 and were 

designated diploid (Table 5.3). Subsequently, of the 130 D. aeneus males, sampled in 

2010, five males displayed heterozygosity at either locus 1, 4 or 23 and were designated 

diploid (Table 5.3). The results from locus Saw454_2 were disregarded for the 2010 

individuals as it was not possible to score alleles unambiguously on this dataset. 

 Allele scoring across duplicate analyses of the same individual-locus combinations 

was identical therefore extremely low genotyping error rates were estimated. 

 

5.3.2.2 Calculating the power of microsatellite markers for diploid male detection 

 

The resolving power of the microsatellite markers (Phet) was calculated as 0.999, to three 

decimal places, when using either the haploid male dataset or the diploid female dataset 

(with corrections for null alleles). This translates to a 99.9% chance of detecting a diploid 

male by heterozygosity at one or more of the loci used for analysis. 

 

5.3.3 Combined results of flow cytometric and microsatellite analyses 

 

At the time of running the flow-cytometric analysis, the Dolerus aeneus individuals 

collected in 2009 were no longer available to be tested. Therefore, it was only possible to 

compare the two methods of ploidy analysis for the D. aeneus males collected in 2010. 

Five individuals were designated diploid by microsatellite analysis, of which two were 

designated haploid by the flow-cytometric analysis (Table 5.4). For the remaining three 

individuals, flow-cytometric analysis failed to give a result. 
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Table 5.3: Detection of diploid males at each microsatellite locus for 44 Dolerus aeneus males collected 

in 2009 and 130 D. aeneus males collected in 2010. 

 

  No. diploid males detected 

Locus 2009 2010 

Saw454_1  - 2 

Saw454_2 4 N/A 

Saw454_3  - - 

Saw454_4  1 2 

Saw454_7  -  - 

Saw454_11  -  - 

Saw454_14  -  - 

Saw454_16  -  - 

Saw454_19  -  - 

Saw454_23  -  1 

Saw454_24  -  - 

Saw454_31  -  - 

Saw454_41  -  - 

Total: 5 5 
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Table 5.4: Comparison of flow cytometry and microsatellite analysis in five Dolerus aeneus males, 

sampled in 2010, classified as diploid by microsatellite analysis. 

 

Sample 

Index No. Microsatellite Result Locus 

Flow Cytometry (FC) 

Result FC Batch No. 

79 Diploid Locus 4 Haploid 1 

86 Diploid Locus 4 Failed Sample 1 

140 Diploid Locus 1 Failed Sample 2 

153 Diploid Locus 1 Haploid 2 

164 Diploid Locus 23 Failed Sample 3 
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5.4 Discussion 

 

5.4.1 Flow cytometric analysis proved difficult with the Dolerus aeneus samples 

available 

 

Of the 130 single-cell suspensions prepared from Dolerus aeneus males, only 76 (58.5%) 

samples produced detectable DNA peaks (Section 5.3.1). The high failure rate was due to 

a combination of reasons including insufficient material, the presence of high levels of 

debris, and few intact cells/nuclei remaining in the sample. The success of the cell 

isolation procedure from brain tissue was probably compromised by prior fixation of 

samples in ethanol, necessitated by the Malaise trap sampling method (Section 2.1.1). 

Disaggregation of cells from fixed tissue requires greater mechanical force compared to 

fresh tissue, resulting in increased cellular damage. In addition, ethanol-fixed tissue will 

not necessarily show the same susceptibility to enzymatic cleavage as unfixed tissue, and 

it is possible that the digestion buffer, which was adapted from a study using flow 

cytometric analysis to determine the ploidy level of Diadegma chrysostictos 

(Hymenoptera: Ichneumonoidea) individuals (Butcher et al. 2000), was unsuitable for use 

on fixed tissue. 

 Furthermore, the tissue samples in the present study were very small and the 

number of cells present in the suspensions was correspondingly low. Brain tissue, 

although present in small amounts, was considered appropriate for this study as the 

likelihood of contaminating bacterial cells in neuronal tissue is low (Hubbard pers. 

comm.). Also, the vast majority of nerve cells should be permanently arrested in the G0 

phase of the cell cycle giving a more accurate estimation of ploidy level than a tissue 

sample with a higher proportion of mitotic cells. The protocol for flow-cytometric 

analysis used here was optimised initially using a different species of sawfly, 

Tenthredopsis nassata, which is marginally larger than Dolerus aeneus with a 

correspondingly larger brain. Sample failure rate with the test species was much lower 

(21.4 %) compared to with the failure rate for the D. aeneus samples analysed in the 

present study (41.5 %; (Section 5.3.1). 

Flow-cytometric analyses would typically aim to acquire a minimum of 10,000 

events per sample (considered a statistically robust population; Clarke pers. comm.).  The 
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mean number of events acquired per sample in the present study was 3,470 (Section 

5.3.1), and the number of events included in the final analysis for the successfully 

processed samples was even smaller (mean of 507). Therefore, the flow cytometry results 

presented in this chapter should be viewed with caution. Inevitably cells are lost during 

preparation and some data points are subsequently gated to exclude polyploid cells and 

debris. Higher densities of cells in the cell suspension might have been achieved with 

larger tissue samples from each individual and could have decreased the failure rate.  

The flow cytometry approach detected two hyperhaploid individuals with DNA 

contents 25.1 % and 23.0 % higher than that of a haploid individual (Section 5.3.1). 

Several explanations are possible for the presence of these hyperhaploid individuals. 

Firstly, the ratio of DNA dye to cellular DNA might have been higher in these samples, 

which would result in an increased labelling density of the DNA. This is highly unlikely 

as saturating levels of propidium iodide are used in all preparations and therefore the 

dye:DNA ratio should be consistent over a wide range of cell densities. Secondly, the 

hyperhaploids may have an increased chromosome number relative to their counterparts 

due to some genetic condition. This possibility cannot be confirmed or discounted as 

information relating to the genome size of Dolerus aeneus and genetic disorders in the 

species is not available. Thirdly, these individuals may have been misidentified and 

belong to a different species with a larger genome size.  This, unfortunately, cannot be 

checked because dissection of the brain tissue destroys head capsule morphology required 

for species identification. 

 

5.4.2 Microsatellite analysis highlighted potential diploid males in Dolerus aeneus 

 

Forty-four Dolerus aeneus males sampled in 2009 and 130 D. aeneus males sampled in 

2010 were successfully genotyped across 13 microsatellite loci (Section 5.3.2). Five of the 

2009 males were designated as potential diploids along with five of the 2010 males.  

However, none of the ten male individuals designated diploid displayed 

heterozygosity at more than one locus. Whereas, all the female individuals (2009 and 

2010 samples combined) sampled were heterozygous at an average of 4.51 loci (min = 1, 

max = 8) (Appendix 1) which is a possible indication that the heterozygosity in these 
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males may be attributable to error. However, the genotyping error rates were estimated to 

be extremely low (Section 5.3.2.1).  

It is possible that these males are heterozygous at only one locus purely by chance 

but it is also possible that the microsatellite markers which detected heterozygosity in the 

male samples (Saw454_1, Saw4542_, Saw454_4 and Saw454_23) are part of a gene 

family. Therefore, in these male individuals one allele could be PCR-amplified from one 

locus and the second allele from another locus, meaning that the individual is in fact 

haploid though appearing diploid (heterozygous at one microsatellite locus) in the 

GeneMapper
®
 output. In order to determine if this is the case, it would be necessary to 

clone and sequence the PCR products from the individual-locus combinations in question 

along with a subset of controls. This check, although valuable given the low number of 

heterozygous loci in the potential diploid males, would present an extra expense. In 

addition, if the allele scoring at these loci is questionable in the ―diploid‖ males for the 

reasons stated, this would mean questioning these loci across all samples genotyped and 

indeed, all studies in the literature using microsatellite markers. 

 

5.4.3 A comparison of microsatellite and flow cytometric analyses as methods of 

determining the ploidy of male sawflies 

 

Flow-cytometric analysis of ploidy in Dolerus aeneus males was unreliable with the 

samples available in the present study. If flow cytometry could be performed on fresh 

samples (i.e. not ethanol-fixed prior to preparation) and a variety of different enzymes 

tested for breaking up the tissue, it is likely that the quality of the resulting single cell 

suspensions could be improved and that flow cytometry would be more successful. 

 Good quality genotyping data was obtained from microsatellite analysis quickly 

and with relative ease in comparison with the flow cytometry approach. However, the 

ploidy of the detected ―diploid‖ males is questionable (Section 5.4.2). Without further 

investigation it is not possible to confirm whether or not these individuals are in fact 

diploid males. 

 

 

 



 135 

5.4.4 The presence of Complementary Sex Determination (CSD) in Dolerus aeneus 

 

Inferring the operation of Complementary Sex Determination (CSD) in a haplodiploid 

species by confirming the presence of diploid males has been commonplace in the 

literature (van Wilgenburg et al. 2006) The potential presence of diploid males in D. 

aeneus indicates that CSD could be operative in this species although further research to 

confirm the results of the microsatellite analysis would be required to confirm this. 

However, if these diploid males were confirmed as a true result, i.e. by cloning 

and sequencing of suspect PCR products, it should be noted that diploid males have been 

found in species where CSD has been shown to be absent and are as a result of mutation 

or the hybridisation of two species (van Wilgenburg et al. 2006). For example, in the 

parasitoid Nasonia vitripennis a mutant strain exists where females are triploid. Unmated 

triploid females can lay both haploid and diploid eggs that typically develop into viable, 

fertile males with the diploid males producing diploid sperm (Beukeboom and Kamping 

2006). Also, Molbo et al. (2004) recorded diploid males produced as a result of matings 

between two subspecies of the fig wasp Pegoscapus hoffmeyeri. Therefore, caution is 

required when directly inferring the operation of CSD from the presence of diploid males 

and these examples illustrate the need to confirm CSD via other means such as breeding 

experiments and/or molecular techniques (van Wilgenburg et al. 2006). 

  

5.4.5 Diploid male production rate in Dolerus aeneus 

 

Once diploid males have been confirmed in a species (and CSD confirmed by additional 

means), the next logical step is to determine the frequency of diploid male production in 

native populations in order to help predict how CSD will affect the genetic diversity and 

population dynamics in the future.  

 Assuming for illustrative purposes that the ―diploid‖ males detected in the present 

study are true diploids; the diploid male production rate (DMR: the percentage of diploid 

individuals that are male) in the Scottish Dolerus aeneus population was 22.72 % (2009) 

and 15.15 % (2010) respectively. These figures are considerably higher than that recorded 

by Fujiwara et al. (2004) in their study of the turnip sawfly Athalia rosae (0.08 %) where 

1306 diploid individuals were sampled from the field. However, without knowledge of a 
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range of other factors affecting the DMR in either species (i.e. effective population size, 

dispersal rate, sex allele diversity, viability of diploid males etc.) it is difficult to say 

whether a relatively high DMR observed in D. aeneus could be due to increased incidence 

of inbreeding relative to that in A. rosae. 

 In future studies, it would be beneficial to use an optimised flow cytometry 

approach in combination with microsatellite analysis to detect diploid males. Thereby 

eliminating the question of whether males that are heterozygous at fewer loci than females 

are in fact diploid. A combined analysis with an optimised flow cytometry componentt, in 

addition to more information relating to the characteristics of D. aeneus populations, 

would permit data such as that gathered in this study to confirm the presence of CSD and 

to estimate the DMR. 
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5.5 Conclusion 

 

This chapter compares the success of flow cytometric analysis and microsatellite analysis 

for the detection of diploid males in Dolerus aeneus and therefore the potential presence 

of Complementary Sex Determination (CSD). This study has highlighted the potential 

presence of diploid males in D. aeneus and the requirement for a highly-optimised 

protocol that combines both microsatellite analysis and flow cytometry.  

Flow cytometric analysis failed to detect diploid males in this study, but the 

method could be improved by using fresh (non-ethanol-fixed) samples for analysis and by 

optimising the reagents involved in the preparation of single cell suspensions. An 

optimised flow cytometry method, used in combination with SSRs in future studies, 

would eliminate any questionability surrounding the ploidy of individuals which exhibit 

heterozygosity at a single microsatellite locus.  This would enable accurate data to be 

collected to confirm or deny the presence of CSD and on the frequency of diploid male 

production to parameterise models of sawfly population dynamics. 
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6. Population structure and genetic diversity in the farmland sawfly 

Dolerus aeneus (Hymenoptera; Symphyta) 

 

6.1 Introduction 

 

6.1.1 Sawfly population decline 

 

A long-term monitoring study initiated in 1970 by the Game and Wildlife Conservation 

Trust highlighted that populations of farmland sawflies are in decline. Specifically, over 

the period 1970 to 1990 sawfly numbers decreased at a rate of 4.4 % per year (Aebischer 

1991). These declines correlate significantly with agricultural intensification procedures 

such as a decline in the practice of undersowing (temporary grassland within a mixed 

arable/ grass ley rotation) and the increased use of agrochemicals in the arable landscape 

(Aebischer 1991).  

Although it is known that populations of British farmland sawflies are decreasing 

in size, and reasons to explain this have been put forward, there have been no previous 

studies that examine the genetic factors involved in sawfly population decline. In general, 

populations of any organism are rarely driven to extinction before genetic factors have 

time to take effect (Frankham 2005). Therefore, if the genetic factors involved in sawfly 

populations are ignored it is possible that their extinction risk could be underestimated 

and inappropriate recovery strategies applied. 

 

6.1.2 The genetic effects on sawfly populations 

 

The processes contributing to agricultural intensification are likely to lead to 

fragmentation of suitable sawfly habitat. Given that sawflies are thought to disperse 

poorly (Benson 1950), it is possible that their populations have become isolated as their 

habitat fragments. Small, isolated populations can be subject to increased levels of 

inbreeding and genetic drift (stochastic loss of alleles). Both of these processes lead to a 

loss of genetic diversity which results in reduced evolutionary potential and a heightened 

extinction risk (Spielman et al. 2004).  
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It is important to determine the extent to which sawfly populations have become 

fragmented in order to identify threatened populations. Fragmentation of habitat can 

induce higher levels of population substructuring in threatened species via reduced 

migration and gene flow between habitat fragments, a major cause of inbreeding and a 

potential pathway to extinction for an isolated population (Höglund 2009). 

 

6.1.3 Population genetic analyses and conservation 

 

Population genetic analyses such as estimates of allelic richness and heterozygosity levels 

(a reduction in heterozygosity is an indicator of the occurrence of inbreeding) at certain 

genetic loci can help to identify threatened populations (Höglund 2009). Principally it is 

the allelic diversity at loci with functional importance that will affect the ability of a 

population to respond to selection. However, the information obtained from molecular 

markers such as microsatellites (Chapter 4) can give an estimation of the overall levels of 

diversity and gene flow currently present within and between populations (Höglund 

2009). Researchers have used microsatellite markers with success to determine the 

extinction risk of other hymenopteran insects such as the solitary bees Colletes floralis 

(Davis et al. 2010) and Andrena fuscipes (Exeler et al. 2010).  

 

6.1.4 Chapter summary 

 

This chapter represents the first genetic analysis of farmland sawflies in Britain, with the 

intention of using the data to promote their conservation. The levels of genetic diversity 

within and between populations of the graminivorous sawfly Dolerus aeneus are 

quantified and levels of genetic differentiation between populations are assessed. These 

analyses are carried out using a set of 13 polymorphic microsatellite markers developed 

specifically for use in Dolerus aeneus (Chapter 4). These studies will help to determine 

the extinction risk of Dolerus aeneus populations. 
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6.2 Materials and Methods 

 

6.2.1 Sampling of Dolerus aeneus 

 

Sawflies were sampled using Malaise traps (Section 2.1.1) in two consecutive years 

following the sampling programmes described in Section 3.2.2.2 (2009) and Section 

3.2.2.3 (2010). Dolerus aeneus individuals were identified from the weekly Malaise trap 

collections as described in Section 2.1.2. The sex of each individual was determined as 

described in Section 2.1.3 and the ploidy of the male individuals was examined via flow 

cytometry and/or microsatellite analysis (Chapter 5).  

 Individuals sampled with different traps but from the same locality (farm) were 

considered as representing a single population. However, individuals sampled in 2009 

were not combined with those sampled in 2010. In 2009, three Scottish populations were 

sampled: Mains of Glamis, The James Hutton Institute (TJHI) and New Gilston. In 2010, 

the same three Scottish populations were sampled and, in addition, three English 

populations: Claxby St Andrew (Lincolnshire), Harper Adams (Shropshire) and Down 

Farm (Sussex). 

 The total number of Dolerus aeneus individuals sampled from each population, 

the date of collection (the day the collection bottle was taken from the Malaise trap) and 

the sex and ploidy of each individual was recorded. 

 

6.2.2 Microsatellite genotyping 

 

Thirteen polymorphic microsatellite loci isolated for use in Dolerus aeneus 

(Chapter 4) were assayed on all individuals sampled in 2009 and 2010. PCR was carried 

out in a total reaction volume of 10 µl containing approximately 15 ng total genomic 

DNA from each individual with 1 µM fluorescently-labelled forward primer and 1 µM 

reverse primer under conditions described in Section 2.2.3. PCR reaction mixtures were 

subjected to an initial hold of 94 ºC for 5 minutes followed by 35 cycles of 94 ºC for 30 

seconds, 58 ºC for 30 seconds and 72 ºC for 1 minute, followed by a 72 ºC final extension 

for 5 minutes and a 8 ºC hold. Fluorescent PCR products were then diluted 1 in 10 and 

combined with 8.84 µl Hi-Di
TM

 Formamide and 0.16 µl GeneScan
TM

 500 Rox
TM

 internal 
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size standard (both Applied Biosystems Inc., Warrington, UK) and visualized using the 

ABI PRISM
®
 3730 Genetic Analyzer (48 capillary). Fragments were analysed using 

GeneMapper
®
 software (Applied Biosystems Inc., Warrington, UK).  

The presence or absence of null alleles (alleles that fail to amplify by PCR) was 

investigated using the software MicroChecker 2.2.3 (Van Oosterhout et al. 2004). 

MicroChecker accepts datasets composed of diploid individuals and therefore a dataset 

comprising the allelic composition of all of the diploid females sampled in 2010 was used. 

 

6.2.3 Genetic diversity analysis 

 

6.2.3.1 Hardy-Weinberg Equilibrium and genotypic linkage disequilibrium 

 

Tests for genotypic linkage disequilibrium (non-random association of alleles) between 

pairs of loci were carried out in FSTAT v. 2.9.3.2 (Goudet 1995). This was accomplished 

using a dataset detailing the allelic composition at 12 microsatellite loci of all haploid 

males sampled in Scotland in 2010 (the largest sample of individuals with the same ploidy 

level). Departure from Hardy-Weinberg Equilibrium (HWE) at 12 microsatellite loci 

within each of the Scottish populations was tested for in both FSTAT v. 2.9.3.2 (Goudet 

1995) and GENALEX v. 6.4.1 (Peakall and Smouse 2006). The former software package 

uses a randomisation technique whereas the latter uses a Chi square method. Analysis was 

performed using a dataset composed of all the known diploid individuals (females + 

potential diploid males) sampled in 2010 (the largest sample of diploid individuals). 

 

6.2.3.2 Allelic richness 

 

Allelic richness (the number of alleles) at each of 12 microsatellite loci was calculated for 

the three Scottish populations in both sampling years using the haploid male individuals 

(the largest sample of individuals with the same ploidy level). Allele counts were made 

using Microsatellite Toolkit (Park 2001) then allelic richness was quantified by 

rarefaction using the online rarefaction calculator provided by the University of Alberta 

(http://www.biology.ualberta.ca/jbrzusto/rarefact.php). Rarefaction on the 2009 and 2010 

datasets was based on a sample size of five and 17 respectively. The sample size for the 

http://www.biology.ualberta.ca/jbrzusto/rarefact.php
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2010 dataset is derived simply from the sample size from the smallest population in that 

year (New Gilston). The sample size for the 2009 dataset is the sample size for the 

smallest population minus one (only five individuals could be scored at all microsatellite 

loci). 

 Allelic richness was not quantified using any of the diploid datasets (females and 

females + potential diploid males) due to the small sample sizes of these individuals in 

both sampling years. The use of rarefaction on the diploid datasets would have meant 

working with the sample size of the smallest population which would be only one or two 

individuals. 

 To test for significant difference in mean allelic richness over all loci between 

populations SigmaStat software (v 3.1.0) (Systat Software Inc., London, UK) was used to 

run an Analysis of Variance (ANOVA).  

 

6.2.3.3 Comparisons of allele frequencies within and between populations 

 

For the three most polymorphic loci (Saw454_1, Saw454_4 and Saw454_24) allele 

frequencies were plotted using the haploid male dataset (the largest sample of individuals 

with the same ploidy level) for the three Scottish populations. Data from different 

sampling years was analysed separately. In addition, the allele frequencies of the male 

haploid individuals and the known diploid individuals (females + potential diploid males) 

were compared within each of the Scottish populations at the same three loci. Again, data 

from different sampling years was analysed separately. 

 

6.2.3.4 Observed and expected heterozygosity 

 

Levels of observed and expected heterozygosity within sampled populations and for each 

of twelve microsatellite loci were calculated using Microsatellite Toolkit (Park 2011). 

Observed heterozygosity (HO) was calculated by dividing the number of observed 

heterozygotes at each locus by the number of individuals in the population. The mean 

observed heterozygosity over all loci was then calculated. The mean expected 

heterozygosity (HE) or gene diversity (the probability that any two alleles drawn from a 
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population are different to each other for a given locus) for each locus was calculated 

according to Nei‘s (1987) unbiased gene diversity: 

 

HE = 
L

pi
L

1

2
1

 

where L = the number of loci 

 pi = the frequency of the ith allele at a given locus. 

 

The mean expected heterozygosity over all loci was then calculated. 

Expected heterozygosity was calculated for each of the three Scottish populations 

for both sampling years using datasets composed of all of the haploid individuals 

sampled. Subsequently, using a diploid dataset (females + potential diploid males), both 

expected and observed heterozygosity were calculated for each of the three Scottish 

populations for sampling year 2010. However, when calculating both observed and 

expected heterozygosity from the diploid individuals (females + potential diploid males) 

sampled in 2009, only the New Gilston population was used. This was due to the small 

sample size of diploids at Mains of Glamis (four individuals) and The James Hutton 

Institute (three individuals) in this sampling year. 

 

6.2.3.5 Level of inbreeding 

 

The inbreeding coefficient (FIS; the reduction in heterozygosity of the individuals relative 

to the subpopulation to which they belong, or, in biological terms: the fractional reduction 

in heterozygosity of a sub-population relative to a random-mating subpopulation with the 

same allele frequencies) was calculated using FSTAT v 2.9.3.2 (Goudet 1995). FIS was 

quantified using two datasets, one consisting of only the female individuals and a second 

consisting of females and potential diploid males, respectively (diploid individuals are 

necessary for computation of heterozygosity levels) for the New Gilston population in 

each sampling year for each of the 12 microsatellite loci. FIS was computed for only the 

New Gilston population as the number of diploid individuals sampled from other 

populations was very low. 
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The significance of the FIS values was determined using a randomisation-based 

test in FSTAT v 2.9.3.2 (Goudet 1995). 

 

6.2.4 Analysis of population structure 

 

6.2.4.1 Principal Coordinate Analysis 

 

Principal Coordinate Analysis (PCA) was used for a preliminary assessment of genetic 

relatedness among populations of Dolerus aeneus. Briefly, PCA is a method of reducing 

the dimensionality of a dataset consisting of a large number of variables whilst retaining 

as much of the variation present in the dataset as possible. This is achieved by 

transforming the dataset to a smaller number of variables or ―co-ordinates‖. As 

consecutive coordinates (axes of variation) are extracted they account for less and less of 

the variability in the dataset such that most of the variation present in all of the original 

variables is represented by the first few coordinates. With the dataset simplified in this 

way, plotting the first two principal coordinates will give the best possible 2D graphical 

representation of the similarities and differences between data points as possible (Peakall 

and Smouse 2010).  

In this case the datasets are composed of the genotypes of individual Dolerus 

aeneus sawflies at 12 microsatellite loci. PCA was used to look for groups of genetically 

related individuals using three datasets (composed of haploid male individuals, diploid 

female individuals and females + potential diploid male individuals) respectively and to 

determine whether any groups of related individuals were sampled from the same 

population. Samples collected from Mains of Glamis, The James Hutton Institute and 

New Gilston in 2009 and 2010 were analysed. 

Genetic relatedness matrices were generated and PCA performed on these, 

whereby 3 coordinates were extracted, using GENALEX v. 6.4.1 (Peakall and Smouse 

2006). The extraction of 3 components was deemed sufficient after a pilot study revealed 

that the majority of the variation in the dataset was accounted for at this level. 
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6.2.4.2 STRUCTURE Analysis 

 

To assess more thoroughly the patterns of differentiation between the Dolerus aeneus 

populations sampled in Scotland (Mains of Glamis, The James Hutton Institute and New 

Gilston) in 2009 and 2010 respectively, a Bayesian model-based cluster analysis was 

carried out using the STRUCTURE v 2.3.1 software package (Pritchard et al. 2000). 

STRUCTURE assumes that all of the genetic material from the sampled individuals 

comes from one or more (unobserved) user-defined populations (K) each of which is 

characterised by a set of allele frequencies. These allele frequencies and the population of 

origin of each allele copy of each individual are assumed to be unknown and are 

estimated from the dataset. To do this, the software uses a Markov Chain Monte Carlo 

(MCMC) approach.  

The MCMC begins with an arbitrary configuration of parameter values (allele 

frequencies in each of K populations and the population of origin of each allele copy of 

each individual) and iteratively updates the configuration in steps conditional on the 

dataset and the current configuration of parameters until the most likely configuration is 

determined (Falush et al. 2007). For each MCMC step the likelihood of the current 

configuration of assignment of individuals to populations (given the dataset) is quantified. 

The number of MCMC steps used must be sufficient to allow the likelihood values to 

stabilise. For each MCMC run, for a given value of K, STRUCTURE calculates the 

posterior probability of the data (P(D)) and displays ln P(D). 

The end result of the STRUCTURE analysis is that each individual is given a 

population membership coefficient profile (Q) which can be visualised graphically and 

also the ―true‖ value of K is chosen. Traditionally, the approach for selecting the true K 

for the dataset in question is to adopt the value of K for which ln P(D) is maximal. More 

commonly, K is selected by choosing the lowest value of K for which the ln P(D) values 

calculated have begun to ―more or less‖ plateau (Pritchard et al. 2010; Falush et al. 2007). 

However, not all datasets behave in such a manner that detecting K in this fashion will be 

straightforward (MacKenzie pers. comm.) and the authors of the programme (Pritchard et 

al. 2010) suggest that the more formal criteria for estimating the true K described by 

Evanno et al. (2005) can be used. 
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Evanno et al. (2005) suggest that, to select the true K, it may be more accurate to 

use their ad hoc statistic (ΔK). The rationale behind using this statistic is that the true K 

may not be obvious in some datasets simply by looking at the distribution of ln P(D) 

values (denoted L(K) by Evanno et al. 2005) whereas in calculating ΔK the true K 

becomes more apparent. In the first instance, the second order rate of change (L′′(K)) of 

L(K) with respect to K is quantified for all values of K greater than 1. The mean (over the 

number of MCMC runs per K) of the absolute values of L′′(K) is divided by the standard 

deviation of L(K) for all values of K greater than 1 giving the ΔK statistics. The modal 

value of the distribution of ΔK is the true K as defined by Evanno et al. (2005). 

STRUCTURE Analysis was carried out using 100,000 ―burn-in‖ steps and a 

further 150,000 MCMC steps (sufficient to ensure the conversion of likelihood values to 

equilibrium). No a priori assignment of individuals to populations was given. Analysis 

was carried out on only the haploid individuals sampled from Mains of Glamis, The 

James Hutton Institute and New Gilston in 2010 therefore ploidy was set to 1. The 

number of assumed populations (K) was 1 to 10 and 10 runs of the MCMC algorithm 

were carried out for each value of K. The ―admixture‖ model was used to run the analysis 

as opposed to the ―no admixture‖ model. The admixture model allows individuals to have 

mixed ancestry, a more flexible model for dealing with natural populations (Pritchard et 

al. 2000b). All other user-definable parameters were kept at the default settings. ΔK 

according to the Evanno et al. (2005) method was quantified using the online software 

Structure Harvester (Earl 2011). 

 

6.2.4.3 Pairwise FST and isolation by distance 

 

The fixation index FST (Wright 1921), which is based on the Infinite Alleles Model (IAM) 

of microsatellite mutation, was calculated using FSTAT v 2.9.3.2 (Goudet 1995) for all 

possible pairs of the three Scottish populations using all diploid individuals (females + 

potential diploid males) sampled in 2010 (the largest diploid dataset). This analysis allows 

levels of genetic divergence between pairs of populations to be quantified. FST has a 

theoretical minimum of 0 (indicating no genetic divergence) and a theoretical maximum 

of 1 (indicating fixation of alternative alleles in different populations) (Hartl and Clark 

1997).  
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Levels of divergence among populations as measured by FST were compared with 

the geographic distance between populations to determine whether genetic divergence 

reflected isolation by distance. Geographic distance in km was calculated using the grid 

references for the sampling localities (Chapter 3). The appropriate statistical test to 

examine the relationship between genetic divergence and geographic distance is a Mantel 

test. However, a pilot study using both FSTAT (Goudet 2005) and GenStat 14
th

 Edition 

(VSN International; Hemel Hempstead, UK) revealed that the number of populations used 

in the current study was too low to permit a Mantel test. Therefore, to give a preliminary 

indication of any isolation by distance effect, the Pearson product-moment correlation 

coefficient was used. 
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6.3 Results 

 

6.3.1 Sampling of Dolerus aeneus 

 

In 2009, a total of 61 Dolerus aeneus individuals were sampled across three Scottish 

populations (Table 6.1(A)). In 2010, a total of 158 D. aeneus individuals were sampled 

across 6 populations with 147 of those from the three Scottish populations and the 

remaining 11 individuals from the English populations (Table 6.1(B)). In each sampling 

year each population was dominated by haploid males apart from at New Gilston in 2010 

where equal numbers of haploid males and (diploid) females were caught and at Down 

Farm in 2010 where higher numbers of females than males were caught (Table 6.1(B)). 

 In 2009, collections of both males and females occurred over approximately the 

same time period at Mains of Glamis and The James Hutton Institute (between 26
th

 May 

and 30
th

 June) whereas at the New Gilston site the season extended from 28
th

 April to 11
th

 

August (Figure 6.1). Although sampling began earlier in 2010, the extension of the season 

was observed again at the New Gilston site with samples collected from 21
st
 April to 28

th
 

July (Figure 6.2).  

At Claxby St Andrew in 2010, one haploid male was caught in mid-May and a 

second at the end of May. No females or potential diploid males were caught. At Harper 

Adams in the same year, a total of four haploid male individuals were caught on the 21
st
 

May. At Down Farm female individuals were caught from the beginning of April through 

to the beginning of May and one haploid male was sampled in mid-May. 
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Table 6.1: The number of Dolerus aeneus individuals sampled per population in 2009 (A) and 2010 (B). 

The portion of the total no. of individuals sampled per population composed of females, haploid males 

and potential diploid males respectively is shown. 

 

(A) 

 

 

Mains of 

Glamis TJHI New Gilston Totals 

No. females 2 3 12 17 

No. haploid males 6 12 21 39 

No. potential diploid males 2 0 3 5 

Total no. individuals 10 15 36 61 

 

(B) 

 

 

Mains of 

Glamis TJHI 

New 

Gilston Claxby 

Harper 

Adams 

Down 

Farm Totals 

No. females 1 6 17 0 0 4 28 

No. haploid males 58 43 17 4 2 1 125 

No. potential diploid males 4 1 0 0 0 0 5 

Total no. individuals 63 50 34 4 2 5 158 

 

 

 

 

 

 



 150 

Mains of Glamis 

0

0.5

1

1.5

2

2.5

3

3.5

18-Apr 28-Apr 08-May 18-May 28-May 07-Jun 17-Jun 27-Jun 07-Jul 17-Jul 27-Jul 06-Aug

Date of collection

N
o

. 
o

f 
in

d
iv

id
u

a
ls

The James Hutton Institute

0

1

2

3

4

5

6

18-Apr 28-Apr 08-May 18-May 28-May 07-Jun 17-Jun 27-Jun 07-Jul 17-Jul 27-Jul 06-Aug

Date of collection

N
o

. 
o

f 
in

d
iv

id
u

a
ls

 

New Gilston

0

1

2

3

4

5

6

7

8

9

10

18-Apr 28-Apr 08-May 18-May 28-May 07-Jun 17-Jun 27-Jun 07-Jul 17-Jul 27-Jul 06-Aug

Date of collection

N
o

. 
o

f 
in

d
iv

id
u

a
ls

 

Figure 6.1: The collection dates of D. aeneus males (blue bars), females (red bars) and potential diploid 

males (green bars) sampled from Mains of Glamis, The James Hutton Institute and New Gilston in 2009. 
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Figure 6.2: The collection dates of D. aeneus males (blue bars), females (red bars) and potential diploid 

males (green bars) sampled from Mains of Glamis, The James Hutton Institute and New Gilston in 2010. 
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6.3.2 Microsatellite genotyping 

 

In total, 61 Dolerus aeneus individuals sampled in 2009 and 158 D. aeneus individuals 

sampled in 2010 were genotyped at 13 microsatellite loci. Of the 61 individuals sampled 

in 2009, 16 (19.75%) could not be genotyped at every locus after multiple attempts. For 

these 16 individuals data was missing for between 1 and 4 loci (mean: 1.44). Similarly, of 

the 158 individuals sampled in 2010, two (1.27%) could not be genotyped at all loci after 

multiple attempts with data missing for only one locus per individual (Appendix 1). The 

results from locus Saw454_2 were not possible to score unambiguously for individuals 

sampled in 2010. Therefore, the data from this locus was not used in any subsequent 

population genetic analysis. 

 Missing data suggests the presence of null alleles and although MicroChecker 

detected the presence of null alleles at six loci (Saw454_4, Saw454_7, Saw454_11, 

Saw454_24, Saw454_31 and Saw454_41), there were no missing values (i.e. an 

individual with no detectable microsatellite alleles) in the dataset that was used (all D. 

aeneus females sampled in 2010; Appendix 1). In addition, only two haploid individuals 

from a total of 125 sampled in 2010 could not be genotyped at all loci and data was 

missing for only one locus per individual. Based on this, and the fact that it is unlikely 

that null alleles have major impacts on estimations of genetic differentiation and the 

outcome of assignment testing (e.g. cluster analyses) (Carlsson 2008), all 12 tested loci 

were included in subsequent analyses without any modification to allele frequencies. 

 The number of alleles per locus ranged from one to nine for the 2009 dataset and 

from three to 17 for the 2010 dataset. Also, the polymorphism information content (PIC) 

of each locus, as a general rule, increased between 2009 and 2010 with the exception of 

locus Saw454_11 where the PIC value decreased from 0.755 in 2009 to 0.738 in 2010 

(Table 6.2). 

 Notably, the Down Farm samples exhibited population-specific alleles at seven 

out of the 12 microsatellite loci scored for the 2010 dataset. The percentage of population 

specific alleles ranged from 40 to 100 (mean = 71.43%) per locus. No population-specific 

alleles were recorded for either the Harper Adams or Claxby St Andrew populations. Also 

of interest, three of the four female individuals (index no.‘s: 725, 727 and 755) sampled 

from Down Farm had identical allelic composition across all 12 microsatellite loci. The 
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remaining female individual sampled from the same location (index no.: 723) had 

identical allelic composition to the three aforementioned individuals at all loci apart from 

locus Saw454_14 (Appendix 1). 

 It should be noted that, as discussed in Chapter 5, male individuals which are 

heterozygous at only one locus may or may not in fact be diploid males. Given that this 

can neither be proven nor disproven without further research, these individuals are 

considered ―potential diploid males‖ and where they are used in population genetic 

analysis throughout this chapter is clearly indicated. 
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Table 6.2: No. of alleles per locus and allele size ranges for 13 microsatellite loci assayed on Dolerus 

aeneus individuals sampled in 2009 (n = 61)  and 2010 (n = 158)  respectively.  

 

Locus 

No. of 

alleles 

(2009) 

Allele size 

range in bp 

(2009) 

PIC 

values 

No. of 

alleles 

(2010) 

Allele size 

range in bp 

(2010) 

PIC 

values 

Saw454_1 13 195-222 0.714 17 195-229 0.807 

Saw454_2 5 203-228 0.501 N/A N/A N/A 

Saw454_3 3 209-217 0.191 10 209-231 0.507 

Saw454_4 14 231-256 0.825 15 231-251 0.863 

Saw454_7 2 209-226 0.033 4 209-228 0.061 

Saw454_11 8 234-242 0.755 9 234-242 0.738 

Saw454_14 1 198 0.000 3 196-228 0.043 

Saw454_16 6 188-202 0.466 9 188-205 0.533 

Saw454_19 6 213-221 0.505 6 213-221 0.525 

Saw454_23 4 209-215 0.506 6 197-215 0.546 

Saw454_24 8 210-235 0.746 13 211-242 0.796 

Saw454_31 4 222-246 0.385 6 216-246 0.489 

Saw454_41 4 185-199 0.452 5 185-199 0.489 
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6.3.3 Genetic Diversity 

 

6.3.3.1 Hardy-Weinberg Equilibrium and genotypic linkage disequilibrium 

 

No evidence of linkage disequilibrium was detected within the 2010 haploid male dataset 

between any pair of microsatellite loci, therefore all loci could be considered independent, 

a prerequisite for population genetic analyses.  

Departure from Hardy-Weinberg expectations (HWE) as tested by a 

randomisation method in FSTAT (using a dataset composed of all female and all potential 

diploid males sampled in 2010) was detected only at locus Saw454_11 in the New Gilston 

population. 

 

6.3.3.2 Allelic richness 

 

An Analysis of Variance revealed no significant difference between the mean allelic 

richness of each of the Scottish populations, in either sampling year, as tested using the 

haploid male datasets (Table 6.3).  
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Table 6.3: Comparison of allelic richness between three Dolerus aeneus populations in Scotland over 2 

sampling years using datasets composed of all the haploid individuals sampled in the respective sampling 

year.   

 

Year Population 

No. of 

Individual

s 

Mean 

Allelic 

Richnes

s 

Significanc

e (p-value) F 

Degrees 

of 

Freedom

* 

2009 

Mains of Glamis 6 2.444 

0.722 0.329 2 (35) 

The James Hutton Inst. 12 2.161 

New Gilston 21 2.478 

2010 

Mains of Glamis 58 4.118 

0.988 0.012 2 (35) 

The James Hutton Inst. 43 4.196 

New Gilston 17 4.250 

 

* First value indicates degrees of freedom between groups. Values in parentheses indicate total degrees of 

freedom. 
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6.3.3.3 Allele frequencies 

 

Allele frequencies at the three most polymorphic loci (Saw454_1, Saw454_4 and 

Saw454_24) were not observed to vary dramatically between populations in sampling 

year 2009 or 2010 (Appendix 2; Figures A1 and A2). In 2009, the allele present at the 

highest frequency was the same for each of the three Scottish populations at loci 

Saw454_1 and Saw454_4 (alleles ―199‖ and ―237‖ respectively), with a number of the 

rare alleles shared between populations (Appendix 2; Figure A1). At locus Saw454_24 

the most common allele at The James Hutton Institute and New Gilston was ―233‖ 

whereas at Mains of Glamis the most common allele was ―232‖ (Appendix 2; Figure A1). 

In 2010, the allele present at the highest frequency was the same for each of the three 

Scottish populations at loci Saw454_1 and Saw454_24 (alleles ―199‖ and ―234‖ 

respectively) with a number of the rare alleles shared between populations (Appendix 2; 

Figure A2). At locus Saw454_4 the most common allele at The James Hutton Institute 

and New Gilston was ―240‖ whereas at Mains of Glamis alleles ―235‖ and ―236‖ were the 

two most common alleles (Appendix 2; Figure A2). 

 The allele frequencies of the haploid male individuals and the diploid individuals 

(females + potential diploid males) within each of the three Scottish populations appeared 

to follow a similar distribution at each of the three most polymorphic loci (Appendix 2; 

Figures A3-A8). To summarise the information shown in Appendix 2: Figures A3-A8, 

Table 6.4 shows the allele present at the highest frequency for both the haploid and 

diploid components of each of the Scottish populations in both sampling years. For 

individuals sampled in 2009, the haploid and diploid components of each of the Scottish 

populations had the same highest frequency allele at two out of the three most 

polymorphic loci. Also, at the remaining locus, the highest frequency alleles were either 

one base or one repeat motif apart in size (Table 6.4). For individuals sampled in 2010, 

the haploid and diploid components of each population had the same highest frequency 

allele (―199‖) at locus Saw454_1 (Table 6.4). In addition, the highest frequency alleles for 

the Mains of Glamis haploids and diploids differed by only a single base or single motif at 

loci Saw454_4 and Saw454_24 (Table 6.4). Similarly, at The James Hutton Institute the 

highest frequency allele differed by a single base at loci Saw454_24 (Table 6.4). 
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Table 6.4: The most frequent alleles present in both the haploid and diploid components of each of three 

Scottish Dolerus aeneus populations sampled in 2009 and 2010. 

 

Sampling 

Year 
Population Locus 

Most frequent 

allele(s) (haploid 

individuals) 

Most frequent 

allele(s) (diploid 

individuals) 

2009 

Mains of 

Glamis 

Saw454_1 199 199 

Saw454_4 237 237 and 244 

Saw454_24 232 233 

The James 

Hutton Institute 

Saw454_1 199 199 

Saw454_4 237 235 

Saw454_24 233 233 

New Gilston 

Saw454_1 199 199 

Saw454_4 237 and 240 237 

Saw454_24 233 234 

2010 

Mains of 

Glamis 

Saw454_1 199 199 

Saw454_4 235 and 236 237 

Saw454_24 234 233 and 235 

The James 

Hutton Institute 

Saw454_1 199 199 

Saw454_4 206 199 

Saw454_24 234 235 

New Gilston 

Saw454_1 199 199 

Saw454_4 240 236 

Saw454_24 234 231 
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6.3.3.4 Observed and expected heterozygosity 

 

Overall levels of diversity (HE: expected heterozygosity) varied subtly between the three 

Scottish populations when using the haploid individuals sampled in 2010 (min HE = 

0.538, max HE = 0.550). When using haploid individuals sampled in 2009, gene diversity 

was noticeably higher at New Gilston (HE = 0.520) than at either Mains of Glamis or The 

James Hutton Institute, which showed relatively similar gene diversities (0.446 and 0.411 

respectively) (Table 6.5).  

 Observed heterozygosity was calculated in addition to expected heterozygosity for 

the diploid individuals (females + potential diploid males). When using individuals 

sampled in 2010, expected heterozygosity was higher than that observed for all three 

populations and the difference between observed and expected heterozygosity was largest 

at Mains of Glamis and lowest at New Gilston (Table 6.5). When using diploid 

individuals (females + potential diploid males) sampled in 2009, observed and expected 

heterozygosity was only calculated for the New Gilston population. In this case, expected 

heterozygosity also exceeded observed heterozygosity (Table 6.5).  

At Mains of Glamis in 2009, four diploid individuals were sampled, two of which 

were potential diploid males. The two potential diploid male individuals were 

homozygous at 12 out of 13 loci whereas the two diploid female individuals were 

homozygous at six and eight of 12 loci (only 12 loci due to missing data) respectively 

(Appendix 1). At The James Hutton Institute in 2009, three diploid individuals were 

sampled, all of which were female. These three individuals were homozygous at six out of 

12 loci (missing data point) and nine and 11 out of 13 loci respectively (Appendix 1). 

 

6.3.3.5 Level of Inbreeding 

 

Positive inbreeding coefficients were noted for the New Gilston population in both 

sampling years regardless of whether the female dataset (FIS = 0.223 (2009) and 0.300 

(2010)) or the all diploids (females + potential diploid males) dataset (FIS = 0.338 (2009) 

and 0.301 (2010)) was used (Table 6.6). In each case the randomisation test revealed that 

the inbreeding coefficients were significant. 
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Table 6.5: Levels of expected heterozygosity (gene diversity) and observed heterozygosity in three Scottish 

populations of Dolerus aeneus. Data not shown for the Mains of Glamis and The James Hutton Institute 

populations as calculated using the diploid individuals sampled in 2009 due to very low sample size. 

 

    Mains of Glamis 

The James Hutton 

Institute New Gilston 

Dataset 
Sampling 

year 
HE HO HE HO HE HO 

Haploid 

individuals 

2009 0.446 N/A 0.411 N/A 0.520 N/A 

2010 0.550 N/A 0.538 N/A 0.541 N/A 

Diploid 

individuals 

2009 - - - - 0.493 0.320 

2010 0.446 0.15 0.505 0.274 0.528 0.373 
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Table 6.6: FIS values (averaged over 12 microsatellite loci) for the New Gilston Dolerus aeneus 

population sampled in 2009 and 2010 and using both the female dataset and the diploids (females + 

potential diploid males) dataset. 

 

Sampling 

year 
Dataset 

New 

Gilston 
Sample 

size 

2009 
Females 0.223 12 

Diploids 0.338 15 

2010 
Females 0.300 17 

Diploids 0.300 17 
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6.3.4 Population structure 

 

6.3.4.1 Principal Coordinates Analysis 

 

Principal Coordinates Analysis (PCA) did not reveal any distinct ―clusters‖ of genetically 

related individuals regardless of the dataset used (haploid males, diploid females or all 

known diploids (females + potential diploid males)) or the year that samples were taken 

(Figures 6.3 and 6.4). 

 In each case three coordinates were extracted from the dataset with between 55.83 

and 66.58 % of the variation present in the original dataset explained by these coordinates 

(mean = 62.01 %, standard deviation = 3.643). 
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Figure 6.3: Principal Coordinate Analysis (PCA) of three populations of Dolerus aeneus: Mains of 

Glamis (red diamonds), The James Hutton Institute (green squares) and New Gilston (blue triangles). 

Graphical representations of PCA for datasets consisting of haploid individuals, all known diploid 

individuals and all diploid female individuals sampled in 2009 are shown. Numbers in parenthesis 

indicate the percentage of variation explained by the coordinates. 
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Figure 6.4: Principal Coordinate Analysis (PCA) of three populations of Dolerus aeneus: Mains of 

Glamis (red diamonds), The James Hutton Institute (green squares) and New Gilston (blue triangles). 

Graphical representations of PCA for datasets consisting of haploid individuals, all known diploid 

individuals and all diploid female individuals sampled in 2010 are shown. Numbers in parenthesis 

indicate the percentage of variation explained by the coordinates. 
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6.3.4.2 STRUCTURE analysis 

 

The STRUCTURE analysis showed that the most likely number of populations was one 

for the 2009 dataset (ln P(D) = -503.72) and three for the 2010 dataset (ln P(D) = 

-1727.35) as these were the values for which ln P(D) was maximal (Table 6.7). However 

no clear plateau was visible when mean ln P(D) was plotted against K (Figure 6.5). ΔK 

was calculated for both datasets according to Evanno et al. (2005). The true K was found 

to be two for the 2009 dataset and three for the 2010 dataset (Figure 6.6). 

 Both the traditional STRUCTURE method and the Evanno method determined 

that three was the most likely number of populations for the 2010 dataset. However, the 

STRUCTURE analysis did not assign genetically similar individuals to distinct 

geographical locations. Genetically similar individuals were distributed across collection 

sites (Figure 6.7). 
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Table 6.7: ln P(D) values (mean over 10 MCMC runs) for each value of K. By traditional interpretation 

(Pritchard et al. 2010) the true values of K for the 2009 and 2010 datasets respectively are one and three; 

the values for which ln P(D) is maximal. 

 

 

(A) 2009 

 

K Reps ln P(D) 

1 10 -503.72 

2 10 -521.56 

3 10 -588.71 

4 10 -612.98 

5 10 -674.37 

6 10 -680.08 

7 10 -569.86 

8 10 -557.22 

9 10 -521.67 

10 10 -519.38 

 

(B) 2010 

 

K Reps ln P(D) 

1 10 -1727.72 

2 10 -1867.82 

3 10 -1727.35 

4 10 -1757.48 

5 10 -1839.22 

6 10 -1967.78 

7 10 -2155.57 

8 10 -2276.98 

9 10 -2312.89 

10 10 -2477.06 
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Figure 6.5: Mean ln P(D) values over 10 MCMC runs for each value of K for the 2009 (A) and 2010 (B)  

datasets respectively. There is no discernible plateau in the ln P(D) for either dataset. 
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Figure 6.6: ΔK with respect to K for the 2009 and 2010 datasets respectively. ΔK is maximal for K=2 in 

2009 and K=3 in 2010. 
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Figure 6.7: Membership coefficient profile (Q) for each individual included in the analysis. One bar 

represents one individual and the three colours represent each of the K populations. The proportion of 

the bar taken up by one colour indicates the probability of that individual belonging to that (K) 

population. Genetically similar individuals are distributed across collection sites (Mains of Glamis, The 

James Hutton Institute and New Gilston). 
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6.3.4.3 Pairwise FST and isolation by distance 

 

Pairwise FST and geographic distance appeared to be positively correlated for the three 

Scottish populations (2010 samples; all diploid individuals used (females + potential 

diploid males)), indicating increased genetic divergence with distance between localities, 

although there was no significant relationship between the two variables (Pearson 

product-moment correlation coefficient r = 0.980, p = 0.129) (Table 6.8). 
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Table 6.8: Pairwise FST values below the diagonal and geographic distance in km above the diagonal for 

three Scottish populations of Dolerus aeneus sampled in 2010. 

 

 

  

Mains of 

Glamis 

The James 

Hutton 

Institute 

New 

Gilston 

Mains of 

Glamis 
* 18.94 41.16 

The James 

Hutton 

Institute 

0.0096 * 25.45 

New Gilston 0.0807 0.0164 * 
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6.4 Discussion 

 

6.4.1 Relatively high numbers of Dolerus aeneus sampled in Scottish localities and 

samples dominated by haploid males 

 

In sampling year 2010, higher numbers of Dolerus aeneus were sampled in Scotland than 

in 2009 (Section 6.3.1) which is most likely due to the more intensive sampling 

programme used in this year (Chapter 3). In addition, the vast majority (93.04%) of D. 

aeneus individuals sampled in 2010 were captured in the Scottish localities as opposed to 

those in England (Section 6.3.1). It could be that D. aeneus populations are declining at 

the English localities, relative to the Scottish ones. More simple explanations are that the 

sampling sites in England were poorly chosen and not representative of suitable habitat 

for the species or that the timing of sampling at the English sites occurred too late for 

collection of Dolerus aeneus (Chapter 3). The small sample sizes at all of the English 

sampling locations resulted in the absence of these samples in any detailed population 

genetic analysis. 

Populations were dominated by haploid males in both sampling years apart from at 

New Gilston in 2010 where haploid males and diploid females were present in equal 

numbers (Section 6.3.1). There are several explanations for the over-representation of 

haploid males at some sampling locations. It could be that there is differential mortality 

between males and females in the field under certain conditions, leading to higher 

probabilities of males surviving. In addition, female hymenopterans can facultatively 

adjust the sex ratio of their progeny (van Wilgenburg et al. 2006) and it is possible that 

female D. aeneus individuals have produced male-biased broods in response to prevailing 

environmental factors; females of the sawfly Euura lasiolepis are known to produce male-

biased broods in response to poor host plant quality or slow host plant growth (Craig et al. 

1992). A more simple explanation is that male D. aeneus individuals may disperse more 

widely than females. As a general rule female insects must invest far more resources in 

reproduction than males which frequently means that they are larger and heavier than the 

males of their species. Correspondingly, the female wing-load is higher than that of the 

male resulting in lower levels of dispersal (Speight et al. 2008).  
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Dolerus aeneus individuals were captured over a longer time period at New 

Gilston in both sampling years than at Mains of Glamis or The James Hutton Institute 

(Section 6.3.1). The emergence of D. aeneus is triggered by warm sunny days at the 

beginning of spring (Benson 1950) but sawflies also have very high humidity 

requirements (Benson 1950). It is possible that moisture levels in the soil at New Gilston 

were comparatively higher than at the other sampling locations and led to earlier 

emergence of individuals at this locality with the onset of spring. The low geographic 

distance between the sampling localities makes it unlikely that localised weather 

conditions, i.e. earlier onset of spring, are responsible for the earlier emergence times at 

New Gilston. 

 

6.4.2 Three populations of Dolerus aeneus exhibit similar levels of genetic diversity 

 

No significant difference was detected in allelic richness between the three Scottish 

populations of Dolerus aeneus for either sampling year (Section 6.3.3.2). Data obtained 

from a population genetic study of the sweat bee Halictus rubicundus (Soro et al. 2010), a 

species not known to be endangered (IUCN Red List of threatened species accessed 

04/09/11), showed that three British populations of H. rubicundus (solitary phenotype) 

also exhibited similar levels of allelic richness (ANOVA; p = 0.186). This suggests that 

genetic diversity levels in three Scottish D. aeneus populations are relatively equal and 

may not be characteristic of a species under threat. 

A scan of the allele frequencies in each of the three Scottish populations, using 

three highly polymorphic loci, did not reveal any obvious differences between populations 

(Section 6.3.3.3 and Appendix 2). For the most part the common alleles in each 

population were the same and other alleles were shared between populations, including 

relatively rare alleles. Examining the data in this manner gave a basic understanding of 

the relationship between these populations prior to applying more advanced statistical 

analysis and lends weight to the theory that these populations are of relatively equal 

genetic diversity.  

The allele frequencies of the haploid male component of the populations appeared 

to follow a similar distribution to that of the diploid component (Section 6.3.3.3). Owen 

(1986) suggested after an in-depth modelling experiment that the gene frequencies of both 
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sexes at haplodiploid loci should be equal unless certain assumptions are violated: no 

dominance of alleles in females, equal dispersal in both sexes and equal effect of alleles in 

both sexes. The similar allele frequencies observed between the sexes in this study 

indicate to some extent that these populations are interbreeding normally. Also, in 

analyses where only the haploid male component of the population could be used, it was 

possible to assume that variation was not being severely under- or overestimated in any or 

all populations. 

 Levels of gene diversity (expected heterozygosity) varied only subtly between 

populations (haploid individuals 2010; HE Mains of Glamis = 0.550, The James Hutton 

Institute = 0.538 and New Gilston = 0.541), another indication that diversity in each of the 

three Scottish populations is relatively equal. However, these values are far lower than 

that of three British populations of (the non-threatened) H. rubicundus (HE = 0.775, 0.807 

and 0.829) (Soro et al. 2010) but comparable with that of three fragmented Scottish 

populations of the solitary bee Colletes floralis (HE = 0.51, 0.57 and 0.58) (Davis et al. 

2010). Therefore, the diversity levels observed in the Dolerus aeneus populations in this 

study could be characteristic of that of a fragmented solitary hymenopteran population.  

In addition, regardless of the dataset used (haploid, diploid female or all diploids) 

observed heterozygosity was lower than expected if these populations were mating 

completely at random (expected heterozygosity) (Section 6.3.3.4). This is a primary 

indication that inbreeding may be occurring to some extent in these populations. Davis et 

al. (2010) sampled diploid females from eight populations in their UK-wide study of the 

threatened solitary bee Colletes floralis. Of these eight populations, four exhibited an 

observed heterozygosity level lower than expected. For these four populations the mean 

difference between observed and expected heterozygosity was 0.05 (over all loci and 

populations). However, in a population genetic study of the non-threatened solitary bee 

Andrena vaga (IUCN Red List of threatened species accessed 04/09/11) four populations 

sampled from north-west Germany exhibited a mean decrease of 0.22 in observed 

heterozygosity relative to the expected (over all loci and all populations) (Exeler et al. 

2008). The mean difference in observed and expected heterozygosity recorded in this 

study (2010 samples; diploid individuals; all 3 populations) was 0.227. The reduction in 

observed heterozygosity relative to expected heterozygosity observed in the current study 

is comparable to that of the non-threatened hymenopteran Andrena vaga suggesting that 
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the levels of inbreeding occurring in the three Scottish populations are not detrimental to 

the survival of D. aeneus populations. However, this result should be viewed with caution 

for a number of reasons. Firstly, the diploid sample sizes available for analysis in the 

current study were small. Secondly, three of the four female individuals (index no.‘s: 725, 

727 and 755) sampled from Down Farm had identical allelic composition across all 12 

microsatellite loci possibly suggesting the occurrence of inbreeding at this site (Appendix 

1). Finally, the reduction in observed relative to expected heterozygosity recorded in the 

threatened Colletes floralis was much smaller than recorded in this study suggesting that a 

comparatively high proportion of homozygotes may not be sufficient to diagnose a 

threatened population. 

Furthermore, positive inbreeding coefficients were detected for the New Gilston 

population (the population with largest sample of diploid individuals) in both sampling 

years (Section 6.3.3.5; diploid female dataset; FIS = 0.223 and 0.300 respectively). It is 

very unlikely in nature that any population will exhibit an inbreeding coefficient of 0 (the 

theoretical minimum; Hartl and Clark 1997) and it would be prudent to compare these 

values to that of a ―healthy‖ sawfly population; information that is not available. 

However, the non-threatened (IUCN Red List of threatened species accessed 04/09/11) 

solitary bee Andrena fuscipes exhibited a mean FIS of 0.195 over 12 sampled populations 

(min n = 8, max n = 26) and eight microsatellite loci (Exeler et al. 2010). The 

comparatively higher values observed in this study could therefore indicate that 

inbreeding is occurring excessively in D. aeneus populations. To determine more 

accurately the extent of inbreeding in D. aeneus populations it would be necessary to 

sample from a larger number of more widely-separated locations and attempt to obtain 

more samples of diploid individuals from each. 

 

6.4.3 Three Scottish populations of Dolerus aeneus do not appear to be genetically 

distinct 

 

A preliminary investigation into population substructure of Dolerus aeneus using 

principal coordinates analysis (PCA) did not highlight any ―clusters‖ of related 

individuals in either sampling year regardless of the dataset used (Section 6.3.4.1). This 
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result suggests that the three Scottish populations of Dolerus aeneus could be part of one 

larger population. 

 STRUCTURE analysis detected that the most likely number of populations from 

the range of K values tested was three (2010 samples). However, genetically similar 

individuals were distributed across collection sites (Section 6.3.4.2) indicating that 

individuals sampled from these three localities (Mains of Glamis, The James Hutton 

Institute and New Gilston) are all part of one larger population. When the 2009 samples 

were used to perform STRUCTURE analysis, the algorithm appeared to ―struggle‖ to 

settle on a likely configuration of parameters (likelihood values did not reach equilibrium 

with increasing number of MCMC reps). This is likely due to a combination of small 

sample size and the high number of missing values in the 2009 dataset. In addition, for the 

2009 dataset the traditional STRUCTURE method and the Evanno et al. (2005) method 

differed in their estimation of K (Section 6.3.4.2). If the ―true K‖ is indeed one, as the 

traditional STRUCTURE method detected, then by default ΔK (based on rates of change) 

cannot detect this (Evanno et al. 2005). 

 Pairwise FST values calculated for the three Scottish populations of D. aeneus 

ranged from 0.0096 to 0.0807 for geographic distances ranging from 18.94 km to 41.16 

km (Section 6.3.4.3). FST values in this range indicate little to moderate genetic 

differentiation (little = 0 to 0.05, moderate = 0.05 to 0.15) between populations as 

originally defined by Wright in 1978 (Hartl and Clark 1997).  

Pairwise FST and geographic distance appeared to be correlated although the 

relationship was not significant (Section 6.3.4.3). By means of comparison, the Mains of 

Glamis and The James Hutton Institute populations of D. aeneus sampled in this study 

were situated 18.94 km apart with an FST of 0.0096 whereas one pair of Colletes floralis 

populations sampled by Davis et al. 2010 were situated 18.6 km apart with an FST of 0.07. 

Also, The James Hutton Institute population and the New Gilston population were 

situated 25.45 km apart with an FST of 0.0164 whereas a second pair of populations from 

the Davis et al. (2010) study was situated 24.8 km apart with an FST of 0.062. The 

examples from the Davis et al. (2010) study listed above highlight comparable FST values 

on a similar geographic scale. These examples were part of a larger study of 12 

populations on a UK-wide scale over which an isolation by distance effect was found to 

be significant. The lack of significance in this study is most likely attributable to small 



 177 

sample size (no. populations sampled). If it was possible to sample more populations of 

D. aeneus on a wider geographic scale, it is likely that an isolation by distance effect 

would be significant. This assumption is corroborated by the presence of population-

specific alleles in the individuals sampled from Down Farm (Section 6.3.2). 
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6.5 Conclusion 

 

This chapter investigates the levels of genetic diversity and population substructure in 

Scottish populations of Dolerus aeneus. In the three populations of D. aeneus examined 

(Mains of Glamis, The James Hutton Institute and New Gilston), levels of genetic 

diversity are relatively equal and these populations do not appear to be genetically 

differentiated from one another, although the presence of inbreeding within each of the 

three populations was noted. 

 The small sample sizes obtained at the English sampling sites meant that it was not 

possible to analyse the population genetics of D. aeneus on a wider geographic scale. 

However, this preliminary investigation has shown that populations of D. aeneus may not 

be as fragmented as has been suggested previously and that a more extensive study with 

an optimised sampling programme would provide the means to examine the population 

genetics of this species on a UK-wide scale. 
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7. Principal findings and future perspectives 

 

7.1 Summary of principal findings 

 

A detailed knowledge of the underlying genetic diversity and population structure in a 

species is essential for its efficient conservation (Höglund 2009). As such, the main 

purpose of the study outlined in this thesis was to develop a set of molecular markers for 

use in a common farmland sawfly, an important food source for declining populations of 

farmland birds, in order to examine the levels and structure of genetic variation within 

sawfly populations. An additional goal was to determine the presence or absence of 

Complementary Sex Determination (CSD), a sex determination mechanism present in 

some hymenopterans which has deleterious consequences under inbreeding conditions 

(Section 1.2.3.3). 

 To summarise the content of this thesis, Dolerus aeneus was selected as a study 

species (Chapter 3 and Chapter 4) and a set of polymorphic microsatellite markers were 

developed for use in this species (Chapter 4; Cook et al. 2011). Using these markers 

(Chapter 5), potential diploid males were detected in Dolerus aeneus, a primary indication 

that CSD may be operative in this species, although further study is required to confirm 

this. Finally, using the microsatellite markers developed in the present study (Chapter 4), 

three Scottish populations D. aeneus were found to exhibit relatively equal genetic 

diversity and low levels of genetic differentiation. However, evidence of inbreeding was 

detected in each of the three populations (Chapter 6). 

 

7.2 Implications of this research 

 

This study represents the first molecular genetics research on any farmland sawfly species 

directed towards promoting the conservation of sawflies and of birds such as the Grey 

Partridge and the Yellowhammer that depend on them. It was proposed in Chapter 1 that 

agricultural intensification may have fragmented suitable sawfly habitat to such an extent 

that sawfly populations had become isolated and their genetic diversity reduced. The 

sawfly life cycle and the potential presence of CSD could mean that sawflies will be more 
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susceptible to the effects of agricultural intensification than other invertebrates occupying 

the same habitat (Section 1.3). Previous research has shown that sufficient underlying 

genetic diversity in a population or species is essential for its survival (Frankham 2005; 

Spielman et al. 2004). Therefore, it is possible that genetic factors could be, in part, 

responsible for the decline in sawfly numbers recorded since the 1970s (Aebischer 1991).  

 This study showed that levels of genetic diversity in each of the three Scottish D. 

aeneus populations examined were relatively similar but were comparable with that of a 

threatened solitary hymenopteran. In addition, evidence of inbreeding in each of the three 

populations was detected (Section 6.3.3.5). However, tests for genetic differentiation 

between populations revealed that these three populations do not appear to be genetically 

distinct (Section 6.3.4). This analysis suggests that fragmentation of suitable sawfly 

habitat as a result of agricultural intensification has not yet acted to isolate D. aeneus 

populations although some genetic effects (inbreeding and low diversity in comparison 

with non-threatened hymenopterans) are apparent. It would have been beneficial to 

compare populations separated by greater geographic distance to lend weight to these 

conclusions. 

 In addition, potential diploid males were detected in D. aeneus (Chapter 5) which, 

if confirmed by further research, could indicate that CSD may be operative in this species. 

If CSD is indeed present in D. aeneus, further inbreeding in populations of this species, 

promoted by intensive agricultural management practices, could increase the number of 

potentially sterile diploid males being produced. This increased production of diploid 

males could initially reduce population growth rate and effective population size. In the 

smaller populations which result, genetic drift could lead to a reduction in the number of 

sex alleles and therefore higher diploid male production. Research has shown that under 

certain conditions this cycle continues in a process termed the ―diploid male vortex‖ 

which can ultimately lead to extinction (Hein et al. 2009; Zayed and Packer 2005). 

 To summarise, this research shows that, at the present time, sawflies do not appear 

to be have been isolated by agricultural intensification. However, the fact that evidence of 

some inbreeding and the potential presence of CSD were detected within D. aeneus 

populations merits further research to confirm or deny the presence of CSD and to enable 

the prediction of how sawfly populations are likely to respond to changing agricultural 

management practices. 
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7.3 Future perspectives 

 

7.3.1 Sampling of Dolerus aeneus on a UK-wide scale 

 

To accurately predict how D. aeneus populations will respond to changing agricultural 

management practices in years to come it would be beneficial to develop a model that 

could estimate corresponding changes in their genetic diversity and differentiation levels. 

The development of such a model would depend on a population genetic study such as 

that outlined in Chapter 6 of this thesis to assess the current levels of diversity and 

differentiation in sawfly populations on a UK-wide scale. Although population genetic 

analysis of D. aeneus populations south of the border was attempted in the current study, 

the low number of samples collected at these localities prevented the inclusion of these 

populations in detailed analysis. Sampling of D. aeneus, and indeed of any other sawfly to 

be studied, on such a large scale would need to be considered carefully to ensure that 

enough individuals were sampled at each locality. 

Sampling of sawflies for use in this study was carried out using Malaise traps 

(Section 2.1.1), a form of flight-interception trap known to be effective for sampling 

flying insects particularly Hymenoptera and Diptera (Southwood 1978). D. aeneus 

individuals were successfully captured at all sampling locations but in lower numbers at 

those in England (Section 6.3.1). However, the low numbers cannot solely be explained 

by the difference in sampling effort between sites (Section 3.2.5). It is possible that the 

sampling sites selected south of the border did not contain a high enough proportion of 

suitable host plants. In addition, sawflies have been known to emerge as early as March in 

southern England (Benson 1950) and it is possible that the timing of the sampling in this 

study (no sites in England were sampled before mid-April) occurred too late. The location 

and quality of new sampling sites and the timing of sampling would need to be considered 

very carefully in future studies. 

 Relatively high numbers of the selected study species Dolerus aeneus were 

sampled by the Malaise traps at all of the Scottish sampling locations. In particular, high 

numbers of haploid males were caught. However, for some population genetic analyses 

diploid individuals are necessary (i.e. comparison between observed and expected 

heterozygosity, calculation of the inbreeding coefficient FIS and assessment of 
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differentiation using FST) but diploids were sampled in relatively low numbers in the 

current study. It is possible that (diploid) females do not spend as much time in flight as 

males of the species (Speight et al. 2008) and to increase the number of females collected 

at each locality it may be necessary to alter the sampling programme.  

Malaise traps were used in the current study due to their neutral status, neither 

attracting nor deterring particular insect species. This meant that a study species could be 

chosen based on the proportions of different species sampled by the traps. However, now 

that a study species has been selected it will be possible to alter the trapping method used 

in future studies. Sampling by sweep-netting the vegetation at chosen sampling localities 

could allow the collection of male individuals and potentially higher numbers of the more 

sedentary females of the species. However, sweep-netting is a labour-intensive task; to 

sample by this method on a UK-wide scale within the small time period that D. aeneus is 

on the wing would require the help of many people and this may not be possible. The use 

of attractively-coloured water traps could be a more efficient alternative. Dolerus sawflies 

have been demonstrated to show a slight preference for black (or dark coloured) water 

traps although no sex related differences in colour selectivity were noted (Barker et al. 

1997). Therefore, the use of this type of trap may serve to increase the number of D. 

aeneus individuals sampled overall including diploid individuals. 

It is important to bear in mind that the intention of a large-scale population genetic 

study on D. aeneus is conservation-based. The goal of any sampling programme should 

be to sample as non-destructively as possible. 

 

7.3.2 Confirmation of the presence of Complementary Sex Determination in Dolerus 

aeneus 

 

In the current study, potential diploid males were detected in Dolerus aeneus (Chapter 5) 

which could be a primary indication that Complementary Sex Determination (CSD) is in 

operation in this species (Heimpel and de Boer 2008). However, the true ploidy status of 

these male individuals is questionable based on the results of the current study. Notably, 

the preliminary results obtained from the flow cytometry analysis (no diploid males) were 

in contradiction with that of the microsatellite analysis (ten diploid males). This may 

largely be attributable to the fact that flow cytometry is difficult on samples that are 
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preserved in ethanol such as those in the current study which were necessarily stored in 

this way (Section 5.4.1). 

 Also, it was highlighted that all males detected as ―diploid‖ via the microsatellite 

analysis were heterozygous at only locus whilst all (diploid) female individuals genotyped 

were heterozygous at a mean of 4.51 loci. A plausible explanation for this, as stated in 

Section 5.4.2, is that these males are not diploid at all but that the two alleles observed at 

the individual-locus combinations in question are in fact amplified from two separate gene 

loci belonging to the same gene family. It is not possible to say, without further 

investigation, whether these individuals are in fact haploid or are truly diploid males. 

Therefore, the only conclusion that can be drawn at the present time is that these are 

―potential diploid males‖. 

 Further research comprising the use of a combined flow cytometry/microsatellite 

analysis could confirm the presence of diploid males and thus the potential presence of 

CSD as is common in the literature. However, diploid males have been detected in a 

number of hymenopteran species that have not arisen as a result of CSD but are a 

consequence of mutation or hybridization (Section 5.4.4). Therefore it would be beneficial 

to confirm the operation of CSD in D. aeneus not only on the basis of diploid male 

production but through the use of inbreeding experiments and/or molecular techniques 

(van Wilgenburg et al. 2006).  

 Inbreeding experiments combined with cytological analysis to confirm ploidy 

have been used by numerous researchers to infer the presence of CSD including the 

sawfly Athalia rosae ruficornis (Naito and Suzuki 1991). For example, in a species with 

CSD, a matched mating (i.e. a female AiAj mates with a haploid male that carries a sex 

allele identical to one of her own, either Ai or Aj) results in 50 % of the diploid offspring 

developing as homozygous diploid males (Cook and Crozier 1995). The ploidy of these 

males is then confirmed by cytological analysis. 

The sex determination locus (SDL) has recently been sequenced in the honeybee 

Apis mellifera (Hasselmann et al. 2008; Beye et al. 2003) and in a related study Cho et al. 

(2006) successfully sequenced the csd gene in Apis mellifera and two additional related 

species A. cerana and A. dorsata in order to assess intra-specific polymorphism at the csd 

locus. The success of these studies suggests that it may be possible to sequence the csd 

gene in D. aeneus or any other sawfly in order to confirm the presence of CSD. 
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If CSD is in operation in Dolerus aeneus this will have to be incorporated into any 

model used to predict how populations of the species will respond to changes to their 

habitat. The next logical step would be to determine the number of sex alleles present in 

any D. aeneus populations examined. In small, isolated populations, sex allele diversity 

will be relatively low and the probability of matched matings increases. Higher numbers 

of matched matings would lead to production of larger numbers of potentially sterile 

diploid males with deleterious effects at the population level. 

The all important question remains of whether or not any diploid males produced 

in D. aeneus are indeed sterile. Until recently, the sterility of diploid males produced as a 

result of CSD in the Hymenoptera was considered a general phenomenon. However, a 

recent study by Elias et al. (2009) demonstrated that diploid males of Cotesia glomerata, 

a species known to exhibit CSD, are just as competitive as haploid males in obtaining 

matings and father fully fertile diploid daughters. In addition, Cowan and Stahlhut (2004) 

uncovered fertile diploid males in the solitary wasp Euodynerus foraminatus. These 

studies highlight that the sterility of diploid males cannot be assumed. The level of their 

fertility must be fully assessed and incorporated into any theoretical model attempting to 

explain changes in hymenopteran population dynamics in the face of environmental 

change.  

 

7.3.3 Future genetic research in Dolerus aeneus 

 

The microsatellite markers isolated in the current study were developed from a 

transcriptomic library (Chapter 4). Although the main purpose of this library was the 

development of molecular markers for population genetic analysis, this genetic resource is 

a first for any farmland sawfly and could pave the way for future genetic research in this 

taxon. 

 Of the 1,284 microsatellites discovered within the transcriptome assembly, only 72 

were tested and narrowed down to a functional polymorphic set of 13 markers for use in 

D. aeneus (Chapter 4). Nine of these polymorphic markers were found to cross-amplify 

successfully into other Dolerus species suggesting that with a small amount of further 

research this genetic resource could be mined successfully for microsatellite markers 

suitable for use in other Dolerus species and additional closely related species. 
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Transcriptome libraries can also be utilised for the discovery of other types of 

marker such as the increasingly common SNPs (Single Nucleotide Polymorphisms; 

Section 1.4.2.1). In addition to population genetic analyses, SNPs can potentially be 

linked to candidate genes of known function (Renault et al. 2010). Studies using 454 

pyrosequencing in other species such as the Glanville fritillary butterfly Melitaea cinxia 

(Vera et al. 2008) and the flesh fly Sarcophaga crassipalpis (Hahn et al. 2009) have 

successfully isolated thousands of SNPs from one sequencing run. 

It may also be desirable at some point to extend beyond the population genetic 

studies described in this thesis and proposed in Section 7.3.1 in order to link genetic 

diversity of Dolerus aeneus to physiological performance and ecological factors. For 

example, sawflies are known to exhibit low resistance to insecticides (Aebischer 1990) 

and it may be beneficial to examine the genetic basis for this observation. A starting point 

could be to screen the D. aeneus transcriptomic library for contigs annotated (by 

comparison with e.g. the Gene Ontology Consortium database) as having functions 

related to pesticide resistance in other Hymenoptera. This type of research is complex and 

would require extensive planning and resources, but the transcriptome library produced 

during the current study could be an invaluable tool for such research. 

 

7.4 Conclusion 

 

The research outlined in this thesis has provided the molecular means to examine the 

population genetics of D. aeneus, and potentially that of other sawfly species on a UK-

wide scale. The next-generation sequencing method used to develop microsatellite 

markers has yielded the first genetic resource for any farmland sawfly and could be used 

in future studies to develop additional markers or to isolate candidate genes. The potential 

presence of CSD has been detected and merits further research to confirm the operation of 

CSD and to assess the fertility of D. aeneus diploid males. Finally, a population genetic 

analysis of D. aeneus was carried out encompassing three Scottish populations. This 

analysis showed that the effects of agricultural intensification on D. aeneus are not yet 

extensive in this geographic area but evidence of inbreeding within these populations was 

detected. This analysis merits further research on a UK-wide scale to obtain a 

comprehensive understanding of the population genetics of this species and to permit 
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theoretical modeling of how the species will respond to environmental change. The 

studies outlined in this thesis will be beneficial to any research group interested in the 

genetics of the Hymenoptera and/or their conservation and that of the bird populations 

dependent on them. 
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Appendix 1: Raw microsatellite genotyping data 

 

Microsatellite scoring at 13 microsatellite loci for all Dolerus aeneus individuals sampled in 2009. Red cells indicate missing data, blue cells indicate a heterozygote locus for a 

male individual and peach cells indicate a heterozygote locus for a female individual. 

 

Individual 
Index no. Sex Pop. Saw454_1 Saw454_2 Saw454_3 Saw454_4 Saw454_7 Saw454_11 Saw454_14 Saw454_16 Saw454_19 Saw454_23 Saw454_24 Saw454_31 Saw454_41 

41 M Glamis 208 208 203 228 217 217 244 244 209 209 236 236 198 198 196 196 213 213 209 209 232 232 231 231 199 199 

44 M Glamis 199 199 203 203 215 215 237 237 209 209 238 238 198 198 198 198     215 215 232 232 231 231 197 197 

47 M Glamis 199 199 203 203 217 217 233 237 209 209 241 241 198 198 188 188 215 215 213 213 233 233 231 231 198 198 

55 F Glamis 199 205 203 205 215 215 237 240 209 209 235 241     198 198 213 213 211 211 233 233 231 231 198 198 

100 M Glamis 206 206 210 210 215 215 242 242 209 209 234 234 198 198 198 198 213 213 213 213 210 210 228 228 197 197 

138 M Glamis 205 205 203 203 215 215 240 240 209 209 239 239 198 198 198 198 213 213 213 213 234 234 246 246 198 198 

161 M Glamis 199 199 203 203 215 215 237 237 209 209 238 238 198 198 198 198 213 213 209 209 233 233 231 231 198 198 

175 F Glamis 199 201 203 203 215 217     209 209 234 238 198 198 196 198 213 213 209 211 229 229 228 231 198 198 

215 M Glamis 197 197 210 210 215 215 233 233 209 209 238 238 198 198 198 198 218 218 209 209 230 230 231 231 198 198 

216 M Glamis 199 199     215 215 235 235 209 209 238 238 198 198 198 198 219 219 213 213 232 232 231 231 197 197 

31 M JHI 199 199 210 210 215 215 235 235     241 241 198 198 196 196 213 213 209 209 233 233 231 231 198 198 

32 F JHI 199 199 210 212 215 215 237 237 209 209 236 236 198 198 198 198 213 213 209 211 231 233 228 231 198 198 

105 M JHI 199 199 210 210 215 215 237 237 209 209 239 239 198 198 196 196 213 213 209 209 233 233 231 231 199 199 

116 M JHI 201 201 203 203 215 215 237 237 209 209 239 239 198 198 198 198 218 218 211 211 235 235 231 231 198 198 

117 M JHI 199 199 210 210 215 215 237 237 209 209 238 238 198 198 196 196 213 213 209 209 233 233 228 228 198 198 

125 M JHI 199 199 203 203 215 215 238 238 209 209 241 241 198 198 188 188 213 213 209 209 233 233 228 228 197 197 

164 M JHI 199 199 203 203 215 215 235 235 209 209 238 238     188 188 213 213 209 209 233 233 231 231     

209 M JHI 206 206 203 203 215 215 242 242 209 209 236 236 198 198 198 198 213 213 213 213 231 231 228 228 198 198 

225 F JHI 200 205 205 210 215 215 235 240 209 209     198 198 198 202 213 213 209 213 234 234 228 231 198 198 

226 M JHI 205 205 203 203 215 215 240 240 209 209 238 238 198 198 198 198 213 213 209 209 233 233 231 231 198 198 

229 F JHI 199 199 205 205 215 215 235 235 209 209 241 241 198 198 196 202 215 215 209 209 233 233 228 231 198 198 

230 M JHI 220 220 210 210 215 215 256 256 209 209 238 238 198 198 198 198 217 217 209 209 233 233 228 228 198 198 

231 M JHI 201 201 203 203 215 215 237 237 209 209 238 238 198 198 198 198 213 213 213 213 233 233 231 231 198 198 
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232 M JHI 207 207 203 203 215 215 242 242 209 209 236 236 198 198 198 198 217 217 209 209 233 233 228 228 198 198 

233 M JHI 199 199 203 203 215 215 235 235 209 209 238 238 198 198 198 198 213 213 209 209 234 234 231 231 198 198 

1 F Gilston 199 199 203 210 215 215 237 237 209 209 236 236 198 198 198 198 217 219 211 211 230 233 228 231 198 198 

2 M Gilston 203 203 210 210 215 215 241 241 209 209 241 241 198 198 198 198 213 213 209 209 232 232 231 231 197 197 

3 F Gilston 199 201 205 210 215 215 237 237 209 209 235 238 198 198 198 198 213 219 209 209 232 234 231 246     

4 F Gilston 199 199 203 210 215 215 235 236 209 209 238 241 198 198 196 197 213 217 211 213 229 231 228 231 198 198 

6 M Gilston 197 197 203 203 215 215 233 233 209 209 238 238 198 198 198 198 217 217 209 209 231 231 228 228 198 198 

8 F Gilston 199 205 203 203 215 215 237 240 209 209 236 242 198 198 196 198 213 213 209 213 230 234 231 246 198 198 

11 F Gilston 199 199 203 203 215 217 235 237 209 209 238 242 198 198 188 196 213 219 209 211 234 234 228 228 198 198 

12 F Gilston 203 203 203 203 215 215 238 238 209 209 239 242 198 198 198 198 213 213 211 213 234 234 228 228 198 198 

14 M Gilston 203 203 210 210 217 217 239 239 209 209 241 241 198 198 196 196 215 215 209 209 234 234 231 231 198 198 

16 M Gilston 205 205 203 203 215 215 240 240 209 209 242 242 198 198 198 198 213 213 209 209 232 232 228 228 197 197 

17 M Gilston 222 222 228 228 209 209 245 245 226 226         189 189         232 232 222 222 185 185 

18 M Gilston 199 199 210 210 215 215     209 209     198 198 198 198 221 221 209 209 234 234 228 228 197 197 

21 F Gilston 199 199 210 210 215 215 237 237 209 209 239 239 198 198 198 198 213 213 209 213 233 233 231 231 198 198 

24 M Gilston 199 199 203 228 215 215 235 235 209 209 239 239 198 198 198 198 213 213 209 209 233 233 231 231 199 199 

25 M Gilston 203 203 203 228 215 215 238 238 209 209 236 236 198 198 198 198 217 217 209 209 234 234 231 231 198 198 

26 M Gilston 199 199 203 203 215 215 237 237 209 209 241 241 198 198 196 196 213 213 209 209 230 230 231 231 198 198 

27 F Gilston 199 206 203 203 215 215 235 242 209 209 238 241 198 198 196 198 218 219 209 213 231 231 231 231 198 198 

28 M Gilston 199 199 210 210 215 215 235 235 209 209 238 238 198 198 196 196 213 213 209 209 233 233 228 228 198 198 

29 F Gilston 199 199 203 210 215 217 235 235 209 209 234 238 198 198 196 198 213 215 209 215 231 233 231 231 198 198 

58 M Gilston 205 205     215 215 240 240     238 238 198 198 198 198 215 215 213 213 234 234 231 231 198 198 

59 M Gilston 199 199 210 210 215 215 236 236     237 237 198 198 198 198 213 213 209 209 233 233 231 231 198 198 

60 M Gilston 199 199 203 203 215 215 236 236 209 209 242 242 198 198 198 198 213 213 209 209 233 233 231 231 198 198 

61 M Gilston 203 203 210 210 215 215 238 238 209 209 238 238 198 198 198 198 213 213 209 209 234 234 231 231 197 197 

63 M Gilston 210 210 203 203 217 217 246 246 209 209     198 198 198 198 221 221 213 213 230 230 231 231 197 197 

64 M Gilston 199 199 203 203 215 215 235 235 209 209 237 237 198 198 196 196 213 213 209 209 230 230 231 231 199 199 

72 M Gilston 203 203 203 205 215 215 238 238 209 209 238 238 198 198 198 198 213 213 209 209     231 231 197 197 

83 M Gilston 205 205 210 210 215 215 240 240 209 209 238 238 198 198 196 196 213 213 211 211 234 234 231 231 197 197 

88 M Gilston 199 199 203 203 215 215 237 237 209 209 236 236 198 198 196 196 213 213 211 211 233 233 231 231 198 198 

96 M Gilston 201 201 203 203 215 215 237 237 209 209 238 238 198 198 198 198 213 213 213 213 230 230 231 231 199 199 

163 M Gilston 199 199     215 215 235 235 209 209 238 238     196 196 213 213 213 213 232 232 231 231 198 198 
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180 M Gilston 205 205 203 203 215 215 240 240 209 209 241 241     196 196 221 221 209 209 233 233 231 231 197 197 

205 M Gilston 201 201 203 203 215 215 237 237 209 209 236 236 198 198 198 198 213 213 213 213 233 233 231 231 198 198 

222 M Gilston 203 203 210 210 215 215 238 238 209 209 242 242 198 198 196 196 215 215 209 209 231 231 231 231 197 197 

247 F Gilston 195 195 203 203 215 215 231 231 209 209 238 241 198 198 198 198 213 213 209 211 230 234 228 231 198 198 

319 F Gilston 199 210 210 210 215 217 237 246 209 209 237 237 198 198 198 198 213 215 209 213 230 235 231 231 197 197 

335 F Gilston 195 195 203 205 215 215 231 240 209 209 236 242 198 198 196 198 213 213 209 209 230 235 231 231 197 197 
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Microsatellite scoring at 12 microsatellite loci for all Dolerus aeneus individuals sampled in 2010. Red cells indicate missing data, blue cells indicate a heterozygote locus for a 

male individual and peach cells indicate a heterozygote locus for a female individual. 

 

 

Individual 
Index no. Sex Pop. Saw454_1 Saw454_3 Saw454_4 Saw454_7 Saw454_11 Saw454_14 Saw454_16 Saw454_19 Saw454_23 Saw454_24 Saw454_31 Saw454_41 

43 M Glamis 199 199 214 214 237 237 209 209 240 240 198 198 198 198 215 215 209 209 233 233 231 231 198 198 

44 M Glamis 199 199 215 215 237 237 209 209 238 238 198 198 196 196 213 213 209 209 234 234 228 228 198 198 

45 M Glamis 197 197 215 215 233 233 209 209 241 241 198 198 196 196 213 213 209 209 234 234 246 246 197 197 

52 M Glamis 200 200 215 215 235 235 209 209 238 238 198 198 202 202 213 213 211 211 236 236 231 231 198 198 

53 M Glamis 206 206 215 215 242 242 209 209 238 238 198 198 198 198 213 213 213 213 233 233 228 228 197 197 

55 M Glamis 199 199 215 215 236 236 209 209 234 234 198 198 198 198 215 215 209 209 233 233 231 231 197 197 

60 M Glamis 204 204 215 215 240 240 209 209 238 238 198 198 196 196 213 213 215 215 232 232 231 231 198 198 

61 M Glamis 199 199 215 215 235 235 209 209 241 241 198 198 198 198 215 215 209 209 232 232 228 228 197 197 

64 M Glamis 220 220 215 215 246 246 209 209 242 242 198 198 196 196 219 219 213 213 232 232 231 231 198 198 

79 M Glamis 199 199 215 215 235 237 209 209 241 241 198 198 196 196 213 213 213 213 233 233 231 231 198 198 

86 M Glamis 199 199 215 215 235 237 209 209 241 241 198 198 196 196 218 218 213 213 235 235 231 231 199 199 

87 M Glamis 199 199 215 215 235 235 209 209 241 241 198 198 198 198 213 213 213 213 235 235 231 231 197 197 

102 M Glamis 206 206 216 216 242 242 209 209 238 238 198 198 198 198 213 213 209 209 231 231 231 231 197 197 

107 M Glamis 199 199 215 215 237 237 209 209 240 240 198 198 202 202 213 213 211 211 234 234 228 228 198 198 

120 M Glamis 203 203 218 218 238 238 209 209 238 238 198 198 198 198 213 213 209 209 232 232 246 246 197 197 

121 M Glamis 199 199 215 215 236 236 209 209 238 238 198 198 196 196 213 213 209 209 234 234 246 246 197 197 

122 M Glamis 205 205 215 215 240 240 209 209 240 240 198 198 198 198 213 213 209 209 234 234 231 231 199 199 

124 M Glamis 201 201 216 216 237 237 209 209 234 234 198 198 198 198 213 213 209 209 231 231 231 231 198 198 

125 M Glamis 199 199 216 216 237 237 209 209 236 236 198 198 200 200 213 213 209 209 234 234 246 246 198 198 

127 M Glamis 197 197 215 215 233 233 209 209 236 236 198 198 198 198 213 213 209 209 231 231 228 228 197 197 

130 M Glamis 205 205 216 216 240 240 209 209 237 237 198 198 196 196 215 215 211 211 236 236 231 231 198 198 

131 M Glamis 205 205 214 214 240 240 209 209 238 238 198 198 196 196 213 213 209 209 231 231 231 231 198 198 

132 M Glamis 199 199 214 214 235 235 209 209 238 238 198 198 198 198 215 215 213 213 231 231 231 231 198 198 

133 M Glamis 205 205 214 214 240 240 209 209 238 238 198 198 196 196 213 213 211 211 232 232 228 228 198 198 

136 M Glamis 201 201 215 215 237 237 209 209 240 240 198 198 198 198 213 213 213 213 232 232 231 231 198 198 
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137 M Glamis 203 203 214 214 238 238 209 209 238 238 198 198 198 198 213 213 209 209 234 234 231 231 197 197 

138 M Glamis 199 199 215 215 236 236 209 209 238 238 198 198 196 196 213 213 209 209 234 234 231 231 198 198 

139 M Glamis 201 201 214 214 236 236 209 209 236 236 198 198 196 196 219 219 209 209 234 234 228 228 198 198 

140 M Glamis 199 203 215 215 238 238 209 209 235 235 198 198 198 198 213 213 209 209 235 235 231 231 198 198 

141 M Glamis 199 199 218 218 235 235 209 209 236 236 198 198 205 205 213 213 209 209 233 233 228 228 197 197 

142 M Glamis 199 199 215 215 235 235 209 209 241 241 198 198 196 196 215 215 209 209 234 234 228 228 198 198 

143 M Glamis 206 206 214 214 242 242 209 209 238 238 198 198 196 196 213 213 209 209 225 225 231 231 199 199 

145 M Glamis 201 201 214 214 236 236 209 209 238 238 198 198 198 198 219 219 209 209 235 235 231 231 197 197 

146 M Glamis 199 199 213 213 235 235 209 209 236 236 198 198 196 196 213 213 213 213 234 234 231 231 198 198 

147 M Glamis 199 199 215 215 237 237 209 209 236 236 198 198 196 196 213 213 209 209 231 231 231 231 199 199 

148 M Glamis 206 206 214 214 242 242 209 209 240 240 198 198 198 198 213 213 209 209 231 231 246 246 198 198 

150 M Glamis 201 201 215 215 236 236 209 209 238 238 198 198 198 198 213 213 215 215 235 235 246 246 197 197 

151 M Glamis 210 210 215 215 246 246 209 209 238 238 198 198 196 196 217 217 209 209 234 234 228 228 197 197 

152 M Glamis 201 201 215 215 236 236 209 209 238 238 198 198 196 196 215 215 209 209 231 231 228 228 197 197 

153 M Glamis 199 203 214 214 239 239 209 209 241 241 198 198 198 198 215 215 209 209 233 233 231 231 197 197 

154 M Glamis 201 201 214 214 236 236 209 209 236 236 198 198 198 198 215 215 213 213 231 231 216 216 198 198 

257 M Glamis 203 203 215 215 238 238 209 209 236 236 198 198 198 198 217 217 209 209 233 233 231 231 197 197 

261 M Glamis 208 208 217 217 244 244 209 209 236 236 198 198 198 198 213 213 209 209 235 235 231 231 198 198 

265 M Glamis 210 210 215 215 246 246 209 209 241 241 198 198 196 196 217 217 209 209 234 234 228 228 197 197 

345 M Glamis 208 208 215 215 244 244 209 209 236 236 198 198 198 198 215 215 213 213 233 233 228 228 198 198 

350 M Glamis 199 199 215 215 235 235 209 209 241 241 198 198 198 198 213 213 213 213 231 231 231 231 198 198 

351 M Glamis 199 199 215 215 235 235 209 209 236 236 198 198 198 198 218 218 213 213 235 235 228 228 199 199 

355 M Glamis 205 205 216 216 240 240 209 209 236 236 198 198 198 198 213 213 213 213 233 233 228 228 198 198 

357 M Glamis 201 201 216 216 236 236 209 209 241 241 198 198 198 198 213 213 209 209 235 235 231 231 198 198 

360 M Glamis 197 197 216 216 233 233 209 209 238 238 198 198 198 198 215 215 215 215 235 235 228 228 198 198 

367 M Glamis 207 207 215 215 242 242 209 209 237 237 198 198 196 196 213 213 209 209 233 233 231 231 198 198 

369 M Glamis 200 200 216 216 234 234 209 209 241 241 198 198 198 198 213 213 209 209 234 234 231 231 198 198 

374 M Glamis 206 206 215 215 242 242 209 209 237 237 198 198 198 198 213 213 213 213 234 234 231 231 198 198 

375 M Glamis 201 201 215 215 236 236 209 209 235 235 198 198 196 196 213 213 213 213 234 234 228 228 198 198 

377 M Glamis 199 199 215 215 235 235 209 209 241 241 198 198 198 198 213 213 213 213 230 230 231 231 198 198 

379 M Glamis 201 201 215 215 237 237 209 209 241 241 198 198 198 198 213 213 213 213 233 233 228 228 198 198 

382 M Glamis 199 199 215 215 235 235 209 209 241 241 198 198 198 198 213 213 209 209 235 235 231 231 198 198 
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467 M Glamis 199 199 215 215 237 237 209 209 238 238 198 198 196 196 213 213 209 209 233 233 228 228 198 198 

485 F Glamis 199 206 214 215 237 242 209 209 241 241 198 198 198 198 213 213 209 213 231 234 231 231 199 199 

488 M Glamis 199 199 215 215 236 236 209 209 241 241 198 198 198 198 218 218 209 209 231 231 231 231 198 198 

507 M Glamis 199 199 215 215 235 235 209 209 236 236 198 198 196 196 213 213 209 209 234 234 231 231 198 198 

550 M Glamis 199 199 215 215 236 236 209 209 241 241 198 198 198 198 217 217 211 211 211 211 246 246 197 197 

573 M Glamis 206 206 215 215 242 242 209 209 236 236 198 198 196 196 219 219 209 209 234 234 231 231 198 198 

38 F JHI 199 199 215 230 237 237 209 209 236 236 198 198 198 202 213 213 209 209 234 234 231 231 185 185 

39 M JHI 199 199 216 216 237 237 209 209 238 238 198 198 196 196 215 215 213 213 236 236 228 228 198 198 

40 M JHI 199 199 209 209 251 251 228 228 234 234 198 198 190 190 215 215 209 209 238 238 222 222 198 198 

69 M JHI 199 199 215 215 237 237 209 209 238 238 198 198 198 198 217 217 213 213 233 233 231 231 198 198 

70 M JHI 201 201 215 215 236 236 209 209 238 238 198 198 198 198 213 213 209 209 234 234 228 228 198 198 

71 M JHI 201 201 215 215 237 237 209 209 241 241 198 198 196 196 218 218 209 209 234 234 231 231 198 198 

73 M JHI 205 205 215 215 240 240 209 209 238 238 198 198 198 198 219 219 213 213 236 236 246 246 198 198 

74 M JHI 200 200 215 215 234 234 209 209 241 241 198 198 188 188 213 213 209 209 233 233 231 231 198 198 

75 F JHI 199 199 215 216 235 237 209 209 237 237 198 198 198 198 213 213 209 213 235 235 231 231 198 198 

156 M JHI 205 205 216 216 240 240 209 209 238 238 198 198 198 198 217 217 209 209 234 234 228 228 198 198 

157 M JHI 199 199 214 214 235 235 209 209 238 238 198 198 198 198 219 219 213 213 236 236 231 231 198 198 

158 F JHI 199 199 214 214 250 250 209 209 234 236 196 198 198 198 213 213 213 213 234 234 231 231 198 198 

159 M JHI 205 205 215 215 240 240 209 209 238 238 198 198 198 198 215 215 209 209 234 234 231 231 197 197 

160 M JHI 201 201 215 215 236 236 209 209 238 238 198 198 188 188 213 213 213 213 234 234 231 231 199 199 

164 M JHI 199 199 215 215 236 236 209 209 241 241 198 198 196 196 213 213 209 213 235 235 231 231 197 197 

168 M JHI 205 205 216 216 240 240 209 209 238 238 198 198 198 198 213 213 209 209 234 234 231 231 198 198 

170 M JHI 199 199 216 216 235 235 209 209 235 235 198 198 196 196 213 213 213 213 234 234 231 231 197 197 

171 M JHI 205 205 215 215 240 240 209 209 236 236 198 198 200 200 213 213 209 209 233 233 231 231 198 198 

173 M JHI 206 206 214 214 242 242 209 209 236 236 198 198 188 188 213 213 211 211 234 234 231 231 197 197 

174 F JHI 201 210 215 217 236 246 209 209 238 238 198 198 198 198 213 217 209 209 231 235 231 246 198 199 

175 F JHI 199 201 215 215 236 236 209 209 241 241 198 198 198 198 213 213 209 209 231 234 228 228 197 199 

176 M JHI 199 199 215 215 234 234 209 209 235 235 198 198 198 198 213 213 209 209 231 231 231 231 197 197 

177 M JHI 206 206 214 214 242 242 209 209 238 238 198 198 198 198 213 213 211 211 234 234 228 228 197 197 

178 M JHI 205 205 215 215 240 240 209 209 239 239 198 198 198 198 213 213 211 211 234 234 246 246 198 198 

179 M JHI 205 205 215 215 240 240 209 209 242 242 198 198 188 188 213 213 213 213 234 234 228 228 198 198 

180 M JHI 200 200 215 215 235 235 209 209 236 236 198 198 198 198 213 213 209 209 234 234 231 231 198 198 
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181 M JHI 207 207 215 215 242 242 209 209 238 238 198 198 202 202 217 217 213 213 232 232 228 228 198 198 

182 M JHI 200 200 215 215 234 234 209 209 239 239 198 198 198 198 213 213 211 211 234 234 231 231 198 198 

185 M JHI 197 197 217 217 233 233 209 209 242 242 198 198 198 198 215 215 213 213 234 234 231 231 198 198 

186 M JHI 203 203 215 215 238 238 209 209 241 241 198 198 198 198 213 213 209 209 235 235 231 231 198 198 

187 M JHI 210 210 215 215 246 246 209 209 241 241 198 198 196 196 213 213 213 213 235 235 231 231 197 197 

188 M JHI 199 199 215 215 236 236 209 209 239 239 198 198 198 198 217 217 209 209 231 231 228 228 197 197 

189 M JHI 197 197 215 215 233 233 209 209 240 240 198 198 196 196 213 213 209 209 234 234 231 231 198 198 

190 M JHI 199 199 215 215 236 236 209 209 241 241 198 198 196 196 213 213 213 213 234 234 231 231 198 198 

191 M JHI 210 210 215 215 246 246 209 209 238 238 198 198 188 188 213 213 209 209 232 232 228 228 198 198 

192 F JHI 201 206 215 215 236 242 209 209 236 238 198 198 198 198 215 219 209 209 235 235 228 246 198 198 

193 M JHI 199 199 215 215 237 237 209 209 238 238 198 198 202 202 215 215 209 209 234 234 228 228 197 197 

195 M JHI 205 205 215 215 240 240 209 209 236 236 198 198 198 198 213 213 209 209 231 231 231 231 198 198 

197 M JHI 201 201 215 215 236 236 209 209 236 236 198 198 198 198 213 213 209 209 234 234 228 228 198 198 

198 M JHI 199 199 215 215 237 237 209 209 236 236 198 198 198 198 217 217 213 213 236 236 228 228 198 198 

200 M JHI 199 199 217 217 235 235 209 209 239 239 198 198 196 196 213 213 213 213 230 230 231 231 198 198 

240 M JHI 199 199 215 215 235 235 209 209 241 241 198 198 198 198 213 213 209 209 234 234 228 228 197 197 

241 M JHI 199 199 215 215 235 235 209 209 241 241 198 198 198 198 213 213 209 209 231 231 231 231 197 197 

243 M JHI 201 201 215 215 236 236 209 209 238 238 198 198 198 198 213 213 213 213 235 235 231 231 198 198 

246 M JHI 205 205 215 215 240 240 209 209 241 241 198 198 196 196 213 213 209 209 233 233 231 231 197 197 

251 M JHI 197 197 215 215 233 233 209 209 236 236 198 198 198 198 219 219 211 211 232 232 231 231 198 198 

320 M JHI 200 200 215 215 235 235 209 209 238 238 198 198 198 198 213 213 209 209 233 233 228 228 197 197 

322 M JHI 199 199 216 216 235 235 211 211 238 238 198 198 196 196 213 213 213 213 235 235 231 231 197 197 

327 M JHI 205 205 215 215 240 240 209 209 238 238 198 198 198 198 213 213 211 211 235 235 231 231 198 198 

635 M JHI 203 203 215 215 238 238 209 209 238 238 198 198 198 198 215 215 213 213 235 235 231 231 198 198 

9 M Gilston 205 205 215 215 240 240 209 209 236 236 198 198 198 198 213 213 215 215 232 232 231 231 199 199 

10 F Gilston 197 201 215 215 233 236 209 209 238 238 198 198 196 198 213 213 209 213 235 235 231 231 198 198 

11 F Gilston 197 199 215 215 233 236 209 209 238 238 198 198 196 198 213 213 211 213 232 234 231 231 198 198 

12 M Gilston 199 199 217 217 237 237 209 209 241 241 198 198 198 198 213 213 209 209 235 235 231 231 198 198 

21 M Gilston 199 199 215 215 237 237 209 209 234 234 198 198 198 198 213 213 209 209 231 231 228 228 198 198 

22 M Gilston 203 203 215 215 239 239 209 209 241 241 198 198 198 198 213 213 213 213 233 233 228 228 198 198 

23 F Gilston 205 205 216 217 240 242 209 209 238 238 198 198 197 198 213 213 209 209 231 231 228 231 197 198 

24 M Gilston 199 199 215 215 235 235 209 209 238 238 198 198 196 196 217 217 209 209 231 231 246 246 198 198 
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25 F Gilston 197 201 215 217 233 237 209 209 238 242 198 198 196 198 213 213 209 209 231 235 228 231 198 198 

26 F Gilston 199 201 215 216 236 236 209 209 241 241 198 198 196 202 213 213 209 215 232 235 231 231 197 197 

34 F Gilston 197 197 214 216 236 240 209 209 238 238 198 198 196 199 213 217 209 209 231 235 231 231 198 198 

50 F Gilston 199 203 214 215 235 239 209 209 238 238 198 198 188 196 213 213 209 211 231 235 231 246 198 198 

66 F Gilston 201 201 215 215 237 237 209 209 234 241 198 198 196 196 213 213 209 209 231 235 231 231 198 198 

67 F Gilston 203 205 215 215 238 240 209 209 238 238 198 198 198 198 213 213 211 213 230 232 231 231 198 199 

201 M Gilston 201 201 215 215 237 237 209 209 238 238 198 198 196 196 213 213 211 211 234 234 231 231 198 198 

205 F Gilston 229 229 209 209 251 251 226 226 235 235 198 198 190 190 213 219 197 197 238 242 222 222 185 185 

206 F Gilston 199 201 215 217 237 237 209 209 236 238 198 198 196 198 213 213 209 209 233 235 231 231 198 198 

218 M Gilston 200 200 215 215 235 235 209 209 236 236 198 198 198 198 213 213 209 209 234 234 231 231 198 198 

219 M Gilston 203 203 215 215 238 238 209 209 241 241 198 198 196 196 213 213 213 213 234 234 231 231 199 199 

220 M Gilston 199 199 215 215 235 235 209 209 238 238 198 198 198 198 217 217 209 209 231 231 231 231 198 198 

221 F Gilston 195 197 215 215 233 233 209 209 241 241 198 198 198 198 213 213 209 209 231 234 228 246 198 198 

222 F Gilston 205 207 215 215 240 242 209 209 239 239 198 198 196 198 213 213 209 209 231 231 230 230 198 198 

226 M Gilston 229 229 209 209 251 251 226 226 234 234 198 198 190 190 217 217 197 197 242 242 222 222 185 185 

227 M Gilston 205 205 215 215 240 240 209 209 236 236 198 198 198 198 218 218 209 209 232 232 228 228 198 198 

228 F Gilston 199 203 215 217 237 239 209 209 236 236 198 198 196 198 213 213 209 209 230 230 231 231 198 198 

229 M Gilston 199 199 215 215 237 237 209 209 238 238 198 198 196 196 215 215 211 211 234 234 231 231 198 198 

232 M Gilston 199 199 215 215 235 235 209 209 238 238 198 198 198 198 213 213 213 213 232 232 231 231 198 198 

233 M Gilston 205 205 217 217 240 240 209 209 238 238 198 198 198 198 213 213 213 213 233 233 246 246 198 198 

234 M Gilston 205 205 215 215 240 240 209 209 238 238 198 198 198 198 221 221 209 209 235 235 231 231 199 199 

304 F Gilston 199 207 215 215 235 242 209 209 238 238 198 198 196 197 215 218 209 213 231 235 228 231 197 197 

308 F Gilston 199 201 214 215 236 236 209 209 234 236 198 198 198 198 213 213 209 213 231 231 231 231 198 199 

434 F Gilston 199 203 214 214 235 238 209 209 238 238 198 198 198 198 213 213 209 209 235 235 231 231 198 198 

595 M Gilston 205 205 215 215 240 240 209 209 241 241 198 198 198 198 218 218 209 209 232 232 228 228 197 197 

713 M Gilston 195 195 215 215 231 231 209 209 238 238 198 198 198 198 215 215 209 209 234 234 231 231 197 197 

316 M Claxby 222 222 214 214   209 209 239 239 198 198 198 198 213 213 213 215 235 235 231 231 198 198 

532 M Claxby 205 205 215 215 240 240 209 209 236 236 198 198 198 198 213 213 209 209 231 231 231 231 198 198 

660 M Harper Adams 200 200 215 215 235 235 209 209 241 241 198 198 196 196 213 213 209 209 233 233 231 231 199 199 

662 M Harper Adams 199 199 215 215 236 236 209 209 241 241 198 198 198 198 217 217 209 209 233 233 231 231 198 198 

663 M Harper Adams 200 200 215 215 235 235 209 209 241 241 198 198 198 198 219 219 209 209 234 234 231 231 198 198 

665 M Harper Adams 203 203 215 215 238 238 209 209 236 236 198 198 198 198 218 218 209 209 230 230 231 231 198 198 
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723 F Down Farm 213 213 224 231 244 248 209 209 238 240 198 198 190 190 221 221 210 210 233 237 228 228 193 193 

725 F Down Farm 213 213 224 231 244 248 209 209 238 240 228 228 190 190 221 221 210 210 233 237 228 228 193 193 

727 F Down Farm 213 213 224 231 244 248 209 209 238 240 228 228 190 190 221 221 210 210 233 237 228 228 193 193 

755 F Down Farm 213 213 224 231 244 248 209 209 238 240 228 228 190 190 221 221 210 210 233 237 228 228 193 193 

756 M Down Farm 223 223 209 209 250 250 226 226 234 234 198 198 190 190   197 197 240 240 222 222 185 185 
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Appendix 2: A comparison of the allele frequencies within and between 

three Scottish Dolerus aeneus populations 
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Figure A1: A comparison of the allele frequencies within 3 Scottish Dolerus aeneus populations [Mains 

of Glamis (blue bars), The James Hutton Institute (red bars) and New Gilston (yellow bars)] sampled in 

2009 at three polymorphic microsatellite loci.  
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Figure A2: A comparison of the allele frequencies within 3 Scottish Dolerus aeneus populations [Mains 

of Glamis (blue bars), The James Hutton Institute (red bars) and New Gilston (yellow bars)] sampled in 

2010 at three polymorphic microsatellite loci.  
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Figure A3: A comparison of the allele frequencies between the haploid male individuals (green bars) and 

all of the known diploid individuals (orange bars) sampled at Mains of Glamis in 2009 at three 

microsatellite loci. 
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Figure A4: A comparison of the allele frequencies between the haploid male individuals (green bars) and 

all of the known diploid individuals (orange bars) sampled at The James Hutton Institute in 2009 at three 

microsatellite loci. 
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Figure A5: A comparison of the allele frequencies between the haploid male individuals (green bars) and 

all of the known diploid individuals (orange bars) sampled at New Gilston in 2009 at three microsatellite 

loci. 
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Figure A6: A comparison of the allele frequencies between the haploid male individuals (blue bars) and 

all of the known diploid individuals (red bars) sampled at Mains of Glamis in 2010 at three microsatellite 

loci. 
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Figure A7: A comparison of the allele frequencies between the haploid male individuals (blue bars) and 

all of the known diploid individuals (red bars) sampled at The James Hutton Institute in 2010 at three 

microsatellite loci. 
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Figure A8: A comparison of the allele frequencies between the haploid male individuals (blue bars) and 

all of the known diploid individuals (red bars) sampled at New Gilston in 2010 at three microsatellite loci. 

 

 


