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Summary 

In the hormonal control of sodium transport in the lung via glucocorticoids there is 

substantial evidence that supports a central role for serum- and glucocorticoid-kinase 

(SGK1).  The activity of this kinase is dependent upon phosphorylation of two distinct 

residues by the target of rapamycin complex 2 (TORC2) and phosphoinositide-

dependent Kinase 1 (PDK1), both of which are dependent upon Phosphoinositide-3-

Kinase (PI3K).  However, SGK1 knockout mice do not display any pulmonary 

abnormalities.  Thus the role that SGK1 plays is not fully understood.  In this thesis I 

have explored the role of this kinase in dexamethasone-induced ENaC activity in the 

H441 human bronchiolar cell model. 

 

Dexamethasone-deprived cells do not display ENaC activity as there is no amiloride 

sensitive current in these cells.   Groups of dexamethasone-treated H441 cells do 

display ENaC activity; however single cells do not display ENaC activity despite 

displaying an increase in current.  Thus cell-cell contact is vital to the development of 

amiloride sensitivity.  SGK1 activity does not mimic the electrophysiological effects of 

dexamethasone-stimulation as there is no amiloride sensitivity seen after ~3 hours 

despite a clear increase in SGK1 activity.  Furthermore after ~24 hours stimulation, 

there is a clear amiloride sensitive current although SGK1 activity is comparable to that 

of dexamethasone-deprived cells.  These findings further question whether SGK1 is 

required for dexamethasone-evoked ENaC activity. 

 

Inhibition of PI3K, TORC2 and SGK1 abolished ENaC activity.  However inhibition of 

TORC1 had no effect upon dexamethasone induced ENaC activity.  Thus demonstrates 

that the maintenance of glucocorticoid induced ENaC activity, in pulmonary epithelium, 

is dependent upon the PI3K-TORC2-SGK1 signalling pathway.  Furthermore PI3K 

plays a permissive, but critical role as its activity is required for SGK1 activity.  

However without SGK1 activity dexamethasone induced ENaC activity cannot be 

maintained. 
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Chapter 1 – General Introduction 
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The Respiratory system 

All metabolic processes that take place in living organisms require energy in order to 

function.  The most efficient way to provide this energy is through aerobic mechanisms 

that use oxygen (O2) and produce carbon dioxide (CO2).  Uptake and secretion of these 

gases is therefore vitally important and is achieved through diffusion.  Unicellular 

organisms can exchange these gases directly through the cell membrane with the 

external environment; however, in larger complex organisms it is not possible for every 

cell to be in contact with the external environment, therefore the development of 

specialised structures and organs, that could exchange O2 and CO2 for the whole animal, 

were vital for the evolution of large complex organisms. 

Functions of the respiratory system 

The primary function of the respiratory system is gas exchange. However, the act of 

inspiring air brings with it, its own set of problems, which the respiratory system has 

evolved to overcome. 

Gas exchange 

Air from the atmosphere during normal breathing is inspired through the nose and 

passes through the nasopharynx which performs the vital function of warming and 

humidifying the air.  This process is important as, without it, body temperature would 

drop, thereby optimal temperature for enzymatic function would not be maintained.  

Furthermore inspired air has a much lower humidity than air in the respiratory system 

thus, without first being humidified, water vapour would move into the air from the 

lining of the respiratory system, thereby reducing airway surface hydration.  By the time 

inspired air reaches the site of gas exchange, the alveoli, O2 has a pressure of 
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~100mmHg which is lower that atmospheric O2 which is ~159mmHg, because the 

partial pressure of O2 (PO2) in the alveoli is a combination of uptake and the supply.  

The pulmonary artery carries blood which has a low concentration of O2 (PO2 is 

~40mmHg), to the lungs; therefore O2 will move into the blood via diffusion.  However 

O2 must first dissolve into the fluid lining the alveoli before it can move via diffusion 

into the blood.  This imposes a possible barrier, as Fick’s law of diffusion states that the 

net rate of diffusion of a substance is inversely proportional to the thickness of what it 

must cross.  This means that while the liquid lining of the alveoli is extremely 

important, the control of its depth is equally important as, if the depth were to increase, 

then the time taken for O2 to move into the blood would greatly increase and could lead 

to insufficient gas exchange.  The reverse is true for CO2 where the PCO2 is higher in 

the blood than in the alveoli and CO2 is expelled.  Excess fluid in the lung has been 

shown to cause  inefficient gas exchange (Berger et al, 1996) and is a contributory 

factor in respiratory distress syndrome (RDS) which is a leading cause of death in 

premature and newborn infants (O’Brodovich, 1996).  Therefore tight regulation of 

alveolar hydration is vitally important to the healthy function of the respiratory system. 

Defence against infection 

However hydration of the respiratory system is not just important at the level of gas 

exchange, the periciliary liquid layer (PCL) also needs to be tightly regulated so that 

efficient mucociliary clearance can take place.  Mucus secreted into the airway lumen is 

constantly transported toward the pharynx, where it is then swallowed or expelled and 

has the purpose of trapping inhaled particles and potential pathogens.  The upward 

movement is the result of beating cilia which propel the mucus towards the pharynx. 

However, this is reliant on the adequate hydration of the PCL (Boucher, 1999).  This 

thin film of liquid is required so that the cilia can beat effectively and propel the 
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overlying, more viscous mucus towards the pharynx.  Improper hydration of the PCL 

results in the mucus layer collapsing into the cilia and, due to the higher viscosity, the 

cilia are unable to beat effectively thereby impairing mucociliary clearance. Impaired 

mucociliary clearance is associated with increased incidence of lung infection and is 

particularly evident in cystic fibrosis, a genetic disorder that results in improper 

hydration of the airway surface liquid (ASL) which is the collective name for the PCL 

and mucus layer (Boucher, 2004). 

Development 

The process of lung development is highly dependent upon a fluid template which 

provides the distending pressure required for the formation of the lung.  The closed 

vocal chords, larynx and nasopharynx help to prevent fluid escaping from the 

developing lung and therefore maintain the distending pressure (Brown et al, 1983; 

Fewell and Johnson, 1983).  Further evidence to support this is that pathological states, 

such as oligohydramnios that lead to a decrease in distending pressure, result in 

hypoplastic lungs and lungs of a smaller volume (Moessinger et al, 1986; Wallen et al, 

1990; Wallen et al, 1994) and the opposite also appears to be true as it has been 

reported that excess lung fluid results in larger and even hyperplastic lungs (Alcorn et 

al, 1977; Moessinger et al, 1990).  Furthermore, it has been shown that surgically 

created congenital diaphragmatic hernia results in hypoplastic lungs and that by causing 

tracheal occlusion, using surgically implanted silicon balloons to restore hydrostatic 

pressure, the extent of hypoplasia can be minimised (Nelson et al, 2005).  However, this 

study also found that this was improved by cyclical release of pressure every 47 hours. 

This may mimic foetal breathing movements, which appear to be required for normal 

lung growth (Wigglesworth and Desai, 1979).  Gas exchange would be impossible if 
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this fluid remained at birth, therefore the regulated clearance is vital to the survival of 

the newborn, as excess fluid can contribute to respiratory distress (O’Brodovich, 1996). 

The hydration of the respiratory system is therefore dynamic throughout development, 

birth and adult life. Without regulation of the process underpinning hydration, the 

respiratory system would not be able to carry out its required functions, which would 

lead to disease states such as cystic fibrosis, pulmonary oedema, RDS and, eventually, 

death. 

General Anatomy and physiology 

In order to function efficiently the respiratory system has evolved a very specific 

anatomy and physiology that contains specialised epithelial cells that line the respiratory 

lumen.  These cells act together to maintain sufficient hydration so that gas exchange, 

mucociliary transport and development are effective throughout foetal and adult life.  

One of the properties of these epithelial cells that enable them to maintain adequate 

hydration, is their ability to form selective barriers. 

Ability to form a barrier 

The formation of zonulae occludentes or tight junctions (TJ) by epithelial cells underlies 

their ability to form a sheet of cells that act as selective barriers.  TJ form a belt-like 

area around the circumference of a cell, close to the apical border, where protein 

complexes from adjacent cells interact, thus creating a barrier that can prevent the 

movement of molecules through extracellular pathways.  The formation of TJ naturally 

leads to the formation of polarity which underlines many of the vectorial transport 

systems in the body and results in an apical side and a basolateral side which are 

functionally different.  The degree of “tightness” of epithelial tissue can vary and is 

thought to be attributed to differences in membrane proteins that form the tight 
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junctions (for review see Bauer et al, 2010), and this degree of “tightness” has been 

suggested to affect the permeability of epithelia to ions and macromolecules (Frömter 

and Diamond, 1972), thereby both the polarity and tightness of airway epithelia are 

vitally important in maintaining the healthy functioning of the respiratory system.  The 

observation that cell-cell contact alters the electrical properties of airway epithelium 

(Brown et al, 2008) highlights the importance of cell contact in the ability of epithelial 

cells to form a barrier and carry out their required function. 

Anatomy 

The respiratory system has a very distinctive branching pattern from the trachea and can 

be divided into two main sections: the upper, conducting zone and the lower, respiratory 

acinus.  The conducting zone consists of the larynx, trachea, bronchi and terminal 

bronchioles.  As the name suggests these play no part in gas exchange and provide a 

low resistance pathway to the respiratory zone. The conducting airways also have an 

important role in defence against infection and it is in the upper airways that 

mucociliary transport occurs.  The respiratory zone consists of the respiratory 

bronchioles, alveolar ducts and alveolar sacs and all are involved in gas exchange.  The 

epithelia lining the airways act as specialised barriers that enable each part of the 

respiratory system to provide a specific function that is vital to its continued healthy 

functioning.
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Figure 1.1 shows a diagram of the respiratory system. Highlighted are the conducting airways.  The 

zoomed in view highlights the Airway surface liquid (ASL) and the mucus layer.  Cilia can be clearly 

seen and beat in order to propel the mucus layer towards the larynx. 

Cells of the airway epithelium 

The epithelium of the trachea down to the terminal bronchi is lined with 

pseudostratified epithelium. In the upper airways the epithelium is ciliated so as 

mucociliary transport can take place.  The epithelium contains mucous secretory cells 

known as goblet cells. These cells are found in the upper and lower respiratory tract and 

secrete mucins, which combine with other secretions from epithelial cells in the 

respiratory tract, to produce mucus which helps to protect the airway lining from 

mechanical and chemical damage and traps irritants and pathogens.  Goblet cells have 

been shown to increase in number in response to irritants (for review see Rodgers, 

2002). 
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Submucousal Glands 

These glands are found in the upper airways and secrete mucins, antimicrobial proteins 

and fluid which provide some of the components of mucus. Due to the morphology of 

the gland, the fluid secretions help to flush out the macromolecule secretions.  Fluid 

secretion helps to maintain the PCL required for mucociliary transport and secretion is 

stimulated by the vagus nerve (Haxhiu et al, 1990).  Administration of acetylcholine to 

excised bronchi mimics the effect of vagus nerve stimulation on gland secretion 

(Quinton, 1979; Trout et al, 1998).  However regulation of gland secretion is subject to 

control from other inputs such as ATP release from increased apical flow and 

hyposmotic stress (Guyot and Hanrahan, 2002).  It is thought that ATP causes a rise in 

intracellular calcium levels which induces Cl- secretion (Yamaya et al, 1996).  Fluid 

secretion is driven by Cl- and, to a lesser extent, by the secretion of bicarbonate, which 

is also secreted by submucousal glands.  The primary function of bicarbonate is to act as 

a buffer to resist changes in pH which would affect enzyme activity.  

The regulation of airway hydration to maintain efficient mucociliary transport is 

determined by the balance between fluid secretion via submucousal glands and the 

absorption of fluid by the epithelial cells lining the upper airways.  The nature of these 

processes will be discussed later. 

Another cell type found in the conducting airways is the Clara cell. These are cuboidal, 

non-ciliated cells found mainly in the bronchioles, although they are also found in the 

upper airways to a lesser extent (Broers et al, 1992).  They have a role in mucus and 

surfactant production and secretion and also play an important role in neutralising 

toxins, via cytochrpme P-450 enzymes.  Clara cell secretory protein is thought to have a 

protective role against the development of adenomas.  For example mice lacking Clara 

cell secretory protein are more susceptible to developing lung tumorigenesis when 
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exposed to a carcinogen (Yang et al, 2004).  Due to the distribution throughout the 

respiratory system, the role Clara cells play in airway hydration is likely to be minimal.   

 

The respiratory zone contains the alveoli which is the site of gas exchange.  In order for 

gas exchange to take place, the alveoli consist mainly of two types of epithelial cell: the 

squamous alveolar type I (ATI) pneumocyte and the cuboidal alveolar type II (ATII) 

pneumocyte that have specialised functions and morphology. 

Alveolar type I cells 

ATI cells only account for approximately 10% of the total cells in the normal human 

lung. However, due to their shape, thin flat squamous epithelium with cytoplasmic 

projections, they account for approximately 98% of the alveolar surface (Stone el al, 

1992).  This morphology, taking into account Fick’s law, allows for effective diffusion 

of gas into and out of the blood supply.  This also leads to the major obstacle into the 

study of this cell type as they are extremely fragile and isolation to create cultured ATI 

cells is very difficult to achieve.  Initially the existence of these cells was debated until 

electron microscopy studies provided indisputable evidence for the existence of an 

epithelial lining consisting of ATI and ATII cells (Low, 1952).  With advancements in 

techniques, much more has been learned about this cell type and its role in hydration.  

The discovery of the epithelial Na+ channel (ENaC) in ATI cells has changed the 

original view that ATII cells are the main source of Na+ transport that drives the 

absorption of fluid and suggests that ATI cells play a vital role in the transport of ions 

and thus hydration of the alveoli (Johnson et al, 2002; Bourke et al, 2005; Helms et al, 

2006).   
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Alveolar type II cells 

ATII cells are smaller than ATI cells and are cuboidal, with secretory granules called 

lamellar bodies that store the components of pulmonary surfactant.  Surfactant is the 

name given to all substances that can reduce surface tension. The production of 

surfactant is extremely important as, without it, the muscular effort required to 

overcome surface tension in order to prevent the lung collapsing, would be exhaustive.  

Immaturity of the surfactant producing system is a contributing factor of RDS in 

premature infants (O’Brodovich, 1996).  A great deal more is known about ATII cells 

as they are much easier to isolate and culture.  Kikkawa and Yoneda were the first to 

propose a method of isolation for in vitro studies in 1974 (Kikkawa and Yoneda 1974).  

As well as roles in pulmonary surfactant production, ATII cells act as progenitor cells 

that replace damaged ATI cells in the event of lung injury (Evans et al, 1973; Kim et al, 

2006) and provide a defence against infection as they synthesis immune effector 

molecules (Vanderbilt et al, 2003).  ATII cells were thought to be the primary source of 

Na+ transport in the alveoli and various studies have shown ATII cells to contain ENaC 

subunits using northern blot analysis, RT-PCR, immunoprecipitation and in situ 

hybridisation (Yue et al, 1995; Planes et al, 1997; Bove et al, 2010). 

The accepted paradigm for fluid absorption in lung alveoli is that uptake of Na+ 

generates osmotic gradients that fluid then follows passively.  The bulk of Na+ transport 

was thought to occur via ENaC in the ATII cells, with ATI cell providing a route for 

water via the aquaporin-5 channel (Nielson et al, 1997); however due to the large 

surface area of the ATI cells, it seemed likely that they might play a much more 

significant role in fluid absorption and a number of studies using isolated ATI cells and 

lung slice preparations support this view (Johnson et al, 2002; Bourke et al, 2005; 

Helms et al, 2006; reviews: Dobbs and Jonhson, 2007; Eaton et al, 2009). 
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Nature of ionic transport in relation to fluid secretion and 

absorption 

Osmosis is the movement of water across a selectively permeable membrane, such as 

the plasma membrane of cells, from an area of high water concentration (or low solute 

concentration) to an area of low water concentration (or high solute concentration).  

Proteins that span the plasma membrane form channels that allow for the selective 

transport of ions.  Large charged molecules can cause the uneven distribution of ions in 

what is known as the Gibbs-Donnan law; however, in most cases, the potential caused 

by this effect is not sufficient to account for the differences seen in ionic concentrations 

between two fluids, such as that between lung fluid in the developing foetus and that of 

the plasma (Adamson et al, 1969).  The active transport of specific ions leads to the 

generation of osmotic gradients that either favours fluid secretion or absorption. 

The Na+/K+ ATPase exchanger pumps out Na+ in a ratio of three Na+ ions out for two 

K+ ions in.  This helps to keep the intracellular concentration of Na+ low (~10mM), 

therefore creating a chemical gradient that favours the uptake of Na+ from the 

surrounding fluid.  The ratio of Na+ out to K+ ions in means that there is a net loss of 

positive charge from the cell, resulting in a negative potential, thus the effect of the 

Na+/K+ ATPase is to generate an electrochemical gradient that favours Na+ entry into 

the cell, for example via ENaC.  In order to prevent depolarisation of the cell from build 

up of K+ concentration, K+ channels present in the membrane allow K+ to “leak” out of 

the cell down the chemical gradient.  The polarised nature of the respiratory epithelium 

means that vectorial transport of ions can be achieved.  The Na+/K+ ATPase is located 

on the basolateral side of the cell and ENaC located in the apical membrane, thus the 

electrochemical gradient set up by the Na+/K+ ATPase favours the entry of Na+ via the 
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apical ENaC channels.  Thus the movement of Na+ creates an osmotic gradient that 

fluid can follow passively, either through the paracellular pathway or via aquaporins. 

Secondary Active Transport 

The electrochemical gradient favouring Na+ entry generated by Na+/K+ ATPase can 

provide the driving force for secondary active transport and it is this property that is 

thought to govern fluid secretion.  Cl- enters the cell via the basolateral Na+, K+, 2Cl- 

co-transporter (NKCC) thereby elevating the intracellular Cl- concentration,  allowing 

Cl- to exit via apically located Cl- channels, therefore creating an osmotic gradient 

which water will follow.   As in the Na+ absorption model, K+ channels located in the 

basolateral membrane help prevent depolarisation of the cell by allowing K+ to exit.  

This model of Cl- was first put forward by Silva et al in 1977 and is a form of secondary 

active transport (Silva et al, 1977). 
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Figure 1.2 Simple diagram of fluid absorption and secretion.  Na+ / K+-ATPase generates an 

electrochemical gradient that favours Na+ entry via apical Na+ channels, thus creating an osmotic gradient 

favouring fluid absorption via the paracellular pathway or via aquaporins (AQP) located in the membrane.  

K+ exits the cell via basolateral K+ channels to prevent depolarisation from K+ build up.  Cl- enters the 

cell via the NKCC co-transporter, thus raising the intracellular [Cl-] and Cl- is secreted through apical Cl- 

channels.  This creates an osmotic gradient that favours the secretion of fluid through the paracellular 

pathway or possibly through aquaporins (AQP).  K+ channels help prevent depolarisation as in the model 

of Na+ absorption.   Thus the balance between Na+ absorption and Cl- secretion determines the hydration 

of the respiratory system. 

 

The regulation of Na+ absorption and Cl- secretion and the balance between this is the 

major determinate of respiratory hydration and therefore the mechanism involved in 

their regulation is of critical importance.  Furthermore the identification of the specific 



 14

channels involved is of equal importance so that strategies can be developed to treat 

diseases which result from impairment of these processes. 

Importance of hydration in development 

As discussed earlier, lung development needs a fluid template, required to provide 

distending pressure.  The origin of this fluid was first assumed to be inhaled amniotic 

fluid. However, a study by Adamson and colleagues (Adamson et al, 1969) showed that 

there were differences between the compositions of the two fluids: the concentrations of 

phosphate and HCO- were lower and Cl- and H+ were higher in lung liquid than in either 

amniotic or plasma filtrate and therefore could not be due to a mixing of amniotic and 

plasma filtrate.  Furthermore the Gibbs-Donnan law could not explain this difference as 

there were low levels of protein in lung fluid. This lead them to the conclusion that the 

lung liquid must be the result of secretions by the foetal lung and not a mixture of 

amniotic and plasma filtrate (Adamson et al, 1969).  Coupled with the observation that 

lung epithelium is very permeable to water (Normand et al, 1971), this lead to the 

theory that active transport of ions could be the driving force for fluid movement from 

the plasma to the lungs.  Olver and Strang undertook work to study the movement of 

ions between the plasma and lung liquid in foetal lambs and to compare these results 

with the predicted movement of ions based on the electrochemical gradient in order to 

determine whether active transport of a specific ion or ions could be the determinate of 

the fluid secretions in the developing lung.  This was achieved by adding radioactively 

labelled ions to either the lung liquid or into the blood stream via intravenous injection 

and then measuring samples taken from either the lung liquid or blood for radioactivity.  

Using this approach they were able to determine that Cl- was actively transported and 

secreted into the lung lumen and that Na+ follows passively. This movement of NaCl 
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creates an osmotic gradient that generates the liquid secretion into the lung (Olver and 

Strang, 1974).   Furthermore they showed that potassium cyanide inhibited Cl- transport, 

which leads to fluid absorption. They hypothesised that this could not account for the 

removal of liquid at birth as the rate of absorption was too slow to account for this, thus 

a change in the permeability of the lung epithelium would be needed to effectively clear 

the lungs of fluid in order for gas exchange to take place (Olver and Strang, 1974).  This 

study, however, did not provide any evidence as to the identity of the ion channels 

involved in this mechanism. 

Chloride channels involved in fluid secretion 

It would seem unlikely that CFTR would be the major route for Cl- secretion in the 

developing lung due to the lack of impaired lung development in patients with cystic 

fibrosis (Sturgess and Imrie, 1982).  A more likely candidate is the ClC-2 channel of 

which there exists a number of studies providing evidence for the involvement of this 

channel.  Murray et al have shown using immunohistochemistry that ClC-2 is expressed 

in the apical membrane of foetal lung epithelium and that expression decreases after 

birth (Murray et al, 1995).  Furthermore the low pH of lung liquid reported by Adamson 

and colleagues (~6.3; Adamson et al, 1969) would appear to be a stimulus for Cl- 

secretion as the ClC-2 channel has been shown to be activated by low pH (Schwiebert et 

al, 1998; Blaisdell et al, 2000).  Blaisdell et al also showed that blockers of other Cl- 

channels (CFTR, ClC-3 and 5) could not inhibit the increase in Cl- transport seen with 

lowered pH, providing further evidence for the role of ClC-2 (Blaisdell et al, 2000).  

However not all data suggests a role for ClC-2, as this channel has a lower permeability 

to I- than to Cl-, which is the opposite to the ionic flux reported in Olver and Strang, 

1974.  Low pH activation of apical Cl- would lead to a reduction in intracellular Cl- 

concentration and it is therefore interesting to note that NKCC activation has been 
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linked to a reduction in Cl- (Haas et al, 1995), therefore the low pH of the lung liquid 

itself may act as a mechanism to ensure the continual secretion of Cl- and hence lung 

fluid.  The NKCC would appear to be the most likely candidate for basolateral Cl- entry. 

However, evidence from Ussing chamber experiment on xenopus laevis lungs has 

suggested that the HCO-/Cl- anion exchanger may be responsible for Cl- uptake under 

basal conditions and that NKCC is only active under Cl- gradient conditions (Berger et 

al, 2010), although differences between species may explain this..  There are relatively 

few studies in this area, therefore further investigation is needed to provide conclusive 

evidence for the identity of the channels involved in fluid secretion in the developing 

lung.   

Fluid clearance (Birth, change from net secretion to 

absorption) 

While fluid secretion is clearly important for the development of the lung, it needs to be 

cleared in order for respiration to begin.  Initially it was thought that fluid clearance was 

the result of mechanical and Starling forces.  However, studies on rabbits showed that 

lung wet weight decreased almost immediately before birth and is almost completed 

two hours after birth (Aherne and Dawkins, 1964).  Furthermore caesarean section does 

not impede the removal of lung liquid as long as the onset of labour has commenced 

(Bland et al, 1980; Baines et al, 2000).  This observation also suggests that the onset of 

labour is an important trigger for fluid clearance.  This implies that another mechanism 

for the removal of lung liquid must be involved.  There is an increased incident of RDS 

seen in elective caesarean section (Hales et al, 1993) and, along with the observation 

that the levels of adrenaline increase at birth (Lagercrantz and Bistoletti, 1977), these 

indicate a possible role for adrenaline as the trigger for fluid clearance.  In 1983 Brown 
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et al observed that foetal lambs’ sensitivity to adrenaline increased with gestational age, 

which caused a slowing of liquid secretion (before 130 days) that turns to liquid 

absorption (after 147 days) (Brown et al, 1983).  Olver et al in 1986 confirmed these 

observations; however they also investigated ionic flux, using similar methods to that of 

Olver and Strang in 1974, and found that Na+ is actively transported from the lung 

lumen to the plasma.  Furthermore the use of a known Na+ channel blocker, amiloride, 

prevented the adrenaline induced liquid absorption (Olver et al in 1986). These 

experiments therefore suggest that Na+ flux could be the determining factor in driving 

liquid absorption.  They went on to suggest that Na+ and Cl- transport were interlinked 

and that Cl- transport was a result of co-transport with Na+ driven by the Na+/K+-

ATPase via, at the time, an unidentified transporter in the basolateral membrane.  The 

opening of apical Na+ channels would lead to Na+ absorption also driven by Na+/K+-

ATPase, which would cause the uptake of fluid due to a change in osmotic gradients.  

Later experiments, such as the administration of amiloride to the trachea of new born 

guinea pigs, which lead to the development of respiratory distress (O’Brodovich et al, 

1990) further supported the view that Na+ absorption via an apical Na+ channel was 

responsible for fluid clearance.  The effect of adrenaline appears to be mediated via 

cyclic adenosine monophosphate (cAMP) as administration of cAMP to the lungs of 

foetal lambs mimics its effects and this response can be blocked by amiloride (Walters 

et al, 1990). 

The role of glucocorticoids and thyroid hormone 

The rise in adrenaline is preceded by a rise in circulating glucocorticoids (GCs) and 

thyroid hormone before labour (Baines et al, 2000) which lead to the investigation of 

these hormones and the role they may play in the regulation of fluid clearance.  Foetal 

thyroidectomy in lambs prevents the normal response to adrenaline and cAMP 
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analogues (Barker et al, 1988).  This response is only reversed if thyroid hormone and 

GCs are administered together and not independently (Barker et al, 1990).  This 

suggests that these hormones have different targets that are required for the response to 

adrenaline to take place. However it does not provide evidence as to the hormonal 

targets.  A further study confirmed these results and through the use of a protein 

synthesis inhibitor, cycloheximide, determined that the effects of these hormones are 

mediated through a mechanism that requires the synthesis of new protein (Barker et al, 

1991).  However, again this could not provide the identity of the hormonal targets. 

Nevertheless, they did speculate that the likely targets could be the Na+/K+ ATPase and 

apical Na+ channels (Barker et al, 1991).   Further to this, Collett et al in 2002 

demonstrated that isoproterenol, a -adrenoceptor agonist, does not increase Na+ 

conductance (GNa) in  foetal rat distal lung epithelial (FDLE) cells cultured in media 

containing no hormones. Exposure to both thyroid hormone and GCs, isoproterenol did 

cause an increase in GNa, which was amiloride sensitive (Collett et al, 2002).  These 

observations suggest a synergistic mode of action where GCs and thyroid hormone 

prepare the lung for the switch to an absorptive phenotype, while adrenaline activates 

Na+ channels, which results in an increase in GNa, through an amiloride sensitive Na+ 

channel. 

Other hormones involved in fluid clearance 

Epinephrine, thyroid hormone and GC’s are not the only hormones thought to be 

involved in the control of lung fluid clearance.  Arginine vasopressin (AVP) and 

somatostatin are both thought to inhibit lung fluid secretion (Perks and Cassin, 1989; 

Albuquerque et al, 1998), whereas dopamine and serotonin are have been shown to 

activate Na+ transport (Chua and Perks, 1998; Chua and Perks, 1999).  This serves to 

stress the importance of lung fluid clearance to survival, as multiple levels of control 
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mean that if there is a problem with one mechanism, then other alternative mechanisms 

may still be able to initiate fluid clearance and therefore survival at birth is assured. 

Sodium entry pathway 

There is substantial evidence for the role of an apical Na+ channel as the route of Na+ 

absorption. However, the identity of the specific channel involved was not revealed 

until 1993 when Canessa and colleagues identified a novel cDNA sequence from rat 

colonic epithelial tissue that encoded for an amiloride sensitive Na+ channel, which was 

termed α-ENaC (α-epithelial Na+ channel) (Canessa et al 1993).  α-ENaC was 

subsequently found in the kidney and lung (O’Brodovich et al, 1993; Voilley et al, 

1994) and two other subunits were also identified: -ENaC and γ-ENaC (Canessa et al 

1994).  However, when -ENaC and γ-ENaC were expressed independently in Xenopus 

oocytes, they did not produce amiloride sensitive currents, although when co-expressed 

with α-ENaC an amiloride sensitive current that was 100 fold greater than that of those 

where only α-ENaC was expressed, was observed (Canessa et al 1994).  It would 

therefore appear that fully functional ENaC is composed of three separate subunits, α-

ENaC being the major pore forming subunit, while -ENaC and γ-ENaC subunits 

conform selectivity.  Further to this α-ENaC knockout mice die at birth due to 

insufficient fluid clearance, while -ENaC and γ-ENaC knockout mice survive, 

although they do show reduced fluid clearance and develop respiratory problems as a 

result (Hummler et al, 1996).  This not only adds further evidence for α-ENaC being the 

major pore forming unit, but also highlights the importance of ENaC in lung fluid 

clearance. 
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The ENaC channel 

ENaC subunits share ~30% homology and have a large extracellular loop and two 

transmembrane domains that have intracellular N- and C-terminal domains (Canessa et 

al, 1994).  The stoichiometry of ENaC is still under some debate, for example the 

crystal structure of the acid-sensing ion channel has been suggested to be a trimer.  As 

this channel is part of the ENaC subfamily it has been suggested that a 1α, 1 and 1γ 

stoichiometry make up the ENaC channel (Jasti et al, 2007).  However a 3α, 3 and 3γ 

stoichiometry has also been suggested by Staruschenko et al, 2004.  However 

Staruschenko et al results only point to a stoichiometry where the channel contains two 

of each subunit and therefore only hints at the 3α, 3 and 3γ stoichiometry.  

Furthermore by using fluorescence resonance energy transfer to analyse channel 

stoichiometry, these results are reflective of the entire pool of ENaC and therefore the 

stoichiometry of active ENaC in the membrane may be difficult to determine.  The 2α, 

1 and 1γ stoichiometry would appear to be the most supported; however, despite 

similarities in techniques, there is some conflicting data with three studies (Firsov et al, 

1998; Kosari et al, 1998; Anantharam and Palmer 2007) supporting a tetrameric 

stoichiometry, as another study, also using similar techniques, provided support for the 

3α, 3 and 3γ stoichiometry (Snyder et al, 1998).  These studies used co-expression of 

mutant and wild-type ENaC subunits and electrophysiological analysis to determine 

stoichiometry.  These observations are dependent on a number of assumptions such as 

wild-type and mutants will express equally and associate randomly. If any of the 

assumptions made by these studies is incorrect then this will lead to a false 

interpretation of the results.  Despite the differences in reported stoichiometry, the 

tetrameric arrangement would appear to be the most likely, as this arrangement seems to 

most closely resemble the biophysical properties of ENaC, a low conductance of ~5pS 
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with slow gating kinetics (Palmer and Frindt, 1986).  A fourth ENaC subunit does exist, 

δ-ENaC, which may be involved in producing an amiloride sensitive channel (Bangel-

Ruland et al, 2010).  

Non ENaC like amiloride sensitive channels 

Many electrophysiological studies of lung epithelial cells from FDLE have described an 

amiloride sensitive nonselective cation channel that poorly discriminates between Na+ 

and K+ and has a much higher conductance, ~21pS (Ito et al, 1997; Marunaka et 

al,1999), than that reported for the highly selective ENaC as proposed by Palmer and 

Frindt.  However these differences could be due to differing combinations of ENaC 

subunits resulting from culture conditions.  A study by Jain et al in 2001 demonstrated 

that culture conditions can impact significantly on the electrophysiological properties of 

cells.  ATII cells were isolated from rat lungs and, when grown on a permeable 

membrane with an air interface in the presence of GC’s, a channel with ENaC-like 

properties was observed (Jain et al 2001).  However when these cells were cultured on 

glass coverslips or plastic (without an air interface in the absence of GC’s), they 

displayed an amiloride-sensitive, nonselective channel.  Thus differences in culture 

conditions may lead to differences in channel stoichiometry which impacts on channel 

properties, and could account for the differences in the reported channels.  The 

expression of ENaC subunits appears to vary depending on gestational age (Helve et al, 

2007). Therefore it could be that different subunit expression leads to different channel 

expression in vivo that is required at different stages of lung development and 

maturation. 

 

Pseudohypoaldosteronism is a disease that results from mutations in the genes encoding 

for ENaC (Chang et al, 1996) and many patients develop a variety of symptoms such as 
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continual viral infections and wheezing and display an increased ASL volume (Kerem 

et al, 1999).  However there is a delay from birth in the development of these symptoms 

and fluid clearance does not appear to be impeded thus suggesting that channels other 

than ENaC may be involved in fluid clearance.  However the development of 

respiratory problems does suggest a role for ENaC. 

Airway hydration in the adult lung 

The regulated secretion of lung liquid is clearly important during foetal development 

and the subsequent absorption at birth is of equal importance. However the continued 

regulation of airway hydration is just as important throughout adult life.  As discussed 

earlier, regulation of the ASL depth and the fluid lining the alveoli are critical in 

preventing infection and allowing efficient gas exchange.  The importance of regulation 

is highlighted by the observation that mice models over-expressing -ENaC display 

cystic fibrosis-like lung disease (Mall et al, 2004).  Cystic fibrosis is a genetic disorder 

that is caused by impaired Cl- secretion, is the most common genetic disorder among 

Caucasians (Quinton, 1989) and results in impaired mucociliary transport as a result of 

insufficient hydration.  The defective Cl- secretion is due to the mutation of the CFTR 

Cl- channel (Riordan et al, 1989).   Even though the ability to secrete Cl- is unaffected, 

the increased Na+ absorption caused by the over-expression of -ENaC still resulted in 

cystic fibrosis-like lung disease (Mall et al, 2004).  Furthermore increased Na+ 

absorption has also been linked to compounding the effects of cystic fibrosis (Boucher, 

1986). 

This highlights the importance of regulated airway hydration in the adult lung; however 

as the increase in adrenaline seen at birth is not maintained throughout adult life, even 

though the Na+ absorbing phenotype that it induces is maintained, this suggests other 
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factors must play a role, so that tight regulation of the ASL and alveoli lining must be 

observed throughout adult life.  The next section describes some of the possible 

mechanisms involved. 

Proteolytic cleavage  

It has emerged that modulation of channel activity through proteolytic cleavage of 

ENaC subunits at the cell surface can modulate channel gating (Rossier, 2003; Hughey 

et al, 2004; Planes et al, 2009).  Channel activating proteases (CAPs) have been shown 

to be expressed in tissues including the distal lung epithelium (Vallet et al, 2002) and to 

be contained in lung liquid secretions (Verghese et al, 2004; Planes et al, 2005).  -

adrenergic agonists induce stimulation of lung fluid clearance, which was inhibited in 

mice lacking the CAP1 gene and was shown to be reversed with treatment of neutrophil 

elastase, a nonepithelial soluble serine protease (Planes et al, 2009).  This could be 

taken as further evidence of the synergistic action of hormones in the control of alveolar 

fluid clearance, where GCs and thyroid hormone prime the lung for fluid clearance and 

epinephrine causes activation of ENaC in the membrane through proteolytic cleavage 

increasing channel activity. 

Glucocorticoid-induced leucine zipper protein 

Shi et al (2002) showed that ERK1/2 phosphorylation facilitated the interaction of 

ENaC and γENaC with Nedd4-2 (thought to be involved with targeting ENaC for 

degradation); furthermore ERK activation was shown to inhibit Na+ transport (Robert-

Nicoud et al, 2001; Shen and Cotton, 2003; Falin et al, 2005).  These observations taken 

together suggest an alternative mechanism of ENaC regulation that may be SGK1 

independent.  A study in 2005 for the first time linked glucocorticoid-induced leucine 

zipper protein (GILZ) with a role in stimulating Na+ transport by inhibiting ERK1/2 
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(Soundararajan et al, 2005).  A number of isoforms of GILZ have been discovered 

however GILZ1 is the most potent in causing Na+ transport stimulation (Soundararajan 

et al, 2007).  It has been suggested that GILZ1 and SGK1 can act independently to 

increase ENaC surface expression although it would appear that they have a synergistic 

effect whereby GILZ aids the activity of SGK1 possibly by forming a regulatory 

complex that recruits SGK1 and facilitates the interaction of SGK1 with Nedd4-2 

(Soundararajan et al, 2009).  Further to this transfection of GILZ1 in the H441 cell line 

mimics the increase in Na+ transport associated with GC treatment (unpublished 

observation, Michael Gallacher). 

Cyclic adenosine monophosphate (cAMP) 

Adrenaline is reported to act via cAMP (Walters et al, 1990), also arginine vasopressin 

(AVP) has been implicated in cAMP mediated ENaC regulation.  AVP binds to V2 

receptors and activates adenylate cyclase which synthesises cAMP from ATP.  

Increasing cAMP levels with AVP, phosphodiesterase inhibition or adenylate cyclase 

activation has been shown to increase Na+ transport (Barbry and Hofman, 1997; Garty 

and Palmer, 1997; Yang et al, 2006).  AVP receptors (V2) are expressed in the lung 

(Kaufmann et al, 2003) suggesting that cAMP could be involved in the regulation of 

Na+ transport in the lung.  This is further supported by the observation that forskolin, an 

adenylate cyclase activator, can increase amiloride sensitive Na+ transport in a human 

lung cell line (Lazrak and Matalon, 2003; Ramminger et al, 2004).  There is evidence 

that PKA, a downstream effector of cAMP, can phosphorylate Nedd4-2, therefore 

representing a possible convergence point for signalling pathways in the control of Na+ 

transport (Snyder et al, 2004).  Thus cAMP may affect ENaC expression in the 

membrane, although it has also been reported to increase channel open probability 

(Yang et al, 2006). 
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Partial pressure of oxygen 

The first breath taken by newborns is thought to provide a stimulatory effect to increase 

Na+ transport and evidence suggest that a change in oxygen concentration from ~3% 

(foetal) to ~21% (postnatal) may be a determining factor in this.  In rat FDLE cells this 

change in concentration has been shown to increase Na+ transport and also increase 

ENaC mRNA levels (Ramminger et al, 2000).  However there is a discrepancy as Na+ 

transport is increased before an increase in mRNA levels are seen (Pitkanen et al, 1996; 

Baines et al, 2001) and under hormone free conditions an increase in partial pressure of 

oxygen  (PO2) increases Na+ transport without affecting the abundance of ENaC mRNA 

(Richard et al, 2003).  Otulakowski et al in 2007 explained this by suggesting that GC’s 

create a pool of ENaC mRNA that an increase in PO2 causes to be translated.  Hypoxic 

conditions are known to reduce Na+ transport (Vivona et al 2001; Planes et al, 1997; 

Wodopia et al, 2000), which is thought to be a contributing factor to the development of 

pulmonary oedema observed in high altitude sickness. 

Lipopolysaccharide 

LPS, which is present in the bacterial coat of many pathogens, causes the production of 

nitric oxide and tumour necrosis factor-alpha (TNF-α) as part of the inflammatory 

response to bacterial pathogens via the activation of nuclear factor-kappa B and the 

mitogen-activated protein kinase signalling pathway (Guha and Mackman 2001; Guillot 

et al, 2004).  Both nitric oxide and TNF- α have been shown to inhibit ENaC expression 

in lung epithelial cells (Ding et al, 1998; Dagenais et al, 2006).  More recent studies 

have provided further evidence for a role of LPS causing inhibition of ENaC via the 

ERK signalling pathway (Baines et al, 2010) and also suggest a role for LPS induced 

inhibition through a purinergic signalling pathway (Boncoeur et al, 2010).  These 
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studies indicate a role of LPS that could cause the accumulation of fluid in the lung 

resulting in pulmonary oedema from bacterial infection. 

CAPs

GILZ

pO2

LPS

ENaC

ERK1/2

Nedd4-2

Glucocorticoids

Adrenaline/AVP

V2R
PKA

Adenylate cyclase

cAMP

TNF-α / NO

 

Figure 1.3  Diagram summarising inputs that can affect ENaC regulation.  This only represents a few 

of the many inputs that can affect ENaC regulation.  Blunt ended arrows represent inhibition/repression 

and arrows represent activation.  Inputs are surrounded by a box.  pO2 = partial pressure of oxygen, CAPs 

= channel activating proteases, AVP = arginine vasopressin, cAMP = cyclic adenosine monophosphate, 

TNF-α, NO = nitric oxide, LPS = lipopolysaccharide, GILZ = glucocorticoid induced lucine zipper 

protein, PKA = protein kinase A, V2R = V2 receptor. 

 

ENaC is subject to regulation from many other factors and this section does not cover 

them all.  If there is an imbalance in these mechanisms then disease states can occur 

such as oedema from infection or altitude sickness.  The most effective way of treating 

pulmonary oedema is the use of GCs, however despite this and extensive study, the 

exact mechanisms involved in GCs mediated fluid clearance is still unclear. 
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Glucocorticoids 

GCs are a steroid hormone produced in the adrenal cortex and are lipophilic, thus 

enabling them to diffuse freely across the cell membrane.  They have a wide range of 

effects throughout the body and the name glucocorticoid originates from the observation 

that they are involved with glucose metabolism (see table 1.1 for list of other effects).  

As was demonstrated earlier, GCs are important in mediating the switch to a Na+ 

absorbing phenotype at birth.  GCs are used clinically to treat pulmonary oedema and to 

improve lung maturation in pre-term infants. However there are concerns, especially in 

their use for treatment of RDS in premature infants, as it may lead to adverse effects on 

neuromotor and cognitive function as well as causing myocardial hypertrophy (Yeh et 

al, 2004; Zecca et al, 2001; Damsted et al, 2011).  Therefore it is important to ascertain 

the mechanisms by which GCs exert their effects, as this may lead to improved 

treatment for patients. 
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Table 1.1 Functions of glucocorticoids. 

Role Effects References 
Glucose metabolism Stimulation of 

gluconeogenesis and the break 
down of adipose tissue.  
Inhibit glucose conversion to 
glycogen. 

Christ-Crain et al, 
2008 
Buren et al, 2008 

Immunity Up-regulate anti-inflammatory 
proteins and down-regulate 
pro-inflammatory proteins.  

Cutolo et al, 2011 
Riccardi, 2010 

Development Important in lung maturation 
and also brain development 
such as terminal maturation 
and remodelling axons and 
dendrites. 

Jauregui-Huerta et al, 
2010 
Yeh et al, 2004 
Damsted et al, 2011 

Memory Shown to be involved in 
synaptic plasticity, is thought 
to aid memory formation. 

Joels et al, 2009 

Mechanisms of Glucocorticoid ENaC regulation 

Glucocorticoid receptor 

The human glucocorticoid receptor (GR) is part of the steroid/thyroid/retinoic acid 

nuclear receptor superfamily and was first isolated by expression cloning in 1985 by 

Hollenberg and colleagues (Hollenberg et al, 1985).  They also discovered that 

alternative splicing leads to two isoforms of the GR; GRα and GR.  Further splice 

variants have since been discovered and so far a total of five variants have been reported 

and only GRα and GRγ can bind GC (Oakley and Cidlowski 2011).  Multiple start 

translation sites give rise to multiple isoforms of which a total of 8 have so far been 

reported (Oakley and Cidlowski 2011).  The expression levels of the different isoforms 

differ depending on tissue type which may lead to unique target genes and therefore 

give rise to tissue specificity (Lu and Cidlowski, 2005).  The GR has an amino-terminal 

or N-terminal domain, a DNA binding domain, hinge region and a ligand binding 

domain or the carboxyl terminal end.  The ligand binding domain is not present in GR 
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and results in the inability of GR to bind steroids and appears to exert a dominant 

negative effect on the transcriptional activity of GRα (Kino et al, 2009).  Within the N-

terminal and the ligand binding domain are areas termed activation function 1 and 2 

respectively (AF1 and AF2).  AF1 is important in aiding interactions of the receptor, 

with molecules involved in forming a transcription complex; AF2 is important for 

receptor dimerisation and is involved in the binding of heat shock proteins (hsp) ( Duma 

2006). 

1 421 486 528 777

NTD LBDDBD H

AF1 AF2

hGRα

Firgure 1.4  Diagram of glucocorticoid receptor.  Shows structure of the human glucocorticoid 

receptor-α showing approximate location of activation function 1 and 2 (AF1 and AF2 respectively).  

NTD – N-terminal domain, DBD – DNA binding domain, H – hinge region, LBD – ligand binding 

domain or the carboxyl terminal end. 

Glucocorticoid receptor alpha complex 

GRα exists as a complex of proteins in the cytoplasm of cells which includes hsp90 

(Pratt, 1993).  Hsp90 prevents the translocation of the inactive GRα to the nucleus 
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(Cadepond et al, 1991) and ligand binding results in a conformational change resulting 

in the dissociation of hsp90 from the GRα complex thereby allowing translocation to 

the nucleus.  The activated GC-GR forms a homodimer and binds to a GRE (Truss and 

Beato, 1993) on DNA.  The GRE bound GR stimulates transcription by facilitating the 

formation of a transcription complex.  AF1 and AF2 interact with cofactors to initiate 

the formation of this complex.  AF1 and 2 attract steroid receptor coactivators (SRC’s), 

which in turn recruits cyclic adenosine monophosphate response-element binding 

protein (CREB) and p300/CBP-associated factor as well as other cofactors (Nicolaids et 

al, 2010).  This complex has histone acetyltransferase activity, which aids in the 

decondensation of chromatin at the site of the GRE, and aids in the recruitment of RNA 

polymerase II to form a transcription complex in order to cause upregulation of the 

target gene (Nicolaids et al, 2010).  As the α-ENaC promoter contains a glucocorticoid 

response element (GRE) it would seem likely that GC would act via increasing α-ENaC 

transcription.  This does seem to be the case as a number of studies have shown that GC 

cause upregulation of α-ENaC via reporter gene assays (McTavish et al, 2009; 

Otulakowski et al, 1999) and ribonuclease protection assay (Mick et al, 2001; Sayegh et 

al, 1999).  GCs can also cause suppression of genes and it is thought this works in a 

similar manner but instead condenses chromatin, thereby preventing access and 

formation of a transcription complex to the gene (Ito et al, 2000).  However suppression 

can also be due to increases in GR for example, tumour necrosis factor-alpha and 

interferon-gamma have been shown to cause an increase in GR without affecting GRα 

that is associated with GC resistance (Tliba et al, 2006). 

Glucocorticoid receptor post-translational modifications 

There is evidence to suggest that post-translational modifications can affect many 

properties of the GR such as: stability, target promoters, trafficking and even direct 
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interactions of the GR with other proteins, which may cause the transduction of a 

signalling cascade without effecting genomic expression.  See table 1.2 for summary. 

Table 1.2 lists reported post-translational modifications which are thought to affect the 

glucocorticoid receptor and therefore serves to highlight the complexity of GC signalling.  

Post-translational 
Modification 

Possible roles References 

Phosphorylation Typically occurs after ligand binding.  
May affect turnover, trafficking, 
promoter specificity, cofactor 
interaction and nongenomic activation 
of signalling pathways. 

Ismaili and Garabedian, 
2004 
Orti et al, 1993 

Ubiquitination Occurs after ligand binding.  Can 
regulate motitility of GR and can 
promote rapid turnover of the receptor 
therefore decreasing activity. 

Dennis and O’Malley, 2005

Acetylation Occurs after ligand binding before 
nuclear translocation and 
deacetylation causes NF-κB 
suppression.  May disrupt binding of 
GR to GRE’s. 

Ito et al, 2006 
Nader et al, 2009 

Sumoylation Small ubiquitin-related modifier.  
May not be ligand dependent and may 
affect protein stability and 
transcriptional activation. 

Le Drean et al, 2002 

GC receptor regulation of Na+ transport 

It has also been suggested that serum- and glucocorticoid-regulated kinase 1 (SGK1) 

can also increase transcription of α-ENaC (Boyd and Naray-Fejes-Toth, 2005; Zhang et 

al, 2007).  However these observations were obtained from studies in renal epithelia and 

McTavish et al found that SGK1 does not play a major role in α-ENaC transcription in 

pulmonary epithelium (McTavish et al, 2009).  However there is a large body of 

evidence that does suggest a significant role of SGK1 in the control of Na+ transport via 

alternative mechanisms. 
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Serum- and glucocorticoid-regulated kinase 1 

SGK1 belongs to the AGC family of protein kinases and was originally cloned from rat 

mammary tumour cells in 1993 (Webster et al, 1993) and as the names suggests is 

regulated by GCs and serum.  However SGK1 regulation is subject to control from a 

wide variety of stimulators and inhibitors (for review see; Lang et al, 2009) including 

mineralocorticoids.  Two further isoforms of the sgk gene have been reported sgk2 and 

sgk3 and these do not appear to be regulated by GCs (Kobayashi et al, 1999), although 

both have been reported to be involved in ENaC regulation (Friedrich et al, 2003).  

However in sgk3 knockout mice there is no effect on NaCl excretion (McCormick et al, 

2004).  SGK1 has been shown to increase ENaC activity and also contains a GRE in the 

5’ flanking end of the sgk1 gene which is upregulated by GCs. 

Activation of SGK1 

As with many AGC kinases, SGK1 activation is dependent on the phosphorylation of a 

threonine residue (Thr256 for SGK1) in the T-loop of the kinase and a serine residue 

(Ser422 for SGK1) within the hydrophobic motif.  The activity of SGK1 has been shown 

to be dependent on phosphoinositide-3-kinases (PI3K) (Kobayashi and Cohen, 1999; 

Park et al, 1999).  SGK1 is first phosphorylated on the hydrophobic motif by the 

mammalian target of rapamycin complex 2 (mTORC2) (Garcia-Martinez and Alessi, 

2008).   The identity of the kinase responsible for this has been the subject of debate 

with suggestions that mTORC1 was in fact responsible for hydrophobic motif 

phosphorylation of SGK1 (Hong et al, 2008).  However Garcia-Martinez and Alessi 

disputed these findings and show SGK1 activity in the presence of the specific 

mTORC1 inhibitor rapamycin which is consistent with other studies (Kobayashi and 

Cohen, 1999; Park et al, 1999).  This view is supported by a more recent study 
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suggesting mTORC2 activity is required for hydrophobic motif phosphorylation of 

SGK1 and that this is required for ENaC mediated Na+ transport (Lu et al, 2010).  It 

would therefore seem likely that mTORC2 is in fact the kinase responsible for 

hydrophobic motif phosphorylation.  The phosphorylation of the hydrophobic motif 

promotes the interaction of SGK1 with phosphoinositide-dependent kinase 1 (PDK1) 

resulting in the phosphorylation of the activation loop of SGK1 (Biondi et al, 2001) and 

confers activity.  This mode of action where phosphorylation of the hydrophobic motif 

of an AGC kinase thus, in turn making it the target for phosphorylation of its T-loop, is 

thought to be important for a number of the AGC kinases. 

Target of rapamycin (TOR) 

TOR exists as two complexes; TORC1 and TORC2, consisting of different associated 

proteins.  TORC1 contains the regulatory associated protein of TOR (Raptor) (Kim et 

al, 2002) and G-protein -subunit like protein, also known as LST8 (Kim et al, 2003).  

TORC1 also contains proline-rich PKB substrate 40 kDa. However there is some debate 

as to its role in TORC1 function, as it has been shown to block TORC1 access to its 

substrates (Wang et al, 2007). It has also been described as a substrate for TORC1 

phosphorylation (Fonseca et al, 2007; Oshiro et al, 2007).  The best characterised 

substrates of TORC1 are involved in both cell growth and proliferation; eukaryotic 

initiation factor 4E-binding protein 1, (Hara et al, 1997) and p70 S6K (Fingar et al, 

2004).  Phosphorylation of p70 S6K at residue Thr389 is often used to assay for TORC1 

activity (Land and Tee, 2007; Mansley and Wilson, 2010).  Inhibition of TORC1 is 

achieved using rapamycin which has been described as an exquisitely specific inhibitor 

of TORC1 (Bain et al, 2007) and acts by forming a complex with FKBP12 which 

targets TORC1 (Heitman et al, 1991).  TORC2 on the other hand is composed of; 

rapamycin insensitive companion of TOR (Rictor) (Sarbassov et al, 2004), LST8, 
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mSin1 (Jacinto et al, 2006) and proline-rich protein 5 (Woo et al, 2007).  TORC2 is 

acutely insensitive to rapamycin treatment; however prolonged treatment inhibits 

assembly of the complex (Sarbassov et al, 2006).  Partly due to a lack of specific 

inhibitors of TORC2, much less is known about its specific roles, however the 

development of specific inhibitors of TOR (Thoreen et al, 2009; Feldman et al, 2009) 

has given new insights into the role this kinase plays. 

SGK1 activation results in increased ENaC trafficking 

The ubiquitin ligase protein, neural precursor cell-expressed developmentally down-

regulated protein 4 (Nedd4) contains WW domains that can bind to PY motifs of other 

proteins.  All three ENaC subunits have PY motifs and Nedd4 (specifically Nedd4-2) 

has been shown to bind to these motifs (Staub 1996; Snyder et al, 2002). Thus Nedd4-2 

targets ENaC for ubiquitination and degradation.  SGK1 also contains PY motifs and 

interacts with Nedd4-2 causing phosphorylation which in turn recruits 14-3-3 protein 

which reduces Nedd4-2 interaction with ENaC (Bhalla et al, 2005; Ichimura et al, 2005) 

possibly by causing steric hindrance or by inducing a conformational change in the WW 

domains of Nedd4-2 resulting in the inability to bind to other PY motifs.  Many studies 

have linked the ability of SGK1 inhibiting Nedd4-2 to the regulation of ENaC (Bhalla et 

al, 2005; Ichimura et al, 2005; Snyder et al, 2002; Wiemuth et al, 2010) which has lead 

to the development of the theory that SGK1 regulates ENaC activity by increasing the 

trafficking and expression of ENaC in the membrane which has been demonstrated in 

Xenopus oocytes (Alvarez de la Rosa et al, 1999).  Furthermore, preventing 

ubiquitination of ENaC leads to increase in the stabilation of the channel in the 

membrane further supporting increased Na+ transport ().  A negative feedback loop has 

been described as SGK1 phosphorylation of Nedd4-2 causes Nedd4-2 mediated 
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degradation of SGK1. This may aid in the fine regulation of Na+ transport (Zhou and 

Snyder, 2005).   

Counter argument for SGK1 involvement 

Despite the evidence for the involvement of SGK1-Nedd4-2 pathway, there is evidence 

that would appear to dispute this central role of SGK1 as the main mechanism in the 

control of Na+ transport.  There is evidence that would suggest that SGK1 does not 

interact or interacts very weakly with Nedd4-2 (Henry et al, 2003; Rauh et al, 2006). 

However Rauh et al suggested this was due to species differences and that the 

interaction between SGK1 and Nedd4-2 is only strong enough to be detected in those 

studies where constructs of human origin are used, a view that is supported by Wiemuth 

et al, 2010.  The strongest evidence that SGK1 is not involved, or at least that other 

factors play an important role in the regulation of Na+ transport, is the observations 

made from sgk1 gene knockout mice (sgk1-/-).  These mice do not display any functional 

abnormalities and are viable (Wulff et al, 2002; Grahammer et al, 2006; Rexhepaj et al, 

2006; Fejes-Toth et al, 2008), unlike mice lacking functional ENaC which die due to 

severe respiratory distress (Hummler et al, 1996).  However sgk1-/- do show impairment 

of renal Na+ retention although this only becomes apparent during salt deficiency (Wulff 

et al, 2002).  This cannot be explained by compensation through enhanced SGK3 

activity as double knockout mice display a similar phenotype to sgk1-/- mice 

(Grahammer et al, 2006).  It would seem unlikely that increased SGK2 activity could 

account for this as transcript levels are not increased in the double knockout mice 

(Grahammer et al, 2006).  It would be expected that sgk1-/- mice would not be viable if 

SGK1 was the sole regulator of ENaC trafficking to the membrane.  Therefore these 

studies demonstrate that the role of SGK1 is still not fully understood and also point to a 
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SGK1 independent mechanism of ENaC regulation.  Adding to this, the observation that 

sgk1-/- mice do not show disruption of ENaC activity in colonic epithelium (Rexhepaj et 

al, 2006) suggests that renal and colonic ENaC regulation may involve different 

mechanisms. It is therefore not unreasonable to postulate that the role played by SGK1 

in the regulation of pulmonary ENaC may also differ from that reported in other tissues. 

Aldosterone 

In response to decreases in blood volume and pressure aldosterone, a mineralocorticoid 

(MC) is released from the adrenal cortex and causes an increase in Na+ absorption 

which leads to fluid uptake (Booth et al, 2002).  Aldosterone exerts its effects in the 

kidney and specifically the distal nephron, where the final adjustments are made to the 

reabsorption of fluid in order to maintain blood volume and pressure.  Aldosterone 

enters the epithelial cells lining the distal nephron and acts in much the same way as 

glucocorticoids, however bind to the mineralocorticoid receptor (MR) which then 

translocates to the nuclease and can bind to DNA to cause either expression or 

suppression of genes (Booth et al, 2002).  Furthermore in common with the GR the 

sterioid bound MR has been reported to be involved in exerting its effects via protein-

protein interactions (Stockand, 2002).  It is important to note that both the MR and GR 

receptors can be bind either MC or GC, however, they have higher affinities for their 

respective namesake.  Thus it is therefore possible that increased levels of aldosterone 

seen in sgk1 gene knockout mice (Wulff et al, 2002) could provide a compensating 

mechanism to bring about fluid clearance.  GILZ has been shown to be an aldosterone-

induced protein (Robert-Nicoud et al, 2001) and along with the observation that MR is 

present in the lung (Keller-Wood et al, 2005) adds weight to this theory. 
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Insulin 

Insulin is a metabolic hormone composed of 51 amino-acids and is released in response 

to increased levels of blood-glucose and stimulates the uptake of glucose.  The inability 

of the body to produce or its tendency to become resistant to insulin results in diabetes 

mellitus (type 1 and 2 respectively).  Hyperinsulinemia is a condition associated with 

type 2 diabetes whereby the levels of circulating insulin are increased and this condition 

is often associated with hypertension.  A possible explanation for this is that insulin has 

been shown to increase Na+ transport in renal epithelial by increasing the number of 

active channels in the apical membrane (Blazer-Yost et al, 1998; Blazer-Yost et al, 

2004) and by increasing the open probability of channels (Staruschenko et al, 2007; 

Pochynyuk et al, 2007) in an amiloride sensitive fashion.  This leads to increased fluid 

retention which results in raised blood pressure.  

Possible mechanism of action of insulin 

PI3K catalyses the formation of phosphatidylinositide second messenger 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) from the phosphorylation of 

phosphatidylinositol 4,5-bisphosphate (PIP2).  Insulin-induced Na+ transport in A6 cells 

was shown to be mainly the result of increased channel density (Blazer-Yost et al, 

1998).  Using confocal fluorescence microscopy Blazer-Yost and colleges were able to 

show that ENaC and PI3K were co-localised and that insulin stimulation resulted in the 

translocation of this “complex” to the lateral membrane followed by translocation to the 

apical membrane in A6 cells.  This was thought to be dependent upon PI3K as 

LY294002 prevented the translocation of the complex to the lateral membrane and 

inhibited Na+ transport (Blazer-Yost et al, 2003).  They speculated that the lack of 

formation of PI3K second messengers was the cause of this and later they were able to 



 38

show again using confocal fluorescence microscopy that the distribution of PIP3 

followed the translocation pathway of the ENaC-PI3K complex and therefore came up 

with a model that predicted that ENaC insertion into the membrane was a result of 

changes in lipid composition that favoured the insertion of ENaC channels (Blazer-Yost 

et al, 2004).  Furthermore there is evidence that PIP2/3 can alter channel kinetics 

(Staruschenko et al, 2007; Pochynyuk et al, 2007).  It has been suggested they are able 

to augment ENaC channel activity through directly binding to ENaC subunits and 

modulating channel kinetics (Pochynyuk et al, 2007).  It is likely that a combination of 

these mechanisms is responsible for insulin-induced Na+ transport.  However the effects 

are also very rapid and are more indicative of acute regulation of ENaC, furthermore 

these studies were carried out in renal epithelia.  Moreover LY294002 was used to 

inhibit PI3K and this compound is now known to exert non-specific effects and its use 

as an effective PI3K inhibitor has been recommended to be discontinued (Bain et al, 

2007).  Nevertheless they do suggest a possible mechanism of action for insulin / PI3K 

mediated control of ENaC activity that is independent of SGK1 and therefore could 

explain why sgk1 gene knockout mice do not display any overt lung phenotype. 

Therefore a possible role for insulin / PI3K in the control of Na+ transport in the lung is 

feasible and has received much less attention.  It has been reported that insulin could 

augment the GC mediated increase in Na+ transport seen in pulmonary epithelium 

however replacing external Na+ with a nominally impermeant cation (NMDG+) in 

insulin treated cells had no effect on membrane currents recorded from single H441 

cells thus indicating that Na+ transport was not involved.  However lowering external 

Cl- caused a hyperpolarising response and further investigation with a non-specific Cl- 

channel blocker confirmed the response to insulin was a result of a Cl- current rather 

than an increase in Na+ transport (Brown et al, 2008).  However this observation was 
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made from recordings of single H441 cells which have different electrical properties 

from that of H441 cells growing in contact with other cells (Brown et al, 2008).  

Furthermore insulin has been linked to Na+ transport in the foetal lung (Hagiwara et al, 

1992) and insulin does appear to improve gas diffusion in diabetic patients (Guazzi et 

al, 2002a; Guazzi et al, 2002b). 

 

Closing remarks 

Despite the extensive research into the hormonal regulation of ENaC and its 

involvement in lung fluid clearance and maintenance of the ASL / PLC, there are still 

many points of contention.  One of the main areas of debate surrounds the role of SGK1 

as, although there is clear evidence for a role in ENaC regulation, the observation that 

sgk1-/- mice are viable would strongly suggest otherwise, especially given that ENaC 

knockout and GR knockout results in death due to a failure to clear the lungs of fluid.  

Thus the role of SGK1 is not fully understood and requires further examination.  

Investigation into the molecular mechanisms that underlie GC regulated Na+ transport 

has, in part, been hindered by the lack of specific pharmacological inhibitors of the 

kinases thought to be involved.  However this situation has now changed with the 

development of specific inhibitors for PI3K, mTOR and SGK1, which are thought to be 

part of a kinase signalling pathway that is central to GC regulated Na+ transport.  By 

utilising these inhibitors it should be possible to selectively inhibit each kinase and, 

using an electrophysiological approach to determine what role these kinases play, if any, 

in GC regulated Na+ transport in lung epithelia.  
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Aims/hypothesis  

The aim of this thesis is to answer the question: is SGK1 required in the regulation of 

ENaC activity by glucocorticoids in pulmonary epithelium? 

By using specific kinase inhibitors this should allow the determination of a number of 

other important questions, which are: 

 Do glucocorticoids act via the PI3K – mTOR – SGK1 pathway? 

 Can phosphatidylinositide second messengers maintain ENaC activity 

independently of SGK1? 

 Can PKB maintain ENaC activity independently of SGK1? 

 Is SGK1 activity dependent upon TORC2? 

Thus the main hypothesis of this thesis is: SGK1 activity is vital to the hormonal control 

of ENaC activity via glucocorticoids in pulmonary epithelium. 
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Chapter 2 – Materials and Methods 
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The H441 cell model 

All experiments were performed using the H441 human bronchiolar epithelial cell line 

(American Type Culture Collection).  This cell line is derived from cells from a 

pericardial effusion from a male patient suffering a pulmonary papillary 

adenocarcinoma (Gazdar et al, 1990).  These cells have been shown to display 

peripheral airway cell characteristics of bronchiolar Clara cell and exhibit the ability to 

form adherent monolayers that are suitable for cell culture (Gazdar et al, 1990).  

However Clara cells are not thought to play a significant role in fluid clearance or the 

maintenance of the ASL, despite this they are still a useful model to investigate the 

activation of ENaC by GC.  There exists a large body of evidence that demonstrates the 

ability of the synthetic glucocorticoid hormone, dexamethasone, to induce a sodium 

(Na+) absorbing phenotype in these cells that is consistent with the co-expression of α-, 

- and γ-ENaC (Lazrak and Matalon, 2003; Ramminger et al, 2004; Clunes et al, 2004; 

Brown et al, 2008; Gallacher et al, 2009).  H441 cells are therefore a useful model cell 

line in which to investigate the pathways that underlie hormonal control of the induction 

and maintenance of Na+ transport in pulmonary epithelium. 

I.  H441 Cell Culture 

Cells were kept in an incubator at 37 °C at 5% CO2 and grown in 75cm2 flasks (Greiner 

bio-one) until confluent in RPMI 1640 media supplemented with: 8.5% fetal bovine 

serum, 8.5% bovine calf serum (Gibco), 2mM glutamine, 5µg/ml transferrin, 5ng/ml 

selenium, 0.2% antibiotic (antimycotic solution, sigma).This media will be referred to 

as “complete media” throughout this thesis.  When cells reached confluence they were 

detached using trypsin/EDTA (Gibco).  A small aliquot of the cell suspension was 

mixed with trypan blue in a 1:1 ratio and a hemocytometer (Immune systems) was used 
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to calculate the number of cells per ml of solution.  This allowed accurate seeding of 

cells so as to maintain the cell line and to seed appropriate densities of cells for 

experimental use. 

 

For patch experiments cells were seeded out into 6 well cell culture plates (Corning 

Incorporated) containing 3-4 round glass cover slips and maintained in complete media 

in a humidified incubator at 5% CO2 and 95% air at 37°C until cell attachment had 

occurred (~2-3 hours).  The complete media was then replaced with a media where the 

foetal bovine serum and bovine calf serum were replaced with 8.5% dialysed foetal 

bovine serum with a molecular weight cut off of at 10 000kDa, in order to remove 

hormones and growth factors that may affect the pathways under investigation. Insulin 

was also added to this media (20nM).  The dialysed media was supplemented with 

insulin as H441 cells were easier to maintain in culture with this hormone present, 

however it would appear, at least in single H441 cells, insulin induces a chloride 

conductance (Brown et al, 2008).  Therefore future experiments should be undertaken 

with this in mind and should address these issues.  Furthermore insulin is a potent 

activator of PI3K, therefore it would be interesting to remove this hormone from the 

dialysed media and examine the effects of this upon the results obtained in this thesis.  

In most cases dexamethasone (dex) was added to the dialysed media (0.2 μM). Cells 

were maintained for 18-48 hours in a humidified incubator at 5% CO2 and 95% air at 

37°C. 

 

For Western blot experiments cells were seeded out into 6 well cell culture plates and 

maintained in complete media until ~80% confluence was reached.  Complete media 

was then replaced with dialysed media and replaced back into the incubator overnight.  
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For 18-24 hour dex-treatment dex was added at this point.  The following day 

appropriate hormones and / or inhibitors were added. Western blots were carried out 

using the Bio-Rad mini trans-blot cell system. 

II.  List of Reagents and solutions used for western blot 

Resolving gel 

 373mM tris (pH8.8), 10% acrylamide/bis-acrylamide (Bio-Rad), 65.6mM ammonium 

persulphate (APS), 3.45mM SDS and 0.12% of N,N,N’,N’-tetramethylethylenediamine 

(TEMED) 

Stacking gel 

123mM Tris-HCl (pH6.8), 4% acrylamide/bis-acrylamide, 65.6mM APS, 3.45mM SDS 

and 0.12% TEMED 

Running Buffer 

0.19M glycine, 24.7mM tris and 1.7mM SDS 

Transfer buffer 

0.19M glycine, 24.7mM tris and 20% methanol 

Tris Buffered Saline (TBS) 

20mM tris, 136mM NaCl and 0.1% tween can be added to give TBST 

Blocking buffer 

5% non fat milk in TBST 

Stripping buffer 

130mM glycine, 10mM tris, 2% tween, pH to 2.2 using concentrated HCl 
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Lysis buffer 

10mM monopotassium phosphate, 1mM EDTA, 10mM MgCl2, 50mM 

glycerophosphate, 5mM EGTA, 0.5% nondent P-40, 0.1% Brij 35, 1mM sodium 

orthovanadate.  One protease inhibitor tablet was added per 25mls of lysis buffer. 

Loading Dye 

32 mM Tris HCl, 12.5% glycerol, 1% SDS, 0.05% Bromophenol Blue 

TBS 

10mM Tris, 150mM NaCl and 0.1% Tween-20 can be added to make TBS-T 

Table 2.1 List of the primary antibodies used in Western experiments. 

Primary 
Antibody 

Source Company
Dilution 
Factor 

Molecular 
Weight 
(kDa) 

NDRG1 -
Phospho 

Sheep 
Cohen 
group 

1:150 
~ 46-48 

NDRG1 - 
Total 

Sheep 
Cohen 
group 

1.515 
~ 46-48 

Akt (PKB)  Rabbit Cell Sig 1:1000 60 

Phospho-
PKB 

(Ser473) 
Mouse Cell Sig 1:1000 

60 

Phospho-
PKB 

(Thr308) 
Rabbit Cell Sig 1:1000 

60 

PRAS40 – 
Total 

Rabbit Cell sig 1:1000 
40 

Phospho – 
PRAS40 
(Thr246) 

Rabbit Cell sig 1:1000 
40 

 

III.  Collection of protein samples for western blot 

Media from experimental cells was removed and cells were washed 2 times in ice cold 

PBS.  150 μls of lysis buffer was added to the cells, and vigorous scraping was applied 
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to aid cell lysis.  The resulting slurry was transferred into ice cold eppendorf tubes and 

was sonicated for 10 seconds and then centrifuged for 10 minutes at 14000 rpm at 4°C.  

The supernatant was transferred into fresh eppendorf tubes.  Bradford assay was then 

performed to determine the protein content of each sample. 

Bradford assay 

Bradford protein assay was developed by Mariorn Bradford and allows for quick 

quantification of protein in a sample (Bradford, 1976).  Coomassie Brilliant Blue G 

forms a complex with the proteins in a sample which causes a shift in the absorption 

maximum of the dye from 465 to 595nm, the amount of absorption is proportional to 

the protein present.  

Protein standards were prepared from a 100 μg/ml stock of BSA dissolved in deionised 

H2O at 0, 1.25, 2.5, 5 and 10 μg/ml.  Each sample was diluted 100 fold in deionised 

H2O.  180 μls of the protein standards and samples were mixed with 20 μls of Bradford 

reagent (Bio-rad, UK) and the amount of absorbance of each standard or sample 

solution was read at 595nm on a MRX microplate reader (Dynatech laboratories, UK).  

All standards and samples were carried out in duplicate. The absorbance values from the 

known standards were plotted in a line graph using Microsoft Excel. The protein 

concentrations of the unknown samples were calculated using the equation of the line (y 

= mx + c), where m is the gradient of the line and c is where the line intercepts the y-

axis. 

Polyacrylamide gel electrophoresis (PAGE) 

Protein samples were fractionised using sodium dodecyl sulphate (SDS) -PAGE.  Each 

gel was made fresh and contained an upper 4% acrylamide stacking gel and a lower 

10% acrylamide resolving gel.  Glass plates were clamped into the gel casting assembly 
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and the resolving gel was poured into the caster and butanol was overlaid and the gel 

left to polymerise for ~30minutes.  The butanol is washed off and stacking gel is poured 

into the caster.  Gel combs were added and the gels left to polymerise for ~30 minutes.   

Separation and transfer of proteins 

Gels casts were placed in the electrode tank and the inner and outer chambers were 

filled with running buffer.  Samples were defrosted and warmed for 5 minutes at 60°C 

before being loaded into the lanes produced by the combs.  A rainbow molecular weight 

marker (Bio-Rad, UK) and biotinylated molecular weight marker (New England 

Biolabs, UK) were also loaded.  The proteins were fractionised at 200V for ~40 minutes 

until they had reached the bottom of the gel.  Proteins were transferred onto 

nitrocellulose membrane, pore size 0.45 μm, by placing them in the transfer cassette and 

immersing them in transfer buffer and run at 100V for ~75 minutes. 

Western blotting 

Membranes were washed for 5 minutes in TBST and then blocked for 1 hour using the 

blocking buffer.  Membranes were then incubated in primary antibody overnight on at 

roller at 4°C.  Primary antibodies were diluted in blocking buffer to the appropriate 

concentration, see table 2.1.  Membranes were then washed 3 times in TBST for 7 

minutes per wash.  Membranes were next incubated in HRP-conjugated secondary 

antibody diluted in blocking buffer for 1 hour on a roller at 4°C (for NDRG1Thr346/356/366 

blots secondary antibody was incubated at room temperature).  Membranes were 

washed 3 times for 7 minutes per wash in TBST.  Bands were then visualised by 

combining ECL solutions 1 and 2 in a 1:1 ratio and applied to the membrane.  Each 

membrane was placed in a sealed plastic bag and exposed to x-ray film (Konica, UK) 

and developed using the Compact X4 developer (Xograph imaging systems, UK). 
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Stripping 

Blots using antibodies for NDRG1Thr346/356/366, PKBSer473 and PKBThr306 were stripped 

off the membrane using stripping buffer.  After proteins were visualised the membranes 

were washed 2 times in TBST for 5 minutes per wash and then washed twice for 30 

minutes per wash in stripping buffer.  Membranes were then washed in phosphate 

buffered saline (PBS) for 10 minutes before being washed 3 times in TBST for 10 

minutes per wash.  Membranes were then blocked for 1 hour in blocking buffer and 

then re-probed using antibodies raised against the total protein for NDRG1 or PKB. 

Inhibition of kinases 

The role of phosphatidylinositol 3-kinase (PI3K), mammalian target of rapamycin 

(mTOR) and serum- and glucocorticoid-regulated Kinase 1 (SGK1) were investigated 

using specific inhibitors.  For PI3K inhibition PI-103 (Merk Chemicals) was used at 

0.5μM.  Inhibition of mTOR was achieved using Torin1 at 0.1μM provided by the 

Sabatini lab (Cambridge, Massachusetts, USA).  As both PI-103 and Torin1 inhibit both 

mTOR complex 1 and mTOR complex 2 (mTORC1 and mTORC2 respectively), a 

specific inhibitor of mTORC1, rapamycin (Sigma), was used at 0.1μM.  SGK1 

inhibition was achieved using GSK 650394 (Tocris Bioscience) at 10μM.  Stock 

solutions were made of each inhibitor by dissolving in the appropriate volume of 

dimethyl sulphoxide (DMSO) which were then aliquoted and stored at -20°C. 

After at least 18 hours exposure to dexamethasone, cells were pre-treated with a single 

inhibitor for three hours before patching.  Only results obtained between 3-4 hours after 

pre-treatment with inhibitor were used.  While every effort was made to treat only cells 

in which a successful recording had been made from dexamethasone-treated cell, the 

nature of the patch clamp technique did not always allow for this. 
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IV.  Electrophysiology 

Cells were continuously superfused with a “control” solution that mimics the conditions 

of the extracellular fluid (ECS) at a rate of approximately 3mls/min.  ECS contained 

(mM): NaCl (140), CaCl2 (2.5), KCl (4.5), Glucose (5), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES, 10) and MgCl2 (1).  The pH was then adjusted 

to 7.4 using NaOH giving a final Na+ concentration of 144.4mM.  The pipette filling 

solution contained: NaCl (10), KCl (18), K-gluconate (92), MgCl2 (0.5), ethylene glycol 

tetraacetic acid (EGTA, 1), HEPES (10) and the pH adjusted to 7.2 with KOH bringing 

the final K+ concentration to 113mM.  Amphotericin-B (Sigma) was made up in 

dimethyl sulphoxide (DMSO) to 10mg/ml and then diluted to 40μg/ml in pipette filling 

solution.  Amiloride hydrochloride hydrate (Sigma) was dissolved in water to give a 

stock of 10mM and was then diluted in ECS and the Low Na+ solution to a final 

concentration of 10μM.  Where cells had been pre-treated with an inhibitor, this was 

added to the superfusing solutions to the appropriate concentration.  All experiments 

were carried out at room temperature. 

Patch Clamp 

The patch clamp technique is a method by which it is possible to record the activity of 

single or multiple ion channels depending upon the configuration used.  The patch 

clamp technique involves bringing a glass fire polished microelectrode, filled with an 

appropriate filling solution (pipette filling solution), into close contact with a target cell. 

A gentle suction is applied to generate negative pressure in order to form a tight seal 

between the electrode and the cell membrane.  This seal is often referred to as a giga-

ohm (GΩ) seal as the electrical resistance between the cell and electrode is in excess of 

one GΩ.  The formation of this seal is vital as the high electrical resistance means that 
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there will be very little current leak between the electrode and pipette therefore reducing 

any error as a result of current leak.  

All patch clamp experiments in this thesis were measured using the perforated patch 

clamp technique.  This involves the addition of an antibiotic to the pipette filling 

solution (amphotericin B) which perforates the membrane under the patch.  This has the 

advantage over conventional whole cell recording as it allows control over the internal 

ionic concentrations of the cell without causing dialysis of the cell content.  However 

the access resistance (Ra) tends to be higher using perforated patch clamp which will 

introduce an error into the recordings as voltage applied to the cell will drop further 

over the higher Ra.  To overcome this problem the signal that is applied to the cell is 

compensated, and is known as series resistance compensation and will be discussed 

later in this chapter.  The majority of recordings were obtained from groups of H441 

cells containing approximately 3-6 cells.  Data obtained from single H441 cells is 

clearly identified where appropriate. 

Basic electrophysiological principles 

The cell must be thought of as an electrical circuit and how ion channels, the membrane 

and ionic movement are represented equate to the properties of an electrical circuit are 

crucial to this understanding.  Charge is a property that allows something to be affected 

by an electrical field, for example, ions in solution.  Voltage is the separation of charge 

which produces an electric field, for example intracellular ions are separated by the cell 

membrane from ions in the ECS.  Current is the movement of charge which therefore 

relates to the movement of ions.  Resistance is the opposition to the flow of charge and 

since ion channels permit the flow of ions they therefore provide a resistance, as such 

ion channels can be thought of as resistors when thinking about the cell as a circuit.  

Capacitance is the ability to store charge and as ions cannot cross the cell membrane, 
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they accumulate on either side of the membrane and therefore act in the manner of a 

capacitor.  Thus a model of a cell can be represented as a resistor-capacitor circuit (RC 

circuit) and is shown in figure 2.1.   

Ra

Rm
Cm

Vc

 

Figure 2.1 RC model of cell-attached patch.  Rm is the membrane resistance and Cm is 

the membrane capacitance.  The resistance provided by the remaining membrane in the 

patch, the pipette resistance, solution resistance and the resistance of the connecting 

circuitry is known as the access resistance (Ra).  Vc represents the voltage command 

than can be sent by the experimenter to the cell.  However as Ra and Rm are in series the 

Vc will drop across this resistance introducing a series resistance error. 

 

Series resistance compensation 

In patch clamp recordings the access resistance is in series with the membrane 

resistance (as seen in figure 2.1) therefore the voltage will drop over this.  The result is 
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that when a voltage is applied to the cell, it will drop over the Ra and Rm and therefore 

the initial command will not be applied to the cell resulting in a voltage error in the 

recordings.  In order to minimise this error, series resistance compensation was applied 

using the Axopatch 200B amplifier, which applies a compensated signal to the cell thus 

reducing the error.  The average Ra across all experiments is 33.2 MΩ, if we take the 

lowest value for Rm which was ~0.5 GΩ then the average voltage drop would be ~6.5% 

of the initial Vc.  However ~50% compensation was achieved therefore the average 

voltage drop would be ~3.25% of the original Vc and this was assumed to be negligible. 

Liquid junction potential 

A liquid junction potential (LJP) is the voltage that is generated by two solutions that 

come into contact with each other and arises due to flux of ions between the two 

solutions.  The differences in the mobility and concentrations of ions between the 

solutions effects the potential generated.  When the pipette comes into contact with the 

bath solution an LJP is generated, thus introducing a voltage error which needs to be 

corrected for.  The Clampex software suit contains a programme for working out the 

LJP (JPCalc; Barry, 1994) and was found to be 12.6mV for solutions used in this thesis.  

All values reported for Vhold and Vrev have been corrected for this.  A salt bridge filled 

with 3M KCl / 4% agar was used to ground the bath solution so as to reduce the effect 

of the solutions changes that take place during experiments on the reference electrode 

potential (Barry and Lynch, 1991) 

Experimental design 

Glass coverslips containing growing cells were placed into a perfusion bath of ~1ml 

volume that was mounted on a Nikon Diaphot inverted microscope.  The perfusion 

system allowed the changing of solutions by superfusion using a pinch valve system 
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(Scientific Instruments ALA-VM8, ALA Scientific Instruments inc, USA).  Borosilicate 

glass microelectrode pipettes (Clark Electromedical Instruments, UK) were fire polished 

to 1-1.8MΩ using a Flaming/Brown micropipette puller (P-97, Stutter Instruments co., 

USA).  A GΩ seal was formed by bringing the glass microelectrode into close contact 

with the target cell using the Burleigh PCS-5000 micromanipulator (Burleigh, USA) 

and applying a gentle suction.  Experiments were only performed after the formation of 

a stable GΩ seal and successful perforation of the membrane achieved.  A successful 

perforation was determined by a fall in Ra to a stable value which was typically around 

32 MΩ. However there was some degree of variability in this value. 

Recording Protocol 

Membrane currents (Im) were recorded from cells held under voltage clamp in the 

perforated patch configuration.  In all experiments a voltage ramp was applied (-113mV 

to +87mV, 2 s) which is repeated four times and the Im associated with this is recorded 

and averaged.  Ra and Cm were monitored throughout experiments and minor change 

applied as necessary, and all data is derived from experiments in which these parameters 

remained stable.  Plots are constructed to show the relationship between Vhold and Im.  

Downward deflections represent a depolarising inward current and upward deflections a 

hyperpolarising outward current.  The reversal potential is the value of Vhold at which Im 

is zero (Vrev).  The amiloride sensitive current (Iamil) was established by recording under 

control conditions and then switching to the solution containing amiloride and ~30 

seconds later a second recording was made.  The current recorded in the presence of 

amiloride was digitally subtracted from the current recorded under control conditions in 

order to isolate the amiloride sensitive component of the total current.  Conductance (G) 

was estimated by regression analysis of the Im - Vhold plots. 
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Equilibrium Potentials 

All equilibrium potentials quoted in this thesis were determined using the Nernst 

equation which is given as: 

(1.1)  Es = 2.303(RT/zsF)log10 ([S]o/[S]i) 

 

Where R is the gas constant (8.31 JK-1mol-1), T is the temperature in Kelvin (K), zs is 

the valency of the ion (S), F is the Faraday constant (96.5x103 Cmol-1) ans [S]o is the 

extracellular ion concentration and [S]i is the intracellular ion concentration.  If we use 

Na+ as an example under standard conditions in this thesis this gives: 

(1.2)  ENa = 2.303 (((8.31 JK-1mol-1)(295.15))/1(96.5x103 Cmol-1))log10  

(1.3)  ([144.4mM]o/[10mM]i) 

(1.4)  ENa = 58.5mV log10 ([144.4mM]o/[10mM]i) 

(1.5)  ENa = 67.8mV 

All equilibrium potentials were worked out in a similar manner and for EK was -82mV 

and ECl was -42mV.  It is important to note that this equation is only for single ions. 

Statistics 

All data are presented as mean ± standard error of the mean (SEM) and values of n refer 

to the number of independent experiments.  Statistical significance between recordings 

under ECS and ECS + amiloride was determined using Students paired t-test.  Where 

applicable, data were analysed using one-way analysis of variance (ANOVA), i.e. in 

cases where more than two groups were compared, as multiple t-tests results in a large 

type two error which results in the false rejection of the null hypothesis.  Bonferroni 

post-hoc test was performed, for example to determine the statistical significance of the 

effects of an inhibitor when compared to the control group.  
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Chapter 3 - Properties of H441 cells 
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Introduction 

The regulated absorption of fluid in the respiratory system is vital for fluid clearance at 

birth and efficient functioning throughout adult life, which develops late in gestation 

and is dependent on an increase in circulating GCs (Baines et al, 2000).  It is clear that 

GCs are important in the switch to a Na+ absorbing phenotype and this is demonstrated 

as they are used clinically to treat RDS and pulmonary oedema.  However, despite this 

and a large body of work, the mechanisms by which GCs act are still not fully 

understood (as discussed in the introduction). 

 

The H441 human bronchiolar cell line has been used as a model to investigate the 

mechanism of action of GCs to induce Na+ transport.  Work on this cell line has shown 

that H441 cells display an amiloride sensitive apical GNa in cells grown as confluent 

monolayers that is induced by dexamethasone (Sayegh et al, 1999; Itani et al, 2002; 

Lazrak and Matalon, 2003; Ramminger et al, 2004; Thomas et al, 2004; Albert et al, 

2008).  However differences exist between the studies such as the size of currents 

recorded: approx 7.5 (Sayegh), 10 (Itani) and 40 μA/cm2 (Ramminger). However these 

differences were assumed to arise from slight differences in culture methodology.  A 

more significant difference was observed as Lazark and Matalon, 2003 reported that 

H441 cells formed resistive monolayers and expressed basal amiloride sensitive Na+ 

transport, the opposite reported in Ramminger et al, 2004.  A relatively simple 

explanation for this discrepancy lies in the difference as to what both studies define as 

control conditions. A serum containing a poorly defined mix of hormones and growth 

factors was added to the control medium (Lazark and Matalon, 2003) whereas the other 

study used a serum that was dialysed to remove hormones and growth factors 

(Ramminger et al, 2004), therefore it is likely that the basal amiloride sensitive Na+ 
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transport was a result of activation by hormones/growth factors in the serum.  A 

subsequent study from Ramminger supported this as patch clamp recordings from H441 

cells only display an amiloride sensitive Na+ conductance in the presence of 

dexamethasone (Clunes et al, 2004).  It would also appear that cell contact is vital for 

the formation of a Na+ selective, amiloride sensitive conductance as only nonselective 

Na+ currents have been observed in single H441 cells (Brown et al, 2008; Gallacher et 

al, 2009).   Thus it is clear that H441 cells have an endogenous amiloride sensitive Na+ 

current that can be activated by dexamethasone and it would appear that this 

conductance can be acutely regulated by cAMP.  Exposing cells to compounds that 

raise intracellular cAMP levels resulted in an increase in observed currents (Ramminger 

et al, 2004; Clunes et al, 2004) and increased both channel open probability and the 

number of active channels (Lazark and Matalon, 2003).  Thus it would appear that H441 

cells are a useful model to investigate the activation of Na+ transport via GCs as they fit 

well with the model that GCs “prime” the lung for the switch to a Na+ absorbing 

phenotype and that cAMP can acutely regulate the channel.  However, as slight 

differences in culture conditions may affect channel properties and expression, it is 

therefore important to first characterise the dexamethasone induced increase in Na+ 

transport even though the culture conditions are similar to that reported in previous 

studies (Clunes et al, 2004; Brown et al, 2008; Gallacher et al, 2009).  It is important to 

note that the H441 cells were not grown in an air-liquid interface or on permeable 

supports which has also been reported to alter ion channel expression (Jain et al, 2001) 

 

SGK1 activation requires the phosphorylation of two distinct residues in order to confer 

activity (Biondi et al, 2001), which is dependent on PI3K activity (Kobayashi and 

Cohen, 1999; Park et al, 1999; Biondi et al, 2001). However there is little work into the 
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activity of either SGK1 or PI3K in H441 cells in the response to GCs.  Furthermore 

much of the evidence for the role of these kinases comes from studies in renal epithelia, 

therefore it is important to investigate this in pulmonary epithelia such as the H441 cell 

line. Studies that have looked to address this have transfected H441 cells with mutant 

forms of SGK1 and PI3K that are either constitutively active or catalytically inactive 

and because of this approach focus on single cells that only display a nonselective 

conductance (Brown et al, 2008; Inglis et al, 2009).  As such the activity of SGK1 and 

PI3K has not been fully investigated in this cell line.  NDRG1 is phosphorylated by 

SGK1 at Thr346/356/366 and not by other related kinases such as PKB/S6K1 or RSK1 

(Murray et al, 2004; Murray et al, 2005).  Thus antibodies raised against 

phosphorylated NDRG1-Thr346/356/366 can be used to monitor SGK1 activity (Murray et 

al, 2004) although this study was carried out in HeLa cells and sgk1 knockout mice. 

This approach has since been used as an assay for SGK1 activity in mouse cortical 

collecting duct cells (Mansely and Wilson, 2010a) and in H441 cells (Inglis et al, 2009; 

McTavish et al, 2010).  I therefore utilised this approach to further characterise the role 

of SGK1 in the response to GC treatment.  A similar approach can be applied to assay 

for PI3K as the phosphorylation of PKB-Ser473 has been shown to be a reliable read out 

for PI3K activity (Bayascas and Alessi, 2005) and has been used to assay for PI3K 

activity in mouse cortical collecting duct cells (Mansely and Wilson, 2010a).  Using 

these approaches I designed experiments to characterise the activity of both SGK1 and 

PI3K activity in H441 cells. 
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Results  

The aim of this section is to establish if dexamethasone could induce an amiloride 

sensitive current in H441 cells and whether this is affected by cell-cell contact.  To 

establish this patch clamp recordings were taken from single and groups of cells.  In 

order to better understand the molecular mechanisms involved, Western blot analysis 

was used to determine PI3K and SGK1 activity via phosphorylation status of PKB-

Ser473 and NDRG1-Thr346/356/366 respectively. 

Properties of single H441 cells 

Figure 3.1 shows the Im-Vhold relationship and the values of Vrev derived from these 

recording of single H441 cells superfused with the standard ECS control solution and 

ECS + amiloride (ECS + Amil., 10 μM).  The Cm for single cells was 28.3 ± 3.2pF 

which is similar to that reported in Brown et al, 2008 and Gallacher et al, 2010.  In the 

absence of dexamethasone, exposure to 10 μM amiloride had no effect on currents 

recorded and also no effect on the vales of Vrev.  In the presence of dexamethasone (0.2 

μM, 18-36 h), 10 μM amiloride had no effect on currents recorded or the values of Vrev.  

However the magnitude of the current at negative values of Vhold is larger.  There is a 

slight difference in the values of Vrev between cells in the presence and absence of 

dexamethasone. However this was determined to be non significant (one-way ANOVA 

with Bonferroni post hoc). 
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Fig. 3.1. Properties of single cells.  (A) Relationship between membrane current (Im) 

and holding potential (Vhold) quantified in glucocorticoid-deprived (n = 4, Cm = 27.5 ± 

3.4 pF, Ra = 14.3 ± 1.0 MΩ) cells during exposure to the standard extracellular solution 

(ECS) and after ~30s exposure to 10 μM amiloride (+Amil.).  (B) Equivalent data from 

dexamethasone-treated (0.2 μM, 18-36 h) cells (n = 6, Cm = 28.8 ± 5.2 pF, Ra = 25.8 ± 

3.5 MΩ).  (C) Values of Vrev derived by analysis of the data in A and B.  Table (D) 

shows the values for Vrev. 
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Properties of groups of H441 cells 

Figure 3.2 shows the Im-Vhold relationship and the values of Vrev derived from these 

recordings in groups of H441 cells superfused with ECS and ECS + amiloride (ECS + 

Amil., 10 μM).  The Cm for groups of cells was 43.9 ± 4.4 pF.  In the absence of 

dexamethasone, exposure to 10 μM amiloride had no effect on currents recorded and 

also no effect on the vales of Vrev.  In contrast to single cells, dexamethasone (0.2 μM, 

18-36 h) caused depolarisation and subsequent exposure of 10 μM amiloride caused a 

hyperpolarising response and a reduction in the magnitude of the inward current 

flowing at negative values of Vhold. 
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Figure. 3.2. Properties of groups of cells.  (A) (n = 12, Cm = 41.0 ± 4.9 pF, Ra = 22.2 

± 4.1 MΩ) cells during exposure to ECS and after ~30s exposure to 10 μM amiloride 

(+Amil.).  (B) Equivalent data from dexamethasone-treated (0.2 μM, 18-36 h) cells (n = 

9, Cm = 47.6 ± 8.0 pF, Ra = 28.9 ± 3.1 MΩ).  (C) Values of Vrev derived by analysis of 

the data in A and B; asterixes denote a statistically significant effect of amiloride (***, 

P < 0.001, Student’s paired t-test), cross denotes a statistically significant effect of 

dexamethasone (†, P < 0.05, one-way ANOVA with Bonferroni post hoc test).  Table 

(D) shows the values for Vrev. 
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Differences between groups and single cells 

Figure 3.3 shows further analysis of the data in figure 3.1 and 3.2 to obtain the Iamil (see 

methods) and the current at -82mV (I-82).  In single cells there is negligible Iamil in 

dexamethasone-deprived and dexamethasone-treated cells.  The I-82 in single 

dexamethasone-deprived cells is very low whereas the I-82 for dexamethasone-treated 

cells is larger although not amiloride sensitive.  Thus dexamethasone causes an increase 

in the magnitude of the I-82.  Under dexamethasone-deprived conditions in single cells 

there is negligible Iamil in groups of cells however there is a clear Iamil in groups of cells 

that have been treated with dexamethasone.  Furthermore this reverses close to the 

predicted value for ENa (+67.8 mV) indicating a high degree of Na+ selectivity.  

Dexamethasone causes an increase in the magnitude of the I-82 compared to 

dexamethasone deprived cells and in contrast to single cells this is amiloride sensitive. 

Table 3.1 values of I-82 derived from data in figure 3.1 (single cells) 

 Dex.-Free (pA/cell) Dex.-treated (pA/cell) 

ECS -7.6 ± 1.7 -42.7 ± 8.2 

+ Amil. -8.2 ± 2.0 -39.1 ± 14.2 

 

Table 3.2 values of I-82 derived from data in figure 3.2 (groups of cells) 

 Dex.-Free (pA/cell) Dex.-treated (pA/cell) 

ECS -16.5 ± 5.6 -34.3 ± 4.7 

+ Amil. -14.8 ± 5.2 -9.9 ± 2.4 
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Figure. 3.3. Differences between groups and single cells.  (A) Analysis of the 

amiloride sensitive component (Iamil) of the total membrane current for single cells 

derived from data shown in figure 3.1. A and B (n = 4, dex.-free; n = 6 dex.-treated).  

(B) Current flowing at -82mV derived from data in figure 3.1. A and B. Effect of 

dexamethasone was not found to be significant however it did approach significance (P 

= 0.054, one-way ANOVA with Bonferroni post hoc test) (C)  Analysis of Iamil of total 

membrane current for cells in groups derived from data shown in figure 3.2 A and B (n 

= 12, dex.-free; n = 9 dex.-treated). (D) Current flowing at -82mV, derived from data in 

figure 3.2. A and B; asterixes denote a statistically significant effect of amiloride (**, P 

< 0.01, Student’s paired t-test).  Cross denotes a statistically significant effect of 

dexamethasone (†, P < 0.05, one-way ANOVA with Bonferroni post hoc test) 
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Conductance in groups of H441 cells 

As the aim of this work was to investigate ENaC regulation the data from groups of 

H441 cells was further analysed in order to determine the conductance.  Figure 3.4 

shows the conductance derived from data in figure 3.2.  Dexamethasone (18-36 h, 0.2 

μM) clearly increases the conductance in H441 cells and this is reduced by exposure to 

10 μM amiloride.  Dexamethasone free cells have a similar conductance to that of 

dexamethasone-treated cells that have been exposed to amiloride thus indicating that the 

increase in conductance is due to amiloride sensitive channels. 
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Figure 3.4. Conductance derived from dex.-treated (n = 9) and dex.-free (n = 12) 

cells.  Asterixes denote a statistically significant effect of amiloride (***, P < 0.001, 

Student’s paired t-test), cross denotes a statistically significant effect of dexamethasone 

(†, P < 0.001, one-way ANOVA with Bonferroni post hoc test)  
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Pooled Iamil data 

All results from cells exposed to dexamethasone (0.2 μM 18-36 h) were pooled and the 

Iamil plotted.  The purpose of this was to confirm that dexamethasone caused the 

induction of a highly Na+ selective current. Figure 3.5 shows the pooled data of the Iamil 

from all cells exposed to dexamethasone (0.2 μM 18-36 h) used in this thesis and the Cm 

was 53.8 ± 4.1 pF.  The reversal potential is 66.7 ± 3.1 mV which is extremely close to 

the predicted value of ENa which is 67.8 mV indicating a very high degree of Na+ 

selectivity. 
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Figure 3.5 Pooled Iamil data for all control dex-treated recordings.  Pooled data of 

Iamil of the total membrane current for all dex-treated cells (0.2 μM, 18-36 h) recorded 

for this thesis (n = 31) 
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Does dexamethasone treatment alter the activity of PI3K and SGK1? 

Western blot analysis was carried out in order to determine the effects of 

dexamethasone treatment upon the activity of PI3K and SGK1.  Figure 3.6 shows the 

effects of dexamethasone-treatment on SGK1 activity as monitored by NDRG1-

Thr346/356/366 phosphorylation and PI3K activity as monitored by PKB-Ser473 

phosphorylation both acutely (0.2 μM, 0-6 h) and in cells that have been exposed to 

dexamethasone for 24 hours.  Acute dexamethasone-treatment increases the abundance 

of NDRG1-Thr346/356/366 phosphorylation without affecting the total abundance of 

NDRG1.  This increase is clearly apparent after 1 hour dexamethasone-treatment and 

persists for 6 hours although a decline is apparent by this time point.  Dexamethasone 

has no marked effect upon PKB-Ser473 phosphorylation or total PKB.  As patch clamp 

experiments are routinely carried out after 18-36 hours dexamethasone treatment, the 

phosphorylation status of both NDRG1 and PKB were examined after 24 hours 

exposure to dexamethasone.  
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Figure. 3.6 Endogenous protein phosphorylation in dex-treated cells.  (A) Typical 

western blot showing the effects of dex-treatment (0.2 μM, 0-6 h) on the abundance of 

NDRG1-Thr346/356/366 phosphorylation and total NDRG1.  (B)  Densometric analysis of 

pooled data from 6 experiments.  (C)  Typical western blot showing the effects of dex-

treatment (0.2 μM, 0-6 h) on the abundance of PKB-Ser473 phosphorylation and total 

PKB.  (D)  Densometric analysis of pooled data from 6 experiments.  Asterixes denote a 

statistically significant effect of dexamethasone (P < 0.001, one-way ANOVA) 
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Acute vs. 24 hour dex treatment upon PI3K and SGK1 activity 

As patch clamp experiments were undertaken after ~24 hours exposure to 

dexamethasone a series of experiments were designed to examine the effects of this 

treatment upon activity of PI3K and SGK1.  A 3 hour time point was chosen as a 

positive control as this typically gave the largest response.  Figure 3.7 confirmed that 

acute dexamethasone-treatment (3 h) increased the abundance of NDRG1-Thr346/356/366 

phosphorylation, however after 24 hours exposure to dexamethasone NDRG1-

Thr346/356/366 phosphorylation was essentially identical to that of those measured in 

dexamethasone-deprived cells.  Dexamethasone exposure had no effect upon -Ser473 

phosphorylation either acutely or after 24 hours exposure. 
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Figure. 3.7 Effect of dex.-treatment upon endogenous protein phosphorylation.  

Typical western blot showing the effect of  short term (3 h) and long term (24 h) dex 

treatment upon the cellular abundance of (A) NDRG1-Thr346/356/366 phosphorylation and 

total NDRG1 and (B) PKB-Ser473 and total PKB; essentially identical data was obtained 

from 4 experiments. 
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Does acute increase in Dex-evoked SGK1 activity induce ENaC activity 

Figure 3.8 shows the Im-Vhold relationship and the values of Vrev from dexamethasone-

deprived cells, dexamethasone-treated cells (0.2 μM, 18-36 h) and acute exposure to 

dexamethasone (0.2 μM, 3-4 h).The Cm for all recordings was 42.4 ± 2.8 pF.  There was 

no effect upon exposure to 10 μM amiloride in dexamethasone-deprived cells or the 

values of Vrev.  18-36 hours exposure to dexamethasone resulted in a depolarisation that 

was reversed by 10 μM amiloride.  Three hour dexamethasone exposure did not result 

in depolarisation and there was no effect upon exposure to 10 μM amiloride.  The 

values of Vrev were similar to those of dexamethasone-deprived cells. 

Table 3.3 values of Vrev derived from data in figure 3.8 

 Dex.-Free (mV) Dex. (3 h) (mV) Dex. (18-36 h) (mV) 

ECS -64.4 ± 4.2 -60.8 ± 7.2 -7.9 ± 7.3 

+ Amil. -64.6 ± 3.1 -61.3 ± 7.2 -65.8 ± 8.3 
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Figure 3.8. Effect of 3 hour vs. 18-36 hour dex-treatment.  (A)  Relationship between 

membrane current (Im) and holding potential (Vhold) quantified in glucocorticoid-

deprived cells (n = 3, Ra = 30.7 ± 9.1 MΩ).  (B)  Equivalent data from dex-treated (0.2 

μM, 18-36 h) cells (n = 5, Ra = 19.3 ± 2.1 MΩ).  (C) Equivalent data from dex-treated 

(0.2 μM, 3-4 h) cells n = 5, Ra = 30.7 ± 4.8 MΩ).  (D)  Values of Vrev derived from data 

in A, B and C; asterixes denote a statistically significant effect of amiloride (**, P < 

0.01, Student’s paired t-test). 
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 Acute dexamethasone treatment does not evoke ENaC activity 

Figure 3.9 shows further analysis of the data in figure 3.8 to obtain the Iamil and the I-82.  

There is no Iamil in dexamethasone-deprived or acute exposure to dexamethasone.  

Conversely in cells exposed to dexamethasone for 18-36 hours there is a clear Iamil that 

reverses at 49.9 ± 4.5 mV which is close to ENa indicating a high degree of Na+ 

selectivity.  Analysis of the I-82 shows that dexamethasone-deprived and acute exposure 

to dex have little effect on the current whereas longer exposure to dexamethasone 

causes a clear rise of the I-82 which is reversed by amiloride. 
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Fig. 3.9.  Iamil of 3 hour vs. 18-36 hour dex-treatment.  (A)  Analysis of the Iamil of the 

total membrane current for cells derived from data shown in fig. 4.5. A, B and C.  (B) 

Current flowing at -82mV derived from data in fig. 4.5. A, B and C; asterixes denote a 

statistically significant effect of amiloride (**, P < 0.01, Student’s paired t-test). 
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Discussion 

The data presented in this chapter confirms that dexamethasone induces an ENaC like 

current in H441 cells, however it also demonstrates that SGK1 activity does not 

correlate with this ENaC activity.  Furthermore PI3K activity is not affected by 

dexamethasone treatment and as this is reported to be required for SGK1 activity then 

this data questions the role that both SGK1 and PI3K play in the induction and 

maintenance of GC induced ENaC activity. 

Glucocorticoid-induced current in H441 cells 

The data clearly demonstrates that single H441 cells do not display an Iamil, however 

dexamethasone does cause a slight depolarisation in the values of Vrev (~10 mV) and 

also causes an increase in the magnitude of the currents recorded and this is in 

agreement with previous studies of single H441 cells (Brown et al, 2008; Gallacher et 

al, 2009).  In these studies currents were recorded under an additional experimental 

solution where the external concentration of Na+ was lowered from 144.4 mM to 10 

mM by replacing Na+ with the nominally impermeant cation N-methyl-D-

glucammonium, which resulted in a hyperpolarising response thereby indicating that the 

depolarisation was a result of Na+ transport.  Furthermore the currents recorded from 

single H441 cells were shown to be sensitive to lanthanum (Gallacher et al, 2009), 

which is a well known blocker of nonselective cation channels.  Therefore due to the 

similarity between the data presented in this thesis and the data from Brown et al, 2008 

and Gallacher et al, 2009 it would seem highly likely that dexamethasone treatment 

causes the induction of a nonselective cation conductance.  The expression of 

nonselective and selective sodium currents have been previously observed in H441 cells 

grown as monolayers (Shlyonsky et al, 2005; Albert et al, 2008), A549 cells and 
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isolated rat ATII cells (Ito et al, 1997; Marunaka et al, 1999; Jain et al 2001).  

Interestingly one of these studies has reported an effect of cell-cell contact in H441 cells 

on the expression of nonselective currents.  Amiloride sensitivity was not observed in 

low resistance monolayers but was seen in high resistance monolayers thus indicating 

that the degree of “tightness” or the formation of tight junctions influences the 

biophysical properties of H441 cells (Shlyonsky et al, 2005).  While 

electrophysiological experiments were carried out under subconfluent conditions, 

groups of H441 cells clearly display an Iamil that reverses close to ENa therefore 

indicating a high degree of Na+ selectivity that is only present with dexamethasone-

treatment.  The expression of a highly selective Na+ current is associated with the 

expression of α-ENaC, -ENaC and γ-ENaC subunits (Canessa et al 1994; Kosari et al, 

1998; Anantharam and Palmer 2007) and as such the results here confirm previous 

observations that dexamethasone exposure results in an ENaC like conductance in H441 

cells that is dependent on cell-cell contact (Clunes et al, 2004; Brown et al, 2008; 

Gallacher et al, 2009). 

The observation that dexamethasone increases the conductance in H441 cells in an 

amiloride sensitive fashion is further evidence of ENaC like activity.  However there is 

an underlying conductance which is likely attributed to Cl- transport.  Brown et al 

(2010) reported that the Vrev in hormone-deprived single H441 cells was -80mV which 

was almost identical to EK (-82 mV) and that lowering either [Na+]o or [Cl-]o had no 

effect upon this.  However raising [K+]o resulted in a depolarising response therefore 

they concluded that the dominant ionic conductance in hormone-deprived cells is K+ 

transport.   However they also found that in single insulin-treated H441 cells that the 

Vrev was -60mV and this difference was the result of a Cl- conductance.  As the Vrev of 

single and groups of dexamethasone-free cells reported in this thesis is almost identical 
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to that reported by Brown et al (2010), it is likely that there is a Cl- conductance present, 

as Vrev has shifted towards ECl (-42 mV) and this is the likely cause of the conductance 

in dexamethasone-free cells and the amiloride insensitive conductance.  

The role of SGK1 and PI3K 

Acute dexamethasone treatment clearly causes an increase in the phosphorylation of 

NDRG1-The346/356/366 thereby indicating increased activity of SGK1.  This result was 

expected as SGK1 is known to be activated by GCs (Webster et al, 1993; Lang et al, 

2009).  Increased activity could be seen after one hour dexamethasone exposure and 

remained elevated for at least six hours although a slight decline was evident at this time 

point and this result accords well with that reported in Inglis et al, 2009.  SGK1 activity 

is dependent on PI3K-TORC2 phosphorylation of its hydrophobic motif (Ser422) and as 

such PI3K activity was hypothesised to increase with dexamethasone exposure.  

However this is clearly not the case as there is no discernible affect on PKB-Ser473 

phosphorylation thus indicating that PI3K activity is not increased in dexamethasone-

treated cells.  Thus it would appear that the role of PI3K is a permissive one and this has 

been reported in kidney epithelium where dexamethasone activated SGK1 without 

affecting PI3K or TORC2 activity (Mansley and Wilson, 2010b).  While these results 

indicate the activity of SGK1, they cannot determine the abundance of SGK1 and it is 

therefore important to note that dexamethasone has been shown to increase the 

abundance of SGK1 (Wang et al, 2001; Gonzalez-Rodriguez et al, 2007), thus it is 

possible that increased activity of SGK1 is a result of increasing levels of SGK1 and 

that PI3K-TORC2 confer catalytic activity and therefore does not require further 

activation of PI3K. 

It was observed that after 24 hour treatment SGK1 activity had returned to the levels 

observed in dexamethasone-deprived cells.  This result was unexpected as by this time 
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there is clear activation of the amiloride sensitive Na+ current.  This indicates that 

increased activity of SGK1 is not required to maintain the amiloride sensitive Na+ 

current, rather, it may act as a type of biological “switch” whereby a transient increase 

in activity of SGK1is permissive for the cellular response to dexamethasone.  This 

chronic decrease in SGK1 activity was documented in Inglis et al, 2009, where SGK1 

activity was actually observed to fall below that seen in the control cells.  This 

discrepancy may be explained as insulin was not present in the media used in this study 

thereby possibly lowering the activity of PI3K and therefore lowering SGK1 activity.  

This also brings into question the role that SGK1 plays in the activation of the amiloride 

sensitive Na+ current in lung epithelium. 

Acute dexamethasone-treatment upon the electrophysiological 

properties  

As SGK1 activity is highest after three hours treatment with dexamethasone, we 

explored where or not there was activation of the amiloride sensitive Na+ current at this 

time point.  However the data clearly shows (see fig 3.8 and 3.9) that dexamethasone 

has no effect on the electrophysiological properties of H441 cells after three hours.  This 

brings into question the role that SGK1 plays in the maintenance and induction of Na+ 

transport in lung epithelium, a view that is supported by the lack of any functional 

abnormalities in sgk1 gene knockout mice (Wulff et al, 2002; Grahammer et al, 2006; 

Rexhepaj et al, 2006; Fejes-Toth et al, 2008) and suggests some redundancy in the 

SGK1 mediated control of ENaC. 

Conclusions 

These findings support previous studies that show GCs can induce Na+ currents in H441 

cells and that cell-cell contact plays a vital role in the biophysical properties of the cell.  
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Most importantly they demonstrate that H441 cells display an inducible “ENaC like” 

Na+ conductance in response to GCs and are thus is in agreement with previous studies 

that this cell line is a useful model in which to investigate the molecular mechanism 

underlying ENaC activity in lung epithelium.  While it is reported that PI3K is vital to 

confer catalytic activity of SGK1, dexamethasone does not appear to affect the activity 

of this kinase therefore suggesting its role is permissive.  Furthermore the increased 

SGK1 activity in response to dexamethasone is not in accordance with an increase in 

Na+ transport as there appears to be a time discrepancy between the two.  This result 

brings into question the role of SGK1 in the induction and maintenance of Na+ transport 

in H441 cells thus suggesting that dexamethasone may act via alternative signalling 

pathways.  In order to further explore the role of PI3K and SGK1 we designed 

experiments using novel specific inhibitors to examine the effects of PI3K/TORC2 and 

SGK1 inhibition on the response to dexamethasone.  The results of these experiments 

are discussed in chapters five and six. 
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Chapter 4 – The role of PI3K 
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Introduction 

The role that SGK1 plays in the induction and maintenance of the Na+ absorbing 

phenotype of lung epithelium is unclear as there is no discernible lung phenotype in 

sgk1 gene knockout mice, both histology and function were unaffected (Wulff et al, 

2002).  Whereas it was expected that sgk1 knockout would result in a failure to clear 

lung fluid at birth.  The results presented in chapter four of this thesis further question 

the role of SGK1, as when activity is highest, there is no ENaC activity (see figure 3.7 

and 3.8).  However there is evidence that PI3K may work independently of SGK1 to 

induce Na+ transport.  For example it has been shown that PKB isoforms can mediate 

the effect of insulin on ENaC in rat thyroid cells (Lee et al, 2007).  This study 

concluded that both SGK1 and PKB activity were required to maintain basal levels of 

Na+ transport as siRNA directed against PKB and SGK1 reduced amiloride sensitive 

Na+ transport, although there was a more pronounced effect when siRNA directed 

against both kinases were transfected together (Lee et al, 2007).  Nevertheless this does 

provide evidence of SGK1 independent control of Na+ transport.  Furthermore PI3K 

may affect ENaC through its second messengers PIP2 and PIP3 which have been shown 

to be involved in ENaC trafficking (Blazer-Yost et al, 2004) and to affect channel 

gating kinetics (Pochynyuk et al, 2007).  However this study found that while acute 

increases in PIP2 could increase channel open probability, chronic exposure had no 

effect, leading to the conclusion that PIP2 is required to confer constitutive channel 

activity that can be altered via other modulators (Pochynyuk et al, 2007).  Thus PI3K 

activity could be able to confer ENaC activity independently of SGK1 via this 

mechanism.  However, as cells were maintained in media containing corticosteroids, 

this possibility remains experimentally unverified.   
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Many studies have used pharmacological inhibitors of PI3K such as LY294002 and 

wortmannin, however these inhibitors were shown to inhibit mTOR at concentrations 

similar to those used to inhibit PI3K and they do so by inactivating the PI3K p85-p110 

catalytic domain (Brunn et al, 1996).  However both compounds act in a different 

manner: LY294002 acts as a competitive inhibitor of ATP and is reversible (Vlahos et 

al, 1994), whereas wortmannin acts as a non competitive inhibitor (Okada et al, 1994) 

by covalently modifying a lysine residue in the p110 catalytic domain (Wymann et al, 

1996).  Furthermore a study into protein kinase inhibitors confirmed that both 

wortmannin and LY294002 have non-specific effects (Bain et al, 2007).  Although 

wortmannin was found to have fewer non-specific effects than LY294002, it is unstable 

in aqueous solution and therefore its use is limited.  Both LY294002 and wortmannin 

inhibit other kinases aside from PI3K that have been implicated in ENaC regulation.  

Casein kinase 2 has been reported to be involved with ENaC regulation by inhibiting 

the Nedd4-2 pathway (Shi et al, 2002; Bachhuber et al, 2008).  Wortmannin was also 

shown to inhibit smooth muscle myosin light chain kinase, which may contribute to 

ENaC trafficking (Tokuda et al, 2002).  Thus care should be taken when interpreting 

results obtained from the use of these compounds.  A study in 2006 showed that a novel 

PI3K inhibitor, PI-103, displayed a much more selective inhibition of PI3K and at lower 

concentrations than LY294002; however they also found that it inhibited mTOR (Fan et 

al, 2006).  Bain et al, 2007 found that PI-103 did not inhibit either casein kinase 2 or 

smooth muscle myosin light chain kinase or other members of the PI3K superfamily 

and therefore suggest that use of LY294002 be discontinued and PI-103 used as its 

replacement.  However as PI-103 also inhibits mTORC1 the highly specific mTORC1 

inhibitor rapamycin should be used in parallel to make sure the effects of PI-103 are due 

to PI3K, and not mTORC1, inhibition (Bain et al, 2007).  
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There are studies that have explored the role of PI3K in Na+ transport in H441 cells 

(Brown et al, 2008; Gallagher et al, 2009; McTavish et al, 2009, Inglis et al, 2009).  

Transfection of a constitutively active PI3K subunit (CD2-p110α) did not induce Na+ 

transport in hormone deprived cells but did augment the response to dexamethasone 

thus suggesting that PI3K activity alone is not sufficient to induce Na+ transport in 

single H441 cells (Brown et al, 2008; Gallagher et al, 2009).  Nevertheless PI3K 

activity was thought to be important as LY294002 completely abolished Na+ transport 

in single H441 cells (Gallagher et al, 2009; Inglis et al, 2009).  Furthermore it would 

appear that PI-103, a more specific and potent inhibitor of PI3K (Fan et al, 2006; Bain 

et al, 2007), does not cause complete inactivation of SGK1 activity as monitored by 

NDRG1 phosphorylation (McTavish et al, 2009) thus suggesting that SGK1 activity 

may not be fully dependent on PI3K. However as the electrophysiological properties of 

the cells were not investigated in this study, the effect of PI3K inhibition on Na+ 

transport could not be determined. 
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Figure 4.1  Diagram showing predicted pathway of Glucocorticoid ENaC regulation.  

Phosphorylation of PKB at the Ser473 residue can be used to assay for TORC2 activity while 

phosphorylation at the Thr308 residue can be used to assay for PDK1 activity.  As both these kinases are 

PI3K dependent then phosphorylation of these residues indicates PI3K activity.  Similarly NDRG1 

phosphorylation can be used to assay for SGK1 activity. 

 

PI3K is thought to activate SGK1 through a signalling pathway involving TORC2 

(Garcia-Martinez and Alessi, 2008; Lu et al, 2010); however it has also been shown that 

TORC2 is the kinase responsible for hydrophobic motif phosphorylation of PKB-Ser473 

(Sarbassov et al, 2005).  Therefore while phosphorylation of PKB-Ser473 can be used as 

an assay for PI3K activity, it also indicates the activity of TORC2 and has been used for 

this purpose (Thoreen et al, 2009; Lu et al, 2010; Mansley and Wilson, 2010a; Kuehn et 

al, 2011).  Phosphorylation of PKB-Ser473 is thought to enhance PDK1 dependent 

phosphorylation of the activation loop of PKB (Thr308) (Scheid et al, 2002; Yang et al, 
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2002; Sarbassov et al, 2005) possibly by providing a docking site for PDK1.  As PDK1 

is dependent on PI3K activity, PKB-Thr308 phosphorylation can therefore be used to 

determine PDK1/PI3K activity.  Therefore by blotting for both PKB-Ser473 and PKB-

Thr308, PI3K activity can be monitored and also allows for distinction between 

inhibition of mTORC2 and PDK1.  However care must be taken when interpreting 

results as PKB-Ser473 phosphorylation affects PDK1 dependent phosphorylation of 

PKB-Thr308 (Sarbassov et al, 2005; Lu et al, 2010).  Using this approach I designed 

experiments to look at the effect of PI-103 on PI3K activity and the subsequent effects 

on the dexamethasone-induced ENaC activity in H441 cells, in order to determine 

whether this is truly dependent upon PI3K. 
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Results 

The aim of this section was to determine the role of PI3K in the maintenance of the 

amiloride sensitive current induced by dexamethasone.  This was achieved by recording 

from groups of H441 cells that had been exposed to dexamethasone for 18-36 hours 

(control) and control cells that had been exposed to 3-4 hours PI-103 after 

dexamethasone treatment (18-36 h).  Western blot analysis was used to determine that 

inhibition of PI3K was successful, by phosphorylation status of two downstream 

substrates (PKB-Ser473 and PKB-Thr308) and the effect on SGK1 activity (NDRG1-

Thr346/356/366).  As PI-103 is known to inhibit mTORC1, further experiments were 

carried out using the specific mTORC1 inhibitor rapamycin to determine whether any 

affects of PI-103 were the result of mTORC1 inhibition rather than PI3K inhibition. 

Effect of PI3K inhibition on the dexamethasone induced depolarisation 

Figure 4.2 shows the Im-Vhold relationship from recordings of H441 cells that had been 

exposed to control conditions (dex: 0.2 μM, 18-36 h) and after 3-4 hours exposure to PI-

103 (0.5 μM).  Initial recording was made under ECS control solution and then ECS + 

amiloride (ECS + Amil., 10 μM).  Bathing solutions for PI-103 treated cells contained 

0.5 μM PI-103, and recordings were made from them.  The Cm for control cells was 

55.3 ± 10.8 pF and Cm for PI-103-treated cells was 46.2 ± 9.3 pF.  As observed in 

chapter 4 dexamethasone causes depolarisation and a hyperpolarising response is seen 

upon application of amiloride.  PI-103-treatment abolishes the depolarisation in 

response to dexamethasone and there is no effect of amiloride. 
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Figure 4.2 Dexamethasone and PI-103 treated cells.  (A) Relationship between 

membrane current (Im) and holding potential (Vhold) quantified in dex.-treated cells (0.2 

μM, 18-36 h, n = 5) during exposure to ECS and ECS + amiloride (10 μM).  (B) 

Equivalent data from control cells that have been exposed to 3-4 hours of PI-103 (0.5 

μM, n = 6) after dex.-treatment. 



 86

Effect of PI3K inhibition on Vrev and I-82 

Figure 4.3 shows the values of Vrev and the I-82 derived from data in figure 4.2.  

Dexamethasone (0.2 μM, 18-36 h) causes depolarisation and exposure to 10 μM 

amiloride causes a hyperpolarising response.  However exposure to PI-103 (0.5μM, 3-4 

h) abolishes the dexamethasone induced depolarisation and there is no effect of 

amiloride on the value of Vrev.  PI-103 reduces the magnitude of the I-82 and is amiloride 

insensitive, whereas under control conditions there is clear amiloride sensitivity to the I-

82. 
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Figure 4.2 Vrev and I-82 for dex-treated and PI-103 treated cells.  (A) and (B) values 

of Vrev derived by analysis of the data in figure 4.2 A and B (control n = 5; PI-103-

treated n = 6).  (C) and (D) current flowing at -82mV, derived from data in figure 4.2. A 

and B (control n = 5; PI-103-treated n = 6).  Asterixes denote a statistically significant 

effect of amiloride (*, P < 0.05, **, P < 0.01, Student’s paired t-test), cross denotes a 

statistically significant effect of PI-103 (†, P < 0.001, one-way ANOVA with 

Bonferroni post hoc test). 
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Effect of PI3K inhibition on the amiloride sensitive current 

Figure 4.4 shows further analysis of the data in figure 4.1 to obtain the Iamil for control 

cells and cells treated with PI-103.  In control cells there is a clear Iamil that reverses at 

51.1 ± 4.0 mV which is similar to the predicted value for Na+ therefore indicating a high 

degree of Na+ selectivity.   Exposure to PI-103 (0.5μM, 3-4 h) completely abolishes the 

Iamil. 
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Figure. 4.4. Iamil for dex-treated and PI-103 treated cells.  (A) Analysis of the 

amiloride sensitive component (Iamil) of the total membrane current for control cells (n = 

5) and PI-103 treated cells (0.5 μM, n = 6) derived from data in figure 4.2 A and B. 
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Effect of PI3K inhibition on endogenous protein phosphorylation 

Figure 4.5 shows the effects of dexamethasone-treatment and PI3K inhibition on SGK1 

activity as monitored by NDRG1-Thr346/356/366 phosphorylation and PI3K activity as 

monitored by PKB-Ser473 and PKB-Thr308 phosphorylation.  Acute dexamethasone-

treatment increases the abundance of NDRG1-Thr346/356/366 phosphorylation whereas, 

after 24 hours exposure to dexamethasone, NDRG1-Thr346/356/366 phosphorylation was 

essentially identical to that of those measured in dexamethasone-deprived cells.  PI-103-

treatment completely abolishes NDRG1-Thr346/356/366 phosphorylation, furthermore total 

NDRG1 remains unaffected.  Acute and longer term dexamethasone-treatment has no 

effect on either PKB-Ser473 or PKB-Thr308 phosphorylation.  However PI-103-treatment 

abolishes phosphorylation of both PKB-Ser473 and PKB-Thr308 while total PKB is 

unaffected. 
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Figure 4.5 Effect of PI-103 upon endogenous protein phosphorylation.  Cells were 

maintained in dexamethasone-free medium and then exposed to dexamethasone for 3 

hours, ~24 hours or ~24 hours with 3 hours exposure to PI-103 (0.5μM) and then 

subjected to western blot analysis to determine phosphorylation and total protein 

abundance of NDRG1 and PKB.  Shown are typical blots representative of 4 such 

experiments (A) NDRG1-Thr246/256/366 / Total-NDRG1 (C) PKB-Ser473 / PKB-total (E) 

PKB-Thr308 / PKB-total.  Densometric analysis of 4 such experiments are shown in (B), 

(D) and (F).  Cross indicates statistically significant effect of dexamethasone (†, P < 

0.05 one way ANOVA), asterixes denote a statistically significant effect of PI-103 (* P 

< 0.05, **, P < 0.01 one way ANOVA). 
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Effect of mTORC1 inhibition 

As PI-103 has been shown to inhibit mTOR, parallel experiments were run using 

rapamycin which is an exquisitely specific inhibitor of mTORC1 (Bain et al, 2007).  

Figure 4.6 shows the Im-Vhold relationship from recordings of H441 cells that had been 

exposed to control conditions (dex: 0.2 μM, 18-36 h) and after 3-4 hours exposure to 

rapamycin (0.1 μM).  Initial recording was made under ECS control solution and then 

ECS + amiloride (ECS + Amil., 10 μM).  Recordings made from rapamycin-treated 

cells the bathing solutions contained 0.1 μM rapamycin.  The Cm for control cells was 

67.4 ± 13.4 pF and Cm for rapamycin-treated cells was 79.3 ± 19.3 pF.  Dexamethasone 

causes depolarisation and a hyperpolarising response is seen upon application of 

amiloride.  Rapamycin-treatment does not abolish the depolarisation in response to 

dexamethasone and there is a hyperpolarising effect of amiloride. 
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Figure 4.6 Dexamethasone and rapamycin treated cells.  (A) Relationship between 

membrane current (Im) and holding potential (Vhold) quantified in control cells (0.2 μM, 

18-36 h, n = 4) during exposure to ECS and ECS + amiloride (10 μM).  (B) Equivalent 

data from control cells that have been exposed to 3-4 hours of rapamycin (0.1 μM, n = 

5). 
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Effect of mTORC1 inhibition on Vrev and I-82 

Figure 4.7 shows the values of Vrev and the I-82 derived from data in figure 4.5.  

Dexamethasone (0.2 μM, 18-36 h) causes depolarisation and exposure to 10 μM 

amiloride causes a hyperpolarising response.  Exposure to rapamycin (0.5μM, 3-4 h) 

does not abolish the dexamethasone induced depolarisation and there is a 

hyperpolarising response to amiloride on the value of Vrev.  Although this response is not 

significant, it does tend towards significance (P = 0.0576, students paired t-test).  

Rapamycin does not have a significant effect on the values of Vrev or I-82 (ANOVA with 

Bonferoni post hoc test). 
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Figure 4.7  Vrev and I-82 for dex- and rapamycin treated cells.  (A) and (B) values of 

Vrev derived by analysis of the data in figure 4.1 A and B (control, n = 4; rapamycin, n = 

5).  (C) and (D) current flowing at -82mV, derived from data in figure 4.6. A and B 

(control, n = 4; rapamycin, n = 5).  Asterixes denote a statistically significant effect of 

amiloride (*, P < 0.05, **, P < 0.01, Student’s paired t-test).  Whilst the effect of 

amiloride was found not to be significant in rapamycin treated cells, it did approach 

significance (P = 0.058, student’s paired t-test). 
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Effect of mTORC1 inhibition on the amiloride sensitive current 

Figure 4.8 shows further analysis of the data in figure 4.1 to obtain the Iamil for control 

cells and cells treated with rapamycin.  In control cells there is a clear Iamil that reverses 

at 58.4 ± 10.4 mV. Furthermore there is an obvious Iamil in rapamycin-treated cells that 

reverses at 62.0 ± 5.4 mV.  Both reverse at values similar to the predicted value for Na+ 

therefore indicating a high degree of Na+ selectivity. 
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Figure. 4.8. Iamil for dex- and rapamycin treated cells.  (A) Analysis of the amiloride 

sensitive component (Iamil) of the total membrane current for control cells (n = 4) and 

rapamycin treated cells (0.1 μM, n = 5) derived from data in figure 4.6 A and B. 
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Effect of mTORC1 inhibition on endogenous protein phosphorylation 

Figure 4.9 shows the effects of dexamethasone-treatment and mTORC1 inhibition on 

SGK1 activity as monitored by NDRG1-Thr346/356/366 phosphorylation, mTORC2 

activity as monitored by PKB-Ser473 and PI3K activity as monitored by PKB-Thr308 

phosphorylation.  After 24 hours exposure to dexamethasone NDRG1-Thr346/356/366 

phosphorylation had not increased compared to hormone free.  Rapamycin-treatment 

has no effect on NDRG1-Thr346/356/366 phosphorylation, furthermore total NDRG1 

remains unaffected.  Rapamycin has no effect on either PKB-Ser473 or PKB-Thr308 

phosphorylation and total PKB is unaffected. 



 97

 

0

2

4

6

B

D

F

R
el

at
iv

e 
A

b
u

n
d

an
ce

R
el

at
iv

e 
A

b
u

n
d

an
ce

R
el

at
iv

e 
A

b
u

n
d

an
ce

Contro
l

Rapamycin

Contro
l

Rapamycin

Phospho

TotalNDRG1-Thr346/356/366

NDRG1-Total

50

KDa
A

50

PKB-Ser473

PKB-Total

60

60

C

PKB-Thr308

PKB-Total

60
E

60

Dex. fr
ee

Dex. fr
ee

Phospho

Total

Phospho

Total

NDRG1

PKB-Ser473

PKB-Thr308

0

2

4

6

0

2

4

6

 

Figure 4.9 Effect of rapamycin on endogenous protein phosphorylation.  Cells were 

maintained in either dexamethasone-free media, exposed to dexamethasone for ~24 

hours (control) or control cells with 3 hours exposure to rapamycin (0.1 μM) and then 

subjected to western blot analysis to determine phosphorylation and total protein 

abundance of NDRG1 and PKB.  Shown are typical blots representative of 4 such 

experiments (A) NDRG1-Thr246/256/366 / Total-NDRG1 (C) PKB-Ser473 / PKB-total (E) 

PKB-Thr308 / PKB-total.  Densometric analysis of 4 such experiments are shown in (B), 

(D) and (F). 
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Effect of PI-103 and rapamycin on conductance 

To further examine the effects of PI-103 and rapamycin on the biophysical properties of 

H441 cells the conductance was determined by further analysis of the data obtained 

from figures 4.1 and 4.5.  Figure 4.10 clearly shows that dexamethasone-treatment (18-

36 h, 0.2 μM) increases the conductance and this is sensitive to 10 μM amiloride (A) 

and (B).  PI-103 (0.5 μM, 3-4 h) completely abolished the effect of dexamethasone 

however rapamycin (0.1 μM, 3-4 h) had no significant effect. 
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Figure 4.10 Effect of PI-103 and rapamycin upon conductance.  Further analysis of 

the data obtained from figures 4.2 (A) and 4.6 (B); asterixes denote a statistically 

significant effect of amiloride (* P < 0.05, ** P < 0.01 and *** P < 0.001, Student’s 

paired t-test), cross denotes a statistically significant effect of PI-103 (†, P < 0.001, one-

way ANOVA with Bonferroni post hoc test). 
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Discussion 

The data further confirm the observation that dexamethasone increased SGK1 activity 

and that after ~24 hours exposure, activity dropped to the level seen in dexamethasone-

free cells.  The PI3K assay was expanded upon to include PKB-Thr308 phosphorylation, 

thus allowing the determination of the phosphorylation status of two downstream 

substrates, which confirms dexamethasone has no effect upon PI3K activity, thus 

strengthening the case of a permissive role for PI3K.  Treatment with PI-103 completely 

abolishes the phosphorylation of both PKB residues and therefore is consistent with the 

view that PI-103 completely inhibits PI3K (Fan et al, 2006; Bain et al, 2007).  PI-103 

treatment also abolishes SGK1 activity and this result was expected as SGK1 activity 

has been shown to be dependent on PI3K activity (Kobayashi and Cohen, 1999; Park et 

al, 1999; Biondi et al, 2001).  However, this result is in contrast to another study which 

showed that PI-103 did not fully inhibit SGK1 activity as NDRG1 phosphorylation was 

not abolished in H441 cells (McTavish et al, 2009).  The reason for this discrepancy is 

unclear as the cells were treated in a similar fashion, although as PI3K activity was not 

assayed in McTavish et al, (2009), the possibility that PI-103 did not fully inactivate 

PI3K cannot be ruled out.  However it is clear from the data presented here that PI-103 

causes inhibition of PI3K and SGK1 activity.  Therefore I looked at the effect of PI-103 

on the dexamethasone-induced amiloride sensitive current and found that PI-103 

abolished the dexamethasone induced amiloride sensitive current; this agrees well with 

the theory that PI3K is vital for the induction and maintenance of Na+ transport in lung 

epithelium.  PI3K inhibition has been shown to abolish Na+ transport in H441 cells 

(Inglis et al, 2009); however LY294002 was used and therefore these results may have 

been due to the non-specific effects of LY294002.  The results presented here therefore 
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confirm that PI3K activity is important for the maintenance of dexamethasone induced 

ENaC activity in lung epithelium. 

 

As PI-103 is known to inhibit TORC1 (Bain et al, 2007) the effects of the highly 

specific TORC1 inhibitor, rapamycin, were explored.  Rapamycin-treatment did not 

mimic the effects of PI-103 on NDRG1 or PKB phosphorylation, and it had no effect 

upon the electrophysiological properties of dexamethasone-treated cells.  Therefore 

these results are in agreement with those of Lu et al, 2010 that report no role for 

TORC1 in the induction and maintenance of ENaC activity irrespective of PI3K 

activity.   

Interestingly PI-103 does not completely abolish the conductance seen in H441 cells.  

There is a clear amiloride-insensitive conductance, which is likely, in part, due to 

insulin stimulated Cl- transport (Brown et al, 2008).  PI-103 did not abolish the 

amiloride-insensitive component, thus suggesting that insulin is acting through a 

mechanism independent of PI3K.  However, as this was not investigated, this could not 

be experimentally verified.  Rapamycin-treatment on the other hand had no significant 

effect upon the conductance and this accord well with the previous results that 

mTORC1 is not involved in dexamethasone-induced Na+ transport. 

Conclusions 

These data confirm previous studies, which suggest PI3K is vital to dexamethasone-

induced ENaC activity.  However building on this, the results on this chapter exclude a 

role for TORC1 in the GC-mediated increase in Na+ transport in the H441 cell line.  

These results cannot determine whether TORC2 / SGK1 are part of the pathway 

involved in dexamethasone-induced ENaC activity.  Indeed the finding that PI-103 

inhibits both SGK1 and PKB activity is to be expected as both of these kinases are 
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thought to be dependent upon PI3K.  As PI3K was fully inactivated, the effects of PI-

103 could be a result of PKB or PIP2/3 inhibition.  We therefore designed further 

experiments using novel inhibitors of mTORC1 / 2 and SGK1, Torin1 and GSK650394 

respectively (Thoreen et al, 2009; Sherk et al, 2008; Mansley and Wilson, 2010b) that 

would allow for inhibition of these kinases while leaving PI3K activity unaffected 

therefore addressing the role of both TORC2 and SGK1 in the maintenance of GC-

induced ENaC activity in lung epithelium.  The results of these experiments are 

presented in the next chapter. 
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Chapter 5 – The role of TORC2 and 

SGK1 
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Introduction 

The results presented in chapter four support the theory that PI3K is vital to the 

maintenance of Na+ transport, however further investigation is required to determine the 

exact signalling mechanisms that take place.  Recent evidence would suggest that ENaC 

activity is dependent on TORC2 phosphorylation of the hydrophobic motif of SGK1 

(Lu et al, 2010).  This provides a docking site for PDK1 thereby promoting interaction 

of SGK1 with PDK1 causing phosphorylation of the activation loop of SGK1 and 

conferring activity (Biondi et al, 2001).  As discussed in chapter one SGK1 is thought to 

cause phosphorylation of Nedd4-2 which increases the trafficking and expression of 

ENaC in the membrane.  However there are other mechanisms of action that may 

contribute to the hormonal regulation of ENaC activity that are dependent on PI3K such 

as the phosphatidylinositide second messengers (PIP2 and PIP3) and/or PKB (Blazer-

Yost et al, 2004; Pochynyuk et al, 2007; Lee et al, 2007; Diakov et al, 2010).  This, 

taken with the observations that sgk1 gene knockout mice are viable, suggests alternate 

mechanisms are involved in the control of ENaC.  The lack of specific inhibitors of 

TORC2 and SGK1 has in part hindered the investigation into the role these kinases 

play. The development of novel small molecule inhibitors that are specific for mTOR or 

SGK1 may provide an effective way to inactivate these kinases (Thoreen et al, 2009; 

Sherk et al, 2008) without causing inhibition of other closely related kinases involved in 

the proposed signalling pathway. 
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Figure 5.1 Diagram of proposed signalling pathway involved in ENaC regulation.  

Thus if SGK1 is vital to the regulation and maintenance of ENaC then Torin1 and 

GSK650394 would be expected to inhibit the glucocorticoid-evoked amiloride sensitive 

current. 

 

The development of Torin1 would seem to provide an effective way of inhibiting 

TORC2 in the absence of a truly specific TORC2 inhibitor.  Torin1 has been shown to 

be an ATP-competitive TOR inhibitor as its effects are abolished by increasing ATP 

concentration, additionally no significant non-specific effects were found (Thoreen et 

al, 2009).  In order to test the effects of Torin1 on PI3K activity, PKB-Thr308 

phosphorylation was used in this study.  However a problem of this approach arises due 

to TORC2 being responsible for PKB-Ser473 phosphorylation which facilitates 

downstream phosphorylation of the Thr308 site (Andjelkovic et al, 1997).  To overcome 
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this mLST8 knockout cells were used.  mLST8 is vital for the interaction of TORC2 

with its substrates, and the result of this knockout is continual dephosphorylation of the 

Ser473 site (Guertin et al, 2006).  Thus any Thr308 phosphorylation would be due to PI3K 

activity and not a result of Ser473 mediated phosphorylation.  Using this approach 

Thoreen et al, 2009 found that Torin1 only affected PI3K activity when cells were 

exposed to concentrations well above that required to completely inhibit TORC2 (> 1 

μM and > 0.1 μM respectively).  Thus Toirn1 would appear to be specific for mTOR 

inhibition at low concentration and is therefore a useful compound in which to 

investigate mTOR activity.  Nevertheless, rapamycin should be used to exclude the 

possibility that effects of Torin1 are not as a result of TORC1 inhibition.  As the results 

from chapter four demonstrate rapamycin does not affect PI3K, SGK1 or ENaC 

activity, thus any effects of Torin1 arise as a result of TORC2 inhibition.   It should also 

be noted that this study along with another (Feldman et al, 2009) who developed a 

different mTOR inhibitor (PP242) report rapamycin-resistant effects of mTORC1.  

However this requires the development of a cell line where TORC2 activity has been 

abolished (for example by mLST8 deletion).  Furthermore these rapamycin-resistant 

effects are yet to be fully explored and rapamycin is still considered to be the most 

effective means of mTORC1 inhibition. 

 

The lack of a specific inhibitor of SGK1 seems to have been addressed with the 

development of GSK650394.  Sherk et al (2008) have shown that this small-molecule 

inhibitor was able to block the enzyme activity of both SGK1 and SGK2 in scintillation 

proximity assays and this corresponded with the inhibition of an aldosterone induced 

amiloride-sensitive current in mouse cortical collecting duct cells (M-1 cell line).  

Furthermore using an in vitro kinase assay they were able to determine that GSK650394 
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was selective for SGK1 over PKB, PDK1 and other related kinases (Sherk et al, 2008).  

Therefore this compound would appear to offer a method of inactivating SGK1 whilst 

leaving PI3K, PKB and PDK1 unaffected.  Indeed GSK650394 has been used for this 

purpose; to investigate the role of SGK1 in insulin-dependent Na+ transport in a mouse 

derived cortical collecting duct cell line (mpkCCD).  This study found that GSK650394 

did cause some inhibition of PKB as judged by Ser473 phosphorylation (Mansley and 

Wilson, 2010b). However they argued that this slight inhibition was not sufficient to 

compromise PKB activity as it has been shown that this must be reduced by less than 

10% of the basal level in order for downstream targets to be affected (Logie et al, 2007).  

Taking this into account, GSK650394 was found to fully suppress insulin-induced Na+ 

transport, thereby supporting the view that SGK1 is vital to this response.  This also 

demonstrates that the effects of inhibitors can vary even in similar cell lines (i.e. mouse 

cortical collecting duct cells) and therefore specificity should not be taken for granted 

and tested for in order to confirm the action of the inhibitor. 

 

Using the approach outlined previously to investigate the effects of PI-103 and 

rapamycin, we investigated the effects of Torin1 and GSK650394 on endogenous 

protein phosphorylation and the effect on the dexamethasone-induced amiloride 

sensitive current in H441 cells to determine whether SGK1 activity is dependent upon 

TORC2.  Furthermore specific inhibition of SGK1 will allow me to test the hypothesis 

that SGK1 activity is vital to the hormonal control of ENaC activity via glucocorticoids. 



 107

Results 

The aim of this section is to determine the role of SGK1 in the maintenance of the 

dexamethasone-induced amiloride sensitive current.  This was achieved using the same 

experimental format as previously described in chapter four.  The novel SGK1 inhibitor, 

GSK650394 was used to establish the role of SGK1 and endogenous protein 

phosphorylation was used to examine its effects on TORC2 and PDK1 activity, as well 

as SGK1 activity, in order to confirm a specific action.  Using the TOR inhibitor Torin1 

and the results from rapamycin treatment (see chapter four), we were able to investigate 

the role played by mTORC2, which has been identified as the kinase responsible for 

phosphorylation of the hydrophobic motif of SGK1. 

Effects of Torin1 upon TORC2 and PDK1 

Low concentrations of Torin1 used over a prolonged period of time can cause 

hyperactivation of PI3K which can overcome the inhibitory effects of Torin1.  

Therefore, in order to ensure this was not the case, we tested a range of concentrations 

over the three hour time period.  The secondary aim of this was to test whether or not 

Torin1 inhibited TORC2 and PDK1 activity equally.  Figure 5.2 shows representative 

western blots of the effects of increasing Torin1 concentration (0-100 nM, 3 h) upon 

PKB -Ser473 (A) and –Thr308 (B) phosphorylation.  The combined densometric analysis 

of four such experiments for PKB -Ser473 and -Thr308 is shown in (B) and (D) 

respectively.  These results clearly demonstrate that Torin1 inhibits PKB-Ser473 

phosphorylation more effectively than -Thr308 phosphorylation.  Moreover they confirm 

that Torin1 is not causing hyperactivation of PI3K under these conditions and therefore 

can be used as an effective inhibitor against TOR.  
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Figure 5.2 Effect of Torin1 upon PKB phosphorylation.  Cells were maintained in 

dexamethasone-free medium and then exposed to dexamethasone for ~24 hours with 3 

hours exposure to a range of Torin1 concentrations (0-100 nM) and then subjected to 

western blot analysis to determine phosphorylation status of –Ser473 (A) and –Thr308 (B) 

and total protein abundance of  PKB.  Shown are typical blots representative of 4 such 

experiments.  Densometric analysis of all four experiments is shown for –Ser473 (B) and 

for –Thr308 (D).  Asterixes denote a statistically significant effect of Torin1 (*, p = 0.001 

one-way ANOVA) 
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Does Torin1 inhibit mTORC2 activity? 

Figure 5.3 shows the effects of dexamethasone-treatment and mTOR inhibition on 

SGK1 activity as monitored by NDRG1-Thr346/356/366 phosphorylation, mTORC2 

activity as monitored by PKB-Ser473 and PDK1 activity as monitored byPKB-Thr308 

phosphorylation. 
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Figure 5.3 Effect of Torin1 upon endogenous protein phosphorylation.  Cells were 

maintained in dexamethasone-free medium and then exposed to dexamethasone for ~24 

hours or ~24 hours with 3 hours exposure to Torin1 (0.1μM) and then subjected to 

western blot analysis to determine phosphorylation and total protein abundance of 

NDRG1 and PKB.  Shown are typical blots representative of 4 such experiments (A) 

NDRG1-Thr246/256/366 / Total-NDRG1 (C) PKB-Ser473 / PKB-total (E) PKB-Thr308 / 

PKB-total.  Densometric analysis of 4 such experiments are shown in (B), (D) and (F).  

Asterixes denote a statistically significant effect of Torin1 (*, p < 0.01 one-way 

ANOVA, n = 4) 
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Effects of mTOR inhibition on the properties of H441 cells 

Figure 5.4 shows the Im-Vhold relationship from recordings of H441 cells that had been 

exposed to control conditions (dex: 0.2 μM, 18-36 h) and after 3-4 hours exposure to 

Torin1 (0.1 μM).  Initial recording was made under ECS control solution and then ECS 

+ amiloride (ECS + Amil., 10 μM).  The bathing solutions from Torin1-treated cells 

contained 0.1 μM Torin1.  The Cm for control cells was 39.8 ± 10.1 pF and Cm for 

Torin1-treated cells was 40.5 ± 5.8 pF. 
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Figure 5.4 Dexamethasone and Torin1 treated cells.  (A) Relationship between 

membrane current (Im) and holding potential (Vhold) quantified in dexamethasone-

treated cells (0.2 μM dex, 18-36 h, n = 4) during exposure to ECS and ECS + amiloride 

(10 μM).  (B) Equivalent data from dexamethasone-treated cells that have been exposed 

to 3-4 hours of Torin1 (0.1 μM, n = 4). 
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Effect of Torin1, an inhibitor of TORC1 and 2, upon Vrev and I-82 

Figure 5.5 shows the values of Vrev and the I-82 derived from data in figure 5.3.  

Dexamethasone (0.2 μM, 18-36 h) causes depolarisation and exposure to 10 μM 

amiloride causes a hyperpolarising response.  However exposure to Torin1 (0.1μM, 3-4 

h) abolishes the dexamethasone induced depolarisation and there is no effect of 

amiloride on the value of Vrev.  Torin1 reduces the magnitude of the I-82 and is amiloride 

insensitive, whereas under control conditions there is clear amiloride sensitivity to the I-

82. 
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Figure 5.5 Vrev and I-82 in dex-treated (control) and Torin1-treated cells.  (A) and 

(B) values of Vrev derived by analysis of the data in figure 5.3 A and B (control, n = 4; 

Torin1-treated, n = 4).  (C) and (D) current flowing at -82mV, derived from data in fig. 

5.3 A and B.  Asterixes denote a statistically significant effect of amiloride (*, P < 0.05, 

Student’s paired t-test), cross denotes a statistically significant effect of Torin1 (†, P < 

0.05, one-way ANOVA with Bonferroni post hoc test). 
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Does GSK650394 inhibit SGK1? 

Figure 5.6 shows the effects of dexamethasone-treatment and the effect of GSK650394 

on SGK1 activity as monitored by NDRG1-Thr346/356/366 phosphorylation, mTORC2 

activity as monitored by PKB-Ser473 and PDK1 activity as monitored byPKB-Thr308 

phosphorylation.  While there was no statistical significance was found with found upon 

the effects of GSK upon NDRG1 phosphorylation it does tend towards significance, and 

furthermore phosphorylation of NDRG1 is clearly abolished when looking at the blots 

e.g. panel A. 
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Figure 5.6 Effect of GSK650394 upon endogenous protein phosphorylation.  Cells 

were maintained in dexamethasone-free medium and then exposed to dexamethasone 

for ~24 hours or ~24 hours with 3 hours exposure to GSK650394 (10μM) and then 

subjected to Western blot analysis to determine phosphorylation and total protein 

abundance of NDRG1 and PKB.  Shown are typical blots representative of 4 such 

experiments (A) NDRG1-Thr246/256/366 / Total-NDRG1 (C) PKB-Ser473 / PKB-total (E) 

PKB-Thr308 / PKB-total.  Densometric analysis of 4 such experiments are shown in (B), 

(D) and (F). 
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Effects of GSK650394 upon PKB activity 

In order to confirm that GSK650394 does not inhibit PKB activity, a kinase closely 

related to SGK1, I looked at the phosphorylation of PRAS40 at residue Thr246 which is 

a known substrate of PKB (Kovacina et al, 2003).  Figure 5.7 shows the effect of 

dexamethasone and GSK650394 treatment upon the phosphorylation status of PRAS40. 

GSK650394does not affect the phosphorylation status of PRAS40, thus confirming that 

GSK650394 does not inhibit PKB activity.  Furthermore dexamethasone treatment has 

no effect upon PRAS40 therefore supporting the observation that dexamethasone does 

not increase PKB activity. 
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Figure 5.7 Effect of GSK650394 upon PRAS40 phosphorylation.  Cells were 

maintained in dexamethasone-free medium and then exposed to dexamethasone for ~24 

hours or ~24 hours with 3 hours exposure to GSK650394 (10μM) and then subjected to 

Western blot analysis to determine phosphorylation and total protein abundance of 

PRAS40 (n = 2). 
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Effects of SGK1 inhibition on the properties of H441 cells 

Figure 5.8 shows the Im-Vhold relationship from recordings of H441 cells that had been 

exposed to control conditions (dex: 0.2 μM, 18-36 h) and after 3-4 hours exposure to 

GSK650394 (10 μM).  Initial recording was made under ECS control solution and then 

ECS + amiloride (ECS + Amil., 10 μM).  The bathing solutions from GSK650394-

treated cells contained 10 μM GSK650394.  The Cm for control cells was 69.7 ± 11.7 pF 

and Cm for GSK650394-treated cells was 35.4 ± 2.9 pF. 
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Figure 5.8 Dexamethasone and GSK650394 treated cells.  (A) Relationship between 

membrane current (Im) and holding potential (Vhold) quantified in dexamethasone-

treated cells (0.2 μM, 18-36 h, n = 4) during exposure to ECS and ECS + amiloride (10 

μM).  (B) Equivalent data from dexamethasone-treated cells that have been exposed to 

3-4 hours of GSK650394 (10 μM, n = 4). 
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Effect of SGK1 inhibition on Vrev and I-82 

Figure 5.9 shows the values of Vrev and the I-82 derived from data in figure 5.8.  

Dexamethasone (0.2 μM, 18-36 h) causes depolarisation and exposure to 10 μM 

amiloride causes a hyperpolarising response.  However exposure to GSK650394 (10 

μM, 3-4 h) abolished the dexamethasone induced depolarisation and there was no effect 

of amiloride on the value of Vrev.  GSK650394 reduces the magnitude of the I-82 and is 

amiloride insensitive, whereas under control conditions there is clear amiloride 

sensitivity to the I-82. 
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Figure 5.9 Vrev and I-82 in dex-treated (control) and GSK650364 treated cells. (A) 

and (B) values of Vrev derived by analysis of the data in figure 5.8 A and B (control, n = 

4; GSK650364, n = 4).  (C) and (D) current flowing at -82mV, derived from data in fig. 

5.8 A and B.  Asterixes denote a statistically significant effect of amiloride (**, P < 

0.01, Student’s paired t-test), cross denotes a statistically significant effect of 

GSK650394 (†, P < 0.01, one-way ANOVA with Bonferroni post hoc test). 
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Effect of TOR and SGK1 inhibition on the amiloride sensitive current 

Figure 5.10 shows further analysis of the data in figure 5.4 and 5.8 to obtain the Iamil for 

control cells and cells treated with Torin1 or GSK650394.  In control cells there is a 

clear Iamil that reverses close to the predicted value for Na+ therefore indicating a high 

degree of Na+ selectivity.   Exposure to Torin 1(0.1 μM, 3-4 h) or GSK650394 (10 μM, 

3-4 h) completely abolishes the Iamil. 
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Figure 5.10 Iamil of Torin1 and GSK650364 treated cells.  (A) Analysis of the 

amiloride sensitive component of the total membrane current for control cells (n = 4) 

and Torin1-treated cells (0.1 μM, n = 4) derived from data in figure 5.4 A and B.  (B) 

Comparable data for control (n = 4) and GSK650394-treated cells (10 μM, n = 4) 

derived from data in figure 5.8 A and B. 
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Effect of Torin1 and GSK650394 on conductance 

To further examine the effects of Torin1 and GSK650394 on the biophysical properties 

of H441 cells the conductance was determine by further analysis of the data obtained 

from that shown in figures 5.4 and 5.8.  Figure 5.10 clearly shows that dexamethasone-

treatment (18-36 h, 0.2 μM) increases the conductance and this is sensitive to 10 μM 

amiloride.  Torin1 and GSK (0.1 μM, 3-4 h; 10 μM, 3-4 h respectively) both completely 

abolished the effect of dexamethasone.  
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Figure 5.11 Effects of Torin1 and GSK650394 upon conductance.  Further analysis 

of the data obtained from figures 5.4 - panel (A) (control, n = 4; Torin1, n = 4) and 5.8 – 

panel (B) (control, n = 4; GSK650394, n = 4).  Asterixes denote a statistically 

significant effect of amiloride (* P < 0.05, Student’s paired t-test), cross denotes a 

statistically significant effect of Torin1 (†, P < 0.01, one-way ANOVA with Bonferroni 

post hoc test). 
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Discussion 

Torin1 clearly abolishes TORC2 activity as judged by PKB-Ser473 phosphorylation, and 

this effect is unlikely to be a result of inhibition of TORC1 as rapamycin has no effect 

on TORC2 or PDK1 activity (see chapter four, figure 4.8).  However rapamycin-

resistant effects of TORC1 have been reported (Thoreen et al, 2009) and it cannot be 

ruled out that the results presented in this thesis do not reflect rapamycin-resistant 

functions of TORC1.  Although in order to examine this possibility an H441 cell line, 

where TORC2 activity has been abolished, would need to be developed, and until this is 

accomplished, this possibility cannot be eliminated.  However this effect is yet to be 

fully explored and rapamycin is still considered to be the most effective means of 

mTORC1 inhibition.  At first glance it would appear that Torin1 inhibits PI3K / PDK1 

as reduced PKB-Thr308 phosphorylation was observed.  However this effect is likely to 

be a result of reduced PKB-Ser473 facilitated phosphorylation of PKB-Thr308 

(Andjelkovic et al, 1997).  Furthermore Torin1 has been shown to only inhibit PI3K / 

PDK1 at concentrations above 1 μM (Thoreen et al, 2009).  Thus Torin1 was predicted 

to cause some inhibition of PKB-Thr308 phosphorylation and the results from the dose 

response (see figure 5.3) support this as there is little effect on PKB-Thr308 

phosphorylation despite reduced PKB-Ser473 phosphorylation.  The observation that 

Torin1 caused a reduction of SGK1 activity as indicated by reduced NDRG1-

Thr246/256/366 phosphorylation, is consistent with reports that SGK1 activity is dependent 

on mTORC2 mediated phosphorylation of the hydrophobic motif of SGK1 and 

therefore supports the view that mTORC2 is involved in SGK1 activation not only in 

renal epithelia (Garcia-Martinez and Alessi, 2008; Lu et al, 2010) but also in pulmonary 

epithelia.  As exposure to Torin1 abolished the dexamethasone-induced Iamil it would 

seem likely that mTORC2 dependent SGK1 activity is vital to the maintenance of 
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glucocorticoid-induced ENaC activity and further supports the view that SGK1 activity 

is critical to this in pulmonary epithelia. 

 

In order to determine whether SGK1 is crucial to glucocorticoid-induced ENaC activity, 

we used the novel inhibitor GSK650394.  The results clearly demonstrate that 

GSK650394 abolished SGK1 activity without affecting TORC2 or PDK1 activity; 

furthermore it would appear not to inhibit PKB activity as judged by PRAS40-Thr246 

phosphorylation.  As both TORC2 and PDK1 are involved in the activation of PKB and 

SGK1, these results demonstrate that GSK650394 acts via a direct mechanism to cause 

specific inhibition of SGK1 and confirms the results reported by Sherk et al, 2008.  No 

evidence of PKB inhibition was observed (see figures 5.6 and 5.7), which differs from 

that reported in Mansley and Wilson (2010b); however this could be a result of species 

specific variation as those observations were from a mouse cell line (mpkCCD).  

Electrophysiological data from GSK650394 treated cells clearly show that SGK1 

inhibition abolishes the dexamethasone-induced Iamil therefore SGK1 must be an 

essential component of the pathway that allows glucocorticoids to maintain ENaC 

activity.  By specifically inhibiting SGK1, other parts of the PI3K pathway remain 

unaffected and this is significant as PKB has been reported to be involved in the control 

of ENaC activity (Lee et al, 2007; Diakov et al, 2010), as have the 

phosphatidylinositide second messengers; PIP2 and PIP3 (Blazer-Yost et al, 2004; 

Pochynyuk et al, 2007).  As PKB-Thr308 phosphorylation is evident in GSK650394-

treated cells, PIP2 / PIP3 must be active as PDK1 is dependent upon these second 

messengers.   While these results do not exclude the possibility that PKB or PIP2 / PIP3 

can modulate ENaC activity, they clearly demonstrate that they cannot be responsible 

for SGK1 independent maintenance of ENaC activity.  Both Torin1 and GSK650394 
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abolished the dexamethasone-evoked conductance and this data clearly confirms that 

TORC2 and SGK1 are vital to the maintenance of dexamethasone-induced ENaC 

activity. 

While the Iamil was clearly abolished in GSK650394-treated cells, the values of Vrev are 

different from that of the control cells and, in fact, are close to the predicted reversal 

potential for Cl- (-42 mV).  Insulin which has been shown to induce a Cl- conductance 

in single-dexamethasone treated cells (Brown et al, 2008) is present in the culture media 

of these experiments.  It would seem likely that groups of H441 cells  do have a Cl- 

conductance as in dexamethasone free treatments and, upon application of amiloride, 

the Vrev is ~ 60 mV, a value between that of the predicted reversal potential for K+ and 

Cl- (-82 mV and -42 mV respectively).  Thus it is possible that GSK650394 inhibits K+ 

conductance as well as abolishing ENaC activity and as a result, Cl- movement is the 

predominant ion flux.  This effect of GSK650394 is unlikely to be related to SGK1 

inhibition as it is not observed with Torin1 / PI-103, both of which inhibit SGK1 

activity comparably with GSK650394.  This effect has not been described previously 

and may represent as yet undiscovered non-specific effects of GSK650394 on kinases 

involved in the regulation of K+ channels. 
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Figure 5.12  Diagram showing effect of SGK1 inhibition.  SGK1 inhibition resulted in the abolition of 

glucocorticoid-induced ENaC activity and abolished the phosphorylation of NDRG1 without affecting the 

phosphorylation of PKB.  Thus indicated that SGK1 was specifically inhibited and that SGK1 is required 

for the maintanence of glucocorticoid-induced ENaC activity. 

 

Conclusions 

This data clearly demonstrates that Torin1 and GSK650394 are specific inhibitors of 

their respective targets, for the first time in H441 cells and, as such, confirm reports 

(Garcia-Martinez and Alessi, 2008; Lu et al, 2010) that TORC2 is required for 

conferring catalytic activity to SGK1.  This demonstrates that both TORC2 and SGK1 

are vital components of the dexamethasone-induced ENaC signalling pathway in a 

human derived pulmonary epithelium which has previously only been speculated.  

These results also demonstrate for the first time that PBK and / or PIP2/3 cannot account 
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for the maintenance of ENaC activity in the absence of SGK1 activity.  The results of 

this chapter and the previous results chapters will be discussed further in the general 

discussion. 
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Chapter 6 – General Discussion 
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Introduction 

Since the initial observations by Aherne and Dawkins (1964) on rabbit lung wet weight, 

it has been assumed that the fluid secreted during gestation and development of the lung 

is absorbed at birth in order for efficient gas exchange to take place.  The trigger for this 

switch is thought to be a result of increased levels of circulating adrenaline, thyroid 

hormone and GC before birth (Lagercrantz and Bistoletti, 1977; Baines et al, 2000) and 

that Na+ absorption was the likely candidate driving fluid absorption (Olver et al, 1986).  

However it was not until 1993 that the ion channel responsible for this was identified as 

ENaC (Canessa et al, 1993) which required expression of three ENaC subunits, α-, - 

and γ-ENaC, in order for selective Na+ transport to take place (Canessa et al 1994).  The 

observations that GCs can cause an increase in α-ENaC transcription (Sayegh et al, 

1999; Otulakowski et al, 1999) led to further investigation into the molecular 

mechanisms that underlie GC-mediatated Na+ transport.  SGK1 appeared to be 

important as it was shown to have PY motifs that were able to interact with Nedd4-2 

(Bhalla et al, 2005; Ichimura et al, 2005).  This taken with the observation that Nedd4-2 

was able to interact with all three ENaC subunits and target them for degradation (Staub 

1996; Snyder et al, 2002) led to the theory that SGK1 was the major kinase responsible 

for GC-mediated Na+ transport.  However the development of sgk1 gene knockout mice 

that did not display any lung problems associated with improper fluid clearance 

seriously questions the role that SGK1 plays.  Thus the role of SGK1 is not fully 

understood in the induction and maintenance of GC-induced Na+ transport in the lung.  

However the results of this thesis would suggest that SGK1 is in fact critical to the 

maintenance of GC-induced ENaC activity.   
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The results in this thesis further confirm that glucocorticoids activate a Na+ current in 

H441 cells that is essentially identical to that associated with the expression of α-ENaC, 

- ENaC and γ- ENaC co-expression (Canessa et al, 1993).  Despite this, the molecular 

mechanisms that underlie this control are poorly understood, even though GCs are used 

clinically to treat lung problems such as oedema and IRDS.  Therefore we designed 

experiments to investigate the effects of kinase inhibitors upon the GC-induced Na+ 

currents in order to examine the mechanisms underlying this control.  In order to verify 

that full inhibition was achieved and that other closely related kinases were not 

inhibited, we used Western blot analysis to monitor the phosphorylation status of 

physiological substrates.  However it is important to consider the limitations of this 

work. 

The H441 Cell model 

It is important to remember that a model by definition does not represent in vivo 

mechanisms.  For example H441 cells are derived from a lung adenocarcinoma (Gazdar 

et al, 1990) and therefore a transformed cell line.  Furthermore H441 cells also display 

characteristics that are similar to that of Clara cells (Gazdar et al, 1990), which are not 

thought to be important to fluid clearance or airway hydration.  Furthermore the fact 

that GCs cause Na+ transport in H441 cells does not fit with the theory that GC only 

prepare the foetal lung for fluid clearance and that adrenaline acts as the “switch” to 

initiate the change to a Na+ absorbing phenotype (Barker et al, 1988; Collett et al, 

2002).  Indeed it is likely that thyroid hormone, as well as GCs, is required in order to 

prepare the developing lung for fluid clearance at birth (Collett et al, 2002).  However 

despite this, it is clear from a number of studies, and the work in this thesis that GCs do 

induce an ENaC like, amiloride-sensitive Na+ current in H441 cells (see chapter 3).  

Therefore while not ideal these cells do provide a model by which to investigate GC-
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induced ENaC activation in human derived cells.  However it is also important to 

further develop this work, for example, in a human derived primary cell culture, due to 

these limitation of the H441 cell model.   

Cell-cell contact determines electrophysiological properties of H441 

cells 

It has been suggested that cell coupling is a determining factor in the ability of H441 

cells to express ENaC activity in response to glucocorticoid stimulation (Brown et al, 

2008).  This observation is supported by the finding that dome formation in confluent 

H441 cells display ENaC activity but that the surrounding cells do not (shlyonsky et al, 

2005).  However the results presented in this thesis would suggest that it is cell contact 

and not the electrical coupling that is important to the development of amiloride 

sensitivity in H441 cells.  The degree of cell-cell coupling was associated with 

amiloride sensitivity in glucocorticoid-treated cells in a previous study (Brown et al, 

2008).  However this was not found to be the case in this thesis the results presented 

here as amiloride sensitivity was seen in “groups” of cells with a Cm of 20 pF, 

suggesting that the cells were not electrically coupled, which is much lower than the 

reported average of 75 pF reported by Brown et al (2008).  However Gallacher et al 

(2009) reported amiloride sensitivity from groups of H441 cells that were not 

electrically coupled, Cm of 22 pF.  As a result this led to the conclusion that cell-cell 

contact and not necessarily cell coupling was the important determining fact in the 

ability of H441 cells to express ENaC activity which could be examined future 

experiments by introducing a dye into the pipette solution. 
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Na+ / K+ ATPase 

It could be argued that the increase in Na+ transport could be driven by increased 

activity of the Na+ / K+-ATPase, however this is unlikely in the case of H441 cells.  Na+ 

/ K+-ATPase activity was inhibited using ouabain and dexamethasone-treatment had no 

significant effects on this compared to apically permeabilized cells (i.e. cells with apical 

Na+ transport).  However dexamethasone has been reported to increase Na+ / K+-

ATPase in epithelial cells isolated from rat lung (Barquin et al, 1997; Dagenais et al, 

2001), although this difference was suggested to be due to species differences as H441 

cells are human derived.  It would therefore seem likely that dexamethasone would have 

no effect upon Na+ / K+-ATPase in the cells used in this thesis due to the similarity in 

cell culture. 

Aldosterone 

The role of aldosterone was not explored in this thesis, however it is important to note 

that there is a degree of overlap between the mechanisms involved in aldosterone 

mediated ENaC regulation in the kidney and how GCs are thought to control ENaC in 

the lung.  Aldosterone binds to the mineralocorticoid receptor and upregulates the gene 

encoding for SGK1 (Chen et al, 1999; Robert-Nicoud et al, 2001), and has been 

proposed to mediate effects upon Na+ transport by inducing expression of SGK1, which 

then phosphorylates and inhibits Nedd4-2 (Flores et al, 2005), which is the same 

mechanism proposed for GC regulation of ENaC in pulmonary epithelium.  As GC can 

bind to the mineralocorticoid receptor, and this receptor is known to be expressed in the 

lung (Keller-Wood et al, 2005) an alternative interpretation of the results in this thesis 

could be that dexamethasone is binding to the mineralocorticoid receptor to bring about 

the increase in Na+ transport.  As GSK650394 abolished SGK1 activity and the 
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maintenance of the dexamethasone induced Na+ transport it is likely that if 

dexamethasone was acting via mineralocorticoid receptor activation instead of 

glucocorticoid activation, it is clear that SGK1 is required for the hormonal activation 

and maintenance of Na+ transport in H441 cells.  Whether dexamethasone is acting via 

the glucocorticoid or mineralocorticoid receptor could be could be investigated by the 

use of mineralocorticoid receptor antagonists such as eplerenone, which would 

determine whether dexamethasone is indeed acting via the glucocorticoid receptor.  

Furthermore as mentioned in the introduction aldosterone may be able to compensate 

for a lack of SGK1 via its ability to upregulate GILZ.  The possible role of this will be 

discussed later in this chapter. 

Insulin 

The role of insulin was not addressed by the experiments in this thesis and dialysed 

medium was supplemented with this hormone in order to aid growth in this media.  The 

major ionic flux in hormone deprived H441 cells is reported to be K+ as the membrane 

potential of these cells is ~-80 mV (Brown et al, 2008), however GC-deprived cells in 

this thesis typically had a membrane potential of ~60 mV, therefore it is likely another 

ion flux aside from K+ is contributing to this.  The likely candidate for this is an increase 

in Cl- transport as mentioned and described in chapter three.  It would seem highly 

likely then that there is an insulin-induced Cl- current in the cells used in this thesis.  

This would help explain the amiloride insensitive conductance seen in dexamethasone-

treated cells and would also explain why GSK653094-treated cells display a Vrev of ~-

40 mV which is almost identical to that of ECl (-42 mV) under these conditions.  

However, if this was the case, then it might be expected that PI-103-treatment would 

have abolished amiloride-insensitive and -sensitive conductance.  Therefore this is a 

PI3K independent conductance although, as the nature of this was not investigated, it 
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cannot be confirmed if this represents a Cl- conductance.  Indeed there are other 

possibilities as to the nature of this conductance such as cyclic nucleotide gated 

channels or acid sensing ion channels.  There is some evidence for a role of cyclic 

nucleotide gated channels as pimozide, which has been used to block cyclic nucleotide 

gated channels (Johnson et al, 2006), has been shown to reduce the non-selective cation 

conductance in single H441 cells (Brown et al, 2008) although Albert et al (2008) found 

that pimozide and a cyclic nucleotide gated channel activator (8-bromo-cGMP) had no 

effect on non-selective conductances in H441 cells.  Therefore further investigation 

would need to be carried out in order to ascertain the true nature of the amiloride-

insensitive conductance. 

Despite these limitations, the fact that H441 cells do not display an endogenous basal 

Na+ current and that this can be activated by GC-treatment, confirms that they provide a 

model system in which to investigate the molecular mechanisms underlying GC-

mediated Na+ transport.  Investigation into the mechanisms that underlie this control 

will provide a basis in order to direct future work in either animal models or primary 

cultures of human lung epithelium. 

PI3K is essential to glucocorticoid-induced ENaC activity 

The results of this thesis also clearly demonstrate that the action of PIP2/3 upon channel 

gating properties such as those reported by Pochynyuk et al (2007), cannot account for 

GC-induced ENaC activity (see chapter five).  Furthermore PIP3 mediated ENaC 

insertion into the apical membrane can also not account for the action of GCs.  Blazer-

Yost et al (2004) used real-time confocal fluorescence microscopy with a biosensor for 

PIP3 that allowed visualisation of the generation and movement of PIP3 following 

basolateral insulin stimulation (PIP3 biosensor was general receptor for 3-

phosphoinositides (GRP1) which had been fused to GFP which had been used 
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previously to visualise PIP3 distribution (Oatey et al, 1999; Yang et al, 2000).  Using 

this method they came up with an alternative pathway that would allow for ENaC 

insertion into the membrane.  This model predicted that PIP3 was very rapidly generated 

in the lateral membrane and crossed the tight junctions to the apical membrane resulting 

in changes to lipid composition of the membrane which may favour channel insertion.  

However this response is very rapid (Na+ transport plateaus after ~10 minutes) and, as 

the response to GCs is not active after three hours, it would seem unlikely that this 

action of PIP3 could account for GC-induced ENaC activity seen in H441 cells.  On the 

other hand they cannot exclude a role for PIP2/3, although they do demonstrate that GC-

induced ENaC activity cannot be maintained by these second messengers independently 

of SGK1. 

While the experiments in this thesis confirm that the activation of GC-induced ENaC 

activity involves the PI3K – TORC2 – SGK1 pathway, they also demonstrate the 

importance of PI3K.  While SGK1 may appear to be a vital component downstream of 

PI3K in maintaining ENaC activity, the fact that PI-103 abolished this effect 

demonstrates that, while PI3K activity is not increased via GC-stimulation, without its 

activity, the response to GC cannot be maintained. Thus PI3K exerts overall control 

over GC-induced ENaC activity even though its activity is not affected by GCs.  Thus 

PI3K has a permissive role in the GC-induced activation of ENaC.  This may represent 

a level of control that helps protect against hyperactivation of ENaC, whereby further 

increases in ENaC activity may be possible with additional stimulation of PI3K.  This 

would help prevent hyperactivation of ENaC as the level of ENaC activity induced by 

GC is limited by PI3K. 



 133

TORC1 does not play a role in glucocorticoid-induced ENaC activity 

The results of this thesis are in agreement with earlier reports that suggest PI3K is 

critical to the GC-dependent control of ENaC and also provide evidence against a role 

for TORC1, but support a role for TORC2, in the underlying mechanism which accords 

with recently published studies (Garcia-Martinez and Alessi, 2008; Lu et al, 2010).  

However there is evidence for the involvement of TORC1 in SGK1 activation (Hong et 

al, 2008).  Hong and colleagues report that TORC1 is responsible for hydrophobic motif 

phosphorylation of SGK1, as rapamycin inhibited phosphorylation of SGK1 at the 

Ser422 site.  Garcia-Martinez and Alessi were unable to replicate this and found no 

evidence of SGK1-Ser422 inhibition by rapamycin, although was found to inhibit S6K1 

and / or S6K2, both TORC1 substrates (Terada et al, 1992; Lee-Fruman et al, 1999).  

Furthermore previous studies have not reported SGK1 inactivation with the use of 

rapamycin (Kobayashi and Cohen, 1999; Park et al, 1999).  As a result of this they 

suggested that the differences observed from Hong et al, 2008 arose because of 

confusion between non-specific binding of the SGK1 antibody to S6K.  Interestingly, 

further evidence against a role for TORC1 in the activation of SGK1 comes from a 

study that identified a role for TORC1 in GC-induced Na+ transport in the mpkCCD cell 

line (Mansley and Wilson, 2010a).  In support of Garcia-Martinez and Alessi (2008) 

this study found that rapamycin had no effect upon the activity of SGK1 as monitored 

by NDRG1 phosphorylation; nevertheless they also found that it caused inhibition of 

GC-induced Na+ transport.  Thus, it would appear that TORC1 is not involved in the 

activation of SGK1, although it may play a role in regulating GC-induced Na+ transport.  

To further complicate matters another study using the same cell line as Mansley and 

Wilson found that rapamycin did not inhibit hormone sensitive currents (Lu et al, 2010).  

This disparity could be a result of high concentrations of aldosterone in combination 
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with insulin being used which may lead to the specific effect of rapamycin not being 

detected (Mansley and Wilson, 2010a).  Otulakowski et al, (2007) have shown in rat 

FDLE cells that rapamycin treatment reduces the amiloride sensitive current.  While this 

would appear to be evidence of TORC1 mediated control of ENaC it may actually 

represent TORC2 inhibition.  The FDLE cells used to investigate the bioelectric 

properties were incubated with 3nM rapamycin for 48 hours before the experiment was 

carried out.  It is therefore important that prolonged exposure to rapamycin has been 

reported to cause TORC2 inhibition by preventing the formation of the TORC2 

complex (Sarbassov et al, 2006) and therefore this experiment may in fact represent 

inhibition of both TORC1 and 2.  It would be possible to test this possibility by utilising 

the approach I used in this thesis to assay for TORC2 activity.  It would appear that the 

role of TORC1 in the regulation of Na+ transport is still not fully understood and 

differences in its involvement may exist between the kidney and the lung; however, 

despite this, it is clear that in the H441 cell line, TORC1 does not play a role in GC-

induced ENaC activity.  

TORC2 is vital for SGK1 activation and glucocorticoid-induced ENaC 

activity 

In contrast to TORC1, TORC2 seems to play a prominent role in the activation of 

SGK1.  This enzyme requires phosphorylation of its hydrophobic motif and its 

activation loop at Ser422 and Thr256 for full activation.  The identity of the kinase 

responsible for activation loop phosphorylation was identified as PDK1.  This was 

shown to increase the phosphorylation of SGK1 and was enhanced by an SGK1 

phospho-mimic of the hydrophobic motif (S422D) which resulted in increased SGK1 

activity (Kobayashi and Cohen, 1999).  This was further supported by the observation 
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that SGK1 activity and Thr256 phosphorylation was reduced by an expression of an 

inactive PDK1 mutant (Biondi et al, 2001).  However these studies were not able to 

identify the kinase responsible for hydrophobic motif phosphorylation and it was not 

until the development of TORC2 subunit knockouts that TORC2 was identified as the 

kinase responsible (Garcia-Martinez and Alessi, 2008).  Although this suggested that 

TORC2 may be involved in the control of Na+ transport, this study did not investigate 

the ENaC conductance.  The first evidence directly linking TORC2 with a role in Na+ 

transport was Lu et al, 2010.  They found that in mpkCCD cells PP242, an ATP-

competitive inhibitor of both TORC1 and 2 resulted in reduced SGK1 phosphorylation 

and crucially this was not mimicked by rapamycin.  PP424 also blocked the hormone-

induced current whereas rapamycin did not.  Furthermore inhibition of rictor by 

shRNA, a critical TORC2 component, also inhibited the hormone-stimulated current.  

These results taken together therefore provided the first evidence that TORC2 

dependent SGK1 activity is crucial to Na+ transport (Lu et al, 2010).  It is important to 

note that in the mpkCCD cell line GC-mediated increases in Na+ transport have been 

observed to be inhibited by rapamycin and is therefore dependent on TORC1 activity 

(Mansley and Wilson, 2010a).  This appears to reflect differences in the mechanism of 

control between hormones and indicates that GC-induced Na+ transport is not dependent 

on SGK1 activity.  While this may be the case in the mpkCCD cell line, or for that 

matter, the kidney, it is clearly not the case in the H441 cell line as GC-induced ENaC 

activity was abolished by TORC1/2 inhibition but not abolished by TORC1 inhibition.  

Thus it is clear that GC-induced ENaC activity is dependent upon TORC2 in lung 

derived epithelia.  This may represent specific differences in the mechanisms 

controlling Na+ transport in different cell lines and, while investigation into the 

processes that control Na+ transport in other tissues may provide valuable insight, it is 
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important that detailed investigation is carried out in lung derived cell lines or tissue in 

order to enhance understanding of the molecular mechanisms involved in hormonal 

control of ENaC in the lung. 

SGK1 is essential to maintain glucocorticoid-induced ENaC activity 

While it seems clear that SGK1 activity is dependent upon hydrophobic motif 

phosphorylation by TORC2, and that inhibition of TORC2 results in reduced ENaC 

activity, it could be argued that this does not represent evidence of SGK1 mediated 

ENaC activity.  Indeed as the results of Lu et al (2010) and Mansley and Wilson 

(2010a) do not provide evidence of independent SGK1 inhibition, the results may be 

interpreted as suggesting that TORC2 is the major regulatory kinase and that, while 

SGK1 activity may be dependent on TORC2, SGK1 plays no role in the regulation of 

ENaC activity.  This alternative interpretation may explain why in sgk1 knockout mice 

there is no overt lung phenotype (Wulff et al, 2002; Rexhepaj et al, 2006) as it could be 

that TORC2 acts independently of SGK1 to regulate ENaC activity.  In order to address 

this discrepancy we made use of a novel SGK1 inhibitor that does not inhibit other 

closely related kinases such as mTOR or PKB (Sherk et al, 2008; Mansley and Wilson, 

2010b) and see chapter five.  As SGK1 activity was abolished along with the GC-

induced current this, for the first time using pharmacological inhibition in an epithelial 

cell line derived from lung epithelium, proves that GC-induced ENaC activity is strictly 

dependent upon SGK1.   The significance of this finding is two fold as it also rules out 

the possibility that other factors are responsible for the maintenance of ENaC activity 

following GC-stimulation.  For example in the α-ENaC subunit there is a consensus 

motif for SGK1 and its mutation at Ser-621 prevents the increase in ENaC activity that is 

induced by recombinant constitutively active SGK1 (Diakov and Korbmacher, 2004).  

This consensus motif has also been shown to be involved in PKB mediated ENaC 
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stimulation as constitutively active PKB was shown to increase amiloride-sensitive 

currents in Xenopus laevis oocytes expressing α,  and γ-ENaC (Diakov et al, 2010).  

As these studies were carried out using the outside-out patch technique it is unlikely that 

the effect of SGK1 and PKB could be the result of increased channel trafficking.  

Furthermore okadaic acid, a non-specific phosphatase inhibitor mimicked the effects of 

SGK1 and PKB which was abolished by mutation of Ser621 (Diakov and Korbmacher, 

2004; Diakov et al, 2010).  Thus it would appear that both SGK1 and PKB can cause 

increases in ENaC activity, possibly through phosphorylation of the α-ENaC subunit at 

Ser621. In Fisher rat thyroid cells siRNA directed against PKB and SGK1 was found to 

decrease ENaC activity and that both kinases were required to maintain ENaC activity 

(Lee et al, 2007).  Despite this, they suggest that the reason for the requirement of both 

kinases could be to provide a safeguard in the event one kinase becomes ineffective.  

Given these findings it would seem that this may represent a possible alternative 

mechanism for activating ENaC that is independent of SGK1 and could explain why 

sgk1 knockout does not result in lethality.  However the results of this thesis clearly 

show that SGK1 inhibition abolishes ENaC activity while PKB activity is unaffected, 

therefore it would seem unlikely that PKB mediated ENaC activity could account for 

the lack of lethality in sgk1 knockout mice.  This does not exclude a role for PKB in the 

modulation of ENaC activity, for example it may be involved in acute regulation via 

channel phosphorylation, but it does show that PKB itself cannot maintain ENaC 

activity independent of SGK1 in H441 cells.  Furthermore the results of this thesis 

cannot determine the exact mechanism by which SGK1 acts and further investigation 

would be required to discover if SGK1 was acting via an effect on channel gating or by 

increasing ENaC trafficking and insertion into the membrane. 
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Alternative pathways 

GCs appear to activate ENaC through a type of biological “switch” mechanism whereby 

they cause an initial increase in SGK1 activity which subsequently reduces over time 

back to the level of activity seen in un-stimulated cells; however continued ENaC 

activity is reliant on basal SGK1 activity, as inhibition of SGK1 abolishes ENaC 

activity.  This situation is different from that reported in kidney cells, as GC-induced 

Na+ transport is reported to require TORC1 activity (Mansley and Wilson, 2010a) 

which is clearly not the case for H441 cells.  Furthermore inhibition of PI3K and SGK1 

does not abolish basal Na+ transport although, it does prevent increased Na+ transport 

that is induced by insulin, therefore PI3K and SGK1 are not required to maintain basal 

Na+ transport but are required for insulin-dependent increase in Na+ transport in the 

kidney (Mansley and Wilson, 2010b).  As stated earlier this may be a result of tissue 

specific differences and while these findings may help explain why sgk1 gene deletion 

does not have a significant effect upon renal Na+ handling in animals fed a normal diet 

(Wulff et al, 2002), the opposite is true for the lungs as, from the results in this thesis, it 

would be expected that sgk1 gene deletion would be fatal as it would result in the 

inability of animals to clear the lungs of fluid at birth.  However this is clearly not the 

case in mice lacking the sgk1 gene (Wulff et al, 2002; Grahammer et al, 2006; Rexhepaj 

et al, 2006; Fejes-Toth et al, 2008) and part of the explanation may represent a 

limitation of the H441 cell line as an appropriate model or represent species specific 

differences.  However an alternative explanation may lie with another GC regulated 

protein kinase.  Indeed there is evidence to support an alternative mechanism that would 

enable GCs control over ENaC without the involvement of the PI3K – TORC2 – SGK1 

pathway, this will be discussed in the next section.  It would seem likely that an event 
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such as fluid clearance which is critical to survival would not be reliant upon the 

activity of just one kinase in order to take place. 

Possible role of GILZ 

Soundararajan et al, (2005) used western blot and electrophysiological analysis to show 

that aldosterone treatment resulted in decreased ERK phosphorylation which was 

paralleled by an increase in amiloride-sensitive Na+ transport.  This effect was 

mimicked by GILZ expression and the mitogen-activated protein kinase inhibitor 

U0126, thus suggesting that the effect of GILZ was due to ERK inhibition 

(Soundararajan et al, 2005).  Building on these observations, Soundararajan and 

colleagues proposed the idea of an ENaC regulatory complex which would contain 

Nedd4-2 and Raf-1 and would be able to interact with ENaC, resulting in ubiquitination 

and degradation.  They were able to show, using co-IP experiments, that there was an 

interaction between Nedd4-2 and Raf-1 with ENaC and with each other.  Furthermore 

GILZ and SGK1 were shown to interact with Nedd4-2 and Raf-1 and that GILZ 

expression enhanced SGK1 interaction with Nedd4-2 and Raf-1.  Expression of GILZ 

and / or SGK1 also resulted in increased surface expression of ENaC (Soundararajan et 

al, 2009).  This provides compelling evidence that in the kidney there is a mechanism 

that could regulate ENaC activity / expression independently of SGK1 via GCs.  While 

GILZ and SGK1 appeared to have a synergistic action the possibility that GILZ could 

compensate for SGK1 cannot be ruled out and may provide an answer as to why sgk1 

gene deletion does not result in failure to clear the lungs of fluid in sgk1 knockout mice.  

However this work was carried out in kidney cell lines and there is little investigation 

into the effects of GILZ on Na+ transport in lung epithelium, however some preliminary 

evidence has shown that GILZ1 transfection in H441 cells can mimic the effect of 

dexamethasone-stimulation on the electrophysiological properties of H441 cells 
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(unpublished observation, Michael Gallacher).  However due to the nature of the 

transfection procedure this could only be observed in single H441 cells and, as the 

evidence in this thesis as well as numerous studies have confirmed, there are differences 

in the way that single H441 cells respond when compared to groups / confluent 

monolayers (Clunes et al, 2004; Ramminger et al, 2004; Brown et al, 2008; Gallacher et 

al, 2009).  Nevertheless this still provides compelling evidence that GILZ may be able 

to compensate for sgk1 gene deletion in human pulmonary epithelium and warrants 

further investigation.  Aldosterone release may be able to compensate for the lack of 

SGK1 as it can also upregulate the genes encoding for GILZ (Robert-Nicoud et al, 

2001), and this would seem likely as there is increased levels of aldosterone in sgk1 

gene knockout mice (Wulff et al, 2002). 

If GILZ can compensate for a lack of SGK1 then the question, why does inhibition of 

SGK1 abolish ENaC activity, is pertinent.  It could be that the compensatory role only 

takes effect under exceptional circumstances, such as that of gene knockout, while 

under “normal” conditions GILZ plays a supporting role whereby it acts to enhance the 

activity of SGK1.  The observation that GILZ was able to enhance SGK1 interaction 

with Nedd4-2 may support this.  Furthermore transfection of higher levels of SGK1 was 

required to bring about a similar effect on ENaC surface expression than when SGK1 

and GILZ were co-transfected (Soundararajan et al, 2009).  Electrophysiological and 

Western blot analysis from cells in which the sgk1 gene has been knocked out, may 

shed light on this and an increase in GILZ expression over control cells would likely be 

observed if this mechanism was compensating for a lack of SGK1.  As Nedd4-2 is the 

likely convergence point of both GILZ and SGK1 then it might be expected that Nedd4-

2 knockout would result in rapid or even premature fluid clearance.  In agreement with 

this, a recent study using Nedd4-2 knockout mice has shown that these mice are not 



 141

viable and that very few manage to survive even a few days after birth.  The chief cause 

of death is respiratory distress.  However, unlike α-ENaC knockout mice and consistent 

with a role for Nedd4-2 in ENaC ubiquitination and degradation, this is due to 

premature fluid clearance rather than a failure to clear fluid which results in lung 

collapse (Boase et al, 2011).  Furthermore mice that survived after birth developed fatal 

inflammation of the lung which can be associated with the over-expression of ENaC 

(Mall et al, 2004).  Interestingly, another group who developed an independent Nedd4-2 

knockout mouse known as the Yang mouse, found that there was no lung phenotype 

(Shi et al, 2008).  However, this was argued to be the result of a mixed genetic 

background and hypomorphic nature leading to a milder phenotype, as Boase et al, 

2011 found Ned4-2 mRNA and protein bands when they analysed the Yang mice.  

While this study did not look at SGK1 activity, its results would seem to fit well with 

the findings in this thesis, as they indicate that the major regulatory force controlling 

ENaC activity in lung epithelium involves the SGK1/Nedd4-2 pathway. 

The model most often used to explain the role of SGK1 in the hormonal control of 

ENaC is based upon these theories:  

 That GC-induced Na+ transport is dependent upon SGK1 activity. 

 That the magnitude of the Na+ current correlates with SGK1 activity.  

 That the increase in Na+ transport is the result of increased ENaC trafficking and 

insertion into the apical membrane. 

The results presented within this thesis confirm that GC-induced Na+ transport is 

dependent upon SGK1 activity.  However, this does not correlate with sustained activity 

of SGK1, and the effects of GCs on SGK1 activity appear to be transient.  As with PI3K 

and TORC2, the role of SGK1 would appear to be permissive.  The increase in SGK1 

activity is likely to reflect an increase in protein synthesis which has been demonstrated 
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in renal epithelia (Gonzalez-Rodriguez et al, 2006), and it could be that the initial 

increase in SGK1 activity is required to “switch on” ENaC activity; however continued 

maintenance of this may be reliant upon continued SGK1 synthesis, at basal levels, 

which requires activity of PI3K – TORC2 to confer catalytic activity of the newly 

synthesised protein.  As SGK1is reported to have a short half-life (Arteaga et al, 2006) 

continued synthesis could be required in order to maintain ENaC activity.  The third 

predication that SGK1 results in increased trafficking and membrane insertion of ENaC 

cannot be verified by the techniques used, as, although it may seem logical to suggest 

that increased ENaC activity is a result of increased surface expression, the results 

obtained here could also represent a change in gating kinetics and / or activation of 

silent ENaC already present in the membrane, therefore allowing for increased current 

density without affecting the number of channels.  In order to further understand the 

role that SGK1 plays it would be reasonable that future experiments were carried out 

that were designed to investigate surface expression of ENaC in response to GC-

stimulation. 

Do glucocorticoids affect surface expression of ENaC? 

A number of studies have employed different techniques such as immunocytochemistry 

and surface biotinyalation (for examples see: Debonneville et al, 2001; Soundaraajan et 

al, 2005; Frindt et al, 2008) in order in investigate surface expression of ENaC.  

However, problems exist with all these methods, for example immunocytochemistry, 

while useful, is unable to provide sufficient resolution, whereby pools of ENaC near the 

membrane surface cannot be differentiated between ENaC that has been inserted into 

the membrane.  Surface biotinyalation assays would appear to be a very effective way to 

investigate the surface expression of ENaC and have been used to show aldosterone 

induced increases in ENaC in the apical membrane of the amphibian renal cell line A6 
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(Alvarez de la Rosa et al, 2002) and increases in ENaC density in whole rat kidney in 

response to aldosterone (Frindt et al, 2008).  This method relies on the use of antibodies 

in order to detect ENaC protein and there is a lack of efficient antibodies available 

which has hindered progress in this area.  ENaC antibodies often detect multiple bands 

and this is likely because of proteolytic cleavage of channel subunits.  Protease and 

protease inhibitors can modify Na+ transport (Myerburg et al, 2006; Planes et al, 2009; 

Lazrak et al, 2009) and it is likely that post translational processing of the α- and γ- 

subunits but not the - subunit are required for maximal activation of the channel 

(Hughey et al, 2004; Myerburg et al, 2006; Passero et al, 2008; Diakov et al, 2008).  

However it is poorly understood how the cleaved products of ENaC subunits relate to 

ENaC activity and it has even been suggested that proteolytically cleaved forms of 

ENaC may not be detectable by current methods (Myerburg et al, 2010).  Therefore 

significant advances will need to be made in order to better understand how this relates 

to ENaC activity.  The end result of this is that ENaC antibodies often detect multiple 

bands and it is unclear which best represent ENaC.  Despite this surface biotinylation 

represents one of the most effective ways to investigate surface expression.  In rat 

kidney a two to five-fold increase in ENaC surface expression was observed, yet 

channel activity was increased over fifty-fold.  Thus it was argued that changes in 

surface expression cannot fully account for the increase in channel activity and it would 

appear that increased Na+ transport is a result of both increased trafficking and 

increased channel activity (Frindt et al, 2008).  These were also the findings of 

Myerburg et al (2010) who used trafficking inhibitors to demonstrate that ~60% of the 

Na+ current in human bronchial epithelial cells (HBEs) was due to trafficking and that 

further increase was due to increased channel activity by proteolytic cleavage.  It is 

therefore interesting that SGK1 inhibition completely blocks amiloride-sensitive Na+ 
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transport in H441 cells, as it might be expected to reduce this only if it was involved in 

trafficking.  A likely explanation for this is the strict conditions in which H441 cells 

were maintained.  Insulin and GCs were the only hormones present in the media of 

H441 cells that were used for experiments, for example the media that HBEs were 

maintained in contained hydrocortisone, insulin and epinephrine.  As the release of 

epinephrine is critical to the activation of the Na+ absorbing phenotype, it is possible 

that if it were introduced into the experiments in this thesis, it would result in 

augmenting the response to GCs, possibility by activating ENaC channels already 

present in the membrane or by increasing the activity of newly inserted channels. 

Logical experiments that would follow on from the experiments presented in this thesis 

would be to assay for surface expression in response to GC-treatment.  It might be 

expected that, if following the general conceptual model, this would result in increase in 

surface expression of all three ENaC subunits in H441 cells treated with 

dexamethasone.  Such experiments using surface biotinylation have been carried out (in 

our lab) with unexpected results.  All three channel subunits were found to be expressed 

in the surface of GC-deprived cells, therefore the absence of ENaC in the membrane 

does not account for the lack of an amiloride sensitive current in these cells.  GC-

stimulated cells on the other hand, increased the surface expression of α-ENaC, 

although had no effect on either - and γ-ENaC.  Therefore despite all subunits 

containing PY motifs that are able to interact with Nedd4-2 (Staub 1996; Snyder et al, 

2002), only α-ENaC surface expression is increased; therefore this data in combination 

with that presented in this thesis, does not fit with the hypothesis that GC-induced 

ENaC activity is a result of coordinated increase in trafficking of all three channel 

subunits to the membrane.  However, the increase in α-ENaC may be required in order 

for the appropriate channel stoichiometry to form and these results may reflect the 
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formation of a 2α, 1 and 1γ stoichiometry.  Furthermore the use of kinase inhibitors 

(PI-103, Torin1 and GSK650394) only reduced α-ENaC expression.  This could be seen 

to be consistent with the theory that α-ENaC insertion results in channel activity.  This 

would also accord well with the data suggesting that the α-subunit is the major pore 

forming subunit (Canessa et al 1994; Hummler et al, 1996).  Indeed it could be that an 

α-ENaC subunit, phosphorylated via SGK1 (Diakov and Korbmacher, 2004) could be 

recruited to an ENaC complex that contains only one subunit each, therefore allowing 

channel activation when this second α-subunit is recruited.  A surprising result of this 

thesis was that three hours of GC-treatment did not result in an amiloride sensitive 

current, although it does correspond with an increase in SGK1 activity.  It was therefore 

interesting that this acute GC-stimulation appeared to increase the surface expression of 

all three subunits.  If the previously mentioned theory is to be believed, then this result 

may not be too surprising, as the increase in subunits was even, meaning the ratio of 

subunits will be the same and not favour the formation of a 2α, 1 and 1γ stoichiometry.  

However the results of these surface expression experiments, taken together with the 

results of this thesis, do not support the theory that coordinated increases in ENaC 

membrane expression are a result of SGK1-dependent trafficking of ENaC to the 

membrane.  Despite this they are consistent with the view that SGK1 is vital to the 

hormonal regulation of ENaC by GCs and therefore the role of SGK1 would still appear 

to be unclear. 
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Figure 6.1  Diagram of glucocorticoid induced ENaC activity.  Glucocorticoid induced ENaC activity 

is dependent upon SGK1, however SGK1 activity is dependent upon phosphorylation of two PI3K 

dependent kinases, TORC2 and PDK1, which phosphorylate Ser422 and Thr256 residues on SGK1 

respectively.  However another glucocorticoid induced kinase, GILZ, may be able to compensate for a 

lack of SGK1 activity, for example in SGK1 gene deletion, in order to ensure that fluid clearance take 

place at birth. 
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Main Conclusions 

 Glucocorticoids induce an amiloride-sensitive ENaC like conductance in groups 

of H441 cells. 

 Cell-cell contact is crucial for the expression of glucocorticoid-induced ENaC 

activity in H441 cells and not electrical coupling. 

 Glucocorticoids do not increase the activity of PI3K, PDK1 or TORC2. 

However they do induce a temporal increase in SGK1 activity. 

 ENaC conductance does not mimic the temporal increase in SGK1 activity. 

 Despite this ENaC activity cannot be maintained in the absence of SGK1 

activity. 

 PI3K plays a critical, but permissive, role in glucocorticoid-induced Na+ 

transport in H441 cells. 

 PIP2/3 and / or PKB alone cannot maintain glucocorticoid induced ENaC activity 

 The mechanism of glucocorticoid regulated ENaC activity in H441 cells 

involves the PI3K – TORC2 – SGK1 pathway. 

Thus the main hypothesis stated in the introduction which was: SGK1 activity is vital to 

the hormonal control of ENaC activity via glucocorticoids, cannot be rejected in the 

H441 cell line. 

Future work 

While this work confirms that SGK1 is vital to GC regulated control of Na+ transport in 

the H441 cell line, this work would need to be expanded upon in primary cell culture 

and lung slices in order to determine whether this is the case in vivo.  This could be 

achieved simply be repeating the experiments in this thesis for example using human 
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nasal epithelia, obtained from nasal scrapings.  This study only address the role of 

glucocorticoids in the regulation of ENaC and as there is many more regulators of 

ENaC then it is important to take these into consideration for future experiments.  For 

example it could be that in vivo other regulators of ENaC could cover of the lack of a 

lung phenotype seen in sgk1 gene knockout mice, such as GILZ, cAMP and proteolytic 

cleavage, but that any compensatory effects of these are only seen in vivo.  For example 

patch clamp experiments on lung slices from the sgk1 gene knockout mice in 

combination with Western blot analysis could determine whether GILZ is active and if 

inhibition of GILZ affects Na+ transport. 

While it would seem likely that SGK1 would cause an increase in surface expression, it 

would appear this is not the case (unpublished observation, Noor Isamal), therefore the 

role of SGK1 is still unknown.  It would perhaps be pertinent to look at alternative 

mechanisms by which SGK1 may control ENaC activity, such as channel 

phosphorylation.  However, as this work was carried out in a model cell line, it may not 

represent the true in vivo mechanisms behind GC regulation of Na+ transport, although 

it does provide an excellent basis from which to investigate further.  Therefore greater 

understanding would be gained by investigating the effects of the inhibitors used in this 

thesis in primary cell cultures such as human bronchiolar epithelial cells, cultures of 

isolated ATI and ATII cells or lung slice preparations.  This would help clarify the role 

of the PI3K – TORC2 – SGK1 pathway in systems that better represent an in vivo 

situation and by furthering our understanding of the molecular mechanisms involved in 

glucocorticoid control of Na+ transport, new and improved treatments could be 

developed.  For example a drug targeted towards SGK1 inhibition could be developed 

that would aid the treatment of Liddle's syndrome, a condition underpinned by 

hyperactivation of ENaC. 
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The experiments in this thesis could be further expanded upon by investigating whether 

removal of dexamethasone would abolish ENaC activity.  It could be that while SGK1 

activity is required at basal levels to maintain ENaC activity, the requirement for GC is 

only necessary for the initial activation.  However as the sgk1 gene also contains a GRE 

(Itani et al, 2002) it could be that de novo synthesis of SGK1 could be sufficient to 

maintain ENaC activity.  This would still rely on activation by PI3K – TORC2 in order 

to confer catalytic activity.  By replacing media with dexamethasone free media for 

example after 24 hours stimulation, it would be possible to investigate whether the 

presence of GC is required for maintenance of ENaC activity or if the initial increase in 

SGK1 is important.  In addition it would be interesting to investigate whether exposing 

cells to dexamethasone that rises and falls in a cyclical fashion would maintain ENaC 

activity and / or keep SGK1 activity elevated as this would mimic the pattern of GC 

release in the human body more closely. 

 

Glucocorticoids are important to the switch between net fluid clearance to net fluid 

absorption, and this is maintained throughout life in order to maintain a physiological 

depth of the ASL.  The results in this thesis suggest that SGK1 is critical to maintain the 

Na+ absorption, via ENaC that drives fluid absorption in order to maintain ASL depth.  

However, there are many other regulators of ASL depth, such as ATP, flow rate, PO2, 

adrenaline and arginie vasopressin, which may be able to compensate for the lack one or 

more inputs, (for example, sgk1 gene knockout in mice) in order to achieve normal fluid 

homeostasis.  How all these factors come together to regulate ASL depth is the ultimate 

goal, while the results in this thesis add to this knowledge much work is still required to 

fulfil this goal. 
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