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Acalculia:  an acquired impairment characterised by difficulty performing simple 

mathematical tasks. 

Agraphia:  an acquired deficiency in the ability to write, regardless of the ability to 

read, not due to intellectual impairment. 

Allochiria:  unilateral tactile stimulation perceived only in the analogous location on 

the opposite limb 
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Asteroeognosis:  the inability to identify an object by touch or to discriminate shape, 

texture, weight, and size of objects without visual input. 

Central pain: pain initiated or caused by a primary lesion or dysfunction in the 

central nervous system. 

Conduction aphasia:  a disorder of speech characterised by intact auditory 

comprehension, fluent speech production, but poor speech repetition. 

Constructional apraxia:  a form of apraxia characterized by the inability to copy 

drawings or to manipulate objects to form patterns or designs. 

Contralateral vasoconstrictor response:  a limb dependency test where in a 

healthy subject a vasoconstriction response is observed in the non-dependent limb 

opposite (ie. contralateral) to the limb lowered. 

Dysaesthesia:  an unpleasant abnormal sensation, whether spontaneous or evoked. 

Dysgraphaesthesia:  inability to recognize letters or numbers written on the hand. 

 Dysynchiria (tactile):  unilateral non-noxious tactile stimulation perceived bilaterally 

as noxious 

 Dystonia: a syndrome of abnormal, involuntary muscle movements due to sustained 

muscle contractions resulting in twisting and/or repetitive, patterned movements.  

Egocentric & alloocentric reference frames:  an an egocentric reference frame, 

locations are represented with respect to the particular perspective of a perceiver, 

whereas an allocentric reference frame locates points within a framework external to 

the holder of the representation and independent of his or her position. 

Finger agnosia:  the inability to distinguish the fingers on the hand. 

Hemineglect: a neuropsychological condition in which, after damage to one 

hemisphere of the brain, a deficit in attention to and awareness of one side of space 

is observed. 

Homologous: having the same relation, relative position, or structure; Origin: Greek 

homologos ‘agreeing, consistent’, from homos ‘same’ + logos ‘ratio, proportion’ 
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Hyperaesthesia: increased sensitivity to stimulation, excluding the special senses. 

Note: The stimulus and locus should be specified. Hyperaesthesia may refer to 

various modes of cutaneous sensibility including touch and thermal sensation without 

pain, as well as to pain. The word is used to indicate both diminished threshold to 

any stimulus and an increased response to stimuli that are normally recognized. 

Hyperalgesia: an increased response to a stimulus which is normally painful. 

Hyperpathia: a painful syndrome characterized by an abnormally painful reaction to 

a stimulus, especially a repetitive stimulus, as well as an increased threshold. 

Hypoaesthesia: decreased sensitivity to stimulation, excluding the special senses. 

Note: Stimulation and locus to be specified. Hypoalgesia was formerly defined as 

diminished sensitivity to noxious stimulation, making it a particular case of 

hypoesthesia (q.v.). However, it now refers only to the occurrence of relatively less 

pain in response to stimulation that produces pain. Hypoesthesia covers the case of 

diminished sensitivity to stimulation that is normally painful.  

Hypoalgesia: diminished pain in response to a normally painful stimulus. 

Ideomotor apraxia: a disorder where there is disconnection between the idea of 

movement and its execution; inability to correctly imitate hand gestures and 

voluntarily pantomime tool use. 

 Motor extinction: difficulty initiating movement or impaired use of a limb during 

bilateral simultaneous movements. 

Neuropathic pain: pain initiated or caused by a primary lesion or dysfunction in the 

nervous system. 

Noxious stimulus: a stimulus which is damaging to normal tissues.   

 Optokinetic: pertaining to visual encoding of movement. 

Pain:  an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage. 

Paraesthesia: an abnormal sensation, whether spontaneous or evoked. 

Peripheral neuropathic pain: 

 Pain initiated or caused by a primary lesion or dysfunction in the peripheral nervous 

system. 

 Qualia: a term used to describe the subjective conscious experience of sensory 

stimuli. 

Quantitative sensory testing: a standardised technique of assessing and 

quantifying an individual’s response to sensory stimulation that allows comparison to 

other individuals. 

 Referred sensation:  unilateral tactile stimulation perceived concurrently in another 

discrete body area. 
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Right Left Disorientation: inability to distinguish between right and left. 

 Sensory extinction:  bilateral non-noxious tactile stimulation perceived unilaterally  

Somaesthesia:  the faculty of bodily perception. Origin: somat-+ G. Aisthesis, 

sensation. 

Somatoparaphrenia: a type of monothematic delusion with denial of ownership of a 

limb or an entire side of one's body. 

Sudomotor:  a response within the system controlling sweat gland activity. 

Valsalva manoeuvre:  moderately forceful attempted exhalation against a closed 

airway. 

Vasomotor:  a response within the vascular system 

Venoarteriolar reflex:  a limb dependency test where in a healthy subject a 

vasoconstriction response is observed in the limb lowered. 
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Abstract  

The perception of pain is a complex process involving central integration of 

nociceptive sensory signals with autonomic, emotional, motor and behavioural 

cortical networks. The principal aim of this thesis was to explore how this process 

contributes to the presenting clinical phenotype in complex regional pain syndrome 

(CRPS), and whether this extends to other chronic pain conditions in rheumatic 

disease such as osteoarthritis (OA) and rheumatoid arthrits (RA). 

The first study established baseline quantitative sensory testing parameters and 

autonomic function. It found that allodynia was absent in controls, present in some 

OA and RA patients and most marked in CRPS patients. Autonomic function was 

normal in controls, with some impairment in OA and RA and most dysfunction in 

CRPS. The second study used an optokinetic visuo-motor challenge induced by a 

mirror-whiteboard device. The presence or absence of sensory disturbances and/or 

new/worsening pain was used to generate a vulnerability scale. Controls were the 

least vulnerable followed by RA, then OA with CRPS the most vulnerable. Autonomic 

responses, sensory disturbances and new/worsening pain to a pure visual conflict in 

the form of ambiguous visual stimuli (AVS) were used for the third study. Sensory 

disturbances, pain enhancement and abnormal asymmetric autonomic responses 

occurred only in the CRPS cohort. The final study investigated parietal lobe function 

in CRPS patients. It showed clinical evidence of parietal lobe dysfunction present in a 

substantial number of CRPS patients, and that this was reflected both in symptoms 

and impact upon activities of daily living.  

Overall, the thesis findings support the concept that perterbation of central 

somaesthetic integration may induce cortical network dysfunction, reflected in 

different patterns of autonomic and pain responses. This might contribute to the 

differing clinical presentations seen in CRPS. Similar processes may also occur in 

OA and RA. This work provides an approach to the clinical phenotyping of CRPS and 

other chronic painful rheumatic diseases. Appreciation of the potential mechanisms 

described may allow better targeting of therapy.  
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Chapter 1:  Introduction 
 

 

“I ache for the touch of your lips, dear,  

But much more for the touch of your whips, dear.  

You can raise welts  

Like nobody else,  

As we dance to the masochism tango.” 

 

 Tom Lehrer – The Masochism Tango 

 

 (A quote illustrating pain as both a sensation and a perception) 

(Image available from: http://philosophyofscienceportal.blogspot.com/2008/11/tom-lehrers-elements.html. 

Accessed 17.1.12.) 

 

1.1. Overview 
 

The definition of 'somaesthesia' is the faculty of bodily perception. Perceptual 

experiences including bodily sensations are termed 'qualia'. As Daniel Dennett wrote 

(Dennett, 1988), a qualia is "an unfamiliar term for something that could not be more 

familiar to each of us: the ways things seem to us." Pain is thus both a sensation and 

a perception, and therefore an individual personal experience. Pain is an inevitable 

companion to human experience, and where it is absent in rare conditions such as 

congenital pain insensitivity, life span is shortened (Drummond and Rose, 

1975;Nagasako et al., 2003). Pain is therefore a necessary evil, and an evolutionary 

survival strategy (Stefano et al., 2005). Fortunately pain is usually self limiting. 

However in certain pathologic circumstances, it may become chronic. 

Chronic pain causes impaired quality of life (Hoftun et al., 2011;Keeley et al., 

2008;Nordeman et al., 2011), and is a significant socio-economic burden (Langley et 

al., 2010;Latham and Davis, 1994). Chronic musculoskeletal pain is common. In a 

one month period, up to 20% of adults may complain of chronic widespread pain, one 

third of shoulder pain and up to one half, low back pain (McBeth and Jones, 2007). 

Chronic pain is commonly encountered in Rheumatological practice among patients 

with osteoarthritis (OA) and rheumatoid arthritis (RA). Complex regional pain 

syndome (CRPS) is a rarer, poorly understood chronically painful condition that is 

occasionally encountered by Rheumatologists. Typically affecting the extremities, it is 
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characterised by unremitting pain, autonomic disturbances in the control of blood flow 

and sweating and often marked tactile allodynia (normally non-painful touch is 

perceived as painful). Thus in some chronic pain conditions, the perception of 

sensory stimuli can change from non-noxious to noxious.  

Chronic non-malignant pain is poorly understood and often difficult to treat. 

There are likely to be multiple aetiopathogenic mechanisms operating acrosss a 

spectrum of diseases. Futhermore, even within one disease there are likely to be 

different patterns of pain mechanisms between patients, and patterns may vary in an 

individual over time. Therefore to improve the treatment of the chronic pain of an 

individual patient, better understanding of the pain mechanisms operating in that 

person at that time are needed.  

This thesis sets out to address whether it is possible to identify when certain 

pain mechanisms are operational in chronically painful rheumatic diseases such as 

OA, RA and CRPS. 

 

1.2. Pain mechanisms relevant to the thesis (see Chapter 2 for a fuller 

discussion) 

1.2.1. Central pain in OA and RA 
There is increasing evidence of central cortical pain mechanisms in OA and RA 

(Hendiani et al., 2003). It is a well recognised clinical conundrum that the severity of 

osteoarthritic changes on plain X-ray films may not correlate with symptoms 

(Hochberg et al., 2003). Concurrent unrecognised fibromyalgic widespread pain in 

RA may invalidate the 'inflammatory' DAS (Disease Activity Score) 28 score (Wolfe, 

2009). Together with recent neuroimaging studies (Wartolowska et al., 2011) 

(Rodriguez-Raecke et al., 2009), such features suggest central pain mechanisms 

may be operational. 

1.2.2. Sensory and motor conflict 
Sea sickness is a common problem among people undertaking maritime voyages or 

water based activities. Individuals vary in their susceptibility to motion sickness 

(Golding, 2006), and it may change with age. A well recognised and accepted 

explanation is that it arises due to the inability of higher cortical centres to accurately 

integrate the conflicting sensorimotor, visual and proprioceptive information produced 

by being a stationary passenger on a moving vehicle (Kohl, 1983). In the case of sea 

sickness, if a person remains on the vessel for a prolonged period (such as during a 
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cruise, or as an occupation), they will regain their ‘sea-legs’ as brain integration 

improves and the conflict resolves. 

Previous research has shown that it is possible to induce sensory 

disturbances and pain in healthy controls by creating visuo-sensorimotor conflict 

using a mirror (McCabe et al., 2005). It has been hypothesised that cortical 

reorganisation (see 1.2.3 below) may cause an individual to be more vulnerable to 

sensory conflict (Harris, 1999).  Vulnerability to mirror induced sensory disturbances 

and pain is increased in the chronic pain condition of fibromyalgia (McCabe et al., 

2007). Enhanced pain in response to a pure visual challenge induced by viewing an 

optical illusion has been described in CRPS (Hall et al., 2010). Therefore in chronic 

pain conditions, there may be enhanced vulnerability to visual and sensorimotor 

conflict. 

1.2.3. Central pain in CRPS: the role of cortical reorganisation 
Some of the sensory findings in CRPS such as referred sensations (McCabe et al., 

2003) and the quality of pain share similarities with another chronic pain condition, 

phantom limb pain (PLP) in amputees. There is good evidence for the contribution of 

central mechanisms in PLP, and specifically for the role of cortical reorganisation 

(Lotze et al., 2001).  There is increasing evidence of neuroplastic cortical 

reorganisation and network dysfunction in CRPS (Swart et al., 2009), and that 

successsful treatment can reverse both the pain and cortical reorganisation (MacIver 

et al., 2008;Maihöfner et al., 2004). 

1.2.4. CRPS: the role of autonomic dysfunction 
The role of sympathetic autonomic dysfunction in pain remains unclear (see Chapter 

2 for a fuller discussion). In CRPS there is often marked sympathetic autonomic 

dysfunction in the affected limb, which has given rise to the concept of 

‘sympathetically maintained pain’ (Drummond, 2010;Gibbs et al., 2008). 

Interventional techniques such as chemical and surgical sympathectomies are often 

performed as a treatment for the pain of CRPS, but the evidence base remains poor 

(Straube et al., 2010). The mechanisms causing the sympathetic autonomic 

dysfunction are complex, probably multifactorial and still unclear (Bruehl, 2010). 

1.2.5. Role of the parietal cortex 
The parietal lobes of the brain are association cortices. They are essential for the 

integration of allocentric (of the environment) and egocentric (of the person) sensory 

stimuli with previous experience and knowledge. This allows appropriate behavioural 

and emotional responses. Parietal lobe lesions can cause a variety of disabling 
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syndromes including neglect. Neglect-like features hace been reported in CRPS 

(Galer and Jensen, 1999). There is also evidence for the role of the parietal cortex in 

the perception of pain (Duncan and Albanese, 2003). 

1.3. Principal aims and objectives 
The underpinning theme of this thesis is that patterns of autonomic and pain network 

dysfunction may arise from varying neuroplastic cortical reorganisational changes, 

which could cause impairment of central somaesthetic integration and be reflected in 

the presenting clinical phenotype across a spectrum of rheuamatic diseases. In a 

severe pain condition such as CRPS where it is known that reorganisational changes 

may exist, there may be more chance of being able to detect such patterns.  Similar 

changes may also occur in other chronic rheumatic pain conditions such as 

osteoarthritis (OA) and rheumatoid arthritis (RA).  

The principal aim of this research was to gain insights into different 

mechanisms that contribute to chronic pain, and thereby obtain new understanding of 

the varying patterns and presentations of chronic pain in rheumatic disease. This was 

done through a series of central integrative sensory challenges investigating how 

these might contribute to pain in both CRPS and chronic rheumatic disease. 

1.4. The four clinical studies 
 
For each study, the questions raised by the literature are given together with an 

outline of the aims. The specific hypotheses to each study are given in the chapter 

describing it. 

 

Study 1 (Chapter 4): Quantitative sensory testing (QST) and baseline 

sympathetic autonomic function in CRPS and rheumatic disease. 

Research question addressed: Is there any evidence of sensory or 

sympathetic autonomic dysfunction in OA, RA and CRPS compared to healthy 

controls?  

 

The aim of this study was to define and describe the clinical presentation of sensory 

and autonomic function in the study populations (healthy controls, OA, RA and 

CRPS). This would allow comparison of parameters in healthy controls with the 

patient cohorts. It also establishes a baseline for comparison with the other studies. 
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Study 2 (Chapter 5): Sensory disturbances and vulnerability during a visuo-

sensorimotor challenge in CRPS and rheumatic disease. 

Research question addressed: Can a mirror induced visuo-sensorimotor 

challenge cause sensory disturbances and new or enhanced pain in OA, RA and 

CRPS? If so, are there differences between these cohorts and between healthy 

controls? 

 

Study 2 investigated vulnerability to sensory and pain responses induced by visuo-

sensorimotor conflict using a mirror device. Vulnerability could be compared between 

and within cohorts, and compared to baseline parameters in Study 1 such as 

autonomic dysfunction and allodynia. 

 

Study 3 (Chapter 6): Sensory disturbances and sympathetic autonomic 

responses during a pure visual challenge utilising ambiguous visual stimuli in 

CRPS and chronic rheumatic disease. 

Research question addressed: Can a pure visual challenge cause sensory or 

pain disturbances in healthy controls, OA, RA and CRPS? What is the pattern of 

concurrent autonomic responses? If abnormalities are found, are there 

differences between the cohorts? 

 

In this study, vulnerability to sensory and pain disturbances during a pure visual 

challenge together with concurrent sympathetic autonomic responses were 

assessed. Vulnerability to a visual challenge could be compared between and within 

cohorts, and correlated with vulnerability to the visuo-sensorimotor (mirror) challenge 

(study 2) as well as to baseline autonomic function and sensory parameters (study 

1). 

 

Study 4 (Chapter 7): Parietal lobe function in CRPS. 

Research question addressed: Is there any clinical evidence for parietal lobe 

dysfunction in CRPS? 

 

The final study investigated whether there was any clinical evidence for parietal 

dysfunction in CRPS. Findings could then be compared to vulnerability to a pure 

visual challenge (study 3), a visuo-sensorimotor challenge (study 2) and to baseline 

autonomic function and allodynia (study 1).  
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1.5. Structure of thesis 
The thesis is presented as a series of four clinical studies (Chapters 4 – 7) 

investigating different potential mechanisms contributing to pain in both CRPS and 

chronic rheumatic disease. The results from CRPS patients are compared to those of 

healthy controls and two cohorts of patients with chronic rheumatic pain; 

osteoarthritis and rheumatoid arthritis. Each study is presented, strengths and 

weaknesses discussed, and the outcomes of the latter compared to the former such 

that the fourth study brings together a comparison of all the different contributing 

mechanisms investigated. Chapter 2 provides the background to the research 

questions and reviews the literature against which they are formulated. As each 

study chapter has a separate methods section specific to that study, Chapter 3 

provides the methods common to each to avoid repetition. Chapter 8 draws together 

the findings of each study, and puts them into context against current literature 

summarising novel findings, clinical implications and potential future research 

directions.  

 

The overall objective of this body of work is to provide a clearer 

understanding of some of the pain mechanisms that may be operating in chronic 

rheumatic pain. It aims to provide a provisional basis for the clinical phenotyping of 

chronic pain, particularly in CRPS. When an individual patient presents with complex 

chronic pain, a phenotyping approach will allow for the more prominent pain 

mechanisms operating to be recognised, and treatment targeted appropriately. 
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Pleasure/Pain 

By artist ANNIE CATTRELL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pleasure/Pain was made in collaboration with Professor Morten L Kringelbach of 

Oxford University. Functional Magnetic Resonance Imaging with Diffusion Tensor 

Imaging was used to create a three dimensional representation of the overlapping 

cerebral pathways of pleasure and pain.  

Image available from: http://www.londonsciencefestival.com/page/4/. [Accessed 17.1.12.] 
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Chapter 2:  Literature review 
 

"A wretched soul, bruised with adversity, 

We bid be quiet when we hear it cry;  

But were we burdened with like weight of pain, 

As much or more we should ourselves complain."  

 

William Shakespeare  – The Comedy of Errors (Act 1, scene 1). 

 

(Image available from: http://shakespeare.mit.edu/. Accessed 17.1.12.) 

2.1. Introduction  
This chapter will introduce the background literature that provides the basis upon 

which the thesis questions were formulated and the research constructed. It will 

begin by outlining current concepts of pain, and pain modulating systems. It will then 

demonstrate the importance of cortical sensory integration in somaesthesia and the 

perception of pain, and how this links with visual perception. From here it will move to 

autonomic nervous system integration with pain and interoception. Finally it will 

review the problem of pain in chronic rheumatic disease, specifically osteoarthritis 

(OA) and rheumatoid arthritis (RA), and Complex Regional Pain Syndrome (CRPS) 

together with a more detailed review of CRPS and potential aetiopathogenic 

mechanisms.  

 

2.2. Pain 

2.2.1. Basic neuroanatomy and physiology 
The perception of pain involves sensory (nociceptive), affective (emotional) and 

cognitive (interpretation, context and meaning) dimensions. The key elements of 

nociception include activation of peripheral sensory afferent nerves, transmission to 

the spinal cord, projection to supraspinal structures and regulation of spinal 

transmission by modulatory ascending and descending facilitatory/inhibitory 

pathways (McCleane and Smith, 2007). 

During a noxious stimulus such as an injury, primary afferent small 

myelinated A-δ and unmyelinated C-fibre nociceptors transmit impulses to the dorsal 

horn of the spinal cord. A- δ terminate primarily on neurones in laminas I, V and X, 

and dorsal root C-fibres in laminas I – V (mainly I and II). Impulses form C-fibres pass 

to several different second order interneurones. These include the wide dynamic 
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range (WDR) cell responsive to pain and gentle touch, found in lamina V (and also IV 

& VI). WDR neurones are responsible for the phenomenon of ‘wind-up’ in pain. Other 

second order interneurones include nociceptive specific neurones in lamina I.  

Pain is often described as having a ‘fast’ component which is a sharp, well 

localised sensation, then followed by a ‘slow’ pain described as dull, diffuse and 

unpleasant. ‘Fast pain is subserved by the faster conducting A-δ fibres, and the ‘slow’ 

by the slower unmyelinated C-fibres.  

Nociceptive impulses ascend by two main pathways: the primitive spino-

reticulo-diencephalic tract in the posterolateral cord, and the more modern 

neospinothalamic anterolateral system (including the lateral spinothalamic tract) 

which takes most of its fibres from laminas I and V. Higher ascending pathways 

project to many cortical areas including the thalamus, reticular system, 

hypothalamus, periaqueductal grey, S1, S2 and cingulate cortex, collectively known 

as the ‘pain matrix’. The phylogenetically older spino-reticulo-diencephalic tract ends 

in the reticular system of the brainstem, with other connections to the thalamus and 

(via the reticular system) hypothalamus. These connections allow for integration of 

the autonomic components of pain. Thalamic connections to many cortical areas 

including limbic and anterior cingulate mediate the affective/emotional aspects of 

pain. The spinothalamic tracts pass to the lateral thalamus with connections to the 

sensory cortex allowing the localisation of pain. Damage to this pathway can cause a 

severe pain syndrome known as the ‘thalamic syndrome’.   

 

2.2.2. Descending control of pain 
The original descending inhibitory ‘gate theory’ of Melzack and Wall (Melzack and 

Wall, 1965) has been superseded by newer understanding of pain modulation 

mechanisms. Descending control arises from supraspinal areas, including the midline 

periaqueductral gray-rostral ventromedial medulla (PAG-RVM) system, and the 

dorsal reticular nucleus (DRt) and ventrolateral medulla (VLM). These systems can 

be inhibitory or facilitatory. The PAG-RVM inhibitory system suppresses C-fibre input 

preferentially to the more rapidly conducting A-δ fibres preserving sensory 

discrimination. Within the PAG-RVM system there are populations of neurones, ON-

cells and OFF-cells. These are differentially recruited by higher structures during 

fear, psychological stress and illness causing enhancement or inhibition of pain. 

Persistent nociception can activate both descending inhibition and facilitation 

(Heinricher et al., 2009).  
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In models of inflammation, descending inhibition attenuates primary 

hyperalgesia and descending facilitation enhances secondary hyperalgesia. 

Descending facilitation from the PAG-RVM is believed to contribute to the 

hyperalgesia and allodynia of neuropathic pain (Vanegas and Schaible, 2004). PAG-

RVM connections are serotoninergic (Heinricher et al., 2009). Axons descend in the 

dorsolateral funiculus to lamina II where synapses are enkephalinergic.  

The DRt-VLM are connected with nociceptive dorsal horn laminae. Studies 

suggest that the role of the DRt is primarily facilitatory. The VLM exerts a tonic 

inhibitory control of dorsal horn nociception but may also exert a facilitatory influence, 

as neurons with features of ON and OFF cells have been identified in this region 

(Heinricher et al., 2009;Tavares and Lima, 2002). There is another noradrenergic 

descending inhibitory pathway that projects from the nucleus raphe magnus (NRM) 

and locus coeruleus in the pons (Jones, 1991).  

 

2.2.3. Sensitisation 
In chronic neuropathic pain, sensitisation occurs such that thresholds are lowered so 

that stimuli that would normally not produce pain now begin to (allodynia), and 

responsiveness is increased, so that noxious stimuli produce an exaggerated and 

prolonged pain (hyperalgesia).  

 Peripheral sensitisation refers to a reduction in the threshold and increase in 

the responsiveness of peripheral nociceptor endings. Sensitisation occurs through 

the action of inflammatory mediators (for more details, see 2.7.6.1. ‘Facilitated 

neurogenic inflammation’), and contributes to hyperalgesia. 

 Central sensitization occurs when there is increased excitability of CNS 

neurones such that normal inputs produce abnormal responses. Activity in low 

threshold sensory fibres produced by light touch may activate ascending nociceptive 

pathways, and can produce allodynia. 

 

2.2.4. Neuroplasticity 
After peripheral tissue or nerve injury, hyperalgesia may develop which is related to 

changes at the site of injury and to CNS hyperexcitability that leads to long term CNS 

changes, termed ‘plasticity’ (Pillemer S, 1997).  

Somatosensory cortical representation of limbs can show plastic changes. The 

reading fingers of Braille readers have been shown to have larger areas of 

representation (Pascual-Leone A, 1993;Sterr A, 1998). In focal hand dystonia (Bara-

Jimenez et al., 1998;Elbert et al., 1998) disordered topographical cortical 
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somatosensory representation has been shown, with fusion of digital areas. This has 

also been demonstrated in a monkey model of repetitive strain injury (Byl et al., 

1996). Among Braille readers with disordered cortical topography, they were found to 

frequently misperceive which finger was being touched by a light tactile stimulus 

(Sterr A, 1998). 

In patients with phantom limb pain (Flor et al., 1998) and patients with chronic 

back pain (Wiech K, 2000), alterations in the somatotopic organisation of the primary 

somatosensory cortex have been demonstrated, whereby the site of origin of the pain 

has a relatively larger allocation. In upper limb amputees, the reorganisational 

changes in the sensory cortex are such that the face lying next to the hand on the 

Penfield homunculus may now expand into the area formerly occupied by the hand. 

This is the explanation behind ‘referred sensations’ in amputees. In an upper limb 

amputee with these neuroplastic changes, touch on the face may be felt 

simultaneously in a specific location on the phantom hand (Ramachandran et al., 

1992)(Fig.2.1 ). 
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Fig.2.1. 

 

 

Neuroplasticity and its role in CRPS are discussed below in 2.7.6.3. ‘Neuroplastic 

changes within the CNS’. 

Thus chronic stimulation, or loss of sensory input of a body part can cause 

plastic changes in cortical somatosensoy representation leading to enlargement 

and/or topographical disorder. How might this type of disorder contribute to pain? 

One theory is through consequent sensorimotor conflict. 

 

2.2.5. Sensorimotor conflict and pain  
 
Fink (Fink et al., 1999) investigated the neural consequences of conflict between 

intention and the senses by PET scanning subjects performing Luria’s bimanual 

Fig.2.1. The sensory Penfield homunculus. The grey dashed area around the face 

represents the neuroplastic cortical reorganisation that may occur in an upper limb 

amputee with referral of sensations from the face to the phantom hand.  

Illustration based upon an original image available from: 

http://www.neurobiography.info/teaching/teaching.php?mode=view&lectureid=1&slide=24. [Accessed 17.1.12.] 
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coordination tasks. This required healthy volunteers to open and close their hands 

repetitively either in phase or out of phase with each other, always looking towards 

the left hand. A mirror was then introduced to alter the visual feedback from the left 

hand by showing a reflection of the right hand in its place. This allowed a condition to 

be created where visual feedback was rendered non-veridical and incongruent ie. the 

subjects intention and proprioceptive feedback indicated out of phase movements, 

while visual feedback indicated in phase movements via the mirror image reflecting 

the right hand. A second study repeated the same protocol but manipulated visual 

feedback from the right hand rather than the left. A third study removed motor 

intention by moving the hand passively therefore creating conflict between 

proprioception and vision only. It was shown that a ventral right lateral prefrontal 

region was primarily activated by discrepancies between signals from sensory 

systems, while a more dorsal area in right lateral prefrontal cortex was activated 

when actions had to be maintained despite conflict between intention and sensory 

outcome. Feelings of peculiarity were greatest in the incongruent conditions. 

From his work on patients with left neglect and parietal lobe syndrome 

(Ramachandran, 1995), Ramachandran proposed the existence of a unilateral right 

cortical centre monitoring incongruence of sensation (CIS). He suggests that as a 

Darwinian defence mechanism, there is a need to impose a ‘decision’ where a 

sensory conflict offers different possibilities and the potential for vacillation. The CIS 

therefore has a role to “detect anomalies or discrepancies, and to generate a 

paradigm shift if the discrepancy is too large.” 

Harris (Harris, 1999) suggested that incongruent sensorimotor feedback may 

be generated as a consequence of cortical reorganisation, be detected by the CIS 

and result in pain not only in phantom limb pain, but also in a variety of chronic pain 

conditions where cortical reorganisation occurs. He hypothesised that the right dorsal 

lateral prefrontal cortex activated by conflict generated in the incongruent conditions 

of Fink's study (Fink et al., 1999) could be the CIS equivalent proposed by 

Ramachandran (Ramachandran, 1995). Sensory conflict can generate unpleasant 

somaesthetic experiences in healthy individuals. It is a well recognised explanation of 

motion sickness (Warwick-Evans et al., 1998). Our group has shown that it is 

possible to induce a range of unpleasant somaesthetic percepts including pain in 

healthy controls by using an optokinetic system (mirror/whiteboard) to generate 

conflict between the visual and proprioceptive senses (McCabe et al., 2005). 

Furthermore, the susceptibility to this is increased in a chronic pain cohort of 

fibromyalgia patients (McCabe et al., 2007).  
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 Newer models of sensorimotor integration offer further insights. The motor 

control system manages the relationships between motor commands and sensory 

feedback, ensuring that goal directed movements are achieved accurately and 

smoothly. Each time a movement is undertaken, motor commands are transformed 

into efferent motor actions and then into reafferent sensory feedback. State variables 

such as proprioceptive information about body configuration, joint angles, 

kinaesthetic information and the state of the body system prior to implementation of a 

movement provide a basis for internal models of the motor system. When a 

sequence of motor commands is issued, on the basis of the state variables and the 

internal model, it is possible to ‘predict’ the subsequent behaviour of the motor 

system and sensory feedback arising from that behaviour. ‘Predictors’ model aspects 

of the external world and of the motor system in order to capture the forward or 

causal relationship between actions and their outcomes. ‘Controllers’ provide the 

motor commands necessary to achieve a desired outcome. ‘Controllers can compare 

the desired state with the motor commands needed to achieve it, and a forward 

model, or ‘efference’ copy of the motor command is issued (Frith et al., 2000). The 

forward model is often a rough prediction. Any difference between actual and 

predicted sensory feedback can be used to modify the current state of the system 

and correct the state estimates from the forward model (Wolpert et al., 1995) 

(Fig.2.2).  

 

Cortical reorganisation due to chronic pain could lead to the production of 

impaired efferent motor command copies, which will produce conflict between motor 

intention and sensory feedback. From the Harris hypothesis (Harris, 1999), this 

would be predicted to cause pain, or worsening pain where it already exists.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 17 

Fig.2.2.  
 
 

 
 
 
Fig.2.2.  Schematic diagram depicting the role of the efference copy in the motor 

control system.  

Information from current state variables (e.g. joint position sense) is used to create a 
prediction of the sensory consequences of any motor command. This prediction, or efference 
copy, is compared (comparator) with the actual sensory consequences of that new activity. 
When a discrepancy is noted this information is fed back to the motor command system to 
update the state variables and thereby inform future efference copies. 
 
Reproduced with permission from McCabe et al 2005. 
 
 

2.2.6. Conclusion 
The perception of pain is a complex interplay of peripheral and central mechanisms, 

which is highly variable depending upon the individual and the circumstances. 

Neuroplastic change and sensory conflict can induce a variety of unpleasant 

somaesthetic sensations including pain in chronic pain patients. Sensory conflict can 

induce similar sensations in susceptible healthy individuals. The effect of sensory 

conflict in patients with rheumatic chronic pain and in CRPS is little known. 

 

 Having demonstrated that the integration of body sensory information ie. 

'somaesthesia' can be perturbed by neuroplastic changes and sensory conflict, the 

next section expands upon this process. 
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2.3. Somaesthesia; the integration of sensation wit h body schema  

2.3.1. Somatosensory integration 
The feeling of body ownership refers to the special perceptual status of one’s own 

body. This makes bodily sensations, or ‘somaesthesia’ unique to oneself, and is a 

fundamental aspect of self-consciousness. Disturbance of body schema and 

ownership of body parts may occur after brain damage including parietal lesions 

(Braun et al., 2007). Alien hand syndrome is characterised by autonomous motor 

activity perceived as involuntary and purposeful, with a feeling of foreignness and 

failure to recognise ownership of the affected limb. It has been described with lesions 

of the copus callosum, frontal lobes and after parietal damage (Carrilho et al., 

2001;Kikkert et al., 2006). A right parietal stroke may produce left sided weakness 

and left neglect syndrome (for more details on neglect, see Chapter  7). Braun 

proposes that the psychic tonus model of hemispheric specialisation incorporates the 

representation of body schema in the parietal lobes, whereby the left hemisphere is a 

‘booster’ of internal experience and behaviour, and the right a ‘dampener’ (Braun et 

al., 2007).  

2.3.2. When somatosensory integration is disrupted;  body schema illusions 
Illusions of body schema can occur in the intact brain. Regional anaesthesia can 

induce body image distortions (Paqueron et al., 2003), a phenomenon which anyone 

who has had a local injection when undergoing dental treatment can verify. Vibration 

applied to a tendon across a joint can induce illusory movement. If the vibration is 

applied to the wrist, it will cause illusory movement of the hand. If vibration is applied 

while the hand is in contact with the nose, the nose can appear to elongate or shrink 

depending on which tendon is manipulated. If the hands are in contact with the waist, 

illusory shrinkage can occur (Ehrsson et al., 2005b). Some healthy controls may 

experience not only vibration induced illusory movement, but also feelings of 

peculiarity, swelling and foreignness (Moseley et al., 2006), or it may cause 

disruption in a motor imagery task (McCormick et al., 2007). Moseley’s group 

postulate faulty proprioceptive input as a potential mechanism for the illusory 

movement and of the abnormal sensations perceived (McCormick et al., 

2007;Moseley et al., 2006). 

In the ‘rubber hand illusion’, viewing a rubber hand being brushed at the same 

time as the person’s hidden hand is brushed can cause a feeling of ‘ownership’ of the 

rubber hand. The mechanisms are unclear, but it is likely that the illusion occurs 

within a hand-centred reference frame updated with changes in body posture 

(Costantini and Haggard, 2007). It is also unclear whether vision (Farne et al., 2000) 
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or multisensory feedback from one’s own body (Ehrsson et al., 2005a) is dominant in 

the generation of the illusion. 

Functional neuroimaging techniques have been employed during the rubber 

hand illusion in which normal subjects may perceive a fake rubber hand as part of 

their body, allowing insight into brain areas active in body ownership and 

somaesthesia. Ehrsson (Ehrsson et al., 2004) found multisensory integration in the 

premotor cortex provides a mechanism for body self-attribution. Tsakiris et al 

(Tsakiris et al., 2007) utilised positron emission tomography (PET) and showed that 

body ownership was related to activity in the right posterior insula and right frontal 

operculum, and conversely non-attribution to contralateral parietal activity. Another 

study using transcranial magnetic stimulation suggested that the right 

temperoparietal junction is involved in maintaining a coherent sense of body 

ownership (Tsakiris et al., 2008). 

In phantom limb phenomena in amputees, while the brain is structurally intact 

the body integrity has been disturbed. Phantom limb phenomena can provide insights 

into the mechanisms underlying bodily awareness and ownership. Giummarra 

suggests involvement of body schema and the body-self neuromatrix, mirror 

neurons, and cross-callosal and ipsilateral mechanisms in phantom limb phenomena. 

Within this model, phantom limb pain is proposed to be a maladaptive failure of the 

neuromatrix to maintain global bodily constructs (Giummarra et al., 2007). 

 

2.3.3. When visual integration is disrupted; optica l illusions  (see also Chapter  6) 

"The key notion of cognitive psychology, since the collapse of behaviourism, is that 

we build brain-descriptions of the world of objects, which give perception and 

intelligent behaviour. Perceptions are not regarded as internal pictures or sounds, but 

rather as language-like descriptions coded, we suppose, by brain structures of what 

may be out there." (Gregory, 1998) 

 

Gregory suggests that visual perception utilises predictive hypotheses of the 

external world and of the self. Simple figures or objects can be ambiguous and 

spontaneously change orientation (Fig.2.3A ,) or into other objects (Fig.2.3B .). A 

change in the predictive hypothesis causes a change in perception. Thus optical 

illusions operate by conflicting predictive hypotheses alternating in predominance, 

and a failure of normal visual integration. For a more detailed review of the 

background literature, see Chapter 6 . 
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Fig.2.3A.       Fig.2.3B. 
 
 
 
 
 
 
 
 
 
 

 
Fig.2.3.  Examples of optical illusions that A. spontaneously change orientation, and 
B. spontaneously change into other objects (young woman / old lady).  
 
 
 

2.3.4. The parietal cortices  (see also Chapter  7) 

The parietal cortex is central to the construction of a unified body image and 

determining its relevance to the external world via allocentric and egocentric cues. It 

receives sensory information and integrates it with past sensory experiences. The 

parietal lobes are association cortices, involved in higher order processing of sensory 

information necessary for perception and movement initiation. Anatomically they can 

be divided into the primary somatosensory area (Brodmanns’ areas 1, 2 and 3), 

superior (Brodmanns’ areas 5 and 7) and inferior (Brodmanns’ areas 39 and 40) 

parietal lobules. The superior parietal lobule is involved with the interpretation of 

general sensory information and for the conscious awareness of the contralateral half 

of the body. The inferior parietal lobule: interfaces between the somatosensory cortex 

and the visual and auditory association cortices of the occipital and temporal lobes 

respectively, and in the dominant hemisphere contributes to language functions.  

The parietal cortex has a role in selective attention, behaviour and sensory 

discrimination through its associative functions (Freund, 2001). It is involved with 

motor control and parietal lesions can produce unusual motor syndromes (Timsit et 

al., 1997) and difficulty integrating body schema (see below)(Ghika et al., 

1998;Pause et al., 1989). Parietal lesions can also cause apraxia (loss of the ability 

to execute or carry out learned purposeful movements) (Freund, 2003) and 

significant problems in numeracy and written / spoken language including alexia 

(word blindness) and acalculia (difficulty performing simple mathematical tasks) 

(Tucha et al., 1997). It has been argued that there is sufficient weight of human pain 

research to establish a role for the parietal lobes in the perception of pain (Duncan 

and Albanese, 2003).  

  

A: H.Cohen 2011; B: Origin anonymous 



 21 

2.3.5. Parietal and limbic interaction 
As a result of its integrative function, the parietal cortices have many cortical 

projections including limbic (Hok et al., 2005) and hippocampal (Habler et al., 

1997;Save and Poucet, 2000b;Save and Poucet, 2000a). The hippocampus, 

amygdala, limbic lobe, hypothalamus and anterior nucleus of the thalamus comprise 

the limbic system, one of the phyllogenetically oldest parts of the brain. It is 

concerned with instinctive and emotional behaviour, memory and endocrine and 

autonomic system integration. It appears to be important in down regulating the 

stress response (McEwen, 2001). Hippocampal place cells are sensitive to 

environmental perceptual cues (Hines and Whishaw, 2005;Rotenberg and Muller, 

1997). More recent work shows that the hippocampus is involved with body scheme 

and orientation within the environment (Whishaw and Maaswinkel, 1998), and has a 

major role in the integration of motor planning (Hok et al., 2005;McNaughton et al., 

1996;Poucet et al., 2004). Hippocampal-parietal cortical interactions are 

hypothesised to be involved in spatial cognition (Save et al., 2005;Save and Poucet, 

2000b;Save and Poucet, 2000a).(Save and Poucet, 2000b) Head directional cells are 

located in the hippocampus and have also been found in the posterior parietal cortex 

(Poucet et al., 2001).  

2.3.6. Conclusion 
The integration of vision, sensorimotor information and body schema is essential for 

the perception of the ‘self’. Optical illusions generate deliberate visual conflict and 

can provide insights into how the brain integrates visual information into allocentric 

and egocentric parameters. The parietal lobes play an important role, and damage 

can produce abnormalities in body schema. Parietal and limbic interactions are also 

involved in environmental body schema orientation and emotional and 

neuroendocrine responses to stress. Sensorimotor conflict is able to produce illusory 

changes to body schema, which can be associated with feelings of peculiarity, 

swelling and foreignness in healthy subjects. CRPS patients often describe feelings 

of ‘foreignness’ of the affected part (see below), suggesting impairment of body 

ownership and somaesthesia. Therefore dysfunctional parietal networks may be 

implicated in CRPS. Clinical parietal testing may be abnormal in CRPS patients and 

is worthy of further investigation. 

 

 We have seen that somaesthesia is a complex process involving the 

integration of allocentric (of the environment) and egocentric (of the person) sensory 

qualia with behavioural, emotional and autonomic responses. The next section 
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focuses on the role of the autonomic nervous system and its intimate involvement 

with pain. 

 

2.4. The autonomic nervous system and pain 

2.4.1. Basic neuroanatomy and physiology 
The nervous system has two components: the somatic which is under voluntary 

control and regulates mainly the skeletal muscles, and the autonomic which is for the 

most part not subject to voluntary control and is the principle regulatory system of 

internal bodily functions concerned with organ function and homeostasis. It is 

organised on the basis of the reflex arc, involving an autonomic and/or somatic 

afferent limb and then autonomic and somatic efferent limbs. Impulses from afferent 

visceral or pain receptors are relayed to the central nervous system, integrated within 

it at various levels including cortical, and transmitted via efferent pathways to visceral 

effectors. The autonomic nervous system is divided into two divisions on the basis of 

anatomical and functional differences, through which homeostatic function is 

achieved: the sympathetic which responds to and prepares the body for fear, fight or 

flight, and the parasympathetic which is concerned with conservation and restoration 

of energy (Fig.2.4 ). Sympathetic and parasympathetic axes provide neural input into 

every major body system (Brading, 1999) (Table 2.1 ). Impending or actual pain 

activates the sympathetic nervous system. 
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Target  Sympathetic  (adrenergic) Parasympathetic  (muscarinic) 
vascular smooth muscle α: contracts; β2: relaxes M3: relaxes  

renal artery α1: constricts --- 

larger coronary arteries α1 and α2: constricts --- 

smaller coronary arteries β2:dilates  --- 

arteries to viscera α: constricts --- 

arteries to skin α: constricts --- 

arteries to brain α1: constricts --- 

arteries to erectile tissue α1: constricts M3: dilates 

arteries to salivary glands α: constricts M3: dilates 

hepatic artery β2: dilates --- 

arteries to skeletal muscle β2: dilates --- 

Veins α1 and α2: constricts 
β2: dilates 

--- 

Fig.2.4. Human autonomic nervous system showing sympathetic nerve fibres in red and 

parasympathetic in blue. 

Image available from: http://www.daviddarling.info/encyclopedia/A/autonomic_nervous_system.html. [Accessed 17.1.12.] 

Table 2.1. Differential actions of the sympathetic and parasympathetic autonomic nervous 

system on vascular structures. 

Fig.2.4. 
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2.4.2. Autonomic nervous system integration 
The autonomic nervous system is continually active and responds to a wide range of 

internal and external environmental stimuli. It is therefore constantly responding to 

sensory stimuli, both physical and emotional, and is involved in the integration of a 

coordinated response to those stimuli through a variety of effector organs. For 

example, response to a painful stimulus may include somatic reflex motor actions 

(eg. withdrawal), and a variety of autonomic responses coordinated via the 

sympathetic nervous system such as emotional responses (eg. surprise, fear, anger), 

hormonal (eg. activation of adrenal glands and release of endogenous cortisol and 

catecholamines) and unconscious autonomic responses (eg. elevation of heart rate 

and blood pressure). 

The integration of peripheral autonomic activity with central autonomic 

responses is a complicated and poorly understood. There appear to be many 

function-specific peripheral autonomic pathways with characteristic signal 

transmission which the central nervous system is able to distinguish and to 

differentially activate. This allows for precise autonomic system function throughout 

the behavioural repertoire (Jänig, 2006).  

Pain unpleasantness is often but not always closely linked to pain intensity, and 

reflects the contribution of several sources including nociception, arousal, autonomic 

and somatomotor responses in relation to the meaning and context of the pain (Wells 

and Ridner, 2008). Nociceptive and autonomic systems interact at peripheral, spinal, 

brainstem and cortical levels. In a review by Bennarroch (2001), it relates how pain 

and viscerosensory pathways provide converging information in the dorsal horn of 

the spinal cord, brainstem and cerebral cortex, which in turn project to many other 

cortical areas involved in reflex, homeostatic and behavioural control of autonomic 

outflow, endocrine function and nociception. In order to understand the complex 

pathophysiology of chronic pain, these interactions need to be taken into account 

(Benarroch, 2001). A more detailed account follows. 

Afferent interoceptive (ie. arising from the body) information is proposed to have 

a central role in the expression of emotional feeling states (Price, 2000). A-δ and C 

primary afferent fibres innervate all body tissues and convey physiological 

information including the mechanical, thermal, chemical, metabolic and hormonal 

status of skin, muscle, joints, teeth and viscera. They terminate in lamina one of the 

spinal and trigeminal dorsal horns. Lamina 1 neurons project to autonomic columns 

forming spino-spinal loops, and to pre-autonomic sites in the brainstem forming 

spino-bulbo-spinal loops for somato-autonomic reflexes. A major target of lamina 1 

projections is the parabrachial nucleus (PB) in the upper brain stem which is a main 
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integration site for autonomic activity. In turn the PB projects densely to the 

periaqueductal grey (PAG) and hypothalamus guiding goal-directed autonomic, 

neuroendocrine and behavioural activity including nociception. Integrated 

homeostatic afferent information from PB reaches the anterior cingulate (ACC) and 

insular cortices by way of the medial thalamic nuclei and the basal ventral medial 

nucleus (VMb) of the thalamus. The ACC and the insula (limbic sensory cortex) 

provide descending control of brainstem homeostatic integration sites (Craig, 2003). 

These include the rostral ventrolateral medulla (RVLM), a primary regulator of 

sympathetic nervous system activity and the ventromedial medulla (VMM), both 

areas involved in the descending control of nociception (Heinricher et al., 2009). See 

Fig.2.5 . Further activity in the limbic system is involved in emotional, behavioural and 

neuroendocrine responses. 

The ascending homeostatic sensory afferent pathway terminates in the 

posterior insula, and is re-represented and integrated in the mid-insula, and then the 

anterior insula (Craig, 2003). Activation in the anterior insula correlates with 

subjective body and emotional feelings, which would allow it to provide a model for 

human awareness and subjectivity (Craig, 2011). Recent work demonstrates 

somatotopic organisation of the human insula to painful stimuli (Brooks et al., 2005). 

Convergent functional imaging findings show concurrent activation of the anterior 

insula and anterior cingulate cortices during human emotion (Craig, 2010). 
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Fig.2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.3. Conclusion 
Interaction between the insula and anterior cingulate cortices provide an integrational 

network for homeostatic autonomic and somaesthetic afferent information providing a 

platform for efferent emotional, affective and autonomic responses. The insula has a 

somatotopic organisation which hypothetically could be subject to neuroplastic 

reorganisational changes in chronically painful conditions akin to that demonstrated 

in S1.  

Thus in the investigation of responses to different sensory stimuli in subjects 

with chronic pain, there is clear interaction between cognitive, emotional and 

autonomic responses. Therefore the investigation of involuntary autonomic 

sympathetic responses during such stimuli can provide insights into these complex 

mechanisms. 

 

 

 

Fig.2.5. A simplified diagram of the homeostatic afferent system (based upon Craig 2003). 
  
PB = parabrachial nucleus, ACC = anterior cingulate cortex, PAG = periaqueductal grey, RVLM = 
rostral ventrolateral medulla, VMM = ventromedial medulla, ANS = autonomic nervous system  
Grey lines = hypothalamic modulation 

Hypothalamus 

Fine homeostatic 
afferents 

Fine homeostatic 
efferents 

ANS 

Lamina 1 

Autonomic cell 
columns 

RVLM  
VMM 

PB 

PAG 

ACC Insula 

Thalamus 



 27 

2.5. Rheumatic disease: Osteoarthritis 
 

2.5.1. Overview of symptoms 
OA typically presents as a painful, stiff joint. There may be swelling, deformity, 

weakness, instability and complaints of clicking and grinding. Signs include altered 

gait, tenderness, crepitus and limitation of range of movement.  

2.5.2. Diagnostic criteria 
There are diagnostic criteria for OA (see Chapter 3  and Appendix 4 ), which are 

generally reserved for research use.  

2.5.3. Mechanisms 
OA is a degenerative disorder resulting from the breakdown of articular hyaline 

cartilage. The modern view of OA is of a disease entity involving the whole joint 

organ including subchondral bone and synovium. Similarly, it is no longer thought of 

as simply ‘wear and tear’, and involves many pathogenic mechanisms including 

inflammatory (Goldring and Otero, 2011), oxidative stress (Yudoh et al., 2005), 

mechanical (Henriksen et al., 2011;Horak et al., 2011), impaired proprioception 

(Knoop et al., 2011) and genetic factors (Meulenbelt et al., 2011). 

2.5.4. Treatment 
Treatment is aimed at reducing pain and minimising disability. Pharmacologic 

therapies include analgesics such as non-steroidal anti-inflammatory drugs 

(NSAID’s), non-opiates and opiates. Intra-articular agents include corticosteroids and 

hyaluronoc acid derivatives. Non-pharmacologic approaches include patient 

education on exercise and weight reduction. Physiotherapy to improve proprioceptive 

acuity may be useful (Fitzgerald et al., 2011;Tunay et al., 2010). Joint replacement 

surgery may eventually become necessary. 

2.5.5. Pain in OA 
Pain is the most common symptom in OA. However it is often diffuse and poorly 

localised. It is well recognised that severity of X-ray appearances may not correlate 

with clinical symptoms and signs (Hochberg et al., 2003).  

There are many potential sources for the pain in OA. The articular cartilage is 

not one of them, as it lacks nerve endings. However cartilage debris may induce 

inflammatory responses. Damaged cartilage may cause mechanical stress, and 

exposed subchondral bone pain. The synovium contains nerve fibres that may be 

stretched by fluid, impinged by osteophytes or activated by inflammatory mediators. 

Muscle spasm may also cause pain. There is also increasing evidence for central 
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mechanisms in OA pain (for more details, see Chapter  5). OA patients have been 

found to have hypoaesthesia with mechnical allodynia over the knees (Hendiani et 

al., 2003) and higher pressure pain thresholds compared to controls (Gerecz-Simon 

et al., 1989). 

 

2.6. Rheumatic disease: Rheumatoid arthritis 

2.6.1. Overview of symptoms 
The peak onset of RA is in the 4th and 5th decades of life. It typically presents as a 

diffuse painful symmetric inflammatory polyarthritis often affecting the small joints. 

Morning stiffness can be marked and of variable duration. There can be associated 

fatigue and malaise. Symptoms may be impacting upon ability to perform activities of 

daily living. 

In established disease, there is progressive erosion and damage to joints 

resulting in typical rheumatoid deformities. These may include swan-neck and 

Boutonniere deformities in the fingers with metacarpophalangeal subluxation and 

ulnar deviation of the fingers, ‘wind-swept’ deformity, rheumatoid foot changes with 

halux valgus, over-riding toes, metatarsal subluxation and callous formation, and 

hindfoot deformity. Depending upon disease activity, there may be active, warm, 

tender synovitis and joint effusions. As joints become damaged, the range of motion 

decreases. RA is a systemic disease and may have extra-articular manifestations.  

2.6.2. Diagnostic criteria 
There are diagnostic criteria for RA (see Chapter 3 and Appendix 4 ), which are 

generally reserved for research use.  

2.6.3. Mechanisms 
RA is an autoimmune generated systemic inflammatory disease. The cause of RA is 

still unknown. Cellular immune mechanisms remain unclear (Firestein, 2005), and 

both T cells and B cells are involved although the relative contribution may vary 

between patients (Panayi, 2005;Scrivo et al., 2007). The intimal lining of the 

synovium develops an expanded cell population with massive infiltration by T cells, B 

cells and macrophages. Inflammatory mediators such as pro-inflammatory cytokines, 

prostaglandins and leukotrienes are key to the perpetuation of rheumatoid synovitis. 
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2.6.4. Pain in RA 
One of the main sources of pain in RA is inflammation. Therefore the thrust of 

modern treatment is aimed at inhibiting the inflammatory response thereby reducing 

pain and progressive joint damage. Secondary OA may contribute to pain.  

There is also evidence for central mechanisms of pain in RA (Lee et al., 

2011). They have been found to have lower pressure pain thresholds than controls 

(Gerecz-Simon et al., 1989), hyperalgesia (Gaston-Johansson and Gustafsson, 

1990), hypoaesthesia and allodynia over knee joints (Hendiani et al., 2003) and 

allodynia over inflamed joints with pressure allodynia in non-painful areas in longer 

duration RA (Leffler et al., 2002). A recent fMRI study has shown the presence of 

increased grey matter content in the basal ganglia of RA patients. The basal ganglia 

have a role in motor control and pain processing, and the study links the findings to 

prolonged changes in motor control and pain processing in RA patients (Wartolowska 

et al., 2011). Furthermore many RA patients may have concurrent widespread pain 

and/or fibromyalgia syndrome (FMS) (Ranzolin et al., 2009), which has a well 

established central pain component (Smith et al., 2011). 

2.6.5. Treatment 
The main treatment for RA is early intervention with immune suppressing medication 

to inhibit inflammatory activity and prevent disease progression. Disease modifying 

anti-rheumatic drugs (DMARD) therapy reduces the frequency and severity of flares, 

but it does not stop them all, and they are not a cure. Therefore RA patients need 

ongoing access to analgesic medications. NSAID’s, non-opiates and opiates are 

often used. Non-pharmacologic treatments such as physiotherapy and occupational 

therapy are essential for the integrated care of RA. Many RA patients may need 

surgical intervention. Procedures vary from arthroscopic synovectomies to open 

procedures, tendon repair, arthrodesis and joint replacement surgery. 

2.6.6. Conclusion  
Pain in OA is largely thought to be mechanical, and in RA inflammatory. However 

there is emerging evidence for the role of central pain mechanisms in both conditions 

which warrants further investigation. 
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2.7. Complex Regional Pain Syndrome (CRPS) 

2.7.1. Nomenclature 
First clearly described by Silas Weir Mitchell et al in injured soldiers of the American 

Civil War (Mitchell et al., 1864), CRPS has been known by a variety of different 

names. Mitchell called it causalgia. Sudeck described a similar syndrome with 

accompanying osteoporosis, with this later becoming the eponymous syndrome 

(Sudeck, 1900). In 1946, Evans described it as ‘reflex sympathetic dystrophy’ 

(Evans, 1946). The International Association for the Study of Pain (IASP) held a 

series of consensus workshops culminating in the development of diagnostic criteria 

published in 1995, and the new umbrella term ‘Complex Regional Pain Syndrome’ 

(Stanton-Hicks M et al., 1995).  

CRPS may develop in the presence (type 2) or absence (type 1) of a clear 

nerve injury (Stanton-Hicks M et al., 1995). Clinical presentation is similar, except 

where in the presence of a defined nerve lesion there may be a typical distribution of 

sensory and motor impairment. Symptoms and signs in CRPS type 1and 2 are 

usually non-dermatomal and do not follow patterns consistent with a specific 

peripheral nerve injury.  

 

2.7.2. Epidemiology 

2.7.2.1. Incidence and prevalence 
There are only two major epidemiological studies; Sandroni et al (Sandroni et al., 

2003) and de Mos et al (de Mos et al., 2007). The former was a population based 

study in Olmsted County, Minnesota with a population in 1990 of 106,470. The latter 

was a retrospective cohort study was conducted during 1996-2005 using a general 

practice research database with electronic patient record data from 600,000 patients 

throughout the Netherlands. The incidence of CRPS type 1 varies from 5.46 per 

100,000 person-years at risk with a prevalence of 20.57 per 100,000 (Sandroni et al., 

2003), to 26.2 per 100,000 person-years (de Mos et al., 2007). CRPS may occur in 

approximately 4% of peripheral nerve injuries (Veldman et al., 1993). 

2.7.2.2. Age and gender 
There is a middle aged peak in onset of CRPS with a median age of onset 46 years 

(Sandroni et al., 2003). Other studies suggest a mean of 42 (Allen et al., 

1999;Veldman et al., 1993) to 53 years (de Mos et al., 2007). Older people can be 

affected. The highest incidence in the de Mos study was among the 61- to 70-year-

old group. The age range affected was up to 85 years old in the Veldman (Veldman 
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et al., 1993) paper. CRPS is rarer in children. In the Veldman study, only 12 patients 

were younger than 14 years. Children with diabetes have a higher incidence of 

CRPS as compared to non-diabetic children although the reasons are unclear 

(Schiller, 1989). 

2.7.2.3. Precipitating events 
CRPS can may occur after trauma (Allen et al., 1999;de Mos et al., 2007) such as 

fracture (Atkins et al., 1990;Lee and Nandi, 2011;Veldman et al., 1993) or operative 

interventions (Atkins et al., 1990;Lai et al., 2006;Li et al., 2010). Both the Sandroni 

(Sandroni et al., 2003) and Veldman (Veldman et al., 1993) studies confirmed that 

fractures and sprains were the most common precipitating events and that CRPS 

more commonly affects the upper extremities. CRPS may occur after 30-40% of 

fractures (Atkins, 2003). CRPS may happen after spinal cord injury (Akkoc et al., 

2008;Sutbeyaz et al., 2005), stroke (Chae, 2010;Pertoldi and Di Benedetto, 2005), 

myocardial infarction (Ahmed, 2003), amputation (Odderson and Czerniecki, 1990) 

and in association with multiple sclerosis (Schwartzman et al., 2008). It may also be 

associated with immobilisation (Allen et al., 1999;Schwartzman and Kerrigan, 1990) 

or excessively tight casts (Field et al., 1994).  

2.7.2.4. Psychological factors 
The role of psychological factors in CRPS remains controversial. A minority opinion 

holds that CRPS is “a common clinical avenue for somatoform expression” (Ochoa 

and Verdugo, 1995). Although the literature is conflicting, overall studies do not 

support the concept of a ‘CRPS personality’ or a predisposing psychological profile 

(Ciccone et al., 1997;de Mos et al., 2008;Lesky, 2010;Puchalski and Zyluk, 

2005;Reedijk et al., 2008;van der Laan et al., 1999).  

Psychological issues may develop in patients with chronic severe pain, 

including CRPS patients. As a consequence of chronic pain, CRPS patients have 

been shown to have higher levels of depression (Rommel et al., 2005), anxiety 

(Rommel et al., 2001a) and personality disorder (Monti et al., 1998). Psychological 

risk factors for the development of CRPS may include anxiety (Dilek et al., 2011) and 

antecedent psychological stress (Bruehl and Carlson, 1992;Field and Gardner, 

1997;Geertzen et al., 1998;Harden et al., 2003). These factors may exacerbate pain 

through a variety of different mechanisms (Bruehl and Chung, 2006). These include 

influence on psychoneuroendocrine stress responses (Kaufmann et al., 2007), 

systemic catecholamines (Harden et al., 2004) and  pain seeking behaviour (Rodham 

et al., 2009).  
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2.7.2.5. Impact on quality of life 
CRPS has a severe impact upon quality of life. In a self-reported questionnaire 

survey of 31 patients, substantial interference was reported in 9 of the 10 modified 

Brief Pain Inventory activity items by the majority of patients. Significant sleep 

disturbance was found in 80%, and 97% described weakness at some time during 

the course of their CRPS (Galer et al., 2000). 

 

2.7.3. Overview of symptoms 
(Allen et al., 1999;Atkins, 2003;de Mos et al., 2009a;de Rooij et al., 2010;Moses MA 

et al., 1990;Schwartzman et al., 2009;Veldman et al., 1993) (Goebel, 2011) 

 

CRPS is characterised by severe, constant pain often seemingly out of proportion to 

any precipitating injury and can occur in the absence of injury. There is often marked 

hyperalgesia and allodynia. Autonomic vasomotor and sudomotor instability is 

common causing variable, often florid colour changes together with temperature 

changes, sweating abnormalities and oedema in the affected area. The affected area 

may be warmer or colder, with increased sweating or no vasomotor activity and dry 

skin. Trophic changes of hair, skin and nails may develop. Nails may grow faster or 

more slowly and become brittle and discoloured. Hair can become thicker and dark, 

or fall out. Motor impairment may develop including tremor, myoclonus, dystonia, 

bradykinesia and decreased range of motion/paresis. Other features may include 

feelings of foreignness towards the affected limb (Forderreuther et al., 2004), 

neglect-like features (Galer and Jensen, 1999a), amputation desire and body 

dysmorphia (Lewis et al., 2007).  

 

2.7.3.1. Assessment of symptoms 

The ability of physicians to accurately assess the presence of clinical symptoms in 

patients with CRPS has been assessed by comparing judgments against 

assessments using quantitative measurements with regard to presence and severity 

of pain, temperature and volume asymmetry, and reduction in active range of 

motion(Perez et al., 2005). Measurements included Visual Analog Scales and McGill 

(number of words chosen total) for pain, infrared thermography for temperature 

differences, water displacement volumeters for volume differences, and hand-held 

goniometers for active range of motion. The study concluded that except for 

temperature and volume asymmetries, establishing the presence of CRPS Type 1 
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symptoms and monitoring of disease progression could be performed by clinical 

judgment. 

However, the pattern of symptoms and clinical signs are variable between 

and within patients which can make diagnosis difficult. This has led to the 

development of different diagnostic criteria. These criteria continue to develop and to 

be revised. The commonly used criteria are now presented. 

 

2.7.4. Diagnostic criteria 

2.7.4.1. Veldman’s criteria (Veldman et al. 1993)  
The 1993 Veldman criteria (Veldman et al., 1993) are based upon the presence of 4 

out of 5 symptoms and signs at the first examination. 

 

 

1. 4or 5 of: Unexplained diffuse pain 

  Difference in skin colour relative to the other limb 

  Diffuse oedema 

  Difference in skin temperature relative to the other limb 

Limited active range of motion 

2. Occurrence or increase of above signs and symptoms after use 

3. Above signs and symptoms present in an area larger than the area of primary     

injury or operation and including the area distal to the primary injury 

 

 

These criteria do not allow for the fluctuation of symptoms and signs in CRPS, and 

could therefore miss many cases. The IASP 1994 criteria do allow for this (Stanton-

Hicks M et al., 1995). 

 

 
 
 
 
 
 

 

 



 34 

2.7.4.2. IASP 1994 criteria (Merskey and Bogduk, 19 94) 

CRPS type 1 1. The presence of an initiating noxious event, or a cause of 
immobilization.  

2. Continuing pain, allodynia or hyperalgesia, not limited to 
the territory of a single peripheral nerve, with which the pain 
is disproportionate to the inciting event.   

3. Evidence at some time for oedema, changes in skin blood 
flow, or abnormal sudomotor activity in the region of the pain.  

4. This diagnosis is excluded by the existence of conditions 
that would otherwise account for the degree of pain and 
dysfunction.  

CRPS type 2 1. Develops after a nerve injury.  

2. Continuing pain, allodynia or hyperalgesia, not necessarily 
limited to the territory of the injured nerve.  

3. Evidence at some time for oedema, changes in skin blood 
flow, or abnormal sudomotor activity in the region of the pain.  

4. This diagnosis is excluded by the existence of conditions 
that would otherwise account for the degree of pain and 
dysfunction.  

 

Bruehl et al (Bruehl et al., 1999) worked upon the validation of these criteria, and 

calculated a high sensitivity (0.98) but low specificity (0.36). Therefore to minimise 

false positive rates and the potential of over-diagnosis and inappropriate treatment, 

the criteria were revised.  
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2.7.4.3. IASP revised ‘Bruehl’ (Budapest) criteria  (Bruehl et al., 1999;Harden et 

al., 2007;Harden and Bruehl, 2005) 

 

General definition:  CRPS describes an array of painful conditions characterised by a 
continuing (spontaneous and/or evoked) regional pain seemingly disproportionate in time or 
degree to the usual course of any known trauma or other lesion. The pain is regional (not 
specific nerve territory or dermatome) and usually has a distal predominance of abnormal 
sensory, motor, sudomotor, vasomotor and/or trophic findings. The syndrome shows variable 
progression over time. 
 
Clinical Criteria: 

1. Continuing pain which is disproportionate to any inciting event  
2. Must report at least one symptom in three of the four following categories  

Sensory:  reports of hyperesthesia and/or allodynia 

Vasomotor:  reports of temperature asymmetry and/or skin colour changes 
and/or skin colour asymmetry  

Sudomotor/oedema:  reports of oedema and/or sweating changes and/or 
sweating asymmetry  

Motor/trophic:  reports of decreased range of motion and/or motor dysfunction 
(weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)  
 

3. Must display at least one sign (only counted if observed at the time of diagnosis) at the time 
of evaluation in two or more of the following categories: 

Sensory:  evidence of hyperalgesia (to pinprick) and/or allodynia (to light touch 
and/or deep somatic pressure and/or joint movement)  

Vasomotor:  evidence of temperature asymmetry and/or skin colour changes 
and/or skin colour asymmetry  

Sudomotor/oedema:  evidence of oedema and/or sweating changes and/or 
sweating asymmetry  

Motor/trophic:  evidence of decreased range of motion and/or motor dysfunction 
(weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)  

4. There is no other diagnosis that better explains the signs and symptoms 

Research Criteria: 

1. Continuing pain which is disproportionate to any inciting event  
  

2. Must report at least one symptom in each of the four categories  

3. Must display at least one sign (only counted if observed at the time of diagnosis) at the time 
of evaluation in two or more of the categories: 

4. There is no other diagnosis that better explains the signs and symptoms 
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The ‘Budapest’ criteria have been recently validated (Harden et al., 2010), and the 

clinical criteria shown to retain a high sensitivity (0.99) but an improved specificity 

(0.68). The 'Budapest' research criteria were used throughout this study. 

2.7.4.4. Conclusion 
There is considerable variability of symptoms and signs within and between patients 

with CRPS. This is reflected in the ongoing debate as to what should and should not 

be included in diagnostic criteria. The variability is likely to reflect different 

phenotypes, which in turn depend upon different aetiopathogenic mechanisms.  

 

2.7.5. CRPS Diagnosis 
There is no gold standard diagnostic test for CRPS. It remains a diagnosis of 

exclusion which may be supplemented by the use of diagnostic criteria. Therefore 

while different investigations may show changes consistent with CRPS (Schurmann 

et al., 2007), they are used to primarily exclude the presence of other conditions that 

might account for the symptoms and signs.  

2.7.5.1. Investigations 
Plain X-ray (Fig.2.5 ) may show marked osteopaenic changes in some patients (Rho 

et al., 2002).  

 

Fig.2.6. 

 

 

Fig.2.5.  Example of osteopaenia in the affected limb of a patient with left arm CRPS.  
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Three phase isotope bone scanning can be helpful in the exclusion of other 

diagnoses (Nitzsche, 2011) and may show a typical pattern of uptake throughout the 

three phases (blood pool, blood phase, scan phase). MRI scanning may also detect 

changes in CRPS affected limbs and is useful to exclude or to diagnose other 

conditions (Poll et al., 2010). Other tests used include electromyography, sweat 

testing and diagnostic sympathetic blocks (Rho et al., 2002). 

Thermography may show a significant temperature difference in the affected 

area (Rho et al., 2002)(Fig.2.6 ). No widely accepted temperature threshold has been 

defined for the normal range of systematic temperature differences between affected 

and unaffected limbs (Schurmann et al., 2007). While there may be moderate 

bilateral temperature differences under thermoneutral conditions, differences can 

increase dramatically under heat or cold stress in CRPS I patients (Niehof et al., 

2006;Wasner et al., 2001) demonstrating that the vascular abnormalities leading to 

bilateral temperature differences are dynamic. Although reliability and repeatability 

can be low, thermography can distinguish between healthy controls and CRPS 

patients (Niehof et al., 2007).  

 

Fig.2.6.  

 

Fig.2.7.  Examples of thermographic images of CRPS affected right hand and right 

lower limb. Black and blue represent the lowest temperatures ranging through green, 

yellow, orange and red to the warmest in white. 

2.7.5.2. Conclusion 
There is no diagnostic test for CRPS due to the variability of the condition, and it 

remains a diagnosis of exclusion. This fact again suggests that there are a wide 

variety of pathogenic mechanisms operating in different patients and at different 

stages of the condition.  
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2.7.6. Mechanisms 
Several pathophysiological concepts have been proposed to explain the complex 

symptoms of CRPS. Three major areas include facilitated neurogenic inflammation, 

autonomic dysfunction and neuroplastic changes within the central nervous system 

(CNS) (Maihofner et al., 2010b). The review will now focus on these areas, and other 

significant postulated mechanisms. 

2.7.6.1. Facilitated neurogenic inflammation 
Calor, dolor, rubor, tumor and functio laesa: Heat, pain, redness, swelling and loss of 

function. These four classical signs of inflammation were originally recorded by 

Celsus in the 1st century A.D, with Galen adding the term ‘functio laesa’. Sudeck first 

proposed a role for inflammation as a major mechanism in CRPS (Sudeck, 

1902;Sudeck, 1931). Inflammation is known to be a complex process of interacting 

mechanisms proceeding via a cascade of inflammatory mediators. Inflammation can 

play a pivotal role in health and disease, and there is extensive ongoing research 

aiming to improve understanding of the process. 

 

The skin is innervated by afferent somatic nerves containing fine myelinated 

A-δ, unmyelinated C-fibres and postganglionic autonomic fibres. During a noxious 

stimulus such as an injury, primary A-δ and C-fibre nociceptors transmit impulses to 

the dorsal horn of the spinal cord. Both fibre types respond to a range of stimuli 

including heat, cold, mechanical distension and nociception. Upon stimulation, they 

release an array of neuropeptides into the microenvironment triggering an 

inflammatory cascade. These include calcitonin gene-related peptide (CGRP), 

neuropeptide Y NY), atrial natriuretic peptide, vasoactive intestinal peptide (VIP) and 

tachykinins substance P (SP) and neurokinin A (NK-A) (Steinhoff et al., 2003). In 

addition to classic neurotransmitters, autonomic fibres can release CGRP, NY and 

VIP (Roosterman et al., 2006). These inflammatory mediators act on mast cells and 

other target cells via paracrine, juxtacrine and endocrine pathways continuing the 

inflammatory process. Mast cells have a role in mediation of antidromic nerve 

responses through degranulation and the products thereby released. CGRP causes 

arteriolar dilatation and hyperaemia, and SP acts upon post capillary venules to 

induce increased vascular permeability, extravasation and oedema, as well as acting 

upon mast cells causing degranulation. Additionally, sensory nerve endings are 

sensitised by VIP. Nerves in inflamed areas upregulate expression of NGF (Donnerer 

et al., 1993) which can cause mast cell degranulation and sensitise nerve endings by 

increasing expression of CGRP and SP (Donnerer et al., 1992).  
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Afferent nerve fibres express receptors for neuropeptides as well as 

prostaglandins, histamine, neurotrophins and cytokines allowing interaction in the 

process. Most cells expressing neuropeptides also release neuropeptide denaturing 

enzymes such as such as neutral endopeptidase (NEP) or angiotensin converting 

enzyme (ACE) so that the process can be stopped.  

 

What evidence is there for a role of facilitated neurogenic inflammation in CRPS?  

Electrically induced neurogenic vasodilatation via intradermal microdialysis 

capillaries allowing simultaneous measurement of protein extravasation as a means 

to assess neuropeptide release, has been studied in CRPS patients and healthy 

controls. Transcutaneous electrical stimulation provoked protein extravasation only in 

the patients with a time course similar to that observed following application of 

exogenous substance P (Weber et al., 2001). Similar work has demonstrated 

enhanced release of SP in both the affected and unaffected limbs of CRPS patients 

(Leis et al., 2003). There is evidence for enhanced CGRP release (Leis et al., 2004)l, 

and elevated levels in the serum of CRPS patients with reduction after therapy 

(Birklein et al., 2001). Blister fluid studies have shown elevation of inflammatory 

mediators such as endothelin-1 (Groeneweg et al., 2006), IL-6 and tumour necrosis 

factor (TNF)-α (Groeneweg et al., 2006;Huygen et al., 2002) and reduction of anti-

inflammatory cytokines IL-4 and IL-10 (Uceyler et al., 2007). However the levels of 

IL-6 and TNF-α are not correlated with CRPS characteristics suggesting other factors 

are involved (Wesseldijk et al., 2008). Synovial biopsies have demonstrated 

hypervascularity (Renier et al., 1983) and radiolabelled immunoglobulins shown 

enhanced uptake demonstrating increased vascular permeability, especially in early 

(< 5 months) disease (Oyen et al., 1993). 

 Elevated blood levels of inflammatory monocytes (CD14(+)  

CD16(+) ) have been found in patients with complex regional pain syndrome. The 

percentage of proinflammatory CD14(+) CD16(+) monocyte/macrophage subgroup 

was elevated compared to controls, and individuals with a high percentage of 

CD14(+) and CD16(+) demonstrated lower plasma levels of the anti-inflammatory 

cytokine IL-10 (Ritz et al., 2011). Further evidence is provided by reports of the 

successful use of anti-TNF-α biologic medications (Huygen et al., 2004). These are 

monoclonal derived pharmacologic agents that work by blocking the pro-

inflammatory cytokine TNF- α and thereby reducing systemic inflammation.  
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2.7.6.2. Conclusion 
Facilitated neurogenic inflammation may be a mechanism involved in the 

pathogenesis of CRPS, especially in early disease. However levels of inflammatory 

mediators do not correlate with the disease characteristics and other mechanisms 

are involved. 

 

2.7.6.3. Sympathetic autonomic dysfunction 
 

The vasomotor and sudomotor changes observed in CRPS have been associated 

with presumed sympathetic autonomic dysfunction since the pioneering work of 

Leriche at the beginning of the 20th century (Leriche, 1916).  

2.7.6.3A. Sympathetically maintained pain (SMP) 
Previously the concept of sympathetically maintained pain (SMP) was synonymous 

with CRPS, but has undergone considerable debate in recent years (de Mos et al., 

2009b). Patients with autonomic signs and symptoms can be divided into two groups 

by the positive or negative effect of selective blockade of the sympathetic nervous 

system or blockade of α-adrenoceptors (Arner, 1991;Maier and Gleim, 1998;Raja et 

al., 1991) into those with SMP and those with sympathetically independent pain 

(SIP). However the evidence for clinical effectiveness of sympathetic blockade and 

surgical sympathectomy is poor (Straube et al., 2010). Furthermore, neuralgia can 

occur after sympathectomy (Kramis et al., 1996;Mailis and Furlan, 2003;Straube et 

al., 2010).  SMP is now defined as a symptom in a subset of patients with 

neuropathic disorders and not a clinical entity (Wilsey et al., 2001), and is not 

essential for the diagnosis of CRPS (Jänig and Baron, 2003). When considering the 

SMP component, allowance should be made that it is likely to vary over the time 

course of the CRPS (Michaelis et al., 1996;Schattschneider et al., 2006). 

2.7.6.3B. Pain and sympathetic nerve activity 
Can pain enhance sympathetic activity?  

Electrophysiological studies in the cat have demonstrated nociceptor driven 

segmental sympathetic reflexes (Janig, 1985). Conversely, painful stimuli in one leg 

of human subjects did not show any difference in recording of sympathetic nerve 

activity from the skin compared to the other non-painful limb. Similarly, bilateral 

recordings from patients with CRPS did not show a difference between the affected 

and unaffected limbs (Elam, 2001). In another CRPS patient with marked skin 

vasoconstriction, intraneural recording from skin fascicles showed normal 
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sympathetic nerve activity (Casale and Elam, 1992). The techniques used in these 

studies do not provide information about the numbers of active fibres in the recorded 

nerve fascicle at rest, so do not allow for a proportional activity difference (Elam, 

2001). Further studies show that sympathetic nerve discharge does not affect 

afferent polymodal c-fibre firing (Campero et al., 2010;Elam et al., 1999) and reduced 

rather than increased myelinated cutaneous afferent firing (Elam and Macefield, 

2004). Other research shows plasma concentrations of noradrenalin are similar in 

affected and unaffected limbs (Drummond et al., 1991), or even reduced (Harden et 

al., 1994). A Positron Emission Tomography study of sympathetic neurocirculatory 

function in CRPS showed decreased perfusion of the affected limb, symmetrical 

sympathetic innervation and norepinephrine synthesis and variably decreased 

release and turnover of norepinephrine in the affected limb (Goldstein et al., 2000). 

Thus there is little evidence for increased sympathetic nerve activity to pain 

suggesting other mechanisms are operational. 

 

Can a physiological increase in sympathetic activity enhance pain?  

Injection of noradrenalin around the stump neuroma of an amputated limb can cause 

intense pain (Chabal et al., 1992). When injected into a neuralgic symptomatic skin 

area, it may rekindle spontaneous pain and dynamic mechanical hyperalgesia or 

allodynia that had been relieved by sympathetic blockade (Torebjork et al., 1995) and 

induce activation of nociceptive fibres (Jorum et al., 2007). Baron et al (Baron et al., 

2002) used whole body cooling in CRPS patients identified by prior blocks as having 

SMP or SIP, to maximise sympathetic vasoconstrictor activity to the affected limb. 

They found that pain and the area of dynamic mechanical hyperalgesia or allodynia 

increased in those with SMP but not in subjects with SIP. Therefore there may be an 

increased sensitivity to adrenergic substances in some CRPS patients. 

 
2.7.6.3C. Proposed mechanisms of SMP (Gibbs et al., 2008) 
 
1. Direct coupling between the sympathetic neurons and sensory neurons in the 

dorsal root ganglion. 

 

Evidence provided for:  

• Sympathetic nerve sprouting in the dorsal root ganglion (DRG) (McLachlan 

et al., 1993) with electrically enhanced activity (Devor et al., 1994). 

• Aberrantly innervated DRG cell bodies may develop increased spontaneous 

firing activity (Devor et al., 1992). 
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• The proportion of DRG neurons responsive to noradrenaline increases after 

chronic nerve injury (Petersen et al., 1996) and the proportion expressing 

α2A-adrenoceptor immunoreactivity birder increases after complete or partial 

peripheral nerve transaction (Birder and Perl, 1999). 

 

2. Chemically mediated coupling between the sympathetic and sensory neurons in 

the skin. 

 

Evidence provided for:  

• Aberrant migration and sprouting of non-perivascular sympathetic fibres in 

rat skin following chronic nerve injury (Grelik et al., 2005;Yen et al., 2006). 

• Newly sprouted aberrant sympathetic fibres may wrap around sensory fibres 

forming novel associations (Yen et al., 2006). 

 

3. α-adrenoceptor mediated supersensitivity of nociceptive fibres. 

 

Evidence provided for:  

• No increase in sympathetic outflow (Casale and Elam, 1992), venous 

noradrenaline concentrations (Drummond et al., 1991) or reflex 

vasoconstrictor response in the affected limb (Rosen et al., 1988). 

• Sensitisation of nociceptors by inflammatory mediators (Schim and Stang, 

2004). 

• Greater constriction of superficial dorsal hand veins to increasing doses of 

noradrenaline, particularly in the affected limb in CRPS patients compared to 

controls (Arnold et al., 1993). 

• Greater axon reflex sweating to iontophoresis of phenylephrine in CRPS 

patients compared to controls or resolved CRPS (Chemali et al., 2001). 

• A close physical relationship between sympathetic and nociceptive fibres in 

normal skin (Gibbs et al., 2008). 

 

There remains a vocal group that refute the role of the sympathetic nervous system 

in CRPS (Ochoa and Verdugo, 2001;Ochoa, 2007;Ochoa and Verdugo, 1995;Ochoa, 

1999).  
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2.7.6.4. Conclusion 
The evidence for the mechanism of sympathetic autonomic dysfunction contributing 

to or causing pain in CRPS remains contradictory, and may vary over time but it is 

likely to play a role in some patients.  

 

2.7.6.5. Neuroplastic changes within the CNS 

2.7.6.5A. CRPS as a disease of the CNS 
Certain clinical features of CRPS are consistent with it being a disease of the CNS. 

Many patients demonstrate motor impairment including weakness (Birklein et al., 

2000;Veldman et al., 1993), impaired dexterity (Maihöfner et al., 2007), impaired 

finger identification (Förderreuther et al., 2004), tremor (Deuschl et al., 1991;van 

Hilten, 2010) and dystonia (Cooper, 2011;Schwartzman and Kerrigan, 1990;van 

Hilten, 2010).  

Body perception disturbances may be evident. Some CRPS patients report 

feelings of foreignness towards the affected limb (Förderreuther et al., 2004), body 

dysmorphia (Lewis et al., 2007) and neglect-like features (Frettlöh et al., 2006;Galer 

and Jensen, 1999b). Moseley et al have shown that in CRPS there is a deficit in 

tactile processing that is defined by the space in which the affected limb normally 

resides, not by the affected limb itself and suggest that CRPS may involve a type of 

spatial neglect (Moseley et al., 2009). There is also evidence for impaired upper limb 

proprioception in a pointing accuracy task (Lewis et al., 2010). For more details on 

body perception, integration and neglect, see Chapter 7 . 

Agnosia for object orientation (Robinson et al., 2011), hemisensory patterns 

of tactile impairment (Rommel et al., 1999;Rommel et al., 2001b) and decreased 

tactile acuity of the affected limb (Maihofner and DeCol, 2007) have been reported. 

For more details on sensory abnormalities in CRPS, see Chapter  4.  

2.7.6.5B. Evidence from neuroimaging 
One of the first studies to demonstrate evidence of representational change in CRPS 

utilised whole-head magnetoencephalography (MEG) responses to tactile stimulation 

of the fingertips. It showed stronger S1 responses from the affected painful limb, 

shorter distances between the thumb and little finger in the hemisphere contralateral 

to the painful limb and altered reactivity of the 20-Hz motor cortex rhythm to tactile 

stimuli (Juottonen et al., 2002). Maihofner’s group used magnetic source imaging to 

investigate the cortical representation of the hand in the primary somatosensory 

cortex (S1) of patients with CRPS (Maihöfner et al., 2003a). They found significant 

shrinkage of the cortical hand representation for the CRPS affected side, with the 
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centre of the hand shifted toward the cortical representation of the lip. Furthermore 

the cortical reorganization correlated with the amount of CRPS pain and the extent of 

mechanical hyperalgesia. Similar shifts in hand representation have been shown in 

another study using a whole-scalp neuromagnetometer (Vartiainen et al., 2008). 

Other studies have confirmed that expansion of hand representation correlates with 

mean pain intensity (Pleger et al., 2004b), tactile impairment (Pleger et al., 2006) and 

that  plastic cortical changes are reversible with treatment and improvement of the 

CRPS (Maihöfner et al., 2004;Pleger et al., 2005;Pleger et al., 2006).  

Cortical processing of stimuli on the affected limb can also change. This has 

been demonstrated with fMRI studies showing a complex cortical network activated 

during pin-prick hyperalgesia in CRPS comprising areas not only involved in 

nociceptive, but also in cognitive and motor processing (Maihöfner et al., 2005). 

Allodynia has been shown to activate many areas including contralateral S1 and 

motor cortex (M1), parietal association cortices (PA), bilateral S2, insula, frontal 

cortices, and both anterior and posterior parts of the cingulate cortex (aACC and 

pACC); and can also cause deactivations detected in the visual, vestibular, and 

temporal cortices (Maihöfner et al., 2006).  Another MEG study demonstrated that 

brushing the affected side produced stronger magnetic fields and more laterally 

located corresponding equivalent current dipoles, consistent with the presence of 

cortical reorganisation (Maihöfner et al., 2003b). An fMRI study in children has also 

confirmed changes in processing of stimuli in affected and unaffected limbs (Lebel et 

al., 2008). A recent fMRI study suggests an abnormal activation pattern of cerebral 

areas belonging to the descending opioid pain suppression pathway. Ten CRPS 

patients with left sided symptoms underwent electrical stimulation of both index 

fingers during a task to suppress the feeling of pain under constant painful 

stimulation. The periaqueductal grey (PAG) and cingulate cortex were activated 

significantly less during suppression of pain, regardless of whether the symptomatic 

or asymptomatic hand was stimulated (Freund et al., 2011). Another study using 

electrical stimulation of the hands in CRPS patients provides some support to this 

concept. It showed decreased pain adaptation and increased pinprick hyperalgesia in 

both affected and unaffected limbs compared to healthy controls implying a shift from 

inhibition towards facilitation of nociceptive input in CRPS patients (Seifert et al., 

2009). 

Neuroimaging also provides evidence of impaired motor function. An MEG study 

showed abnormal motor cortex reactivity (Kirveskari et al., 2010). An fMRI study 

investigating motor dysfunction during target reaching and grasping and finger 

tapping using kinematic analysis showed significant prolongation of the target phase 
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with a pattern of motor impairment, consistent with disturbed integration of visual and 

proprioceptive inputs in the posterior parietal cortex. Subsequent analysis 

demonstrated that activations of the posterior parietal cortices, supplementary motor 

area (SMA) and primary motor cortex were correlated with the extent of motor 

dysfunction (Maihöfner et al., 2007). When fMRI was performed during imagined 

movements of the affected hand in CRPS patients with dystonia, compared to 

controls there was contralaterally reduced activation in the inferior parietal and 

adjacent primary sensory cortex (Gieteling et al., 2008).  

Other studies suggest parietal lobe involvement. A positron emission 

tomography (PET) study of cerebral glucose metabolism in CRPS demonstrated 

bilateral increases in several brain areas including the parietal cortex (Shiraishi, 

Kobayashi, et al. 2006 212 /id). Another PET study of a CRPS patient before and 

after successful treatment showed increased cerebral blood flow in the right parietal 

and left frontal lobes, which decreased after treatment (Wu, Fan, et al. 2006 213 /id). 

Vartiainen showed that MEG responses during tactile processing of hyperaesthetic 

CRPS subjects demonstrated defective posterior parietal cortex (PPC) activation, 

and suggested that this might be associated with neglect-like symptoms (Vartiainen 

et al., 2008). For further discussion of the role of the parietal cortex, see Chapter 7 .  

2.7.6.6. Conclusion 
There is increasing evidence for a variety of cortical mechanisms operating in CRPS 

which challenge the view that CRPS is entirely a somatoform illness seen in 

malingerers (Ochoa and Verdugo, 1995). Different contributions of varying cortical 

mechanisms may account for some of the clinical patterns that present in patients 

with CRPS. 

 

2.7.6.7. Hypoxia 
The hypoxia hypothesis proposes an ischemia-reperfusion injury which produces a 

microvascular injury characterised by slow-flow/no-reflow in the capillaries. This 

phenomenon initiates and maintains deep-tissue ischemia and inflammation, leading 

to the activation of muscle nociceptors, and the ectopic activation of sensory afferent 

axons due to endoneurial ischemia and inflammation (Coderre and Bennett, 2010). A 

rat model has been developed with some animals displaying a CRPS-like syndrome 

(Coderre et al., 2004). Tissue hypoxia (Koban et al., 2003) and diminished nitric 

oxide levels have been demonstrated in blister fluid from patients with cold CRPS 

(Groeneweg et al., 2009a) which would be consistent with this model. However 

topical application of the nitric oxide donor isosorbide dinitrate did not show an 
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improvement of the regional blood distribution suggesting that there may be other 

central or peripheral factors contributing to the disturbed vasodynamics in cold 

chronic CRPS that are not influenced by nitric oxide substitution (Groeneweg et al., 

2009b) 

2.7.6.8. Conclusion 
There is limited evidence for a role of tissue hypoxia in some CRPS patients. 

 

2.7.6.9. Other mechanisms 

2.7.6.9A. Autoimmunity 
Autoimmunity is a newer postulated mechanism in CRPS (Blaes et al., 2007). Anti-

neuronal antibodies have been demonstrated in CRPS patients (Blaes et al., 

2004;Goebel et al., 2005b;Kohr et al., 2009). In mice, the passive transfer of patient 

serum immunoglobulin G (IgG) antibodies has shown a functional effect causing 

abnormal behaviour and motor function (Goebel et al., 2011). Intravenous 

immunoglobulin is used as a treatment in a variety of autoimmune mediated 

diseases. It has demonstrated a therapeutic effect in some patients with CRPS 

(Goebel et al., 2005a;Goebel et al., 2010).  

2.7.6.9B. Muscle pathology 
Muscle specimens from the amputated limbs of patients with severe CRPS have 

demonstrated histopatholgic changes (van der Laan et al., 1998). Hulsman et al 

describe fatty degeneration, atrophy of both type 1 and type 2 fibres without selective 

type 2 fibre atrophy and nuclear clumping unrelated to duration of CRPS prior to 

amputation (Hulsman et al., 2009). In another study, mitochondria obtained from 

muscle tissue of amputated CRPS limbs showed reduced mitochondrial ATP 

production and substrate oxidation rates (Tan et al., 2011). Skeletal muscle MRI 

abnormalities in the acute phase of CRPS include changes consistent with muscular 

oedema, interstitial oedema, and vascular hyperpermeability, which may implicate 

haemodynamic abnormalities.  Chronic phase abnormalities indicated the presence 

of muscle atrophy and fibrosis or fatty infiltration of the affected muscle (Nishida et 

al., 2009).  

2.7.6.9C. Peripheral nerve damage 
Small fibre loss has been demonstrated in histopathological studies of tissue from 

skin biopsies of CRPS patients (Oaklander et al., 2006) and skin (Albrecht et al., 

2006) and nerves (van der Laan et al., 1998) from amputated limbs.  
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2.7.6.9D. Genetic predisposition 
Several potential genetic associations have been described. These include HLA 

DR2(15) (Mailis and Wade, 1994) and HLA DQ1 (Kemler et al., 1999;van de Beek et 

al., 2000). The dystonic pattern of CRPS has been linked with HLA DR13 (van Hilten 

et al., 2000), and HLA B62 and HLA DQ8 (de Rooij et al., 2009b).  

A recent study suggests that some cases of CRPS after distal radial fracture 

may be associated with mutations in genes encoding for alpha 1a-adrenoceptors 

(Herlyn et al., 2010). Familial cases have also been reported (Shirani et al., 2010), 

and may be associated with a younger onset (de Rooij et al., 2009a).  

2.7.6.10. Overall conclusions 
There are likely to be many different mechanisms operating in CRPS and they are 

likely to vary both between and within patients. Different mechanisms may be more 

active at different times over the course of the disease. An understanding of which 

mechanisms are facilitated and when would lead to better understanding and 

treatment of the varying presentations of CRPS. Therefore there needs to be 

development of a clinical phenotyping approach in the evaluation of the new patient 

with CRPS. 

 

2.7.7. Stages  
(See Chapter 6 , section 6.4.10.) 

CRPS is often considered as having three different stages, or as having a ‘warm’ 

acute, ‘intermediate’ (warm or cold) and a ‘cold’ chronic stage (Vaneker et al., 

2005;Veldman et al., 1993;Wasner et al., 2001). The three stages were first 

described by Steinbrocker (Steinbrocker et al., 1948), with further elaboration by 

Bonica (Bonica, 1953).  

The first (acute) stage is characterised by constant burning pain with oedema, 

warmth, erythema and often dry skin. In the second (dystrophic) stage there is onset 

of trophic changes with cold and often moist skin. The third (atrophic) stage is 

marked by development of atrophy of skeletal muscle and bone, with joint 

contractures. The pain is usually an aching character, and the limb cold, pale with 

glossy skin. 

Is there any difference in prognosis for ‘warm’ or ‘cold’ CRPS? Vaneker et al 

reviewed a cohort of 47 CRPS patients with one upper limb affected 8 years after 

their diagnosis. Those diagnosed as having ‘cold’ CRPS had poorer clinical pain 

outcomes and showed persistent signs of central sensitisation correlating with 

disease progression, which was not the case for warm CRPS 1 patients (Vaneker et 
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al., 2005). Perez et al found that there was a difference in the pattern of response of 

CRPS type 1 patients treated with free radical scavengers N-acetyl cysteine or 

dimethyl sulfoxide (DMSO)(Perez et al., 2003).  

It has been questioned whether staging is a valid concept, as many patients 

do not pass through all stages (Jänig and Baron, 2003;Veldman et al., 1993). 

Additionally, some patients present with a primarily ‘cold’ CRPS rather than the more 

common ‘warm’ pattern.  

 

2.7.7.1. Conclusion 
In some CRPS patients, the stages described may reflect varying aetiopathogenic 

mechanisms operating at different time points over the course of the condition. 

 

2.7.8. Treatment 
There is a bewildering array of treatments for CRPS. The evidence base is poor, and 

effectiveness highly variable. This again probably reflects that there are different 

combinations of mechanisms operating in different patients at different stages of their 

disease. Treatment modalities include pharmacologic, interventional and non-

pharmacologic. A summary (comprehensive but not exhaustive) is provided in Table 

2.2. A list of recent reviews of treatment in CRPS is given in Table 2.3 . The only 

common theme is that the evidence is poor and more research is required. 
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Table 2.2. Summary of therapeutic modalities used in the treatment of CRPS. 

 

NSAID's
Corticsteroids
Opiates
Tricyclic antidepressants
Gabapentin / pregabalin
Memantine
Baclofen
Calcitonin
Bisphosphonates
Ketamine IV/topical
Lignocaine IV/topical
Capsaicin topical

Pharmacologic Dimethyl sulfoxide (DMSO) 
N-acetyl cysteine IV
Botulinum toxin
Mannitol IV
Immunoglobulin IV
Anti-TNF
Thalidomide
Tadalafil
Isosorbide dinitrate topical
Magnesium IV
Phentolamine IV
Vitamin C
Hyperbaric oxygen
Sympathectomy
IV regional infusion

Guanethidine
Bretylium

Ketanserine
Intrathecal infusion

Baclofen
Interventional Morphine

Clonidine
Ziconatide

Glycine
Stellate ganglion block
Neuroablation
Spinal column stimulation
Amputation
Physiotherapy
Occupational therapy
Psychological interventions

Non-pharmacologic Graded motor imagery
Mirror visual feedback therapy
Graded pain exposure therapy
Chiropractic
Tai Chi  

NSAID’s = Non-steroidal anti-inflammatory drugs 
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Table 2.3. List of recent published reviews of treatment for CRPS. 

 

 
Rowbotham,M.C. (2006). Pharmacologic 
management of complex regional pain syndrome. 
Clin.J.Pain 22, 425-429.(Rowbotham, 2006)  

Kingery,W.S. (1997). A critical review of controlled 
clinical trials for peripheral neuropathic pain and 
complex regional pain syndromes. Pain 73, 123-
139.(Kingery, 1997) 

Maihofner,C., Seifert,F., and Markovic,K. (2010a). 
Complex regional pain syndromes: new 
pathophysiological concepts and therapies. Eur J 
Neurol 17, 649-660.(Maihofner et al., 2010a) 

Perez,R.S., Zollinger,P.E., Dijkstra,P.U., Thomassen-
Hilgersom,I.L., Zuurmond,W.W., Rosenbrand,K.C., 
and Geertzen,J.H. (2010). Evidence based guidelines 
for complex regional pain syndrome type 1. 
BMC.Neurol. 10, 20.(Perez et al., 2010) 

Atkins,R.M. (2003). Complex regional pain syndrome. 
J.Bone Joint Surg.Br. 85, 1100-1106.(Atkins, 2003) 

Goebel,A. (2011). Complex regional pain syndrome in 
adults. Rheumatology.(Oxford).(Goebel, 2011) 

Tran,d.Q., Duong,S., Bertini,P., and Finlayson,R.J. 
(2010). Treatment of complex regional pain 
syndrome: a review of the evidence. Can.J.Anaesth. 
57, 149-166. (Tran et al., 2010) 

  
Nambi-Joseph,P., Stanton-Hicks,M., and Sferra,J.J. 
(2004). Interventional modalities in the treatment of 
complex regional pain syndrome. Foot Ankle Clin. 9, 
405-417. (Nambi-Joseph et al., 2004) 
 
Nelson,D.V. and Stacey,B.R. (2006). Interventional 
therapies in the management of complex regional 
pain syndrome. Clin.J.Pain 22, 438-442.(Nelson and Stacey, 2006) 

 
Harden,R.N., Swan,M., King,A., Costa,B., and 
Barthel,J. (2006). Treatment of complex regional pain 
syndrome: functional restoration. Clin.J.Pain 22, 420-
424.(Harden et al., 2006) 

 
Daly,A.E. and Bialocerkowski,A.E. (2009). Does 
evidence support physiotherapy management of adult 
Complex Regional Pain Syndrome Type One? A 
systematic review. Eur.J.Pain 13, 339-353.(Daly and 
Bialocerkowski, 2009) 

 

Pharmacologic 

Interventional 

Non-pharmacologic 
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2.7.8.1. Conclusion 
Effective treatment of CRPS remains a challenging problem, and the evidence base 

is poor. Pharmacologic and interventional approaches work best when combined with 

physical rehabilitation and pain management approaches (Goebel, 2011). There is 

limited evidence that rTMS (Picarelli et al., 2010;Pleger et al., 2004a) and ECT (Fukui 

et al., 2002;Wolanin et al., 2007) may have a beneficial effect in CRPS, supporting 

the role of central pain mechanisms in CRPS. The fact that there are so many 

different treatments of varying efficiency is again suggestive that there are many 

different pathologic mechanisms operating in CRPS. Treatment would be more 

effective if they could be identified and targeted appropriately.  

This thesis uses a series of simple, non-invasive techniques to investigate 

whether sympathetic autonomic and cortical mechanisms could be identified in a 

group of CRPS patients. This might begin to form the basis of a clinical phenotyping 

approach.  

 

2.8. Summary 
Multiple pain mechanisms operate across the spectrum of rheumatic disease and 

CRPS, and may account for the different clinical manifestations observed among 

patients. Key mechanism areas include autonomic disturbances and central pain 

mechanisms with particular reference to neuroplasticity and sensorimotor conflict 

causing central integrational impairment, and the function of the parietal lobes.  

This thesis explores the clinical presentation of patients with OA, RA and 

CRPS investigating baseline autonomic function and sensory testing parameters. It 

then applies a series of sensorimotor challenges while measuring autonomic 

responses and monitoring pain responses. Finally, it investigates parietal lobe 

function in a group of patients with CRPS, and correlates this with the findings from 

the previous studies. The final aim is to provide a phenotyping approach to CRPS 

which weighs different contributions from the key mechanistic areas, and may allow a 

more targeted approach to treatment. The same approach may be applicable in 

rheumatic disease such as OA and RA.  
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Chapter 3:  Methods 

 
 
“It's odd that you can get so anesthetized by your own pain 

 or your own problem that you don't quite fully share the hell  

of someone close to you.”  

 

Lady Bird Johnson 

 
Image: Tames,G., 2007. Lady Bird Johnson [online]. New York: Time Magazine. Available from: 

http://www.time.com/time/specials/2007/personoftheyear/article/0,28804,1690753_1691759_1695063,00.html. 

[Accessed 18.1.2012]. 

 
 

3.1. Experimental design 
 

The experimental method employed was a multifactorial comparison between non-

equivalent groups (a ‘between-within’ design), utilising a semi-purposive sampling 

strategy. As CRPS is a rare condition, a non-probability sampling strategy was required.  

 

All CRPS and rheumatology patients were recruited from the RNHRD. This is a small, 

specialist foundation trust. The RNHRD has become nationally renowned for the 

specialist CRPS service, and therefore many patients are late stage, long disease 

duration, complex cases. Therefore my CRPS population will not reflect that of the wider 

population. However, as the aim of the research is to investigate novel pain mechanisms 

secondary to cortical remapping, this is more likely in the long disease duration cohort 

(see Chapter 2). 

Most general rheumatology patients are from the local area and will reflect the wider 

general rheumatology population characteristics. However, it is possible that a similar 

bias may exist for a minority of patients who come from out of the local catchment area 

to be treated at a specialist rheumatology hospital. Therefore the same sampling 

strategy was utilised for the other comparison groups in order to minimise between 

group sampling bias.  
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3.2. Ethical approval 
 

The study was conducted in accordance with the Declaration of Helsinki(1996). Informed 

written consent was obtained from all subjects (See Appendix 2 - 3), and local ethics 

committee (Bath Local Ethics Committee) approval obtained. See Appendix 1. 

 

3.3. Subject recruitment 
 

Healthy controls 

Healthy volunteers, who responded to an advertisement and who met the inclusion 

criteria were recruited from staff and visitors to the RNHRD. Subjects were recruited by 

word of mouth and via recruitment posters that had been scrutinised and approved by 

the local ethics committee. Individuals were invited to participate, verbal and written 

information about the study provided and their written consent was taken. Time was 

allocated for participants to ask questions prior to consent and participation. 

CRPS, osteoarthritis and rheumatoid arthritis patients  

Adult patients who met the IASP 'research' diagnostic criteria for CRPS type 1(Harden et 

al., 2007) were recruited from consecutive attendees of the weekly CRPS outpatient 

clinic and the CRPS in-patient programme of the Royal National Hospital for Rheumatic 

Diseases (RNHRD), Bath. Patients meeting American College of Rheumatology criteria 

for the diagnosis of osteoarthritis (Altman et al., 1986;Altman et al., 1990;Altman et al., 

1991) and rheumatoid arthritis (Arnett et al., 1988) were similarly recruited. In addition to 

the recruitment posters, clinicians were asked to identify possible subjects from among 

their outpatients and in-patients.  

 

3.4. Inclusion and exclusion criteria 
 

Controls were excluded if they had ever had CRPS or any other chronic pain syndrome, 

any rheumatological disease or any significant cardiovascular, cerebrovascular or 

microvascular disease. Participants also had to have no known proprioceptive disorder 

(including medication that may cause proprioceptive impairment), and no significant 

visual or hearing impairment. Furthermore, there had to be no visible disfigurement or 

tattoos on the limbs. These factors may have caused difficulty participating in the studies 

and/or have confounded any results obtained. The same exclusion criteria were applied 

to OA, RA and CRPS patients. See Table 3.1. 
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Table 3.1. Inclusion and exclusion criteria. 

Inclusion criteria    Exclusion criteria 
 

Subjects 

Healthy controls 
 

• > 18yrs  
• male or female 
• Co-operative 
• No rheumatological disorders 
• Matched for age (within 5 yrs) and 

sex with subjects 

• Co-morbidity that may affect 
proprioception 

• Asymmetrical visible disfigurement on 
upper and lower limbs 

• Significant visual or hearing impairment 
• Significant cardiovascular, 

cerebrovascular or microvascular 
disease 

Osteoarthritis 
 

• Participants meet ACR criteria for 
osteoarthritis of the hip, knee or hand 
(Altman et al., 1986;Altman et al., 
1990;Altman et al., 1991) 

• > 18yrs 
• male or female 
• symmetrical OA 
• Co-operative 
 

• Diagnosis of any other rheumatological 
condition 

• Co-morbidity that may affect 
proprioception 

• Asymmetrical visible disfigurement on 
upper and lower limbs 

• Significant visual or hearing impairment 
• Significant cardiovascular, 

cerebrovascular or microvascular 
disease 

Rheumatoid arthritis 
 
 

• Participants meet the ACR criteria for 
rheumatoid arthritis (Arnett et al., 
1988) 

• > 18yrs 
• male or female 
• symmetrical disease 
• RA under stable control with no major 

flares for the last 6 months 
• Co-operative 
 

• Diagnosis of any other rheumatological 
condition 

• Co-morbidity that may affect 
proprioception 

• Any asymmetrical visible disfigurement 
additional to that caused by RA on 
upper and lower limbs 

• Significant visual or hearing impairment 
• Significant cardiovascular, 

cerebrovascular or microvascular 
disease 

Complex regional pain syndrome 
 

• Participants meet the IASP revised 
criteria for CRPS (Harden et al., 
2007) 

• > 18yrs 
• male or female 
• Co-operative 
• Upper limb CRPS 
 

• Diagnosis of any other rheumatological 
condition 

• Co-morbidity that may affect 
proprioception 

• Any asymmetrical visible disfigurement 
additional to that caused by CRPS on 
upper and lower limbs 

• Significant visual or hearing impairment 
• significant cardiovascular, 

cerebrovascular or microvascular 
disease 
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3.5. Sample size:  
 

CRPS is considered to be a rare diagnosis, and throughout the literature, evidence is 

lacking due to difficulty in recruiting significant numbers of patient. Papers are usually 

based upon small numbers. The methodology of Chapter 5 is based upon McCabe et al 

2005, which used 41 healthy volunteers.  

A semi-purposive sampling strategy was used, and the sample size was based 

upon the number of subjects available within the data collection period aiming for at least 

40 subjects in each cohort. It is recognised that the generalisation of findings may be 

limited by employing this method. 

 

3.6. Ethical considerations 

Ethics 

The study protocol and all other appropriate documentation has been submitted and 

approved by the Local Research Ethics Committee and by the RNHRD Research and 

Development Committee. 

Informed consent 

Prior to recruitment to the research, all participants had the nature, scope and possible 

consequences of the study explained to them in a written and verbal form that they were 

able to understand. Time was permitted for subjects to ask questions and written and 

verbal consent was gained prior to commencement of assessment in accordance with 

the Declaration of Helsinki guidance (1996). 

Confidentiality 

Participants were informed that all study findings would be stored on computer and 

handled confidentially. The data were stored for the purpose of data analysis and will be 

destroyed within the designated time frame. Anonymity of participants was preserved 

and all data stored on a password-protected computer kept on locked hospital premises. 

Visit details 

All subjects were requested to make at least two visits for assessments. Reimbursement 

of travel expenses was offered to all participants. There was no financial incentive. 
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3.7. Assessment methods 
 

3.7.1 Quantitative Sensory Testing and the assessment of allodynia: see Chapter 4. 

3.7.2 Assessment of autonomic sympathetic responses: see Chapter 4.  

3.7.3 Assessment of optokinetic induced vulnerability: see Chapter 5. 

3.7.4 Assessment of responses to ambiguous visual stimuli: see Chapter 6. 

3.7.5 Assessment of parietal lobe function: see Chapter 7. 

 

3.8. Data analysis 
 

The LDF readings and ESR measurements were captured via a Cambridge Electronics 

Division (CED) Electrophysiological Response Recording System, recorded on a 

notebook computer and analysed using CED Spike Data Analysis software. 

 

3.9. Statistical analysis 

Demographic data were analysed using descriptive statistics. Cumulative frequency 

histograms of autonomic response data were not normally distributed, demonstrating a 

negative skew (Fig.3.1). Data transformation was unhelpful and therefore non-

parametric statistical analysis techniques were used. Data are presented as median + 

interquartile range (IQR). For comparison between cohorts, Mann Whitney-U and 

Kruskal Wallis tests were used. Chi squared test was used for analysis of frequency data 

of categorical variables, and Spearman’s rho for correlation.  

Symmetry ratio data showed marked homogeneity of variance particularly in the 

CRPS cohort, with grouping of extreme high and low values. For comparison of data 

across cohorts, a Siegel-Tukey test was used. This is a non-parametric sum of ranks 

procedure for relative spread in unpaired samples. 
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Histogram
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3.10. Qualitative assessments 
Qualitative data generated from participants' descriptors of temperature, pain and other 

sensations on movement and at rest was collected and analysed. Pain was rated using 

simple verbal scales. For further details, see Methods sections of chapters 5 and 6, 

and Appendix 3. 

 

Fig.3.1 

Fig.3.1. Histograms showing cumulative frequency of percentage change from 
baseline blood flow (%bbf) for the Valsalva manoeuvre in (A) healthy controls and 
(B) CRPS patients. 

A 

B 
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When things were simpler: 
The ‘Descartes’ model of pain 

 
 

Image: Illustration of the pain pathway in 
René Descartes' Traite de l'homme 
(Treatise of Man) 1664. Available from: 
http://en.wikipedia.org/wiki/File:Descartes
-reflex.JPG 
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Chapter 4:  

Quantitative Sensory Testing and baseline sympathet ic 
autonomic function in CRPS and rheumatic disease 
 

“..to know them was merely to know their ailments, and the ailments were 

almost invariably rheumatism. Some, of course, had other bodily 

infirmities, but they always had rheumatism as well.” 

 

Saki (H.H.Munro) , from ‘The Toys of Peace’ 

Image: Hoppé, E.O., 1913. Hector Hugh Munro aka Saki [online]. San Francisco: Wikimedia 
Foundation. Available from: 
http://en.wikipedia.org/wiki/File:Hector_Hugh_Munro_aka_Saki,_by_E_O_Hoppe,_1913.jpg. Accessed 17.1.12.) 
 

4.1. Introduction 
Chapter  1 outlined some of the challenges in pain research, key among them being 

the problem of pain being both a sensation and a perception and therefore not 

directly comparable between subjects. It introduced quantitative sensory testing 

(QST) as an approach to allowing comparison of some quantifiable aspects of 

sensory perception and pain between different persons. Chapter 2  focussed on 

current concepts of the complexity of pain and that there are many mechanisms 

contributing to the experience of pain. Furthermore, it showed that different diseases 

causing chronic pain have varying pain pathologies that may account for the 

spectrum of clinical presentation. Allodynia is a common distressing symptom in 

complex regional pain syndrome (CRPS) and is seen less often in osteoarthritis (OA) 

and rheumatoid arthritis (RA) patients. 

 Chapter  2 also introduced the role of the autonomic nervous system in pain. 

It was shown to be both responsive to painful stimuli, and that sympathetic autonomic 

dysfunction may be a pain mechanism. Autonomic responses are often thought of as 

simple peripheral spinal reflexes. However the central integration of the autonomic 

nervous system with nociception and the consequent behavioural, emotional and 

neuroendocrine responses are a vital part of interoception, homeostasis and survival.  

 This chapter describes the baseline assessment of quantitative sensory 

testing parameters and sympathetic autonomic function in healthy controls, and 

patients with chronic painful rheumatic disease; OA, RA and CRPS. The subsequent 

studies build upon this baseline data. 
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4.1.1. Aims 
 

To establish and compare baseline quantitative sensory testing (QST) parameters 

and sympathetic autonomic function in healthy controls, complex regional pain 

syndrome (CRPS), osteoarthritis (OA) and rheumatoid arthritis (RA) patients. 

 

4.1.2. Hypotheses 
 

1. There will be no allodynia present in healthy controls. 

2. Allodynia will be present in some osteoarthritis (OA) and rheumatoid arthritis 

(RA) patients and most marked in CRPS patients. 

3. Baseline sympathetic autonomic function will be normal in healthy controls, 

OA and RA patients and impaired in CRPS patients. 

 

4.2. Methodological considerations 
 

4.2.1. Establishing the model to investigate allody nia 
 

4.2.1.1. Quantitative Sensory Testing and the asses sment of allodynia: review 
of literature and methodological considerations 
CRPS is characterised by disturbances of sensory function in the affected area. 

Allodynia is a frequent and disabling occurrence. The incidence is unclear and has 

been reported from 5 – 30% (Birklein et al., 2000;Huge et al., 2011). CRPS patients 

may also develop a hemi-sensory impairment characterised by decreased 

temperature and pinprick sensation ipsilateral to the CRPS affected limb (Rommel et 

al., 1999), and there was a high incidence of allodynia in this group (58%). A follow-

up study reported that patients with this pattern of impairment were more likely to 

have mechanical allodynia and hyperalgesia, and tended to have longer duration of 

CRPS (Rommel et al., 2001).  

Quantitative sensory testing techniques and protocols are variable depending 

on whether they are being utilised clinically or in research and clinical trials settings. 

The German DFNS (German Research Network on Neuropathic Pain) guidelines 

(Rolke R et al., 2006;Topp and Byl, 1999) outline a standardised approach suitable 

for research and clinical trials. It details seven tests covering 13 different parameters. 

However, it is time consuming (three hours per subject) and requires specific, 

expensive equipment. It uses the modified method of limits procedure which involves 
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applying stimuli in decreasing order of intensity until the stimulus is no longer 

perceived to obtain the subthreshold measure. The stimuli are then presented in 

increasing intensity until the stimulus is perceived again to obtain the suprathreshold 

measure. This whole procedure is repeated in five ‘runs’. The EFNS (European 

Federation of Neurological Societies) guidelines (Cruccu G et al., 2004;Cruccu et al., 

2010) are more suited for clinical use. They recommend the use of simple, easily 

obtainable tools for bedside testing. Detection and pain thresholds are determined by 

applying stimuli to the skin in an ascending and descending order of magnitude but 

they do not specify a number of ‘runs’ or times to repeat.  

Patients with allodynia may demonstrate marked ‘wind-up’ and subsequent 

lowering of detection and pain thresholds to repetitive stimuli (temporal summation). 

After the single application of a stimulus, the sensation perceived may last for several 

seconds. Keizer et al (Keizer D et al., 2007) used at least ten seconds between 

successive applications of a stimulus to avoid this phenomenon. They allocated the 

allodynic threshold as when 2 out of 3 stimuli were perceived as painful. Stimuli were 

applied using the method of limits which involves applying successively stronger 

stimuli until the threshold was reached.  

 

4.2.1.2. Specific methodological considerations 
The severity of the CRPS in this cohort and the florid nature of the allodynia rendered 

repeated ‘runs’ of testing inappropriate due to the wind-up phenomenon. Pilot work 

demonstrated many patients quickly developed wind-up with worsening pain and 

lowering of tactile thresholds. Therefore only one ‘run’ of testing was used to avoid 

wind-up and lowering of thresholds. Consequently this data cannot be directly 

compared to studies using the standard ‘method of limits’ approach, but a modified 

approach was required for patient tolerability. 

While Keizer et al applied the stimuli for 2-3 seconds, in my pilot studies this 

was too long, also precipitating wind-up. The application of stimuli for approximately 

0.5 seconds was found to be better. Tighter threshold delineation was required, and 

therefore the allodynic threshold used was when at least 3 out of 4 stimuli were 

perceived as painful.  
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4.2.1.3. Method: 
 

4.2.1.3-1. Participants 
For full details of inclusion/exclusion criteria, ethical considerations etc, see Chapter 

3. 

 

4.2.1.3-2. Apparatus 

• Semmes-Weinstein monofilaments (‘Touch-test’, USA. Standard set 

covering 0.008 – 300g target force) 

• Somedic Senselab brush 

• Body map mannequin – see Appendix 4  

• ‘Lund and Browder’ burns chart– see Appendix 5 

 

4.2.1.3-3. Outcome measures 

• Tactile thresholds 

• Percentage of body surface area allodynia (BSA) calculated from a ‘Lund 

and Browder’ burns chart (Lund CC and Browder NC, 1944) 

• Other sensory disturbance patterns observed 

 

4.2.1.3-4. Assessment of baseline pain levels 
A common method to assess pain levels is the use of a verbal rating scale where 0 = 

no pain and 10 = worst possible pain. This is a modified Likert scale (Likert, 1952), 

which has been shown to reliably measure changes in pain (Oppenheim AN, 1992). 

However in pilot work, most CRPS patients put their baseline pain levels at 8, 9 or 10 

and some rated it >10, or ‘off the scale’ giving little scope to understand how pain 

might change if it worsened. Therefore a simple verbal scale was used where 

patients were asked if their pain was unchanged or mild, moderate or severely worse 

or better than baseline. 

 

4.2.1.3-5. Tactile threshold 
The participant was positioned comfortably upon an examination couch dressed in 

underclothes only, with a covering blanket as tolerated and was asked to close their 

eyes during testing. If there were any difficulties in keeping the eyes closed, or 

compliance issues, a blindfold was used. The testing area was quiet and heated to a 
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comfortable temperature. The examiner explained that a series of filaments of 

differing stiffness would be applied to the skin, and the participant would be asked to 

indicate when they could feel it touching their skin. They would be asked additionally 

to either point to where it was felt, or describe where it was detected so that the 

stimuli could be differentiated from spontaneous sensations. The verbal explanation 

was followed by a physical demonstration on an unaffected area. Different grades of 

Semmes-Weinstein monofilaments were used in the standard way (pressure applied 

until the hair starts to bend). The body surface area was visually divided into discrete 

testing areas: upper limbs, lower limbs, head and neck and torso. In CRPS patients, 

testing started in the area furthest away from the affected limb to gain their 

confidence, and avoid wind-up at the start of the testing protocol. Tactile thresholds 

were mapped onto the corresponding area of a mannequin. 

 

4.2.1.3-6. Mechanical allodynia 
During the above protocol, subjects were also asked to indicate if any abnormal 

sensations were perceived. If it was perceived as abnormal, they were asked to 

describe how it felt (ie. unpleasant, painful etc). Allodynic areas were mapped onto 

the corresponding area of a mannequin on a Lund and Browder burns chart. 

 

4.2.1.3-7. Brush-evoked allodynia 
The same experimental conditions as above were utilised. The examiner explained 

that a soft brush would be applied to the surface of the skin and that the participant 

would be asked to indicate if the sensation evoked was different to that expected, 

and how. An unaffected area was used as the testing standard. The stimulus was a 

standardised ‘Somedic Senselab’ brush brushed gently over the surface of the skin 

for a distance of approximately 2 cm over 2 seconds. This produces a pressure of 

approximately 200 - 400mN. The body surface area was visually divided into discrete 

areas that were tested for the presence of brush evoked allodynia. Allodynic areas 

were mapped onto the corresponding area of a mannequin on a Lund and Browder 

burns chart. 

 

4.2.1.3-8. Pressure allodynia 
The same experimental conditions as above were utilised. The examiner assessed 

for the presence of pressure allodynia at wrists, elbows, shoulders, axial spine, hips, 

knees, ankles, metacarpophalangeal, metatarsophalangeal and distal 

interphalangeal joints. The standard technique for joint tenderness employed during 
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a rheumatological DAS28 score was utilised (gentle but firm pressure applied to 

medial and lateral, and anterior and posterior aspects of the joint). For axial spine, 

the three finger alignment over dorsal vertebral prominences was used. If an 

allodynic area was found, the same pressure on the contralateral uninvolved joint, or 

if that joint was involved, a point on the mid-forearm was used to confirm. Allodynic 

areas were mapped onto the corresponding area of a mannequin on a Lund and 

Browder burns chart. 

 
 

4.2.2. Establishing the model to investigate sympat hetic autonomic function 

4.2.2.1. Assessment of autonomic sympathetic respon ses: review of literature 
and methodological considerations 
Sweating and skin blood flow are vital components of thermoregulation. The central 

control of thermoregulation is in the preoptic/anterior hypothalamus of the brain. 

Information on core and surface temperature converge here, and appropriate efferent 

responses are coordinated via the sympathetic autonomic nervous system 

(Charkoudian, 2003). Emotion, pain and environmental temperature and humidity 

induce sympathetic autonomic responses and therefore any testing protocol has to 

control as much as possible for these potential confounding factors. 

 

There are a wide variety of techniques and equipment available for the assessment 

of autonomic nervous system integrity. The particular method of assessment chosen 

will depend upon the homeostatic mechanism being investigated, and the body 

system that it controls. For example, assessment of lower oesophageal sphincter 

competence might utilise oesophageal manometry, where as investigations of 

cardiac electrical rhythm control would employ electrocardiographic techniques. 

Cognitive effort, mental stress and pain cause sympathetic autonomic arousal and 

therefore a technique was required that could monitor sympathetic activity. 

Cutaneous blood vessels and eccrine sweat glands are innervated by post 

ganglionic sympathetic fibres which cause vasoconstriction and sweating when 

stimulated (Charkoudian, 2003). There is no parasympathetic innervation, making 

cutaneous blood flow and sweating activity a good index of sympathetic activity. 

There are several techniques described to continually assess cutaneous vasomotor 

and sudomotor activity. As this thesis concerns the sympathetic control of 

microvascular peripheral cutaneous blood flow and sweating, the discussion will be 

confined to autonomic assessment of these parameters.  
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Measurement of autonomic responses in a severely allodynic population is 

challenging, due to: i. non-tolerance of tactile stimuli ii. induction of pain by tactile 

stimuli, which would therefore confound the study. Some autonomic assessment 

techniques considered but rejected are now described.  

 

4.2.2.2. Rejected autonomic function assessment tec hniques 
Peripheral sympathetic autonomic function can be investigated by invasive and non-

invasive means. Invasive methods such as microelectodes for microneurography or 

microdialysis techniques were rejected as the allodynic CRPS cohort would be 

unable to tolerate this. Sympathetic autonomic function can also be assessed by 

detailed measurement of cardiovascular function. The reliability and reproducibilty of 

heart rate variability as a method of autonomic assessment continues to be a 

debated issue (McNames and Aboy, 2006). Beat to beat heart rate variability 

measured by a finger blood pressure cuff as utilised by the Portapress system was 

considered but rejected due to concerns with tolerability within the allodynic cohort.  

Sudomotor function can be assessed using the Quantitative Sudomotor Axon 

Reflex Test (QSART). However, this requires the use of an iontophoresis chamber 

affixed to the skin surface, and while it can demonstrate the presence of dysfunction 

it cannot show dynamic sudomotor responses to central stimuli. Similarly, the silastic 

imprint test of sweating was rejected due to the inability to demonstrate dynamic 

responses and the requirement of application and removal of a material to the skin 

over a period of time. 

 

4.2.2.3. Selected techniques: laser Doppler blood f low recording 
Laser Doppler Flowmetry (LDF) provides simple non-invasive measurement of blood 

flow within the microcirculation, and is becoming increasingly used as an 

investigative technique in rheumatic diseases (Murray et al., 2004). The technique 

relies on the Doppler effect, described by Christian Doppler in 1842 (Doppler, 1842). 

The first report of the use of the Doppler effect to measure microvascular blood flow 

was by Riva et al in 1972 (Riva et al., 1972). When coherent (laser) light is directed 

towards the skin at a depth of about 1mm, photons are scattered by moving red 

blood cells causing the Doppler effect and a shift in photon frequency. The reemitted 

light is directed towards a photodetector producing a stochastic photocurrent. 

Analysis of this provides information on the velocity of the skin blood flow in arbitrary 

flux units (AFU) (Humeau et al., 2007). LDF systems can be separated into two 

categories: laser Doppler perfusion monitoring and laser Doppler perfusion imagers. 
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4.2.2.3-1. Laser Doppler perfusion imaging 
Skin blood perfusion can be assessed using a Laser Doppler imager, which uses a 

motorised mirror to reflect laser light and scan it across a defined area of skin. 

Depending on the size of the skin area, this may take one to several minutes. Whilst 

this is useful where changes in skin blood flow occur slowly, it cannot be used to 

study dynamic changes or if that part of the body is moving. As both the latter 

conditions apply to these studies, perfusion imaging was rejected.  

Stimulated microvascular skin blood flow to iontophoresed acetylcholine and 

sodium nitroprusside has been studied in 17 CRPS patients using laser Doppler 

imaging, and compared to healthy controls. No differences were found between 

affected and unaffected limbs or between CRPS patients and healthy controls 

(Gorodkin et al., 2004). 

 

4.2.2.3-2. Laser Doppler perfusion monitoring  
A Laser of known frequency is conducted down a fibre optic cable to a small probe 

attached to the surface of the skin, and the light is measured as it is reflected back.  

This provides a continuous spot measurement. The Doppler signal is proportional to 

the concentration and velocity of red blood cells within the tissue. Blood flow is 

expressed in arbitrary ‘flux units’. Pulsatile flow is observed under steady state 

conditions, the amplitude of the signal being dependant on diameter of the arterioles 

under the control of the sympathetic nervous system. Glabrous skin is used to record 

from rather than hairy skin as it is innervated only by sympathetic vasoconstrictor 

nerves and it contains arteriovenous anastomoses (Charkoudian, 2003). Hairy skin in 

comparison is innervated by sympathetic vasoconstrictor and vasodilator nerves and 

has few if any arteriovenous anastomoses (Johnson JM and Proppe DW, 1996). 

These are major contributors to the vasoconstrictor component of vasomotor reflexes 

in glabrous skin of warm subjects (Krogstad et al., 1995).  

The technique of laser Doppler perfusion monitoring was selected to provide 

continuous measurement of the skin blood flow of glabrous skin. As this is under 

pure sympathetic autonomic control, it provides a continuous measurement of 

dynamic sympathetic autonomic function.  

In order to simplify the terminology, laser Doppler perfusion monitoring will be 

hereafter referred to as laser Doppler flowmetry (LDF). 
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4.2.2.3-3. Laser Doppler flowmetry analysis 
There is no consensus on the analysis of laser Doppler flowmetry data. Previously 

described parameters include absolute values such as blood flow in arbitrary flux 

units, time to peak response, intrinsic perfusion variation expressed as absolute 

value +/- 2 standard deviations, quotient of intervals, ratio comparing blood flow 

between affected and unaffected limbs and percentage change from baseline blood 

flow (Valley et al., 1993). Schurmann used percentage change, absolute values and 

quotient of intervals in his series of papers (Schürmann et al., 1996;Schürmann et al., 

1999;Schürmann et al., 2000) with CRPS patients, and found the most reliable 

parameter to be the percentage change from baseline mean after stimulation. There 

is also no consensus on whether the data obtained is parametric or non parametric 

with statistical tests differing and results being variably expressed as means +/- SDs 

or medians +/- interquartile ranges. Ide (Ide et al., 1997) used a ratio of the 

percentage change in the affected limb compared to the unaffected in CRPS 

patients, and percentage change of the left compared to the right limb in healthy 

controls in response to an inspiratory gasp. They compared CRPS patients before 

and after successful treatment and concluded that the parameters were of value in 

the diagnosis and management of CRPS. Low (Low et al., 1983) used both a 

quantitative and qualitative approach to analysis of the results of laser Doppler 

flowmetry in suspected dysautonomia.  

 

4.2.2.3-4. Selected Laser Doppler outcome measures: 
Blood flow through finger pulps were measured in arbitrary flux units (AFU). 

Three outcome measures were utilised. 

 

1. Responses were quantified by calculating the mean percentage change from 

baseline skin blood flow (∆%bbf) in response to a stimulus as follows:  ∆%bbf = 

(baseline mean – minimum) / baseline mean x 100 (Fig.4.1). No response to 

stimulus is highly relevant to this study, which investigates sympathetic autonomic 

activity in response to different stimuli. Therefore non-response is part of the possible 

activity spectrum from nil to maximal. It was recorded as zero and included in the 

analysis. 
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Fig.4.1.  

 

 

 

2. Quantitative symmetry of Laser Doppler responses: The symmetry ratio (SR) of 

the magnitude of vasomotor responses between the limbs was calculated as follows: 

∆%bbf limb A / ∆%bbf limb B, where A was the larger of the two responses. The 

range of SR values were from 1 – 5, where a value of 1 shows complete symmetry 

and >1 indicates increasing asymmetry. A maximum cut-off value of 5 was utilised. 

Thus, the SR was 5 in patients showing no changes of skin blood flow on one of the 

limbs and a good response on the other.  

 

3. Qualitative homology of Laser Doppler responses: Responses to stimuli were 

classified as: 

i) homologous response if there were bilateral sympathetic vasoconstrictor 

responses (Fig.4.2A )  

ii) asymmetric response if there was vasoconstriction in one limb but no 

response or vasodilation in the other limb (Fig.4.2B ).  

 

Where applicable, responses were also categorised as:  

iii) no response (homologous) if there was no vasoconstriction to stimuli in 

either limb 

Fig.4.1. Calculation of mean percentage change from baseline blood flow 
(∆%bbf) in response to a stimulus. ∆%bbf = (baseline mean – min)/baseline 
mean x 100. AFU = arbitrary flux units. 
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iv) excessive vasoconstriction if the skin blood flow remained <150 AFU at a 

room temperature of 23-25°C despite acclimatisation time.  

In the latter group, response homology or asymmetry was noted but to avoid inflation 

of error, if any small responses were present they were not quantified 
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Fig.4.2. Example of (A) an homologous bilateral sympathetic 
vasoconstrictor response to a Valsalva manoeuvre in a healthy control and 
(B) an anomalous asymmetric sympathetic vasomotor response while 
viewing an ambiguous visual stimuli (AVS) in a CRPS patient. Blood flow is 
measured in arbitrary flux units (AFU). 
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4.2.2.4. Electrodermal skin response 
 

The electrodermal skin response (ESR) is a measure of electrodermal activity in 

response to stimuli from the skin surface. Sympathetic activity is closely linked to 

emotion, and ESR is a widely used sensitive index of emotion-related sympathetic 

activity (Critchley et al., 2000;Critchley, 2002). Féré first discovered a drop in 

electrical resistance of the skin to an applied current in 1888 (Féré C, 1888), and 

Tarchanoff described changes in the potential difference between two areas of the 

body surface in 1890 (Tarchanoff J, 1890). There are several different pseudonyms 

in use including galvanic skin response which refers to skin resistance, and 

sympathetic skin response which utilises changes in potential difference across the 

skin. All techniques record the pattern of change in the electrical conductance, 

resistance or potential difference across the skin surface caused by changes in 

sweat gland activity. Increasingly, skin conductance (ie. the reciprocal of skin 

resistance) is being used. Skin conductance is directly proportional to the number of 

active sweat glands (Montagu and Coles, 1966). The SI derived unit of skin 

conductance is the ‘Sieman’, which replaced the previously used ‘mho’ in 1971. 

Electrodermal skin response can be measured in response to a variety of 

sympathetic, psychological and electrical stimuli. Commonly used stimuli include an 

electrical square wave pulse, startle stimuli such as auditory clicks and ‘internal’ 

stimuli such as a cough or deep inspiration (Kucera et al., 2004). Electrical stimuli 

were not used in this research as it was thought allodynic patients would be highly 

unlikely to tolerate this.  

 

ESR has been validated and used extensively to investigate sympathetic responses 

in animal and human studies(Critchley et al., 2000;Habler et al., 1997;Hay et al., 

1997a). All normal subjects less than 60 years of age demonstrate electrodermal 

responses (Arunodaya and Taly, 1995;Gutrecht, 1994). As age increases, responses 

may not be elicitable particularly in the very elderly. ESR amplitudes are consistently 

higher in the upper limbs than the lower limbs (Arunodaya and Taly, 1995;Montagu 

and Coles, 1966) and are more often absent from the foot than the hand (Gutrecht, 

1994). The wave form is variable within and between subjects. Typical morphology is 

biphasic or triphasic and less commonly monophasic (Arunodaya and Taly, 

1995;Gutrecht, 1994;Kucera et al., 2004). Several factors influence ESRs. 

Habituation is a decrease in amplitude observed after repetitive stimulation although 

some groups report that latency is unaffected (Hoeldtke et al., 1992). Therefore 

adequate time must be allowed between stimuli, and irregular application of stimuli is 
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recommended (Kucera et al., 2004). ESRs are also affected by age (Drory and 

Korczyn, 1993;Hay et al., 1997a), gender, modality of stimulation and body 

temperature (Kucera et al., 2004). Gutrecht (Gutrecht, 1994) reports that ESRs are 

not recordable at skin temperatures of <30°C. A tem perature controlled room 

between 22-26°C (Gutrecht, 1994;Kucera et al., 2004 ) is suggested with skin 

temperature being maintained at >32°C (Gutrecht, 19 94). Thus a tight protocol is 

required to allow comparison within and between subjects. 

 

4.2.2.4-1. Electrodermal skin response analysis 
 

There is still no consensus about the evaluation and processing of ESRs (Arunodaya 

and Taly, 1995;Gutrecht, 1994;Kucera et al., 2004). While quantitative approaches 

are being developed, there are inherent difficulties. Amplitude is variable and affected 

by habituation. Latency may be less variable but there are difficulties marking the 

exact onset of the ESR to the stimulus. Response averaging is influenced by 

habituation of responses and ESR shape variation. Most groups advocate a 

qualitative approach, with absence of a response being abnormal (Arunodaya and 

Taly, 1995). Some groups include asymmetry of amplitude and asynchrony of 

response (Evans BA et al., 1988;Johns DR and Young RR, 1986;Raszewa et al., 

1991). 

 

ESR has been validated and used to investigate sympathetic responses in human 

studies investigating the cortical generation of sympathetic autonomic responses 

(Critchley et al., 2000) and with autonomic dysfunction in different diseases (Fusina 

et al., 1999;Gozke et al., 2003;Hay et al., 1997a;Karatas et al., 2002;Magnifico et al., 

1998;Navarro et al., 1990;Pereon et al., 1995;Raszewa et al., 1991;Thomaides et al., 

1993). Few studies have been done investigating CRPS, and they have described 

abnormalities in the electrodermal skin response (Drory and Korczyn, 1995;Rommel 

et al., 1995). 

 

This series of research studies utilise skin conductance. Therefore galvanic skin 

response and sympathetic skin response are inappropriate terminology. The more 

generic term, ‘electrodermal skin response’ has been used throughout this thesis. 
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4.2.2.4-2. Selected electrodermal skin response outcome measures: 

 
1. Qualitative analysis. 

Responses were classified as: 

 i. Normal (bilateral symmetric responses) 

ii. Abnormal (responses present but either unilateral, or abnormal waveform) 

 iii. Absent 

See Fig.4.3. 
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Fig.4.3. Examples of (A) normal symmetric responses to two Valsalva manoeuvres and 
(B) abnormal asymmetric unilateral electrodermal skin responses during mental stress. 
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4.2.2.5. Sympathetic stimuli 
 

The protocol established uses standard autonomic provocative tests for both 

peripheral and centrally coordinated sympathetic autonomic responses. 

The integrity of sympathetic vasomotor control is assessed using known 

sympathetic stimuli. A variety of standard pressor tasks (eg. mental stress, cold 

pressor challenge, isometric exercise, hyperventilation) (Mathias, 2000) can be 

utilised to test for autonomic integrity. Robust dynamic responses are elicited by an 

inspiratory gasp, the Valsalva manoeuvre, the venoarteriolar reflex (moving the upper 

limb from heart level to a dependent position) and mental arithmetic. The Valsalva 

manoeuvre was described in 1704 by the anatomist Antonio Maria Valsalva in De 

aure humana tractatus. The original Valsalva manoeuvre is forced expiration against 

a closed glottis. A modified version where expiration is with an open glottis against a 

known expiratory pressure, is commonly used in physiological research (Korner PI et 

al., 1976). The inspiratory gasp/deep breath is a reliable, repeatable and sensitive 

sympathetic stimulus (Allen et al., 2002;Oberle et al., 1988;Valley et al., 1993) in 

common use for autonomic testing and has been used with laser Doppler flowmetry 

in the assessment of CRPS patients (Schürmann et al., 1996;Wasner et al., 1999). 

When a series of inspiratory gasps are used, provided that adequate time is allowed 

to elapse between each stimulus, the preceeding vasoconstrictions do not influence 

the observed change in cutaneous blood flow (Mueck-Weymann and Rauh, 2002). 

The venoarteriolar reflex is a robust sympathetic stimulus mediated by local 

vasomotor control (Johnson, 2002). It has also been used in laser Doppler studies 

with CRPS patients (Birklein et al., 1998;Kurvers et al., 1996). Mental stress induced 

by a mental arithmetic task is a cortically generated vasoconstrictor stimulus and can 

induce intense regional vasoconstriction detected by laser Doppler flowmetry in 

healthy controls (Silverman et al., 1996) and CRPS patients (Birklein et al., 

1998;Drummond et al., 2001). Sympathetic responses are known to vary within and 

between individuals; therefore each subject was used as their own internal control.  

 

4.2.2.5-1. Specific methodological considerations 
 

A standard Valsalva manoeuvre is forced expiration against a closed glottis, and 

relies heavily on subject comprehension, compliance and voluntary effort for 

reproducibility. A modified Valsalva manoeuvre was therefore introduced. This was 

done by asking the subject to blow as hard as possible down the barrel of a 10ml 
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syringe pressed to the lips, into an anaeroid sphygmomanometer. The investigator 

noted the maximum reading, and asked the subject to repeat this, but holding the 

sphygmomanometer reading at ¾ of maximal value for 5 seconds. The two 

techniques were tested on two cohorts of healthy controls; an original pilot group and 

the current (new) group. It showed improved reproducibility with the modified 

technique compared to the standard technique (see Table  4.1). 

 

 

Table 4.1 Healthy controls: Current (new) cohort compared to Pilot group 

 

Stimulus Measurement New (N=17) Pilot (N=12)
M%ch-R 88 (2) 118 (5)
M%ch-L 88 (2) 111 (6)

Healthy Controls (SE)

VM

 

 

SE = (standard error), VM = Valsalva manoeuvre, M%ch = mean % change from baseline 

blood flow, R = right upper limb, L = left upper limb 

 

 

The difference in magnitude of the Valsalva manoeuvre reflects the different 

techniques employed. In the pilot group, subjects were told how to perform it but 

there was no method of ascertaining the degree of voluntary effort. In the new cohort, 

the modified technique was used as described above, which allows some control 

over the amount of voluntary effort used. 

 

4.2.2.6. Repeated LDF assessments in healthy contro ls 
 

In healthy controls, autonomic measurements performed under steady state 

conditions are similar, and repeated assessments by laser Doppler flowmetry have 

shown good reliability and reproducibility (Allen et al., 2002;Low et al., 

1983;Schürmann et al., 1996). It is unknown whether autonomic measurements 

under steady state conditions in CRPS patients would show similar reliability, or as 

seems more probable, fluctuate with the pain levels on those days. In previous 

studies of healthy controls, the reproducibility data were based on repeated 

measurements from 3-15 subjects on 2-10 occasions.  
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4.2.2.7. Repeated LDF assessments in CRPS patients 
 

To assess this issue in CRPS, repeated measurements were performed on a 

subgroup of 12 CRPS patients. These patients had between 2-4 repeat assessments 

over a duration of 6 months to 2 years. Some patients had no response to some of 

the sympathetic stimuli (SR = 1); 2 with deep breaths, 3 with mental stress task and 1 

with the Valsalva manoeuvre. 

 Some patients had intermittent marked asymmetric responses. When 

responses were of a symmetric homologous vasoconstrictor pattern, the symmetry 

ratios were similar (see Fig.4.4 ). For the mean percentage change from baseline skin 

blood flow (∆%bbf), the mean difference between repeated assessments for deep 

breath was 21%, for mental stress was 28% and for the Valsalva manoeuvre was 

15%. Therefore while more fluctuant than healthy controls, when the responses are 

not markedly asymmetric, they show reasonable reproducibility.  

 

 There has not been any previous published work on reproducibility of LDF 

responses to sympathetic stimuli in long duration CRPS patients. It is possible that 

the markedly asymmetric responses correlate to worse periods of pain. However, this 

repeated measures data was pilot work and not intended as a specific research 

project. Whether asymmetry to baseline sympathetic stimuli relates to pain levels or 

disease activity over time is a separate issue to this body of work, and one that 

should be addressed by further appropriate research. 
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Fig.4.4. 

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11 12

 

 

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11 12

 

 

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10 11 12

 

 

 

 

 
  

4.2.2.8. Location of LDF recording probes 
 

There is almost no literature available upon the reliability or reproducibility of LDF 

recordings from the feet, and from feet compared to the hands. Limb dependency 

tests are technically more difficult as the patient has to be assessed while lying 
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Fig.4.4. Repeated LDF symmetry ratios for baseline sympathetic stimuli done on 2-4 
occasions over a duration of 6 months to 2 years in a cohort of CRPS patients.  
 
A = deep breath, B = mental stress and C = Valsalva manoeuvre. 
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supine to avoid gravitational effects on skin perfusion. Pilot work demonstrated that 

CRPS affected lower limbs often did not acclimatise as expected even after 1 hour at 

25°C, remaining cold. Four out of 11 lower limb CRP S patients had flux values from 

the feet of <150 arbitrary flux units despite prolonged acclimatisation. Therefore, only 

data from patients with upper limb +/- lower limb involvement recorded from the 

hands is presented here. 

 

4.2.2.9. LDF recording environment 
 

The autonomic testing was performed in a quiet, temperature and humidity controlled 

room. There were no pictures or ornamentation in the room to avoid arousal of 

emotional responses. 

 

4.2.2.10. Use of Laser Doppler flowmetry and electr odermal skin response in 
this research  
 

Electrodermal skin response and LDF were recorded concurrently from the hands or 

feet. LDF and ESR readings were recorded from three protocols: 

i. responses to graded sympathetic stimuli for assessment of baseline sympathetic 

function.  

ii . responses to optokinetic induced allocentric/egocentric mismatch.  

iii . responses to ambiguous stimuli.  

 

 

4.3. Method 
 

4.3.1. Participants 
For full details of inclusion/exclusion criteria, ethical considerations etc, see Chapter 

3. 

 

4.3.2. Acclimatization 
Patients were tested between therapy sessions when rested and their pain was at 

usual baseline levels. All subjects were asked to refrain from smoking or caffeine for 

at least 2 hours prior to recording. Subjects were acclimatised for 30 minutes, sitting 

still in a temperature controlled room maintained at 25 ºC. For recordings taken from 
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the hands, subjects were seated with the forearms resting at heart level on the arm 

rests of the chair. CRPS subjects were allocated further acclimatisation time if probe 

and electrode attachment had altered baseline pain, until this had settled back to 

baseline levels. 

The study did not commence until stable baseline blood flow traces were established, 

and subsequent stimuli were not administered until a stable baseline was re-

obtained. 

 

4.3.3. Electrodermal skin response (ESR) 
 

4.3.3-1. Apparatus 

• CED (Cambridge Electronic Design) 2502 skin conductance units x 2 

• CED 1902 electrophysiological Response Recording System 

• Laptop computer with CED Spike signal data analysis software 

• Disposable ‘Biotab’ electrocardiogram (ECG) electrodes 

 

4.3.3-2. ESR recording: 
ESR measurements  were made from the palms of the hands or soles of the feet 

using 1cm2 disposable ‘biotab’ ECG electrodes 1 cm apart on the hypothenar 

eminence of the palms of the hands or arch of the foot. Prior to electrode placement, 

the skin was prepared with an isopropyl alcohol ‘steret’ skin cleansing swab and 

assessed for conditions such as psoriasis, eczema, dermatitis, vitiligo, inflammatory 

arthritis, or scarring over the region of interest. If present, the electrodes were moved 

to matching unaffected areas. Recordings were made in silence, with time allocated 

at the end of each study for qualitative aspects and subject feedback. 

 

4.3.4. Laser Doppler flowmetry (LDF) 
 

4.3.4-1. Apparatus 

• Laser Doppler Flowmeter system (Moor Instuments FloLAB server with satellite 

module, Moor Instruments, U.K.) with a near-infrared laser wavelength 780nm. 

A bandwidth of 15 kHz and time constant of 0.02s were used. 

• Optical probes x 2 

• Double-sided adhesive discs for probe attachment 
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4.3.4-2. LDF recording: 
The subject was sat comfortably with the forearms resting horizontally at 

approximately heart level on the arms of the chair. Probes were attached to the 

palmar aspect of the middle finger tip of each hand. Prior to probe placement, the 

skin was prepared with an isopropyl alcohol ‘steret’ skin cleansing swab and 

assessed for conditions such as psoriasis, eczema, dermatitis, vitiligo, inflammatory 

arthritis, or scarring over the region of interest. If present, the probes were moved to 

a non affected area. 

Recordings were made in silence, with time allocated at the end of each study 

for qualitative aspects and subject feedback. LDF data were recorded on a notebook 

computer and analysed using CED (Cambridge Electronics Design) signal data 

processing software. 

Baseline mean LDF flux values at rest are optimal between 250 – 550 flux 

units, and acceptable at not less than 150 flux units. If this had not been achieved 

after acclimatisation, then another 15 minutes of acclimatisation occurred before 

repeat baseline readings were taken. If baseline readings were still <150, the study 

was abandoned. 

 

4.3.5. Testing Protocol: autonomic sympathetic resp onses to graded 
sympathetic stimuli 
A continuous LDF and ESR recording was made during the following series of 

sympathetic stimuli. Each stimulus was followed by a resting period of 1 – 5 minutes 

to allow the trace to return to baseline. 

 Condition/Stimulus  $Stimulus duration 

Relaxed (eyes closed)  1 min 

Relaxed (eyes open)   1 min 

Deep breath    N/A 

Dependent right arm   1 min 

Bring right arm back   1 min 

Dependent left arm   1 min 

Bring left arm back   1 min 

*Congruent movements  1 min 

*Incongruent movements  1 min 

#Mental stress    1 min 

Valsalva    1 min 
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*Congruent and incongruent movements are the same as those used for the testing 

of optokinetic induced allocentric/egocentric vulnerability but with no mirror or 

whiteboard present (see Chapter  5). This was done on a cohort of 10 CRPS and 10 

control patients, which showed no significant vasoconstrictor response. It was 

therefore dropped from further studies. 

 
$Patients were asked to continue for as long as they could manage without distress, 

so in some instances (especially with CRPS patients) the stimulus duration was less. 

 

#Mental stress comprised a mental arithmetic task of serial subtractions of 7 from 

100, with answers being given aloud. If this was completed quickly and easily, 

subjects were asked to verbalise the alphabet backwards complimented if necessary 

by a spelling task. 

 

The investigator explained and demonstrated a modified Valsalva manoeuvre, and 

asked the subject to replicate this, and practice another few times if necessary.  

 

 
4.3.6. Baseline Autonomic function: Outcome measure s LDF/ESR. 

 

To summarise from above, the following outcome measures were used: 

 

4.3.6-1. Quantitative 

• Mean percentage change from baseline skin blood flow (∆%bbf) in response 

to a stimulus as follows:  ∆%bbf = (baseline mean – minimum) / baseline 

mean x 100  

• The symmetry ratio (SR) of the magnitude of vasomotor responses between 

the limbs was calculated as follows: ∆%bbf limb A / ∆%bbf limb B, where A 

was the larger of the two responses. 

 

4.3.6-2. Qualitative 

• For LDF: Responses to stimuli were classified as  

o i. homologous response if there were bilateral sympathetic 

vasoconstrictor responses 

o ii. asymmetric response if there was vasoconstriction in one limb but 

no response or *vasodilation in the other limb.  
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o iii. absent 

* Vasodilation is a descriptive term referring to an increase in skin blood flow in response to a 

stimulus; it is not used as a mechanistic term (ie. it does not imply activation of 

vasoconstrictor / vasodilatory nerves). 

 

• For ESR: Responses were classified as  

o i. ‘normal’ if there were bilateral symmetric responses 

o ii. ‘abnormal’ if responses were present but either unilateral, or 

abnormal non-sinusoidal waveform 

o iii. ‘absent’ 

 

4.3.6-3. Overall composite autonomic function (ANS)  score 
This comprises the presence or absence of a sympathetic response on laser Doppler 

flowmetry and galvanic skin response, in each upper limb to each of the 5 

sympathetic autonomic stimuli (deep breath, Valsalva manoeuvre, limb dependency 

(ipsilateral and contralateral vasoconstrictor responses) and the mental stress task). 

The maximum possible score was 20. 

 

4.3.7. Data analysis 
 

4.3.7.1. Sample size 
CRPS is considered to be a rare diagnosis and the literature is sparse. Papers are 

often based upon small numbers using different diagnostic criteria. The methodology 

of Chapter 5  is based upon McCabe et al 2005, which used 41 healthy volunteers.  

A semi-purposive sampling strategy was used, and the sample size was 

based upon the number of subjects fulfilling inclusion criteria available within the data 

collection period, aiming for at least 40 subjects in each cohort.  

4.3.7.2. Statistical analysis 
Demographic data were analysed using descriptive statistics. Cumulative frequency 

histograms of the mean percentage change from baseline blood flow (∆%bbf) data 

and symmetry ratio (SR) data demonstrated a negative skew. Therefore data are 

presented as median + interquartile range (IQR). Statistical analysis was performed 

using Statistical Package for the Social Sciences (SPSS) v.16 software. Non-

parametric statistics (Mann-Whitney U-test and Kruskal-Wallis test) were used. 

Symmetry ratio data showed marked homogeneity of variance particularly in the 
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CRPS cohort, with grouping of extreme high and low values. For comparison of data 

across cohorts, the Siegel-Tukey test (a non-parametric sum of ranks procedure for 

relative spread in unpaired samples) was used. 

4.4. Results 
 

The total number of CRPS patients recruited was 56 (overall cohort). Forty healthy 

controls, 40 patients with osteoarthritis and 40 patients with rheumatoid arthritis were 

recruited for comparison cohorts. Most of the CRPS had severe baseline pain and 

many patients had severe allodynia and body dysmorphia. Some were unable to 

participate in all arms of the research due to fatigue and pain. Where comparisons 

are made to the overall CRPS cohort, the numbers for this study are as follows: 

 

• 44/56 has baseline QST. 

• 54/56 had baseline autonomic function testing (overall CRPS cohort); 

• 31/54 had upper limb (UL) involvement. One subject had a previous 

sympathectomy and was therefore excluded from analysis. Therefore for the 

UL cohort, n = 30. Autonomic function testing data for UL affected CRPS 

patients is presented (See 4.2.2.8. Location of LDF recording probes ).  

• 40 healthy controls (HC) had baseline autonomic function testing (overall HC 

cohort). From the overall HC cohort, 30 were matched for gender and age (to 

within 10 years) to the UL-CRPS cohort, forming the 'matched HC' cohort.   

 

Please also note: 

• Comparison of QST data for the UL-CRPS cohort (n = 30) with the overall-

CRPS cohort (n = 54) is given in section 4.4.3.9. 

• For healthy controls, the autonomic function testing data presented is taken 

from the overall HC cohort, and compared to the other cohorts.  

• In a subgroup analysis, autonomic data from the matched HC cohort is 

compared to the UL cohort (4.4.3.5.). The matching reduces potential bias 

from gender and age differences. Comparison of the matched and 

unmatched HC data (4.4.3.1C.) provides an indication of potential 

confounding effects from these factors. 
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4.4.1. Demographic data 
Demographic data is presented below in Table 4.2 . A schematic flow chart of the 

location of the CRPS among the CRPS patient cohort is given in Fig.4.5 .  

None of the healthy controls had any baseline pain or were on any analgesic 

medication. The male:female ratio was similar among controls, osteoarthritis (OA) 

and rheumatoid arthritis (RA) patients. Among CRPS patients, there was a greater 

female preponderance.  

The mean disease duration for OA was 15 years, and for RA 17 years. For CRPS, 

the mean disease duration of the overall cohort was 5.2 years and for the UL cohort 

was 5.7 years. 

 

 

Table 4.2. Demographic data for CRPS, osteoarthritis and rheumatoid arthritis 

patients and for healthy controls.  

 

Healthy controls CRPS Osteoarthritis Rheumatoid arthritis
N = 40 N = 56 N = 40 N = 40

Age (years) 38 43 61 57
range 22-64 20-71 42-75 27-77
Disease duration (years) ~ 5.2 15 17
range ~ 0.5-18 2-40 0.5-40
Gender: male 12 (30%) 10 (18%) 10 (25%) 10 (25%)
Genger: female 28 (70%) 46 (82%) 30 (75%) 30 (75%)
Hand dominance: right 35 (87.5%) 44 (79%) 34 (85%) 34 (85%)
Hand dominance: left 4 (10%) 10 (18%) 5 (12.5%) 6 (15%)
Hand dominance: ambidextrous 1 (2.5%) 2 (3%) 1 (2.5%) 0
Smoker 2 (5%) 16 (28%) 1 (2.5%) 5 (12.5%)
Baseline pain level
Nil 40 (100%) 1 (2%) 8 (20%) 8 (20%)
Mild ~ 3 (5%) 22 (55%) 24 (44%)
Moderate ~ 38 (69%) 9 (22.5%) 8 (20%)
Severe ~ 13 (24%) 1 (2.5%) 0
Medication
No analgesics 40 (100%) 3 (5%) 2 (5%) 2 (5%)
Neuromodulatory 0 36 (64%) 8 (20%) 5 (12.5%)
Non-opiate +/- neuromodulatory 0 14 (25%) 19 (47.5%) 23 (57.5%)
Opiate 0 38 (68%) 19 (47.5%) 16 (40%)
Neuromulatory + opiate 0 26 (46%) 6 (15%) 3 (7.5%)
Neuromodulatory + opiate + non-opiate 0 17 (30%) 5 (12.5%) 1 (2.5%)  

Age & disease duration = group means; all other figures represent the actual 
numbers in the group, with the percentage of the group that it represents bracketed.  
 

 

Full demographic data for the overall CRPS cohort is given below in Table 4.3 . 
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Patient ID Gender Age (yrs) Handed CRPS loc'n CRPS dur'n (yrs) Baseline pain
1* F 38 R LA 0.5 Moderate
2* F 34 R LA 4 Moderate
3 M 46 R RL,LL 7 Moderate
4 F 39 L LL,RL 17 Moderate
5* M 55 R LA 2 Moderate
6 F 49 R RL 4 Moderate

# 7 F 33 R LA 17 Moderate
8* F 55 L LA LL 8 Moderate
9* F 54 R RA 15 Moderate

10* F 46 R LA 0.7 Moderate
11* F 46 L LA 10 Severe
12* F 35 L LA 1 Moderate
13* M 50 R RA 11 Moderate
14 F 56 R LL 3.5 Moderate
15* F 62 R LA 10 Moderate
16* F 59 R RA 18 Moderate
17* F 43 R RA 4 Moderate
18 F 29 R LL 0.7 Moderate
19* M 39 L RA 4 Severe
20 M 44 R LL 10 Moderate
21* F 47 R/L LA,LL 2 Moderate
22* F 42 R RA RL 8 Mild
23 F 36 R RL 2 Severe
24 F 50 R LL 2 Severe
25* F 55 R LA 0.75 Moderate
26 F 46 L RL 3 Severe
27* F 36 R RA 4 Mild
28 M 52 L LL 7 Severe
29* F 22 R RA 1.5 Moderate
30 M 56 R RA 2 Severe
31* F 44 R RA 1 Moderate
32 F 47 R RL 2 Moderate
33 F 28 R LL 3 Moderate
34 F 58 R LL 1 Severe
35* F 39 R LA,RL 16 Severe
36* F 66 R RA 0.7 Moderate
37 M 20 R LL 2.5 Moderate
38* F 22 R RA,RL 2.5 Moderate
39* F 28 L LA,LL 8 Severe
40* F 42 R LL RL LA 8 Moderate
41* F 63 R RA 1 Moderate
42 F 43 R/L LL 1 Severe
43 F 27 L RL 8 Moderate
44 F 33 R LL 10 Moderate
45 F 21 R LL 6 Severe
46* F 50 L LA 3 Mild
47* M 46 R LA 7 Severe
48* F 33 R RA,RL 3 Moderate
49* F 40 R RA 4 Moderate
50 F 39 R LL 6 Moderate
51 F 41 R RL 3 Moderate
52 M 24 R RL,LL 6 Moderate
53 F 42 R RL 2 Moderate
54* F 71 R LA 1 Nil
55 F 34 R RL 5 Moderate
56 F 30 R RA 2 Severe  

 

Table 4.3.  Demographic data for overall CRPS patient cohort 
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Table 4.3. Demographic data for the overall CRPS patient cohort.  

Age and CRPS duration are given in years. 

F = female, M = male, R = right, L = left, RA = right arm, LA = left arm, RL = right leg, LL = left 

leg, dur’n = duration. 

 

 

 

 

4.4.1.2. Medication 
The term 'neuromodulatory' medication is used as a pharmacological group 

description, referring to anticonvulsant or antidepressant medications used in 

neuropathic pain. Examples include anticonvulsants such as gabapentin, pregabalin,  

tricyclic antidepressants (eg. amitriptyline, sertraline), serotonin specific reuptake 

inhibitors (eg. fluoxetine), and serotonin / noradrenaline reuptake inhibitors (eg. 

venlafaxine). The term 'opiate' medications refers to weak opioids (eg. codeine, 

tramadol) and strong opioids (eg. morphine, fentanyl, oxycodone). Both 

'neuromodulatory' medications and opiate medications have central effects. 'Non-

opiates' incudes paracetamol and non-steroidal anti-inflammatory drugs (NSAID's). 

When medication use was compared, more CRPS patients were using 

neuromodulatory (64%) and opiate (68%) medication compared to OA (20%, 47.5%) 

and RA (12.5%, 40%) respectively. Among CRPS patients, 30% were on a 

combination of non-opiate, opiate and neuromodulatory medications compared to 

12.5% of OA and 2.5% of RA patients. 

 

4.4.1.3. Location of CRPS 
Comparing location of CRPS (overall cohort, n = 56): 45 had one limb involvement 

and 11 had >1 limb involvement. 25 had unilateral upper limb, none had bilateral 

upper limb, 20 had unilateral lower limb, 3 had bilateral lower limb CRPS and 8 had 

upper and lower limb CRPS (7 had 2 limb CRPS; one had 3 limb involvement ie. 

bilateral lower limb and unilateral upper limb). Of the 10 patients with two limb 

involvement, 6 had ipsilateral or contralateral disease and 1 had diagonal disease. 

For the UL CRPS cohort (n = 30), 22 had unilateral upper limb CRPS and 8 had >1 

limb involvement. See Table  4.3 and Fig.4.5 .  

 

 

 

= QST performed * = patient in the upper limb (UL) CRPS cohort 
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Fig.4.5. 
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Fig.4.5.  Schematic flow chart of CRPS location demographics. A shows the overall 

CRPS cohort, and B the upper limb CRPS cohort. 

UL = upper limb, LL = lower limb, unilat = unilateral, bilat = bilateral 

 

 

Overall CRPS 
cohort: N = 56 
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2 limb  
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Bilat LL  
n = 3 
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n = 1 

Bilat UL  
n = 0 

>1 limb  
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UL + LL  
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4.4.2. Quantitative sensory testing 
 

4.4.2.1. Healthy controls 
None of the 40 healthy control subjects demonstrated static or dynamic mechanical 

allodynia. The tactile detection threshold and two point discrimination parameters 

were uniformly consistent and therefore 25/40 controls underwent QST. The mean 

(median) tactile detection threshold was 0.039 (0.04) g and mean two point 

discrimination 2.4 (2) mm. See Table  4.4.  

 

 

Table 4.4. Results of quantitative sensory testing. 

 

A. QST findings in CRPS, healthy controls, osteoarthritis (OA) and rheumatoid 

arthritis (RA) patients. 

 

CRPS (n=44) HC (n=25) OA (n=40) RA (n=40)
Tactile allodynia: mean %BSA 14.3 0 1.1 1.4
%BSA range 0 - 83 ~ 0 - 2 0 - 2
2 pt D (SE) 2.3 (0.18) 2.4 (0.09) 2.7 (0.08) 2.6 (0.11)
Tactile threshold (mean SWF) 0.231 0.039 0.043 0.042
SWF range 0.008 - 4 0.02 - 0.04 0.02 - 0.07 0.02 - 0.07
Median filament rank 4 3 3 3  
%BSA = % of body surface area affected, 2 pt D = mean two point discrimination (mm), SE = 

standard error, SWF = Semmes-Weinstein filament (g). 

 

 

B. Ranking order and target force of the Semmes Weinstein filaments. 

Filament rank Target force (g) Filament rank Target force (g)
1 0.008 11 4
2 0.02 12 6
3 0.04 13 8
4 0.07 14 10
5 0.16 15 15
6 0.4 16 26
7 0.6 17 60
8 1 18 100
9 1.4 19 180

10 2 20 300

Semmes Weinstein Filaments

 
Target force is given in grams. 
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4.4.2.2. Osteoarthritis and rheumatoid arthritis 
All of the OA (n = 40) and RA (n = 40) subjects had QST performed. The mean 

(median) tactile detection threshold for OA was 0.043 (0.04) g and for RA was 0.042 

(0.04) g. The mean two point discrimination distance for OA was 2.7 (3) mm and for 

RA was 2.6 (2) mm. Pressure allodynia was present in 60% of OA and 52.5% of RA 

patients. The mean (median) percentage of body surface area (BSA) affected by 

pressure allodynia was 4.8 (3.2) %BSA in OA with a range of 0.1 – 25%, and was 2.2 

(1.7) %BSA in RA with a range of 0.5 – 7%. Three OA patients had tactile allodynia 

of 0.3, 1 and 2% BSA and 4 RA patients of 0.3, 0.3, 2 and 3% BSA. See Table 4.4 .  

 

4.4.2.3. CRPS 
Forty-five CRPS patients had QST performed. The mean disease duration for the 

QST cohort was 5.3 years. CRPS patients displayed an overall lower (ie. 

hyperaesthetic) tactile threshold compared to the other cohorts, with a mean 

(median) threshold of 0.023 (0.07) g. There was a wide range from 0.008 – 4g, with 

47% being hyperaesthetic and 24% hypoaesthetic on the affected compared to the 

unaffected limb. On the affected limb, 12 (27%) could detect the normally 

undetectable finest Semmes-Weinstein filament (0.008g), and for all except one it 

was noxious. Among CRPS patients, 73% had tactile and pressure allodynia 

coexisting together (Table  4.4). The mean (median) %BSA was 14 (7.2) %, with a 

range of 1-83%. The area of allodynia extended beyond one limb in 36% (16).  

There was a moderate correlation between the duration of CRPS and %BSA 

ie. longer duration, larger %BSA (r = 0.31, p<0.05, two-tailed). Only 10 CRPS 

patients had two point discrimination tested, and it was similar to the other cohorts 

(mean 2.3, median 2 mm).  

 Several unusual sensory patterns were discovered in CRPS affected areas. 

With eyes closed: 

• Nineteen (42%) demonstrated referral of sensation (tactile stimulation felt 

concurrently in the area stimulated, and in another discrete area).  

• Eight (18%) subjects had allochiria (unilateral tactile stimulation perceived 

only in the analogous location on the opposite limb).  

• Three (7%) showed sensory extinction (concurrent bilateral tactile stimulation 

perceived only in one limb).  

• Four (9%) displayed tactile dysynchiria (unilateral non-noxious tactile 

stimulation is perceived bilaterally as noxious. The area of sensory 

impairment extended beyond the affected limb in 16 (36%). 
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4.4.2.4. Comparison of cohorts 
There was a significant difference in the mean %BSA affected by tactile allodynia 

between the CRPS patients compared to controls, OA and RA (Kruskal-Wallis, 

p<0.001, post hoc Mann-Whitney U-test with Bonferroni correction). See Table 4.4 . 

There was no statistically significant difference for the other parameters. 

 

 

4.4.3. Baseline sympathetic autonomic function 
 

4.4.3.1A. Healthy controls (overall cohort n = 40) 
All 40 subjects demonstrated good baseline skin blood flow. The group median flow 

in the right upper limb was 404 AFU and in the left 434 AFU. The subjects had 

homologous bilateral symmetric LDF responses to all sympathetic stimuli. Nine 

subjects had absent ESR responses in one or both limbs to limb dependency; there 

were normal bilateral symmetric ESR responses to all other sympathetic stimuli.  

The median ∆%bbf (IQR) for deep breath (DB), mental stress (MS) and the 

Valsalva manoeuvre (V) were 77 (28), 66 (49) and 84 (18) respectively. The median 

SR (IQR) for DB, MS and V were 1.1 (0.34), 1.13 (0.72) and 1.09 (0.19)The mean 

(median) composite ANS score was 19.2 (20). SeeTable 4.5 . 

4.4.3.1B. Matched healthy controls (n = 30) 
The group median flow in the right upper limb was 417 AFU and in the left 445 AFU. 

Seven subjects had absent ESR responses in one or both limbs to limb dependency; 

there were normal bilateral symmetric ESR responses to all other sympathetic 

stimuli.  

The median ∆%bbf (IQR) for deep breath (DB), mental stress (MS) and the 

Valsalva manoeuvre (V) were 82 (20), 77 (25) and 88 (13) respectively. The median 

SR (IQR) for DB, MS and V were 1.05 (0.14), 1.1 (0.21) and 1.05 (0.07). The mean 

(median) composite ANS score was 19.2 (20). SeeTable 4.5 . 

 

4.4.3.1C. Comparison of overall and matched control  cohorts 
Comparison of the qualitative response trace pattern frequencies and quantitative 

autonomic response data does not show any significant differences between the 

overall and matched cohorts.  
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4.4.3.2. Osteoarthritis and rheumatoid arthritis 
All subjects demonstrated good baseline skin blood flow. The group median flow in 

the right upper limb was 492 AFU and in the left 470 AFU in patients with 

osteoarthritis (OA), and 438 AFU right upper limb and 425 AFU left upper limb in 

patients with rheumatoid arthritis (RA).  

Among OA patients, 9 (17.5%) had absent LDF responses to one or more 

stimuli; 1 was of an asymmetric pattern (to mental stress). For RA patients, 13 

(32.5%) had absent LDF responses; none were of an asymmetric pattern. All other 

LDF responses to the remaining sympathetic stimuli among the OA and RA groups 

were present and normal.  

Comparing ESR responses, 23 OA patients had absent responses but only 1 

OA patient had an abnormal ESR form.  Nineteen RA patients had absent 

responses; 2 RA patients had absent ESR responses throughout. All other ESR 

responses to the remaining sympathetic stimuli among the OA and RA groups were 

present and normal.  

The mean (median) composite ANS score was 17.7 (19) for OA and 17.4 

(18.5) for RA. Data for ∆%bbf and SR to stimuli are given in Table 4.5B . 

 

4.4.3.3. CRPS (UL cohort, n = 30) 
All subjects demonstrated good baseline skin blood flow. The group median flow of 

the affected limb (AL) was 390 AFU, and in the unaffected limb (UL) 423 AFU. CRPS 

subjects could be divided into ‘warm’ (overall baseline mean blood flow of >250 

arbitrary flux units) and ‘cold’ (overall baseline mean blood flow of 150 - 250 arbitrary 

flux units) types. Twenty four patients had ‘warm’ CRPS, and six subjects had ‘cold’. 

 

In the CRPS cohort, 14 (43%) had absent LDF responses; 11 patients had 

asymmetric responses – 5 of these were to >1 sympathetic stimulus. The mean 

(median) composite ANS score was 15.4 (16). See Table  4.5A.  

Two patients with CRPS did not demonstrate an LDF response to deep 

breath (one bilaterally, one unilaterally in the unaffected limb (UL). Six had no 

response to mental stress (2 bilaterally and 4 unilaterally in the UL), and one to the 

Valsalva manoeuvre in the UL. Four demonstrated unilateral vasodilation LDF 

responses: all four to limb dependency, 2 to MS (1 in the affected limb (AL), 1 in the 

UL) and 1 to Valsalva in the UL. One subject had unilateral vasodilation LDF 

responses to all stimuli in the UL.  
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Thirteen (47%) had absent ESR responses to one or more sympathetic 

stimuli, with 5 (17%) having abnormalities of ESR trace form. Data for ∆%bbf and SR 

to stimuli are given in Table 4.5B . 

 

 

Table 4.5. Summary of baseline autonomic testing function parameters. 

A. Composite autonomic score: numbers of subjects with abnormal results (score 

<20 overall) with breakdown for presence/absence of response or qualitatively 

abnormal trace. 

ANSscore<20 ESR<10 ESR abnormal LDF<10 LDF asym
HC (N=40) 9 9 0 0 0
OA (N=40) 23 23 1 7 1
RA (N=40) 22 19 0 13 0
CRPS (N=30) 21 13 5 14 5  

ESR = electrodermal skin response, LDF = laser Doppler flowmetry response  

ESR<10 = absent ESR response to ≥1 stimuli in protocol, LDF<10 = absent LDF response to 

≥1 stimuli in protocol, ESR abnormal = qualitative trace abnormality present, LDF asym = 

qualitatively asymmetric trace. 

 

B. Quantitative data (medians and interquartile range, IQR) for baseline sympathetic 

autonomic testing. 

 

Sympathetic stimulus
∆%BBF (IQR) SR (IQR) ∆%BBF (IQR) SR (IQR) ∆%BBF (IQR) SR (IQR) ∆%BBF (IQR) SR (IQR)

Deep breath 77 (28) 1.1 (0.34) 86 (16) 1.05 (0.1) 79 (36) 1.07 (.26) 70 (26) 1.07 (0.19)
Valsalva 84 (18) 1.09 (0.19) 89 (11) 1.05 (0.07) 76 (25) 1.06 (0.15) 79 (30) 1.05 (0.16)
Mental stress 66 (49) 1.13 (0.72) 80 (27) 1.09 (0.17) 59 (39) 1.14 (0.39) 54 (31) 1.19 (0.44)
ANS score / 20 : mean
                       : median 

Cohorts 

15.4 19.2 17.7 17.4

CRPS UL (n = 30) Healthy controls (n = 40) Osteoarthritis (n = 40) Rheumatoid arthritis (n = 40)

16 20 19 18.5  

 

 

Sympathetic stimulus
∆%BBF (IQR) SR (IQR)

Deep breath 82 (20) 1.05 (0.14)
Valsalva 88 (13) 1.05 (0.07)
Mental stress 77 (25) 1.1 (0.21)
ANS score / 20 : mean
                       : median 

19.2
20

Age & gender matched HC (n=30)
Cohort

 

 

 

∆%BBF = group median value for mean percentage change from baseline blood flow, SR = 

symmetry ratio, ANS score / 20 = composite ANS score (mean & median values displayed). 

 

HC = healthy controls 
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4.4.3.4. Comparison of all cohorts 
Comparing healthy controls with OA, RA and CRPS cohorts, there was a significant 

difference for the ANS composite score (Kruskal-Wallis, p<0.001, post hoc Mann-

Whitney U-test with Bonferroni correction)(Fig.4.6).  

Comparing ∆%bbf of controls for DB, MS and V with OA, RA and CRPS 

cohorts (Fig.4.7), there was a significant difference for MS and V between HC and 

OA and RA (Kruskall-Wallis, p<0.001, post hoc Mann-Whitney U-test with Bonferroni 

correction). Comparing the SR of controls for DB, MS and V with OA, RA and CRPS 

cohorts (Siegel-Tukey test; see 4.5.3.) while there was a difference in variability 

between the limbs, it was not statistically significant difference. (Fig.4.8 ).  

 

 

Fig.4.6.  
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Fig.4.6. Box plots showing the composite autonomic (ANS) score for healthy controls 
(overall HC cohort, n = 40), osteoarthritis, rheumatoid arthritis and CRPS patients. 

CRPSHealthy controls Osteoarthritis Rheumatoid arthritis CRPSHealthy controls Osteoarthritis Rheumatoid arthritis
n = 40 n = 40 n = 40 n = 30 
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4.4.3.5. Comparison of CRPS with matched healthy co ntrols 
When the matched HC cohort were compared to the CRPS cohort, there was still a 

significant difference for the ANS composite score (Mann-Whitney p<0.001, U = 211, 

Z = -4.121). 

When matched controls were compared to the CRPS patients (Fig.4.8 ), the 

SR of blood flow responses to DB was significantly larger in CRPS patients 

compared to the control subjects (median + IQR: 1.1 [1.04 - 1.38] vs 1.05 [1.02 - 

1.16], p<0.05 Mann-Whitney U-test) but not for MS or V (p>0.05, Mann-Whitney U-

test). 
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Fig.4.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep breath Mental stress Valsalva 

∆%bbf  

Healthy controls

Osteoarthritis

Rheumatoid arthritis

Complex Regional Pain Syndrome

Healthy controls

Osteoarthritis

Rheumatoid arthritis

Complex Regional Pain Syndrome

Fig.4.7. Mean percentage change from baseline blood flow (∆%bbf) in response to 
sympathetic stimuli for healthy controls (overall cohort), osteoarthritis, rheumatoid arthritis 
and CRPS patients. 
 
Box plots comparing mean percentage change from baseline blood flow (∆%bbf) between healthy 
controls (overall cohort), osteoarthritis, rheumatoid arthritis and CRPS patients for deep breath, 
mental stress and Valsalva manoeuvre. 
AFU = arbitrary flux units 
 

(n = 40) 

(n = 40) 

(n = 40) 

(n = 30) 
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Valsalva Deep breath Mental stress 

Healthy controls 

Osteoarthritis 

Rheumatoid arthritis 

Complex Regional Pain Syndrome 

(n = 40) 

(n = 40) 

(n = 40) 

Fig.4.8. Symmetry ratio (SR) of healthy controls (overall cohort), osteoarthritis, rheumatoid 
arthritis and CRPS patients in response to sympathetic stimuli. 
 
Box plots showing the median, IQR and range for deep breath, mental stress and Valsalva 
manoeuvre. There is (non-significant) increased variability comparing the SR of controls for DB, MS 
and V with OA, RA and CRPS cohorts. 
 

SR 

(n = 30) 

Fig.4.8. 



 116 

 

Fig.4.9. Mean percentage change in baseline blood flow (∆%bbf)(A) and symmetry ratio 

(SR)(B) in healthy controls (age & gender matched cohort, n = 30) and CRPS subjects for 

deep breath and mental stress task.  

Box plots showing the median, IQR and range are illustrated. There is a statistically significant 
greater SR for a deep breath in CRPS subjects compared to healthy controls, demonstrating greater 
variability in the magnitude of response between the limbs (*, p<0.05 Mann Whitney U-test ).  
 

Healthy Controls 

CRPS 

SR 

Deep breath Mental stress 

Deep breath Mental stress 

∆%bbf 

B 

A 

(n = 30) 

(n = 30) 

* 

Fig.4.9. 
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4.4.3.6. Comparison of unilateral upper limb CRPS a nd CRPS involvement of >1 
limb. 
Comparing UL only (n = 22) with >1 limb involvement (n = 8), there was no 

statistically significant difference (Mann-Whitney U-test) between ∆%bbf and SR for 

any baseline autonomic function parameters. The characteristics of baseline pain 

were not markedly different either.  

 

4.4.3.7. Comparison of ‘cold’ and ‘warm’ CRPS. 
The mean disease duration of cold CRPS was 2.6 years. Comparing the ‘cold’ and 

‘warm’ groups, there was no statistically significant difference (Mann-Whitney U-test) 

between ∆%bbf and SR for any baseline autonomic function parameters. 

 

4.4.3.8. Comparison of QST and baseline sympathetic  autonomic function. 
Comparing the composite ANS score across the cohorts with %BSA, there was a low 

to moderate negative correlation (Spearman’s rho = -0.256, p<0.01) (ie. higher 

%BSA, more baseline autonomic abnormality). 

4.4.3.9. Comparison of UL-CRPS cohort (n = 30) with  overall CRPS cohort (n = 
44). 
Comparing UL and overall cohort QST data, the mean (median) tactile thresholds 

were 0.103 (0.055)g / 0.023 (0.07) g respectively. Comparing %BSA, it was 15.8 

(9.5)% / 14 (7.2)% respectively.  

 

4.5. Discussion 
 

4.5.1. Epidemiology 
Epidemiological studies demonstrate that there is a female preponderance in CRPS 

of between 3 - 4:1 (de Mos et al., 2007;Sandroni et al., 2003). Data from this cohort 

is similar with a male:female ratio of 1:4.6. Of patients with two limb CRPS with an 

upper and a lower limb involved, the majority (6/7) had ipsilateral or contralateral 

disease. This is consistent with previous epidemiological research of the pattern of 

CRPS spread (van Rijn et al., 2011;Veldman and Goris, 1996) showing that diagonal 

spread is unusual and often trauma related.  
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4.5.2. Quantitative sensory testing (QST) 
QST demonstrated that none of the healthy controls had allodynia, consistent with 

hypothesis 1. Patients with osteoarthritis, rheumatoid arthritis and CRPS were shown 

to have allodynia consistent with hypothesis 2. In OA and RA, tactile allodynia was 

unusual and confined to small areas while pressure allodynia was more common and 

involved slightly larger areas (mean %BSA of 4.8% and 2.2% respectively). In CRPS, 

tactile and pressure allodynia coexisted together, in larger areas (mean %BSA of 

14%). 

Several unusual sensory patterns were noted in CRPS patients including 

referred sensations, allochiria, tactile dysynchiria and sensory extinction. For a full 

review, see discussion of Chapter  7. 

Lower pain thresholds to pressure algometry compared to healthy controls 

have been described in OA (O'Driscoll and Jayson, 1974) and RA (Gerecz-Simon et 

al., 1989;Huskisson and Hart, 1972). Kosek et al described statistically (parametric) 

significant pressure allodynia in OA hip patients compared to age and sex matched 

healthy controls, with no difference between the groups for tactile thresholds (Kosek 

and Ordeberg, 2000). The mean duration of OA was 7 yrs, which is half the duration 

of this cohort. No tactile allodynia was noted. Another paper from this group 

examined QST parameters in age and sex-matched healthy controls and RA and 

found statistically (parametric) significant pressure allodynia over inflamed joints and 

additionally over a non-inflamed area in patients with > 5 years duration of disease, 

but no tactile allodynia (Leffler et al., 2002). Compared to age and sex-matched 

healthy controls, significant tactile hypoaesthesia was noted. In comparison, my data 

demonstrates a non-significant trend towards higher tactile thresholds and 

hypoaesthesia in OA and RA compared to healthy controls. However, these cohorts 

were not age and sex-matched and parametric statistical analysis was not used, 

which may account for the apparent differences. 

 

Studies utilising QST techniques in CRPS have shown pain at rest (Birklein et 

al., 2000), pressure hyperalgesia (Birklein et al., 2000;Vaneker et al., 2005) and 

mechanical allodynia (Rommel et al., 1999;Rommel et al., 2004) in the affected limb 

in differing combinations in different patients. Changes in warm and cold thresholds 

(Birklein et al., 2000;Huge et al., 2008;Huge et al., 2011))(Rommel et al., 2004) and 

sensory thresholds (Eberle et al., 2009);(Huge et al., 2011))(Rommel et al., 1999) 

have been noted. Similar findings of changes in warm and cold thresholds with cold 

allodynia and mechanical allodynia have been reported in children with CRPS 

(Sethna et al., 2007). Rommel et al (Rommel et al., 1999) described a subgroup 
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(33%) of CRPS patients with hemisensory impairment characterised by decreased 

temperature and pinprick sensation ipsilateral to the CRPS affected limb. The overall 

prevalence of mechanical allodynia was 58% and mean disease duration 4 years. 

Other studies report allodynia prevalence of 30% (Birklein et al., 2000) and 11% (de 

Mos et al., 2009), with mean disease durations of 6 months and 6 years respectively. 

In a follow-up study, Rommel et al (Rommel et al., 2001) confirmed that 30% of 

CRPS patients had hemisensory impairment. They were more likely to have 

mechanical allodynia and hyperalgesia, and tended to have longer duration of CRPS. 

 The prevalence of mechanical allodynia for this cohort that underwent QST 

assessment was 73% and mean disease duration was 5.3 years, range from 0.5 – 18 

years. Like Rommel and colleagues, a similar percentage of these patients (36%) 

were found to have sensory abnormalities extending beyond the affected limb. CRPS 

patients demonstrated large areas of tactile allodynia with mean %BSA of 14%. 

Furthermore, the disease duration correlated with the extent of allodynia. However, 

the fact that this is a long duration disease cohort with severe clinical features needs 

to be taken into consideration when comparing to the CRPS literature. 

Tactile hypoaesthesia is reported more frequently in CRPS. Rommel et al 

(Rommel et al., 2001) reported that of 40 CRPS patients, 85% had sensory 

impairment with higher tactile thresholds on the affected limb compared to the 

unaffected. The mean disease duration was 43 months. Huge et al investigated 

sensory and motor function in 118 chronic CRPS patients with a mean disease 

duration of 42 months (Huge et al., 2011). They found that comparing side to side 

differences, only 11% had hypoaesthesia and 30% had hyperalgesia. My cohort has 

substantially longer disease duration (68 months), and also demonstrated a higher 

proportion with hyperaesthesia (47%) compared to hypoaesthesia (24%). Huge et al 

suggest that their sensory QST findings support a role for small fibre loss of A-δ and 

c-fibres combined with central sensitization contributing significantly to the 

pathophysiology of the chronic CRPS. However they do not discuss how this 

proposed combination of mechanisms account for their patients displaying 

hyperaesthesia. Hypoaesthesia could be a manifestation of both small fibre loss and 

altered central sensory processing of sensory afferent input. The greater degree of 

hypoaesthesia and hyperaesthesia in my longer duration cohort may reflect the 

potential role for both of these processes. 
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4.5.3. Baseline sympathetic autonomic function  
Baseline sympathetic autonomic function was normal in healthy controls, OA 

and RA patients and impaired in CRPS patients consistent with hypothesis 3. Stimuli 

such as a deep breath (Allen et al., 2002) and mental stress (Silverman et al., 1996) 

are known to produce consistent vasoconstrictor responses in the glabrous skin of 

the fingers. In agreement with previous studies (Allen et al., 2002), robust 

vasoconstrictor responses were demonstrated in the control group to standard stimuli 

(Low et al., 1983;Valley et al., 1993). All 40 controls in this study had robust LDF 

responses to a deep breath. In healthy controls, a mean reduction of baseline skin 

blood flow of 60% to a deep breath, and 73% to a Valsalva manoeuvre have been 

reported (Mundo et al., 2002), compared to 86% and 89% respectively in this study. 

The lack of standardisation of effort for the deep breath and Valsalva is likely to 

account for the observed difference. Silverman et al  (Silverman et al., 1996) report a 

∆%bbf of 37 +/- 18% for mental stress using serial seven subtraction in 7 healthy 

males aged 22-30 years. In comparison, this work found a ∆%bbf for the same 

mental stress task of 80%; however my healthy control group comprised 40 males 

and females aged 22-64 years. 

The venoarteriolar (VAR) response is cutaneous vasoconstriction in response 

to limb dependency, and occurs as a response to venous congestion (Crandall et al., 

2002). The mechanisms remain unclear and include contributions from a myogenic 

reflex (Okazaki et al., 2005) and non-adrenergic neurally mediated local mechanisms 

(Crandall et al., 2002). The VAR has been used as a means to investigate very early 

skin VAR dysfunction using LDF (Stoyneva, 2004). In healthy controls it has been 

shown to be less reliable compared to an inspiratory gasp which was present in all 

the subjects tested (Feger and Braune, 2005), which is in agreement with this work. 

Previous work shows that ESR responses to a deep breath are consistently 

present in healthy controls (Mundo et al., 2002). Hay et al (Hay et al., 1997b) 

reported that 56/58 healthy controls had ESR responses to an inspiratory gasp while 

Shahani et al (Shahani et al., 1984) found inspiratory gasp responses to all 30 

controls tested. In this work, ESR responses to a deep breath were present in all the 

healthy controls tested. Arousal such as mental arithmetic also produced ESR 

responses in healthy controls, similar to previous work (Critchley, 2002). No 

references in the literature could be found for use of ESR in assessment of VAR, 

suggesting that this is novel work. 
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4.5.4. Baseline sympathetic autonomic function & rheumatic disease 
There is a paucity of literature assessing autonomic function in rheumatic disease 

(Stojanovich, 2009). There is even less using LDF and probably none utilising ESR 

other than as a means of ‘stress’ assessment in research papers (Fujita et al., 

2001;Geenen et al., 1998). LDF has been used to assess the skin blood flow over 

the small joints of the hand in OA (Ng et al., 2003), and in RA to assess inflammation 

(Ferrell et al., 1996;Ferrell et al., 2001). Meyer compared LDF over PIP joints in RA 

and OA, reporting a lack of difference (Meyer et al., 2005). LDF has been used to 

assess endothelial function in RA and the relationship to inflammatory activity (Foster 

et al., 2010;Meyer et al., 2007;Sandoo et al., 2011), and for the assessment of 

cutaneous sensory and autonomic axon reflexes in RA utilising responses to 

intradermal capsaicin (Jolliffe et al., 1995). Autonomic function assessment in RA 

was assessed by Bidikar et al (Bidikar and Ichaporia, 2010). They used orthostatic, 

sustained hand grip and cold pressor tests in 50 RA patients, reporting sympathetic 

autonomic dysfunction in 26%. Toussirot et al (Toussirot et al., 1993) found 30/50 

(60%) RA patients had autonomic dysfunction using heart rate variability analysis of 

orthostatic, deep breathing and Valsalva manoeuvre testing. We found that 32.5% of 

RA patients had LDF abnormalities to a series of sympathetic autonomic stimuli, or 

55% using the composite ANS score of LDF and ESR responses. However it is not 

possible to directly compare the studies as all used different test parameters. 

 

4.5.5. Baseline sympathetic autonomic function, CRPS & LDF 
Impaired LDF responses to a deep breath have been reported in early CRPS  

(Wasner et al., 1999) and after trauma (Gradl and Schürmann, 2005;Schürmann et 

al., 1996;Schürmann et al., 1999;Schürmann et al., 2000), with recovery of 

vasomotor function on resolution of the CRPS (Gradl and Schürmann, 2005;Wasner 

et al., 1999). Sympathetic blockade (Rosen et al., 1989) or sympathectomy  (Baron 

and Maier, 1996) of the affected limb can improve skin blood flow.  

Altered responses to limb dependency (Rosen et al., 1988), mental stress 

(Birklein et al., 1998) and Valsalva manoeuvre (Bej and Schwartzman, 1991) have 

also been shown. Birklein et al  (Birklein et al., 1998) used VAR, inspiratory gasp, 

cold pressor and mental arithmetic (serial seven subtraction) as sympathetic stimuli 

and noted that 7/21 controls and 6/20 patients had vasodilation in at least one test 

(5/6 patients to mental arithmetic with vasodilation on the unaffected limb). These 

subjects were excluded from analysis. No healthy control in our data demonstrated a 
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vasodilation pattern, and 4/30 CRPS patients had vasodilation to at least one 

stimulus, 2/4 to mental stress.  

Dayan et al investigated venoarteriolar (VAR) and venoarteriolar-myogenic 

(VMR) responses in upper and lower limb CRPS patients by measuring the reactive 

hyperaemic response (Dayan et al., 2008). They found an impaired balance in CRPS 

affected limbs between the vascular regulation systems responsible for 

vasoconstriction and vasodilation. Whilst this pattern was found for an ischaemic 

stimulus, my results suggest that a similar imbalance may occur with the baseline 

sympathetic stimuli used in this protocol. 

 

The pattern of autonomic dysfunction in CRPS varies over time. Ide et al (Ide 

et al., 1997) investigated 20 CRPS patients subdivided into Steinbrocker’s stages 1 

and 2 (Steinbrocker and Argyros, 1958). They used a symmetry ratio of ∆%bbf 

affected / unaffected limb to an inspiratory gasp, and found decreased blood flow 

with a stronger vasoconstrictor response in the affected hand of later stage 2 patients 

compared to stage 1, with a mean SR of 1.56. When the SR for a deep breath is 

calculated the same way, data from our work showed a SR of 1.09. However, the 

mean duration of symptoms for the 9 stage 2 patients was 9.4 months, where as 

almost all of the CRPS cohort from our study had much longer duration disease and 

were Steinbrocker stage 3. Wasner et al (Wasner et al., 2001) report three distinct 

vascular regulation patterns identifiable using whole body warming and cooling 

related to the duration of CRPS; warm/early, intermediate, cold/chronic. The duration 

of disease was 1.5 – 48 months. Kurvers et al (Kurvers et al., 1995) describe similar 

findings in 120 patients meeting Veldman criteria (Veldman et al., 1993) for CRPS of 

increased skin blood flow in early/warm CRPS and reduced in intermediate and cold 

stages. The mean duration of patients with ‘cold’ CRPS was 33 months. Therefore 

the CRPS patients comprising the cohort for our study have much longer duration 

disease, and there is almost no data available for comparison. 

 

4.5.6. Baseline sympathetic autonomic function, CRPS & ESR 
There is even less literature on ESR in CRPS than LDF. Impairment of ESR 

responses has been reported in CRPS. Rommel et al describe differences in 

waveform between sides, and differences in amplitude or latency in ‘severe’ cases 

for sympathetic skin response (SSR) to single square wave electrical stimuli. 

(Rommel et al., 1995), and confirmed the findings and correlation with disease 

severity in a follow up report (Rommel et al., 1996). Other studies confirm changes in 
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amplitude and latency (Bolel et al., 2006;Clinchot and Lorch, 1996;Drory and 

Korczyn, 1995). Pankaj (Pankaj et al., 2006) studied sympathetic skin response to 

electrical stimulation in CRPS patients with abnormal 3-phase bone scintigraphy. 

SSR was absent in 29% of CRPS patients. Furthermore, 79% of 14 patients with 

disease duration of greater than 6 months had abnormalities of SSR compared to 

11% presenting within 3 months. Our data demonstrated abnormal ESR responses 

to sympathetic stimuli in 47%. However, the studies use different protocols and ESR 

techniques so are not directly comparable. 

 

4.5.7. Study strengths  
As previously discussed (4.2.3.3., 4.2.4.1.) there is no consistent method of analysis 

of LDF or ESR responses. The approach of combining the two techniques to provide 

a qualitative composite ANS score appears to be new in the literature. LDF 

responses are more consistent across the groups, with no healthy control 

demonstrating an LDF abnormality to the sympathetic testing protocol. The ESR 

responses are more variable, with 9/40 (22%) controls having one or more 

abnormality to the sympathetic testing protocol. Thus on its own the ESR responses 

are not a good method to compare autonomic function across different cohorts. 

However, when combined with the LDF responses to produce a composite ANS 

score, a potentially more useful measure is produced. It would be suitable for use in 

allodynic patient populations, and for the assessment of dynamic sympathetic 

responses to stimuli. 

 

4.5.8. Study limitations and future directions 
The QST was detailed, involving use of an official ‘Somedic’ brush and a full set of 

twenty Semmes-Weinstein filaments for assessment of static allodynia and tactile 

thresholds. The filaments are expensive, and not practically easily available to 

therapists working in district general hospitals. However, simple methods such as 

use of a disposable 4g filament (used by diabetes nurses to test for loss of protective 

sensation) for assessing static allodynia, a pain or pastry brush for dynamic 

allodynia, a disposable ‘neurotip’ for sharp sensation  /hypoaesthesia should be used 

concurrently. This would help to establish the reliability of a simpler, more easily 

administered version compared to the full version used in the study.  

The CRPS cohort has long duration disease. Future research needs to 

include early onset disease, and to repeat assessments longitudinally. This will help 

to understand the evolution of the disease over time. It will ascertain reliability and 
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tolerability of the autonomic function assessment protocol and whether repeated 

exposure causes learned responses or a biofeedback effect.  

The rheumatoid arthritis patients all had stable disease. Further work could 

investigate whether autonomic responses change during flares of disease. 

 The sympathetic testing protocol used five sympathetic stimuli. More 

investigation could be done on which of the stimuli are most robust and reliable, 

aiming to reduce the number of stimuli needed. In terms of quantitative assessment 

of LDF responses, the ∆BBF is a simple but blunt measure. The current method is 

also laborious and time consuming, being done by hand. Further work should look 

into different types of quantitative assessment eg. area under the curve, and 

subtraction as a measure of symmetry. More work on the software script could 

improve accuracy, reduce observer bias with automatic peak/trough finding, and 

markedly speed up the analysis process. 

 

4.5.9. Clinical Implications 
QST is able to delineate patterns in CRPS, including hypoaesthesia and 

hyperaesthesia. It is helpful to establish the presence and extent of allodynia, and to 

look for other more unusual sensory patterns. Severe allodynic CRPS requires a 

different therapy approach to that of hypoaesthesia. 

 

This work has established a practical, non-invasive means of assessing 

baseline sympathetic autonomic function, applicable to CRPS and other chronic pain 

conditions. It has the major advantage of being tolerable to patients with severe, 

extensive allodynia. This may be applicable in research where assessment of 

sympathetic function is needed in an allodynic patient population. 

 

4.6. Summary 
 

The hypotheses postulated were proven: 

• There was no allodynia present in healthy controls. 

• Allodynia was present in some osteoarthritis (OA) and rheumatoid 

arthritis (RA) patients and most marked in CRPS patients. 

Mechanical allodynia was present in 60% of OA and 52.5% of RA patients, in 73% of 

CRPS patients and in none of the healthy controls. Several unusual sensory patterns 

were noted in CRPS patients including referred sensations, allochiria, tactile 

dysynchiria and sensory extinction. A moderate correlation was found between the 
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duration of CRPS and percentage of body surface allodynia (%BSA) ie. longer 

duration, larger %BSA.  

 

The third hypothesis was partially proven. 

• Baseline sympathetic autonomic function was normal in healthy controls, 

and did show some impairment in OA and RA patients with most 

impairment in CRPS patients. 

Abnormalities of baseline sympathetic autonomic function were found in OA, 

RA and CRPS patients compared to healthy controls, with a significant difference in 

composite ANS score impairment between patient groups and healthy controls, and 

age and sex matched healthy controls compared to CRPS. There was a significant 

difference for ∆%bbf mental stress between HC and OA and RA patients, and non-

significant increased variability of SR between the limbs for different stimuli. When 

age and sex matched healthy controls were compared to CRPS patients, SR of blood 

flow responses to DB was significantly larger in CRPS patients. There was no 

difference in baseline autonomic parameters comparing unilateral upper limb CRPS 

and CRPS involvement of >1 limb, or ‘cold’ and ‘warm’ CRPS. 

 

4.7. Conclusion 
Allodynia does not occur in healthy controls, but is present in patients with OA, RA 

and CRPS. The autonomic testing protocol described is novel, and is able to 

delineate differences in baseline autonomic function in patients with CRPS and 

chronic rheumatic disease compared to healthy controls in keeping with previous 

studies. Several unusual sensory patterns were discovered in CRPS affected areas 

including allochiria, referral of sensation, sensory extinction and tactile dysynchiria.  
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Chapter 5:  

Sensory disturbances and pain responses during optokinetic 
challenge in complex regional pain syndrome (CRPS) and 
rheumatic disease 
 

“Mirrors present the opposite of blindness – sight without touch. As the 

mirror world is not checked by touch, or any of the other senses, it is 

less than a complete copy of the world we call reality. But it is also 

more, for our visual imagination is not constrained by counter-

evidence.” 

 

Professor Richard Gregory from 'Mirrors in Mind' 

 

 

Image: The Royal Institution, 2010. Professor Richard Gregory [online]. London: The Royal Institution of Great 

Britain. Available from: http://www.rigb.org/contentControl?action=displayContent&id=00000004163 [Accessed 

18.1.2012]. 

 

5.1. Introduction 
 

The background literature upon which the study and this chapter are based is 

covered in Chapter 2, sections 2.2 - 2.3. An outline is presented here with the reader 

being referred to the appropriate section of Chapter 2 where fuller details can be 

found. 

This study builds upon the previous work described in Chapter 4 by 

assessing vulnerability to sensorimotor conflict in CRPS, chronically painful 

rheumatic disease (osteoarthritis (OA), rheumatoid arthritis (RA)) and healthy 

controls, and relating the findings to baseline assessment of quantitative sensory 

testing and allodynia.  

The concept of conflicting sensory stimuli generating nociceptive sensations is 

relatively new. From his work on patients with left neglect and parietal lobe syndrome 

(Ramachandran, 1995), Ramachandran proposed the existence of a unilateral right 

cortical centre monitoring incongruence of somaesthetic sensation (CIS). He 

suggests that sensory (including visual and sensorimotor) conflict offers different 

interpretive possibilities and the potential for vacillation. In evolutionary terms, this is 

a potential survival disadvantage. The CIS has a role to detect anomalies and to 
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generate a paradigm shift if the discrepancy is too large, enabling a rapid behavioural 

response. A positron emission tomography (PET) study of incongruence between 

motor intention and sensory feedback by Fink (Fink et al., 1999) showed a right 

dorsolateral prefrontal area differentially activated by sensorimotor conflict. Harris 

(Harris, 1999) suggested that incongruent sensorimotor feedback may be generated 

as a consequence of cortical reorganisation, be detected by the CIS and result in 

phantom limb pain in amputees and in other chronic pain conditions. For full details, 

see Chapter 2; section 2.2.5. ‘Sensorimotor conflict and pain’.  

Sensory conflict can generate unpleasant somaesthetic experiences in 

susceptible healthy individuals. It is a well recognised explanation of motion sickness 

(Warwick-Evans et al., 1998). Our group has shown that it is possible to induce a 

range of unpleasant somesthetic percepts including pain in healthy controls by using 

an optokinetic system (mirror/whiteboard) to generate conflict between the visual and 

proprioceptive senses (McCabe et al., 2005b). Furthermore, the susceptibility to this 

is increased in chronic pain patients eg. fibromyalgia (McCabe et al., 2005a;McCabe 

et al., 2007).  

Cortical reorganisation in sensory and motor areas has been demonstrated in 

CRPS patients (Maihöfner et al., 2003;Maihöfner et al., 2007), with resolution in 

those who recover (Maihöfner et al., 2004). The extent of somatotopic shift has been 

shown to correlate with the incidence and severity of phantom limb pain (Lotze et al., 

2001).  Therefore CRPS patients may have increased susceptibility to sensorimotor 

conflict. There is also increasing evidence for central pain mechanisms in the chronic 

pain of osteoarthritis (OA) and rheumatoid arthritis (RA) (for full details, see Chapter 

2, sections 2.5.6 and 2.6.6.), so these groups may also have enhanced susceptibility 

to sensorimotor conflict. However extensive areas of cortical reorganisation have not 

been demonstrated thus far in OA and RA patients, who may therefore have less 

susceptibility to sensorimotor conflict compared to CRPS patients. A better 

understanding of such mechanisms would potentially improve their treatment. 

I postulate that vulnerability to somaesthetic sensory conflict arises from a 

lowered threshold for detecting sensorimotor discrepancy and subsequent failure of 

central integration of those detected sensory discrepancies (for full details, see 

Chapter 2, section 2.3., ‘Somaesthesia; the integration of sensation with body 

schema’). Where there is enhanced susceptibility to sensory (including visual and 

sensorimotor) conflict such as in chronic pain patients with cortical reorganisation, 

there will be an increased likelihood of enhanced pain and abnormal somaesthetic 

sensation.  
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 This study uses an optokinetic device to create visuo-sensorimotor conflict in 

healthy controls, and patients with chronic pain due to CRPS, OA and RA and 

assesses whether any somaesthetic sensory disturbances are generated. It then 

relates those findings back to the baseline assessments of quantitative sensory 

testing. 

 

5.1.1. Aims 
 

To assess vulnerability to the generation of new or exacerbation of current pain, and 

other sensory perceptions via sensorimotor conflict using an optokinetic challenge in 

healthy controls and in patients with chronic pain due to CRPS, RA and OA. 

5.1.2. Hypothesis 
 

1. During an optokinetic challenge, sensory disturbances and pain responses 

will be more common in CRPS patients compared to healthy controls and 

patients with rheumatoid or osteoarthritis. 

 

 

5.2. Methodological considerations  

5.2.1. Assessment of optokinetic induced vulnerability 
The protocol is based upon the work of McCabe et al (McCabe et al., 2005b) The 

optokinetic device is a framed mirror 150 x 80 cm, with a non-reflective whiteboard 

on the obverse side. Assessments were conducted in a quiet room heated to a 

comfortable ambient temperature. In the original study with healthy controls, the 

order of limb assessment was randomised. During pilot work, it was quickly apparent 

that in many CRPS patients, incongruent movements particularly while viewing the 

mirror resulted in worsening of CRPS pain. A randomised order may have precluded 

recovery time, requiring the assessment to be abandoned. In order for CRPS 

patients to be able to complete the assessment, the order of assessment was not 

randomised. The order used was with congruent movements followed by incongruent 

starting with the right upper limb on the whiteboard side, progressing to the mirror 

side. The procedure was repeated for the left upper limb. This avoided starting with 

incongruent movements and allowed for recovery time between incongruent phases, 

avoiding wind-up pain. The same order was maintained for healthy subjects and 

subjects with OA and RA (Fig.5.1). As there were a mixture of right and left handed 
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subjects, dominant and non-dominant affected limbs, any order effect of hand 

dominance was diluted. 

5.2.2. Assessment of pain 
In pilot work and McCabe’s original study, when painful sensations were reported the 

subject was asked to rate it on a verbal rating scale where 0 = no pain and 10 = 

worst possible pain. This is a modified Likert scale (Likert, 1952), which has been 

shown to reliably measure changes in pain (Oppenheim AN, 1992). However most 

patients put their baseline pain levels at 8, 9 or 10 giving little scope to understand 

how the pain had changed if it increased. Therefore a simple verbal scale was used 

where patients were asked if their pain was unchanged or mild, moderate or severely 

worse or better than baseline. 

5.2.3. Participants 
For full details of inclusion/exclusion criteria etc, see Chapter 3. 

5.2.4. Ethical considerations 
It was possible that the optokinetic challenge might result in somaesthetic 

disturbances including pain in some healthy subjects, and worsening of pain in some 

CRPS, OA and RA patients. Clinical experience both personally and within our group 

had shown that sensations in healthy controls are short lived and resolve completely, 

and in CRPS patients their pain returns to baseline levels within minutes to 4 - 6 

hours. The effect in OA and RA was unknown. All participants were forewarned of 

this possibility. The patient and healthy volunteer information sheet contained advice 

about what to do if pain was experienced together with contact details if participants 

did experience problems and required further advice (see Appendix 2). Subjects 

were advised that if they did experience an exacerbation of pain to take their usual 

analgesia. Full ethical approval was granted by the local ethics committee.  

5.2.5. Apparatus 

• Optokinetic mirror whiteboard device (150 x 80cm mirror in a wooden frame 

with a whiteboard backing) (Fig.5.2) 

 

 

5.3. Method: 

5.3.1. Subject preparation and protocol 
Prior to undergoing assessments participants were asked to remove their watch, any 

jewellery on hands and wrists, shoes and socks.  
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All participants (Subjects and Controls) were seated with a mirror/ whiteboard in 

front of them positioned at waist height and at right angles to the subject’s body 

(Fig.5.2). The participant was requested to put one limb either side of the whiteboard. 

All participants were asked to look to one side of the device so that one limb was 

hidden behind it, and one was visible. They were instructed to flex and extend both 

limbs in a congruent manner whilst attending to the visible limb on the whiteboard 

side for a timed 60 seconds. This exercise was repeated with: 

• the limbs being moved in an incongruent manner whist viewing the visible 

limb on the whiteboard side. 

On completion of the above, the optokinetic device was turned around so that 

the same limb could be assessed in the same manner viewing the mirror side. This 

exercise was repeated with: 

• the participant viewing the visible limb on the mirror side with limbs moved in 

a congruent manner. 

• the participant viewing the mirror side with limbs moved in a incongruent 

manner. 

After this, the above stages were repeated with the other limb visible. The 

protocol was performed in a quiet temperature controlled room with no pictures on 

the walls to avoid distraction. 

5.3.2. Control Condition  
The control condition for upper and lower limb assessments was congruent and 

incongruent movements as detailed above without the mirror/whiteboard device 

between the limbs. This provided a baseline for movement without visuomotor 

distortion (Fig.5.2). 

For all subjects, flexion and extension from the elbow for upper limb and of 

the knee for the lower limb for up to 60 seconds as tolerated was used.  

Healthy controls OA and RA subjects were tested on the upper limbs. CRPS 

patients were assessed on the affected and contra-lateral limbs (which included 

included upper and lower limbs). 
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Fig.5.1 

Fig.5.1. Flow chart showing the stages of the optokinetic protocol. Each subject 
performed the same protocol progressing through the stages in sequential order. 

Hidden limb MovementVisible limb Viewing condition

Stage 2 RightLeft IncongruentWhiteboard

RightLeft Whiteboard CongruentStage 1

RightLeft Mirror CongruentStage 3

RightLeft Mirror IncongruentStage 4

Right Left Whiteboard CongruentStage 5

Right Left Whiteboard IncongruentStage 6

Right Left Mirror CongruentStage 7

Right Left Mirror IncongruentStage 8

Progress

No device CongruentControl 
stages

No device Incongruent
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RightLeft Mirror IncongruentStage 4 RightLeft Mirror IncongruentStage 4
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No device Incongruent

No device CongruentNo device CongruentControl 
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No device IncongruentNo device Incongruent
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5.3.3. Qualitative assessments  
These were made throughout by a series of open questions. As far as possible, no 

specific direct enquiry was made about possible sensory changes to prevent leading 

the subject and creating bias. Specific prompts were used if necessary as follow-up 

to positive responses to open questions, or where it was clear that the subject did not 

understand the question (see Appendix 5). Where painful sensations were reported, 

the subject was asked to rate it on a simple verbal rating scale as described above.  

  

5.3.4. Vulnerability to optokinetic induced sensorimotor mismatch 
The degree of sensorimotor conflict escalates moving through the stages. The stage 

with least conflict is whiteboard (WB) congruent (no visual input and congruent 

proprioception). WB incongruent and mirror congruent are intermediate levels of 

conflict (no visual input and incongruent proprioception in the former, and ‘false’ 

congruent visual input with congruent proprioception in the latter). Conflict is maximal 

with the mirror incongruent stage (‘false’ conflicting visual input with conflicting 

proprioception). 

Based upon McCabe et al (McCabe et al., 2005b), ‘vulnerability’ 

classifications were allocated. Subjects were assigned to the following vulnerability 

classification according to how many of the four stages generated sensory 

disturbances (SeD):  

Fig.5.2. 

 

Fig.5.2. Optokinetic mirror/whiteboard apparatus demonstrating incongruent movement 

whilst viewing the mirror side. 
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High   Sensory disturbance all stages  

Moderate  Sensory disturbance ≥3 mirror +/- 3 whiteboard (WB) stages 

Mild   Sensory disturbance ≤2 mirror +/- 2 WB stages 

Minimal Sensory disturbance 1 mirror +/- 1 WB stage 

Nil   No sensory disturbances 

 

5.3.5. Optokinetic vulnerability score 
Having created a vulnerability classification, a score could then be assigned between 

0 – 4 (where none = 0, minimal = 1, mild = 2, moderate = 3 and high = 4) to create an 

optokinetic vulnerability score (OVS). This ordinal level ranking system allowed for 

statistical comparisons to be made.  

5.3.6. Data analysis 

5.3.6.1. Sample size 
The sample size was based upon McCabe’s  original paper (McCabe et al., 2005b). 

This detailed the results of an optokinetic challenge in 41 healthy controls.  

5.3.6.2. Statistical analysis 
Only symptoms additional to, or as an exacerbation to baseline symptoms were 

included in the data analysis. The data is presented as percentages (actual number 

of subjects), mean and median values. Statistical analysis was performed on 

Statistical Package for the Social Sciences (SPSS) v.16 software and utilised non-

parametric tests. For comparison between cohorts, the Mann-Whitney or Kruskal-

Wallis test were used and for correlation analysis, the Spearman’s Rho test. Where 

categorical data is compared, the chi-squared test was used. Odds ratios (OR) and 

95% confidence intervals (95% CI) were calculated where appropriate. 

 

 

5.4. Results 
Forty healthy controls, 40 OA, 40 RA and 55 CRPS patients underwent assessment 

of vulnerability to sensorimotor conflict using the optokinetic mirror whiteboard 

system. For details of demographics, see Chapter 4.  
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5.4.1. Sensory disturbances 
Sensory disturbances during baseline testing (no mirror/whiteboard device) were 

reported in only 1 control, 2 OA, 1 RA and 3 CRPS subjects. 

Abnormal somaesthetic sensations additional to baseline were perceived 

throughout different stages of the protocol by some participants in all the cohorts. 

Twenty-two (55 %) of controls, 27 (67.5%) of RA, 36 (90%) of OA and 50 (91%) of 

CRPS subjects perceived abnormal sensations (see Table 5.1, Fig.5.3). Comparing 

the cohorts, there was a statistically significant difference in the frequency of subjects 

with abnormal somaesthetic sensations (χ2 (3) = 22.893, p<0.001) and an association 

between cohort and likelihood of abnormal somaesthetic sensations (Cramer's V = 

0.362). The odds ratio (95%CI) for perceiving abnormal somaesthetic sensations 

compared to a healthy control was 8.2 (2.7;24.8) in a CRPS subject, 7.4 (2.2;24.6) in 

OA and 1.7 (0.7;4.2) in RA. 

 

Table 5.1. Optokinetic vulnerability: distribution by cohort. 

 

Cohort N High Moderate Mild Minimal Nil
CRPS (%) 55 17 (31) 19 (34.5) 11 (20) 3 (5.5) 5 (9)
HC (%) 40 0 7 (17.5) 11 (27.5) 4 (10) 18 (45)
OA (%) 40 8 (20) 14 (35) 12 (30) 2 (5) 4 (10)
RA (%) 40 2 (5) 12 (30) 8 (20) 5 (12.5) 13 (32.5)

Vulnerability

 
CRPS = complex regional pain syndrome, HC = healthy controls, OA = osteoarthritis, RA = 

rheumatoid arthritis. 
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Fig.5.3.  

 

 

Fig.5.3. Comparison of the numbers of subjects perceiving abnormal sensations in 

addition to baseline at any stage in the protocol, and those that did not by cohort.  

CRPS = complex regional pain syndrome, HC = healthy controls, OA = osteoarthritis, RA = 

rheumatoid arthritis. 

 

In all participant groups, altered or exacerbated sensory disturbances were 

predominantly reported in the hidden limb and faded rapidly after limb movement had 

ceased and the hidden limb could be directly visualized by the subject. There were a 

variety of abnormal sensations perceived which are detailed in Table 5.2.  

5.4.1.1. Sensory disturbances and degree of sensorimotor conflict 
Overall, subjects more often had abnormal sensations when looking at the mirror 

(62%) rather than the whiteboard (34%), and with incongruent (55%) rather than 

congruent movements (41%).   

When the least conflicting stage (whiteboard congruent) was compared with 

the most (mirror incongruent), overall there was a statistically significant increased 

frequency of abnormal sensations (χ2 (3) = 8.528, p<0.05). Compared to healthy 

controls, the odds ratio (95%CI) for perceiving abnormal sensations in the most 

conflicting stage was 5.3 (2;14.1) for CRPS, 6.3 (2.1;19.5) for OA and 1.5 (0.5;3.1) 

for RA subjects. This was also statistically significant within each cohort; χ2 (1) = 

12.511, p<0.001 (CRPS), 22.029, p<0.001 (HC), 23.226, p<0.001 (OA), 14.907, 

Number of 
subjects 

Cohort 

Abnormal 
sensations 

No abnormal 
sensations 

50 

18 

5 

13 

36 

4 

27 

22 
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p<0.001 (RA). All stages of the protocol generated a higher frequency of report in the 

CRPS, OA and RA cohorts than that of the maximum report in the HC population. 

When the intermediate conflict level stages (whiteboard incongruent and 

mirror congruent) are compared, in every cohort there were higher frequencies of 

sensory disturbances in the mirror congruent compared to the whiteboard 

incongruent stage. See Table 5.2.  

 

5.4.2. Pain responses 
During the optokinetic protocol, new onset of pain was felt in 3 (7.5%) of control 

subjects. Fourteen (35%) of RA, 20 (50%) of OA and 44 (80%) of CRPS subjects had 

exacerbation of their usual pain (see Table 5.3, Fig.5.4). Comparing cohorts, there 

was a statistically significant difference in the frequency of subjects with pain (χ2 (3) = 

51.619, p<0.001) and an association between cohort and odds of having pain 

(Cramer's V = 0.543). The odds ratio (95%CI) for perceiving pain compared to a 

healthy control was 50 (12.8;190.2) in a CRPS subject, 12.5 (3.3;46.7) in OA and 6.7 

(1.7;25.5) in RA. 

5.4.2.1. Pain and degree of sensorimotor conflict 
Overall, subjects more often had pain when looking at the mirror (37%) rather than 

the whiteboard (23%), and with incongruent (34%) rather than congruent movements 

(26%). Comparing the least conflicting stage (whiteboard congruent) with the most 

(mirror incongruent), overall there was no statistically significant difference in 

frequency of pain reports compared to baseline. The odds ratio (95%CI) for 

perceiving new or additional pain for the most compared to least conflicting stage 

was 2.9 (1.8;4.8). Within the cohorts, there was an increased frequency of new or 

enhanced pain. In the CRPS group this was statistically significant (χ2 (1) = 21.008, 

p<0.001), and was non-significant in the OA, RA and control groups. The OA group 

showed a more even distribution across the conflict gradient compared to the other 

cohorts (Fig.5.4).  
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Table 5.2. Details of the incidence of symptoms reported in addition to baseline at 

each stage of the protocol in relation to the study populations.  

 

Sensation perceived C IC C IC C IC C IC
Pain 17 (31%) 27 (49%) 32 (58%) 41 (74%) 0 0 1 (2.5%) 3 (7.5%)
Weight change of limb 12 (22%) 8 (14%) 14 (25%) 22 (40%) 2 (5%) 2 (5%) 2 (5%) 7 (17.5%)
Loss or gain of limb 2 (4%) 2 (4%) 5 (9%) 10 (18%) 0 0 1 (2.5%) 9 (22.5%)
Nausea 2 (4%) 4 (7%) 10 (18%) 12 (22%) 0 0 1 (2.5%) 3 (7.5%)
Tingling, pins & needles 2 (4%) 3 (5%) 2 (4%) 8 (14%) 0 0 1 (2.5%) 2 (5%)
Feeling of peculiarity 1 (2%) 0 8 (14%) 13 (24%) 0 1 (2.5%) 4 (10%) 7 (17.5%)
Headache 1 (2%) 1 (2%) 4 (7%) 9 (16%) 0 0 0 0
Dizziness 1 (2%) 2 (4%) 1 (2%) 3 (5%) 0 0 0 1 (2.5%)
Foreigness 0 0 0 0 0 0 0 1 (2.5%)
Tiredness 0 1 (2%) 0 1 (2%) 0 0 0 2 (5%)
Temp change 2 (4%) 4 (7%) 4 (7%) 5 (9%) 0 0 0 3 (7.5%)
Stiffness 0 0 1 (2%) 1 (2%) 0 0 0 0
Phantom swelling 1 (2%) 0 1 (2%) 4 (7%) 0 0 0 0
Total no. any sensation 30 (54.5%) 36 (65%) 37 (67%) 47 (85%) 2 (5%) 3 (7.5%) 9 (22.5%) 21 (52.5%)

WB Mirror WB Mirror
CRPS Healthy controls

 

Sensation perceived C IC C IC C IC C IC
Pain 12 (30%) 12 (30%) 16 (40%) 16 (40%) 5 (12.5%) 7 (17.5%) 9 (22.5%) 12 (30%)
Weight change of limb 12 (30%) 12 (30%) 11 (27.5%) 12 (30%) 4 (10%) 6 (15%) 9 (22.5%) 12 (30%)
Loss or gain of limb 0 0 7 (17.5%) 24 (60%) 0 0 4 (10%) 15 (37.5%)
Nausea 1 (2.5%) 1 (2.5%) 2 (5%) 4 (10%) 1 (2.5%) 1 (2.5%) 0 4 (10%)
Tingling, pins & needles 0 1 (2.5%) 1 (2.5%) 3 (7.5%) 3 (7.5%) 1 (2.5%) 2 (5%) 4 (10%)
Feeling of peculiarity 1 (2.5%) 1 (2.5%) 2 (5%) 2 (5%) 0 0 2 (5%) 4 (10%)
Headache 0 0 0 1 (2.5%) 0 0 0 0
Dizziness 0 1 (2.5%) 0 3 (7.5%) 1 (2.5%) 1 (2.5%) 0 1 (2.5%)
Foreigness 0 0 0 5 (12.5%) 0 0 0 1 (2.5%)
Tiredness 0 0 2 (5%) 1 (2.5%) 0 0 0 0
Temp change 0 0 2 (5%) 2 (5%) 0 0 0 1 (2.5%)
Stiffness 2 (5%) 1 (2.5%) 2 (5%) 1 (2.5%) 0 0 1 (2.5%) 0
Phantom swelling 0 0 0 0 0 0 0 0
Total no. any sensation 14 (35%) 13 (32.5%) 24 (60%) 35 (87.5%) 8 (20%) 12 (30%) 18 (45%) 25 (62.5%)

Osteoarthritis Rheumatoid Arthritis
WB Mirror WB Mirror

 

Sensation perceived CRPS HC OA RA
Pain 44 (80%) 3 (7.5%) 20 (50%) 14 (35%)
Weight change of limb 27 (49%) 7 (17.5%) 16 (40%) 17 (42.5%)
Loss or gain of limb 12 (22%) 9 (22.5%) 25 (62.5%) 16 (40%)
Nausea 12 (22%) 3 (7.5%) 5 (12.5%) 4 (10%)
Tingling, pins & needles 11 (20%) 3 (7.5%) 4 (10%) 6 (15%)
Feeling of peculiarity 15 (27%) 8 (20%) 4 (10%) 5 (12.5%)
Headache 9 (16%) 0 1 (2.5%) 0
Dizziness 4 (7%) 1 (2.5%) 3 (7.5%) 1 (2.5%)
Foreigness 0 1 (2.5%) 5 (12.5%) 1 (2.5%)
Tiredness 2 (4%) 2 (5%) 3 (7.5%) 0
Temp change 9 (16%) 5 (12.5%) 2 (5%) 1 (2.5%)
Stiffness 1 (2%) 0 3 (7.5%) 1 (2.5%)
Phantom swelling 4 (7%) 0 0 0
Total no. any sensation 50 (91%) 22 (55%) 36 (90%) 27 (67%)

At any stage in the protocol

 
CRPS = complex regional pain syndrome, HC = healthy controls, OA = osteoarthritis, RA = 

rheumatoid arthritis. 

WB = whiteboard, C = congruent movement, IC = incongruent movement; Total no. any 

sensation = total number of subjects experiencing any sensation. 
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Table 5.3. Optokinetic vulnerability distribution and perception of pain by cohort. 

 

Cohort Total with pain High Moderate Mild Minimal
CRPS n = 44 16 (36) 18 (41) 8 (18) 2 (5)
HC n = 3 0 2 (67) 1 (33) 0
OA n = 20 8 (40) 10 (50) 1 (5) 1 (5)
RA n = 14 2 (14) 8 (57) 4 (29) 0

Vulnerability (% of total with pain)
Pain

 
CRPS = complex regional pain syndrome, HC = healthy controls, OA = osteoarthritis, RA = 

rheumatoid arthritis. 

 

 

 

Fig.5.4.  

 

 

 

Fig.5.4. Comparison of the numbers of subjects with pain (new pain or exacerbation 

of existing pain) in addition to baseline at any stage in the protocol, and those that did 

not by cohort. 

CRPS = complex regional pain syndrome, HC = healthy controls, OA = osteoarthritis, RA = 

rheumatoid arthritis. 
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5.4.2.2. Pain and optokinetic vulnerability classification  
When the frequency of subjects with new or exacerbated pain is compared by 

optokinetic vulnerability classification, there was a significant difference (χ2 (3) = 

39.649, p<0.001) and a strong association between vulnerability and pain (Cramer’s 

V = 0.542).  

 

Comparison of the optokinetic vulnerability score (OVS) between cohorts 

demonstrates a significantly higher score (Kruskall Wallis test p<0.001, post-hoc 

Mann-Whitney U-test with Bonferroni correction) for CRPS (median = 3) and OA 

(median = 3) compared to RA (median = 2) and controls (median = 1).  

 

 

5.4.3. Comparison of vulnerability classification with quantitative sensory 
testing and autonomic composite score. 
i. Between cohorts 

There was a moderate positive correlation between optokinetic vulnerability score 

(OVS) and percentage of body surface allodynia (%BSA) (Spearman’s rho = 0.346, 

p<0.05). There was a low to moderate negative correlation between OVS and 

autonomic (ANS) composite score (ie. higher vulnerability, lower (ANS) composite 

score and more autonomic impairment) (Spearman’s rho = -0.165, p<0.05).  

 

ii. Within CRPS cohort 

Abnormal sensations and pain, allodynia and tactile threshold perturbations were 

more common in the high and moderate vulnerability subjects (see Table 5.4). 

For the overall CRPS cohort (n = 55), there was a strong negative correlation 

between OVS and Semmes-Weinstein filament threshold of the affected limb (ie. 

higher vulnerability and lower threshold) (Spearman’s rho = -0.542, p<0.001) (see 

Fig.5.5). There were moderate positive correlations between OVS and baseline pain 

score (mild = 1, moderate = 2, severe = 3) (Spearman’s rho = 0.319, p<0.05), and for 

OVS and %BSA (Spearman’s rho = 0.306, p<0.05). These correlations were not 

significant in the CRPS upper limb (UL) cohort (n = 30). 

In the CRPS UL cohort (n = 30), correlation of optokinetic vulnerability score 

(OVS) with disease duration was statistically significant (rho = 0.523, p<0.01). 

Disease duration was also significantly correlated with %BSA (rho = 0.571, p<0.01). 

This did not hold for the overall CRPS cohort where the numbers are larger. 
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Table 5.4. Vulnerability classification for CRPS patients with enhanced pain and 

quantitative sensory testing findings. 

 

n = 44 High Mod Mild Min Nil
Vulnerability classification 14 16 9 4 1

Allodynia present 13 11 4 4 0
No allodynia 1 5 5 0 1

Mean % BSA allodynia 21.7 9.25 9.5 4 ~
ATvsTT higher (hypoaesthesia) 3 5 0 2 ~
ATvsTT lower (hyperaesthesia) 7 5 3 1 ~

% ATvsTT lower 77
%TT = SW-1 54

Mean CRPS duration (yrs) 7.3 4.6

Optokinetic vulnerability

40
13

 
ATvsTT = allodynic threshold vs tactile threshold 

 

Fig.5.5. 

 

 

 

Fig.5.5. Scatterplot of optokinetic vulnerability score (OVS) against Semmes 
Weinstein tactile threshold of the affected limb.  
 
NB. Where some data points represent more than one subject, the number of subjects is 
indicated by a numeral beside the plot point. 
The finest hair is ranked 1 (target force 0.008g) through to the heaviest filament ranked 20 
(target force 300g). Filament 11 = 4g. See Table 4.4.B.  
SWF = Semmes Weinstein filament 
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5.4.4. Other findings: motor impairment and motor extinction 
An unexpected observation was the finding of motor impairment and motor extinction 

in some subjects while undertaking the optokinetic challenge. When asked to perform 

bilateral movements, many CRPS patients were unable to initiate motor action in the 

hidden limb without the visual feedback of the limb, or displayed much reduced 

movement in the hidden limb. Many demonstrating extinction were unaware that the 

hidden limb was not moving, and expressed great surprise.  

Motor extinction is defined as difficulty initiating movement or impaired use of 

a limb during bilateral simultaneous movements (Freund et al., 2011). As this is the 

closest analogy to this clinical finding, it has been termed ‘motor extinction’. Subjects 

demonstrated the full spectrum from inability to initiate any movement, to impaired 

movement in one limb.  

 

Subjects were classified as having: 

1. Full motor extinction (FME) when they were unable to initiate movement 

2. Initiation impairment (INIM) where there was hesitancy, ‘false starts’ or 

difficulty in starting movement  

3. Motor ‘lag’ where movement did occur in the limb but at reduced amplitude 

with impaired rhythm. Subjects with lag all demonstrated loss of the usual smooth 

coordinated movements, and had jerky movement.  

 

There was no motor extinction in any cohort during baseline testing. During 

the sensorimotor challenge, no healthy control subject demonstrated any form of 

motor extinction. Among OA patients, one had FME and 5 had INIM &/or lag and in 

RA subjects there were none with FME and 2 with INIM &/or lag. Among CRPS 

patients, 37 (67%) had evidence of motor extinction; 23 had FME – 4 of these 

subjects were completely unable to initiate movement in the hidden limb at any stage 

of the optokinetic protocol. There were combinations of INIM and/or lag with and 

without FME at different stages of the protocol (see Table 5.5). Thirty two out of 37 

showed evidence of motor extinction in both the affected and unaffected limbs, 3 in 

the hidden affected limb only and 2 in the hidden unaffected limb only. 

 

Comparing the CRPS patients with and without extinction, there was a 

significant difference in OVS (Mann-Whitney U-test, p<0.001), with the median OVS 

for CRPS with extinction = 4 and median OVS with no extinction = 2. There was also 

a significant difference in Semmes-Weinstein filament (Mann-Whitney U-test, 



 151 

p<0.05), with the median tactile threshold of the affected limb in a patient with 

extinction = 0.16g compared to 0.04g in a patient without extinction. 

 

5.4.5. Other findings: dystonia 
Eight CRPS patients developed a dystonic reaction in the affected limb at some 

stages of the protocol characterised by sustained muscular contraction at the wrist 

and/or fingers, tremor or muscular jerks. All of these subjects experienced worsening 

pain and all demonstrated evidence of motor extinction. See Table 5.5.  

 

5.4.6. Comparison of vulnerability between OA and RA 
There was a significant difference in OVS (Mann-Whitney U-test, p<0.01) between 

OA (median OVS = 3) and RA (median OVS = 2). 

 

5.4.7. Comparison of vulnerability classification with parietal lobe testing 
See Chapter 7. 
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Table 5.5. Motor extinction and dystonia during optokinetic protocol.  

 

 

Patient ID FME INIM / Lag Dystonia
2 Y
3 N L,INIM
6 N L
8 N INIM
9 Y L,INIM

10 Y L,INIM
11 N L,INIM
12 N L,INIM
13 N L
15 Y L D
16 Y L
17 Y INIM
18 N L,INIM
19 Y D,Tr
21 N L
22 Y L Tr
23 Y L,INIM J
26 Y INIM
27 Y L,INIM
28 Y L,INIM D
29 N L
32 Y L
33 Y INIM J
34 Y L,INIM
35 Y D,J
36 N L
39 Y
40 Y
42 Y L,INIM
43 N L,INIM
44 Y L,INIM
46 Y
48 Y L D,Tr
49 N INIM
50 N L,INIM
51 N L,INIM
53 N L  

 

OA = osteoarthritis, RA = rheumatoid arthritis, FME = full motor extinction, INIM = initiation 

impairment, Y = yes & present, N = no & absent, L = lag, D = dystonia, Tr = tremor, J = jerk 

 

 

 

 

Patient ID FME INIM / Lag Dystonia
2 Y L,INIM
4 N L,INIM
9 N L
21 N L
23 N INIM
35 N L,INIM  

Patient ID FME INIM / Lag Dystonia
1 N L,INIM
2 N L,INIM  

CRPS patients OA patients 

RA patients 
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5.5. Discussion 
During a sensorimotor challenge, sensory disturbances and pain responses were 

more common in CRPS patients, and they had a higher optokinetic vulnerability 

compared to healthy controls and patients with rheumatoid or osteoarthritis, 

supporting the hypothesis. Unexpectedly, it was also found that osteoarthritis patients 

have a higher incidence of sensory disturbances and pain, and higher optokinetic 

vulnerability compared to patients with Rheumatoid Arthritis and healthy controls. 

 

5.5.1. Comparison with previous studies 
In McCabe’s original paper investigating the consequences of sensorimotor conflict 

by using a mirror to create an optokinetic challenge among healthy volunteers 

(McCabe et al., 2005b), 66% reported at least one anomalous sensory symptom and 

17% reported pain at some stage in the protocol. A subsequent study (McCabe et al., 

2007) reported 48% of controls had sensory disturbances and 14% reported pain 

utilising the same protocol. Another recent study of professional violinists by Daenen 

et al (Daenen et al., 2010) found that 60% had sensory changes at some stage in the 

same protocol. The frequency of sensory disturbances in these studies is similar to 

the frequency in this work, which found that 55% of healthy controls reported sensory 

disturbances. However there was a lower frequency (7.5%) of reported pain among 

controls. 

A recent study of 113 HVs found only 2% reported pain and no difference 

between reported frequencies of sensory disturbances or pain across the stages 

(J.Foell, personal communication). The authors suggest that the McCabe group may 

have overestimated the incidence of pain due to questionable methodology, and that 

the lack of difference of report frequencies for pain and sensory disturbances (except 

for gain of a limb) does not support the Harris cortical model of pain. However there 

were some important study methodology differences. A metronome was used for 

participants to keep a steady movement rhythm, and the elbows of the participants 

were kept resting upon a table. Both of these conditions provide the subjects with 

additional non-visual sensory feedback cues reducing the level of sensory 

discrepancy. The metronome would also provide a significant auditory distraction.  

Among fibromyalgic patients with chronic pain, the frequency of sensory 

disturbance (90%) and pain (62%) has been shown to be higher (McCabe et al., 

2007) compared to controls. Daenen’s study of violinists (Daenen et al., 2010) found 

that those with baseline symptoms (pain, tension, fatigue, tingling, discomfort or 

swelling) reported significantly more sensory changes compared to those without 
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baseline symptoms. Data from my work confirms that patients with chronic pain due 

to rheumatoid arthritis (67.5%), osteoarthritis (90%) and CRPS (91%) are more likely 

to report sensory disturbances than healthy controls. It also demonstrates that 

patients with chronic pain are more likely to report new or enhanced pain; 35% 

rheumatoid arthritis (RA), 50% osteoarthritis (OA) and 80% CRPS.  

 5.5.2. Degree of sensorimotor conflict, sensory disturbances and pain 
Ramachandran’s proposed right cortical centre monitoring incongruence of sensation 

(CIS) together with the Harris hypothesis (that incongruent sensorimotor feedback 

may be generated as a consequence of cortical reorganisation and be detected by 

the CIS) would predict incongruent mirror movement to be the stage most likely to 

produce sensory disturbance and/or pain. This stage of the protocol induces the 

greatest degree of visual and proprioceptive conflict.  

In McCabe’s original study (McCabe et al., 2005b), healthy volunteers (HV) 

demonstrated the greatest frequency of sensory disturbances during the mirror 

stages, and most during maximal sensorimotor conflict, the mirror incongruent stage 

(66%) compared to the mirror congruent stage (41%). Deanen et al (2010) also found 

that the mirror incongruent stage produced the highest frequency of sensory changes 

(55%). However in fibromyalgia (FMS) patients there was no difference in frequency 

of report across the intervention stages (McCabe et al., 2007). It was suggested that 

FMS patients may have a reduced threshold to sensory–motor discrepancies as 

compared with HVs and therefore any degree of conflict is sufficient to trigger 

detection of feedback anomalies, and cause somaesthetic disturbances.  

In this study, all the cohorts show an increased frequency of sensory 

disturbances in the stage with highest conflict compared to the stage with lowest. 

However there was a different pattern observed for pain reports where controls, OA 

and RA patients demonstrated no difference in frequency of pain reports across the 

intervention stages, and CRPS patients had a significantly greater frequency in the 

highest conflict stage compared with the lowest.  

Can this be explained within the context of the sensory discrepancy model? I 

suggest that during the process of central integration, when a feedback discrepancy 

is detected there are separate mechanisms and thresholds that may trigger sensory 

disturbances or pain. In the majority of healthy controls and among many patients 

with chronic pain, a moderate level of sensorimotor conflict is required to exceed the 

sensory-motor discrepancy threshold and initiate sensory disturbances. The pain 

mechanism is separate and cannot usually be triggered by activation of the sensory-

motor disturbance threshold. However in ‘vulnerable’ subjects, the threshold is lower 
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still and can activate pain networks. This would result in a similar frequency of pain 

reports across all the stages.  

Among CRPS patients where frequencies of sensory disturbances and pain 

are highest in all stages compared to the other cohorts, the degree of conflict does 

have an effect on perceived pain with maximal reports in the highest conflict stage. 

This may be due to additional activation of top-down networks, possibly activated 

through impaired motor pathways and disrupted body schema. ‘Vulnerability’ may be 

conferred by the presence of cortical reorganisation, rendering a subject more 

susceptible to sensory incongruence. An alternative explanation may lie with a 

genetic predisposition to lower thresholds, abnormal connectivity or neuronal firing 

and subsequent impaired central integrative network responses. 

5.5.3. Osteoarthritis & rheumatoid arthritis patients 
An unexpected finding was that OA patients were highly vulnerable to sensory 

disturbance and/or pain compared to RA patients or healthy controls. Proprioception 

is thought to decline with age (Pai et al., 1997;Skinner et al., 1984), which might 

explain higher vulnerability compared to healthy controls, but not compared to the RA 

cohort who were of a similar age (mean age OA =61 years , mean age RA = 57 

years). However, there is increasing evidence for pain in osteoarthritis having 

significant centrally generated components (Mease et al., 2011).  

A study of patients with hip OA found significantly lower threshold perception 

to punctate stimuli and hyperalgesic to the noxious punctate stimulus in areas of 

referred pain (Gwilym et al., 2009). Functional brain imaging of these patients 

illustrated significantly greater activation in the brainstem in response to punctate 

stimulation of referred pain areas compared with healthy controls, and the magnitude 

of the activation positively correlated with the extent of neuropathic-like elements to 

the patient's pain. Another study using fMRI volumetric analysis in hip OA found a 

characteristic gray matter decrease in patients compared with controls in the anterior 

cingulate cortex (ACC), right insular cortex and operculum, dorsolateral prefrontal 

cortex (DLPFC), amygdala, and brainstem. A subgroup of 10 patients after total hip 

replacement surgery were completely pain free, and repeat imaging showed gray 

matter increase in the DLPFC, ACC, amygdala, and brainstem (Rodriguez-Raecke et 

al., 2009).  

Central pain may also be present in RA (Lee et al., 2011;Ranzolin et al., 

2009), and could make validity of the ‘inflammatory’ DAS 28 score questionable 

when it is present (Wolfe, 2009). A recent fMRI study has shown the presence of 

increased grey matter content in the basal ganglia of RA patients. The study 
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suggests that RA is associated with changes in the subcortical grey matter rather 

than with cortical grey matter atrophy and links the findings to prolonged changes in 

motor control and pain processing in RA patients (Wartolowska et al., 2011). 

Why do OA patients apparently have higher vulnerability to sensory conflict  

than RA? One possible explanation is that in RA, there is usually a more peripheral 

inflammatory pain compared to OA, where there may be a larger central contribution. 

Extrapolating from the Harris hypothesis (Harris 1999), the OA group may have a 

greater degree of cortical reorganisation and central pain. Another explanation could 

be that while in RA there may be grey matter increase, in painful OA there is grey 

matter decrease and therefore neuronal or glial loss may be more associated with 

pain.  

5.5.4. Vision and sensory conflict mechanisms 
Side effects of mirror visual feedback therapy including confusion, dizziness and 

irritation have been reported in phantom limb pain patients (Casale et al., 2009). 

Some healthy control and fibromyalgic subjects reported similar sensory 

disturbances to congruent mirror feedback, and to congruent /incongruent 

movements during whiteboard stages (one limb hidden with no visual feedback) 

(McCabe et al., 2005b;McCabe et al., 2007). This demonstrates that low levels of 

visual feedback discrepancy may be responsible for sensory disturbances, and may 

partially account for the reported side effects. My work suggests that visual feedback 

may be dominant over proprioceptive feedback. In this study when comparing the 

intermediate conflict stages (whiteboard incongruent and mirror congruent), there 

were higher reports of sensory disturbances during the mirror congruent stage. 

Therefore the ‘false’ visual feedback but congruent proprioception appears to be 

dominant compared to the whiteboard incongruent stage of no visual feedback but 

conflicting proprioception. 

Vision is an important human sensory modality and can dominate other 

senses such as touch (Gibson J.J, 1962) and proprioception (Farne et al., 2000;Rock 

and Victor, 1964). It can also significantly affect proprioception. Healthy subjects can 

‘feel’ touch during the rubber hand illusion (Ehrsson et al., 2004), and demonstrate 

skin conductance responses when the illusory rubber hand is threatened (Armel and 

Ramachandran, 2003). They can also be made to experience having three arms not 

only using MVF (McCabe et al., 2005b;McCabe et al., 2007), but also by 

incorporating a third rubber arm into the body image (Guterstam et al., 2011).  

When performing visually guided actions such as drawing under conditions of 

perturbed visual feedback, e.g., in a mirror or a video camera, there is a spatial 



 157 

conflict between visual and proprioceptive information. Repetitive transcranial 

magnetic stimulation (rTMS) over the somatosensory cortex contralateral to the hand 

has been shown to reduce proprioceptive acuity and enhanced mirror drawing 

performance (Balslev et al., 2004). A study utilising brain event-related potentials 

demonstrated activity in the motor cortex of the hidden hand during congruent and 

incongruent MVF (Touzalin-Chretien et al., 2010). The effect was greatly reduced 

when the task was executed in the dark with hand position represented by small 

lights fixed on the moving hand, with no motor activity being recorded in the cortical 

area of the hidden hand, demonstrating the dominance of vision over motor 

programming. Furthermore, visual stimuli do not have to reach visual awareness in 

order to guide rapid motor responses (Schenk et al., 2005).  

A study of hand positions during observed movement in healthy controls 

showed that incompatible (but not compatible) movements elicited higher fMRI 

activation of the left dorsolateral prefrontal cortex and inferior parietal cortex 

bilaterally (Pilgramm et al., 2009). The authors suggest that this demonstrates the 

tight interaction between body representation and action observation. Data from my 

study shows that sensorimotor conflict generated by incompatibility may be a 

contributory mechanism. Cortical reorganisation may enhance the susceptibility to 

sensorimotor conflict and have a disruptive effect on the interaction between body 

representation and action observation in patients with chronic pain.  

 

In my work, the incongruent stages of the protocol are used to generate 

sensorimotor conflict. There is little research in this area. However the congruent 

stages can be used therapeutically to reduce sensorimotor conflict, in mirror visual 

feedback (MVF) techniques. The evidence base for MVF is poor (Rothgangel et al., 

2011) but there is growing literature in this area. As it embraces the congruent stages 

of the protocol, it is of relevance to the study. 

5.5.5. Reducing sensory conflict as a therapeutic treatment: MVF 
MVF is used therapeutically in CRPS (Karmarkar and Lieberman, 2006;McCabe et 

al., 2003) and in an increasing number of other clinical conditions (Grünert-Plüss et 

al., 2008;Ramachandran and Altschuler, 2009) including phantom limb pain (Chan et 

al., 2007;Ramachandran, 2005), stroke (Michielsen et al., 2011), fibromyalgia 

(Ramachandran and Seckel, 2010) and cerebral palsy (Smorenburg et al., 

2011b;Smorenburg et al., 2011a). A study of MVF on arm control in children with 

Spastic Hemiparetic Cerebral Palsy found that it was most effective when viewing 

mirror feedback from the less impaired arm, suggesting that improved congruence 
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improves outcome. MVF has been used successfully prior to amputation to reduce 

post-operative phantom sensations (Hanling et al., 2010).  

If the basis of the therapeutic effect is by improving sensory integration, then 

is there evidence for enhanced benefit by combining MVF with other sensory 

modalities? It has been demonstrated that effectiveness may be improved when 

combined with auditory feedback in phantom limb pain (Wilcher et al., 2011) and with 

graded motor imagery (Moseley, 2006) lenses (Ramachandran et al., 2009) and the 

use of prisms (Bultitude and Rafal, 2009) in CRPS.  

5.5.6. Mechanisms of mirror visual feedback: the role of mirror neurones 
The mechanisms operational during MVF will also be active in the congruent stages 

of my work, but how MVF achieves a beneficial effect is unclear. Ramachandran 

postulates that in phantom limb pain and stroke, restoring congruence between 

vision and motor output is able to compensate and aid recovery from ‘learnt’ 

paralysis (every time a motor command is sent to the intact arm, visual and 

proprioceptive feedback informs the brain that the limb is not moving) 

(Ramachandran and Altschuler, 2009). There are likely to be several potential 

mechanisms, some of which may involve mirror neurones.   

Mirror neurones are a subset of motor neurones discovered by Rizolatti et al 

(Di Pellegrino et al., 1992) that fire when a person watches another individual 

perform a movement. They allow the individual to integrate the allocentric 

(environment outside the person) action into an egocentric (of the person) 

framework. This permits inference of action and learning of motor skills. Mirror 

neurones integrate multiple sensory modalities including vision, proprioception and 

motor commands. Use of MVF may stimulate mirror neurones helping to overcome 

‘learned’ paralysis, and may stimulate previously dormant mirror neurones 

(Ramachandran and Altschuler, 2009).  

Another potential mechanism is the role of ipsilateral corticospinal tracts. Little 

is known of their function, but there is evidence that they are involved in the timing of 

muscle recruitment (Davare et al., 2007) and in the pathology of congenital mirror 

movement (unintended and unnecessary movements accompanying voluntary 

activity in homologous muscles on the opposite side of the body) (Papadopoulou et 

al., 2010).  

Mechanisms such as those described are also operational during an 

optokinetic mirror challenge, and abnormal activity may be involved in the origin of 

sensory disturbance and/or pain. 
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5.5.7. Motor extinction 
An unusual finding was that of motor extinction during the optokinetic challenge. 

When asked to perform bilateral movements, many CRPS patients were unable to 

initiate motor action in the hidden limb without the visual feedback of the limb. Many 

demonstrating extinction were unaware that the hidden limb was not moving, and 

expressed great surprise. Motor extinction is usually seen after a stroke affecting the 

right parietal cortex, and is often associated with left hemispatial neglect. It is difficult 

to disentangle the motor neglect from the hemiparesis (Punt and Riddoch, 2006). 

However in the CRPS patient population, none had ever suffered from a stroke or 

had clinical symptoms or signs suggestive of a stroke. Therefore in this population, 

the motor extinction is most likely to be secondary to a neglect-like phenomenon 

rather than a cortical lesion causing a hemiparesis. Furthermore, neglect-like 

phenomena have been reported in CRPS (Galer and Jensen, 1999). For a fuller 

discussion of parietal cortex and neglect, see Chapter 7.  

 For the overall CRPS cohort, there was a strong negative correlation between 

the OVS vulnerability score and tactile threshold (ie. higher vulnerability, lower tactile 

threshold). However among CRPS patients with motor extinction compared to those 

without extinction, there was a higher OVS score but higher tactile thresholds. 

Patients with extinction therefore appear to have impairment in either sensory fibre 

function or central processing of afferent tactile information compared to those 

without extinction. Whether this is cause or effect remains unclear, and may be 

worthy of future research. 

5.5.8. Dystonia 
See discussion of Chapter 6. 

5.5.9. Study strengths  
This work was able to confirm findings from previous studies, and to enlarge upon 

research in the field by expanding it to include patients with OA and RA.  

Use of a mirror to create an optokinetic challenge is a simple, non-invasive 

and practical means of patient assessment. It can also be used therapeutically. If a 

patient is suitable for mirror visual feedback, they are likely to have a mirror at home 

that they could use, or could easily obtain one.  

 The optokinetic vulnerability score (OVS) provides an insight into patterns of 

sensorimotor integration difficulties that a CRPS patient may experience. This can be 

used to inform the therapy approach. For example, if motor extinction is present then 

graded motor imagery might be more suitable.   
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5.5.10. Study limitations and future directions 
Similar work needs to be done on a larger scale and in other patient cohorts with 

chronic pain. Not all protocols for MVF emphasise congruent movement, and 

therefore it is important to understand if congruence/incongruence has similar or 

different outcomes in these patients. In particular, similar work in patients with stroke 

and phantom limbs, where there is an absent or immobile limb, would be revealing. 

There needs to be better understanding of what cortical areas are active during an 

optokinetic challenge, and concurrent autonomic responses.  

Further research should combine an optokinetic challenge with neuroimaging 

and autonomic assessment. There are alternatives to an optokinetic mirror device 

including the use of prism spectacles (Bultitude and Rafal, 2009;Walsh and 

Bannister, 2010) and augmented virtual reality (Cole et al., 2009;Henderson et al., 

2007;Merians et al., 2002). Future work could use these technologies to create a 

similar optokinetic challenge, and establish whether similar types and rates of 

sensory disturbance and/or pain are seen in controls and patient cohorts. If this were 

the case, then there would be a strong case for similar mechanisms operating in 

visuo-sensorimotor incongruence rather than differences in the techniques used to 

create it. 

Vulnerability is not confined to CRPS, and is higher in RA and OA than 

healthy controls. Future research should address the identification of central pain in 

OA and RA, and whether alternative treatment approaches (eg. pharmacologic, 

MVF) would be beneficial.  

5.5.11. Clinical Implications 
A direct consequence of this work is that the optokinetic challenge is now used to 

screen CRPS patients for the presence of motor extinction for the following reasons:  

• If a subject is unable to perform congruent movements without visual input 

from both limbs, they will actually be performing incongruent mirror 

movements. The data has demonstrated that this is likely to cause sensory 

disturbances and/or pain.  

• A patient with motor extinction requires a different approach for physical 

rehabilitation, as the therapist has to allow that motor action is non-existent 

or poor without visual input. 

 

Some OA and RA patients have a high vulnerability to sensorimotor conflict. 

This group may have a larger central pain component and may benefit from different 

therapeutic strategies. Further research into these areas is required. 
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5.6. Summary 
 

The hypothesis postulated was proven: 

• During an optokinetic challenge, sensory disturbances and pain 

responses were more common in CRPS patients compared to healthy 

controls and patients with rheumatoid or osteoarthritis. 

 

Some participants in all the cohorts experienced abnormal somaesthetic 

sensations and/or pain during the optokinetic challenge. There was a statistically 

significant difference between the cohorts, with a higher incidence of abnormal 

sensations and pain in the RA and OA cohorts, with the highest in the CRPS cohort. 

There was a strong association between optokinetic vulnerability and pain, with a 

high vulnerability subject more likely to experience pain than a minimally vulnerable 

subject. Within the CRPS cohort, optokinetic vulnerability was correlated with BSA, 

and negatively correlated with tactile threshold (higher vulnerability, lower tactile 

threshold).  

Abnormal sensations were significantly more frequent in the stage of highest 

conflict (mirror incongruent movement) in all the cohorts. This stage also 

demonstrated significantly higher frequencies of enhanced pain among CRPS 

patients, and non-significantly increased rates for OA, RA and healthy control 

subjects. Motor impairment / extinction was noted in six OA and two RA patients, 

none of the healthy controls and in 67% of CRPS patients. CRPS patients with 

extinction had higher optokinetic vulnerability and higher tactile thresholds compared 

to CRPS patients without extinction. Unexpectedly, OA patients demonstrated higher 

vulnerability and a higher incidence of sensory disturbance and/or pain during an 

optokinetic challenge than RA or healthy control subjects. 

 

5.7. Conclusions 
It is suggested that in the majority of healthy controls and among many patients with 

chronic pain, a moderate level of sensorimotor conflict is required to exceed the 

sensory-motor discrepancy threshold and initiate sensory disturbances. The pain 

mechanism is separate and cannot usually be triggered by activation of the sensory-

motor disturbance threshold. However in ‘vulnerable’ subjects, the threshold is lower 

and can activate pain networks which may be due to additional activation of top-down 

networks, possibly activated through impaired motor pathways and disrupted body 

schema. Cortical reorganisation may contribute to vulnerability. 
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Chapter 6:  

Sensory disturbances, pain responses and autonomic 

function while viewing ambiguous visual stimuli in complex 

regional pain syndrome (CRPS) and rheumatic disease  

 

 
“Illness is the doctor to whom we pay most heed; to kindness, to 

knowledge, we make promise only; pain we obey.” 

 

Marcel Proust 

 
Image: Unknown, 2011. Marcel Proust in 1900 [online]. Available from: 

http://en.wikipedia.org/wiki/File:Marcel_Proust_1900-2.jpg. [Accessed 18.1.2012]. 

 

6.1. Introduction 

(Work from this study has been published as 'Enhanced pain and autonomic 

responses to ambiguous visual stimuli in chronic Complex Regional Pain Syndrome 

(CRPS) type I. Cohen HE, Hall J, Harris N, McCabe CS, Blake DR, Jänig W. Eur J 

Pain. 2011 Aug 6. [Epub ahead of print]'. See Appendix 11 ) 

It has been hypothesised that disturbances in sensory and motor systems may cause 

sensorimotor conflict, generating pain and other sensory anomalies (Blake et al., 

2000;Harris, 1999;Ramachandran et al., 1992). Specifically, conflicting visual 

information can worsen the pain in CRPS patients (Cohen HE et al., 2006;Hall et al., 

2010). A functional MRI study has demonstrated that pain can impact on visual 

processing (Bingel et al., 2007). What has not been reported to date is the 

relationship between the responses of the autonomic nervous system, pain and 

visual processing.  

Chapter  5 looked at how a visuo-sensorimotor conflict induced by an 

optokinetic challenge influenced somaesthesia and perception of pain. This study 

builds upon Chapter  5 by investigating how stimuli causing a pure visual conflict -  

optical illusions (hence referred to as ambiguous visual stimuli (AVS)) might influence 

somaesthesia and pain in healthy controls and in patients with complex regional pain 

syndrome (CRPS), osteoarthritis (OA) and rheumatoid arthritis (RA). In Chapter  4, 

laser Doppler flowmetry was used to assess sympathetic autonomic function. 
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Previous work has demonstrated it to be a reliable and repeatable means to assess 

cutaneous microvascular blood flow (Bonelli and Koltringer, 2000;Low et al., 1983). 

Previous studies have demonstrated sympathetic abnormalities in CRPS (Wasner et 

al., 1999;Wasner et al., 2001) but the pattern of responses during painful stimuli in 

CRPS and patients with chronic rheumatic disease, and the possible contribution to 

pain is less known (Baron et al., 2002). 

In this chapter, laser Doppler flowmetry is used to 1) investigate the dynamic 

sympathetic autonomic responses produced by a pure visual conflict in healthy 

controls, and patients with OA, RA and CRPS and 2) relate the autonomic response 

patterns to the somaesthetic disturbances induced by the visual stimulus. 

 

6.1.1. Aims 
 

 To investigate sensory disturbances, pain responses and autonomic function 

while viewing ambiguous visual stimuli (AVS) in healthy controls (HC) and patients 

with OA, RA and CRPS.  

 

6.1.2. Hypotheses 
 

1. Viewing ambiguous visual stimuli (AVS) will cause sensory disturbances and 

enhanced pain responses in CRPS patients but not in healthy controls and 

patients with rheumatoid arthritis (RA) or osteoarthritis (OA). 

2. Healthy controls, OA and RA patients will have homologous symmetric 

sympathetic autonomic responses in the upper limbs while viewing AVS. 

3. Some CRPS patients will have abnormal (absent or asymmetric) sympathetic 

autonomic responses while viewing AVS compared to other CRPS patients 

with homologous symmetric sympathetic responses. 

4. Abnormal sympathetic autonomic responses in CRPS patients while viewing 

AVS will be associated with enhancement of pain. 
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6.2. Methodological considerations 
 

6.2.1. Assessment of responses to ambiguous visual stimuli: review of 
literature 
 
“An adequate theory of visual perception must explain how the fleeting patterns of 

light upon the retinas give knowledge of surrounding objects. The problem of how the 

brain ‘reads’ reality from images is acute, because images represent directly but few, 

and biologically unimportant, characteristics of objects.”  

Professor Richard Gregory (Gregory, 1968). 

Viewing certain optical illusions gives rise to systematic visual processing errors, 

which provide insights into how the brain resolves the problem of what objects are 

represented by which images. Professor Gregory argues that perceptions are 

predictive hypotheses whereby bottom-up (stimulus driven) signals from the eyes are 

read or interpreted with top-down (conceptually driven) knowledge of objects and 

with general sideways rules to generate perceptions of the external world (Gregory, 

1998). He suggests that illusions can be classified by appearance and causes 

(Gregory, 1997).  

 

The ambiguous visual stimuli selected for this study were a duck/rabbit figure 

and a Necker cube (Fig.6.3). These stimuli have different visual processing biases. 

The Necker cube is an example of an ambiguous depth illusion which can be used to 

demonstrate the presence of a central size scaling mechanism (Gregory, 1968). The 

duck/rabbit is a content-reversal type of ambiguous figure. The relative contribution 

from top-down and bottom-up processing to the reversals is debated and probably 

different between the two. There is electroencephalogram (EEG) evidence of a 

crucial role for early neural activity in Necker cube reversals consistent with bottom-

up influences (Kornmeier and Bach, 2004). Another EEG study showed differences 

in top-down influences on voluntary reversal rate of the structural perspective Necker 

cube compared to the meaningful content duck/rabbit figure. Top-down moderation of 

reversal rate (subjects were asked to speed up or slow down the reversal rate) was 

less effective for the Necker cube figure (Struber and Stadler, 1999). A further 

investigation by the same group suggested that speeding up reversal rate needs 

attentional shift and may be supported by automatic bottom-up processes while 

slowing down the rate requires focus of attention and more top-down influences 

(Mathes et al., 2006). Other groups suggest a hybrid model in which both processes 

are coordinated and their effects integrated to determine conscious perceptual 
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experience (Kornmeier and Bach, 2006;Long and Toppino, 2004). For the Necker 

cube, eye position may also be a factor (Einhauser et al., 2004) which may suggest a 

visual dorsal stream bias (see below).  

 

Retinal stimuli are conducted along the optic nerves to the lateral geniculate 

body, and then stream posteriorly via the optic radiation to the primary visual area in 

the occipital lobes. From here, information is conveyed by a phylogenetically older 

tract, the dorsal pathway, superiorly to the parietal lobe and visual areas which are 

concerned with orienting self to the object and its location in extrapersonal space. 

This pathway is mainly unconscious, and is sometimes referred to as the ‘where’ 

pathway. Visual information is also conveyed to parietal areas by the tectal pathway 

via the superior colliculi and is also unconscious, associated with orientation of the 

eyes to an object in space. Information is conveyed laterally along a phylogenetically 

more recent pathway, the ventral pathway, to the temporal lobe. This pathway is a 

conscious one and concerned with the discrimination of the characteristics of the 

object, the ‘what’ pathway (Goodale et al., 2005;Goodale and Milner, 1992;Goodale 

and Westwood, 2004;Westwood and Goodale, 2011).  

Therefore, the Necker cube and duck/rabbit are likely to differentially 

stimulate these pathways. A study which combined functional magnetic resonance 

imaging (fMRI) and EEG while viewing the Necker cube suggested a dorsal stream 

spread of activation with additional top down processing (Schoth et al., 2007).  

There is increasing evidence from neuroimaging studies for the role of the 

parietal cortex in having distinct patterns of causal influence upon functional activity 

in the human visual cortex (Ruff et al., 2008). Specifically during misperception such 

as decision making under visual uncertainty (Summerfield et al., 2006), during 

ambiguous apparent motion (Williams et al., 2003) and while viewing ambiguous 

figures (Hirsch et al., 2004). An fMRI study has demonstrated that right parietal 

cortex brain activity precedes perceptual alternations of the Necker cube (Britz et al., 

2008). 

There are many different versions of the duck/rabbit figure from the original in 

‘Fliegende Blätter’ in 1892, the Jastrow (Jastrow, 1899) and Wittgenstein 

(Wittgenstein, 1998) (Fig.6.1) versions, and many others since. The duck/rabbit 

figure selected Fig.6.3) was Jastrow’s original drawing where the ears/bill are 

orientated horizontally. A study has suggested that of the many versions, this one is 

truly ambiguous and not markedly either duck or rabbit dominant (Brugger, 1999). 

Necker’s original cube (Necker, 1832) was a rhomboid. An open cube is the modern 
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standard version. For this study, the Necker cube and the non-reversible control 

figure had a visual fixation point located centrally (Fig.6.3 ). 

 

Fig.6.1.  

 

  

 

 

6.2.2. Control figure 
 
A non-reversible control figure was required as a comparator for the ambiguous 

visual stimuli. In pilot work with healthy controls and CRPS patients, it was quickly 

apparent that simple geometric designs, such as Fig.6.2A , were described as 

“moving” by some in both groups. The next control figures tried were a white blank 

page, and a black square. For some subjects (CRPS and controls), the blank page 

was described as making ‘floaters’ more apparent which then “danced” across the 

sheet. A black square was described as having “the corners curling up”. Others 

described a variety of emotions associated with these. Word used to describe the 

blank page included “calming”, “relaxing” and “pure”, and for the black square, 

“depressing”, “a dark hole”, and “like a coffin – it reminds me of death”. As the 

geometric shapes did not generate many emotional descriptions, the next design 

used was a simple square with a central fixation dot. This was not described as 

transforming into any other shape or design, and did not generate emotional 

responses, and was therefore used as the minimally ambiguous non-reversible 

control figure (C), (Fig.6.3 ). 

 Control images were also piloted among control and CRPS subjects for the 

duck/rabbit figure. A photograph of a duck’s head and a rabbit’s head as similar as 

possible to the percept of the duck or rabbit on the duck/rabbit ambiguous figure 

were used Fig.6.2B ). While these images were not reported as moving, there were 

Fig.6.1.  The Wittgenstein duck rabbit figure 
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emotive descriptions eg. “what a cute rabbit”, “it reminded me of the Easter bunny”, 

“the duck’s head looks removed from the body; it’s quite unsettling”. Many subjects 

describe being distracted by trying to see a duck when looking at the photograph of 

the rabbit and vice-versa.  

 

Fig.6.2. 

 

A 

 

 

 

 

 

 

B 

   

 

 

 

 

 

 

 

Fig. 6.2.  Illustrations of pilot control figures for A: the Necker cube and B: the 

duck/rabbit figure 

 

6.2.3. Autonomic responses to pilot control figures  in healthy controls 
As mentioned in Chapter  4, absence of a LDF response to a stimulus is highly 

significant. Table 6.1  demonstrates that the rate of ‘no response’ to the chosen 

control figure (C) is similar to that of the blank page (B) and the black square (BS), 

but markedly different to those of the photograph of a duck (phD) or rabbit (phR). The 

group median value of the mean percentage change from baseline skin blood flow 

(∆%bbf) showed a similar pattern. Therefore the photographs were not utilised. As 

the control figure needed to avoid emotional responses if possible, the blank page 

and black square were also eliminated. The simple square with a central fixation dot 

was selected as the control figure for the study. 

 

 

. . . 



 172 

Table 6.1. Laser Doppler flowmetry (LDF) autonomic responses among healthy 

controls to viewing different proposed control figures. 

 

No response C (n = 40) B (n = 22) BS (n = 22) phD (n = 10) phR (n = 10)
Number 11 6 5 4 5
% 27.5 27.3 22.7 40 50
∆%bbf 57 44 60 33 21  

 

C = minimally ambiguous control figure, B = blank page, BS = black square, phD = 

photograph of a duck, phR = photograph of a rabbit, ∆%bbf = group median value of the 

mean percentage change from baseline skin blood flow. 

 

6.2.4. Stimulus presentation order 
Initially, the order of presentation was randomised. It was quickly apparent that there 

was a clear gradation of the stimuli likely to induce abnormalities of sensation or pain 

in the CRPS patients. Therefore, as with the optokinetic challenge, the order was 

standardised to allow for a gradual increase in challenge, with the non-reversible 

control figure presented first before the ambiguous figures. This order was 

maintained for healthy controls and subjects with OA and RA.  

The order was: control figure, duck/rabbit, Necker cube. The figures used are 

illustrated in Fig.6.3 .  

 

 

Fig.6.3.  

 
 
 
 
 
 
 
 
 
 
    
  
 

   

 

Fig.6.3.  The visual stimuli utilised 

 

 

Duck/rabbit Necker cube Non-reversible figure 

. 
 

 

 

 

. 
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6.2.5. Communication and language considerations 
Extreme care was taken with the choice and style of language used to explain the 

tasks, and for qualitative assessments. This was necessary to avoid leading subjects 

or introducing bias. Qualitative assessments were made throughout by a series of 

open questions. As far as possible, no specific direct enquiry was made about 

possible sensory changes to prevent leading the subject and creating bias. Specific 

prompts were used if necessary as follow-up to positive responses to open 

questions, or where it is clear that the subject did not understand the question. For 

full details, see 6.3.1. Subject preparation/instruction below. 

 

6.2.6. Assessment of pain 
Qualitative assessments of pain were made before and after exposure to AVS. A 

verbal assessment was selected over a written one, as viewing an additional shape 

(i.e. line bisection test) might interfere with the assessment. In addition, many 

subjects had CRPS of the upper limb, and if the subject experienced disorientation or 

an increase in pain then a written assessment would be difficult to perform and lack 

accuracy. An 11 point verbal Likert scale (Likert, 1952), was utilised in pilot work. 

However, most CRPS patients put their baseline pain levels at 8, 9 or 10 giving little 

scope to understand how the pain had changed if it increased. Therefore a simple 

verbal scale was used where patients were asked if their pain was unchanged or 

mild, moderate or severely worse or better than baseline. 

 

6.2.7. LDF recording environment 
The autonomic testing was performed in a quiet, temperature and humidity controlled 

room. There were no pictures or ornamentation in the room to avoid arousal of 

emotional responses or diversion of attention. 

 

6.2.8. Participants 
For full details of inclusion/exclusion criteria etc, see Chapter  3. 

 

6.2.9. Ethical considerations 
It was possible that viewing the ambiguous visual stimuli might result in abnormal 

somaesthetic sensations, amounting to pain in some healthy subjects, and worsening 

of CRPS pain in some patients. However, from clinical experience both personally 

and within our group such sensations in healthy controls are short lived and resolve 
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completely, and in CRPS patients their pain returns to baseline levels within minutes 

to a few hours. All participants were forewarned of this possibility, and it was detailed 

in the patient information together with contact details if participants did experience 

this and required further input (see Appendix 2 ). This was accepted by the local 

ethics committee. 

 

6.2.10. Apparatus 

• Set of A4 sized laminated pictures 

• Stopwatch 

• LDF and ESR recording equipment 

 

 

6.3. Method 
 

6.3.1. Subject preparation/instruction 
All subjects were informed that the purpose of the study was to investigate whether 

people with chronic pain differ from healthy controls in processing visual signals due 

to the attentional demands of pain, and that this could affect nerves controlling skin 

blood flow. The explanation met the criteria for informed consent as outlined by the 

approving ethics committee but was considered sufficiently vague not to induce a 

source of bias. Subjects were told that they would first do two simple tasks known to 

affect skin blood flow, a deep breath and mental stress test. They were instructed 

that after this, they would be viewing a series of pictures for one minute per picture, 

with the possibility that some of these pictures could be viewed in more than one way 

so that different images were perceived. After viewing the pictures, subjects would be 

asked to describe what they had seen and if they noticed any change in the way they 

felt. However, subjects were informed that it was normal for some people not to see 

an alternative image and if this were the case, then the investigator would explain the 

alternative percept and rerun the session for that image. In order to avoid leading or 

conditioning the subjects, no further descriptions of the pictures or how they might be 

seen was given. Subjects were not told at any time point that they might experience 

any concurrent somesthetic sensations, and were only asked how they had felt at the 

end.  

A single investigator (HC) conducted the intervention and collected the 

autonomic recordings. Information on somesthetic or pain responses was gained via 
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open ended questions from a prepared script to ensure uniformity across subjects. 

All responses were recorded verbatim and additional notes were made by the 

investigator on any observable physical responses or reactions. 

 

6.3.2. Visual stimulus exposure 
A standardised sequence of three visual stimuli used: a control figure (C), and two 

ambiguous visual stimuli -  the duck/rabbit (DR) figure and the Necker cube (N). 

The visual stimuli were printed in black and white on A4 sized laminated white 

cardboard and presented to seated subjects at a distance of 1 metre approximating 

reading distance. The visual subtended angle was approximately 5° (this figure is 

approximate as the participants were invited to view the images from a comfortable, 

rather than precisely determined position). Subjects used their usual visual aids for 

reading if required and were asked to view each picture for a maximum of one 

minute, or as long as tolerated. Subjects had a 2 minute rest period between each 

visual stimulus when the pictures were hidden from view. If needed, subjects could 

have a further 1 minute up to a maximum of ten minutes rest time. 

 

6.3.3. Pain and somesthetic assessment 
Baseline pain levels and changes in pain levels to stimuli were assessed using a 

verbal four point Likert scale (Likert, 1952) covering a range of none, mild and 

moderate to severe. For changes in pain, subjects were asked to rate whether this 

was mild, moderately or severely worse or better compared to their baseline pain. If 

subjects reported any changes in how they felt, the responses were recorded 

verbatim.   

 

6.3.4. Frequency of changes in image percept 
Subjects were asked to report approximately how many times the visual stimuli had 

reversed, or ‘flipped’. Subjects had not been forewarned of this question to avoid 

participants counting reversal changes which would bring in additional undesired 

attentional demands. 
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6.3.5. Autonomic response assessment 

6.3.5-1. Autonomic sympathetic responses upon expos ure to ambiguous 
stimuli 
Continuous Laser Doppler flowmetry (LDF) and electrodermal skin response (ESR) 

recordings were taken while viewing ambiguous visual stimuli. The full details of the 

autonomic assessment method are given in Chapter 4 . Each stimulus was followed 

by a resting period of 1 – 5 minutes to allow the trace to return to baseline. 

 

6.3.5-2. Laser Doppler Flowmetry analysis 
To summarise from Chapter 4 , the following outcome measures were used: 

 

Quantitative 

For LDF: 

• Mean percentage change from baseline skin blood flow (∆%bbf) in response 

to a stimulus as follows:  ∆%bbf = (baseline mean – minimum) / baseline 

mean x 100  

• The symmetry ratio (SR) of the magnitude of vasomotor responses between 

the limbs was calculated as follows: ∆%bbf limb A / ∆%bbf limb B, where A 

was the larger of the two responses. 

Qualitative 

For LDF: Responses to stimuli were classified as  

• i. "homologous" response if there were bilateral sympathetic vasoconstrictor 

responses 

• ii. "asymmetric" response if there was vasoconstriction in one limb but no 

response or vasodilation in the other limb.  

• iii. "absent" if there was no response 

 

For ESR: Responses were classified as  

• i. "normal" response if there were bilateral symmetric responses 

• ii. "abnormal" if responses were present but either unilateral, or abnormal 

non-sinusoidal waveform 

• iii. "absent" if there was no response 
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6.3.6. Data analysis 

6.3.6.1. Sample size 
CRPS is considered to be a rare diagnosis and the literature is sparse. Papers are 

often based upon small numbers using different diagnostic criteria. Therefore, it was 

not possible to make an accurate sample size calculation.  

A non-random sampling strategy was used, and the sample size was based upon the 

number of subjects available within the data collection period. 

 

6.3.6.2. Statistical analysis 
The same approach was used as described in Chapter 4 . Statistical analysis was 

performed using Statistical Package for the Social Sciences (SPSS) v.16 software. 

For comparisons, non-parametric statistics were used (Mann-Whitney U-test and 

Kruskal-Wallis test), and for frequency analysis, Fisher’s exact test. For comparison 

of SR data across cohorts, the Siegel-Tukey test (a non-parametric sum of ranks 

procedure for relative spread in unpaired samples) was used. Odds ratios (OR) and 

95% confidence intervals (%% CI) are calculated where appropriate. 

 
 

6.4. Results 

 
 
Terminology: 

Visual stimuli (VS): collective term for all three of the visual stimuli utilised. 

Ambiguous visual stimuli (AVS): refers to the ambiguous visual stimuli used ie. the 

duck/rabbit (DR) and the Necker cube (N) 

6.4.1A. Demographic data 
 
Forty healthy controls, 40 OA, 40 RA and 54 CRPS patients underwent assessment 

of sensory disturbances and autonomic function testing while viewing visual stimuli 

(VS). For details of demographics, see Chapter 4 , section 4.4.1. 

6.4.1B. Location of CRPS 
For schematic flow chart of data presented, see Fig.6.4  (reproduced from Chapter 4  

for ease of reference). 
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Fig.6.4. 
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Fig.6.4.  Schematic flow chart of CRPS location demographics. A shows the overall 

CRPS cohort, and B the upper limb CRPS cohort. 

UL = upper limb, LL = lower limb, unilat = unilateral, bilat = bilateral 

 

 
 
 
 
 

Overall CRPS 
cohort: N = 56 

UL-CRPS 
cohort: N = 30 

2 limb  
n = 7 
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n = 25 

1 limb  
n = 45 
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n = 20 
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n = 8 
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n = 8 

3 limb   
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n = 1 

Bilat UL  
n = 0 

>1 limb  
n = 11 

Unilat UL  
n = 22 

UL + LL  
n = 7 

Bilat LL + UL 
(ie 3 limb) 

n = 1 
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6.4.2. Sensory disturbances 

6.4.2.1. Healthy controls, OA and RA 
None of the healthy controls (n = 40), OA or RA subjects developed sensory 

disturbances while viewing any of the visual stimuli (VS).  

6.4.2.2. CRPS 
In contrast, 8 (27%) of the UL CRPS cohort experienced sensory disturbances while 

viewing ambiguous visual stimuli (AVS). These were described as heaviness, 

tingling/pin & needles, feelings of swelling/tightness or sensations of changing 

temperature in the upper limbs (ie. limb feeling subjectively warmer or colder). Six 

experienced this while viewing both AVS and 2 only while viewing the Necker cube 

(N).  

 

6.4.3. Visual stimuli exposure and pain 

6.4.3.1. Healthy controls 
None of the healthy controls (n = 40) experienced pain while viewing either the non-

reversible control figure or the ambiguous visual stimuli (AVS) for the full 60 seconds. 

The mean ambiguous figure reversal rate was 14 times per minute for the duck/rabbit 

(DR) and 12 for the Necker cube (N). 

 

6.4.3.2. Osteoarthritis and rheumatoid arthritis pa tients 
None of the OA or RA subjects experienced pain while viewing either the control 

figure or the ambiguous visual stimuli (AVS) for the full 60 seconds. Among OA 

patients, the mean ambiguous figure reversal rate was 9 times per minute for the 

duck/rabbit and 8 for the Necker cube while for RA it was 9 times per minute for the 

duck/rabbit and 6 for the Necker cube. 

 

6.4.3.3. CRPS 
In contrast, 19 (61%) of the UL-CRPS cohort experienced enhancement of their pain 

within seconds of viewing the VS (Table 6.2). Eighteen (60%) had worse pain 

viewing the Necker cube and 16 (53%) viewing the duck/rabbit figure. Unexpectedly, 

6 (20%) had worsening pain viewing the control figure. Pain severity ratings for 

individual patients were similar across the types of inciting visual stimuli. For details 

of numbers with mild, moderate or severely worsening pain, see Table 6.2A .  
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Nine (47%) were unable to view the VS for the full 60 seconds. The mean 

duration of the viewing time for patients with enhanced pain during VS was 43 

seconds (s), range 5 – 60s. The pain exacerbation lasted for 30 minutes to several 

hours. All the patients that had enhanced pain with the control figure found it 

unstable, with the central fixation dot and box edges described as “moving”. Eleven 

subjects described an extremely high reversal rate of images, as “too fast to count”. 

Patients with pain were significantly more likely to describe reversal rates as ‘too fast 

to count’ (Fisher’s exact test, p<0.05). For further breakdown, see Table 6.2B . The 

odds ratio showed that a patient with pain while viewing AVS was 13.7 (95%CI 

1.5;120) times more likely to report a reversal count as ‘too fast to count’ than a 

patient without pain.  

 

 

 

Table 6.2. Changes in pain, reversal rates and time of viewing tolerated while looking 

at visual stimuli. 

 

A. Changes in pain 

 

Change in pain UL-CRPS (n = 30) HC (n = 40) OA (n = 40) RA (n = 40)
None 11 (36.5%) 40 (100%) 40 (100%) 40 (100%)
Mild 2 (7%) 0 0 0
Moderate 9 (30%) 0 0 0
Severe 8 (26.5%) 0 0 0

Cohort

 
UL = upper limb, HC = healthy controls, OA = osteoarthritis, RA = rheumatoid arthritis 

 

B. Time of viewing and reversal rates 

 

Reversals 'too fast to count'
C DR N DR N DR N

HC (n = 40) 60 60 60 14 12 0 0
OA (n = 40) 60 60 60 9 8 0 0
RA (n = 40) 60 60 60 9 6 0 0
UL-CRPS (n = 30) 50 46 42 14 11 7 (23%) 10 (33%)
UL-CRPS & pain (n = 19) 50 46 42 16 14  7 (37%)  9 (47%)

Time (secs) Mean no. reversals
ReversalsViewing duration

 

UL-CRPS & pain = CRPS patients with pain while viewing visual stimuli 

Reversals 'too fast to count' = number of patients reporting this phenomenon 
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6.4.4. Autonomic responses during visual stimuli ex posure 
 
For autonomic testing, please also note (summarised from Chapter  4): 

 
1.1. 31/54 CRPS patients had upper limb (UL) involvement. One subject had a 

previous sympathectomy and was excluded from analysis. Therefore for the 

UL cohort, n = 30. Autonomic function testing data for UL affected CRPS 

patients is presented (See 4.2.2.8. Location of LDF recording probes ).  

1.2. Comparison of UL-CRPS cohort (n = 30) with the overall-CRPS cohort (n = 

54) is given in section 6.4.10. 

 

2.1.  40 healthy controls (HC) had autonomic function testing while viewing AVS 

(overall HC cohort). From the overall HC cohort, 30 were matched for 

gender and age (to within 10 years) to the UL-CRPS cohort, forming the 

'matched HC' cohort.   

2.2. For healthy controls, the autonomic function testing data presented while 

viewing VS is taken from the overall HC cohort, and compared to the other 

cohorts.  

2.3. In a subgroup analysis, data from the matched HC cohort is compared to 

the UL cohort (6.4.6.). The matching reduces potential bias from gender 

and age differences. Comparison of the matched and unmatched HC data 

(6.4.4.1C.) provides an indication of potential confounding effects from 

these factors.  

 

6.4.4.1. Healthy controls 

 
6.4.4.1A. Healthy controls (overall cohort n = 40) 

Qualitative analysis of the LDF responses showed that 35 (87.5%) had "normal" and 

5 (12.5%) had "absent" responses while viewing VS. See Fig.6.5 .  

Of the normal responses, viewing VS resulted in either homologous LDF 

vasoconstrictor responses to all stimuli in 24 (60%) matched HC subjects or 'mixed' 

homologous vasoconstrictor responses to some of the visual stimuli in 11 (27.5%). 

For details, see Table 6.3  and Fig.6.6 .  

The median ∆%bbf (IQR) for the C, DR and N stimuli were 59 (78), 56 (62) 

and 59 (64). The median SR (IQR) for the C, DR and N visual stimuli were 1.06 

(0.24), 1.07 (0.23) and 1.06 (0.16)(Fig.6.7 & 6.8). See Table  6.4. 

ESR responses while viewing VS were normal in 24 (60%) and absent in 15 

(37.5%). One subject had no discernable trace. 
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6.4.4.1B. Matched healthy controls (n = 30) 

Qualitative analysis of the LDF responses showed that 27 (90%) had normal and 3 

(10%) had absent responses while viewing VS.  

Of the normal responses, viewing VS resulted in either homologous LDF 

vasoconstrictor responses to all stimuli in 17 (57%) matched HC subjects or 'mixed' 

homologous vasoconstrictor responses to some of the visual stimuli in 10 (33%).  

The median ∆%bbf (IQR) for the C, DR and N stimuli were 57 (78), 52 (78) 

and 64 (88). The median SR (IQR) for the C, DR and N visual stimuli were 1.07 

(0.22), 1.06 (0.22) and 1.07 (0.15)(Fig.6.9). See Table  6.4. 

ESR responses were normal in 18 (60%) of matched controls, and were 

absent to viewing visual stimuli in 11 (37%). One subject had no discernable trace. 

 

 

Table 6.3. Qualitative autonomic testing data: breakdown of frequency of responses 

while viewing visual stimuli. 

R-all VS NR-all VS NDT
R-AVS R-DR R-N NR-AVS R-DR R-N

ESR HC (n = 40) 21 15 0 0 1 2 0 0 1
OA (n = 40) 7 20 4 2 3 2 0 1 0
RA (n = 40) 5 22 0 3 1 1 4 2 2
CRPS (n = 30) 19 4 0 0 3 4 0 0 0

LDF HC (n = 40) 24 5 4 1 1 1 2 2 0
OA (n = 40) 12 15 5 2 2 2 1 1 0
RA (n = 40) 15 12 1 4 2 2 2 2 0
CRPS (n = 30) 17 3 1 1 2 0 2 0 4

NR-C R-C
 'Mixed' responses

 
R = response, NR = no response, ESR = electrodermal skin response, LDF = Laser Doppler 

flowmetry, NDT = no discernable trace 

VS = visual stimuli, C = control, DR = duck/rabbit, N = Necker cube, AVS = ambiguous visual 

stimuli (ie. DR & N), HC = healthy controls, OA = osteoarthritis, RA = rheumatoid arthritis 

CRPS = complex regional pain syndrome 

 

NB. This breakdown shows frequency of response (present, absent) to viewing VS. 

Among the CRPS cohort, it does not differentiate whether responses are 

homologous or abnormal. 
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Fig.6.5. 
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Fig.6.5. Qualitative analysis of A. LDF responses and B. ESR responses for 

viewing all visual stimuli. 

Percentages of responses classified as A. homologous, absent, asymmetric or NDT 

and B. normal, absent, abnormal or NDT are illustrated.  

 

 

 

 

% Normal % Absent % Abnormal % NDT 

A 

B 

% Homologous % Absent % Asymmetric % NDT 

Healthy controls (n = 40) 

Osteoarthritis (n = 40) 

Rheumatoid arthritis (n = 40) 

CRPS (n = 30) 

NDT = no discernable trace 

Electrodermal skin response (ESR) 

Laser Doppler flowmetry (LDF) 
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Fig.6.6. 
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Fig.6.6.Qualitative autonomic testing data: breakdown of A. LDF and B. ESR 

traces recorded in response to all VS or to some of the VS. 

 

 

Healthy controls (n = 40) 

Osteoarthritis (n = 40) 

Rheumatoid arthritis (n = 40) 

CRPS (n = 30) 

%R = response to all VS 
 
%Mixed R = responses to some VS 
 
VS = visual stimuli (control, duck/rabbit and 
necker cube) 

A 

B 

Electrodermal skin response (ESR) 

Laser Doppler flowmetry (LDF) 

%R – all VS %Mixed R 

%R – all VS %Mixed R 
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6.4.4.1C. Comparison of overall and matched control  cohorts 

The mean ambiguous figure reversal rate was the same for the overall and matched 

HC groups, at 14 times per minute for the duck/rabbit (DR) and 12 for the Necker 

cube (N). 

Comparison of the qualitative response trace pattern frequencies and 

quantitative autonomic response data does not show any significant differences 

between the overall and matched cohorts.  

 

6.4.4.2. Osteoarthritis and rheumatoid arthritis 
LDF responses were "normal" in 25 (62.5%) OA / 28 (70%) RA, and "absent" in 15 

(37.5%) OA / 12 (30%) RA. One OA subject had an "abnormal" LDF trace while 

viewing all VS (no discernable trace in the right upper limb) (Fig.6.5). 

Of the normal responses, viewing VS resulted in either homologous LDF 

vasoconstrictor responses to all stimuli in 12 (30%) OA / 15 (37.5%) RA subjects or 

'mixed' homologous vasoconstrictor responses to some of the visual stimuli in 13 

(32.5%) OA / 13 (32.5%) RA. For details, see Table 6.3  and Fig.6.6 .  

The median ∆%bbf (IQR) among subjects with OA for the C, DR and N stimuli 

were 0 (29), 9 (50) and 8 (39). The median SR (IQR) for the C, DR and N visual 

stimuli were 1.0 (0.14), 1.02 (0.31) and 1.01 (0.3). Among RA patients, the median 

∆%bbf (IQR) for the C, DR and N stimuli were 25 (51), 19 (46) and 7 (48). The 

median SR (IQR) for the C, DR and N visual stimuli were 1.0 (0.15), 1.04 (0.29) and 

1.01 (0.25). See Table 6.4 . 

 ESR responses were normal in 19 (47.5%) OA and 16 (40%) of RA subjects. 

They were absent to viewing visual stimuli in 20 (50%) of OA and 22 (55%) of RA 

subjects (Fig.6.5 ). There was one abnormal trace in an OA patient (asymmetric 

impedance between limbs) and 2 RA patients had completely flat non-reactive 

traces. 

6.4.4.3. CRPS (UL cohort, n = 30) 
LDF responses while viewing VS were "normal" in 14 (35%), "absent" in 3 (10%), 

"abnormal" asymmetric responses (see Fig.6.5 and 6.7) in 9 (30%) and non-

discernable in 4 (13%) (see below). 

 There were 17 (57%) CRPS patients with LDF responses to all the VS and 

'mixed' homologous vasoconstrictor responses to some of the visual stimuli in 6 

(20%). For details, see Table 6.3  and Fig.6.6 . There was excessive vasoconstriction 

with skin blood flow <150 AFU at a room temperature of 23-35°C in 4 subjects, and 

therefore undiscernable 'absent' traces. Variability was evident within individuals as 
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to which of the visual stimuli that induced enhancement of pain also caused 

asymmetric responses (see Table 6.5).  

The median ∆%bbf (IQR) for the C, DR and N stimuli were 30 (55), 35 (61) 

and 37 (53). The median SR (IQR) for the C, DR and N visual stimuli were 1.24 (1.5), 

1.11 (1.29) and 1.32 (3.4). SeeTable 6.4 . 

ESR responses were normal in 19 (63%) of UL-CRPS subjects. They were 

absent to viewing visual stimuli in 4 (13%) and abnormal in 7 (23%) (Fig.6.8 ). Five of 

the 7 abnormal traces were in patients with pain while viewing visual stimuli, and 3/7 

were in subjects with asymmetric LDF traces. 

 

 

Table 6.4. Quantitative autonomic testing data (medians and interquartile range, 

IQR) while viewing visual stimuli (VS). 

 

Visual stimulus
∆%BBF (IQR) SR (IQR) ∆%BBF (IQR) SR (IQR) ∆%BBF (IQR) SR (IQR) ∆%BBF (IQR) SR (IQR)

Control 30 (55) 1.24 (1.5) 59 (78) 1.06 (0.24) 0 (29) 1.0 (0.14) 25 (51) 1.0 (0.15)
Duck/rabbit 35 (61) 1.11 (1.29) 56 (62) 1.07 (0.23) 9 (50) 1.02 (0.31) 19 (46) 1.04 (0.29)
Necker 37 (53) 1.32 (3.4) 59 (64) 1.06 (0.16) 8 (39) 1.01 (0.3) 7 (48) 1.01 (0.25)

Cohorts 
CRPS UL (n = 30) Healthy controls (n = 40) Osteoarthritis (n = 40) Rheumatoid arthritis (n = 40)

 

Visual stimulus
∆%BBF (IQR) SR (IQR)

Control 57 (78) 1.07 (0.22)
Duck/rabbit 52 (78) 1.06 (0.22)
Necker 64 (88) 1.07 (0.15)

Cohort
Age & gender matched HC (n = 30)

 

 

∆%BBF = group median value for mean percentage change from baseline blood flow, SR = 

symmetry ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

HC = healthy controls 
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Fig.6.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.7. A-C: Examples of LDF vasomotor responses while viewing AVS from three 
different CRPS patients. 
 
A: Example of homologous laser Doppler traces from a CRPS patient while viewing AVS 
(duck/rabbit).  B,C: Examples of asymmetric vasomotor responses while viewing AVS (B = Necker 
cube, C = duck/rabbit).  
 
Time is in seconds is on the X axis, and blood flow in arbitrary flux units (AFU) is on the Y axis. The 
vertical arrow shows onset of the stimuli, and the horizontal arrows the duration of visual stimulus 
exposure. LDF = laser Doppler flowmetry. 
 

Healthy control = left arm; CRPS = affected arm 

Healthy control = right arm; CRPS = unaffected arm 
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Fig.6.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.8. A-C : Examples of abnormal asymmetric electrodermal skin responses (ESR) 
while viewing AVS from three different CRPS patients. 
 
A,B : Examples of asymmetric ESR from a CRPS patient while viewing a duck/rabbit figure.   
C: Examples of asymmetric ESR while viewing a Necker cube.  
 
Time is in seconds is on the X axis, and skin conductance in Siemans is on the Y axis. The 
vertical arrow shows onset of the stimuli, and the horizontal arrows the duration of visual 
stimulus exposure. AL = affected limb, UL = unaffected limb. 
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6.4.8. Dystonia during visual stimuli 
 

Ten (33%) in the UL-CRPS cohort developed acute dystonic reactions in the affected 

limb (Table 6.5). The dystonia was characterised by involuntary flexion of the fingers 

and wrist in the affected limb and / or tremor. Eight subjects had enhanced pain and 

dystonic reactions; 5 while viewing all the VS, two viewing AVS and 1 while looking at 

the Necker cube only. Two subjects had no pain and dystonia; 1 viewing AVS, and 1 

to the Necker cube only. 

 

Fig.6.9.  demonstrates the relationship between enhancement of pain, asymmetric 

vasomotor responses and dystonia. In CRPS patients showing enhanced pain during 

VS (group 2 and group 3 patients), the incidence of anomalous asymmetric 

autonomic vasomotor responses and/or dystonia was significantly higher than in 

CRPS patients not showing enhancement of pain (group 1 patients)(p<0.02 χ2-test).  

 

Fig.6.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.6.9. A modified Venn diagram illustrating the relationship between pain, dystonic 
reactions and asymmetric blood flow responses while viewing visual stimuli. 
  
Numerals refer to the number of patients with those clinical features  

Enhancement of 
pain 

n = 19 
Dystonia 
n = 10 

No enhancement 
of pain 
n = 11 

Asymmetric autonomic 
vasomotor responses 

n = 9 
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6.4.5. Comparison of all cohorts  
For the comparison of cohorts, age and sex matched data were available only for 

controls and CRPS, as OA and RA cohorts tended to be older. Therefore unmatched 

data from the overall healthy control cohort (n = 40) was used. 

Comparing ∆%bbf of healthy controls (overall cohort, n = 40) for C, DR and N 

with OA, RA and CRPS cohorts (Fig.6.10): there was a significant difference for C, 

DR and N between HC and OA, and for C and N with RA (Kruskall-Wallis, p<0.001, 

post hoc Mann-Whitney U-test with Bonferroni correction). Comparing the SR of 

healthy controls for the different visual stimuli (Siegel-Tukey test; see 4.5.3.), there 

was a statistically significant difference in variability between the limbs for the Necker 

cube (W = 420, p = 0.005) (Fig.6.11) among CRPS patients.  

 

6.4.6. Comparison of CRPS with matched healthy cont rols 
The ∆%bbf for AVS was diminished though not statistically significantly different for 

CRPS patients compared to healthy controls (Fig.6.12A ). The SR of blood flow 

responses while viewing the Necker cube was significantly greater in CRPS patients 

compared to the control subjects (median + IQR:  1.32 [1.0 - 4.4] vs 1.07 [1.0 - 1.15], 

p<0.02 Mann Whitney U-test), but not for the control or duck/rabbit stimuli 

(Fig.6.12B ). There was variability within individuals to which of the visual stimuli that 

induced enhancement of pain also caused asymmetric responses. 
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Fig.6.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Healthy controls (n = 40) 

Osteoarthritis (n = 40) 

Rheumatoid arthritis (n = 40) 

Complex Regional Pain Syndrome (n = 30) 

Fig.6.10. Group median values for mean percentage change from baseline blood flow 
(∆%bbf) between healthy controls (overall cohort), osteoarthritis, rheumatoid arthritis and 
CRPS patients while viewing visual stimuli. * indicates statistically significant difference 
compared to healthy controls. 
 
Box plots showing the median, IQR and range are illustrated. 
AFU = arbitrary flux units 
 

∆%bbf 

Control figure Duck/rabbit NeckerControl figure Duck/rabbit NeckerControl figure Duck/rabbit NeckerControl figureControl figure Duck/rabbitDuck/rabbit NeckerNecker
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Fig.6.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Healthy controls (n = 40) 

Osteoarthritis (n = 40) 

Rheumatoid arthritis (n = 40) 

Complex Regional Pain Syndrome (n = 30) 

Fig.6.11. Symmetry ratio (SR) of healthy controls (overall cohort), osteoarthritis, 
rheumatoid arthritis and CRPS patients while viewing visual stimuli. 
 
Box plots showing the median, IQR and range are illustrated. Comparing the SR of controls for the 
Necker cube, there is significantly increased variability* among CRPS patients. 
 

SR 

Control figure Duck/rabbit NeckerControl figure Duck/rabbit NeckerControl figure Duck/rabbit NeckerControl figure Duck/rabbit NeckerControl figureControl figure Duck/rabbitDuck/rabbit NeckerNecker
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Fig.6.12.  
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Fig.6.12. Group median values for mean percentage change in baseline blood 
flow (∆%bbf) (A) and symmetry ratio (SR) (B) in healthy controls (age & gender 
matched cohort, n = 30) and CRPS subjects for viewing visual stimuli: control 
figure, duck/rabbit and Necker cube.  
 
Box plots showing the median, IQR and range are illustrated. There is a statistically 
significant greater SR for viewing the Necker cube in CRPS subjects compared to healthy 
controls, demonstrating greater variability in the magnitude of response between the limbs 
(*, p<0,02, Mann Whitney U-test). 
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6.4.7. CRPS subgroup comparison by homology of auto nomic response 
Distinct patterns emerged when comparing the frequencies of homologous 

responses, of asymmetric responses or of no response between CRPS patients and 

control subjects. During the presentation of VS the CRPS patients demonstrated 

either homologous vasoconstrictor responses to all visual stimuli (n=12, 40%), 

homologous responses to only one of the AVS (n=2, 7%), no response to all AVS 

(n=3, 10%), excessive vasoconstriction with skin blood flow <150 AFU at a room 

temperature of 23-35°C (n=4) or asymmetric vasomotor responses (n=9, 30% 

Fig.6.7B ,C & Table 6.5). The distribution of vasomotor responses to VS in CRPS 

patients was significantly different from the distribution of vasomotor responses to VS 

in the matched control subjects, which showed homologous responses in 26 (87%) 

subjects (18 / 60% subjects to all VS and 8 / 27% subjects to one of the AVS) or no 

response to any AVS in 4 / 13% subjects (χ2-test, p<0.002).  

 Using the pain responses and the vasomotor response to AVS the CRPS 

patients were divided into three groups (Table  6.5). 

Group 1. Subjects 1 – 11, no pain viewing AVS with homologous vasoconstrictor

 responses  

Group 2. Subjects 12 – 21, pain enhancement viewing AVS with homologous 

vasoconstrictor responses.  

Group 3. Subjects 22 – 30, pain enhancement viewing AVS with asymmetric mixed 

 vasomotor responses. The asymmetric responses were: vasoconstriction in 

 the affected limb (AL) with no response in the unaffected limb (UL) (n = 4; 

 Fig.6.7B ), vasodilation in the AL with no response in the UL (n = 3), 

 vasodilation in the AL with vasoconstriction in the UL (n = 1, Fig.6.7C), initial 

 vasodilation followed immediately by vasoconstriction in the AL with no 

 response in the UL (n = 1).  
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Patient ID BF change Enhancement VS causing Dystonia 
during VS of pain to VS pain enhancement during VS

1 homologous Nil ~ #
2 homologous Nil ~ D
3* homologous Nil ~ #
4 homologous Nil ~ #
5^ homologous Nil ~ #
6 homologous Nil ~ #
7 homologous Nil ~ #
8 homologous Nil ~ #
9 homologous Nil ~ #

10 homologous Nil ~ D
11 homologous Nil ~ #

12* homologous Severe C,DR,N D
13^ homologous Moderate DR,N D
14* homologous Moderate N #
15 homologous Moderate DR,N #
16 homologous Severe C,DR,N #
17 homologous Severe C,DR,N D
18 homologous Severe N #
19* homologous Mild DR,N #
20 homologous Moderate DR,N #
21^ homologous Moderate DR #

22 asymmetric Moderate DR,N D
23 asymmetric Moderate C,DR,N D
24 asymmetric Severe DR ,N #
25 asymmetric Severe C,DR,N D
26 asymmetric Severe DR,N #
27 asymmetric Moderate DR,N #
28 asymmetric Severe C, DR,N D
29 asymmetric Moderate N D
30 asymmetric Mild DR, N #

Group I patients: no pain to visual stimuli, homologous BF responses 

Group II patients: pain enhancement to visual stimuli, homologous BF responses

Group III patients: pain enhancement to visual stimuli, asymmetric BF responses 

 

 

 

 

 

 

 

 

 

 

Table 6.5. Pain responses and dystonic reactions among CRPS patients grouped 
according to qualitative homology of Laser Doppler responses (homologous or 
asymmetric). 

Pain: Enhancement of pain on the verbal Likert rating scale as none, mild, moderate or 
severe. BF = blood flow; VS = visual stimulus: C, control figure; DR, duck/rabbit; N, 
Necker cube ; * = excessive vasoconstriction with skin blood flow <150 arbitrary flux units 
(AFU) at a room temperature of 23-25°C despite acclimatisation time; ^ = no response;  ~ 
= not applicable; bold/italic = visual stimulus causing asymmetric BF response; D = 
dystonic reaction present; # = no dystonic reaction.  
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There were no major differences in the demographic data between groups 1 – 

3: mean age 38, 40 and 40 years, and mean disease duration 7, 7 and 6 years, 

respectively. Medication profiles were similar. 

 

When pain responses were compared between the CRPS subgroups, half of 

the patients who rated their baseline pain as ‘severe’, and half of the subjects that 

had a dystonic reaction while viewing visual stimuli were in group 3. This group 

experienced worsening pain while viewing at least two of the three visual stimuli. 

Furthermore, the only subjects to experience pain viewing the control figure were in 

this group, and they did not perceive it as a stable object. There were more subjects 

reporting reversal rates as ‘too fast to count’ in group 3 (Table 6.6). 

 

Table 6.6.  Reversal rates ‘too fast to count’ by CRPS group homology. 

 

Grp DR N
1 0  1 (8%)
2  3 (33%)  3 (33%)
3  4 (44%)  6 (67%)

Reversals 'too fast to count'

 
Grp = group, DR = duck/rabbit, N = Necker cube. 
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Compared between matched healthy controls (n = 30) and the CRPS subgroups, 

group 3 patients were significantly different for the SR of the Necker cube (p<0.05, 

Kruskal-Wallis test, post hoc Mann Whitney U-test with Bonferroni correction) (Fig. 

6.13). 

 

 

 

Fig.6.13. 
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Fig.6.13. Blood flow response symmetry ratios (SR) for CRPS subgroups for the 
while viewing the Necker cube. 
 
Box plots showing medians, IQR and range are illustrated. The CRPS subgroups 
demonstrate greater variability in magnitude of response between the limbs than 
the control subjects. The greatest (statistically significant) variability is in group 3. 
 
Group 1: no pain viewing visual stimuli, symmetric vasomotor responses 
Group 2: pain enhancement viewing visual stimuli, symmetric vasomotor responses 
Group 3: pain enhancement viewing visual stimuli, asymmetric mixed vasomotor 
responses 

(n = 30) 
(n = 11) (n = 10) (n = 9) 
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6.4.9. Comparison of unilateral upper limb CRPS and  CRPS involvement of >1 
limb. 
Comparing UL only (n = 22) with >1 limb involvement (n = 8), there was no 

statistically significant difference (Mann Whitney U-test) between ∆%bbf and SR for 

any baseline autonomic function parameters or while viewing AVS. The 

characteristics of baseline pain were not markedly different either. However the >1 

limb group all experienced enhanced pain while viewing ambiguous +/- control visual 

stimuli (compared to 50% of UL only) and were more likely to have severely 

enhanced pain while viewing those stimuli (50% compared to 18% of UL only) (Table 

6.7). Autonomic response patterns of subjects with enhanced pain while viewing the 

VS were not different between the two groups: 53% of UL only and 50% of >1 limb 

had homologous blood flow responses while 47% of UL only and 50% of >1 limb had 

asymmetric blood flow responses.  

 

 

 

 

Unilateral Upper Limb >1 limb
n = 22 (73%) n = 8 (27%)

Baseline pain
Nil 1 (4.5%) 0
Mild 1 (4.5%) 1 (12.5%)
Moderate 16 (73%) 5 (62.5%)
Severe 4 (18%) 2 (25%)
Pain enhancement viewing VS
Nil 11 (50%) 0
Mild 0 2 (25%)
Moderate 7 (32%) 2 (25%)
Severe 4 (18%) 4 (50%)
Dystonic response viewing VS 8 (36%) 2 (25%)

Limb Involvement

 

 

 

 

 

 

 

 

 

 

 

Table 6.7. Comparison of pain and dystonic responses in patients with unilateral 
upper limb CRPS involvement and >1 limb (unilateral upper limb + lower limb) 
CRPS involvement 

Comparison of subjects with unilateral upper limb CRPS only and subjects with CRPS 
involving >1 limb. In the latter group, 7 patients had unilateral upper limb plus one lower 
limb involvement, and 1 patient had unilateral upper limb plus both lower limbs involved. 
Data for the numbers (%) of subjects with nil, mild, moderate or severe baseline pain and 
for nil, mild, moderate or severe pain enhancement while viewing AVS are shown. The 
incidence of dystonic responses while viewing VS is also displayed. 
VS = visual stimuli (control, duck/rabbit, Necker cube) 
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6.4.10. Comparison of ‘cold’ and ‘warm’ CRPS. 
(See Chapter 2 , section 2.7.7.) 

CRPS subjects could be divided into ‘warm’ (overall baseline mean blood flow of 

>250 arbitrary flux units) and ‘cold’ (overall baseline mean blood flow of 150 - 250 

arbitrary flux units) types. Twenty four patients had ‘warm’ CRPS, and six subjects 

had ‘cold’. 

The mean disease duration of cold CRPS was 2.6 years. Comparing the 

‘cold’ and ‘warm’ groups, there was no statistically significant difference (Mann 

Whitney U-test) between ∆%bbf and SR for any baseline autonomic function 

parameters or while viewing AVS. Five out of the six ‘cold’ subjects had no pain while 

viewing AVS, and all six had homologous symmetric vasoconstrictor responses.  

 

6.4.11. Comparison of baseline autonomic function w ith pain and autonomic 
responses while viewing AVS 
The change in pain was allocated a score, where none = 0, mild = 1, moderate = 2 

and severe = 3. There was no significant correlation between the baseline composite 

autonomic score and change in pain while viewing AVS.  

The presence of abnormal or absent LDF sympathetic autonomic responses 

to baseline testing did not predict asymmetric responses to viewing visual stimuli. 

The sympathetic autonomic responses to the mental stress task (maths or spelling) 

are generated by higher central mechanisms, but also did not predict abnormal 

response to visual stimuli. See Table 6.8 . A patient with a previous sympathectomy 

was still able to generate a peripheral response to AVS (Table 6.8 ).  

Comparing between matched healthy controls (n = 30) and the CRPS 

subgroups, group 3 patients were significantly different for both the ∆%bbf and the 

SR (all effects reported at p<0.05, Kruskal-Wallace test, post hoc Mann Whitney U-

test with Bonferroni correction) of the baseline mental stress task (Fig. 6.14 ). 
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Fig.6.14.  
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Mental Stress task 

Fig.6.14. Blood flow response symmetry ratios (SR) for CRPS subgroups for the 
Mental stress task. 
 
Box plots showing medians, IQR and range are illustrated. The CRPS subgroups 
demonstrate greater variability in magnitude of response between the limbs than 
the control subjects. The greatest (statistically significant) variability is in group 3. 
 
Group 1: no pain viewing visual stimuli, symmetric vasomotor responses 
Group 2: pain enhancement viewing visual stimuli, symmetric vasomotor responses 
Group 3: pain enhancement viewing visual stimuli, asymmetric mixed vasomotor 
responses 

(n = 30) 
(n = 11) (n = 10) (n = 9) 
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Table 6.8. Comparison of baseline autonomic blood flow responses to sympathetic 

stimuli with responses to visual stimuli. 

 

 

 Pt ID

A U A U A U A U A U C DR N

1 Y Y Y Y Y Y Y Y Y Y Y Y Y
# N Y Y Y N Y Y Y Y Y Y
2 Y Y Y Y Y Y Y Y Y Y Y Y Y
3* Y Y Y Y N Y N Y Y
4 Y Y Y Y Y Y Y Y Y Y Y Y Y
5^ Y Y N N N N Y N Y Y
6 Y Y Y Y Y Y Y Y Y Y Y
7 Y Y Y Y Y Y Y Y Y Y Y Y Y
8 Y Y Y Y Y Y Y Y Y Y Y Y Y
9 Y Y Y Y Y Y Y Y Y Y Y Y Y
10 Y Y Y Y Y Y Y Y Y Y Y Y
11 Y Y Y Y Y Y Y Y Y Y Y Y Y

12* Y Y Y Y Y Y Y Y
13^ Y Y Y N N N N N Y Y
14* Y Y Y Y Y Y Y Y Y Y
15 Y Y Y Y Y Y Y Y Y Y Y Y Y
16 Y Y Y Y Y Y Y Y Y Y Y Y Y
17 Y Y Y Y Y Y Y Y Y Y Y Y Y
18 Y Y Y Y Y Y Y Y Y Y Y Y Y
19* Y Y Y Y Y Y Y Y Y Y
20 Y Y Y Y Y Y Y Y Y Y Y Y Y
21^ Y Y Y Y Y

22 Y Y Y Y N Y Y Y Y Y Y
23 Y Y Y N Y Y Y Y
24 Y N Y N N N Y N Y N Y
25 Y Y Y N N N Y Y Y Y
26 Y Y N N N N Y Y Y Y
27 Y Y Y N N Y Y Y Y Y
28 Y Y Y Y Y Y N N Y Y Y
29 N N N N N N Y N Y Y Y Y
30 Y Y Y Y Y Y Y Y Y Y Y Y

Group 3: pain enhancement to visual stimuli, asymmetric BF responses

Group 1: no pain to visual stimuli, homologous BF responses

DB VAR CVR MS V
LDF

Baseline sympathetic autonomic testing Visual stimuli

Group 2: pain enhancement to visual stimuli; homologous BF resonses

 

 

Pt ID = patient/subject identification, LDF = laser Doppler flowmetry, DB = deep breath, VAR 
= venoarteriolar response, CVR = contralateral vasoconstrictor response, MS = mental stress, 
Val = Valsalva manoeuvre, C = control figure, DR = duck/rabbit, N = Necker cube, A = 
affected limb, U = unaffected limb. 
# = patient with previous sympathectomy & excluded from further analysis  
* = excessive vasoconstriction with skin blood flow <150 arbitrary flux units (AFU) and 
therefore non-discernable absent trace 
^ = no response to any VS.  
 

 

Y Homologous response 

Vasodilation response 

Absent response 

Asymmetric response 
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6.4.12. Comparison of optokinetic vulnerability wit h pain, dystonia and 
autonomic responses while viewing AVS 
There was a moderate positive correlation between optokinetic vulnerability score 

and change in pain while viewing AVS in UL-CRPS  cohort (Spearman’s rho = 0.449, 

p<0.05). There was no significant correlation with the composite baseline autonomic 

score. Comparing dystonic responses, 3/10 patients with dystonia viewing VS also 

had dystonia during an optokinetic challenge. 

 

6.4.13. Comparison of UL-CRPS cohort (n = 30) with overall CRPS cohort (n = 
54). 
Comparing sensory disturbances, 33% of the overall CRPS cohort, and 27% of the 

UL CRPS cohort experienced sensory disturbances while viewing VS. 

Comparing enhancement of pain while viewing VS, 61% of the UL-CRPS 

cohort and 63% of the overall CRPS cohort experienced enhancement of their pain 

within seconds of viewing the Necker cube and/or the duck/rabbit figure (Table 6.2 ). 

Six in the UL-CRPS cohort, and 10 (including the 6 from the UL-CRPS cohort) in the 

overall CRPS had worsening pain viewing the control figure. The mean duration of 

the viewing time for patients with enhanced pain during AVS was 43 seconds (s), 

range 5 – 60s for UL-CRPS (overall CRPS = 51s, range 4-60s). In the overall cohort, 

35% subjects described an extremely high reversal rate (“too fast to count”) 

compared to 37% UL-CRPS. Patients with pain were significantly more likely to 

describe reversal rates as ‘too fast to count’ in both groups (overall CRPS cohort: χ2 

(1) = 6.631, P<0.01; UL-CRPS cohort: Fisher’s exact test, p<0.05).  

Comparing dystonic reactions while viewing VS, 33% (n = 10) in the UL-

CRPS cohort and 28% (n = 15) in the overall CRPS cohort developed acute dystonic 

reactions in the affected limb.  

There was a moderate positive correlation between optokinetic vulnerability 

score and change in pain while viewing AVS in both the overall and UL-CRPS  

cohorts (Spearman’s rho = 0.491, p<0.001 / rho = 0.449, p<0.05 respectively). 

  
 

6.5. Discussion 
 
The study has shown that healthy controls and patients with OA and RA do not 

experience sensory disturbances or new / enhanced pain while viewing AVS, 

supporting hypothesis 1. Using LDF and ESR to record sympathetic autonomic 

responses while viewing AVS, this work has demonstrated that healthy controls and 
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patients with OA and RA have either symmetric homologous responses bilaterally, or 

no detectable response consistent with hypothesis 2. In contrast, some CRPS 

patients have enhanced pain while viewing AVS supporting hypothesis 1, and 

abnormal asymmetric autonomic responses supporting hypothesis 3. Furthermore all 

asymmetric autonomic responses were among CRPS patients with enhancement of 

pain while viewing AVS supporting hypothesis 4.  

 

6.5.1. Comparison with previous work 
After extensive review of the literature, there appears to be only one similar previous 

study investigating sensory responses while viewing a control and an ambiguous 

visual stimulus among controls and patients with chronic rheumatic pain. Hall et al 

(2010) recorded qualitative changes in somatosensation and frequency of percept 

changes among 45 healthy controls, 30 CRPS patients and 33 patients with 

rheumatic disease (mostly OA and RA). Their study used the duck/rabbit figure as a 

familiarisation image to establish the bistable nature of the image, and did not 

specifically look for whether this produced any somaesthetic changes. A control 

figure and reversible Necker cube were then displayed.  

They also found that none of the controls had pain but 3 had sensory 

disturbances. Two rheumatology patients reported a minor increase in pain, and 5 

sensory disturbances viewing AVS. Twelve of the rheumatology group reported a 

decrease in pain, which was not observed in my study. Among CRPS patients, 73% 

had enhanced pain and/or sensory disturbances (43% pain, 50% somaesthetic 

disturbances viewing the Necker cube) and one reported amelioration of symptoms. 

Reversal rates for the Necker cube during the 1 minute exposure were 9 for controls, 

8 for rheumatology patients and 10 for CRPS, with 4 CRPS subjects reporting rates 

as too fast to count. These figures are similar to my study. 

The Hall paper was primarily a qualitative exploratory study, which may 

explain the wider variety of somatosensory findings such as reduction in symptoms 

due to distraction. The use of the DR as a familiarisation task may have introduced 

several confounding factors. The bistable DR could have started to induce sensory 

changes before the control and reversible figure were subsequently shown. This 

might prime cortical pathways and cause higher reporting rates compared to my 

work. Subjects had been informed that they would be viewing bistable images, and to 

indicate changes in percept by pressing a button. This introduces an attentional bias, 

both looking for percept changes, and directing attention towards pressing a button. 
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6.5.2. Visual stimuli and somaesthetic responses 

Sensory disturbances and enhanced pain responses to viewing VS were only 

present in the CRPS cohort. These responses were absent in controls or patients 

with OA and RA. Explanations include that different pain mechanisms are operational 

in CRPS. An alternative is that the sensory discrepancy threshold is much reduced in 

CRPS compared to in OA or RA, such that a pure visual conflict is adequate to 

activate Ramachandran’s proposed right cortical centre monitoring incongruence of 

sensation (CIS) and generate sensory disturbances and activate pain networks (see 

Chapter 5 , 5.5.2). Application of Occam's razor would favour the latter, simpler 

suggestion. 

The visual system processes the Necker cube as a three dimensional object 

(Bisiach et al., 1999;Kornmeier and Bach, 2004) utilising spatial cues (Long and 

Toppino, 2004) and with a dorsal-parietal visual stream bias (Lehky and Sereno, 

2007). The duck/rabbit illusion is an object recognition dependent visual illusion (ie. 

the subject has to have seen a duck or a rabbit previously in order to be able to 

recognise a pictorial representation of either), and has a ventral pathway bias (Shen 

et al., 1999). Work using fMRI in healthy subjects demonstrated how pain could 

modulate visual object processing in the ventral visual stream (Bingel et al., 2007). 

Their data suggest that the source of modulation for pain could be attributed to 

activation of the rostral anterior cingulate cortex whereas for a working memory task, 

this was observed in the parietal cortex.  

Among CRPS patients with enhanced pain while viewing VS, few arose from 

viewing the control figure (n=6, 20% in the UL-CRPS cohort (n = 30)). There was little 

difference in the frequency of enhanced pain induced by the Necker cube (n=18, 

60%) or the duck/rabbit figure (n=16, 53%). Therefore the visual processing pathway 

differences do not appear to be significant factors in generating pain, and the role of 

visual conflict seems more important. The enhancement of pain is unlikely to 

represent an attentional effect induced by viewing any kind of picture, as there is a 

clear frequency difference for the control compared to the AVS, again suggesting that 

the visual conflict is significant. Furthermore, all the CRPS patients that had 

enhanced pain viewing the control figure described it as unstable and 'moving' which 

infers visual fixation instability for a normally stable object and thus visual conflict. 

Cortical network changes secondary to chronic pain affecting visual processing areas 

such as the V5 cortex (motion) may account for how apparently stable objects such 

as the control figure can become unstable and seem to move.  
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6.5.3. Autonomic responses and visual processing 
 
Comparison of the quantitative autonomic response data between the overall healthy 

control cohort (N = 40) and the matched healthy control cohort (N = 30) did not show 

any significant differences between the cohorts. However the matched cohort were 

all taken from the overall cohort, and the numbers are small which could obscure 

differences. 

 

Visual stimuli are centrally processed in higher cortical areas. The process of 

perception interacts with affective areas to generate emotion, which in turn will cause 

autonomic and neuroendocrine responses (Craig, 2003;Critchley, 2005). Centrally 

generated autonomic responses are detectable peripherally. Peripheral autonomic 

pathways need to be intact to detect either peripheral or centrally generated 

autonomic responses using LDF or ESR. Therefore, the symmetric responses 

obtained from OA and RA subjects suggest that there have not been significant 

changes to peripheral or central efferent and afferent pathways.  

One of the CRPS patients had undergone a previous surgical sympathectomy 

of the affected upper limb. The baseline autonomic testing demonstrates a lack of 

response to the more peripheral/spinal sympathetic stimuli such as deep breath on 

the affected limb, but bilateral sympathetic responses to the centrally processed 

mental stress task and to one of the AVS (the duck/rabbit figure). The mechanism 

remains unclear. Possible explanations might be an incomplete procedure, axonal 

regeneration or the presence of putative ipsilateral sympathetic projections (personal 

communication). It is interesting to note that it was the 'top-down' mental stress task 

and the more 'top-down' object recognition duck/rabbit stimulus that generated 

bilateral responses rather than the more 'bottom-up' Necker cube.  

A reversal rate described as ‘too fast to count’ while viewing AVS was 

significantly higher in patients with enhanced pain responses. It was also higher in 

CRPS patients with pain and asymmetric autonomic responses. A potential 

explanation is that some CRPS patients are especially vulnerable to visual conflict, 

possibly through top-down processing of conflicting visual stimuli abnormally 

activating pain networks and other aberrant visual processing pathways. This could 

cause marked instability of a bistable object resulting in a very fast reversal rate, and 

further increased activation of autonomic and pain pathways.  

Comparing autonomic responses among cohorts, there were greater 'no 

response' rates while viewing VS among OA (ESR = 20, LDF  = 15) and RA (ESR = 

22, LDF = 12) patients, and fewer among CRPS (ESR = 4, LDF = 3) patients and 
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healthy controls (ESR = 15, LDF = 5). There may be an age effect, as the mean age 

of healthy controls (38 years) and CRPS (43 years) is younger compared to OA (61 

years), RA (57 years). Could there also be a pain effect? Another possible 

explanation is that OA and RA patients have chronic pain and may have chronic 

sympathetic autonomic activation. They could have therefore developed an 

autonomic tolerance/damping effect. However this effect is not as marked in CPRS 

patients, where there is evidence for compensatory up-regulation of peripheral 

adrenergic receptors (Bruehl, 2010). 

6.5.4. Autonomic responses and pain 
Previous work has demonstrated LDF to be a reliable and repeatable means to 

assess cutaneous microvascular blood flow (Bonelli and Koltringer, 2000;Low et al., 

1983). Previous studies have demonstrated sympathetic abnormalities in CRPS 

(Wasner et al., 1999);(Wasner et al., 2001), but the pattern of responses during 

painful stimuli in CRPS and the possible contribution to pain is less known (Baron et 

al., 2002).  

This research has demonstrated that anomalous asymmetric mixed 

sympathetic autonomic responses to viewing VS can identify a group (group 3) of 

CRPS patients with vulnerability to enhanced pain and concurrent dystonic reactions, 

supporting hypothesis 3. Furthermore, all the patients in this group experienced 

worsening pain viewing VS (AVS +/- C) consistent with hypothesis 4. When the 

CRPS subgroups were compared to each other and to matched healthy controls, 

there was a significant difference for the SR of the Necker cube in group 3. More 

group 3 CRPS subjects described reversal rates as 'too fast to count' for the Necker 

cube (n=6) than the duck/rabbit (n=4). The dorsal parietal visual processing stream 

bias of the Necker cube may be a contributing factor to visual conflict, instability and 

enhanced pain in this more vulnerable group. However the numbers are small and 

require confirmatory findings in a larger study. 

 

There is one study by Ackerman et al using laser Doppler imaging to evaluate 

pre and pot-operative sympathetic function and recurrence of CRPS in patients 

undergoing carpal tunnel release (Ackerman, III and Ahmad, 2008). Thirty-four 

patients had sympathetic function tested by reflex-evoked vasoconstrictor responses 

to sympathetic stimuli recorded from both hands 5-7 days before and 19-22 days 

after surgery or 20-22 days after resolution of CRPS. They were assigned to two 

groups on the basis of pre-operative results: group 1 (11 subjects) – abnormal 

results; group 2 (23 subjects) – normal results. In group 1, 73% (8/11) had 
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recurrence of CRPS and 13% (3/23) in group 2. All the recurrent CRPS cases were 

treated ‘successfully’ with sympathetic blockade, occupational therapy and 

pharmacologic modalities. Repeat LDI after resolution of recurrent CRPS was 

abnormal in all 8 group 1 patients and in 1 of the 3 group 2 patients. The authors 

concluded that the technique might be able to identify individuals who would benefit 

from post-operative therapies.  

It is interesting to note that all eight group 1 patients with ‘successfully’ treated 

recurrent CRPS had sympathetic blockade, and continued to have abnormal testing. 

Many would classify these patients as having ‘sympathetically maintained pain’, and 

yet they continued to have abnormal sympathetic responses throughout despite 

sympathetic blockade. This strongly suggests that the role of the detected 

sympathetic autonomic abnormalities are unclear, but that they do select a group of 

CRPS patients with an increased likelihood of recurrence. It could be argued that the 

sympathetic block may not have had any effect, and the other components of therapy 

were the therapeutic element. This could be investigated by repeating the study and 

omitting or substituting the sympathetic blockade with placebo in some, and 

comparing to others who received the block. 

6.5.5. Dystonia and visual processing 
Ten patients (UL-CRPS, n = 30) had concurrent dystonic responses in the affected 

limb while viewing VS implicating involvement of motor areas. This is unlikely to 

represent an attentional phenomenom as there is a distinct distribution of dystonic 

responses, being least in group 1 and highest in group 3 CRPS patients. There was 

no dominant VS associated with dystonic responses suggesting that the visual 

conflict itself is more significant.  However, the numbers are small and require larger 

scale study confirmation. 

CRPS patients with dystonia have been demonstrated to have altered 

cerebral activation patterns during imagined movements of the affected limb 

(Gieteling et al. 2008). This was postulated to reflect an interface between pain-

associated circuitry and higher order motor control, and a specific mechanistic 

pathophysiology. Results from this study suggest that visual conflict may also 

operate at this interface. In a susceptible group of CRPS patients visual conflict may 

be sufficient for the consequent pain network activity to induce an efferent motor 

response and dystonic reactions, supporting the concept of a specific 

pathophysiologic mechanism in this group. 
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6.5.6. Role for cortical reorganisation? 
The Harris hypothesis (Harris, 1999) suggests that subjects with chronic pain are 

more likely to have cortical reorganisation rendering them more susceptible to 

sensory incongruence. OA and RA subjects did not experience sensory disturbances 

or pain viewing AVS. One explanation would be that they have less neuroplastic 

reorganisation than in a neuropathic pain syndrome such as CRPS.  

It could also be argued that patients with OA and RA are more stoic than 

CRPS patients or less psychologically distressed. However the data also showed 

that patients with CRPS of >1 limb (and therefore probable greater extent of cortical 

remapping) all had enhanced pain while viewing VS (AVS +/- C) compared to 50% of 

unilateral upper limb CRPS patients. Such a pattern would not be expected if CRPS 

patients were less 'stoic' although the psychological explanation could not be 

excluded. There is no data in the literature to support the latter argument, and future 

work could address this specific point. 

 

6.5.7. Central and autonomic nervous system organisation 
It has been postulated that the three divisions of the motor system (somatic, 

autonomic and neuroendocrine) are hierarchically organised and integrated within 

the central nervous system (Jänig, 2006). Activity of the motor system is dependent 

on inputs from the sensory systems, the cortical system and the behavioural state 

system (controlling attention, arousal, sleep/wakefulness and circadian timing). 

Changes within the input systems are reflected by changes in autonomic regulation 

and therefore autonomic pathway activity (Jänig and Baron, 2006). Neuroplastic 

cortical reorganisation resulting in functional changes of somatic (Maihöfner et al., 

2003) and autonomic (Geha et al., 2008) divisions may occur in chronic pain 

conditions such as CRPS. Peripheral changes (including inflammatory responses, 

changes to nociceptive and other afferent nerve fibres and sympathetic afferent 

coupling) may alter sensory inputs, changing afferent inputs to the central systems 

(Jänig, 2006). Thus changes in peripheral and central input systems to the motor 

hierarchies are reflected in somatomotor pathway activity, autonomic pathway activity 

and autonomic regulation.  

This work has demonstrated that in a group of CRPS patients, a stimulus 

causing central arousal via visual pathways can generate pain and asymmetric 

peripheral vasomotor sympathetic responses. Pain and anomalous responses while 

viewing VS could not be predicted from baseline autonomic function or from 

responses to non-painful central stimuli activating the sympathetic system (e.g. in the 
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mental stress task). These findings suggest that anomalous responses while viewing 

VS cannot be explained by abnormalities of peripheral mechanisms and autonomic 

spinal reflexes alone, and that supraspinal cortical interactions are involved. 

 

6.5.8. Asymmetric sympathetic autonomic responses 
The concept of the autonomic nervous system as one of ‘mass action’ has been 

challenged in recent years (Drummond, 2006;Jänig, 2006). Changes in peripheral 

and central input systems (such as that induced by chronic pain) can disrupt central 

integration causing disturbance of the usually precise autonomic outputs (Jänig, 

2006). Asymmetric responses of cutaneous vasoconstrictor neurons to ipsilateral 

noxious skin stimulation has been described in animals (Horeyseck and Jänig, 1974) 

Some healthy subjects can be trained to simultaneously change the skin temperature 

of both hands in opposite directions by biofeedback techniques (Roberts et al., 1975) 

or hypnosis (Maslach et al., 1972;Zachariae et al., 1994), demonstrating that central 

cognitive processes are able to cause asymmetric autonomic skin responses. 

Sustained noxious stimulation of one forearm in healthy subjects with mustard oil 

generates the presence of sympathetic reflex asymmetry that is specific for the 

nociceptive afferent input, with consistently smaller vasoconstrictor responses on the 

contralateral hand than on the ipsilateral one (Magerl et al., 1996). Immersion of the 

hand in painfully cold ice water induces asymmetric vasodilation in the temples of 

healthy subjects with less response on the contralateral side (Drummond, 2006).  

The contribution of sympathetic autonomic dysfunction to pain is unclear. 

Baron et al (Baron et al., 2002) used whole body warming and cooling combined with 

pain measures before and after sympathetic blockade to investigate the contribution 

of sympathetically maintained pain mechanisms. Their results suggest a relationship 

between sympathetic vasoconstrictor activity and pain. Drummond et al report that 

pain can increase during sympathetic arousal in patients with CRPS (Drummond et 

al., 2001).  

These observations suggest that nociception is able to cause a differentiated 

sympathetic response with separate control of discrete reflex pathways on each side 

of the body. Data from my research suggest that in some CRPS patients, abnormal 

brain processing of visual information can cause further disruption of central 

autonomic integration resulting in asymmetric peripheral responses. 

 

It has been proposed that in chronic pain syndromes, sensory feedback has 

lost its precise temporal and spatial coordination with cortical sensory maps, central 
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autonomic and somatic motor programmes (Jänig, 2009). Drawing on data from this 

study, the following mechanism is proposed: In a subgroup of CRPS patients, in 

addition to remapping in sensory-motor areas there may be neuroplastic 

reorganisation of parietal and central autonomic pathways. Visual sensory conflict 

could activate pain pathways via dorsal parietal routes, which interact with disrupted 

central autonomic and motor programmes producing pain, dystonia and asymmetric 

sympathetic responses.  

 

6.5.9. Study strengths  
This work has established a practical, non-invasive means of assessing short 

duration dynamic sympathetic autonomic responses to pain, applicable to CRPS and 

other chronic pain conditions. It has the major advantage of being tolerable to 

patients with severe, extensive allodynia. 

 

6.5.10. Study limitations and future directions 
Further studies are needed on patients with early disease to investigate whether 

similar mechanisms are operational. Whilst there was no clear effect of disease 

duration, longitudinal studies are required to assess both this, and whether 

responses change with worsening or resolution of CRPS. Functional imaging studies 

would provide further exploration and validation of these findings.  

Further work in CRPS patients at varying stages and disease duration may 

provide more insight into whether this pattern of sensory conflict vulnerabilty 

develops early or late, and if it remits with resolution of disease. Comparison of 

patients with type 1 and type 2 CRPS and with other neuropathic pain conditions 

such as post herpetic neuralgia or spinal cord injury may differentiate whether this is 

specific to type 1 CRPS, or exists in other neuropathic pain states. 

Only two ambiguous visual stimuli were used. Different types of optical 

illusion are postulated to work in different ways (Gregory, 1997). Repeating the study 

using different types of illusion might provide further insight into pain mechanisms in 

CRPS.  

The visual stimuli were used in a graded consistent order. Randomisation of 

order has been used in OA and RA (Cohen HE et al., 2006). Further work should 

randomise the order of visual stimuli with larger numbers of CRPS patients to assess 

whether this is feasible, or not (as suggested by pilot work). 

OA and RA subjects had a similar, higher non-response rate while viewing 

AVS compared to HC and CRPS. As non-response was an important finding, it was 
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included in analysis. However, this makes the mean and median values of OA and 

RA lower in comparison, and produces wider variability. Another approach to 

analysis of quantitative LDF data would be to separate out non-responses, and 

compare the magnitude of responses between cohorts. In future work, with larger 

numbers, it would be useful to compare both types of analysis. 

A major challenge remains that of separating attentional bias. It proved 

impossible to find a single true control figure. Therefore, several control figures need 

to be used within and between cohorts. One figure might control for emotion, and 

another for stability. This would allow better separation in the subsequent analysis of 

results. 

Finally, the study should be repeated with investigators blinded to the subject 

(ie whether control or patient).  

 

6.5.11. Clinical Implications 
One particular phenotype of CRPS appears to be characterised by enhanced 

vulnerability to sensory conflict which may explain some pain behaviours observed 

among CRPS patients. Anecdotal descriptions of avoidance of flashing images, 

difficulty with looking at passing rows of road cones, dislike of complex geometric 

forms in art or on external surfaces of buildings become understandable in this 

context. Patients have described being confused why this apparently made their pain 

worse, and had not volunteered such information before for fears of being thought 

‘crazy’. Some subjects found a normally stable object (the control figure) unstable, 

and were able to relate this to difficulty with reading describing the words as ‘moving 

around’ on the page. For those with marked symptoms, they may need to be 

cautioned against driving.  

The outcome of this research supports the concept that sympathetic 

autonomic baseline testing may provide a potential approach to the identification of 

subgroups of CRPS patients with particular patterns of problems, assisting in novel 

clinical phenotyping and treatment approaches for CRPS. 
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6.6. Summary 
 
The hypotheses postulated were proven: 

i. Viewing ambiguous visual stimuli (AVS) caused sensory disturbances and 

enhanced pain responses in CRPS patients but not in healthy controls 

and patients with rheumatoid arthritis (RA) or osteoarthritis (OA). 

ii. Healthy controls, OA and RA patients had symmetric sympathetic 

autonomic responses in the upper limbs while viewing AVS. 

iii. Some CRPS patients had abnormal sympathetic autonomic responses 

while viewing AVS. 

iv. Abnormal sympathetic autonomic responses in CRPS patients while 

viewing AVS were associated with enhancement of pain. 

 
 

Among healthy controls (HC), osteoarthritis (OA) and rheumatoid arthritis (RA) 

patients there were no sensory disturbances or new / enhanced pain while viewing 

any visual stimuli (VS). In contrast, 27% of CRPS patients experienced sensory 

disturbances, and 63 % enhanced pain. Among those that had worsening pain, 20% 

had mild, 42% moderate and 38% severely worse pain compared to baseline pain. 

The reversal rate of the AVS was significantly more likely to be reported as ‘too fast 

to count’ in patients with enhanced pain while viewing AVS. Some CRPS subjects 

found the control figure appeared unstable and also caused enhanced pain. Others 

(33%) had a concurrent dystonic reaction in the affected limb. CRPS patients with >1 

limb affected all experienced pain viewing AVS.  

 Laser Doppler flowmetry (LDF) and electrodermal skin response (ESR) 

recordings of sympathetic autonomic responses while viewing visual stimuli were 

homologous bilateral symmetric responses, or there was no detectable response 

among controls, OA and RA subjects. CRPS patients also demonstrated these 

responses, but others had abnormal asymmetric LDF responses (30%) and ESR 

responses (23%). Comparing CRPS patients to a selected age and sex matched 

cohort of controls, there was a statistically significant difference in symmetry ratio 

(SR), showing increased variability of blood flow response between the limbs while 

viewing the Necker cube. Among both the overall and UL-CRPS cohorts, there was a 

moderate positive correlation between OK vulnerability and enhanced pain viewing 

AVS (ie. higher vulnerability, higher pain rating while viewing AVS). CRPS patients 

with asymmetric responses and enhanced pain while viewing AVS were more likely 

to find the control figure unstable, report the reversal rate as ‘too fast to count’, 
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experience severely worse pain and to have a dystonic reaction. Asymmetry while 

viewing AVS was not predictable from the baseline sympathetic autonomic testing. 

 

6.7. Conclusion 
 

Viewing AVS does not cause sensory disturbances or pain among healthy controls or 

patients with OA or RA, but can induce pain, dystonic reactions and abnormal 

asymmetric sympathetic autonomic responses among some CRPS patients. In these 

CRPS patients, higher visual processing of conflicting stimuli may cause abnormal 

pain network activation which disrupts normal autonomic integration, causing 

asymmetric sympathetic responses. Cortical reorganisation involving parietal areas 

may be a predisposing factor. 
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Chapter 7: Parietal lobe function in CRPS  
 

 

“The brain is our engine of understanding. There is nothing closer to 

our intimate experiences, yet the brain is less understood and more 

mysterious than a distant star.” 

 

 

Professor Richard Gregory from 'Eye and Brain: The Psychology of Seeing' 

 

Image: Haswell,M., 2011. Professor Richard Gregory [online]. Bristol: University of Bristol. Available from: 

http://www.bris.ac.uk/news/2011/7737.html [Accessed 18.1.2012]. 

 

7.1. Introduction 
(Data from this study has been published; see Appendix 10, or submitted for 

publication; see Appendix 11) 

In the previous three studies, baseline autonomic function and somaesthesia in 

healthy controls, and patients with OA, RA and CRPS has been established. All four 

cohorts have been exposed to different forms of sensorimotor conflict. Their 

vulnerability to sensory disturbances and/or pain arising from these challenges has 

been assessed, and sympathetic autonomic responses recorded. It has been shown 

that CRPS patients are more vulnerable to visuo-motor or pure visual conflict, and 

that those who experience enhanced pain are particularly vulnerable and may have 

concurrent abnormal sympathetic autonomic responses and dystonic reactions. It is 

postulated that in vulnerable subjects there may be lower sensory disturbance 

detection thresholds and activation of pain networks together with motor and 

autonomic integrational dysfunction. Cortical reorganisation may predispose to 

vulnerability. 

There is increasing evidence for the role of central mechanisms in CRPS. 

Several studies show evidence of neuroplastic cortical reorganization in CRPS 

(Juottonen et al., 2002;Maihöfner et al., 2003;Pleger et al., 2004;Schwenkreis et al., 

2009), with the extent of reorganization linking to characteristics of CRPS pain 

(Maihöfner et al., 2003;McCabe et al., 2003;Pleger et al., 2006). Rommel et al 

(Rommel et al., 2001) have demonstrated that CRPS patients may have a 

hemisensory pattern of impairment and that this group are more likely to have 
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mechanical allodynia (pain due to a tactile stimulus which does not normally provoke 

pain) and hyperalgesia (an increased response to a stimulus which is normally 

painful). They concluded that hemisensory impairment may be a clinical correlate of 

subcortical brain plasticity. Furthermore, resolution of reorganizational changes upon 

recovery from CRPS have been observed (Maihöfner et al., 2004;Pleger et al., 

2005). This is in keeping with extensive work demonstrating clear reorganizational 

changes in phantom limb pain (Flor et al., 1998;Karl et al., 2001;Ramachandran et 

al., 1992), and with the degree of remapping correlating to the severity of pain (Flor 

et al., 1995). Other studies in CRPS have confirmed that expansion of hand 

representation correlates with mean pain intensity (Pleger et al., 2004) and tactile 

impairment (Pleger et al., 2006).  

It has been recognised that CRPS patients often complain of apparently 

bizarre symptoms such as feelings of ‘foreigness’ (Förderreuther et al., 2004) of the 

affected limb, and body dysmorphic features (Lewis et al., 2007) whereby the 

affected limb feels grossly distorted in size, shape and weight. They may 

demonstrate clinical signs such as neglect-like phenomena (Galer and Jensen, 1999) 

and finger misidentification (Förderreuther et al., 2004). This constellation of clinical 

symptoms and signs is reminiscent to those seen in patients with parietal lobe 

lesions eg. hemineglect and somatoparaphrenia (denial of ownership of a limb or an 

entire side of one's body) after parietal cerebrovascular accident.  

Evidence is emerging for the role of the parietal cortex in the neurocognitive 

dysfunction observed in CRPS (Maihofner and Peltz, 2011). A study investigating 

motor dysfunction in CRPS, using kinematic analysis, showed significant 

prolongation of the target phase during target reaching and grasping with a pattern of 

motor impairment consistent with disturbed integration of visual and proprioceptive 

inputs in the posterior parietal cortex. Subsequent functional magnetic resonance 

imaging (fMRI) analysis demonstrated that activations of the posterior parietal 

cortices, supplementary motor cortices and primary motor cortex were correlated with 

the extent of motor dysfunction (Maihöfner et al., 2007). When fMRI was performed 

during imagined movements of the affected hand in CRPS patients with dystonia, 

there was contralaterally reduced activation in the inferior parietal and adjacent 

primary sensory cortex compared to healthy controls (Gieteling et al., 2008). A 

Positron Emission Tomography (PET) study of cerebral glucose metabolism in CRPS 

demonstrated bilateral increases in several brain areas including the parietal cortex 

(Shiraishi et al., 2006). Another PET study of a CRPS patient before and after 

successful treatment showed increased cerebral blood flow in the right parietal and 

left frontal lobes, which decreased after treatment (Wu et al., 2006). Vartiainen 
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showed that magnetoencephalography (MEG) responses during tactile processing of 

hyperaesthetic CRPS subjects demonstrated defective posterior parietal cortex 

(PPC) activation, and suggested that this might be associated with neglect-like 

symptoms (Vartiainen et al., 2008). 

 

A possible underlying explanation for these otherwise apparently bizarre 

symptoms is abnormal central sensorimotor integration involving the parietal areas 

with activation of dysfunctional cortical networks, causing unusual symptoms and 

signs that have often been regarded as psychological or malingering. Cortical 

reorganisation extending beyond S1 may be a predisposing factor. Based upon the 

literature reviewed above, such patients would be conjectured to have severe pain, 

mechanical allodynia and hyperalgesia in extensive areas.  

This study builds upon the previous ones by assessing a series of CRPS 

patients for clinical evidence of parietal lobe dysfunction, which if present would be 

suggestive of abnormal higher central sensorimotor integration, and of reorganisation 

extending beyond S1. 

 

7.1.1. Aims 
The aim of this clinical study was to assess whether patients with CRPS Type 1 

demonstrate objective signs of parietal lobe dysfunction on detailed clinical testing, 

and whether this was related to Quantitative Sensory Testing (QST) findings.  

7.1.2. Hypotheses 
 

The hypothesis was that:  

• Some CRPS patients will demonstrate evidence of parietal lobe dysfunction 

when assessed by detailed clinical bedside testing. 

 

The secondary hypothesis was that: 

• CRPS patients with parietal dysfunction will have more extensive areas 

affected by mechanical allodynia compared to patients who have no parietal 

dysfunction.  

 

7.2. Methodological considerations  

7.2.1. Assessment of parietal lobe function 
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The clinical assessment of parietal lobe function is complex, and often needs detailed 

neuropsychological assessment as well as clinical testing. If a parietal lobe lesion is 

suspected, the ‘standard’ bedside clinical test is usually a brief part of the formal 

neurological examination and can only detect gross dysfunction. Fig.7.1 is a typical 

example.   

 

Fig.7.1 

 

Fig.7.1. A typical example of a standard bedside test of parietal function taken from 

the Loyola University Medical Education Network for medical students (LUMEN 

[online] ((2010). 

 

In order to establish not only whether parietal dysfunction was present, but what 

pattern (eg. left Vs right parietal lobe), a more detailed assessment was required. A 

series of clinical tests were constructed encompassing ten different aspects of 

parietal lobe function, based upon the testing parameters used in previously 

published papers clinically examining parietal function in detail (Moo et al., 

2003;Tucha et al., 1997). The ten categories of function tested are listed below in 

7.3.2, and the testing protocol and data collection sheet are reproduced in Appendix 

8 and 9.  

 

 

Cortical sensations should be tested whenever a parietal lesion is suspected from the 
screening examination or patient history. These additional tests include:  
 
� number identification (graphesthesia). Examiner traces a number in patient’s 

palm with patient’s eye closed and asks the patient to identify the number. 
Repeat in the other palm.  

 
� double simultaneous stimulation. Examiner touches the patient on left upper 

limb, then right upper limb, then both upper limbs simultaneously while the 
patient’s eyes are closed. Ask the patient. where they feel the touch.  

 
� two point discrimination. Examiner can use special calipers or open up a paper 

clip for this maneuver.  
 
� stereognosis. This tests object recognition without the use of vision. Ask the 

patient to close their eyes, then examiner places a familiar object in the patients 
palm (i.e., – a coin, key, paper clip) and asks them to identify the object by 
touch.  
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7.2.2. Apparatus 
For Parietal testing 

See Appendix 8. 

 

For Quantitative sensory testing: 

As per Chapter 4. 

 

7.2.3. Subjects 
Twenty-two consecutive CRPS patients attending a two week in-patient rehabilitation 

programme at the Royal National Hospital for Rheumatic Diseases (RNHRD), Bath 

UK were invited to participate. All patients fulfilled IASP diagnostic criteria for CRPS 

(Harden et al., 2007). No patient had any other concurrent pathology that might 

impair sensation or higher central perception of sensory stimuli (eg. peripheral 

neuropathy, multiple sclerosis, prior history of cerebrovascular accident) or significant 

visual impairment. 

All admitted patients undergo a full clinical examination which includes a 

neurological assessment. The parietal testing was done as part of the neurological 

examination which while more detailed than a standard neurological screen, was not 

beyond that performed by a Neurologist or neuropsychologist and was appropriate as 

part of their clinical appraisal. Therefore ethics approval for this part of the overall 

research project was not sought. All patients had consented to participate in the 

broader research project which had full local ethics approval. All subjects were 

informed that they did not have to undergo the more detailed neurological 

assessment, and that refusal would not impact upon their current or future care.  

 

7.3. Methods 

7.3.1. Parietal testing 
All the clinical testing was done by one examiner (HC). The subject was seated 

comfortably, and told that they were undertaking a series of tests to explore how well 

a particular part of the brain was working. It was explained that as this brain area is 

involved with putting a variety of different sense information together to make sense 

of our surroundings, it would involve testing language, numeracy, drawing, touch and 

sense of body location. The subject was reassured that if they were found to have 

difficulties, that this would be used to help with individualising their rehabilitation 

programme.  
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Each testing category comprised two or more tests administered on each 

upper limb. Some tests required a series of stimuli (certain tests within the 

conduction and nominal aphasia, agraphia /alexia, acalculia, astereognosis, finger 

agnosia, dysgraphaesthesia, right/left disorientation categories) when each limb was 

presented with 3 stimuli in succession. The tests were performed in the same 

sequence for each patient, with gaps of 2 – 5 minutes (or more as required by the 

patient) between each category of testing. Each test was performed first with the 

unaffected limb, and then with the affected limb. When an abnormal result was 

obtained, the subject was asked to describe in more detail what had happened, and 

contemporaneous notes of the qualitative descriptions were taken. The full testing 

took approximately two hours per patient. Where the testing significantly worsened 

pain, it was broken into two testing sessions of one hour on consecutive days. 

7.3.2. Categories of parietal function tested 
 

For full testing protocol details, see Appendix 8.  

Each subject performed a testing battery for each of the following categories: 

 

• Interlocking fingers screen (Moo et al., 2003) 

• Ideomotor apraxia 

• Conduction & nominal aphasia 

• Agraphia / alexia 

• Acalculia 

• Astereognosis 

• Finger agnosia 

• Dysgraphaesthesia 

• Right/left disorientation 

• Constructional apraxia 

 

7.3.3. Scoring 
For each normal test, a score of one point was allocated. The maximum total 

possible score was 116 points. During clinical appraisal of parietal lobe function, 

healthy controls do not make consistent mistakes across multiple categories of 

testing. Minor infrequent errors may occur due to distraction. The patient groups all 

had chronic pain and therefore potentially more impaired attention and distractibility. 

Allowance needed to be made for this. Healthy controls did not make more than one 

error in any one testing category (see below). Therefore in order to fail a test where a 
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series of stimuli were given, patients were allowed 3 mistakes in total before being 

deemed to have failed that test. This allowed for mistakes due to distraction or loss of 

concentration. A subject that failed one or more tests within a category was classified 

as having failed that category. 

 

7.3.4. Verification of testing validity in healthy subjects 
i. Healthy subjects should not have any difficulty performing clinical tests of parietal 

function such as these. In order to establish that the parietal testing protocol was 

performed easily without error in healthy controls, a shortened version of the protocol 

was performed on 15 healthy subjects (Fig.7.2). Two tasks were selected from each 

test category. Where the test required a series of stimuli, the subject was allowed 3 

mistakes in total before being deemed to have failed. All subjects completed the test 

protocol quickly and easily. No subject made more than one error in any stimulus 

series test, and no subject failed any of the ten categories. 

ii. Dyslexia can cause difficulties with written tasks including letter ordering within a 

word. However healthy subjects with dyslexia do not have an organic parietal lesion 

causing these problems, and would not be expected to fail any of the testing 

categories. Therefore the full testing protocol was done on a healthy control subject 

with a diagnosis of dyslexia. This subject did not fail any of the ten testing categories. 
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Fig.7.2.  

 

Interlocking fingers screen  1 2 3 4 
 
Ideomotor Apraxia 
Motor act to command (wave goodbye; salute; thumbs up; hammer a nail; turn a 
doorknob; stub out a cigarette) 
          R L 
Conduction & Nominal Aphasia 
Repetition of:   Sentences 
Confrontation naming of: Objects 
    Parts of objects 
    Clothing 
    Body 
 
Agraphia / Alexia 
Write down:  Sentence of own     R L 
   Dictated words/sentence    R L 
    
Acalculia 
Copy numbers         R L 
Write dictated numbers       R L 
 
Asteroeognosis 
Identify objects by touch       R L 
Texture series         R L 
 
Finger Agnosia 
Point to named: Own fingers      R L 
   Examiners fingers     R L 
Eyes closed; examiner touches a finger: 
   Name finger      R L 
   Move finger      R L 
   
Dysgraphaesthesia 
Letters          R L 
Numbers         R L 
 
Right Left Disorientation 
Crossed commands; Eyes open, on self 
     Touch named part   R L 
     Point to named part   R L 
Constructional Apraxia 
Draw a named shape to command (house, triangle, square etc)  R L  
Copy a shape         R L 
 

 

Fig.7.2. The shortened parietal function testing protocol used on healthy volunteers. 

The tests and the data collection sheet are shown. Tasks were performed with both the right 

and left hands. R = right, L = left. 
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7.3.5. Quantitative sensory testing: 
Semmes Weinstein filaments were used to assess tactile thresholds and body areas 

affected by allodynia. Areas were mapped onto a ‘Lund and Browder’ burns chart to 

allow for quantification of the percentage of body surface area (%BSA) affected by 

allodynia. For the full protocol, see Chapter 4. For ease of reference, the Semmes 

Weinstein filament rank order and their target force is repeated below from Chapter 

4 (Table 7.1): 

 

Table 7.1. Semmes Weinstein filament ranking order. 

 

Filament rank Target force (g) Filament rank Target force (g)
1 0.008 11 4
2 0.02 12 6
3 0.04 13 8
4 0.07 14 10
5 0.16 15 15
6 0.4 16 26
7 0.6 17 60
8 1 18 100
9 1.4 19 180
10 2 20 300

Semmes Weinstein Filaments

 
Target force is given in grams. 

 

7.3.6. Data analysis 

7.3.6.1. Sample size 
CRPS is considered to be a rare diagnosis and the literature is sparse. Papers are 

often based upon small numbers using different diagnostic criteria. Therefore, it was 

not possible to make an accurate sample size calculation.  

A non-random sampling strategy was used, and the sample size was based 

upon the number of subjects available within the data collection period. 

7.3.6.2. Outcome measures 
1. QST 

The percentage body surface area affected by allodynia was calculated from the 

mapped mannequin using a Lund and Browder burns chart. 

2. Parietal testing 
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Two outcomes were recorded: 1. Total test score (for each test performed without 

error, a score of one point was allocated. The maximum total possible score 

accumulated across all ten categories was 116 points); 2. Category score / 10 (the 

number of testing categories passed). Patients were classified as having parietal 

dysfunction if they failed one or more of the 10 testing categories. 

7.3.6.3. Statistical analysis 
The data is presented as percentages (actual number of subjects), mean and median 

values and interquartile range (IQR). Statistical analysis was performed on Statistical 

Package for the Social Sciences (SPSS) v.16 software and utilised non-parametric 

tests. For comparison between subjects with and without parietal dysfunction, the 

Mann-Whitney test was used and for correlation analysis, the Spearman’s Rho test. 

Odds ratios (OR) and 95% confidence intervals (CI) are calculated where 

appropriate. 

 

7.4. Results 

7.4.1. Patient demographics 
Seventeen female and 5 male patients admitted for a CRPS specific rehabilitation 

programme at the Royal National Hospital for Rheumatic Diseases, Bath UK were 

assessed as part of routine clinical examinations during their two week hospital stay. 

The mean age was 45 yrs, range 27 – 63 yrs and mean CRPS duration 6.8 yrs, 

range 1 – 18 yrs (see Table 7.2).  

Nine subjects had CRPS in an upper extremity, 9 in a lower extremity and 4 in 

an upper and lower extremity. Ten had CRPS on the right side, 11 on the left and 

one on both sides. Six were left handed, 15 right handed and 1 ambidextrous. Of the 

total cohort, 64% (n = 14) were on opiate medication, 64% (14) on neuromodulatory / 

antidepressant drugs and 41% (9) on both. 
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Patient ID CRPS dur'n CRPS loc'n Handed Age (yrs) Gender Medication
1 8 RA R 43 F Op, BZ, NSAID, O
2 2 RA R 56 M NO,NSAID,Op,NA
3 10 LA L 47 F NO, NA, O
4 18 LA RL R 41 F NA,O
5 8 LA LL L 29 F Op, NSAID
6 2 RL R 42 F NO
7 17 LA R 44 F NO, Op, NA, MR, O
*8 8 RA RL R 42 F Op
9 2 LL R 50 F NO,NSAID,Op,NA,O

10 11 RA R 50 M NO, Op, NA, O
11 8 RL L 27 F Op, NO, O
12 4 RA L 30 M NA, O 
13 1 RA R 63 F Op, NSAID, NO, O
14 2 RL R 46 F NA, Op
15 8 LA LL L 55 F NO, NSAID, NA
16 1 LL R 58 F Op, NSAID, NA 
17 9 LA R 63 F NO,NA,O
*18 2 RA R 30 F Op, NA
19 1 LL R/L 43 F NIL
20 10 LL R 33 F Op, NSAID, NA, NO
*21 7 LL L 52 M Op, NO, NA, O
22 10 LL R 44 M NSAID, BZ, O  

 

 

 

 

 

 

 

 

7.4.2. Parietal function in CRPS patients 
 

Only 32 % (n = 7) of CRPS patients performed within normal parameters on all ten 

test batteries, with 68% (15) failing 1 or more test category. The number and 

percentage of the cohort failing each testing category is as follows (Fig.7.3, Table 

7.3): 

• astereognosis 64% (14) 

• finger agnosia 59% (13) 

• dysgraphaesthesia 36% (8),  

Table 7.2. CRPS patient demographic data. 
 

Table 7.2. Details of the CRPS, handedness of subject and medication is 
displayed. The patient cohort was taken from subjects attending an in-patient 
rehabilitation programme; the disease duration is therefore skewed towards long 
duration (mean 7 years). 
 
Dur’n = duration (yrs), loc’n = location, RA = right arm, LA = left arm, RL = right leg, LL = 
left leg, R = right handed, L = left handed, F = female, M = male 
NO = non-opioid, Op = opioid, NSAID = non-steroidal anti-inflammatory drug, NA = 
neuromodulatory/antidepressant, BZ = benzodiazepine, MR = muscle relaxant, O = other 
* = dyslexia 
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• constructional apraxia 32% (7)  

• dyscalculia 27% (6)  

• dysgraphia 27% (6)  

• conductional dysphasia 14% (3) 

• Right /Left (R/L) disorientation 9% (2)  

• ideomotor apraxia 4% (1)   

 

None failed the interlocking fingers screen. Dyscalculia, dysgraphia, 

constructional apraxia, R/Ldisorientation and conductional dysphasia were 

associated with multiple category failures. Six (27%) failed 6 or more test categories. 

Five out of six (83%) left handed and 7/12 (58%) right handed subjects failed one or 

more battery. Eleven of the 15 patients with parietal dysfunction (73%) had CRPS 

affecting their dominant side. All the patients with >1 limb involvement (n = 4) failed 

one or more testing categories. There was no statistically significant correlation 

between disease duration and parietal score (Spearman’s rho = -0.213, p=0.34, NS). 

Only 32 % (n = 7) performed within normal parameters on all ten test 

batteries. The majority of subjects with normal parietal function (n=7) were right 

handed (n = 5, 71%), 1 was left handed and 1 ambidextrous. Five had unilateral 

involvement of a lower limb and 2 unilateral upper limb involvement (29%). Only 1/7 

(14%) had CRPS affecting the dominant upper limb. 
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Fig.7.3. 

Fig.7.3.  Pie chart showing the distribution of normal testing and category failures 
among CRPS patients. 
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7.4.3. Quantitative sensory testing 
There was mechanical allodynia in 82% (n = 18) of CRPS patients. The percentage 

of body surface area affected by allodynia (%BSA) ranged from 3 - 57.5%, with the 

median %BSA = 16%. The area of sensory impairment was confined to the affected 

limb in 41% (9) and extended beyond the limb in 59% (13). There was no significant 

correlation between %BSA and disease duration.  

The tactile threshold on the affected limb compared to the tactile threshold on 

the unaffected limb was lower (hyperaesthesia) in 59% (13), higher (hypoaesthesia) 

in 27% (6) and the same in 14% (3) (Table 7.4).  

IL = interlocking fingers, IA = ideomotor apraxia, CDph = conduction dysphasia, Ag = agraphia, 
Ac = acalculia, As = astereognosis, FA = finger agnosia, Dg = dysgraphaesthesia, RLD = 
right/left disorientation, CA = constructional apraxia 
R = right handed, L = left handed 

Table 7.3. The results of parietal testing are tabulated showing the parietal testing 
score as a percentage of total score, number of testing categories that tested normally 
out of ten and which categories were failed. The handedness of the subjects is 
indicated (grey shading, left handed). 83% of left handed and 58% of right handed 
subjects failed one or more parietal testing categories. 

Patient ID Handed Total score % Category score/10 Category failed
1 R 45 1 IA,CDph,Ag,Ac,As,FA,Dg,RLD,CA
2 R 47 1 CDph,Ag,Ac,As,FA,Dg,CA
3 L 59 3 Ag,Ac,As,FA,Dg,RLD,CA
4 R 62 4 Ag,Ac,As,FA,Dg,CA
5 L 75 4 Ag,Ac,As,FA,Dg,CA
6 R 75 4 CDph,Ag,Ac,As,FA,CA
7 R 85 7 As,FA,CA
8 R 86 7 As,FA,Dg
9 R 89 8 As,FA

10 R 90 8 FA,Dg
11 L 91 8 As,FA
12 L 93 8 As,Dg
13 R 95 8 As,FA
14 R 95 8 As,FA
15 L 96 9 As
16 R 97 10
17 R 97 10
18 R 98 10
19 R/L 98 10
20 R 98 10
21 L 99 10
22 R 99 10

Table 7.3. Parietal lobe testing results. 
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Several unusual sensory patterns were discovered in CRPS affected areas (Table 

7.4, Fig.7.4). With eyes closed:  

• Twelve (54%) demonstrated referral of sensation (tactile stimulation was felt 

concurrently in the area stimulated, and in another discrete area bi-

directionally) (Fig.7.4.A,B,D).  

• Five (23%) subjects had allochiria (unilateral tactile stimulation was 

perceived only in the analogous location on the opposite limb) (Fig.7.4.C,D).  

• Three (14%) showed sensory extinction (concurrent bilateral tactile 

stimulation was perceived only in one limb).  

• Three (14%) displayed tactile dysynchiria# (unilateral non-noxious tactile 

stimulation on the unaffected limb perceived bilaterally, and as noxious on 

the affected limb).  

 

 
#Synchiria is defined as bilateral sensations in response to unilateral tactile 

stimulation (Medina and Rapp, 2008). The most appropriate term for this clinical sign 

would therefore be dysynchiria.  
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Table 7.4. Findings of Quantitative Sensory Testing. 

Table 7.4. Quantitative Sensory Testing findings for each patient are shown. 
Tactile thresholds on the affected and unaffected limbs were assessed using 
Semmes-Weinstein filaments; the target force (in grams) is given. The tactile 
thresholds between the affected and unaffected limb are compared, and 
details of any abnormal somaesthetic patterns found are indicated. 

Patient ID %BSA TT:AL (g) TT:UL (g) TT:AL vs UL Somaesthesia
1 47.75 0.07 0.04 H R
2 57.5 0.008 0.02 L R
3 16 0.008 0.02 L R,AC,SE
4 35 0.008 0.04 L R,AC
5 36 0.008 0.008 S R,AC,D,SE
6 8.25 0.6 1 L R,AC
7 19 0.4 0.6 L
8 32 0.04 0.16 L R
9 26 0.04 2 L R

10 11.5 0.008 0.008 S D
11 40.25 0.04 0.02 H R,D
12 18 0.008 0.07 L SE
13 0 0.07 0.04 H
14 0 0.4 0.16 H
15 29 0.16 0.04 H R
16 0 0.16 0.16 S R
17 0 0.02 0.04 L
18 15.25 0.008 0.4 L R,AC
19 4 0.008 0.16 L
20 16.5 0.07 0.4 L D
21 3.5 0.008 0.04 L
22 3 4 0.16 H

%BSA = percentage of body surface allodynia.  
TT = tactile threshold, AL = affected limb, UL = unaffected limb. 
TT:AL vs UL = tactile thresholds of affected limb compared to the unaffected limb.         
H = AL higher tactile threshold than UL (hypoaesthesia), L = AL lower tactile threshold 
than UL (hyperaesthesia), S = tactile threshold AL same as UL. 
Somaesthesia = pattern of abnormal sensory findings; R = referred sensations, AC = 
allochiria, SE = sensory extinction, D = dysynchiria 
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Fig.7.4. 

A. Patient 2. 

B. Patient 8. 

A refers to B and vice-versa 
C refers to D and vice-versa 

12       = referral to right axilla 
15       = referral to      plus right side of neck 
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D. Patient 18. 

C. Patient 3. 

* Stimulation in this 
area is detected on the 
opposite limb, 
analogous location 

A refers to B 
and vice-versa 

Allodynia 

Paraesthesia 

Allochiria 

* Stimulation in these 
areas are detected on 
the opposite analogous 
locations 

*

Fig.7.4. Quantitative sensory testing: examples of referred sensation (A, B) and 
allochiria (C,D).  
 
A: The colour coding on the right leg denotes that tactile stimulation in this areas was 
also perceived on the right side of the face, neck and chest wall in the same coloured 
areas. B: This patient had right upper limb CRPS and a hemi-sensory allodynic pattern 
with referred sensation in the upper limb and ipsilateral lower limb. C: Left upper limb 
CRPS with bilateral upper limb and left upper quadrant allodynia, and well demarcated 
allochiria. D: Right upper limb CRPS with allodynia in the contralateral lower limb, and 
allochiric areas on the left side of the face, left lower back, left arm and left leg. 
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7.4.4. Within group comparison (normal/abnormal parietal function): allodynia  
Comparing subjects, there was a significantly greater %BSA in those who failed one 

or more categories compared to those who performed normally on parietal testing 

(median (IQR) = 26% (11.5, 36) vs median 3.5% (0, 15.2) respectively; Man Whitney 

test: U = 13, z = -2.45, p<0.05). There was a strong negative correlation between a 

low parietal testing score (greater parietal dysfunction) and the extent of BSA 

(Spearman’s rho = -0.674, p=0.001) (ie. low score, greater extent of allodynia, 

Fig.7.5). Some examples of abnormal testing patterns are given in Fig.7.6. 

 

 

 

 

 

Fig.7.5. 

Parietal score (% total) 

%
 b

od
y 

su
rf

ac
e 

al
lo

dy
ni

a 
(B

S
A

) 

Fig.7.5. Scatterplot of the parietal score as a percentage of the total against 
the extent of body surface allodynia.  
 
Declining parietal score indicates worsening parietal function. Where data points 
coincide, the number of data points is given below. There is a significant strong 
negative correlation (rho = -0.674, p=0.001) indicating that a low parietal score is 
associated with a greater extent of body surface allodynia. 

2 2 
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Fig.7.6. 

Copying numbers 

982 

6347 

110,022 

521 

1952 

Actual Reproduced 

Examples of writing to dictation 
(unaffected hand).  
 
1.The cat sat on the mat 
 
2.Shop  
 
3.Right 
 
4.Dictate 
 
5.The dog ran away 
 
6.The car outside the garage 
 
7.The man scratches his head 

A. Patient 2 

Draw the following shapes: 1 = triangle, 2 = circle, 3 = 
house, 4 = clock face with the time  of 4.30, 5 = copy 
this picture (flower pot) 

Put the following times on to these pre-
drawn clock faces: 1 = 7.45, 2 = 6.20 

1 2 
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B. Patient 3 

Put the time in on this pre-drawn clock face 
(affected limb): 4.45 
Black = ‘what it wants to do’ 
Grey = correction 

Black = ‘what it 
wants to do’ 
 
Grey = correction 

1. Write a sentence 
(unaffected) 

2. Write down 5 pieces 
of fruit (unaffected) 

3. Write a sentence 
(affected) (I am 
staying in Parry 
ward) 

4. Write down 5 things 
in the kitchen 
(affected) 

Draw these pictures 
(affected limb):  
 
1.House 
 
2.Clock with the numbers 
 
3.Copy this picture of a 
flowerpot 

C. Patient 5 
1B * 
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D. 

Patient 5 

Fig.7.6. Examples of abnormal parietal testing.  
When subjects demonstrated dysgraphia, dyscalculia and constructional apraxia, all 
except one (patient 5) were unable to recognise the mistakes until asked to close their 
eyes for a few seconds, and then look back at what they had just done. 
 
A. Examples of constructional apraxia, dyscalculia and dysgraphia from patient 2. This was the 
only patient to demonstrate signs bilaterally. The other subjects had signs only on the affected 
side. Note the incorrect word use in the first dictated sentence (‘dog’ for ‘cat’), errors in word 
order and lateral inversion of both letters and clock hands on the pre-drawn clock faces. 
 
B. Examples of normal writing from the unaffected limb and dysgraphia from the affected limb in 
patient 3. 
 
C. Examples of constructional apraxia from patient 5. Note the lack of a left hand side window in 
the drawing of the house (1), similar to drawings done by stroke patients with neglect (1B)*. 
There is also lateral inversion of the clock hands. This patient was able to recognise errors that 
she was making, and corrected them.  
 
D. Examples of constructional apraxia when copying a random geometric figure using 
matchsticks. All subjects copied a different figure easily and correctly using the unaffected hand. 
 
* Thomas, Nigel J.T., "Mental Imagery", The Stanford Encyclopedia of Philosophy (Winter 2011 Edition), 
Edward N. Zalta (ed.). Available from: http://plato.stanford.edu/archives/win2011/entries/mental-
imagery/representational-neglect.html. Accessed 02.01.2012. 
 

Actual Reproduced 

Reproduced 

Reproduced 

Reproduced 

Actual 

Actual Actual 

Patient 2 Patient 3 

Patient 6 
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7.4.5. Within group comparison (normal/abnormal parietal function): tactile 
thresholds and abnormal sensory findings 
Comparing tactile threshold testing, there was no significant difference between 

tactile thresholds among patients with parietal dysfunction and patients with normal 

testing.  

Comparing abnormal sensory findings, 83% (n = 10/12) of referred 

sensations, 75% (n = 3/4) with dysynchiria, and 100% of those with allochiria (n = 5) 

and sensory extinction (n = 3) were found in the parietal dysfunction group. 

7.4.6. Clinical observations 
During written and drawing tasks, most patients were unaware that any mistakes had 

been made. Four out of the five subjects that demonstrated constructional apraxia 

were unable to see the errors made until their attention was distracted and then 

refocused upon the drawings they had made. A typical comment was ‘that is not what 

I did’ with the patient explaining that they were ‘doing it right in my head’ and 

confused by what they saw on the page. Only one (patient 5) could recognise that 

errors were being made during execution of the task, and corrected these (Fig.7.6C).  

Many patients expressed great surprise at the difficulties that the testing 

revealed. They were then able to relate how these problems had been manifesting 

themselves in activities of daily living. The following details four examples. 

 

Patient 5 (Fig.7.6C) had persistent tactile mislocalisation from the index to 

middle finger of the affected hand. When this was explained to her, she related an 

incident that occurred at home. She had cut the index finger of her affected hand with 

a knife while chopping vegetables, and put a plaster on her finger. She could not 

understand why it kept on bleeding until her husband examined her hand and told 

her that she had put the plaster on her uninjured middle finger.  

Patient 18 (Fig.7.4D) had areas of allochiria on the unaffected left side of the 

body. Tactile stimulation in these areas were perceived as painful in the analogous 

location on the affected side. Once this phenomenon had been explained, she began 

to cry as she related how she repeatedly scolded her young daughter for touching 

her ‘bad’ side. Her daughter would often say “but Mummy, I touched your good side.”  

Patient 2 (constructional apraxia, agraphia, acalculia, Fig.7.6) stated that he 

could now understand why his wife had banned him from writing cheques or doing 

the family accounts, and his son declined his help with homework. 

Patient 3 (Fig.7.6B) said that her family and friends sometimes complained of 

her using the wrong words in conversation although she was unaware of any error. 
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She gave a recent example, when she had confused her sister by asking her several 

times to “feed the table” rather than to “feed the dog.”  

It was noted that our patients complained of language difficulties such as 

inability to find and/or use the correct word. They mentioned written language 

problems in everyday tasks (such as a shopping list) noticing incorrect word usage, 

erroneous word and letter ordering (‘writing nonsense’), and spontaneous reversals 

of letters ‘like mirror writing’. This could be observed clinically on samples of writing 

such as a shopping list (‘shopping list sign’)*. They reported similar difficulties with 

numbers, some complaining that they were unable to write cheques anymore (seen 

clinically on written tasks such as a cheque, the ‘cheque sign’)*, inability to use a 

credit/debit card due to inability to type the pin number in the correct order 

(‘swallowed card sign’)* and similar difficulty dialling telephone numbers correctly 

(‘wrong number sign’)*. 

 

* terminology for these new clinical signs 
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7.4.7. Cross study analysis: Parietal function in context of data from the 
preceding thesis studies. 

Autonomic function, pain, optokinetic vulnerability and responses while 
viewing ambiguous visual stimuli: comparison within parietal tested cohort (n 
= 22) and between the upper limb and overall CRPS cohorts*. 
 

* Overall CRPS cohort n = 56. Where comparisons are made to the overall CRPS 

cohort, the numbers for each study are as follows (see Chapter 1):  

• 45/56 has baseline QST 

• 54/56 had baseline autonomic function testing  

• 55/56 had optokinetic vulnerability testing  

• 42/56 had responses to ambiguous visual stimuli assessed 

 

7.4.7-1. Study 1: Baseline Autonomic function 

The overall composite autonomic function (ANS) score comprises the presence or 

absence of a sympathetic response on laser Doppler flowmetry and galvanic skin 

response, in each upper limb to each of the 5 sympathetic autonomic stimuli (deep 

breath, Valsalva manoeuvre, limb dependency (ipsilateral and contralateral 

vasoconstrictor responses) and the mental stress task. The maximum possible score 

was 20. For full details, see Chapter 4.  

For the parietal tested cohort (n = 22), the overall mean composite autonomic 

function (ANS) score was 14.9 (median 16) / 20. There was a non significant (Mann-

Whitney U-test, p>0.05) lower ANS score between the CRPS patients with parietal 

dysfunction (mean ANS score = 14.4, median = 16) and those who performed 

normally (mean ANS score = 16.4, median = 17). The mean ANS score of the overall 

CRPS cohort (n = 54) was 15.7 (median 17), and of the upper limb CRPS cohort (n = 

30) was 15.4 (median 16.5) (Fig.7.7).  

 

Baseline pain 

The baseline pain levels for the patients with and without parietal dysfunction are 

detailed (Fig.7.8) below as pie charts.  
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Fig.7.7 
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Fig.7.7. Baseline autonomic function score of CRPS patients with and without 

parietal dysfunction, and compared to the baseline autonomic function score upper 

limb and overall cohorts. 

ANS score / 20 = mean composite autonomic function score (out of a possible maximum 

score of 20) 

 

 

 

Fig.7.8.  
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Fig.7.8. Pie charts showing baseline pain levels among CRPS patients without (A) 

and with (B) parietal dysfunction.  

n = numbers of patients.  
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7.4.7-2. Study 2: Vulnerability and pain responses during optokinetic challenge 
Vulnerability during the optokinetic testing protocol was classified as none, minimal, 

mild, moderate or high. A score could then be assigned between 0 – 4 (where none = 

0, minimal = 1, mild = 2, moderate = 3 and high = 4). For full details, see Chapter 5. 

 

All of the parietal tested cohort (n = 22) were vulnerable to optokinetic testing, 

experiencing worsening of their usual pain. Eleven demonstrated motor extinction, 6 

in the parietal dysfunction group and 5 in the normal testing group.  

There was a non significant (Mann-Whitney U-test, p>0.05) higher mean 

optokinetic vulnerability score (OVS) among patients with parietal dysfunction (OVS 

= 3.4) compared to those without (OVS = 3.1). The mean OVS for the CRPS upper 

limb cohort was 2.9, and for the overall CRPS cohort 2.7 (see Fig.7.9). The median 

OVS was the same for all groups (median OVS = 3). 

 

Fig.7.9. 
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Fig.7.9. Mean optokinetic vulnerability scores of CRPS patients with and without 

parietal dysfunction, and compared to optokinetic vulnerability scores of the upper 

limb and overall cohorts. 

Vulnerability: none = 0, minimal = 1, mild = 2, moderate = 3 and high = 4 

 

 Within the parietal tested cohort (n = 22), there was a significant strong 

negative correlation (Spearman’s Rho = -0.734, p<0.001) between the Semmes 

Weinstein tactile threshold (rank) of the affected limb and the optokinetic vulnerability 

score (ie. the lower the tactile threshold, the higher the optokinetic vulnerability) 

(Fig.7.10). 
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Fig.7.10 

 
Fig.7.10. Scatterplot of optokinetic vulnerability score (OVS) against Semmes 
Weinstein tactile threshold of the affected limb.  
 
NB. Where some data points represent more than one subject, the number of subjects is 
indicated by a numeral beside the plot point. 
The finest hair is ranked 1 (target force 0.008g) through to the heaviest filament ranked 20 
(target force 300g). Filament 11 = 4g. See Table 7.4. 
SWF = Semmes Weinstein filament 
 
 
 

7.4.7-3. Study 3: Pain responses and autonomic function while viewing 
ambiguous visual stimuli in CRPS.  
 

For details of the full protocol, see Chapter 6. 

 

7.4.7-3i. Pain responses 
While viewing ambiguous visual stimuli (AVS), 90% of the parietal tested cohort (n = 

20/22) had enhancement of pain. Only two patients (one each of normal/abnormal 

2 7 

2 2 
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parietal testing groups) did not have enhancement of pain while viewing AVS. Among 

the upper limb CRPS cohort, 63% had enhancement of pain. 

 

7.4.7-3ii. Autonomic function: homology 
Autonomic sympathetic laser Doppler flowmetry (LDF) and electrodermal skin 

responses (ESR) can be qualitatively analysed in terms of homology and pain 

response while viewing AVS (see Chapter 6). These groups were: Group 1= no pain 

and homologous symmetric responses, Group 2 = pain and homologous symmetric 

responses and Group 3 = pain and anomalous asymmetric responses. For the 

abnormal parietal function cohort with autonomic function data (n = 15), 1 (6%) was 

in group 1, 7 (47%) were in group 2 and 7 (47%) in group 3 (see Table7.5). 

Compared to the upper limb cohort, patients with parietal dysfunction were eight 

times less likely to be in group 1 (odds ratio (OR) = 0.123, 95% CI:0.01;1.07) and 

twice as likely to have group 3 type responses (OR = 2.04, 95% CI:0.6;7.3).  

 For patients with normal parietal testing and autonomic function data (n=6), 1 

(16.5%) was in group 1, 4 (67%) in group 2 and 1 (16.5%) in group 3. 

 

 

Table 7.5. Autonomic function: homology and pain responses while viewing 

ambiguous visual stimuli. 

 

Group PD UL CRPS Overall CRPS
Group 1 1 (6%) 11 (37%) 20 (37%)
Group 2 7 (47%) 10 (33%) 23 (42.5%)
Group 3 7 (47%) 9 (30%) 11 (20.5%)

Cohort

 

 

Table 7.5. Pain and autonomic response homology classified by group while viewing 

ambiguous visual stimuli for CRPS patients with parietal dysfunction (PD) (n = 15/22), 

upper limb (UL) CRPS (n = 30) and overall CRPS (n = 54) cohorts.  

 

Group 1= no pain and homologous symmetric responses, Group 2 = pain and homologous 

symmetric responses and Group 3 = pain and anomalous asymmetric responses. 
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7.5. Discussion 
 

Data from this work supports the primary hypothesis that some CRPS patients 

demonstrate evidence of parietal lobe dysfunction when assessed by detailed clinical 

bedside testing. It also provides evidence supporting the secondary hypothesis that 

CRPS patients with parietal dysfunction have more extensive areas affected by 

mechanical allodynia compared to patients who had no parietal dysfunction.  

I propose that in CRPS, a clinical phenotype associated with extensive 

allodynia and distinct symptoms and signs can be identified, and that parietal lobe 

network involvement may be a factor. Further studies are required to validate these 

clinically based hypotheses, in a larger cohort combined with detailed 

neuropsychological testing and neuroimaging. 

 

7.5.1. Parietal dysfunction & CRPS 
Previously described clinical features in CRPS such as digit misidentification 

(Förderreuther et al., 2004), agnosia for object orientation (Robinson et al., 2011) and 

neglect-like phenomena (Galer and Jensen, 1999;Lewis et al., 2007) are suggestive 

of  parietal lobe dysfunction in CRPS, with neuroimaging studies providing further 

evidence of parietal involvement (Gieteling et al., 2008;Lebel et al., 2008;Maihöfner 

et al., 2007;Shiraishi et al., 2006;Vartiainen et al., 2008;Wu et al., 2006). A previous 

PET study of brush evoked allodynia in healthy volunteers given intradermal 

capsaicin demonstrated activation of the posterior parietal cortex (Witting et al., 

2001). Specific activation was seen in the contralateral Brodmann area 5/7 

suggesting the importance of this area to the processing of allodynia due to its 

multisensory input, role in conscious pain perception and its neuroplastic properties. 

Reorganization in parietal areas other than S1 have been proposed as contributing to 

synchiria in hands rendered anaesthetic by stroke or neurosurgery (Sathian, 2000), 

and referral of sensation in phantom limb patients (Flor et al., 2000;Grusser et al., 

2004). 

 Using detailed sensory and neurological testing, it has been demonstrated for 

the first time that there is clinical evidence of parietal lobe dysfunction in some CRPS 

type 1 patients. Furthermore, the extent of the body surface area affected by tactile 

allodynia strongly correlated with the degree of parietal dysfunction observed, 

suggesting that there may be greater cortical reorganization in these patients. 

Neuroimaging studies are required to investigate this further. The parietal tested 

cohort was taken exclusively from patients admitted to the in-patient rehabilitation 
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programme. Therefore it is likely that this cohort is a particularly severe phenotype 

with long duration disease. However, five patients with disease duration of 2 years or 

less demonstrated parietal dysfunction. This work needs to be extended to larger 

numbers including early CRPS, which may allow for further clinical phenotyping. If 

some patients develop a ‘parietal’ phenotype early in the disease, they might benefit 

from early identification and aggressive rehabilitation (which opens further potential 

avenues of clinical research). Such rehabilitation might include techniques usually 

used in brain injury and stroke rehabilitation for patients with parietal compromise. 

Treatments that aim to improve visual exploration of extrapersonal space in neglect 

may prove fruitful if applied to extrapersonal space around the affected limb. 

7.5.2. Neurological abnormalities and organic brain lesions 
The neurological abnormalities described in this series of patients cannot be 

accounted for by a focal cortical lesion such as an infarct, or neurodegenerative 

disorders for the following reasons:  

i. All subjects performed normally on standard neurological testing.  

ii. None of the patients had any of the self-reported difficulties 

subsequently found prior to onset of their CRPS, corroborated by their 

families.  

iii. Twelve patients had undergone brain imaging as part of their work up 

prior to referral to our centre, which did not demonstrate any 

significant abnormality (11/12 scans were in the parietal dysfunction 

group).  

iv. The pattern of parietal abnormalities in the severely affected group (ie. 

more than three categories failed) is unusual and suggestive of both 

right and left parietal dysfunction.  

Furthermore, there was no obvious impairment in memory, reasoning or 

emotional responses. Clusters of neurocognitive deficits such as these would be 

more typical in localized brain damage or neurodegenerative disorders. Future work 

would need to include formal neuropsychological appraisal of such areas of 

cognition. 

7.5.3. Mechanical allodynia 
The prevalence of mechanical allodynia for this cohort was 82% and mean disease 

duration was 7 years. Rommel and colleagues (Rommel et al., 1999;Rommel et al., 

2001;Rommel et al., 2004) described that in 30-33% of CRPS patients, sensory 

abnormalities extend beyond the affected limb in a hemisensory pattern. The mean 

disease duration was 43 months. We demonstrated that in this severe, long duration 
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CRPS cohort 59% had sensory abnormalities extending beyond the affected limb. 

However, we found no correlation between disease duration and extent of allodynia. 

This may be due to the small sample size. 

7.5.4. Sensorimotor dysfunction and parietal testing 
The parietal testing protocol required patients to use their upper limbs, so it is 

unsurprising that 11 out of the 15 with dysfunction had CRPS affecting an upper limb. 

However 4/15 CRPS patients with parietal dysfunction had unilateral lower limb 

involvement showing that impaired testing is unlikely to be an artefact of a protocol 

that needs subjects to use their upper limbs.  

Higher order testing such as stereognosis, apraxia etc ideally require that the 

performance is not influenced by the presence of sensory or motor impairment. 

However such testing is often undertaken in patients with sensorimotor involvement 

such as stroke patients, allowances being made for any baseline impairments. A 

similar approach was used testing CRPS patients. However sensory and motor 

impairment in the affected upper limb may have been a confounding factor and 

affected performance of stereognosis testing. Patients with astereognosis were 

unable to detect the weight, size, shape or volume of objects. These judgements are 

the result of higher order integration of different lower order sensory modalities. The 

system may fail when one or more lower order components perturb the complex 

process of higher order integration, or when higher order integration is disturbed 

(such as posterior parietal lobe damage) despite intact lower order components. 

Further work should include more detailed QST including two point discrimination. 

7.5.5. Referral of sensations 
Referral of sensation (Maihofner et al., 2006;McCabe et al., 2003;Robinson et al., 

2011) has been previously documented in CRPS patients. Only one previous study 

(Förderreuther et al., 2004) has looked for sensory extinction in a cohort of CRPS 

patients (n = 114) and did not find any. However this was an early CRPS cohort with 

a mean disease duration of 6 months. While dysynchiria in CRPS has been reported 

(Acerra and Moseley, 2005), it was a type of visuotactile dysynchiria induced by 

watching a reflected image of the unaffected limb being touched and feeling pain or 

paraesthesia at the corresponding site on the affected limb. We have not found any 

previously published reports of allochiria (mislocation of sensory stimuli to the 

corresponding opposite half of the body) (Meador et al., 1991) or pure tactile 

dysynchiria in CRPS.  
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7.5.6. Right or left parietal dysfunction 
The pattern of parietal disturbance is unusual, and probably involves both the right 

and left parietal cortices, and superior and inferior lobules. Left parietal dysfunction 

can include finger agnosia, asteroegnosis, dysgraphaesthesia, conduction aphasia, 

R/L disorientation and agraphia. Right parietal dysfunction often causes 

constructional apraxia. Among subjects with three or more category failures, both 

right and left sided dysfunctions are apparent. This cannot be accounted for by an 

anatomical lesion and is more likely to reflect a maladaptive failure of the parietal 

cortices to maintain associative functional integrity. A similar maladaptive failure in 

another parietal function, the maintenance of global body constructs (Giummarra et 

al., 2007) has been proposed to explain the complexity of phantom limb pain  and 

body schema distortion described in CRPS (Lewis et al., 2010).  

 A possible contributing mechanism may be disruption in normal right-left 

hemispheric communication. Side to side hemispheric asymmetry in primary 

somatosensory cortical representation of the affected hand in upper limb CRPS 

patients has been described, with the affected hand having significantly smaller 

representation compared to the healthy hand (Pleger et al., 2004). A sustained shift 

leading to hemispheric representational asymmetry might perturb transcallosal cross-

referencing and interhemispheric communication. There has been a case report of a 

CRPS patient with mirror-like spread of pain and neurophysiologic evidence of 

altered inter-hemispheric conduction, lending credence to both this concept, and its 

possible involvement in pathologic chronic pain (Forss et al., 2005). Hand dominance 

is associated with hemispheric lateralisation (ie. right handedness with left 

hemisphere dominance). Some subjects with CRPS affecting the dominant limb may 

become more reliant upon the non-dominant limb over time. This could have an 

effect on hemispheric dominance, and effective inter-hemispheric communication.  

Some of the findings from this study are consistent with these concepts. 

Thirteen subjects had CRPS in an upper limb.  For 9/13 (69%) subjects, it was in 

their dominant hand; eight out of 9 (89%) had parietal dysfunction. When numbers of 

patients with CRPS affecting their dominant side are reviewed (n = 13), there were a 

similar proportion (11/13, 85%) with parietal dysfunction. Seven CRPS patients had 

CRPS affecting their non-dominant side; just over half (4/7, 57%) had parietal 

dysfunction. 

In this study, there was a higher than expected incidence of left handed 

subjects (27% vs UK prevalence of 3-15% (Postnote, 2004;Miles TR, 2004), and 

proportionally more (83%) demonstrated parietal dysfunction compared to right 
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handed subjects (67%). Further studies are needed to investigate the role of 

handedness and hand switching upon parietal function.  

7.5.7. Constructional apraxia and allochiria  
Right parietal lesions can cause left neglect and impaired visual-spatial perceptual 

functioning. Constructional apraxia (CA) may occur after unilateral right or left sided 

parietal lesions. Possible explanations include that both parietal lobes are required 

for drawing, or that there is a strong influence of cerebral laterality (Makuuchi et al., 

2003). With constructional tasks, the ability to perceive (or care) that errors have 

been made is usually compromised (Joseph, 1990). Four out of the five subjects that 

demonstrated CA were unable to see the errors made until their attention was 

distracted and then refocused upon the drawings they had made. A typical comment 

was ‘that is not what I did’ with the patient explaining that they were ‘doing it right in 

my head’ and confused by what they saw on the page. One subject demonstrated left 

neglect when drawing a simple house (Fig.7.6C). The term ‘allochiria’ has also been 

applied to transpositional construction errors observed in drawing tasks, usually in 

patients with right parietal lesions and left hemi-spatial neglect. Halligan et al 

(Halligan et al., 1992) describe a patient with ‘visual’ allochiria who transposed details 

when copying a drawing from the left to the right. This subject was also unable to 

notice the errors. The lateral inversions produced in the matchstick task (Fig.7.6D) 

may represent a form of visual allochiria.    

Visual allochiria can be elicited by some tasks but not others, and is rarely 

consistent even in the same cognitive domain (Lepore et al., 2003). It remains 

unclear whether neglect and allochiric phenomena are theoretically unrelated 

disorders or part of the same spectrum (Grossi et al., 2004;Halligan et al., 1992). A 

recent study in CRPS patients (Moseley et al., 2009) found evidence of deficits in 

tactile processing defined by the space in which the affected limb normally resides 

and not by the affected limb itself, suggesting that chronic CRPS may involve a type 

of spatial neglect. There may be both representational (Bisiach et al., 1981;Mijovic, 

1991) and attentional (Di Pellegrino, 1995) aspects to allochiria, and it is likely that 

there are different types of spatial transposition (Lepore et al., 2004). Patients 2 and 

5 demonstrated an unusual type of transposition characterised by both vertical and 

lateral inversions. Patient 2 was reviewed by a neuropsychologist and found to have 

agnosia for object orientation (Robinson et al., 2011). This may provide an alternative 

explanation for the drawings and matchstick patterns. Further studies including 

detailed neuropsychological testing are needed to investigate patterns of 



 252 

constructional apraxia / visual allochiria in CRPS, and to attempt to disentangle 

representational from attentional components.  

7.5.8. Dysgraphia 
Different types of parietal dysgraphia are caused by lesions in different anatomical 

substrates including the angular gyrus, superior parietal lobule and intraparietal 

sulcus. Features may include difficulty in forming letters (apraxic agraphia), 

substitutions, omissions, inversions and distortions (Sakurai et al., 2007)(Fig 4). 

Some people are able to write fluent laterally inverted text, or ‘mirror writing’ 

spontaneously (Schott, 2007). It can also occur after a stroke (Pflugshaupt et al., 

2007).  

Mirror writing is associated with being left handed (Schott and Schott, 2004), 

as is dyslexia (Goez and Zelnik, 2008) in which letter inversions are often seen. 

Traumatic injury rendering the preferred right hand useless and causing a switch to 

the left hand has been reported to be associated with mirror reversal of letters and 

mirror phenomena in daily tasks (Schott, 1980). While left handedness might produce 

characteristic patterns on a full neuropsychological assessment (Gregory and Paul, 

1980), it would not be expected to produce abnormal clinical neurological parietal 

testing results. Pilot work included performing full testing on a left handed dyslexic 

subject who tested normally throughout all categories. As mentioned above, there 

was a higher than expected incidence of left handedness in the study cohort, which 

could influence some of the written tasks. Further studies are needed to investigate 

the role of handedness, mirror writing and parietal function.  

7.5.9. Parietal cohort compared to overall and upper limb CRPS cohort 
The parietal tested cohort was taken exclusively from patients admitted to the in-

patient rehabilitation programme, where as the other cohorts also included some 

subjects treated as out-patients. The RNHRD has become a National centre for the 

treatment of CRPS and therefore tends to draw severe, longstanding cases. Those 

patients with incapacitating functional difficulties due to pain and motor impairment 

are offered an in-patient rehabilitation programme which runs over two weeks. While 

there was no intentional selection bias, not all admitted patients could be tested for 

parietal dysfunction. One to two were selected from among admitted patients 

(between 1-4 patients per programme) in consecutive programmes over 6 months. 

Therefore it is likely that the parietal tested cohort is a particularly severe phenotype, 

and generalisation of findings to other CRPS cohorts is therefore limited. 
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7.5.10. Parietal function and sensory testing, optokinetic vulnerability and 

autonomic function. 
There was a strong negative correlation between the Semmes Weinstein tactile 

threshold (rank) of the affected limb and the optokinetic vulnerability score, with lower 

the tactile thresholds correlating with higher optokinetic vulnerability. A previous MEG 

study of tactile stimulation in hyperaesthetic CRPS patients demonstrated increased 

activation of S1 on the affected hand compared to the unaffected, suggesting 

increased central sensitisation to touch (Vartiainen et al., 2008). Other research has 

indicated that tactile impairment appears to be linked to the amount of cortical 

reorganisation (Pleger et al., 2006), and that reversal of tactile impairment is 

associated with restoration of cortical map size and reduction in pain (Pleger et al., 

2005). Therefore hyperaesthetic CRPS patients with lower tactile thresholds in my 

study may have a greater degree of cortical reorganisation, and this is linked with 

higher optokinetic vulnerability. The numbers are small and need verification with a 

larger study.  

CRPS patients with parietal dysfunction were more likely to have enhanced 

pain and asymmetric responses while viewing ambiguous visual stimuli compared to 

the overall cohort. In chapter 5 it was proposed that in a subgroup of CRPS patients, 

visual sensory conflict could activate abnormal pain pathways which interact with 

disrupted central autonomic and motor programmes producing pain, dystonia and 

asymmetric sympathetic responses. It was suggested that neuroplastic 

reorganisation involving parietal areas could be a predisposing factor. This study 

provides further support for this as a potential mechanism. 

7.5.11. Study strengths  
This work is the first to demonstrate clinical evidence of parietal lobe dysfunction in 

severe, long duration CRPS which is not detectable by typical limited routine 

neurological testing. It shows correlation between parietal dysfunction and extent of 

allodynia, suggesting cortical reorganisation may be a contributing mechanism. It 

also provides an explanation for symptoms that might otherwise be labelled as 

psychological or malingering. 

7.5.12. Study limitations and future directions 
Most of the parietal testing tasks involved use of the upper limbs. In this study there 

were 9 patients with CRPS in an upper limb (UL), 9 in a lower limb (LL) and 4 with 

upper and lower limb involvement. The parietal testing protocol required patients to 

use their upper limbs, so it is unsurprising that 11 out of the 15 with dysfunction had 

CRPS affecting an upper limb. However 4/15 had unilateral lower limb involvement 



 254 

confirming that impaired testing is not an artefact of a protocol that needs subjects to 

use their upper limbs. Future work needs to address whether the testing protocol 

reliance on use of the upper limbs has a bias on the outcome parameters. Further 

work should expand numbers of UL and LL affected patients and introduce other 

neuropsychiatric testing techniques which do not require use of the upper limbs. 

Having demonstrated that clinical parietal dysfunction can be observed in 

severe long duration CRPS, the research needs to be extended to earlier, less 

severe cases and to be combined with neuroimaging techniques. By utilising this 

clinical phenotyping work with functional imaging techniques, it may offer new 

insights into dysfunctional cortical network mechanisms in CRPS. This may allow for 

better targeting of rehabilitation treatments. 

The major limitation is the lack of confirmatory functional neuroimaging work. 

However, the data provides some insights into possible mechanisms and suggests 

that future neuroimaging studies should further investigate the role of the parietal 

cortex. 

7.5.13. Clinical Implications 
When the results of parietal dysfunction testing are combined with optokinetic 

vulnerability and sympathetic autonomic function testing at baseline and while 

viewing AVS, a particular severe phenotype is seen to emerge. Compared to the 

overall cohort, a CRPS patient with parietal dysfunction is more likely to have 

abnormal baseline testing, optokinetic vulnerability with lower tactile thresholds on 

the affected limb and is more likely to experience pain while viewing AVS with 

asymmetric sympathetic responses in the limbs (and therefore higher chance of 

experiencing a dystonic reaction in the affected limb). This is highly relevant to 

understanding the pattern of clinical symptoms and signs, and therefore utilisation of 

the most appropriate rehabilitation techniques. 

Extent of allodynia appears to be linked to the degree of dysfunction, and 

should prompt clinicians to look for symptoms and signs of parietal dysfunction in 

patients with extensive allodynia. New clinical signs have been described, and the 

presence of >1 in a CRPS patient is suggestive of parietal lobe involvement and 

should prompt further clinical assessment. 

On a practical level, patients with constructional apraxia, agraphia or acalculia 

may not be able to perceive mistakes made. They should be advised to ask someone 

else to check written work or tasks involving numeracy. They may need to avoid 

writing cheques and consider using a ‘chip and signature card’ rather than a ‘chip 

and PIN’ number card†. Use of the speed dial facility on telephones may overcome 
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problems with correctly dialling a number sequence. Those with digit misidentification 

should be warned to check injuries carefully. Above all, the patient and their family 

need reassurance that these phenomena can occur, and that they are not ‘going 

mad’. 

 
†More information available on the Royal National Institute for the Blind website: 

http://www.rnib.org.uk/livingwithsightloss/yourmoney/moneymattersguide/Pages/chip

andpin.aspx. Accessed 12.1.12. 

 

7.6. Summary 
 

The hypotheses postulated were proven: 

• Primary hypothesis: Some CRPS patients demonstrate evidence of parietal 

lobe dysfunction when assessed by detailed clinical bedside testing. 

• Secondary hypothesis: CRPS patients with parietal dysfunction have more 

extensive areas affected by mechanical allodynia compared to patients who 

had no parietal dysfunction.  

 

Sixty eight percent of the CRPS patients tested demonstrated evidence of 

parietal lobe dysfunction when assessed by detailed clinical bedside testing, 

confirming the primary hypothesis. Compared to subjects with normal testing, those 

with parietal dysfunction were more likely to be left handed, or to have CRPS 

affecting >1 limb and/or the dominant upper limb. Furthermore, CRPS patients with 

parietal dysfunction had significantly more extensive areas affected by mechanical 

allodynia compared to patients who had no parietal dysfunction, confirming the 

secondary hypothesis. There was a strong negative correlation between a low 

parietal testing score (greater parietal dysfunction) and the extent of allodynia. 

Quantitative sensory testing revealed some unusual patterns of sensory impairment 

across the cohort including referred sensations, allochiria, dysynchiria and sensory 

extinction.  

All of the parietal tested cohort were vulnerable to optokinetic testing, 

experiencing worsening of their usual pain. There was a significant correlation 

between lower tactile threshold on the affected limb and higher optokinetic 

vulnerability. While viewing AVS, patients with parietal dysfunction were unlikely to 
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have no pain and homologous symmetric autonomic responses, and more likely to 

have pain and asymmetric autonomic responses. 

 

7.7. Conclusion 
Clinical evidence of parietal lobe dysfunction has been demonstrated in CRPS 

patients, which is not detected with standard neurological testing. Furthermore, the 

extent of the body surface area allodynia strongly correlated with the degree of 

parietal dysfunction observed suggesting that maladaptive neuroplasticity and 

cortical network disruption may be a potential mechanism. Parietal lobe dysfunction 

could account for many of the unexplained, apparently ‘bizarre’ symptoms and signs 

encountered in CRPS. 
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Chapter 8:  Discussion & conclusions  
 

 
“It is easier to find men who will volunteer to die, than  

to find those who are willing to endure pain with patience.” 

 

Julius Caesar 

 
(Image available from: http://www.facebook.com/people/Julius-Cesar/100002204135581. Accessed 25.01.12.) 

8.1. Introduction 
The underpinning theme of the thesis is that patterns of autonomic dysfunction and 

pain may arise from activation of aberrant cortical networks which in turn may occur 

from varying neuroplastic reorganisational changes. This is reflected in the 

presenting clinical phenotype. The primary thesis aim was to gain insights into 

different mechanisms that contribute to chronic pain, and thereby obtain new 

understanding of the varying patterns and presentations of chronic pain in rheumatic 

disease. This was achieved through a series of four clinical studies which collectively 

provide evidence for the emergence of specific patterns of CRPS, including a group 

with enhanced vulnerability to sensory conflict and abnormal asymmetric sympathetic 

responses. It also demonstrated that OA and RA patients have higher vulnerability to 

sensory conflict compared to healthy controls, and that similar mechanisms of pain 

network dysfunction may operate across a spectrum of chronic pain in rheumatic 

disease. 

An overall summary of the study findings and their context in current literature are 

discussed below in relation to each hypothesis. Study strengths, limitations, clinical 

implications and future directions were discussed in each study (Chapters 4 – 7). 

 

8.2. Study 1 (Chapter 4) 

8.2.1. Accepted hypotheses: 

• There was no allodynia present in healthy controls. 

• Allodynia was present in some osteoarthritis (OA) and rheumatoid arthritis 

(RA) patients and most marked in CRPS patients. 
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8.2.2. Summary of findings 
The first study establishes a baseline of quantitative sensory testing parameters and 

sympathetic autonomic function in helathy controls, patients with CRPS, and two 

other chronic rheumatic pain comparator cohorts; patients with OA and stable RA. 

There was no allodynia in healthy controls. Allodynia was present in some OA and 

RA patients, and most marked in CRPS patients. Among CRPS subjects, unusual 

patterns of sensory impairment including referred sensations, allochiria, dysynchiria 

and sensory extinction were noted. Baseline sympathetic autonomic function was 

normal in controls, with some impairment in OA and RA, and most impairment in 

CRPS patients. 

 

8.2.3. Current literature context and novel findings   
Allodynia was present in OA and RA patients consistent with previous work (Kosek 

and Ordeberg, 2000) (Leffler et al., 2002). In CRPS, referred sensations have been 

previously described (McCabe et al., 2003) although one patient in paticular 

demonstrated this on a large scale "(see (Robinson et al., 2011); for details see 

Chapter 7 and Appendix 10. The findings of allochiria, tactile dysynchiria and 

sensory extinction appear to be new in the CRPS literature. These are more 

commonly seen as sequelae of a parietal lobe stroke and provide support for the 

concept of the activation of abnormal cortical networks influencing clinical 

presentation. A future research project would be to combine this type of clinical 

phenotyping with neuroimaging. 

There was autonomic impairment in some OA and RA patients. The literature is 

sparse, with varying methodologies. Autonomic dysfunction has been reported in RA 

(Bidikar and Ichaporia, 2010;Stojanovich, 2009;Toussirot et al., 1993), and 

postulated as a Darwinian phenoptosis (programmed death of organisms akin to 

apoptosis at a cellular level) selection mechanism in OA (Yun et al., 2006). The 

results of this study add to the evidence for low level autonomic dysfunction in OA 

and RA, and provide a quick, non-invasive means of assesment. 
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8.3. Study 2 (Chapter 5) 
 

8.3.1. Accepted hypothesis 

• During an optokinetic challenge, sensory disturbances and pain responses 

were more common in CRPS patients compared to healthy controls and 

patients with rheumatoid or osteoarthritis. 

 

 

8.3.2. Summary of findings 
 
The second study explores the concept that cortical reorganisation may render a 

subject more vulnerable to sensory disturbances and pain through sensorimotor 

conflict, by investigating reponses to an optokinetic challenge. Sensory disturbances 

and pain responses were most common in CRPS patients compared to controls or 

patients with OA and RA. OA patients demonstrated a higher rate of sensory 

disturbances than RA. There was a strong association between vulnerability and pain 

response. Relating back to the first study, vulnerability within the CRPS cohort was 

correlated with extent of allodynia and negatively with tactile threshold.  

 

8.3.3. Current literature context and novel findings   
Some healthy controls are vulnerable to an optokinetic visuo-motor challenge, 

developing sensory disturbances and/or pain. This study found 55% were vulnerable 

which is consisent with previous work showing rates of 48-66% (McCabe et al., 

2005;McCabe et al., 2007). While similar work has been done with fibromyalgic 

patients (McCabe et al., 2007) and symptommatic professional violinists (Daenen et 

al., 2010), it has not been applied previously to OA or RA, and in limited numbers to 

CRPS. The findings demonstrate that OA and RA patients are more vulnerable 

compared to healthy controls, but from previous work, not as vulnerable as 

fibromyalgia patients. CRPS patients are the most vulnerable, with associations 

between pain response, extent of allodynia and tactile threshold. Some of the CRPS 

patients demonstarted motor extinction, another clinical sign usually seen in parietal 

lobe stroke. This provides more evidence for the activation of abnormal cortical 

networks with possible underlying cortical reorganisation influencing clinical 

symptoms and signs in CRPS.  

All the cohorts show an increased frequency of sensory disturbances in the 

stage with highest conflict compared to the stage with lowest, a pattern previously 
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seen in healthy controls (McCabe et al. 2005). Other similar work with fibromyalgia 

(McCabe et al., 2007) showed an even distribution of sensory disturbance reports 

across the stages. However there was a different pattern observed for pain reports 

where controls, OA and RA patients demonstrated no difference in frequency of pain 

reports across the intervention stages, and CRPS patients had a significantly greater 

frequency in the highest conflict stage compared with the lowest. I suggest that in 

healthy controls and patients with rheumatic disease, a moderate degree of 

sensorimotor conflict is required to exceed the sensory discrepancy threshold, and 

cannot usually activate pain networks. However in vulnerable subjects, the threshold 

is lower and can trigger pain networks producing even reports of sensory 

disturbances and pain across the conflict stages. In CRPS patients, activity in top-

down networks may be initiated by disrupted motor pathways and corrupted body 

schema and therefore the degree of conflict does have an effect on pain and sensory 

disturbance. The presence of cortical reorganisation may confer vulnerability. 

 

The OA cohort had higher levels of vulnerabilty than the RA cohort 

suggesting mechanistic differences. There is neuroimaging work showing loss of 

grey matter in patients with OA pain (Rodriguez-Raecke et al., 2009), and increased 

grey matter content in the basal ganglia of RA patients (Wartolowska et al., 2011). 

Thus although imaging work supports the role of a central pain component in both 

OA and RA (Mease et al., 2011), the mechanisms may differ. Data from this study 

lends further credence to this concept. 

 

8.4. Study 3 (Chapter 6) 

8.4.1. Accepted hypotheses 

• Viewing ambiguous visual stimuli (AVS) caused sensory disturbances and 

enhanced pain responses in CRPS patients but not in healthy controls and 

patients with rheumatoid arthritis (RA) or osteoarthritis (OA). 

• Healthy controls, OA and RA patients had symmetric sympathetic autonomic 

responses in the upper limbs while viewing AVS. 

• Some CRPS patients had abnormal sympathetic autonomic responses while 

viewing AVS. 

• Abnormal sympathetic autonomic responses in CRPS patients while viewing 

AVS were associated with enhancement of pain. 
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8.4.2. Summary of findings 
 
The third study used a pure visual conflict induced by an ambiguous visual stimulus 

(AVS) – an optical illusion, and looked at qualitative outcomes, and sympathetic 

autonomic responses. It found that viewing AVS caused sensory disturbances and 

enhanced pain in CRPS patients but not in controls, OA or RA subjects. A subgroup 

of CRPS patients were found to have asymmetric autonomic responses and 

enhanced pain responses with dystonic reactions. Asymmetry could not be predicted 

from baseline autonomic function testing. 

 

8.4.3. Current literature context and novel findings   
 
There has only been one previous study investigating somaesthetic responses while 

viewing an ambiguous visual stimulus (Hall et al., 2010). This work also found that 

viewing AVS did not cause pain in healthy controls or patients with rheumatic 

disease, and that CRPS patients were vulnerable to enhancement of pain. The 

investigation of dynamic sympathetic autonomic responses while viewing AVS is 

novel. A subgroup of CRPS patients had enhanced pain and distinctive asymmetric 

autonomic responses. They also were more likely to have a cluster of other features 

including dystonic reactions in the affected limb, instability of the control figure and an 

AVS reversal rate described as ‘too fast to count’. This clustering of symptoms and 

signs is suggestive of a consistent pattern of pain network dysfunction. Based upon 

current concepts of visual processing (Goodale et al., 2005) and CRPS neuroimaging 

literature (Swart et al., 2009), this may be affecting dorsal parietal visual processing 

and other parietal-motor and visual integrational areas.  

Reports of asymmetric autonomic responses are unusual, and the 

mechanisms poorly understood. Previous work using noxious mustard oil (Magerl et 

al., 1996) and cold immersion (Drummond, 2006) has shown that pain is able to 

cause a differentiated sympathetic response with separate control of discrete reflex 

pathways on each side of the body. This study demonstrates that a non-noxious 

visual stimulus can enhance pain and cause centrally rather than peripherally 

triggered asymmetric sympathetic responses.    
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8.5. Study 4 (Chapter 7) 

8.5.1. Accepted hypotheses 

• Some CRPS patients demonstrate evidence of parietal lobe dysfunction 

when assessed by detailed clinical bedside testing. 

• CRPS patients with parietal dysfunction have more extensive areas affected 

by mechanical allodynia compared to patients who had no parietal 

dysfunction.  

 

8.5.2. Summary of findings 

The final study investigated whether abnormal cortical network activation could 

extend to parietal areas by assessing detailed clinical measures of parietal function in 

a series of CRPS patients. Of those tested, 68% were found to have parietal 

dysfunction not apparent with a standard neurological screen. The severity of 

dysfunction correlated with the extent of allodynia. Patients with parietal dysfunction 

were all vulnerable to an optokinetic challenge with enhanced pain, and were more 

likely to have pain and asymmetric responses viewing AVS.  

8.5.3. Current literature context and novel findings   

This is also a novel study reporting novel findings. One of the patients from the 

parietal cohort was reviewed by a neuropsychologist and found to have agnosia for 

object orientation, conjectured to have arisen from cortical reorganisation secondary 

to chronic severe CRPS pain, affecting parietal areas (Robinson et al., 2011). 

Previous neuroimaging research has suggested parietal involvement that may 

account for some of the motor impairments found in CRPS (Maihöfner et al., 2007). 

Data from this study supports the concept, and provides evidence for much more 

extensive parietal disruption evident clincially. Extent of allodynia appears to be 

linked to the degree of dysfunction, and should prompt clinicians to look for 

symptoms and signs of parietal dysfunction in patients with extensive allodynia. The 

fact that all the patients with parietal dysfunction were vulnerable to sensory conflict 

supplies further credence to the activation of abnormal cortical networks, possibly 

secondary to underlying cortical reorganisation, producing specific patterns of 

somaesthetic integrational dysfunction and pain. 
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8.6. Unanswered questions 

The CRPS cohort were selected from a tertiary centre specialising in rehabilitation of 

CRPS. Therefore, this was a severely affected group often with long duration disease 

(overall mean disease duration 6 years). Therefore this research cannot answer 

whether similar findings are present in earlier cases, and further work is needed.  

The research utilised simple clinical and qualitative methods combined with 

autonomic function testing to explore potential central cortical mechanisms of pain. 

While it provides good evidence for this, it still need to be combined with 

neuroimaging techniques for further elucidation and validation.  

 

8.7. Final conclusions 

Taken together, in patients with CRPS these research findings provide evidence for 

abnormal pain networks and central autonomic integration in a subgroup of 

vulnerable patients. However allowance should be made for many of the findings 

being made through post-hoc analysis, and further validation is required.  

Abnormal cortical network activation and reorganisation extending beyond S1 to 

parietal areas may be a contributory factor. This may account for some of the motor 

difficulties and unusual symptoms encountered in CRPS. The extent of allodynia is 

correlated with severity of parietal dysfunction, which suggests that the extent of 

abnormal cortical network activation and reorganisation may be greater in these 

patients. It may also involve cortical areas responsible for autonomic integration, as 

evidenced by abnormal responses in a particularly vulnerable subgroup. Similar 

changes may occur at a lower level in OA and RA, where enhanced vulnerability to 

an optokinetic challenge and impaired baseline sympathetic autonomic function 

compared to healthy controls was demonstrated.  

The thesis findings provide an approach to the clinical phenotyping of CRPS, which 

may help to improve treament approaches. It opens new research questions about 

central brain mechanisms operating across a wide spectrum of chronic pain 

conditions. 
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