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S um m ary

This thesis is the result of a collaborative project between Cardiff University 

and Harman/Becker Automotive Systems. It investigates the application of 

Artificial Neural Networks to loudspeaker fault detection and modelling of the 

loudspeaker transfer function.

The aim was to utilise the ability of artificial neural networks to model high 

order nonlinear systems to generate a model of the loudspeaker transfer 

function which could be used in a linearisation scheme to reduce distortion in 

loudspeaker output. This thesis investigates a practical approach to transfer 

function modelling through the use of musical excitation signals. This would 

allow data to be collected during normal operation of the loudspeaker and, as 

the transfer function changes over time due to time dependent nonlinearities, 

would facilitate regular updating of the neural network model to incorporate 

these nonlinearities. It was determined that although very accurate models 

could be produced over long training periods, a significant compromise in 

ANN training set size and number of training epochs were required to reduce 

the ANN training duration to the required time period, which ultimately 

resulted in a decline in performance.

The aim in the case of fault detection was to improve on current end of 

production line testing for loudspeaker distortion. Neural networks were 

trained with harmonic distortion data in order to emulate the end of line test 

result. Excellent classification accuracy was achieved when neural network 

classification results were compared to the end of line test results.

An investigation was also conducted to determine if neural networks could be 

trained to recognise specific loudspeaker faults. In a development of the end 

of line test, a system of neural networks were trained to produce an output 

vector that described which of five frequency regions the loudspeaker 

distortion levels were above the limits, thus giving an indication of the possible 

fault.
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1 In tr o d u c tio n

1 In tr o d u c tio n

This thesis is the result of a collaborative project between Cardiff University 

and Harman/Becker Automotive Systems. Harman/Becker produce 

loudspeakers for a range of automotive manufacturers and were interested in 

the application of neural networks in their field. Consultation with 

Harman/Becker established that two appropriate areas to conduct research 

were the application of The first aim of this project was to determine if Artificial 

Neural Networks (ANNs) to loudspeaker modelling and fault detection.

Loudspeakers behave nonlinearly and extremely inefficiently. The current 

approach employed by many loudspeaker manufacturers is to improve 

loudspeaker performance through signal processing. The first aim of this 

project was therefore to determine if ANNs could produce a model of the 

loudspeaker transfer function of adequate performance, over very short 

training periods, with only loudspeaker input/output data generated from 

music signals to be employed in a linearisation scheme to eliminate nonlinear 

distortion in the loudspeaker output. The training duration was prerequisite so 

as to allow regular adaptation of the model to the time dependent parameters 

of the loudspeaker transfer function, as was the musical excitation signal, in 

order to facilitate online model training and therefore, the practical application 

of the system.

Various stationary models exist, including mathematical representations 

(Locanthi, (1952), Small, (1972b), Small, (1973), Kaizer, (1987), Gao, 

Snelgrove, (1991), Klippel, (1992), Frank, et al, (1992)), and ANN models 

(Low, Hawksford, (1993), Chang, et al, (1994)), with many used in 

preprocessing schemes to reduce nonlinear distortion. However, as 

discussed in section 2.4.2, there are several model parameters that are time 

dependent, the most significant being ageing effects and temperature effects, 

which a stationary model cannot incorporate. Therefore, during the course of 

this project the most efficient methods of incorporating time dependent 

parameters into an ANN model of the loudspeaker transfer function were 

investigated.
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1 In tr o d u c tio n

The second aim was to use ANNs for loudspeaker fault detection in order to 

improve the sophistication of the end of line test, which only provides an 

indication of whether the loudspeaker should be accepted or rejected. The 

specific loudspeaker fault is currently determined by expert listeners. A neural 

network that gave an indication of the specific fault immediately would reduce 

the time between the faulty loudspeaker being produced and the diagnosis of 

the fault, which may prevent the production of further loudspeakers with the 

same fault and would also reduce the need for expert listeners. Neural 

networks have been used in a wide range of applications, including fault 

detection systems (Kalayci and Ozdamar, (1995), Foo et al, (2002)), however, 

they have not previously been applied to the problem of loudspeaker fault 

detection.

After the completion of loudspeaker fabrication it is tested to ensure 

satisfactory performance. The aim was to establish if an ANN could be 

trained to determine if a loudspeaker should be accepted and distributed to 

the customer or rejected and withdrawn from further distribution. The aim was 

also to investigate if the ANN could be trained to recognise specific faults. In 

a development of the end of line test, a system of neural networks were 

trained to produce an output vector that described which of five frequency 

regions the loudspeaker distortion levels were above the limits, thus giving an 

indication of the possible fault.

Chapter 2 discusses loudspeaker theory and the development of loudspeaker 

modelling.

Chapter 3 explains basic neural network theory, and includes a derivation of 

the algorithms used in the multi layer perceptron and modified Elman 

networks. It also briefly discusses several applications of neural networks.

Chapter 4 presents the strategy employed during the modelling of the 

loudspeaker transfer function. Issues such as the perception of distortion in a
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1 In tr o d u c tio n

loudspeaker, the accumulation of ANN training data and preprocessing are 

discussed.

Chapter 5 contains details of the extensive investigation conducted to 

determine an optimum configuration for the two ANN structures considered for 

the modelling of the loudspeaker transfer function; the Multi Layer Perceptron 

feedforward network and the modified Elman recurrent network. Each of the 

network parameters, along with algorithm modifications, is considered in order 

to determine the configurations where correlation between model output and 

actual loudspeaker output is optimised. Frequency analysis is performed in 

order to determine the frequency response and harmonic distortion curves 

generated by the neural network models.

Chapter 6 discusses the various developments to the neural network 

algorithms used in the modelling of the loudspeaker transfer function with the 

aim of improving model performance or achieving the target model update 

rate of five minutes.

Chapter 7 presents the results of the investigation into the application of 

neural networks to loudspeaker fault detection and includes a description of 

the current end of production line test and common loudspeaker faults.

Chapter 8 summarises the thesis and discusses the conclusions reached 

during the project.

Chapter 9 presents the main conclusions of the research.
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2 Lo u d s p e a k e r  T h e o r y

2 Lo u d s p e a k e r  T h e o r y

2.1 Lo u d s p e a k e r  d e v e l o p m e n t

The direct radiator loudspeaker was first proposed by Rice and Kellogg (1925) 

(they referred to it as ‘hornless’) and the vented box enclosure by Thuras, 

(1930). Previously the enclosures employed were either baffles or closed 

boxes, which prevented the sound wave produced by the back of the driver 

cone interfering with that produced at the front (the back wave is 180° out of 

phase with the front wave and would therefore cause destructive 

superposition). Closed box systems, also referred to as air suspension 

systems, consist of a loudspeaker with very high compliance mounted in an 

air tight box. The air pressure in the enclosure acts as a restoring force on 

the driver assembly. Closed box systems generally operate with relatively 

large driver excursions, which require the magnetic field to extend over a 

larger area or the voice coil to overhang the magnet, however, this reduces 

loudspeaker efficiency (Rossing, 1989). The vented box enclosure, also 

referred to a bass-reflex enclosure, incorporates a port that can take the form 

of a tunnel or duct extending into the interior of the enclosure or of a simple 

aperture, the principle being to allow air to move in and out of the enclosure in 

response to the pressure variations within the enclosure, thus the air acts as 

an inertial mass (Small, 1973b), under a similar principle as a Helmholtz 

vibrator. At frequencies below resonance, the air in the vent moves in phase 

with the back of the driver, hence the sound radiated will be out of phase with 

the sound radiated from the front of the driver, which at low frequencies 

results in destructive superposition, however in the frequency region adjacent 

to but still below the resonance frequency the sound radiated from the vent 

exceeds that from the driver and the total radiation is actually increased. In 

the region adjacent to but just above the resonance frequency, the air in the 

vent moves out of phase with the back of the driver, thus is in phase with the 

sound radiated from the front of the driver, hence positive superposition 

occurs and the total radiation is increased, however, at frequencies 

significantly above the resonance frequency the output from the vent is
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2 Lo u d s p e a k e r  T h e o r y

considerably reduced (Rossing, 1989). The resultant frequency response 

curve is shown in figure 2.1.

Vented box enclosure

--- No enclosure

Figure 2.1 -  Frequency response of a loudspeaker in a vented box

enclosure tuned to the driver resonance frequency 

(Rossing 1989)

In addition to the increase in efficiency that results from the increased sound 

output of the loudspeaker and the extension of the loudspeaker response to 

lower frequencies, the vented enclosure also reduces the cone excursion at 

frequencies close to the resonance frequency which therefore reduces 

distortion and increases the power handling capability (Rossing, 1989). This 

is because the larger the cone excursion the greater the distortion, which is 

caused by a reduction in the magnetic field strength and the compliance of the 

cone suspension, and the maximum power output is limited by the maximum 

excursion possible without causing damage to the driver assembly or 

significant distortion in the output. The use of a duct rather than a simple 

aperture reduces the required enclosure volume to achieve a low resonance 

frequency (Rossing 1989). The duct can be designed so as to reverse the 

phase of the back wave, thus bringing it in phase with the front wave and 

hence the back wave may be used to reinforce the front wave over a larger 

range of frequencies, resulting in an increased power output of the 

loudspeaker (Caulton et al, 1936). The vent may also incorporate a passive 

radiator, or drone cone (a loudspeaker cone without a voice coil or magnet, 

that is driven by the back wave of the driver cone). This further reduces the 

required enclosure volume as the mass of the passive radiator contributes 

substantially to the impedance of the vent and also reduces the air velocity at
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2 Lo u d s p e a k e r  T h e o r y

high power levels, which results in significantly less turbulence than a vent 

which requires larger air velocities (Rossing, 1989).

2 .2  A n a l o g o u s  c ir c u it  d e v e l o p m e n t

Roder (1936) presented a basic analogous electrical circuit for a loudspeaker 

driver (assuming an infinite baffle enclosure), modelled as a mass-spring- 

damper system (inductance-capacitance-resistance in the electrical 

impedance type analogy, see section 2.3) and with transducers linking the 

electrical, mechanical and acoustical domains.

Caulton et al (1936) developed a vented enclosure that employed 5 tubes 

proportioned so as to reverse the phase of the back wave and included in 

their discussion electrical analogous circuit diagrams. The closed box 

enclosure was modelled, again with the impedance type analogy, with the 

addition of a capacitance in series with the capacitance-inductance-resistance 

representation of the loudspeaker driver, and the vented box enclosure with 

further parallel inductance and resistance terms. The transformation between 

domains was represented as the electrical impedance reflected into the 

electrical domain by the transducer.

Locanthi (1952) developed an electrical circuit that incorporated the external 

coupling of the cone and the vent. The inclusion of this mutual impedance 

resulted in an improvement in the agreement between measured impedance 

of the loudspeaker unit and that derived from the electrical circuit analogy. 

The circuits could therefore be used for the performance analysis of vented 

box loudspeaker systems.

In his book ‘Acoustics’, which presents a complete account of loudspeaker 

concepts such as acoustics and analogous circuits, Beranek (1954) derived 

polynomial expressions for the response of loudspeakers in closed and 

vented boxes. The expression for the vented box enclosure was a 

significantly simplified version of the equation originally proposed by the 

inventor of the vented box concept, Thuras, (1930), as Beranek assumed
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2 Lo u d s p e a k e r  T h e o r y

operation in the very low frequency region where the radiation from the vent 

and the driver is nondirectional (Beranek, 1954), hence the interaction 

between the cone and the vent was negligible (Small, 1973b). Berenek’s 

expression took into account system losses and the variation of radiation load 

resistance with frequency.

The use of electrical analogous circuits in the design process was first 

attempted by van Leeuwen in 1956, however, the paper was published in 

Dutch therefore did not receive significant attention. Van Leeuwen examined 

the diaphragm-vent interaction neglected by Beranek and derived polynomial 

expressions for the frequency response. He determined accurate methods of 

calculating the driver and system parameters, including their nonlinearities, 

from the voice coil impedance measurement. He proposed a system design 

process and illustrated how the analogous electrical circuit could be used to 

determine the voice coil impedance and the steady-state and transient 

response of the system (Small, 1973b).

In 1959, de Boer made the connection between the behaviour of a 

loudspeaker in a vented box enclosure and that of a high-pass filter. This was 

critical for the analysis of loudspeaker behaviour and for loudspeaker design 

as well established filter theory could be applied (Small, 1973b).

Novak (1959) further simplified Beranek’s transfer function by neglecting the 

vent radiation resistance as well as the interaction between the diaphragm 

and the vent. This was justified as the diaphragm radiation resistance could 

be 20 to 40 times greater than that from the vent. He discounted previous 

opinion that a large air stiffness in a small closed box increased driver 

damping; he established that damping was actually a function of the 

resistances in the system, and the factor exerting the greatest influence on 

the damping was the product of the magnetic field strength and voice coil 

conductor length. He determined the optimum range of driver damping for a 

flat response with a vented enclosure and presented methods for determining 

the driver and system parameters from voice coil impedance measurements.
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He achieved good correlation between calculated and measured loudspeaker 

response, despite the exclusion of mutual coupling effects.

Thiele, (1961), is widely regarded as the first comprehensive quantitative 

treatment of loudspeakers in vented box enclosures. He presented a further 

simplification of the transfer function; as loudspeaker efficiency is extremely 

low (between 0.4 and 4 per cent) both the diaphragm and vent radiation 

resistances could be neglected, despite being the acoustic output of the 

system. Radiation resistance varies with the square of frequency, hence the 

transfer function was significantly simplified. He also neglected the acoustic 

resistance of the enclosure and of the air in the vent and lumped together 

firstly the acoustic mass of the diaphragm and voice coil and the acoustic 

mass of the air load on the front and the rear of the diaphragm, and secondly 

the acoustic mass of the air load on the vent and the acoustic mass of air in 

the vent. He substituted the expression for the transfer function into 4th order 

high pass filter functions in order to determine design parameters for various 

response curve shapes. The system parameters for any desired response 

characteristics could then be determined using filter theory. Previously, only 

empirical design methods were possible. However, Thiele developed a 

precise, quantitative method for loudspeaker design based on the knowledge 

of four measurable loudspeaker parameters:

• resonance frequency of moving system of driver specified either for the 

driver in air or a specific baffle

• acoustic compliance of driver, expressed as an equivalent volume of 

air

• Q value due to electrical resistance

• Q value due to voice coil dc resistance

Benson, (1968), presented a detailed derivation of a generalised loudspeaker 

system transfer function, which he showed could be manipulated to produce 

the transfer functions of specific types of enclosure through the suitable 

choice of parameters.
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Thiele’s 1961 paper did not receive significant acclamation until a decade 

later when Thiele’s PhD student published the series of papers (Small, 1972a, 

Small, 1972b, Small, 1973a, Small, 1973b, Small, 1973c, Small, 1973d) which 

generalised Thiele’s derivation of the transfer function in a similar way to 

Benson (1968), to include any type of enclosure, and also presented analysis 

and synthesis methods for each enclosure type. He extended Thiele’s work 

to include treatment of efficiency-response relationships and large signal 

behaviour, evaluation of diaphragm-vent interaction, and the assessment of 

the magnitude and effects of normal enclosure losses.

In Small, (1972a), the observation of de Boer, Beranek and others that the 

acoustic power radiated by the system is directly related to the volume 

velocity compressing and expanding air within bass-reflex (vented) enclosures 

was expanded to include all direct-radiator system enclosures. The equations 

for efficiency were clearly stated and electrical analogous circuits were used 

to derive a general transfer function which incorporates terms relating to the 

type of enclosure and whether a passive radiator is employed. Small 

identified five fundamental driver parameters which control system small- 

signal performance:

• dc resistance of the voice coil

• effective projective surface area of the driver diaphragm

• mechanical compliance of the driver suspension

• mechanical mass of the driver diaphragm assembly including voice 

coil and air load

• mechanical resistance of driver suspension losses.

Each parameter may be set independently and has some effect on the system 

small-signal performance. These parameters were not straightforward to 

measure directly, and Small referred to the four basic parameters determined 

by Thiele which related to the parameters he identified but were easier to 

measure and manipulate.
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Small also discussed large signal parameters in terms of a displacement limit 

above which distortion becomes unacceptable or damage may be caused to 

the loudspeaker suspension, assuming linear diaphragm displacement.

In the subsequent papers Small applies the concepts derived in Small (1972a) 

to loudspeakers in closed box (Small, 1972b, Small, 1973a) and vented box 

(Small, 1973b, Small, 1973c, Small, 1973d, Small, 1973e) enclosures. He 

shows the correlation between the closed box loudspeaker system response 

function and a second order high-pass filter and between the vented box 

loudspeaker system response function and a fourth order high pass filter. He 

determined that closed box loudspeaker system efficiency is dependent upon 

frequency response and enclosure size and that acoustic power capacity is 

determined from frequency response and the volume of air displaced by the 

driver diaphragm. For vented box loudspeaker systems efficiency may be 

determined through knowledge of these parameters plus internal losses.

At the time of the publication of Small’s papers there was a trend towards 

employing closed box enclosures due to their straightforwardness of design, 

however, Small suggested that vented box enclosures provided superior 

efficiency characteristics and power capacity than comparable closed box 

designs (Small, 1973c), and his simple design methods removed the 

disadvantage of complex design procedures.

2 .3  E l e c t r o -m e c h a n o -a c o u s t ic a l  c ir c u it  a n a l o g y  o f  t h e  l o u d s p e a k e r

Mechanical and acoustical systems may be analysed through the use of an 

analogous electrical circuit. This enables the application of well established 

electrical circuit theory to systems that may contain a combination of 

electrical, mechanical and acoustical elements, such as the loudspeaker.

There are two commonly applied analogies -  the mobility type and impedance 

type. The mobility type analogy represents quantities that act through 

elements as analogous, likewise quantities that act across elements, and the 

impedance type analogy adopts the opposite convention. Beranek (1954)
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ch.3 discusses the development of electro-mechano-acoustical circuit 

analogies in detail.

2.3.1 Assumptions

The transfer function derived here is that of a generalised loudspeaker system 

consisting of a driver unit (the electro-mechano-acoustical transducer), and an 

enclosure that incorporates apertures for the driver unit, a passive radiator or 

vent, and also leakage that may occur through the enclosure structure. The 

system is illustrated schematically in figure 2.2.
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braids

chassis

magnet

dome

A W

power
source

......................

enclosure 
outer
suspension 

cone
spider
(inner suspension)

passive
radiator

Figure 2.2 -  Schematic of a loudspeaker in a vented box with a passive 

radiator
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The following assumptions are made:

• The elements of the loudspeaker system may be considered as 

lumped i.e. the only independent variable of the system is time.

• The system operates within the piston range of the system driver,

where all parts of the diaphragm vibrate in phase.

• The voice coil inductance is negligible.

• The acoustic radiation resistance of the diaphragm and the vent are

neglected despite being the acoustic output of the system. This is due 

to the substantial inefficiency of the loudspeaker system.

• The mutual impedance of the driver diaphragm and passive radiator 

diaphragm or vent is negligible.

• For the main driver and the passive radiator, the air load on the front 

and back of the diaphragm are lumped together with the combined 

mass of the diaphragm and voice coil.

2.3.2 Electrical elements

The electrical elements of a loudspeaker system include the source voltage, 

eQi and resistance, Rg, and the voice coil resistance, Re. The circuit

representation of the electrical parameters is shown in figure 2.3.

Rg R e

1------------------------------------------------------------------------------------------------------o - - -

Figure 2.3 -  Electrical elements of loudspeaker system

2.3.3 Mechanical elements

The mechanical part of the equivalent circuit consists of elements from the 

voice coil, the driver diaphragm and suspension and the passive radiator 

diaphragm and suspension. M Ms represents the combined mass of the driver
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diaphragm and wire on the voice coil, CMs and rMs correspond respectively to 

the compliance and mechanical responsiveness of the combined centre and 

edge suspensions of the driver. M mp, C mp and tmp are the mass of the passive 

radiator and the compliance and mechanical responsiveness of the combined 

centre and edge suspensions of the passive radiator respectively. The 

equivalent electrical circuit, using the mobility type analogy, is shown in figure 

2.4.

M mp

-o

C mp

T m p

-o

Figure 2.4 -  Mechanical elements of loudspeaker system

2.3.4 Acoustical elements

The acoustical elements of the loudspeaker system include the compliance of 

the air in the enclosure, Cab, the acoustic responsiveness due to internal 

energy absorption within the enclosure, tAb and that due to losses caused by 

leakage, rAL, The equivalent electrical circuit of the acoustical elements of the 

system are illustrated in figure 2.5, again using the mobility type analogy.

C ab
rm_

Ta b

TAL

- - O  o -

Figure 2.5 -  Acoustical elements of loudspeaker system

2.3.5 Complete analogous circuit

These circuits can be combined to create a complete representation of the 

loudspeaker system as illustrated in figure 2.6.
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The acoustical equivalent circuit as described by Thiele (1961) and Small 

(1972a) can be obtained through the following modifications to the electro- 

mechano-acoustical circuit of figure 2.6:

1. Refer the electrical elements to the mechanical side of the circuit (i.e. 

remove electro-mechanical transducer).

2. Refer the mechanical and equivalent electrical elements to the 

acoustical side of the circuit (i.e. remove mechano-acoustical 

transducer).

3. Determine the Norton equivalent circuit of the equivalent electrical 

elements (i.e. convert circuit from constant voltage source to constant 

current source).

4. Determine dual of the resultant circuit to obtain impedance type 

analogy acoustical equivalent circuit as shown in figure 2.7.

M as C as R as
U d

►

Ue ▲ Ui

C ab

RAB

Uo
o—

A U p

R al

M ap

C ap

RAP

Figure 2.7 -  Acoustical analogous circuit (Small, 1972a)

Where U d, Up and U|_ are the volume velocities of air movement at the driver 

diaphragm, port and leak respectively, and UB and U0 are the total volume 

velocities entering and leaving the enclosure.

The acoustical analogous circuits of various direct radiator systems can be 

obtained by removing or short-circuiting appropriate elements in figure 2.7.
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Figure 2.8 illustrates a closed box loudspeaker system and figure 2.9 a vented 

box loudspeaker system.

C asM as

TTl
R as

C ab

Figure 2.8 -  Acoustical analogous circuit of a closed box loudspeaker 

System (Small, 1972b)

C asM as

rmn
R as

C ab

R ab R ap

Figure 2.9 -  Acoustical analogous circuit of a vented box loudspeaker 

system with open port (Small, 1973b)
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The circuit of figure 2.9 can be further simplified by assuming RAL is the 

significant loss when compared to RAB and RAP, this is illustrated in figure 

2 .10.

M as C as las

*

M ap

Figure 2.10 -  Simplified acoustical analogous circuit of a vented box 

loudspeaker system with open port (Small, 1973b)

The acoustical analogous circuit may be generalised as illustrated in figure 

2 . 11 .

ZAB Z aa

ZAS
lA

Figure 2.11 -  Generalised acoustical analogous circuit (Small, 1972a)
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e Bl
Where p  is the acoustic driving pressure, P. = To . V ^ c  <2'1)

(.Rg + R e ) S d

Z AS(s) is the impedance of the driver branch,

n 2 ; 2 i

Z AS(s) = RAS +    + sM AS + ------------------------- (2.2)
( * f + * fi)S0 sC„s

Z,IS(5 ) is the impedance of the branch representing the enclosure interior, 

Z a. ( s) = Ra. + - ^ ~  (2.3)
sCM,

Z AA is the impedance of any enclosure apertures excluding that of the driver 

and is dependent upon the type of enclosure. In the case of the vented box

R s M
enclosure of figure 2.9, Z AA = — —---- —  (2.4)

R a l  + s M  a p

2.3.6 Derivation of transfer function

Applying Kirchoff’s second law to figure 2.11:

P g - U DZ AS= U 0Z AB= U DZ AT (2.5)

where Z = Z *aZ ah (2 .6 )
z +z^  AA ^  ^  AB

Therefore U 0 = U D (2.7)
Z  AB

and U D = - ■ P-* y  (2.8)
Z  AS +  Z  A T

The loudspeaker response function is:

G(s) = s M as ^2- (Small, 1972a) (2.9)
' Ps

sM Z
=> G(s) = --------- ------------  (2.10)

Z ab& a s + Z at)

=> G(s) = -------------S M 7 ~ 7 /  (2-11)
7  _i_ 7  _1_ ^  AB Z  AS /

AB AS ^  / 7
/  ^  AA

Substitution of parameters results in second and fourth order transfer 

functions for closed box and vented box enclosures respectively.
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2.4 N o n l in e a r it ie s  in  l o u d s p e a k e r  t r a n s f e r  f u n c t io n s

Nonlinear distortion involves the introduction of frequency components, 

harmonic and inharmonic, inharmonic being the more discernable, that were 

not present in the input signal. The various mechanisms by which this form of 

distortion may be introduced are discussed in sections 2.4.1 and 2.4.2.

2.4.1 Constant nonlinear parameters

A principal nonlinearity is that caused by the displacement dependent force 

factor (Greiner and Sims, 1983, Kaizer, 1987, Klippel, 1992a, Birt, 1991). The 

magnetic flux acting on the voice coil is significantly reduced when the coil is 

at an extreme of its excursion (Villchur, 1956). This is illustrated in figure 

2 . 12.

o

CQ

cone displacement

Figure 2.12 -  Plot of Bl factor variation with cone displacement (Low, 

Hawksford, 1993)

Inside the gap there is a position of maximum magnetic flux, to either side of 

which the flux strength decreases, this therefore results in a continuously 

decreasing electrodynamic driving force (force factor) as the voice coil 

traverses towards its maximum excursion. The consequences are a 

parametric excitation and a nonlinear damping of the mechanical system
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(Klippel, 1992a), the observable effect of which is a relatively smaller increase 

of the fundamental’s excursion amplitude at lower frequencies, which require 

an excursion further away from the position of maximum magnetic flux (cone 

excursion is inversely proportional to co2 for constant power output (Chernof, 

1957)), than that at higher frequencies. This is commonly referred to as 

compression. If the voice coil reaches an excursion at which the magnetic 

field is no longer strong enough to influence it, the voice coil may enter free 

vibration, which results in a phase shift between the input signal and voice coil 

displacement when the voice coil re-enters the influence of the magnetic field. 

This combination of phase shifting and displacement dependent force factor 

results in an excursion limit, where an increase in the electric input signal is 

offset by a proportional decrease in the force factor. (Klippel, 1992a). 

Mechanical damping is caused by the interaction between the electrical 

resistance of the source and the voice coil and the displacement dependent 

force factor in the case of a voltage driven loudspeaker, however in practice 

this effect is masked by the nonlinear damping caused directly by the force 

factor (Klippel, 1992a). There is also an asymmetry in the force factor 

characteristic, as can be seen in figure 2 .1 2 , which results in an asymmetrical 

voice coil excursion and hence a dc component and even order harmonics in 

the output, the dc component being the predominant effect. (Klippel, 1992a).

The stiffness of the suspension system does not behave linearly with 

excursion, as illustrated in figure 2.13.
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cone displacement

Figure 2.13 -  Plot of suspension stiffness variation with cone

displacement (Low, Hawksford, 1993, Klippel, 1992a)

A nonlinear suspension system stiffness characteristic results in a virtual 

alteration of the resonance frequency of the loudspeaker, as it is dependent 

upon the point at which the force effects of mass and spring cancel, and 

therefore is dependent upon driver amplitude (Klippel, 1992a). This 

resonance shifting also results in a jump phenomenon in the response 

characteristic at extreme amplitudes (Olson, 1944, Klippel, 1992a). The 

resonance curve is skewed to the point that its elements overlap, resulting in 

two possible stable vibration states, which the loudspeaker will jump between 

when the excitation frequency reaches the point of coincidence. This is 

illustrated in figure 2.14 (Klippel, 1992a). The frequency at which the 

amplitude jump occurs is dependent upon whether frequency is increasing or 

decreasing.
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There is also nonlinearity in the mechanical damping caused by the 

compression and expansion of air in the loudspeaker enclosure (Olson, 

1960), although this is often concealed by the nonlinear damping caused by 

the force factor (Klippel, 1992a).

Distortion may also be caused by a voice coil that is not centred, front to back 

under zero-signal conditions (Greiner and Sims, 1983), or symmetrically in the 

air gap, which may result in rubbing (Villchur, 1956). Also, voice coil 

inductance may vary nonlinearly, however this is more significant at higher 

frequencies (Mills and Hawksford, 1989). Also more significant at higher 

frequencies are eddy current losses and hysteresis in the magnetic circuit 

(Mills and Hawksford, 1989).

The problem of nonlinear distortion is further compounded as the distortion 

components occur simultaneously and interact with the fundamental and with 

each other to cause further nonlinear effects (Klippel, 1992a).

2.4.2 Time dependant nonlinear parameters

The transfer function of a loudspeaker is also time dependent. Voice coil 

resistance can produce significant temperature increases in the voice coil 

assembly, which results in an augmentation of the coil resistance and 

consequently a loss of sensitivity, reduction in damping and cross-over 

misalignment (Mills, Hawksford. 1989). As temperature increases, the 

suspension may also become softer and eddy currents due to temperature 

gradients may also form, resulting in an altered response. In the longer term, 

processes such as leaching of plasticisers, work hardening and fatigue (Birt, 

1991) will alter the performance of the suspension, hence the transfer function 

will also vary over longer periods of time.

2 .5  M o d e l l in g  o f  n o n l in e a r  r e s p o n s e

The models discussed thus far are limited to the frequency region in the 

piston range of the loudspeaker (above which the cone ceases to vibrate as a 

stiff piston), where the loudspeaker response approaches that of a linear
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system and is independent of frequency and thus the models make no 

consideration of nonlinearities.

Olson, (1944), discussed the application of differential equations with variable 

coefficients to the modelling of a loudspeaker with a nonlinear cone 

suspension. He successfully modelled the phenomenon where a jump in the 

frequency response is experienced (see section 2.4.1) and the production of 

harmonics.

= — —  (2.13)

Olson modelled the suspension force factor as Fm = f ( x )  = ax + fix* (2.12)

The compliance of the suspension system therefore becomes:

x _ 1
f m cc + f a

Substituting this into the equation of motion:

mx + rux + -^— = F  coscot
CM (2.14)

=> mx + rMx + ax + px2 -  Fcoscot 

Neglecting the mechanical resistance:

=> mx + ccx + f ix 2, = F  cos cot (2.15)

If p  is assumed to be small:

a  - PA2 p
a 2 = - + * tL-------£_ (2.16)

m m Am

An approximate solution for unit mass is therefore:

BA3x = AcoscotJt  Fr------------— cos3cot (2.17)
32(a + jP A  -  ^)

This determined that the nonlinear suspension results in a third order 

harmonic, a result well substantiated by experimentation. The frequency -  

amplitude characteristic obtained from this analysis is shown in figure 2.14. It 

can be seen that at frequencies adjacent to resonance there are two 

theoretically possible amplitudes, and it is this that results in the jumping 

phenomenon.
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Chernof, (1957), asserted that the most significant nonlinearities are the 

nonlinear suspension characteristics and the non-uniform distribution of 

magnetic flux in the air gap, both of which are most apparent at low 

frequencies. He modelled the force characteristic in the same way as Olson, 

and suggested a solution to the problem of non-uniform flux would be to 

design the axial gap length to considerably exceed the length of the voice coil. 

He also suggested several methods to improve low frequency performance 

(extending the region of linear frequency response to lower frequencies by 

lowering the resonance frequency and damping the peak in acoustic output at 

resonance), such as decreasing suspension stiffness, increasing the mass of 

the diaphragm or minimising the motional resistance of the voice coil by 

increasing the magnetic field strength. He also referred to negative voltage 

feedback combined with positive current feedback through the amplifier to 

lower the output impedance and compensate for the voice coil resistance, 

thus suppressing the effects of resonance. He proposed that motional 

feedback may be employed to counteract the nonlinearities of the cone 

suspension and magnetic field, and described methods of obtaining the 

loudspeaker output voltage by placing an additional winding over the voice 

coil or by inserting the voice coil as one arm of a bridge circuit, balanced with 

an equal inductance and resistance, thus enabling the back emf to be 

separated from the driving voltage.

Kaizer, (1987), discussed the modelling of low frequency nonlinear distortion 

of the transfer function of a loudspeaker in a closed box enclosure with 

various mathematical methods. He took the governing differential equations

(2.18) and (2.19) and approximated the nonlinear force factor, suspension 

stiffness and voice coil inductance (neglecting frequency dependence) with a 

truncated power series (2 .2 0 -2 .2 2 ).

B li = mx + Rm x + kx (2.18)

(2.19)

Bl = B l0 + b]x + b2x (2 .20)

k = kn + k.x + k ,x (2 .21 )
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Le — LE0 + l xx + l 2x (2 .22)

Substitution of the nonlinear terms into the governing equations and 

neglecting terms with order higher than three results in the following nonlinear 

differential equation for voice coil excursion:

ooc + J3x + yx + Sx

+ f x 2 + gxx + AEgx 2 + Bx3 + Cx2x 

+  Dx 2x +  Ex 2'x + Fxx2 + Gxxx = Eg

*See Kaizer (1987) for definition of terms.

2.5.1 Solution of nonlinear differential equation by series expansion

Kaizer assumed the voltage E to vary sinusoidally according to E 0 coscot, the 

voice coil excursion therefore satisfies the series expansion:

x  =  B0 + Ax sin(^y/) +  A2 s in (2 cot) +  A3 sin(3&V) +  • ■ ■

+ B, cos {cot) + B2 c o s (2 cot) + B3 cos(3 cot) + ■■■ (2.24)

Truncated at the kth term and substituted into the nonlinear differential 

equation this yields an equation that must be satisfied for any t in order for 

sin(ncot)and cos(ncot)terms to disappear. The result is a set of 2k nonlinear 

equations with 2 k unknowns and a dependent equation that determines B0, 

which can be solved numerically.

2.5.2 Solution of nonlinear differential equation by direct integration

The nonlinear differential equation may also be solved by direct integration. 

This can be achieved by writing the differential equation as a set of first order 

differential equations and integrating these numerically.

2.5.3 Volterra series expansion

Kaizer describes these methods as cumbersome; with series expansion a 

whole new set of nonlinear equations must be written to incorporate an 

additional nonlinear factor, and with direct integration harmonic analysis is 

required to determine higher order harmonics. Kaizer therefore proposed the

+ aEgx + bx2 + cxx + dxx + exx
(2.23*)

2-24



2 Lo u d s p e a k e r  T h e o r y

use of a Volterra series expansion for the modelling of loudspeaker 

nonlinearities.

A Volterra series is a functional series that allows the expression of the 

relationship between input and output of a nonlinear system. If the system is 

time invariant the Volterra series expansion is as follows:

00 CO CO

yW = Ĵ i Oi )*(/ -r, )c/r, + J J/z2 (r , , r 2 )x(t -r, )x(t -  r 2 )c/r,c/r2

+ | |  |/;3( r , , r 2, r3)x(/ -r, )x(r -  r 2)x{t -  r  2)cI t Kdx 2dz 2
— co —co —co 

oo co

— CO -C O

(2.25)

where for n=1 , 2 .....

/>„(rp...,r„) = 0  for any r y< 0 , y = l,2 ,...,n

An alternative form is:

r (0  = H, [x(t)] + / / 2 [x(f)] + H 3[x(t)\ + ••■+//„ [x(/)] + ■ ■ ■ (2.26)

CO CO

where H n[x( t ) ]=  J--- ^hn(Tl ,...,Tn)x(t -  t , )  ■ ■ ■ x(t -  Tn)cl r l ■■■drn (2.27)
— oo —CO

Hn is known as the nth order Volterra operator.

Isolating the first term of (2.25), the first order Volterra operator, it may be 

observed that it is of the same form as the convolution integral, which implies 

that the system response for any given input can be obtained by convolving 

the given input with the system unit impulse response, thus the latter uniquely 

characterises the system. In (2.25) therefore, /z,(r,) may be interpreted as 

the first order system impulse response and the system characteristic in one 

dimension. The 2nd term of (2.25) is of the same form as the two-dimensional 

convolution integral and hence h2(T] , r 2) may be considered representative of 

a two-dimensional impulse response, and in the nth term, hn( r ] ,...,r/() , a n-

dimensional impulse response. An nth order nonlinear system can therefore 

be uniquely characterised by the sum of n Volterra operators of order 1 to n.
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The Volterra operators being convolutions also means the series has 

memory.

The attribute of memory allows the Volterra series to be used to form a 

representation of the transfer function of the loudspeaker. Ordinary power 

series would not be suitable, due to the dispersive nature of the loudspeaker 

which requires previous input values to be considered (Kaizer 1987). 

However, Kaizer did not extend the transfer function beyond the 3rd order 

Volterra operator, as the increased computational burden became 

unjustifiable in comparison to the improved accuracy obtained.

Kaizer measured the force factor, voice coil inductance and suspension 

stiffness (including enclosure air load) as a function of voice coil excursion 

using an accelerometer mounted on the voice coil former, and applied a least- 

squares curve fitting method to evaluate the 2nd and 3rd order Volterra series 

coefficients, corresponding to the 2nd and 3rd order distortion components of 

the voice coil acceleration (as it is approximately proportional to sound 

pressure, the perceptible response of a loudspeaker (Frank et al, 1992)). The 

derived 2nd and 3rd order harmonic distortion curves showed some qualitative 

correlation to the measured distortion data, however the quantitative 

correlation was poor. The coefficients of the excursion dependent terms in 

the nonlinear characteristics were therefore modified to fit the actual 

measured distortion responses (previously they were measured directly, 

independent of their effect on the response). The resultant distortion model 

shows reasonable quantitative agreement with the measured distortion at 

frequencies below 200 Hz. The modified coefficients were used to determine 

2nd and 3rd order intermodulation distortion, which also resulted in only a 

reasonable correlation with measured data.

Although it is possible to apply the Volterra series expansion to time variant 

systems, the resultant expression is theoretically and experimentally involved 

(Schetzen, 1989). Hence the transfer function determined by Kaizer was a 

time invariant representation and therefore did not incorporate the time 

varying parameters. Kaizer’s model also excluded hyteresis effects and the
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generation of subharmonics at high drive levels due to the Volterra series’ 

restraint on input amplitude.

Further limitations of the Volterra series include the measurement of the 

Volterra operators, which may only be determined if each operator can be 

separated from the total system response. This is only possible for systems 

of a finite order, hence approximations must be made for infinite order 

systems. Also, the Volterra series representation may only converge over a 

limited range of the system input amplitude (Schetzen, 1989) and if the 

nonlinearities are weak (kaizer, 1987).

Kaizer alludes to the use of the model in a distortion reduction circuit, using 

the inverse of the 2nd order Volterra operator to filter out the 2nd order 

nonlinear terms (the realisation of the 3rd order filter was considered too 

complex) for a voltage drive loudspeaker and both 2nd and 3rd order operators 

for current drive, however no results are presented.

Frank, Reger and Appel (1992) applied a Volterra series, also truncated at the 

3rd order operator and with the assumptions that the loudspeaker was a 

weakly nonlinear, time invariant system, to a linearisation scheme. The 

transfer function related input voltage to diaphragm acceleration, with the 

acceleration measured using a laser vibrometer. The linearisation scheme 

preserved the linear part of the transfer function and removed the 2nd and 3rd 

order nonlinear components, as described in Kaizer’s paper. Frank et al 

acknowledged that this method generated new higher order nonlinearities, 

however the Sound Pressure Level (SPL) of these distortions were 

considered low enough not to deteriorate the linearisation. The 3rd order 

operator was approximated in order to reduce the computational load and 

hence enable real time processing. A modification of the Weiner G-operators 

(a generalisation of the Volterra operator) was proposed in order to obviate 

the need for a white noise signal during the identification of the operators, 

however, stationary, zero-mean Gaussian noise was still required. It was also 

suggested that the LMS algorithm be used to determine the coefficients of the 

G-operators. The LMS algorithm would utilise the difference between the
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model output and actual loudspeaker output as an error signal to adapt the 

coefficients to acceptable values. This eliminated the requirement of 

gaussianity of the input signal, however a Gaussian input would increase the 

speed of adaptation. A pseudo noise signal was employed during coefficient 

identification, and the resultant Volterra filter was found to reduce harmonic 

distortion at all frequencies, most significantly in the region of 100Hz.

In the same year, Klippel, (1992a), also achieved good agreement between 

measured distortions and those calculated using a 3rd order Volterra series 

model for small voice coil excursions, however, significant discrepancies were 

observed in the large signal range. The use of a higher order Volterra series 

was discounted due to its complexity and an alternative method using an 

adjusted Volterra model was proposed. This approach incorporated 

coefficients calculated using the harmonic balance method which involves the 

expression of the loudspeaker voice coil displacement as a Fourier series, 

where the first terms of the truncated Fourier series may be assumed to 

approximate the fundamental and dc component of the voice coil 

displacement. These can be substituted into the characteristic nonlinear 

differential equation, and by comparing the coefficients determined for each 

harmonic, a further set of differential equations may be derived which can be 

solved using numerical methods. Substituting functions representing the first 

order response and the dominant nonlinearities derived using the harmonic 

balance method for the corresponding constants in the Volterra series 

resulted in a model with improved correlation to the measured loudspeaker 

response in the large signal domain when compared to that of the original 3rd 

order Volterra series and resulted in a lower computational load than 

employing a higher order Volterra series.

The linear parameters of the model can be measured simply, however the 

nonlinear parameters require either a static measurement and subsequent 

least-square curve fitting to determine the Volterra coefficients, or a two-tone- 

intermodulation measurement to determine the coefficients dynamically. Both 

the aforementioned methods utilise a microphone to measure SPL in the
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small signal domain, however, large signal responses require specialised 

techniques such as laser interferometry.

2.6 P e r c e p t io n  o f  n o n l in e a r  d is t o r t io n

There is debate as to how the perception of nonlinear distortion may be 

measured, as it is impossible to determine if any two people perceive a sound 

in the same way. However, it is generally agreed that certain sounds may be 

classified as distortion, and are commonly described as harshness or 

roughness, or in terms of sounds that were not present in the original signal 

such as crackles or clicks. The most commonly applied measures of 

distortion are total harmonic distortion and intermodulation distortion. Fielder 

and Benjamin, (1987), proposed that the level of audibility of nonlinear 

distortion in subwoofers was above 3 per cent of the fundamental for the 2nd 

harmonic, above 1 per cent of the fundamental for the 3rd harmonic and above 

0.1 -0.3 per cent of the fundamental for higher harmonics. However, the 

perception of distortion does not correlate highly with total harmonic and 

intermodulation distortion measurements. This is due to distortion 

perception’s dependency upon factors such as the frequency separation and 

relative phase of the distortion products and input signal components, which is 

not considered in the total harmonic and intermodulation distortion 

measurements, and also that the measurements are usually obtained using 

sinusoidal test signals, which may not stimulate distortion scenarios that may 

occur with more realistic input signals (Tan, Moore, Zacharov, 2003). The 

most accurate model would therefore be based upon a measure of the 

listener’s perception of the distortion. Methods of quantifying the perception 

of nonlinear distortion have been developed (Tan, Moore, Zacharov, 2003), 

along with more qualitative methods (Mason et al, 2001), however they are 

reliant upon subjective measurements, which is the predicament of all sound 

perception measurements.
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3 A r t if ic ia l  n e u r a l  n e t w o r k  t h e o r y

3.1 A r t if ic ia l  n e u r a l  n e t w o r k s

An Artificial Neural Network (ANN) is designed to model the structure and the 

processes of a biological neural network. Biological neural networks are 

present in the nervous systems of biological organisms and are the 

mechanisms through which pattern recognition, perception, motor control and 

all other life support functions are achieved. The biological neural network is 

made up of a network of neurons, which consists of a soma connected to a 

long axon, which ends in several dendrites, which in turn are connected to 

other neurons in the network. This is illustrated in figure 3.1.

soma axon

nucleus

connections to 
other neurons

Figure 3.1 -  Schematic of a biological neuron (Fraser, 1998)

The soma is the cell body of the neuron where the electrical input signal is 

received and processed and an electrical output generated, the axon is the 

transmitter of the pre-synaptic electrical signal and the dendrites are the 

receivers of the post-synaptic electrical signal. The terminal of the axon does 

not make direct contact with the dendrites; there is a small gap, known as a 

synapse. At the terminal of the axon the electrical signal triggers the release 

of chemical messengers (neurotransmitters) which diffuse across the synaptic 

gap into receptors on the surface of the dendrites, which generates the post- 

synaptic electrical signal. Some synapses create stronger post-synaptic 

electrical signals than others, as a result of the pre-synaptic terminals of the 

axon releasing a greater quantity of neurotransmitters or the post-synaptic
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dendrites having more receptors. The strength or ‘weight’ of the synapse 

determines the influence of each neural connection, which may be modified 

by the presence of chemicals known as neuro-modulators. This facilitates 

learning in the biological neural network, and is the fundamental process that 

is simulated during the training of artificial neural networks.

An artificial neural network consists of several layers of artificial neurons, 

which are computational elements designed to emulate a biological neuron. 

Each neuron consists of a set of ‘synaptic’ links to other neurons in the 

network, which are weighted in order to simulate the synaptic gap of a 

biological neuron. A summation and activation function simulate the soma of 

the biological neuron by summing the input signals, weighted by the 

respective synapses of the neuron, and performing a mathematical 

transformation on the summation to produce the neuron output. An artificial 

neuron is illustrated in figure 3.2.

Figure 3.2 -  Schematic of an artificial neuron j

The sum of the weighted neuron inputs plus a bias may be referred to as the 

induced local field vy(«).

vj (») = X  w,< (")>”. (") (3-1)
i=0

where w^(«) is the synaptic weight connecting the output of neuron / to the 

input of neuron j , y t(ri) is the signal at the output of neuron /, m is the total 

number of inputs (excluding the bias) applied to neuron j  and n refers to the
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nth training data pattern presented to the ANN. The synaptic weight wj0 

equals the bias applied to neuron j .

After the application of the activation function the output of neuron j  is y ^ n ). 

y M )  = <Pj{yj{n)) (3.2)

A commonly used activation function is the sigmoid function, as it is a good 

approximation of the mean firing rates of a biological neuron (Hutt, 2002) and 

is easily differentiable (as required by the back propagation algorithm, see 

section 3.2). Equation 3.3 and figure 3.3 illustrate the hyperbolic tangent 

function, the form of the sigmoid function used during this project.

(p{s) = tanh (s ) (3.3)

Highly nonlinear systems have been successfully identified by ANNs using 

sigmoidal nonlinear processing elements (Pham, Liu, 1995), hence the 

hyperbolic tangent function was considered a suitable choice of activation 

function for this project.
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Figure 3.3 -  Hyperbolic tangent function

There are three main neural network architectures; single layer feedforward 

networks, multi layer feedforward networks and recurrent networks. A single
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layer network has a single layer of computational neurons (the output layer) 

plus an input layer. When the network is executed, the input variable values 

are placed in the input neurons, and passed to the output layer neurons via 

the synaptic weights. The neurons in the output layer calculate their output, 

which is the output of the network. A multi layer network has an input layer, 

one or more hidden layers containing computational neurons and an output 

layer, also containing computational neurons. When the network is executed, 

the input variable values are placed in the input neurons, as in the single layer 

network, and the hidden layers and output layer are progressively executed. 

Each neuron calculates its output value which is then passed on to the 

neurons in the proceeding layer, via the synaptic weights. When the entire 

network has been executed, the outputs of the output layer act as the output 

of the entire network. Recurrent networks include internal feedback that 

allows the network’s hidden units to be influenced the previous network 

output, and thus have the added attribute of memory.

3.2 F e e d f o r w a r d  N e t w o r k s  -  T h e  M u lti L a y e r  P e r c e p t r o n

Figure 3.4 illustrates a typical topology of a multi layer feedforward neural 

network.
hidden layers

connections

input layer
output layer

Figure 3.4 -  Schematic of a simple multi layer perceptron (Smith, 2002)

The network may be trained with the Back Propagation Algorithm, which was 

introduced as the Generalised Delta Rule by Rumelhart, et al (1986). In the 

training process inputs whose desired responses are known are applied to the 

network. For example, when training an ANN to emulate the Harman/Becker
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end of line test (see section 7) an approved loudspeaker has an ideal desired 

response value of + 1  and a rejected loudspeaker a desired response of -1 . 

The actual output value generated by each output neuron is compared with 

the desired output value and used to calculate an error value, ef ( n ) .

where d j (n ) is the desired output of neuron j  for the nth data pattern in the 

training set, and y f (n) is the output calculated by the network.

A measure of the network’s performance may be gained from the mean 

square error or sum of squared errors over the whole training sample, defined 

as a function of the free parameters of the network (i.e. the weights). This 

may be visualised as a multidimensional error surface with the free 

parameters as coordinates (Haykin, 1999). During the training process the 

gradient of this error surface is calculated in order to determine a suitable 

alteration to the weights that will move the operating point of the network to a 

lower position on the error surface.

Each neuron in the network contributes to the position of the network on the 

error surface. This position may be represented by the average error energy 

(sum of error squares) of the network.

where sav is the average error energy, calculated by summing the 

instantaneous total error energy ( s ( n ) ) over all the samples, N, in the training 

set. e(n) is the sum of the error signals squared of all neurons in the output 

layer for the instantaneous data pattern, n.

where set C includes all the neurons in the output layer.

The aim of the back propagation algorithm is to minimise the average error 

energy function with respect to the free parameters of the network (the

ej (n) = d j  (n) -  y j  (n) (3.4)

e (3.5)

(3.6)
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synaptic weights and bias values). This can be achieved using an 

optimisation technique based upon the method of steepest descent.

The method of steepest descent states the condition for optimality as:

Vs,v(W) = 0 (3.7)

where w*  is the weight vector of an optimal solution and V is the gradient 

operator:

d d d
dwx dw2 dw_

(3.8)

and Veov (w) is the gradient vector of the average error energy function:

"1T
V e ( w )  =

ds„, de„ ds.

cHv, dw2 dw.
(3.9)

The weight vector is initiated randomly and adjustments made in the direction 

of steepest descent, which is the opposite direction to the gradient vector: 

w(n + 1) = w (n ) - r /V e av(w)  (3.10),Haykin (1999)

where 77 is the learning rate.

However, the summation of total error energy over the training set to obtain 

the average error energy is not possible with sequential learning (where the 

ANN weights are updated after the presentation of each training sample, the 

alternative is batch learning where the weights are updated after the 

presentation of all of the training samples in the data set). Therefore an 

estimate of the method of steepest descent that utilises the error calculated 

for the individual data pattern is required.

The gradient vector for data pattern n, evaluated at the point wjt (n) is: 

V £ (" ) =  ^ T T 7 ( 3 1 1 )dwji(n)

This may be written as:

v _( ; , ... ds(n) de(n) de^n)  dy^n )  dvJ(n)

dwj. (m) dej (n) dy, (n) &Vj (n) dw-  ( « )

Differentiating equation 3.6 with respect to e/n) gives:
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^ ^ -  = eAn) (3.13)
dej(n) 1

Differentiating equation (3.4) with respect to y /n ) gives: 

de An)
—A Z  = _ i (3.14)
dyj{n)

Differentiating equation (3.2) with respect to v/n) gives: 

dy An)
^ r r  = ^ ( v/W ) (3-15)dvj(n)

Differentiating equation (3.1) with respect to wji(n) gives: 

dv An)
T r ^ T ^ - V i t o  (3-16)
dwjiin)

Substituting equations (3.13) to (3.16) into equation (3.12) results in the 

following approximation of the gradient vector at point wy.(w):

= ~ej  W v )  (yj  W h y  i M  (3.17)dWji(n)

Substituting equation (3.17) into equation (3.10) gives the approximation of 

the gradient descent method used by the back propagation algorithm:

w(n +1) = w(n) + rjej (n)(p' (vy (n))yt (n) (3.18)

Equation (3.18) may also be written as:

w(n + 1) = w(n) + J]Sj (n)yi (n) (3.19)

where dj{n)  = ej {n)(p,j {vj {n)) (3.20)

and is known as the local gradient:

= (3.21)
A ’ dej(n) dy j (n )  dvj(n)

8e(n)

dv j (n )

The weight alteration is therefore dependent upon the error signal ej(n) at the

output of neuron j .  When neuron j  is an output neuron it is a simple case of 

comparing the neuron output to the desired output as in equation (3.4). When 

neuron j  is a hidden neuron, a direct comparison between desired and actual 

output is not possible. This problem is solved by the back propagation 

algorithm in the following way:
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The local gradient, equation (3.21), may be written as:

d An) = - d£(<n) (3.23)
Syj(n) Svj(n)

Substituting equation 3.15 into equation (3.23):

=>SM )  = - T T ^  (3-24)Syj(n)

Substituting the subscript j  for k into equation (3.6) to indicate the neuron is in 

the output layer gives:

= (3 -25)
^ keC

Differentiating with respect to y j ( n ) gives:

(3.26)
f y j in )  k f y j W

and applying the chain rule:

^ s m = y  ( 3  27)
f y j (n )  k Svk(n)Syj(n)

Equations (3.2) and (3.4) may be combined to give:

ek (n) = d k (n) ~ <Pk (v* («)) (3-28)

Differentiating equation (3.28) with respect to vk(n) therefore gives:

Sek{ri)
= ~<Pk(vk(n)) (3-29)Svk(n)

Equation (3.1) may be written as:
m

vkin) = YjwkM)yM) (3-3°)
7=0

for the connection between the hidden layer and output layer. Equation (3.30) 

may be differentiated with respect to y  An) to give:

Svk(n)
= wki(n) (3.31)

Syj(n)

Substituting equations (3.29) and (3.31) into equation (3.2) gives:

-~ 7 7  = " Z  ek W<Pk (v* (*))'wkj M  (3-32)
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and substituting equation (3.20) with subscript j  replaced with Ogives:

■T~~ = (3-33)
f y j i n )  k

Substituting equation (3.33) into equation (3.24) gives:

£,(«) = ^ ( v y(« ) )X ^ (wH , ( w) (3-34)
k

(Haykin, 1999)

All terms in equation (3.34) are derivable for hidden neurons, therefore the 

weight alteration described in equation (3.19) may be achieved for a 

connection between a neuron in a hidden layer and a neuron in the output 

layer, or a connection between 2  neurons in adjacent hidden layers without 

knowledge of the desired output of the neuron.

3.2.1 Learning rate

The learning rate, tj , determines the magnitude of the change in weight 

values at each iteration. A high learning rate value will result in a relatively 

large change in weight values and hence a large step along the network error 

surface. This may result in faster convergence of the network to the optimum 

solution. However, it may cause instability in the network output that may 

prevent the convergence of the network. A lower learning rate value would 

reduce the possibility of divergence of the network away from the optimum 

solution, however, would result in the requirement for more iterations before 

the network converges to the optimum solution, and hence a longer training 

period.

3.2.2 Momentum

A momentum term is often added to (3.19) that allows the weight change from 

the previous iteration to influence the new weight change. Equation (3.19) 

becomes:

W J, (« + 1 )  = w , ,  («)+ n S j  ( n ) y i ( n )  + //A w p  (») (3.35)

where Awyi(») is the weight change from the previous iteration n  and f j .  is the 

momentum coefficient (Pham, Liu, 1995). In the event of two consecutive
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weight changes in the same direction along the error surface, this will 

accelerate the training process. In the event of two consecutive weight 

changes resulting in movements along the error surface in opposite 

directions, the momentum term will reduce the influence of the inconsistent 

weight change on the value of the weights and thus have a stabilising effect 

upon the training process, as it prevents the network diverging significantly 

from the optimum solution.

The training process is repeated until the error between the actual and 

desired response reaches a level acceptable to the application. The network 

should now be configured so as to produce an output for previously unseen 

data patterns consistent with the input/output relationship determined from the 

training data.

3.2.3 ANN performance validation

Throughout the research, the ANN performance was evaluated with a 

validation data set comprised of previously unseen data. The measure of 

performance was the root mean square error, erms, calculated over the whole 

validation set:

where dj{ri ) is the desired output of neuron j  for the nth data pattern in the

validation set, y j (n )  is the output calculated by the network for neuron j  for

the nth data pattern, and N  is the total number of data patterns in the validation 

set.

3.2.4 Tapped delay line

In order to model dynamic systems, the neural network requires knowledge of 

previous states of the system. The most frequently used method of supplying 

this information to a multi layer perceptron is to employ a tapped delay line

(3.36)rms N

n=1

3-10



3 A r tif ic ia l  N e u r a l  N e tw o r k  T h eo r y

(Waibel et al, 1989). The tapped delay line stores previous inputs and outputs 

of the system so that they may be used simultaneously with the current 

system input as the network input. The neural network therefore maps an 

input vector consisting of the current system input plus previous system inputs 

and outputs to the current system output.

This method has several disadvantages, such as a significantly increased 

training time in comparison to a network trained with a single input. It also 

requires a similar input vector when the network is engaged in its intended 

application, unless a significant degree of network performance is sacrificed.

3.3 R e c u r r e n t  n e t w o r k s  -  T h e  E lm a n  n e t w o r k

In addition to feedforward connections, a recurrent neural network has 

feedback connections, which enable the network to learn temporal sequences 

of events. Recurrent network architectures vary in their degree of

connectivity. Neurons in fully connected (fully recurrent) networks have 

feedforward and feedback connections with all other neurons in the network, 

all of which are trainable. The structure of partially connected (partially 

recurrent) networks is similar to that of a feedforward network, with an 

additional set of neurons (known as context units) that receive feedback from 

selected neurons in the network. Therefore, feedback information about the 

network’s state at iteration k is fed back and incorporated into the network at 

iteration k + 1 , thus the internal representations that develop in the neurons 

during training have a temporal perspective i.e memory (Elman, 1990). This 

allows the network to identify dynamic systems, without the use of a tapped 

delay line and large input vectors. Only the feedforward connections of a 

partially recurrent network are trainable.

Simple partially recurrent ANNs were introduced in the late 1980’s by several 

researchers including Rumelhart, Hinton and Williams to learn strings of 

characters (Rumelhart et al, 1986, Medsker and Jain, 2000). The recurrent 

networks employed in this project were the Elman network (Elman, 1990) and 

modified Elman network (Liu, 1993, Pham and Liu, 1993). Elman also
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developed this network to learn strings of characters. The structure of the 

Elman network is extremely similar to that of a multi layer perceptron with a 

single hidden layer, with the addition of a set of context units in the input layer, 

as illustrated in figure 3.5. The context units receive feedback from the 

hidden layer and thus in the proceeding iteration supply the hidden units with 

information regarding their activation from the previous iteration. Hence the 

network maps a combination of the current input and the previous internal 

state of the network to the current desired output.

feedback
output Layer

hidden Layer

input Layer

context units

Figure 3.5 -  Schematic of an Elman network

All neuron activations are the same as the multi layer perceptron described in 

section 3.2, except those in the hidden layer, which becomes:

y  i (*) = <PjZ w/iWJ'i W+Z**'* (*)>> (* - •) (3.3)
i=0 c=0

where p  is the number of context units (which corresponds with the number of 

neurons in the hidden layer) plus 1 (for the neuron bias), and k is the current 

time step, is the synaptic weight connecting the output of neuron i to

the input of neuron /, and wjc(n) is the synaptic weight connecting the output

of context unit c to neuron j .

Only the feedforward connections between neurons and context units are 

modifiable, the weights of the context layer connections with the hidden layer 

are fixed. Therefore the network may be trained with the back propagation 

algorithm, also described in section 3.2.
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In his PhD thesis (Liu, 1993), Liu suggested modifying the Elman network to 

include self-connections in the context units, as illustrated in figure 3.6. The 

modification to the Elman network involves the incorporation of past context 

unit values, and hence hidden layer activations from further in the past than 

just one time step. The previous context unit values are fed back through 

self-connections in the context units. The activations of the context units in 

the modified Elman network therefore become:

y c(k ) = <xyc ( * - 0 + y s (* - 1) (3.38)

where y c(k) is the activation of the context unit and a  is the feedback gain of

the self-connections. The value of a  is universal throughout all self­

connections and is not modified by the training algorithm (Liu, 1993). It is set 

between 0 and 1, with a higher value resulting in an increased influence of 

previous context unit (and therefore hidden layer) activations on the current 

activation.

feedback

feedback

output Layer

hidden Layer

input Layer

Figure 3.6 -  Schematic of a modified Elman network

3.4 ANN APPLICATIONS

Artificial Neural Networks have been applied to identification problems in 

many fields. Their ability to model a relationship between system input / 

output patterns without knowledge of the system makes them extremely 

useful tools. System models can be generated relatively quickly and with little
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expert knowledge of the system. Below several applications are discussed in 

detail.

3.4.1 Recurrent networks for dynamic system identification

Neural networks have been employed extensively in the modelling of dynamic 

systems (Lippmann, 1987). In Pham and Liu (1993) the basic and modified 

Elman networks discussed in section 3.3 are employed in the identification of 

dynamic systems. Recurrent networks are well suited to system identification 

as they do not require spatial representation of the system inputs and outputs 

(such as that generated by a tapped delay line) in order to extract a temporal 

relationship from the data. Pham and Liu (1993) simulated various linear and 

non linear systems in order to determine the modelling performance of the two 

networks. The basic Elman network performed well with first order linear 

systems, and was in fact superior to the modified Elman network, however its 

performance deteriorated with higher order linear systems and the modified 

network’s performance improved. It was determined that optimum a 

parameter values were dependent upon the order of the modelled system. 

The modified network’s performance was also superior when modelling 

nonlinear systems. Optimum a parameter values were also found to be 

dependent upon degree of non linearity of the system to be modelled.

3.4.2 Feedforward ANNs for online control

ANNs may be employed as system controllers. The ANN is trained to 

generate an inverse model of the system, and can therefore be used to 

determine the required system inputs for any desired system output. 

However, this method has several disadvantages; the ANN must be trained 

off-line and therefore cannot control the system during this time and, once 

trained, the ANN cannot take into account any changes in the system’s 

behaviour until the next training session. Psaltis, Sideris and Yamamura 

(1988) proposed an alternative learning algorithm called ‘specialized learning’ 

which allows the ANN controller to learn in an on-line and autonomous way. 

The error value used to adjust the weights is calculated differently in
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specialized learning; instead of the difference between the actual system input 

and that generated by the ANN model (see figure 3.7), the difference between 

the desired and actual system outputs is employed (see figure 3.8).

Copy Neural Network 1

Neural Network 1

Plant to be ControlledNeural Network 
Controller

Figure 3.7- Adaptive inverse neuro-control with general learning (Wang, 

Bao, 2000)

Estimated Plant Jacobian

Plant to be Controlled

Neural Network 
Emulator

Neural Network 
Controller

Figure 3.8 -  Adaptive inverse neuro-control with specialized learning 

(Wang, Bao, 2000)

In figure 3.7, u is the control input, yo and yp are the desired and actual plant 

outputs respectively, Ud is the input calculated by the neural network which is 

compared to the actual plant input in order to generate an error signal, e with 

which to train the ANN. In figure 3.8, u, yD and yp are as figure 3.7 and ym is 

the output calculated by the neural network emulator which is compared to the
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actual plant output in order to generate the error signal em which is used to 

train the neural network emulator, and ec is the error generated by the 

comparison of the desired plant output and actual plant output, which is used 

to train the neural controller.

However, the unknown system lies between the controller and the output 

error, therefore the standard back propagation algorithm cannot be applied to 

adjust the ANN’s weights (Wang, Bao, 2000). Various approaches have been 

proposed to overcome this, including:

• Considering the plant as an additional, unmodifiable, layer of the ANN 

controller in conjunction with a modification to the back propagation 

algorithm in order to incorporate the additional layer (Psaltis, Sideris and 

Yamamura, 1988). This method requires an estimate of some parameters 

required by the ANN controller, which may be achieved by utilising basic 

qualitative knowledge of the plant (Saerens, Soquet, 1991).

• Utilising a second ANN to emulate the plant (Nguyen, Widrow, 1990). 

Although theoretically these algorithms should improve the accuracy of an on­

line ANN controller, the degree of estimation required is still high, and thus the 

performance of such controllers is often unsatisfactory.

3.4.3 Feedforward ANNs for Fault Detection

3.4.3.i Visual Inspection

ANNs have found many applications involving pattern recognition. An 

example of such an application is in the automated visual inspection of 

components, post production. Pham and Bayro-Corrochano (1994) proposed 

the use of a neural network to recognise surface defects and to classify the 

shape of the inner perimeter of a valve stem seal for use in a car engine. 

Images of the valve were captured using CCD (Charge Coupled Device) 

cameras and preprocessed to extract feature vectors that were used as input 

to the neural networks. One network was trained for the surface defect 

recognition task and one for the classification of the shape of the seal inner 

perimeter. Both networks achieved good classification accuracy, with the 

former correctly classifying 93 per cent and the latter 83 per cent of previously
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unseen feature vectors. This could be considered a considerable 

improvement upon existing methods of visual inspection, which involved the 

manual inspection of the valve on a sampling basis. The results of this study 

highlighted several advantages of employing neural networks in such a task; a 

greater number of components could be assessed due to the speed of the 

operation, and therefore increased confidence in the product’s quality could 

be achieved, the system was simple to implement and gave consistent results 

(Pham, Bayro-Corrochano, 1994).

3.4.3.ii Condition monitoring

Many manufacturers experience significant costs due to loss of production as 

a result of failure of machinery. This has given rise to the development of 

condition monitoring techniques in order to detect faults in key components 

and to provide an indication of the severity of the fault condition. This 

information can be used to make an assessment of the maintenance 

requirements of the component in order to minimise costs to the 

manufacturer.

Bailey and Watton (2002) employed a neural network to monitor leakage fault 

conditions in an electrohydraulic pressure control system installed in a steel 

rolling mill. The ANN was trained with pressure and flow rate data measured 

from the plant under no-fault and fault conditions and successfully diagnosed 

the existence of leakage in the system, although it could not determine the 

location of the fault.

Jack and Nandi (2000) used a Genetic Algorithm to dramatically reduce the 

number of inputs required by an ANN in order to classify bearing faults from 

frequency domain data. The Genetic Algorithm identified the most significant 

features in the input data and these alone were used to train the neural 

network. This method not only reduced the size of the ANN required, but also 

significantly improved classification accuracy.
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Lurette and Lecoeuche (2003) incorporated unsupervised learning and the 

ability to adapt to new fault conditions into an ANN for detecting faults in 

hydraulic systems. A network resembling an Radial basis-function (see 

Haykin, (1999) for a description) was adapted to include unsupervised on-line 

learning rules that allowed the modification of the size of the hidden and 

output layers as well as the modification of the weight values when input 

vectors were significantly different from previously encountered input vectors, 

thus identifying new fault conditions that evolved over time. The learning 

rules also allowed the merging of neurons when both their outputs identified 

the same fault condition, thus keeping the network architecture compact.

3.4.4 Time delay ANNs for speech recognition

Time Delay Neural Networks (TDNNs) may be employed as speech 

recognition systems (Waibel et al, 1989). The input to the network is a 

spectrogram generated from speech signals with different time delays. This 

input vector is used to train the network to extract temporal relationships 

between acoustic-phonetic events and thus recognise certain phonemes 

(Bodenhausen, Waibel, 1991), in Waibel et al (1989), these were ‘B’, ‘D’, and 

‘G’. Significant problems occur as a result of the heterogeneous nature of 

speech signals, even from an individual speaker, the features of the phoneme 

may vary substantially at each utterance. Waibel et al (1989) overcame this 

by showing the network a group of spectograms of the same acoustic event, 

each shifted one time step and applying the regular back propagation forward 

and backward pass to each one as if they were separate events. This yields 

different error derivatives for corresponding (time shifted) connections. 

However, the weights are not updated according to each separate error 

derivative, but by the average of all corresponding time-delayed weight 

changes. The network can therefore extract useful acoustic-phonetic features 

in the input, regardless of when in time they actually occurred (Waibel et al, 

1989). The resultant ANN was able to correctly recognise 98.5 per cent of 

approximately 2000 previously unseen spectograms of ‘B’, ‘D’, and ‘G’ 

phonemes recorded by 3 different speakers.
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3.4.5 Feedforward ANNs for EEG/EKG diagnosis

Electroencephalograms (EEGs) and electrocardiograms (EKGs) are 

recordings of the electrical activity of the brain and the heart respectively. 

Kalayci and Ozdamar (1995) proposed a neural network approach to 

diagnose neurological conditions, such as epilepsy, from EEG patterns. The 

EEG data required significant preprocessing including removal of background 

noise and manual spike identification by experts (a spike is a transient 

waveform, clearly defined from background activity). The highest 

classification accuracy achieved was 91 per cent.

Foo, et al (2002) proposed a similar scheme to diagnose heart conditions 

from EKG data. A TDNN was successfully trained to recognise the difference 

between a normal heartbeat and a premature ventricular contraction (one 

form of abnormal heartbeat) with a classification accuracy of 92 per cent. 

However, the process was still not totally automated, as part of the 

preprocessing of the EKG data involved an algorithm to detect the heart beat 

spikes (spikes are recorded during a heart beat) that required manual 

adjustment for each EKG pattern in order for the algorithm to successfully 

extract the spikes. A training algorithm known as Levenberg-Marquardt was 

used that proved to be significantly faster to converge than the standard 

propagation algorithm often employed to train a multi-layer perceptron.

3.4.6 ANNs for modelling loudspeakers

Low and Hawksford, (1993) proposed a linearisation scheme for current 

driven loudspeakers employing a neural network model (current drive 

eliminates certain nonlinearities experienced in voltage driven loudspeakers 

(Klippel, 1992b)). The scheme was a refinement of Klippel’s mirror filter (see 

section 4.3). The ANN weights were adjusted using an error signal derived 

from the difference between actual (nonlinear) loudspeaker cone 

displacement and a desired response generated from a linear filter. The 

resultant ANN provided a corrected input current for the loudspeaker which 

reduced the nonlinearity in its output. Cone displacement was derived from 

the loudspeaker back emf signal through numerical integration which requires
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the knowledge of several system parameters which must be measured before 

the commencement of ANN training. The training sets were generated from a 

number of sine sweep excitation signals.

Chang et al (1994) used a multi layer perceptron in conjunction with a tapped 

delay line to model the combined transfer function of loudspeaker and room 

acoustics, which in theory would also compensate for nonlinearities resulting 

from room acoustics, however the measurement of such effects would be 

ambiguous due to the significant variation in the acoustics throughout the 

listening space.
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4 M o d e llin g  s tr a te g y

4.1 In t r o d u c t io n

This chapter presents the strategy employed during the modelling of the 

loudspeaker transfer function. Issues such as the perception of distortion in a 

loudspeaker, the accumulation of ANN training data and preprocessing are 

discussed.

4 .2  P e r c e p t io n  o f  l o u d s p e a k e r  p e r f o r m a n c e  im p r o v e m e n t

The extent to which the reduction of nonlinearities can be perceived by the 

listener will determine the degree to which it is economic to remove the 

distortion. The amount of irritation caused to the listener, and the level at 

which distortion becomes intolerable will vary with individual listeners (Klipsch, 

1968). The perception of distortion is also dependent upon listener training; a 

trained ear will decipher significantly more distortion than that of an untrained 

ear. Therefore, assuming that the listener with a trained ear is more likely to 

be purchasing higher end loudspeaker products, it would be economic to 

remove a greater degree of distortion components from the loudspeaker 

output in this case. The lower distortion may also distinguish the product from 

that of competitors, hence providing a lead in the market. In the case of the 

lower end of the market, it would not be economic to remove as much of the 

distortion. This assumes that the amount of distortion reduction attainable 

from the proposed linearisation scheme is proportional to implementation 

cost. It is likely that this will be the case, as the more accurate model required 

to reduce distortion to lower levels will require an ANN with a larger topology, 

smaller learning rate, a greater number of training epochs etc (see section

5.3), which would necessitate a more powerful processor than that required 

for a less accurate model.

There is also evidence (Griesinger, 2004) that the listener becomes attuned to 

distortion in a very short period of time, and that to decipher distortion most 

efficiently two short tracks, containing different levels of distortion, must be 

played to the listener in quick succession, therefore in the case of a
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loudspeaker with relatively constant, low distortion levels, the listener will 

quickly become unable to perceive it.

4.3 B l a c k  b o x  m o d e l l in g

The use of a music input signal meant that the loudspeaker could not be 

excited in order to extract behavioural information specific to a certain source 

of nonlinearity; the effects of all sources of nonlinearity culminated in the 

measured back emf signal. It was therefore not possible to model each type 

of nonlinearity individually, however, due to the consecutive occurrence and 

mutual interaction of nonlinear components, the modelling of the nonlinearities 

singularly and independently of one another would not be an optimum 

approach. This is because parameters required to isolate the loudspeaker 

response due a particular nonlinearity may be difficult to obtain without 

contamination from another nonlinear effect, and the simple amalgamation of 

individual nonlinear models may not incorporate the possible interactions. 

The proposed ANN model should incorporate the cumulative effects of all the 

nonlinearities present in the frequency and amplitude range, as well as any 

interactions between the nonlinear elements, which may not be assimilated by 

individual parameter models, assuming that it has been trained with sufficient 

data to be able to generalise to this extent.

Klippel’s mirror filter linearisation scheme (Klippel, 1992b) models each 

nonlinearity independently and therefore compensates for each nonlinear 

element individually. This requires that the signal be passed through a series 

of filters before reaching the loudspeaker. Linearisation schemes that utilise 

models derived from a Volterra series expansion (Kaizer, 1987, Gao, 

Snelgrove, 1991, Frank et al, 1992) also model each nonlinearity 

independently.

Feedforward models, such as Klippel’s mirror filter, as well as the Volterra 

series models, and that proposed by Marshall Leach, (1989), require 

parameter measurements to realise the model, which is not required in the 

proposed method. Low and Hawksford, (1993) proposed a refinement to
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Klippel’s mirror filter by using an ANN model of the inverse transfer function, 

however, parameters determined through measurement are still utilised in the 

integration process to derive cone displacement from the back emf signal. 

The proposed method is a genuinely black box technique that does not 

require prior knowledge of any parameters and can therefore be applied 

universally.

4 .4  D e t e r m in a t io n  o f  t h e  t r a in in g  s e t

The acquisition of training data through excitation with a music signal was 

necessary in order to facilitate the adaptation of the ANN model to alterations 

in the loudspeaker transfer function during operation. Using a different form 

of excitation signal, such as a sine sweep or white noise would interrupt the 

performance of the loudspeaker, which would be unacceptable to the listener 

who should be completely unaware of the linearisation process. The input 

voltage to the loudspeaker was the input signal and the back EMF (as 

discussed in Klippel, (1992b)), inverted to bring it in phase with the input 

signal, was used as the output signal. The back EMF represented 

loudspeaker displacement (Newman, 2004).

4.4.1 In it ia l  m o d e l

Consideration was made of applying a test signal as the sound system was 

switched on, such as a sine sweep of short duration that would not 

significantly interfere with the listening experience. The training set obtained 

from this sine sweep would therefore contain information pertaining to the full 

frequency range of the loudspeaker, which should result in a superiorly 

performing ANN model in comparison to an ANN model trained with an 

incomplete frequency range, which may be the case if the training set is 

compiled randomly from music signal excitation. Low and Hawksford, (1993), 

used a number of sine sweep excitation signals to obtain training sets for an 

ANN model of a loudspeaker, which produced an efficiently performing ANN 

model.
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This method of establishing a robust initial model would result in some 

disturbance to the listener, also, it does not take into consideration the period 

between when the user turns on the system and the end of the first training 

period. A default model is therefore required for this initial period. One 

method would be to employ the last active model from the previous system 

operation. This model would integrate the nonlinear effects of system ageing, 

and those arising from other parameters such as the suspension and force 

factor. However, it may also incorporate significant nonlinear elements 

resulting from temperature effects, which would not be present during the 

early stages of operation, when the loudspeaker is still relatively cold.

An alternative would be to perform this initial training of the ANN model in the 

factory, using the sine sweep excitation signal that should theoretically result 

in a more robust model than using data derived from a music signal excitation. 

The ANN model could then be initialised to this default model every time the 

system is switched on, and the alteration in long term time dependant 

parameters incorporated into the first subsequent model update.

4 .4 .2  S u b s e q u e n t  m o d e l  t r a in in g

The aim was to update the model at regular intervals during operation in order 

to incorporate developments in the transfer function that occur over time. The 

options considered for subsequent model training methods are discussed in 

the following sections.

4.4.2.i New training set generation for each training session

Collecting a new set of data in the period before training begins, either as 

small samples taken intermittently throughout the time interval, which could 

conceivably result in a good range of amplitudes recorded, or one large 

sample taken just before the beginning of the new training cycle, which may 

severely limit the range of data recorded, however, it would produce the most 

up to date model possible. Even with the latter method, this would result in a 

model trained with data that could be considered out of date, with respect to a
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music signal which could change significantly over the training period and also 

to changes in the loudspeaker response due to temperature increases.

The training set may contain limited amplitude and frequency data as only 

those captured during data sampling will be present. If during the data 

collection period the loudspeaker does not perform particularly nonlinearly, 

the ANN trained with that data set will return a linear transfer function and for 

the period over which the model is active in the linearisation scheme it will be 

ineffective at removing any nonlinearities. This may be acceptable in that the 

genre of music that the listener is playing results in the linear operation of the 

loudspeaker over a significant period. However, if the genre of the music 

and/or the dominant frequencies in the signal change significantly between 

the data collection period, the training period and the period during which the 

model is active in the linearisation scheme, significant distortion may be 

experienced. This therefore brings into question the generalisation ability of 

the ANN. The use of online training may overcome this difficulty by 

immediately incorporating a significant change in loudspeaker behaviour, if 

the learning rate is sufficiently high.

4.4.2.ii Accumulation of most nonlinear data for training set

The loudspeaker output data could be continuously assessed to determine 

the degree of nonlinearity (Methods of determining nonlinear content of a 

signal are discussed in Kantz, Screiber, (2004).) and included in the training 

set if it lies in the top percentile, with respect to nonlinearity, of the data under 

consideration. The data could be considered over just one training cycle or 

over the whole period of operation. Utilising only the most nonlinear data 

would be beneficial as there would be a significantly improved chance that the 

ANN would learn the nonlinear response of the loudspeaker. It was 

ascertained through analysis of the data that the loudspeaker used during this 

investigation behaved linearly for a significant proportion of the measurement 

period. Therefore, if a random sample of the data was used for ANN training 

the possibility existed that the training set would contain a very small 

proportion of data relating to nonlinear behaviour, and that the resultant model
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may be a linear one, or close thereto, as the nonlinear behaviour of the 

loudspeaker has not been incorporated into the model. However, this may be 

detrimental to the model’s generalisation performance as the training set is 

not representative of the overall behaviour of the loudspeaker, as using only 

the most nonlinear data in the training set may skew the transfer function 

towards that which was occurring earlier in its operation, rather than its 

current (or most recently recorded) behaviour. However, this is unlikely as the 

transfer function theoretically should become more nonlinear over time due to 

temperature effects. In order to obtain representative data a random sample 

is required. There is the possibility of the linearisation scheme adding 

distortion to the loudspeaker output in both cases - if a randomly obtained 

training set is used, the resultant model may tend towards a linear transfer 

function, which will result in distortion being added to the loudspeaker output 

at instances where it behaves more nonlinearly, or if extracted nonlinear data 

is used in the training set the model may be overly nonlinear which will lead to 

instances of additional distortion in the loudspeaker output when the 

loudspeaker’s behaviour is less nonlinear.

4.4.2.iii Accumulation of full frequency and amplitude range training set

A training set could be compiled that contains data pertaining to the full 

frequency and amplitude range of the loudspeaker. This could take the form 

of a look up table that is updated with the most recent data obtained for a 

particular frequency/amplitude. As there is no guarantee that the loudspeaker 

will perform over its entire frequency or amplitude range in the data collection 

period, this method would therefore ensure the model encompasses the full 

scope of the loudspeaker’s behaviour, however, a considerably complex 

algorithm would be required to facilitate the updating of the look up table, as 

the frequency and amplitude of the data would have to be determined and the 

storage address then determined. It would also require a sizeable memory 

space.
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4.4.2.iv Continuous ANN training

Continuously updating the ANN weights with errors generated from every 

sample measured real-time, with each sample used only once, would ensure 

that training data had a large range of amplitude/frequency content. However, 

the ANN training process generally performed better over many epochs, 

where the training set is shown to the ANN repeatedly. There are also logistic 

problems with direct online learning while the ANN is consecutively filtering 

the loudspeaker input signal (Narendra, Parthasarathy, 1990). The possibility 

of using a combination of online training with several training epochs is 

discussed in section 6.3.

4 .4 .3  P r e p r o c e s s in g

The only preprocessing applied to the input/output signal was phase inversion 

and a conversion from millivolts to volts, in order to reduce the magnitude of 

the ANN inputs in line with the magnitude of the initial values of the weights. 

Without this preprocessing the extremely large initial error values generated 

during training caused the program to crash. This is an extremely simple 

preprocessing sequence in comparison to many linearisation schemes, for 

example (Low, Hawksford, 1993) derive cone displacement from the back emf 

signal through numerical integration which requires the knowledge of several 

system parameters. Reducing the required preprocessing simplifies 

implementation and also reduces processing time, hence reducing delay 

between input and loudspeaker output.

4 .4 .4  M e a s u r e m e n t  n o is e

Signal measurements were subject to noise, with low amplitude 

measurements being particularly susceptible. It was observed that below 

4.0mV the amplitude was almost indiscernible from the noise in the signal. 

This data could still be used in the training set under the assumption that the 

ANN will still be able to extract the transfer function from other elements of the 

training set. The degree of inaccuracy this may add to the model would be 

assumed to be low. Experimental results would suggest that this is the case.
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A comparison of ANN performance resulting from a training session with a 

training set that contained a full range of amplitude data and one where the 

low amplitude, noisy data was removed showed little advantage in removing 

the noisy data, the ANN appeared to be able to generalise so as not to be 

affected by the inclusion of the noisy data. However, ANNs trained with a 

significant proportion of low amplitude, noisy training samples performed 

inadequately. The ANN could not extract a relationship from the noisy, low 

amplitude data, whereas it could generalise and achieve acceptable model 

accuracy from the less noisy data of the full amplitude range sample.

An alternative to the inclusion of the noisy data in the training set would be to 

employ a high pass filter to allow the low amplitude elements of the input 

signal to pass through to the loudspeaker without being pre-processed. The 

low amplitude response of the loudspeaker would be assumed to be linear, 

hence not require preprocessing. However, experimental results suggest 

that, assuming the ANN training set contains a relatively small proportion of 

noisy, low amplitude data, the additional computational load of pre-filtering is 

unjustified.

Consideration was also made of only employing the linearisation scheme 

above a threshold level of nonlinearity in the system. This would limit the 

possibility of the linearisation scheme causing additional nonlinear distortion, 

which is of greatest probability when the loudspeaker is behaving nearly 

linearly. In this case the loudspeaker input signal would be filtered, and only 

inputs that are likely to result in distortion above the limit would be pre- 

processed by the linearisation scheme. However, this would also result in 

considerable additional computational load.

4.5 M e t h o d s  t o  im p r o v e  ANN p e r f o r m a n c e

Modelling the full frequency range of the loudspeaker with one ANN may 

result in over generalisation, an alternative would therefore be to split the 

frequency range into smaller segments and train an ANN for each frequency 

sub set. This would result in a more specific, less generalised set of models,
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however the complexity of the linearisation algorithm would be significantly 

increased with the various filtering operations required to direct the input 

signal to the correct ANN for processing and also in collecting data for 

subsequent model updates.

4.6 C a r  in t e r io r  a c o u s t ic s

Chang et al (1994) used a multi layer perceptron in conjunction with a tapped 

delay line to model the combined transfer function of loudspeaker and room 

acoustics, which in theory would also compensate for nonlinearities resulting 

from room acoustics, however the measurement of such effects would be 

ambiguous due to the significant variation in the acoustics throughout the 

listening space. However, the car interior is unique in that the position of the 

loudspeakers and the listeners is fixed, hence the acoustics of the interior can 

be determined accurately by the system designer. The ANN model could 

therefore be trained to optimise the sound image in a limited area of the car 

interior, where the acoustics are relatively consistent, this is normally the 

driver’s position, with secondary attention paid to the front passenger and 

finally an overall good image is desirable throughout the whole car.
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5 M o d el  o p tim is a t io n

Two ANN structures were considered over the course of this investigation, the 

Multi Layer Perceptron feedforward network and the modified Elman recurrent 

network. Appendices 3 and 5 contain the C++ code used throughout this 

investigation for the Multi layer perceptron and the modified Elman network 

respectively. Each of the network parameters, along with algorithm 

modifications, were investigated in order to determine the configurations 

where correlation between model output and actual loudspeaker output was 

optimised.

5.1 M u lti La y e r  p e r c e p t r o n

5.1.1 Default parameter values

In order to examine how a parameter affected the rms error value of the multi 

layer perceptron, all other parameters were set to default values as outlined in 

table 5.1 and the parameter under investigation was systematically altered. 

The rms error value was calculated for the data used in the training set and 

the set of weights that returned the lowest training rms error was saved, in 

order to be tested with a set of previously unseen data in order to generate a 

validation rms error. Appendix 4 contains the C++ code for the validation 

program.

Table 5.1 -  Default parameter values for the multi layer perceptron

Parameter Default value

Topology 9-10-5-1

Epoch number 1 x 104

Training set size 2.56 x 104

Validation set size 2.56 x 104

Learning rate 1 x 10'6

Momentum 5 x 10'*

Input file format in,, outu, in,.,, outt-2, int.2l outt.3, in,.3l out,.4, inM

Sampling frequency 44.1 kHz
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5.1.2 Topology

The number of neurons in each hidden layer can affect the performance and 

modelling capability of the network. Tests were performed with the number of 

neurons in the first hidden layer varied between 10 and 25 and those in the 

second hidden layer kept constant at 5. The number of neurons in the first 

hidden layer was then kept constant at 10 and those in the second hidden 

layer varied between 2 and 35. Two further networks were trained with 50 

and 100 neurons in the first hidden layer and 20 and 50 neurons in the 

second hidden layer respectively, in order to gain insight into the advantage of 

using significantly larger network architectures.

The results in tables 5.2, 5.3 and 5.4 show that there is no direct relationship 

between the number of neurons in the hidden layers and the rms error values. 

The ANN weights are adjusted according to the error generated during the 

forward pass, and due to the parallelism of the network the error value will not 

be directly related to the number of neurons in the hidden layers, hence 

neither will the final value of the weights and therefore the rms error value. 

Table 5.4 further illustrates that there is little or no gain in employing 

significantly larger architectures for this application, especially when the 

substantially increased training period is considered. The larger network 

architectures may not significantly improve the model performance as there is 

an appreciably higher possibility of instability in such networks, due to each 

neuron’s output dependence on a larger number of terms i.e. the outputs of 

the previous layer’s neurons.

The results of this investigation confirm the assertion by Miller, (1999) that the 

performance of the ANN model is subject to the suitability of the network 

architecture to model that particular system.
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Table 5.2 -  Effect of number of neurons in 1st hidden layer on rms error 

value

Number of neurons 

in 1st hidden layer

Training 

rms error

Validation 

rms error

10 0.0162 0.0564

12 0.0168 0.0357

14 0.0172 0.0360

16 0.0201 0.0421

18 0.0194 0.0410

20 0.0187 0.0396

25 0.0162 0.0444

ffect of number of neurons in 2nd 
alue

hidden layer

Number of neurons 

in 2nd hidden layer
Training 

rms error

Validation 

rms error

2 0.0368 0.0619

3 0.0253 0.0406

4* 0.0683 0.114

5 0.0192 0.0564

6 0.0209 0.0500

7 0.0221 0.0404

8 0.0249 0.0537

15 0.0276 0.0742

20 0.0445 0.0955

25 0.0261 0.0551

30 0.0231 0.0525

35 0.0309 0.0707

*The training reached a local minimum that could not be overcome, hence the significantly 

higher rms error values.
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Table 5.4 -  Effect of employing larger topologies on rms error value

Number of neurons 

in 1st hidden layer

Number of neurons 

in 2nd hidden layer

Training 

rms error

Validation 

rms error

50 20 0.0162 0.0443

100 50 0.0100 0.0363

In these, and all subsequent results tables, the best performing ANN model is 

highlighted in bold text. The lowest validation rms error achieved overall, and 

hence the best performing ANN in terms of generalisation was the ANN with 

12 neurons in the first hidden layer and 5 in the second. All ANN models 

responded well to low amplitude input data, as the loudspeaker transfer 

function approaches linearity in this region, however with higher amplitude 

input the loudspeaker response was more nonlinear and thus it was in this 

region that the models’ performances could be discriminated. The validation 

data set therefore contained only high amplitude data. The response of the 

best performing ANN model to larger amplitude inputs is illustrated with the 

actual loudspeaker output in figure 5.1. The high amplitude segments of the 

signal did not occur concurrently, hence the disjointed appearance of the 

signal.

20 T

<u
cnro

400 800o>
-10

-15

-20

-25
—  ANN output
—  loudspeaker output 
—input__________

sample number

Figure 5.1 -  Response of multi layer perceptron model with 12 neurons 

in the first hidden layer and 5 in the second to large 

amplitude inputs
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5.1.3 Training epochs

Increasing the number of training epochs involves the use of each data 

sample an increasing number of times in the training process, thus improving 

the chance that the ANN will learn the association between the input and 

output of that sample and that the resultant model will be a good 

representation of the actual transfer function. Table 5.5 shows that although 

the rms error value calculated for the training set consistently decreases as 

epoch number increases, the validation data rms error begins to increase 

again after 1 x 104 epochs. This is due to a phenomenon known as 

overfitting.

Table 5.5 -  Effect of epoch number on rms error value

Epoch number Training 

rms error

Validation 

rms error

1 x 103 0.0759 0.133

2 x 103 0.0450 0.0776

5 x 103 0.0284 0.0580

1 x 104 0.0192 0.0564

2 x 104 0.0164 0.0597

5 x 104 0.0135 0.0617

The objective of the back propagation algorithm is to minimise the error 

function of the training set, thus facilitating the reproduction of the training 

data as closely as possible. However, this can actually be at the cost of 

accurate generalisation, as the ANN weights are adjusted to model just the 

training data, and not the underlying transfer function, thus overtraining or 

overfitting the training data, which results in a poor performance from the 

model when predicting the output of previously unseen data. Overtraining is 

illustrated in a simplified manner in figure 5.2, where the training samples 

(red) are the same in both charts, and the underlying functions (blue) would 

return the correct values for the training data in both cases, however, the ANN 

subject to overfitting would not return the correct values with previously 

unseen data samples.
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It is therefore unbeneficial to train the ANN further once overfitting has 

commenced, which in this instance, indicated by an increase in the validation 

rms error, was between 1 x 104 and 2 x 104 epochs. Figure 5.3 shows the 

response of the best performing ANN model, that which had 1 x 104 training 

epochs, to larger amplitude inputs.

input

Properly fitted data (good generalisation)

input

Overfitted data (poor generalisation)

Figure 5.2 -  Illustration of properly fitted and overfitted data (Haykin, 

1999)
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Figure 5.3 - Response of multi layer perceptron model with 1 x 104 

training epochs to large amplitude inputs

5.1.4 Training data formatting

Although it was anticipated that a single input, single output (SISO) format 

model would be insufficient for this application, as loudspeakers are dynamic 

systems and thus an input-output model requires past inputs and outputs in 

order to predict the new system output, it was attempted in order to discount it 

methodically. The prediction performance of the resultant ANN model was 

found to be poor, therefore confirming that the SISO model had not identified 

the loudspeaker transfer function.

Therefore, multiple input, single output (MISO) formats were considered. 

Substantially improved results were obtained with the input vector consisting 

of the current input and previous system inputs and outputs. The linear 

approximation of the transfer function of a loudspeaker in a vented box is of 

fourth order, (Thiele, 1961, Small,1973), the ANN would therefore theoretically 

require an input/output history of four previous time steps to model the 

transfer function (Pham, Liu, 1995). However, the nonlinearities in the system
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may result in a higher order transfer function, hence an investigation was 

performed to determine the optimum number of previous time steps in the 

ANN training set. The results are shown in table 5.6.

Table 5.6 -  Effect of number of previous time steps in training data on

rms error

Previous 

time steps
Data format Training 

rms error

Validation 

rms error

0 int 0.0458 0.0490

1 int, outM, int-i 0.0104 0.0283

2 int, outt-i, int-i, outt.2> int.2 0.0135 0.0351

3 int, outM, int-i, outt.2, int.2, outt.3, int.3 0.0114 0.0271

4 int, outt-i, int-i, outt.2, int.2)... outt-4, int.4 0.0192 0.0564

5* int, outM, int-i, outt.2, int-2l... outt-5l int-5 0.0165 0.0405

6* int> outt-i, inn, outt.2l int.2,... outt.6, int.6 0.0168 0.0413

20* int, outu, int.i, outt.2, int.2>... outt.20> int.20 0.0434 0.0819

*The default topology resulted in local minima as it is generally necessary to have a larger 

number of neurons in the first hidden layer than in the input layer, hence the topology used in 

these cases had 50 neurons in the first hidden layer and 20 in the second. As discussed in 

section 5.1.2 this should not significantly affect the resultant rms errors.

The best performing ANN was trained with an input vector containing 3 

previous inputs and outputs. This was a smaller vector than was expected 

and may be due to the low nonlinear content of the training data (see section

5.4)

Alternative formats were also investigated to determine the optimum 

configuration for inputting the data to the ANN, the results are shown in table 

5.7.

The training data format resulting in the best performing ANN model was that 

of set d. The ANN model output to large amplitude input signals is shown in 

figure 5.4.
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Table 5.7 -  Effect of training data format on rms error
Data set Data format Training 

rms error

Validation 

rms error

a int, outt-i, outt-2,...outt~4 0.0253 0.0489

b int, outt-i, int-i, outt-2) int-2,...outt-4, int-4 0.0192 0.0564

c int, inn, outt-i, int.2, outt-2)...inM, outM, 0.0202 0.0463

d int, outt-i, outt-2,... outM, int-i, int-2,...inM 0.0198 0.0454

e int, int.i, int.2,... int-4, outu, outt-2,... outt-4 0.0150 0.0520

10

o>
200 300 400 500 600 800

-10

-15

-20

-25

—  ANN output 
loudspeaker output

— input___________

sample number

Figure 5.4 - Response of multi layer perceptron model with data format d 

to large amplitude inputs

5.1.5 Momentum term

The momentum term determines the degree to which the previous iteration 

influences the change in the weights in the current iteration, and can 

significantly decrease the convergence time of the back propagation 

algorithm. However, it may also cause instability in the training process if it is 

too large. The results in table 5.8 suggest that the momentum term had little 

effect upon the outcome of the training session. The results also suggest that 

increasing the momentum value slightly decreases the training rms error, yet 

actually increases the validation rms error, this could be due to the increased
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momentum term leading to faster onset of the overfitting phenomenon 

described in section 5.1.3. A high momentum term may also be detrimental to 

the training process as it is more suited to a linear system, given that it 

assumes a direct relationship between the system behaviour in the previous 

time step and that in the current time step, which is not necessarily the case 

for nonlinear systems (Miller, 1999). The best performing ANN in the tests 

conducted had a momentum value of 1 x 10'3 and its output to large amplitude 

input signals is shown in figure 5.5.

Table 5.8 -  Effect of momentum value on rms error

Momentum Training 

rms error

Validation 

rms error

0 0.0192 0.0553

5X10-4 0.0192 0.0553

1 x I O * 0.0192 0.0553

5 x 10'a 0.0192 0.0554

1 x 10z 0.0192 0.0555

5 x 10‘a 0.0192 0.0564

1 x 10'1 0.0191 0.0569

5x10-’ 0.0170 0.0599

20

15

10

5

w  n O) 0
800400

-10

-15

-20

-25

—  ANN output
loudspeaker output 
input___________

sample number

Figure 5.5 -  Response of multi layer perceptron model with momentum

value 1 x1 0 '
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5.1.6 Learning rate

The learning rate determines the influence of the error generated during the 

forward pass on the weight alteration of the backward pass. Tests were 

conducted where the learning rate was varied between 1 x 10'6 and 1 x 10'1, 

the results are shown in table 5.9.

Table 5.9 -  Effect of learning rate on rms error

Learning

rate

Training 

rms error

Validation 

rms error

1 x 10'1 ★ *

1 x ^0-2 * _ *

1 x 10‘3 0.0125*2 0.0258*2

1 x 10'4 0.0186*2 0.0648*2

1 x 10-5 0.0192 0.0564

1 x 10‘b 0.0189 0.0391

1 x 10'; 0.0827 0.139

*The training process crashed.

*2The training process reached a local minimum.

Theoretically, the lower the learning rate, the longer the convergence time of 

the ANN. However, too high a learning rate may result in instability, where 

the ANN weight values oscillates instead of converging or even diverge, as in 

the first two instances in table 5.9, causing the training process to crash. This 

was due to the incompatibility of the learning rate and the initial values of the 

weights -  the high learning rate caused considerable changes in the weight 

values, which subsequently generated a sufficiently high error value to crash 

the program. Despite achieving the lowest rms error of the investigation, the 

ANN with a learning rate of 1 x 10'3 reached a local minimum that it could not 

escape within the training period (the algorithm incorporates the capability to 

reduce the learning rate if the rms error does not decrease over a 

predetermined number of iterations, which should aid the training process in 

the escape of local minima), as did the ANN with a learning rate of 1 x 10'4. 

The relatively low validation rms error achieved with a learning rate of 1 x 10'6 

may be a result of the lower learning rate facilitating the escape of the training
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process from the local minimum on the error surface that the training 

processes with higher learning rates could not.

The best performing ANN model is shown in figure 5.6.

ANN output 
loudspeaker output 
input___________

sample number

Figure 5.6 -  Response of multi layer perceptron model with learning rate

1 x 10-3

Although this network achieved the lowest validation rms error, it did in fact 

become trapped in a local minimum. Therefore, 1 x 10'3 was not considered 

the optimum value for the learning rate; the next best result, 1 x 10'6, was 

sufficiently lower to reduce the possibility of the weights becoming trapped in 

a local minimum and not too low to adversely affect the rate of convergence.

5.1.7 Training set size

The larger the training set size, the more representative of the loudspeaker 

behaviour it is likely to be. A larger training set should contain data pertaining 

to a wider range of excitation amplitudes and frequencies than a smaller set. 

The results of the investigation into the effect of training set size, where the 

number of training samples in the set was varied between 1 x 103 and 5 x 104, 

are shown in table 5.10.
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Table 5.10 -  Effect of training set size on rms error

Number of data 

samples in training set

Training 

rms error

Validation 

rms error

1 X 105 0.0709 0.176

2 x 103 0.0698 0.148

5 x 103 0.0298 0.104

1 x 104 0.0205 0.0811

2 x 104 0.0189 0.0576

5 x 104 0.0155 0.0167

It can be seen that there is a clear relationship between training set size and 

rms error; the greater the number of data samples in the training set the lower 

the training and validation rms error. It was ascertained from figure 5.7 that 

the relationship is in fact logarithmic.

0.2

0.18

0.16

0.14 
o
w 0.12
E
k .

c 0.1 
o
% 0.08 ■g
ro 0.06 
>

0.04

0.02

1.00E+02 1.00E+03 1.00E+04 1.00E+05

number of data samples in training set

Figure 5.7 -  Logarithmic plot of validation rms error versus training set 

size

Figure 5.8 shows the best performing ANN model from this set of 

experiments.

5-13



5 M o d e l  O p t im is a t io n

20

CT>
200 300 800400

-10

-15

-20

-25

—  ANN output
loudspeaker output 
input

sample number

Figure 5.8 - Response of multi layer perceptron model with 5 x 104 

training samples

5.1.8 Training set selection

The training data was measured at a sampling rate of 44.1 kHz, which 

produced 2.65 x 106 samples in one minute. The multi layer perceptron takes 

several hours to train with 2 x 104 over 1 x 104 epochs, (the default values 

during this investigation), therefore the training set had to be reduced in size 

in order to facilitate a practicable training period. Several methods were 

considered including recording the training set over an extremely short period 

of time (2 x 104 training samples can be collected over less than half a 

second). However, it was considered that there would be a significant 

possibility that a training data set collected in this way would contain few or no 

nonlinearities and would be unrepresentative of the loudspeaker’s behaviour.

5.1.8.i Signal re-sampling

Experiments were conducted where the reduction of the training set size was 

achieved through re-sampling. The original data set was re-sampled to lower 

frequencies with a simple piece of C++ code (See Appendix 6). ANNs trained
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with the re-sampled data performed well in most cases on validation data re­

sampled at the same frequency, as can be seen in table 5.11.

Table 5.11 -  Rms errors of ANN’S trained and validated with re-sampled 

data

Sampling 

Frequency / Hz

Training 

rms errror

Validation 

rms error

441 0.0205 0.0837

882 0.0202 0.0531

1764 0.0140 0.0377

2205 0.0161 0.0278

4410 0.0149 0.0286

8820 0.0176 0.0284

22050 0.0159 0.0767

44100 0.0205 0.0811

The response of the best performing ANN to large amplitude input data 

sampled at the same frequency is shown in figure 5.9.

—  ANN output
loudspeaker output 
input

sample number

Figure 5.9 -  Response of multi layer perceptron trained with data 

sampled at 2205 Hz

5-15



5 M o d e l  O p t im is a t io n

However, when a Fourier analysis was performed on sine wave inputs to the 

ANN model, the resultant frequency response curves were significantly 

different to the measured response. The low frequency response of a 

loudspeaker may be considered equivalent to that of a high pass filter. At 

higher frequencies the response eventually drops off, which in effect results in 

an overall frequency response homologous to that of a band pass filter. The 

frequency response curves obtained from the ANN models trained with data 

sampled at the lower frequencies (up to 8820Hz) show closer correlation to a 

low pass filter, as can be seen in figure 5.10. ANN models trained with data 

sampled above 8820Hz showed better correlation to a high pass filter, as 

illustrated in figure 5.11.

A possible explanation was that information was lost from the data set in the 

re-sampling process, hence the re-sampled data did not contain sufficient 

information to model the frequency response of the loudspeaker accurately. 

This led to an investigation into the nonlinear properties of the data. It was 

determined that a test for nonlinearity, such as that suggested by Kantz, 

Screiber, (2004) with the use of surrogate data would be extremely complex 

and time consuming to implement. Therefore, linear regression was applied 

to subsets of the training set in order to gain some indication of the 

relationship between the input and output data. Linear regression should only 

strictly be used with linear data, however, it does give a correlation coefficient, 

which if low could be interpreted as the absence of a direct relationship 

between input and output, which could in turn could be assumed to infer a 

nonlinear relationship.

The input/output data of the ANN models were split into further subsets and 

the correlation coefficient (Pearson Product Moment Correlation Coefficient) 

between the input and output of the subsets calculated. The number of 

subsets with correlation coefficients below various thresholds (0.9 to 0.4, in 

0.1 intervals) was determined. The most significant conclusion of this 

investigation was that the nonlinear content of all of the data sets was low, 

including the original sampled at 44.1kHz, as no more than 10 per cent of the 

subsets in all cases had correlation coefficients below 0.9 (a coefficient of 1
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signifying perfect linear correlation between input and output). However, the 

training data sets with higher sampling frequencies tended to have relatively 

higher nonlinear content, with the original data set with the highest. In theory, 

the re-sampling of the signal would result in the loss of the nonlinearities if 

their frequency were above the Nyquist frequency, which at very low sampling 

frequencies may well be the case, as many nonlinearities appear as 

harmonics of the fundamental frequency.
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Figure 5.10 -  Frequency Response of ANN model trained with data 

sampled at 8820Hz
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Figure 5.11 - Frequency Response of ANN model trained with data 

sampled at 44100Hz

It was therefore concluded that employing the original sampling rate of 44.1 

kHz would be most suitable for this application; as nonlinearity identification 

was the aim, data with as high a nonlinear content as possible would be the 

most favourable.

5.1.8.ii Selection of subsets

Another possibility was to collect data over a longer period of time and use 

subsets of this large data set to train the ANN. This would improve the 

probability that the training data would contain nonlinearities and also a 

broader range of excitation amplitudes and frequencies, thus resulting in a 

more representative ANN model. This was the method employed throughout 

all other investigations.

5.1.8.iii Training epoch reduction

A further alternative to reduce training time was to use a large volume of data 

samples and forfeit a high number of training epochs. This is discussed in 

section 6.3 with respect to online training.
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5.2  M o d if ie d  E l m a n  n e t w o r k

The recurrent network suggested by Elman, (1990), was employed as access 

to substantial research into the network was readily available, having been 

performed at Cardiff University. It was also a relatively straight forward 

process to modify the back propagation MLP C++ code to accommodate the 

Elman network algorithm.

5.2.1 Default parameter values

The default parameter values used in the modified Elman network 

investigations are shown in table 5.12. The training and validation rms errors 

were calculated at the end of every training epoch. This differs from the multi 

layer perceptron where only the training rms was calculated during the 

training process; the validation rms was calculated after the termination of the 

training process, for the weights that produced the lowest training rms error. 

Calculating the validation rms error during the training process has the 

advantage that a weight configuration that is optimum for the validation data 

but not necessarily for the training data set can be identified.

Table 5.12 -  Default parameter values for modified Elman network

Parameter Default value

Topology 1-3-1 plus 3 neurons in context layer

Epoch number 5 x 102

Training set size 2.56 x 104

Validation set size 2.56 x 104

Learning rate -  context layer 1 x 10B

Learning rate -  rest of network 1 x lO'6

Momentum 0

a value 0.7

Input file format int

Sampling frequency 44.1 kHz
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5.2.2 Topology

The topology of the modified Elman network was investigated by altering the 

number of neurons in the hidden layer and the context layer, which always 

corresponds to the number of neurons in the hidden layer. The topologies 

tested and the resultant rms errors are shown in table 5.13.

Table 5.13 -  Effect of topology on rms error

Number of Neurons in 

hidden layer (and 

context layer)

Training 

rms error

Validation 

rms error

1 0.111 0.157

2 0.117 0.150

3 0.0893 0.108

4 0.131 0.176

5 0.177 0.230

6 0.219 0.280

8 0.153 0.191

10 0.264 0.320

20 0.224 0.246

30 0.247 0.277

The response of the best performing ANN model to larger amplitude inputs is 

shown in figure 5.12.
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Figure 5.12 -  Response of modified Elman network with 3 neurons in the 

hidden and context layers

Miller, (1999) proposed that the number of neurons required in the hidden and 

context layers increased with the order of the system being modelled up to a 

certain limit where increasing the number of neurons resulted in little benefit. 

However, in this instance the optimum number of neurons in the hidden and 

context layers was found to be relatively low. As with the multi layer 

perceptron, the optimum architecture for the modified Elman network was not 

the largest, but that which was most compatible with the loudspeaker system.

5.2.3 Training epochs

As previously discussed with respect to the multi layer perceptron, increasing 

the number of training epochs improves the probability that the ANN will learn 

the association between the input and output of the training data. During the 

experiment the number of training epochs was varied between 1 and 1 x 104. 

The resultant rms error values, as shown in table 5.14 and figure 5.13, 

illustrate that significant improvements in the ANN performance can be 

achieved by increasing the number of training epochs up until approximately 1 

x 102 epochs, however, the gain in ANN performance beyond this point 

constantly decreases. Therefore, there is little benefit in extending the
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training session beyond 5 x 103 epochs, especially when the significantly 

prolonged training period is considered.

Table 5.14 -  Effect of number of training epochs on rms error values

Number of 

training epochs

Training 

rms error

Validation 

rms error

1 0.705 0.724

10 0.629 0.67

1 x 102 0.141 0.2

2 x  10* 0.109 0.149

3 x 1 0 * 0.0984 0.128

4 x 102 0.0929 0.116

5 x 102 0.0893 0.108

1 x 103 0.0792 0.0892

2 x 103 0.0666 0.0751

5 x 103 0.0493 0.0557

1 x 104 0.0461 0.0502
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Figure 5.13 -  Plot of validation rms error value versus number of 

training epochs

The response of the best performing ANN, trained over 1 x 104 epochs is 

shown in figure 5.14.
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Figure 5.14 -  Response of modified Elman network trained over 1 x 104 
epochs

5.2.4 Context layer self-feedback gain value

The context layer self-feedback gain value (a) determines the influence of 

the past context layer activations upon the current activation and hence the 

length of memory of the network, a. A larger value of a results in increased 

significance of past activations. Miller, (1999) observed that the modelling of 

higher order systems required higher values of a . In this investigation the 

value of a was varied between 0.1 and 0.9 in steps of 0.2. The results are 

shown in table 5.15.

Table 5.15 -  Effect of a on rms error values

a value Training 

rms error
Validation 

rms error

0.1 0.0871 0.103

0.3 0.0869 0.103

0.5 0.0810 0.107

0.7 0.0893 0.108

0.9 0.152 0.180
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Figure 5.15 -  Response of modified Elman network with a value of 0.3

An a value of 0.3 was found to produce optimum ANN performance, the 

response of this ANN to large amplitude inputs is shown in figure 5.15.

5.2.5 Momentum term

The momentum term determines the degree to which the previous iteration 

influences the change in the weights for the current iteration in the modified 

Elman network, as with the multi layer perceptron. The higher probability of 

instability in the training process of the modified Elman network increases the 

significance of the momentum term and the importance of determining an 

optimum value that results in a stable training process. Networks were 

trained with momentum values that varied between 0 and 0.9. The results of 

the training sessions are shown in table 5.16.

As can be seen in table 5.16, the momentum does not significantly affect the 

minimum rms error values until it is above 1 x 10'1. Instability was not 

experienced in any of the training sessions described in table 5.16. The 

response of the best performing ANN model to larger amplitude inputs is 

shown in figure 5.16.
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Table 5.16 -  Effect of momentum on rms error values

Momentum

value

Training 

rms error

Validation 

rms error

0 0.0893 0.108

1 x 10'3 0.0893 0.108

5 x 10'3 0.0892 0.108

1 x 10'3 0.0892 0.107

5 x 10'3 0.0886 0.106

1 x 10’1 0.0879 0.104

5 x 10"1 0.0814 0.0904

7.5 x 10 1 0.0739 0.0805

9 x 10_1 0.0720 0.0813

20
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-15

-20

-25

—  ANN output 
loudspeaker output

— input

time

Figure 5.16 -  Response of modified Elman network with momentum 

value of 0.75
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5.2.6 Learning rate

The modified Elman network is inherently more unstable than the multi layer 

perceptron due to the feedback of the hidden layer’s activations, hence 

employing suitable learning rates is of increased importance. The stability of 

the network can be improved by employing a lower learning rate for the 

weights connecting the context layer to the hidden layer, thus reducing the 

rate of change of the weights that control the feedback. The training process 

therefore approaches that of simpler, more stable, feedforward multi layer 

perceptron (Miller, 1999).

Experiments were conducted investigating a large number of learning rate 

combinations. It was determined that the stability of the training process was 

highly dependent upon the learning rate values and only one combination of 

those investigated resulted in a constantly decreasing training and validation 

rms error over the 500 epoch training period. Figures 5.17 and 5.18 illustrate 

examples of stable and unstable ANN training processes respectively.

1.4

1.2

1

0.8

£ 0.6

5  0.4

0.2

0
101 151 201 251 301 3511 51 401 451

number of epochs 

Figure 5.17 -  Unstable training process
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Figure 5.18 -  Stable training process

The optimum values for the learning rates were therefore determined by the 

stability of the network rather than the resultant rms error values. The 

optimum learning rate for the context layer was 1 x 10'6 and for the rest of the 

network 1 x 10’5.

5.2.7 Training set size

The larger the training set size the higher the probability that the training set is 

representative of loudspeaker behaviour. Tests were conducted where the 

training set size varied between 1 x 103 and 5 x 104. The results are shown in 

table 5.17.

Table 5.17 -  Effect of training set size on rms error

Number of samples 

in training set

Training 

rms error

Validation 

rms error

1 x 103 0.126 0.505

2 x 103 0.0929 0.251

5 x 103 0.0847 0.204

1 x 104 0.806 0.174

2 x 104 0.0898 0.108

5 x 104 0.0764 0.0815
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As with the multi layer perceptron, the rms error values decrease rapidly with 

increasing training set size initially, however, the decrease becomes 

increasingly smaller. Figure 5.19 shows the relationship between training set 

size and validation rms error value is best approximated by a power series in 

this case.

1

= 8.4061X

0.1

0.01 -------
1.00E+02 1.00E+03 1.00E+04 1.00E+05

number of samples in training set

Figure 5.19  -  Double logarithmic plot of validation rms error versus 

number of samples in training set

5.3 O p t im u m  c o n f ig u r a t io n s

Networks were trained with the optimum parameter values determined in the 

preceding sections, which are outlined for each architecture in table 5.18. 

The optimum values for training set size and number of epochs were 

determined to be those where the gain in increasing the value further was 

outweighed by the increase in the training period. The resultant ANN model 

performances are summarised in table 5.19 and demonstrated in figures 5.20 

and 5.21.
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Table 5.18 -  Optimum parameter values

Parameter Optimum value 

for BPMLP 

network

Optimum 

value for 

modified 

Elman network

Topology 7-12-5-1 1-3-1

Epoch number 5 x 103 5 x 103

Training set size 5x 10“ 5x10"

Learning rate -  context layer - 1 x 10e

Learning rate -  rest of network 1 x 10'° 1 x 10'5

Momentum 1 x 10'3 7.5 x 10'1

Input file format int, outt-v.-outa, 

int-i,.. - int-3

int

Sampling frequency 44.1kHz 44.1kHz

a value - 3 x 10'1

Table 5.19 -  ANN model performance when trained with optimum 

parameter values

Network architecture Training rms error Validation rms error

Multi layer perceptron 0.0239 0.0132

Modified Elman 0.0534 0.0591
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Figure 5.20 -  Response of multi layer perceptron network trained with 

optimum parameter values
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Figure 5.21 -  Response of modified Elman network trained with 

optimum parameter values
It is likely that the irregularities displayed around time steps 0 and 700 in 

figure 5.21 are due to the disjointed test signal, which results in 

unrepresentative context unit values and thus an irregular output. This would 

not occur in practice when a continuous signal would be applied to the ANN.
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The validation rms error for the modified Elman network was the lowest 

achieved thus far, as would be expected with the use of an optimum 

parameter configuration, however, in the case of the multi layer perceptron, 

lower validation rms error values were achieved with alternative 

configurations. The parameter configuration resulting in the lowest validation 

rms error achieved for the multi layer perceptron during this investigation is 

shown in table 5.20.

Table 5.20 -  Parameter values for multi layer perceptron network with 

lowest achieved validation rms error

Parameter Value

Topology 9-12-5-1

Epoch number 5 x 103

Training set size 5.12 x 104

Learning rate 1 x 10 s

Momentum 1 x 10'3

Input file format int. outu, int-i,...outt-4, inM

Sampling frequency 44.1kHz

20

cn
200 300 400 800

-10

-15

-20

-25

—  ANN output
loudspeaker output 
input___________

sample number

Figure 5.22 -  Response of best performing multi layer perceptron ANN 

Model
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This substantiates Miller’s (1999) assertion that there exists an interaction 

between ANN parameters, therefore determining the optimum parameter 

configuration is not a simple case of identifying suitable parameters 

individually.

The ANN model performance to larger amplitude inputs is shown in figure 

5.22. The training rms error value for this network was 0.0124 and the 

validation rms error, 0.0129.

5.4 N o n l in e a r it y  id e n t if ic a t io n  c a p a b il it y  o f  ANN m o d e l

The validation rms error implied that there was good correlation between ANN 

model output and actual loudspeaker output, however, to confirm that the 

ANN model had identified the nonlinearities in the loudspeaker transfer 

function, an analysis of the data was performed using Pearson’s Product 

Moment Correlation Coefficient (R2) to identify subsets within the output data 

sets that had low correlation with the input (as discussed in section 5.1.8.1, 

this was assumed to suggest nonlinearity). The results from actual 

loudspeaker output were compared to the ANN model output to determine if 

they concurred, which would indicate that the ANN model behaved nonlinearly 

in the same instances as the actual loudspeaker. However, it was determined 

that the vast majority of the nonlinearity in the training and validation data sets 

occurred in the low amplitude regions, which was considered more likely to be 

caused by measurement noise rather than actual nonlinear behaviour of the 

loudspeaker. Therefore this investigation gave little insight into the 

performance of the ANN model in identifying nonlinearities.

5.5 F r e q u e n c y  r e s p o n s e  o f  ANN m o d e l

In order to evaluate the ANN model’s frequency response curve, a C++ 

program, (see Appendix 7), was used to generate a set of sine wave input 

signals at the sampling frequency corresponding to that of the ANN training 

data. The program then determined the ANN model’s output to the sine 

waves, which were then analysed using Mathworks MathCAD 11 Fourier 

transform function. The digital Fourier transform (DFT) was used as the
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sample length, dictated by the number of points required to form an integer 

number of periods in the sample at the necessary sampling frequency, did not 

conform to that required by a fast Fourier transform. However, the increased 

processing time inherent in a DFT analysis was insignificant for this 

application. The magnitude responses at each frequency were then compiled 

to produce a frequency response curve, shown in figures 5.23 and 5.24 for 

the best performing multi layer perceptron and modified Elman ANN models 

respectively.

2.5

0)
2.2  1 ! 1 L—  1------- — 4  ------------— — ------

10 100 1000 10000

frequency I Hz

Figure 5.23 -  Frequency response of best performing multi layer 

perceptron ANN model to a 5v input

It can be seen from figure 5.23 that the frequency response of the best 

performing multi layer perceptron model resembles a low pass filter. 

However, the response of the actual loudspeaker more closely resembles a 

band-pass filter, with the response increasing significantly at the lower 

frequencies and slowly diminishing at higher frequencies. Also, the frequency 

response generated by the multi layer perceptron model is considerably flatter 

than the actual loudspeaker response.
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Figure 5.24 -  Frequency response of best performing modified Elman 

ANN model to a 5v input

It can be seen from figure 5.24 that the frequency response of the optimum 

modified Elman model is almost completely flat, suggesting that, despite a 

good validation rms error, the model is linear, and the modified Elman network 

was not able to identify any nonlinearities in the training data. This is in part 

due to the low nonlinear content of the training data. However, the same 

training data was used for both network architectures, therefore it may be 

concluded that the multilayer perceptron was more successful in modelling 

nonlinear loudspeaker behaviour than the modified Elman architecture.

Further frequency response curves, shown in figures 5.26 and 5.27, were 

generated to determine the response of the multi layer perceptron model to 

higher input amplitudes. The maximum input amplitude in the training data 

was approximately 25v, therefore the model’s response to a 20v input, just 

below the threshold and to a 50v input, well above the threshold was tested.
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Figure 5.25 -  Measured Frequency Response of Loudspeaker
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Figure 5.26 - Frequency response of best performing multi layer 

perceptron ANN model to a 20v input
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Figure 5.27 - Frequency response of best performing multi layer 

perceptron ANN model to a 50v input

The response of the model at higher input amplitudes is clearly significantly 

different to that at lower input amplitudes.

5.6 D is t o r t io n  m e a s u r e m e n t s  fr o m  ANN m o d e l

The distortion curves generated from the best performing ANN models are 

shown in figures 5.28 and 5.29. They show significantly lower levels of 

distortion than were measured from the actual loudspeaker, shown in figure 

5.30. In figures 5.28 and 5.29 harmonic distortion was calculated as the sum 

of the magnitudes of the 2nd, 3rd and 4th harmonic as a percentage of the 

fundamental:

£ ( » * + » . + /?4)
HD = (5.1)

where HD  is harmonic distortion and Hn is the magnitude of the nth harmonic. 

In figure 5.30 the 2nd and 3rd harmonics were calculated as in equations 5.2 

and 5.3 respectively and total harmonic distortion as in equation 5.4.

Y h .
HD  = — —: (5.2)
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Figure 5.28 -  Harmonic distortion of best performing multi layer 

perceptron ANN model
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Figure 5.29 -  Harmonic distortion of best performing modified Elman 

ANN model
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Figure 5.30 -  Measured harmonic distortion of actual loudspeaker

5.7 ANN TRAINING WITH NONLINEAR DATA

The relatively flat modelled frequency response and the low correlation 

between the modelled and actual loudspeaker distortion curves, together with 

the analysis of the nonlinear content of the training data which suggested the 

training data contained very few nonlinearities led to the conclusion that 

although the ANN models were performing well, the data sets used during 

training and testing did not contain data relating to significant nonlinear 

behaviour, therefore the resultant ANN models only marginally deviate from 

linear models and hence the relatively flat frequency response.

Therefore training sessions using training and validation sets derived from the 

most nonlinear data available were conducted. The data sets were composed 

of the most nonlinear behaviour at higher amplitudes in the available data, 

hence were more likely to be representative of actual nonlinear loudspeaker 

behaviour rather than noise in the signal. The resultant rms errors are shown 

in table 5.21.

1 THD (%)
2nd Harmonic 
3rd Harmonic
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Table 5.21 -  Results of training sessions with nonlinear data

Network architecture Training rms error Validation rms error

Multi layer perceptron 0.0195 0.0196

Modified Elman 0.0420 0.0442

The frequency response and distortion curves generated from the multi layer 

perceptron model trained with nonlinear data were a significant improvement, 

as illustrated in figures 5.31 and 5.32. However, the results from the modified 

Elman network showed no improvement.

Analysis of the nonlinear content of the multi layer perceptron ANN model 

output determined that it corresponded well to the nonlinear content of the 

actual loudspeaker.
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Figure 5.31 -  Frequency response of multi layer perceptron ANN model 

trained with nonlinear data to a 5v input
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Figure 5.32 -  Harmonic distortion of multi layer perceptron ANN model 

trained with nonlinear data

5-40



6 A l g o r it h m  D e v e l o p m e n t

6 A lgorithm  development

Various developments to the neural network algorithms used in the modelling 

of the loudspeaker transfer function were investigated with the aim of 

improving model performance or achieving the target model update rate of 

five minutes.

6.1 M u lti L a y e r  p e r c e p t r o n  w it h  t im e  d e l a y  d e p e n d e n t  in p u t  w e ig h t in g s

It is logical that the most recent input and output values will have a greater 

influence on the loudspeaker’s behaviour, and also that inputs will have 

greater significance than outputs. It is therefore proposed that the multi layer 

perceptron ANN input pattern should be weighted in order to reflect this. The 

inputs and outputs were multiplied by an exponentially decreasing coefficient 

between 0 and 1, and the outputs multiplied by a further constant coefficient 

between 0 and 1. This would provide some rating of importance to the data. 

The optimum parameter configuration determined for the multi layer 

perceptron was employed during these experiments. The resultant ANN 

model performance is summarised in table 6.1.

Table 6.1 -  Comparison of ANN model performance when trained with 

and without time delay dependent weightings

Training rms error Validation rms error

With weightings 0.0166 0.0340

Without weightings 0.0124 0.0129

It was therefore concluded that time delay dependent weightings did not 

improve the multi layer perceptron’s performance.

6.2 ANN TRAINING DURATION

The project aim was to realise a model update rate of 5 minutes. This 

necessitated that each subsequent ANN model be trained within those 5 

minutes. There exists a direct relationship between the time required for the 

completion of ANN training and the following variables:

• number of neurons employed in the ANN architecture

• number of training epochs

• size of the training set.
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However, sections 5.1.7 and 5.2.7 established that there is an inverse 

relationship between size of the training set and achievable rms error for multi 

layer perceptrons and modified Elman networks. This is also true for the 

number of training epochs for the modified Elman network and for the multi 

layer perceptron below the threshold of overtraining (see sections 5.1.3 and 

5.2.3). The optimum number of neurons was found to be system dependent 

rather than a function of size (see sections 5.1.2 and 5.2.2). Therefore, the 

optimum network architectures described in section 5.3 were employed during 

this investigation and tests were conducted to ascertain a suitable 

compromise between the number of training epochs and the training set size 

in order to optimise the network performance over a training period of five 

minutes.

Two approaches to weight initialisation were investigated:

• Randomly initiating the ANN weights.

• Initiating the ANN weights to previously trained values.

During this investigation the training sets comprised of data collected in small 

segments (100 samples) over a time period of 4 seconds and the previously 

trained weights were those resulting in the best performing ANN model as 

discussed in section 5.3. In the case of the multi layer perceptron, this was 

the parameter values that resulted in the lowest achieved validation rms error 

(see table 5.20) and for the modified Elman network, optimum parameter 

values (see table 5.18). The ANN parameters in these experiments were also 

set to these configurations. The number of training samples and training 

epochs used in the experiments with the multi layer perceptron network are 

shown in table 6.2 with the resultant validation rms errors for randomly 

initiated weights and previously trained weight initiation.

The number of training samples and training epochs used to train the modified 

Elman network are shown in table 6.3 with the validation rms errors for the 

modified Elman network when trained with randomly initiated weights and 

previously trained weight initiation.
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Table 6.2 -  Training results obtained over 5 minute training period for 

multi layer perceptron network

Number

of
training

samples

Number

of
training

epochs

Validation rms 

error - random 

weight 

initiation

Validation rms 

error -  previously 

trained weight 
initiation

Validation rms error 

-  previously trained 

weight initiation 

plus altered ANN 

configuration

1600 2880 0.110 0.0280 0.0127

3200 1440 0.159 0.0176 0.0124

6400 720 0.128 0.0199 0.0124

12800 360 0.250 0.0308 0.0134

25600 180 0.246 0.0162 0.0131

51200 90 0.179 0.0144 0.0130

Table 6.3 -  Training results obtained over 5 minute training period for 

modified Elman network

Number

of
training

samples

Number

of

training

epochs

Validation rms 

error - random 

weight 
initiation

Validation rms 

error -  previously 

trained weight 

initiation

1600 10000 0.121 0.0693

3200 5000 0.101 0.0536

6400 2500 0.141 0.0539

12800 1250 0.142 0.0591

25600 625 0.0967 0.0622

51200 375 0.106 0.0649

It was observed that the performance of both architectures was significantly 

improved relative to the performance of randomly initiated weights when the 

weights were initiated to previously trained values.
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However, the data used in this experiment was collected over a relatively 

small time period, which may limit the conclusions that may be drawn from the 

results. It is possible that over longer time periods the response of the 

loudspeaker will alter more radically and thus substantially larger alterations to 

the weights will be required, which may be more difficult to achieve over the 

target training period. Despite this it is anticipated that there would be greater 

advantage in utilising previously trained weight values, as they are likely to be 

closer to an effectively performing configuration than weights that are 

randomly initiated.

In the case of the modified Elman the second training session improved the 

performance of the ANN model when the training set contained 3200 and 

6400 samples and was trained over 5000 and 2500 epochs respectively, 

however, the validation rms errors attained by the multi layer perceptron 

network with the ANN weights initiated to the previously trained values were 

higher than that of original training session, hence the further training 

worsened the performance of the ANN rather than improved it.

Therefore, several of the multi layer perceptron ANN parameters were 

adjusted, including the learning rate and momentum term, in order to 

determine their effect upon the training results with the aim of improving the 

ANN model performance after the second training session. Adjusting the 

momentum term resulted in no significant difference in the ANN model 

performance, however, when the learning rate was reduced to 1 x 10'8, the 

resultant validation rms errors were significantly reduced for all training set 

size and epoch combinations, as shown in the right hand column of table 6.2. 

However, the lowest validation rms error attained was only equal to that of the 

original training session, no improvement in ANN performance was achieved 

with the second training session.
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6.3 O n l in e  t r a in in g

As mentioned in section 3.4.6, the modelling of the loudspeaker transfer 

function using ANNs has already been accomplished; the aim of this project 

was to develop a method of training the ANN to a satisfactory level of 

performance over a short time period so as to accommodate the time variant 

parameters of the loudspeaker transfer function in the model. A linearisation 

scheme based upon such a model would theoretically reduce distortion more 

efficiently, as the model would be a closer approximation to the loudspeaker’s 

current behaviour than that of a generalised model.

In this section, the development of algorithms to continuously update the ANN 

model of the loudspeaker transfer function are discussed. Although the multi 

layer perceptron’s performance was superior in comparison to the modified 

Elman network’s when trained with large training data sets over a high 

number of epochs, the modified Elman network produced a relatively larger 

improvement in performance when trained a second time with small training 

sets over a low number of training epochs. The modified Elman network also 

has the advantage of only requiring the data from the current time step as its 

memory is integral, and therefore does not require a tapped delay line. 

Therefore, both architectures were investigated for online training.

The target training time period was 5 minutes. Two methods were considered 

to update the model active in the linearisation scheme during this period. The 

first method was to continuously update the ANN weights with errors 

generated from every sample measured real-time, with each sample used 

only once. The second method was to train the ANN with a selected training 

set over a number of epochs and therefore longer training periods, up to the 

full five minutes, with the new model becoming operative in the linearisation 

scheme at the end of the training period. The second method would result in 

a relatively large alteration in the weights once or several times over the 5 

minute update period whereas the second method would generate more 

regular, substantially smaller alterations.
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It was considered necessary to include some degree of validation in the 

algorithm to reduce the possibility that the ANN model diverges from actual 

loudspeaker response, as this may result in the linearisation scheme 

introducing additional distortion to the loudspeaker output. The method 

proposed performs a validation calculation using data measured concurrently 

with the training sample after every weight alteration to determine if the ANN 

model performance has been improved by the alteration. If the ANN 

performance is not improved the previous weight configuration remains active 

in the linearisation scheme.

The algorithms employed for the online training of the modified Elman network 

are illustrated in figures 6.1 and 6.2. The modified Elman network is known to 

have a tendency to be unstable during training due to the inclusion of 

feedback in the training algorithm, hence the continuously updating algorithm 

could cause significant fluctuation in the linearisation scheme’s performance. 

Therefore, the inclusion of a validation calculation in the algorithm is of 

increased importance in this case. The algorithms used to train the multi layer 

perceptron network were identical to those outlined in figures 6 .1  and 6 . 2  with 

the exception of the alterations to the context units.

Experiments were conducted to determine optimum parameter values for both 

methods, the results are shown in tables 6.4 and 6.5. In all cases the weights 

were initiated to those of the best performing model from section 5.3 and then 

trained according to the algorithms outlined in figures 6 .1  and 6 .2 .

The first row in tables 6.4 and 6.5 show the results from the training session 

using the algorithm in figure 6 .1 , where each training sample is used to update 

the weights only once and a validation calculation is performed after each of 

these iterations. The subsequent rows show training sessions where firstly 

the training set was enlarged so each training sample was still used only once 

but the validation calculation was only carried out after the weights had been 

adjusted by each of the samples in the training set and secondly where 

training sets were used for several training epochs, as in figure 6 .2 .
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Initiate weights

Retrieve training sample

Combine input data with context unit activations

Forward pass to calculate ANN output

Calculate error between actual ANN output and desired output

Save hidden neuron’s activations in context units

Backward pass to adjust weights 

Retrieve valfttion sample"

vSiCombine input data with context unit activations

Forward pass to calculate ANN output for new weight values 
and error between actual and desired ANN output

Forward pass to calculate ANN output for saved weight values 
and error between actual and desired ANN output

Have all validation samples been used?

|  YES

Calculate validation rms for new weights

*2 Calculate validation rms for saved weights

new rms < saved rms

J y e s "

Update linearisation scheme

Figure 6.1 -  Online training algorithm where linearisation scheme is 
continuously updated
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Initiate weights

Retrieve training sample

Combine input data with context unit activations

Forward pass to calculate ANN output

Calculate error between actual ANN output and desired output

Save hidden neuron’s activations in context units

Backward pass to adjust weights 

*
Have all training samples been used?

IYES

Have all training epochs been completed?

NOI YES

Rewind training set to first sample Calculate validation rms error 
for new and saved weights as 

in figure 6 . 2  from * 1 to *2.

New rms < saved rms

-J IYES

Update linearisation scheme

Figure 6.2 -  Online training algorithm where linearisation scheme is 
updated at the end of the training period
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Table 6 .4 - Results of continuous training with multilayer perceptron network

Number of 

samples in 

training set

Number of 

samples in 

validation set

Training

epochs

Training

time

Weight 

alterations that 

result in a 

weight update /

%

Rms error 

lower than 

with no 

training /

%

Mean rms 

error with 

training

Mean rms 

error with 

no training

Reduction 

in mean 

rms error /

%

1 1 0 0 1 - 55.9 36.6 0.0624 0.0604 103

1 0 1 0 0 1 - 57.0 53.6 0.0590 0.0591 99.8

1 0 0 1 0 0 1 - 58.8 49.7 0.0604 0.0639 94.5

1 0 0 0 1 0 0 1 - 58.9 50.3 0.0692 0.0683 1 0 1

1 0 0 0 0 1 0 0 1 - 47.4 42.1 0.0395 0.0388 1 0 1

1 0 0 0 1 0 0 1 0 55s 57.3 6 8 . 6 0.0656 0.0683 96.0

1 0 0 0 1 0 0 50 4m10s 65.9 6 8 . 6 0.0609 0.0683 89.2

1 0 1 0 0 1 0 0 1 m1 0 s 54.8 54.7 0.0568 0.0591 96.1

1 0 1 0 0 500 4m10s 58.8 45.1 0.0542 0.0591 91.7

1 0 0 1 0 0 1 0 0 4m25s 52.5 57.6 0.0565 0.0639 88.4
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Table 6.5 -  Results of continuous training with modified Elman network

Number of 

samples in 

training set

Number of 

samples in 

validation set

Training

epochs

Training

time

Weight 

alterations that 

result in a 

weight update /

%

Rms error 

lower than 

with no 

training /

%

Mean rms 

error with 

training

Mean rms 

error with 

no training

Reduction 

in mean 

rms error /

%

1 1 0 0 1 - 69.1 37.7 0.282 0.140 2 0 1

1 0 1 0 0 1 - 67.3 50.5 0.140 0.137 1 0 2

1 0 0 1 0 0 1 - 51.2 66.3 0.135 0.145 93.1

1 0 0 0 1 0 0 1 - 47 67.6 0.139 0.152 91.4

1 0 0 0 0 1 0 0 1 - 47.4 73.7 0.0907 0.128 70.9

1 0 0 0 1 0 0 1 0 7s 51.9 74.1 0.128 0.152 84.2

1 0 0 0 1 0 0 1 0 0 1 m1 0 s 44.9 75.7 0 . 1 2 2 0.152 80.3

1 0 0 0 1 0 0 2 0 0 2 m2 0 s 48.1 77.8 0 . 1 2 0 0.152 78.9

1 0 0 0 1 0 0 400 4m45s 51.4 80.1 0.117 0.152 77.0

1 0 0 0 0 1 0 0 1 0 0 1 m2 0 s 47.4 84.2 0.0785 0.128 61.3

1 0 0 0 0 1 0 0 400 5m10s 57.9 84.2 0.0773 0.128 60.4
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For both architectures, the multi layer perceptron and the modified Elman, 

continuous training as in figure 6 .1  resulted in a higher mean validation rms 

error than if no training occurred i.e. the original weight configuration was 

used throughout the period. This was also generally the case for most 

training sessions where only one training epoch was employed, with the 

exception of the modified Elman network with 10000 training samples, where 

the mean validation rms error was reduced by 30 per cent by retraining. 

Significantly improved results were achieved when several training epochs 

were employed; the best result for the multi layer perceptron model being a 

reduction in the validation rms error of 1 1 . 6  per cent when trained with training 

sets of 100 samples over 100 epochs, over a 4 minute 25 second time period, 

and for the modified Elman network, a reduction in the validation rms error of

39.6 per cent when trained with training sets of 10000 samples over 400 

epochs, over a 5 minute 10 second time period. The modified Elman network 

had a significant advantage of speed of training, therefore a substantially 

larger training set could be employed over the 5 minute training period, hence 

the larger reduction in the rms error. However, the multi layer perceptron had 

a significantly lower validation rms error overall, hence may be considered the 

more effective of the two ANN architectures.
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7 A rtificial neural  netw ork  for loudspeaker  fault  detection

7.1 Introduction

The aim of this project was to train neural networks with data from the end of line 

test and to investigate methods of using the ANNs to improve the classification 

performance of the test. The data used during the investigation were the results of 

the frequency response and rub and buzz tests. The network architecture 

employed was a multi-layer perceptron trained with the backpropagation algorithm. 

Data were analysed to ascertain the appropriateness for ANN training and suitable 

preprocessing techniques investigated. ANN parameters were also investigated in 

order to determine the optimum configuration for this application. Two loudspeaker 

models were used during this investigation; the Harman/Becker product codes 

were 79-65wa35 for the loudspeaker used for frequency response analysis and 99- 

100bm16 for the loudspeaker used for rub and buzz analysis. Developments were 

made to improve the sophistication of the ANN to analyse the data and produce a 

response relating to the frequency band in which the loudspeaker had distortion 

levels above the test limits.

7.2 End of Line T est

Once production is complete the loudspeakers are tested and those that fail the 

test discarded. The loudspeaker is placed on a baffle which leads to an anechoic 

box. Each loudspeaker has a unique baffle with the correct profile cut out of it so 

the loudspeaker fits perfectly into it. The edge of the hole is lined with a foam 

gasket that the loudspeaker sits on. This ensures vibration is not transmitted to the 

baffle, as this would cause audible distortion that would result in the loudspeaker 

failing the test and being rejected. The anechoic box is lined with triangular wedge- 

shaped foam, the dimensions of which are designed to absorb low frequency 

sound waves, and the material the wedges are made of enable the high 

frequencies to be absorbed. This ensures that no echoes occur, so only the 

original sound is detected by the microphone, which is located in the anechoic box 

just below the loudspeaker.

The software used to control the loudspeaker input signal, collect and analyse the 

measured loudspeaker output is SOUNDCHECK™ 4.1 (developed by S. Temme).
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The standard stimulus is R20. This is a sine swept signal with a step size of 1/ 6 of 

an octave. The step size can be altered, for example, to V3 of an octave. This 

would mean half as many data points are collected and hence half the processing 

time is required, but a reduced resolution would be obtained. SOUNDCHECK™ 

4.1 then plots or calculates all the parameters discussed in section 7.2.1 and 

compares them to predefined limits. A display then shows whether the parameters 

are within their limits. Any loudspeakers that fail the test are tested again as 

anomalies may be smoothed out during the first test.

The loudspeakers must be tested at the correct volume to identify the harmonics 

and ambient noise must be kept as constant as possible. Background noise is 

averaged out of the SOUNDCHECK™ 4.1 test but any abrupt, loud noise may be 

picked up by the microphone and the loudspeaker would be failed unnecessarily. 

The test plugs may get dirty and emit an inconsistent signal, they also have fragile 

electrical connections that fail quite regularly, thus the plugs are replaced regularly 

under a preventative maintenance scheme. Noise may also be generated by faults 

in the test box, wires or connectors.

7.2.2 Parameters measured

■ FREQUENCY RESPONSE (FR) -  90 to 120 values measured over a suitable 

frequency range for the loudspeaker.

■ SENSITIVITY -  an average of 4 or 5 values measured at the fundamental 

frequency.

■ IMPEDANCE (Z) -  as many values measured as the frequency response.

■ BASS RESONANCE (BR/Fo) -  a single value, which is the frequency at which 

impedance is a maximum. Fo is identified on the impedance curve in figure 

7.1. An algorithm is used to ensure that the first maximum is identified by the 

test, not any subsequent maximum further along the curve.

7-2



7 A r t if ic ia l  N e u r a l  N e t w o r k  fo r  L o u d s p e a k e r  Fa u l t  D e t e c t io n

Voice Coil Inductance
IDo

|
£

Linear Region

1000Frequency100

Figure 7.1 -  Position of bass resonance on impedance curve (Elliot, 2003)
■ DC RESISTANCE (DCR) -  The minimum value for impedance, Z Min , is a good 

indication of the dc resistance of the loudspeaker. The position of Z Min on the 

impedance curve is illustrated in figure 7.2. An algorithm is also used to identify 

the minimum point on the impedance curve.

Voice Coil Inductance

Resonance
Linear Region

10 100 Frequency 1000

Figure 7.2 -  Position of Z min/D C R  on Impedance Curve (Elliot, 2003)
■ RUB AND BUZZ -  A test for audible harmonic distortion. The number of data 

points collected is the same as for the frequency response. The 10th to 35th 

harmonics are recorded and checked against limits. The 2nd and 3rd are 

sometimes used to find manufacturing faults that are difficult to identify audibly. 

Harmonic distortion is calculated as a percentage of the fundamental, as shown 

in equation 7.1.

......
H t

■ TOTAL HARMONIC DISTORTION (THD) -  The number of data points 

collected is the same as the frequency response. In comparison to the rub and 

buzz measurement, all harmonics are included in the calculation for total 

harmonic distortion, as shown in equation (7.2).
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(7.2)
H,

7.2.3 Anechoic chamber tests

The small volume, small inflection end of line test does not thoroughly test a 

loudspeaker. A far more comprehensive test is carried out in a large anechoic 

chamber at the development stage of the loudspeaker and at regular intervals to 

validate the end of line test. The tests are conducted in an anechoic chamber, 

which is a small room that is lined with triangular wedge-shaped foam, as in the 

end of line test box, except the wedges are much larger. A microphone is held a 

specific distance away from the loudspeaker, depending upon whether a near field 

or far field measurement is required. The loudspeaker is mounted on a baffle 

between the anechoic chamber and the antechamber adjacent to it, which houses 

the rear loudspeaker assembly and allows the loudspeaker to ‘breathe’, i.e. 

provides the appropriate pressures to the rear of the cone. This facility enables 

loudspeakers to be tested with accuracy at large volumes and inflections. The 

chamber is also used for design verification for customers.

7.3 Loudspeaker faults

Loudspeaker faults caused during production can be generally categorised as 

mechanical, chemical or placement asymmetry. Some faults can be tracked 

though a whole batch but more frequently there is a significant degree of disparity 

in the faults detected in any one batch. Harman/Becker has classified 82 possible 

loudspeaker fault diagnoses (see Appendix 2), many of which are quite general 

descriptions of the failure mode. The most common of these faults are 

summarised below.

7.3.2 Coil assembly

Wire is wound around a former on very accurate mandrills. There are many turns 

and often several layers of wire that make up the coil. In some models the braids 

are soldered directly on to the former, in which case soldering faults may occur. 

The dominant fault at this stage is a non-symmetric coil, which will cause harmonic
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distortion and therefore lead to a rub and buzz failure at the end of line test. Many 

of these non-symmetric coils are identified by eye as the coil is connected to the 

spider, and are discarded at this stage. However, small deviations may not be 

detected and the faulty coil will continue down the production line. Other faults 

include uneven coil winding and winding occurring at the wrong place on the 

former, however, both are extremely rare.

7.3.3 Spider

Glue is applied to the coil on a rotating machine and the spider placed on the coil 

by hand. The spider may not be attached perpendicularly to the coil or the glue 

may not take properly, which would result in harmonic distortion and therefore a 

rub and buzz failure. This is often identified on the production line, but small 

imperfections may not be visible and will affect the final product. The spider is 

impregnated with a compound to make it stiff. This may be applied unevenly, 

which would give an unevenly distributed compliance of the spider and 

unpredictable characteristics of the final loudspeaker, identified during the 

frequency response test. There have also been occasions when the wrong spider 

has been used for a production run, resulting in incorrect properties of the 

loudspeaker. This was due to the similar appearance of many of the different 

spiders.

7.3.4 Chassis

The magnet and the plate are placed into the chassis using gap gauges to ensure 

exact placement. At both stages glue is applied by an automatic robotic arm and 

pressure applied to aid adhesion. If the gap gauge is worn the magnet may not be 

placed precisely, leading to an incorrect magnetic field. Glue is then applied 

around the pole piece to receive the spider, which is placed by hand. The amount 

of glue the robot delivers is critical and is tested periodically by weighing it. Too 

little glue will leave segments where the components have not adhered completely 

and too much can leak into the spider and alter its compliance. The coil former 

ensures that the coil sits at the correct height in the magnetic field and a gap gauge 

centres the coil in the gap. At this stage many loudspeakers have to be handled as
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they must be removed from the production line to allow the water based glue to 

cure, creating a potential opportunity for damage to occur.

7.3.5 Cone and surround

Most cone and surround assemblies are supplied and quality controlled by other 

manufacturers. Glue is applied to the rim of the chassis and the cone and 

surround dropped on by hand and pressure is applied to aid adhesion. The neck 

joint is then glued and cured and the gap gauge removed. Insufficient glue can 

lead to harmonic distortion and therefore a rub and buzz test failure, and excessive 

glue can alter the compliance of the surround and therefore the response of the 

loudspeaker, which is identified during the frequency response test. A damaged 

cone can result in high frequency distortions, making the loudspeaker sound out of 

tune.

7.3.6 Dome

Some loudspeaker models have their coil vacuumed out at this stage to reduce the 

possibility of debris in the gap. More glue is applied at the neck joint and the dome 

inserted. If the dome is offset it will change the frequency response of the 

loudspeaker.

7.3.7 Braid connection

The coil wires either terminate on the coil former underneath the cone or they are 

threaded though the cone and terminate part way up the cone. The first method 

involves the coil wire braids being threaded though holes in a panel in the chassis, 

they are then formed with a special tool by the operator, cut, and the tabs closed to 

make the connection. With tab connections there can be problems with damaged 

tabs causing an open circuit. Alternatively, the braids terminate on the cone, in 

which case the connection is soldered. If too little solder is used the connection 

may fail, and not necessarily at the end of line test; it may take some time to fail 

and have to be returned under warrenty by the customer. If the solder is not 

heated enough a dry joint may occur which will also lead to a connection failure.
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The braids being cut too long may result in an audible ticking, caused when the 

cone hits the braids.

7.3.8 Pad ring

A foam pad ring is glued to the rim of the loudspeaker for the grill to rest on. Too 

little glue can lead to edge buzzes and too much can leak on to the surround and 

impede the vibration of the loudspeaker.

7.3.9 Doping

Some loudspeaker models have a mixture of wood glue and water applied to the 

joint between the surround and the cone to improve the joints properties. 

Irregularities in this can lead to a deviation from the desired loudspeaker response.

7.3.10 Magnetisation

The final operation on the production line is to magnetise the loudspeaker. This is 

carried out last to allow easier movement along the production line. A 1.5kA 

current is passed through a coil and the 1.2 T vertical field saturates the magnet. 

Occasionally the polarity of the loudspeaker is incorrect, which is identified at the 

end of line test.

7.4 Data analysis

7.4.2 Frequency response data

Initial observations of data from the 79-65wa35 loudspeaker frequency response 

test determined that the accepted loudspeaker data have a relatively flat response, 

contained within a small range between 100 and 130 dB approximately, as shown 

in figure 7.3.

The rejected loudspeaker data, shown in figure 7.4, appear to have three distinct 

patterns; some rejects have values extremely close to the test limits but one or 

several points are just outside the limits, another set appear to have values 

approximately 50 dB less than the accepted loudspeakers’ values, and the
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remainder have values mainly between 0 and 50 dB. This could indicate a 

correlation between the data pattern profile and the failure mode, which could be 

utilised in the classification of specific faults.
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Figure 7.3 -  Frequency response accepted data
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Figure 7.4 -Frequency response reject data

It was ascertained that several patterns in the set of reject data with values mainly 

between 0 and 50 dB have recorded values of negative infinity. SOUNDCHECK™ 

records this value if there is an open circuit. In order to incorporate these data into 

the ANN, a value that the network could recognise was required, so a value of
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negative 10000 was substituted for negative infinity in the interim to observe how 

the network would react.

The network did not classify the rejects containing infinity blips with adequate 

accuracy. On further inspection the classification of other data patterns was also 

unsatisfactory. It is proposed that it was not possible for the weights to adjust to an 

idiosyncrasy with such an extreme value that only occurred in a small number of 

training patterns. However, the idiosyncrasy was sufficient to corrupt the 

configuration of the weights for classification of other data patterns. It is feasible 

that with longer training periods and a larger number of training patterns containing 

the idiosyncrasy, the network could be configured to classify these patterns 

adequately. However, in order to progress, the patterns containing negative infinity 

blips were removed from the training set.

The desired output of the frequency response test is not absolute values but the 

shape of the response curve; a relatively flat frequency response is desirable and 

thus would result in a loudspeaker being accepted, and a response with 

considerable variation over the frequency range is undesirable and would result in 

the loudspeaker being rejected. SOUNDCHECK™ 4.1 uses a system of floating 

test limits to achieve this, thus so long as the magnitude of the loudspeaker’s 

frequency response is contained within a predetermined range, the loudspeaker 

will be accepted, as illustrated in figure 7.5.
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Figure 7.5 -  Illustration of two accepted loudspeaker frequency 

responses within the floating test limits but with 

different absolute values

It was anticipated that the ANN would have difficulty emulating this form of test 

limits as it relies upon the absolute values of the data pattern to determine its 

output. The loudspeaker data patterns would require normalisation prior to being 

input to the ANN in order to over come this.

7.4.3 Rub and buzz data

The investigation into data from the rub and buzz test of the 99-100bm16 

loudspeaker established that the majority of the data in the accepted loudspeaker 

data patterns are contained in a very small range that has a peak of around 0.6 per 

cent distortion at approximately 100Hz. This rapidly reduces to below 0.1 per cent 

distortion after 200Hz and remains well below this level with a gradual taper to 

nearly zero at 2150Hz, as shown in figure 7.6.
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Figure 7.6 -  Rub and buzz accepted data

A significant proportion of the reject data patterns are contained in a relatively small 

range in the vicinity of the accepted loudspeaker data; with the remainder 

consisting of random noise with up to 100 per cent distortion. This is illustrated in 

figure 7.7 which shows 37 rejected data patterns.
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Figure 7.7 -  Rub and buzz reject data

7.5 ANN TO EMULATE END OF LINE TEST

It was decided to focus training ANNs to emulate the rub and buzz test during this 

project as Harman/Becker indicated that improvements to the rub and buzz test 

were of more value than to the frequency response test.
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Initial experiments involved training ANNs to emulate the output of the rub and 

buzz test i.e. to provide an output that indicates whether the loudspeaker should be 

accepted or rejected.

During ANN training the 48 point rub and buzz data pattern recorded during the 

end of line test was entered into the ANN input layer. Each data pattern was 

assigned a desired response according to whether it had been accepted or 

rejected by SOUNDCHECK™ 4.1 during the end of line test. The training process 

is illustrated in figure 7.8. Each input layer neuron received one data point from the 

data pattern. The activations from the input layer neurons were then passed 

through the fully connected hidden layers and the output used to generate an error 

signal between the actual and desired response of the ANN. The error was then 

used to adjust the ANN weights using the back propagation algorithm.

Classification accuracy of the ANN was defined as the percentage of previously 

unseen data patterns that the network correctly classified as accepted or rejected 

loudspeakers, based on the results from the end of line test. Training and 

validation rms errors were also considered, however, a measure of how the 

network classified the loudspeaker data patterns was considered more descriptive 

for this application. The boundary for a correct classification was above 0 for an 

accepted loudspeaker and below 0 for a rejected loudspeaker.
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7.6 Data preprocessing

7.6.2 Elimination of gross rejects

It is generally agreed that preprocessing the data can improve the ANN 

performance (Haykin, 1999).

A significant proportion of the rejected loudspeaker data patterns consisted of 

random, high level noise that is easy to detect and indicates clearly that the 

loudspeaker should be rejected; these were categorised as gross rejects. It was 

decided to eliminate gross rejects from the data due to their heterogeneity; as it 

was anticipated that such training patterns may reduce the ability of the ANN to 

generalise and to classify loudspeaker data patterns that should be rejected but are 

only marginally dissimilar to a data pattern that should be accepted. An 

investigation was conducted to substantiate this. Figure 7.9 illustrates the 

response of an ANN trained with a data set containing accepted loudspeaker data 

patterns and gross reject data patterns, to a similar validation set.

1.5

0.5

3
CL■*->
3O

73 -0.5

*35v
73

-1.5

1 3 11 13 15 17 19 21 23 25 27 29 31 3b 35 37 38 41 43 45 47 49

Accepted

Rejected

input number actual

Figure 7.9 -  Response of ANN trained with gross rejects

The classification accuracy of the ANN was 82 per cent, significantly lower than the 

ANNs trained with data sets with gross rejects eliminated. The rejected data 

patterns all contained at least one distortion value greater than 20 per cent, which 

may be considered an extreme case as this is a relatively high level of distortion.
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However, an ANN trained with a data set with just 3 per cent of the rejected 

loudspeaker data patterns containing distortion values greater than 20 per cent and 

validated with a similar data set resulted in a classification accuracy of 93 per cent, 

which is 3.5 per cent lower than an ANN trained with all gross rejects with values 

greater than the limits + 6 standard deviations (a) removed, (the default boundary 

during the ANN parameter investigation, see section 7.8), and 5.5 per cent lower 

than an ANN trained with gross rejects with values greater than the optimum 

boundary determined during the investigation (the limits + 10 a).

It can therefore be concluded that gross rejects unfavourably influence the 

response of the ANN. The disparate nature of the gross rejects meant that during 

the training process the ANN could not converge upon a satisfactory solution to the 

classification problem.

The boundary used initially to categorise a gross reject was 6a from the mean (p). 

Any patterns that had values outside this boundary were deleted from the training 

set.

7.6.3 Normalisation

The method of data preprocessing initially considered was normalisation by mean 

removal. Significant attention was given to which data mean was used in the 

normalisation process, the alternatives were:

■ the mean of all the accepted and rejected loudspeaker data,

■ the mean of just the accepted loudspeaker data,

■ the mean of the training data for mean removal of the validation data,

■ the mean of the validation data for mean removal of the validation data.

Including the gross reject data in the calculation of the mean artificially distorted the 

pattern of the accepted loudspeaker data, making it less recognisable. Including 

only the reject data within 6 standard deviations still led to a degree of distortion, 

hence it was determined that the most suitable method was to use the mean of the 

accepted loudspeaker data only. There was more correlation between the mean 

removed training data and the validation data with the training data mean removed
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than the validation data with the validation data mean removed, hence the former 

was used.

The mean of the accepted loudspeaker data was calculated for each frequency as 

in equation (7.3) and deducted from each data point at the corresponding 

frequency for all accepted and rejected data patterns in the training and validation 

sets.

The data was subsequently sorted into a suitable format for training; alternating 

accepted and rejected data patterns. This reduced the possibility of bias weight 

alterations resulting from a group of very similar training patterns being shown to 

the network in succession.

Figure 7.10 shows two networks trained with data from the 99-100bm16 

loudspeaker with the gross rejects removed, one with data that had been pre- 

processed and one with data that had not. The classification accuracy for the ‘with 

processing’ network was 92 per cent and for the ‘no processing’ network, 92.5 per 

cent. The validation rms errors were also almost identical. It was therefore 

concluded that removing the mean from the data patterns had little effect upon the 

ANN training results.

(7.3)
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Figure 7.10 -  Comparison of network results using data with and without 

preprocessing
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7.7 Training data selection criteria

7.7.2 Analysis of training data patterns

An analysis of the data patterns was conducted to identify properties of the data 

that may be the cause of discrepancies between ANN and end of line test output. 

An investigation into data collected over a six week time period was performed, 

initially considering the data collected on individual days. The mean and standard 

deviation of each day's data were calculated and the data was sorted according to 

whether it was within a certain number of standard deviations. The mean was 

calculated as in equation (7.3) and standard deviation as in equation (7.4).

where n is the total number of training patterns.

The results, shown in table 7.1, indicate the quantity of rejects that have all their 

values within the stated number of standard deviations of the mean and the 

quantity of accepted loudspeakers that have one or more values outside the stated 

number of standard deviations.

(7.4)
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Table 7.1 -  Summary of rub and buzz data variation for individual days

Date Total

accepted

Total

rejected

Rejects 

within +/-1a

Rejects 

within +/-2ct

Rejects 

within +3cr

Rejects 

within +6a

Accepted

outside+3c?

Accepted 

Outside +6a

15.04.02 1486 283 0 1 45 94 154 17

16.04.02 1358 345 0 1 59 162 178 16

23.04.02 790 130 0 0 0 2 134 11

24.04.02 2120 487 0 7 67 122 361 52

30.04.02 3357 679 0 0 56 303 549 44

01.05.02 1915 387 0 4 92 193 253 31

08.05.02 999 132 0 0 1 50 145 22

09.05.02 1774 188 0 0 0 27 286 30

13.05.02 354 64 0 0 3 12 60 10

14.05.02 6158 500 0 0 20 183 990 97

15.05.02 810 46 0 0 0 7 116 21

21.05.02 3947 354 0 0 0 66 701 69

22.05.02 3040 166 0 0 0 3 522 48

23.05.02 757 135 0 0 0 8 132 12

25.05.02 257 6 0 0 0 1 51 4

27.05.02 797 80 0 0 0 0 124 11

28.05.02 3546 528 0 0 69 202 552 60

29.05.02 5251 323 0 0 7 66 841 86
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Table 7.2 - Summary of rub and buzz data variation for all data

Date Total

Accepted

Total

Rejected

Rejects 

within +/- 1a
Rejects 

within +/- 2a

Rejects 

within +3a

Rejects 

within +6a
Accepted 

outside +3a

Accepted 

outside +6a

15.04.02 to

29.05.02

38716 4833 0 29 368 1543 6661 624
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This analysis revealed significant problems with the supplied data:

■ On each day of sampling there were a significant number of accepted 

loudspeaker data patterns with values that were outside 6a from the mean.

■ On several days there were rejects that were within 3a from the mean and on 

four days within 2a.

After each day had been analysed individually, all the data were amalgamated and 

studied as a whole, and the results are shown in table 7.2. It was anticipated that 

taking a larger population would result in a reduction in outlying accepted data, as 

the mean and standard deviation would be more representative and would 

eliminate any daily variations that could have affected the analysis of data from 

individual days. However this was not the case, the number of accepted 

loudspeakers outside 6a was actually greater than the sum of the individual days. 

This was also true for the rejects within 2 and 3a. This may be explained by the 

fact that on some days, production may have corresponded quite closely with the 

population that was used to formulate the test limits.

An explanation for the extraneous data may be derived from the method used to 

determine the test limits. When a new loudspeaker comes into production 3 initial 

production runs are performed to determine the end of line test limits. Between 50 

and 200 units are constructed and tested in order to generate test limits. The rub 

and buzz test limits are set to a level such that loudspeakers with audible distortion 

are rejected. The limits may be further modified when a production trend is 

identified that may have distortion levels above the limits but which is inaudible 

(Anthony, 2003). Examination of the test limit history revealed nine alterations over 

the data collection period 15.04.02 to 29.05.02 for loudspeaker 99-100bm16, all of 

which were to raise the limits, resulting in loudspeakers that would previously have 

been rejected under the former limits being accepted under the amended limits. 

Also, a rejected loudspeaker may have had very few or even just a single value 

above the test limits, which may not necessarily have been significantly higher than 

the limits. Under these circumstances, the difference between an accepted and 

rejected data pattern would be negligible. Therefore, if the test limits were raised to 

a level where the previously rejected loudspeaker would be accepted, the rejected

7-21



7 A r t if ic ia l  N e u r a l  N e t w o r k  f o r  L o u d s p e a k e r  F a u l t  D e t e c t io n

data pattern could be almost identical to, or even have lower values than, an 

accepted data pattern recorded under the subsequent test limit version. 

Attempting to train an ANN with this conflicting data would inevitably lead to 

discrepancies in ANN output when compared to the end of line test results.

The reject data also contained retest data. When the end of line test results in a 

rejection, the operator retests the loudspeaker to ensure the fault is permanent, as 

some loudspeakers exhibit high levels of distortion in the first test, caused by 

misalignment of components, that is rectified after the first operation. Although the 

test rig includes a retest button that should be used instead of the conventional test 

button when the loudspeaker fails the first test, a significant number of operators do 

not use it, thus resulting in data derived from the same loudspeaker being written to 

the reject file twice or even three times.

Increasing the test limits would result in an increase in the mean and the standard 

deviation of the accepted loudspeaker data patterns collected. During the initial 

training data selection, the mean and standard deviation of the accepted 

loudspeaker sample (comprised of data collected over several different test limits 

versions) were calculated and data patterns (accepted and rejected) selected for 

training according to their inclusion in a range relating to the mean plus a certain 

number of standard deviations, as illustrated in figure 7.11. In most cases the data 

selection criteria was all values below the mean + 3a for accepted loudspeaker 

data patterns and all values below the mean + 6a for rejected loudspeaker data 

patterns.

The overall sample mean and standard deviation were likely to be lower than those 

of the data patterns collected under the test limit versions with higher values, 

resulting in these patterns being rejected under the training data selection criteria. 

Hence, what may be argued as perfectly valid training data was being excluded 

from the ANN training process.
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Figure 7.11 -  Data selection process

7.7.3 Modified training data selection criteria

It was anticipated that training the ANN with data collected under a single version 

of test limits would decrease the number of loudspeaker data patterns the ANN 

classified differently to the EOL test, as the scenarios described above would not 

exhibit. It was understood that the test limits were not changed between 19.06.02 

and 13.10.02. However, data collected in this period provided similar classification 

results to previous data. Further investigation was therefore required.

An evaluation of the test limits between 19.06.02 and 13.10.02 determined that the 

training data selection criteria possessed little correlation to the actual end of line 

test limits, as they assumed the test limits were in the region of p+3a. It revealed 

that the test limits values corresponded to the original assumption of p+3o only in a 

narrow range of frequencies; the majority of values were far higher than this, in the 

region of p+ 6a, and even higher in many instances as illustrated in figure 7.12.

The training data selection criteria used previously incorporated the assumption 

that the test limits were in the region of p+3a, hence only accepted loudspeaker 

data patterns with all values less than p+3a were selected. Rejected loudspeaker 

data patterns were selected if all their values were below p+6o. As previously
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Figure 7.12 -  Comparison of test limit values to p+3a and p+6o

discussed, if only a few values were above the limits, and if these values were only 

marginally above the limits (knowledge of the limits inferred that these values must 

have been extremely close to the limits, as the limits were in the region of the 

selection criterion for rejected loudspeaker patterns), the problem of decipherability 

of data patterns by the ANN would have been compounded as the selected data 

for accepted and rejected loudspeakers would have existed in common regions.

This therefore necessitated a modification to the training data selection criteria. As 

the actual test limits were now available it was decided to link the selection criteria 

directly to the limits. All accepted loudspeaker data patterns were included and 

rejected loudspeaker data patterns with values less than the limits plus a certain 

number of standard deviations were selected. In most cases the number of 

standard deviations was 6. This had a significant effect on the classification results 

of the ANN; classification correlation between the ANN and the EOL test increased 

from 91 to 96 per cent. The ANN validation results are shown in figure 7.13.

The initial selection criteria implemented, as described in section 7.7 were 

extremely unsuitable as all the training data, both accepted and rejected 

loudspeaker patterns, would have had extremely similar values, making many data 

patterns practically undecipherable from each other.
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Figure 7.13 -  Network results using revised data selection criteria

7.8 ANN OPTIMISATION

An investigation to determine the optimum parameter values for the ANN trained to 

emulate the rub and buzz end of line test was conducted. The default ANN 

parameter values are shown in table 7.3.

Table 7.3 -  Default parameter values

Parameter Default value

Topology 48-50-20-1

Epoch number 1 x 104

Training set size 2 x 103

Validation set size 2x10*

Learning rate 1 x icr5

Momentum 5 x 10'2

Data boundary limits + 6ct

7.8.2 Topology

An investigation was conducted to identify whether or not an optimum topology for 

classification accuracy of the ANN existed. Tests were performed with the number 

of neurons in the first hidden layer varied between 50 and 100 and those in the 

second hidden layer kept constant at 20. The number of neurons in the first hidden
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layer was then kept constant at 50 and those in the second hidden layer varied 

between 5 and 40. Several other networks with significantly larger topologies were 

trained to determine if this improved network performance. All ANNs contained 48 

neurons in the input layer, one for each frequency recorded in the end of line test. 

It is generally agreed that the first hidden layer should contain a higher number of 

neurons than the input layer, hence the first hidden layer always contained at least 

50 neurons during these experiments. The results are shown in tables 7.4, 7.5 and 

7.6.

Table 7.4 - Effect of number of neurons in 1st hidden layer 
on rms error value and classification accuracy

Number of neurons 

in 1st hidden layer

Training 

rms error

Validation 

rms error

Classification 

accuracy/%

50 0.629 0.495 96.5

60 0.636 0.472 98.0

70 0.645 0.486 97.0

60 0.629 0.501 95.0

90 0.635 0.477 97.0

100 0.629 0.486 96.5

Table 7.5 - Effect of number of neurons in 2nd hidden layer on rms 

error value and classification accuracy

Number of neurons 

in 2nd hidden layer

Training 

rms error

Validation 

rms error

Classification 

accuracy / %

5 0.645 0.473 98.0

10 0.640 0.476 97.5

20 0.645 0.495 96.5

30 0.645 0.499 95.5

40 0.645 0.499 95.0
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Table 7.6 -  Effect of employing larger topologies on 

rms error value and classification accuracy

Number of 

neurons 

in 1st hidden 

layer

Number of 

neurons 

in 2nd hidden 

layer

Training 

rms error Validation 

rms error

Classification 

accuracy / %

100 25 0.642 0.498 95.0

100 50 0.644 0.504 95.0

100 75 0.645 0.505 95.0

Figure 7.14 shows the response of the best performing network to previously 

unseen data. The chart shows the ANN output for each data pattern plotted as a 

rectangular marker, which is connected to the desired output for that data pattern 

by a line. Therefore, the longer the line, the larger the error between ANN output 

and desired output.
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Figure 7 .1 4 -ANN output with 48-60-20-1 topology

It was determined that a considerable variation in the number of neurons in the first 

and second hidden layers between two networks caused very little difference in the 

validation rms error or the classification accuracy. In many cases the increased 

training time required for larger topology networks was unjustified, for example,
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despite having more than twice as many neurons, the 48-100-50-1 (the number of 

neurons in the input layer, first hidden layer, second hidden layer and output layer 

respectively) network had a lower classification accuracy (95 per cent) than the 48- 

50-20-1 network (96.5 per cent). As discussed in section 5.1.2, this may be due to 

the parallelism of the network and that ANN performance is related to the 

compatibility of the ANN architecture with the system being modelled.

7.8.3 Training epochs

Increasing the number of training epochs improves the probability of the ANN 

learning the correct association between each data pattern and the desired output, 

as the weights are adjusted to incorporate the association between each data 

pattern and desired output combination a greater number of times. During this 

experiment the number of training epochs was varied between 1 and 5 x 104. The 

results are shown in table 7.7.

Table 7.7 -  Effect of epoch number on rms error 
value and classification accuracy

Number of training 

epochs

Training 

rms error

Validation 

rms error

Classification 

accuracy/%

1 1.000 1.000 50.0

10 1.000 1.000 50.0

1 x 102 1.000 1.000 50.0

1 x 103 1.000 1.000 62.5

2 x 103 0.999 0.999 85.0

5 x 103 0.859 0.774 93.0

1 x 104 0.645 0.495 96.5

2 x 1 0 4 0.597 0.447 98.5

5 x 104 0.504 0.367 95.5

Figures 7.15 and 7.16 show the response to previously unseen data of the best 

performing network in terms of classification accuracy and validation rms error 

respectively. It can be seen that the ANN trained over 5 x 104 epochs has a lower 

discrepancy between actual and desired output for the majority of the validation
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ita patterns, hence the lower validation rms error than the ANN trained over 2 x 

)4, however the number of training patterns outside the correct classification 

>undary was greater, resulting in the lower classification accuracy. As the 

assification accuracy of the ANN is of more significance to its application, the end 

line test, the ANN trained over 2 x 104 epochs was determined to be the best 

‘rforming ANN overall.
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Figure 7.15 -  ANN output after training over 2 x 104 epochs
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Figure 7.16 -  ANN output after training over 5 x 104 epochs
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7.8.4 Momentum term

As previously discussed, the momentum term determines the degree to which the 

previous iteration influences the change in the weight values during the current 

iteration. The results of experiments where the momentum term was varied 

between 1 x 10'3 and 5 x 10'1 are shown in table 7.8.

Table 7.8 -  Effect of momentum value on rms error 

value and classification accuracy

Momentum

value

Training 

rms error

Validation 

rms error

Classification 

accuracy / %

0 0.646 0.495 96.5

1 x 10'3 0.646 0.495 97.0

5 x 10'3 0.646 0.495 96.5

1 x 10* 0.646 0.495 96.5

5 x 10'* 0.645 0.495 96.5

1 x 10_1 0.643 0.495 95.0

3 x 10'1 0.633 0.488 95.5

5 x  10 ’ 0.606 0.453 98.0

7 x 10'1 0.541 0.381 96

It can be seen from table 7.8 that the momentum value did not affect ANN 

performance significantly until it was greater than 1 x 10'1. The momentum value is 

multiplied by the appropriate weight’s alteration in the previous time step (the third 

term in equation (3.35)), and then added to the first and second terms in equation 

(3.35), however, when the value of the momentum term was low, the third term 

could be orders of magnitude lower than the sum of the first and second terms, and 

hence had little effect upon the training process. The best performing ANN 

therefore had a high momentum value. The response of the ANN trained with a 

momentum value of 5 x 10'1 is shown in figure 7.17.
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Figure 7.17 -  Response of ANN trained with momentum value of 5 x 10'1 to 

previously unseen data

7.8.5 Learning rate

The learning rate determines the influence of the error generated during the 

forward pass on the weight alteration of the backward pass. It also determines the 

rate of convergence of the ANN to the optimum solution and affects the stability of 

this convergence. Tests were conducted where the learning rate was varied 

between 1 x 10‘6 and 1 x 10'1, the results are shown in table 7.9.

Table 7.9 -  Effect of learning rate on rms error 

and classification accuracy

Learning

rate

Training 

rms error

Validation 

rms error

Classification 

accuracy / %

1 x 10e 1.000 1.000 62.5

1 x 10‘5 0.645 0.495 96.5

1 x 1C4 0.497 0.343 96.0

1 x 10'3 0.433 0.379 95.5

1 x 10^ 0.444* 0.485* 94.0*

1 x 10'1 0.449* 0.435* 93.5*

*The training process reached a local minimum
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The optimum value for the learning rate was determined to be 1 x 10'5. The 

response of the ANN trained with the optimum learning rate to previously unseen 

data is shown in figure 7.18.
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Figure 7.18 -  Response of ANN trained with learning rate of 1 x 10'5 to 

previously unseen data

7.8.6 Training set size

There is a high probability that a larger training set will contain a wider range of 

loudspeaker data patterns, which will result in a wider range of the network’s a 

posteriori knowledge and thus improve the probability the network will be able to 

classify a previously unseen data pattern correctly. Tests were conducted with the 

training set varied between 1 x 103 and 6 x 103. The upper limit was dictated by 

the number of available data patterns. The results are shown in table 7.10.

The optimum training set size was determined to be 1 x 103. This may be due to a 

high correlation between the data contained in the 1 x 103 data set and the 

validation data. The extra data patterns contained in the larger training sets may 

be significantly different to those contained in the validation set, hence the ANN is 

trained away from the optimum solution for the validation data. These results 

identify a possible limitation of ANNs in this application; increasing the range of
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Table 7.10 -  Effect of training set size on rms error 

value and classification accuracy

Number of data patterns 

in training set

Training 

rms error

Validation 

rms error

Classification 

accuracy / %

1 x 10s 1.000 1.000 50.0

2 x 10" 1.000 1.000 50.0

5 x 10" 0.999 0.999 50.0

1 x 103 0.601 0.479 98.5

1.5x10" 0.617 0.491 98.0

2 x  10" 0.645 0.495 96.5

data patterns in the training set may reduce the ANN’S ability to classify individual 

data patterns correctly i.e. improving the generalisation of the ANN may be at the 

cost of classification accuracy. The optimum training set size must therefore be 

that which provides the ANN with a suitable compromise between depth and 

breadth of knowledge. This may require the periodic retraining of the ANN in order 

to incorporate new production trends that develop over time and eliminate those 

that are no longer occurring. The output of the best performing ANN is shown in 

figure 7.19
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Figure 7.19 -  Response of ANN trained with training set size of 1 x 103 to 

previously unseen data
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7.8.7 Training data selection criteria

A previous investigation (see section 7.7) determined that eliminating gross rejects 

from the training set improved the classification accuracy of the ANN. The 

objective of this investigation was to determine the optimum selection criteria for 

the training data set. Training sets were compiled using selection criteria that 

increased in increments of the standard deviation from the mean of the accepted 

loudspeaker data patterns. The results are shown in table 7.11.

Table 7.11 -  Effect of training data selection criteria on

rms error and classification accuracy

Data selection 

boundary

Training rms 

error

Validation rms 

error

Classification 

accuracy/%

no boundary 0.475 0.523 93.0

limits + 4ct 0.643 0.686 86.5

limits + 6a 0.645 0.495 96.5

limits + 8a 0.661 0.496 98.5

limits + 10a 0.673 0.492 98.5

limits + 12a 0.677 0.585 92.0

limits + 15a 0.674 0.704 87.5

limits + 20a 0.655 0.648 89.0

The output of the best performing ANN is shown in figure 7.20.
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Figure 7.20 -  Response of ANN trained with training set selection of limits + 

10a to previously unseen data

7.8.8 Optimum parameter values

The optimum parameter values determined in the preceding investigation are 

shown in table 7.12. The training results and the response of an ANN trained with 

these parameter values to previously unseen data are shown in table 7.13 and 

figure 7.21 respectively.

Table 7.12 -  Optimum parameter values

Parameter Optimum parameter value

Topology 48-60-5-1*

Epoch number 2 x 104

Training set size 1 x 103

Validation set size 2 x 102

Learning rate 1 x 10!’

Momentum 5 x 10'1

Data boundary limits + 10a

*The optimum number of neurons in the first hidden layer was 60 and in the second 5, hence the 

optimum topology was taken to be a combination of these results.
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Table 7.13 -  Training results for ANN trained 

with optimum parameter values

Training rms 

error

Validation rms 

error

Classification 

accuracy / %

0.483 0.379 96

1.5

3a.
3
°  0.5z

12-°5 
k .
'55a>■o
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r . n L , . r f [,

1 1 [  i r | l [ i  [ 1 11 11

162

l l
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Accepted

Rejected

input number • actual output

Figure 7.21 - Response of ANN trained with optimum parameter values to 

previously unseen data

As experienced with the multi layer perceptron ANN trained to model the 

loudspeaker transfer function, the response of the ANN trained with the optimum 

parameters determined independently of each other was not the optimum response 

(see section 5.3), as several ANNs tested during this investigation had 

classification accuracies of 98.5 per cent (see sections 7.8.3, 7.8.6 and 7.8.7).

7.8.9 Training times

Training times with a 1.5GHz PC varied between 1 and 8 hours per network for 200 

to 2000 training patterns respectively and 20 000 iterations. The training time for 

the ANN with default parameters was 2 hours.
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7.9 ANN TO DETERMINE FREQUENCY REGION IN WHICH FAILURE OCCURS

The ANN structures determined to classify a loudspeaker data pattern as accepted 

or rejected were developed into networks that were trained to distinguish between 

loudspeakers that have audible distortion in different frequency bands, in an 

attempt to meet the project objective of intelligently analysing faults. This process 

is currently carried out by human operatives, hence a successfully trained ANN 

could significantly reduce analysis time and therefore cost.

All ANNs discussed previously had only two possible outputs to classify a 

loudspeaker as either accepted or rejected; the same format obtained from the end 

of line test. An investigation was conducted to ascertain if the ANN could be more 

specific and give an output relating to the frequency at which the loudspeaker was 

being rejected, as illustrated in figure 7.22, as this could be indicative of the 

loudspeaker’s defect.
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7.9.2 Three frequency bands

Initial experiments involved splitting the frequency range into three equal bands 

and training the ANN with rejected loudspeaker data patterns that had values 

above the limits in only one of these frequency bands. A C++ program was 

developed to determine at which frequencies the loudspeaker data patterns had 

values above the limits. This simply compared each distortion level to the limits 

and assigned a value of 1 to a variable, (which was otherwise 0), if the value was 

greater than the limit value for that frequency. There were three variables which 

corresponded to the three frequency bands. The data pattern was then exported to 

a file with the three variables assigned to it. The data patterns could then be sorted 

according to the frequency bands in which they were rejected. Appendix 8 

contains the complete program code.

The data patterns that had values above the limits in just one frequency band were 

then extracted and assigned a desired output value according to its rejection band. 

The rejected data patterns were then combined with accepted data patterns in 

preparation for ANN training.

Figure 7.23 shows the network results where the three frequency bands have been 

given different desired output values. In this case the desired outputs were -0.9 for 

loudspeakers rejected in the frequency band 50 - 280 Hz, -0.6 for loudspeakers 

rejected between 315 - 850 Hz and -0.3 for those rejected between 900 -  2120 Hz. 

Although it is difficult to quantify the exact correlation between ANN output and 

desired output there is clearly a distinction between accepted and rejected 

loudspeakers in the majority of cases. There is also good correlation between the 

desired output value for loudspeakers rejected in the respective frequency bands 

and the actual ANN output, which could provide information regarding the fault 

present in the rejected loudspeaker.
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Figure 7.23 -  3 Frequency band network results

7.9.3 Five frequency bands

The frequency band concept was developed further to incorporate five frequency 

bands. Experiments were conducted to ascertain optimum data configuration, 

frequency band allocation and desired output values.

7.9.3.i Data configuration

Several data configurations were used, incorporating the same data to allow direct 

comparison, including:

1. alternating all rejected data patterns with an accepted data pattern,

2. grouping one data pattern from each rejection band together, followed by 

one accepted data pattern,

3. an equal number of rejected and accepted data patterns in random order. 

The previously established methods of preprocessing were applied to the training 

sets and ANNs trained with each data configuration. The resulting training and 

validation rms errors are shown in table 7.14.
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Table 7.14 -  Comparison of data configurations

Data Configuration Training rms error Validation rms error

1 ioXoCO 5.76x10 '1

2 9.63x1 O'2 3.97x10“’

3 1.30x1 O’ 1 4.30x10"’

The second data configuration appeared to give marginally better correlation 

between ANN output and desired output than the other alternatives.

7.9.3.ii Frequency band allocation

Consideration was made of how to allocate the frequency bands. Several options 

were investigated:

1. allocating an equal number of frequency points to each band, hence in the 

case of loudspeaker 99-100bm16, 3 frequency bands contained 10 

frequencies and 2 contained 9 frequencies, totalling 48 and satisfying the 

criteria as closely as possible,

2. making the lower frequency bands narrower than the high frequency bands, 

as a large proportion of rejected loudspeakers have values outside the limits 

at low frequencies,

3. allocating an equal number of the available data patterns to each frequency 

band, thus the frequency regions where a large proportion of the 

loudspeakers show defects will have smaller bands, hence placing more 

emphasis on these regions,

4. the above technique was repeated with the exception that the frequency 

bands were decided after the data patterns with extreme values (gross 

rejects) had been removed.

The results are displayed in table 7.15.

Table 7.15 -  Comparison of frequency band allocation methods
Frequency Band Allocation Method Training rms error Validation rms error

1 7.88 x10“2 3.25 x 10'1

2 9.60x1 O'2 5.27x1 O’1

3 6.79x10’2 2 .50x10‘1

4 o CO X o i 7.20 x 10'1
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The third allocation method gave the best correlation between ANN output and 

desired output. The frequency bands are shown in table 7.16.

Table 7.16 -  Frequency bands for allocation method 3

Frequency Band Frequency Content / Hz

1 50 -  200

2 224 -  280

3 315-450

4 475 -  650

5 670-2120

7.9.3.iii Desired ANN output values

An investigation into the output values assigned to the various frequency bands 

was also undertaken. A wide range of values were employed including large and 

small values with equal increments and, taking into account the observation that 

accepted loudspeaker patterns were more clearly defined in these experiments, the 

accepted patterns were given output values significantly different to the rejected 

loudspeaker patterns in an attempt to distinguish them more explicitly. Several 

examples of values used are shown in table 7.16.

Table 7.16 -  ANN desired output values

Rejected

50-

180Hz

Rejected

200-

250Hz

Rejected

280-

425Hz

Rejected

450-

630Hz

Rejected

670-

2120Hz

Accepted

50-

2120Hz

1 -5 -4 -3 -2 -1 1

2 12 10 8 6 4 2

3 -5 -4 -3 -2 -1 100

ANNs trained with the first set of output values resulted in a validation rms error of 

3.97x1 O'1, and the second set 2.50x1 O'1. Giving accepted loudspeaker data 

patterns significantly different desired output values did not result in an 

improvement in their decipherability from rejected loudspeakers, the validation rms 

error in this case was 6.93 x 10 '1.
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7.9.3.iv Optimum 5 frequency band ANN

The optimum data configurations, allocation of frequency bands and output values 

were determined to be grouping one data pattern from each rejection band 

together, followed by one accepted data pattern with output values of equal 

increments between 2 and 12, where the frequency regions had been allocated by 

assigning an equal number of the available data patterns to each frequency band. 

The ANN results when trained under these conditions are shown in figure 7.24. 

Figure 7.24a shows the ANN response to the training data and illustrates that the 

ANN has learned the data well. Figure 7.24b shows the ANN response to 

previously unseen data, and although there is an obvious trend in the output, 

determination of the exact frequency band in which the loudspeaker has audible 

distortion would be difficult in a significant proportion of cases.
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Figure 7.24a - ANN response to training data
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Figure 7.24b -  ANN response to previously unseen data

7.9.4 Dual frequency band rejects

The ANNs trained thus far used only data patterns that had been screened to 

ensure they had values above the test limits in a single frequency band. In order to 

improve the sophistication of the ANN it would be required to classify rejected 

loudspeakers with values above the limits in more than one frequency band. The 

first step taken towards this was to show the ANN data patterns which had been 

rejected in two adjacent frequency bands. Several approaches were considered, 

including:

■ using an ANN that had been trained as in the previous experiment, with data 

patterns which had values above the limits in only one frequency band,

■ using an ANN trained with both single band reject patterns and those with 

values above the limits in two adjacent bands, giving each scenario a 

different output value.

The latter method was considered too complex for a single ANN due to the 

numerous outputs required, hence the former method was employed. Initially only 

data patterns with values above the limits in two adjacent frequency bands were 

shown to the previously trained ANN and the output compared to the average of 

the desired output values for the two frequency bands used in the previous 

experiment, for example, the desired output for band 2 was 6 and for band 3, 8, so
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the desired output value for the dual band reject was approximately 7. If the output 

value of the dual band rejects was between the two desired responses of the single 

band reject, it was considered correctly classified. The results are shown in table 

7.17.

Table 7.17 -  Details of dual region rejects experiment
sject

ind

Desired

output

Dual reject 

bands

Desired

response

Desired output 

range

Proportion correctly 

classified / %

1 4 1 and 2 5 4 - 6 92.6

2 6 2 and 3 7

00ICO 70.9

3 8 3 and 4 9 8 -1 0 47.3

4 10 4 and 5 11 1 0 -1 2 *

5 12

*There were no rejected loudspeaker data patterns available with values above the limits in both 

regions 4 and 5.

None of the outputs in the single reject band experiments gave exactly the desired 

value, hence a certain degree of ambiguity was expected in the results from the 

dual band rejects. A tolerance of +/- 0.5 outside the desired output range was 

therefore included in the results shown in table 7.17 in order to gauge the success 

of this method taking into account the possible variation in output. In practice this 

overlap of the frequency band output values would of course lead to ambiguity as 

to which band the rejected loudspeaker should be assigned to. It can be seen that 

good correlation between desired output and actual output was obtained when 

bands 1 and 2 were combined, but the accuracy deteriorates significantly in the 

other combinations.

7.9.5 Multiple ANNs for frequency band analysis

The results obtained from the method described above of using just one ANN to 

classify all the frequency bands were unsatisfactory, it was therefore proposed to 

employ several ANNs, each of which would be trained with data from one 

frequency band. Each ANN would then determine if the loudspeaker should be 

accepted or rejected in that frequency band and the outputs from all the ANNs 

would be compiled into a vector of ANN responses that identified all of the 

frequency bands in which the loudspeaker’s rub and buzz measurement was
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above the test limits. This is illustrated in figure 7.25, which shows the data pattern 

split into 2 segments and fed to 2 ANNs for simplicity. In the actual experiment the 

frequency range was split into 5 bands with the data pattern divided as evenly as 

possible between them (this was 3 bands with 10 data points and 2 bands with 9 

data points). Training data sets were compiled from all rejected loudspeaker data 

patterns, including gross rejects, as there were very few rejects in some frequency 

bands with values below the boundary used previously (the limits + 6a). The mean 

was removed from the data patterns, although this may not have normalised some 

of the gross reject data patterns. The training sets contained 2000 loudspeaker 

data patterns each, half of which were rejected in the appropriate frequency band 

and half of which were accepted. The validation sets contained 400 loudspeaker 

data patterns, which also consisted of half rejected and half accepted data patterns 

in the appropriate frequency band. The validation results for each network are 

shown summarised in table 7.18.

Table 7.18 -  Results for multiple ANN training sessions

Frequency

band

Training 

rms error

Validation 

rms error

Classification 

accuracy/%

1 0.187 0.170 100

2 0.293 0.301 98

3 0.276 0.227 99.5

4 0.401 0.261 99

5 0.249 0.273 98

In order to determine the effectiveness of the 5 networks acting as a single 

classification system, all the available rejected loudspeaker data patterns were split 

into the 5 frequency bands and passed through the networks. From the network 

outputs an output vector was derived which indicated in which frequency bands the 

loudspeaker was above the test limits. This vector was compared to that derived 

from the end of line test output and the correlation between the two determined. 

This is illustrated in table 7.19.
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Table 7.19 -  Correlation of output vector between EOL test and ANN

Number of 

frequency 

bands

Correctly 

classified /

%

5 49.8

4 or more 84.8

3 or more 97.2

2 or more 99.7

1 or more 100

It should be noted that some of the data patterns used here were also used in the 

training sets, however the majority of the data patterns were previously unseen by 

the networks.

The results above illustrate that this method of frequency band analysis was a 

considerable improvement upon the single ANN method as there is good 

correlation between end of line test results and ANN output. There is also a 

substantial increase in sophistication in the system in the form of the output vector 

which describes the state of each of the frequency bands, where the single ANN 

system was limited to data patterns that were rejected in only one or two adjacent 

frequency bands.

This method could be developed further to incorporate a larger number of smaller 

frequency bands which could target frequency ranges where specific faults are 

known to exhibit. The limitations to this are the decipherability of loudspeaker 

faults through frequency analysis.

7.10 Analysis of inordinate output values

7.10.2 Statistical analysis

In all experiments several data patterns in the validation set produced significantly 

inordinate output values. Several statistical techniques were employed to
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determine what differentiated these patterns from those whose output did fall within 

the correct range including:

■ mean of the data pattern,

■ mean of the frequency bands,

■ high value search -  the data patterns were checked for any higher than

normal values which may have affected the ANN output. This did not result

in any explanations; all the data patterns had been preprocessed to ensure 

they did not have values above the limits plus 6a,

■ standard deviation of data pattern -  to determine if the variation in the data 

pattern was greater than normal,

■ cross-correlation -  between two data patterns, one classified correctly (i.e.

the output value corresponds to the frequency band in which it has values

above the test limits) and one classified incorrectly. The correlation 

coefficient was compared to the coefficient generated by two data patterns 

that were both classified correctly,

■ Euclidean distance -  the inverse of the Euclidean distance between two 

data patterns gives a measure of the similarity of the two data patterns.

One example, taken from the dual frequency region reject network (see section 

7.9.4), will be given here to illustrate the process. A data pattern, to be referred to 

here as A, had values above the limits in region 2 (450-630Hz) and region 3 (280- 

425Hz), the desired ANN output value was therefore between 5.5 and 8.5, however 

the actual output value was 11.46. Pattern A had one value above the limits in 

region 2, and 3 values above the limits in region 3. A comparison was made to two 

other data patterns with the same number of values above the limits in the 

corresponding regions; these will be referred to here as patterns B and C. The 

data patterns are shown in figure 7.26.
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Figure 7.26 -  Data patterns under investigation 

7.10.2.i Mean of data pattern

The mean value of patterns A, B and C are shown in table 7.20.

Table 7.20 -  Mean values

 A
 B

C

Pattern Mean

A 9.07x10 2

B 8.87x10 2

C 8.98x10 2

As can be seen from table 7.20, the mean value of pattern A is slightly higher than 

B and C. This is consistent with other data patterns with inordinate values that 

were investigated, however in all cases the difference was small and it has not yet 

been determined if this is the sole explanation for the extreme ANN output.

7.10.2.U Mean of frequency bands

The mean value of the whole data pattern may not be entirely representative as the 

pattern contains relatively large values at the lower frequencies which may obscure 

any information which exists at the higher frequencies, hence a mean was taken of 

each of the frequency bands, as shown in table 7.21.
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Table 7.21 -  Mean of individual regions
Pattern Band 1 Band 2 Band 3 Band 4 Band 5

A 2.90x1 O'2 7.61x10"2 8.16x 10"2 9.00x1 O'2 2.11x 10'1

B 3.84 x 10-2 8.34x1 O’2 8.16x 10“2 7.03 x10“2 1.87x10“’

C 2.92 x 10-2 7.47x10“2 7.80x10“2 8.10x10"2 2.12x10“’

The means of the frequency bands show that pattern A does not contain 

consistently higher values than patterns B and C, the mean is only significantly 

higher in region 4, hence it would not be fair to conclude that pattern A has an 

inordinate ANN output value because its values are higher than patterns that 

returned the desired output value.

7.10.2.iii Standard deviation

The standard deviation is indicative of the degree of variation in the data patterns. 

The values for patterns A, B and C are given in table 7.22. It can be seen that 

pattern C has the greatest variation and pattern B the lowest, hence no conclusion 

can be reached from this information.

Table 7.22 -  Standard deviations
Pattern Standard Deviation

A 8.52 x10“2

B 7.23 x10“2

C 9.13x 10“2

7.10.2.iv Cross-correlation

It was anticipated that a cross-correlation calculation may perceive more subtle 

differences in the data patterns as it compares the data value by value. It was 

expected that there would be a lower correlation between pattern A and B, and A 

and C than between patterns B and C. The cross-correlation values are shown in 

table 7.23.
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Table 7.23 -  Cross-correlation values
Pattern Combination Correlation Coefficient

A and B CD CD X o i

A and C 9.73x10"’

B and C loXr̂-CD

It can be seen from table 7.23 that the correlation coefficient for patterns A and B 

was actually higher than for patterns B and C. This was not the case for every data 

pattern investigated, several had a clear difference, however this is obviously not a 

universal explanation for the disparity between end of line test and ANN output.

7.10.2.V Euclidean distance

The Euclidean distance calculation gives a value corresponding to the difference 

between two data patterns:

cf(x„xy) = ||x( - x y|| =

where x ik and x //(are the kth elements of the data patterns x, and xy respectively.

Hence a measure of similarity is given by the inverse of the Euclidean distance.

The Euclidean distances and similarity coefficients for data patterns A, B and C are 

given in table 7.24.

Table 7.24 -  Euclidean distances and similarity coefficients
Data Pattern Euclidean Distance Similarity Coefficient

A and B 0.141 7.077

A and C 0.146 6.855

B and C 0.182 5.482

m
X ! , \ X ik ~  X j k )
/c=1 (7 H a v /k in  (1 QQQ\

It was anticipated, as with the correlation coefficients, that there would be a lower 

similarity between pattern A and B, and A and C than between patterns B and C, 

as the latter both returned similar values when presented to the ANN, however, the 

results do not support this hypothesis. It can be seen from table 7.24 that the 

similarity coefficients depict the data slightly differently to the correlation
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coefficients; the similarity coefficients are higher for A and B, and A and C, than for 

B and C.

7.10.3 ANN training analysis

As no definitive explanation was determined through the statistical analysis of the 

ANN’S output, an investigation into the data used to train the ANN was performed. 

The aim of the investigation was to determine if the reason for the ANN 

misclassifying loudspeaker data patterns was due to the content of the training 

data set. 16 training data patterns with extremely similar values to that of a 

validation data pattern that had been misclassified by an ANN trained in section 7.8 

(a basic accept/reject ANN) were selected. The training data patterns were 

presented to the network and their desired and actual output values were 

examined. This ascertained that the network was extremely consistent in its 

output. Of the 16 data patterns, 4 were classified by the EOL test as accepted and 

the remainder as rejected, however, the network classified all of the patterns as 

rejects, with the output value returned by the network varying by less than 1 per 

cent. This is illustrated in figure 7.27.
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Figure 7.27 -  ANN output

When the data patterns were examined it was ascertained that the rejected 

loudspeaker data patterns had just a single value slightly above the limits, with all 

other values extremely similar to the accepted loudspeaker data patterns, this is 

illustrated in figure 7.28.
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Figure 7.28 -  Data patterns under investigation

It is therefore proposed that the reason for misclassification of certain loudspeaker 

data patterns by the ANN is due to conflicting training data. In this example, of 16 

extremely similar data patterns, the majority, 12, had an output relating to rejected 

loudspeakers and only 4 relating to accepted loudspeakers, the network was 

therefore trained to recognise all these data patterns as rejects.

7.11 V a l id a t io n  o f  ANN w it h  d a t a  v e r if ie d  b y  a n  e x p e r t  l is t e n e r

A validation data set was compiled with data from loudspeakers that had been 

listened to by an expert listener from Harman/Becker. The loudspeakers were 

tested using SOUNDCHECK™ 4.1, and the result verified by the expert listener. 

Each loudspeaker required considerable time to evaluate, therefore, as the expert 

listener had limited time available, the data set contained only 24 data patterns. 

The rejected loudspeaker data patterns were predominantly gross rejects, as this is 

the most common mode of failure experienced on the production line. The ANN 

used in this experiment was trained with the default parameters described in table

7.3 of section 7.8.

10000

Frequency LIMITS
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Figure 7.29 -  Validation results for expert listener verified data

The ANN was not trained with gross rejects, however the network classified 22 of 

the 24 data patterns (92 per cent) correctly, as shown in figure 7.29. The 

magnitude of the majority of the data pattern’s outputs were significantly larger than 

that generated by rejected data patterns with values close to the limits, as the 

magnitude of the values in the data patterns were significantly larger. The 

configuration of the ANN weights was such that it could still generate the 

appropriate negative output to classify the rejected data pattern correctly, despite 

the increased magnitude of values in the data pattern.
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8 S ummary and  D iscussion

8.1 Lo u d s p e a k e r  m o d e l l in g

8.1.1 Modelling strategy

i. The extent to which the reduction of nonlinearities can be perceived by 

the listener will determine the degree to which it is economic to remove 

the distortion.

ii. Due to the consecutive occurrence and mutual interaction of nonlinear 

components, the modelling of the nonlinearities singularly and 

independently of one another would not be an optimum approach. The 

proposed ANN model should incorporate the cumulative effects of all 

the nonlinearities present in the frequency and amplitude range, as 

well as any interactions between the nonlinear elements, which may 

not be assimilated by individual parameter models, assuming that it 

has been trained with sufficient data to be able to generalise to this 

extent.

iii. The proposed method is a genuinely black box technique that does not 

require prior knowledge of any parameters and can therefore be 

applied universally.

iv. The aim was to update the model at regular intervals during operation 

in order to incorporate developments in the transfer function that occur 

over time.

v. In order to employ the ANN distortion reduction scheme the system 

would be transferred on to a processor chip, which could then be 

incorporated in to the loudspeaker amplifier circuit. For it to be feasible 

to use a processor chip, the ANN must be relatively compact, so that a 

small, cost effective processing unit may be used. Large ANNs would 

seriously compromise the processing speed of a chip.
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8.1.2 ANN training data

i. The acquisition of training data through excitation with a music signal

was necessary in order to facilitate the adaptation of the ANN model to 

alterations in the loudspeaker transfer function during operation. Using 

a different form of excitation signal, such as a sine sweep or white 

noise would interrupt the performance of the loudspeaker, which would 

be unacceptable to the listener who should be completely unaware of 

the linearisation process.

ii. Options considered for compiling training data for model updates 

included:

• generating a new training set for each training session;

• accumulating the most nonlinear data over the period of 

loudspeaker operation;

. accumulating data relating to the full frequency and amplitude range 

of the loudspeaker;

. using data measured real-time to continuously update the ANN 

weights.

iii. The only preprocessing applied to the input/output signal was a

conversion from millivolts to volts, in order to reduce the magnitude of 

the ANN inputs in line with the magnitude of the initial values of the 

weights. This is an extremely simple preprocessing sequence in 

comparison to many linearisation schemes, for example (Low, 

Hawksford, 1993) derive cone displacement from the back emf signal 

through numerical integration which requires the knowledge of several 

system parameters. Reducing the required preprocessing simplifies 

implementation and also reduces processing time, hence reducing 

delay between input and loudspeaker output.

iv. Decreasing the amount of data preprocessing reduces the computing

power and thus the size of the processing chip required by the system.

This therefore makes the system more commercially viable.
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v. Signal measurements were subject to noise, with low amplitude 

measurements being particularly susceptible. It was observed that 

below 4.0mV the amplitude was almost indiscernible from the noise in 

the signal. A comparison of ANN performance resulting from a training 

session with a training set that contained a full range of amplitude data 

and one where the low amplitude, noisy data was removed showed 

little advantage in removing the noisy data, the ANN appeared to be 

able to generalise so as not to be affected by the inclusion of the noisy 

data.

vi. The loudspeaker input/output signal had to be compressed in order to 

facilitate ANN training over the target time period. This inevitably led to 

the loss of information contained within the signal.

8.1.3 Model optimisation

i. Two ANN structures were considered over the course of this 

investigation, the Multi Layer Perceptron (MLP) feedforward network 

and the Elman recurrent network. It was a relatively straightforward 

process to modify the back propagation MLP C++ code to 

accommodate the Elman network algorithm.

ii. Each of the network parameters, along with algorithm modifications, 

were investigated in order to determine the configurations where 

correlation between model output and actual loudspeaker output was 

optimised.

iii. All ANN models responded well to low amplitude input data, as the 

loudspeaker transfer function approaches linearity in this region, 

however with higher amplitude input the loudspeaker response was 

more nonlinear and thus it was in this region that the models’ 

performances could be discriminated. The validation data set therefore 

contained only high amplitude data.
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8.1.3.i Multi layer perceptron

i. The optimum ANN topology was determined to be 12 neurons in the 

first hidden layer and 5 in the second hidden layer. Significantly 

increasing the size of the ANN architecture did not significantly improve 

performance, and therefore could not justify the considerably increased 

training times required for such architectures.

ii. The results of the investigation into ANN topology confirm the assertion 

by Miller, (1999) that the performance of the ANN model is subject to 

the suitability of the network architecture to model that particular 

system.

iii. The investigation into the optimum number of training epochs 

determined that although the rms error value calculated for the training 

set consistently decreases as epoch number increases, the validation 

data rms error begins to increase again after 1 x 104 epochs. This is 

due to a phenomenon known as overfitting. It is therefore unbeneficial 

to train the ANN beyond 1 x 104 epochs.

iv. Loudspeakers are dynamic systems and thus an input-output model 

requires past inputs and outputs in order to predict the new system 

output. The optimum number of previous inputs and outputs was 

determined to be 3. This was a smaller vector than was expected and 

may be due to the low nonlinear content of the training data. The 

optimum training data format was found to be int, outu, outt-2,...outt-4, 

int-i, int-2l...int-4.

v. The momentum term did not significantly affect the rms values, 

however, a momentum value of 1 x 10'3 resulted in a marginally lower 

validation rms error.

vi. Despite achieving the lowest rms error of the investigation, the ANN 

with a learning rate of 1 x 10'3 reached a local minimum that it could 

not escape within the training period. Therefore, 1 x 10*3 was not 

considered the optimum value for the learning rate; the next best
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result, 1 x 10'6, was sufficiently lower to reduce the possibility of the 

weights becoming trapped in a local minimum and not too low to 

adversely affect the rate of convergence.

vii. It was ascertained that a logarithmic relationship existed between 

training set size and validation rms error. The best performing ANN 

was therefore that trained with the largest training set employed in this 

investigation, 5 x 104.

viii. The most suitable method of training data selection was determined to 

be extract subsets from the whole data set available. It was 

ascertained through Fourier analysis that information in the data set 

was lost during re-sampling, therefore this method was unsuitable, and 

that using a large data set over fewer training epochs reduced the 

modelling performance of the ANN.

8.1.3.ii Modified Elman

i. As with the multi layer perceptron, the optimum architecture for the 

modified Elman network was not the largest, but that which was most 

compatible with the loudspeaker system. This was determined to be 3 

neurons in the hidden layer (and therefore context layer).

ii. The investigation into the optimum number of training epochs 

determined that significant improvements in the ANN performance can 

be achieved by increasing the number of training epochs up until 

approximately 1 x 102 epochs, however the gain in ANN performance 

beyond this point constantly decreases. Therefore, there is little 

benefit in extending the training session beyond 5 x 103 epochs, 

especially when the significantly prolonged training period is 

considered.

iii. The default number of training epochs was set at 500. This was due to 

time restraints resulting from the extremely slow execution rate of the 

original modified Elman algorithm C++ code. The C++ code was
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altered to execute significantly more efficiently during the investigation 

discussed in section 6.2.

iv. A context layer self-feedback gain (a) value of 0.3 was found to 

produce optimum ANN performance.

v. The investigation ascertained that the momentum value does not 

significantly affect the minimum validation rms error values until it is 

above 1 x 10*1. The optimum value was 7.5 x 10‘1.

vi. The stability of the network can be improved by employing a lower 

learning rate for the weights connecting the context layer to the hidden 

layer, thus reducing the rate of change of the weights that control the 

feedback. Experiments were conducted investigating a large number of 

learning rate combinations. It was determined that the stability of the 

training process was highly dependent upon the learning rate values 

and only one combination of those investigated resulted in a constantly 

decreasing training and validation rms error over the 500 epoch 

training period. The value for the context layer learning rate was 

1 x 10'6 and for the rest of the network 1 x 10‘5.

vii. The investigation into training set size determined that the relationship 

between training set size and validation rms error value is best 

approximated by a power series in this case.

8.1.3.iii Optimum Configurations

i. Networks were trained with the optimum parameter values determined 

during the investigation. The optimum values for training set size and 

number of epochs were determined to be those where the gain in 

increasing the value further was outweighed by the increase in the 

training period.

ii. The validation rms error for the modified Elman network was 0.0591, 

the lowest achieved thus far, as would be expected with the use of an 

optimum parameter configuration, however, in the case of the multi 

layer perceptron, lower validation rms error values were achieved with
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alternative configurations. The lowest rms error achieved for the multi 

layer perceptron was 0.0129. This substantiates Miller’s (1999) 

assertion that there exists an interaction between ANN parameters, 

therefore determining the optimum parameter configuration is not a 

simple case of identifying suitable parameters individually.

iii. Further experiments to investigate the interaction of ANN parameters 

may result in an improvement in achievable ANN performance.

iv. Chang et al (1994) utilised 100 units in the tapped delay line preceding 

the neural network input layer. In conjunction with 30 neurons in each 

of the two hidden layers, when modelling the combined transfer 

function of loudspeaker and room acoustics, a training rms error value 

of 0.0031 was achieved. However, no evidence was presented of the 

model’s performance with previously unseen data and therefore the 

ANN weights being overfitted cannot be discounted, also large 

numbers of neurons in the hidden layers were used together with 

significantly more previous inputs and outputs in the input layer 

compared to that used in this investigation

8.1.3.iv Nonlinearity identification capability of ANN model

i. The validation rms error implied that there was good correlation

between ANN model output and actual loudspeaker output, however, 

to confirm that the ANN model had identified the nonlinearities in the 

loudspeaker transfer function, an analysis of the data was performed 

using Pearson’s Product Moment Correlation Coefficient (R2). 

However, it was determined that the vast majority of the nonlinearity in 

the training and validation data sets occurred in the low amplitude 

regions, which was considered more likely to be caused by 

measurement noise rather than actual nonlinear behaviour of the 

loudspeaker. Therefore this investigation gave little insight into the 

performance of the ANN model in identifying nonlinearities.
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8.1.3.v Frequency response of ANN model

i. In order to evaluate the ANN model’s frequency response curve, the

output of the best performing multi layer perceptron and modified 

Elman ANN models was analysed using Mathworks MathCAD 11 

Fourier transform function.

ii. The frequency response of the best performing multi layer perceptron

model resembles a low pass filter. However, the response of the

actual loudspeaker more closely resembles a band-pass filter, with the

response increasing significantly at the lower frequencies and slowly 

diminishing at higher frequencies. Also, the frequency response 

generated by the multi layer perceptron model is considerably flatter 

than the actual loudspeaker response.

iii. The frequency response curve discussed above was generated using 

a 5v input. Further frequency response curves were generated to 

determine the response of the models to input amplitudes not present 

in the training data. The maximum input amplitude in the training data 

was approximately 25v, therefore the model’s response to a 20v input, 

just below the threshold and to a 50v input, well above the threshold 

was tested. The response of the model at higher input amplitudes is 

clearly significantly different to that at lower input amplitudes.

8.1.3.vi Distortion measurements from ANN model

i. The distortion curves generated from the best performing ANN models 

showed significantly lower levels of distortion than were measured from 

the actual loudspeaker.

8.1.3.vii ANN Training with Nonlinear Data

ii. In the case of the multi layer perceptron, significantly improved 

modelling performance of the loudspeaker frequency response and 

harmonic distortion was achieved when the most nonlinear data were 

selected as training data, however the modified Elman network showed 

no improvement. Implementing nonlinear data selection in practice
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may be complicated, however, it is likely that the loudspeaker will 

present more nonlinear behaviour as the operating period progresses, 

thus making it unnecessary to actively select the most nonlinear data.

8.1.4 Algorithm development

8.1.4.i Multi layer perceptron with time delay dependent input 

weightings

i. It is logical that the most recent input and output values will have a

greater influence on the loudspeaker’s behaviour, and also that inputs 

will have greater significance than outputs. It is therefore proposed 

that the multi layer perceptron ANN input pattern should be weighted in 

order to reflect this. The inputs and outputs were multiplied by an 

exponentially decreasing coefficient between 0 and 1, and the outputs 

multiplied by a further constant coefficient between 0 and 1. This would 

provide some rating of importance to the data. The validation rms 

achieved using the best performing parameter configuration 

determined for the multi layer perceptron in section 5.3 was 0.034. It 

was therefore concluded that time delay dependent weightings did not 

improve the multi layer perceptron’s performance.

8.1.4.H ANN training duration

i. The project aim was to realise a model update rate of 5 minutes. This 

necessitated that each subsequent ANN model be trained within those 

5 minutes.

ii. The optimum network architectures described in section 5.3 were 

employed during this investigation and tests were conducted to 

ascertain a suitable compromise between the number of training 

epochs and the training set size in order to optimise the network 

performance over a training period of five minutes.

iii. Two approaches to weight initialisation were investigated:

• Randomly initiating the ANN weights.
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• Initiating the ANN weights to previously trained values.

The previously trained weights were those resulting in the best 

performing ANN model for the multi layer perceptron and modified 

Elman network architectures, as discussed in section 5.3.

iv. It was observed that the performance of both architectures was 

significantly improved relative to the performance of randomly initiated 

weights when the weights were initiated to previously trained values.

v. However, the data used in this experiment was collected over a 

relatively small time period, which may limit the conclusions that may 

be drawn from the results. It is possible that over longer time periods 

the response of the loudspeaker will alter more radically and thus 

substantially larger alterations to the weights will be required, which 

may be more difficult to achieve over the target training period.

vi. Despite this it is anticipated that there would be greater advantage in 

utilising previously trained weight values, as they are likely to be closer 

to an effectively performing configuration than weights that are 

randomly initiated.

vii. The optimal ANN parameter configuration for the original training 

session may be different to that for a subsequent training session, for 

example it may be beneficial to employ a higher learning rate so as to 

increase the influence of each training sample upon the ANN weights 

when the training set is significantly smaller, as required for a 5 minute 

training period. Alternatively, it may be beneficial to decrease the 

learning rate in order to prevent the overfitting of the ANN weight to the 

new data set, which may result in the loss of good generalisation 

performance of the ANN model.

viii. Several of the multi layer perceptron ANN parameters were adjusted, 

including the learning rate and momentum term, in order to determine 

their effect upon the training results with the aim of improving the ANN
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model performance after the second training session. However, no 

improvement in ANN performance was achieved.

ix. Training times are derived from ANN’s trained using a PC with a 

1.5GHz Pentium 4 processor. The training times using a Digital Signal 

Processing (DSP) chip may vary significantly.

x. Improved performance may be achieved if the default model to which 

the ANN weights are initiated to is trained with data derived from sine 

sweeps.

xi. The data used to train the ANN models in these experiments were 

measured over a 4 second period of loudspeaker operation. It is 

anticipated that subsequent training sessions with data measured over 

a longer time period, or at a time significantly removed from that at 

which the original training data were measured may alter the results 

discussed above considerably. The second training set above 

contained relatively similar data to that of the first training set therefore 

the second training session required relatively small alterations to the 

weights in order to accommodate the new data set. Data collected 

over a larger time scale may vary more significantly and therefore 

require appreciably larger alterations to the weights, which may be 

difficult to accommodate over the required training period.

xii. The effects of time dependent nonlinear parameters will develop 

progressively over time as discussed in section 2.4.2. In this case the 

model will incorporate these changes in the transfer function if trained 

online or at regular intervals. However, in the case of a sudden, 

significant change in the loudspeaker output, such as that caused by a 

change in volume level, (input voltage is proportional to volume level), 

the ANN model may not be able to adjust to an acceptable accuracy in 

a short period of time, resulting in significant distortion in the 

loudspeaker output. The nonlinearities in the loudspeaker output will 

be more pronounced at higher volume levels as the required cone 

excursion will be greater. Tests were run to determine the ANN
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model’s reaction to a substantial change in input signal amplitude. It 

was determined that the frequency response of the ANN model was 

significantly altered, however, it is likely that this would also be the 

case for the frequency response of the actual loudspeaker. Several 

options were considered to overcome the possible distortion resulting 

from a significant change in loudspeaker level, including increasing the 

model update rate in order to reduce the period where increased 

distortion levels are experienced, or triggering a model retrain when a 

change of level is detected. However, at the current network training 

speed, there would be a significant period of time where the 

loudspeaker could be distorted as the active model is erroneous in 

respect to the current level. It is likely that the continuous training 

algorithm (see section 6.3) will be the most able to overcome a change 

in level in a reasonable time scale, assuming the learning rate is large 

enough to incorporate these changes in loudspeaker behaviour in the 

model.

8.1.4.iii Online training

i. As mentioned in section 3.4.6, the modelling of the loudspeaker 

transfer function using ANN’s has already been accomplished; the aim 

of this project was to develop a method of training the ANN to a 

satisfactory level of performance over a short time period so as to 

accommodate the time variant parameters of the loudspeaker transfer 

function in the model. A linearisation scheme based upon such a 

model would theoretically reduce distortion more efficiently, as the 

model would be a closer approximation to the loudspeaker’s current 

behaviour than that of a generalised model.

ii. The target training time period was 5 minutes. Two methods were 

considered to update the model active in the linearisation scheme 

during this period. The first method was to continuously update the 

ANN weights with errors generated from every sample measured real­

time, with each sample used only once. The second method was to 

train the ANN with a selected training set over a number of epochs and
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therefore longer training periods, up to the full five minutes, with the 

new model becoming operative in the linearisation scheme at the end 

of the training period.

iii. It was considered necessary to include some degree of validation in 

the algorithm to reduce the possibility that the ANN model diverges 

from actual loudspeaker response, as this may result in the 

linearisation scheme introducing additional distortion to the 

loudspeaker output. The method proposed performs a validation 

calculation using data measured concurrently with the training sample 

after every weight alteration to determine if the ANN model 

performance has been improved by the alteration. If the ANN 

performance is not improved the previous weight configuration remains 

active in the linearisation scheme.

iv. Superior results were achieved when several training epochs were 

employed before the ANN weights were updated, rather than 

continuously updating them.

v. The modified Elman network had a significant advantage of speed of 

training, therefore a substantially larger training set could be employed 

over the 5 minute training period, hence the larger reduction in the rms 

error. However, the multi layer perceptron had a significantly lower 

validation rms error overall, hence may be considered the more 

effective of the two ANN architectures.

8.1.5 Further comments

i. Validation rms error varied considerably depending upon the content of 

the validation set, however, the relative difference between the 

validation rms error for each training session remained reasonably 

consistent.

ii. It has been determined that ANN models result in good correlation 

between modelled loudspeaker output and actual measured output, 

particularly over longer training periods. However, the ANN model
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does not only comprise of the loudspeaker transfer function, it also 

incorporates the transfer functions of all the elements between the 

amplifier and the voltmeter measuring the resultant back emf, including 

wires and resistors. These elements may also not behave completely 

linearly, hence even the most accurately trained ANN model will 

include some nonlinearities not actually present in the loudspeaker, 

which will contaminate the signal and may result in the addition of 

distortion to the loudspeaker output. However, so long as there is a 

net reduction in output distortion, this could be tolerated.

iii. The application of techniques such as Digital Signal Processing (DSP) 

may significantly enhance the results obtained during this project and 

should be considered in any further work.

iv. The ANN’s ability to learn has previously been established through the 

use of relatively small, specifically selected training sets. Liu, (1993), 

used 400 training samples to train modified Elman ANNs to model 

nonlinear functions, Kalayci, Ozdamar, (1995) used 1200 training 

samples with specific characteristics when training a multi layer 

perceptron to recognise spikes in electroencephalogram (EEG) 

waveforms, (Watton, Xue, 1997) used 1000 training samples to model 

fluid power systems. The considerable amount of information 

contained within a larger training set, (especially if some of the data 

conflicts, such as two identical inputs resulting in two different output 

measurements), may be detrimental to ANN learning, as the nonlinear 

characteristics it would be desirable for the ANN to extract from the 

data may be masked by the large volume of data with linear 

characteristics. However, this is unavoidable in a fully automated 

system, and unless filtering of nonlinear data were employed as 

mentioned in section 4.5.2.b, the training set must be large enough to 

ensure the inclusion of some nonlinear data and small enough so that 

this data is distinct enough to be learnt by the ANN.

v. Chang et al, 1994, used 1 x 104 training samples derived from white 

noise when modelling the combined transfer function of loudspeaker
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and room acoustics, however, large numbers of neurons in the hidden 

layers were used together with significantly more previous inputs and 

outputs in the input layer compared to that used in this investigation, 

which attained good validation results.

vi. In their ANN model of a loudspeaker Low, Hawksford, (1991) used 

constant input amplitude, (specifically chosen to ensure maximum 

cone excursion), sine wave tones swept over the frequency range of 

the loudspeaker, thus ensuring fully representative training data, along 

with significant preprocessing, to attain the ANN training signal. It 

would not be possible to apply this method to a practical system as the 

only signals available would be music signals.

vii. Alternative ANN architectures may also result in improved modelling 

performance. Watton, Xue, (1997), ascertained that training times for 

multi layer perceptrons may be long when large training patterns are 

employed and system noise is present, and poor dynamic modelling 

performance was achieved, particularly with previously unseen 

validation data.

8 .2  Fa u l t  d e t e c t io n

8.2.1 End of line test

i. Once production is complete the loudspeakers are tested and those 

that fail the test are discarded. Various parameters are measured, 

those of interest in this project were frequency response and audible 

harmonic distortion (rub and buzz).

ii. Loudspeaker faults caused during production can be generally 

categorised as mechanical, chemical or placement asymmetry. These 

faults are further sub-categorised into 82 possible diagnoses by 

Harman/Becker.
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8.2.2 Initial data analysis

i. Initial analysis of the frequency response data patterns ascertained 

that a number of the patterns contained extreme values (minus infinity). 

Attempts to train an ANN with such data patterns resulted in an ANN 

that could not adequately classify them, furthermore, the classification 

accuracy of other data was also compromised. It was concluded that 

this was due to the corruption of the training process by the training 

patterns with extreme values. Longer training periods and a larger 

number of training patterns containing extreme values may produce an 

ANN that can classify these patterns more successfully. However, the 

classification of other data patterns may still be compromised. It was 

therefore decided to remove any data patterns with extreme values 

from the training set.

ii. It was decided during this project to focus training ANNs to emulate the 

rub and buzz test as indications from Harman/Becker suggested that 

improvements to the rub and buzz test were of more value than to the 

frequency response test.

8.2.3 ANN to emulate rub and buzz test

i. Initial experiments involved training ANNs with data from the end of 

line rub and buzz test in order to emulate the output of the rub and 

buzz test i.e. to provide an output that indicates whether the 

loudspeaker should be accepted or rejected.

ii. Each data pattern was assigned a desired response according to 

whether it had been accepted or rejected by SOUNDCHECK™ 4.1 

during the end of line test.

8.2.4 Data preprocessing

i. It is generally agreed that preprocessing the ANN training data can

improve the ANN performance (Haykin, 1999).
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ii. Rejected loudspeaker data patterns that contained random, high level 

noise (defined as gross rejects) were removed from the training set in 

order to improve the uniformity of data patterns in the training set. 

These loudspeakers are easy to identify as rejects, and their inclusion 

in the training set significantly limited the ANN’s performance.

iii. The initial boundary used to categorise a gross reject was the p + 6ct.

iv. The method of preprocessing investigated was normalisation. The 

training results of two ANNs, one trained with a normalised data set 

and one with a data set that was not. The preprocessing made a 

marginal difference to the ANN output, which in fact was detrimental.

8.2.5 ANN optimisation

i. Investigations into the topology for optimum network classification 

accuracy revealed diminutive variation in classification accuracy 

between different network topologies and in several cases larger 

network topologies resulted in higher validation rms errors and lower 

classification accuracies than smaller networks. The increased training 

time required was therefore unjustified. The optimum topology was 

determined to be 48-60-5-1, as the optimum number of neurons in the 

first hidden layer was 60 and in the second 5, hence the optimum 

topology was taken to be a combination of these results.

ii. The training epochs investigation revealed that two optimum values 

existed -  one that optimised the validation rms error and one that 

optimised the classification accuracy. It was concluded that the 

classification accuracy was of more significance and therefore the 

optimum number of training epochs was determined to be 2 x 104.

iii. A momentum value of 5 x 10'1 significantly improved the ANN 

classification accuracy when compared to all other values tested. All 

other values resulted in the second term in equation (3.35) being 

orders of magnitude lower than the first term, thus rendering the 

second term insignificant in the training process.
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iv. The optimum learning rate was determined to be 1 x 10'5.

v. It was ascertained that the optimum training set size was 1 x 103. 

Larger training sets did not improve the validation rms or classification 

accuracy as anticipated. This may be because the extra data patterns 

in the larger training sets were significantly different to those in the 

validation set, hence the ANN is trained away from the optimum 

solution for the validation data.

vi. These results identify a possible limitation of ANNs in this application; 

increasing the range of data patterns in the training set may reduce the 

ANN’s ability to classify individual data patterns correctly i.e. improving 

the generalisation of the ANN may be at the cost of classification 

accuracy.

vii. The optimum training set size must therefore be that which provides 

the ANN with a suitable compromise between depth and breadth of 

knowledge. This may require the periodic retraining of the ANN in 

order to incorporate new production trends that develop over time and 

eliminate those that are no longer occurring.

viii. Rejected loudspeaker data patterns with extreme values were removed 

from the training set in order to improve the ANN’s performance when 

classifying data patterns with values closer to the test limits. The 

optimum boundary at which data patterns were excluded from the data 

set was determined to be the limits + 10ct.

8.2.6 Training times

i. The training time for the ANN with default parameters during the 

optimisation investigation was 2 hours.

8.2.7 Training data selection criteria

i. An analysis of training data patterns was conducted to identify

properties of the data that may be the cause of discrepancies between 

ANN and end of line test output. At this time during the project, the test
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limits were assumed to be in the region of the p + 3ct. However, the 

analysis revealed that there were a significant number of accepted and 

rejected loudspeaker data patterns with values that were above p + 

6a or below p + 3a respectively.

ii. Examination of the test limits and the method used to derive them 

determined that the test limits were significantly higher than the p + 3a 

for most frequencies. The test limits are actually derived from 3 initial 

production runs, where they are set to a level such that loudspeakers 

with audible distortion are rejected. These limits may then be modified 

at any time when a production trend develops that may have distortion 

levels above the limits but which is inaudible [Anthony, 2003].

iii. Examination of the test limit history revealed nine alterations over the 

data collection period, all of which were to raise the limits, resulting in 

loudspeakers that would previously have been rejected under the 

former limits being accepted under the amended limits. Therefore, if 

the test limits were raised to a level where the previously rejected 

loudspeaker would be accepted, the rejected data pattern could be 

almost identical to, or even have lower values than, an accepted data 

pattern recorded under the subsequent test limit version. Attempting to 

train an ANN with this conflicting data would inevitably lead to 

discrepancies in ANN output when compared to the end of line test 

results.

iv. The training data selection criteria was therefore modified to include all 

accepted loudspeaker data patterns and all rejected loudspeaker data 

patterns with all values below the limits + 6a. ANN classification 

accuracy was significantly improved.

8.2.8 Summary of ANN development

i. Figure 8.1 and table 8.1 show the improvements in ANN classification 

accuracy that have been made over the course of the research.
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Figure 8.1 -  Improvements in classification accuracy

Table 8.1 -  Key to developments in figure 8.1

Label Description

A No Preprocessing, No Data Selection

B No Preprocessing, Gross Rejects Removed

C Preprocessing, Gross Rejects Removed

D Data Selected from One Test Limit Version

E Change of Data Selection Criteria to Limits + 6a

F ANN Parameter Optimisation

ii. The maximum correlation of results between the ANN and EOL test for 

the accept/reject ANN was 98.5 per cent.

iii. An investigation was conducted to ascertain if the ANN could be more 

specific and give an output relating to the frequency at which the 

loudspeaker was being rejected, as this could be indicative of the 

loudspeaker’s defect.

iv. This resulted in a reasonable correlation between desired output and 

actual ANN output when the frequency range was split into three and

B C D E

Development
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five bands, and rejected data patterns with values above the limits in a 

single frequency band were used in the training and validation sets.

v. Experiments were conducted to ascertain optimum data configuration, 

frequency band allocation and desired output values. The results 

suggested that grouping one data pattern from each rejection band 

together, followed by one accepted data pattern with output values of 

equal increments between 2 and 12, where the frequency regions had 

been allocated by assigning an equal number of the available data 

patterns to each frequency band gave the lowest validation rms error 

values.

vi. Improving the sophistication of the ANN discussed above to 

incorporate loudspeaker data patterns with values above the limits in 

more than one frequency band resulted in a significant loss of 

accuracy.

vii. Employing multiple ANNs to produce a vector describing the frequency 

bands in which the loudspeaker was rejected resulted in a significant 

improvement in accuracy in comparison to the multiple output ANN. 

The output was also significantly more sophisticated as loudspeaker 

patterns with values above the limits in any combination of the 

frequency bands could be analysed by the multiple ANN system. This 

system therefore may be considered to be an improvement upon 

SOUNDCHECK™ 4.1.

viii. This method could be developed further to incorporate a larger number 

of smaller frequency bands which could target frequency ranges where 

specific faults are known to exhibit.

ix. However, a significant increase in precision was considered 

unachievable while using only total harmonic distortion data, due to the 

inseparability of signals relating to specific faults. A possible 

improvement would be to train ANNs to analyse distortion data from 

individual harmonics, instead of the total harmonic distortion that has
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been used here. There may be a greater possibility of diagnosing 

specific loudspeaker faults with this data.

x. Previously documented fault detection systems (Kalayci and Ozdamar, 

(1995), Foo et al, (2002)) generally do not employ large training sets; 

small training sets of fault targeted data are used to train the ANN. In 

the case of loudspeaker fault detection, there were a multitude of 

possible fault diagnoses, which did not necessarily produce separable 

characteristics in the total harmonic distortion curve which was used to 

train the ANN. Therefore, additional, or more fault specific data would 

be required in order to achieve this.

xi. However, it may be argued that employing ANNs may not be the 

optimum method; the technique of splitting the data pattern into 

frequency bands in order to obtain an output vector could be used in 

conjunction with a system such as SOUNDCHECK™ 4.1, which uses 

definite numerical limits, to better effect.

xii. It is questionable as to whether the degree of accuracy obtained during 

this investigation could be significantly improved upon. It has become 

evident that an ANN cannot be trained to decipher between a 

loudspeaker with just one value slightly above the audible distortion 

level and one that has no audible distortion. When training ANNs with 

this marginally dissimilar data, the ANN generalises to a degree such 

that the output for both cases is extremely similar. In this scenario the 

EOL test should have no difficulties discerning between the two 

loudspeakers, hence it is concluded that, although an unsatisfactory 

outcome, this research has determined that ANNs do not provide a 

superior method of determining whether a loudspeaker should be 

accepted or rejected than the current EOL test, SOUNDCHECK™ 4.1.

8.2.9 Analysis of Misclassified Data Patterns

i. Statistical analysis to determine what differentiated misclassified

loudspeaker data patterns from those that gave ANN output values 

close to the desired output did not result in any definite conclusions.

8-22



8 S u m m a r y  a n d  D is c u s s io n

ii. The data patterns were 49 point vectors. With such a large input

vector it is difficult to accurately ascertain the reason for discrepancies 

between actual and desired ANN output. The data patterns could vary 

significantly in a manner that was not picked up by the statistical 

analysis.

iii. Particular configurations of the data pattern may result in ANN 

misclassification. The ANN requires previous exposure to similar 

patterns in order to learn successfully and therefore produce correct 

outputs for previously unseen data patterns. If this was not the case 

and the particular configuration of data pattern was sufficiently different 

to any data pattern in the training set, or even that there were not 

enough examples of the data pattern in the training set, the ANN may 

not have learnt the desired output for that data pattern.

iv. Similarly, a data pattern may be misclassified if the ANN training set

contained a majority of similar data patterns with the opposite desired 

response.

v. An investigation into ANN training data determined that when 16 

training data patterns identified as having a similar degree of variation 

were presented to the previously trained ANN, the ANN outputs for all 

the data patterns were extremely similar, despite the EOL test 

classifying 4 as accepted loudspeakers and 12 as rejects. It was 

proposed that this result was obtained because the majority of the 

training data patterns were rejects, hence the ANN was trained to 

assign the most common output value to data patterns of this 

configuration.

vi. Therefore it is unlikely that the ANN can be trained to decipher EOL

rejects with only marginal audible distortion from accepted 

loudspeakers. Also, in the case discussed in section 7.10.3, the ANN 

had been trained to recognise the pattern configuration in question as 

a reject, which may not be the most suitable outcome.
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8.2.10 Validation of ANN with data verified by an expert listener

i. A validation data set was compiled with data from loudspeakers that 

had been listened to by an expert listener from Harman/Becker. The 

24 rejected loudspeaker data patterns were predominantly gross 

rejects, as this is the most common mode of failure experienced on the 

production line.

ii. The ANN was not trained with gross rejects, however the network 

classified 22 of the data patterns (92 per cent) correctly. The 

magnitude of the majority of the data pattern’s outputs were 

significantly larger than that generated by rejected data patterns with 

values close to the limits, as the magnitude of the values in the data 

patterns were significantly larger. The configuration of the ANN 

weights was such that it could still generate the appropriate negative 

output to classify the rejected data pattern correctly, despite the 

increased magnitude of values in the data pattern.

8.2.11 Further comments

i. The application of techniques such as Digital Signal Processing (DSP) 

and alternative ANN training algorithms may significantly enhance the 

results obtained during this project and should be considered in any 

further work.

ii. Throughout the course of this research it has been necessary to

assume that the end of line test classifies correctly, as only limited data 

have been available where the end of line test result has been verified 

by a trained human listener. Without physical testing and comparison 

loudspeaker by loudspeaker it is not possible to make definitive 

conclusions on the accuracy of the ANN, as these calculations are 

based upon the correlation with end of line test output.

iii. If greater confidence is considered necessary, data compiled

specifically for this purpose is required as the accuracy of the network
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is directly related to the accuracy of the data used in the training 

process.

iv. The ANN will have to be retrained at regular intervals in order to 

incorporate any new production trends and to exclude old trends that 

are no longer occurring.

v. Jack, Nandi (2000) used a Genetic Algorithm to dramatically reduce 

the number of inputs required by the ANN in order to classify bearing 

faults. The Genetic Algorithm identified the most significant features in 

the input data and these alone were used to train the neural network. 

This method not only reduced the size of the ANN required, but also 

significantly improved classification accuracy. A similar method may 

be beneficial in this application.
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9 Conclusion

A practical approach to loudspeaker transfer function modelling using musical 

excitation signals, continuously updated to incorporate time dependent 

nonlinearities has been developed. The approach is a genuinely black box 

technique that does not require prior knowledge of any parameters and can 

therefore be applied universally. The acquisition of training data through 

excitation with a music signal was necessary in order to facilitate the 

adaptation of the ANN model to alterations in the loudspeaker transfer 

function during operation. The incorporation of time dependent nonlinearities 

will reduce distortion more efficiently, as the model is a closer approximation 

to the loudspeaker’s current behaviour than that of a generalised stationary 

model. The model output showed good correlation to actual loudspeaker 

output. The modelling performance of the loudspeaker frequency response 

and harmonic distortion was also good when the most nonlinear data 

available were selected as training data for the model. However, the data 

used in this experiment was collected over a relatively short time period. It is 

possible that over longer time periods the response of the loudspeaker will 

alter more radically and thus substantially larger alterations to the weights will 

be required, which may be more difficult to achieve over the target training 

period of 5 minutes.

ANNs were also applied to loudspeaker fault detection. Initial experiments 

involved training ANNs with data from the end of line rub and buzz test in 

order to emulate the output of the test i.e. to provide an output that indicates 

whether the loudspeaker should be accepted or rejected. In order to develop 

the fault detection scheme an investigation was conducted to ascertain if the 

ANN could be more specific and give an output relating to the frequency at 

which the loudspeaker was being rejected, as this could be indicative of the 

loudspeaker’s defect. This resulted in a reasonable correlation between 

desired output and actual ANN output when the frequency range was split into 

three and five bands. Employing multiple ANNs to produce a vector 

describing the frequency bands in which the loudspeaker was rejected 

resulted in a significant improvement in accuracy in comparison to the multiple
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output ANN. The output was also significantly more sophisticated as 

loudspeaker patterns with values above the limits in any combination of the 

frequency bands could be analysed by the multiple ANN system. This system 

therefore may be considered to be an improvement upon the current end of 

line test.
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Term Definition
A arbitrary amplitude of cone displacement
B magnetic flux density
C ab compliance of the air in the enclosure
c * compliance of the suspension system

C mp compliance of combined centre and edge passive radiator 
suspensions

C ms compliance of combined centre and edge driver 
suspensions

CCD charge coupled device
dj{n) desired output of neuron j

eg, source voltage

r̂ms
root mean square error

ej (n ) . error between desired and actual output of neuron j

Fm suspension force factor

Hn nth order Volterra operator.
i voice coil current
k stiffness of the loudspeaker suspension
I length of voice coil

Le electrical inductivity of voice coil

m total number of inputs (excluding the bias) applied to neuron
j

m mass of the cone
M a p acoustic mass of port or passive radiator including air load
M mp mass of the passive radiator
M ms combined mass of the driver diaphragm and wire on the 

voice coil, and are the and the compliance and mechanical 
responsiveness of the combined centre and edge 
suspensions of the passive radiator respectively

n nth training data pattern
N number of samples in the training set

Pg acoustic driving pressure

Tab acoustic responsiveness due to internal energy absorption 
within the enclosure

F ab acoustic resistance due to internal energy absorption within 
the enclosure

Tal acoustic responsiveness due to losses caused by leakage

Ral acoustic resistance due to losses caused by leakage

Pap acoustic resistance of port or passive radiator losses
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Re dc resistance of driver voice coil

Rs output resistance of source

ru mechanical resistance due to dissipation in the air load

* * mechanical damping of loudspeaker system

Tmp mechanical responsiveness of combined centre and edge 
passive radiator suspensions

Tms mechanical responsiveness of combined centre and edge 
driver suspensions

Sd effective surface area of loudspeaker diaphragm
SPL sound pressure level
t time
Vj(n) induced local field

Wji(n) synaptic weight connecting the output of neuron i to the 
input of neuron j

Wjc(") synaptic weight connecting the output of context unit c to 
neuron j .

Wj0 bias applied to neuron j

w* weight vector of an optimal solution
X displacement
y c(k) context unit activation

y,(n) signal at the output of neuron i

Z AS (S) impedance of the driver branch

%AB (S) impedance of the branch representing the enclosure interior

Z aa impedance of branch representing any enclosure apertures 
excluding that of the driver

a feedback gain of the self-connections
8j{n) local gradient

average error energy

e{n) total error energy
activation function

A momentum coefficient
rj learning rate coefficient
CO angular velocity
A Wj,(n) weight change from iteration n

V gradient operator
gradient operator of the average error energy function
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Identification Number Fault Description
1 Solder on coil
2 Adhesive on coil
3 Loose turns
4 Coil damage
5 Overwinding
6 Damaged former
7 Unstuck pucara paper
8 Oval coil
9 Unstuck coil to 0  C D
10 Mounting up incorrect
11 Butt solder joint faults
12 Centre termination faults
13 Tag/tagging
14 Damaged yoke
15 Front plate burred
16 Pole of centre to front plate
17 Unstuck suspension
18 Twisted 0  C D
19 Sunken 0  C D
20 Coil off centre
21 Dymax in gap
22 Moyen in gap
23 Filings -  plating
24 Filings -  magnet particles
25 Staking faults
26 Unstuck cone / surround
27 Unstuck surround / chassis
28 Damaged chassis
29 Chassis tizz
30 Tag tizz
31 P.C.I. (tilted or sunk)
32 Cone off centre
33 Damaged cone
34 Excess adhesive under cone
35 Adhesive in wrong position under cone
36 Two cones fitted
37 Two 0  C D’s fitted
38 Edge buzz
39 Excessive adhesive on speaker
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Identification Number Fault Description
80 Scrim faults
81 Bits under scrim
82 Supplier related reject speakers

A-7



APPENDIX 3 
MULTI LAYER PERCEPTRON 

C++ CODE

A-8



A p p e n d ix  3 M ulti La y e r  P e r c e p t r o n  C + +  C o de

Backpropagation NN for identification of MIMO system 
2 hidden layer, hyperbolic tangent active function

BPMLP1
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *^

#include <stdio.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <math.h>

#define RMS 1000
#define RN 5
#define RC 0 //l--recurrent, else dependent
#define TN 49996 //Training number
#define itera 5000
#define IN 9 //input number to buffer layer
#define ON 1 //output
#define LR 0 . 00001
#define MM 0 .001
#define Rlr 0 . 9 //Dynamic rate of learning rate
#define DegN 10 //degradation number
#define Nv 10 //Interval to show validation error
#define SC (2.4/IN)
#define TF "T 410 NLi training data 29-07-05 TN49996.txt"

//training data file
#define WGT "Bpwtl T NL 50-20-1 05-08-05.txt"

//trained weights
#define OWT "Bpwtl T NL 50-20-1 05-08-05.txt" //old weights
#define RMSF "Bprmsl T NL 50-20-1 05-08-05.txt"

//rms in training
#define nO IN //inputs to buffer layer
#define nl 20 //lst hidden layer neurons
#define n2 5 //2ed hidden layer neuron
#define n3 ON //output layer neuron
#define rmin (1.0e-09) //target
#define RM RAND MAX

static double wl[nl] [nO + 1],w2[n2] [nl+1],w3[n3] [n2 + l]; 
static double otO[nO] ,otl [nl] ,ot2 [n2] ,ot3 [n3] ,lr=LR,mm=MM, 
ym [n3 ] , er [n3] ;
static double pdwl[nl] [nO+1],pdw2[n2] [nl + 1],pdw3[n3] [n2 + l] ; 
static double dwl[nl] [nO + 1],dw2[n2] [nl+1],dw3[n3] [n2 + l], x;

void main()
{

char type; 
int i,j ; 
void learn();

FILE * fp;
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printf("Continue to train (c) or\n start to train (s)?\n"); 
type=getch(); 
i f (type=='s')

{
for(i=0;i<nl;i++) 

fo r (j = 0;j <n0 + l;j + + )
{
wl[i] [j]=SC*2.0*((double)rand()/RM-0.5) ; 
pdwl[i] [j]=0.0;
}

for(i=0;i<n2;i++) 
f or(j=0;j<nl+l;j++)
{

w2[i] [j]=SC*2.0*((double)rand()/RM-0.5) ; 
pdw2 [i] [j ] =0 . 0;

}

for(i=0;i<n3;i++) 
for(j = 0;j <n2 + l ;j + + )
{

w3 [i][j]=SC*2.0*((double)rand()/RM-0.5); 
pdw3[i] [j]=0.0;

}
printf("Start training now!\n");

}
else i f (type=='c ' )

{
fp=fopen(OWT,"r")/ 
for(i=0;i<nl; i++) 

fo r (j = 0;j <n0 + l;j ++)
{
fscanf(fp,"%le\t",&x); 
wl[i][j]=x; 
pdwl[i] [j]=0.0;
}

for(i=0;i<n2;i++) 
fo r (j = 0;j <nl + l;j ++)

{
fscanf(fp,"%le\t",&x); 
w2 [i] [j]=x; 
pdw2 [i] [j ] =0 . 0;
}

for(i=0;i<n3;i++) 
f o r (j = 0;j<n2 + l;j ++)

{
fscanf(fp,"%le\t",& x ); 
w3[i][j]=x; 
pdw3[i] [j]=0.0;
}
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fclose(fp);
printf("Continue training now!\n")/ 
}

else { printf("Stop!\n"); exit(O);} 
learn();

}

^ * * * * * * * * * * * * * * * * * * * * * * * * *  j
/ + * * * *  n e t  o u t  * * * * * * /

void net_out()
{

int i , j , k , 1; 
double sa,sb;

for(j =0;j <nl; j + + )
{

Otl [ j]=0.0;
for(i=0;i<n0+l;i++)

if(i<n0) otl [j]+=wl[j] [i]*ot0[i] ; 
else otl [j]+=wl[j] [i];

sa=exp(otl [j]); 
sb= 1.0/sa;
otl [j] = (sa-sb)/ (sa+sb);

}

for(k=0;k<n2;k++)
{

ot2 [k]= 0.0;
for(j = 0;j <nl + l ;j + + )

i f (j <nl) ot2 [k]+=w2[k] [ j]*otl[j] ; 
else ot2[k]+=w2[k][j];

sa=exp(ot2 [k]); 
sb= 1.0/sa;
ot2[k]= (sa-sb)/ (sa+sb);

}

for(1=0;l<n3;1++)
{

y m [1]=0.0;
for(k=0;k<n2+l;k++)

if(k<n2) y m [1]+=w3[1)[k]*ot2[k]; 
else y m [1]+=w3[1] [k] ;

}
}
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j  
/ * * * * * * *  T R A I N  * * * * * * * J

void train()
{

int i ,j ,k ,1;
double suml[nl] ,dtl [nl],sum2[n2],dt2[n2] ; 

for(1=0;l<n3;1++)
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for(k=0;k<n2+l;k++)
{

if(k==n2) dw3 [1] [k]=er[1]*lr+mm*pdw3[1] [k] /
else d w 3 [1] [k]=er[1]*lr*ot2[k]+mm*pdw3[1] [k] ;

}

for(k=0;k<n2;k+ + )
{

sum2[k]= 0.0;
f or(1=0;l<n3;1 + + ) sum2[k]+=er[1]*w3[1][k]; 
dt2[k] = (1.0+ot2 [k])*(1.0-ot2[k])*sum2[k] ; 
f or(j = 0;j <nl + l ;j + + )

{
i f (j ==nl)

dw2[k] [j]=lr*dt2[k]+mm*pdw2[k] [j ] ; 
else

dw2[k] [j]= lr*dt2[k]*otl[j]+mm*pdw2[k] [j] ;
}

}

for(j =0;j <nl;j + + )
{

suml[j]=0.0;
for(k=0;k<n2;k+ + ) suml[j]+=dt2[k]*w2[k] [j]; 
d t l [j] = (1.0+otl [j])*(1.0-otl[j])*suml[j]; 
for(i=0;i<n0+l;i + + )

{
if(i==n0)

d w l [j] [i]=lr*dtl[j]+mm*pdwl[j] [i]; 
else

d w l [j] [i]=lr*dtl[j]*ot0[i]+mm*pdwl[j] [i];
}

}
}

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
/ / S A V E  W E IG H T  

/ / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
void save_w()
{

int i ,j ;
for(i=0;i<n3;i++) 

for(j =0;j<n2 + l ;j + + )
{

w3 [i] [j ] +=dw3 [i] [j] ; 
pdw3 [i] [j ] =dw3 [i] [j] ;

}

for(i = 0;i<n2;i++) 
for(j =0;j<nl + l ;j ++)
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{
w2 [i] [ j ] +=dw2 [i] [j ] ; 
pdw2[i][j]=dw2[i][j];

}

for(j =0;j <nl;j + + ) 
for(i=0;i<n0+l;i++)

{
wl [ j ] [i] +=dwl [j ] [i] ; 
p d w l [j][i]=dwl[j][i];

}
}

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j  
/****** LEARN * * * * * * * J

void learn()
{

unsigned int i;
int j, flaga=0, flagb=0;
double r,y[ON], errorN, errorD,yt;
double yn[RN],e ,ey,rms=RMS;
unsigned long int k;
FILE *fi,*fp,*fb;

fi=fopen(TF,"r"); 
mm=MM;
for(k=0;k<itera; k++){ 

e=ey=0.0; 
rewind(fi);

for(i=0;i<TN;i++) {
for(j=0;j<IN+ON;j++) {

fscanf(fi,"%le\t",&x); 
i f (j <0N) y [j]=x; 
else ot0[j-ON]=x;

}
if(RC==1)

i f (i>=RN)
for(j = 0/j <RN;j ++)

otO [j ] =yn [j ] ;
net_out();

if(RC==1) {
for(j=RN-l;j>0; j--) 

yn [j ] =yn [j -1] ; 
yn [0] =ym [0] ;

}
f or(j = 0;j <ON;j + + )

er [j] =y [j] -ym[j] ; 
train();
if(i<TN-l) save_w()/ 

f or(j = 0;j <ON;j ++) {
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e+=(y[j]-ym[j])*(y[j]-ym[j]); 
ey+=y [j ] *y [j ] ;

}
}

r=sqrt(e/ey);
fp=fopen ( R M S F ,"a");
fprintf(fp,"%lu\t%le\t%le\t%le\n", k,r, lr,mm) ; 
fclose(fp);

if(k%Nv==0) {
rewind(fi);
errorN=0.0; errorD=0.0; 
for(i=0;i<TN;i++) {

for(j=0/j<IN+ON;j++) {
fscanf(fi,"%le\t",&x); 
if(j<ON) yt=x; 
else ot0[j-ON]=x;

}
net_out();

errorN+=(yt-ym[0])*(yt-ym[0]); 
errorD+=yt*yt;

}
errorN=sqrt(errorN/errorD);

}

if(r>rms) flaga+=l; 
i f (flaga==DegN){ 

lr=Rlr*lr; 
flaga=0;

}

if(r<rms) flagb+=l; 
if(flagb==3){

lr=lr/Rlr; 
flagb=0;

}* /

if(r<rms){
mm=MM; 
rms=r;

fb=fopen(WGT,"w") ;

fprintf(fb,"rms = %le\n",rms) ; 
for(i=0;i<nl/i++)

f or(j=0/j<n0 + l;j++) {
fprintf(fb,"%le\t" , wl[i] [j ] ) ; 
i f (j ==n0) fprintf(fb,"\n");

}
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fo r (i=0;i<n2;i++)
for(j=0;j<nl+l;j++){

fprintf(fb,"%le\t",w2[i][j]); 
if(j==nl) fprintf(fb,"\n");

}

for (i = 0 ;i<n3;i + + )
for(j=0;j<n2+l;j++){

fprintf(fb,"%le\t",w3[i][j]); 
i f (j ==n2) fprintf(fb,"\n") ;

}
fclose(fb);

}
else mm=0.0;

printf("k=%lu\trms=%le\ttrms=%le\tlr=%le\n",k,rms,r ,lr); 
if(k%Nv==0) printf("Error=%le\n",errorN);

if(rms<rmin) k=itera;
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/ * * * * * * ** * **★** ** * ** * * ** * ** * ** * * ** * ** *
Validation of BPMLP hyperbolic tangent 

2-hidden-layer MISO systems 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y  

#include<stdlib.h>
#include<dos.h>
#include<stdio.h>
#include<math.h>

#define IN 9 
#define ON 1 
#define nO IN 
#define nl 50 
#define n2 20
#define WGT "Bpwtl T NL 50-20-1 05-08-05.txt"

#define INPUT "V 410 NL training data 29-07-05 TN15532.txt" 
#define OUTPUT "RV Bpwtl V NL 50-20-1 05-08-05.txt"
#define VN 15532 /*sample number*/

main ()
{

int i , j , m,1;
static double y t ,x t ,xd,y,yn;
static double otO[IN] ,otl[nl] ,ot2 [n2] ,ym,sa,sb,e,ey; 
static double x,wtl[nl][IN+1],wt2[n2][nl+1],wt3[n2+l];
FILE *fp,*fb;

fp=fopen(WGT,"r")/ 
if (fp==NULL)

{
printf("No weight file!\n"); 
exit (0) ;

}

for(i=0;i<nl;i++)
f or(j = 0;j <IN+1;j + + )

{
fscanf(fp,"%le\t",&x); 
wtl [i] [j ] =x;

}
for(i=0;i<n2;i++)

for(j =0;j <nl + l ;j ++)
{

fscanf(fp,"%le\t",&x); 
wt2 [i] [j]=x;

}
for(i=0;i<n2+l;i++)

{
fscanf(fp,"%le\t",& x ); 
wt3[i]=x;

}
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fclose(fp);

fp=fopen(INPUT,"r"); 
if (fp==NULL)

{
printf("No data file!\n"); 
exit(0);
}

fb=fopen(OUTPUT,"w"); 
if (fb==NULL)

{
printf("No output file!\n"); 
exit(0)/
}

e=0.0; ey=0.0; 
for(i=0;i<VN;i++)

{
f or(j =0;j <IN+ON;j + + )

{
fscanf(fp,"%le\t" , &x) ; 
if(j<ON) yt=x; 
else o t O [j-ON]=x;
}

for(1=0;lcnl/1++)
{

O t l  [ 1 ] =  0 . 0 ;

for(m=0;m<IN+1;m++)
{
if(m<IN) o t l [1]+=ot0[m]*wtl [1] [m]; 
else otl [1]+=wtl[1] [m];
}

sa=exp(otl [1]); 
sb=l.0/sa;
o t l [1]=(sa-sb)/ (sa+sb);

}

for(1=0;l<n2;1++)
{
O t 2  [ 1 ] = 0 . 0 ;

for(m=0;m<nl+l;m++)
{
if(m<nl) ot2 [1]+=otl[m]*wt2[1] [m] ; 

else ot2 [1]+=wt2[1] [m] ;
}

sa=exp(ot2[1]); 
sb=l.0/sa;
o t 2 [1]=(sa-sb)/ (sa+sb);
}

ym= 0.0;
for(1=0;l<n2+l;1++)
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{
if(l<n2) ym+=ot2[1]*wt3[1] ; 
else ym+=wt3[1];
}

e+=(yt-ym)* (yt-ym); 
ey+=yt*yt;

fprintf(fb,"%lf\t%lf\n",ym,yt) ;
}

e=sqrt(e/ey);
printf("rms=%le\n",e);
fclose(fp);
fclose(fb);
getchar()/
return(0);

}
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Modified Elman Recurrent Backpropagation NN 
for identification of MISO system 1 hidden layer, 
hyperbolic tangent active function 
Integral Validation Code 

BPME1

#include: <stdio'. h>
#includei <conioi. h>
#includei <stdlib.h>
#includei cmath.h>

#define ALFA 0 . 3
#define MRMS 1000
#define RMS 1000
#define ERR 1000 /♦Initial error value*/
#define TN 51100 /♦Training number*/
#define VN 25600 /♦Validation number*/
#define EPOCH 375
#define IN 1 /♦input number to buffer layer*
#define ON 1 /♦output*/
#define LR 0.00001 /♦normal unit weight learning rate*/
#define LRC 0 . 000001 /♦context unit weight learning rate*/
#define MM 0 . 75
#define Rlr 0 . 9 /♦Dynamic rate of learning rate
#define DegN 10 /♦degradation number*/
#define SC (2.4/IN)
#define TF "TDATA P TN 51100 01-10-04 setnlOO divn500b.txt" 

/♦training data file*/
#define VALID "VDATA P TN2 5600 01-10-04 setnlOO divnl000.txt"

/♦validation data file*/
#define WGT "Bpmeqwtl 5min OW TN51100 EP3 75.txt"

/♦trained weights*/
#define OWT "Bpmewtl 5min RW TN51100 EP375.txt"

/♦old weights*/
#define VRMS "Bpmeql 5min OW TN51100 EP375.txt"
#define TRMS "Bpmeql 5min OW TN51100 EP375.txt"
#define VF "Vq 5min OW TN5110 0 EP375.txt"
#define n2 ON /♦output layer neurons*/
#define nl 3 /♦1st hidden layer neurons*/
#define CON nl /♦Number of context units*/
#define nO IN+CON /♦input layer*/
#define rmin (1.0e-09) /♦target*/
#define RM RAND MAX

static double wl[nl][nO+1],w2[n2][nl+1];
s t a t i c  d o u b le  o t O [ n O ] , o t l  [ n l ] , y n e t , y d e s , l r = L R , l r c = L R C ,m m = M M ,e r , r , r t , 
minrms=MRMS, r t lo w = E R R ;
static double pdwl[nl][nO+1],pdw2[n2][nl+1]; 
static double dwl[nl][nO+1],dw2[n2] [nl+1],x;
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static double cont[CON];

void mainf)
{

char type; 
int i , j ; 
void learn();

FILE *fp;

printf("Continue to train (c) or\n start to train (s)?\n"); 
type=getch(); 
i f (type=='s')

{
for(i=0;icnl;i++) 

for(j = 0;j <nO + l ;j + + )
{
wl[i] [j]=SC*2.0* ( (double)rand()/RM-0.5) ;

/♦initialise weights*/
pdwl[i] [j]=0.0;
}

for(i=0;i<n2;i++)
f o r (j =0;j <nl + l;j ++)

{
w2[i] [j]=SC*2.0* ( (double)rand() /RM-0 . 5) ; 
pdw2[i] [j]=0.0;

}

for(i=0;i<CON;i++)
/♦Initialise context units to 0.0*/

{
cont [i]=0.0;
}

printf("Start training now!\n") ;
}

else i f (type=='c 1)
{
fp=fopen(OWT,"r"); 
for(i=0;i<nl;i++)

for(j =0;j <n0 + l ;j ++)
{
fscanf(fp,"%le\t",&x); 
wl[i][j]=x; 
pdwl[i] [j]=0.0;
}

for(i=0;i<n2;i++) 
for(j = 0;j <nl + l ;j ++)

{
fscanf(fp,"%le\t",&x); 
w2 [i] [j]=x; 
pdw2 [i] [j]=0.0;
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}
for(i = 0 ;i < CON;i + +)

/♦Initialise context units to 0.0*/
{
cont[i]=0.0;
}

fclose(fp);
printf("Continue training now!\n");
}

else { printf("Stop!\n"); exit(0);} 
learn();

}

^ • k ' k ' k ' k ' k ' k ' k i c i r i e i c i c ' k ' k ' k ' k ' k ' k ' k ' k ' k i c i c ' k i c  J

/★**** NET OUT ******/
void net_out()
{
int i,j ,k ,1/ 
double sa,sb;

for(i=0;i<nl;i + + )
{

Otl[i]=0.0; 
for(j = 0;j <n0 + l;j ++)

' {
i f (j <n0) otl[i]+=wl[i] [ j]*ot0 [ j] ; 

else otl[i]+=wl[i][j];
}

sa=exp(otl[i]); 
sb= 1.0/sa;
otl[i]= (sa-sb)/ (sa+sb);

}

for(k=0;k<n2;k++)
{

ynet=0.0;
for(1=0;l<nl+l;1++)
{

if(lcnl) ynet+=w2[k][1]*otl[1]; 
else ynet+=w2[k][1];

}
}

}

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j  
J * * * * * * *  TRAIN * * * * * * * J

void train()
{
int i ,j ,k ,1;
double suml[nl],dtl [nl];
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for (1 = 0 ; l<n2 ; 1 + +-)
{

for(k=0;k<nl+l;k++)
/*The formula for weight change is learning rate x local gradient x 
neuron output plus momentum term*/

if(k==nl) d w 2 [1] [k]=er*lr+mm*pdw2[1] [k] ;
/♦Local gradient in output layer is error x derivative of activation 
function, linear activation function so fi diff=l therefore local 
gradient = error*/

else dw2 [1] [k]=er*lr*otl[k]+mm*pdw2[1] [k] ;

}

}
for(j =0;j <nl;j + + )
{

suml[j]=0.0; 
for(k=0;k<n2;k++)

/♦Local gradient for hidden neuron is sum of the product of local 
gradients for proceeding layer and weight values, multiplied by the 
derivative of the activation function*/
/♦The local gradient in the proceeding layer is determined from sum 
of errors and derivative of linear activation function (=1) therefore 
just utilise error values*/

suml[j]+=er*w2[k][j];
/♦This is only valid for linear activation function in output layer*/

}

dtl [ j] = (1.0+otl [j])*(1.0-otl[j])*suml[j ] ;
/♦Derivative of hyberbolic tangent function multiplied by local 
gradient*/

for(i=0;i<n0+l;i++)
{

if(i ==n0) dwl[j] [i]=lr*dtl[j]+mm*pdwl[j] [i] ;
/♦bias calculation*/ 

else if(i==0) d w l [j] [i]=lr*dtl[j]*ot0[i]+mm*pdwl [j] [i] ; 
/♦input neuron weight adjustment - assumes only 1 input*/ 
else dwl[j] [i]=lrc*dtl[j]*ot0[i]+mm*pdwl[j] [i] ;

/♦context unit weight adjustment*/
}

}
}

/ * * * * * * * * * * * * * * * * * * * * * * * *  j
/* ADJUST WEIGHT */
j  ***★*★★★★★★★★★★★★★★★★★★★ J
void adjust_w()
{

int i,j ;
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for(i=0;i<n2;i++)
{
for (j=0;j<nl + l;j++)

{
/*The weights are updated and previous change in weight saved for use 
in the momentum term of the next forward activation*/

w2[i] [j]+=dw2 [i] [j] ; 
pdw2[i][j]=dw2[i][j];
}

}

for(j =0;j <nl;j + + ) 
for(i=0;i<n0+l;i + + )

{
wl [j ] [i] +=dwl [j ] [i] ; 
pdwl [j] [i]=dwl[j] [i] ;

}

}
/ * * * ** *★** ** * ** * * * * * * * * * * * * * * * * * * /
/* SAVE STATE */

void save_s()
{
int i ;
/*Saves current activations of hidden layer for use in next 
iteration*/

for(i=0;i<C0N;i++)
{

cont[i]=ALFA*cont[i]+otl[i] ;
}
}

/* ERROR CALCULATION */

void errorcalcO 
{
int i , j ,k,m;
double e, ey,input,vout [VN] [3],contv[CON];

FILE *fa,*fb;

fa=fopen(VALID,"r"); 
i f (fa==NULL)
{

printf("No validation data file\n"); 
exit(0);

}

e=0.0; /♦Initialise error values to 0*/
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rewind(fa);
for(i=0;i<VN;i + + )
{

for(j = 0;j <IN+ON;j ++)
{

fscanf(fa,"%le\t",&x);
/♦Scan from validation data file the inputs and desired output*/

i f (j <ON) ydes=x; /*assumes only 1 output*/
else input=x; /*assumes inly 1 input*/

}
if (i==0)
{

for(j = 0;j< CON;j ++)
{

contv[j]=cont[j];
/♦validation context units take on value of training context units - 
as lr is small they should be acceptable*/

}

}
else
{

for(j =0;j <CON;j + + )
/♦Saves previous activation of hidden layer in context units for all 
other iterations*/

{
contv[j]=A L F A *contv[j]+otl[j ] ;

}
}
for(k=0;k<IN+CON;k++)

/♦Combines input units with saved context units*/
{

if(k<IN) otO[k]=input; 
else otO[k]=contv[k-IN];

}
net_out();

for(m=0;m<3;m++)
/♦assuming 1 input and output*/

{
if(m==0) vout[i][m]=input; 
if(m==l) vout[i][m]=ydes; 
if(m==2) vout[i][m]=ynet;

}

for(j = 0/j <ON;j ++)
/♦Calculate error for validation data*/

{
e+=(ydes-ynet)* (ydes-ynet); 
ey+=ydes*ydes/

}
}
fclose(fa);
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r=sqrt(e/ey) ;

if(r<minrms) /*Stores validation results*/
{

fb=fopen(VF,"w");
minrms=r;
for(i=0;i<VN;i++)
{

fprintf(fb,"%le\t%le\t%le\n", vout[i] [0];vout [i] [1] ,vout[i] [2]); 
}
fclose(fb);

}

}
j * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j  
/**★** TRAIN RMS **★**/
void trainrmsO 
{
int k,j,i;
double et,eyt,x i n [IN],contr[CON];

FILE *fe,*fh;
/♦Calculate rms error for training data at the end of each epoch*/
fh=fopen(TF,"r");
rewind(fh);
et=0.0;
eyt=0.0;

for(k=0;k<TN;k++)
{

for(i=0;i<IN+ON;i++)
{

fscanf(fh,"%le\t",&x) 
if(i<ON) ydes=x; 
else xin[i-ON]=x;

}

/♦scan input*/

/♦assumes 1 output*/

if(k==0)
{

for(j =0;j <CON;j + + )
{

contr [ j]=cont[j] ;
/♦validation context units take on value of training context units - 
as lr is small they should be acceptable*/

}
}
else
{

for(j =0;j <CON;j ++)
/♦Saves previous activation of hidden layer in context units for all 
other iterations*/
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<

contr[j]=ALFA*contr[j]+otl[j];
}

}
for(i=0;i<IN+CON;i++)

/♦combine input units with context units*/
{

if(i<IN) otO[i]=xin[i] ; 
else otO [i]=contr[i-IN] ;

/♦takes last value of context units - should this be rest to 0?*/ 
}

net_out();

for(j = 0;j<ON;j + + )
{

et+=(ydes-ynet)* (ydes-ynet); 
eyt+=ydes*ydes;

}

}
rt=sqrt(et/eyt); 

if(rt<rtlow)
/♦Stores weights resulting in lowest rms*/
{

mm=MM; 
rtlow=rt;
fe=fopen(WGT,"w"); 
fprintf(fe,"trms=%le\n",rtlow); 
for(i=0;icnl;i++)
{

for(j = 0;j <n0+l;j ++)
{

fprintf(fe,"%le\t",wl[i][j]); 
i f (j ==n0) fprintf(fe,"\n");

}
}
for(i=0;i<n2;i++)
{

for(j =0;j<nl + l /j + + )
{

fprintf(fe,"%le\t",w2[i] [j] ) ; 
if(j==nl) fprintf(fe,"\n");

}
}

fclose (fe) ;

fclose(fh);
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^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j  
J ****** LEARN ******* J
void learn()
{
int i , j , f lagb=0 , re­
double xin[IN],rms; 
unsigned long int k,flaga=0;

FILE *fc,*fd,*ff,*fg;

fc=fopen(TF,"r");

rms=RMS; 
for(m=0;m<EPOCH;m+ +)
{

rewind(fc); 
for(k=0;k<TN;k+ + )
{

for(i=0;i<IN+ON;i + + )
{

fscanf(fc,"%le\t", &x) / 
if(i<ON) ydes=x; 
else xin[i-ON]=x;

}

for(i = 0 ;i <IN+CON;i + + )
/♦combine input units with context units*/

/*so k can be extremely large*/

/♦Sets momentum rate*/ 
/♦Sets initial error value*/

/♦scan input*/ 

/♦assumes 1 output*/

{
if(i<IN) otO[i]=xin[i] ; 
else otO[i]=cont[i-IN] ;

net out () ; /*Forward activation*/

fo r (j =0;j <ON;j + + ) 
{

er=ydes-ynet; /*Calculates current error*/

train(); /♦Calculates neurons local gradients*/

save_s();
/♦saves hidden neuron values in context units*/ 

adjust_w(); /♦Adjusts weights */

printf("epoch%d\tk=%lu\ter(k) =%le\tlr=%le\n",m,k,er,lr);
/♦Prints data to screen*/

A-29



A p p e n d ix  5 M o d if ie d  E lm a n  C ++  C o d e

trainrms(); 

fg=fopen(TRMS,"a") ;
fprintf(fg,"%d\t%lu\t%le\n",m,k,rt) ; 
fclose(fg);

printf("epoch%lu\ttrms=%le\n", m,rt) ;

if(m==EPOCH-1)
{

errorcalc();

ff=fopen(VRMS,"a");
/♦Writes validation results to file*/ 

fprintf(ff,"%d\t%lu\t%le\n",m,k,r) ; 
fclose (ff) ;

printf ( "epoch%lu\ttrms = %le\tvrms = %le\n" , m, rt, r) ;
}

}

fclose(fc) ;
printf ("min trms = %le\tmin vrms = %le\n" , rtlow, minrms) ;
}

A-30



APPENDIX 6 
DATA RESAMPLING 

C++ CODE



A p p e n d ix  6 Da t a  R e s a m p l in g  C ++  C o de

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /  
/♦Data Resampling Program */
j * * * ★ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * • * * * * * * * * * * ★ * * * * * * * * * * * * * * * * * * * /

#include<stdlib.h>
#include<dos.h>
#include<stdio.h>
#include<math.h>

#define IN 1
#define ON 1
#define TN 52203
#define DESRATE 2205 /*desired sample rate*/
#define ACTRATE 44100 /*present sample rate of data*/
#define INPUT "lspk data 4a.txt"
#define SAMPLEDOUT "sampled 2205Hz lspk data 4a.txt"
#define REJECTOUT "reject lspk data la.txt"

static double data [TN] [IN+ON];

void main ()
■{

int i ,j ; 
double x; 
void sample();

FILE *fp;

fp=fopen(INPUT,"r");

if (fp==NULL)
{

printf("No data file!\n"); 
exit(0);

}

for(i = 0;i < T N ;i + +)
{
f or(j = 0;j <IN+ON;j ++)

{
fscanf(fp,"%le\t", &x) ; 
data [i] [j ] =x;
}

}
fclose(fp)/ 

sample();
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void sample()
{

int i,SR;
FILE *fp,*fq;

fp=fopen(SAMPLEDOUT,"a"); 
fq=fopen(REJECTOUT,"a");

SR=ACTRATE/DESRATE;

for(i = 0 ;i < T N ;i + + )
{
if (i%SR= = 0)

fprintf(fp,"%le\t%le\n",data[i] [0],data[i] [1]);
else

fprintf(fq,"%le\t%le\n",data[i] [0],data[i] [1]) ;
}

fclose(fp); 
fclose(fq)/

}
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/*Sine wave generator for frequency analysis of MISO BPMLP models*/ 
/ * * * * * * * * ** * ** * ** ** * ** ** * *★** * ** * ** * ** ** * ** *★*** * ** * ** ** * ** ** * ** * /

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <math.h>

#define FK 2000 /*wave frequency Hz*/
#define FS 44100 /♦sample rate in Hz*/
#define N 88300 /♦sample length*/
#define MAG 5 /♦wave magnitude volts*/
#define M_PI 3.14159265358979 /*value of pi*/
#define tstep 1/FS
#define PO 4 /♦Previous outputs*/
#define PI 4 /♦Previous inputs*/
#define IN 1
#define ON 1
#define nOs IN /♦input neurons SISO network*/
#define nl 10 /♦hidden layer neurons SISO
network* /
#define n2 5
#define nOm IN+PO+PI /♦input neurons MISO network*/
#define n3 50 /♦hidden layer neurons MISO network*/
#define n4 20

#define SISOWGT "Bpwtl TF TDATA.txt" /*SISO weight file*/
#define MISOWGT "Bpwtl T NL 50-20-1.txt" /*MISO weight file*/
#define OUT "R TF 2000Hz Bpwtl T NL 50-20-1 05-08-05.txt"

static double 
static double 
static double 
static double 
static double

void mainO 
{
void timestepO; 
void sinwav(); 
void prevout(); 
void calcoutO; 
void output();

wave[N+PO] ,time[N+PO] ,pout[PO],ymout [N] ; 
swtl [nl] [IN+1] ,swt2[n2] [nl + 1] ,swt3[n2 + l] ; 
mwtl [n3] [IN+PO+PI+1] ,mwt2[n4] [n3 + l] ,mwt3[n4+l] ; 
pot1 [nl] ,pot2[n2] ,ot0[N] [IN+PO+PI] ,otl [n3] ,ot2[n4] ; 
sa,sb,x,y;

timestep(); 
sinwav(); 
prevout(); 
calcout(); 
output();
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}

/★★★★Integer array****/ 
void timestepO 
{
int i;
static double x[N];

for (i = 0 ; i<N+-PO; i + + )
{

x[i]=i;
time[i]=x[i]*tstep;

}

}

/★★★★Sine wave****/

void sinwav()
{
int i ;

/♦FILE *fa;

fa=fopen(SINWAVE,"w")j*/

for(i=0;i<N+PO;i++)
{

wave[i]=MAG*sin(time[i]*2*M_PI*FK) ;
/♦fprintf(fa,"%le\t%le\n",time [i],wave[i] ) ; */

}

/♦fclose(fa);*/
}

/*★*★Previous output generator****/

void prevout()
{
int i,j ,k ;

FILE *fa;

fa=fopen(SISOWGT,"r"); /*Scan in weights*/
if (fa==NULL)

{
printf("No weight file!\n"); 
exit(0);

}

for(i=0;icnl;i++)
for(j = 0;j <IN+1;j + + )
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{
fscanf(fa,"%le\t",&x); 
swtl[i][j]=x;

}
for(i=0;i<n2;i++)

for(j = 0;j <nl + l ;j ++)
{

fscanf(fa,"%le\t",&x); 
swt2[i][j]=x;

}
for(i=0;i<n2+l;i++)

{
fscanf(fa,"%le\t",&x); 
swt3[i]=x;

}
fclose(fa)/

for(i=0;i<PO;i++)
{

for(j =0;j <nl;j + + )
{

pot1 [ j]=0.0;
for(k=0;k<IN+l;k++)
{

if(k<IN) p o t l [j]+=wave[i]*swtl[j] [k] ; 
else p o t l [j]+=swtl[j] [k] ;

}
sa=exp(potl [ j]) ; 
sb=l.0/sa;
potl [j] = (sa-sb)/ (sa+sb);

}
for(j = 0;j <n2;j ++)
{

pot2 [ j]=0.0;
for(k=0;k<nl+l;k++)
{

if(k<nl) pot2 [j]+=potl[k]*swt2[j] [k] ; 
else pot2[j]+ = swt2[j ] [k] ;

}
sa=exp(pot2 [j]); 
sb=l.0/sa;
p o t 2 [j] = (sa-sb)/ (sa+sb) ;

}

y = 0.0;
fo r (j = 0;j <n2 + l ;j + + )
{

if(j<n2) y+=pot2[j]*swt3[j ] ; 
else y+=swt3[j];

}

pout[i]=y;
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printf("%le\t",pout [i]) ;
}
}

/****Lspk Output Calculation****/ 
void calcout()
{
int i , j , m, 1, k; 
double ym;

FILE *fa/*,*fp*/;

fa=fopen(MISOWGT,"r "); /*Scan in weights*/
if (fa==NULL)

{
printf("No weight file!\n"); 
exit(0);

}

for(i=0;i<n3;i++)
for(j = 0;j <IN+PO+PI+ 1;j + + )

{
fscanf(fa,"%le\t",&x); 
mwtl[i][j]=x;

}
for(i=0;i<n4;i++)

for(j = 0;j <n3 + l ;j + + )
{

fscanf(fa,"%le\t",&x); 
mwt2 [i] [j]=x;

}
for(i=0;i<n4+l;i++)

{
fscanf(fa,"%le\t",&x); 
mwt3[i]=x;

}
fclose(fa);

for(i=0;i<N;i++)
{

for(k=0;k<IN+PO+PI;k++)
{
if(k%2 = = 0) ot0[i] [k]=wave [i+(PI-(k/2) ) ] ; 
else otO [i] [k]=pout [PO-((k+1)/2) ] ;
}

for(1=0;l<n3;1++)
{

otl [1]=0.0;
for(m=0;m<IN+PO+PI+l;m++)

{
if(m<IN+PO+PI) o tl[1]+=ot0[i][m]*mwtl[1][m];
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else otl [1]+=mwtl[1] [m] ;
}
sa=exp(otl [1]); 
sb=l.0/sa;
o t l [1]=(sa-sb)/ (sa+sb);

}

for(1=0;l<n4;1++)
{

O t 2  [ 1 ] =  0 . 0 ;

for(m=0;m<n3+l;m++)
{

if(m<n3) o t 2 [1]+=otl[m]*mwt2[1] [m] ; 
else o t 2 [1]+=mwt2[1][m];

}
sa=exp(ot2 [1]) ; 
sb=l.0/sa;
o t 2 [1] = (sa-sb)/ (sa+sb);

}
ym= 0.0;
for(1=0;l<n4+l;1++)
{

if(l<n4) ym+=ot2[1]*mwt3[1] ; 
else ym+=mwt3[1];

}

ymout[i]=ym;

for(j=0;j<PO;j++)
{

if(j<PO-l) pout [ j]=pout[j+1] ; 
else pout[j]=ym;

}
}

}

/♦♦♦♦Generate output f i l e * * * * /  

void output()
{
int i ,j ;

FILE ♦fa;

fa=fopen(OUT,"w");

for(i=0;i<N;i++)
{

if (i>99)
/♦Skips first samples where convergence is occuring^/

{
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for(j = 0;j <IN+1;j + + )
{
i f (j <IN) fprintf (fa,"%le\t",ymout[i] ) ; 
else fprintf(fa,"%le\n",wave[i+PO] ) ;
}

}
}
}
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/ ★ ★ I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/****★**★*★★*★Training Data Selector*************/ 
/*************and fail frequency locator *******/
/ ★ ★ I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

#include<stdlib.h> 
#include<dos.h> 
#include<stdio.h> 
#include<math.h> 
#include<conio.h>

#define IN 48 /♦Number of frequency points*/
#define ON 1 /♦Number of outputs*/
#define k 6

#define TN 5 973 
#define PN 0 
#define INPUT 
#define FAIL

#define PASS

#define MEAN

#define SD

#define LIMITS

/♦Number of standard deviations from test limits*/
/♦Number of data patterns*/ 

/♦Number of classified passes in sample*/
"R&B REJ.txt" /*File containing data*/
"FAIL L+6s R&B REJ.txt"

/♦File for data outside test limits*/ 
"PASS L+6s R&B REJ.txt"

/♦File for data inside test limits*/ 
"MEAN R&B 99-100bml6.txt"

/♦File to record mean*/
"SDEV R&B 99-100bml6.txt"

/♦File to record standard deviation*/ 
"LIMIT 17-09-02 to ll-10-02.txt"

/♦File containing soundcheck limits*/

static float data[TN][IN+ON]; 
static float rms[IN+ON]; 
static float sdev[IN+ON]; 
static float limit[IN];
static float limithigh[IN+ON], limitlow[IN+ON];

void main()
{

int i , j ,m; 
float x,y; 
void standevcalc(); 
void passfailO;

FILE *fp,*fq;

fp=fopen(INPUT,"r");

i f (fp==NULL)
/♦Incase there is something wrong with input file */ 
{
printf("No input file!"); 
exit(0);
}

A-42



A p p e n d ix  8 D a t a  P a t t e r n  F a il  F r e q u e n c y  L o c a t o r

for(i=0;i<TN;i++)
/♦Reads data file and enters them into an array ♦/

{
for(j = 0;j <IN+ON;j ++)

{
fscanf(fp,"%e\t",&x); 
data [i] [j]=x;
}

}

fclose(fp);

fq=fopen(LIMITS,"r");

if (fq==NULL)
{

printf("No limits file!\n"); 
exit (0) ;

}

for(m=0;m<IN;m++)
{
fscanf(fq,"%e\t",&y); 
limit[m]=y;
}

fclose(fq); 

standevcalc () ;
/♦Calculates RMS and standard deviation^/

passfail ();
/♦Calculates test limits and checks data to determine whether or not 
the loudspeaker is within limits ♦/

}

void standevcalc()
{

int i,j ;
char type;
float m,n,g,h,x,y;

FILE ♦fp,♦fq,/♦♦fr,♦/♦fs;

printf("Calculate new mean (n) or use previous (p)?"); 
type=getch();

if(type==1n ')

{

fp=fopen(MEAN,"w"); 
fq=fopen(SD,"w");

A-43



A p p e n d ix  8 D a t a  P a t t e r n  F a il  F r e q u e n c y  L o c a t o r

for(j =1;j <IN+ON;j ++)
/♦Calculates the square of the value then sums the square values in 
each column ♦/

{
n=0 ;

/♦Each column contains all the data samples for one frequency ♦/ 
f or(i=0;i<TN;i++)
{

if (data[i] [0]= = 1)
/♦Ensures only data classified as a pass is included in calculation 
* /

{
m=data [i] [ j];
m=m4m;
n=n+m;
}

}
r m s [j]=sqrt(n/PN);

/♦Calculates the RMS for each column4/ 
fprintf(fp,"%e\t",r ms[j]);
}

for(j =1;j <IN+ON;j ++)
{
y=0;
for(i = 0;i < TN ;i + + )

{
if(data[i] [0]= = 1)

{
x=data [i] [ j]-rms[j];

/♦Deducts the corresponding rms from each value4/ 
x=x4x; 
y=y+x;
}

}
sdev[j]=sqrt(y/PN);

/♦Calculates standard deviation4/ 
fprintf(f q,"%e\t",sdev[j]);
}

fclose(fp); 
fclose(fq);
}

i f (type=='p 1)
{

/♦ fr=fopen(MEAN,"r");♦/ 
fs=fopen(SD,"r"); 
for(j = 0;j <IN;j ++)

/♦Reads previously calculated mean and standard deviation from file
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{
/*fscanf(fr,"%e\t",&g); 
rms[j]=g;*/ 
fscanf(fs,"%e\t",&h); 
sdev[j]=h;
}

/*fclose(fr);*/ 
fclose(fs);
}

}

void passfail()
{

int i ,j ,fail;

FILE *fp,*fq;

for(j =1;j <IN+ON;j + + )
/♦Calculates boundary*/

{
limithigh[j]=limit [ j-1]+k*sdev[j ] ;
/♦limitlow[j]=rms [ j]-k*sdev[j ] ;*/
}

fp=fopen(FAIL,"a"); 
fq=fopen(PASS,"a");

for(i = 0 ;i<TN;i++)
/♦Checks data against test limits and assigns value 1 to 'fail' if 
any value in the row is outside limits */

{
fail=0;
for(j =1;j <IN+ON;j + + )

{
if(data [i] [j]>limithigh[j ] ) fail = l;
/♦if(data[i] [j]climitlow[j]) fail = l;*/
}

if(fail==l)
/♦If one or more values are outside test 

limits the whole row will be sent to 'FAIL1 file */
{
for(j =0;j <IN+ON;j ++)

{
fprintf(fp,"%e\t",data[i][j]); 
if (j== (IN+ON-1)) fprintf(fp, "\n") ;
}

}
if(fail==0)

/♦If not the row will be sent to the 'PASS' file */ 

{
for(j = 0;j <IN+ON;j + + )
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}
}

fclose(fp); 
fclose(fq);

}

{
fprintf(fq,"%e\t",data[i][j]); 
i f (j ==(IN+ON-1)) fprintf(fq,"\n") ; 
}
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