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ABSTRACT

The cocktail party problem is one of following a conversation in a 

crowded room where there are many competing sound sources, such 

as the voices of other speakers or music. To address this problem us­

ing computers, digital signal processing solutions commonly use blind 

source separation (BSS) which aims to separate all the original sources 

(voices) from the mixture simultaneously. Traditionally, BSS methods 

have relied on information derived from the mixture of sources to sep­

arate the mixture into its constituent elements. However, the human 

auditory system is well adapted to handle the cocktail party scenario, 

using both auditory and visual information to follow (or hold) a con­

versation in a such an environment.

This thesis focuses on using visual information of the speakers in a 

cocktail party like scenario to aid in improving the performance of BSS. 

There are several useful applications of such technology, for example: 

a pre-processing step for a speech recognition system, teleconferencing 

or security surveillance.

The visual information used in this thesis is derived from the speaker’s 

mouth region, as it is the most visible component of speech produc­

tion. Initial research presented in this thesis considers a joint statistical 

model of audio and visual features, which is used to assist in control­

ling the convergence behaviour of a BSS algorithm. The results of using

iii



Abstract iv

the statistical models are compared to using the raw audio information 

alone and it is shown that the inclusion of visual information greatly 

improves its convergence behaviour.

Further research focuses on using the speaker’s mouth region to 

identify periods of time when the speaker is silent through the devel­

opment of a visual voice activity detector (V-VAD) (i.e. voice activity 

detection using visual information alone). This information can be used 

in many different ways to simplify the BSS process.

To this end, two novel V-VADs were developed and tested within 

a BSS framework, which result in significantly improved intelligibility 

of the separated source associated with the V-VAD output. Thus the 

research presented in this thesis confirms the viability of using visual 

information to improve solutions to the cocktail party problem.
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Chapter 1

INTRODUCTION

When someone walks into a crowded room they are surrounded by audio 

signals, be they speech, laughter, music, or even the ticking of a clock, 

but holding a conversation in such a noisy environment is something 

humans are able to do with great ease (providing the intruding sounds 

aren’t overwhelming).

The study of this phenomenon began in the 1950’s with the work 

of Cohn Cherry [21,22]. Cherry defined what is now known as the 

cocktail party problem, i.e. how to select one source of auditory input 

amongst the many competing sources. Indeed, the human auditory 

system is well adapted for such situations by utilizing both audio and 

visual information, but in the domain of digital signal processing this 

problem has yet to be resolved.

During the 1980’s and 90’s two different signal processing approaches 

emerged to solve this problem. Computational Auditory Scene Analy­

sis (CASA), which stemmed from Albert Bregman’s work on auditory 

scene analysis (ASA) [11] that described how the human auditory sys­

tem organizes and processes complex mixtures of sound. The other, and 

focus of this thesis is Blind Source Separation (BSS). The two methods 

differ in several aspects. Typically CASA methods [12,39,123] aim to 

segregate a target speech signal from the background noise, whereas
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BSS methods aim to separate all signals from the mixture. It is also 

worth noting that because BSS has received a great deal of attention 

during the last ten to fifteen years, it is slightly more mature than 

CASA with regards to dealing with convolutive (real world) mixtures 

of speech.

A solution to the cocktail party problem found using either ap­

proach would have many applications, including teleconferencing, se­

curity surveillance or as a pre-processing step for speech recognition.

1.1 Blind Source Separation

Blind source separation (BSS) is a process by which individual sources 

can be separated from measurements containing a mixture of sources. 

The term “blind” refers to the fact that little or no prior information 

about the sources is known. However, some weak assumptions regard­

ing the nature of the sources must be made. BSS has applications 

in many fields of signal processing, ranging from speech processing to 

bio-medical and financial time series analysis [56, 64] and because of 

this wide variety of applications it is a well researched area of signal 

processing.

The origins of BSS date back to early work by Herault and Jut- 

ten [50] and since then a wide variety of BSS algorithms have been 

proposed. They have been developed to cover many applications but 

the signal mixtures, and hence the algorithms to solve them, can gener­

ally be classified into one of three categories: Instantaneous, Anechoic 

and Echoic.

Instantaneous algorithms rely on the presumption that there is es­

sentially no relative delays between the sources and sensors and that
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the path of the source is direct to  the sensor. This is usually the case for 

Electroencephalography (EEG) signals. Anechoic mixtures/algorithms 

are the middle ground between instantaneous and echoic cases. Again 

only direct paths are assumed but this case allows for a delay in the 

direct path between source and sensor. The echoic case is a more com­

plex problem due to reflections, which create the situation of multipath 

signals.

Real world signals always contain some amount of noise, either due 

to the sensors or from the environment in which the signals are recorded 

in. Accounting for noise in the mixing process does increase the com­

plexity of the BSS problem, therefore some BSS methods filter the 

signals to reduce the noise before applying the BSS algorithm, whilst 

others include noise in the model of the mixing process and treat it as 

an additional source signal. An in-depth discussion of noise and meth­

ods that account for its effect on the unmixing process can be found 

in [24,56]. For the work contained in this study, the level of noise is 

considered to be negligible, this is not uncommon [24,56].

Early research was focused on the instantaneous case of signal mix­

tures, but, at least where audio source separation is concerned, the last 

decade has seen a shift of focus to echoic/convolutive mixtures which 

more realistically represents real world situations. This is the kind 

of signal mixture that is produced in the cocktail party environment. 

However, most current speech separation algorithms are uni-modal, re­

lying solely on audio information, and there is a general consensus in 

the research community that by using audio information alone, BSS is 

reaching a limit in terms of accuracy of source separation, and that ex­

tra  information (modalities) where available should be utilized [39,52].
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It is this approaching limit tha t is the motivation for this work. For 

a robust and accurate solution to the cocktail party problem, a system 

is required that exploits the extra information available, as humans do 

in a cocktail party scenario.

1.2 Why Visual Information?

Human speech is inherently bimodal, with both audio and visual com­

ponents. It has been shown [118] tha t being able to see a speaker’s 

face in a noisy environment greatly improves the intelligibility of that 

person’s voice.1 Moreover, the McGurk [78] effect also highlights the 

relationship between the audio and visual aspects of speech and how 

humans perceive speech.

Visual cues, for example are used to determine who is being ad­

dressed. Particular attention is focused upon the lips to help in decid­

ing when the other person has started/stopped speaking and even to 

use the shape of the lips to help understand what is being said. Girin 

et al. [46] proposed one of the earliest systems for using visual infor­

mation to help clean up noisy speech but few other publications have 

developed the idea of using visual information to aid speech separation.

The use of visual speech information is also popular in current re­

search into speech recognition methods. Speech recognition suffers from 

poor performance in the presence of moderate acoustic noise, the in­

clusion of visual speech information has improved the results in this 

situation. Moreover, an audio-visual BSS method could be employed 

as a pre-processing step for an audio-visual speech recognition process.

1This is easily verified by speaking to someone in a noisy environment. First 
with the eyes closed, then with the eyes open and looking at the speaker’s face. 
The speaker should seem more audible when the face can be seen.
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This thesis seeks methods to answer the following questions:

•  W hat visual features give the most useful information about an 

individual speaker and correlate strongest with the desired speech 

signal?

•  How best to extract and track these features from the video?

• How can these features be modelled, for example their dynamic 

behaviour?

•  How can visual information be integrated into a BSS algorithm 

in order to improve the performance?

1.3 Bi-modal speech separation

There exists very little literature in the area of bi-modal or video as­

sisted BSS methods. However, the idea of using visual information 

to aid the BSS process is gaining momentum in the research commu­

nity [52].

In this thesis, it is shown that by building a joint audio-visual model 

of a speaker and incorporating it within a convolutive BSS algorithm to 

control the learning rate, the convergence behaviour can be improved. 

In the model, the audio data are represented with Mel-Cepstral Fre­

quency Components (MFCCs) and the visual data are described with 

an Active Appearance Model (AAM) [29]. The increased convergence 

rate is shown using firstly a Gaussian Mixture Model (GMM), and fur­

ther improvement is gained by modelling the temporal dynamics of the 

joint audio-visual features using a Hidden Markov Model (HMM).

The high computation time and training requirements of the above 

method led to the investigation of a less complex visual speech model.
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To this end a novel Visual-Voice Activity Detector (V-VAD) is pro­

posed. Again, an AAM is used to model the shape and texture of 

the lips and the dynamics are modelled using an HMM. The difference 

between the proposed V-VAD and the audio-visual BSS work, is that 

for the proposed V-VAD, continuous speech is not modelled, nor the 

combined audio and visual data. Instead, only visual data related to 

the motion of the lips, without a speech utterance, are modelled. The 

motion of the lips over several frames is classified to be speech or non 

speech using the model of the lips motion without voice. The term “non 

speech” is used since a person may be silent when motion of the lips 

occurs, e.g. during a smile.

This research is then extended with a novel generic V-VAD which 

is more robust than the AAM based V-VAD. In this method, silence 

detection is achieved by modelling the motion flow of the area of the 

lips. The motion flow is obtained with a phase based motion estimation 

algorithm [74] and silence detection is achieved by modelling the flow 

field of the area of the lips using an HMM. Because of the similarities in 

the way people speak/smile, the models are largely person independent, 

as is shown by application of the model to a speaker not included in 

the model training data.

The two proposed V-VAD methods are evaluated in the same man­

ner. Firstly, receiver operating characteristics (ROCs) are used to com­

pare the classification accuracy of each method. They are then evalu­

ated by individually using their outputs in a BSS algorithm [100] that 

utilizes them for solving the permutation problem inherent to BSS. 

The results show that the inclusion of visual information improves the 

alignment of permutations and thus improves the result of the BSS
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algorithm compared to using only audio information.

1.4 Thesis Overview

The remainder of this thesis is structured as follows:

• In Chapter 2 a review of the relevant literature relating to  BSS is 

given along with a review of visual feature extraction and mod­

elling. It concludes with an overview of precedent audio-visual 

BSS methods.

•  Chapter 3 provides the background of the shape-texture mod­

elling technique used in this thesis, namely Active Appearance 

Models (AAMs).

•  A novel audio-visual BSS method is presented in Chapter 4. The 

method uses a joint audio-visual probability model to control the 

learning rate of a previously published BSS algorithm.

•  Chapter 5 focuses on using AAMs of the lips of a speaker for a 

novel visual voice activity detector (V-VAD). The method uses 

HMMs to model the dynamics of the A AM for speech/silence 

detection. The results of this method are compared to an existing 

V-VAD.

• A novel V-VAD is proposed in Chapter 6, based on using an 

HMM of a motion field of the lips of a speaker, where the mo­

tion field is obtained from a phase based motion estimation tech­

nique. The advantages of this new method over existing methods 

are discussed. The chapter concludes with experiments that use
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the outputs from the V-VADs presented here along with another 

existing V-VAD in a bi-modal BSS algorithm.

•  Chapter 7 provides the conclusions and suggestions for future 

work.

1.5 Main Contributions

The main contributions, and the publications (listed on the following 

page) arising from this work are:

•  A novel video assisted BSS algorithm. The algorithm uses a joint 

audio-visual model of a speaker to  control the learning rate of a 

penalty function based BSS algorithm [1,2].

•  A novel visual voice activity detector is proposed based on cap­

turing the dynamics of an AAM of the lips of a speaker with an 

HMM [3,4].

• A generic novel V-VAD is then presented. This is achieved by 

modelling the dynamics of a motion field of the lips of a speaker 

with an HMM to classify the lip motion as speech/non-speech. It 

is also shown that a reasonable accuracy of classification can be 

achieved on several subjects, some of whom are not included in 

the HMM training data [5].

• An audio-visual database was created during the course of this 

thesis, and the possibility of making it available to other research 

groups is being investigated.
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Chapter 2

SOLVING THE COCKTAIL 

PARTY PROBLEM: A 

REVIEW

This chapter is not an all encompassing review of the literature on the 

cocktail party problem; the vast amount of material on the subject 

makes this impossible. Rather, its purpose is to place the research 

described in this thesis into the broader context of the study of the 

cocktail party problem.

The cocktail party problem was first proposed by Colin Cherry [21,

22]:

“How do we recognise what one person is saying when oth­

ers are speaking at the same time (the “cocktail party prob­

lem”)?” - Colin Cherry 1954 [21]

It refers to the remarkable human ability to select and recognise 

one source of auditory input (e.g. speech, music) in a noisy environ­

ment. Researchers have been investigating this problem for the last 

few decades, yet, fifty years since Cherry’s work the problem remains 

unsolved. Cherry did not only propose the cocktail party problem, he

10
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also proposed the design of a machine ( “filter”) to solve it [21]. He 

suggested the following factors be considered:

• Voices originate from different directions.

•  Lip reading, gestures and the like.

•  Variation in the voices, male and female, mean pitch or speed, 

and so on.

•  Different accents and other linguistic factors

•  Transition probabilities based on voice dynamics, subject m atter, 

syntax etc.

Current solutions contain one or more aspects of Cherry’s proposed 

machine. For example, beamforming based approaches utilise a mi­

crophone array to obtain the direction of arrival (DOA) of a speaker’s 

voice to aid in the speech separation process [105,106]. There are also 

methods that exploit appropriate visual features to assist in separating 

or enhancing a speech signal contaminated by noise [46,70,100,126]. 

Speech recognition relies on modelling the transition probabilities be­

tween words/letters/phonemes etc, for high recognition rates.

Attempts at solving the cocktail party problem can be broadly put 

into one of the following categories:

1. Blind Source Separation (BSS)

2. Computational Auditory Scene Analysis (CASA)

*3. Speech Enhancement (SE)
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The goal of blind source separation methods (BSS) is to separate 

all source signals from their mixtures, by exploiting their inherent dif­

ferences. Computational auditory scene analysis (CASA) methods seek 

to segregate a target signal from a mixture based on principles of the 

human auditory system. While CASA methods perform speech en­

hancement, there are speech enhancement methods that do not rely on 

mimicking aspects of the human auditory system. Instead they rely on 

statistics of the signals in the mixtures, but do not separate all signals 

from the mixture as is the case with BSS.

During the past twenty years, the cocktail party problem has seen 

an increase of attention from researchers as the increase in computing 

power made a real time solution to the problem a possibility. The 

proposed solutions have traditionally used solely audio information. 

However, it is becoming ever more apparent, as Cherry highlighted [21], 

that at least in the field of BSS, extra information related to the nature 

of the sources is required for a robust solution to the cocktail party 

problem. As speech is bimodal (with both audio and visual aspects), a 

rational next step is to include visual features into the BSS framework 

to provide the additional information.

For example, beamforming based solutions [105,106] use microphone 

arrays to determine the position of speakers in a room, which could be 

obtained more accurately using visual rather than audio information, 

especially in non-stationary environments. Indeed, the relationship be­

tween the audio and visual aspects of speech has been noted on several 

occasions. Sumby and Pollack [118] reported that being able to see 

the speaker’s face increases the intelligibility of that person’s voice in 

a noisy environment. The McGurk effect [78] highlights the relation­
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ship between the audio and visual aspects of speech and how humans 

perceive speech.

The focus of this thesis is the integration of visual information into 

the BSS framework. Therefore, CASA and SE methods will not be 

discussed in detail in this chapter, but will rather be mentioned in 

comparison to BSS methods.

This chapter is divided into the following Sections: Section 2.1 fo­

cuses on current methods of BSS, in particular the methods addressing 

the case of convolutive mixtures of sources. In Section 2.2 research de­

voted to using visual information for speech recognition, speaker iden­

tification and tracking, and methods for extracting this information 

from video data are discussed. In Section 2.3, methods for solving the 

cocktail party problem relying on both audio and visual information 

are discussed.

2.1 Audio Based Speech Separation

Over the past two decades there has been considerable interest in the 

field of blind source separation, starting with the seminal work of Her- 

ault and Jutten [50]. Initial research concentrated on instantaneous 

mixtures of sources [7,8,15,25]. However, the instantaneous mixture 

model is simplistic and cannot be used to  model the type of mixing that 

occurs in the cocktail party situation because it does not account for the 

multipath propagation of the speech signals as present in a real room 

environment. Later research switched focus to model the mixtures us­

ing convolutive models which represent the types of mixtures found in 

the cocktail party problem better than instantaneous mixtures.

Early solutions to the cocktail party problem using a convolutive
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mixture model were based in the time domain [1,65,82]. However, 

to represent recordings taken in a real room environment where the 

impulse response of the room is in the order of 1000’s of samples, a 

time domain method would be too computationally expensive to realize 

[109]. It is known that convolution in the time domain is equivalent to 

multiplication in the frequency domain. Transferring the problem into 

the frequency domain simplifies the convolutive mixing problem to tha t 

of instantaneous but complex valued mixing at each frequency. Thus 

the computational complexity is reduced, making the frequency domain 

the preferred choice in the current research [54,79,87,90,106,110,127]. 

Nonetheless, the reduction in computational complexity does come at 

a cost; the permutation problem inherent to  BSS now occurs at each 

frequency. There has been a significant amount of research devoted to 

solving this problem and a selection of literature covering this topic will 

be discussed in Section 2.1.

A popular approach to solve the cocktail party problem is to ex­

ploit the second order statistics (SOS) of the speech signals. One of 

the more effective frequency domain BSS algorithms based on SOS, ac­

cording to the results in [88], is the approach of Parra and Spence [87]. 

They exploit the non-stationarity of speech, where a least squares (LS) 

approach is used to minimise a cost function based on the cross power 

spectrum matrices of the sources. The goal being to simultaneously di- 

agonalise these matrices at different times. The LS optimization then 

allows the unmixing matrix to be estimated iteratively. This method is 

generally regarded as one of the first frequency domain approaches to 

achieve a reasonable separation performance in a realistic environment, 

due in part to the novel solution proposed to solve the permutation
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problem (discussed in Section 2.1.1).

Wang et al. [125,127] extend the work of [87] by introducing a 

penalty function based approach tha t reduces the amplitude ambigu­

ity and provides better shape preservation of speech signals than the 

original method [127]. The penalty constrains the optimization process 

allowing for fast convergence; provided a suitable penalty function is 

chosen the proposed method obtains better estimates of the original 

speech signals compared to the method in [87]. Robledo-Arnuncio and 

Juang [101] also modified Parra’s algorithm and suggest a version us­

ing non-causal separation filters; however, they reported no significant 

improvement over the original algorithm.

Pham et al. [90] exploit the SOS of speech signals in their joint diag- 

onalisation method. They use a variation of the cross power spectrum 

found in [87,127], where the cost function is essentially a logarithmic 

based version of that found in [87]. It is unclear how well it separates 

convolutive mixtures as a comparison with another BSS method has not 

been provided. Mitianoudis and Davies [79] suggest a time-frequency 

framework that utilises a non-Gaussian model of the sources. They 

propose two methods for the update of the unmixing matrix, one is a 

modified natural gradient algorithm applied at each frequency bin, the 

second is a fast Newton-type ICA algorithm. The fast ICA method was 

shown to have a faster convergence and also achieved a better separa­

tion performance.

Beamforming is an alternative approach to BSS and is based on find­

ing the set of spatial filters that reject/block sounds coming from the 

directions of interference. Saruwatari et al. [105] proposed a combined 

frequency domain BSS and beamforming method which decides at each
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frequency bin if the direction of arrival (DOA) estimate obtained from 

the BSS algorithm or the beamformer is correct, and updates the un­

mixing matrix accordingly. The proposed method was shown to outper­

form a BSS algorithm for cases when the unmixing filters were learnt on 

short data lengths (1 second), but obtained equivalent performance for 

longer data lengths (5 seconds). The reason for this is tha t the short 

data lengths do not have adequate information for non-beamforming 

methods to learn a good estimate of the separation matrix. Parra 

and Alvino [86] suggest a variation of Parra’s earlier work [87]. The 

method incorporates geometric information as a penalty constraint into 

the cost function described in [87] to steer the unmixing m atrix so tha t 

the contributions from interfering sources are minimised. Results indi­

cate that the combined beamforming and BSS algorithm outperforms 

conventional beamforming techniques.

More recently, several BSS algorithms applied to separation of speech 

signals in a cocktail party scenario have utilised available information 

about the activity of the speakers [23,55,83]. Nickel and Iyer [83] pro­

posed a method that first detects “exclusive activity periods” (EAPs), 

i.e. periods where only one speaker is active. These are found by 

calculating a signal to interference measure (SIR) over short time pe­

riods, and a period is classed as an EAP if the SIR is greater than 

or equal to a predetermined threshold. The unmixing coefficents are 

found for a chosen speaker during that speaker’s EAP. However, they 

only consider instantaneous mixtures. Huang et al. [54,55] proposed a 

two-stage approach for convolutive mixtures in the frequency domain, 

that firstly estimates the unmixing matrix and then dereverberates the 

estimated speech signals. The unmixing filters for each speaker are
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found during the periods when only one speaker is active and assumed 

to be static thereafter. The above is carried out in the same manner 

for each speaker. A speech dereverberation algorithm is then applied 

to the estimates to obtain the original speech signals. The advantage of 

converting a multiple-input multiple-output (MIMO) BSS into that of 

a single-input multiple-output (SIMO) framework is that the inherent 

permutation ambiguity of BSS is avoided, and the method was reported 

to be successful in highly reverberant environments.

Chu et al. [23] also use information about the speaker’s activity and 

suggest a time domain method that optimizes an eigenvalue based cost 

function. The method is compared to th a t of Parra and Spence [87] 

and is shown to achieve better separation performance for varying lev­

els of signal to noise ratio (SNR). However, the above methods require 

that the speakers remain stationary to achieve a good separation per­

formance, due to the manner in which the unmixing filters are found.

To summarise, several methods for solving the cocktail party prob­

lem have been discussed, with focus given to frequency domain ap­

proaches, as well as recent attempts to exploit additional information 

from the silence periods in speech. The frequency domain is attractive 

to researchers due to its low computational cost compared to solutions 

in the time domain. However, the permutation problem inherent to BSS 

becomes a serious issue in the frequency domain. Thus, in the next sec­

tion several recent proposals to overcome the permutation problem are 

discussed.
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2.1.1 Solutions to  the  Perm utation Problem

Transferring the BSS problem from the time domain to the frequency 

domain results in the permutation ambiguity becoming a serious prob­

lem. The permutation problem is one where the order in which the 

signals are recovered is unknown. For time domain solutions this is 

not a large problem, but in frequency domain methods the permuta­

tions must be aligned at each frequency bin so that the time domain 

separated signal contains frequencies from the same source. Further 

information on the permutation problem can be found in Chapter 4 

of this thesis. There is also an amplitude (scale) ambiguity across fre­

quencies but this is easily solved with m atrix norm multiplication [56]. 

Several time-frequency methods have been proposed, which switch be­

tween the two domains to take advantage of each domain while avoiding 

their disadvantages. The permutation problem is also avoided as the 

independence of the estimated signals is usually evaluated in the time 

domain [107]. However, the time spent transforming between the two 

domains is significant, so for solutions to the cocktail party problem, 

the frequency domain is still more appealing.

Parra and Spence [87] proposed to solve the permutation problem 

via a smoothness constraint on the unmixing filters. The constraint 

essentially forces the frequency bins to align, and is achieved by limiting 

the length of the filter in the time domain to be much less than the size 

of the DFT. This has the effect of forcing the sources in the frequency 

domain to be continuous or smooth. However, Ikram and Morgan [57, 

58] showed that in realistic environments Parra’s method failed to align 

all the permutations, and suggested that the constraint on the filter 

length should be relaxed once the algorithm converges.



Section 2.1. Audio Based Speech Separation 19

In [57] the authors provide an in-depth discussion of permutation 

inconsistency. They assume the mixing filters are known to derive 

ideal benchmarks of signal to interference ratio (SIR) improvements 

by comparing the SIR of individual sources and deciding whether or 

not to manually rearrange the permutations. Based on the solution to 

the permutation problem suggested by Parra and Spence [87], Ikram 

and Morgan [57] show that as the length of the unmixing filter increases 

to represent real room conditions, the SIR becomes worse. A solution 

to overcome this drawback is proposed in the form of a multistage 

algorithm where the separation is carried out in multiple stages. The 

initial mixing stage is followed by several unmixing stages, with the 

length of the unmixing filter increasing at each stage, where the final 

values of the immixing matrix obtained at the previous stage are used 

as initial values of the next stage. It was found that the majority 

of the permutations aligned in the early stages retained their order 

during later stages, and there was no overall significant increase in 

computational complexity as the optimum number of stages was found 

to be two.

Sawada et al. [106] proposed to combine direction of arrival (DOA) 

information with interfrequency correlation of signal envelopes. They 

use a combination of the natural gradient and information maximiza­

tion algorithms to perform the initial speech separation and then align 

the permutations in two stages. The first stage is to fix the permuta­

tions at those frequencies where the confidence of the DOA approach is 

high. The second stage is to decide the permutations for the remaining 

frequencies based on neighbouring correlations without changing those 

fixed by the DOA method. The reasons for using a combination of the
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two approaches are that the DOA method is robust, as misalignment 

at one frequency does not affect other frequencies, whereas correlation 

is not robust since misalignment can affect neighbouring frequencies. 

However, the DOA approach is not as precise as the interfrequency 

correlation approach. In the same paper they also propose a method 

utilizing the harmonic structure of the signals that aligns permutations 

at low frequencies, where DOA estimation is difficult.

As mentioned in the introduction chapter, there is a general consen­

sus in the research community that BSS using audio information alone 

is reaching a limit in terms of accuracy of source separation. As human 

speech is bimodal in nature, the natural way to proceed as intimated 

by Cherry [21] is to incorporate visual information of the speakers into 

BSS techniques.

In fact, there have already been attem pts to use properties of con­

versational speech, such as silence periods, in finding the unmixing fil­

ters or solving the permutation problem. In a noisy environment these 

silence periods might be found more accurately using visual informa­

tion [67].

Furthermore, beamforming based methods rely on being able to ac­

curately determine the DOA, both of which can be achieved to a degree 

of success using only audio information, but both require the SNR to 

be high. Visual information could provide both of these; in particular, 

the DOA could be found more accurately in high noise environments 

as the visual data are immune to audio noise. Therefore, in the next 

section, tracking in video and visual feature extraction are discussed, 

as such visual information can be combined with corresponding audio 

information to form a multi-modal BSS system.
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2.2 Visual Feature Extraction, M odelling and Tracking

A BSS system for speech separation typically uses purely audio infor­

mation. To create a multi-modal BSS system, visual information is 

sought that is highly correlated with the audio data. There is a wide 

variety of visual feature extraction techniques available depending on 

what information is required. The ideas presented in this thesis exploit 

visual features which are related to speech, consequently the extraction 

of facial feature information is the prime goal. To locate faces in a 

video sequence, face detection and tracking methods are used [66], [81]. 

It may be the case that the participants are moving around a room, 

in this situation the participants themselves are tracked and then the 

face region is found and extracted. This section will highlight recent 

research on modelling visual features, feature extraction and tracking 

techniques.

2.2.1 Speaker localization

For tracking moving people in a room, particle filtering is a popular 

technique [19,20,66,80]. Checka et al. [19] developed a system to track 

the movements of several people around a room using two cameras and 

a microphone array consisting of 16 microphones. The cameras are 

in adjacent corners of a square room and the microphones are placed 

in groups of four, one group under each camera with the remaining 

two groups evenly spaced about the center of the wall containing the 

cameras. A particle filter is used to determine the number of speakers 

and'their speech activity based on audio and video information. The 

results show that they were able to track up to three people at a time 

and determine who was speaking at that instant. The downside of this
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method is that the data axe not processed in real time but offline. In 

addition the system is only able to operate with at most one person 

speaking at a time; there was no investigation into the effects of the 

background noise on the performance of the system.

Liu et al. [66] use particle filtering to  estimate the current position 

of the face, using prior probabilities of object motion and likelihood 

models of colour and edge are to estimate the location of the face. 

The data are processed in real time and the system is able to track 

partially occluded faces. Darrell et al. [36] used a single camera and two 

microphones to identify what portions of the video signal correspond to 

a particular audio signal by maximising the mutual information from 

the video and audio data.

Another interesting development in tracking techniques is the design 

of smart rooms that enable this [13,19,43,80,108]. In [13], Busso et al. 

have designed and developed a smart room capable of participant track­

ing and identification using multiple camera views in real time. Speaker 

identification is achieved using MFCCs (mel frequency cepstral coeffi­

cients) of each individual’s speech and modelling the MFCCs using a 

GMM (Gaussian mixture model). For tracking, each participant (ac­

tive and non-active speaker) is identified using multiple camera views. 

A Gaussian background model is used to segment moving areas in the 

scene and for areas where large variations are detected the foreground 

pixels are extracted and turned into regions. The multiple regions (one 

from each camera view) are combined to form a 3-D silhouette which 

is then converted to a visual hull. The active speaker is identified using 

time difference of arrival (TDOA) for speech location, which is then 

compared to each participant’s visual location and a decision is made.
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Conversation overlaps of the four participants were allowed, however, 

there was no detailed analysis of their effect on the performance of the 

system.

Siracusa et al. [108] developed a similar system that combines audio 

and visual cues. The possible participants are found with a head tracker 

tha t relies on view based appearance models of a head, and the views 

from multiple cameras are employed to find the orientation of a person’s 

head. The audio cue is derived from the TDOA between microphones 

in an array. The audio-visual cues are then combined, and the audio­

visual cues with the highest synchrony are assumed to be from the 

same speaker. The system is also able to  determine the orientation of 

the head and uses this as the basis for inferring to whom someone is 

speaking.

2.2.2 Facial Feature Extraction

The extraction of facial features typically requires the face to be found 

in an image in the first instance. Yang et al. [129] produced a survey 

of current approaches to face detection and classified them into four 

categories, knowledge based, feature based, template matching and ap­

pearance based methods.

Knowledge based methods are developed based on rules derived 

from the developer’s own knowledge of faces. The rules are simple and 

describe the facial features and their relationship, e.g. faces usually 

have eyes that are usually symmetric to each other along with a nose 

and mouth [128].

Feature based methods assume that there are features on a human 

face that do not change in different poses and fighting conditions. The
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aim of these methods is to extract facial features such as eyes, nose, 

mouth, eyebrows and hairline using edge detectors [119]. Then build a 

statistical model that describes their relationship and decide if a face 

exists or not. Skin colour and skin texture have also been used to 

separate out faces from other objects in images [62].

Template matching uses several standard face patterns to describe 

the face as a whole or its individual features. The existence of a face 

is determined based on the correlation values of a given input image 

and the standard pattern. Active Shape Models (ASMs) proposed by 

Cootes et al. [26] can be considered as deformable templates.

Appearance based methods also use templates, but are learnt from 

a set of training images, e.g. Eigenfaces [121] and Active Appearance 

Models (AAMs) [29] which are an extension of ASMs. Statistical anal­

ysis and machine learning aid in finding the relevant characteristics of 

faces, which can be modelled using distribution models or discriminant 

functions. The dimensionality of the data is usually high so it is reduced 

to decrease the computational complexity.

A popular face detection method is the real-time detector of Viola 

and Jones [124]. It is based on the AdaBoost algorithm [44], which 

creates a strong classifier by combining several weak classifiers. Viola 

and Jones also defined a new type of image representation called inte­

gral image that represents the image in a reduced form, allowing for a 

considerable reduction in computation time. The method provides ac­

curate detection of several faces in an image while still running in real 

time. This method has been extended by others such as Cristinacce 

and Cootes [35] for detecting individual facial features such as the eyes.

Cootes and Taylor [29] introduced AAMs as a way of modelling
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selected features. An AAM is a joint statistical model of shape and 

texture, where a single appearance parameter defines a corresponding 

texture and shape vector. The parameters of the statistical model are 

learnt from a set of training images, as explained in detail in Chapter 

3 of this thesis. AAMs are widely used for feature modelling and have 

been used in face recognition [41] and facial animation [32,33].

The disadvantage of using AAMs is th a t the tracking process does 

not tolerate large head movements and evaluating model parameter 

values requires significant time. An extension to this is proposed by 

Cootes and Taylor [27] that allows for more robust tracking over several 

frames. An alternative approach is view based appearance models [30, 

108] that allow for movement of the head, however they require models 

of the face from different angles and are more complex models than the 

standard AAM.

Once the face is found (if it needed to be), the next step is to extract 

those visual speech features that have a high correlation with the audio 

speech. One naturally assumes the lips are the most important visual 

aspect, however it has been shown that there is also useful information 

contained in the cheeks [5,60,130]. Much of the research on extracting 

visual speech information has been for the purpose of improving Audio- 

Visual Speech Recognition (AVSR) [76,91,92], but has been used for 

speaker identification as well [69]. More recently, a new research topic 

has emerged, Visual Voice Activity Detection (V-VAD) [67,113], where 

the aim is to determine if a speaker is active (speaking) or not using 

solely visual information.

Matthews at al. [76], compared Active Shape Models (ASM), AAMs 

and a novel cascade filter (sieves) for extracting information about the
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speaker’s lips for the purpose of AVSR. They find that AAMs have a 

slight advantage over sieves but this is not significant. Their results 

show that ASMs have the worst performance. Similar to the Eigenface 

technique of Turk and Pentland [121], Bregler and Konig proposed 

Eigenlips to be used as the visual cue for AVSR [10]. Examples of 

other visual feature extraction techniques used within AVSR are optical 

flow [120], taking the discrete cosine transform  (DCT) of the mouth 

region and also lip geometric features, where useful information such 

as height, width and area of the lips are extracted from the video. A 

comparison of these features for AVSR can be found in the work of 

Potamianos et al. [92].

Active contours (Snakes) [61,115] are dynamic elastic curves that 

deform due to an energy minimization criterion to fit the shape bound­

ary of an object. ASMs can be thought of as ‘smart snakes’ [115], as 

they have some prior knowledge of the shape boundary that is being 

sought. Delmas and Lievin [38] and Eveno et al. [42] have both used 

active contours for lip tracking. In [38] the corners of the mouth are 

first identified and used as starting points for the active contour and 

they achieve a good degree of tracking accuracy, but the authors point 

out that their tracker does not perform well when the tongue and gums 

are visible. Eveno [42] proposed a quasi automatic tracker based on 

a new active contour called jumping snakes. The snake grows from a 

single landmark (keypoint) to fit the boundary of the lips. Additional 

landmarks are then placed on the lip boundary to define its shape. 

Results indicate that the proposed tracker is comparable to landmarks 

placed manually.

Finally, comparisons of different visual feature extraction techniques
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axe provided by Qetingiil et al. [17,18] for the purpose of speech read­

ing and speaker identification, and Sargin et al. [104] who measure 

the audio-visual correlation of several visual features. In [104], the 

audio-visual correlation is measured by combining audio information 

(MFCCs) with either the 2D-DCT of intensity of the lips region, the 

2D-DCT of optical flow vectors of the lips region or the lip shape. They 

found that the 2D-DCT of optical flow vectors provided the highest cor­

relation with the audio feature. Qetingul et al. [17] experimented with 

two similar features, they used the 2D-DCT of motion vectors obtained 

from the region of the lips, and also pure motion vectors that were 

obtained from the lip boundary. They used temporal correlations (en­

coded by an HMM) of the individual features for the purpose of speaker 

identification, noting that adding shape information to the pure motion 

vectors from the lip boundary improves the identification process. The 

authors expand upon this work in [18] by not only considering addi­

tional features for speaker ID but also experimenting with which feature 

or combination of features would be best suited for speech reading. The 

features they considered were the 2D-DCT of motion vectors found from 

the lips region, 2D-DCT of the motion vectors from the lips boundary, 

and a combination of the latter with the lips shape. For finding the lips 

shape they use an active contour method based on that proposed by 

Eveno et al. [42]. They also experimented with combining lip intensity 

information, found by computing the 2D-DCT of the lip region inten­

sity values, with the 2D-DCT motion vectors. Results showed that lip 

motion was more useful for speech recognition than intensity informa­

tion, as combining motion and intensity information improved speaker 

identification, but the speech recognition rate decreased.
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This concludes the overview of extracting visual information from 

video of speakers in a cocktail party like scenario. In the next section, 

speech enhancement or speech separation methods are discussed that 

use visual information to aid in solving the cocktail party problem.

2.3 Audio-Visual Speech Separation

In Section 2.1, solutions to the cocktail party problem were discussed 

that relied solely on audio information. Early on into research of solving 

convolutive mixtures it was suggested th a t for solving realistic mixtures 

of speech, using audio information alone might not be sufficient [45]. 

Solutions for convolutive mixtures using just audio information have 

been partially successful, however, a recent survey [88] compared ap­

proximately two dozen BSS algorithms and found there to be little dif­

ference between the results of the several best methods. Furthermore 

Haykin and Chen [52] have also noted th a t more than just audio in­

formation would be required for a robust solution to the cocktail party 

problem. This section focuses on previous attem pts to combine audio 

and visual information to improve speech separation performance. The 

type of visual information used is typically either the location of the 

speakers, visual facial features (lip shape, texture) or a combination 

of the two. Methods of obtaining this information were highlighted in 

Section 2.2.

One of the earliest works on the subject of using visual information 

for a source separation problem is by Darrell et al. [36]. Their system 

was-able to identify where in a region of video an audio source is lo­

cated and enables the user to enhance the voice of one of the speakers. 

Girin et al. [46] proposed a method that enhances noisy speech using a
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filtering approach, where the filter coefficients are estimated with the 

aid of lip shape information. Girin et al. then extended this work 

to propose one of the first audio-visual BSS methods [45]. Based on 

instantaneous mixtures of speech, the method finds the unmixing ma­

trix by maximising the audio-visual coherence. Simultaneously, Okuno 

et al. [85] proposed to use video information to provide the locations 

of speakers for a beamforming based BSS method. They showed that 

the use of visual information led to a significant improvement over the 

performance of a purely audio based method in a convolutive mixture 

of speech signals. Furthermore, a similar method to that proposed by 

Girin et al. [46] was the basis of a preprocessing stage in a speech recog­

nition framework proposed by Goecke et al. [47]. The noisy speech sig­

nals were first subjected to an audio-visual speech enhancement stage 

before being processed by a speech recognition system. Their results 

show that enhancing the speech before processing by an audio-only 

speech recognizer led to a decrease in the recognition error rate, how­

ever better results were obtained using an AVSR system with no speech 

enhancement. This is possibly because the speech enhancement stage 

assumes a fairly simple mixture of noise and speech, and the conditions 

in the experiments were more complicated than instantaneous mixing. 

The coherence of the audio and visual data was better captured by 

the AVSR system [47]. Further investigation into speech enhancement 

using audio-visual information was performed by McCowan et al. [77] 

and Maganti et al. [70]. In [77], an audio-visual tracker was utilised 

to provide the locations of people in a room using a microphone ar­

ray and several video cameras. The estimated locations were used in 

a beamformer to enhance a particular person’s speech. Their proposed
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beamforming method was shown to enhance the speech to a similar 

quality of a headset or lapel microphone, even for situations when the 

speaker was not facing the microphone array. This work was expanded 

upon by Maganti et al. [70] and further experiments conducted to eval­

uate the quality of the speech enhancement by using it as the input 

speech to an audio only speech recognition system. They reported that 

the recognition error rates for the audio-visual beamformer were better 

than those of an audio-only beamformer, and comparable to those of a 

lapel worn microphone in a real meeting room environment with two 

speakers.

For solving the cocktail party problem using BSS methods, visual in­

formation can be employed to either find the unmixing filters, solve the 

permutation problem or both. Initial research considered instantaneous 

mixtures of speech. Sodoyer et al. [114] extended the work of Girin et 

al. [45,46] by proposing a novel audio-visual blind source separation 

(AV-BSS) algorithm, where the visual information is used to estimate 

the separation matrix for an instantaneous mixture of speech signals. 

Further experiments were conducted by Sodoyer et al. in [111,112] and 

initial investigations into the use of audio-visual information to help in 

solving the permutation problem were performed. The performance of 

their previous AV-BSS algorithm [114] is compared to the JADE [15] 

algorithm and it is shown to outperform both the standard JADE al­

gorithm and a modified JADE algorithm where visual information is 

used as a post processing step for solving the permutation problem. Al­

though simple mixtures of speech were used, mixtures of several people 

were considered.

As the field of audio-only BSS methods for convolutive mixtures
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matured, researchers realised more information was required in order 

to improve the separation performance, so AV-BSS methods began to 

be developed. Rivet et al. [99] proposed to solve the permutation prob­

lem using audio-visual (AV) coherence of the speech signals. A joint 

AV probability model containing visual and audio data was formed, 

where the visual data were provided in the form of geometric lip shape 

parameters (height and width) and audio data in the form of spec­

tral characteristics. First the mixtures were separated using the audio 

BSS method by Pham et al. [90], then the joint model is used to esti­

mate the permutation matrix to further separate the mixtures. Rivet 

et al. [96,98] extended this, offering a solution to the scaling ambiguity 

problem of BSS.

An alternative method of using the audio-visual information was 

suggested by Wang et al. [126]. They also build a joint audio-visual 

probability model, but the visual information is encoded this time us­

ing an AAM of lip characteristics supplying the visual information and 

MFCCs supply the audio data. The AAM provides better shape de­

scription than the visual feature in [96] and also provides texture in­

formation of the inside of the mouth, which was not available in [96]. 

The joint AV model is then used as the penalty function in the BSS 

algorithm from [127] to find the separation matrix. They show that the 

use of visual information improves the quality of the separated signals, 

compared to using no visual information. Sanei et al. [103] incorporate 

the location of the speakers into a frequency domain penalty function 

based approach. The location of the speakers relative to the micro­

phones is utilised to constrain the estimation of the separation filters. 

Also due to the manner in which the update at each iteration is per­
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formed, the permutation problem is claimed to be completely solved.

More recently, visual voice activity detectors (V-VADs) have been 

used to provide additional information for BSS. Rivet et al. [100] used 

the output of a V-VAD to solve the permutation problem by post pro­

cessing the output of a BSS method. In [97] Rivet et al. proposed a 

geometric BSS method that uses the inactivity of a source to estimate 

the separation filter matrix. The main advantage of this technique is 

the low computational cost.

2.4 Summary

The work of Cherry [21,22] was identified as the foundation of the cock­

tail party problem. Audio only approaches to speech separation were 

summarised and the frequency domain methods highlighted as most 

suitable for separation of sources measured in a room environment. 

The permutation problem encountered in frequency domain methods 

and possible solutions were described. Next, the visual information that 

can be exploited in multi-modal audio separation was reviewed and fa­

cial feature extraction identified to have a major importance. Finally, 

previous research in the field of audio-visual blind speech separation 

was reviewed as the platform for the research activity in this thesis.



Chapter 3

MODELLING VISUAL 

FEATURES

This chapter provides an introduction to the visual feature extraction 

techniques used in Chapters 4 and 5 and also the modelling techniques 

used. throughout this thesis. It also covers the process by which the 

video and speech data used in this thesis are acquired.

As previously mentioned, a key challenge in audio-visual speech 

separation (AVSS) is to ensure tha t the chosen features have a high 

correlation with the audio information. As speech is the focus of the 

work, the most natural features to use would be those involved with the 

production of speech and the most visible components of speech pro­

duction are the lips. Chapter 2 discussed several methods for modelling 

visual features, and in particular ones tha t have been used previously 

for modelling the lips (or the lips and surrounding area) in audio-visual 

ASR (automatic speech recognition). Audio-visual ASR research has 

been ongoing since the mid 1980’s [89], and many approaches to ex­

tracting visual features have been proposed. As in this work, mouth 

features are primarily used in audio-visual ASR, and the successful 

techniques developed therein are useful for this work. One of the more 

popular methods of feature extraction is the A AM. When extracting

33
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facial features, there is normally the problem of firstly detecting the 

face and mouth, and then tracking the desired feature. Detecting the 

face and mouth region is not considered as this can be achieved using 

a technique such as the Viola-Jones face detector [124]. It is taken 

as given that this can be performed efficiently, and so the problem of 

mouth feature extraction is the focus here.

The following section provides a brief overview of mouth feature 

extraction methods. It is by no means exhaustive, only a few com­

monly used methods are considered. The remainder of the chapter is 

as follows: Sections 3.2 and 3.3 focus on the Active Appearance Model 

(AAM) developed by Cootes et al. [28,29] as it is used as the visual 

descriptor for the work contained in Chapters 4 and 5. Section 3.4 

details how the audio and visual data are obtained. Sections 3.5 and

3.6 contain an overview of the speech features used and statistical data 

modelling techniques respectively, and Section 3.7 concludes the chap­

ter with a summary.

3.1 Feature Extraction

As mentioned previously, research into audio-visual ASR has been on­

going since the mid 1980’s, and many of the methods developed are 

pertinent to work in this thesis. They can be roughly grouped into 

three categories [81]: lip contour based features, low level video pixel 

based features and features that are a combination of both. Lip contour 

features consist of the inner and/or outer lip contour shape, which are 

then modelled in a statistical model such as a point distribution model 

(PDM), or alternatively geometric parameters such as lip height and 

width (See Figure 3.1). Video pixel features consist of applying appro­
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priate transforms on a region of interest (ROI) [81] such as the speaker’s 

mouth area, and using the transformed pixel values as the features. Ex­

amples of such transforms are: the discrete cosine transform (DCT), 

the discrete wavelet transform (DWT) or a PCA projection. There 

are also examples of methods where the low-level (pixel based) and 

high-level (contour) features are combined to provide both shape and 

appearance features, such as the A AM. Comparisons using the above 

techniques in an audio-visual ASR context are given in [76,81,92].

In this work it was decided to use the AAM appearance parameters, 

as they are widely used to model the lips due to their ability to incor­

porate both high level data (shape) and low level data (texture) into a 

single statistical model. This has an advantage over other techniques 

in that it provides more information than low or high level methods 

alone.

■

(a) Lip Height and Width

(b) Lip Shape

Figure 3.1. Example of visual features extracted from the lips.
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3.2 Overview of Active Appearance Models

AAMs were first proposed by Cootes et al. [28,29] as an extension to 

the active shape model (ASM) [26]. In an AAM, a single appearance 

parameter vector describes both shape and texture and is frequently 

used to model the face [27,41,48,49]. An AAM is built in three main 

stages [29,30], and where the result of the final stage is a set of ap­

pearance parameters. The appearance parameters can also be used 

to recreate the data from the dataset, or alternatively new data not 

found in the original dataset can be created. This possibility has been 

exploited in areas such as speech driven facial animation [34]. The 

process of building the AAM is discussed next.

3.2.1 Landmarking Images

To build an AAM, the images in the dataset must first be landmarked. 

The landmarks are typically placed to define a feature in the video 

frame. The placement and number of landmarks on the feature should 

be consistent throughout the dataset.

For example, landmarks are used in this study to define the contour 

of the lips, which is achieved by placing a landmark on each comer of 

the lips and also one in the centre of the top and bottom lips. The 

remaining landmarks are then placed at equal distance between these 

as shown in Figure 3.2.

The datasets used in this study have several thousand frames and 

manually landmarking these would be highly time consuming. To over­

come this a semi-automatic process is employed, whereby several frames 

are landmarked and used as training examples for an automatic land- 

marking algorithm. The automatic landmarking algorithm used in this
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thesis is a modified version of Luettin’s [68] downhill simplex minimi­

sation (DSM) tracking algorithm proposed by Cosker [31]. The result 

of the automatic landmarking is checked for accuracy and any mistakes 

are manually corrected 1.

3.2.2 Point Distribution Models

Point distribution models (PDMs) are linear models of shape variation 

and are required for constructing the AAM. In the application described 

in this thesis, the PDM describes the lip shape variation of a speaker in 

a set of video frames. The PDM is calculated from a set of landmarked 

images, and for the purpose of the work in this thesis the landmarks 

are placed on the lips contour, as illustrated by Figure 3.2.

Landmarks placed on the lips contour define its shape. So for N  

landmark points in d dimensions, the shape of the lips can be repre­

sented by an Nd vector. This vector is formed by concatenating the 

elements of all the landmarks. For the 2-D images used in this work, 

each landmark is represented as coordinates (Xi,yi); so for a single im­

age, the 2N  element vector x  is:

x =  (x1, . . . , x N, y1, . . . , y N)T (3.1)

For a given set of j  images there are x i , . . . ,  x7- such vectors, and in 

each vector in the set, the coordinates are in the same order.

Once the images have been landmarked they need to be aligned 

into a common coordinate frame. Cootes and Taylor [26] use a method 

called Procrustes analysis that aligns each shape so that the sum of

lrThe Matlab code for the semi automatic landmarking process, and much of the 
code to build the AAMs was kindly provided by Dr Darren Cosker.
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Figure 3.2. Image of lip region landmarks, with a zoomed in view of 
landmarks below, where the landmarks are connected by a solid line.

distances D of each shape to the mean shape is minimized.

j
D = ^  |x i — x |2 (3.2)

i= l

where x* is a shape vector and x  is the mean shape. To align all images 

in a set the following iterative approach can be used [26,115]:

1. Translate each shape vector so its center of gravity is at the origin.

2. Choose one example as an initial estimate of the mean shape x, 

. and scale to have unit length i.e. ||x|| =  1.

3. Record this estimate as the vector x0.
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4. Align each shape vector with the current mean shape xo using 

the Procrustes method outlined in [26,115].

5. Calculate a new mean from the aligned shapes, align the new 

mean with Xo-

6. If not converged, return to step 4. The process is deemed to have 

converged if the current estimate of the mean does not change 

significantly when compared to the previous mean:

where lim x is a predefined value.

Now that the set of points x^ have been aligned, these vectors form 

a distribution in the Nd dimensional space in which they reside. To 

make the data more manageable it is necessary to reduce the dimen­

sionality. For example, in the application considered in this thesis, 

each appearance vector has several hundred dimensions and without 

reducing the number of dimensions the computation time would be im­

practical. One well known approach to reduce the dimensionality is to 

use PCA, which allows any of the original points to be approximated 

using a model with fewer than Nd parameters. PCA also has other 

properties that are discussed in Chapter 4 of this thesis. The steps for 

calculating the principal components are as follows:

1. Compute the sample mean vector of the data.

■̂new -  x^dll <  lim x

i=1
(3.3)
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2. Compute the sample covariance matrix of the data

S =  j-5— 5^ (x i -  x)(xi -  x )T
j - 1 t r

(3.4)

and (.)T denotes vector transpose.

3. Compute the eigenvectors, <& and eigenvalues, A* of S using S<j>i =  

and sort them so that Ai >  \i+ i, i.e. in descending order of 

energy.

Large eigenvalues correspond to large variations in the underlying 

data set, and also provide the m odes o f v a ria tio n  (see [29] for more 

discussion on this). The training set can be approximated using:

where P s =  (<j)i ,  <fo, • .  • ,  <th) and contains the t eigenvectors correspond­

ing to the largest eigenvalues and b s is a t dimensional column vector 

that indicates how much variation is exhibited with respect to each of 

the eigenvectors. Similarly, the shape parameter b a can be represented 

as:

Variation of b s allows new shapes to be defined. Furthermore, re­

stricting the variation of the elements bi of bs to within ±3\/A i (3 

standard deviations) ensures the new shape is similar to those present 

in the original data. It is also necessary to decide on a value for the 

number of modes to keep (<). The easiest is to choose a t tha t explains 

a chosen percentage of the variance exhibited in the training set. This

x  =  x  +  P sb s (3.5)

bs =  P f ( x  -  x) (3.6)
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can be done by equating the total variance of the training data to the 

sum of all eigenvalues, A total =  13 A<, and then choose the t largest 

eigenvalues such that:

t
y  At > aAtotal 0 < a < 1 (3.7)
t=i

where a defines the proportion of the total variation to retain, e.g. 0.98 

for 98%.

3.3 Texture Models

To model accurately a complete set of images, models of both shape and 

texture from each image are needed. The grey level values across the 

selected region of the image is referred to as texture.2 Once the shape 

model is built, each image is warped (using triangulated piece-wise 

affine warping [28,31]) from its landmark points to the mean shape to 

obtain a shape free patch. This patch is then used to build a statistical 

model of the texture variation within the region. Effectively, the shape 

free patch becomes the region of interest (ROI) of the required texture 

features.

3.3.1 Statistical Models of Texture

Using a triangulation algorithm [28,31], the selected feature in each 

image is warped to the mean shape to obtain a shape free patch. The 

intensity information from the shape free patch is formed into a texture 

vector gim. The effect of lighting variation is minimized by normaliz­

ing the images by applying a scaling a , and offset 0. The following

2Hereafter, texture refers to the grey level values unless otherwise stated.
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procedure is described in [28,29].

1. Choose a texture as an initial estimate of the mean g

2. For the texture vector gtm, find a scaling value a  =  gim-9 and 

offset p  =  (gim.l) /n  where n  is the number of elements in gim 

and 1 is a vector of ones.

3. Obtain a normalised texture vector g by applying the scaling and 

offset to gim so that g = (g»m - p . l ) / a

4. Calculate a new estimate for the mean g, repeat from step 2 until 

g converges, (i.e. until there is little change in the mean value):

IlSnetu S o id || ItTYlg

where lim g is a predefined value.

Once the texture data have been normalised, PCA is applied to the 

normalised vector set to obtain a texture model:

g = g +  Pgbg (3.8)

where g is the mean normalised grey level vector, Pg contains a set of 

orthogonal modes of intensity variation and bg contains a set of grey 

level parameters. As with the PDM, varying the grey level parameters 

bg allows new textures to be created, under the same constraint of three 

standard deviations. As texture vectors can be very large (especially in 

comparison with the shape vectors) the application of PCA can provide 

a significant reduction in the size of these vectors whilst retaining the 

majority of the texture information.
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3.3.2 Combined Shape and Appearance Models

The shape and texture of any example in the set can be described by 

the shape and texture parameters, b s and bg. By concatenating these 

vectors a joint shape and texture vector b  is defined as [29,30]:

where W s is a diagonal matrix of weights for each shape parameter to 

scale the parameters of b s to lie in the range of values for b g. W s may 

be found by calculating the energy ratio of total shape variation to the 

total intensity variation:

where \{S and Xig are the shape and texture eigenvalues respectively 

and t s and tg are the total number of shape and texture eigenvalues 

retained from building the shape and texture models. There will also 

be correlations between the shape and texture variations as they were 

obtained from the same dataset. Applying PCA to the set of concate­

nated shape and texture vectors gives:

' w *b» )  _  { w >p ?(x - * )  

v b* J v p * ( g - g )  >
(3.9)

W , =  r l (3.10)

where

(3.11)

b  =  P cc (3.12)

where P c contains the eigenvectors and c is a vector of appearance 

parameters controlling both shape and texture variation.

Due to the linearity of the model it is possible to express the shape
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and grey-levels directly as a function of c [29,30]:

x = x  +  P ,W J1P„c , g = g + PgPC9c

and,

P . =
\* CS 

F c g )
Equations (3.13) can be summarized further:

(3.13)

(3.14)

x = x + Qsc 

g  =  g  +  Q g C

(3.15)

(3.16)

where
Qs =  P .W .-'P e .C

Q9 = P^Pcgc

This completes the definition of the AAM and the acquisition of the 

audio-visual data is considered next.

3.4 Audio-Visual D ata Collection

Figures (3.3) and (3.4) below show the set up of the equipment in the 

Intelligent office situated in the CDSP Lab (Center of Digital Signal 

Processing).

The two spot lamps were used in conjunction with the overhead 

room lighting to eliminate shadows from the lip area. Audio-visual data 

were recorded simultaneously on separate systems but were manually 

checked to ensure they were synchronized. All audio-visual data were 

recorded in the same manner, however the early data recordings used 

in Chapter 4 could not be used for the experiments in Chapters 5 and 6
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Figure 3.3. Side view of video capture setup.
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Figure 3.4. Top down view of video capture setup.

as they were mainly continuous speech and so the data were inadequate 

to test the visual voice activity detectors. Therefore, the data used in 

each chapter is described in that chapter.

For the work based on AAMs, 17 landmarks were used to define the 

lip shape for all speakers. Once all of the frames in the dataset had 

been landmarked and any errors corrected, the appearance model can 

be constructed. Figure (3.5) contains examples of several landmarked 

frames from one of the datasets. To check how accurately the appear­

ance model approximates to the original, the modes of variation of the 

AAM can be considered. Figure (3.6) shows the first two modes of 

variation between ±3 s.d. (the center image in each row is the mean).
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This figure confirms the key information in the lip shapes is retained 

after the dimension reduction.

F igure 3.5. Consecutive landmarked frames, reading left to right, top 
to bottom.

F igure 3.6. First two modes of variation, varying ±  3 s.d. in steps of 
1 s.d.

3.5 Speech Features

The experiments in Chapter 4 use a joint model of audio-visual speech. 

The method of modelling the visual data has been discussed, the method 

for robustly coding the audio information is described next.
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The speech features used are Mel-Frequency Cepstral Coefficients 

(MFCCs), which are popular in speech recognition research [76]. MFCCs 

are found by warping the frequencies of audio data onto the mel scale 

[116]. The mel scale is an approximation of the nonlinear frequency 

response of the human ear. The mel coefficients are distributed ap­

proximately linearly up to 1kHz, and nonlinearly (logarithmicly) above 

1kHz and may be calculated in the following manner [14,31,37]:

1. Divide the audio signal into windows. Window size can range 

between 15-30ms.

2. Compute the DFT of the signal in each window.

3. Compute the magnitude of the signal spectrum.

4. Scale the result of the previous stage using a Mel filter bank and 

take the log.

5. Obtain the MFCCs by calculating the DCT (discrete cosine trans­

form) of step 4.

The Mel filter bank is a collection of triangular filters and is evenly 

spaced along the Mel Frequency Scale with 50% overlap as depicted in 

Figure 3.7.

Mel Frequency

F igure  3.7. Mel filter bank on Mel frequency scale.
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Frequency

Figure 3.8. Mel filter bank converted to the original frequency scale.

Figure 3.8 is the result of converting the Mel frequency filter bank 

of Figure 3.7 into the original frequency domain, where the relationship 

between the mel-frequency and the physical frequency is defined as [37]:

Mel( f )  = 1127.01048 x loge(1 +  //700). (3.17)

The resulting amplitudes of step 5 above are the MFCCs. In this 

work a 20ms Hamming window is used which results in 12 MFCCs 

which are used as the audio feature. As a final step Cepstral Mean 

Normalisation (CMN) is used to normalise the MFCCs, as this reduces 

the distortion caused by the transmission channel (e.g. the microphone) 

[14,31]. Essentially, CMN is the subtraction of the mean MFCC vector 

from the set of MFCC vectors [31].

3.6 Modelling selected features

Both the audio and visual feature distributions are not guaranteed to 

be linear throughout the multi-dimensional distribution. Therefore the 

data would be more accurately modelled using a non-linear modelling 

technique such as a Gaussian Mixture Model (GMM). A k component 

GMM of a distribution of a variable vector x may be defined as:
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k

p(x ) =  (3-18)
3= 1

where aj  axe the prior probabilities of the j th Gaussian mixture and 

p (x |j) is a d dimensional multivariate Gaussian distribution defined as:

where and Cj  are the centres (means) and covariance matrices 

of the Gaussians respectively and |.| denotes the matrix determinant. 

The GMM parameters a^, /z* and Cj  are typically estimated using the 

Expectation Maximisation (EM) algorithm [40,56]. Depending on the 

data, maximum likelihood estimation (MLE) can also be used to find 

these parameters, but because the data used to train the models in this 

thesis were incomplete, EM provides a more accurate estimation [40]. 

There is no standard method to determine the correct number of com­

ponents k  to use, and as such the value of k will be found empirically.

However, as the data vary with time, and taking the change in the 

shape of lips over time as an example, a GMM will not contain infor­

mation on the temporal relationship of the shape of the lips. The shape 

of the lips at each time instance may be valid but the overall sequence 

may be invalid (with regard to the training data). For this reason the 

data is also modelled using a Hidden Markov Model (HMM). HMMs 

have been used since the mid 1970s in speech recognition research [37]. 

Originally, they were used to model audio features but more recently 

have been used to model audio-visual speech features. An HMM allows 

the temporal dependencies of data to be modelled using a probabil­

ity transition matrix, where each element of the matrix represents the



Section 3.6. Modelling selected features 50

conditional probability of transitioning from one state to another. The 

states in the HMMs employed are represented as single Gaussians ob­

tained from a GMM.

An HMM is defined by the following:

•  The number of states k in the model. In this work each state is a 

single Gaussian and the state at discrete time t is defined as <&(£)

•  The state transition probability matrix A =  {ay}, where

that is, a,ij is the probability of moving from state i at the current 

time interval to state j  at the next time interval.

• The observation probability distribution B =  (6j(0)}

which is the probability of observation Ot belonging to state j .  

•  The initial probabilities of being in state i at t =  1

“ij =  p {Qj(t + !)!*(<)), 1 < i , j  (3.20)

(3.21)

7T =  Hi (3.22)

It is common to define the model parameters of an HMM as:

A =  (A,B,7r) (3.23)

There are three basic issues with HMMs [40,93]
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1. Given an observation sequence O =  0 \ 0 2 . . .  On and the model 

parameters A =  (A, B, 7r), determine the probability of the ob­

servation sequence P(0 |A ).

2. Given an observation sequence O = 0\02 ... On and the model 

A =  (A, B, 7r), determine the hidden state sequence Q = q\q2 .. .qN 

that best explains the observations.

3. Given the number of states, find the model parameters A =  

(A, B,7t) that maximise P (0 |A ).

Only problems 1 and 3 are of importance in the context of the 

work in this thesis. For the training of the HMM (problem 3) the 

widely used Baum-Welch re-estimation procedure is used. Secondly, 

given an observation from previously unseen data the probability the 

model generated this new data must be calculated, which is achieved 

by calculating the forward probabilities [93]. Both the Baum-Welch 

and the method of calculating the forward probabilities are described 

in excellent detail by Rabiner [93].

3.7 Summary

In this chapter the methods for obtaining both audio and visual speech 

features have been described, as have methods to build statistical mod­

els of these features. Detailed information has been given on statistical 

shape modelling along with grey level models and how to combine the 

two to produce the widely used active appearance model. The work 

presented in Chapter 4 utilises both the audio and visual speech fea­

tures to form a combined audio-visual model of speech data for use 

in a novel audio-visual BSS algorithm, while in Chapter 5 a novel Vi-
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sual Voice Activity Detector (V-VAD) is described which requires an 

AAM of a speaker’s lips to detect silence phases in speech. The GMM 

and HMM discussed in Section 3.6 are used throughout the thesis for 

modelling speech features.



Chapter 4

USING AUDIO-VISUAL 

SPEECH IN A PENALTY 

FUNCTION BASED BLIND 

SOURCE SEPARATION 

FRAMEWORK

4.1 Introduction

The motivation of this thesis is to propose efficient methods for solving 

the cocktail party problem [21] which take advantage of all available in­

formation, including visual data. A popular technique for solving this 

problem is Blind Source Separation (BSS), therefore in this chapter an 

existing BSS approach is adapted to include audio-visual information in 

order to improve its convergence behaviour, fn Chapter 3 methods for 

encoding audio and visual speech information were discussed, namely 

Mel-Frequency Cepstral Coefficients (MFCCs) and Active Appearance 

Models (AAMs). The novel method presented in this chapter uses 

these techniques to exploit the audio-visual coherence of speech, which

53
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is shown in this chapter to help control the convergence behaviour of 

a frequency domain blind source separation algorithm. The method is 

based on maximising the coherence by employing an audio-visual joint 

probability model which is built using the statistical modelling tech­

niques discussed in Chapter 3, namely the Gaussian Mixture Model 

(GMM) and the Hidden Markov Model (HMM). The statistical model 

(GMM or HMM) is then incorporated into the frequency domain algo­

rithm of Wang et al. [125,127] to control the convergence behaviour. 

Experiments are conducted tha t compare the convergence rate when 

modelling the audio-visual data with a GMM to modelling the data 

with an HMM. Simulations show tha t including a statistical model 

provides an increased rate of convergence when compared to using raw 

audio data (i.e. no model). Furthermore, the difference between using 

HMMs and GMMs as statistical models is the presence of the transition 

probabilities that capture the temporal dynamics of the signal, which 

is in line with the requirements for solving the cocktail party problem 

listed by Cherry [21,22].

The next Section (4.2) provides an introduction to blind source 

separation, Sections 4.3 and 4.4 discuss the case of instantaneous and 

convolutive mixtures of signals respectively. A general overview of fre­

quency domain BSS, together with a detailed discussion of the algo­

rithm proposed by Wang et al. [127] is provided in Section 4.5. A novel 

audio-visual BSS algorithm is presented in Section 4.6 with the results 

of simulation in Section 4.7. The chapter is concluded in Section 4.8.
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4.2 Overview of Blind Source Separation

The goal of BSS is to recover independent source signals (sources) from 

a mixture of signals. Solutions to the problem date back to the early 

work of Herault and Jutten [50] and in the last two decades many so­

lutions have been proposed. Also the subject has been regarded as a 

hot topic since the mid 1990’s as it has applications in several signal 

processing areas, such as biomedical, communications and speech signal 

processing. The mixing of the source signals can be modelled in three 

distinct ways, as Instantaneous, Anechoic or Convolutive (Echoic) mix­

tures. Instantaneous mixtures assume that there are similar delays be­

tween the sources and sensors, and that there are no reflections/echos. 

Anechoic mixing simply represents the source to sensor transmission 

delay, while convolutive mixtures represent the different source to sen­

sor delays and also reverberations (echoes) of the sources. Within the 

BSS community the cases of instantaneous or convolutive mixtures are 

mainly researched, and the work in this chapter focuses on the area of 

convolutive BSS. The related mathematics for these models is provided 

in Sections 4.3 and 4.4.

The most widely used method for performing BSS is Independent 

Component Analysis (ICA) which is discussed next.

4.2.1 Independent Com ponent Analysis

ICA originated at the same time as Herault and Jutten [50] proposed 

their framework for BSS using a neural network, although the technique 

wasn’t formally defined until several years later [56]. ICA is probably 

the most widely used technique for performing BSS and as such it is not 

uncommon for the two terms to be used interchangeably by researchers
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in the area.

Independent component analysis is a technique for decomposing 

(unmixing) multidimensional data into components that are as statisti­

cally mutually independent from each other as possible. The underlying 

principle of ICA is that the original source signals must be statistically 

independent from each other: such tha t given two sources, s\ and S2 , Si 

must not convey any information about S2 and vice-versa. Mathemat­

ically, the sources are independent if and only if their joint probability 

density function can be factorised as:

2

p(s i , s2) = JJpi(Si)
i=i

i.e. the product of the marginal probability density functions of 

the original sources p i(si) and P2 (s2)- It is worth mentioning that the 

technique of principal component analysis (PCA) which was discussed 

in Chapter 3, is superficially related to  ICA. PCA can also be used to 

obtain underlying information of the dataset so that the dimensional­

ity may be reduced, however PCA only decorrelates the data. While 

independence implies uncorrelatedness the opposite is not true (except 

in the Gaussian case), therefore PCA cannot be used to separate inde­

pendent sources. PCA can also be used to filter out noise in the signal 

before the application on ICA. Further information, including examples 

of the difference between PCA and ICA can be found in [24,56,64].

4.2.2 Ambiguities of ICA/BSS

Ideally, ICA would find the original sources that were mixed together, 

however due to certain indeterminacies this is not possible. While ICA



Section 4.3. Instantaneous BSS 57

is a very useful technique for revealing hidden factors/components of 

multivariate data, its solution is subject to two indeterminacies regard­

ing the estimated sources, namely the scaling and (more importantly) 

the permutation ambiguities:

•  Scaling ambiguity:

It is not possible to determine the variances (energy) of the origi­

nal independent components. However some researchers, such as 

in [56], force the estimated sources to have unit variance.

•  Permutation problem:

The order in which the independent components are found cannot 

be determined since multiplication is commutative. In frequency 

domain BSS methods, the permutation ambiguity is more serious 

as the permutation problem now exists at individual frequency 

bins.

Therefore perfect separation cannot be achieved as the energy and 

order of the original sources cannot be determined exactly without ad­

ditional information or assumptions.

4.3 Instantaneous BSS

Traditionally, the BSS problem was solved by modelling the sources 

as having been mixed instantaneously. N  real and zero mean source 

signals that are mixed in a transmission channel, and then detected by 

M  sensors, can be represented at discrete time index (t ) by:

x(t) =  A s (t) -I- n(t) (4.1)
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where x(t) =  [aii(t),. . .  ,£A/(t)]T represents the M  observed mix­

tures, s (t) = [si(£), •. . ,  Sjv(£)]r  are original source signals and [.]T 

denotes the vector transpose. A is the scalar matrix channel through 

which the sources were transmitted. A is better known as the mixing 

matrix and is of size M  by N.  n (t) denotes the M  dimensional noise 

vector that is independent of the source signals. When the number of 

sensors is greater than the number sources M  > N  the problem is said 

to be over determined, when M  < N  it is said to be under determined 

and when M  = N  it is even determined. To simplify the problem, 

for the remainder of this chapter it is assumed that there is an equal 

number of sources and sensors so that A is now an A by AT matrix (i.e. 

a square matrix) and also that there is no noise present.

F igure 4.1. Diagram of instantaneous mixing of two signals si and 5 2 -

The objective of BSS is to recover the original sources s (t) from 

the mixtures x(£) based on the assumption that the source signals are 

independent. For this purpose, A is required to be an invertible square 

matrix such that:

However, the mixing matrix A is unknown and so its exact inverse 

canfrot be found. Instead a square matrix W  is found, such that:

Mixing matrix A

s(t) =  A :x(£) (4.2)

s =  W x (4.3)
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where s is the best estimate of the original sources. Ideally W = 

A-1, but in practice we have:

WA = PD (4.4)

where P is a permutation matrix and D is a diagonal scaling matrix. 

The matrices P and D refer to the permutation and scale indetermina- 

cies mentioned in section 4.2.2. In the over determined case (non square 

matrix), W can be represented as the pseudo inverse of A: W = A*.

4.3.1 Instantaneous BSS Approaches

Various BSS algorithms have been proposed for solving instantaneous 

mixtures of signals and can be classed into several groups [24]. Exam­

ples are:

•  Utilising higher-order statistics to maximise the independence 

of the estimated signals. Two examples of algorithms that use 

fourth-order statistics are: the JADE (Joint Approximate Diago- 

nalisation of Eigenmatrices) algorithm proposed by Cardoso [15], 

and the algorithm proposed by Comon [25].

• Methods exploiting the second order statistics of the signals have 

also been proposed. The SOBI (Second-Order Blind Identifica­

tion) algorithm [8] is a popular second order method that exploits 

the temporal correlation of the signals. Algorithms exploiting the 

second order statistics are generally less computationally demand­

ing than those methods based on higher-order statistics.

• Information theoretic based methods use mutual information or 

the entropies of the sources as a measure of independence. A well
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known method from this group is the Infomax algorithm proposed 

by Bell and Sejnowski [7].

The nature of the sources has a significant effect on what assump­

tions can be made about them. The environment in which they were 

recorded also influences the choice of the best mixture model. The 

work in this chapter uses speech signals which are non-stationary. In 

addition, a cocktail party environment creates a mixing channel which 

is itself non-stationary due to the speakers moving around and doors 

opening.

The instantaneous mixture model cannot be used when solving the 

cocktail party problem due to the fact this it does not account for the 

cross-talk and echoes that occur between the sources and sensors. In 

a real world environment the sensors will record convolved mixtures 

of the original sources due to reflections and reverberations the sources 

will undergo. The signals recorded in the real world are better modelled 

using a convolutive model. In the next section the convolutive mixture 

model is discussed as well as time and frequency domain methods which 

use this mixture model. Particular attention is given to the frequency 

domain method of Wang et al. [127] as it forms the basis of the novel 

BSS algorithm presented in Section 4.6.

4.4 Convolutive BSS

The instantaneous mixture model is insufficient to model the multipath 

channel encountered in a cocktail party environment; the convolutive 

model is on the other-hand generally sufficient. Although the instanta­

neous and convolutive mixture models are different, the independence 

assumption outlined in Section 4.2.1 remains. Figure 4.2 is an example
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of convolutive mixing.

F igure 4.2. Diagram of convolutive mixing of two sources in a two 
dimensional room-like environment.

For N  independent sources s and N  observed signals x, the convo­

lutive model can be written in matrix form as:

x{t) =  A(p) * s (t -  p) (4.5)

where * denotes convolution. For the instantaneous case, the elements 

of the mixing matrix A were scaling elements, but in the convolutive 

mixing case the elements represent filter coefficients, often in polyno­

mial form. The convolutive model given in (4.5) can be rewritten as:

N P - 1

W = (p)*i(* - p )  for » =  1, . . .  ,7V (4.6)
j =1 p=o

where the mixing matrix elements a%j[p) are typically considered to 

be FIR filter coefficients [63], and P  is the filter length.

As stated earlier, the goal of any BSS method is to separate the 

observed signals X i ( t )  back into the original signals S i ( t ) .  Because the 

system is considered b lin d , neither the original signals nor the mixing 

matrix are available, one can only make assumptions of their statistics. 

As with the instantaneous case, an unmixing matrix is sought such that
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the best estimate yi(t) of the original signals Si(t) can be obtained using 

it. As the mixing matrix was assumed to be a bank of FIR filters, the 

unmixing FIR filters W  are sought so that the unmixed signals are as 

independent as possible. The unmixing system is defined as:

N  Q- 1

2k{t) =  - Q )  for i =  1, . . . ,  AT (4.7)
j - 1 q = 0

where Wij(q) is the i , j th coefficient of the qth unmixing FIR filter of 

tap length Q, and yi(t) are the estimated source signals.

Algorithms for convolutive BSS have been suggested in both the 

time domain and in the frequency domain. However, the lengths of the 

filters in convolutive mixtures can be in the order of 1000’s of samples, 

dependent upon the size of the room, the reverberation and sampling 

frequency of the signals. For such long filter lengths, time domain so­

lutions will be computationally expensive, frequency domain solutions 

offer a more efficient solution. A detailed comparison of time and fre­

quency domain algorithms can be found in [84].

4.5 Frequency Domain Convolutive BSS

Time domain solutions to the blind source separation problem can have 

a high computational complexity for a real room because of the need 

for large filter lengths, due to the complex mixing environment. This 

fact contributed to the popularity of frequency domain solutions, which 

have the advantage of greater computational efficiency. The convolu­

tion in the time domain is reduced to complex multiplication at each 

frequency bin1 in the frequency domain, i.e. the convolutive mixture

1 Frequency bin refers to a range of frequencias over which the signal energy is 
measured
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in the time domain becomes an instantaneous but complex mixture at 

each frequency bin in the frequency domain.

However, frequency domain solutions are not without their inherent 

problems. The main problem stems from the ambiguities of the esti­

mated sources discussed in Section 4.2.2. Because each frequency bin 

is treated as a separate problem, the permutation problem now occurs 

at each bin and must be solved in such a way that the permutations 

are consistent across all frequency bins. If the permutations are not 

consistent then once converted back into the time domain the signals 

will contain contributions from the other sources, thus negating the 

advantage of solving the BSS problem in the frequency domain.

To transform from the time domain into the frequency domain, the 

discrete Fourier transform (DFT) of the signal is taken, and it has 

also been reported [2] that there exists a trade off between the frame 

size T  of the DFT and the length of the room impulse response P  

whereby too large or too small a value of T  can cause the independence 

assumption between sources to no longer be valid. Further discussion 

on the selection of T  can be found in [2,57].

4.5.1 Frequency domain Perm utation Problem

Many methods have been suggested to solve the permutation problem 

and can be grouped into two main categories [88], where the categories 

can be further subdivided into several groups (including but not limited 

to):

-1. Consistency of the filter coefficients.

• Exploitation of separation matrix spectrum continuity.
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•  Using beamforming techniques.

2. Consistency of the spectrum of the recovered signals.

•  Exploiting similarities in the signal envelope.

•  Psychoacoustic filtering.

For consistency of the filter coefficients, prior knowledge about the 

mixing filters must be known or assumed. Further details of which are 

given in [88].

4.5.2 Frequency Domain Algorithms

Convolutive BSS solutions can be transformed into the frequency do­

main using a T point discrete Fourier transform (DFT) of the signal

Xi:
T - 1

Xi(ujj t) = ^ 2  Xi(t + T)w(r)e~j2nujT (4.8)
T=0

where w(r) is a window function (Hamming or Hanning are typical). 

The frequency domain representation of the time domain mixing model 

(4.5) can be written as [2,58,87,88,127]:

X(u;,t) =  A(uj)S((jj,t) (4.9)

where X(u;, t) =  [Xi((j, t ) . . .  X^(cj, t))T and 

S(o;, t) =  [Si(u, t ) . . .  Sn{u, t)]T are the time-frequency representations 

of the observed mixtures and source signals respectively at each fre­

quency bin u.  A(cj) is again assumed to be an invertible square matrix 

where the elements ciij(cj) are the frequency domain representation of 

the time domain room impulse response dij(p) of (4.6). Equation (4.9) 

shows that the convolutive mixture of (4.6) has now been simplified
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to be separate complex multiplications at each frequency bin u. As 

was noted in the previous section, a backward model can be defined to 

separate the mixtures into estimates of the original sources:

Y(w,t) = W(u;)X(a;,t) (4.10)

where Y  (a;, t) =  [Yi(u;, t ) . . .  Vjv(u/, t)]T are the estimates of the orig­

inal sources S(u,t) .  The unmixing matrix W(u;) is a square matrix 

containing the elements Wij(u) that are the frequency domain represen­

tation of the unmixing filter coefficients Wij(q). The aim of frequency 

domain algorithms is to estimate the parameters of W(w) such that 

the signals Y(a;, t) are statistically mutually independent. The N  esti­

mated signals t) are then transformed back into the time domain 

by applying an inverse DFT. To summarise, frequency domain blind 

source separation generally consists of:

•  Transforming the time domain signals into the frequency domain.

•  Finding the optimum unmixing matrix at each frequency bin.

• Separating the mixture of signals.

•  Transforming the unmixed signals back to the time domain.

Many algorithms for frequency domain BSS have been proposed 

based on different criteria for obtaining an optimum unmixing matrix, 

some of which are discussed by Pedersen et al. [88] in their survey of 

convolutive BSS algorithms.
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4.5.3 Penalty function based Convolutive Blind Source 

Separation

The basis of the novel audio-visual algorithm described in this chapter 

is the frequency domain penalty function based algorithm of Wang et 

al. [125,127], and it is introduced in detail here. The proposed method 

of Wang et al. jointly diagonalizes the autocorrelation matrices at 

different times for each frequency bin. The algorithm incorporates a 

penalty function into the cross-power spectrum based cost function of 

the algorithm proposed by Parra and Spence [87]. The inclusion of the 

penalty function not only results in a faster convergence to the optimum 

solution, blit also a better performance in terms of a reduction in the 

amplitude ambiguity and an SIR improvement at least as good as that 

of [87]. The autocorrelation matrix of the observed signals at a single 

frequency bin, at multiple times can be expressed as [87,127]:

1 D_1
Rx{u , t )  =  — , t  + d T ) X H(u!,t + dT) (4.11)

d=0

where T  is the size of the DFT, D is the number of intervals used 

to estimate each autocorrelation matrix and (.)H denotes Hermitian 

matrix. This can be rewritten as [87]:

Rx(uj,t)  =  A(cj)As(u;, t ) A H(uj) (4-12)

where As(u;, t) is the diagonal covariance matrix of the source sig­

nals. Provided N is large enough, As(u;, t) can be modelled as a diagonal 

matrix because of the independence assumption [87]. The independence 

assumption is based on the principle that as long the signals are non- 

stationary, As(uj ,t) will change over time and (4.12) will be a function
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of time t. Inversely, the backward model can be defined as:

A . ( w , t )  =  W ( w ) [ / l j r M ) ] W H (u>) ( 4 . 1 3 )

The aim is to find a W(lj )  tha t diagonalizes Rx(w, t) across all fre­

quencies for K  time blocks simultaneously for k =  1. . .  K,  or similarly 

W  (u) that forces all of the off diagonal elements to be zero.

Parra [87] defined the cost function as:

T  K

y(W (w )) =  a rgm m 535Z ||£ :(ta ;>fc)||J. (4.14)
W=1 fc=l

where ||.||^ is the squared Frobenius norm. This is a least squares 

(LS) estimation problem, where E(u,  k) is defined as:

E(u, k) = W (uj)[Rx {uj, k ) ]W H(uj) -  As{u, k) (4.15)

Wang [127] incorporates a penalty term into the cost function, defin­

ing it as:

T  K

J ( W ( v ) )  =  argmin £  £ { , J M ( w ( w ,  *)) + A J c ( W ( u > ,  k))} (4.16)
U>=1 fc=l

where A is a weighting factor and:

Jm(W(o>, k)) = ||JJ(oi, A:)|||. (4.17)

The penalty term J c ( W ( a > ,  k)) is a  matrix constraint defined as:

Jc(W (uU)) = ||dio<j[W(u>) -  I]||| (4.18)
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where diag(.) is an operator to zero the off diagonal elements of a 

matrix. The problem in (4.16) is also a LS estimation problem and the 

gradients of the cost function in (4.16) can be derived as [127]:

d j K
2 [2[E(u, fc)]W(«;)[flx(w, *)] +  Adias[W(w) -  /]}

3 W ( c )  w
(4.19)

The optimal unmixing matrix W  (cj) can be obtained using the well 

known stochastic gradient algorithm, using the gradient formulated in 

(4.19). The implementation requires a parameter to control the step 

size of the adaptation of J a/(W (o;, k)) and Jc(W (u;, &)), the respective 

forms are [127]:
a

W » H  =  ^ K  H P  , — ( 4 - 2 0 )

MJc(u ) — v - K  II djr. II (4 -2 4 )
 ̂ i II aw*(w) 

where a, £ and c are scalar values, adjustable for adaptation.

This penalty-function based frequency domain BSS algorithm rep­

resents the state-of-the-art in audio only separation [88]. However, its 

performance is still limited by the permutation problem and the non 

stationarity of the environment. The natural next step as suggested 

by Cherry [21,22] is to incorporate additional information, specifically, 

visual information of the speaker’s face.

4.6 Audio-Visual Speech Separation

Combining audio and visual speech information has previously been 

discussed in the speech recognition literature [89,92], while the area 

of audio-visual BSS is relatively new, and as such there is very little
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literature on the subject. An overview of audio-visual BSS is provided 

in Chapter 2 of this thesis. Outside the area of speech recognition, 

research on combining audio-visual information has developed in several 

areas listed below:

• Audio-visual tracking whereby cameras are placed in a controlled 

environment such as a room, with a number of microphones. 

A speaker can then be tracked using either audio or visual in­

formation, or a combination of both [19,20]. Smart rooms are 

an extension of this in which not only are the speakers tracked 

but also a chosen speaker is identified using audio-visual informa­

tion [13,43,80].

•  Speech enhancement techniques tha t use audio-visual information 

to improve the intelligibility of speech in a noisy environment 

[36,46,47,53,70].

•  Audio-visual blind source separation algorithms that incorporate 

visual information into a BSS framework to aid finding the opti­

mum unmixing matrix [3,112,114,126] or to process the output 

of a BSS algorithm to solve the permutation problem [96,97,100].

Initial research focused on incorporating visual information into in­

stantaneous BSS frameworks [94,111,114], while more recently convo­

lutive mixtures of speech have been considered [96-99,126]. Rivet et 

al. [96] proposed an audio-visual method that exploits the coherence of 

audio-visual speech to solve the permutation problem. A joint proba­

bility model of audio-visual features is formed and used to post process 

the estimated signals obtained from the BSS algorithm of Pham et 

al. [90]. The visual features were the lip height and width, and the
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audio features were spectral characteristics. Simultaneously, Wang et 

al. [126] proposed a method that also exploits the coherence of audio­

visual speech, again using a joint audio-visual probability model, except 

that their visual feature was an AAM of the lips and the audio data 

were MFCCs. The joint audio-visual model was used as the penalty 

function in their BSS algorithm [127] discussed in Section 4.5.2. More 

recently, Rivet et al. [97] have used the output of a visual voice activity 

detector to post process the output of their BSS algorithm to solve the 

permutation problem. In the following section a novel audio-visual BSS 

algorithm is outlined and its performance is assessed with a comparison 

to an audio only BSS algorithm.

4.6.1 Video Assisted Blind Source Separation

The frequency domain penalty function BSS algorithm described in the 

previous section is expanded upon here to incorporate a joint audio­

visual speech model. The aim of the proposed approach is to maximise 

the coherence between a set of visual features v  and a set of audio 

features a  to provide a criterion for controlling the learning rate of 

the second order frequency domain BSS algorithm of Wang et al. [127] 

discussed in Section 4.5.3.

Exploiting the coherence of audio-visual speech has been discussed 

before [96,126]. Wang et al. [126] proposed a method that incorporates 

a joint audio-visual model into the penalty function framework of [127] 

(see Section 4.5.3) by substituting the penalty function Jct(W(cj, k)) 

(Equation (4.16)) with the output of the joint audio-visual probability 

model. The audio component is generated at each iteration and is 

therefore a function of W(cj, k). The reported effect was an increase
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in separation performance due to a reduction of the permutation effect 

[126].

To extract the speaker of interest in this work the audio-visual coher­

ence is also exploited. A model of the visual features of the speaker’s lips 

over a set of video frames is obtained using the AAM method proposed 

by Cootes et al. [29]. The corresponding audio features are extracted 

from the audio signals using MFCCs. An overview of both AAMs and 

MFCCs can be found in Chapter 3 of this thesis. It has been previously 

mentioned that there are several alternative techniques to extract the 

visual features, AAMs were chosen as they can model visual features 

in high detail using a reduced dimension dataset, while MFCCs were 

chosen for their ability to mimic the non-linear frequency resolution of 

the human ear. The set of Na audio feature vectors as =  [asi . . .  a SN a]T  

and Nv visual feature vectors v s =  [v8i . . .  vsnv}t , where Na and Nv are 

respectively the number of audio and visual features, are concatenated 

to provide joint audio-visual feature vectors:

where subscript 5 denotes speaker. It should be noted that not all of 

the appearance parameters cs for speaker s obtained from the AAM are 

used. Instead a dimensionally reduced vector v s is used. It is obtained 

by performing PC A on the final set of appearance parameters ca, and 

retaining a percentage of the total energy, as discussed in Chapter 3. 

The probability distribution of the set of vectors u s is modelled using 

either a GMM, or an HMM when their time dynamics are considered. 

For completeness of the experiments, the results of using the GMM 

or HMM to model the audio-visual coherence are compared. Before
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the audio-visual BSS algorithm can be implemented, models of train­

ing data must be built. To train the models, the following steps are 

followed:

• Calculate the MFCCs from the training speech sequence to obtain 

the audio feature a*, as described in Chapter 3.

•  Obtain the appearance parameters ca, and apply PCA to obtain 

the reduced visual features v s.

•  Concatenate the audio and visual features to obtain the joint 

audio-visual features u s

•  Train the GMM or HMM to obtain the model parameters as 

described in Chapter 3.

Next the audio-visual information must be integrated into a BSS 

algorithm. The BSS algorithm used is the penalty function based fre­

quency domain BSS algorithm [127]. In the original algorithm of [127] 

the learning rate Hjc(uj) is controlled by a function of the penalty value 

at that iteration of the algorithm. In the current work it is controlled 

by a function of the audio-visual coherence.

MJcM = c + A a . )  (4'23)
where Pav is the joint audio-visual probability (a measure of the co­

herence [126]). The values for £ and £ are empirically chosen constants 

so that the steady state separation performance of all the algorithms 

is Identical and / '  is a logarithmic mapping of the model output. It is 

necessary to calculate Pav using a different method when using a GMM 

or HMM to model the training data. For the case of a GMM:
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, ( u .)  -  t  "  "■)l « ■ * )
t=l v W  I I

where /xi5 S», w* and K  are the mean vector, covariance matrix, 

kernel weights and the number of Gaussian kernels respectively. Pav 

is then found by summing the log of (4.24) and for the HMM the log 

probabilities were calculated using the method in [93].

The AVSS algorithm is performed as follows:

1. Estimate the source signals from the current estimate of the un­

mixing matrix W  and calculate the audio features (MFCCs).

2. Concatenate the audio feature with the visual features to form a 

new joint audio-visual feature.

3. Calculate the audio-visual coherence output Pav using either the 

GMM or HMM model.

4. Calculate a new value for (4.23).

5. Update the unmixing matrix W  until converged.

The algorithm is said to have converged when the change in value 

of \ljc falls below a chosen threshold.

4.7 Simulations

The statistical models (GMM, HMM) were trained on the audio-visual 

features extracted from a video of a subject in an office environment 

with low level acoustic noise and artificial front on lighting. Audio and 

video were recorded for two speakers, the video data were captured
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using a digital video camera with a resolution of 720 by 576 pixels, 

at 25fps and the audio was captured using a directional microphone, 

sampled at 32KHz, 16-bit mono. For both speakers the lip region in 

the video was tracked using an AAM using 17 landmarks to provide 

a joint model of shape and texture information with 10 appearance 

parameters per frame. The speech features were extracted using Mel- 

cepstral analysis with a 20ms Hamming window, providing 12 MFCCs 

per frame. The appearance parameters (40ms) were then interpolated 

in order to retain one-to-one correspondence with the audio parameters 

(20ms). The number of Gaussian kernels for the GMM and the number 

of states for the HMM were set to 10 and the audio-visual feature space 

had 22 dimensions, 10 video plus 12 audio and remained the same size 

during separation.

The experiments were conducted on each speaker separately. Only 

2 x 2  mixtures (2 speakers, 2 microphones) were considered, where the 

speech signal of the speaker present in the video was artificially mixed 

with another speaker in a convolutive system with 9 taps. The mixing 

filters are the same as those used in the experiments by Wang [127]. The 

values of £ and £ for the audio only experiments were the same for both 

speakers, 0.2 and 0.05 respectively. For the audio-visual BSS algorithm, 

the values differed for each statistical model used. For speaker one, the 

values when using the GMM were £ =  28, £ =  3.1 x 104, and for the 

HMM £ =  212, £ =  6.45 x 104. The values for speaker two were £ =  6, 

C =  3.13 x 104 for the GMM and £ =  105, C =  7.5 x 104 for the HMM. 

It should be noted that the performance of the method is not sensitive 

to* minor changes in the values for £ and £.

Figures 4.3 and 4.4 show the results of the simulations. It can
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Figure 4.3. Comparison of learning rate for speaker one using 
(a)HMM, (b)GMM, (c)audio only to control the step size.

be seen that the audio-visual model requires fewer iterations to con­

verge (the end of the curve denotes convergence of the BSS algorithm), 

which is very likely to be useful in a non-stationary environment for 

example when the speaker is moving. Furthermore, the advantage of 

using an HMM compared to a GMM was also observed. This could 

be contributed to the fact that HMMs are better able to capture the 

coarticulation2 of speech. The quality of the reconstructed sources was 

judged subjectively by listening tests to be essentially identical for the 

three methods.

2Coarticulation is defined to be the interaction of speech articulators (lips, jaw, 
tongue etc)over time, during the production of speech [51].
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Figure 4.4. Comparison of learning rate for speaker two using 
(a)HMM, (b)GMM, (c)audio only to control the step size.

4.8 Conclusion

The results of the proposed technique shown here are promising. The 

experiment indicates that by combining audio and visual information 

the convergence behaviour of a BSS algorithm can be improved. The 

results of the proposed method are also compared to the BSS algorithm 

which uses raw audio information alone (i.e. no model) to control the 

convergence. Figures 4.3 and 4.4 indicate that a significant improve­

ment in convergence behaviour can be obtained. It was shown that 

when using a statistical model of audio-visual coherence to control the 

convergence behaviour, the number of iterations required for conver­

gence was reduced from over 1000 to only a few hundred, depending on 

which statistical model (HMM or GMM) was used. As was stated pre­

viously, the outputs were judged subjectively using listening tests and
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found to be almost identical. Yet, the audio-visual models are person 

specific; that is to say, the audio-visual model for one person may not 

be applicable to another. The models used in this work were built on 

continuous speech. Ideally, a generic model would be built tha t would 

encode audio-visual information in a manner similar to a non-person 

specific speech recognizer i.e. individual words or sounds.

The area of audio-visual BSS is relatively new and researchers are 

still examining methods of incorporating visual information into BSS 

algorithms. The method presented here has shown to be useful for 

controlling the convergence behaviour of a BSS algorithm, however it 

is limited to the available training data. To overcome this, simpler 

video based speech cues are sought than the ones used here, and this 

is the topic of the next chapter.



Chapter 5

VISUAL-VOICE ACTIVITY 

DETECTION USING AAM

5.1 Introduction

In Chapter 4, a novel audio-visual BSS method was presented. The out­

come of simulations showed an advantage in using a statistical audio­

visual speech model over raw audio data alone. However, the algorithm 

had a high computation time. This led to the investigation of an alter­

native method to use visual information to improve the performance of 

BSS methods.

Sodoyer et al. [113] proposed a visual voice activity detector (V- 

VAD) to classify a speaker as speaking (active) or not speaking (in­

active) using information of the speaker’s lips. This was subsequently 

used in the BSS algorithm of Rivet et al. [100] to help solve the per­

mutation problem inherent to BSS. However, the V-VAD proposed by 

Sodoyer obtains shape information of the speaker’s lips using a chroma­

key system, but this is impractical in a natural environment as it re­

quires blue make-up to be applied to the speaker’s lips.

_ Therefore, in this chapter a novel V-VAD is proposed where the 

visual descriptor is the set of AAM parameters of the speaker’s lips. To

78
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detect voice activity it is necessary only to distinguish between speech 

and non-speech lip motion. Note that the non-speech periods are not 

defined as silence because while the speaker may be silent, there could 

still be motion of the lips, e.g. a smile. Thus the two categories are 

defined as speech and non-speech related lip motion. For modelling the 

dynamics of the lip appearance parameters during non-speech phases 

a Hidden Markov Model (HMM) is used. The justification for this is 

that the experiments in Chapter 4 have provided evidence that using an 

HMM to model speech features performed better than using a GMM. 

Once the HMM of some training data is built, the probability of new 

(test) data belonging to that model is calculated. If this probability is 

above some threshold value (i.e. a high probability) then it is classed as 

non-speech data, if it is below this threshold (low probability) then it 

is classed as speech data. Simulations show that a high rate of correct 

classification can be achieved. Moreover, it is shown that the proposed 

method has a similar performance to a retinal filter based method [4,95].

The organization of this chapter is as follows: in Section 5.2, some 

background on previous V-VADs is provided. The proposed V-VAD is 

presented in Section 5.2.1 with simulation results given in Section 5.4. 

The results are discussed in Section 5.5 and Section 5.6 concludes this 

work.

5.2 Background

Voice activity detectors (VADs) are used to detect the presence or ab­

sence of speech in an acoustic environment. As VAD methods tradition­

ally rely on acoustic information, their accuracy is highly dependent on 

the acoustic environment (e.g. the presence of competitive sources or
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highly non stationary noise). However, as speech is a bi-modal signal 

(with both audio and visual aspects), being able to see a speaker’s face, 

especially the lips, can provide additional information regarding speech 

activity. The most visible aspect of speech production is the movement 

of lips; in the past it has been shown that there is a high coherence 

between the speaker’s lips and the resulting acoustic signal [130]. This 

characteristic is regularly used to improve speech recognition [92] and 

speech enhancement [46]; as well as more recently in blind speech sepa­

ration [3,96]. Recently, VAD based on visual data as opposed to audio 

data has been developed [59,67,113,122]. Visual voice activity detec­

tion (V-VAD) has an advantage over audio based VAD in that it is not 

susceptible to the problems associated with the acoustic environment 

(e.g. noise, simultaneous speakers and reverberations).

There have been several approaches to V-VAD. Iyengar and Neti [59] 

developed a V-VAD which was used for deciding a person’s intent to 

speak. Their V-VAD uses a head pose and lip motion detector to 

switch a microphone on and off in a speech recognition system. This 

is achieved by extracting the mouth region and calculating the average 

illumination in the region. The idea being that an open mouth will 

have a lower illumination than a closed mouth, and a decision is made 

by comparing the illumination to a threshold value. The drawback of 

this method is that it does not distinguish between speech and non­

speech movement of the lips. Liu and Wang [67] proposed a V-VAD 

that used statistical models of speech and non-speech activities. Vi­

sual information relating to non-speech activity was modelled using a 

single Gaussian distribution, and visual information relating to speech 

activity was modelled using multiple Gaussian distributions. New data
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were classified on the basis of a likelihood calculation. However, their 

method does not model the dynamics of lip motion and they assume the 

lips are essentially stationary during non speech periods. More recently, 

Sodoyer et al. [113] proposed a method for V-VAD that uses temporal 

smoothing of dynamical lip motion. Unfortunately, their method relies 

on a high computational cost chroma-key system, which is impracti­

cal for a natural environment. An audio-visual solution was recently 

proposed [122] that uses a correlation between audio vowel frequencies 

and the shape of the lips for those respective vowels. In particular, the 

roundness of the lips shape was used to aid with ambiguous decisions. 

However, they do not mention if their data contains lip motion during 

non speech periods, nor do they provide the percentage of true/false 

classifications.

5.2.1 V-VAD using Appearance Param eters

Chapter 3 discussed how to obtain a set of appearance parameters from 

an image, and those readers unfamiliar with the subject are referred to 

this chapter.

5.3 Dynamic Modelling of Appearance Param eters for V-VAD

Typically, audio based solutions for VAD detect the presence of speech, 

however in this work silence periods are specifically sought, the reason 

for this will be discussed in the following section. Much of the previous 

work on V-VAD has failed to account for motion of the lips during non 

speech periods. While this motion is not complex per se, motion of the 

lips that is more than just small movements is defined to be complex. 

For example, where the lips are more or less static is described as little
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to no movement, but for something like a smile or biting/licking the lips, 

the movements are defined to be complex. It is this complex motion 

that can cause ambiguities in a V-VAD, when classifying lip movement 

as speech or not. One of the novel aspects of the work contained in 

this chapter is accounting for and dealing with complex lip motion to 

reduce its effect on lip motion classification.

5.3.1 V-VAD using an HMM

Given a set of appearance parameters c { j ) i < j < T , j € N  sampled over time, 

dynamical changes can be modelled over time using an HMM. HMMs 

have been used extensively in the past to model the dynamics of speech 

(e.g. [93]) and more recently to model joint audio-visual features [3]. 

For training an HMM, the standard Baum-Welch algorithm [93] is used, 

which provides the model A =  (A, B,7r), where 7r is a vector of the 

initial state probabilities, A  is the state transition matrix and B  is the 

state probability distribution.

The task is to determine if a person is speaking or silent in a given 

period of time, i . e .  in a given sequence of appearance parameters. For 

this the likelihood that a sequence of appearance parameters is gener­

ated is calculated by the HMM A . The likelihood P (0 |A ) for a se­

quence of consecutive frames 0 ( 0  =  c ( k ) . . .  c (/)) is calculated, where 

the number of frames between k  and I is unchanged for all sequences. 

Each observation O generates an associated likelihood value P. As 

mentioned earlier, detecting the presence of non-speech lips motion is 

the focus. To make this possible, an HMM was built using examples 

of lips motion resulting from non-speech activity. Early experiments 

showed it was necessary to smooth the likelihood values to remove mi-
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nor false detections. For this purpose an averaging filter is used and 

the filtered likelihood is denoted as Pf. The final step is to classify the 

observation O by comparing the filtered probability Pf to a threshold 

value /? (where the value of (3 is found experimentally). If Pf < P then 

the current sequence of frames is classified as speech, if Pf > (3 then 

the sequence of frames is classified as non-speech.

The proposed method for V-VAD can be described with the follow­

ing steps:

•  Obtain appearance parameters using the method described in 

Chapter 3.

•  Build an HMM (using training data) on non-speech appearance 

parameters.

•  Calculate P (0 |A ) using unseen (new) appearance parameters.

•  Classify the observation as speech or non-speech data by compar­

ing to a threshold value /?.

5.4 V-VAD Simulations

In this section the results of classifying visual speech data as speech or 

non-speech using the method described above are presented. The data 

collected are also described, and the visual features used to conduct the 

numerical evaluation. The reason for recording a new database is that 

no existing audio-visual database where there is significant lip motion 

during silence sections of continuous speech is available. In addition, 

the AAM based V-VAD is compared to the retinal filter based approach, 

proposed by Rivet et al. [95].
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The results of the V-VAD are given in the form of Receiver Oper­

ating Characteristic (ROC) curves. They represent the ratio of correct 

silence detection to false silence detection. The correct silence detec­

tion (CSD) is defined as the ratio between the number of actual silence 

frames correctly detected as silence (Afeiiisii) and the number of actual 

silence frames (Nsn):

CSD =  (5.1)
jVsii

The false silence detection (FSD) is defined as the ratio between the 

number of actual speech frames detected as silence (Â snispe) and the 

number of actual speech frames (Aspe):

FSD =  A^ ‘|Spe. (5.2)
Atepe

The ROC curve was then produced by varying the threshold 0  be­

tween the maximum and the minimum values of Pf  and calculating the 

CSD and FSD at each value.

5.4.1 Audio-Visual Corpus

The dataset collected for use in these experiments consists of audio 

and video recordings of two speakers, one male, one female, reciting 

a poem in English. Each recording is approximately 2.5 minutes in 

length (both audio and video), with the video recorded at 30fps and 

the audio at 44.1KHz, and where the resolution of each video frame is 

640x480 pixels. While the speakers are male and female, the results of 

the male speaker are not specific to all male speakers and likewise for 

the female speaker. The terms are used only to  distinguish between 

the two speakers. To rigourously test the capabilities of the V-VAD,
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the speaker’s lips during the silence phases, which in this case were 

breaks between verses of the poem, were not always stationary. In fact, 

as previously mentioned, complex lip movements were performed such 

as smiling, biting or licking lips. As stated earlier, people naturally 

perform such movements during silence phases. Example images of the 

female speaker from the dataset are shown in Figure. 5.1 and the male 

shown in Figure 5.2.

1 - - I t * 1 1

1 * 1 1 ^

Figure 5.1. Frames from the dataset of the female speaker saying the 
word ‘much’. Frames read, top to bottom, left to right.

F igure 5.2. Frames from the dataset of the male speaker saying the 
word ‘about’. Frames read, top to bottom, left to right.
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Figure 5.3. Distribution of the first two dimensions Ci and c2 (relating 
to the two highest eigenvalues) of non-speech (Figure 5.3(a)) and speech 
(Figure 5.3(b)) appearance parameters.

5.4.2 Visual Features

The visual features produced using the active appearance model for 

both speakers are of similar dimensionality, and in this case produce 400 

dimensional vectors c(ji), which are too large for numerical calculations. 

To reduce the dimensionality, c is only composed of the parameters 

associated with the TV most important eigenvalues. However, there is 

a large overlap between the speech and non speech features (Fig. 5.3). 

Thus, TV is a trade off between the size of the appearance parameter 

vector and the ability to separate speech and non-speech events. The 

experiments will detail the number of eigenvalues TV retained for the 

experiment in question.

Results of V-VAD with the Female Speaker

As stated above, the vectors c ( j ) have 400 dimensions and this is re­

duced to retain a percentage of the total energy. In this experiment 

the first ten eigenvectors TV =  10 were retained, which contained 75% 

of the original appearance energy. The HMM was trained solely us-
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ing non-speech motion of the lips, and the training data consisted of 

approximately 600 frames of video data.

Figure 5.4 shows the acoustic energy in the data. Non-speech peri­

ods are marked and the type of lip motion (if any) is also noted. Also 

shown in the same figure is the probability P(0 |A ) over time and the 

smoothed version Pf. Figure 5.5 displays the ROC curve with varying 

values of number of consecutive frames.

 p
 Pf

60 90 120 150
Tim e[s]

no movements complex movements short moverr

Figure 5.4. Temporal results. From top to bottom : energy of 
the acoustic signal, silence probability obtained from the AAM based 
method.

Simulations using different size observation windows are provided 

in Figure 5.5. The optimum number of frames in an observation O 

was found to be 10 consecutive frames. Poor results are obtained with 

observation sizes of 6 and 15 frames. However, the observation size of 

15 frames does provide a similar response to the optimum observation 

size for an FSD <  5%.

The results of the retinal filter based method [95] are also provided in
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Figure 5.5. ROC curves of the A AM based method, the legend indi­
cates the number of consecutive frames.

Figures 5.6 and 5.7. For the legend in Figure 5.6, V(t) is the smoothed 

output of the retinal filter v(t), and in Figure 5.7, the values in the leg­

end indicate the value of an integration parameter used in the smooth­

ing filter. More information about this method can be found in [95].

F igure 5.6. Original (v(t)) and smoothed (V(t)) filter outputs of the 
retinal filter based approach.

0 30 60 90 120 150
T im e [s]

Results of V-VAD with the Male Speaker

Similar experiments were conducted on the data of the male speaker and 

the results of the AAM based method are given in Figures 5.9 and 5.10.
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Figure 5.7. Retinal filtering based method, the legend indicates the 
integration parameter.

Again the original dimensionality of the appearance parameters was 

reduced to retain the first ten eigenvectors (N  = 10), which contain 80% 

of the original appearance energy. The HMM was again trained using 

solely non-speech motion of the lips, and the training data consisted 

of approximately 1000 frames of video data, which left 4000 frames of 

data for testing purposes. The acoustic energy of the male speaker 

is similar to that of the female speaker given in Figure 5.4, and the 

number and time of occurrence of the silence periods are similar. The 

acoustic energy for the male speaker is provided in Figure 5.8. Also the 

type of lip motion, if any, contained in each silence period is the same 

as noted in Figure 5.4.

Figure 5.9 shows the output P of the AAM based V-VAD, along 

with the smoothed version Pf. The ROC curve for the AAM method is 

given in Figure 5.10. As with the female speaker, the best results were 

obtained using an observation O of 10 consecutive frames.

Figures 5.11 and 5.12 show the results of the retinal filter method
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Figure 5.8. Energy of the acoustic signal for the male speaker.
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Figure 5.9. Silence probability obtained from the AAM based method 
for the Male speaker.

[4,95]. For the legend in Figure 5.11, V(t) is the smoothed output of 

the retinal filter v(t) and the value of the integration parameter used 

is h = 0.97.

Comparing the results of the proposed method (Figures 5.5 and 

5.10) with those of the retinal filter (Figures 5.7 and 5.12), it can be 

seen that for the Female speaker both methods achieve a high CSD 

(90%) for a low FSD (5%), and for the Male speaker a CSD of 97%
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Figure 5.10. ROC curve of the AAM based method, with an obser­
vation size of ten frames.
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Figure 5.11. Original (v(t)) and smoothed (V(t)) filter outputs of the 
retinal filter based approach of the Male speaker.

for an FSD of 5% can be obtained. W hat can also be .seen is that the 

proposed method provides a higher CSD for an FSD range of 0% —> 5% 

for the Female speaker. The proposed method also shows an advantage 

for the Male speaker, albeit a minor one, for a CSD of 90% the AAM 

method achieves an FSD of 1% while the retinal filter method achieves 

ah FSD of 2%.
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Figure 5.12. ROC curve of the retinal filtering based method for the 
Male speaker.

5.5 Discussion

Analysing the simulation results of the female speaker, one can see 

that the performance of the V-VAD is dependent upon the size of the 

observation window (Figure 5.5). A large window provides poor results, 

while similarly a short window is not satisfactory because there is not 

enough data to accurately classify. However, a window length of 10-12 

frames seems to provide consistently good results. Figure 5.4 shows 

that the method is able to identify accurately the periods containing 

little to no motion, such as between 30s and 40s. The method is also 

able to identify the periods containing complex lip motion, even though 

this is a more difficult task, thus being able to achieve a CSD of 90% 

for an FSD of 5% for the Female speaker and a CSD of 97% for an FSD 

of 5%.
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5.6 Conclusion

The results of the proposed method were compared to another exist­

ing V-VAD [95] and both techniques were shown to have similar per­

formance. However the proposed method has an advantage over the 

retinal filter method: both methods use a window of observations, and 

for the retinal filter approach the size of this window determines the 

smallest silence period it is able to detect. The same can be said for 

the proposed method; because a statistical model is used, a smaller 

observation window can be used, thus smaller non-speech periods can 

be detected. For the simulations presented here, the number of con­

secutive frames used in the retinal filter method was 20 (in [95] this is 

denoted as 7V), while the proposed method works best with a window 

size of around 1 0 - 1 2  frames.

However, there is a drawback to  using appearance parameters as 

the visual feature. The HMM is not easily applied to a speaker who 

is not included in the training data. Work on building a generic set 

of appearance parameters has been published [48] but limited success 

has been reported. W hat is needed is a visual speech representation 

method that provides a good representation of the lips motion but is 

also not specific to one (or a few) person (people). The next chapter in 

this thesis suggests such a method.



Chapter 6

VOICE ACTIVITY 

DETECTION USING 

COMPLEX WAVELETS

6.1 Introduction

The work described in this chapter is a natural progression on the 

results presented in the previous chapter. In Chapter 5 a novel visual 

voice activity detector (V-VAD) was presented th a t is able to detect the 

silence periods of speech using only visual information of the speaker’s 

mouth. The method described in Chapter 5 was based on the use 

of Active Appearance Models (AAMs) to obtain shape and texture 

information of the movement of a  speaker’s lips over time. Hidden 

Markov Models (HMMs) were used to decide if the speaker was active or 

not. The disadvantage with the AAM approach is tha t it is not speaker 

independent. That is to say, the data  used to build the HMM does not 

easily lend itself to another person from outside that data set, i.e. the 

AAM is more or less person specific. Building a model based on the 

dataset obtained from several people does partly overcome this problem 

but at the cost of lowering the accuracy of classification. In addition,

94
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building a model like this is time consuming, and the tracking of the lips 

is not easy due to the speed with which the lower lip moves. However, 

the authors of [42] presented a method tha t reportedly overcomes the 

tracking problem. The work presented in this chapter addresses the 

issue of speaker dependent models encountered in the previous chapter, 

and negates the tracking issue by using a motion flow field to represent 

the motion contained in the mouth region. The dynamics of the motion 

field are captured using an HMM, and used to classify the speaker’s 

activity.

In this chapter the above issues are addressed by the use of wavelets 

to estimate the motion of the lips. The wavelets are not person specific 

and can be used instead of the AAM to obtain the lip motion. To obtain 

the motion field of a speakers lip region, the complex discrete wavelet 

transform (CDWT) motion estimation algorithm proposed by Maga- 

rey and Kingsbury [74] is used. The advantage of the CDWT over the 

standard discrete wavelet transform (DWT) is that the CDWT filters 

provide better directional distinction. The standard DWT has only 

3 directions, vertical, horizontal and diagonal, where as the CDWT 

has 6  discrete directions oriented at ±15°, ±45° and ±75°. The phase 

information provided by the CDWT together with the additional di­

rectionality enhances the lip contour, thus allowing the motion of the 

lips to be found more accurately.

The remainder of the chapter is set out as follows: the following 

section provides an introduction to wavelets, Sections 6.3 and 6.4 con­

tain an overview of the CDWT and the motion estimation algorithm 

proposed by Magarey and Kingsbury [74]. The method for voice activ­

ity detection is given in Section 6.5 together with results of simulations
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and the chapter is concluded in Section 6.7.

6.2 The W avelet Transform

The wavelet transform is based on analysing a signal with a ‘m other’ 

wavelet, and translated and scaled versions of tha t wavelet. They 

are useful in analysing non-periodic or non-stationary signals and the 

practical implementation is closely related to filterbank theory [117]. 

Wavelet transforms (WTs) are most often compared with the Short- 

Term Fourier transform (STFT). They were developed to address the 

need to find an alternative to Fourier based transforms (FT) in analysing 

non-periodic/stationary signals because the FT cannot localise a signal 

in both time and frequency simultaneously. When an FT is applied 

to non-stationary signals the frequency content is described in a sim­

ilar manner as for stationary signals. That is to say, the frequencies 

contained in the signal are shown to occur at all times. While this is 

true for stationary signals, the same cannot be said for non-stationary 

signals. The STFT was developed to overcome the localisation issue. 

The STFT uses a (sliding) time localised window (w(t)) of fixed length 

to analyse a signal x(t) for a ‘short’ period of time, for which during 

that time the signal is considered stationary.

OO

S T F T (r,w )=  ^ 2  x (t)w (t -  T)e-ju‘ (6 .1 )
t = —  OO

However, the STFT has its own limitation. The window is of fixed 

length, and because of this the time frequency resolution is also fixed 

for the length of the signal.

The continuous wavelet transform (CWT) decomposes a signal x(r)
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using a set of basis functions tha t are obtained from scaling and trans­

lating a ‘mother wavelet ’ ip, where r  is used to denote continuous time:

where

/+ oo

x(r)ip*T(r)dr
-O O

(6.2)

(6.3)y/s  \  S

where s and r  are the scaling and translating parameters respec­

tively and (.*) denotes complex conjugate. Continuous values of s and 

r  mean that the CWT is a very redundant representation of the signal 

x(r). Constraining these to discrete values to form the DWT reduces 

this redundancy. Unlike the STFT, which has a fixed window length, 

the wavelet transform uses a varying window length to analyse a signal. 

This results in a time frequency decomposition where the maximum 

frequency resolution has the minimum time resolution, and vice versa. 

This is illustrated in Figure 6.1.

Freq Freq

Time
Time

(a) (b)

F igure  6 .1 . Time-frequency cells of the (a) STFT and (b)wavelet 
transform.

The purpose of using wavelets in this work is to analyse digital 

images. Therefore a discrete wavelet transform is required which can 

be applied to such signals.
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6.3 Complex Discrete W avelet Transform

Mallat [75] discussed how a practical implementation of a discrete 

wavelet transform (DWT) can be realised, using a multilayer filterbank 

containing high and low pass filters shown in Figure 6 .2 .

Vhi

Figure 6.2. A three level 1-D DW T filterbank implementation.

x{t) is the discretely sampled signal, ho and hi are lowpass and 

highpass filters respectively. The j  2  block denotes a downsample by 

two operation [75]. The high pass filter provides the detail (wavelet) 

information yhP,p = 1,2,3, of the input signal x(t)  and the low pass 

filter provides the approximation (scaling) information yip,p  =  1,2,3. 

Multiple levels of analysis are possible by filtering the lowpass results 

of each stage.

Mallat [75] also discussed how to use the 1-D filterbank to obtain the 

wavelet transform of 2-D data. The top processing path of Figure 6.3 

illustrates the standard 2-D DWT. Again, filtering the lowpass result of 

each filtering stage results in a hierarchy of subimages. For the standard 

2-D DWT three subimages T>̂n,m\ n  = 1 ,2 ,3 , m  =  are

obtained at each level m  of the transform, and will contain detail in 

the horizontal, vertical and diagonal directions. A fourth subimage is 

also produced, which is the (lowpass) course approximation of the 

original image A.
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Magarey and Kingsbury [74] built on M allat’s work to develop a 

DWT that utilizes 1-D complex filters to provide the complex data 

required for a hierarchial phase based motion estimation method [71, 

73,74]. The Complex DWT (CDWT) is similar to a standard DWT, 

except that the low and highpass filters are a complex valued pair of 

FIR filters with Gabor like characteristics [71,74].

The 1-D complex filters can be utilized to  implement a separable 

2 -D complex wavelet analysis in a similar way as described by Mallat 

[75]. The subtle difference is th a t the complex filters can only detect 

information in the first quadrant (positive horizontal frequency, positive 

vertical frequency) of the 2-D unit frequency cell. However, images 

will contain useful information in both  the first and second (negative 

horizontal frequency, positive vertical frequency) quadrants.

To obtain the extra information a parallel processing path is added 

to the 2-D DWT to use the complex conjugates Hq and h\ when row 

filtering [74]. Magarey also noted th a t the filters for the first level of 

the transform must be modified by some prefilter /  (denoted by h0f  

and h \ f  in Figure 6.3) to maintain a uniform frequency response for all 

levels of the CDWT [71,74]. The complete 2 -D CDWT is illustrated in 

Figure 6.3.
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h i f
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Figure 6.3. Two level (m =  2) CDWT implementation.

Notice that there are eight subimages at each level. Two coarse 

approximations, and A^2,rn\  and six subimages n =

1 , . . . ,6 .  The equations for the level m  subimages can be expressed 

as [74]:
A(m)(n) = ^ A ( k ) 0 <m>(2mn-k) (6.4)

k

D(n,m) (n) = A(k)i/><"'m) (2mn-k) (6.5)
k

where <f>  ̂ is the level m  scaling filter, ip(n’Tn) is the wavelet filter 

for subband (n ,m ) and n =  (n i ,n 2)T are the spatial coordinates with 

vertical fisted first, and down and right being the positive directions.

Figures 6.4 and 6.5 axe examples of the DWT and CDWT of the 

Lenna image respectively. The CDWT provides twice as much informa­

tion for analysis compared to the DWT. The phase information given 

by the CDWT should also provide a better representation of the shape 

of the lips, thus allowing their changing shape to be estimated more
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accurately.

A V

H D

F igure 6.4. Single level DWT decomposition of Lenna, where V, H, 
and D note the vertical, horizontal and diagonal filter results, and A 
is the lowpass approximation of the original image.

13(5,1) A (2 ,l)  A ( l , l )  D (2 ,l)

D (6,l) D (4,l) d (1,1) D (3,l)

F igure 6.5. Single level Complex DWT decomposition of Lenna, where 
D (n’m> are the results of the highpass filtering and A (m̂ are the lowpass 
approximations.
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6.4 Motion Estim ation

Motion estimation is commonly used for video coding such as the 

MPEG or H.26x families of video coding standards [9]. Motion estima­

tion involves finding the motion vector th a t describes the displacement 

of a pixel between consecutive video frames, and can be either whole or 

sub pixel vertical and horizontal values. Obtaining a displacement value 

for each pixel results in an optical flow field of vectors that describes 

the motion of each pixel from the current frame to the next. Optical 

flow methods can be simplified into three main categories: gradient, 

block matching and phase based methods. Barron et al. [6 ] compared 

several optical flow methods, and report tha t of those tested, phase 

based methods provide the more accurate results.

The optical flow method employed here is a hierarchical phase based 

motion estimation algorithm. The technique uses the complex discrete 

wavelet transform (CDWT) [71,74] described in the previous section. 

The method will not be described in significant detail as there are 

already several papers [74] (and references contained therein) and a 

PhD thesis [71] discussing it as well as comparing it to other techniques.

6.4.1 Motion Estim ation using th e  CDW T

The motion estimation (ME) algorithm used in this chapter was orig­

inally developed by Magarey for video coding [71,74]. Several papers 

have since been published which use this algorithm for moving target 

detection [16], or stereo image matching [72,102]. Here it is used to 

obtain information about the motion of a speaker’s lips.

To calculate the motion between two consecutive frames it is neces­

sary to find the displacement of each pixel n  in the current frame from
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the corresponding pixel in the previous frame. If A2 is the current 

frame and Ai the previous frame then the displacement d(n) of pixel 

(n) is Ai(n + d(n)) = A2(n), with n =  (n i ,n 2)T where down and right 

are the positive directions and n \ being vertical and n 2 horizontal [71].

The subimages D(n,m) from the CDWT provide the input da ta  for 

Magarey’s ME algorithm [74]. As stated previously, for a single image, 

the CDWT produces six bandpass subimages at each level (m) of the 

decomposition. The algorithm starts a t the coarsest level (m =  mmax) 

and finds the vertical and horizontal displacement for each pixel. This 

produces a motion field at level m . This field is then interpolated by 

two in each direction (rows and columns), and along with the twelve 

subimages (six each from the images Ai and A2) is used as the initial 

estimate for motion estimation at the next finest level (m  — 1 ). There 

are several steps to the algorithm performed at each level of the decom­

position and continuing until level m  = rrimin is reached. The matching 

criterion at each subband (n, m) and pixel n is the squared difference 

(SD) of two consecutive frames and is expressed as:

SD(n’m)(n1 + f,n2) =  |D*1n,m)(ni +  f) -  D̂ n’m)(n2)|2 (6.6)

where ni, n2 are the corresponding pixels from the subband images 

D^n,m ̂ and , which themselves are obtained from the CDWT

of frames Ai and A2, and f is a fractional offset to allow sub-pixel 

accuracy. The six subband differences are then summed up to form the 

subband squared difference:

6

SSD<m) =  5 Z S D ("'m)(n i +  f ,n 2) (6.7)
n = 1
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The motion estimate f  for each pixel a t level m  is tha t which min­

imises SSD(m\  Summing over the six subbands and finding the overall 

minimum leads to a robust motion estim ate for tha t pixel. The SSD 

can be expressed as an elliptical surface, composed of five parame­

ters [71,74]:

•  Surface curvature parameters, ct, /?, 7 .

•  Surface minimum coordinate vector fo =  ( / 10, /bo)-

•  Surface minimum value 6.

The multiresolution structure of the CDWT allows the motion esti­

mation to work from course to fine levels of information. It incorporates 

information from the previous level estimate into the current level in 

order to refine the motion estimate. However, before any motion esti­

mation on the current level can begin, it is necessary to warp the current 

(finer) CDWT subimages using the course level estimate of fo [74]. Once 

this warping has been carried out, the motion estimates of the current 

level are calculated and combined with the results of the previous level 

by adding the quadratic surface param eters of related pixels from the 

levels to form the cumulative subband squared difference (CSSD):

CSSD<m)(n,f) =  <
CSSD'(m+1)(n, f) +  SSD<m>(n, f) m mi„ < m <  m ma

SSD(m) (n, f) TO =  m-max
(6.8)

Although, before adding the surfaces, the information from the 

course level must be scaled and interpolated (indicated by the prime 

(/)) as the motion field density is of a lower resolution than the cur­

rent level estimates. This refinement continues until level m  = m min is
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reached and Figure 6 . 6  is a block diagram of the hierarchical structure 

of the motion estimation process. The result of this hierarchial process 

is a robust subpixel accurate motion field [74]. Figure 6.7 contains two 

consecutive frames from the dataset and the resulting motion field.

Ai A2
1 Level 1 motion field ■

Lowpass
Images

Lowpass
Images

T

1

CSD and Interpolation

Level 2 motion field

I
CSD and Interpolation

Level m motion field

Bandpass Bandpass
CDWT Images Motion Images CDWT
Level 1

Djn,1)
Estimation

D^n,1)
Level 1

Lowpass
Images

Bandpass Bandpass
CDWT Images Motion Images CDWT
Level 2 D (n>2)

Estimation
D K 2) Level 2

Lowpass
Images

Bandpass Bandpass
CDWT Images Motion Images CDWT
Level m Estimation

D (n,m)
Level m

r
F ig u re  6 .6 . Block Diagram of the CDW T based motion estimation 
algorithm, with m min =  1 and m max =  m, adapted from [74].
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Figure 6.7. Frames 1923 (top left) and 1924 (top right) and the flow 
field (bottom) describing the motion between the two frames, taken 
from the female speaker dataset.

6.5 Voice Activity Detection

The method employed here for visual voice activity detection again uses 

HMMs, but in this instance they are used to model the dynamics of 

the optical flow field. To obtain the optical flow of the data, finst the 

images were cropped and resized to allow the wavelet decomposition to 

be performed. The need to resize the images before calculating the flow 

fields is because of the downsampling by two in each direction operation 

that occurs in between every level of the wavelet decomposition. For
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the algorithm to operate correctly, the dimensions of the images must 

be multiples of 2mrnax. Secondly, the complex wavelet ME algorithm

was run on the data for a total of 1 : m max levels, and the level m  = 1

flow fields were downsampled from the original image size to reduce 

the dimensionality of the data before constructing the required HMMs. 

This is possible because the optical flow field has been smoothed, and as 

such there should not be large variations in direction and magnitude of 

neighboring flow vectors, therefore, some of the data can be considered 

redundant.

For each pair of consecutive video frames there is a motion field F . 

Each motion field is reshaped into a column vector, so a single frame 

of size N  by N  pixels is described by the vector:

F  =  [/(1,1) . . . /(1.A0, f (2,1) • • • f ( 2 ,N ) ] T

where the motion vector f  at pixel n  is described as f(n) =  ( /i , f 2)T 

where f \  is the vertical motion, and f i  is the horizontal motion, with 

down and right being the positive directions [74]. This results in the 

data now being described as the set of vectors F(j), with j  being the 

number of video frames. Even with the downsampled flow field the 

dimensionality of the data was still high, so PCA was used to reduce the 

dimensionality even further. Early experiments showed that performing 

PCA on the vertical and horizontal coordinates of each vector simply 

meant that the most significant principal components were almost (if 

not entirely) composed of purely vertical motion vectors. While this is 

a sensible result for speech, the same cannot be said for a smile. As such 

the results obtained had only a 60% to 70% accuracy in the detection 

of silence frames. Also, the dimensionality of the data had doubled
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as there were two motion values associated with each pixel (horizontal 

and vertical). Therefore it was decided to use the magnitude of each 

motion vector, and reduce the dimensionality of these.

6.5.1 Simulations

Results were obtained using the same video data as described in Chap­

ter 5. Two datasets were used for the experiments, one of a female 

speaker, and one of a male speaker. The motion estimation algorithm 

was applied to the data and the V-VAD was applied in the same manner 

as in Chapter 5. As was noted in Chapter 5, the terms male and female 

are only used to distinguish between the two speakers, the results do 

not indicate the performance of the V-VAD for just male speakers or 

just female speakers.

The original frames were 480 by 640 pixels, and were reshaped into 

512 by 512 pixels per frame. For the wavelet decomposition ram0x was 

set to 6  and ram*n to 1. The resultant flow fields were then downsampled 

to a size of 32 by 32 vectors and the magnitude of each vector obtained. 

This resulted in each vector in the set F b e i n g  of length 1024. PCA 

was then used to reduce the dimensionality, and retaining the first ten 

eigenvectors accounted for 90% of the total variance. Therefore each 

frame was reduced to only ten dimensions. To build the HMM, again 

only silence data were used, and the training data consisted of around 

800 frames and the remainder of the dataset used as unseen data. As in 

Chapter 5, the output of the V-VAD was smoothed with an averaging 

filter, where the length of the filter (either 5 or 10 samples) is indicated 

in the legend of each figure. The above details are the same for both 

the male and female speakers.
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Female Speaker V-VAD Results

Figures 6 .8  and 6.9 show the results of the V-VAD applied to the female 

speaker. These show results of using different silence data in the build­

ing of the HMM. Initial classification results of the female speaker were 

not as expected. Further investigation found tha t during the third si­

lence period in which complex lip motion occurs, there is non-negligible 

movement of the speaker’s head. There are also small movements dur­

ing the fourth silence period, but not as significant as those in the third 

period. Figure 6 .8  shows the results of using the fourth and fifth (final) 

silence periods to build the HMM. Comparing these to Figure 6.9 where 

the third and fifth silence periods axe used to  build the HMM, it can be 

seen that including the third silence period into the data to build the 

HMM improves the results by around 10%. The female speaker results 

in Figure 6.9 show that a CSD of 8 8 % for a FSD of 5% can be achieved. 

However, for an FSD > 10% the results are poorer compared to those 

of the AAM and retinal filter methods given in Chapter 5, although 

an FSD of > 10% is most likely undesirable as for large datasets this 

would result in a significant amount of error.

Male Speaker V-VAD Results

The results of the male speaker are provided in Figures 6.10, 6.11 and 

6.12. The figures show the results of V-VAD when different silence 

datasets were used to build the HMM. As can be seen, there is little 

difference in the results. Further experiments verified that provided 

the motion estimates from one of the silence periods with complex lip 

motion were used in the HMM, the V-VAD results were similar.

Figure 6.12 shows the best results obtained. For these results, the
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Figure 6 .8 . ROC curves of silence detection for the female speaker 
using the fourth and fifth silence periods.
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Figure 6 .9 . ROC curves of silence detection for the female speaker 
using the third and fifth silence periods.

HMM was built using the first and fifth silence periods, and it can be 

seen that a CSD of 98% for a FSD of 5% can be achieved. Furthermore, 

based on the classification results of several different HMMs of the male 

speaker, an average CSD of 94% for a FSD of 5% can be achieved.
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Figure 6.10. ROC curves of silence detection for the male speaker 
using the first and third silence periods.
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Figure 6 .1 1 . ROC curves of silence detection for the male speaker 
using the fourth and fifth silence periods.

A generic V-VAD

The motivation behind the work described in this chapter was to find 

a method of representing the motion of a speaker’s lips in such a way 

that a generic V-VAD could be built on the basis of these descriptors. 

As mentioned in Chapter 5, the AAMs obtained for each speaker are 

almost person specific. While work has been published on building
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Figure 6 .1 2 . ROC curves of silence detection for the male speaker 
using the first and fifth silence periods.

generic appearance parameters, limited success has been reported [48].

Figure 6.13 shows the results of applying the motion data of the 

male speaker to a HMM built solely on the female speaker. The results 

show that a CSD of at least 92% for a FSD of 5% can be achieved. 

Further simulations using HMMs of the female speaker to classify the 

motion estimate of the male speaker, showed that an average CSD of 

90% for an FSD of 5% can be obtained.
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Figure 6.13. ROC curves of silence detection for the male speaker 
using a HMM built on silence data from the female speaker.
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The model of the male speaker was also applied to the female 

speaker, and the results obtained were similar to those obtained in 

Figure 6 .8 . This suggests tha t the earlier hypothesis of including the 

data from the female speaker’s third silence period is correct. More­

over, it could be said that classification error introduced due to the 

movement in that silence period could be used as an example of what 

could be expected if a head tracker had been used to  find the region of 

the mouth, and failed to do this accurately. However, further testing 

would be needed to verify this.

6.6 Using a V-VAD to  Regularise th e  Perm utations in Convolu­

tive BSS

This penultimate section brings the thesis back to where it started; the 

cocktail party problem. The experiments in this section show tha t the 

output of the V-VADs described in this chapter and Chapter 5 can 

be used in an effective manner to correct the perm utations and hence 

separate a chosen speech signal from a convolutive mixture to make 

that speaker more intelligible.

The BSS method used in this is section th a t of Rivet et al. [100]1. 

Their method contains two stages. Firstly, the frequency domain un­

mixing filters of the speech mixture are found using only the audio 

information. Then, the V-VAD output associated with a particular 

speaker, say si, is used to estimate the perm utation m atrix for that 

speaker. This in turn is applied to the set of frequency domain unmix­

ing filters found in the first stage to correct the permutations for speaker 

S\. To correct the permutations for any of the other speakers in the

xThe code for this method was kindly supplied by Dr Bertrand Rivet
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mixture, the output of the V-VAD associated with tha t speaker must 

be available.. The validity of this m ethod has already been discussed 

by Rivet et al. [100]. The purpose of these experiments is to compare 

the outputs of the AAM and motion estimation V-VADs proposed in 

this thesis when used to aid in solving the cocktail party problem.

6.6.1 Simulation Results o f BSS Using a V-VAD to  Correct th e

Perm utation Problem

The results given in this section are based on two speakers, s\ and s2 

mixed artificially (in a convolutive manner) in a room 1 0  x 1 0  x 1 0 m 3 

in size 2. The FIR mixing filters had approximately 1000 lags, and the 

audio recordings were approximately 70 seconds in length. The speech 

signal for speaker Si is the audio component of the male speaker data 

used in the previous section, as well as the experiments in Chapter 5. 

Each of the V-VADs were applied to  the whole video signal, and ap­

proximately 70 seconds of audio da ta  and corresponding V-VAD output 

removed from the middle of the recording and used for testing here.

Figures 6.14 and 6.15 show the original speech signals and mixed 

signals respectively. As can be seen in Figure 6.14 there are clearly 

defined periods of speech and silence for s i, and continuous speech for 

*2 -

The estimates Si of the original signal si when using the output 

of a V-VAD are given in Figure 6.17. The dashed line represents the 

manual indexation of the speech and silence periods, while the solid 

line represents the output of the respective V-VAD used to regularise

2The*Matlab file simroommix.m file found at http://sound.media.mit.edu/ica- 
bench/ was used for this purpose.

http://sound.media.mit.edu/ica-
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Time[s]

Figure 6.14. Original speech signals for speakers 1 (top) and 2 (bot­
tom).

T im e is]

Figure 6.15. Mixed speech signals.
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(a) Without permutations regularised

T im e[sf°

(b) With permutations regularised

Figure 6.16. Separated speech signal for speaker 1, before and after 
permutation regularization with manual silence period indexation.

the permutations. Compared to the top mixture in Figure 6.15 it can 

be seen that for each signal si, the speech and silence periods are now 

clearly distinguished. Furthermore, there is little difference in the re­

sulting estimate Si for the two proposed V-VADs, the retinal filter 

V-VAD and the manually indexed silence periods (Figure 6.16(b)). A 

subjective comparison in the form of listening tests of the estimated 

signal Si for the experimental results given in Figures 6.16 and 6.17
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was performed to verify if the use of the V-VAD improved the clar­

ity of the signal. The signal obtained with no permutation correction 

(Figure 6.16(a)) was deemed to be of poor quality, tha t is to say, the 

speech was mostly unintelligible for both speakers. However, as would 

be expected, during the periods when speaker S\ was silent, speaker 

S2 became significantly clearer. For the results using the V-VADs, a 

significant improvement in intelligibility was found, and the estimated 

speech signals for all V-VADs were of similar quality. For the experi­

ments given in Figure 6.17 the output of the V-VADs corresponded to 

a CSD of 90%. W hat is also shown is the silence estimation of each 

V-VAD (solid line). Further experiments were conducted, where the 

output of each V-VAD had a CSD of 95%, but no discernable differ­

ence was noticed in the intelligibility of the estimated signal $i. It 

should be noted that in a real room environment, the useable portion 

of a silence period will also be dependent upon the mixing filter length.
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6.7 Conclusion

A novel V-VAD was presented in this chapter, based on using the opti­

cal flow of a speaker’s mouth region. Comparing the proposed method 

to the AAM and retinal filter V-VAD presented in Chapter 5, it can be 

seen that similar results can be obtained. However, the method pro­

posed in this chapter has advantages over the previous methods. The 

optical flow based V-VAD has the same advantage over the retinal filter 

approach as the AAM based method; the window length used for the 

optical flow and AAM based methods is shorter than  tha t of the reti­

nal filter method. As explained at the end of Chapter 5, the window 

size determines the smallest silence period tha t can be detected, as the 

optical flow and AAM methods use statistical models they are able to 

achieve similar results to the retinal filter method using a smaller win­

dow size. It has also been shown th a t using the optical flow V-VAD, a 

generic method is possible while still achieving a high rate of classifica­

tion, with an average CSD of 90% for an FSD of 5%. A generic model 

was not possible with the AAM based approach. Moreover, the optical 

flow method does not require the lips to  be explicitly tracked.

The final experiments in this thesis show tha t the output of the V- 

VADs described herein can be used in the audio-visual BSS algorithm 

of Rivet et al. [100] to improve the intelligibility of a chosen speaker (the 

speaker associated with the V-VAD output) when mixed in a convolu­

tive manner with another speaker. The results of listening experiments 

show that a significant improvement in speech intelligibility can be ob­

tained for the speaker associated with the V-VAD output.
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(a) Retinal filter based V-VAD

(b) AAM based V-VAD

T im e[sf°

(c) CDWT motion estimation based V-VAD

F igure 6.17. Separated speech signal for speaker 1 (si), using the 
(a) retinal filter, (b) AAM and (c) CDWT motion estimation based 
V-VADs to perform the permutation regularisation.



Chapter 7

SUMMARY AND FUTURE 

WORK

7.1 Summary

The main focus of this thesis is developing methods for using visual 

information to aid in solving the cocktail party problem. The novel 

contributions of this thesis are the following:

• A novel BSS algorithm th a t utilises a statistical model of joint AV 

features to control the BSS algorithm ’s convergence behaviour.

•  A V-VAD in which the visual descriptors are appearance param­

eters obtained from an AAM.

• A V-VAD based on the optical flow of a speaker’s mouth region.

There are two types of visual descriptors used in this thesis. Ap­

pearance parameters of the speaker’s lips, obtained from an AAM, are 

used as the visual feature descriptor for the work described in Chapters 

4 and 5. In Chapter 6  the optical flow of the speaker’s mouth region is 

the descriptor.

The thesis began with an overview of the cocktail party problem 

and a review of current literature on the subject. Next, an in depth

120
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discussion of the visual and audio features used in this thesis together 

with an overview of the statistical modelling methods used in this study 

is given. The remaining chapters provided an in depth discussion of the 

novel contributions of this study.

The first contribution is an AV-BSS algorithm th a t employs a joint 

statistical model of audio and visual features to control the convergence 

behaviour of the BSS algorithm of Wang et al. [127]. The motivation 

behind this work was to improve the convergence behaviour of the BSS 

algorithm in non-stationary environments. To this end an AV model 

of one of the speakers was built and used at each iteration of the algo­

rithm for this purpose. The statistical models used to  model the AV 

features were the GMM and HMM. The results of this work show that 

when integrating a joint AV model into the BSS algorithm, a signifi­

cant improvement of convergence rate  is obtained when compared to 

using the raw audio information (no model). Furthermore, the use of 

an HMM to model the joint AV features provides an advantage over 

using the GMM. This can be attribu ted  to the transition probabilities 

between states contained in the HMM capturing the time dynamics of 

the features, so while an observation of AV features may be valid, the 

transition between them may not. However, the models are limited to 

the training data used in this study. Therefore, the remaining chap­

ters focus on simpler video based speech cues, specifically methods for 

visual-voice activity detection (V-VAD).

The video data for the V-VADs in this thesis are different to data  

used previously in existing V-VADs [59,67,113]. During silence periods 

-the speakers were asked to perform a variety of naturally occurring 

mouth expressions such as smiling, biting lips and licking lips which
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are labelled as complex lip motion. Then models were built on training 

data from silence periods and used to  find the silence periods in a 

dataset.

The second main contribution presented in this thesis is a  V-VAD 

based on using AAM parameters to describe the speaker’s lips. They 

were chosen as they had already been successfully used for the AV-BSS 

method. The dynamics of AAM param eters during silence periods are 

captured with an HMM th a t was then used to classify unseen AAM 

parameters as silence or speech. The results of experiments show tha t 

appearance parameters can successfully be used for visual voice activity 

detection and that the complex silence periods are also successfully 

detected. Use of appearance param eters as the visual descriptor has 

the drawback that the HMMs built using them are essentially person 

specific. This could be overcome by building a model on several people 

but the dataset used in this study was limited to only two people. 

Previous research has shown limited success in building generic AAMs

[48].

This issue led to the choice of a visual descriptor which would allow 

a generic HMM to be built for use in a V-VAD. The final contribution 

to this study is given in Chapter 6  and is a V-VAD tha t can accurately 

classify the lip motion of a speaker as speech or silence using a model 

that was not built exclusively on th a t speaker’s data. In fact results are 

given that show the V-VAD can accurately classify the lip motion of a 

speaker using a model tha t does not include any of their data. For this 

last contribution, the visual descriptor was an optical flow field of the 

-speaker’s mouth region. The flow field was obtained using a CDWT 

based motion estimation algorithm. It is known that due to the speed
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at which the lips move during speech, in particular the lower lip, that 

the lip shape is not easy to automatically track with a high degree of 

accuracy. This particular method was chosen as the motion estimation 

method uses the phase information from the CDWT to calculate the 

flow field. This meant tha t the edges (contour) of the lips could be 

emphasised, and the motion over several frames found. The method 

was thoroughly tested by comparing the results of models built using 

different training data. Results showed a consistently high degree of 

correct silence detection.

The performances of the V-VADs presented in this study were also 

compared to a previously published V-VAD [4] tha t uses a retinal fil­

ter to obtain the visual descriptor. The methods in this study were 

found not only to perform as well as the retinal filter method, but also 

have the advantage of being able to  detect shorter periods of silence 

(approximately 10-15 frames) compared to the retinal filter approach 

(20-25 frames).

Final experiments are performed with the AV-BSS algorithm of 

Rivet et al. [100]. The algorithm utilises the output of a V-VAD to reg­

ularise the permutations of the estimated speech signal (corresponding 

to the V-VAD output), thus mostly solving the perm utation problem 

inherent to BSS. Experiments on convolutive mixtures of speech are 

conducted using the V-VADs presented in this thesis, and results are 

provided that show the advantage of using such V-VADs in a BSS sce­

nario.
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7.2 Future Work

The future of audio visual solutions to  the cocktail party problem has a 

promising outlook. W ith the increase in computing power and minia­

turising of microprocessors producing powerful consumer electronics 

such as digital photo cameras th a t have the ability to  find faces in the 

viewing area to better focus the camera lens on the subjects, a real 

time solution to the BSS problem is conceivable.

The work presented in this thesis comprises of two main elements. 

The first is directly linked to the overall theme of the thesis; the cocktail 

party problem. The AV-BSS method described herein is restricted to 

the training data used to  build the AV models. However, simpler AV 

models could remove this restriction.

The visual information used herein is obtained from the speaker’s 

lips, but this is not the only visual information tha t could be of use. 

It has already been mentioned in the review chapter tha t beamform- 

ing based BSS methods rely on the location of the speakers. Their 

locations are traditionally found using audio information alone. How­

ever, obtaining these locations with video information should prove to 

be more accurate, especially in acoustically noisy environments or non- 

stationary environments containing several speakers. Using the location 

of a speaker to enhance their speech has recently been investigated by 

Maganti et al. [70].

W hat can be said about the integration of visual information into 

BSS methods is that the intended application will determine what vi­

sual information is available. For example, where there are several 

speakers who are continually moving around, such as in an airport or 

train station, detecting a speaker’s face will probably be difficult due to
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occlusions from other people and objects in the environment. Detecting 

the locations of the speakers visually could be simpler. Alternatively, in 

a video conferencing situation, a face on view of the speaker would be 

available, making the tracking and extraction of facial features possible.

The remaining contributions of this study are focused on the devel­

opment of a V-VAD that can be applied to  any sequence of video where 

the mouth region can clearly be viewed. A V-VAD could easily be in­

tegrated into an AVSR framework, as the video camera would already 

be processing information of the speaker’s mouth area, so very little 

extra processing would be incurred. In fact it may be the case tha t in 

audio noisy situations that unnecessary speech recognition processing 

could be eliminated by the V-VAD. W ith regards to the cocktail party 

problem, a V-VAD could be used to  reduce the amount of processing 

required in tha t situation as well, by knowing when a person is speaking 

or not could allow a better estim ate of the unmixing matrix.

With regards to modelling the visual feature, a natural path to pro­

ceed upon is possibly one used by speech recognition. That is to model 

each non-speech mouth action separately and collect them in multiple 

or multi layered HMMs, and actually recognise each observation of the 

speaker’s lips as a mouth action to  better class them as speech or not 

speech. The inclusion of audio information in acoustically low noise 

conditions would also allow for improved VAD.

Whilst reading through the literature for the review section, it be­

came apparent tha t there appears to  be very little dialogue between 

researchers in the fields of CASA, SE and BSS. In fact very little com­

parison between solutions to the cocktail party problem from each area 

had been done. Increased dialogue between these areas could result in
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an improved solution.

Indeed, a single method cannot solve this problem alone, a system 

is required that utilises several methods. Cherry [2 1 ] has already given 

his thoughts on what should be considered. His thoughts are echoed 

by Haykin and Chen [52] who also propose their own framework. How­

ever, in [52] their active audition solution is based solely on information 

derived from audio. But where available, humans use both audio and 

visual information. It is the combination of these senses tha t allow 

us to converse in noisy environments and a solution tha t exploits this 

should provide a better performance than  one tha t relies solely on audio 

information.

The cocktail party problem is unlikely to ever be completely solved 

by any method. W hat can be achieved is a satisfactory solution, and 

the intended application will determine what constitutes a satisfactory 

solution.
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