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Summary

The explorative power of high throughput technologies in cancer research has become well 

established in recent years, exemplified by diverse gene microarray studies. However, 

development of the necessary biomedical data analysis tools has historically been confined to 

a commercial environment, while comprehensive, user-friendly analysis approaches are still 

needed. Availability of freely-available software, notably the ‘R’ project statistical 

programming language, allowed development of a user-friendly multivariate statistics 

application -  Informatics Tenovus (I-10) -  in this project. I-10 provides a platform through 

which powerful existing and future ‘R’ project statistical analysis methodologies can be 

applied, without prior programming knowledge. The new system was tested in the context of 

exploring antihormone resistance in breast cancer, analysing microarray datasets from in vitro 

models of acquired Tamoxifen (TAMR) or Faslodex resistance (FASR) versus endocrine 

responsive MCF-7 cells. The analysis not only revealed known de-regulated genes, but also 

further potential future markers/targets for endocrine response/resistance. The advantages of 

the ‘R’ programming environment together with Microsoft Visual Basic.net technology for 

producing user-friendly biomedical analysis tools facilitated subsequent development of a tool 

which could explore SEER cancer patient datasets. This new cancer query survival tool -  

Superstes -allows detailed statistical modelling of the impact that multiple patient attributes 

(in this instance derived from the SEER breast and colorectal cancer datasets) have on patient 

survival. The versatility of ‘R’ was additionally demonstrated in further exploring classifiers, 

where it was able to interface with the sophisticated, freely available machine learning 

application ‘Weka’. Using ‘R’ and Weka, breast cancer patient survival was modelled using 

equivalent patient attributes to the Nottingham Prognostic Index and a 10 year survival subset 

of the SEER breast cancer dataset. Several machine learning methodologies were compared 

for their ability to accurately model survival, with their value in routine clinical use for 

prediction of patient survival then critically evaluated.
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1 Introduction

Breast cancer is the second most prevalent type o f cancer throughout the world after lung cancer, 

with an incidence rate in women in the UK of 1 in 9, according to cancer research UK (Office for 

National Statistics, 1999) [1]. The majority (95%) of breast cancers are sporadic, yet a small 

proportion are familial where 5% of these may relate to loss o f function of the genes BRCA 1 and 

2 (Thompson et al, 2008) [2]. Breast cancer is a multifaceted disease in terms of genetic, 

phenotypic and clinical characteristics, where decision making by oncologists for the most 

effective treatment regime depends upon clinical and pathological prognostic and predictive 

factors. Importantly, significant improvements have been made in the way breast cancer is 

diagnosed and treated. Improvements are due to new research discoveries which have improved 

survival by over 20% in the last 10 years (Rakha et al, 2008) [3]. For example, improved 

mammographic screening resulted in detection o f the onset of early invasive disease and also 

ductal carcinoma in situ, a pre-neoplastic condition with the potential to progress to invasive 

disease (Yaffe et al, 2008) [4].

A further landmark has been discovery o f steroid hormone signalling via the oestrogen receptor- 

a  (ER) playing a central role in the growth and development of breast cancer (Yaffe et al, 2008) 

[4]. Epidemiological studies indicate that increased risk of breast cancer is associated with 

cumulative life-time exposure to steroid hormone-related factors, having associations with an 

earlier menarche, late menopause and pregnancy. Discovery of the importance of such signalling 

has provided a mechanistic target to selectively treat and improve outcome for many patients 

through use o f various anti-hormonal agents (including anti-oestrogens such as Tamoxifen and 

Faslodex, and also oestrogen deprivation treatments notably aromatase inhibitors). Similarly, 

discovery that c-erbB2 amplification can contribute to growth and aggressive behaviour of some 

tumours has resulted in Herceptin (Trastuzumab) antibody therapy (Kapp et al, 2006) [5].

Historically, there has been a good overall association between the standard clinico-pathological 

covariates currently used in breast cancer management and patient’s outcome. Prognostic factors 

enable identification of patients whose prognosis is either good enough to not warrant adjuvant 

systemic therapy after local surgery of the tumour or poor enough to justify a more aggressive
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adjuvant approach. Secondly, covariates can be predictive, enabling selection of patients whose 

tumours are more likely to be responsive or resistant to a particular type of therapy. Of 

considerable interest in the latter regard is steroid hormone receptor status, where ER+ tumours 

(a feature of -70%  breast cancer patients) are enriched for anti-hormone responses, which are 

largely absent within ER negative (ER-) patients. Equally, responses to Herceptin are confined to 

patients whose tumour cells have amplification of the c-erbB2 gene.

Unfortunately however, significant proportions of patients relapse following treatment, and 

ultimately will die from progression of the disease (Slamon et al, 1987) [6]. There is therefore an 

increasing need for additional prognostic and predictive factors both to improve patient risk 

accuracy, to improve targeting o f existing treatments to those who will truly benefit, and equally 

to determine further tumour targets for development of new therapies.

1.1 Current Breast Cancer Prognostic Factors, Impact on Treatment 

Strategies, and Limitations

Histopathology supplies a substantial amount of information through routine examination of 

breast cancer (and associated lymph node) sections allowing generation of morphological 

prognostic factors such as tumour size, differentiation in terms of histological type and grade, as 

well as lymph node stage and vascular invasion. Prognostic groups according to such 

measurements have been created which can subset patients according to their chance of survival 

over a 10 year period. The Nottingham prognostic index (NPI) is a clinicopathological 

classification system based specifically on tumour size, histological grade, and lymph-node status 

(Galea et al, 1992) [7]. The higher the NPI value the worse the prognosis. It was one of the first 

systems to be developed to show a correlation between the three different parameters and adverse 

outcome. It was developed before high throughput technologies such as microarray analysis 

became available in the late 1990’s and subsequent studies confirmed the value o f the 

combination of lymph node stage, histological grade, tumour size could improve prediction of 

prognosis. The NPI system is still widely used throughout the UK for breast cancer 

prognostication (Galea et al, 1992) [7].
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However, it is acknowledged that histopathological parameters are also associated with certain 

limitations, e.g., many histopathological variables (such as grade) are subject to significant 

pathologist variability even after many attempts o f standardisation (Yu et al, 2004) [8], and 

appropriate cut-off points are often difficult to define when the histopathological parameter being 

measured is scored over a continuous range of values (Yu et al, 2004) [8]. Indeed, there is still 

little general agreement as to which tumour prognostic factors should be used routinely in clinical 

practice. The only factor used consistently as a guide for therapy to date has been lymph node 

status however this alone is incapable of identifying patients who have 100% risk o f death from 

breast cancer. The inaccuracies of such prognostic indices is further confirmed by several studies 

that have shown that approximately one-third of lymph node-negative breast cancer patients who 

are classified within a ‘good prognostic group’ actually go on to develop disease recurrence 

(Feng et al, 2007) [9], while a similar proportion of node-positive patients paradoxically remain 

free from development o f distant metastases (Feng et al, 2007) [9]. Prognosis of breast cancer 

also depends upon the presence of distant metastases, and evaluation o f intrinsic biological 

characteristics to further indicate aggressive behaviour of the tumour, for example by examining 

growth rate (e.g. using Ki67 immunostaining), may also be important (He et al, 2006) [10]. In 

total, taking all these parameters into account suggest an improved prognostic index may need to 

include both time-dependent and biological information. Indeed, it is becoming increasingly 

established within the breast cancer research community that current prognostic factors fail to 

adequately reflect the clinical and molecular heterogeneity of the disease, and in some instances 

prove inaccurate when used to direct management decisions (Rakha et al, 2008) [3]. O f note, 

clinical studies o f individual gene expression has revealed there are distinct sub-classes of breast 

cancer (Perou et al, 2000) [11], with the concept of sub-classes being re-capitulated at the protein 

level (Yu et al, 2004) [8] and where such sub-classes appear to have bearing on prognosis 

(Modlich et al, 2006) [12]. Such concepts will be discussed in detail in a later section.

Clinically, the NPI has also proven valuable in assessing criteria for receiving adjuvant systemic 

antihormone therapy in primary operable breast cancer. If patients fall into a good prognostic 

group, Tamoxifen treatment has shown to give a good survival outcome. However due to certain 

side effects such as increases in endometrial hyperplasia and occasionally endometrial cancer; it 

could be argued that there may be patients with an inherently good prognosis where Tamoxifen
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treatment could be withheld. In the poor and moderate prognostic groups revealed by the NPI, 

additional factors are taken into consideration notably ER status and menopausal status. For 

example pre-menopausal, ER+ patients can receive ovarian suppression using Zoladex and 

tamoxifen in combination (Gnant et al, 2008) [13]. Post-menopausal, ER+ tumours receive 

adjuvant tamoxifen (or increasingly aromatase inhibitors). ER- patients would receive 

chemotherapy treatment as they predominantly lack the target receptor for anti-hormones; 

however those patients too weak to receive chemotherapy may be given hormone therapy as up to 

5% response rates can occasionally be observed in ER- disease. Of note, treatment for tumours 

also over expressing c-erbB-2 protein can include Herceptin which also serves to increase 

sensitivity to chemotherapy, inducing apoptosis more readily (Dahabreh et al, 2008) [14]. 

However, again the prognostic factors prove inaccurate. 40% of ER+ tumours fail to respond to 

anti-hormones and have an inherently poorer prognosis (Harris et al, 2007) [15], while a 

proportion of initially responsive patients subsequently relapse during treatment despite retention 

of ER positivity, again an event ultimately associated with poorer outlook (Belkhiri et al, 2008) 

[16]. There are clearly further factors determining growth and progression o f some ER+tumours 

and hence durable response to anti-hormonal agents. Equally, responses to Herceptin are 

confined to ~30% of er62?2-overexpressing patients with relapses again a problem in these initial 

responders (Belkhiri et al, 2008) [16].

Together with using the NPI system, the St Gallen and NIH conference has also outlined 

guidelines for the eligibility o f adjuvant chemotherapy, again based on tumour histological and 

clinical characteristics in relation to predicting outcome after diagnosis (Modlich et al, 2006) 

[12]. Results according to these guidelines showed that along with lymph node positive disease, 

up to 90% of lymph node negative early breast cancer patients are candidates for consideration of 

adjuvant systemic treatment. However studies have shown that many would remain disease free, 

where such over treatment may incur unwanted side effects (Van’t Veer et al, 2002) [17].

Clearly, there are inherent inaccuracies in the current prognostic indices and also limitations in 

their effectiveness in predicting treatment. However, there is considerable scope to improve upon 

the NPI and existing prognostic factors used to select patients for therapy using new 

computational techniques as applied to microarray data and expanded datasets offering extra
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covariate information such as that available through the SEER program in the USA (Edwards et 

al, 2005) [18].

1.2 Approaches to Discover Improved Prognostic Markers and Treatments for 

Breast Cancer

It has become clear that patients with similar clinical and pathological features may show distinct 

prognostic outcomes and also vary in their response to therapy. Recent advances in biomedical 

data modelling and high throughput technology may improve understanding of these phenomena.

The phenotype o f cells -  encompassing growth, differentiation and migratory behaviour of 

malignant (versus benign) cells- can classically be measured through protein expression studies, 

often examining individual or small numbers of proteins (e.g. using immunohistochemistry and 

western blotting) which can be used as prognostic/predictive markers (e.g. ER and HER2 

measurement), as well as to understand mechanisms underlying response and failure to current 

therapies and to derive new drug targets. Many research groups are active in this area, drawing on 

clinical material and in some instances experimental models. For example, in vitro examination 

of ER+ breast cancer cell lines such as MCF-7 have confirmed the importance o f ERa, a nuclear 

transcription factor, and shed light on its signalling mechanism (Lisztwan et al, 2008) [19]. 

Scientists in the Tenovus centre for cancer research, Cardiff University, have derived a model 

from the ER+ MCF-7 breast cancer cell line in vitro to understand resistance to Tamoxifen 

(TAMR cell line). The TAMR cells have a very aggressive phenotype showing increased growth 

rate, motility and invasiveness (a feature that can be associated with antihormone resistance in the 

clinic) and has been found to rely on the tyrosine kinases EGFR, erbB2, IGFR and c-Src 

signalling (Frasor et al, 2006) [20]. It appears that a network of receptor tyrosine kinase 

signalling contributes to breast cancer growth and progression with pathways, interacting with ER 

when this is present. Consequently, it should be of no surprise that drugs which inhibit the 

candidate EGFR, erbB2, IGFR and c-Src pathways results in inhibition of TAMR cells in vitro. 

Research within the Tenovus Centre has provided proof of principal that useful biomarkers (e.g. 

erbB receptors such as erbB2 and EGFR) and targeted therapies (e.g: erbB and kinase inhibitors)
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can result from in depth study of breast cancer growth signalling biology in the TAMR cells 

(Nicholson et al, 2005) [21].

The emergence o f genomic technologies since the turn of the century has facilitated exploration 

of multiple genes and associated pathway information to further explain the progression and 

development of breast cancer. Three key multigene tests have been developed which can be 

routinely used for analysis. These are summarised and compared in table 1.1.

The prognostic value of Immunohistochemistry (IHC) is well established for testing of ER, PgR, 

HER2 and the proliferation marker Ki-67. Fluorescence in situ hybridization (FISH) differs in 

that it is generally used to determine the copy number of the HER2 gene for treatment selection 

processes with Herceptin, for example. Quantitative PCR (QPCR) is very reliable due to its 

sensitivity o f detecting RNA from very little starting material (Lisztwan et al, 2008) [19]. The 

quantitative polymerase chain reaction (QPCR) technique has the added advantage over the other 

techniques o f being able to assess multiple biological processes simultaneously such as hormone 

receptor status, proliferation and HER2 pathway information. It has been extensively used to 

predict overall prognosis and response to hormonal therapies (Lisztwan et al, 2008) [19].

Platform IHC FISH PCR Microarray
Number of 
genes tested:

Small Small Intermediate Large

Type of 
measurement

Semi quantitative Semi quantitative Quantitative Quantitative

Statistical
algorithm
complexity

Simple Simple Complex Highly complex

False Discovery 
risk

Low Low Intermediate High

Ability for 
Multiple 
pathway 
discovery

Low Low Intermediate High

Individual 
prognostic value

Established Established Established Established

Standardisation
ability

Low Low High High

Table 1.1 -  Comparison of available breast cancer multi-gene predictor platforms (Ross et al, 2008) [22]
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Although algorithms based on basic clinico-pathological data are now routinely used to define 

prognostically significant groups and to tailor systemic therapy for breast cancer patients (for 

example, Adjuvant! Online), further improvements are required. Combination studies o f small 

numbers of existing markers stemming from techniques such as ISH, FISH and QPCR could 

have potential to reveal improved prognostic groupings when analysed using clustering 

techniques. This is particularly evident of the interaction between c-erbB2 and also c-myc -  an 

effect which is not seen in profiling of the individual genes -  only in combination (Fei et al, 

2002) [23]. Exploration of the combination effect that existing biomarkers can have could 

potentially be very effective.

As a result o f human genome sequence completion, it is feasible that many more assayable 

markers of relevance to cancer behaviour and prognosis may be revealed through high throughput 

profiling of the whole molecular signature of human tumours. This is feasible through Microarray 

technology where a complete set o f genes (up to ~40,000) can be measured in a single 

hybridisation experiment, in contrast to techniques such as Quantitative PCR which can only 

measure at best several hundred genes at a time. The microarray approach has the potential to 

reveal a detailed molecular description of malignant tumours which ultimately may lead to novel 

tumour markers and classification algorithms. In turn, these factors can be evaluated for their 

ability to improve prediction of clinical behaviour and potentially could encompass targets for 

new therapeutic approaches.

1.3 High-throughput Technologies and Associated Bioinformatics for Marker 

Discovery

High-throughput approaches using microarrays require robust bioinformatics strategies in parallel 

for successful and meaningful data analysis if we are to determine genes that can refine 

prediction of prognosis and treatment outcome, as well as provide targets to augment treatment 

regimes. An inherent goal of array analysis is the need to maximise the biological data that can be 

obtained from microarray technology. This requires optimisation of the identification of 

significantly differentially-expressed genes from microarrays, including consideration of
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microarray platform, experimental design, expression call and normalisation. Data reduction to 

determine significantly different genes which encompasses filtering for false positives and 

inability to more efficiently obtain comprehensive gene annotation is also important. 

Additionally, array results are viewed in a way that differs to other more molecular views in that 

maps drawn from results show order and logic of the genetic ‘program’ as opposed to the order in 

which genes appear on individual chromosomes (Brown et al, 1999) [24]. The representation is 

the cornerstone of the value which microarray results can yield -  association of individual genes 

with others showing similar expression patterns. Complex analysis strategies are involved; 

however there is considerable potential to assign signature components within regulatory 

pathways using different analysis methods, albeit as determined at the transcriptional level.

1.3.1 Microarray technology and experimental design

Multiple types o f microarray platform exist. The technology roots are largely based in cDNA 

library and differential display studies which ultimately led to the first nylon and plastic 

microarrays. As engineering for array technology improved, whole genome microarrays have 

been developed; however, custom designed arrays using the Cy3/Cy5 system remain popular in 

the biological research community- particularly for smaller genome organism studies such as in 

the Fugu fish (Bassett, 2001) [163].However, in the cancer research setting, well developed 

commercial platforms such as whole genome arrays from Affymetrix facilitate maximum 

exploration (Robinson et al, 2007) [25]. Disease specific arrays from Affymetrix (such as breast 

cancer) are also taking high throughput exploration to a further level of performance. The quality 

benefits of the Affymetrix technology are widely publicised stemming from its fundamental 

principle of utilising perfect match and mismatch oligonucleotides. The present/marginal/absent 

(PMA) expression call performs as an intrinsic quality control step as well as being an inherent 

part of the quantification technique (Robinson et al, 2007) [25]. The Affymetrix approach also is 

reported to be able to reveal weakly expressed mRNA species more accurately.

To produce robust results from a microarray, a number of fundamental steps need to be 

monitored starting with sample preparation. RNA is initially extracted from the samples under 

test, from which cDNA is then reverse transcribed, with subsequent hybridisation of the samples
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to a chip such as the Affymetrix HGU -133A chip (Homo sapiens). An overview o f  this process 

is shown in figure 1.1. Scanning o f  the array occurs in a specialist facility with high resolution 

scanners approved by Affymetrix using Affymetrix software. Adopting this approach, the 

com pany believes ‘quality can be assured’ with potential consistency between array runs and 

facilities (Robinson et al, 2007) [25].

Total RNA
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Figure 1.1: An overview of the Affymetrix process and a typical image of a chip afte r scanning.
(Affymetrix, 2001) [26]

Initial experimental design is very important which encompasses the initial microarray 

technology choice and in particular the num ber o f  replicates required o f  samples to be arrayed. 

Subsequent analysis o f  microarray data concerns determining genuine expression level changes 

from ‘noise’ inherent in any assay. The way in which experimental background ‘noise’ is filtered 

from true genetic results is the first step for all array analysis. Although the Affymetrix system 

delivers the lowest signal to noise ratio o f  all the available Array platforms due to 11 sequences 

per gene including mismatches (“gene probe set” ), dependency on a single replicate would still 

prove unreliable (Robinson et al, 2007) [25]. Careful cost analysis versus optimal num ber o f  

replicates is often a difficult yet important balance to achieve due to the potential substantial 

benefits and research value array data can yield. Com prom ises made at this point could 

potentially jeopardise the analysis which could result, as a worst case scenario, in further sample 

sets having to be prepared and samples having to be re-arrayed. This can prove costly overall, 

especially i f  only an additional replicate was required.
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A minimum of three replicates is generally advised by the literature; however recent experience 

has shown a need to calculate exactly the optimum number of replicates needed encompassing 

economic feasibility (Black et al, 2002) [27]. The way in which the optimal number of replicates 

is calculated varies according to the type of statistical testing which would be envisaged for a 

particular array results set. Two key calculations are widely accepted depending upon whether 

parametric or nonparametric statistics will be applied. Parametric methods, utilising traditional 

sample statistical analysis methods such as the t-test, follows the theory that gene expression data 

are normally distributed. In comparison, the Wilcoxon test is a non-parametric method based on 

ranking observed gene expression levels. A method outlined by Black and Doerge is widely 

accepted as a way of calculating the ideal number of replicates if only parametric methods are to 

be used (Black et al, 2002) [27]. However, for the ultimate in sensitivity and comparison, some 

studies suggest there may be more benefit in comparing results from an alternative array system 

to increasing replicate numbers beyond three (Pedotti et al, 2008) [28].

1.3.2 Improving quality of microarray experiments

Early pioneers of Microarray technology, although obtaining interesting research findings, as 

exemplified in clinical breast cancer microarray studies by Van’t Veer et al (Van’t Veer et al, 

2002) [17], noted that there were certain shortfalls in the technique. Results have proven difficult 

to reproduce with many reasons to explain this occurrence including a lack of exact information 

as to how sample material was prepared, the number of replicates, and data preparation prior to 

statistical analysis. Consequently, the Microarray and Gene Expression Data (MGED) Society 

was formed to strive to improve quality and consistency of results in microarray experiments. 

The MGED society is an international organization of computer scientists, biologists, and data 

analysts that aims to facilitate the sharing of data generated particularly using microarray 

technology for a variety of applications including expression profiling (Brazma et al, 2001) [29]. 

The key emphasis is establishing standards for data quality, management, exchange and 

annotation whereby facilitating the creation of tools that enable these standards to be achieved 

(Brazma et al, 2001) [29].
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As previously stated, the prime goal for using high throughput approaches is to maximise the 

biological data that can be obtained from any given sample. Often this involves refining the 

process to identify significantly differentially-expressed genes, for example improving the 

filtering procedure for false positives, detailed pattern discovery and approaches which more 

efficiently perform comprehensive gene annotation. This was one of the motivations for MIAME 

standardisation. To aid future design of MIAMI compliant array experiments, it is mandated that 

the inclusion of several pieces of minimum information is required to accompany a dataset of 

published results. These include:

I. Array design description information -  type of array, chip information.

II. Experimental design -  Authors, type of experiment, number of replicates

III. Samples used, extract preparation and labelling -  Cell type, labelling protocol

IV. Hybridisation procedure and parameters - Sample and corresponding Array information

V. Measurements data and specifications of data processing -  Image quantification and 

Normalisation

Without inclusion of such information, it will be harder in future for referees to accept microarray 

based research for publication in scientific journals.

1.3.3: Microarray analysis suite version 5.0 (MAS5.0)

Affymetrix recommends that scans created by the Affymetrix scanner are converted into a tabular 

form of individual intensity values using a software package called ‘Microarray Analysis Suite 

5.0’ (MAS5.0). This was a current version of the application at the start of this project. Recent 

versions of an equivalent application offered by Affymetrix at the time of writing include the 

Affymetrix® Expression Console™ software. To date, this algorithm is still referred to as the 

‘MAS5.0’ algorithm in current Affymetrix applications which perform this process. The 

algorithm uses a multistage process which uses fundamental design properties of an Affymetrix 

array. It was first launched with the release of the MAS5.0 application suite and remains 

routinely used in more recent software releases from Affymetrix (Affymetrix, 2001) [26].
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The MAS5.0 algorithm transforms the scanned image light intensities (encompassing every 

probe) into a series of numbers using a file type called a CEL file produced by the Affymetrix 

scanner. The intensity of light emitted from a particular chip at different areas when scanned with 

a laser directly relates to the amount of expression of a particular gene in a particular sample at a 

particular moment in time. The software produces a table of this data in the form of a spreadsheet 

summarising the samples arrayed and the individual Affymetrix gene ID’s to which each spot on 

the chip corresponds.

The MAS5.0 algorithm uses a multstage process. Firstly, background correction is performed by 

dividing the array into 'zones' and calculating an average background intensity. The design of an 

Affymetrix array having Mismatch (MM) and Perfect Match(PM) probes is also fundamental to 

the process. Each mismatch probe provides a direct measure of background and stray signal (due 

to cross hybridisation) for its perfect match partner. However the mismatch intensity can be 

higher than its perfact match value or lower. The algorithm uses smoothing so that there are not 

jumps in values between large and small values. As a result of all these features on an array, the 

Tukey biweight algorithm is then used to calculate a robust average signal from each probe. A 

log base 2 of the values is taken with an additional step to prevent any zero values. Finally, in 

case o f slight manufacuturing variances and other experimental factors, results are scaled by 

ignoring the top and bottom 2% of expression value and a mean intensity calculated for those that 

remain. (Affymetrix, 2001) [26]. The resulting summary is usually produced in a tab-delineated 

format (figure 1.2) which can be viewed using spreadsheet applications such as Microsoft 

Excel. For example, in Tenovus samples representing different treatments/resistant or responsive 

states would have been arrayed (with replicates) as part of the experimental design and 

consequently there is a need for the information to be subsequently collated and stored in a 

database, for quick retrieval for detailed analysis.

The initial launch page of the MAS5.0 application can be observed in figure 1.2
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1.3.4: PMA call

As shown previously in figure 1.3, it is clear from the figure that not only is an intensity measure 

for each probe is created, however also a p-value and uniquely a Present, Marginal and Absent 

(PMA) expression call produced as a result of information read from the scanner microarray 

'CEL’ files.

Each gene is represented a certain number of times (“probe set”) resulting in expression values 

typically eleven times for each gene. The amount of light emitted represents whether there is 

RNA being expressed for a particular gene in a particular sample on the chip. For every correct 

gene sequence there is a mismatch, the same sequence with one change in the middle (25mer) 

(Robinson et al, 2007) [25]. The true expression value assigned depends on the mismatch 

expression for that gene and the expression across the test sequences. Essentially, the PMA call is 

a voting system as to whether a particular gene is likely to be really expressed in that sample and 

depends whether or not expression is above a certain level in the MAS5.0 application algorithm. 

If the algorithm statistically decides whether the expression is really a true expression level and 

not an artefact, it will call it ‘present’. Although, the p-value for this call can be adjusted, PMA is 

usually related to a statistically significant p-value cut-off of 0.05. If slightly elevated, it falls into 

the category marginal however the exact way in which marginal is determined is unclear. It is 

important to stress that it is different to the flag scoring system of a Cy3/Cy5 array which looks at 

spot shape, size, area, and other components which are issues which do not affect the Affymetrix 

system (Lee et al, 2007) [30].

PMA call from Affymetrix microarrays can be used as an initial filter before differential gene 

expression analysis. There are two main benefits of considering PMA call. Firstly, a degree of 

quality control is imposed by the software in terms of whether a particular result actually shows 

any real change on the chip and therefore whether or not it should be included for analysis. 

Secondly, filtering using PMA call is a quick and easy way of initially filtering the data, thereby 

eliminating subsequent excessive and uninformative statistical testing. However, in some 

instances use of PMA call may be undesirable as a feature for initial filtering during analysis of
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data. It could exclude potential genetic targets of interest shown through reverse transcription 

polymerase chain reaction (RT-PCR) to have low expression levels which the Affymetrix process 

would otherwise exclude. This could be a consequence of the stringent thresholds which MAS5.0 

assigns internally as part of the normalisation process for a particular probe which determines 

whether they are present or absent (versus the mismatch controls).

1.3.5: Data analysis - normalisation

Microarray chip normalisation can be a daunting process due to the multitude of procedures in 

which it can be achieved. As previously introduced, inherent to the Affymetrix system, to 

minimize mis- and cross-hybridisation problems, the technology includes perfect match (PM) and 

mismatch (MM) probe pairs as well as multiple probes per gene (Lim et al, 2007) [31]. 

Consequently to obtain a single signal intensity result for each probe, many calculations are 

required before an absolute expression level for a specific gene is produced. Such data pre

processing steps which combine multiple probe signals into a single value is known as 

normalisation. They usually involve three steps: (a) background adjustment, (b) normalization 

and (c) summarisation. In a recent review by Lim et al, four popular normalisation methods were 

compared -  namely MAS5, RMA, GCRMA and Li-Wong (Lim et al, 2007) [31]. These are 

summarised in table 1.2.

Algorithm [Reference] Background correction Normalisation Summarisation
MAS5.0
(Hubbell et al, 2002)[32]

Ideal MM subtraction Constant Tukey biweight

RMA
(Irizarry et al, 2003) [33]

Signal and noise close- 
form transformation

Quantile Median polish

GCRMA
(Wu et al, 2004) [34]

Optical noise, probe 
affinity and MM 
adjustment

Quantile Median polish

Li-Wong
(Wong et al, 2001)[351

None Invariant set Multiplicative 
model fitting

Table 1.2 -  Summary of four popular normalisation procedures showing how each differs in the 
way background correction, normalisation and summary of an individual chip is calculated. 
MM=Mismatch (Lim et al, 2007) [31]

Depending upon which measure and comparison is made each method has its advantages. 

However, the RMA and Li-Wong methods tend to produce similar results, with MAS5.0 and
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GCRMA exhibiting the largest difference overall in performance. However GCRMA has raised 

concerns when assessing correlation artefacts where it performs poorly in comparison to the other 

techniques available. This is particularly concerning if subsequent analysis methods which rely 

on an accurate measure of gene-pair expression profile correlation are to be used such as the 

clustering technique hierarchical clustering. It is thought the way in which GCRMA handles 

background correction is thought to affect its performance and therefore a flaw in the technique 

in comparison to RMA, for example. Furthermore, in relation to producing false positives, the 

GCRMA technique appears to introduce a high number in comparison to the MAS5.0 method 

which performs well in this regard. Consequently it could be argued that studies using the 

GCRMA could potentially have flawed results (Lim et al, 2007) [31].

Further normalisation of a different type also takes place when arrays are compared with each 

other to address a particular experimental hypothesis. Although transformation procedures are 

recommended to be kept to a minimum to preserve originality o f the data distribution, log (base 

2) transformation is performed initially. Also, for hierarchical clustering, gene median centering 

followed by sample median centering is also performed to align data before clustering (Eisen et 

al, 1998) [36].

1.3.6 Statistical testing: Differential gene expression

Following from normalisation (and any filtering based on PMA call), it is important to determine 

if there are any significant gene expression differences present within the data (“feature 

selection”). Robust identification of significant gene changes will allow subsequent pattern 

analysis to reveal potential signatures of interest. Once a feasible number of genes are generated, 

identification of individual genes known to play key biological roles in a resistance versus 

response environment, for example, could be identified within clusters and could potentially 

become therapeutic targets. Initial identification of significant differences can be assessed in a 

multitude of statistical ways. The motivation of such a step is to filter and discard genes which 

are unchanged between two different samples. The significant subsets of genes which remain are 

taken further for subsequent detailed pattern discovery.
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Since microarray analysis became routine, assessing which genes are differentially expressed has 

been performed in a number of ways. Detection of differences between two groups can be 

determined using the well established and widely used parametric t-test, analysis of variance 

(ANOVA) and the well known nonparametric Wilcoxon rank sum statistical tests (Thomas et al, 

2001) [37]. ANOVA is often used in microarray analysis due to the ability o f coping more than 

two independent groups. However due to the nature of microarray experiments and the data 

generated, caution should be used when applying such classical statistical tests. There are three 

main reasons for caution.

Firstly, the t-test assumes a normal distribution of the data and a constant variance for all genes 

across all samples compared using the microarray. Given the very nature of what is trying to be 

achieved with a microarray experiment, such assumptions are inappropriate for a subset of genes 

despite any given transformation (Thomas et al, 2001) [37]. Secondly, the tests are not able to 

take advantage of the genomic data when correcting for heterogeneity between samples (Thomas 

et al, 2001) [37]. Finally, as a result of multiple comparisons testing, a phenomenon called the 

‘false discovery rate (FDR)’ must be taken into account for accurate results. For example, if a 

typical p-value threshold of 0.05 was used to determine differential expression for individual 

genes between two groups, there would be 50 false positives for every 1000 genes under 

examination, even though none of these genes are differentially expressed in reality (Thomas et 

al, 2001) [37]. However more recent approaches tailored specifically to the nature of microarray 

data have been developed -  namely significant analysis of microarray (SAM).

SAM is a statistical technique for finding significant genes within a set o f microarray 

experiments, as proposed by Tusher, Tibshirani and Chu (Tusher et al, 2001) [38]. The input to 

SAM is gene expression measurements from a set of microarray experiments and their parallel 

grouping (for example anti-hormone response or resistance; treatment groups). It has the ability 

to be able to analyse a multiclass grouping (e.g: breast cancer: different treatment arms). SAM 

computes a statistic (di) for each gene (/), measuring the strength of the relationship between 

gene expression and the response variable (Tusher et al, 2001) [38]. It uses repeated permutations 

of the data to determine if the expression of any genes is significantly related to the response 

grouping. The point chosen for significance is determined by a tuning parameter delta, chosen by
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the user based on the false discovery rate (FDR). The system can be optimised resulting in only 

10% of those genes revealed potentially being false positives which is an accepted level of 

confidence of the data.

There is a compromise between what needs to be included and how well a particular algorithm 

can perform statistically. Indeed, traditional statistical analysis methods were not designed for 

analysing large bodies of microarray data (20,000 genes, multiple replicates, and multiple 

treatment arms). A typical example is pulling out significant genes using t-tests or using ANOVA 

where the simple p-value is not representative of the true false discovery rate: the more genes 

there are to analyse, the greater number of statistical tests need to be applied and hence the 

greater chance of false positives. Existing software such as Genesifter or more recently 

Array2BIO can be used to address the false positive discovery rate (FDR) alongside such 

statistical testing, through performing a post hoc test using either Bonferonni or Benjamini- 

Hoechberg tests (Loots et al, 2006) [39]. However, with some datasets these approaches can be 

very ruthless (Reimers et al, 2005) [40]. Considering the FDR issue and addressing this 

aggressively is clearly potentially problematic in that fewer gene hits are obtained, with the 

potential of key genes being lost in the FDR correction calculations. However if FDR is not 

considered, inaccurate predictions maybe made, and this could necessitate potentially excessive 

subsequent PCR verification. Such issues become particularly relevant as the dataset involves 

more complex multiple arm comparisons in terms of treatments and disease progression. For 

example, the power of the panel of MCF-7-derived resistant and responsive model systems 

studied by the Tenovus group is in being able to use them as a complex comparative set. Clearly 

it is important how array technology is utilised and care taken during analysis to prevent loss of 

valuable information at each stage. Therefore adoption of a refined and optimised array strategy 

is essential. Implementation of significant analysis of microarrays aims to therefore to better 

achieve a balance between overestimation and significance (Tusher et al, 2001) [38].

1.3.7 Class discovery

Following assessment of which genes are differentially expressed, molecular profiling of breast 

cancers by gene expression microarrays to discover dominant patterns of expression can be
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performed by either unsupervised or supervised analysis. Unsupervised analysis refers to 

methods such as hierarchical clustering analysis for partitioning samples into groups or classes on 

the basis of gene expression profiles, regardless of other features (Quackenbush et al, 2001) [41]. 

In this approach, the goal is to determine whether discrete subsets can be defined on the basis of 

gene expression profiles and to identify new classes (class discovery) that may ultimately have 

clinical significance and therefore to develop a new molecular classification. Supervised analysis, 

in the breast cancer scenario, requires samples to be allocated to specific groups based on clinical 

or pathological features in the case o f patient material, or for example response versus resistant 

models in vitro. There are two main subtypes of supervised analysis: class comparison and class 

prediction which aims to explain the relationships present within the data set. Array analysis aims 

to identify transcriptomic differences between classes of samples, which differs to supervised 

analysis where a genetic signature (according to the feature groupings) can potentially be 

achieved (Reis-Filho et al, 2006) [42].

From a microarray perspective, class discovery within a dataset is closely related to differential 

gene expression -  both are synergistic. Thus, once a set of differentially expressed genes has been 

revealed, it is possible to generate individual gene profiles, or to identify which genes behave 

similarly or differently across the samples which is the class discovery element. Identified close 

expression associations between individual genes (clusters) will highlight genes which are 

trasncriptionally co-regulated and could potentially form a “pathway unit”, overlapping via some 

of the cluster elements with known pathways or in other instances forming novel networks. 

Although there are many types of clustering techniques, there are five main approaches which 

differ from each other which can be used to generate robust clusters (and thus prioritise potential 

targets) within a dataset.

There are many different ways in which clustering can be performed in microarray analysis. In 

this section four clustering techniques will be outlined which includes a relatively new approach 

-  ‘Fuzzy’ clustering to be applied to microarray data.

20



1.3.7.1 H ierarchical clustering

Hierarchical clustering (HCA) is one of the most widely used forms of clustering which usually 

uses Euclidean distance to identify associates between individual genes which is represented in a 

parent/child tree representation (Kaufman et al, 1990) [43]. Many landmark studies have been 

performed purely dependent upon HCA results, in regard to breast cancer signatures. In general, 

its reliability varies when used for large gene sets, largely due to the time needed to calculate 

distances between all the genes. Comparison with other clustering techniques is important to 

check its performance with a particular dataset. Consequently, HCA is usually performed after all 

genes which show no significant change have been removed by significant gene analysis 

processes such as SAM. Often results of HCA are visualised using a heatmap, an example of 

which is shown in Figure 1.4.
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Figure 1.4: Example of a heat m ap plotted using a hierarchical clustering algorithm  showing 
clustering for sample (columns) and probe sets (rows).
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1.3.7.2 K- Means

K-Means is a partition clustering technique. Such clustering differs in that the user specifies the 

number of clusters to divide the genes into, with the computer randomly in the first instance but 

then assigns genes to clusters according to a particular similarity measurement with the cluster 

centroid (Hartigan et al, 1979) [44]. To determine the number of clusters, hierarchical clustering 

is usually performed before K-Means analysis. K-means is an iterative method which minimizes 

the within-class sum of squares for a given number of clusters. The algorithm starts with an initial 

estimate for the cluster centres, and each gene observation is placed in the cluster to which it is 

closest as measured by Euclidean distance. The cluster centres are then updated, and the entire 

process is repeated until the cluster centres no longer move (Du et al, 2008) [45]. An example of 

how K-means can be visualised is shown in Figure 1.5. A report of which clusters particular 

genes have been assigned can be obtained from the clustering algorithm.
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Figure 1.5: K-means algorithm  applied to a random ly generated dataset -  the * indicates centroid 
locations when specifying two clusters using *R \
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1.3.7.3 Partitioning A round Medoids (PAM)

Partitioning around medoids is similar to K-means, however is considered more robust because it 

admits the use of other dissimilarities besides Euclidean distance (Bozinov et al, 2002) [46]. An 

example is shown in figure 1.6. Partitioning around medoids was developed by Kaufman and 

Rousseeuw in 1990. For a specified number of clusters K, the PAM procedure is based on the 

search for K representative objects, or medoids, among the observations to be clustered. After 

finding a set of K medoids, K clusters are constructed by assigning each observation to the 

nearest medoid (Bozinov et al, 2002). The goal is to find K medoids, M, which minimise the sum 

of the distances of the observations to their closest medoid. Rousseeuw suggested a graphical 

display, the silhouette plot, which can be used to select the number of clusters and assess how 

well individual observations are clustered. Intuitively, objects with large silhouette width are well 

clustered; those with a small width tend to lie between clusters.
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Figure 1.6: An example of PAM using a dataset o f 100 Affymetrix probes split into seven clusters.
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1.3.7.4 Self Organising Maps (SOM)

Self-organising maps is an unsupervised learning technique (Kohonen et al, 2000) [47]. The 

model was first described as an artificial neural network by the Finnish professor Teuvo 

Kohonen, and is sometimes called a Kohonen map (Kohonen et al, 2000) [47]. SOM performs 

well for in its ability to map and visualize multi-dimensional data in two dimensions. It is of 

particular power to reveal common profiles of down or up regulation in microarray data sets. This 

makes SOM useful for visualizing low-dimensional views of high-dimensional data, akin to 

multidimensional scaling. Typical results of SOM perfomed in the statistical programming 

environment ‘R' can be seen in figure 1.7

o

o

T

0 1 2  3

Figure 1.7: Self organising m aps using ‘R ’ based on an example yeast dataset showing 15 different 
distinct profiles and associated num ber within each profile

1.3.7.5 Fanny (Fuzzy Clustering)

Fuzzy clustering is performed by the Fanny algorithm in the statistical programming language 

‘R’, where each observation can have partial membership in each cluster (Kaufman et al, 1990) 

[43]. Consequently, each observation has a vector which gives the partial membership to each of 

the clusters. A so called ‘hard’ cluster can be produced by assigning each observation to the
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cluster where it has the highest membership. The technique was originally introduced by Jim 

Bezdek in the early 1980’s who strived to improve clustering techniques in general. Fuzzy 

clustering provides a method that shows how to group data points that populate some 

multidimensional space into a specific number of different clusters (Hathaway et al, 2001) [48]. 

An example of this is shown in figure 1.8.
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Figure 1.8: Using Fuzzy clustering algorithm  in ‘R ’ with a cluster level o f 7 clusters 

1.3.8: C lass  p re d ic tio n

Class prediction differs from class discovery in that it places new samples into previously defined 

classes. This differs to class discovery which is focused more upon discovering new groups 

within a dataset and dividing the samples accordingly (Rogers et al, 2005) [49]. Class prediction 

can either be performed ontologically using online tools which will map a particular uploaded list 

of genes into their respective ontological categories, or it can be performed using more advanced 

statistical approaches. Class prediction is well suited to cancer biology. Classifiers can be built 

which may reliably indicate subtype or expected progression of a particular cancer, for example. 

This ultimately would have important clinical consequences. For example, in breast cancer,
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tumours can range from relatively inactive to aggressive, microarray technology could be used to 

predict where, based on such a range, a particular sample resides. Therefore such a classifier 

could be used to avoid unnecessary treatment which itself could have greater consequences for 

the patient (Rogers et al, 2005) [49]. Class prediction using computer predictive models, is 

described in detail in Chapter 5 due to the significance it can potentially offer to cancer research.

1.3.8.1 Principal components analysis and correspondence analysis

Principal components analysis (PCA) and correspondents analysis (CoA) can be used to reduce 

the dimensionality of the data in order to simplify subsequent microarray analysis steps and allow 

for summarization o f the data in a visual manner (Wang et al, 2005) [50]. This approach is more 

effective on smaller gene sets; however it can also be used as a further filter after significant gene 

analysis generated from SAM (Yu et al, 2008) [51]. Both techniques can be used to visualise 

cohorts o f significantly differentially expressed genes. A typical initial step after SAM could be 

independently revealing groups visualised by PCA and then using these groups for classification 

which will produce a minimum gene list.

Selections in terms of gene groups for PCA or CoA are currently made by the user and 

consequently more susceptible to selection variation according to which user was making the 

choices -  the human error factor. However, if such a selection could be performed intelligently 

by the computer, the chances of variation would be lower as the computer would be more 

consistent in terms of the rules it applies to a particular decision, due to the absence of human 

intervention being required. Adopting approaches where the number of groupings in the data is 

chosen automatically and confirmed with statistics will be desirable in reinforcing results 

obtained using high throughput analysis.

1.3.8.2 Multidimensional scaling

Multidimensional scaling (MDS) is a set of data analysis techniques that visualises the structure 

of distance matrices as a geometrical picture. The technique is similar to principal components 

analysis. MDS pictures the structure of a set of objects from data that approximate the distances
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between pairs of the objects which could correspond to difference genes from a microarray 

experiment. Each object or event is represented by a point in a multidimensional space (Rencher 

et al, 2003) [52]. The points are arranged in this space so that the distances between pairs of 

points have the strongest possible relation to the similarities among the pairs of objects -  such as 

genes which could have an underlying functional relationship (Rencher et al, 2003) [52]. Two 

similar objects are represented by two points that are close together, and two dissimilar objects 

are represented by two points that are far apart. The space can either be two or three-dimensional 

Euclidean space, although other distance matrices can be used. MDS is a generic term that 

includes many different specific types. These types can be classified according to whether the 

similarities data are qualitative (called non-metric MDS) or quantitative (metric MDS) (Rencher 

et al, 2003) [52].

Non-m«tric MDS in 2D Non-metric MDS in 3D

Figure 1.9: An example of how a non-m etric M ultidim ensional scaling example can be plotted in 
two and three dimensions (M athw orks Inc, 1994-2009) [53].

1.3.9: Class prediction using ontological resources

Ontology is associated with both class prediction and class discovery as initially both processes 

are driven by candidate gene lists in respect to microarray data. For example, when clustering is 

performed, it may be of interest to assess where known land mark genes are located and which 

other genes cluster closely to these known genes. As unknown genes fall into categories close to 

those which are known, similar ontology could potentially be applied in databases for these
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previously undefined genes. Annotation steps have incorporated a mine field of online databases 

for many years. Typical non-commercial online resources include DAVID (Dennis et al, 2003) 

[54], FATIGO (Al-Shahrour et al, 2007) [55], NetAffy (Oeder et al, 2007) [56], Biocarta 

(Mlecnik et al, 2005) [57], Ensembl (Joshua et al, 2008) [58], GenMAPP and MAPPfinder 

(Dhalquist et al, 2004) [59], Pubmed (NCBI, 1988) [60], Genecard (Weizmann Institute of 

Science, 2008) [61] and Chilibot (Chen et al, 2004) [62]. In Addition, packages such as 

Genesifter, and also DMT from Affymetrix, are available with some ontological capabilities 

(Wang et al, 2006) [63]. Full ontological searching requires the user to visit and integrate data 

from all o f these sites.

1.3.9.1 Database, Annotation, Visualisation and Integrated Discovery (DAVID) resource

In October 2004, the National Institute of Allergy and Infectious Diseases launched (DAVID) 

launched an online tool building on the success of their EASE annotation tool (Dennis et al, 

2003) [54]. The original motivation for this tool was to address the need to bring together 

multiple database sources of annotation into a single tool. The original version of EASE was 

available both online and as a standalone application (Korenberg et al, 2007) [64]. The local 

application had the key advantage of the user creating custom annotation files. Documentation 

for EASE outlined the accepted format for the structure of a custom annotation file. The 

application could then use this file and integrate information against a dataset being analysed 

along with other ontological information already stored in the application. However one of the 

key problems was the difficulty in creating such files.

Recent versions of the application have moved to an online version of the application. The 

functional annotation tool, which can be interrogated according to Affymetrix Probe ID, has the 

benefits of frequent updates whenever the individual databases are changed or new databases are 

added. This marked a step forward in reliability as new text files were required to be downloaded 

when updates became available for the original application -  EASE. The new online annotation 

tool offered together with other tools through DAVID, addresses a key limitation of EASE by 

introducing a new graphical interface complete with graphical pathway information. Typical 

screen captures showing screen layout of DAVID is shown in figure 1.10.
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Figure 1.10: DAVID Functional Analysis Online Ontology search tool. Affymetrix GenelD input can 
be observed to the left o f the figure.

1.3.9.2 Babelomics

Babelomics is a suite of web tools for functional annotation and analysis of groups of genes from 

high-throughput technologies, such as microarray analysis. Named after the tale outlined in the 

book, ‘The Babel library’, by the famous Argentinean writer Jorge Lufs Borges, which outlines 

that finding a real book among a pile of meaningless texts is an excellent metaphor for the 

challenge that constitutes the extraction of information from the masses of data which exists in 

the postgenomic era (Al-Shahrour et al, 2008) [65]. What is real and what is simply an 

association by chance is a very significant issue when classifying genomic data.

Babelomics was developed in Madrid, Spain at the Centro Nacional de Investigaciones 

Oncologicas (CNIO). It provides five different tools upon which uploaded gene list analyses can 

be performed.
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The first tool is FatiGO+, which can be used to test unequal distribution o f functional terms 

between two groups of genes from a variety of source including Go ontology, KEGG pathway 

information (Frohlich et al, 2008) [66] and Swiss-Prot information (Bairoch et al, 1998) [67].

The second tool is TransFAT which is an extension of FatiGO to detect under or over

representation of putative transcription factors binding sites (TFBSs) in sets of genes, by 

comparing them against a cluster of co-expressing genes in comparison to the rest of the genes in 

the analysis (Al-Shahrour et al, 2008)[65].

The third tool is the Tissue Mining Tool (TMT). This is particularly interesting for cancer 

biology in that it extracts significant information related to the differential expression of two sets 

of genes in particular tissues (Al-Shahrour et al, 2008) [65].

The fourth tool is GenomeGO. This tool can be used to assess chromosomal distribution at a 

functional level o f a particular gene list. If a particular alteration is found in a chromosome 

region, the functions of the genes therein can be studied (Al-Shahrour et al, 2008) [65].

The final tool is FatScan which allows study of correspondences between phenotypes and 

molecular roles of genes by analysing ordered lists of genes supplied to the tool. Due to the 

wealth of information available from different high throughput technologies, this tool can be used 

to obtain lists o f genes ordered according to their different behaviours under different 

experimental conditions corresponding to different phenotypes (Al-Shahrour et al, 2008) [65]. 

This tool could be useful where low numbers of highly significant genes were generated from a 

particular analysis.

Figure 1.11 displays the entrance page to the collection of tools which enable navigation to the 

Babelomics online software suite.
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(A l-Shahrour et al, 2008) [65].

1.3.10. The limitations of existing microarray analysis software -  a brief review

G iven the d ifferent array platform s and biom edical analysis technologies w hich exist, m any 

different softw are packages are available to the cancer research com m unity for data analysis. It is 

therefore useful to  review  w hat established applications are w idely used. A lthough there are 

many com m ercial packages available the em phasis and pricing structure o f  such packages has 

historically been targeted at m ajor pharm aceutical com panies and is beyond the scope o f  m ost 

academ ic research groups. C onsequently  the review  focused on a m ixture o f  applications 

currently used by T enovus and also alternatives developed w ithin the research com m unity.

Table 1.3 highlights a sum m ary o f  how  each softw are application review ed com pares. It should 

be rem em bered that A ffym etrix M A S5.0 differs to the o ther application outlined in Table 1.3 in 

that is prim arily used to norm alise raw  data from  A ffym etrix  scanner to allow  analysis.
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The commercial microarray analysis packages GeneSifter™ from VizXLabs® (Vizxlabs, 1997- 

2008) [68] and Data Mining Tool (DMT) from Affymetrix® (Affymetrix, 2008) [69] provide user 

friendly approaches for analysis, there are cost issues and moreover further limitations including 

statistical analysis functionality. The software review has clearly shown that broader functionality 

routine within commercial systems is also available through open source applications such as 

BRBArrayTools (Simon et al, 2008) [70] from National Cancer Institue and dChip (Cheng et al,

2003) [71], from Harvard University, USA. A key aspect which has allowed such broad 

flexibility on an open source basis can undoubtedly, in many cases, be attributed to the 

development of the Bioconductor analysis library (Bioconductor Core, 2002) [72] written using a 

statistical programming environment called ‘R’ (Dessau et al, 2008) [73]. These algorithms 

confer advanced statistical capabilities as needed for robust high-throughput analysis.

The BRBArrayTools suite is one of the few applications exploiting the linking ability of Excel to 

a statistical programming environment called ‘R’ as shown in figure 1.12 and figure 1.13. 

However, as summarised in table 1.3, all the tools perform general array analysis aspects 

relatively effectively, however some aspects of implementation are inconsistent. It was clear from 

the review that there was a need for researchers who are aiming to reveal new targets and markers 

to have access to software with additional graphical functionality including more advanced 

pattern analysis methods than seen in BRBArrayTools. However, seamless implementation of 

analysis tools into Excel as seen in BRBArrayTools is a desirable quality when considering ease 

of use by the researcher. Overall, it is clear from the evaluation that there remains a need to 

improve upon the software currently offered to facilitate prognostic marker and new target 

discovery, as applied to in vitro experimental material and also potentially applicable to clinical 

datasets.
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Application Functionality Advantages Disadvantages
Affymetrix® 

Microarray Analysis 
Suite 5.0 (MAS5.0) 
(Affymetrix, 2001- 

2008) [26]

- Raw data 
processing
- Fold change 
estimates

- One click ease of 
use

- ‘Black box’ 
methodologies 
unclear
- Costly
- Poor statistical 
capability

Affymetrix® Data 
Mining Tool 
(DMT2.0) 

(Affymetrix, 2001 - 
2008) [69]

- t-test
- Kruskal-Wallis
- Wilcoxon

- Familiar design to 
MAS5.0
- Links to NetAffy 
for ontology

- Signal:Noise issues
- Very slow
- No advanced 
statistical capability
- Costly

Genesifter™ 
(Vizxlabs, 1997- 

2008)[68]

- Raw data 
processing
- t-test, ANOVA
- PAM & K-Means 
Wilcoxon test 
-HCA

- Relatively easy to 
use
- Basic ontological 
capability

- Limited clustering
- Expensive (same 
capabilities in open 
source software)
- No advanced 
statistical capability

BRB Array Tools 
(Simon et al, 2008) 

[70]

- Raw data 
processing
- t-test 
-SAM
- HCA, MDS 
clustering
- Basic ontology

- Free to academic 
community
- Good interface
- Excel add-in
- Quick
- Uses Bioconductor 
R-module library

- Glitches during 
operation
- Inconsistent results
- Limited pattern 
analysis

Bioconductor 
(Bioconductor Core, 

2002) [72]

- ‘R’ scripting basis
- Comprehensive 
array analysis 
strategies available

- Cutting edge 
statistics
- Fast
- Extremely versatile
- Free

- Difficult to 
command for 
inexperienced 
computer users.

dChip 
(Cheng et al, 2003) 

[71]

- Alternative to 
MAS5.0

- Improved 
Signal :Noise ratio 
handling of Affy data

- Limited in 
functionality
- Lack of advanced 
statistical methods

Table 1.3: Comparisons of popular microarray software -  ranging from raw image processing and 
analysis
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Figure 1.12: BRB A rray  tool screen shot showing MAS5.0 output in Microsoft Excel form at. Red
box highlights the analysis choices which the application offers within Excel.
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1.4 Application of High-throughput Technologies to determine Gene 

Signatures Predictive of Prognosis and Response in Breast Cancer

Microarrays are proving increasingly useful for gene expression profiling in many disease states, 

especially cancer. Two of the applications for microarrays in breast cancer that are proving 

important in the context of determining new prognostic indices and therapeutic targets are: (i) to 

use class discovery techniques in arrayed clinical datasets to classify and make predictions, which 

are revealing previously unrecognised prognostic subtypes in breast cancer extending to their 

relationship with clinical response and (ii) to cell models, to further understand treatment 

responses and to reveal factors driving failure.

1.4.1 Class discovery applied to clinical breast cancer

The power o f the class discovery approach for breast cancer research was first demonstrated by 

Perou et al. from the Stanford University research group (Perou et al, 2000) [11]. The study 

showed that breast cancer could be classified into distinct groups based upon their gene 

expression profiles and their similarity to the normal cell equivalents (Perou et al, 2000) [11]. 

Using hierarchical clustering methods and an ‘intrinsic gene set’, the study classified breast 

cancer into four ‘molecular’ classes. Apart from the intuitive separation o f breast cancers into 

ooestrogen receptor ER+ and ER- disease (the two main clusters), additional smaller secondary 

clusters had also been identified. It was shown that the ER+ group is characterized by higher 

expression o f a panel of genes that are typically expressed by breast luminal epithelial cells 

(‘luminal’ cancer). The ER negative group encompassed three subgroups of tumours: one over

expressing erbB2 (HER2); one expressing genes characteristic of basal phenotype and another 

with a gene expression profile similar to normal breast tissue which consistently clustered 

together with normal breast samples and fibroadenomas.

Subsequent array studies from this group and others have been able to reproduce the key 

molecularly-defined groups revealed by Perou et al (Perou et al, 2000) [11], although there is 

some variation with select subsets. Thus, the sub classification of luminal tumours has ranged
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from a single group to up to three (A-C) groups. Also, ‘normal breast-like’ cancers have appeared 

similar to the ER- cluster in most (Sorlie et al, 2001) [74] but not all studies, such as that from 

Caza et al (Calza et al, 2006) [75]. Reverse transcription-polymerase chain reaction (RT-PCR) 

has been invaluable in verification o f selected genes (Mullins et al, 2007) [76] and also 

immunohistochemistry o f tissue sections to assess protein biomarker expression (Makretsov et al,

2004) [77]. These have been able to verify the key luminal, HER2 and Basal molecular 

classification previously determined by array studies. A brief overview o f key examples is 

outlined in table 1.4.

The significance o f the molecular ‘taxonomy’ as discussed by Rakha et al (Rakha et al, 2008) [3] 

can be divided into two parts:

(i) The clinical behaviour o f each molecular grouping differ, even though the 

classification system was not developed to predict outcomes

(ii) Genes revealed, or their protein products, could potentially be developed as 

therapeutic targets as well as diagnostic tools.

Although studies have demonstrated that the oestrogen receptor, oestrogen receptor-related genes 

and HER2 are important biological drivers for some of the individual subclasses that they define, 

the difference between these classes could not be based on single genes or a specific pathway, but 

on a bank of several groups o f genes forming a signature o f each class. A study by Charafe- 

Jauffret et al. (Charafe-Jauffret et al, 2006) [78] identified a set o f 1233 genes that differentially 

expressed between basal-like and luminal samples. As such to date, no single gene can be used to 

identify these classes reliably. Although ER expression is a key factor in these classifications, 

both ER+ and ER- samples display heterogeneous expression profiles, with the identification of 

at least two or three subgroups in each category with different behaviour and outcome. These 

novel molecular subtypes can thus be thought o f as being defined by expression of a collection of 

genes and their associated pathways. A lot of study remains in evaluation of potential new 

therapeutic targets from within the multi-gene signatures of these sub-types, an avenue which 

remains important since not surprisingly, not all ER+ tumours or HER2+ tumours respond to 

anti-hormones or Herceptin respectively.
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Study No.
Tumours

Gene set 
(total)

No. of classes Name, no (%) of different 
molecular classes

cDNA microarrays
Perou et a!, 2007

[in
65 496 (8102) 4 Luminal, 36(58) 

HER2, 7(11) 
Basal-like, 8(13) 
Normal, 11 (18)

Sorlie et al, 2001 

[74]

78 456 (8102) 6 Luminal A, 32 (58) 
Luminal B, 5 (6) 
Luminal C, 10(12) 
HER2, 11 (13) 
Basal-like, 14(16) 
Normal, 13(15)

Sorlie et al, 2003 

[79]

115 534 (8102) 5 Luminal A, 28 (36) 
Luminal B, 11 (14) 
HER2, 11 (14) 
Basal-like, 19(24) 
Normal, 9(12)
(37 unclassified)

Sotirou et al., 2003 [80] Luminal (classes 1-3) etc
RT-PCR
Perreard et al. 2006 [81] 117 53 genes 4 Luminal 

HER2 
Basal-like 
Normal Breast-like

Chanrion et al, 2007 
[82]

199 47 genes 12 12 subgroups corresponding to the 
Luminal A/B,
Normal Breast-like,
HER2 and Basal like subsets

Mullins et al, 2007 

[76]

124 40 genes 4 Luminal
HER2
Basal-like tumour 
Normal Breast-like

Immunohistochemistry
El-Rehim et al, 2005 

[83]

1076 25 proteins 6 Luminal-1,336 (31%) 
Luminal-2, 180(17%) 
HER2, 234 (22%) 
Group 4, 4 (0.4%) 
Basal-like, 183(17%) 
Luminal-3, 139(13%)

Korsching et al, 2002 
[84]

166 15 proteins 3 HER2 over expressing 
Basal like (CK5/6)a 
ER/P%R+

Diallo-Danebrock et al,

2007

[85]

236 34 proteins 5 Using 24 of the 34:
Luminal A, 61 (27%)
Luminal B, 28 (12%)
HER2, 48 (21%)
Basal-like, 29(13%)
‘Multi m arker-ve’, 63 (27%) 
characterised by absence of 
specifying markers.

Table 1.4 -  Summary of molecular classes verified using different techniques as summarised by Rahka et al
(Rakha et al, 2008) [3]
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Most of the discriminator genes appear to be involved in cell cycle regulation, cell signalling, cell 

proliferation, hormone receptors and oncogenic pathways. Table 1.5 shows frequency and some 

of the genes associated with the different molecular classes o f breast cancer described to date, 

where some may have targeting potential or for example, EGFR, a feature o f a proportion o f 

basal cancers, is actively being explored as a therapeutic target in the clinic, where treatments for 

this group are much-needed since tailored therapies are lacking (Feng et al, 2007) [9].

As discovery o f the genes and pathways associated with classes o f breast cancer continues, it is 

likely that further clinical sub stratification will occur. For example, the existence of a molecular 

‘apocrine’ breast cancer subtype with increased androgen signalling and frequent HER2 

amplification has been reported (Farmer et al, 2005) [86], while another classification based on 

the gene signatures o f RAS and other deregulated pathways has also been described (Bild et al, 

2006) [87].

Breast cancer molecular 

class

% clinical disease Gene features that could theoretically 

contribute to prognostic behaviour

Oestrogen receptor +ve 
Luminal A Tumours

19-39% Highest expression of ER and ER related 
genes representing best prognosis

Oestrogen receptor +ve 
Luminal B Tumours

10-23% Compared to luminal A may have a higher 
proliferation rate, certain genes shared with 
basal-like and HER2 subtypes -  less 
favourable outcome.

Oestrogen receptor -ve 
Basal like

16-37% Genes previously identified to be 
characteristic of basal cells such as CK5, 
integrin 4, EGFR, NF-kB -  includes patients 
with BRCA1 mutations, poor prognosis and 
lack of response to hormonal therapy.

HER2+ 4-10% High levels of genes on HER2 amplicon 
(17q 11) including HER2, GRB7, GATA4, 
high levels p53 mutation, poor prognosis and 
lack of response to hormonal therapy

Normal Breast-like >10% High expression of basal epithelium genes, 
low expression of luminal epothelial genes. 
Better prognosis than most basal tumours. 
No responsive to neoadjuvant chemotherapy 
as those which are ER-

Table 1.5: Overview of molecular classes and associated genetic signature (Rakha et al, 2008)[3]
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As indicated in table 1.5, some studies (Rakha et al, 2008) [3] have reported that the best 

prognosis is associated with patients with luminal (ER+) tumours, and specifically those of 

luminal-A (or luminal “ 1) subtype, with the worst prognosis in HER2 and basal-like (mainly ER-) 

tumours. However, several further points o f clinical importance should be mentioned:

(i) The ER+ tumours are clearly not a single entity and one subclass (luminal-B) is

reported to show a poor outcome, comparable to the ER- basal-like and HER2 sub- 

types

(ii) Tumours which lack ER , progesterone receptor and HER2 expression (a triple

negative phenotype), which are currently difficult to treat, can again be further

classified into at least two distinct types, namely basal like and normal breast-like

groups, each with a distinct molecular signature and behaviour

(iii) Most basal-like and HER2 tumours have poor prognostic features as defined by 

routine pathology methods (e.g. lymph node positive), which could have important 

implications for outcome and clinical management. However, as a consequence of 

variation in methodology and defining criteria for each class, while some studies have 

reported a worse prognosis for the basal-like tumours, this is not always a general 

consensus (Fulford et al, 2007) [88].

It remains to be determined whether expression arrays provide any additional information to 

adequate histological grading and simple growth fraction (e.g. Ki67 marker) indices. Data on 

comparisons between microarray sub classification of luminal breast cancers and the stratification 

obtained by means o f grade, Ki67, and HER2 (FISH/IHC) expression are few and far between. 

However, it can already be seen that the frequency of the HER2+ class (4-10%) is somewhat 

lower than the percentage o f HER2 amplification and over expression (20-25%) as monitored by 

FISH and IHC respectively in human breast cancers (Slamon et al, 1987) [6]. This low incidence 

of representation of the HER2 class in gene profiling studies may in part be due to differences in 

the criteria of positive values when compared with the present cut-off in immunohistochemistry 

(IHC). This is defined as 10% of tumour cells, (Ellis et al, 2004) [89] which may result in 

sampling bias in expression studies.
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While the HER2+ molecular subtype clusters within the ER- group, there are some ER+/HER2 

over expressing tumours. Indeed, in some studies up to 50% of patients with HER2+ tumours 

have been classified as steroid hormone receptor positive (Konecny et al, 2003) [90], and 17% of 

steroid receptor positive tumours show HER2 positivity. Significant proportion of these ER+ but 

//£/?2-expressing tumours has been shown to cluster together with other luminal B cancers. 

Furthermore, a small proportion o f ER-/H ER2+  cancers fall into the basal like cluster (Kapp et 

al, 2006) [5]. It is thus likely that the difference in the incidence of HER2 tumours between 

expression profiling and IHC studies again reflects genuine molecular heterogeneity of HER2- 

expressing tumours, and further investigation may help in further understanding the biology of 

this class and moreover in predicting response to therapies. Indeed, while HER2- overexpressing 

status can be used to select patients for Herceptin treatment which can enhance anti-tumour effect 

of chemotherapy (Dahabreh et al, 2008) [14], a study by Harris et al. showed that HER2- 

amplified cancers that express genes pertaining to the basal-like cluster at high levels 

paradoxically show a poor response to Herceptin plus Vinorelbine (Harris et al, 2007) [15]. The 

biological significance o f some of the additional sub-groups remains to be determined.

1.4.2 Prediction of breast cancer survival outcome using microarray-derived prognosis 

systems and limitations

Using microarray results to make predictions for outcome would be a very powerful and 

attractive capability in breast cancer. Although there have been many publications quoting a 

desire to get to a predictive point from microarray research, no other group have made as bold 

predictions as in a letter to Nature from The Netherlands Cancer Institute written by Laura van’t 

Veer and Stephen Friend from Rosetta Inpharmatics, USA. In early breast cancer although 

chemotherapy and antihhormonal therapy reduces the risk of distant metastases by l/3rd, 70-80% 

of patients receiving treatment would have survived without it (Van’t Veer et al, 2002) [17].

Consequently, the concept of being able to find gene expression signatures for breast cancer that 

better select patients who require adjuvant treatment was addressed by this group using 

microarrays. In total, 98 patient’s primary tumour samples were studied, amongst which 34 

developed distance metastases, 44 remained disease free after 5 years, 18 had BRCA1 germline
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mutations and 2 were BRCA2 carries (Van’t Veer et al, 2002) [17]. 78 of the patients were 

sporadic patients, less than 55 years old, lymph node negative and previously untreated. In this 

instance, cDNA Cy3/Cy5 25,000 gene microarray’s were chosen with sample material being 

prepared using 5ug o f total RNA from snap frozen tumour material upon which cRNA was 

derived. Reference cRNA was created by pooling equal amounts o f cRNA from sporadic tumour 

cDNA. As usual with the cDNA system, a dye swap/reversal microarray process was required 

which utilises two hybridisations. Chips were then scanned and normalised (in an unspecified 

way) and sample results were ‘corrected’ in such a way to ultimately reveal transcript abundance 

determination.

Between tumour and reference samples, 5000 genes were found to be differentially expressed 

based on the criteria o f a two fold change and a p-value o f less than 0.001 occurring in more than 

five tumours in the group o f 98. In an attempt to group patients and genes, unsupervised 

hierarchical clustering was then used for the 98 Tumours over the 5000 differential genes. There 

were broadly two groups initially revealed. As shown in figure 2.10 (1.3), the genes grouped 

further into those including landmarks such as ER and oestrogen regulated genes. The genes 

could also be divided into those which are enriched in tumours with lymphocytic infiltrate 

including then landmark genes associated with B and T cells (Van’t Veer et al, 2002) [17].

The 78 sporadic lymph node negative tumours were selected to search in detail for a prognostic 

signature in gene expression profiles as measured in the primary tumour. This encompassed 44 

patients who remained disease free for at least 5 years which acted as a good prognosis group, 

with the remaining 34 developing distant metastases which equated to a poor prognosis group 

(Van’t Veer et al, 2002) [17]. Subsequently, a supervised three step classification method was 

used which involved finding significantly associated genes with disease outcome, ordering 

significant genes by association and creating a ‘Prognosis classifier’ by adding significant genes 

to it sequentially (Van’t Veer et al, 2002) [17]. The results at each analysis stage were as 

follows:
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(1) Starting with the 5000 genes, Pearson correlation coefficient was calculated between 

expression values for each particular gene and prognostic outcome category. This resulted 

in 231 genes associated with disease outcome.

(2) These 231 genes were ordered by rank (using p-value). Subsets of 5 were then taken from 

this list from the top and sequentially added to create a prognosis classifier gene list. 

Power for correct classification was subsequently tested finally producing a cohort o f 70 

genes that comprised the prognostic reporter gene set (the “Amsterdam 70 gene 

signature”).

(3) Using this ‘Prognosis reporter’ gene set to calculate the average good prognosis 

expression profile, the correlation for each tumour with average profile was then 

calculated. Tumours were ranked in order by correlation and significant correlation score 

was calculated. All tumours with a correlation above a significant level had a good 

prognosis signature as show in figure 1.14.
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Figure 1.14: Unsupervised two-dim ensional cluster analysis of 98 breast tum ours from  V an’t Veer 
et al (44) showing (a) 4968 significant genes across the group; (b) selected clinical data  for the 98 
patients in various states -  BRCA1  through to m etastases; (c) Enlarged portion from  (a) showing 
genes that co-regulate with ER a  gene E SR 1 ; (d) Enlarged portion from  a containing a group of co
regulated genes which are  m olecular reflection o f extensive lymphocytic in filtrate and com prise a 
set of genes expressed in T and B cells. Black equals negative, white equal positive for figure (b). 
Intensity has been assessed in the HCA plots on an increasing scale of green to red (V an ’t V eer et 
al, 2002) [17].

The prognosis classifier using this reporter set w as validated using a subsequent test set 

com prising o f  19 young lymph node negative B reast C ancer patients, o f  w hich 7 w ere disease 

free after 5 years and 12 w hich developed m etastases w ithin 5 years. O nly 2 out o f  19 w ere 

m isclassified resulting in an apparent 89%  predictive accuracy (V an ’t V eer et al, 2002) [17].
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Sporadc treasl tumocre 
patients <66 years 
tint our stze <5 cm 

lyrnpn node negaow (LNO)

Prognosis reporter genes

Distant xetastaaes No d  stint rrenstase's
<6 years >5 years

o  10

Figure 1.15: Supervised classification on prognosis signature using (a) a prognostic repo rter; 
(b)Tum ours ordered  by prognostic classifier optim al accuracy -  those above dashed yellow line have 
good prognostic signature, those below is a poor signature; (c) Sim ilar plot as in (a) however with 
additional patients (V an ’t V eer et al, 2002) [17].

The study found than in w om en under 55 d iagnosed w ith lym ph node negative breast cancer w ith 

a poor prognosis gene signature have a 15 fold odds ratio to develop m etastases in 5 years 

com pared with good prognosis signature. It w as deem ed that the predictive value o f  the classifier 

was also superior to current clinical and histopathological factors, w ith increased pow er o f  the 

predictive M icroarray classifier dem onstrated  using m ultivariate logistic regression. The St. 

Gallen, N1H and NPI criterion w as also applied to  the V an’t V eer M icroarray classifie r group for 

patients to com pare w ith results, as outlined in table 1.6. The St G allen and N1H approaches 

clearly over predicted the num ber o f  patients w ho required treatm ent since th is w as

GOOD

44



recommended in up to 91% which would remain disease free at up to 5 years, potentially 

incurring unwanted side effects (Van’t Veer et al, 2002) [17].

f - ------------------------- Patient group --------------------------- ->
Consensus Total patient group 

(n=78)
Metastatic disease at 
5 years (n = 34)

Disease free at 5 
years (n=44)

St Gallen 64/78 (82%) 33/34 (97%) 31/44 (70%)
NIH 72/78 (92%) 32/34 (94%) 40/44 (91%)
Prognosis profile 43/78 (55%) 32/34 (91%) 12/44 (27%)
NPI (18/44 (41%)
Table 1.6: The convention consensus is a tumour >= 2cm, ER-, grade 2-:1, patient <35 years old (1
St Gallen) whereas tumour >lcm (NIH consensus). Prognosis classifier is the number of tumours 
having a poor prognostic signature using the microarray profile, defined by the optimised sensitivity 
threshold in the 70 gene classifier. NPI -  Nottingham prognostic index -  numbers of tumours with a 
poor prognostic signature in the group of disease free patients (Van’t Veer et al, 2002) [17].

The study revealed that the microarray prognostic classifier effectively selects those high risk 

patients which would benefit from adjuvant therapy but also reduces the number o f patients who 

would be recommended to receive what proves to be unnecessary treatment (27%). It also 

revealed the microarray approach was somewhat more superior to the Nottingham prognostic 

index (41%) in this regard. In addition, genes that were over expressed in tumours with the poor 

prognosis gene profile could comprise potential targets for rational development o f new cancer 

drugs.

This landmark review was published in January 2002 however the study was perceived to have 

several major flaws which other cancer groups around the world tried to address. The first main 

issue which is obvious from the review is the complete dependence on hierarchical clustering 

(HCA); where no other method was used to confirm the classifier gene set. This is problematic as 

HCA used alone is notoriously difficult to interpret. Two subsequent publications revealed issues 

with the original research which acted as a warning to others in regard to using microarray HCA 

to define a predictive set. Firstly, Gruvberger et al from Lund University Hospital in Sweden 

applied the logic shown in the Van’t Veer et al. paper, however was cautious in predicting 

clinical variables from the gene expression data as they have found that it was complicated by an 

interaction between ER-a  status and the clinical parameters studied (Gruvberger et al, 2003) 

[91]. The genes used were essentially not believed to be significant independent discriminators 

for the tumours in the study, rather they were part of the ER+ or ER- phenotypes. Consequently
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the group used a d ifferen t classification m ethod to exam ine if  the Van f  V eer ou tcom e predictor 

set w as able to predict relapse in an independent 44 lym ph node negative tum our series, but 

unfortunately  it failed to  predict w ith enough statistical confidence in th is set (G ruvberger et al, 

2003) [91]. T he m ultid im ensional scaling technique plots, as previously  introduced, can be seen 

in figure 1.16. M DS disp lays the position o f  each tum our sam ple in a th ree-dim ensional 

Euclidean space, w ith the d istance betw een the sam ples reflecting their approxim ate degree o f  

correlation.

Figure 1.16: M ultidim ensional scaling (MDS) clustering of gene expression data  from  breast 
tum ours using 58 out of 231 genes from the outcom e predic tor gene set identified by V a n ’t V eer et 
al. The study found th a t genes retained their predictive value in the data however not in the 
independent patient sam ple, (a) Fifty-eight p rim ary  breast tum ours (train ing set) from  the study by 
V an’t Veer e t al. and (b) 44 from the Swedish group a rray  study w ere plotted. T um ours with a poor 
prognosis (d istan t recurrences within 6 years) are  coloured blue and tum ours with a good prognosis 
(no recurrences w ithin a follow-up period of 5-14 years) are  in red (G ruvberger et al, 2003) [91 ].

The correlation betw een prognosis and ER status in the Van f  V eer study m ay have led to  the 

selection o f  a prognostic set that m ay not be broadly applicable to o ther breast tum our sam ples 

where no correlation betw een ER status and prognosis exists (G ruvberger et al, 2003) [91]. 

Furtherm ore the usage o f  M DS is w idely acknow ledged as a better and m ore robust classification 

method and should be considered as an advanced pattern d iscovery  m ethod, rather than 

exam ining HCA alone.

A second study published in the Lancet tried a sim ilar technique to the original Van f  V eer study, 

but in this instance used the A ffym etrix  platform  rather than CyJ/CyJ array system . T he study 

identified aggregate patterns o f  gene expression, “m etagenes” (=clusters), w hich associated w ith 

lymph node status and recurrence. These w ere capable o f  p redicting outcom es in individual 

patients at up to 90%  accuracy. W hile som e o f  the m inor m etagenes included 17 out o f  the 70
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genes used in the Van t ’Veer predictor set, none o f them appeared in their key ‘metagenes’ that 

related to recurrence (Huang et al, 2003) [92].

All three papers show that multiple factors are involved to determine a robust, effective 

predictive set, encompassing analysis strategy and also the microarray conditions. The reviews 

have been useful to show that more specialised classification methods need to be considered 

rather than simply hierarchical cluster analysis as heavily focused upon in the Van’t Veer study. 

The power of more advanced clustering methods such as multidimensional scaling and even 

machine learning/neural network clustering methods may be needed to improve cluster 

efficiency. Consequently, focusing on advanced analysis capabilities is a priority when working 

with a set o f differentially expressed genes, and should be encompassed when developing an 

improved microarray analysis suite.

Alongside the Amsterdam 70 gene signature, further groups have tried to use gene expression 

profiling to define molecular predictive signatures to build upon and trying to improve upon 

prognostic abilities commercially. There are two main multigene assays that have been verified 

and are now under evaluation in breast cancer clinical trials in this regard. These are 

MammaPrint (Netherlands Cancer Institute signature), which aims to address prediction of 

outcome and need for adjuvant chemotherapy; and polymerase chain reaction measured 

OncotypeDX. (21 -gene signature) that aims to predict relapse after tamoxifen treatment (Ross et 

al, 2008) [22]. These differ in that the starting test material is different; however both encompass 

proliferation, ER and HER2 pathway information. Each assay is undergoing different clinical 

trials. The features o f both systems are summarised in table 1.7.

Further markers and assays cover prognosis and response to therapy as summarised in figure 

1.20. One of the most well known is the Rotterdam 76 gene signature developed as a pure 

prognostic assay and most notably has no genes common with the Mamaprint or the oncotypeDX 

platform and it is based on the Affymetrix HGU-133A array platform -  it is validated for 

predicting outcome in lymph node negative patients independently o f hormone receptor status.
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Oncotype DX MammaPrint

Supplier Genomic Health, Inc Agendia
Starting material Formalin-fixed Paraffin Embed mRNA
Number o f genes 21 70
Rank o f pathways assessed by 1 Proliferation 1 Proliferation
importance 2 ER 2 ER

3 HER2 3 HER2
Current indication Node negative Node negative

ER positive ER+
ER-

Patient age recommendation Older patients Young and old patients
Outcome prediction Continuous Dichotomous
ASCO guidelines Recommended for use Under study
Clinical trial details TAILORx (“Trial Assigning MIND ACT

Individual Options for Treatment”) (“Microarray in Node Negative
Node negative, ER positive Disease may Avoid

Design: Who with intermediate risk Chemotherapy”). Node negative,
will benefit from chemotherapy? ER+, ER- 

Design: Who will have an excellent 
outcome without chemotherapy?

Table 1.7: Comparison of Oncotype DX and Mammaprint (Ross et al, 2008) [22].

The Rotterdam signature also has promise in revealing recurrence in ER+ patients treated with 

Tamoxifen (Ross et al, 2008) [22]. NuvoSelect uses a 30-gene set to predict complete response to 

preoperative paclitaxel (Taxol®), 5-fluouracil doxorubicin (Adriamycin™) and 

cyclophosphamide (TFAC) chemotherapy with a 200-gene set to predict tumor response after 5 

years of endocrine therapy. The Roche Amplichip is essentially a metabolism test -  analysing 

CYP2D6 and CYP2C19, two genes encoding key enzymes from the cytochrome P450 system that 

greatly influence drug metabolism. It is a step towards individual therapy of a patient as the result 

directly relates to the phenotype of the individual as to how well they metabolise drugs which, in 

a cancer setting ultimately has an impact on their effectiveness. Dosing of drugs such as 

Taxmoxifen can therefore be varied accordingly. A summary of these platforms is summarised in 

table 1.8.

Review of the gene lists across these multiple expression systems demonstrates little cross-over 

and has led to some debate as to reproducibility. However, a study has compared the signatures 

and has shown that despite little concordance in the precise genes identified, such signatures do 

seem able to uniformly stratify patients according to outcome, suggesting they are defining a 

common cellular phenotype (Fan et al, 2006) [93].
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Platform Rotterdam signature NuvoSelect Roche Amplichip
Company Veridex Nuevera Bioscience Roche/Merck
Platform Microarray Microarray Microarray
Type o f Platform Affymetrix HG-U133A Affymetrix HG-U 133A Roche Amplichip
Starting material Fresh Frozen Fresh Frozen Fresh Frozen
No. of genes 76 200 1 (P450)
Indication Neoadjuvant 

predictor of TFAC 
response; prediction 

of response to 
hormonal therapy

ER positive; ER 
negative; LN positive; 

LN negative

N/A

Guide to therapy Possible (Tamoxifen) Yes (neoadjuvant TFAC, 
Tamoxifen)

Yes (Tamoxifen, 
CypChip)

Table 1.8: Prognosis and response to therapy commercial assays (Ross et al, 2008) [22].

1.4.3 In vitro studies

Several groups are studying factors underlying drug response and resistance through microarray 

studies in vitro. A primary goal o f the microarray profiling in these models is to discriminate 

potential markers that can be used to develop therapies and predictive gene sets applicable to 

drug failure. For example, Tamoxifen has been shown to negatively influence more than 60 genes 

regulated by the oestrogen estradiol in the ER positive MCF-7 cell line. The gene regulation is 

mediated via ERa and reversed by estradiol. It was found that some of these genes can be used as 

markers of development of Tamoxifen resistance -  namely YWHAZ and LOC441453- which 

correlated strongly with disease re-occurrence resulting in the proposal that these should be 

considered as markers o f poor prognosis (Frasor et al, 2006) [20]. Determination o f the gene 

profile underlying Tamoxifen resistance and associated tumour progression is also a key aim of 

the Tenovus centre for cancer research, in addition to the above described candidate pathway 

approach. Expression profiling with microarrays is being performed across the TAMR model 

versus its hormone responsive MCF-7 counterpart (Nicholson et al, 2005) [21]. Analysis o f this 

model in the Tenovus group has progressed from nylon and plastic array formats, to the 

Affymetrix HGU-133A platform. A recent success of this microarray approach has been the 

initial discovery of a zinc transporter, ZIP7, which is over expressed in the tamoxifen resistant 

TAMR cells (Taylor et al, 2008) [94]. Levels of intracellular Zinc within TAMR cells have also 

recently been shown to relate to the subsequent response o f anti-hormone resistant cancers to
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treatment with agents that target growth factor pathways (Taylor et al, 2008) [94]. Subsequent 

studies have shown that targeting o f ZIP7 in TAMR will suppress zinc induced events and has a 

knock on effect o f inhibiting signalling through multiple growth factor pathways, increasing the 

chances o f cell death and consequently treating resistance[94]. ZIP7 is now being examined in 

clinical material with parallel anti-hormone response data to address its prognostic/predictive 

capacity.

Microarray technology is clearly facilitating exploration o f breast cancer cell models in order to 

better understand biological behaviour, including the breadth o f mechanisms of therapeutic 

response and resistance, in particular factors underlying growth and cell survival and as well as 

invasiveness. In doing so, potential prognostic/predictive factors and drug targets are emerging, 

as exemplified by the TAMR experimental model studies. Larger array platforms are increasingly 

being employed for such studies, coupled with initiatives emerging that are increasing the 

complexities o f samples analysed (e.g. mRNA preparations comparing multiple cancer cell 

models and treatments).

In the year 2000, the National Cancer Institute development therapeutics department carried out 

intensive expression studies of 60 cell lines created from a range o f tissues and organs with the 

research led by Douglas T Ross (Ross et al, 2000) [95]. In relation to cancer agent and 

chemotherapeutic sensitivity o f the 60 cell lines, more than 70,000 different chemical compounds 

had been tested which ultimately revealed a connection between the pattern o f response to a drug 

and its method of action as measured at the level of gene signature. Due to the connection 

between the function o f a gene and its pattern o f expression, the pattern o f this gene expression 

can reveal novel phenotypic aspects o f cells and tissues studied (Ross et al, 2000) [95]. The main 

advantage of applying this concept over the large number of cell lines is that it should result in 

detailed (and potentially-clinically relevant) understanding of human gene expression and 

hopefully give indications of the physiological roles uncharacterised genes may perform. This 

information can then be stored electronically and shared with the research community, 

particularly with research groups working on the gene signature of individual cell lines without 

the luxury of a cross spectrum portfolio.
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In breast cancer, the various cell lines available to researchers can be broadly categorised 

according to the clinical breast cancer classes (Neve et al, 2006) [96]. However, where 

comparison o f gene expression signatures from breast tumours and individual breast tissue- 

derived cell lines has been discussed, caution was a consistent theme whereby careful assessment 

of the nature o f a particular cell line as a model for particular breast tumour subtypes was 

highlighted as essential (Neve et al, 2006) [96]. Again, the relationship between signatures 

derived from individual cell lines and clinical disease may be more robust if larger breast cancer 

cell line microarray databases can subsequently be accessed. The key differences between clinical 

tumours and cell lines is usually due to differing growth rates however many o f the gene 

expression patterns can be related to normal physiology which distinguishes different cell types 

in vivo (Ertel et al, 2006) [97]. Dennis Slamon from UCLA’s Johnson comprehensive cancer 

centre has expanded the mass clustering o f different breast cell lines in relation to drug 

sensitivity. The group have over 100 different cell lines which have been clustered against each 

other in relation to anti-cancer agent response in addition to known genetic alterations within the 

cell lines, which is a very powerful asset to the group when trying to better equate with clinical 

phenotype (Slamon et al, 1987) [6]. With regards specifically to anti-hormone resistance, the 

Tenovus cancer research group have also recently expanded their study through development o f a 

unique, broader panel o f anti-hormone responsive and resistant MCF-7 breast cancer cell lines 

(encompassing resistance to various anti-oestrogens or oestrogen deprivation), with profiling also 

extending to encompass response and resistance to anti-growth factors such as EGFR and erbB2 

inhibitors (Nicholson et al, 2004) [98]. Genetically, optimisation of procedures for robust 

identification of differential genes expression across multiple control/treatment/resistance groups 

is important for analysis success. Having identified genes involved in each different scenario for 

particular anti-hormonal agents, it would be interesting to apply the gene set revealed against the 

different therapeutic agents to determine if this is an individual or generic predictive set. This 

could then determine resistance elements that may be relevant as targets in resistance to multiple 

types’ anti-hormones or potentially as targets for individual anti-hormone resistant states. In 

addition to revealing therapeutic targets there is key interest in determining predictive sets of 

genes for resistance to treatment with anti-hormones such as the antioestrogens Tamoxifen and 

Faslodex. Identified predictive sets could then be applied clinically to test if they improve patient 

stratification for responses/predict outcome/prognosis.
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1.5 Data Mining Large Clinical datasets for Application of Bioinformatics 

Classification Methods to Reveal Improved Clinicopathological Prognostic 

Indices in Non-microarray datasets

While results are clearly promising, mainstream use o f microarray gene signatures derived from 

clinical material (or emerging from in vitro data) for prognosis and to predict outcome of therapy 

is still under intense evaluation. Among the various techniques, Oncotypedx remains the furthest 

advanced; since it has recently been recommended for clinical use in the recent ASCO guidelines 

for the use o f tumour markers in the management o f breast cancer (Harris et al, 2007) [99]. 

However, there also remains (at least in the short term) a need to evaluate if established 

clinicopathological prognostic models, notably the NPI, can be further improved upon using 

novel combinations o f existing genetic and clincopathological variables addressed through 

development and implementation o f bioinformatics approaches. In this regard, initiatives are 

emerging to construct very large cancer databases with clinical follow-up and pathological 

information, which with appropriate analysis should allow exploration to further improve 

prognostic indices.

Particular interest in this regard is the Surveillance, Epidemiology and End Results (SEER) 

program from the National Cancer Institute that offers survival and patient parameters between 

1975 and 2005 (Ries et al, 2005) [100] for an expanding breast cancer patient series. Although 

different from the dataset used to calculate the NPI, the same information can nevertheless be 

extracted and an NPI equivalent calculated and applied to the SEER dataset. This dataset is novel 

in that it is one of the only available datasets of such size available for analysis stored in a single 

repository. To date, few data analysis packages utilise this powerful clinical resource particularly 

in the context of discovery of new covariates which ultimately can be used to discover new 

prognostic markers. The power of the SEER dataset to improve models for breast cancer 

prognosis could be exploited if flexible data analysis tools were developed to find relationships 

common across the thousands of patients by analysis beyond that o f simply tumour size, grade, 

and lymph node status. Moreover, as the SEER dataset has in depth patient information, 

treatment information can also be analysed in relation to prognostic models in terms of surgery 

received and radiotherapy.
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AIMS AND OBJECTIVES

As a result of the numerous methodologies available for improved understanding o f breast cancer 

using high throughput technologies, the following aims were developed as the main objectives of 

this project:

• Develop a new user friendly Affymetrix microarray analysis and visualisation suite by :

(a) Assessing and choosing the user interface to facilitate ease of use o f the software.

(b) Selecting optimised analysis algorithms to enhance Affymetrix array analysis 

incorporating a means to perform quality control, advanced statistical analysis, multiple 

clustering with enhanced visualization, differential gene prioritisation and ontological 

exploration

(c) Implementing various analysis algorithms into a user friendly application for high 

throughput analysis (incorporating choice o f an effective programming language able to 

direct these analyses and to interplay with the array database).

•  Demonstrate the capability of using this developed software for robust identification of 

differentially-expressed genes in this instance the context o f identifying potential markers 

to discriminate endocrine resistance from response and potential new therapeutic 

signalling targets, using microarrayed in vitro breast cancer models. This will encompass 

analysis techniques including class prediction, annotation and target discovery applied 

through the developed software to two acquired anti-hormone resistant cell lines versus 

their responsive counterpart. These models were previously derived in the Tenovus 

Centre for Cancer research, emerging during prolonged exposure of the ER+ MCF-7 

breast cancer cell line to a 10-7M dosage o f the SERM Tamoxifen (TAMR cells) or of the 

pure antioestrogen Faslodex (FASR cells), two clinically-valuable anti-hormonal agents 

in ER+ breast cancer management. In order to potentially provide generic 

markers/therapeutic targets for antihormone resistance, particular focus will be placed on 

applying analysis approaches that identify differentially-expressed gene sets shared by the 

two resistant states (and within this revealing potential growth/invasion signalling
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elements altered in resistance), alongside identifying those gene cohorts associated with 

individual classes o f antihormone resistance.

• Develop an analysis tool o f potential value to explore the effect o f multiple 

clinicopathological parameters in the context of impact on patient survival based on a 

large published breast (and colorectal) cancer data set. Features to be prioritised include 

ability for the tool to be able to perform single and also dual cohort patient comparisons, 

and to incorporate superior visualization o f results.

•  Subsequently use advanced computational techniques (such as decision tree analysis) to 

further improve accuracy o f survival prediction using existing prognostic factors, 

comparing the findings with existing prognostic factors relationships such as the NPI 

score.

EXPECTED OUTCOMES:

• Provide an optimised set o f data analysis tools able to advance our understanding of the 

breadth and patterns of transcriptional impact o f therapeutic resistance, and therein also 

relevant for future marker and target discovery.

• Identify in the thesis molecular marker sets that could be potentially be tested in clinical 

material in the future to see if they equate with endocrine response/failure, where such 

measurement could ultimately improve patient stratification for response/failure and 

prognosis

• Identify a number of novel signalling targets in the thesis which, if verified in the future at 

the protein level as functional, could potentially be manipulated to treat resistance with its 

adverse phenotype alongside existing therapies (either by inhibition of the new signalling 

target where this is induced in resistance, or by its restoration where expression is lo s t).

• Provide a clinical cancer query survival tool which (alongside being of value to 

researchers) could assist oncologists and patients in estimating individual patient outcome 

and hence aid management decisions, potentially also estimating the potential benefits of 

different treatment strategies in this context.

•  Begin to uncover new combinations of prognostic markers based on exploration of the 

SEER dataset covariates using advanced statistical modelling techniques.
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Chapter 2 -  Informatics system Tenovus -  ‘1-10’ development

2.1 Background

A review of available tools for microarray analysis as outlined in Chapter 1 shows an interesting 

spectrum of options to the biologist. However no individual tool offers flexibility in terms of 

future upgrades or even embraces the breadth of available analysis methodologies once initially 

purchased. It was clear that some applications offered useful strategies and approaches to 

microarray analysis however the biologist would have to subscribe or purchase multiple products 

to cover all analysis methodologies. Many of the freely available research driven applications -  

such as BRB Array tools -  demonstrated the power of open source technologies. Therefore it 

would be highly desirable if the strengths o f each individual application could be encompassed in 

a single application developed using freely available technologies such as in the case o f BRB 

Array tools. This would create a highly desirable tool not only for use within Tenovus but also 

for the greater cancer research community as a whole and facilitate more rapid discovery o f new 

genetic land marks from microarray experiments.

2.2 -  Graphical User Interfaces

Before in depth discussion of how I-10 was successfully created, it is important as a background 

to appreciate the origins o f how current computer technology and user interaction with computers 

has evolved over the last 20 years. The resultant choice o f technologies has led to why I-10 runs 

on a Microsoft Windows operating system. However it was not the only possible choice. Three 

key computer operating systems exist -  Microsoft Windows, Apple Operating System X and 

various forms o f LINUX such as Red Hat or Fedora. An operating system is the most important 

software component a computer uses -  it contains all information about the computer, how the 

user interacts with the computer and how information is returned to the user.

Recent versions of the Apple operating system X (OSX) have an ‘open source’ LINUX basis, 

where open source applications refer to a community of users who have developed software in a 

non-profit, often non-commercial environment. However, in development o f an analysis system,
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it is im portant to appreciate aspects users are m ost fam iliar w ith using day to  day, and to 

appreciate that the resources com m only availab le for developm ent can also often be a constraint. 

C onsequently  there is a bias from an end point user in that the vast m ajority o f  organisations and

U niversities use M icrosoft® W indow s w hen delivering applications to em ployees and students.
• • ®

Figure 2.1 highlights that M icrosoft W indow s is used by over 90%  o f  the w o rld ’s personal

com puters, in the past tw elve m onths alternative operating system s have increased slightly

reducing M icrosoft’s dom inance in the m arket place (W 3 consortium , 2008) [101]. H ow ever 
®

M icrosoft rem ains far ahead o f  its rivals in overall m arket share. This historically  has been due 

to better support being availab le com pared to  its rivals. A pple OS X has nearly a 5% o f  the 

m arket share and L inux 2% . The ability  o f  the w orld ’s population to use com puters is constantly  

im proving w ith m ore estab lished  users being increasingly m ore adventurous with softw are 

choices -  em bracing  LIN U X  solutions and applications. This has been facilitated, in part, by 

hardw are m anufacturers o f  com puter technology designing and supporting different operating  

system s w hich a user can now  choose for their com puter.

Approximate personal computer operating system market share of users worldwide as surveyed by
the W3C counter
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Figure 2.1: Distribution of operating systems in use worldwide as surveyed by over 45 million visits 
to the W 3Counter in the USA. M icrosoft’s dom inance has reduced slightly in a year. ‘O th e r’ 
operating systems include mobile telephones with in ternet access (W 3 consortium , 2008) [101].
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The most notable development in the computer market has arisen from Apple’s switch to Intel 

Corporation processors from 2005 onwards instead o f Motolora or IBM custom-built processors. 

The motivation for such a change was the Windows based systems using Intel technology were 

increasing in speed at a faster rate than the processors Apple had been using (Stratton et al, 2005) 

[167]. Intel processors use less energy and run cooler than equivalent IBM or Motorola chips -  a 

crucial development which helped Apple develop the ‘Mac book Pro’ -  a laptop instead of 

desktop computer. This in itself has allowed Apple to gain market share. However, Microsoft 

Windows based Intel processor machines remain the quickest personal computers available on 

the market. As a result the development of an array analysis system to run using Microsoft 

Windows is of great importance to appeal to a wide range of users and the associated 

performance benefits.

When subsequently focusing upon design o f data analysis applications for use in the Microsoft 

Windows Operating system, there are three obvious choices o f user interface. These include: the 

Microsoft Excel client/environment; a novel custom design application or lastly an online web 

based application. Each necessitates use o f novel technologies for application development to 

maximise subsequent analysis capabilities in the developed array analysis software.

2.3 Application Development Technologies

2.3.1 -  The ‘R’ project

‘R’ can be considered as an open source implementation of the ‘S’ programming language 

environment developed by John Chambers at Bell laboratories, now owned by Lucent 

Technologies, formerly AT&T (Dessau et al, 2008) [73]. The language was reincarnated as the 

‘R’ statistical programming environment in 1997 by Ross Ihaka and Robert Gentleman from the 

University o f Auckland, in New Zealand (Dessau et al, 2008) [73]. Together they form the basis 

of the R Development Core Team for new implementations. The name ‘R’ was given to the 

language as both the original core team have Christian names starting with the letter ‘R’. Updates 

of the application occur frequently with the most recent version being ‘R’ version 2.7.1 at the
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time of writing. ‘R’ is available in multiple versions for all the three key operating systems 

Windows, MAC OS X and LINUX (Dessau et al, 2008) [73]. The source code is also available 

for custom installations such as 64 bit computing environments as used by super computing 

facilities.

'R ' is predominantly a scripting language. Thus it is packaged for installation as a command line 

application, with scripts entered within a simple ‘R’ graphical user interface (RGUI; as shown in 

figure 2.2). To enable *R’ to communicate with other computer applications, a communication 

interface available only for Microsoft Windows systems is used to remotely command ‘R’ using 

scripts embedded in other Windows applications. Microsoft Excel is a popular choice of such an 

application that can communicate with ‘R’, however custom applications to harness the 

capabilities o f ‘R’ can be written using the programming language Visual Basic.

Fie Edit View Misc Packages Windows Help

151KEJ 6  0  Q &

Type 1 l i c e n s e ! ) ' or ' l i c e n c e d  1 fo r  d i s t r i b u t i o n  d e t a i l s .

N a tu r a l lan g u a g e  su p p o r t b u t ru n n ing  in  an E n g lis h  lo c a le

R i s  a  c o l la b o r a t iv e  p r o j e c t  w ith  many c o n t r ib u t o r s .
Type ' c o n t r i b u t o r s ( ) 1 f o r  more in fo r m a tio n  and 
' c i t a t i o n O '  on how t o  c i t e  R or R p ack a g es in  p u b l ic a t io n s .

Type 'dem o() ' t o r  some dem os, 'h e lp O '  t o r  o n - l in e  h e lp , or  
' h e l p . s t a r t ( ) '  f o r  an HTHL brow ser in t e r f a c e  t o  h e lp .
Type ' q | ) '  t o  q u it  R.

> u t i l s : : :m e n u ln s ta l lP k g s ()
  P le a s e  s e l e c t  a  CRAN m irror fo r  u se  in  t h i s  s e s s io n  -----
a l s o  i n s t a l l i n g  th e  d e p e n d e n c ie s  'k o h o n e n ', 'm c lu s t '

t r y in g  URL 1h t t p : / / c r a n .u k .r - p r o j e c t .o r g /b in /w in d o w s /c o n t r ib /2 .7 /k o h o n e n _ 2 . 0 .3 .$  
C ontent ty p e  1 a p p l i c a t i o n / z i p '  le n g th  813807 b y te s  (794 Kb) 
opened URL 
dow nloaded 794 Kb

t r y in g  URL ' h t t p : / / c r a n .u k .r - p r o J e c t .O r g /b in /w in d o w s /c o n t r ib /2 .7 /m c lu s t _ 3 . 1 - 5 . z$ 
C ontent ty p e  ' a p p l i c a t i o n / z i p '  le n g th  767748 b y te s  (749 Kb) 
opened URL

Figure 2.2 -  Screen cap tu re  of the ‘R G ui’ console window w here ‘R ’ can be com m anded and 
functions trialled before potentially being integrated into applications. Installation of packages can 
also take place here as certain  libraries will be required  by analysis steps.
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The main strengths o f ‘R’ lie within the flexibility it offers as a fully planned and coherent system 

to allow the user to access comprehensive microarray analysis capabilities rather than an 

inflexible set o f very specific software packages. Additional functionality is feasible through new 

libraries that are developed to a particular area o f study. As outlined in Chapter 1, several 

clustering methods can be used for data analysis, all of which have been coded as ‘R’ libraries.

The ability o f R to be commanded and seamlessly integrated with other user friendly applications 

is vital if users unfamiliar with any form of computer programming are to be able to harness the 

powerful statistical functionality o f ‘R’. Communication of instructions from Excel to R is 

typically achieved utilising the Microsoft office interface (D)-COM, a relationship which is 

covered in depth in subsequent pages (Baier et al, 2003) [102].

2.3.2 Bioconductor

Bioconductor is a worldwide consortium developing ‘R’ libraries containing analysis tools 

developed primarily for microarray data analysis (Bioconductor Core, 2002) [72]. Worldwide 

contributors are continually welcomed to join the initiative since its inception in late 2001. This 

was largely fuelled by the increase in the use o f high throughput technologies together with 

genome completion studies coupled with a lack of tools to analyse the large volumes o f data 

generated. The Bioconductor project’s main goal was to design a development suite commanded 

within ‘R’ for the analysis and comprehension of Microarray data from the various array 

platforms, although many o f the tools can now be used broadly for the analysis o f other types of 

genomic data, such as sequence data (Bioconductor Core, 2002) [72].

2.3.3 Microsoft® Visual Basic (VB)

Visual Basic was derived from the programming language BASIC and enables development of
® • graphical user interface applications for the Microsoft Windows operating system. Visual Basic

was designed to be relatively straightforward to learn and use particularly for those with some

computer programming experience and particularly those wishing to enter into the programming

arena for the first time. The language not only allows programmers to create simple Windows
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applications yet also has the power to enable more complex application development. 

Programming in VB takes place within a specially designed Microsoft Windows application 

where components are added to a form and the user specifies attributes and functionality of 

individual components. Although many options are pre-written, the programmer can write code 

directly. The application converts the different ‘forms’ developed into a compiled executable file 

which makes application development fast. An example of a form is shown in figure 2.3.
, P ro tect I Microsoft Visual Basic [design ]

Fie E<* £ ew  Protect Format Qebug Run Query DJagram lo o k  Add-Ins tjflndow tje*>

U G* a  * r:

*  \ 01 m l  (f o rn i)

-ini a

Protect - P rotect 1

e h  t o
F! P ro te c t  I (P r o te c t ! )

B  Q  Forms
C l Forml (Forml)

|F o r m l  Form 

Alphabetic |  Categorized |

iJ
(Name) Forml
Appearance 1 - 3 0
AutoRedraw False —J
3ackColor □  &H8000000F
BorderStyle 2 -Sizable

|  Forml
OipControls True
ControBox True
IirawMode 13 - Copy Pen
DrawStyle O-Sokd

21
C ap tio n
R eturns/sets the tex t dbplayed In an 
object's bde b ar or below an object's

Figure 2.3: A Visual Basic form shown within Visual Basic 6.0 Studio for application developm ent

The last version of Visual Basic was VB 6.0 in 1998 before Microsoft stopped technical support 

for the application. Due to the rapid growth of the internet, Microsoft launched Visual Basic.net 

to superceed Visual Basic. Microsoft offers a newer, freely available application development 

envirnoment similar to the VB6.0 application called Visual Studio.NET. Due to the rise of open 

source technologies Microsoft was pressurised to offer a freely available version called Visual 

Studio.net. Most of the types of application developed in VB 6.0 can be developed in Visual 

Studio.net. Due to the web based nature of VB.NET technology, it is recommended that
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development occurs using a Microsoft Windows Server. A Windows server allows secure

remote desktop connections over which development can take place which has positive security 

and back-up advantages as no key files reside on any developers machine -  they are all kept on 

the server.

Having a Windows Server is a large investment for VB.NET technology, without even 

considering the investment required for DNS (Domain name server) hosting that is needed for 

users to access a given application on a server over the internet. With VB6.0 the development of 

individual applications which are installed on every user’s machine does not require such an 

investment.

2.4 Interface Connectivity

Different parts of an application communicate with each other via an interface. However there are 

many types of interfaces used for different purposes.

2.4.1 R-(D)COM

Biologist
using

application
R-(D)COM <

engine

USER APPLICATION INTERFACE CALCULATION

Figure 2.4 -  Interaction between 1-10 and ‘R ’ using the R-(D)COM interface.
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R-(D)COM acts as a programming interface to COM and DCOM (Microsoft distributed object 

interface) to access the R calculation engine. (Baier et al, 2003) [102]. A typical use for R- 

(D)COM is in the connection between Visual Basic to ‘R’ or Microsoft® Excel to ‘R’ as shown in 

figure 2.4, allowing commands and data to be passed between the two efficiently, an aspect 

which has proven to be a central benefit of the I-10 operation approach.

2.4.2 Web services

A Web service as defined by the W3C consortium -  responsible for standardisation of web 

applications -  is "a software system designed to support interoperable Machine to Machine 

interaction over a network” (W3Consortium, 2004) [103]. Web services provide a way of linking 

systems which perform unique tasks, each offering something different yet desirable in any given 

application. Web service technology utilising multiple protocols such as ’Simple Object Access 

Protocol' (SOAP) allow many different computational objects to communicate seamlessly with 

each other, interchanging data in multiple directions (W3Consortium, 2004) [103]. Web services 

can add a layer o f data security in that data is never exposed and exchanged within applications 

and avoids manipulation by the user in any way.

Web services are based on XML technology for encoding of information so that it can be shared 

using a common language between all applications which require such information. For example, 

a database o f patient covariate information can be loaded into analysis systems without knowing 

any in depth information about each patient -  only their disease specific information.

2.4.3 Database (OLEDB) connectivity

The method Object Linking and Embedding Database (OLEDB) is an interface package 

developed by Microsoft for accessing different types o f data stored in a uniform manner. It is a 

set of interfaces implemented using the Component Object Model (COM) previously introduced 

in the DCOM section. The system was designed to be a higher-level replacement for Open 

Database connectivity (ODBC) having additional features to support different types of non-
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relational databases, this can included object databases and spreadsheets that do not necessarily  

im plem ent SQL.

Biologist
using

application
OLEDB Microsoft

Access

USER APPLICATION INTERFACE DATA STORAGE

Figure 2.5 In teraction  between 1-10 and the Affymetrix a rray  database stored in Access which also 
stores analysis results.

OLE DB separates the data store from the application that requires access through a set o f  

configuration steps that include the data source, for exam ple a M icrosoft A ccess database, logon 

inform ation and the query to retrieve inform ation from  the database. The technology was 

developed as d ifferen t applications m ay require access to  different sources o f  data w ithout 

them selves being able to retrieve the inform ation. OLE DB is conceptually  divided into 

consum ers and providers. The consum ers are the applications that need access to the data, and the 

provider is the softw are com ponent that im plem ents the interface and therefore provides the data 

to the consum er. This com ponent is vital in any data analysis system  w here the data  to be stored 

is in a database and needs to be called from the analysis application as seen in figure 2.5.

2.5 Microsoft® Excel

®
M icrosoft Excel started life under a different nam e -  largely known as M ultiplan in 1982. It had

m ajor com petition from Lotus 1-2-3 w hich itse lf w as based on the very first spreadsheet

application -  V isiCalc developed by Softw are A rts that w as later bought by Lotus (w here Lotus
®

itself was later bought by IBM corporation) (Jelen et al, 2005) [164]. Ironically for a M icrosoft
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development, the first version o f Excel was released for the Apple Macintosh in 1985 and the 
®first Microsoft Windows version released in 1987. It is widely believed the downfall for Lotus 

was the slower development o f the company o f its applications for the Microsoft® Windows 

platform. In 1988 Excel outsold Lotus 1-2-3 and greatly assisted Microsoft® in its success as to 

becoming the world’s leading PC software developer (Jelen et al, 2005) [164]. Multiple versions 

of Excel emerged in the 1990’s. Numbering systems for Microsoft products ended at the turn of 

the century; however the latest version for the Windows platform is Excel 14, more commonly 

known as Microsoft Office 2007 optimised for their latest operating system Vista (Jelen et al, 

2005) [164]. Interestingly, history has repeated itself in that the version for the Mac OS X 

platform is Microsoft® Excel 2008, a newer development than the Microsoft® Vista equivalent.

Microsoft Excel is important in data analysis in terms of the way novel applications can be 

written to harness the Excel interface. Since the early 1990’s, Excel has included Visual Basic for 

Applications (VBA), a programming language based on Visual Basic which adds the ability to 

automate tasks in Excel. The term ‘Macro’ was developed as a way to automate commands 

which users performed routinely. However from an application development position, VBA is a 

powerful addition to the application which in the latest versions features an integrated 

development environment (IDE). The IDE is in essence a way in which interfaces such as R-(D)- 

COM can communicate with Excel. Therefore powerful applications using Excel functionality 

can be designed to communicate with externally developed applications such as ‘R’ which in turn 

can be used to create powerful data analysis suites.

2.6 Microsoft® Access and Microsoft® SQL Server

®Microsoft Access was launched in 1992 and was Microsoft’s first entry into the database 
®market. Microsoft Access is a relational database management system which is powered by the

relational Microsoft Jet Database Engine. Recent versions o f Access ship as part of Microsoft
®Office which also incorporates Microsoft Excel, as previously introduced. The functionality for 

biomedical data with Access is a relatively straightforward data management example. With 

regards to this project and considering the needs o f a data analysis platfrom, it can provide a way
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of storing Affymetrix array information on an individual array basis, with database rows 

containing probe expression information. This interaction was shown previously in figure 2.5. 

The application can also be used to form ‘projects’ for comparison in a multiple experimental 

model setting in a user friendly way. For example, the user can specify which models are 

required to form the analysis comparison experiment. Database tables can be inserted for
A ^

archiving directly into Microsoft Access from Microsoft Excel spreadsheets, which is a 

particularly useful function as Affymetrix Array results are received in a spreadsheet format 

produced from the Affymetrix chip normalisation application MAS5.0.

If database technology is required on a larger scale to store larger arrays or larger comparison 
®projects, Microsoft offer the MS SQL server application. It is preinstalled as an integral

component of the Microsoft Windows Server 2003 operating system. It is also a relational

database management system. SQL server is a far more complex database. Unlike Access which

has a core Jet database engine, the SQL server database has three parts -  an operating system

(SQLOS), a relational engine and a protocol layer. By division o f ‘labour’ into different sections

the product is more reliable in day to day use. As SQL server is found on server technology
®platforms, additional issues become apparent which may never be observed in Microsoft

Access. Such issues include concurrency and ‘locking’ -  where multiple users are accessing the

same information. Each could potentially change the database and therefore get different results

back. SQL server has procedures in place to prevent such an occurrence or to assign who has
®priority. Such functionality is not as advanced in Microsoft Access, yet is required for large 

applications. Additionally, more advanced SQL queries of the data can be implemented in SQL 

server in comparison to Microsoft Access, although it is more difficult to use due to the nature 

of the product.

Microsoft Access can be remotely commanded using OLE DB connections previously described
®embedded into a data analysis application as shown previously in Figure 2.3. Microsoft SQL 

server can also be commanded using OLE DB; however it is more suited to web service 

technology due to the scale on which applications are developed although can also use VB.NET 

function calls.
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2.7 Three Dimensional Visualisation Technologies -  OpenGL and Direct3D

To facilitate three dimensional (3D) clustering and visualisation o f results returned from a 

developed analysis platform, a set o f programming procedures to draw a 3D image are required. 

Remarkably, there are few 3D application programming language standards -  the two main 

choices are OpenGL and Direct3D (Shreiner et al, 2005) [104]. However they both offer 

extensive capabilities and as such have diverse implementations ranging from computer gaming 

to mathematical modelling.

OpenGL is essentially an interface with over 250 function calls based on the ‘C’ and Visual Basic 

programming languages, which can be used to create 3D ‘scenes’ from simple geometric 

primitives (Shreiner et al, 2005) [104]. It was developed by Silicon Graphics in 1992 and is 

supported by all operating system incarnations previously described (Shreiner et al, 2005) [104]. 

Mesa3D is the nearest equivalent to OpenGL but is not identical as OpenGL does have some 

licensing implications. However Mesa3D coding is fully compatible with OpenGL.

Microsoft was originally part of the OpenGL architecture review board until 1992 when they left 

the project to pursue their own standard -  Direct3D. Although Direct3D was originally less 

intuitive and more convoluted to programme than OpenGL, Direct3D inherently remains more of 

a hardware interface technology whereas OpenGL is more a 3D rendering system with hardware 

acceleration. More support is given to OpenGL and the documentation is more extensive and 

therefore a logical choice for 3D modelling capabilities o f a data analysis platform.

2.8 Affymetrix Microarray Data Analysis Strategy

Figure 2.6 shows an overview o f the generalised microarray data analysis process. It shows a 

typical strategy which can be used to determine significant differentially-expressed genes that 

could ultimately provide potential biomarkers or targets of interest, for example, in the context of 

endocrine resistance in breast cancer.
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Initial Experimental Design in this instance focuses on Affymetrix (HGU-133A) microarrays The 

appearance o f a typical Affymetrix scan has been shown previously in figure 1.1 from Chapter 1.

When the information has been collated from the Affymetrix scanner using MAS5.0, the 

significant differentially-expressed probes need to be determined. An initial step is to perform 

normalisation o f the arrays chosen to address a particular experimental model comparison, for 

example a control group versus other arrayed groups to be compared. Typically there will be 

three replicates for each experimental group. A particular array experiment compares at least two 

sets o f three individual array replicates. This set of 6 arrays in this combination needs to then be 

normalised by log base 2 transformation and typically median centring. This allows the whole 

‘experiment’ to be comparable as individual probe intensities can be very broad-ranging with any 

very large values potentially adding bias to results to the detriment of other less highly expressed 

probes. As seen in Figure 2.6, the next steps after normalisation are potentially the most 

informative -  differential gene expression determination being particularly important.

As previously introduced, all Affymetrix HGU-133A microarrays contain a very high number or 

probes -  over 23,000. The complete array is too large to assess each probe individually in turn. 

Most o f the probes in a particular group experimental comparison will have no change in 

expression between a control group, for example, and what the array is compared against. 

Consequently the unchanged probes can initially be removed (“feature selection”) from analysis 

at this point leaving only the differentially expressed probes. This can be performed in a number 

of ways. Two main approaches for filtering include, as previously outlined in section 1.3 Chapter 

1, ANOVA (Analysis of variance) and SAM (Significant Analysis o f Microarray). Literature 

suggests a false discovery rate of 10% is acceptable (Tusher et al, 2001) [38].
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Microarray Experiment -  Bioinformatics overview
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Figure 2.6: Overview of m icroarray  analysis steps regardless of a rray  platform .

Once a data  reduction m ethod has been chosen, the significant gene list can be explored by 

pattern d iscovery  or class prediction. A lthough show n as tw o d istinct areas in figure 2.6, these 

aspects closely  overlap  in reality. T he sign ificant gene list, for exam ple 800 probes revealed by 

SAM analysis, w ill often firstly be clustered to  observe dom inant expression patterns in the data 

using an unsupervised clustering m ethod such as hierarchical clustering as previously  outline in 

section 1.3.8.1, C hapter 1. This show s the relationship  betw een the probes in the significant gene 

list using their norm alised intensity values. B ands o f  red or green are often ev ident to  indicate 

regions o f  sim ilarity  o f  expression profile.

It is good practice to  perform  m any clustering  algorithm s and com pare their results. A lternatives 

as previously outlined in C hapter 1, include se lf  o rganising m aps (SO M ) or partitioning around 

m edoids (PAM ). A hierarchical c lustering heat m ap can be used as a guide to determ ine how  

many dom inant clusters are thought to exist in the dataset. SOM  will then force the probes w hich 

have m ost sim ilar profiles into the estim ated num ber o f  clusters. The effectiveness o f  this process
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will vary based on the number of probes allocated to each cluster i.e. dependent on total cluster 

number. Multidimensional scaling is a type o f class prediction and could be subsequently 

performed, however if genes revealed are low, the genes could simply be annotated using online 

ontological tools rather than further data reduction. As previously outlined, multidimensional 

scaling is a method which converts the structure of array similarity matrix to a simple geometrical 

picture. The larger the dissimilarity between two samples (of the control versus the treatment 

arrays), the further apart the points representing the experiments will occur in space.

Cluster membership revealed from the different algorithms can be annotated -  gene function, 

pathway or even disease-specific information regarding each cluster of probes can be revealed. 

This can highlight potential new targets/gene signatures, for example in anti-hormone breast 

cancer resistance. Depending upon the experimental question, the biologist/clinician could also 

potentially find genes o f known profile in, and relationship to, a particular outcome such as 

resistnace to a particular antihormone in breast cancer, for example resistance amongst the 

clustering results. This not only validates the effectiveness of the clustering techniques (since out 

of 24,000 probes (23K) initially, one or two established landmarks have been accurately 

revealed) yet also produces the possibility o f identifying new targets as a result of sharing a 

similar or dissimilar profile to a known landmark gene.

2.9 Technology Selection

After careful evaluation of technologies available to facilitate development o f a microarray 

analysis platform the following technologies were used for system development:

1. Microsoft® Windows to develop the application -  Microsoft® Visual Basic

2. Mathematical processing engine to calculate results -  ‘R’ scripting language - selection 

o f appropriate components (e.g. for feature selection, pattern discovery, class prediction 

and annotation) to interlink within the developed software.
(R)3. Microsoft Excel to create a workspace to view and collate results.
(R )4. Microsoft Access for data storage to retrieve and record analysis results.

5. DCOM and ODBC connectivity to communicate between application areas.

6. Open GL scripting language to provide 3D graphical capabilities.
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U sing these six separate yet unique com ponents, a com prehensive high throughput analysis 

system  w as developed.

2.10 Overview of Informatics Tenovus -  ‘1-10’

2.10.1 The rationale for 1-10:

1-10 has been developed  to harness the sym biotic re lationships betw een ‘R ’, Excel and D -CO M  

as described previously , enabling  1-10 to perform  pow erful m icroarray analysis in a user-friendly 

m anner. F igure 2.7 show s th is relationship in term s o f  how  each part o f  th is system  interacts w ith 

each other, w here im portantly  I -10 has been developed such that the user is rem oved from  all 

know ledge o f  how  th is system  works.

Biologist
using

1-10

USER APPLICATION

D-COM

OLEDB

INTERFACE

Algorithm libraries

‘R’ engine

Access
Database

Affymetrix arrays 
Data analysis results

CALCULATION

Figure 2.7: R elationship between the user and the com ponents of 1-10. Note from  the previous 
technological evaluation section how difference interface protocols -  D-COM  and OLED B are  used 
to com m unicate with the separate parts of the application -  ‘R ’ (shown in purple) com m unicates in 
tu rn  to installed algorithm  libraries for clustering (shown in green) and the Access database (shown 
in red) retrieves Affym etrix a rray  inform ation and stores data  analysis results (show in blue).

The Tenovus research group had previous extensive experience w ith the com m ercial application 

G enesifter softw are from  V izxlabs w hich has been used to analyse endocrine response/resistance 

m icroarray data. A lthough G enesifter itse lf has evolved slightly  over the course o f  the project, the
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tool still has missing capabilities notably in its capabilities for advanced statistical and 

graphically-based clustering, where these have been developed within I-10 particularly from the 

3D graphical point o f view. An initial goal of the project was thus to encompass within 1-10 all 

the capabilities o f Genesifter yet go beyond the features currently available to the Tenovus group. 

However, in practice the developed I-10 software evolved to have the following abilities that 

fulfil much broader functionality requirements for the microarray analysis community as 

overviewed in figure 2.8:

•  A user friendly, graphical menu driven interface through Microsoft Windows 

environment

• Speed and Versatility

• Microarray data analysis

• Basic and advanced statistical analysis

• Multiple unsupervised and supervised clustering facilities

• 2D/3D displays to enhance diverse aspects o f data exploration, statistical analysis, model 

building and data visualisation

• Ontological/annotation capabilities

• Endless expansion possibilities for analysis due to integration of new ‘R’ libraries.

• No commercial license restrictions being based upon open-source technologies.

Very few applications are based upon ‘R’ in a locally installed client application or indeed 

hosting using a remote computing system for actual processing of the data, so in this aspect of its 

development I-10 is unique.
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Figure 2.8: Functionality requirem ents, and overview of 1-10 as either a standalone application or 
fu tu re web deliverable.

2.10.2 Design of 1-10

For any new  system  to be successful, ease o f  use is likely to be a prim ary consideration from  the 

very beginning o f  developm ent. W hen a system  is first beta tested, inevitably som e changes are 

required; how ever if  they can be m inim ised during early developm ent it w ill give the user a better 

idea o f  w hat is possibly and hopefully  generate new  ideas. Figure 2.9 outlines the developm ent 

schedule o f  I - 10.

When developing the W indow s application for 1-10, the concept o f  using m ultiple w indow s each 

representing the different analyses w as found to be a user-friendly feature that w ould be highly- 

desirable to incorporate into I -10, akin to o ther M icrosoft W indow s applications. T his has been 

successfully achieved in I -10, w here using this approach the user only has to focus on an option 

for any given analysis step, be it v iew ing the query generated in A ccess upon which data will be 

analysed or choosing hierarchical clustering, for exam ple.
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Date: 12004 1 2005 I 2006 I 2007
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Figure 2.9: Gantt chart outlining development schedule of 1-10. Month abbreviated to first letter of 
corresponding month. e.g: O: October, A: April or August, J: June or July. Activity 1: Evaluation 
of technologies for platform development 2: Implementation of design of system. 3: Initial trial with 
users in Tenovus. 4: Refinement of application due to user feedback. 5: Addition of new 
functionality due to release of new ‘R’ statistical libraries.

Results from the multitude of options can be minimised within the application for instant 

comparisons. Moreover, I-10 also utilises a user-friendly “flow-chart” approach for its main 

menu that the user accesses to perform the various steps in microarray analysis. Early discussions 

regarding menu design with users utilised a flow chart outlining all steps from start to finish for 

microarray analysis as shown previously in figure 2.6. This model proved very easy to 

understand, and so was mirrored directly within the application, presenting selectable options at 

each step clearly to the user, as seen in the final software main menu as shown in figure 2.10.
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Figure 2.10: M ain Menu of 1-10 based on a flow-chart m icroarray analysis approach.

There is a w ealth o f  analysis options available to  the user through I -10. They range from 

hierarchical clustering through to m ulti-dim ensional scaling, fuzzy analysis, PAM , to nam e only 

a few o f  the available options. C lassical 2D representations o f  clustering can now  be displayed in 

3D w here appropriate, w here these latter capabilities are generated by calling the O penG L API, a 

fundam ental im provem ent over the capabilities o f  m any existing analysis m icroarray analysis 

packages. Exam ples o f  2D and 3D com parisons o f  the sam e data in 1-10 can be seen in figures 

2.11 and 2.12. It is also possible for the user to interact with the 3D visualisations (for exam ple, 

rotating the display, clicking on its com ponents).
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Figure 2.11: 2D plot: Principal Components Analysis in 1-10
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Figure 2.12: 3D plot: Principal Com ponents Analysis in 1-10 showing controls to the right of the 
figure where the plot can be rotated and certain  points selected or deselected.
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The user should view I-10 as a self contained analysis, visualisation and data management 

package optimised for microarray data. However, I-10 can also be used to visualise any 

multivariate biomedical data stored in the database.

2.10.3 Overview of 1-10 capabilities:

(i) Data storage management: In conjunction with Microsoft Access, I-10 gives the 

user the power to store, search and display any of their Affymetrix Microarray data. 

Any new queries (searches) which the user wishes to perform, for example comparing 

MCF7 control vs Faslodex resistant arrays, can be requested and the appropriate 

microarray data delivered ready for immediate data reduction using SAM. Likewise 

for even quicker analysis, previous SAM output can be stored, and re-called from the 

database for subsequent visualisation within I-10, chosen in this instance specifically 

to address the needs o f Tenovus yet also of obvious value to the wider research 

community who requires access to advanced analysis techniques within a user- 

friendly context.

In the Tenovus group, MAS 5.0 results are returned from the Affymetrix facility as set of CD- 

ROMS, however subsequent storage in a dedicated database only takes place currently within 

GeneSifter. However storage is limited by cost issues. When generating the database integral to I- 

10, the column naming conventions returned from the Affymetrix microarray application 

MAS5.0 were rather ambiguous, and working with researchers within the Tenovus group has 

allowed more informative naming conventions to be developed and used in the Access database. 

Migration to such a database storage system has improved the availability o f what is a very 

valuable data resource.

(ii) Excel to check data pre-analysis: Using elements of Microsoft Excel, the user can 

quickly check the returned results from Microsoft Access before continuing with 

differential gene expression analysis. Although not an essential step, it confirms the 

array combinations to be analysed are correct.
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As previously outlined, most Microsoft Windows users are very familiar with the interface that 

Excel provides, where scientists may already be using Excel to perform simple statistical analysis 

such as a t-test. Therefore it was logical for I-10 to utilize Excel’s spreadsheet functionality rather 

than an alternative as it allows simple visualisation of what the database has returned for 

subsequent analysis as shown in figure 2.13. Furthermore, an Excel ‘sheet’ view automatically 

gives I-10 added formatting features which are integral to Excel such as sorting by 

Ascending/Descending, Formatting, colouring particular rows, and many more useful features the 

biologist may want to aid in interpreting the raw data. Printing and saving of the data in an Excel 

format -  for example significant gene lists- can also be performed within I-10 for re-insertion into 

the database for storage or for discussion in research group meetings.
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A00679xot 7.614709854 7 207502365 7 043300629 911504364 8157346725 8627533913
T A00660xol 9904483795 9 332036972 9691918373 11 65136528 10 74230957 1091767025

AOO756*01 5 388878345 5 86046648 5 602884293 7137503624 6 665336132 6 303780556
33EA00783sot 547573328 4 566815376 5 703211308 7 613236904 6623515606 6 665336132
X AOO 787sai 8 41023922 8 65069294 8 481799126 6 491653237 8 080551147 7 381110191

A008 75*al 7 069315434 7 208478451 7 022367954 8 557271957 7770829201 8 224966049
A00878O1 103265419 1002111912 10 39199543 7 342519283 9 319897652 8536052704
A00879sol 7 436295033 7 001126766 6 34695673 3 608809233 5620586395 4 66675663
A00917sol 6.242221355 6 270528793 4 877744198 3 972692728 5189824581 4 035624027
A00934ot 6 175923824 5 689299107 5 456149101 9 391458511 8 061776161 7 768846035
A009 39sol 3498250961 3 916476727 2 88752532 2 29278183 2 20163393 1 84799695
A00989OI 8.420802116 7 889351845 8 018478394 10 49924755 9210671425 9 458816528
A0099Aot 7 103287697 6276124477 6 429615974 9129797935 7 911691666 7 737416267
A01006ai 5 766184185 6155830383 5652486324 5 061776161 5.277984619 4129282951

z A01019sot 6 462706566 5 906890392 6 230741024 9 255264282 8 083213806 7 661065578
A01044xot 4.30742836 3 797013044 2169924974 0 378511637 2104336739 0 847996891
A01057*01 6207502365 5 809928894 6 36981535 7 550746918 7 241268158 7 540709496

x A01070x01 6 914085865 6 48381567 6432959557 8 218684196 7 925405979 7 865424156
2<r AOIO880I 8 25880146 8 541096687 8 728940964 10 24234009 9 414896965 9 756723404

A01091sot 5 442943573 4 995484352 5 236492634 7 815703392 6 678071976 6 323730469
A01140*01 8146186829 8 28586483 8 444601059 5 459431648 6 968090534 6 86046648
A01141ol 9 039467812 8 383272171 8 200653076 7 02901125 6 703211308 7 008988857
A01148sol 4 590961456 4 716990948 5165912151 2 786596298 3217230797 288752532—AOUSlsal 4 112699986 320163393 3137503624 4 343407631 5017921925 4087462902
A01 A04sot 6 867896557 6 712871075 7134426117 5149746895 6149746895 6 350497246
A01AA3SO1 7728600979 7153805256 6 904484272 9 357111931 8 616548538 8 361066818
A01 A35sot 7 183883667 7 406842709 5 74953413 3 307428598 5 392317295 4 357552052
A01A9AO1 4832890034 3 776103973 3 786596298 8 360627174 6 339849949 5 906890392
A01304OI 4 925999641 4 70043993 4 548436642 7 43462801 6 287250519 5 74953413

— ■ ■■■■
|1OAM/20tt [ W

Figure 2.13: Overview of the Microsoft Excel spreadsheet interface to view data generated from the 
database subsequent to an initial query for analysis.
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(iii) Differential Gene Expression: SAM can be performed within I-10. All results 

created can be saved using the Access database so they can be re-called for future 

pattern exploration in I-10.

As previously outlined in detail, a fundamental goal of any microarray experiment is to identify 

genes with significant differences between groups in any given array experiment. The large 

numbers of probes present on Affymetrix arrays thus need to be initially reduced to a core 

significant list prior to any subsequent analysis. One of the most popular ways of filtering for 

differentially expressed genes has been according to fold change in expression. However this has 

been proven unreliable in a number of studies as there is no information to back up what is a true 

change and what is occurring due to random variation (Mariani et al, 2003) [105]. This process 

can be influenced by inherent replicate variation, a feature that is addressable by initial MVA plot 

assessment (performed prior to sample addition to the Access database). Subsequent statistical 

testing of gene lists can then provide more confidence in identifying differentially-expressed 

genes. Self organising maps functionality can also be found under this section. The SAM option 

available to the user can be accessed in the I-10 menu from the differential gene Expression 

methods box (figure 2.14).
- l a l x i

- in i  xi

BBSS-DatdRcducti

Annotation

Significant Anayas of 
Metoanay

Data Sprat

Database

129/09/2008 P m r

Figure 2.14: The available Differential Gene Expression M ethods from the 1-10 menu.
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(iv) Pattern discovery: One of the first clustering routines commonly performed on a dataset 

is hierarchical clustering (HCA) with visualisation using a heat map representation. This 

is available in I-10 within the pattern discovery options. Although often difficult to 

interpret, especially with large significant gene lists and complex patterns, the key aspect 

of HCA is to give an indication as to the number o f dominant ‘groupings’ within the gene 

profiles. In I-10, more advanced clustering techniques are available such as PAM and K- 

Means. However the HCA steps of analysis are highly recommended as these latter 

approaches require an indication of the total number of groupings in the data which can be 

determined using hierarchical clustering. The novel aspect of I-10 to aid gene discovery is 

the 3D representations for these functions, as opposed to the more usual 2D plots which 

‘R’ can generate. As a consequence of the ‘z’ dimension axis in 3D scatter plots, the user 

can rotate the plot in 3D which will reveal hidden clusters or patterns not as obvious as 

observed with a 2D representation.

An overview o f the pattern discovery options can be seen in figure 2.15. Hierarchical clustering, 

as well as being useful towards detailed pattern discovery as described above, can also be used as 

a classical indicator to further confirm (alongside the initial MVA analysis) similarity of arrays of 

a particular set o f replicates, especially when using a reduced list of genes. If individual replicates 

are associating with completely different sample groups rather than with their own replicates, this 

is an early warning sign of the quality o f a particular replicate and that subsequent analysis steps 

should not be performed without considering replacement with an alternative sample.

Ideally the situation should arise where multiple advanced pattern discovery compare clustering 

results. Multiple individual clustering techniques can be performed within the I-10 software; 

moreover, inclusion of the relatively new PVclust packages (“automated cluster comparison” in 

the menu) as previously described removes the decision regarding clustering choices from the 

user by comparing the clustering results from the multiple tests and presenting these to the user.

The 3D plots of each clustering technique where appropriate are accessed via a tabbed menu 

when analysis of each clustering method is performed. 3D clustering is not available for HCA.
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Figure 2.15: C lustering m ethods available under P attern  Discovery within 1-10.

(v) Class Prediction: refers to the assignm ent o f  particular genes into previously

identified classes, as previously outlined. This can be perform ed by ontological 

searching and is one aspect which Cl V alid m odule in I -10 harnesses.

C lass prediction can be considered as an optional step in m icroarray analysis. It w ill depend 

upon w hat classifiers exist for a given data set and depend upon how m any genes have been 

revealed and w hat expectations w ere set regarding the data. F igure 2.16 show s an overview  o f  

options available for class prediction detailing  PCA, M DS and a link to online classification 

too ls such as D A V ID  and Babelom ics, previously described in C hapter 1.
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Figure 2.16: Options available for class Prediction within 1-10 

2.10.4 D a ta b ase  d ev e lo p m en t

Microsoft Access databases can be created using the inbuilt graphical user interface, akin to other 

Windows applications. Initially a blank Microsoft Access database is created and for the purposes 

of I-10 this was given the name ‘TenovusAffy.mdb’ where *.mdb is the file type used by Access 

for storing database information. One of the requirements of the Tenovus group was to not only 

analyse data in I-10, however to also be able to export datasets in an interchangeable format for 

associated research collaborations. Before the development of I-10 there was no easy way to 

extract raw information from Genesifter once it had been uploaded. Microsoft Access enables 

this export function, due to the flexible way queries can be structured and results returned as 

shown in figure 2.17.
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Each of the three Affymetrix microarray replicates for each experimental model was stored in an 

individual table with an appropriate title for added flexibility. Tenovus have extensively invested 

in their Affymetrix arrays covering all of their MCF7 cell line models, including the parental 

endocrine responsive MCF7 cells (termed here “Resistance MCF-7 Control”) and related sub

lines with acquired resistance to Faslodex (“FASR”) or Tamoxifen (“TAMR”). The database 

tables were created by editing the original spreadsheet files generated by the Affymetrix MAS5.0 

application. These comprised the same raw dataset that have been uploaded and are undergoing 

normalisaion and analysis by the group within Genesifter. However raw chip normalisation of 

Affymetrix scanner generated CEL files could also have been performed in ‘R’ before addition to 

the Access database instead of using MAS5.0. Each replicate was stored using Affymetrix ID for 

each probe as the primary key which allows comparisons on a gene level with other arrays in the 

query, along with information on signal intensity level, detection call assigned by MAS5.0 

(Present, Marginal or Absent) and p-value for this. Although AffylD and the corresponding 

signal level are the most important for analysis, the other fields were retained in the database so 

as not to lose information which could be required in future analyses.
C  M icrosoft A cross

Fte 6 *  view Insert Query Tools Window Help

e - o o . c .  i
.JAJkJ

1 Type e question lor help «

-  ! <*. Z  Al .  A  ©  4  •  o  „

fclQesign X

Gff] Create query in Design view 

5® Create query by usng wizard
d  Tables

AffylD
Signal - *
Detection

AffytD
Sg n all - J
Detection ^  I p-value

Star -i

Figure 2.17 -  G enerating a model com parison from  the M icrosoft Access database of Affym etrix 
m icroarray  models for data analysis.
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The query (comparison of models) is visible in I-10 by saving the query as ‘I10Q’. This 

automatically results in the Excel database sheet view in I-10 ‘seeing’ the project created and 

ready for subsequent analysis. However if normalisation has already been performed, existing 

pre-analysed datasets can be recalled from the database for immediate analysis by changing the 

query returned so it can be ‘seen’ in 110.

2.11 1-10 Coding Development

2.11.1 Visual Basic general principles

Visual basic is used to produce the interface which the user interacts with I-10. It also binds 

together and commands ‘R’ and the Access database to perform their respective functions when 

required.

Coding o f Visual Basic applications occurs through a graphical user interface using forms, as 

previously introduced. Although main components to generate applications can be chosen from a 

component menu in the Visual Basic application used to create applications, each component can 

then be further supplemented with code to give enhanced functionality. For example, the 

development of I-10 involved adding ‘R’ scripting to perform a particular function. Items of 

textual information are added to Visual Basic forms as labels with captions containing the text to 

be displayed -  however they are not designed for large areas of text. Forms also contain choices 

which in turn contain buttons which the user clicks to make a selection. Buttons which the user 

clicks to run a statistical procedure in I-10, are a key interface for any Windows application and 

Visual Basic permits their development. Forms can be opened by attaching them to buttons as 

shown in code 2.1. Clicking Command 1 (which represents the label hierarchical clustering) will 

open the form ‘hcacat’ which contains the coding and processing to perform hierarchical 

clustering.
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P r i v a t e  Sub C om m andl_C li ck  ()  
Dim frxnBP A s h c a c a t

S e t  ffrmBP — New h c a c a t  
frm B P. Show 

End Sub

Code 2.1: Inserting a button onto a form in Visual Basic. Coding to show initialisation of the button 
and the form to show - hierarchical clustering in this example. The private ‘sub’ statement informs 
visual basic of the start of a function and ‘end’ sub the end of code for the function.

Each form can be coded to include any function call to ‘R’, and also to manipulate data loaded 

into I-10 from the database. This versatility allows I-10 to be infinitely upgradeable to feature the 

most up to date ‘R’ libraries for data analysis. Indeed, I-10 continually evolved in this manner as 

the project progressed, with the latest functionality included being the clValid module which 

compares clustering method performance.

2.11.2 Syntax alterations from Visual Basic to ‘R’

At the start of each form, the connection to the R-(D)COM interface to ‘R’ needs to be initiated 

from Visual Basic as shown in code 2.2

Dim s c o n n  A s S ta tC o n n e c to r  
S e t  s c o n n  =  New S ta tC o n n e c to r  
s c o n n . I n i t  "R"

Code 2.2: Initialising a connection to ‘R’ via the R-(D)COM interface.

Commands to ‘R’ are passed as strings of text from Visual Basic. Early in the development of I- 

10 it was clear that certain ‘escape’ characters are also required to build the syntax which ‘R’ 

requires in its commands. An example character is the quotation mark. These are characters 

which cannot be passed via an interface as they have special meaning within the computer 

system. However they can ‘protected’ using the ASCII code Chr(34) which represents the

quotation mark. Commands sent directly to ‘R’ are always processed using the
\

‘sconn.EvaluateNoRetum’ command. This will become apparent throughout the following pages.
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2.11.3 Excel sheet component data handling

When data has been imported into Excel from Access using an OLEDB interface to Visual Basic, 

the worksheet needs to be sent to ‘R’ for processing. This is performed using various steps before 

analysis using ‘R’ libraries can begin. As shown in code 2.3, the datasheet form in I-10 is called, 

and that all rows and columns are looped through and stored in ‘dat’ until complete. The labels of 

the headings from the first row of the Excel spreadsheet and first column are stored and sent to 

‘R \
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S e t  d a t  = s p l . A c t iv e S h e e t  

i  =  2
Do U n t i l  d a t . c e l l s (1 ,  i )  = ""
i  =  i  + 1
Loop
c l  =  i  -  1 
i  *  2
Do U n t i l  d a t . c e l l s ( i ,  1) = ""
i  = i  + 1
Loop
rw = i  -  1 
c e x v a l  = 0 .1

Dim R l ( 1 0 ,  5) A s D o u b le  
Dim r 6  A s V a r ia n t  
v a r s  =  rw

cnam e = C h r(3 4 ) & " la b s"  & C h r(34)

tmp = " l a b s < - c ("
F o r  j  = 2 To c l

r 5  =  Chr (3 4 ) & "i__" & d a t . c e l l s  (1 ,  j )  & C h r(3 4 )
I f  j  < c l  Then tmp = tmp & r 5  & " ,"
I f  j  =  c l  Then tmp = tmp & r 5  

N e x t  j
tmp a* tmp & ") "
T e x t l . T e x t  = tmp
s c o n n . E v a lu a te N o R e tu r n  ( tmp)

' c r e a t e  d a t a  m a tr ix
F o r  i  =  2 To v a r s  'm f l .L a s t C o l

cnam e = Chr (3 4 ) & & d a t . c e l l s ( i ,  1) & Chr (34 )
tmp =  cnam e & " < - c ("

F o r j  a# 2 To c l
r2  = d a t . 0 6 1 1 8 (1 , j )
I f  j  < c l  Then tmp = tmp & r2  & " ,"
I f  j  =  c l  Then tmp = tmp & r2  

N e x t  j  
tmp =  tmp & ")"  
s c o n n . E v a lu a te N o R e tu r n  ( tmp)

N e x t  i

tmp2 ss " C a rC -d a ta . fra m e ( l a b s , " '
F o r  i  =  2 To v a r s

I f  i  < v a r s  Then tmp2 = tmp2 & & d a t .  c e l l s  ( i ,  1) &
If i  ss v a r s  Then tmp2 = tmp2 & " i_ "  & d a t . 0 6 1 1 8 (1 ,  1)

N e x t  i
' tmp2 = tmp2 & "row .nam es = ” & C h r(3 4 ) & 1 & C h r(3 4 ) & ")"  
tmp2 = tmp2 & ")"  
s c o n n . E v a lu a te N o R e tu r n  ( tm p2) 

s c o n n . E v a lu a te N o R e tu m  (" ro w .n a m es(C a r) = la b s " )

Code 2.3: Transfering spreadsheet data from the Excel component of 1-10 to ‘R’.



The dataset is transferred to ‘R’ (to create a data matrix) using the R-(D)COM interface as 

previously described.

2.11.4 Profile viewer

A popular feature with users of I-10, also present in Genesifter, is a profile viewer that allows 

display o f expression o f a particular gene across the experimental arms of interest. Using part of 

the Excel sheet functionality in 1-10, individual probes can be analysed with the profile viewer. 

The individual spreadsheet cell containing the value of normalised intensity of the probe changes 

colour according to degree of increased or decreased expression level. For this to be effective and 

meaningful, the experimental arms to be compared are viewed in relation to a control arm which 

remains black throughout. The code to allow the colour ranging for the profile viewer is shown in 

code 2.4.

88



Slab ColourCells()
Dim t C e l l  A s O b je c t  
C o n st  c B la c k  A s B y te  =  1 
C o n st  cW h ite  A s B y te  = 2 
C o n st  cR ed  A s B y te  = 3 
C o n st  cG reen  A s B y te  -  4  

C o n s t  cDRed A s B y te  =  5 
C o n st  cD G reen A s B y te  = 6  

Dim fC o lo u r  
Dim b C o lo u r
F o r  E ach  t C e l l  In  A c t i v e S h e e t . U sed R an ge. C e l l s
I f  N o t I s N u m e r ic ( t C e l l  .V a lu e )  Then G0 T0  N extO ne
S e l e c t  C a se  t C e l l .V a l u e
C a se  - 1 2  To - 2
fC o lo u r  — c B la c k
b C o lo u r  = cG reen
C a se  - 2  To - 0 . 2 5
fC o lo u r  = cW h ite
b C o lo u r  =  cD G reen
C a se  - 0 . 2 5  To 0 .2 5
f C o lo u r  = cW h ite
b C o lo u r  — c B la c k
C a se  0 .2 5  To 2
fC o lo u r  =  cW h ite
b C o lo u r  =  cDRed
C a se  2 To 12
fC o lo u r  »  cW h ite
b C o lo u r  = cR ed
End S e l e c t
t C e l l . F o n t . C o lo r  In d e x  as fC o lo u r  
t C e l l . I n t e r i o r . C o lo r I n d e x  = b C o lo u r  
t C e l l . I n t e r i o r . P a t t e r n  = x l S o l i d  
N ex tO n e:
N e x t  t C e l l

E n d  S l a b

Code 2.4: Profile viewer. Code defining the colour to change a cell corresponding to a particular 
range of normalised intensity value to form the profile viewer in 1-10

2.11.5 Three-dimensional plotting using OpenGL

Using OpenGL, clustering results resulting from ‘R ’ scripts for pattern discovery can be 

visualised in 3D. The fundamental method calls crucial for operation are detailed in code 2.5. 2D 

plots are returned directly for the ‘R’ programming environment via the R-(D)COM interface and 

displayed in a separate window which is opened by ‘R \
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EnableOpenGL g lV ie w l.h d c  
glShadeM odel smSmooth ' Smooth S h ad in g  
g lE n a b le  g lc D e p th T e s t  ' D epth  T e s t in g  
glD ep th F u n c cfL E q ual ' The Type Of D epth  T e s t  
g lH in t  h t P e r s p e c t iv e C o r r e c t io n H in t , h m N icest ' Adds P e r s p e c t iv e  C a lc u la t io n s

' S e t  th e  l i g h t  s e t t i n g s  
Dim a f lL ig h tA m b ie n t (4) As G L flo a t  
Dim a f l L i g h t D i f f u s e (4) As G L flo a t  
Dim a f l L i g h t P o s i t i o n (4) As G L flo a t

'A m bient s e t t i n g s  
a f lL ig h tA m b ie n t (0) = 1 
a f lL ig h tA m b ie n t (1) = 0 .5  
a f lL ig h tA m b ie n t (2) = 0 .5  
a f lL ig h tA m b ie n t (3) = 1#

'D i f f u s e  s e t t i n g s
a f l L i g h t D i f f u s e (0) = 1# 
a f l L i g h t D i f f u s e (1) = 1# 
a f l L i g h t D i f f u s e (2) = 1# 
a f l L i g h t D i f f u s e (3) = 1# 

' P o s i t i o n  s e t t i n g s  
a f l L i g h t P o s i t i o n (0) = 0#  
a f l L i g h t P o s i t i o n (1) = 0# 
a f l L i g h t P o s i t i o n (2) = 2#  
a f l L i g h t P o s i t i o n (3) = 1#

'S e t  up l i g h t  i n  OpenGL and th e  d i r e c t i o n  (1pm) 
g l L ig h t f v  l t L i g h t l ,  lpm Am bient, a f lL ig h tA m b ie n t (0) 
g l L ig h t f v  l t L i g h t l ,  lp m D if fu s e , a f l L i g h t D i f f u s e (0) 
g lL ig h t f v  l t L i g h t l ,  lp m P o s it io n , a f l L i g h t P o s i t i o n (0)

'E n a b le  th e  l i g h t  
g lE n a b le  g l c L i g h t l  

B u ild F o n t  Me

g lC le a r C o lo r  R ed, G reen , B lu e ,  0

ReDim m at(rw  + 2 ,  rw + 2) 
ReDim la b (r w  + 2)

maxx = 0: maxy = 0: maxz = 0

For i  = 2 To rw + 1
I f  Abs(m axx) < A b s(m f2 . c e l l s ( i , 2 ) )  Then maxx = A b s(m f2 . c e l l s ( i , 
I f  Abs(m axy) < A b s(m f2 . c e l l s ( i , 3 ) )  Then maxy = A b s(m f2 . c e l l s ( i , 
I f  A bs(m axz) < A b s(m f2 . c e l l s ( i , 4 ) )  Then maxz = A b s(m f2 . c e l l s ( i , 

N ex t i

2 ) )
3 ) )
4 ) )

...Code 2.5 continued overleaf
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..Code 2.5 continued from previous page

For i  = 2 To rw + 1
m a t ( i  -  1 , 1) = (m f2 . c e l l s ( i , 2) / maxx) * 0 .5
m a t ( i  -  1 , 2) = (mf2 . c e l l s ( i , 3) / maxy) * 0 .5
m a t ( i  -  1 , 3) = (m f2 . c e l l s ( i , 4) / maxz) * 0 .5
l a b ( i  -  1) = mf2 . c e l l s ( i ,  1)

s p 3 . c e l l s ( i  -  1 ,  1) = mf2 . c e l l s ( i , 1) 
N ex t i

Me. Show

glM atrixM ode m m P rojection  
g lL o a d ld e n t i  t y

g lM atrixM ode mmMbdelView 
g lL o a d ld e n t i  t y

Do
D oE ven ts

I f  (N ot DrawGLScene Or K ey s(v b K ey E sca p e)) Then 
U n load  frm  

E ls e
S w ap B u ffers ( g lV ie w l . hdc)

D oE vents
End I f

Loop

Code 2.5: Initialising plotting function in OpenGL. Code highlighting the plotting characteristics of 
the plot and also the datasource to use to draw the 3D plot using results returned from ‘R’.

The glViewl method has several functions. Each function is called successively to enable 

different aspects o f functionality. To enable the user to use the keyboard to spin and turn the 3D 

scatter plot which is created instead of the mouse, the functions shown in code 2.6 is required.

' S e l e c t  The P r o j e c t io n  M a tr ix  
' R e s e t  The P r o j e c t io n  M a tr ix

1 S e l e c t  The M odelview  M a tr ix  
' R e s e t  The M odelview  M a tr ix
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I f  KeyCode = vbK eyR ight Then ' I f  R ig h t  Arrow P r e s s e d
y r o t  = y r o t  - 1 . 5  ' R o ta te  The S cen e  To The L e f t  b y  1 .5
End I f
I f  KeyCode = v b K eyL eft Then ' I f  L e f t  Arrow P r e s s e d  
y r o t  = y r o t  + 1 . 5  ' R o ta te  The S cen e To The R ig h t  b y  1 .5

End I f
I f  KeyCode = vbKeyPageDown Then ' I f  Up Arrow P r e s s e d  

s c a l e r  = s c a l e r  + 0 .2
End I f

I f  KeyCode = vbKeyPageUp Then ' I f  Down Arrow P r e s s e d  
s c a l e r  = s c a l e r  -  0 .2  

End I f

I f  KeyCode = vbKeyUp Then 
I f  lookupdow n = 50 Then 
lookupdow n = lookupdow n  

E ls e
lookupdow n = lookupdow n + 1 

End I f  
End I f

I f  KeyCode = vbKeyDown Then ' I s  th e  pageup  k ey  b e in g  p r e s s e d  
I f  lookupdow n = -5 0  Then ' I f  lo o k in g  down 50 d e g r e e s  no a c t io n  
lookupdow n = lookupdown  

E ls e
lookupdown = lookupdow n -  1 ' i f  more th a n  50 k eep  s u b t r a c t  1 

End I f  
End I f

I f  KeyCode = vbKeyL And N ot l p  Then 
l p  = True 
l i g h t  = N ot l i g h t  
I f  N ot l i g h t  Then

g lD is a b le  g lc L ig h t in g
E ls e

g lE n a b le  g lc L ig h t in g  
End I f  

End I f

I f  N ot KeyCode = vbKeyL Then 
lp  = F a ls e  

End I f

I f  KeyCode = vbKeyF And N ot fp  Then 
fp  = True
m F ilte r  = m F ilt e r  + 1 
I f  (m F ilte r  > 2 )  Then 

m F ilte r  = 0 
End I f  

End I f
DrawGLScene

Code 2.6: Keyboard control for 3D plot rotation. Code required enabling the user to rotate the 3D 
model using the keyboard instead of the onscreen buttons which can be chosen using the mouse.

' L Key B e in g  P r e s s e d  N o t H eld  
' l p  Becom es TRUE 
• T o g g le  L ig h t  TRUE/FALSE 
' I f  N ot L ig h t  
' D is a b le  L ig h t in g  
' O th erw ise  
' E n a b le  L ig h t in g

' Has L Key B een R e le a se d ?  
' I f  S o , l p  Becom es FALSE

' I s  F Key B e in g  P re ssed ?
' fp  Becom es TRUE 
' f i l t e r  V a lu e  I n c r e a s e s  By One 
' I s  V a lu e  G re a te r  Than 2?
' I f  S o , S e t  f i l t e r  To 0

' I f  pagedown k ey  b e in g  p r e s s e d  
' I f  a lr e a d y  up 50 d e g r e e s  no a c t io n

' i f  l e s s  th an  50 k eep  a d d in g  1
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The flexibility of OpenGL allows the user to specify the direction o f light and perspective for the 

model drawn to enhance viewing. Once the direction of ‘light’ shone against the model is created, 

the data to be plotted can be loaded together with the three dimensional axis.

P u b lic  F u n c tio n  DrawGLScene() As B o o lea n

g lC le a r  c lr C o lo r B u f f e r B it  Or c lr D e p th B u ffe r B it  ' C le a r  S c r e e n /D e p th  B u f fe r  
g lL o a d ld e n t i t y  ' R e s e t  The C u rren t M a tr ix

Red = b a c k c o l  And &HFF&
G reen = (b a c k c o l And &HFFOO&) \  &H100&
B lu e  = (b a c k c o l And &HFFOOOO) \  &H10000

g lC le a r C o lo r  R ed, G reen , B lu e ,  0

Dim x_m As G L flo a t  
Dim y_m As G L flo a t  
Dim z_m As G L flo a t  
Dim u_m As G L flo a t  
Dim v_m As G L flo a t  
Dim x tr a n s  As G L flo a t  
Dim ztra m s As G L flo a t  
Dim y t r a n s  As G L flo a t  
Dim s c e n e r o t y  As G L flo a t  
Dim s c e n e r o t x  As G L flo a t

F lo a t in g  P o in t  For Temp X, Y, Z, U And V V e r t ic e s

x tr a n s  = -x p o s  
z tram s = - z p o s  
y tr a n s  = -w a lk b ia s  -  0 . 2 5  
s c e n e r o t y  = 360# -  y r o t  
s c e n e r o t x  = 360# -  x r o t

U sed  For P la y e r  T r a m sla tio n  On The X A x is  
U sed  For P la y e r  T r a m sla tio n  On The Z A x is  
U sed  For B ou n cin g  M otion  Up And Down 
360 D eg ree  A n g le  For P la y e r  D ir e c t io n

Dim n u m tr ia m g les  As I n te g e r  1 I n te g e r  To H old  The Number Of T r ia n g le s

glM atrixM ode GL_PROJECTION 
g lL o a d ld e n t i  t y  
glM atrixM ode GL_MODELVIEW 
g lL o a d ld e n t i  t y
g l S c a l e f  s c a l e r ,  s c a l e r ,  s c a l e r

g lR o t a t e f  lookupdow n, 1 , 0 # , 0# 
g lR o t a t e f  s c e n e r o t y ,  0 # , 1 , 0# 
g lR o t a t e f  s c e n e r o t x ,  1 , 0 # , 0#

R o ta te  Up And Down To Look Up And Down 
R o ta te  D epend ing  On D ir e c t io n  o f  o b j e c t  
R o ta te  D epend ing On D ir e c t io n  o f  o b j e c t

Red = a x i s c o l  And &HFF&
G reen = (a o c isc o l And &HFF00&) \  &H100&
B lu e  = ( a x i s c o l  And &HFF0000) \  &H10000 
g lC o lo r 3 f  R ed, G reen , B lu e

...Code 2.  7 c o n t in u e d  o v e r l e a f

f i i s f i taiisgiJig M ^  -Tr .i r  r  wjs a m
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...Code 2.  7 c o n t in u e d  from p r e v i o u s  page

'draw x  a x i s
g lR a s te r P o s 3 f  1 , 0 ,  0 
a x la b  = " 1 " 
g l P r i n t  a x la b  
g lB e g in  b m L in eS tr ip  
g lV e r t e x 3 f  0 # , 0 # , 0# 
g lV e r t e x 3 f  0 . 7 ,  0# ,  0# 
glE nd

' P r in t  GL T ex t To The S creen

g lB e g in  b m L in eS tr ip  
g lV e r t e x 3 f  0 # , 0 # , 0# 
g lV e r t e x 3 f  - 0 . 7 ,  0# ,  0# 
glE nd

'draw y  a x i s

g lR a s te r P o s 3 f  0 ,  1 ,  0 
a x la b  = " 2  " 
g l P r i n t  a x la b  
g lB e g in  b m L in eS tr ip  
g lV e r t e x 3 f  0 # , 0 # , 0# 
g lV e r t e x 3 f  0 # , 0 . 7 ,  0# 
glE nd

' P r in t  GL T ex t To The S creen

g lB e g in  b m L in eS tr ip  
g lV e r t e x 3 f  0 # , 0 # , 0# 
g lV e r t e x 3 f  0 # , - 0 . 7 ,  0# 
g lE nd

'draw z a x i s

g lR a s te r P o s 3 f  0 , 0 ,  1 
a x la b  =  " 3 " 
g l P r i n t  a x la b  
g lB e g in  b m L in eS tr ip  
g lV e r t e x 3 f  0 # , 0 # , 0# 
g lV e r t e x 3 f  0 # , 0 # , 0 .7  
glE nd

' P r in t  GL T ex t To The S creen

g lB e g in  b m L in eS tr ip  
g lV e r t e x 3 f  0 # , 0 # , 0# 
g lV e r t e x 3 f  0 # , 0 # , - 0 . 7  
glE nd

cu b es  m at, l a b , rw

DrawGLScene = True ' Draw t i l l  co m p le te

End F u n c tio n

Code 2.7. Drawing of the 3D object from the dataset. Code enabling the plotting of the 3D data 
object.
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As shown in code 2.7, there are key methods within each statement which perform the drawing 

operations, using the data process in the ‘R’-generated data matrix.

A further method was required for text handling enabling individual gene labels in the bitmap to 

be created for the 3D plot as shown in code 2.8.

P u b lic  Sub B u ild F o n t(fr m  As Form)

Dim h fo n t  As Long ' Windows F on t ID

b a s e  = g lG e n L is t s (96) ' S to r a g e  For 96 C h a r a c te r s  ( NEW )

h fo n t  = C r e a te F o n t ( - 1 2 ,  0 , 0 , 0 ,  FW_BOLD, F a l s e ,  F a l s e ,  F a l s e ,  _
ANS I_CHARSE T , OUT_TT_PRECIS, CLIP_DEFAULT_PRECIS, ANTIALIASED_QUALITY, 
FF_DONTCARE Or DEFAULT_PITCH, " C ou rier  New")

S e le c t O b j e c t  g lV ie w l .h d c ,  h fo n t  ' S e l e c t s  The F on t C rea ted  ab ove

w glU seF on tB itm ap s g lV ie w l .h d c ,  3 2 , 9 6 , b a s e  1 B u ild s  96 C h a r a c te r s  from  32

End Sub

Code 2.8: Function to enable text to be displayed together with the plotted object.

The 3D objects on the plotting surface are displayed as cuboid points, each with different colour 

surfaces to enhance the 3D effect of a single light. The ‘sp3’ variable indicates the output vector 

from ‘R’ o f the clustering result for any given analysis method which has returned results as 

shown in code 2.9.
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Public Sub cubes(mat() As Single, ByRef lab() As String, rw As Integer)
Dim loop_m  As I n te g e r

For loop__m = 1 To rw -  1
I f  c h 2 . v a lu e  = 1 Then GoTo L3 E ls e  GoTo L2 L 3 :
I f  s p 3 . c e l l s ( lo o p _ m ,  3) 
g lC o lo r 3 f  0 . 5 ,  0 . 5 ,  1# 
x v a l  = m at(loop _m , 1 ) 
y v a l  = m at(loop _m , 2 ) 
z v a l  = m a t( lo o p  m, 3)

= "1" Then GoTo L2 E ls e  GoTo LI L 2 :
' S e t  The C o lo r  To B lu e  i n i t a l l y  

m at(loop_m , 1 ) = x v a l  
m at(loop _m , 2 ) = y v a l  
m at(loop_m , 3) = z v a l

g lC o lo r 3 f  0 # , 1 # , 0# 
g lB e g in  bmQuads

I f  c h i . v a lu e  = 1 Then
g lC o lo r 3 f  1 # , 1 # , 1#
I f s p 3 . c e l l s ( lo o p _ m , 2 )
I f s p 3 . c e l l s ( lo o p _ m , 2 )
I f s p 3 . c e l l s ( lo o p _ m , 2 )
I f s p 3 . c e l l s  (loop__m, 2 )
I f s p 3 . c e l l s ( lo o p _ m , 2 )
I f s p 3 . c e l l s ( lo o p _ m , 2 )
I f s p 3 . c e l l s ( l o o p _ m , 2 )
I f s p 3 . c e l l s ( lo o p _ m , 2 )

End I f

' Draw A Quad

= ii ii Then g lC o lo r 3 f 1 # , 0 # , 0 #
= n2  » Then g lC o lo r 3 f 0 # , 1 # , 0 #
= ii 2  ii Then g lC o lo r 3 f 0 # , 0 # , 1 #
= 11411 Then g lC o lo r 3 f 1 # , 0 # , 1 #
= 11511 Then g lC o lo r 3 f 0 # , 1 # , 1 #
= »6 " Then g lC o lo r 3 f 1 # , 1 # , 0 #
= n*7 11 Then g lC o lo r 3 f 0 .5 , 0 . 2 5 ,
= "8 " Then g lC o lo r 3 f 1 # , 0 .5 , 0

End I f

g lV e r t e x 3 f  x v a l ,  y v a l  -  0 . 0 2 ,  z v a l  -  0 . 0 2 '  B ottom  L e f t  Of The Quad Back) 
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l  -  0 . 02 , z v a l  -  0 . 02 ' B ottom  R ig h t  Of Quad)
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l , z v a l  -  0 . 0 2  ' Top R ig h t  Of The Quad Back)
g lV e r t e x 3 f  x v a l , y v a l , z v a l  -  0 . 0 2  ' Top L e f t  Of The Quad Back)

g lC o lo r 3 f  0 # , 0 # , 1# 1 S e t  The C o lo r  To B lu e
I f  c h i . v a lu e  = 1 Then

g lC o lo r 3 f  1 # , 1 # , 1#
I f s p 3 . c e l l s ( l o o p _ _m, 2 ) = it 11 Then g lC o lo r 3 f 1 # , 0 # , 0 #
I f s p 3 . c e l l s ( l o o p _ _m, 2 ) = ii2  ii Then g lC o lo r 3 f 0 # , 1 # , 0 #
I f s p 3 . c e l l s ( l o o p _ _m, 2 ) = 11311 Then g lC o lo r 3 f 0 # , 0 # , 1 #
I f s p 3 . c e l l s ( l o o p _ _m, 2 ) = 11411 Then g lC o lo r 3 f 1 # , 0 # , 1 #
I f s p 3 . c e l l s ( l o o p _ _m, 2 ) = 11511 Then g lC o lo r 3 f 0 # , 1 # , 1 #
I f s p 3 . c e l l s ( l o o p _ _m, 2 ) = 11611 Then g lC o lo r 3 f 1 # , 1 # , 0 #
I f s p 3 . c e l l s ( l o o p _ _m, 2 ) = 11711 Then g lC o lo r 3 f 0 .5 , 0 . 2 5 ,  0
I f s p 3 . c e l l s ( l o o p _ _m, 2 ) = iign Then g lC o lo r 3 f 0 .5 , 0 . 5 ,  0 . 5

End I f

' S e t  The C o lo r  To Green
g lV e r t e x 3 f  x v a l , y v a l , z v a l  ' Top R ig h t  Of The Quad Top)
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l , z v a l  ' Top L e f t  Of The Quad Top)
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l , z v a l  -  0 . 0 2  1 B ottom  L e f t  Of The Quad Top)
g lV e r t e x 3 f  x v a l , y v a l , z v a l  - 0 . 0 2  ' B ottom  R ig h t  Of The Quad Top)

...code 2.9 continued overleaf...
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...code 2 . 9  c o n t in u e d  from p r e v i o u s  page
g lC o lo r 3 f  1 , 0 . 5 ,  0# ' S e t The C o lo r  To Orange

I f  c h i .v a l u e  = 1 Then
g lC o lo r 3 f  1 # , 1 # , 1#
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = »i ̂  >> Then g lC o lo r 3 f  1 # , 0 # , 0#
I f  s p 3 . c e l l s ( l o o p  m, 2 ) = n2  H Then g lC o lo r 3 f  0 # , 1 # , 0#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = »3" Then g lC o lo r 3 f  0 # , 0 # , 1#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = •1411 Then g lC o lo r 3 f  1 # , 0 # , 1#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = "5" Then g lC o lo r 3 f  0 # , 1 # , 1#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = "6 " Then g lC o lo r 3 f  1 # , 1 # , 0#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = n'jii Then g lC o lo r 3 f  0 . 5 ,  0 . 2 5 ,  0
I f  s p 3 . c e lls ( lo o p _ _ m , 2 ) = IIQII Then g lC o lo r 3 f  0 . 5 ,  0 . 5 ,  0 . 5

End I f

g lV e r t e x 3 f  x v a l , y v a l  -  0 . 0 2 , z v a l ' Top R ig h t Of The Quad Bottom
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l  - 0 . 0 2 , z v a l 1 Top L e f t  Of The Quad B ottom
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l  - 0 . 0 2 , z v a l  - 3 . 02  'B ottom  L e f t  Of The Quad
g lV e r t e x 3 f  x v a l , y v a l  -  0 . 0 2 , z v a l  - 0 . 0 2 ' B ottom  R ig h t  Of The Quad
g lC o lo r 3 f  1 # , 0 # , 0# ' S e t  The C o lo r  To Red

I f  c h i . v a lu e  = 1 Then
g lC o lo r 3 f  1 # , 1 # , 1#
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = i» Then g lC o lo r 3 f  1 # , 0 # , 0#
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = 112 »• Then g lC o lo r 3 f  0 # , 1 # , 0#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = 11311 Then g lC o lo r 3 f  0 # , 0 # , 1#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = 11411 Then g lC o lo r 3 f  1 # , 0 # , 1#
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = 11511 Then g lC o lo r 3 f  0 # , 1 # , 1#
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = "6 " Then g lC o lo r 3 f  1 # , 1 # , 0#
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = 11711 Then g lC o lo r 3 f  0 . 5 ,  0 . 2 5 ,  0
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = ngii Then g lC o lo r 3 f  0 . 5 ,  0 . 5 ,  0 . 5

End I f

g lV e r t e x 3 f  x v a l , y v a l , z v a l ' Top R ig h t  Of The Quad F ro n t)
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l , z v a l ' Top L e f t  Of The Quad F ro n t)
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l  - 0 . 0 2 , z v a l  ' B ottom  L e f t  Of The Quad
g lV e r t e x 3 f  x v a l , y v a l  -  0 . 0 2 , z v a l ' B ottom  R ig h t  Of The Quad

g lC o lo r 3 f  1 # , 1 # , 0# ' S e t  The C o lo r  To Y e llo w
I f  c h i . v a lu e  = 1 Then

g lC o lo r 3 f  1 # , 1 # , 1#
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = 11 11 Then g lC o lo r 3 f  1 # , 0 # , 0#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = ii2 11 Then g lC o lo r 3 f  0 # , 1 # , 0#
I f  s p 3 . c e l l s ( lo o p _ m , 2 ) = 11311 Then g lC o lo r 3 f  0 # , 0 # , 1#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = 11411 Then g lC o lo r 3 f  1 # , 0 # , 1#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = 11511 Then g lC o lo r 3 f  0 # , 1 # , 1#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = 116 M Then g lC o lo r 3 f  1 # , 1 # , 0#
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = 11 *j 11 Then g lC o lo r 3 f  0 . 5 ,  0 . 2 5 ,  0
I f  s p 3 . c e l l s ( l o o p _ m , 2 ) = II g H Then g lC o lo r 3 f  0 . 5 ,  0 . 5 ,  0 . 5

End I f

g lV e r t e x 3 f  x v a l , y v a l  -  0 . 0 2 ,  z v a l  -  0 . 0 2 ' B ottom  L e f t  Of The Quad Back
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l  -  0 . 0 2 , z v a l -  0 . 0 2  'B ottom  R ig h t  Of The Quad Back
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l , z v a l  -  0 . 0 2 ' Top R ig h t Of The Quad Back
g lV e r t e x 3 f  x v a l , y v a l , z v a l  -  0 . 0 2 ' Top L e f t  Of The Quad Back

...code 2 . 9  c o n t in u e d  o v e r l e a f
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..code 2 . 9  c o n t in u e d  from p r e v i o u s  page

g lC o lo r 3 f  0 # , 0 # , 1#
I f  c h i . v a lu e  = 1 Then

g lC o lo r 3 f  1 # , 1 # , 1 #
I f s p 3 . c e l l s ( l o o p _m, 2 ) = 11  ̂II
I f s p 3 . c e l l s ( l o o p _m, 2 ) = n2  >1
I f s p 3 . c e l l s ( l o o p _m, 2 ) = 11311

I f s p 3 . c e l l s ( l o o p _m, 2 ) = 114 ii
I f s p 3 . c e l l s ( l o o p _m, 2 ) = 11511

I f s p 3 . c e l l s ( l o o p _m, 2 ) = "6 "
I f s p 3 . c e l l s ( l o o p _m, 2 ) = 117 ii
I f s p 3 . c e l l s ( l o o p _m, 2 ) = iign

End I f

' S e t  The C o lo r  To B lu e

Then g lC o lo r 3 f 1 # , 0 # , 0 #
Then g lC o lo r 3 f 0 # , 1 # , 0 #
Then g lC o lo r 3 f 0 # , 0 # , 1 #
Then g lC o lo r 3 f 1 # , 0 # , 1 #
Then g lC o lo r 3 f 0 # , 1 # , 1 #
Then g lC o lo r 3 f 1 # , 1 # , 0 #
Then g lC o lo r 3 f 0 .5 , 0 . 2 5 ,  0
Then g lC o lo r 3 f 0 .5 , 0 . 5 ,  0 . 5

g lV e r te x 3 f  x v a l  -  0 . 0 2 ,  y v a l ,  z v a l  ' Top R ig h t  Of The Quad L e f t
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l ,  z v a l  -  0 . 0 2  ' Top L e f t  Of The Quad L e f t
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l  -  0 . 0 2 ,  z v a l  - 0 . 0 2  ' B ottom  L e f t  Of The Quad L e f t
g lV e r t e x 3 f  x v a l  -  0 . 0 2 ,  y v a l  -  0 . 0 2 ,  z v a l  ' B ottom  R ig h t Of The Quad L e f t

g lC o lo r 3 f  1 # , 0 # , 1# 1 S e t  The C o lo r  To V i o l e t
I f  c h i . v a lu e  = 1 Then

g lC o lo r 3 f  1 # , 1 # , 1#
I f s p 3 . c e l l s ( lo o p _ m , 2 ) = 11  ̂II Then g lC o lo r 3 f 1 # , 0 # , 0 #
I f s p 3 . c e l l s ( l o o p  m, 2 ) = H2  »i Then g lC o lo r 3 f 0 # , 1 # , 0 #
I f s p 3 . c e l l s ( l o o p  m, 2 ) = 11311 Then g lC o lo r 3 f 0 # , 0 # , 1 #
I f s p 3 . c e l l s ( lo o p _ m , 2 ) = 114 ii Then g lC o lo r 3 f 1 # , 0 # , 1 #
I f s p 3 . c e l l s ( l o o p  m, 2 ) = 11511 Then g lC o lo r 3 f 0 # , 1 # , 1 #
I f s p 3 . c e l l s ( lo o p _ m , 2 ) = "6 " Then g lC o lo r 3 f 1 # , 1 # , 0 #
I f s p 3 . c e l l s ( lo o p _ m , 2 ) = 11711 Then g lC o lo r 3 f 0 .5 , 0 . 2 5 ,  0
I f s p 3 . c e l l s ( lo o p _ m , 2 ) = "8 " Then g lC o lo r 3 f 0 .5 , 0 . 5 ,  0 . 5

End I f

g lV e r t e x 3 f  x v a l , y v a l , z v a l  -  0 . 0 2  
g lV e r t e x 3 f  x v a l ,  y v a l ,  z v a l

0 . 0 2 ,
0 . 0 2 ,

z v a l
z v a l - 0 . 0 2

&H100&
&H10000

g lV e r t e x 3 f  x v a l ,  y v a l  -  
g lV e r t e x 3 f  x v a l , y v a l  -  

glE nd
Red = l a b e l  c o l  And &HFF&
G reen = ( l a b e l e d  And &HFF00&)
B lu e  = ( l a b e l e d  And &HFF0000) 
g lC o lo r 3 f  R ed, G reen, B lu e  
g lR a s te r P o s 3 f  x v a l ,  y v a l ,  z v a l  
la b z  = la b ( lo o p _ m ) 'm f2 .C e lls ( lo o p _ m  + 1 
I f  c h 3 .v a lu e  = 1 Then g l P r i n t  " " & la b z  
I f  c h 3 .v a lu e  = 

g l P r i n t  " " & la b z  
LI:

N ex t loop_m  
End Sub

Top R ig h t  Of The Quad R ig h t  
Top L e f t  Of The Quad R ig h t  
B ottom  L e f t  Of The Quad R ig h t  
B ottom  R ig h t  Of The Quad R ig h t

1)
& M H i p r in t  GL T ex t To The S creen  

0 And c h 4 .v a lu e  = 1 And s p 3 . c e l l s ( lo o p _ m ,  3) = "1" Then
& ii ii

Code 2.9: Selection of probes and colours available. Code to facilitate individual probes in clusters 
of interest to be highlighted in a particular colour.
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The associated coding required to implement clustering of the source data using the available ‘R’ 

statistical programming language will be examined in depth over the following sections.

2.11.6 Principal components analysis

One of the first steps to permit cluster analysis using PCA is passing the ‘Activesheet.spl’ data 

from the Excel spreadsheet component into ‘R’ where it is created as a data matrix as outlined in 

section 2.11.3. Principal components analysis is performed on the data matrix as follows, initially 

returning analysis results yet also facilitated availability for 3D-viewing as shown in code 2.10 

------------------------------------------------------------------------------------------------------------------------------------------------------

s c o n n . E v a lu a teN o R etu rn  ( " l ib r a r y  (MASS)")

s c o n n . E v a lu a teN o R etu rn  ( " l i b r a r y ( l a t t i c e ) ")

s t r 7  = " p c .c r  < -  prcom p(C ar)"

s c o n n . E v a lu a teN o R etu rn  (s t r 7 )

s c o n n . E v a lu a teN o R etu rn  " p r in t ( p c . c r ) "

s c o n n . E v a lu a teN o R etu rn  ( " c o lsC -d im (p c . cr $  r o t a t i o n ) ")

Code 2.10: Creating a principal components analysis plot Code required to be sent to ‘R’ to 
generate the plot from 1-10.

Within the PCA form, there is also the option to generate a scree plot allows the user to observe 

the individual fractions of total variance in the data as represented by each principal component.

This is performed as outlined in code 2.11.

s c o n n . E v a lu a teN o R etu rn  "w indow s()"
s tr 7 = " y < -p c .c r $ s d e v A2 " : sco n n .E v a lu a teN o R etu rn  ( s t r 7 )
str7 = " p ro p < -cu in su m (p c. c r $ s d e v A2 /s u m (p c . c r $ s d e v A2 ) ) " : s c o n n . E va lu ateN oR etu rn  ( s t r 7 )
str7 = " m < -m a x (y )": s c o n n . E va lu ateN oR etu rn  ( s t r 7 )
s tr 7 = " fc < -m * 0 .0 5 " : s c o n n . E va lu ateN oR etu rn  ( s t r 7 )
s t r 7 = " x < - b a r p lo t ( y , co l= "  & C hr(34) & "grey" & C hr(34) & ",
y l im = c ( 0 ,m +(m *0. 2 ) ) ) " :  sco n n .E v a lu a teN o R etu rn  ( s t r 7 )  '
s t r 7 = " t e x t ( x ,y + f c ,  ro u n d (p ro p , 2 ) ,  c e x  = 0 . 6 ,  ad j = NULL)":
s c o n n . E v a lu a te N o R e tu r n (s tr 7 )

Code 2.11: Generation of the scree plot for PCA analysis. Code required to be sent to ‘R’ from 1-10.
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The classical representation within ‘R’, which is generated in an ‘R’ window, is the biplot which 

shows the directions of the principal components in a two dimensional representation which can 

be difficult to visualise. The two dimensional representation is created as highlighted in code 2.12

s c o n n . E va lu a teN o R etu rn  "w indow s()"

s t r l  = " b i p lo t ( p c .c r ,  c h o ic e s  = 1 : 2  , c e x  = 0 .5 ,  s c a l e  = 1 )"  

s c o n n . E v a lu a teN o R etu rn  ( s t r l )

Code 2.12: Creation of a 2D PCA plot Code required to be sent to ‘R’ to generate the plot from I- 

10.

OpenGL can be used to plot a 3D representation of PCA results using the previously outlined 

OpenGL functions. This adds value to the way in which the results are interpreted by ‘R ’ using 

the R-(D)COM interface.

2.11.7 Self Organising Maps

Self organising maps forces the data into a preset number of groups based on which profiles 

within the data are similar, as previously outlined in Chapter 1. The option for Self Organising 

Maps is found under the Data Reduction menu in I-10. The data matrix is created as described 

previously for any given dataset loaded into I-10. However for Self Organising Maps, the x and y 

component relating to the number of groups the user wants the data to be forced into for the 

clustering needs to be specified. This is achieved by passing the value of the ‘Combo’ drop down 

box from the I-10 form options for Self Organising Maps into the string command script which is 

ultimately sent to ‘R’. Note the initialising of the ‘R’ connection and the automatic loop from 1 to 

20 to set up the combo 1 and combo2 box which is performed upon loading of the form as 

outlined in code 2.13.
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P riv a t©  Slab Form_Load ()
S e t  sco n n  = New S ta tC o n n e c to r  
s c o n n .I n i t  "R"
For i  = 1 To 20

Combo1 .A ddltem  ( i )
Com bo2.Addltem  ( i )

N ex t i
Combo1 . L is t ln d e x  = 1 
Combo2 .L i s t ln d e x  = 1

Code 2.13: Creating the user defined cluster number for SOM. Code to create the drop down boxes 
in 1-10.

When the form is loaded, the data is retrieved from the active Excel sheet and then sent to ‘R’ for 

subsequent SOM analysis as outlined in code 2.14.

s c o n n . E v a lu a teN o R etu rn  " l ib r a r y ( s o m )"

s t r 2  — " s r e s u l t  < -  som (C ar, xdim=" & C om bol.T ext & ", ydim=" & C om bo2.T ext & ", 
to p o l= "  & C h r(34) & "hexa" & C hr(34) & " ,n e ig h = "  & C h r(34) & " g a u ss ia n "  &
C h r(34) & ")"

scon n .E va lu ateN oR etu am  ( s t r 2 )

s t r 3  = " p l o t ( s r e s u l t ,  y lim = c("  & m in i & " ,"  & m axi & " ) )"  

s c o n n . E valuateN oR etuam  (s t r 3 )

■litilHiiy J.I

Code 2.14: Performing SOM analysis with a dataset Code sent to ‘R’ to perform the analysis from 
MO.

A typical display o f results from Self Organising Maps analysis in ‘R’ is show in figure 2.18.
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n=394

Figure 2.18: Self o rgan ising  m aps (SOM ) -  the d a tase t is divided into six profiles -  the n u m b ers  of 
p robes in each can be seen a t the top o f each box fo r each c luster o f profiles.

2.11.8 H ierarchical clustering

A fter passing  the  con ten ts  o f  ‘A ctivesheet .sp l  ’ to kR ’, hierarchical c lustering  can be perform ed. 

N o te  the requ irem en t as outlined in code 2.15 for loading o f  the  graphics, c luster and kR ’ stats 

libraries to perfo rm  hierarchical c lustering  and results  to be draw n as a heatm ap.
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s c o n n . E va lu ateN oR etu rn  ( " l ib r a r y  ( g r a p h ic s )" ) 

s c o n n . E va lu ateN oR etu rn  ( " r e q u ir e  ( c l u s t e r ) ") 

sco n n .E v a lu a teN o R etu rn  (" r e q u ir e  ( s t a t s ) " )  

sco n n .E v a lu a teN o R e tu rn  "x < -  a s .m a t r ix ( C a r ) "

s t r l  = "he < -  a g n e s ( d a i s y ( x ) , d i s s  = TRUE, , m ethod = " & C h r(34) & "com plete"  & 
C h r(34) & ")"

s t r l  = "he < -  h c l u s t ( d a i s y ( x ) , m ethod = " & C hr(34) & "average"  & C h r(34) & ")" 

s c o n n . E v a lu a teN o R etu rn  ( s t r l )

s c o n n . E v a lu a teN o R etu rn  "dend l < -  a s .d en d ro g ra m (h e) " 

s t r l  = "op < -  p a r (c e x  = 0 . 4 ,  f o n t  = 1 , f o n t . l a b  = 4 )"  

s c o n n . E va lu a teN o R etu rn  ( s t r l )

s t r l  = " p lo t ( h e ,  m ain = NULL, sub  = NULL, l a b e l s  = l a b s ,  h o r iz  = TRUE)"

Code 2.15: Generation of a hierarchical clustering heat map. Code sent to ‘R’ to generate the heat 
map.

2.11.9 Fuzzy analysis

After the data matrix has been created and sent to ‘R’ as outlined earlier, fuzzy clustering is 

performed on the dataset. To force the data into a given number of clusters, a combination box is 

again used to choose the cluster number and pass it into the string which is sent to ‘R’ via the R- 

(D)COM interface as the variable ‘clus’ as outlined in code 2.16.

c lu s  = Com bol. T ex t

s c o n n . E v a lu a teN o R etu rn  ( " l i b r a r y ( c l u s t e r ) ") 

s t r 7  = " fann yx  < -  fa n n y (C a r ,"  & c lu s  & ")" 

s c o n n . E v a lu a teN o R etu rn  (s t r 7 )

Code 2.16: Performing fuzzy clustering in ‘R’. Code sent to ‘R’ to generate clustered results from I- 

10.
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Once ‘str7’ has been sent to ‘R’ to process using fuzzy analysis, the output can be stored. For 

example I-10 creates a file listing all the Affymetrix probes and the clusters they have been 

assigned as a *.csv file into the root installation directory o f I-10. It is a two column file with 

Affymetrix probe ID in one column and the cluster number to which it has been assigned in the 

second column. This can then either be added into the database or ontological searching 

performed o f the genes within each cluster.

sco n n .E v a lu a teN o R e tu rn  (" fa n n y c < -  fa n n y x $ c lu s te r in g " )  

s c o n n . E va lu a teN o R etu rn  " se tw d ('"  & "C: /D e v e lo p m e n t /" & " ')"  

s c o n n . E va lu a teN o R etu rn  " g e tw d O "

sco n n .E v a lu a teN o R e tu rn  (" w r i t e .c s v ( f a n n y c ,  " & C hr(34) & " F u z z y o u tp u t. c sv "  &
C hr(34) & ")")

s t r 7  = "fannyx"
sco n n .E v a lu a teN o R e tu rn  ( s t r 7 )

s t r 7  = "summary ( fa n n y x )" 
sco n n .E v a lu a teN o R e tu rn  ( s t r 7 )

s t r 7  = " p lo t  ( fa n n y x , l a b e l s  = 2 , l i n e s  = 0 , s ta n d  = TRUE, w h ic h .p lo t s  = 1 , c e x  = 
1 , c o lo r  = TRUE, p lo t c h a r  = TRUE, c o l . p  = " & C h r(34) & "dark g reen "  & C h r(34) & 
")" ' c o l . c l u s  = i f ( c o l o r )  c ( 2 ,  4 , 6 , 3) e l s e  5 )"

s c o n n . E va lu a teN o R etu rn  (s t r 7)
For i  = 1 To c l u s

For j  = 1 To rw -  1
tmp3 — "fannyx$ m em bership [" & j  & " ,"  & i  & "]"  

x v  = sco n n .E v a lu a te (tm p 3 )  
mf2 . c e l l s ( j  + 1 , i + 1 ) = xv  
tmp3 = "fannyx$ c l u s t e r i n g  [" & j & "]"  
x v  = s c o n n . E v a lu a te (tmp3) 
m f 2 . c e l l s ( j  + 1 ,  5) = x v

On E rro r  GoTo error__h an dler  
mf2 . c e l l s ( 1 , i + 1 ) = i
mf2 . c e l l s ( j  + 1 , 1 ) = d a t . c e l l s ( j  + 1 , 1 )

N ex t j
c b l.A d d lte m  ( i )  ' f i l l  i n  combo b o x e s  f o r  3D s c a t t e r p l o t
cb 2 .A dd ltem  ( i )  
cb 3 .A d d ltem  ( i )

N ex t i

e r r o r _ h a n d le r : 
c b l . S e lT e x t  = "1" 
c b 2 . S e lT e x t  = "2" 
c b 3 .S e lT e x t  = "3"

Code 2.17: Plotting the Fuzzy clustering results and passing returned results to OpenGL for 
plotting.
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A plot o f the clusters and associated Affymetrix IDs from fuzzy clustering are drawn using the 

code shown in code 2.17, however the generated CSV file is also useful in that it fully defines 

cluster membership whereas some probes can overlap in the plot view in large datasets making 

interpretation difficult. The CSV file can be renamed and imported back into the Affymetrix 

database for future comparison with other analysis methods. Furthermore the cluster members 

can subsequently be plotted in 3D using the output from ‘R. Cluster membership is also 

displayed alongside the sample results column for each Affy ID as well as written to a file for the 

user to view or email to colleagues.

2.11.10 Partitioning around medoids (PAM)

Similar in syntax to Fuzzy clustering, an active worksheet ‘S p l’ is generated together with 

Affymetrix probe information according to cluster membership as shown in code 2.18.

c l u s  = Combo1 . T ex t

s t r 7  — " c l< -p a m (C a r ,"  & c lu s  & ") "

sco n n .E v a lu a teN o R e tu rn  ( s t r 7 )
sco n n .E v a lu a teN o R e tu rn  (" p a m lis t  < -  c l $ c lu s t e r in g " )
s c o n n . E v a lu a  teN oR eturn  " se tw d C "  & "C: /D e v e lo p m e n t /" & " ')  "
sco n n . E v a lu a  teN oR eturn  "getw dO  "
sco n n .E v a lu a teN o R e tu rn  ( " w r i t e .c s v ( p a m li s t ,  " & C h r(34) & "PA M output.csv" & 
C h r(34) & ")")

s c o n n . E v a lu a teN o R etu rn  ( " p l o t ( c l ,  l a b e l s = 3 ) ")

Code 2.18: Clustering using the PAM algorithm. Code passed to ‘R’ from 1-10.

The plot, also called using the syntax in the box above, is returned within an ‘R’ window to 1-10 

for viewing or saving however a list of the PAM Cluster membership is also included which 

could, for example, be used to compare to the Fuzzy-derived cluster list. The returned results are 

also available for visualisation in 3D using OpenGL in ‘R’.
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3.11.11 K-Means

As an alternative to PAM, K-Mean can also be implemented through I-10, again choosing cluster 

number where appropriate as outlined in code 2.19.

c l u s  = Combo1 . T ex t

s t r 7  = " c l< -k m ea n s(C a r ,"  & c lu s  & ")"  

s c o n n . E v a lu a teN o R etu rn  ( s t r 7 )
s c o n n . E v a lu a teN o R etu rn  (" k m e a n s lis t  < -  c l$ c lu s t e r in g " )  
sco n n . E v a lu a  teN oR eturn  " se tw d ('"  & " C :/D eve lop m en t/"  & " ')  " 
sc o n n . E v a lu a  teNoRe tu r n  "getw d O "
sco n n .E v a lu a teN o R e tu rn  ( " w r i t e .c s v ( k m e a n s l i s t ,  " & C hr(34) & "K m eansoutput. csv "  & 
C h r(34) & ")")

s c o n n . E va lu a teN o R etu rn  ( " p lo t ( x ,  c o l  = c l $c l u s t e r ) ")

Code 2.19: Clustering using K-Means in 1-10. Code passed to ‘R’ to perform K-Means from 1-10.

2.11.12 Multidimensional Scaling (MDS)

MDS is located within the Class Prediction menu options. The MDS plot is generated within a 

panel in the form within I-10, instead of a separate window as shown in code 2.20. This was 

required so that the size of the Affymetrix probe ID text displayed against an MDS plot could be 

altered for clarity to as the probes can overlap making interpretation difficult.

s c o n n . E v a lu a  teN oR eturn  ( " l ib r a r y  (MASS) ") 
s c o n n . E v a lu a  teN oR eturn  (" l ib r a r y  ( s t a t s )  ")

s t r 7  = " d s < -d is t (C a r )  "
' s c o n n . E v a lu a teN o R etu rn  ( " d s < -d is t (C a r )  ") 
s c o n n . E va lu a teN o R etu rn  (s t r 7 )
s c o n n . E va lu a teN o R etu rn  " c t< -c m d s c a le (d s , k = 3 )"  
sco n n .E v a lu a teN o R e tu rn  (" lo c  < -  c m d s c a le (d s , k = 3 )" )  
sco n n .E v a lu a teN o R e tu rn  ("x < -  l o c [ , l ] " )  
s c o n n . E v a lu a teN o R etu rn  ( "y < -  - l o c [ ,2 ] " )

s t r 5  = " p lo t ( x ,  y ,  type=" & C hr(34) & "n" & C hr(34) & ", c e x  = " & c e x v a l  & ")"  

s c o n n . E va lu a teN o R etu rn  (s t r 5 )

s t r 5  = " t e x t ( x ,  y ,  l a b s ,  c e x  = " & c e x v a l  & ")"  

s c o n n . E va lu ateN oR etu rn  (s t r 5 )

Code 2.20: Performing multidimensional scaling in 1-10. Code passed to ‘R’ from 1-10.
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The size of the Affymetrix probe ID’s are plotted in a font which can be decreased and increased 

in size using two buttons above the plot output. The larger and smaller text for the probes only 

differ by either subtracting (to make the font smaller) or adding (to make the font larger) a value 

of 0.1 before the plot is re-drawn to reflect the changes. Code 2.21 highlights method which is 

used to achieve this functionality.

c e x v a l  = c e x v a l  + 0 . 1

s t r 5  = " p lo t ( x ,  y ,  typ e= "  & C h r(34) & "n" & C hr(34) & ", c e x  = " & c e x v a l  & ")"  

s t r 5  = " t e x t ( x ,  y ,  l a b s ,  c e x  = " & c e x v a l  & ")"  

s c o n n . E va lu a teN o R etu rn  (s t r 5 )

Code 2.21: Enabling alteration of text size in a Multidimensional analysis plot

2.11.13 Correspondence Analysis

In comparison to previous methods, implementation of Correspondence analysis is very similar 

however involves additional libraries as highlighted in code 2.22. It should be apparent at this 

stage that ‘R’ uses a very similar syntax to perform each of the clustering methodologies. The 

individual functions and algorithms are hidden in their respective libraries. The user therefore 

does not need to manipulate any mathematics to return a result.

s c o n n . E v a lu a  teN oR eturn  ( " l ib r a r y  (MASS) ") 
s c o n n . E v a lu a  teN oR e tu rn  (" l ib r a r y  ( s t a t s )  ") 
s c o n n . E v a lu a  teN oR eturn  ( " l ib r a r y  (g r id )  ") 
s c o n n . E va lu ateN oR etu rn  ( " l i b r a r y ( l a t t i c e ) ")

s t r 7  = " c t< -c o r r e s p (C a r [ ,2 : "  & stm p & " ] ,  n f  = 3 )"  
s c o n n . E va lu a teN o R etu rn  (s t r 7 ) 
s t r 7  = " c l < - t r e l l i s . p a r . g e t ()"  
s c o n n . E va lu a teN o R etu rn  (s t r 7 )
s t r 7  = " c l$ c o l< -"  & C hr(34) & "w hite"  & C hr(34) 
s c o n n . E va lu a teN o R etu rn  ( s t r 7 )

sco n n .E v a lu a teN o R e tu rn  ( " p l o t ( c t ,  c l $ c o l ) ")

Code 2.22: Code passed to ‘R’ in 1-10 to perform correspondence analysis.
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2.11.14 Clustering technique comparison

Before a statistical basis for comparing cluster techniques was developed, a way of comparing 

clustering output using colour schemes over layed alongside results was implemented in I-10 

under the menu ‘Advanced’.

However, recent incorporation o f pvClust into I-10 facilitates bootstrap analysis to reveal which 

clusters (according to a specific technique e.g. HCA), and within this ultimately which genes, are 

most significant by setting a confidence level, for example p value = 0.05 or p=0.001. Typically a 

p value of 0.05 is chosen. Significant clusters by bootstrap analysis will be in revealed in red. 

This was implemented in I-10 as highlighted in code 2.23.

s c o n n . E v a lu a teN o R etu rn  (Nwdata < -  t ( s c a l e (t ( C a r ) ) ) )

s c o n n . E v a lu a  teN oR etu rn  (h r < -  h c l u s t  (a s .  d i s t ( l - c o r ( t  (Nwdata) , me th od =  " p ea r so n " )) , 
method= " c o m p le te " ))

s c o n n . E v a lu a  teN oR eturn  (he < -  h c lu s  t (  a s .  d i s t ( l - c o r  (Nwdata, method=" sp earm an " )) , 
m e th o d = " co m p lete" ))

s c o n n . E v a lu a teN o R etu rn  (heatm ap(C ar, R o w v = a s.d en d ro g ra m (h r),
C o lv = a s . d e n d r o g ra m (h e ), co l= m y. c o l o r F c t () , sca le= " ro w " ))

sco n n .E v a lu a teN o R e tu rn  (h tr e e  < -  c u t r e e ( h r ,  h = m a x (h r $ h e ig h t ) /I .5 )

s c o n n . E v a lu a teN o R etu rn  (m ytreeh c < -  sa m p le (r a in b o w (2 5 6 ) ) )

s c o n n . E v a lu a teN o R etu rn  (m ytreeh c < -  m y c o lh c [ a s .v e c t o r ( h t r e e ) ]
heatm ap(C ar, R ow v=as. d en d ro g ra m (h r ), C o lv = a s . d en d ro g ra m (h e ), co l= m y . c o lo r F c t  ( ) ,  
sc a le = " r o w " , R o w S id eC o lo rs= m y co lh c))

Code 2.23: Revealing hierarchical clustering probes at a predetermined level using ‘R’ in 1-10.

The library pvClust can perform validation using bootstrap analysis using any of the previously 

outlined clustering techniques as detailed in code 2.24.
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sconn.EvaluateNoReturn (library(pvclust))
sconn.EvaluateNoReturn ((pv <- pvclust(scale(t(Car)), method.dist="correlation", 
method.hclust="complete", nboot=100))
sconn.EvaluateNoReturn (plot(pv, hang=-l); pvrect(pv, alpha=0.95))
sconn.EvaluateNoReturn (clsig <- unlist(pvpick(pv, alpha=0.95, pv="au", 
type="geq", max. only=TRUE) $ clusters) )
sconn.EvaluateNoReturn (dend_colored <- dendrapply(as.dendrogram(pv$hclust), 
dendroCol, keys=clsig, xPar="edgePar", bgr="black", fgr="red", pch=20))
sconn.EvaluateNoReturn (heatmap(Car, Rowv=dend_colored, Colv=as.dendrogram(he), 
col=my.colorFct(), scale="row", RowSideColors=mycolhc))

J “ -v_- ■-------------- |---------| ----|—■---- ■ ------- |---- |-----—--- ——. .

C ode 2.24: Assessing significance o f clusters revealed th rough  h ierarch ical c lustering  in 1-10.

A typical den d ro g ram  plotted for H C A  results for an individual cluster is show n  here. The 

significant genes by bootstrap  analysis  are revealed and indicated by red boxes as h ighligh ted  in 

figure 2.19.

Cluster dendrogram with AU/BP values (%)

-au -tift.

o

CO
o

CMO

O

o
o

D istance correlation 
Cluster method comDlete

F igure 2.19 D endogram  of an individual c lu ster revealed by h ierarch ica l c lustering  a t a significance 
level o f p value=0.05 using the pvC lust lib ra ry  in ‘R ’ from  1-10.
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Each clustering method can be compared against each other. For example, PAM can be compared 

against hierarchical clustering. This is highlighted in code 2.25.

sco n n .E v a lu a teN o R etu rn  (N w d ist < -  a s . d i s t ( l - c o r ( t ( C a r ) , m eth od = " p earson " )))

s c o n n . E va lu ateN oR etu rn  (pamy < -  p a m (N w d ist, m a x (m y c l)))

s c o n n . E va lu ateN oR etu rn  (mycolkm < -  sa m p le (r a in b o w (2 5 6 ) ) )  
sco n n .E v a lu a teN o R etu rn  (mycolkm < -  m y c o lk m [a s .v e c to r (p a m y $ c lu s t e r in g ) ] 
h eatm ap (m yd ata , R ow v= d en d _co lored , C o lv = a s . dendrogram (he) , co l= m y . c o l o r F c t () , 
sca le= " ro w " , R ow SideC olors=m ycolkm ))

Code 2.25: Comparing PAM results against hierarchical clustering using ‘R’ from 1-10.

Self organising maps can also be compared against hierarchical clustering as highlighted in code 

2.26.

s c o n n . E v a lu a  teN oR eturn  ( l ib r a r y  (som ))

s c o n n . E v a lu a  teNoR e tu rn  (y  < -  t  ( s c a l e  ( t  (m yd ata )) ) )

s c o n n . E v a lu a  teNoR e tu rn  (y .so m  < - som (y , xdim  = 2 ,  ydim  = 3 , t o p o l  = " h exa" ,
n e ig h  = " g a u s s ia n " ))

s c o n n . E v a lu a teN o R etu rn  ( p l o t ( y . som ))

s c o n n . E v a lu a teN o R etu rn  (s o m c lid  < -  a s . n u m e r ic ( p a s t e (y . s o m $ v is u a l[ , 1 ] ,  
y  .so m $ v isu a l  [ , 2 ] , sep = ,,u) ) + l )

s co n n .E v a lu a teN o R e tu rn  (m ycolsom  < -  sa m p le (r a in b o w (2 5 6 ) ) )
s c o n n . E va lu a teN o R etu rn  (m ycolsom  < -  m y co lso m [so m clid ]
h eatm ap (m yd ata , R ow v= dend _colored , C o lv = a s . d en d ro g ra m (h e ), co l= m y . c o l o r F c t ( ) ,  
sc a le = " r o w " , R ow S id eC olors=m ycolsom ))

Code 2.26: Comparing self organising maps results against hierarchical clustering from 1-10.

Furthermore, it is also possible to compare principal components analysis with self organising 

maps as shown previously with the other clustering techniques. This is outlined in code 2.27.
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s c o n n . E va lu ateN oR etu rn (p ea  < -  prcom p(C ar, s c a le = T ) )

s c o n n . E va lu ateN oR etu rn (su m m ary(p ea))

s c o n n . E va lu ateN oR etu rn ( l i b r a r y ( s c a t t e r p l o t 3 d ) )

s c o n n . E va lu ateN oR etu rn ( s c a t t e r p lo t 3 d ( p c a $ x [ , 1 : 3 ] ,  p ch = 2 0 , co lo r= m y co lso m ))

Code 2.27: Comparing principal components analysis with self organising maps from 1-10.

Although the ‘scatterplot3d’ library is available in ‘R’ in conjunction with pvClust, it is not as 

powerful as that which can be produced by openGL in I-10. However it is an interesting module 

to allow plotting and comparison o f the clustering techniques in a relatively small plot. The 

‘canvas’ can be set to compare multidimensional scaling, hierarchical cluster, self organising 

maps and PAM as outlined in code 2.28.

s c o n n . E va lu a teN o R etu rn  ( lo c  < -  cm d sca le  (C ar, Jc = 3 ) )

s c o n n . E v a lu a teN o R etu rn  ( x l l ( h e i g h t = 8 , w id th = 8 , p o in t s i z e = 1 2 ) ; p a r (m fr o w = c (2 , 2 ) ) )

s c o n n . E va lu a teN o R etu rn  ( p l o t ( l o c [ , 1 : 2 ] ,  p ch = 20 , co l= m y co lso m , main="MDS v s  SOM 
2D"))

sco n n .E v a lu a teN o R e tu rn  ( s c a t t e r p l o t 3 d ( l o c ,  p ch = 20 , co lo r= m y co lso m , main="MDS v s  
SOM 3D"))

s c o n n . E va lu a teN o R etu rn  ( s c a t t e r p l o t 3 d ( l o c ,  p ch = 20 , c o lo r = m y tr e e h c , main="MDS v s  
HC 3D"))

Code 2.28: Plotting results comparison of all four clustering techniques using 1-10.

The associated comparative plot is produced in an ‘R’ graphics window which can be saved to 

PDF or as an image file for use in presentations or publications. An example of how typical 

results are presented can be seen in figure 2.20.
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F igure 2.20 -  C o m p arin g  results o f each clustering  m ethod by overlaying the  co lou r schem e of 
clusters determ ined  using each m ethod using the scatterp lo t3d  lib ra ry  in ‘R ’ from  1-10.

2.11.15 CIValid

Cl Valid w as one  o f  the final m odules added to I - 10. It w as released to the kR ' project co m m u n ity  

in January  2008 to assess  and clarify the best c lustering strategy for any given dataset. A lthough  

it had been so m etim e  since a final version o f  I - 10 w as released and testing within  T en o v u s  had 

a lready begun, C IV alid  was deem ed to be powerful enough to w arran t its addition  to I - 10 during  

the final s tages o f  this project. Furtherm ore , its inclusion re inforces the key benefit  o f  I - 10 in that 

1-10 is able to have  new  ‘R ’ library m odules  inserted as required, using a new  Form  created  in 

Visual Basic to control the different param eters  supplied for any given library. This  w as achieved 

in the sam e w ay  as the o ther functions in I - 10 w ere created as previously  outlined.

C IValid conta ins  functions for validating the results o f  cluster analysis. This is ach ieved  by three 

d ifferent m easures  -  ‘ In ternal’, ‘S tab ili ty ’ and ‘B io log ica l’. An in depth exam ple  is show n in 

C hap ter  3 w here  CIValid  is used in the contex t o f  exploring  endocrine resistance, w here  this 

section focuses upon the coding  actually  needed to allow  the user to access the C IV alid  m ethods.
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An early decision the user needs to make to implement CIValid is to specify the clustering 

method the user wishes to compare, which encompasses those already implemented in I-10. 

Other decisions which need to be made for analysis with CIValid is the upper cluster number 

which the algorithm will force the data into using the different clustering procedures -  starting at 

1 with a maximum value of 20 clusters available. This is set using a dropdown box in I-10 as 

used previously, for example when specifying the number o f groups for SOM, PAM or fuzzy 

clustering.

Due to the way the string is built to be passed to ‘R’ via the R-(D)COM interface and the 

performance requirements o f the library, it is only possible to compare up to three clustering 

types at once. This limit was determined based on an initial testing of a significant Affymetrix 

probe list of 1000 probes during testing. A dataset comprising of larger numbers of significant 

probes or more clustering types compared in one run can take many hours to complete, especially 

if a high upper cluster number is chosen. Consequently, the form developed in this thesis has two 

buttons, depending upon whether 2 or 3 clustering techniques are to be compared, for example, 

hierarchical clustering and PAM or hierarchical clustering, PAM and self organising maps. There 

are drop down box selections in I-10 for each as shown in figure 2.21, within the cluster 

comparison tool in class prediction. Results are output to the installation directory for I-10 in a 

text file in a similar way as returned from the clustering procedures previously outlined. This 

approach was chosen as opposed to displaying the results within I-10, as the extended processing 

time required I-10 to hang while waiting for over an hour for a result to be returned. Creating the 

files in a directory had no such issues and allows the user to use other windows applications 

while I-10 runs in the background. However it should be noted that CIValid is a computing 

intensive library and performs best on high specification computers.
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F igure 2.21 -  A vailable user selections to select au tom atic  clustering  and  com parison  o f clustering  
resu lts w ithin 1-10 using CIValid.

T he  functions h ighligh ted  in code 2.29 show s exam ples  o f  com paring  hierarchical c lustering, K- 

M eans  and P A M  as applied to a 3-w ay g roup m icroarray  experim ent.  For clarification, as show n 

previously, code  2 .29  outlines m ethod s ta tem ents  w hich  populate  the drop dow n boxes. All three 

types o f  validation  available  in CIValid ( ‘ In ternal’, ‘S tab ili ty ’ and ‘B io log ica l’) are perform ed in 

one step, ho w ev er  it w ould  also be possib le  to run them  separately.

(a) For Internal validation , the Library is loaded, and the Excel data frame ‘C a r ’ is ensured  to  be a 

matrix  and given experim ental arm headings. The headings can be typed into text boxes  in visual 

basic and sent to ‘R ’. The num ber o f  co lum ns to process is then indicated and the clustering 

m ethods specified (again  from drop dow n boxes). V alidation  m ethod is set to be internal. The 

sum m ary  o f  results is written to a file. Then the results are plotted through the ‘R ’ w indow . This  

can be saved as a PDF or  an image.
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s c o n n . E v a lu a teN o R etu m (l i b r a r y (c l v a l i d )

s c o n n . E v a lu a teN o R etu m (m y r e su lt  < -  a s . m a tr ix (C a r [ , - 1 ] ) )

s c o n n . E v a lu a teN o R etu m (e x p r e s s  < -  m y r e s u lt [ ,  c("CON", "TAMR", "FASR")])

s c o n n . E v a lu a teN o R etu m  ( in t e r n  < -  c l V a l i d ( e x p r e s s , 2 : 1 2 ,  c lM eth od s = 
c ( " h i e r a r c h ic a l" , "kmeans", "pam"), v a l i d a t io n  = " in te r n a l" )

s c o n n . E v a lu a teN o R etu m ( w r i t e . c s v ( i n t e r n , " in t e r n . c s v " )

s c o n n . E v a lu a teN o R etu m (op < -  p a r (n o . r e a d o n ly  = TRUE))

s c o n n . E v a lu a teN o R etu m (par(m frow  = c ( 2 ,  2 ) ,  mar = c ( 4 ,  4 ,  3 ,  1 ) ) )

s c o n n . E v a lu a teN o R etu m ( p l o t ( i n t e r n ,  le g e n d  = FALSE))

s c o n n . E v a lu a teN o R etu m  ( p l o t ( n C l u s t e r s ( i n t e r n ) , m e a s u r e s ( in te r n , "D unn")[, 
ty p e  = "n", sixes = F , x la b  — "", y la b  = ""))

, 1 ] ,

s c o n n . E v a lu a te N o R e tu m  ( le g e n d ( " c e n te r " , c lu s te r M e th o d s  ( in t e r n )  , c o l  = 1 : 9 ,  
= 1 : 9 ,  pch  = p a s t e ( 1 : 9 ) ) )

l t y

s c o n n . E v a lu a te N o R e tu m (par ( o p ) )

Code 2.29: Comparing hierarchical clustering, K-means and PAM using the ‘R’ library Clvalid.

(b) The stability validation is also performed with parameters sent to the algorithm as outlined in 

code 2.30. The data frame has already been created at this point as shown previously. The same 

clustering techniques are compared for stability as shown in code 2.30.

s c o n n . E v a lu a teN o R etu m  ( s ta b  < -  c l V a l i d ( e x p r e s s , 2 : 6 ,  c lM eth od s = 
c ( " h i e r a r c h ic a l" , "kmeans", "pam"), v a l i d a t io n  = " s t a b i l i t y " ) )

s c o n n . E v a lu a teN o R etu m  (par(m frow  = c ( 2 ,  2), mar = c ( 4 ,  4 ,  3 ,  1 ) ) )

s c o n n . E v a lu a teN o R etu m  ( p l o t ( s t a b , m easure = c("APN", "AD", "ADM"), le g e n d  = 
FALSE))

s c o n n . E v a lu a teN o R etu m  ( p lo t ( n C lu s t e r s ( s t a b )  , m e a s u r e s (s ta b , "APN")[ ,  , 1 ] ,  ty p e  
= "n", a x e s  = F , x la b  = "", y la b  = ""))

s c o n n . E v a lu a teN o R etu m  ( le g e n d ( " c e n te r " , c lu s t e r M e t h o d s ( s t a b ) , c o l  = 1 : 9 ,  l t y  = 
1 : 9 ,  pch  = p a s t e ( 1 : 9 ) ) )

s c o n n . E v a lu a teN o R etu m  (par ( o p ) )

Code 2.30: Assessing stability of the clustering algorithms hierarchical clustering, K-means and 
PAM.
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(c) The biological validation step is a very powerful feature of the library. It uses Biobase, 

Annotate and the Affyl33A modules to annotate and explore the clustering results based on 

ontology. Using all Go ontological functional categories, they are applied to the clusters 

generated by hierarchical, K-Means or PAM algorithm as highlighted in previous steps. A 

graphical output is generated as outlined in figure 2.22 with the resulting ‘biological validation’ 

plot highlighted in code 2.31.

s c o n n . E v a lu a teN o R etu m  ( i f  (r e q u ir e (" B io b a se " )  && r e q u ir e (" a n n o ta te " )  && 
require("G O ") && r e q u ir e (" h g u l3 3 a " ) ) { b io  < -  c I V a l id ( e x p r e s s , 2 : 6 ,  c lM eth od s = 
c ( " h ie r a r c h ic a l" , "km eans", "pam"), v a l i d a t io n  = " b io lo g ic a l" ,  a n n o ta t io n  = 
" h g u l3 3 a " , G O category = " a l l " ) )

s c o n n . E v a lu a teN o R etu m  ( i f  ( e x i s t s ( " b i o " ) ) o p t im a lS c o r e s ( b io ) )

s c o n n . E v a lu a te N o R e tu m  ( i f  ( e x i s t s ( " b i o " ) ) p l o t ( b i o ,  m easure = "BHI", leg en d L o c  
— " t o p l e f t " ) )

sc o n n .E v a lu a te N o R e tu m  ( i f  ( e x i s t s ( " b i o " ) ) p l o t ( b i o ,  m easure = "BSI ") )

Code 2.31: Producing biological validation of clustering results to assess ontologically the best 
performance of each clustering technique.
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F igure 2.22 -  E xam ple biological validation o u tp u t p roduced  in ‘R ’ displayed via 1-10. T he effect of 
increasing  c lu s te r n u m b er against BSI score accord ing  to individual c lustering  techn ique can be 
observed.

Individual c lu s te r  m em bersh ip  inform ation produced  by clvalid can be extracted  and written  to  a 

file as outlined in code  2.22.

sconn.EvaluateNoRetum (he <- clusters(bio, "hierarchical") 

sconn.EvaluateNoRetum (write.csv(he,"Biohcclustering.csv")

Code 2.22: W ritin g  a fde o f h ierarch ical c lustering  resu lts from  the lib ra ry  clvalid.

The C SV  sp readsheet  files can also be easily  added into the database as created and nam ed  

appropria te ly  for future reference from the analysis.

A full listing o f  all visual basic code  w hich com prises  I-IO can be found on the accom pany ing  

C D -R O M  attached to the rear cove r  o f  this thesis. A lthough I-IO is con tinually  being  refined as
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new libraries are introduced, a demonstration of the I-10 application can also be found on the 

CD-ROM together with a small example dataset.

2.12 1-10 Application Compilation for Distribution

Visual basic applications are compiled using the ‘Make EXE’ command from the file menu in the 

Visual Basic design application. Each time the application is compiled for testing using the ‘play’ 

function, this is a true reflection o f the behaviour of the application when compiled and run 

directly from the EXE file. I-10 as a compiled executable application developed in Visual Basic 

has evolved over the last 3 years.

Version 1.0 -  Beta release -  Spreadsheets pasted into Worksheet

Version 1.1 -  First development release -  Addition of Access database to supply data, addition 

of pvClust

Version 1.2 -  Integration of new cluster comparison library -  cIValid

When compiled, the EXE file is approximately 3MB in size. However its function is dependent 

on certain libraries, the Affymetrix database and the R-(D)COM interface component being 

installed as well. All information needed is provided with the installation distribution as a text file 

accompanying the CD-ROM. Visual basic gives the EXE icon for I-10, designed early in 

development,t which is also used stylistically throughout the application as shown in figure 2.23.

HO

Figure 2.23: Icon logo chosen to represent the program launch icon for Informatics Tenovus (I-10).

A ‘splash screen’ was also developed as commonly found on Windows applications when first 

launched. This was added to I-10 to give the application a more professional appeamce 

(including the I-10 version number), and complemented the icon development as shown in figure 

2.24.
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Figure 2.24 -  1-10 ‘splash sc reen ’ w hich is shown to users upon en tering  1-10 w hen the application  is 
loaded.

2.13 -1 -1 0  Installation

Installation o f  I - 10 is a straight forward process. O nce ‘R ' and the D -C O M  interface have been 

installed, the I - 10 executable  file together with the database  file is copied to a d irec to ry  o f  the 

u se r’s cho ice  is the only  additional installation files required. Initial installa tions w ere  perfo rm ed  

in this proeject on a dedicated, relatively high specification W indow s X P co m p u te r  devo ted  to 

data  ana lysis  w ith in  Tenovus. During initial testing, a W indow s X P co m pute r  w ith  at least a 

Pentium III p rocessor  and 512M B o f  R A M  is required for the application  to run at a reasonable  

speed. H ow ever  as com pu ter  technology gets  quicker, the applica tion  will run faster. D uring  the 

process o f  the evaluation, m em bers  o f  the T enovus  G ene d iscovery  team  w ere  show n  the 

installation p rocess  step by step. Several dem onstra tion  sessions o f  how  to use the system  w ere 

perform ed. U sers w ho  attended the sessions preferred to m ake their ow n notes on how  to use the 

I -10 as they w ere  guided  through the system  rather than a user manual.

I - 10 can be launched by double  click ing  I-10.exe in the installation directory, o r from the start 

m enu or desk top  icon i f  a link has been created. The only installation anom alies  encoun te red  on 

som e system s w ere  those which  could result in four system extension tiles being m issing  from 

certain vers ions o f  W indow s X P depend ing  upon the level o f  updates  on the individual m achines.
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A ny anom alies  users d iscover  w hen using the application are encouraged  to be em ailed  for a 

swift resolution using the email address  given in the I -10 application .

Since the re lease o f  Service Pack 2 for W indow s XP, the w ay  in which applica tions developed in 

Visual Basic 6.0 execute  has altered due to potential security  risks. M icrosoft re-issued certain 

system extension files ( * .d l f s )  to address this issue. C onsequen tly  the files MSCBCM60.dll, 

IMM32.dll. RICHTX32.ocx and MSCOMCTL.ocx will be included with all d istributions o f  I- 

10. The four files can be s im ply  copied  into the system  d irec tory  found w ith in  the M icrosoft 

W indow s directory. It is safe to ag ree  for the included copies to be written over  the existing files, 

at the t im e o f  w riting  within the  system  directory.

2.14 Discussion

A key aim  o f  th is  p roject was to  develop  a p latform  to im prove and increase the speed and ease o f  

use in revealing  potential new  genetic targets from A ffym etr ix  array portfolios. A lthough 

G enesif ter  w as  a lready  being used for basic analysis  o f  this dataset, advanced  da ta  reduction and 

c lustering  techn iques  were not being explored. C onsequen tly  no system being routinely  used was 

optim ised  to reveal new  differentially-expressed genes from the A ffym etrix  arrays that could  

provide future in teresting b iom arkers /ta rgets  in an tihorm one resistance, for exam ple ,  w hich  

w ould  o therw ise  have been overlooked . D evelopm ent o f  1-10 had to offer m ore  flexibility  in 

term s o f  w hat can be analysed beyond that ava ilable  in Genesifter, incorporating  advanced  da ta  

reduction techniques, advanced m ultip le  class d iscovery  and class predic tion  techniques, and an 

ability to m ore  effic iently  obtain com prehensive  gene annotation  to generate  robust data. T he  

system had to be user-friendly (graphically-driven) yet also M IA M E  com plian t for publication  

purposes.

Before d eve lopm en t o f  I - 10 began, ex isting  technologies  and approaches in these regards w ere  

evaluated in detail before system  arch itecture choices w ere  finalised. A t all stages, the 

requirem ents  o f  the end user w ere considered  in detail. In part to fulfil this aim , a new  versatile  

analysis  p latform  has been deve loped  w hich  also has potential to analyse data beyond in vitro 

m icroarray  data. Indeed, potentially  any type o f  multivariate  b iom edical data could  theoretically
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be analysed using this I-10 however the primary focus was to analyse Affymetrix microarray 

data. Critically, the developed platform fulfilled the important aim of being easy to use. No 

analysis tool would have been powerful if the end user was not able to generate results from the 

system. However, working with key members o f the Tenovus research team in workshop sessions 

using I-10, the user experience was refined and the application’s design proven user friendly.

I-10 has also been developed in such a way as to be continually upgradeable and expandable. 

Continued addition o f up to date clustering libraries such as ‘cIValid’, have added considerable 

value to the software. Alternative applications not using the ‘R’ frame work would have resulted 

in a need for complete redevelopment o f the application to accommodate such upgrading. 

However due to the way in which the new platform has been designed it can be continually 

expanded by adding Visual Basic forms containing the necessary ‘R’ scripting. The versatility of 

the ‘R’ project statistical programming environment together with Microsoft Visual Basic user 

interface design has proven a powerful combination.

One o f the hardest decisions to make during development was choosing a name for the 

application. After much consideration, it was decided to use a combination o f the name of the 

discipline o f study (Informatics) and the name of the sponsoring charity of the research group -  

Tenovus. Consequently the name ‘Informatics Tenovus’ was bom -  or ‘1-10’ for short.

I-10 has constantly evolved over the 3 years o f the project. The ability o f ‘R’ to be expanded with 

libraries for diverse statistical and clustering analyses as applied to microarray data, the 3D- 

graphics and annotation capabilities incorporated into I-10, and the framework which I-10 

provides to accept new features has satisfied the primary aims of the project. Importantly, I-10 

has also been developed to be non-commercial in its availability allowing the greater cancer 

research community as a whole to access I-10.
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Chapter 3

Application of I-10 to in vitro 

endrocrine response and resistance
microarray data
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Chapter 3 -  Application of 1-10 to in vitro endrocrine response and resistance 
microarray data

3.1 Background

One of the motivations of I-10 development was to allow greater understanding of genetic events 

occurring within the Tenovus MCF7 in vitro models. This was achieved by generating 

Affymetrix microarrays of the various models which Tenovus had performed. Appendix 1 

outlines the methodology which was adopted to prepare the models for Affymetrix Microarray 

analysis. To test the ability o f I-10, a three way comparison o f in vitro anti-hormone resistance 

models where the MCF7 model replicates antioestrogen response versus the acquired Tamoxifen 

and Faslodex resistant cell lines was proposed, having been treated with 10-7M Tamoxifen and 

10-7M Faslodex (Fulvestrant) This comparison had proven difficult to achieve in Genesifter 

which had previously been used by Tenovus. However the development o f I-10 facilitated such a 

comparison to be made.

Hierarchical clustering, K-Means, Partitioning around medoids (PAM) and Fuzzy Analysis 

algorithms available through I-10 were applied to the Affymetrix data generated from the models 

and subsequently cross compared in their effectiveness to reveal dominant genetic profiles. This 

was achieved by comparing the internal, stability and biological cluster validation measures using 

the library cIValid available within I-10. cIValid, as previously outlined in Chapter 2, allows the 

user to simultaneously evaluate multiple clustering algorithms while varying the number of 

clusters. These measures help numerically and graphically determine the most appropriate 

clustering method and optimal number of clusters for the dataset of interest. Biological validation 

was assessed in cIValid by comparing Go ontology classification of the probe set for each 

clustering method.

Consequently, it was hoped that the analysis would demonstrate confidence that I-10 could be 

used to reveal new potential genetic targets which could be studied in depth in a future project.
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3.2 Phenotype of MCF7 Models

Before high throughput target identification was performed, a phenotypic study based on 

published classifiers was performed through I-10 using the Affymetrix database compiled across 

the responsive and resistant cell lines. I-10 has the ability to add known classification lists to the 

database and apply them during analysis. This can then be used to assess if the MCF7 models 

have lost or regained a particular phenotype based on present or absent call.

Sorlie et al in 2001 published a key breast cancer study which determined that the previously 

characterised luminal epithelial/oestrogen receptor-positive group could be further divided into at 

least two subgroups, each with a distinctive expression profile (Sorlie et al, 2001) [74]. Clustering 

studies showed the subsequent classification into errb2+, basal, normal and the luminal 

categories, as determined by the study, which correlated well with patient outcome. Survival 

analysis on sub cohorts of patients showed different outcomes when assigned to the different 

classifiers. For example, a basal phenotype was associated with a poor prognosis. There was a 

significant difference in outcome for the two oestrogen receptor-positive groups -  luminal being 

superior to the others (Sorlie et al, 2001) [74].

The same classifiers can be applied to the ER+ luminal MCF7 model versus TAMR and FASR 

cell lines to assess any phenotypic shifts which have developed in resistance when treated with 

both Tamoxifen and Faslodex. Appendix 2 outlines a summary of the presence or absence of the 

genes and corresponding Affymetrix probes applied to the various MCF7 derived models. The 

MCF7 cell line is a luminal cell line which is a phenotype not lost in resistance as shown in the 

luminal table in appendix 2.

However it is also interesting to note that the models are not shifting to a basal phenotype in 

resistance as key probes associated with a basal phenotype are absent in control, TAMR and 

FASR models.
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3.3 Confirmation of Quality of Affymetrix Samples Through 1-10

The w ay in which RNA samples are initially prepared for array hybridisation can influence 

replicate consistency and robustness o f  identifying the differentially expressed genes. The 

M icroarray Variance Analysis (M V A ) is m odification o f  a simple quality plot o f  repeat samples 

in the array results. Before detailed array analysis began, it was revealed by comparing each o f  

the three replicates against each other that som e d iscrepancy existed in third control M CF7 

replicate. It w as also confirmed when the array w as reproduced by a low er IQR value o f  the new 

re-arrayed sample. Ideally as small as possible a difference is expected between the arrays for 

them  to accurate replicates.

MVA plot

M

CN

O

CN

XT

I6 8 10 12 14

A

Median: -0.00561
IQR: 0.362

Figure 3.1: Good control sam ple 1 com pared to the old control 3 -  relatively high IG R showing a
poor association between control 1 and control 3.
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MVA plot
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Median: 0.00616 
IQR: 0.366

Figure 3.2: Good control sam ple 2 in com parison to the poorly perform ing control 3 sam ple, again
showing a relatively high IQ R  sample.

A newly prepared and arrayed control ‘C 3 ’ sam ple is also shown in Figure 3.5 w here  the 

differences observed are less within the samples due  to a h igher linear correlation.
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MVA plot
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Median: -0.00307 
IQR: 0.259

Figure 3.3: Good control 1 versus good control 2 from first batch of arrayed  samples. These 
perform well having a lower IQR value.

Rigorous quality  control at early stages o f  analysis ensures m ore robust results. Consequently, all 

biological w ork  involved the same technician (R .M ) w ho  extracted both the original RN A  from 

the control sam ples and performed the RNA extraction for the new control samples. The sample 

w as also re-arrayed by the same operator.

M V A  plots produced in I - 10 to evaluate the array quality can be generated as shown in Figures

3.1 through 3.5. A lower IQR value and smaller deviation in the mean value indicates the sample 

which was re-arrayed and more accurate in the second batch than the first samples arrays.
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MVA plot
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IQR: 0.289

Figure 3.4: Newly prepared  control 1 in comparison to the older control 1 which performed to a
satisfactory level.
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Median: -0.0119
IQR: 0.312

Figure 3.5: Newly prepared control in comparison to the satisfactory original control 2 showing
improved IQR results.
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3.4 Data Reduction using Significant Analysis of Microarray through 1-10

The nine arrays (3 MCF7, 3 TAMR and 3 FASR) required for comparison were generated from 

the Affymetrix database into a single comparison table of intensity data for each of the 22,000 

probes under analysis. The dataset was normalised for each probe by log 2 transformation, 

median centred and the triplicate arrays combined into a single normalised mean value 

representing each treatment arm per gene probe. The resulting three classes were reduced using 

the Significant Analysis of Microarray algorithm (SAM) through I-10.

The cut off for significance for SAM is determined by a tuning parameter delta, chosen by the 

user based on the false positive rate, as previously described. For the three way analysis in this 

project, the entire probe set of over 22,000 probes was reduced to 1070 probes setting a false 

discovery rate (FDR) o f 10% as directed by literature recommendation (Tusher et al, 2001) [38]. 

This represented the master set of significantly differentially expressed probes for this project. 

The probes are rank ordered in I-10 according to p-value. The complete list o f differential probes 

with mean normalised intensity values can be found on the accompanying CD-ROM.

3.5 Chromosomal Distribution

The SAM algorithm implemented through Microsoft Excel in I-10 can also give associated 

information regarding chromosomal distribution as seen in Figure 3.6 -  comparison of 

chromosomal distribution. There is an apparent enrichment of significant differential expression 

of genes on chromosome 7 and 10 in the selected subset. Likewise there seems less deregulation 

of genes on chromosome 19 than would have been expected from the gene set. The chromosomal 

distribution was further analysed to examine which of the significant genes revealed were 

induced or shared events in both the FASR and TAMR models.
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Compare chrom osom al distribution

NOTE 7% of the entire set of 22283 genes and 
2% of the selected set of 1070 genes had 

unknown chromosomal locations and 
have been dropped from this analysis

CL

1 2 3 4 S 6 7 B 9 10 It 12 t3 14 15 16 17 18 19 20 21 22 YX

Chromosomal location

Entire geneset ■  Selected subset

Figure 3.6 -  Overall chromosom al distribution of the 1070 significant genes revealed from SAM 
analysis.

TAMR UP regulated chromosomal probe locations
5.0%

50
Significant probes revealed as a % of the total number 
of probes on each chromosome

2.3%  2.6%

17 17

1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome (number of probes on each shown on top of respective bars)

Figure 3.7 -  T A M R  model up regulated chrom osom al d istribution of significant Affymetrix probes 
for each individual chrom osom e as determ ined  in relation to the control M CF7 model.
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TAMR Down regulated chromosomal probe locations
Significant probes revealed as a % of the total number of probes on each chromosome

3.7%
2 . 8 %  3 7

C hrom osom e (number of probes on each shown on top of respective bars)

Figure 3.8 -  T A M R  model down regula ted  chromosom al d istribution of significant Affymetrix 
probes for each individual chrom osom e as determ ined  in relation to the control M C F7  model.

FASR up regulated chromosomal probe locations
7.4%

8 .6%

Significant probes revealed as a % of the total number 
of probes on each chromosome2.9%

3.3%
3.5%  

!.5% 3 8
3.0%

2.7 %

2.9%
2 .8%

1 .8 %
2 .6% 2.7%  2.5% 2.8%

1 .8 % 5.2%
0 .8%

2.9%
1 . 1 %

0 .8%

Chromosome (number of probes on each shown on top of respective bars)

Figure 3.9 -  FASR model up regula ted  chrom osom al d is tribution of s ignificant Affymetrix  probes 
for each individual chrom osom e as determ ined  in relation to the control M C F7 model.



FASR down regulated chromosomal probe locations
Significant probes revealed as a % of the total number of probes on each chromosome

Chromosome (number of probes on each shown on top of respective bars)

Figure 3.10 -  FASR model down regulated chromosom al d istribution of significant Affymetrix 
probes for each individual chrom osom e as determ ined in relation to the control M C F7 model.

T he  gene  d ereg u la t io n s  (n=87 in both instances) associa ted  with ch ro m o so m e  7 o r ch ro m o so m e  

10 in the  res istant cells versus the M C F-7  cells w ere  further dec iphered  using additional analysis  

and h is togram  capabilit ies  achieved through “ R ” . This  revealed that a p red o m in an ce  o f  the 

express ion  changes  associa ted  with ch ro m o so m e  7 were increases, m ost p rom inen tly  in the 

FA SR  m odel (8 4 %  increases, vs 54%  increases for T A M R  cells). W hile for ch ro m o so m e  10, 

78%  o f  the ch an g es  w ere  again expression  increases in FA SR  cells, 6 3 %  o f  the changes  

assoc ia ted  with this particular ch ro m o so m e in T A M R  cells proved to be expression  decreases.  

This is show n  in F igures 3.7 and 3.8 for induced and suppressed  events in T A M R  m odels  and 

Figures 3.9  and 3.10 for FA SR models.

3.6 -  Exploration of Broad Clustering Trends in the data using I-10

Early ana lysis  o f  the 1070 d ifferentially  expressed  probes w as explored  using the three 

d im ensional p lo tting analysis  tool w ithin 1-10. Figure 3.11 show s the FA SR  sam ples  to exh ib it  

the m ost changed  probes -  skew ing  the represen ta tions  tow ards  the FA SR  axis  o f  the 3D  plot. 

An assessm ent o f  up and dow n regulation o f  individual probes can be found later in the chapter.
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45° on Control axis CON TAMR FASR

CON TAMR FASR

180° on Control axis

t
*
I TAM*

CON TAMR FASR

135° on Control axis 90° on Control axis 

CON TAMR FASR

Figure 3.11 A th ree  dimensional assessment showing a shift tow ards FASR model axis. Clockwise 
from the top left of the figure, the plot is tu rned  45 degrees along the control axis. T he  control axis is 
set to zero with the FASR and T A M R  arm s showing degree of fold change on each axis, one probe 
up regulated in TA M R(shown in red) and  less up regulated in FASR (da rk  red).

Each o f  the tw o  m ain  clusters observed in the 3D scatter plot show n in figure 3.1 I w as further 

explored  acco rd ing  to sub-clustering for pattern. For exam ple ,  the analysis  here focuses  upon 

w hich genes are up regulated or dow n regula ted  in both FASR and T A M R  m odels  to  try and 

identify consis ten t de-regulated generic  to an ti-oestrogen  resistance. It is c lear from the 3D  plot 

that there is a skew  tow ards the FA SR  arms.
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3.7 Optimal Clustering Method Assessment

Selection of optimal clustering method to reveal patterns in data revealing expression profiles of 

interest can be difficult. Additionally, determination of the number of clusters that is most 

appropriate for the data under test to be used for optimal clustering and therefore pattern 

separation can be difficult to assess. A particular technique and cluster number should result in 

clusters which not only exhibit good statistical properties (compact, related and stable), however 

also give results that are biologically relevant (for example, GO class enrichment, pathway 

enrichment). Validation of the cluster method can be based solely on the internal properties of the 

data or on the expression data alone or in conjunction with relevant biological information. The 

cIValid functionality in 1-10 uses these properties to assess which clustering algorithm (for 

example HCA, PAM, K-Means) and clustering number best explores the given dataset.

Three types of cluster validation in CIValid are offered - “internal”, “stability” and “biological”. 

Internal validation uses intrinsic information in the probe data to assess the quality of the 

clustering taking only the dataset and the partition achieved in significant clusters as input. The 

stability measures are an advanced version of internal measures: they differ in that they evaluate 

the consistency of a clustering result by comparing it with the clusters obtained after each sample 

(MCF7 or TAMR or FASR) is removed sequentially. To achieve biologically meaningful 

clusters, biological validation evaluates the ability of a clustering algorithm to purify gene sets in 

comparison to GO ontology against the dataset. Consequently cIValid can investigate both the 

biological homogeneity and stability of the clustering results.

3.7.1 Internal validation of clustering methods

For internal validation, the cIValid system measures for each clustering technique the 

compactness, connectedness, and separation of the cluster partitions. Connectedness or 

connectivity relates to the extent observations are placed in the same cluster as their nearest 

neighbours in the data space (Handl et al, 2005) [106]. Compactness assesses cluster 

homogeneity, usually by looking at the intra-cluster variance, while separation quantifies the 

degree of separation between clusters (usually by measuring the distance between cluster
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centroids). S ince com pac tness  and separation  dem onstra te  opposing  trends (com pactness  

increases with the n um ber o f  c lusters  but separation  decreases),  popular m ethods  co m bine  the 

tw o m easures  into a s ingle score. T he  dunn index and s ilhouette  width are both exam ples  o f  n on 

linear com bina tions  o f  the com pac tness  and separation , and with the connectiv ity  com prise  the 

three internal m easu res  available in cIValid. all d isp layed  graphically  vs increased num ber o f  

c lusters  for each clustering  techn ique com parison  applied  to the data under test (B rock  et al, 

2008) [107].

Internal validation Internal validation

Number of Clusters 

Internal validation

kOmo
ocoo

oPnIo

2 3 4 5 6 7 8 9

Number of Clusters

o

o
CD

m
CD
CD

2 3 4 5 6 7 8 9 1 1

Number of Clusters

- + - hierarchical
- 2 - kmeans
•3 - pam

Figure 3.12 In terna l  validation of h ierarchical, K-M eans and PAM clustering applied to the 1070 
significant genes using cIValid l ib rary  th rough  1-10.
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I n t e r n a l  v a l i d a t i o n I n t e r n a l  v a l i d a t i o n
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H —  h ie r a r c h ic a l  
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3  ■ s o m

Figure 3.13 In terna l validation of hierarchical, fanny and SO M  clustering applied  to the 1070 
significant genes using cIValid l ib rary  th rough  1-10.

S co re M e th o d C lu s te r s

C o n n e c t iv i ty 2.9290 Hierarchical 2

D u n n 0.1604 Hierarchical 2

S i lh o u e t te 0.3849 SOM 2

T able 3.1 C o m parison  o f  internal m easures and  most applicable method sum m arised  by cIValid.

As seen in tab le  3.1, connectiv ity  has a value betw een 0 and infinity and should  try  to be 

m in im ised ,  high Dunn index and high silhouette  value is desirable . W hen co m p ar in g  the five 

c lus ter ing  a lgorithm s, hierarchical c lustering  perform ed best in term s o f  connectiv ity  and Dunn 

index and s e l f  o rgan is ing  m aps (S O M ) in term s o f  s ilhouette  w idth. H ow ever  as seen in figures 

3.12 and 3 .13, al though the results are not exceptional,  the optim al c luster n u m b er  o f  2 in the 

analysis  sugges ts  the system is only  p ick ing  the broad tw o main clusters  -  induced  and 

suppressed  even ts  and not the m ore subtle even ts  occurring. Further ana lysis  o f  the c lus ter ing  is 

required. T he  next step was to analysis  the stability o f  the c lustering  m ethods.
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3.7.2 -  Stability of clustering methods

The stability measures are a special version of the internal measures where the result from 

clustering based on the full data to clustering based on removing data for each treatment arm, one 

at a time. These methods work especially well if the data is highly correlated, as is the case in 

high-throughput microarray data. The stability includes the average proportion of non-overlap 

(APN), the average distance (AD), the average distance between means (ADM), and the figure of 

merit (FOM) (Brock et al, 2008) [107]. In all cases the average is taken over all the deleted 

treatment arms, and a stability measure should be small if clusters are stable.

The APN measures the average proportion of observations not placed in the same cluster by 

clustering based on the full data and clustering based on the data with a single arm removed. The 

APN is in the interval 0 to infinity with values close to zero corresponding with highly consistent 

clustering results (Brock et al, 2008) [107].

The AD measure computes the average distance between observations placed in the same cluster 

by clustering based on the full data and clustering based on the data with a single arm removed. 

The AD has a value between 0 and infinity, and smaller values are preferred although not 

essential (Brock et al, 2008) [107].

The ADM measure computes the average distance between cluster centres for observations 

placed in the same cluster by clustering based on the full data and clustering based on the data 

with a single column removed. ADM only uses the Euclidean distance in the current 

implementation of cl Valid. It also has a value between 0 and infinity - again smaller values are 

preferred (Brock et al, 2008) [107].

Finally the FOM measures the average intra-cluster variance of the observations in the deleted 

column, where the clustering is based on the remaining (undeleted) samples. This estimates the 

mean error using predictions based on the cluster averages.
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As shown in table 3.2, the given dataset split into 12 clusters with Pam and 2 for the older 

implementation of a similar algorithm - K-Means. Up to 20 were tested however no great 

advantage was shown beyond 12.

Score Method Clusters

APN 0.1762269 K-Means 2

AD 2.7860434 PAM 12

ADM 0.9656024 K-Means 2

FOM 1.7561138 PAM 12

Table 3.2 -  Stability scores with K-Means and PAM performing best out of the three clustering 
techniques including hierarchical clustering.

This is the first result to suggest the existence of 12 clusters in the dataset as well as the 2 broad 

clusters as previously described.
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Figure 3.14 -  Stability m easures of h ierarchical, K-M eans and PAM clustering using the 1070 
significant genes revealed.

Figure 3.14 h igh ligh ts  the similarity o f  K -M eans  and PA M  clustering techn iques  w ith  a very 

sim ilar  profile  in te rm s o f  A PN, A D  and A D M  m easure  with a greater increase in perfo rm ance  

show n by all the  m easures. Hierarchical c lustering  starts to perform better at the h igher c luster 

nu m b er  -  par ticu larly  approaching  12 clusters. H ow ever  overall it is clear w h y  the system  chose  

PA M  as the best performer.
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Figure 3.15 -  Stability m easures of hierarchical, Fanny and SOM  clustering of the  1070 significant
genes.

Score Method Clusters

APN 0.1755 SO M 2

AD 2.8574 SO M 12

ADM 0.9572 SO M 2

FOM 1.7765 SO M 12

Table  3.3 -  Stability scores with SOM  com paring  best against h ierarchical c lustering

As sum m arised  in table 3.3, s e l f  o rgan is ing  m aps  perform better than H C A  and the  F A N N Y  

(fuzzy clustering) algorithm , with the latter g iv ing  no result at certain c luster  num bers  due  to 

com putational limits during  the run. It was observed  again that hierarchical c lustering  perfo rm ed  

better at h igher cluster  num bers.
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3.7.3 -  Biological validation

Biological validation available through 1-10 as part of the cl-Valid library, evaluates the ability of 

a clustering algorithm to produce biologically related clusters. This technique has been optimised 

for microarray data, where observations correspond to genes (where “genes” could be open 

reading frames (ORFs) and represented by probes, express sequence tags (ESTs), serial analysis 

of gene expression (SAGE) tags, etc.). There are two measures available, the biological 

homogeneity index (BHI) and biological stability index (BSI) (Brock et al, 2008) [107].

The BHI measures how homogeneous the clusters are in relation to biological classes based on 

GO classification. The algorithm has been designed such that it explores if genes placed in the 

same statistical cluster also belong to the same functional classes. The BHI has a range of 0 to 1 

with larger values corresponding to more biologically homogeneous clusters (Brock et al, 2008) 

[107].

The BSI is similar to the previous stability measures, and inspects the consistency of clustering 

for genes with similar biological functionality. Each treatment arm is removed one at a time, and 

the cluster membership for genes with similar functional annotation is compared with the cluster 

membership using all available samples. The BSI has a range of 0 to 1 with larger values 

corresponding to more stable clusters of the functionally annotated genes (Brock et al, 2008) 

[107].

Score Method Cluster

BHI 0.1801512 Hierarchical 10

BSI 0.5778908 Hierarchical 2

Table 3.4 -  Hierarchical clustering performs the best with optimal number of biological clusters 
being 10 and 2 depending on the measure observed when compared to K-Means and PAM.
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Figure 3.16 -  Biological validation with BHI n u m b er  of h ierarchical clustering, K-nieans and  PAM
using the 1070 significant gene list.
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Figure 3.17 -  Biological validation with BSI value of hierarchical clustering, K -m eans and  PAM
using the 1070 significant gene list.
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S co re M e th o d C lu s te r s

B H I 0.1868 fanny 12

BSI 0.5779 hierarchical 12

Table  3.5 -  Sum m ary  of the best perform ing  algorithm s when com paring  scores of hierarchical, 
fanny and SOM  of the 1070 significantly revealed genes.

Biological validation
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Figure 3.18 -  Biological validation - BHI value com paring  hierarchical, F anny  and SO M  of 
hierarch ica l  clustering, fanny an d  SOM  using the 1070 significant gene list.
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Figure 3.19 -  Biological validation with BSI value when com paring  hierarchical, F an n y  and  SOM 
using the 1070 significant gene list.

W hen ex a m in in g  the clustering techn iques in term s o f  B iological functional ana lys is  and 

c lustering  G O  onto logical  terms by function, hierarchical c lustering perfo rm s well.  It is also 

interesting to note the sharp drop in BHI value at the six c luster point w hich  could  suggest  there 

are six s trong  p rofiles  present in the data. H ow ever  12 is deem ed  the optim al n u m b er  o f  clusters 

u ltim ately  based  on the results in term s o f  consis tency  tak ing  all factors ac ross  all validation  

m ethods  and the  va lues  returned into account.

3.8 -  Exploring Hierarchical Clustering Membership

3.8.1 -  Broad clustering of dataset and subsequent sub clustering to reveal patterns and 

robust gene changes

All sam ples  w ere  then clustered for overall degree  o f  similarity . The T A M R  arm  w as  deem ed  by 

HCA  to be m ost s im ilar  to control w hile  FA SR  w as the m ost different. T h is  w as also  inferred in 

the visual representation o f  PCA in pre lim inary  analysis. T w elve  c lusters  co m p rise  an optimal
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num ber in the dataset based on analysis  w ith  pvClust, and these  clusters  have been studied more 

closely.

Cutting  the tree at the sam e level as that revealed by pvC lust  p roduces  a heat m ap coloured to 

clearly  show  the 12 different clusters  show n in figure 3.20. T he H C A  heat m ap has been coloured 

using a recom m ended  B ioconductor hea tm ap  co lour  gradient red for up regulation, black for no 

change  and green for dow n regulation based on the given dataset. T he exac t m em bersh ip  o f  each 

can be extracted  in I - 10 to  a file listing each A ffym etrix  probe ID per cluster.

CLUSTER 
NUMBER TO CORRELATE 

WITH AVERAGE PROFILE FIGURE

Figure 3.20 H ierarchical clustering heat m ap recreated showing 12 clusters with the addition of a 
ra inbow colour scheme for cluster differentiation on the y axis cut a the sam e level as HCA 
perform ed by CIValid. The three  sam ple replicates were averaged for the purposes of the figure 
which indicates tha t  Contro l  and  T A M R  being most sim ilar followed by FASR samples being the 
most different from either group  when clustered on the x axis. No fold change cut-off was chosen.
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Although there are 12 defined patterns within each of the 12 clusters, each profile varied slightly 

within each cluster, however overall they adhered to a general trend as shown by the overall heat 

map in figure 3.20. Therefore by assessing each of the 12 clusters using the profile viewer, a class 

representing each profile - either greatly induced or suppressed versus the control model can be 

developed. Figure 3.21 highlights the profiles present and the decided classes of up and down 

regulation across the three models. Seven combinations were present. An unchanged event is 

classified as one without a change of at least ‘ 1’ in either direction. Interestingly, a seventh class 

correlates with the low BHI value achieved when biologically validating the methods. This 

suggests the BHI validation of the techniques was particularly strong in terms of revealing a 

degree of subtle patterns in the dataset.
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CONAV TAMRAV FASRAV PROFILE RESULT
C - T -  F

TAMR SUP-FASR IND

TAMR SUP - FASR U/CH

CLASS

HCA 1
5.308354 3.892295 7.361237

HCA 2
4.642997 6.930091 3.892408

HCA 3
3.973514 3.847293 6.624135

HCA 4 ■ ^ H M M l 0 1 5
6.638151 3.987136 6.986281

HCA 5 -2.733257
6.65986 6.218045 3.926603

HCA 6 -2.186678
6.555319 7.356086 4.368641

HCA 7 ■ ■ ■ ]  -2.955522
6.898899 3.943376 5.598195

HCA 8
4.40292 5.271087 7.269343

HCA 9 -2.706647
6.686563 3.47535 3.979916

HCA 10 -2.813609
6.621755 4.781508 3.808145

HCA 11
4.041922 6.919639 4.711775

HCA12
3.568185 5.863984 6.21696

TAMR U/CH - FASR IND

TAMR SUP - FASR U/CH

TAMR U/CH - FASR SUP

TAMR U/CH - FASR SUP

TAMR SUP - FASR SUP

TAMR U/CH - FASR IND

TAMR SUP - FASR SUP

TAMR SUP-FASR SUP

TAMR IND - FASR U/CH

TAMR IND - FASR IND

Figure 3.21: A su m m ary  of the different profiles com prising the 12 cluster across all t rea tm en t 
arm s. Events which were shared in both FA SR and T A M R  models a re  clusters H C A  9 an d  H C A  12 
and to a lesser extent HCA 7 and 10. T he  class column to the right o f  the figure broad ly  tries to 
group  the profiles by broad similarity. A value between 0 and +/- 1.0 is classified as unchanged 
(U/CH).

U sing the p v C lu s t  m odule  in 1-10, uncertain ty  can be rem oved  from hierarchical c lustering. For 

each c luster in h ierarchical c lustering, quantities  called p-values can be derived  via m ultiscale  

bootstrap  re-sam pling .
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This method implemented in I-10 provides two types of p-values: AU (approximately unbiased) 

p-value and BP (bootstrap probability) value. AU p-value, which is computed by multi-scale 

bootstrap re-sampling, is a better approximation to unbiased p-value than BP value computed by 

normal bootstrap re-sampling to determine most robust gene changes.

PvClust performs hierarchical cluster analysis via the hierarchical clustering function within ‘R’ 

and automatically computes p-values for all 12 clusters contained in the clustering of original 

data. I-10 displays the result in the same way as other functions however here it highlights 

clusters with relatively high/low p-values. For the three way comparison -  p values of 0.05 (95%) 

and 0.005 (99.5%) have been chosen with the number of repetitions for the boot strapping set to 

1000 which enhances p value calculations particularly at the 0.005 level.

Values on the branches of the clustering figures are p-values (%). Red values are AU p-values, 

and green values are BP values. Clusters of differentially expressed genes with AU larger than 

95% are highlighted by rectangles; dominant shared clusters (9 and 12 from figure 3.26) have 

been explored in this way.

The significance of key probes within cluster 9 can be observed at the 0.05 (Figure 3.22) and 

0.005 (Figure 3.23) levels for and at the 0.05 (Figure 3.24) and 0.05 (Figure 3.25) level for cluster 

12 can also be derived.

148



Cluster dendrogram with AU/BP values (%)

■sr
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SubClus: ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT

Distance; correlation 
Cluster method complete

Figure 3.22 -  Significance level of p=0.05 for cluster 9 -  red boxes designate significant probes. The 
tree structure at higher levels indicates higher level functional relationship.

Cluster dendrogram with AU/BP values (%)
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Distance: correlation 
Cluster method: comolete

Figure 3.23 -  Very high significance level p value=0.005 for cluster 9 -  red boxes designate most 
significant probes. The tree structure at higher levels indicates higher level functional relationship.
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Cluster dendrogram with AU/BP values (%)

SubClus: ONE TWO THREE FOUR FIVE SIX

Distance: correlation
rh istAr mAfhnrl' rrimnlAtA

Figure 3.24 -  Significance level=0.05 for cluster 12 -  red boxes designate significant probes. The tree 
structure at higher levels indicates higher level functional relationship.

Cluster dendrogram with AU/BP values (%)
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O
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SubClus: ONE TWO THREE FOUR SIX SEVEN EIGHTFIVE

Distance correlation
Pli ic tor m othnrl rn m n lo to

Figure 3.25 -  Very high significance level p value =0.005 p of cluster 12 -  red boxes donate most 
significant probes. The tree structure at higher levels indicates higher level functional relationship.
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W hen s ignificant assessm ent w as  de term ined  for the individual probes, the  profile  o f  each gene at 

both the p value  =0.05 show n in F igure 3 .26 and a p value =0 .005 in F igure 3 .27 representing  

only the red boxed  p robes from cluster 9. T he sub c luster co lum n corre la tes  with the clusters 

d iv ided by red boxes  in previous figures 3.22 th rough  3.25.

HCA Cluster 9 - 0.05 p value significance level

AffylD Acronym SubClusteCON TAMR FASR
207836_s_at RBPMS ONE 
209016 s at KRT7 ONE

-3.579025 -2.459565
-2.261502

221667_s_at HSPB8 TWO -5.316286 -3.599954
206247 at MICB TWO -3.968358 -2.731069
218182_s_at CLDN1 THREE -3.335398 -2.478821
201367 s at ZFP36L2 THREE -2.88672 -2.504559
212489_at COL5A1 FOUR -3.550189 -3.21827
213716_s_at SECTM1 FOUR -4.022166 -2.782263
204542_at ST6GALNAC2 FOUR -2.198318
207452_s_at CNTN5 FOUR -3.11053 -2.360759
212488 at COL5A1 FOUR
207302_at SGCG FIVE -5.835074 -4.361935
201368_at ZFP36L2 FIVE -2.879692 -2.144059
203180_at ALDH1A3 FIVE -3.753755 -2.699822
219659_at ATP8A2 FIVE -3.002358 -2.295868
215047_at TRIM58 FIVE -2.61527
206341 at IL2RA FIVE -2.44934 -2.09349
204508_s_at CA12 SIX -4.203604 -4.211468
205792_at WISP2 SIX -5.091934 -4.947414
215867_x_at CA12 SIX -2.281661 -2.237671
219529_at CLIC3 SIX -2.993186 -2.76278
208613_s_at FLNB SIX -2.026182 -2.041554
207935 s at KRT13 SIX -2.459798 -2.416434
205440_s_at NPY1R SEVEN -3.858283 -3.749856
220414_at CALML5 SEVEN -4.782678 -4.590468
212354 at SULF1 SEVEN -3.45099 -3.584589
203325_s_at COL5A1 EIGHT -3.80402 -3.046433
208763_s_at TSC22D3 EIGHT -2.607978 -2.138546
219090_at SLC24A3 EIGHT -2.125476 B
213900 at C9orf61 EIGHT

Figure 3.26 -  cluster 9 -  Significant down regulated probes in both TAMR and FASR at the 0.05 
level vs MCF7 control. Light green indicates a higher degree of down regulation.

C luster  9, as show n in figure 3.26, reveals genes w hich  are currently  understudy  in o ther  projects  

as suppressed  genes. T hese  include CA12, WISP2 and FLNB both within s ignificant Sub  cluster  

‘S IX ’ as show n in figure 3.26. These targets  are being  explored as potential tu m o u r  suppressors
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show ing  ep igenetic  s i lencing  in T A M R  cells. T he  present s tudies sugges t  the silencing also 

ex tends  to FA SR, a long  with the future genes in the list. CA12, W1SP2, FLNB a long with future 

cand ida tes  to be suppressed  in resistant states.

HCA Cluster 9 - 0.005 p value significance level

AffylD
207836.
209016

_s_at

■taL

Acronym
RBPMS
KRT7

SubCluster CON TAMR FASR
ONE
ONE

-3.579025 -2.459565
-2.261502 B E E S

212489..at COL5A1 TWO -3.550189 -3.21827
204542].at ST6GALNAC2 TWO -2.198318
207452._s_at CNTN5 TWO -3.11053 -2.360759
212488 .at COL5A1 TWO
207302..at SGCG THREE -5.835074 -4.361935
201368..at ZFP36L2 THREE -2.879692 -2.144059
203180..at ALDH1A3 THREE -3.753755 -2.699822
219659. ATP8A2 THREE -3.002358 -2.295868
205792~.at WISP2 FOUR -5.091934 -4.947414
207935 KRT13 FOUR -2.459798 -2.416434
204508 _s_at CA12 FIVE -4.203604 -4.211468
215867._x_at CA12 FIVE -2.281661 -2.237671
219529..at CLIC3 FIVE -2.993186 -2.76278
208613 FLNB FIVE -2.026182 -2.041554
205440._s_at NPY1R SIX -3.858283 -3.749856
220414 CALML5 SIX -4.782678 -4.590468
203325._s_at COL5A1 SEVEN -3.80402 -3.046433
208763._s_at TSC22D3 SEVEN -2.607978 -2.138546
219090..at SLC24A3 SEVEN -2.125476 l i y j t t g g
213900 .at C9orf61 SEVEN

Figure 3.27 -  cluster 9 -  Significant down regulated probes in both TAMR and FASR at the 0.005 
level vs MCF7 control. Light green indicates a high degree of down regulation.

C luste r  9, as  show n  in figure 3.27, also conta ins  future potential targe ts  o f  interest for 

deregu la tion  in res is tance including NPY1 receptor, as revealed later in the chap te r  fo llow ing  

onto logical en r ichm en t.  The close associa tion  o f  each probe can be observed  in figure 3.28 w hen 

the co r resp o n d in g  p robes are plotted in 3D.
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TAMR

C O N

FASR

Figure 3.28: Cluster 9 as revealed by HCA. Note the cluster members are tightly packed 
confirming similar expression and potentially similar functional membership. Based on the 
profile view in figure 3.28, labeled left to right- cluster 1 = Red, 2 = Green, 3 = Blue, 4 = 
Purple, 5 = Cyan, 6 = Yellow, 7 = Brown on the PCA diagram. Note: The reader should not 
confuse this labelling with the colour system shown in the hierarchical cluster tree in figure 
3.20.
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HCA Cluster 12 - 0.05 p value significance level

AffylD Acronym SubClus CON TAMR___ FASR
219857..at C10orf81 ONE
201034..at ADD3 ONE
201753._s_at ADD3 ONE
213126..at MED8 ONE
214061..at WDR67 ONE
215111._s_at TSC22D1 ONE
201405._s_at COPS6 ONE
220624._s_at ELF5 ONE
201063..at RCN1 ONE
220625._s_at ELF5 ONE
203814._s_at NQ02 ONE
202967..at GSTA4 ONE
202412._s_at USP1 ONE
222283..at ZNF480 ONE
201468._s_at NQ01 ONE
209934._s_at ATP2C1 ONE
205282 .at LRP8 ONE
206357..at OP A3 ONE
212949..at NCAPH ONE
209276._s_at GLRX ONE
203653._s_at COIL ONE
206474..at PCTK2 ONE
213610._s_at KLHL23 ONE
201762._s_at PSME2 ONE
200755._s_at CALU ONE
201206._s_at RRBP1 ONE
201116._s_at CPE ONE
213172 .at TTC9 ONE
210567 b L SKP2 ONE
219806"_s_at C11orf75 TWO
215549._x_at LOC64385 TWO
217771 GOLM1 TWO
210297._s_at MSMB THREE
217789..at SNX6 THREE
209135 .at ASPH THREE
215136._s_at EXOSC8 THREE
211506._s_at IL8 THREE
205063 .at SIP1 THREE
205047._s_at ASNS FOUR
205048 _s_at PSPH FOUR
201963 at ACSL1 FOUR
221609]_s_at WNT6 FIVE
214159 _at PLCE1 FIVE
219049..at ChGn SIX
218158 _s_at APPL1 SIX
219161._s_at CKLF SIX
209954 x at SS18 SIX

Figure 3.29 -  Cluster 12 -  Significant up regulated probes in both TAMR and FASR at the 0.05 
level vs MCF7 control. Light red indicates a high degree of up regulation.
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HCA Cluster 12 - 0.005 p value significance level

AffylD Acroynm SubClus TAMR FASR
201063_at RCN1 ONE
209276_s_at GLRX ONE
201116 s at CPE ONE
220624_s_at ELF5 TWO
220625_s_at ELF5 TWO
205282 at LRP8 TWO
222283_at ZNF480 THREE
206357_at OP A3 THREE
203653 s at COIL THREE
202412_s_at USP1 FOUR
213610 s at KLHL23 FOUR
219857_at C10orf81 FIVE
215111 _s_at TSC22D1 FIVE
201405_s_at COPS6 FIVE
203814_s_at NQ02 FIVE
202967_at GSTA4 FIVE
201468_s_at NQ01 FIVE
201762_s_at PSME2 FIVE
200755 s at CALU FIVE
217789_at SNX6 SIX
209135 at ASPH SIX
205047_s_at ASNS SEVEN
205048_s_at PSPH SEVEN
201963 at ACSL1 SEVEN
219049_at ChGn EIGHT
218158_s_at APPL1 EIGHT
219161_s_at CKLF EIGHT
209954 x at SS18 EIGHT

Figure 3.30 -  C lu s te r  12 -  Significant up regula ted probes in both T A M R  and  FA SR  a t  the 0.005 
level vs M C F7 control. Light red indicates a high level o f up regulation.

Figure 3.29 and figure 3.30 corresponds to only the most significant probes as donated in red 

boxes at the 0.05 significance level and 0.005 probe set respectively. Both results were generated 

independently o f  each other. Cluster 12 contains potential targets o f  interest unregulated in both 

forms o f  resistance as revealed later using ontological searching.

Again, to aid understanding of the relationship between each probe within each cluster, the result 

can be plotted in 3D through 1-10 to reveal genes o f  interest within each membership group as 

seen in figure 3.31.
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S ' "
FASR

1
C O N

Figure  3.31: C luste r  12 - The cluster m em bers a re  tightly packed toge ther  confirming 
s im ilar  functional membership. Based on the profile view from figure 3.30, as labeled left to 
r ig h t -  C lu s te r  1 = Red (behind main cluster group), 2 = G reen, 3 = Blue, 4 = Purp le ,  5 = 
C yan , 6 = Yellow, 7 = Brown and  8 = G rey  (behind main cluster g roup) on the PCA 
d iag ram . Note: Again, the colour scheme is not to be confused with the colour system shown 
in the H ierarch ica l cluster tree in Figure 5.18.

3.9 Exploration to Reveal Potential Signalling Targets in Resistance

FATIGO (“Babelomics”) software, accessible in I-10, uses a multi tiered level approach to 

annotation using embedded GO ontology. Gene Ontology (GO) is, probably, the most successful 

among the current initiatives for the standardisation o f  the nomenclature o f  biological processes. 

It is divided into molecular, functional and sub cellular location categories. Also information 

regarding upstream Transcription Factor regulators is available through FATIGO+. GO 

represents the biological knowledge as a tree. Upper levels in the tree represent more general 

concepts and as the tree is traversed towards deeper levels, the definitions are more and more 

precise (e.g. cell cycle > regulation o f cell cycle > positive regulation of cell cycle). Since genes 

are annotated at different levels it is common to use the inclusive analysis instead o f  using
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directly the annotation of the genes at the deepest level possible. In the inclusive analysis a level 

of abstraction is chosen and genes annotated at deeper levels are assigned to this level. The 

efficiency of the test increases because there are fewer terms to test and more genes per term, but 

the selection of the level is arbitrary. FATIGO has implemented the Nested Inclusive Analysis 

(NIA), in which the test is done recursively until the deepest level in which significance is 

obtained and only this last level is reported. In this way both variables: efficiency of the test and 

highest precision in the term found are optimised.

This system was applied to the significant probes revealed of Clusters 9 and 10 -  clusters in 

which all probes are either induced in both TAMR or FASR or suppressed and therefore potential 

regulators of blockable TAMR/FASR biology and therefore a possible to reason as to why 

resistance develops toward both drug treatments.

A total of 30 probes were submitted to FATIGO for Cluster 9 and 47 for Cluster 12. At each 

level, probes shown from the literature to have shown functional significance or play a role in key 

pathways are highlighted in bold and shaded in red within the orange tables over the following 

pages. Depending on the level chosen, the Affymetrix probes might fall into molecular functions, 

particularly at the higher levels (e.g level 3).

3.9.1 -  Cluster 9 -  Tamoxifen resistance and Faslodex resistance suppressed genes

Available ontological tables range from level 3 through to 9 detailing the ontology for each level. 

They report information regarding the gene probe ID, the number of significant genes in each 

cluster and the percentage comprising the whole analysed gene population. For cluster 9, there 

was no information available at levels 1 and 2 with no significant classes generated after level 9. 

Some genes also have overlapping function between the levels.
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Gene O nto logy: molecular 
function. Level:3 Genes N°

genes Percentage

Drotein bindina
207935 s at 208613 s at 207836 s at

9 60205440 s at 207302 at 209016 s at
205792 at 207452 s at 219529 at

201368 at 204508 s at 220414 at 4 26.67lun u inu inq 219529 at

nucleic acid bindinq 201368 at 207836 s at 208763 s at 3 20

neurotransmitter bindinq 205440 s at 1 6.67

Ivase activity 204508 s at 1 6.67

oeotide bindinq 205440 s at 1 6.67

ion transmembrane transporter 219529 at 1 6.67
activity

transferase activity 204542 at 1 6.67

nucleotide bindinq 207836 s at 1 6.67

structural constituent of 
cvtoskeleton 207935 s at 1 6.67

channel activitv 219529 at 1 6.67

lipid bindinq 207452 s at 1 6.67

oxidoreductase activitv 203180 at 1 6.67

receptor ac tiv itv 205440 s at 1 6.67

T able  3.6: S um m ary  of genes revealed in cluster 9 and the ir  associated mo ecular function.
T h e  m ajority  of the genes a re  responsible for protein, ion and nucleic acid binding.

At level three, it can be observed that the genes encoded by the probes are involved 

largely in protein, ion and nucleic acid binding processes as shown in table 3.6 and Figure

3.33.
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Molecular function.  Level: 3

protein binding 
ion binding 
nucleic acid binding 
neurotransnitter binding 
lyase activity 
peptide binding
ion transnenbrane transporter activity 
transferase activity 
nucleotide binding
structural constituent of cytoskeleton 
channel activity 
lipid binding 
oxidoreductase activity 
receptor activity

Figure 3.33: S u m m ary  o f m olecular function of cluster 9 at level 3. Most of the probes in the cluster 
have a role in protein , ion and  nucleic acid binding.

Gene O nto logy: molecular 
function. Level:7 Genes N° genes Percentage

peptide receptor activitv. G- 205440 s at 1 50protein coupled

chloride channel activitv 219529 at 1 50

Table  3.7: S um m ary  of m olecular function olF the genes from cluster 9.

Molecular function.  Level: 7 HHIi i 1 1 i i i i i i ■■i
0 20 40 60 80 100

peptide receptor activity, G-protein coupled ■ ■  502

chloride channel activity ■ H  502
01 I 20 i i 40 60 80i i ■ i i i 1001

Figure  3.34: Sum m ary  of the percentage o f genes responsible for a given m olecular function.
Only two rem ain at this level.

■  6.672

■  6 .6 7 2

■  6.672

■  6.672

■  6.672

■  6.672

■  6.672

■  6.672

■  6.672

■  6.672

■  6.672
0 20 40 60 80 100
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Gene O ntology: molecular 
function. Level:9 Genes N° genes Percentage

neuropeptide Y receptor 205440 s at 1 100
activ itv

Table  3.8: S um m ary  of probes rem aining a t  the hig lest molecular ontological level.

Molecular function.  Level: S f  i i i i i i i i i T
0 20 40 60 80 100

neuropeptide Y receptor activity ■ '  ' ~  C 1002
0 20 40 60 80 100

Figure 3.35: S u m m ary  o f the percentage of genes responsible for a given m olecular function
at level 9. Only one remains a t  this level.

Focusing on levels 3, 7 and 9 showed the greatest change o f  ontology. The higher levels became 

more specific revealing the G-protein coupled receptor 205440_s_at to have the most ontological 

classification o f  all the uploaded probes for this cluster.

As probe 205440_s_at persisted in analysis through many levels o f  GO ontology focusing on 

receptors, was taken forward into DAVID to determine more information. The probe 

205440_s_at, also known as the N P Y  Y(l) receptor, induces the expression o f  CRE containing 

target genes through the CaM  kinase-CREB pathway, and inhibits CRE  containing genes when 

cellular cAMP levels are elevated (Sheriff et al, 2002) [108]. Recently, a role o f  neuropeptide Y  

(NPY) in tumor biology was suggested based on the high density o f  N P Y  receptors in breast and 

ovarian cancers. These N PY  receptors are a potential new molecular target for the therapy of 

malignant tumours (Korner et al, 2004) [109]. In the models used however in this project N P Y (I) 

receptor decreases in resistance suggesting a possible role in response that is lost in the 

aggressive, proliferate resistant state.

Oncomine analysis, available as a link within I-10, revealed that NPY  receptor in resistance is at 

higher expression level in luminal phenotypes, higher in ER+ and PgR+ and HER2 -v e  breast 

cancer. This would equate with a relationship with indolent, endocrine response phenotypes as 

seen in the present model system study and the receptor would be worthy o f  further exploration 

both as a biomarker (loss in resistance) and as a potential target in the responsive state.
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3.9.2 -  C luster 12 -  Ontology of Tamoxifen resistance and Faslodex resistance induced 

probes

This cluster revealed GO ontological information only between levels 4 through 8. No 

information was returned for levels 1 through 3 or past level 8. Only levels 4 and 7 are displayed.

Gene Ontology : molecular function. 
Level:4 Genes N°

genes Percentage

metal ion bindinq
205282 at 203814 s at 219049 at 201063 at

9 52.94201116 s at 201963 at 205048 s at 209135 at
222283 at

cation bindinq 205282 at 203814 s at 201063 at 201116 s at 6 35.29209135 at 222283 at

electron carrier activitv 203814 s at 209276 s at 201468 s at 209135 at 4 23.53

DNA bindinq 215111 s at 220624 s at 2 11.76

hvdrolase activitv, actinq on ester 205048 s at 202412 s at 2 11.76bonds

peptidase activitv 201116 s at 202412 s at 2 11.76

oxidoreductase activitv, actinq on 
NADH or NADPH 203814 s at 201468 s at 2 11.76

phospholipid bindinq 217789 at 1 5.88

transmembrane receptor activitv 205282 at 1 5.88

liqase activitv, forminq carbon- 
nitroqen bonds 205047 s at 1 5.88

apolipoprotein receptor activitv 205282 at 1 5.88

liqase activitv, forminq carbon-sulfur 9 0 1 a t 1 5.88bonds
z  u  i y o o  a l

lipoprotein bindinq 205282 at 1 5.88

disulfide oxidoreductase activitv 209276 s at 1 5.88

protein dimerization activitv 217789 at 1 5.88

identical protein bindinq 217789 at 1 5.88

dioxvqenase activitv 209135 at 1 5.88

oxidoreductase activitv. actinq on 
sinqle donors with incorporation of 209135 at 1 5.88
molecular oxvoen

receptor bindinq 219161 s at 1 5.88

oxidoreductase activitv, actinq on 
paired donors, with incorporation or 209135 at 1 5.88
reduction of molecular oxvqen

transferase activitv, transferrinq 
qlvcosvl qrouos 219049 at 1 5.88

Table  3.9: S um m ary  of probes level 4 m olecular ontological level for c uster  12
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M o le c u la r  f u n c t io n .  L e v e l :  4 i i i i i
0 20 40

1 1 1 1 1 1
60 80

netal ion binding |  52.942
cation binding 35.292!
electron carrier activity mam 23.532
DNR binding ■ I  11.762
hydrolase activity, acting on ester bonds I H  11.762
peptidase activity I H  11.762
oxidoreductase activity, acting on NRDH or N... 11.762
phospholipid binding ■  5.882
transnenbrane receptor activity ■  5.882
ligase activity, forning carbon-nitrogen bon... ■  5.882
apolipoprotein receptor activity ■  5.882
ligase activity, forning carbon-sulfur bonds ■  5.882
lipoprotein binding ■  5.882
disulfide oxidoreductase activity ■  5.882
protein dinerization activity ■  5.882
identical protein binding ■  5.882
dioxygenase activity ■  5.882
oxidoreductase activity, acting on single do... ■  5.882
receptor binding ■  5.882
oxidoreductase activity, acting on paired do... ■  5.882
transferase activity, transferring glycosyl ... ■  5.882

0 20 40
1 1 1 1 1

60 80 
1 1 1 1 1 1

Figure 3.36: Summary of the percentage of genes responsible for a given molecular function
at level 4 for cluster 12.

Gene Ontology : molecular 
function. Level:7 Genes N° genes Percentage

ubiauitin-sDecific orotease 2 0 9 4 1 9  <; at 1 20activity

ohosohoserine ohosohatase 
activity

205048 s at 1 20

qlucuronosvl-N-

219049 at 1 20
acetvlaalactosaminvl-
oroteoalvcan 4-beta-N-
acetvlqalactosaminvltransferase
activitv

chem okine activ ity 219161 s at 1 20

metallocarboxvDeDtidase activitv 201116 s at 1 20

qlucuronvlqalactosvloroteoqlvcan

219049 at 1 20
4-beta-N-
acetvlqalactosaminvltransferase
activitv

Table 3.10: Summary of probes at molecular ontological level 7 for cluster 12.
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Molecular function. Level: 7 i i i i i i i i ■ i i0 20 40 60 80 100

ubiquitin-specific protease activity ■  20%

phosphoserine phosphatase activity ■  20%

glucuronosy1-N-acetylgalactosaninyl-proteogl... ■  20%

chenokine activity ■  20%

netallocarboxypeptidase activity ■  20%

glucuronylgalactosylproteoglycan 4-beta-N-ac... | ■  20%

0■ i 20 40i i i i 60 i i 80 100 i i i

Figure 3.37: Summary of the percentage of genes responsible for a given molecular function
at level 4 for cluster 12.

As shown in table 3.10, a highly significant gene of interest is the 202412_s_at -  ubiquitin 

thiolesterase (USP1) which is responsible for playing a role in DNA repair. Protein ubiquitination 

and deubiquitination are dynamic processes implicated in the regulation o f  numerous cellular 

pathways. Monoubiquitination o f  the Fanconi anemia (FA) protein FANCD2 appears to be 

critical in the repair o f  DNA damage because many of the proteins that are mutated in FA are 

required for FANCD2 ubiquitination (Nijman et al, 2005) [110].The study proposes that USP1 

deubiquitinates FANCD2 when cells exit S phase or recommence cycling after a DNA damage 

insult and may play a critical role in the FA pathway by recycling FANCD2. An oncomine search 

shows its presence in high grade ER- breast cancer and increases of enzymes that regulate DNA 

repair than may be o f  benefit in endocrine resistance.

3.9.3 Summ ary of remaining C luster ontology taken to most significant level 

C luster 1 -  TAMR Suppressed -  FASR Induced

Gene O nto logy: molecular 
function. Level:9 Genes N° genes Percentage

ATPase activitv. couoled 209380 s at 218986 s at 207521 s at 3 50

fib rob las t a row th  factor 203638 <5 at 1 16.67receptor activ itv

orotein ohosDhatase tvDe 1 at 1 16.67activitv
a UHl OH a l

Ivsine N-acetvltransferase 
activitv

200898 s at 1 16.67

Table 3.11: Summary of probes at molecular ontological level 9 for cluster 1.
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C lu ster  2 -  T A M R  In du ced  -  F A S R  U n ch an ged

Gene O nto logy: molecular 
function. Level:9 Genes N° genes Percentage

ATPase activitv. couDled 209641 s at 201242 s at 2 28.57

nicotinic acetvlcholine-activated 9 9 1 1 0 7  at 1 14.29cation-selective channel activitv
Z Z  I I U /  d l

transmembrane receptor protein 90^ ft40  at 1 14.29tvrosine phosphatase activitv
Z U  j O H v j  a l

delaved rectifier potassium 9 0 ^ 9 0 9  at 1 14.29channel activitv
Z U d Z u Z  d l

MAP kinase
tvrosine/serine/threonine 208891 at 1 14.29
phosphatase activitv

pancreatic ribonuclease activitv 205141 at 1 14.29

Table 3.12: Summary of probes at molecular ontological level 9 for cluster 2.

C luster 3 -  TAM R unchanged -  FASR Induced

Gene O ntology: molecular 
function. Level:9 Genes N°

genes Percentage

A T P a^p artix/itv rnunlpr! 209735 at 212136 at 204567 s at
5 33.33213036 x at 204873 at

prostaglandin receptor activitv 210636 at 204897 at 2 13.33

phosphoinositide phospholipase
1 6.67C activitv

Z U O O ^ / j  a l

qlvcine C-acetvltransferase 9 0 ^ 1 0 4  at 1 6.67activitv
z u j I O H  a l

mvo-inositol:sodium svmporter 919Q 44  at 1 6.67activitv
Z.  I a  I

inositol-polvphosphate 5- 919QQ0 at 1 6.67phosphatase activitv

Ivsine N-acetvltransferase 90Q 10fi at 1 6.67activitv
I V J O  a  I

hepatocvte qrow th facto r 90^^10 at 1 6.67receptor activ itv Z U O U I U  d l

ribonuclease P activitv 209482 at 1 6.67

3'.5'-cvclic-AMP 
phosphodiesterase activitv 203708 at 1 6.67

Table 3.13: Summary of probes at molecular ontological level 9 for cluster 3.
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C lu ster  4 -  T A M R  S u p p ressed  -  F A S R  U nchanged

Gene O ntology: molecular 
function. Level:9 Genes N° genes Percentage

inositol 1.4,5-triphosphate-
203710 at 1 100sensitive calcium-release

channel activitv

Table 3.14: Summary of probes at molecular ontological level 9 1or cluster 4.

Cluster 5 -  TAM R Unchanged -  FASR Suppressed

Gene O nto logy: molecular 
function. Level:9 Genes N° genes Percentage

ootassium:chloride svmoorter 
activitv

218066 at 1 33.33

Dlatelet-derived qrowth factor at 1 33.33receptor activitv

MAP kinase
tvrosine/serine/threonine 204015 s at 1 33.33
phosphatase activitv

Table 3.15: Summary of probes at molecular ontological level 9 for cluster 5.

Cluster 6 -  TAM R Unchanged -  FASR Suppressed

Gene Ontology : molecular 
function. Level:9 Genes N° genes Percentage

diacvlalvcerol O-acvltransferase ornfiRQ q  at 1 20activitv
o a l

2-acvlalvcerol O-acvltransferase
q  a t 1 20activitv

ATPase activitv. coupled 208161 s at 1 20

solute:hvdroaen antiporter IQ81 at 1 20activitv
£ U H \ P O  l a l

MAP kinase
208892 s at 1 20tvrosine/serine/threonine

phosphatase activitv

low voltaqe-qated calcium
o n ^ f i 4 ^  at 1 20channel activitv

Table 3.16: Summary o f probes at molecular ontological level 9 for cluster 6.
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C lu ster  7 -  T A M R  S u p p ressed  -  F A S R  S u p p ressed

Gene Ontology: molecular 
function. Level:9 Genes N°genes Percentage

MAP kinase activitv 210059 s at 1 50

eohrin receDtor activitv 206114 at 1 50

Table 3.17: Summary of probes at molecular ontological level 9 for cluster 7.

C luster 8 -  TAM R Unchanged -  FASR Induced

Gene O nto logy: molecular 
function. Level:9 Genes N° genes Percentage

ATPase activitv. coupled 208795 s at 201241 at 205023 at 3 42.86

sodiunrhvdroqen antioorter 
activitv

203909 at 1 14.29

fib ro b la s t q row th  fac to r 211237 s at 1 14.29receptor ac tiv itv

3 \5 ’-cvclic-GMP 
DhosDhodiesterase activitv 205593 s at 1 14.29

non-membrane soannina 
protein tvrosine phosphatase 201629 s at 1 14.29
activitv

solute:hvdroaen antiporter
2 0 3 0 ( 1 0  a t 1 14.29

activitv
£ .\J O < 3 \J Z 7 a l

Table 3.18: Summary of probes at molecular ontological level 9 for cluster 8.

C luster 10 -  TAM R Suppressed -  FASR Suppressed

Gene O ntology: molecular 
function. Level:9 Genes N° genes Percentage

ATP-qated cation channel 221372 s at 215464 s at 2 40
activitv

eohrin receptor activitv 203499 at 1 20

insu lin -like  arow th facto r 2 0 3 6 2 7  at 1 20receptor activ itv

transmembrane receptor protein 1 20tvrosine phosphatase activitv
Z . U O U O O  d l

epidermal orowth factor 
receptor activitv

203627 at 1 20

Table 3.19: Summary o probes at molecular ontological level 9 for cluster 10.
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C lu ster  11 -  T A M R  In du ced  -  F A S R  u nch an ged

Gene Ontology : molecular 
function. Level:6 Genes N° genes Percentage

lona-chain-fattv-acid-CoA liqase
c  of 1 25activitv

l U J / O O  o d l

sodium ion bindinq 201243 s at 1 25

ovroohosohatase activitv 201243 s at 1 25

Rho GDP-dissociation inhibitor 
activitv

201288 at 1 25

potassium ion bindinq 201243 s at 1 25

zinc ion bindinq 208510 s at 1 25

Table 3.20: Summary o ’ probes at molecular ontological level 9 for cluster 11.

Note: Although similar functionality o f  certain probes appears in more than one cluster, for 

example ATPase activity coupled appears in more than one cluster, there was multiple coverage 

o f  probes representing genes with a particular clustering association. This was sufficient to place 

the gene into its own cluster. The red shaded areas previously highlighted across the different 

levels verifies, particularly in the FASR induced clusters (Cluster 1, 3 and 8) that genes such as 

FGR4 or Met are suppressed in both forms of resistance (IGFR -  cluster 10), which reassures us 

o f the changes in the clusters may be equally robust as biomarkers/potential targets of 

individual/shared resistant states.

3.10 Comparison o f Cluster 9 Suppressed vs Cluster 12 Induced results of 

TAM R and FASR

FAT1GO+ has the ability o f  comparing two gene lists. This is particularly interesting for 

comparing two different lists showing differentiation in opposite directions. The system 

compares each list against the other against GO ontology as shown previously for individual 

clusters.

No ontological information was present at levels 1 and 2.
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At level 3, Cluster 9 suppressed events have more genes associated with cell developmental 

processes as opposed to cellular metabolism sharing a greater percentage in Cluster 12 which 

corresponds to induced events.

3.11 -  Conclusion

The MCF7 models have not lost or regained a particular phenotype -  most notably they have not 

shifted to a basal phenotype in resistance.

Hierarchical clustering, PAM and Self organising maps perform well for the MCF7 Control vs 

TAMR vs FASR comparison. The priority of each probe within a HCA cluster can be assessed 

using p-values of each dendogram branch. Using the pvClust package of 1-10, the system 

allocates priority using boot strapping of each cluster revealed using clValid for Hierarchical 

clustering. Assessment at the 0.05 and 0.005 significance p-value level was examined which 

reveals individual candidates within each system. The individual cluster membership of each 

clustering technique was compared and cluster results aligned. The values for K-Means and PAM 

were very similar however PAM performed marginally better. The K-Means results are therefore 

omitted. This assumption was confirmed in the analysis by the clValid method. Although 

grouping the data into six clusters performs well statistically -  confirmed by a high affinity value 

from the PAM silhouette plot values, 12 clusters reveals all changes within the data 

encompassing certain profiles hidden within each of the smaller six clusters revealed in 

preliminary analysis. Across the different clustering methods, significant probes of interest are 

revealed within clusters of each method.

Genes which were induced in both TAMR and FASR included ubiquitin thiolesterase which is 

responsible for playing a role in DNA repair and carboxypeptidase A and E activity has been 

revealed as a biomarker in pulmonary neuroendocrine tumors.

Genes which were revealed as very significantly suppressed in both TAMR and FASR included 

the G-protein coupled NPY Y(l) receptor. This gene induces the expression of CRE containing 

target genes through the CaM kinase-CREB pathway with a role of neuropeptide Y  (NPY) in
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tumor biology suggested based on the high density of NPY  receptors in breast and ovarian 

cancers (Komer et al, 2004) [109]. Ontology for all clusters revealed is also presented.

New libraries reinforce the ever developing nature of ‘R’. Due to the modular nature of 1-10, the 

application can be continually updated. The introduction of the pvClust methods were 

implemented during the later stages of research. However they are very powerful in the way they 

categorically assess how many cluster are present and the best methods to choose.

Annotation tools are also evolving. The introduction of FATIGO, alongside more traditional tools 

such as DAVID help the biologist make more decisive decisions in terms of which genes are the 

most interesting to further study which could potentially form future therapeutic targets.
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Chapter 4

‘Superstes’

Development of a clinical cancer 

survival query tool
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Chapter 4 -  Superstes -  Development of a clinical cancer survival query tool

4.1 Background

4.1.1 Prognostic indices in cancer

Current prognostic indices outlined in Chapter 1, Section 1.1, which includes the St. Gallen 

criteria, the TNM system and the Nottingham Prognostic Index (NPI) can integrate information 

from several validated prognostic variables and assign patients to different prognostic categories. 

However, these prognostic models do not provide estimates for survival probability (Blarney et 

al, 2007) [111].

Studies have shown that the breast cancer mortality reduction caused by mammography 

screening is estimated to amount to 28-30% in 2007 based on studies conducted in the 

Netherlands (Blarney et al, 2007) [111]. However it has been suggested that patients examined in 

the early 1990’s would have benefited more from adjuvant therapy given than mammography 

screening. This is thought to have played a role in women who died at the age range of 45-54 

who would not have participated in the screening programme, with the resulting mortality 

reduction thought largely to be attributed to adjuvant treatment in this age group more than the 

introduction of mammography screening (Blarney et al, 2007) [111]. In a recent study by Blarney 

et al, it was also noted that improvement in patient survival times could possibly be explained by 

more accurate lymph node staging in combination with more breast cancer patients being 

detected due through mammography screening since the NPI was developed (Blarney et al, 2007) 

[ 1 1 1 ].

Ioannidis et al in a recent review stated that genomic risk assessment could potentially 

outperform clinical-pathological risk assessment (Ioannidis et al, 2002) [112]. However, more 

evidence needs to be generated than that which currently exists if genomic information is to be 

accepted as being more accurate in the prediction of survival. The situation where clinical- 

pathological variables are replaced entirely with gene-level data still remains far into the future 

(Ioannidis et al, 2002) [112]. Currently, accurate prognostic models depend on the combination

171



of covariates explaining molecular information such as Er and PgR status, the extent of disease 

and tumour morphology.

Consequently, the influence different clinical and pathological attributes impact on survival of 

cancer remains o f paramount interest. It is of great benefit to both patients and oncologists to 

determine whether survival is influenced by one or more variables collectively. These variables 

can vary from being categorical, such as the type of treatment a patient received, or continuous 

variables, such as the patient's age (Blarney et al, 2007) [111]. Ultimately it is hoped that 

potentially new combinations of variables will be discovered to evaluate whether established 

prognostic models, such as the NPI, can be further improved which itself is based on the 

variables o f tumour size, grade and node status. This goal of determining new prognostic models 

may be achievable through development and application of bioinformatic analysis tools to large 

clinical breast cancer databases with associated follow-up data and diverse clinico pathological 

variables.

4.1.2 The SEER dataset

To discover new prognostic models based on combinations of different patient variables requires 

a dataset of cancer patients. The National Cancer Institute’s cancer database Surveillance 

Epidemiology and End Results Program (SEER) in the United States is one such patient dataset 

and contains over 400,000 cases o f cancer derived from population-based cancer registries 

between 1972 and 2002 (Ries et al, 2005) [100]. It contains detailed patient clinical, pathological 

attributes which range from their age through to any treatment received such as surgery. 

Although not directly available from the institute’s web site, the data source is available on an 

academic license basis for research and development purposes.

4.1.3 Prognostic tools developed using SEER data

There are many data analysis tools using SEER data patient information. A well documented 

example is the survival query tool called Adjuvant! Online launched in 2001 (Hess et al, 2008) 

[113]. The tool assesses the benefits and risks of adjuvant therapy for patients with early onset 

breast cancer (Hess et al, 2008) [113]. This online web-based application has been targeted at
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oncologists working together with patients to estimate risk of a negative outcome (i.e. relapse or 

death related to a cancer) of a particular patient. A decision whether to proceed with a particular 

management strategy can be taken after assessing the risk to patient quality of life versus 

outcome of the disease using the tool. A treatment decision can then be decided between the 

oncologist and patient. However, Adjuvant! Online is not without its critics. A study by the 

Harvard Medical School highlighted a key shortcoming. The study stated that empirical models 

are only as precise as the dataset they are based upon (Chen et al, 2008) [114]. If a patient is 

defined by lots o f different variables describing information about the patient -  Er status, tumour 

size, age among other variables, narrowing the search parameters will reduce the dataset upon 

which a prediction of survival will be made. The group suggested that a possible undesired 

consequence o f this approach is considerable statistical uncertainty. The AdjuvantlOnline tool 

attempts to avoid this issue by grouping patients into large ‘bins’. While large bins decrease the 

uncertainties associated with estimation and thus increase their statistical validity, they are not 

able to finely stratify patients. For example, patients perceived to have the highest risk as 

estimated in AdjuvantlOnline (derived from a large cohort of individuals where the selected 

covariate criteria resemble a particular patient in every respect) may actually have divergent 

prognoses (Chen et al, 2008) [114] so results predicted by AdjuvantlOnline can be often difficult 

to recreate. Consequently, the Harvard Medical School released a query tool to address these 

issues - CancerMath.net -  developed with the Institute of Quantitative Medicine at Massachusetts 

General Hospital in Boston. CancerMath.net offers small calculators for breast, melanoma and 

renal cell carcinoma to produce 15 year survival curves. However, CancerMath.net is still in a 

trial phase and can only base its predictions on a limited subset o f covariates which are entered by 

the patient.

Clearly, although some initiatives are being applied to the SEER dataset, there remains a need to 

develop a new tool which allows the user to explore survival patterns using many combinations 

of patient variables. Furthermore, rationalising particular patient variables with statistical 

methods which assess the significance such combinations have on patient survival could have 

wide ranging clinical benefits for future treatment strategies.
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4.2 Analysis of Survival Data

One of the first approaches for modeling survival was the life table, developed by Berkson and 

Gage in 1950. A life table contains a range of survival times for all patients divided into sub 

intervals. For intervals representing ‘alive’, ‘died’ or ‘censored’, a value is calculated based on 

the number and proportion of cases. A patient would be classed as censored if they left the study 

or remain alive when the study completes. Manipulation of each quantity allows parameters of 

interest such as prognostic variables, which therefore link to survival, to be estimated. The main 

problems that occur with this approach are that they do not assess the impact certain categorical 

variables have on survival times (Chanrion et al, 2007) [82]. This ultimately led to regression 

methods being applied to survival.

4.2.1 Parametric and non parametric statistics

To assist in the discovery process, different statistical methods are employed to analyse the 

contribution a particular covariate is having in terms of affecting survival outcome. There are 

different types o f statistics which facilitate this discovery.

Parametric statistics are those where the population is assumed to fit any parameterized 

distributions (most typically a normal distribution). Parametric statistical methods are 

mathematical procedures for statistical hypothesis testing which assume that the distributions of 

the variables being assessed belong to known parameterized families of probability distributions 

(Hartigan et al, 1979) [44]. A typical example is a t-test.

In contrast, non-parametric statistics are widely used for studying populations that take on a 

ranked order, for example measurements of the effectiveness of a drug on a scale of 1 to 10. The 

use of non-parametric methods is often necessary when data has a ranking but no clear numerical 

interpretation (Hartigan et al, 1979) [44]. As non-parametric methods make fewer assumptions, 

their applicability is much wider than the corresponding parametric methods. In particular, they 

may be applied in situations where less is known about the distribution in question. Also, due to 

the reliance on fewer prior assumptions, non-parametric methods are more robust.
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In certain instances, possibly even when the use of parametric methods could be justified, non- 

parametric methods are often easier to use. Due both to this simplicity and due to their greater 

robustness, non-parametric methods are seen by some statisticians as leaving less room for 

improper use and misunderstanding (Hartigan et al, 1979) [44].

Non-parametric models differ from parametric models in that the model structure is not specified 

a priori but is instead determined from the data (Hartigan et al, 1979) [44]. A histogram is a 

simple nonparametric estimate of a probability distribution such as that of age or marital status of 

patients. Typical examples o f non-parametric models include Kaplan-Meier survival curves, the 

log rank test and the Cox proportional hazards model. Each of these tests could be applied to 

different cohorts of patients based on patient variable information extracted from the SEER 

dataset to assess the impact particular patient variable combinations have on patient survival.

4.2.2 Kaplan Meier survival curves

A standard linear regression model has shortfalls in that survival times are not usually normally 

distributed and “censored” data occur frequently (Chen et al, 2008) [115]. This was shown by 

Kaplan-Meier and was considered to be a breakthrough in survival analysis. Kaplan-Meier first 

demonstrated the construction of a survival curve using a non parametric method.

In clinical trials, it can take years to find appropriate patients for a trial to test a particular drug. 

The term ‘follow up’ is often used to indicate examination periods of patients to record different 

amounts of information relevant to the clinical trial. Studies which ‘follow up’ past patients, have 

the common problem that patients will be ‘followed up’ at different points in their treatment, 

often over a period o f many years. This leads to the issue of patient survival tracking where 

patients would have started the clinical trial at different points in time. However results of a 

clinical trial are analysed at a single point in time and so at that time, some patients would have 

received varying lengths o f ‘follow up’ of their treatment during the study.

This is illustrated clearly with a theoretical example such as a clinical trial. A clinical trial for 

drug X, recruit patients who embark on their treatment in the first year of the commencement of
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the trial. Analysis of the data collected during the trail takes place after five years. A patient who 

survives till the end of the trial, yet joined the trial at the start would have five years of progress 

information. A patient who survives until the end of the trial yet joined the trial much later -  such 

as after three years of the trial starting -  will only have two years of information recorded. The 

problem of a patient having varying amounts of ‘follow up’ during the trial only becomes an 

issue if the patient remains alive at the end of the trial period. However it is also not desirable to 

remove patients who did not start the trial at the beginning as the information gathered during the 

time the patient participated in the trial could still be valuable to the overall study. Consequently 

there needs to be a way in which this patient can be statistically removed from the resulting 

survival curve at their respective time point. The patient, if only in the trial for two years cannot 

be classified as having died yet also cannot be classified as having survived (Chen et al, 2008) 

[115]. However, if the patient dies, it is important this is recorded and is indicated by a ‘step 

down’ on the survival curve. A survival curve illustrating this information can be observed in 

figure 4.1

0.9-

0 .8 -

Patient censored yet 
has over 3 years of 
information recorded

0.7-

0 .6 -

0.5-

0.4-

0.3-

0 .2 -

0.0

Time in years

Figure 4.1 Theoretical Kaplan-Meier plot for a clinical trial showing the effect of when a patient dies 
(producing a step down in the curve) and how censoring a patient is indicated (vertical lines or ‘tick marks’).
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Removing a patient at a particular point in time when their period of study ends is termed as 

censoring. This has the ultimate goal o f producing the most accurate survival curve as possible 

given a particular dataset. As shown in figure 4.1, vertical tick marks indicate on the survival 

curve where a patient has been censored. It must be remembered that as the censoring process has 

an impact on the total number of patients contributing to the survival curve, the remaining 

patients who die after that point will contribute as a higher proportion of the remaining 

population.

The resulting effect on the survival curve is a series of steps which will be slightly larger than if 

the censored patient remained. Censoring a patient reduces the sample size o f patients at risk after 

the time of censorship. Reducing sample size always reduces reliability, so the more patients are 

censored and the earlier they are censored the more unreliable the curve will become. As a result 

of each censored patient reducing the reliability o f the curve from that point forward, the end of 

the curve is most affected. This could be viewed as being unfortunate, since the end of the curve 

represents long term survival which is the ultimate goal (Chen et al, 2008) [115].

4.2.3 The log rank test

The log rank test, first proposed by Nathan Mantel, (also known as the Mantel-Cox test) is a 

hypothesis test to compare the survival distributions of two samples (Bland et al, 2004) [164]. 

For example, two groups of patients who have different cancer attributes. It is a nonparametric 

test and appropriate to use when the data has been censored, such as in the case of a clinical trial 

as previously outlined.

The log rank statistic can be derived as the score test for the Cox proportional hazards model 

comparing two groups. It is therefore asymptotically equivalent to the likelihood ratio test 

statistic based from that model (Bland et al, 2004) [164].

In an analysis of comparison, it might be thought to be feasible to plot survival curves for each 

group of patients and compare the proportions surviving at any specific time. However, the 

downfall of this approach is that it does not provide a comparison of the total survival experience
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of the two groups of patients, but rather gives a comparison at some arbitrary time point (Bland et 

al, 2004) [164]. The log rank test is the most popular method for comparing survival between 

groups and takes the whole review period of a patient into account (commonly known as ‘follow 

up'). It has the considerable advantage that it does not require the user to know anything 

regarding the shape o f the survival curve or the distribution of survival times (Bland et al, 2004) 

[ 164]. This is therefore a very useful test to measure the significance of patient variables between 

two cohorts of patients, such as those generated from a dataset such as SEER.

If a survival time is censored, the individual is considered to be at risk of dying in the week of the 

censoring but not in subsequent weeks (Bland et al, 2004) [164]. This way o f handling censored 

observations is the same as for the Kaplan-Meier survival curve as previously outlined.

The log rank test is based on the same assumptions as the Kaplan Meier survival curve — 

censoring is unrelated to prognosis, the survival probabilities are the same for patients recruited 

early and late in the study, and the events happened at the times specified (Bland et al, 2004) 

[164]. Deviations from these assumptions matter most if they are satisfied differently in the 

groups being compared, for example if censoring is more likely in one group than another.

The log rank test is most likely to detect a difference between groups when the risk of an event is 

consistently greater for one group than another. It is unlikely to detect a difference when survival 

curves cross.

As a result of the log rank test being purely a test of significance, it cannot provide an estimate of 

the size of the difference between the groups. In this scenario a typical methods to assess the 

significance of the difference would be to use the Cox proportional hazards model.

4.2.4 Cox proportional hazards model

The proportional hazards method computes a coefficient for each predictor variable that indicates 

the direction and degree of flexing that the predictor has on the survival curve (Kumar et al, 

1994) [165]. A value of zero indicates that a variable has no effect on the curve -  it is not a
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predictor of survival at all. The model functions on the basis that the underlying hazard rate (as 

opposed to the survival time) is a function of the clinical variables (such as tumour size, grade) 

with no assumptions made as to the characteristics of the hazard function. The hazard function 

can be thought of as an individual’s death in the immediate future with the assumption that the 

individual has survived up to a present point in time (Kumar et al, 1994) [165]. Alternatively, the 

hazard function can be thought o f as an equivalent function for survival or death. Once enough 

covariates are determined, it could be possible to create a customised survival curve for any 

particular combination o f predictor values. More importantly, the method provides a measure of 

the sampling error associated with each predictor's coefficient. The method is widely used as it is 

not dependent on any assumptions regarding the underlying survival distribution.

In a cancer setting, the goal with the Cox model is to identify indicator variables whereby 

survival characteristics are compared between two or more groups. To describe the effect 

covariates, such as race and stage, have on survival, the hazard function has been shown in 

literature to perform well (Kumar et al, 1994) [165]. As shown in figure 4.2, the chances of death 

in humans are very high immediately after birth however for many years, the chances o f death 

plateaus until later in life where the chances of death increase sharply (Kumar et al, 1994) [165]. 

The onset of cancer can therefore affect these events greatly and determining what particular 

variables have contributed to acceleration in death could be significant in understanding cancer 

methods o f action.
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Figure 4.2: Mortality in humans showing the high risk at birth, a plateau period until old age where the 
chance o f death is high.

As a result, the Cox proportional hazard model would be very valuable to assess the impact that a 

particular combination o f patient variables has on survival time.

4.3 Aims and Objectives

The SEER dataset provides a source o f patient information for multiple cancer types such as 

breast cancer and colorectal cancer. There are over 40 different patient variables for each patient. 

If multiple combinations o f patient variables from the SEER dataset could be routinely searched , 

this would provide a very powerful data source which together with previously outlined statistical 

techniques highlight how different patient variables impact survival. Consequently, development 

of an online search tool to explore such patient variables has was therefore proposed.

The aims o f this chapter include:

l Preparation of the SEER cancer patient dataset to facilitate high throughput data searching and 

analysis.



2 Development o f a cancer survival query tool utilising the SEER patient dataset encompassing 

routine statistical analysis and modelling techniques. The tool would facilitate the exploration of 

survival patterns in breast and colorectal cancer based on different patient attribute combinations.

3 Application of the developed cancer survival query tool to demonstrate the effect of different 

patient variable combinations on survival outcome. This would be assessed by significance 

determination using modelling techniques such as the Cox proportional hazard model among 

others.

4.4 Strategy for Development

To fulfil the requirements of the aims the following steps were taken in development:

1 -  Transformation o f the SEER dataset according to the SEER coding manual into a purely 

numerical form.

2 -  Storage of the transformed dataset into a multi-user database -  Microsoft SQL server.

3 -  Creation of a web based interface together with statistical programming to provide statistical 

validation o f results from different patient variable combinations.

4 -  Development o f a service to facilitate sharing o f the capabilities of the SEER cancer patient 

data set in a secure manner so that it can be made available to the cancer research community.

4.5 Cancer Survival Query Tool Architecture and Implementation

The name ‘Superstes’ (latin for ‘survival’) was chosen for the cancer survival query tool and will 

be referred to in all future sections.

4.5.1 Providing a cancer patient data resource

During development and application of the Superstes tool, the SEER patient dataset has provided 

the source of clinical data due to the wealth o f individual patient variables it contains. Data has 

been extracted from the database for 70,000 breast cancer patients diagnosed between 1992 and 

2002 encompassing 17 prognostic variables including tumour size, grade, lymph node status, ER
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and PgR status. Data was extracted between this time period in order to examine variables in 

relation to 10 year survival. The period of 10 years chosen mirrors a similar time period to that 

used in the original Nottingham prognostic index study of variables predicting good, moderate 

and poor prognosis in 1982 (Galea et al, 1992) [7].

By working with a similar dataset (as the original identical dataset used to generate the NPI is not 

available), it was hoped that the SEER-derived dataset can be considered as representing a similar 

patient cohort for exploration and development o f new prognostic models for breast cancer. 

Although the primary focus were to develop and apply a cancer query survival tool to explore 

new prognostic variables for breast cancer, data for colorectal cancer patients was also explored 

in order to provide proof of principle that different patient factor combinations and the resulting 

survival impact can be studied for other cancer types.

4.5.2 SEER patient dataset transformation -  preparation for database storage

The breast and colorectal datasets were extracted from a master SEER patient lists obtained 

through a license agreement. The dataset received from the SEER program was in the form of a 

spreadsheet. Microsoft Excel was then used to edit this file to structure it into a table format 

ready for insertion into the database for querying in the developed cancer query tool -  Superstes. 

The encoding was performed by searching through the dataset to standardise coding used to 

describe different patient variables. For example, where roman numerals for Stage such as I, II, 

III and IV were used, these were replaced by the numbers 1, 2, 3 and 4. Key patient variables 

from the dataset for breast and colorectal cancer included tumour grade, tumour site, extent, 

number of primary tumours, histology, tumour size, ER status, PgR status where appropriate) 

were carefully converted into a purely numeric form for storage using a Microsoft SQL database. 

This was performed with assistance from the SEER coding manual for the various patient 

variables [100]. A full summary of all patient variables in both breast and colorectal cancer used 

to create the database from the SEER cancer patient dataset can be found in table 4.1 for breast 

cancer and table 4.2 for colorectal cancer. Appendix 3 summarises the complete list o f patient 

variables were altered in the database to allow searching and statistical analysis of the dataset.
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Breast cancer patient variables Description (database code)
Race Ethnic origin e.g: white (2)
Year Year of diagnosis e.g: 1997 (1997)
Histology Tumour type

e.g: papillary carcinoma (8050)
Tumour site Location of tumour

e.g: lower inner quadrant (503)
T umour grade Grade of the tumour e.g: 2 (2)
Cause of death Is the patient alive or dead e.g: 1 or 0
Nodes examined Number examined e.g: 50
Positive nodes Number of nodes e.g: 25
Tumour extent Tumour and surrounding involvement information 

e.g: Invasion of subcutaneous tissue (2)
Tumour size In millimetres e.g: 12(12)
Age Patient age e.g: 45 (45)
Surgery received Type of surgery e.g: partial mastectomy (10)
Radiation received Type of radiation procedure e.g: beam (3)
Radiation sequence surgery Order of treatment received 

e.g: radiation prior to surgery (3)
Martial status Marital status of patient e.g: single (3)
Number of primaries Number of primaries e.g: 2 (2)
PgR status Progesterone receptor status e.g: positive (1)
ER status Oestrogen receptor status e.g: positive (1)
Survival time in months Time in months e.g: 34 (34)
Patient ID Anonymous patient ID e.g: 9584
Table 4.1: Summary o f the different patient variables describing each patient in the SEER breast cancer 
dataset The description column contains a brief overview of each variable with the database code in brackets.

Numerous database projects have previously shown that computing performance is greatly 

enhanced using numbers as opposed to repeated strings o f text. This is particularly important 

when considering speed of retrieval of a large queried dataset and its subsequent processing, 

since in this instance the databases examined contained over 70,000 entries for breast cancer and 

90,000 entries for colorectal cancer. Moreover, the mathematical engine ‘R’ requires the data to 

be in a numerical format to perform some functions, sometimes binary according to the function 

to be processed. Data standardisation is symbiotic with ease o f use, ensuring interfaces where 

users can make selections from drop down boxes on website forms that are correctly integrated at 

all levels. Once the dataset was in a satisfactory form, the data was inserted into the Microsoft 

SQL database.

183



Colorectal cancer patient variables Description (database code)

Race Ethnic origin e.g: black (1)
Sex Male or Female e.g: male (1)
Year Year of diagnosis e.g: 1985 (1985)
Histology Tumour type

e.g: tubular adenocarcinoma (8211)
Tumour site Location of tumour e.g: cecum (5)
Tumour grade Grade o f the tumour e.g: 1 (1)
Cause o f death Is the patient alive or dead e.g: 1 or 0
Nodes examined Number examined e.g: 23
Positive nodes Number o f nodes e.g: 12
Tumour extent Tumour and surrounding involvement 

information e.g: muscularis mucosae (12)
Tumour size In millimetres e.g: 23 (23)
Age Patient age e.g: 34 (34)
Surgery received Type o f surgery e.g: total colectomy (5)
Radiation received Type o f radiation procedure 

e.g: radioactive implants (3)
Martial status Marital status o f patient e.g: single (3)
Number o f Primaries Number o f primaries e.g: 2 (2)
Radiation sequence surgery Order received

e.g: radiation after surgery (2)
Survival time in months Time in months e.g: 50 (50)
Patient ID Anonymous patient ID e.g: 9584
Table 4.2: Summary o f the different patient variables describing each patient in the SEER colorectal cancer 
dataset The description column contains a brief overview o f each variable with the database code in brackets.

4.5.3 Visual Basic.net and Visual Studio

Visual Basic.net is an update o f Microsoft Visual Basic which was used in the development of 

Informatics Tenovus (I-10) in Chapter 2. It was designed to meet the growing needs for web 

based applications which run on many different computer operating systems, commanded 

through a web browser (such as Microsoft Internet Explorer). It is an alternative to the 

programming language Java and a technology called the Java virtual machine which allows Java 

written applications to run locally through a user’s web browser.

During development it was fortunate to have access to a Microsoft Windows server -  a computer 

operating system optimised to serve web pages for extended periods of time. This was another
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fundamental choice in selection of Visual Basic.net for the cancer survival query tool 

development.

Visual Basic.net applications are created using a Microsoft application called Visual Studio.net 

which is very similar to the application Visual Basic 6.0 as outlined in Chapter 2, Section 1.3. 

This application was used to design all technical aspects of the cancer survival query tool.

Due to prior experience with Visual Basic, it was a natural progression to be used for 

development of the cancer survival query tool. A key advantage determined early in development 

was the similarities to Visual Basic in commanding the statistical programming environment ‘R’ 

through the R-(D) COM interface.

4.5.4 R-(D)COM

As previously demonstrated in Chapter 2, Section 2.3.1, the query tool communicates with ‘R’ 

for statistical analysis o f any given patient selection using the R-(D)COM interface. It is a 

Microsoft Windows operating system only based interface. During development it was fortunate 

that the interface was compatible with Visual Basic.net as documentation examples focus mainly 

upon the older Visual Basic programming language. Consequently, this allowed the usage of the 

‘R’ statistical programming environment outline in Chapter 2, Section 2.2.1, to perform the 

statistical analysis for the developed cancer query tool.

4.5.5 Web service development

The query interface, for the cancer survival query tool, communicates with the SEER patient 

database indirectly for added security via web services. Web services act as an interface with data 

sources (such as a database) and user interfaces (such as the cancer survival query tool). The user 

interface and database cannot access each other directly. Only the web service knows how to 

communicate between the two parts of the system.
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Due to the requirement of obtaining the SEER dataset via license agreement, one of the 

prerequisites for access is to not allow public distribution of the patient dataset. Due to the 

sensitive nature of patient data, even when anonymous, web service development is also 

beneficial for addition of future patient datasets. It enables such datasets to be added with full 

confidence o f data protection.

Consequently, query results managed via the web service are processed using ‘R’ via a D-COM 

interface as demonstrated previously in the development of I-10 in chapter 2. This plays an 

important role in enabling the generation o f Kaplan Meier survival curves, Cox proportional 

hazard models and log rank tests from a particular subset of patient variables which the user 

specifies via the user interface. Figure 4.3 outlines the interactions between the different 

components in the cancer survival query tool (Superstes).

Use of web service technology in Superstes has two main advantages. Firstly, as previously 

introduced, the underlying database structure, contents and queries cannot be seen or controlled 

in any way other than what has been hard coded into the web service. For example, web methods 

to update, delete or insert data cannot be performed unless it is encoded, protecting the stored 

data. Secondly, the underlying database technologies used to store and retrieve the data does not 

need to be understood by the user. Applications simply make a request and get a result in a 

predefined format. This makes Superstes cross platform compatible as a result of using a web 

service communication protocol called ‘SOAP’. SOAP gives the potential for multiple 

applications to connect to the web service at any one time via the Internet. This facilitates 

multiple queries from Superstes and the potential for multiple simultaneous access o f the SEER 

patient dataset. The only information developers using web service technology require is the 

hierarchy in which variables are passed and retrieved by queries o f the dataset. The pivotal role 

the web service plays in the interactions between the components of Superstes is summarised in 

Figure 4.3.
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Request
i Compiled DLL with query, parameter and dataset 
j information completely invisible to the user.

SQL Server 
Database

SuperstesWebservice.dll
Results returned .
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Internal ASP.net 
System process

SOAP ResponseAccess via www
SOAP Request

Search query sent 
Via SOAP protocol 
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Dataset returned 
via SOAP Request 
HTTP port 80

Results to be analysed
Mechanism of query 
and exploration of data 
by clinicians.

Results returned

DCOM interface

ASPNET_isapi.dll

Superstesclient.aspx Internet Information Services 
on Windows 2003 

server

Figure 4.3: Interactions between the different com ponents o f  Superstes and the pivotal role o f  the w eb service.

Figure 4.3 indicates key system features of Superstes using web services. The diagram shows the 

flow of information starting with a search of a particular set of patient variables in the user 

interface -  Superstesclient.aspx. Data corresponding to relevant clinical variables is then 

requested from the SEER patient database. The results are processed in ‘R’ via the D-COM 

interface before finally being returned to the user interface page -  Superstesclient.aspx. The code 

for the web service request is written as a file called an ‘asmx’ file in the programming language 

visual basic.net, as shown in code 4.1.
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<%0 WebServi.ee Language= "VB" Class="GetInfo" %>
Imports System 
Imports Systern.Data 
Imports System.Data.DataSet 
Imports System.Data.SqlClient 
Imports System.Web.Services
Public Class Getlnfo : Inherits WebService

<WebMethod()> Public Function ShowPatients(ByVal stra As String, 
ByVal strl As String, ByVal str2 As String, ByVal str3 As String, 
ByVal str3a As String, ByVal str4 As String) As DataSet

Dim dbConnection As SqlConnection = New SqlConnection("Server=BIOSCI- 
WINDOWS\SQLEXPRE SS; Database=Supers tes; Uid=HILLN; Pwd=* ***★***")
Dim objCommand As SqlDataAdapter = New SqlDataAdapter("select ID, Race, Sex, 
Histology, Site, Grade from Colorectala where CTYP LIKE 1" + stra + AND Race 
LIKE + strl + •" AND Marital LIKE + str2 + "' AND Age > ' " + str3 + AND 
Age < '" + str3a + "' AND Grade LIKE '" + str4 + ", dbConnection)
Dim DS As DataSet = New DataSet 
objCommand.Fill(DS)
Return DS
dbConnection.Close() 
dbConnection = Nothing
End Function
End Class

Code 4.1 -  Creation of the web service for accessing, for example, the colorectal dataset.

The code is saved with the file extension .asmx which is then compiled at the command line 

using the ‘wsdF compiler which requires the specification of important system *.dll files which 

are required for compilation to be successful. This information is supplied by typing a particular 

set of commands at the command line to initiate the compiler. A most important step is the 

specification o f a unique ‘namespace’ which is a requirement for web service functionality. The 

web site navigation (URL route structure e.g: http://137.44.25.44/Superstes/) is a requirement for 

functionality so that the Web service routes information to the correct locations if it was ever 

hosted on a different machine to that supplying the data source. A different web service was 

created for the two cohort search as more parameters are sent and received to enable the 

comparison to be made.
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The compiler generates a *.vb file from the asmx file which creates the ‘nameservice’ calls which 

ultimately deals with the web service protocol information -  in this case the protocol SOAP. An 

example of this code is shown in code 4.2 using the previously shown .asmx file for a single 

cohort query as an example.
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Option Strict Off 
Option Explicit On
Imports System
Imports Systom.ComponentModel 
Imports System.Diagnostics 
Imports System.Web.Services 
Imports System.Web.Services.Protocols 
Imports System.Xml.Serialization

'This source code was auto-generated by wsdl, Version=l.0.3705.0 .
I

Namespace DataServicel
'<remarks/>
<System. Diagnostics. DebuggerstepThroughAttribute () , _
System.ComponentModel.DesignerCategoryAttribute("code") , _
System. Web. Services . WebServiceBindingAttribute (Name: ="GetInfoSoap", 

[Namespace]:="http://tempuri.org/")> _
Public Class Getlnfo

Inherits System.Web. Services. Protocols. SoapHttpClientProtocol
'<remarks/>
Public Sub New()

MyBase.New
Me.Url = "http://localhost/colrec/Getlnfo.asmx"

End Sub
•<remarks/>

<System. Web. Services. Protocols. SoapDocumentMethodAttribute ("http: //tempuri. org/Sh 
owPatients", RequestNamespace:="http://tempuri.org/",
ResponseNamespace: ="http: //tempuri. org/ " ,
Use: =System. Web. Services. Description. SoapBindingUse. Literal,
Parameterstyle: = System. Web. Services. Protocols. SoapParameterStyle. Wrapped) > _

Public Function ShowPatients( _
ByVal stra As String, _
ByVal strl As String, _
ByVal str2 As String, _
ByVal str3 As String, _
ByVal str3a As String, _
ByVal str4 As String, _
ByVal str5 As String,
) As System.Data.DataSet 

Dim results () As Object = Me. Invoke ("ShowPatients" , New ObjectO 
(stra, strl, str2, str3, str3a, str4, str5, str6, str7, str8, str9, str9a, strlO, 
strll, strl2, strl3, strl4, strl5, strl6, strl7, strl7a>)

Return CType(results(0),System.Data.DataSet)
End Function

C od e 4 . 2 . . c o n t i n u e d  o v e r l e a f
-.~y""th-'VV. !>' .py„. v- :  7 - 7  * ' ;  -u'V
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...Code 4 .2  c o n t i n u e d  from p r e v i o u s  p age

'<remarks/>
Public Function BeginShowPatients( _

ByVal stra As String, _
ByVal strl As String, __
ByVal str2 As String, _
ByVal str3 As String, _
ByVal str3a As String, _
ByVal str4 As String, _
ByVal str5 As String,)
ByVal callback As System.AsyncCallback, _
ByVal asyncState As Object) As System. IAsyncResult 

Return Me.Beginlnvoke("ShowPatients", New ObjectO {stra, strl, str2, 
str3, str3a, str4, str5, str6, str7, str8, str9, str9a, strlO, strll, strl2, 
strl3, strl4, strl5, strl6, strl7, strl7a), callback, asyncState)

End Function
'<remarks/>
Public Function EndShowPatients (ByVal asyncResult As System. IAsyncResult) 

As System.Data.DataSet
Dim results () As Object = Me.Endlnvoke(asyncResult)
Return CType(results(0),System.Data.DataSet)

End Function 
End Class 

End Namespace

Code 4.2: Compiled web service containing programmatic instructions of where the SEER patient data set 
resides and how to make a request of certain patient variables of the data set.

A key relationship which makes the system quite unique is the way in which the queries become 

result graphs. Results from the web service query are returned to the application as a dataset 

which any Visual Basic.net system can use. Once it has been returned as a dataset, the results can 

be read into an array format in the client application (as in the case of the user interface of 

Superstes). This array can then be passed into ‘R’ as a data matrix using the R-(D)COM 

interface. ‘R’ is used to generate histograms for the different patient variables such as sex, martial 

status or age range for example. It is also used to generate Kaplan Meier Survival curves, log 

rank tests and Cox proportional hazard models. As each histogram is written as an image file 

(called a JPEG), this not only enables the user to see the image in their browser window, it 

presents the option of saving to a file for use in presentations/documents.
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4.5.6 User interface design and statistical capabilities of Superstes

A key aim with Superstes development was to produce an easy-to-use tool (ideally with the 

information represented in a uniform way for different cancer types i.e. breast, colorectal). The 

need for clear, concise interfaces was a lesson learned early during development of I-10. It was 

possible to create such a user interface for Superstes as a visual basic.net application in visual 

studio as previously introduced. It was created as an *.aspx page type with an accompanying *.vb 

script which contains functions which command ‘R’ via the (D)-COM interface to perform the 

different statistical techniques. Ultimately, when interpreted through Windows IIS (Internet 

Information services) the application is operated through a web browser. Although the bulk of the 

code for the Superstes application can be found on the accompanying CD-ROM, in this section 

important examples from the code are highlighted where there are novel coding features central 

to the function o f Superstes. A master template, which contains the structure and layout of the 

application, was applied and also used to form the tree menu structure for cancer type selection, 

and the tab system which contains headings for analysis options. The menu and tab system was 

created in the programming language Javascript which is widely used for web site design [89]. At 

the top of every .aspx page is a link which loads the master layout file for Superstes and the code 

page containing the *.vb script file as shown in code 4.3.

<%6 Page Language=,rVBn MasterPageFile="~/superstes.master"
AutoEventWireup= "false" CodeFile="sup.aspx.vb" Inherits="sup" title="Superstes - 
Cancer Survival Query Tool" %>

Code 4.3: Initial code section which is loaded when Superstes is first launched in a web browser.

Although .aspx pages support most html formatting standards, the ways in which dynamic or 

server processed information is handled is different. One example is the selection of drop down 

(clickable) boxes on traditional html pages. These are called drop down boxes which contain list 

items, for example using the “race” drop down list as shown code 4.4.
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<asp:DropDownList ID="Race" runat="server">
<asp: Listltem Selected=,lTrue,, Text="Any" Value=M%MX/asp:ListItem> 
<asp:Listltem Text= "Black" Value="l"X/asp:ListItem>
<asp: Listltem Text="White" Value="2"X/asp: Listltem>
<asp:Listltem Text="Other" Value="3"X/asp:ListItem>
<asp:Listltem Value="4">Unknown</asp:Listltem>

</asp:DropDownList>

Code 4.4: Example o f how a ‘DropDownList’ -  which provides the user with a choice of different race shown 
here using the Visual Basic.net programming language.

As in traditional web page forms which the user completes in a web browser, the value of each 

item are then passed to the server as part o f a query. For example, in code 4.4 if patients who are 

white need to be selected, this corresponds to a value of ‘2’ in the database.

Connections to ‘R’ and to the SQL database are handled within the accompanying *.vb file of the 

parent *.aspx page. Certain system components are required upon page load. Connectivity to ‘R’ 

in Superstes is initiated in a similar way as to that in visual basic in 1-10, but with slight syntax 

changes as shown code 4.5.

Imports System 
Imports System.Data 
Imports System.Data.DataSet 
Imports System.Data.SqlClient
Partial Class sup

Inherits System.Web.UI.Page
Dim suplnfo As DataServicel.Getlnfo
Dim MyData As Data.DataSet
Dim sconn As STATCONNECTORSRVLib. StatConnector // Initialised upon page load

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) 
Handles Me.Load
sconn = New STATCONNECTORSRVLib. StatConnector () // New connection made 
sconn.Init("R") // 'R# initialised
' ^ ;.,&&■ i \. . ^ 1..■-T-—;—  - <'

Code 4.5: Initialisation of the connection to ‘R’ using visual basic.net
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Once these statements are executed, R’ communication is established and data handling for SQL 

when creating and retrieving query results is initiated. Imports System.Data.SqlClient contains a 

set of methods for communication with the Microsoft SQL database.

As each query page is divided into a series o f tabs for ease of navigation, all page elements are 

loaded together. For stylistic purposes, when the page is initially loaded and no histogram is 

present on the results tab, a simple blank image is displayed in its place until ‘R’ has produced 

the requested histogram. The code to produce this effect is shown in code 4.6 with the result 

shown in figure 4.4.

Imagel.ImageUrl = "http://137.44.25.44/Superstes/blank.jpg"

C ode 4.6: M ethod for in sertion  o f  a blank im age for styling purposes in Superstes.

http  //137 M  2S 44 fr4M r«M /s t« t)rM it asp» 

W  4 t Superstas * Cancar Siawval Query Tool

* t  X  j 'a f x v  W . h

^ i A J x j

P .*

| 1 Black

1 2 White

1 3 Other

\ ~  ̂ Unknown

ft * q - •** • * T̂od. - -
T3

Divorced
Mamed

Single

J

r r r r r r g n s s  i^m * x 
Figure 4.4: T he effect o f  inserting a blank im age file into Superstes before any results are loaded.

An overview of navigation through Superstes is shown in figure 4.5. The first choice the user 

makes in Superstes is cancer type - colorectal or breast cancer. The opening overview page of 

Superstes at http://137.44.25.44/Superstes/ can be seen in figure 4.6. Subsequent options

194

http://137.44.25.44/Superstes/blank.jpg
http://137.44.25.44/Superstes/


available on the search pages will vary slightly according to the type of cancer initially chosen 

(e.g. no steroid receptor covariate boxes for colorectal cancer). Cancer type is chosen from a tree 

menu structure to the left o f the page with the main text body containing contact information of 

the developers, a brief application explanation, and the location for any main update information.

supbreast.aspx

Overview, aspx

Welcome page 
-users choose 
cancer type

Single patient 
breast cancer
cohort search 
param eters page

supbreastZaspx

Two patient 
breast cancer 
cohort search 
param eters page

sup.aspx

Single patient 
colorectal cance 
cohort search 
param eters page

sup2.aspx

Two patient 
colorectal cancer 
cohort search 
param eters page

Navigation direction

supbreast.aspx

Data tab -  lists histograms
Survival tab -  produces Kaplan-Meier curve
Cox's proportional hazards tab -  model results

supbreastZaspx

Two patient search tabs -  one for each patient 
Survival statistics tab -  displays Kaplan-Meier 
curve and log rank test of the two patient groups

sup.aspx

Data tab -  lists histograms
Survival tab -  produces Kaplan-Meier curve
Cox’s  proportional hazards tab -  model results

supZ aspx

Two patient search tabs -  one for each patient 
Survival statistics tab -  displays Kaplan-Meier 
curve and log rank test of the two patient groups

Figure 4.5 N avigation  through S uperstes from  ch oosin g  patient variables to search through to obtain ing  
results o f  the d ifferen t m odelling techniques.
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Figure 4.6 -  O pening page to Superstes -  overview .aspx

Once the user has selected which type of cancer they wish to analyse, there are five tabs which 

contain user interface selections and are used to display results and graphs. Navigation occurs as 

reading logically left to right.

4.5.7 Creating a single cohort query

The first tab contains drop down menu selections with a selection of patient variables which the 

user can choose to query for breast or colorectal cancer, with single or two cohort patient options. 

Figure 4.7, shows a typical selection of options available for a single cohort colorectal patient 

search. Histogram results for each covariate selected under the single cohort tab (martial status, 

age etc.) will appear under the tab ‘Data’ while the tab ‘Survival statistics’ contains Kaplan Meier 

plots describing survival and Cox-Proportional hazard modelling results appearing under the tab 

‘Cox-Proportional hazard models’. For example, under the ‘Colorectal -  single cohort’ tab, 

search parameters that can be selected using tick boxes are divided into four sections: patient, 

tumour, treatment and additional tumour characteristics. Patient options available across both 

cancer types include race, age, marital status, and their age. Tumour options include grade, nodes
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examined, number of positive nodes and tumour size. Treatment options include radiotherapy 

(and its type), surgery (and its type) and surgery/radiotherapy sequence. Additional tumour 

characteristics include tumour site, tumour extent, number of primary tumours and the tumour 

histology. Additional options for breast cancer on the equivalent tab are ER status and PgR status.
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F igure 4.7: Exam ple options available for  the single cohort search for colorectal cancer.

* A

Once parameters have been chosen, the system queries the underlying SQL server database and 

returns results via the website. If a single cohort comparison is being made, the user gets access 

to an extensive list of drop down boxes showing histograms of each of the search parameters 

which were available.

The ‘calculate' button shown in figure 4.7 initialises a set o f ‘R’ instructions upon submission of 

the covariate parameters that the user has chosen to query via the web service. The survival curve 

is initially created using the methodology outlined in code 4.7.
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Protected Sub Submi tBtn_Click(ByVal sender As Object, ByVal 
System.EventArgs) Handles Buttonl.Click 

Dim arrl(,) As String 
Dim rw, cl As Integer

e As

'On Error GoTo handle error 
sconn.EvaluateNoReturn("require (stats)") 
sconn.EvaluateNoReturn("require (survival)") 
sconn.EvaluateNoReturn("require (Design)")
Dim tm As String = ""
Dim tmpl As String — ""
Dim MyData As Data.DataSet = Session. I tern ("mydata") 
cl = Session.Itern("datel") 
rw = Session.Item("datrw")
Dim name(23)
name(l) = "id" // remaining 22 removed to condense code
'Assign values to each variable 
For k As Integer = 1 To cl 

tmpl = name(k) & "<-c("
For j As Integer = 0 To rw - 1 

Dim rl As String
rl = MyData.Tables(0).Rows(j).Item(k - 1) 
If j < rw Then tmpl = tmpl & rl & ","
If j = rw Then tmpl = tmpl & rl

Next j

tmpl =  tmpl & ")" 
sconn.EvaluateNoReturn(tmpl) 

Next k
tmpl =  "dat<-data.frame("
For j As Integer =  1 To cl - 1 

tmpl =  tmpl & name(j ) & ","
Next
tmpl =  tmpl & name(cl) & ")" 
sconn. EvaluateNoReturn (tmpl)
Dim varnum As Integer =  0 
Dim varname(23) As String

' # # # # # # # # # # # # *  KAPLAN-MEIER # # * # # # # # # # # # #
Dim survival(rw) As Double 
Dim cod(rw) As Double
For j As Integer =  0 To rw - 1 

Dim rl As String
rl =  MyData.Tables( 0 ) .Rows( j ) .Item(16)  
survival( j )  =  CDbl(rl)
'rl =  MyData.Tables( 0 ) .Rows( j ) .Item(18)
If MyData.Tables( 0 ) .Rows( j ) .Item(18) =  "0" Then 
If MyData.Tables( 0 ) .Rows(j ) .Item(18) =  "1" Then 
cod(j ) =  CDbl(rl)

Next
'Exit Sub

rl = "1" 
rl = "0"

. . c o d e  4 . 7  c o n t i n u e d  o v e r l e a f



...Code 4 . 7  c o n t i n u e d  from p r e v i o u s  page
sconn.SetSymbol("survival", survival) 
sconn.SetSymbol("cod", cod)
' Exit Sub
sconn.EvaluateNoReturn("mod<-survfit(Surv(survival, cod))") 
sconn.EvaluateNoReturn("setwd(' c:/Superstes/temp/ ') ")
Panel3.Controls.Clear()
'Dim obj As New Object
sconn.EvaluateNoReturn("library(MASS)")
obj = Server. CreateObject ("Scripting. FileSystemObject")
filename2 = obj.GetTempName
sconn.EvaluateNoReturn("jpeg('" & filename2 & ".jpg')")
' sconn. EvaluateNoReturn ("detach (' package: Design') ")
sconn. EvaluateNoReturn ("plot (mod, col='red' , xlab='Time in Months',

ylab='Cumulative survival')")
sconn.EvaluateNoReturn("dev.off() ")
' Panel3.Controls.Add(im(1))
Imagel. ImageUrl = "http://137.44.25.44/colrec/temp/" & filename2 & ".jpg" 

Code 4.7: *R’ code in Visual basic.net for production of Kaplan-Meier survival curve.

The Kaplan-Meir survival curve is written to a file and then displayed under the survival statistics 

tab is shown in figure 4.8. The Cox’s proportional hazard model information is also extracted and 

displayed under the model tab -  the detailed coding for the manipulation o f the data returned 

from ‘R’ can be found on the accompanying CD-ROM. An example o f a Kaplan-Meier survival 

curve and associated Cox proportional hazards model is shown in figure 4.8 and 4.9 respectively.

Superstes empowers the user to assess which variables' coefficients are significantly different 

from zero; that is: which variables are significant predictors o f survival. By exploring each 

covariate in turn it is hoped much information can be gleamed from the value o f one covariate 

over another. In this respect, Superstes is unique when compared to other cancer survival query 

tools.
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Figure 4.8 -  S u rv iva l cu rve from  a result o f  a typical single cohort colorectal query. Full dem onstration  
provided in section  4 .6  o f  this chapter.
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Figure 4.9: C o x 's  proportional hazard m odelling for a single cohort colorectal search result.

Histograms generated under the “data” tab are created using Visual Basic.net and kR’ after the 

survival curve has been created and are displayed together with their respective attribute codes. 

All results are returned simultaneously to the user. Coding for histogram generation for the 

patient attribute marital status is shown in code 4.8 with an example screen capture in figure 4.10.
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Dim varnum As Integer = 0 
Dim varname(23) As String 
Panel3.Controls.Clear()
Dim obj As New Object
Dim filename2 As String 
Dim strl As String = ""
sconn.EvaluateNoReturn("setwd('c :/Nathan/colrec/temp/ 1) ") 
sconn.EvaluateNoReturn("library(gplots)")
'marital
obj = Server.CreateObject("Scripting.FileSystemObject") 
filename2 = obj.GetTempName
sconn.EvaluateNoReturn("jpeg('" & filename2 & ".jpg')")
sconn.EvaluateNoReturn("tab<-table(marital) ")
sconn.EvaluateNoReturn("mat<-as.matrix(tab) ")
sconn.EvaluateNoReturn("mat<-t(mat)")
sconn.EvaluateNoReturn("x<-max(marital) ")
sconn.EvaluateNoReturn ("barplot (tab, col='green' ,xlim=c(l,x) , xpd =FALSE , 

xlab=Marital status code', ylab='Number of Patients')")
sconn.EvaluateNoReturn("dev.off() ")
Image3. ImageUrl = "http://137.44.25.44/colrec/temp/" & filename2 & ".jpg"

C ode 4.8: C od in g  to produce the histogram  m arital status using V isual B asic.net and ‘R \

*  I * .  t * p . (/I 37 «  25 

W  * r  mSquritw-CencwSwvwgQuaryToel |  |

* t X  S tart,

* Q • m • * ŝTook

1 2 Mamed

| 3 Single
| 4 Unknown
j 5 Widowed

I
1 2 3 4 5

Mantal status code

Divorced

Ages between 19 and 106

t  r r r n i w -
Figure 4.10: Marital status histogram generated under the 'Data’ tab in Superstes.

The user should be able to build models and spot trends amongst the data according to the 

selected patient attribute profile by carefully filtering the database generating successive queries
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using Superstes. The interface greatly enhances this process by removing all level of direct SQL 

database querying by the user.

4.5.8 Creating a two cohort query7

A unique and powerful comparison feature within Superstes is the two cohort search option 

available for either breast or colorectal cancer. Here, the interface is identical to the single cohort 

query page; however, covariates are selected under two separate tabs for patient group 1 and 

patient group 2, with results o f the query generated as a comparative survival curve by clicking a 

calculate button on the survival statistics tab as opposed to presenting individual histograms. 

Thus, the combination effect o f one set of patient covariates against another can be explored 

using the two cohort query function with one Kaplan-Meier survival curve displaying the effect 

on survival o f the selected variables of the two cohorts of patients. As shown in figure 4.11, the 

tabs have been simplified to show the two patient group interfaces and the results ‘survival 

statistics’ which reveals survival curve information.

-  |# L  h ttp ://l37  M  K  

W  ♦ >  U S u c w s t e s  • Cancer Survival Query Tool

» |  * t  X  |vahoo' Search P -

Q t  * G !  '  “W  * Toots

‘S  oonoar tuvfcoi qp«y tod
PATHOLOGt ScK-»cl of P*thoiogy >nf©rrru'.i«: *

► O V ERV IEW

► B re a s t
► Colorectal

C o l o r e t t a l  • P a t i e n t  G ro u p  1 C o lo r e c ta l  P a t i e n t  G ro u p  2  S u r v iv a l  S t a t i s t i c s

B oth J
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F igure 4.11: T he tw o coh ort query page for colorectal cancer in Superstes and the search op tions available.
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A typical Kaplan-Meier survival curve subsequently plotted from an example two cohort 

colorectal search can be observed in figure 4.12. The outcome based on the search parameters can 

be compared from the two cohorts on the same graph where patient group 1 is plotted in red and 

patient group 2 is plotted in blue.
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Figure 4.12 -  T w o coh ort survival curve from  a co lorecta l query  -  patient group 1 highlighted in red and  
patient group 2 h ighlighted  in blue.

To demonstrate the capabilities of Superstes, four different selections of patient variables were 

chosen which a user could possibly choose to analyse the effect on survival.
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4.6 Examples Usage of Superstes

4.6.1 Case study 1: A group of breast cancer patients who ranged in age between 20 and 50 

years of age all developed breast cancer. All of the patients were not married yet developed 

grade 2 tumours. W hat is the effect on surv ival for such a cohort of patients?

To address this question, the single cohort patient search tool is used. The results show a 

distribution of women towards the age of 50 as expected due to the age range defined in the 

query. This phenomenon is not surprising in the results due to the onset of menopause, which is 

evident in the distribution of the histogram of age as seen in Figure 4.13.

Age

0 23 26 29 32 35 38 41 44 47

Patient age range

F igure 4.13 -  A ge o f  selected  subset o f  patients sh ow in g  high num bers tow ards 50, peaking at the age o f  45
w here over  100 patien ts had breast cancer.

Most of the patients selected, as seen in figure 4.14, received the very invasive procedure of 

partial mastectomy with dissection of axillary lymph nodes. In fact, over 500 received this 

surgical procedure. The remaining patients mostly had modified radical mastectomy, around 350, 

and around 100 received modified radical mastectomy with reconstructive surgery.
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F igure 4 .14 -  H istogram  o f  surgery received o f  the selected subset o f  breast cancer patients.

The survival curve shows a sharp fall in survival rate at approximately the 140 month time point 

as seen in Figure 4.15. This step down could be due to a number of patients dying at this time 

point.
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Figure 4.15 -  K aplan M eier survival curve for selected  sub set o f  patients from the single cohort search  -  
V ertical bars show n on the plot illustrates w here patien ts have been censored .
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Finally the Cox proportional hazard model highlights poor correlation between nodes positive 

status, tumour size and age -  all variables used in the NPI prognostic index. Consequently in this 

subset, these variables are shown not to be good indicators of survival. This can be observed in 

figure 4.16

S 3 5 E H 5 1 ^ B i
Variable |coef |exp(coef) |se (coef) k Ip |exp(-coef) |lower 95 |upper 95
nodes_positjve jo 003 jl 003 jo 013 |0 214 |0 830 jo 997 jo. 977 jl 030
tumour_size j-0 002 jo 998 jo 004 j-0 456 jo 650 jl 002 jo 991 jl 006

age jo 009 jl 009 jo 006 jl 458 |0 140 jo 991 |0 997 |l 022
factor(er)l jo 409 jl 506 jo 296 jl 382 jo 170 jo. 664 jo 843 j2 689
factor(er)2 |0 277 jl 319 jo. 304 jo 910 jo 360 (0.758 jo 726 |2 396
|factor(er)3 |n a [NA jo 000 |n a |n a |n a |NA |n a

■
[RSquare |0 007

||Max poss RSquare jl 000

Tests |Score |df
Likelihood ratio test [7 592 |5 |0 180

Wald test |7 130 fT “ jo 211

Score (logrank) test \l 181 b jo 208

F igure 4 .1 6 - C o x  p roportional hazard m odelling o f  the five d ifferen t covariates and their effect on survival.

4.6.2 Case study 2: W hat is the difference in survival between a selection of ER+ breast 

cancer patients who are aged between 20 and 40 years old compared with a similar group of 

patients between the ages of 40 and 60 years old?

To assess this group of patients, the two cohort breast cancer search tool was utilised. As shown 

in figure 4.17, a value towards 1 indicates survival. Interestingly, group 1 which represents those 

patients aged between 20 and 40 shows a lower survival rate than those older which is shown by 

group 2. The high chi squared value indicates a large difference between the two groups of 

patients.
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F igure 4 .17  -  T w o cohort kap lan-iM eier plot betw een the tw o subsets o f  patients queried.

4.7 Using Superstes to determine survival for a given subset of colon cancer patients

4.7.1 Case study 1: A group of white, male patients who are m arried have all developed 

colon cancer which has been diagnosed as a type 2 tum our. They all range in age between 

30 and 40 years old. W hat effect will this have on their survival?

To address this question, the single cohort colorectal search tool of Superstes was used. The 

results show that over 25 patients of the selected subset have a tumour located in the sigmoid 

colon and over 15 patients having a tumour located in the cecum. Finally the third largest group 

of 10 patients had a tumour located in the ascending colon as shown in figure 4.18.
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F igure 4 .18  -  T he location  o f  the tum our for those patients selected w ith colon cancer.

Over 15 patients o f the selected subset had a tumour of 40mm in size as shown in figure 4.19. 

Tumours o f approximately 30mm were found in 10 patients and also approximately 20 patients 

had a tumour size o f 60mm.

Tumour Size
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Tumour size mm

Figure 4 .19 -  T u m ou r size in mm o f  selected  colon cancer subset.
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The Kaplan-Meier curve of the selected subset initially shows a relatively sharp fall indicating 

patients who have died until the 50 month time period before the curve plateaus. At this point 

some patients are censored as indicated by the vertical red lines between the 70 and 150 month 

period. The point wise confidence limits for the survival function at the different points in time is 

also plotted as represented by horizontal dashed lines as shown in figure 4.20.
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F igure 4 .20 -  K aplan M eier plot o f  the selected  co lorecta l su bset show n w ith confidence lim its for the survival
function .

The cox proportional hazard model results are highlighted in figure 4.29. The variable nodes 

positive showed far higher significance as a predictor of survival with a p-value of 0.020 than 

either tumour size or age which had p-values of 0.930 and 0.750 indicating no significance, a 

summary of the results can be seen in figure 4.21.
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| Variable (coef (exp(coef) jse (coef) (p |exp(-coef) (lower .95 (upper 95
(nodes_posmve jo 010 jl 010 jo 004 |2.326 |0 020 jo 990 jl 002 |l 019
(tumour_sire j-0 001 jo. 999 jo 007 j-0 088 jo 930 jl 001 |0 985 1.014

|age j-0 023 jo. 978 jo 072 j-0 313 jo 7 5 0 jl 023 jo. 848 jl 127

[odel Statistics

(RSquare |0 054

(M axposs RSquare |o 963

(Tests (Score |df |P
(Likelihood ratio test (4 967 |3 |0 174

(Wald test (6 090 F " jo 107

|Score (logrank) test j6 611 |3 jo 085

Figure 4.21 -  C ox p rop ortional hazard m odel results.

4.7.2 Case study 2: A group of white male patients are all married and range in age of 

between 30 and 40 years old. They have all developed colon cancer with tumours being 

classified as grade 2. How would they compare with a subset of patients with the same 

cancer attributes yet w ith an age range of between 40 and 50 years old?

To address th is  question , the tw o cohort co lo recta l search  tool in Superstes can be used. The 

resu lts show  th a t th e  survival curve for the  tw o  g roups o f  patien ts, as seen in figure 4.22, show s a 

sim ilar su rv ival cu rve  for both cohorts  o f  patien ts. M any patien ts  w ere censored in group 2 as 

ind icted  by the  vertical lines on the  p lo t w h ich  co u ld  reduce the  reliability  o f  the  curve. The log 

rank test p value  o f  0 .755  reflects that there  is no t s ign ifican t d iffe ren t betw een the tw o  groups o f  

patients.
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F igure 4 .22 -  K ap lan -M eier  survival cure com p arin g  tw o coh orts o f  patients between the ages o f  30 and 40 
(grou p  I) and an o ld er  group  (group 2) betw een the ages o f  50 and 60.

T he four ex am p le  pa tien t cases ou tlined  are a  typ ical ex am p le  o f  how  the tool could be used. The 

nex t step  w ould  be to  m ore  ca refu lly  assess  each  p a tien t variab le  in turn, com paring  the results o f  

the m odelling  afte r each search so d e term in e  the  best com bination  o f  patient variables w hich is 

p lay ing  the  m ost sign ifican t role in su rv ival ou tcom e.

4.8 Discussion

S uperstes harnesses the pow er o f  w eb se rv ice  tech n o lo g y  in a  user-friendly , online m ultifunction  

“qu ery  and report system ” fo r co rre la tin g  p a tien t data  w ith survival in breast and co lorectal 

cancer. Im portan tly , the cap ab ilities  o f  S uperstes, facilita te  the exploration o f  d ifferen t 

co m binations o f  patien t variab les on su rv ival w ith  statistica l analysis assessing  the value and 

im pact p articu la r variab les have on overall su rv ival. T hrefore , it plays a d ifferen t role to  o ther 

on line  ana lysis  too ls  using  th e  SE E R  patien t dataset such as A d juvan tlO n line  and
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CancerMath.net. Superstes is very versatile allowing different patient variables which could 

potentially be predictive when used in combination. Assessment of the value particular 

combinations of patient attributes has on survival outcome is performed through Kaplan-Meier 

survival analysis, Cox proportional hazard modeling and the log rank test.

Superstes uses the ‘R’ mathematical engine for statistical analysis which was also used 

extensively by 1-10 as described in Chapter 2. However, Superstes differs from I-10 in that it uses 

multi-concurrent user database technology, using the SEER dataset of cancer patients which 

Superstes searches via a Microsoft SQL database. Due to the web based nature of Superstes, 

multi user ability is essential. The SEER data set for breast and colorectal cancer was transformed 

so that the stored dataset contained only numbers and no text information. Adherence to the 

standard set down by the SEER 1988-1992 document (Ries et al, 2005) [100] demonstrates a 

precedent to base non-standardised systems upon. This would enable subsequent pathological 

datasets from non-US sources to be added to the database and queried by Superstes. Providing 

coding such as ICD-10 does not change in the foreseeable future, Superstes should be able to 

process all such information accurately therefore making it an expandable and powerful resource.

The architecture of Superstes also differs from I-10 in its adoption of new web-based 

technologies. Thus, due to technical inheritance of certain elements of Visual Basic 6.0 used in I- 

10 development, it has been possible to use similar strategies in terms of interfacing ‘R’ with D- 

COM in Superstes to VB.net. Importantly, using the R-(D)-COM module to communicate with 

web-based visual basic.net technology was a very powerful association. This again allowed 

automated production of statistical analysis such as Kaplan-Meier survival curves. All analysis 

techniques are available at the click of a button through the web browser instead of a locally- 

installed application as in the case of I-10.

Microsoft visual basic.net technology has performed well for development of Superstes. The 

tools searches thousands of patient records in seconds and the Windows Server 2003 platform has 

provided a robust platform for hosting of Superstes. However the key advantage of Superstes 

being web based has been computer system independence and worldwide access. The web-based 

nature of Superstes should facilitate adoption by the greater research community of oncologists
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using datasets at an international level. Clinicians can access Superstes via the internet using any 

web-capable operating system and any web browser such as Microsoft Internet Explorer or 
Mozilla Firefox.

Any change to Superstes as a result of updates or new datasets to analyse is instantly reflected in 

the online version as opposed to needing to distribute updated versions to users. Users can always 

be assured that the current version is available online without having to make any updates 

themselves on every machine where they use Superstes.

Future implementations of Superstes could replace the Microsoft SQL server database with a 

mySQL database implementation. MySQL is a license free, data base application which is well 

established. It is more akin to the community development spirit which ‘R’ brings to Superstes. A 

library exists in *R' for communication with mySQL which could potentially pave the way for an 

alternative method of analysing the SEER dataset. This could have performance benefits from an 

analysis point of view especially if more datasets are added to Superstes.

4.8.1 Impact of Superstes on prognostic marker discovery in cancer research

A key strength of Superstes is the way in which users can obtain survival estimates based on 

actual data, rather than estimates generated by a regression analysis, for example. Superstes 

generates survival curves for all available data for any particular follow up period and as opposed 

to just a single time point. The ability to generate histograms, Kaplan Meier and Cox proportional 

hazard models offers users new ways of comparing and exploring biomedical data to reveal 

trends and display relationships within the data in a comprehensive, easy to use way, potentially 

resulting in the generation of new novel prognostic models. It was fortunate to have access to a 

high quality cancer data source such as the SEER dataset to facilitate Kaplan-Meier curves where 

the robustness and accuracy is critically dependent on the quality of the underlying data set 

(Kumar et al, 1994) (165].

Users of Superstes are not limited to a single analysis model yet can enter any prognostic factor 

combination they desire. Two cohorts of patients compared against each other in both breast and
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colorectal cancer is a powerful ability. However due to the myriad of patient variables available, 

the more refined choices the user makes, the fewer patients which will match the selected 

categories and which could potentially result in uncertain survival estimates. However using 

combinations based on actual patient cohorts will select the most applicable variables initially, 

which will impact the number of matching patients and the confidence intervals generated. 

However this should not detract from the numerous combinations in which the current (and 

future) covariate patient parameters could be assessed and modelled and the SEER dataset 

resource itself explored. Superstes will prove a very useful tool.

It is also hoped Superstes will pave the way for more collaboration through showing how cancer 

patient datasets can be mined. The natural progression for the developed tool would be to 

encompass multiple types of cancer using similar data formatting of the patient variables as 

demonstrated by the SEER breast and colorectal datasets. Use of Superstes will add value to 

databases which currently cannot be queried in such a user friendly manner. The value of the 

information generated will hopefully demonstrate a precedent to encourage others to follow and 

want to add data to the system. Other types of cancer and covariate data available now or in the 

future from SEER could be added quickly.

The approach could also be powerful if applied to UK data sources to explore or compare 

treatment regimes form the UK versus the USA, for example. This has wide ranging implications 

of opening up a new resource to oncologists to not only check published results however allow 

for discovery of new covariates which will ultimately impact on driving research and discovery 

forward. Superstes strikes the balance between publication demands and the accessibility of data 

and the reluctance of many researchers to release their valuable datasets into the public domain. 

The interactive web based nature of Superstes facilitates explorative analyses of prognostic 

variables and could potentially be applied to a variety of diseases in addition to cancer.
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4.8.2 An international cancer patient data resource

The successful web-based architecture of Superstes is a very powerful and versatile feature which 

should allow international exposure as well as allowing the capabilities of Superstes to be 

infinitely expandable allowing relationships to be explored in the dataset at an unprecedented 

level.

Usage of web service technology should allow interfacing with other systems to receive data for 

analysis or, as demonstrated here, to provide access to the SEER dataset. A fundamental goal of 

the project was to keep the tool universal yet maintain access to the data source so its value could 

be exploited by other applications. This has been achieved using well established SOAP web 

service technology. Applications which can retrieve and display returned results from a web 

service can access the data source.

The planned exposure that Superstes will experience in the future will be interesting to see how 

researchers and oncologists accept the tool and find it useful to explore new combinations of 

patient variables which could ultimately lead to new prognostic models. However one of the most 

powerful benefits of Superstes which should not be underestimated is how adoption of 

standardisation through programs such as SEER results in the generation of invaluable data 

mining tools.
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Chapter 5

Assessment of survival using machine 

learning algorithms based upon the 

Nottingham Prognostic Index (NPI) 

covariates using the SEER dataset, R
and Weka.
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Chapter 5 -  Assessment of survival using machine learning algorithms based 
upon the Nottingham Prognostic Index (NPI) covariates using the SEER 
dataset, R and Weka. 

5.1 Background

Predicting survival of a patient who has been diagnosed with cancer is difficult. No two patients 

are a like -  they will all differ in some way. Analysing past cases of patients who have developed 

cancer and then survived for differing periods could potentially uncover novel relationships. 

Understanding the connection between what specific attributes a patient exhibits and how long 

they live as a result of those attributes will help understand the mechanisms of cancer related 

deaths. The gap which connects a set of patient attributes and their survival can be thought of as a 

‘black box'. We strive to understand what happens in the ‘black box’ which could be thought of 

as nature itself -  the processes which take place within the patient which ultimately govern their 

survival. From a statistical view point, it is valuable to determine what set of mechanisms 

connects a certain set of patient attributes with their resulting survival.

Prognostic indices, such as the St. Gallen criteria, the TNM system and the Nottingham 

Prognostic Index, can integrate information from several prognostic factors which have been 

validated in a number of ways and assigned to patients of different prognostic categories (Ellis et 

al, 2004) [89]. However, what these prognostic models do not provide are estimates for a survival 

per individual patient probability. The demand remains for tools that not only provide prognostic 

classification, but also give quantitative probabilities of survival (Fulford et al, 2007) [88]. It is 

important to recognise that any model intended to provide prognostic assessments should include 

NPI factors, as a minimum, largely due to the historic value systems such as the NPI has 

provided. One study showed that apart from therapy-specific models, molecular and other 

prognostic classifiers would have to add significant information to the NPI to be considered 

clinically important (Fulford et al, 2007) [88]. Consequently, it could prove difficult to find new 

prognostic markers from those patients who fall into the excellent prognosis group (EPG) of the 

NPI.
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The limitations in the abilities of the NPI has been well documented (Yu et al, 2004) [8]. For 

example, while widely applied to inform the choice of adjuvant therapy, advances in therapy and 

detection policies, such as the introduction of breast cancer screening for women aged 50 

(Fulford et al. 2007) [88]. Consequently, there is a continued need to explore covariate 

combinations, drawing on large clinical datasets such as those for breast cancer, to test new 

predictive models.

Flowever it should be clear that indexes such as the NPI are forms of classifying a patient dataset. 

C lassification as a process is arguably one of the most important analytical tasks in high 

throughput data analysis (Handl et al, 2005) [106]. Numerous automated classification 

procedures have been developed to try to map new underlying patterns in datasets and explore the 

‘black box' which is a cancer patient with the goal of finding important correlations between 

different patient variables thought to predict an outcome, such as survival.

There is lack of comparison between analysis methodologies to find a better framework for 

classification of patient covariate information.

It has been shown in previous chapters that significant biological relationships can be identified 

using high throughput analysis technologies which datamine using statistical and machine 

learning methodologies using in vitro and in vivo data sets. Previous chapters have focused on 

how biological function generated from Affymetrix array data and cancer patient dataset, such as 

the SEER data set, have the potential to reveal possible markers of endocrine response/failure and 

also clinical prognostic markers through use of I-10 or Superstes respectively. Using the correct 

tools, a cancer researcher can begin to determine the more robust individual associations within 

such biomedical data in relation to these clinically-important end-points using statistical 

procedures available through software, where this approach has been demonstrated in previous 

chapters.
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5.2 Data M ining

Data mining is a knowledge discovery process. It provides structure for discovering and 

importantly -  allows quantification of patterns hidden in large quantities of data (Cox, 2005) 

[116]. Patterns, in the form of classification models, can be discovered in many ways ranging 

from more traditional statistical methods through to more advanced machine learning approaches.

Linear regression analysis was one of the earliest forms of data mining created by Johann Gauss 

in 1809 due to his work on the “method of least squares” (Buhler et al, 1981) [117]. Regression 

analysis allows the modelling of dependent variables such as the response variable and one or 

more independent variables. The dependent variable is modelled as a function of the independent 

variable and any constants required. The best fit method is evaluated by the “method of least 

squares”. Consequently, regression analysis can be used for prediction and modelling of events 

thought to cause another event.

5.2.1 Logistic regression

Logistic Regression is a type of predictive model that can be used when the target variable, for 

example survival, is a categorical variable with two categories -  such as live/die. A logistic 

regression model is similar to non linear regression such as fitting a polynomial to a set of data 

values.

Logistic regression can be used only with two types of target variables. These are a categorical 

target variable that has exactly two categories (i.e., a binary which could represent alive (1) or 

dead (0)) or a continuous target variable that has values in the range 0.0 to 1.0 representing 

probability values or proportions.
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Logistic Regression Model
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Figure 5.1 -  Dose response curve -  an example of a logistic regression model (Bewick et al, 2005) [118]

Logistic regression has two key advantages over linear regression (Bewick et al, 2005) [118]. 

Firstly, there are no limits on the values predicted by a linear regression, so the predicted 

response might be less than 0 or greater than 1 -  which is not therefore appropriate if predicting 

survival.

Secondly, the response usually is not a linear function of the covariates predicting the outcome. 

Again a clinical trial of a drug analogy can be used to highlight the affect of a covariate on an 

outcome. If a small amount of a drug is given, it is likely few patients will respond. Doubling the 

dose to a larger amount will mostly probably not yield any positive response. However as the 

dosage increases beyond a certain threshold, there will become a point where the drug starts to 

become effective. Small increases in the dosage above a threshold may produce an increasingly 

positive result however, eventually a saturation level is reached which beyond, and therefore 

eventually increasing the dosage will not increase the response (Bewick et al, 2005) [118]. Figure

5.1 illustrates this effect which is also known as a dose response curve.
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Consequently, linear regression could be used initially to predict survival outcome based on 

patient variables such as tumour grade, tumour size and tumour node status.

5.2.2 Decision trees

A decision tree is a predictive model in that it maps from observations about a variable to 

conclusions regarding its target value, in this case survival. In the tree structures, each leaf 

represents classifications and branches represent combinations of features that lead to those 

classifications (Jonsdottira et al, 2008) [119]. The term ‘black box’ is often applied to machine 

learning methods whereby it is unclear how a particular result was formed, based on the given 

input. To continue this analogy, decision trees could be termed as ‘white boxes’ as a given result 

is provided by the model by looking at the branches of the tree with the explanation for the result 

often replicated by simple math.

Decision trees can be applied to biomedical data as the concept of a decision tree is analogous to 

the procedure used by a clinician who will ask a patient a series of questions (or in this instance, 

query aspects of the clinicopathological data) until arriving at a diagnosis or prediction of 

prognosis, for example (Jonsdottira et al, 2008) [119]. There are a wide range of decision tree 

algorithms that can predict both binary and more complex multiple outcomes. One of the first 

was the ID3 (Iterative Dichotomiser 3). An improved version of the ID3 algorithm is the J48 

decision tree (Jonsdottira et al, 2008) [119]. Key improvements include the ability of the user to 

choose an appropriate attribute selection measure, able to cope with training data with missing 

attribute values, able to cope with attributes having different costs, and the ability to cope with 

continuous attributes (Jonsdottira et al, 2008) [119].

An example of a basic decision tree is shown in figure 5.2. The reader starts at the left of the tree 

and works through the tree by answering yes or no to a particular patient variable, branching their 

way until arriving at a leaf with an affirmative answer (Jonsdottira et al, 2008) [119]. When a tree 

model is built from classifiers it can then be applied to new cases to predict their outcome. Like 

any model, a decision tree will predict an outcome based on the values of the input attributes.
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Although possible manually on paper for simple problems, for biomedical datasets, predictions 

are made algorithmically due to the potential covariate complexity within such a dataset.

YES

Patient

Is the patient pre-menopausal?

YES
NO

Is the patient female?
NO

YES

Is the tumour located 
in the chest?

m€0

y
Figure 5.2: A basic decision tree. In this example, the tree determines the type of breast cancer the 
patient has. An important early question is gender as this has an impact on the subsequent 
questioning and hence the route through the tree will differ.

5.2.3 Support Vector Machine (SVM)

A Support Vector Machine (SVM) performs classification by formation of an N-dimensional 

hyperplane that optimally separates the data into two categories (Moguerza et al, 2006) [120]. 

There are different types of support vector machines however all are supervised learning methods 

used for classification and regression analysis. The simplest type of support vector machines is 

linear classification which tries to draw a straight line that separates data with two dimensions as 

shown in Figure 5.2. A linear classifier is also known as a ‘hyperplane’. A predictor variable is 

called an attribute, and a transformed attribute that is used to define the hyperplane is called a 

feature. The task of choosing the most suitable representation is known as feature selection. A set 

of features that describes one case (i.e., a row of predictor values) is called a vector. So the goal 

of SVM modelling is to find the optimal hyperplane which separates clusters of a vector in such a 

way that cases with one category of the target variable are on one side of the plane and cases with
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the other category are on the other size of the plane, again as illustrated in Figure 5.3 (Moguerza 

et al, 2006) [120]. The vectors near the hyperplane are the support vectors.

INPUT SPACE FEATURE SPACE SOLUTION

MAPPING > •  SOLUTION >

Margin

Figure 5.3 -  An overview of the Support Vector M achine process illustrating the process of a linear 
boundary  being d raw n  between instances of different classes -  shown as red and green dots. The 
solution of separation  is show n as a black line draw n between the red and green dots. (M oguerza et 
al, 2006) |120|

5.2.4 Boosting and AdaBoost

Many of the machine learning techniques previously outlined require optimisation for best results 

particularly in the case of Support Vector Machine. However methods exist whereby the 

algorithm can learn from previous analysis cycles. Boosting is such a technique. Boosting builds 

a series of models all of the same type such as in a decision tree format whereby new models are 

affected by previous model performance. The process occurs many times with the goal to 

improve upon the inaccuracies of models built during previous cycles. Bagging is thought to 

reduce variance (Yang et al, 2007) [121]. It can helps improve unstable classifiers resulting from 

“small” changes in training data leading to significantly different classifiers and “large’' changes 

in accuracy, for example. Boosting brings two modifications to the learning process. Instead of a 

random sample of the training data, a weighted sample is instead used to focus learning on the 

most difficult examples. Also instead of combining classifiers with an equal vote, a weighted 

vote is used.
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The machine learning algorithm AdaBoost, short for Adaptive Boosting, was produced by Yoav 

Freund and Robert Schapire (Yang et al, 2007) [121]. It is a heuristic method for solving a 

general class of computational problems by combining user-given so called ‘black-box’ 

procedures as previously introduced, and can be used in conjunction with many other learning 

algorithms to improve their performance. As in the case of boosting in general, Adaboost is 

adaptive in that subsequent classifiers built are altered in favour of those instances misclassified 

by previous classifiers (Yang et al, 2007) [121 ]. AdaBoost is particularly sensitive to ‘noisy’ data 

and observations which are numerically distant from the rest of the data. Cross validation applied 

to Adaboost results reduces the over fitting scenario where the results indicate when further 

training is not resulting in better generalisation.

Figure 5.4: Illustration of the operation of the Adaboost algorithm to classifiy red and blue dots where 
successive iterations improve classification on each cycle of the algorithm based on the previous result. (Yang
et al, 2007) [121]
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AdaBoost calls a weak classifier repeatedly in a series of cycles as illustrated in figure 5.4. For 

each call a distribution of weights is updated that indicates the importance of examples in the data 

set for the classification (Yang et al, 2007) [121]. On each round, the weights of each incorrectly 

classified example are increased (or alternatively, the weights of each correctly classified 

example are decreased), so that the new classifier focuses more on those examples.

5.2.5 Bagging

Bagging -  a short term for boot strap aggregating is a meta-algorithm to improve machine 

learning of classification and regression models in terms of stability and classification accuracy 

(Islam et al, 2008) [122]. The model works by applying random datasets of the same size 

generated from a training dataset by sampling with sequential case replacement (Islam et al, 

2008) [122]. Bagging also reduces variance and helps to avoid over fitting of a particular model. 

It is usually applied to decision tree models, however can be applied to other types of model. 

Bagging differs from boosting mainly by building models independently of each other and 

offering no weights to models using a voting procedure.

For example, consider a training set D with m cases.

1. The probability of the nth sample in the training set as P(n) =l/m.

2. Sample m times from the distribution P(n)

3. Sample from D with replacement. This way a re-sampled training set Di is built. Di is the 

bootstrap sample from D

4. The procedure is repeated to construct a sequence of several independent bootstrap 

training sets
5. A corresponding sequence of classifiers is constructed by using the same classification 

algorithm applied to each of the bootstrap training sets

6. The final classification is determined by each classifier voting for each class (Islam et al, 

2008)[122].
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degeneration in accuracy. An important feature is that it carries along an internal test set estimate 

of the prediction error. For every tree grown, about one-third of the cases are out of the boot strap 
sample.

The design of random forests is to give the user a good deal of information about the data besides 

an accurate prediction. Consequently, it could potentially prove to be a valuable model in 

exploring the ‘black box' phenomenon of survival.

5.2.7 The Naive Bayes classifier

A Naive Bayes classifier assumes that the presence (or lack of presence) of a particular feature of 

a class is unrelated to the presence (or lack of presence) of any other feature (Chun et al, 2007)

[124]. A bayesian network represents independencies over a set of variables in a given joint 

probability distribution. Nodes correspond to variables of interest, and arcs between two nodes 

represent statistical dependence between variables. Bayesian refers to Bayes' theorem on 

conditional probability (Chun et al, 2007) [124]. Bayes' theorem is a result in probability theory, 

which relates the conditional and marginal probability distributions of random variables. The 

probability of an event X conditional on another event Y is in general different from the 

probability of X conditional on Y. However, there is an explicit relationship between the two, and 

Bayes' theorem is the statement of that relationship (Chun et al, 2007) [124].

Depending on the precise nature of the probability model, naive Bayes classifiers can be trained 

very efficiently in a supervised learning setting. In many practical applications, parameter 

estimation for naive Bayes models uses the method of maximum likelihood; one can work with 

the naive Bayes model without using any Bayesian methods (Chun et al, 2007) [124].

However even though their design can be classed as naive and use over-simplified assumptions, 

naive Bayes classifiers work better in many real-world situations than expected. An advantage of 

the naive Bayes classifier is that it only requires a small amount of training data to estimate the 

variables necessary for classification. As a result of independent variables being assumed, only 

the variances of the covariates for each class need to be determined and not the entire covariance
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Bagging should only be used if the learning machine is unstable. A learning machine is said to be 

unstable if a small change in the training set yields large variations in the classification (Islam et 
al, 2008) [122].

5.2.6 Random Forest

A ‘random forest' is a classifier that consists of many decision trees and outputs the class that is 

the mode of the classes output by individual trees (Statnikov et al, 2008) [123]. The algorithm 

was developed by Adele Cutler and Leo Breiman. Breiman was also responsible for the Bagging 

concept previously outlined. The term came from random decision forests that were first 

proposed by Tin Kam Ho from Bell Laboratories which later became part of AT&T in 1995. 

Interestingly, the same lab was responsible for development of the language ‘S’ plus which the 

statistical scripting language ‘R’ was based. The random forest method combines "bagging" and 

"random subspace method", the latter which was developed by Tin Kam Ho. This ultimately 

constructs a collection of decision trees with controlled variations.

There are many advantages of the random forest method. From a prediction of survival point of 

view, the method is known to produce highly accurate classifiers from a large number of input 

variables. It is also able to estimate the importance of variables in determining classification. As 

the ‘forest' is built, it generates an internal unbiased estimate of error (Statnikov et al, 2008) 

[123]. The system can also balance error in class population unbalanced data sets which would be 

valuable for modelling survival from cancer patient datasets where there is a bias towards death 

at some point in time.

The key to accuracy is low correlation and bias. To keep bias low, trees are grown to maximum 

depth. To keep correlation low, the current version of random forest uses randomisation. Each 

tree is grown on a bootstrap sample of the training set. A number m is specified much smaller 

than the total number of variables M. At each node, m variables are selected at random out of the 

M, and the split is the best split on these m variables. In empirical tests, RF has proven to have 

low prediction error. On a variety of data sets, has been proven to be more accurate than 

Adaboost previously outlined. It handles hundreds and thousands of input variables with no
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matrix (Chun et al, 2007) [124]. Again, this method could prove very effective in predicting the 

probability of survival based on certain given patient variables.

5.2.8 Supervised learning -  classification to model survival

Unlike unsupervised learning, the objective of supervised classification models is error 

minimization. Thus, a natural cost function, the number of misclassifications, exists. 

Nevertheless, several metric-based classification models do not explicitly optimise this cost 

function, however they are based on intuitive heuristics.

Supervised learning is a broad term which can use any of the machine learning methods 

previously outlined. It can be applied to many situations where an example is illustrated multiple 

times based on a set of input criteria and the resulting outcome as a result of the input produced. 

The system is shown an example of what the result needs to be and what input values were given 

to produce that output. Ultimately when the system is given only input values, it can make the 

right decisions based on ‘training* on how they can be combined to produce the correct output.

To achieve this, a training set is first required. The training set needs to be characteristic of the 

real-world use of the function. In this chapter, the outcome survival can serve as output and the 

input parameters correspond to patient variables such as tumour size, tumour node status and 

tumour grade.

The accuracy of the learned function depends strongly on how the input covariates are 

represented. Typically, the input object is transformed into a feature vector, which contains a 

number of features that are descriptive of the object. The number of features should not be too 

large, because of the curse of dimensionality; yet should be large enough to accurately predict the 

output. Consequently there could be an underlying relationship between tumour node status, 

tumour grade and tumour size where a relationship is already known to exist due to the 

Nottingham prognostic index using this combination of features. Therefore overall there are a 

myriad of algorithms as previously outlined which could fulfil this aim.
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There is no single classifier that works best on all given problems. Once a particular learning 

algorithm is chosen it is applied to the training set. Parameters of the learning algorithm are then 

adjusted by optimising performance on a subset of the training set using cross-validation. After 

parameter adjustment and learning, the performance of the algorithm is measured on a test set 

that is separate from the training set.

Some of the classifiers previously outlined will perform better than others. The underlying data 

set on which the classifier is applied is very important for successful results, with a typical 

example dataset being a selection of patients corresponding to 10 year survival of the SEER 

breast cancer dataset, for example.

There are situations in survival analysis where the prediction of whether the event will eventually 

occur or not is of primary importance however there are also cases where modelling survival is 

an attempt to determine the probability of the event to occur within a specific time (Modlich et al, 

2006) [12]. For example, for an oncologist to decide whether to operate on a patient with 

clinically localized breast cancer, the probability of cancer recurrence would be a very important 

decision factor (Modlich et al, 2006) [12].

Consequently it would be interesting to determine if methods outlined such as Decision Trees, 

Bagging, Random Forest can be used to robustly predict survival outcome (dead or alive) or 

survival probability using the Bayes classifier. Ten fold cross validation results would therefore 

indicate the best methodology as it would assess how effective one model is in comparison to 

another.

5.2.9 Measuring the error of a particular classifier -  cross validation

In order to perform a measure of classification error, it is necessary to have test data samples 

independent of the learning dataset that was used to build a classifier. However, it is undesirable 

to hold back data from the learning dataset to use for a separate test as this could potentially 

weaken the learning dataset. However the classifier still needs to be tested against a dataset which

230



has not been used to train the classifier. A cross validation technique performs independent tests 

without requiring separate test datasets and without reducing the data used to build the classifier. 

This is achieved by the learning dataset being partitioned into a particular number of groups 

called “folds" (Chun et al, 2007) [124]. The number of groups that the rows are partitioned into is 

usually 10 as indicated in literature (Chun et al, 2007) [124]. This is particularly important to 

apply to assess a models performance in predicting survival.

5.2.10 Assessing an accurately predicted outcome - the confusion matrix and kappa statistic

When comparing different machine learning solutions it is very important to pay attention to the 

learning performance of each technique. It is important to track the ‘cost’ of a wrong decisions 

made by a particular method otherwise errors may lead to inaccurate results when applied to 

other datasets. A confusion matrix facilitates this ‘cost’ to be measured. For survival prediction, 

measuring this ‘cost’ is very important so that patients who may have survived are not incorrectly 

classified as having died.

The kappa statistic is a measure of agreement between predicted and observed classifications 

however is does not take the ‘cost’ into consideration of each algorithm. This gives a measure of 

the performance of the learning aspect of the algorithm. The kappa statistic is essentially a 

representation of the performance of a particular classification algorithm on overall results.

A summary of the accuracy of a particular method after 10 fold cross validation of results for 

different machine learning algorithms is displayed using a confusion matrix. Results are output in 

binary -  0 or 1. In a survival or death situation, 0 represents survival and 1 represents death. 

Table 5.1 summarises the structure of a confusion matrix.

The predicted result

The actual result

0 (Alive) 1 (Dead)

0 (Alive) True positive (TP) False positive (FP)

1 (Dead) False positive (FP) True negative (TN)

Table 5.1 -  The format o f a confusion matrix as used to display the validation of a classifier
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It would be hoped that any given classifier would have the majority of patients in the true positive 

and true negatives column. This represents an accurate result of a classifier.

5.3 Using ‘R’ and Machine Learning Algorithms through ‘Weka’

The power of kR' has been demonstrated previously in Chapters 2, 3 and 4 in the context of its 

capability to analyse Microarray data as well as present the impact of clinical variables on 

survival outcome using Superstes. ‘R' is used again in this Chapter to enable advanced 

multivariate statistical and machine-learning analysis procedures to be applied to a clinical breast 

cancer dataset, however in this instance interacting with a powerful data mining engine called 

‘Weka’ written in Java (Witten et al, 2005) [125].

The Weka project, described as a set of machine-learning tools, was developed at the University 

of Waikato. Development began in 1993 (Witten et al, 2005) [125] and it was launched for the 

Java platform in 1997. There have been over a million downloads of the application to date from 

the University web site with the application reaching distribution version 3.4. There are many 

methods available in Weka to perform advanced regression, classification and clustering analysis 

as previously described.

To build models which predict outcome of breast cancer in Weka, variables from the patient 

dataset which are prognostic needed to first be identified and the data initially prepared. As in the 

case of the NPI, the number of nodes positive, tumour size and grade have been examined. 

However, methods ultimately applied from Weka have been selected so that models can deal with 

mixed sets of continuous and categorical predictor variables.

An ‘R? library called ‘RWeka’ has been specifically developed by the ‘R’ project community by 

the Java application creators from the University of Auckland, New Zealand (Witten et al, 2005)

[125]. This allows Weka to interface with ‘R \ resulting in an ability to offer powerful Weka 

machine-learning functionality using ‘R’ datasets. In addition to the machine learning algorithms
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already offered in ‘R' as libraries, further algorithms can be imported into ‘R’ via a Java interface 

to Weka (Witten et al, 2005) [125].

Weka and ‘R’ can be used to generate models using the same panel of parameters as used in the 

NPI to predict survival, however it also facilitates exploration to determine if there are better 

patient variable combinations. Validated models could reveal which combinations of tumour size, 

tumour node status and tumour grade are the most accurate for predicting survival of a given 

cohort of breast cancer patients. Ultimately, successful models generated could have the potential 

to influence management and thereby improve outcome of breast cancer patients based on more 

accurately predicting survival.

5.4 Exploring the SEER dataset using the Nottingham Prognostic Index

An initial key aim of the chapter was to validate the applicability of the SEER dataset to be used 

to model patient survival and also predict patient outcome.

The Nottingham Prognostic Index (NPI) is a classic example of how a simple formula and three 

covariates based on inherent disease characteristics- tumour size, grade and nodal status -  can be 

used to predict patient survival, and thereby can help the clinician decide if treatment should be 

considered for a given patient. The scoring system was recently updated in 2007 by the original 

team who developed the system headed by Roger Blarney (Blarney et al, 2007) [111]. Instead of 

three prognostic groups there are now six prognostic groups for the NPI. Table 5.2 outlines the 

ranges of NPI score which correspond to each prognostic group.

Given the exploration of the SEER dataset through Superstes in Chapter 4, it is of interest to 

firstly assess the performance of the NPI against a non-uk dataset such as the SEER dataset. 

Close association of an NPI determined for a US dataset versus a UK dataset will therefore result 

in confidence in modelling alternative prognostic formula using the SEER dataset.
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Prognostic group (PG) NPI score range

Excellent (EPG) 2.08-2.4

Good (GPG) 2.42<3.4

Moderate I (MPG I) 3.42<4.4

Moderate II (MPG II) 4.42<5.4

Poor (PPG) 5.42<6.4

Very poor (VPG) >6.5
Table 5.2: Table of thresholds of NPI score with corresponding prognostic group for a given patients 
(Blarney et al, 2007) |ili |.

Before the NPI can be applied to the SEER dataset, the coding system for tumour size, grade and 

nodes positive status needed to be altered to mirror that which was used for the NPI. Tumour size 

on which the NPI was originally developed used centimetres whereas the SEER dataset uses 

millimetres. Grade also differs in that a UK dataset only contains Grade from level I through to 

III whereas the US system also contains levels IV and V. As grade IV and V represents tumours 

which are poorly differentiated, they can be merged into grade III to allow NPI calculation. A 

similar situation existed with nodes positive status where only values of 1, 2 or 3 can be accepted.

R* can be used to calculate NPI scores for each patient in a 10 year survival subset of the SEER 

database. Appendix 4 shows an outline of steps taken to not only filter the dataset to bring it into 

line with what is expected for the NPI calculation however also to determine what proportion of 

patients survive within each group of the NPI.

Firstly, the number of patients whom survived 10 years and those who died is determined based 

on their NPI status. An overview of these results can be seen in table 5.3
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Prognostic group Number of patients who are 
estimated to survive 10 years

Number of patients who are 
estimated to not survive 10 

years
EPG 6548 149

GPG 15573 792

MPG I 15395 1792

MPG II 9266 2431

PPG 4220 2512

VPG 1820 2120
Table 5.3: Proportion of SEER breast cancer patients according to their calculated NPI score and resulting 
prognostic group banding whom will either survive or die after 10 years.

The update to the NPI scoring system in a publication by Blarney et al (Blarney et al, 2007) [111] 

also once again used a Nottingham UK based dataset akin to the original work on the NPI in the 

1980's. It is interesting to overlay the two sets of results from the SEER dataset in comparison to 

the UK based dataset. For the comparison, the percentage of patients that survive in each NPI 

group was calculated. Comparisons of the results are shown in table 5.4:

Prognostic group SEER based NPI score 

patients

Nottingham UK NPI score 

patients

EPG 97.7 96

VPG 95.1 93

MPG I 89.6 81

MPG II 79.2 74

PPG 62.3 50

VPG 46.2 38

Table 5.4 -  Comparison of the results between the NPI scored calculated for an American breast cancer 
dataset compared to a UK dataset.

Interestingly, the survival pattern between the two datasets is similar with better survival rates in 

the US based dataset compared to the UK dataset. This could be due to improved treatment and 

disease awareness seen in the American dataset being a more recent set of patients than that of 

the UK dataset. However it is also confirmation that the SEER dataset is a valid dataset upon
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which improvements in the relationship between patient covariates and survival can be based to 

potentially improve upon the Nottingham prognostic index.

5.5 Aims of the Chapter

The analysis tools ‘R' and Weka facilitate the exploration of a 10 year survival subset of the 

SEER breast cancer patient dataset. As a result the following aim was proposed:

1 Apply advanced predictive modelling techniques utilising multivariate statistical and 

machine learning procedures to generate quantitative probabilities of survival in clinical 

breast cancer, using an expanded set of variables based on the Nottingham prognostic 

index variables using the SEER clinical breast cancer data set.

2 Assess the validity of each method in terms of predicting survival and understanding the 

affect each covariate has on a particular outcome.

5.6 Strategy

To explore the patient data covariates from the SEER dataset of tumour grade, tumour size and 

tumour nodes postivity in relation to lOyr survival, the following analysis strategy was adopted 

using R and Weka with the goal of testing the ability of different classifier methods to improve 

predictive accuracy at each stage:

I. Perform logistic regression analysis and Evaluate the model built based on multiple logistic 

regression findings.
II. Produce a J48 decision tree to evaluate if this enables further insight into patient covariate 

combinations in predicting survival

III. Application of Support Vector machine to evaluate accuracy of survival status.

IV. Evaluate ability of classifier ‘adaboost’ to improve accuracy of the model, and validate 

using 10-fold cross validation using a small training set.

V. Evaluate ability of “Bagging” to further improve classifier accuracy and again produce a 

J48 tree.
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VI. Evaluate Random Forest and regression analysis trees, to compare the accuracy of models 
built using these further methods.

VII. Application of the naive Bayes classifier to predict the probability of survival as opposed to 

survival outcome as shown in previous methods.

The steps outlined are all performed through ‘R’ libraries and where a particular methodology 

does not exist in ‘R’ it is imported from Weka. Weka if they are not already scripted as part of the 
‘R’ Weka library.

5.6.1 Predicting patient survival using different statistical and machine learning 

methodologies

I -  Multiple logistic regression (exploring the NPI classifiers grade, size and nodal postivity 

in relation to 10 year survival).

To initially specify the NPI model formula in R and call the relevant covariate data to be used for 

testing the Weka methodologies, a special syntax must be used. The syntax used to build the 

expression in ‘R’ encompassing the potential prognostic predictor and survival status variables 

using the 10 year survival dataset, is shown in the code 5.1:

alivestatus ~ size + grade + nodespos, data = data.lOyr

Code 5.1: The syntax for recreating the NPI equation in ‘R’.

The survival variable (“alivestatus”) is indicated by the tilde symbol with exploratory 

predictor variables then added using the + symbol.

As introduced earlier, there are certain assumptions for linear regression that fail when the 

response variable (i.e. prognosis) is not continuous and if the response variable in the dataset is 

binary then consideration is needed towards generalized linear models. Logistic regression was 

performed using ‘R’ however it could also have been performed in Weka for examination of the 

NPI parameters in relation to lOyr survival.
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Initially a working directory chosen in ‘R’ and the breast cancer 10 year dataset read into ‘R’ 
from SEER as shown in code 5.2.

>setwd ("C: /TEMP ")
>data.lOyr <- read.table("data.lOyr", header=T)

Code 5.2: Reading the 10 year filtered breast cancer dataset from the SEER programme into ‘R’

The length command can be used to determine the alive status factor - the number of patients 

alive after 10 years, as shown in code 5.3.

> length(data.10yr$allvestatus)
[1] 15194

Code 5.3: Checking the number o f patients in the dataset -  in this case 15,194.

Therefore taking the whole dataset in account, the number of patients alive after 10 years (1) in 

the whole dataset was three times the number of patients that have died (0).

To create a logistic regression model, the glm() function is called in R which is used to set the 

family parameter to binomial and the data parameter is set to “data.l0yr” (see code section 5.4). 

Using the summary() function, those test covariates related to the model (including the associated 

coefficients and significance level) can be retrieved, again as shown in code 5.4. The method 

glm() can provide a model that contains covariates able to predict whether a patient will survive 

10 years or not based, in this instance, on the values of the covariates tumour size, tumour nodes 

positive and tumour grade. The parameters for this equation and corresponding statistics are 

reported in a matrix under the ‘Coefficients:’ list. The first column lists the predictor variables 

(size, nodespositive, grade) where factors are split according to level. The second column 

provides an estimate of the coefficients for the equation. The remaining columns provide the 

standard error for the coefficients, z statistic values (the coefficient estimate divided by the 

standard error) and p values highlighting whether the association between survival status and 

predictor variable is significant. All predictor variables tested here (grade, size and nodes positive 

status) proved to be reliable predictors of outcome (in accordance with NPI), each being highly
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significant in the matrix. The ‘Deviance Residuals’ list summarises the range o f  differences in 

value between predicted and actual outcome values.

> l r . g l m  < -  g l m ( a l i v e s t a t u s  ~ s i z e  + n o d e sp o s  + g r a d e , d a ta  = d a t a . lO y r ,  
fa m ily = " b in o m ia l")

> su m m a ry (lr .g lm )

C a l l :
g lm (fo r m u la  = a l i v e s t a t u s  ~ s i z e  + n o d e sp o s  + g r a d e , f a m ily  = " b in o m ia l" ,  

d a ta  = d a ta .lO y r )

D e v ia n c e  R e s i d u a l s :
Min IQ M edian 3Q Max

- 5 .0 9 9 7  - 0 .6 6 4 7  - 0 .5 2 4 9  - 0 .3 7 0 3  2 .3 8 5 6

C o e f f i c i e n t s :
E s t im a te  S td .  E rro r  z v a lu e  P r ( > |z | )

( I n t e r c e p t )  - 3 .3 2 5 8 8 6  0 .0 8 3 4 3 2  - 3 9 .8 6  < 2 e -1 6  ***
s i z e  0 .0 2 7 9 9 5  0 .0 0 1 3 7 3  2 0 .3 9  < 2 e -1 6  ***
n o d e sp o s  0 .1 3 6 9 2 0  0 .0 0 5 6 4 6  2 4 .2 5  < 2 e -1 6  ***
g r a d e  0 .4 5 6 1 5 9  0 .0 2 9 9 9 2  1 5 .2 1  < 2 e -1 6  ***

S i g n i f .  c o d e s :  0 '* * * ' 0 .0 0 1  '* * ' 0 .0 1  0 .0 5  0 .1  ' ' 1
( D is p e r s io n  p a ra m e ter  f o r  b in o m ia l  f a m ily  ta k e n  t o  b e  1)

N u l l  d e v ia n c e :  16342 on 15193  d e g r e e s  o f  freed om
R e s id u a l  d e v ia n c e : 14089 on 15190  d e g r e e s  o f  freed om
AIC: 14097
Number o f  F is h e r  S c o r in g  i t e r a t i o n s :  4

Code 5.4 showing initial logistic regression step.

Evaluating the resultant Logistic Regression Model

To test the predictive capability o f  the model summarised in figure 5.11, (encompassing grade, 

size and nodes positive), the predict() function was used in relation to the probability o f  outcome 

for all cases in the data.lOyr dataset. To do this, a confusion matrix needed to be initially created 

as shown in code 5.5.

239



> p r < - p r e d ic t  ( l r . g lm , n a w d a t.a = d a ta . lO y r , ty p e =  " r esp o n se " )
> f o r ( i  i n  1 : l e n g t h ( p r ) ) i f e l s e ( p r [ i ] > 0 . 5 ,  p r [ i ] < - l ,  p r [ i ] < - 0 )
> c o n f m a t c - t a b le  ( d a t a . 1 0 y r $ a l i v e s t a t u s , p r ,  d n n = c (" a c tu a l" , " p r e d ic t e d " ) )
> co n fm a t

p r e d i c t e d  
a c t u a l  0  1

0 11 3 1 3  405
1 2702  774

Code 5.5: Creating a confusion matrix to assess the performance of the model.

The first cell o f  the top row indicates that 11313 cases have been correctly predicted as being 

alive after ten years. The confusion matrix as outlined previously indicates in the second cell o f 

the top row shows 405 cases incorrectly classified as not surviving ten years even though they 

actually did. The first cell o f  the bottom row shows 2702 cases incorrectly classified as surviving 

ten years but who had actually died. Finally, the very last cell shows 774 cases correctly 

classified as dying within ten years. An estimation o f  the model o f  True Positive (TP) and True 

N egative (TN) was made where the accuracy o f  the model is accuracy = 

(TP+TN )/(TP+TN +FP+FN ), which in ‘R ’ gives the following value as shown in code 5.6.

> a c c u r a c y < - (1 1 3 1 3 + 7 7 4 )/n r o w (d a ta . 1 0 y r ) ; a c c u r a c y  
[1 ]  0 .7 9 5 0 5 0 7

> r e c a l l < - 1 1 3 1 3 /  (11313+ 405) ; r e c a l l  
[1 ]  0 .9 6 5 4 3 7 7

> p r e c i s i o n < - ( 1 1 3 1 3 ) /  (11313+ 2702) ; p r e c i s i o n  
[1 ]  0 .8 0 7 2 0 6 5

> T N R < -7 7 4 /(2 7 0 2 + 7 7 4 );  TNR 
[1 ]  0 .2 2 2 6 6 9 7

Code 5.6 highlighting a summary of accuracy measures.

The accuracy o f  the logistic regression model based on the NPI covariates is 79.5% which 

suggests the model was good at predictions. The recall or true positive rate highlights that 96.4% 

o f  cases that survive ten years were correctly predicted. The “precision” or proportion o f  cases 

correctly predicted as surviving is also high at 80.7%. These figures give considerable confidence 

in the predictive power o f the model. However, there are two problems that we have not
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accounted for in these results. Exam ining the true negative rate (“TNR”), which is the proportion 

o f  cases correctly predicted as dying within ten years, shows a value o f  only 22.4%, which is 

clearly a very poor result.

When applying the model, it will wrongly predict that ~77%  o f  cases with a poorer prognosis 

actually have a good prognosis. The reason for the bias towards accurate prediction o f  good 

prognosis patients is that the dataset was heavily biased in terms o f  number for these patients. 

Only 23% o f  patients in the entire dataset died within ten years, a problem that is referred to as 

class imbalance. A second problem is that the model needs to be tested against a different 

‘unseen’ dataset. The model was potentially ‘overfitted’ to the dataset which could explain the 

poor in prediction o f  survival on any new cases which the system observed. The model thus 

ideally needed to be recreated by splitting the dataset. The model was then trained on one dataset 

and tested on another. The approach is known as the “holdout method”, where alternatively a 

method called “k-fold cross evaluation” can be used if  the dataset cannot be divided.

C lass im balance is a significant problem if  the minority class has equal or more importance than 

the m ajority class. In this instance, the class representing patients that died within ten years (with 

sm aller patient num bers) had more importance than the class stating survival (the majority class 

according to patient numbers). The reason for this weighting o f  importance is that the 

consequence o f  w rongly predicting survival for a patient who actually will die is probably much 

more severe (w ith regards to disease management) than wrongly predicting that a patient who 

actually survives will die. One way o f accounting for this cost was to employ a “cost-sensitive” 

classification m ethod which attempted to reduce the rate o f  false positives or false negatives 

according to potential consequence.

However, an alternative approach is to re-sample from the original data, creating a new dataset 

containing cases that confer a similar distribution for each class. This was the method adopted. A 

new dataset was created with all the deceased cases with the remaining alive cases under 

sampled. The NPI covariates were then tested upon this new dataset and cross-validated. Further 

procedures (e.g. a J48 decision tree, boosting) were then applied to address if  it is possible to

241



further improve predictive accuracy o f  the model classifiers in the dataset as outlined earlier in 

the strategy section.

The approach for creating a new dataset can be seen in code 5.7.

> d a t a . 1 0 y r < - d a t a . l O y r [ o r d e r ( d a t a . 1 0 y r $ a l i v e s t a t u s )  , ]

d a t a . 1 0 y r $ a l i v e s t a t u s < - a s . f a c t o r  ( d a t a . 1 0 y r $ a l i v e s t a t u s )
> d a t a . 1 0 y r $ g r a d e < - a s . f a c t o r ( d a t a . 1 0 y r $ g r a d e )
> d a t a .  1 0 y r < -d a ta .  lO y r  [o r d e r  (d a ta .  1 0 y r $ a l i v e s t a t u s )  , ]

r a n d .0 < - s a m p le (1 : 1 1 7 1 8 ,  3 4 7 6 )  
a l i v e  < -  d a t a . l O y r [ r a n d .0 , ]  
d ea d  < -  d a t a . l O y r [1 1 7 1 8 : 1 5 1 9 4 ,]

Code 5.7

The new training set w as then divided into two groups which were allocated dead and alive as 

seen in code 5.8

t r a i n i n g . s p l i t  < - r b i n d ( a l i v e ,  d ead )
s p l i t  < -  sa m p le  (nrow  ( t r a i n i n g ,  s p l i t )  , f l o o r ( n r o w ( t r a i n i n g . s p l i t )  * 0 . 7 ) )  
s p l i t ,  t r a i n  < - t r a i n i n g ,  s p l i t  [ s p l i t , ] 
s p l i t ,  t e s t  < - t r a i n i n g ,  s p l i t  [ - s p l i t ,  ]

s p l i t .  a l i v e < - s a m p l e  (nrow ( a l i v e )  , nrow ( a l i v e ) -1 0 0 )
s p l i t . d e a d < -s a m p le  (nrow (dead) , nrow (d ea d ) - 1 0 0 )
t r a i n . f u l l  < - r b i n d ( a l i v e [ s p l i t . a l i v e , ] ,  d e a d [ s p l i t . d e a d , ] )
t e s t . 2 0 0  < - r b i n d ( a l i v e [ - s p l i t . a l i v e ,  ] , d e a d [ - s p l i t . d e a d , ])

Code 5.8

To com pare the data returned against the NPI patient covariates, the functions shown in code 5.9 

was applied using logistic regression using the split balanced training set.
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l r . s p l i t < - g lm ( f o r m u la  = a l i v e s t a t u s  -  s i z e  + n o d e sp o s  + g r a d e , f a m ily  = 
" b in o m ia l" , d a ta  = s p l i t . t r a i n )  
su m m a r y (lr . s p l i t )

C a l l :
g lm (fo r m u la  = a l i v e s t a t u s  ~ s i z e  + n o d e sp o s  + g r a d e , fa m ily  = " b in o m ia l" , 

d a ta  = s p l i t . t r a i n )

D e v ia n c e  R e s id u a ls :
Min IQ M edian 3Q Max

- 5 .1 2 5 8  - 0 .9 9 1 1  0 .1 3 9 2  1 .0 5 0 0  2 .0 5 8 0

C o e f f i c i e n t s :
E s t im a te S td . E rro r z v a lu e P r ( > |z | )

( I n t e r c e p t ) - 2 .1 1 4 4 4 6 0 .1 3 9 8 8 0 - 1 5 .1 1 6 < 2 e -1 6 **
s i z e 0 .0 3 1 2 6 5 0 .0 0 2 4 6 8 1 2 . 6 6 6 < 2 e -1 6 **
n o d e sp o s 0 .1 4 4 5 1 5 0 .0 1 0 4 0 1 1 3 .8 9 5 < 2 e -1 6 **
g r a d e 2 0 .8 2 6 9 6 3 0 .1 4 2 2 2 5 5 .8 1 4 6 . 0 8 e -0 9 **
g ra d e3 1 .4 0 1 9 4 5 0 .1 4 1 5 1 2 9 .9 0 7 < 2 e -1 6 *★
g ra d e4 1 .4 0 8 3 9 1 0 .1 8 2 9 0 9 7 .7 0 0 1 . 3 6 e -1 4 **

S i g n i f .  c o d e s :  0 '* * * ' 0 .0 0 1  '* * ' 0 .0 1 0 .0 5 t t

(D is p e r s io n  p a r a m e te r  f o r  b in o m ia l  f a m ily  ta k e n  t o  b e  1)

N u l l  d e v ia n c e :  6 7 4 5 .9  on 4866 d e g r e e s  o f  freed o m  
R e s id u a l  d e v ia n c e :  5 7 1 6 .9  on 4861 d e g r e e s  o f  freed o m  
AIC: 5 7 2 8 .9

Number o f  F i s h e r  S c o r in g  i t e r a t i o n s :  5

Code 5.9

A predictive sum m ary for the already-split dataset for the above model as shown in code 5.9 is 

shown in code 5.10.
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p r . s p l i t c - p r e d i c t ( l r . s p l i t , n e w d a t a = s p l i t . t e s t , ty p e = " r e sp o n se " )  
f o r ( i  i n  1 : l e n g t h ( p r . s p l i t ) ) i f e l s e ( p r . s p l i t [ i ] >0 . 5 ,  p r . s p l i t [ i ] < - l , 
p r . s p l i t [ i ] < - 0 )
c o n f m a t < - t a b le  ( s p l i t . t e s t $ a l i v e s t a t u s , p r . s p l i t ,  dnn=c (" a c tu a l"  , " p r e d ic t e d " ) ) 
co n fm a t

p r e d i c t e d  
a c t u a l  0  1

0 789 292
1 360  645

a c c u r a c y < - (8 1 6 + 6 6 6 ) / n r o w ( s p l i t . t e s t ) ; a c c u r a c y  
[1 ] 0 .7 1 0 4 5 0 6

p r e c i s i o n < - ( 8 1 6 ) / ( 8 1 6 + 3 9 2 ) ;  p r e c i s i o n  
[1 ] 0 .6 7 5 4 9 6 7

> r e c a l l < - 8 1 6 / (8 1 6 + 2 1 2 ) ;  r e c a l l  
[1 ]  0 .7 9 3 7 7 4 3

> T N R < -6 6 6 /(6 6 6 + 3 9 2 ) ;  TNR 
[1 ]  0 .6 2 9 4 8 9 6

Code 5.10 showing an accuracy of 71% with an increase in true negative rate to 63%.

To further exam ine accuracy, and determine the resulting effect o f  the training, 10-fold cross 

validation o f  the classifier against a breast cancer patient set comprising 200 patients was 

performed w hich originated from the SEER dataset. The procedure in ‘R ’ o f  how this was 

performed can be seen in code 5.11
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> l r . fo ld < -g lm ( fo r m u la  = a l i v e s t a t u s  ~ s i z e  + n o d e sp o s  + g r a d e , f a m ily  = 
" b in o m ia l" , d a ta  = t r a i n . f u l l )

lib r a r y (D A A 6 )

L o a d in g  r e q u ir e d  p a c k a g e :  MASS

A t t a c h in g  p a c k a g e : 'DAAG'

C V b in a r y ( lr . f o l d )

F o ld :  1 4 5 8 3  10 9 2 7 6
I n t e r n a l  e s t im a t e  o f  a c c u r a c y  = 0 .6 9 7
C r o s s - v a l i d a t i o n  e s t im a t e  o f  a c c u r a c y  = 0 .6 9 7

p r . f o l d < - p r e d i c t ( l r . f o l d ,  n ew d a ta —t e s t . 2 0 0 , ty p e =  " r esp o n se " )
f o r ( i  i n  1: l e n g t h  (p r .  f o l d ) ) i f  e l s e  (p r . f o l d  [ i ]  > 0 .5 ,  p r  . f o l d [ i ] < - l , p r . f o l d [ i ]  < -0 )  
c o n f  m a t e - t a b le  ( t e s t . 2 0 0 $ a l i v e s t a t u s , p r . f o l d ,  dnn=c ( " a c t u a l", " p r e d ic t e d " ) ) 
co n fm a t  

p r e d i c t e d  
a c t u a l  0  1

0 87 13
1 41 59

Code 5.11 summarising with an accuracy of 72.5%.

II -  J48 decision tree

Using the full dataset, all o f  the non-class-matched data, a J48 decision tree can also be generated 

to explore and potentially improve classifier accuracy as seen in code 5.12. The tree will 

ultim ately predict survival or death over the 10 year period according to what value is reached at 

the end o f  each leaf.
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W O W ( J 4  8 )

t r e e . f u l l < - J 4 8 ( a l i v e s t a t u s  ~ s i z e  + n o d e s p o s  + g r a d e ,  d a t a  = t r a i n . f u l l )

t r e e . f u l l

J48  p ru n ed  t r e e

n o d e s p o s  <= 0

I s i z e  <= 1 7 : 0 ( 1 8 9 0 .0 / 4 3 5 .0 )
I s i z e  > 17
I I s i z e  < = 4 0 :  0 ( 1 5 3 3 .0 / 6 5 6 .0 )
I I s i z e  > 4 0 : 1 ( 1 6 3 .0 / 6 6 .0 )
n o d e s p o s  > 0  

I n o d e s p o s  <= 4 
I I s i z e  <= 2 2

I I | g r a d e  = 1 : 0  ( 6 7 .0 / 1 6 .0 )
I I | g r a d e  = 2 : 0  ( 3 8 5 .0 / 1 5 9 .0 )
I I | g r a d e  = 3 : 1 ( 3 7 8 .0 / 1 6 7 .0 )
I I | g r a d e  = 4 : 1  ( 4 2 .0 / 1 8 .0 )
I I s i z e  > 2 2 : 1  ( 9 9 3 .0 / 2 9 9 .0 )
I n o d e s p o s  > 4 :  1 ( 1 3 0 2 .0 /2 1 8 .0 )

Number o f  L e a v e s  9

S i z e  o f  t h e  t r e e  : 15

. . i . i i .  11 mmmmmmmmmmmmmmamimmmmm
Code 5.12: J48 tree shown in summary

Decision trees as previously introduced are effective in that they provide predictive models with 

good accuracy yet also allow how the actual model was created to be visualized, therefore 

avoiding the so called ‘black box’ effect evident with other learning processes. The J48 decision 

tree generated code 5.12 is able to predict survival status, in this instance according to changes in 

the NPI classifiers size, grade and nodal positivity.

The overall effect o f  the tree on the NPI classifier accuracy can be seen in code 5.13.
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t r e e . f u l 1 . e v a l c - e v a l u a t e  Weka c l a s s i f i e r ( t r e e . f u l l , t r a i n . f u l l ,  c l a s s = T )

t  r e e . f u l l . e v a l

=== Summar y  ===

C o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  
I n c o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  
Ka p pa  s t a t i s t i c  
Mean a b s o l u t e  e r r o r  
R o o t  me a n  s q u a r e d  e r r o r  
R e l a t i v e  a b s o l u t e  e r r o r  
R o o t  r e l a t i v e  s q u a r e d  e r r o r  
T o t a l  Numbe r  o f  I n s t a n c e s

4 7 1 9
2 0 3 4

0 . 3 9 7 6
0 . 3 9 9 5
0 . 4 4 6 9

7 9 . 9 0 1 1  %
8 9 . 3 8 7  4 % 

6 7 5 3

6 9 . 8 8 0 1  % 
3 0 . 1 1 9 9  %

- = =  D e t a i l e d  A c c u r a c y  By C l a s s  = ==

TP R a t e  FP R a t e  P r e c i s i o n  
0 . 7 7 3  0 . 3 7 5  0 . 6 7 3  
0 . 6 2 5  0 . 2 2 7  0 . 7 3 3

R e c a l l  F - M e a s u r e  
0 . 7 7 3  0 . 7 2  
0 . 6 2 5  0 . 6 7 5

ROC A r e a  C l a s s  
0 . 7 5 1  0 
0 . 7 5 1  1

=== C o n f u s i o n  M a t r i x  ===

a b < - -  c l a s s i f i e d  a s  
2 6 0 9  7 6 8  1 a = 0 
1 2 6 6  2 1 1 0  I b = 1

Code 5.13: Evaluation of the J48 classifier summary results

The overall accuracy as can be seen in figure 5.20 is 69.9%. However there are additional ways 

to further im prove classifier accuracy based around J48 decision trees, notably “boosting” and 

“bagging” :

HI -  Application o f Support Vector machine to evaluate accuracy of survival status.

W eka used the sequential minimal optimisation algorithm version o f  support vector machine, the 

SM O() function. Optim isation o f  model building param eters is significant in success o f  the 

technique how ever to compare the models performance against other machine learning 

techniques, default param eters were used.

247



> s m o . f u l 1 < - S M 0 ( a l i v e s t a t u s  ~ s i z e  + n o d e s p o s  + g r a d e , d a t a  = t r a i n . f u l l  , c o n t r o l  
= W e k a _ c o n t r o l ( K  = " w e k a . c l a s s i f i e r s . f u n c t i o n s . s u p p o r t V e c t o r . R B F K e r n e l ") )

> s m o . f u l l $ c l a s s i f e r

0 .  1 7 9 1 * < 0 • 0 4 5 2 2 6  0 0 1 0 0 > * X]
- 1 * < 0 . 0 9 0 4 5 2 0 0 1 0 3 0 9  0 1 0 0 > ★ X
+ i * < 0 . 0 9 5 4 7 7 0 0 5 1 5 4 6  0 0 0 1 > ★ X
+ 1 * < 0 . 1 0 5 5 2 8 0 0 1 0 3 0 9  0 0 1 0 > •k X
- 1 * < 0 . 0 6 0 3 0 2 0 0 0 1 0 > * X]
+ 1 * < 0 . 2 2 1 1 0 6 0 0 3 0 9 2 8  0 1 0 0 > ★ X
- i * < 0 . 2 4 6 2 3 1 0 . 0 1 0 3 0 9  0 0 1 0 > ★ X
- i * < 0 . 0 7 0 3 5 2 0 0 1 0 0 > * X]

1 * < 0 . 1 1 0 5 5 3 0 0 0 0 1 > * X]

Code 5.14- The complexity constant could be altered -  by altering the flag ‘-C’ to a different value -  
the default is 1 -  to optimise the model.

H owever the classifier generated was evaluated to assess how accurate the non-optimised model 

performed using 10 fold cross validation as shown in code 5.15.

> smo . f u l l . e v a l < - e v a l u a t e _ W e k a _ c l a s s i f i e r ( s m o . f u l 1 ,  n u m F o l d s = 1 0 , t r a i n . f u l l  
c l a s s = T )
> s m o . f u l l . e v a l
=== 10 F o l d  C r o s s  V a l i d a t i o n  ===

=== Summar y  ===
C o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  
I n c o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  
Ka p pa  s t a t i s t i c  
Mean a b s o l u t e  e r r o r  
R o o t  me a n  s q u a r e d  e r r o r  
R e l a t i v e  a b s o l u t e  e r r o r  
R o o t  r e l a t i v e  s q u a r e d  e r r o r  
T o t a l  Nu mb e r  o f  I n s t a n c e s

=== D e t a i l e d  A c c u r a c y  By C l a s s  ===

TP R a t e  FP R a t e  P r e c i s i o n  Re  
0 . 6 9 7  0 . 3 2 9  0 . 6 7 9  0
0 . 6 7 1  0 . 3 0 3  0 . 6 8 9  0

=== C o n f u s i o n  M a t r i x  ===

a b < - -  c l a s s i f i e d  a s  
2 3 5 5  1 0 2 2  | a = 0
1 111  2 2 6 5  I b = 1___________________

Code 5 .15 -10  fold cross validation of the support vector machine classifier

4 6 2 0  6 8 . 4 1 4
2 1 3 3  3 1 . 5 8 6

0 . 3 6 8 3  
0 . 3 1 5 9  
0 . 5 6 2  

6 3 . 1 7 1 9  %
1 1 2 . 4 0 2 8  %

6 7 5 3

c a l l  F - M e a s u r e  ROC A r e a  C l a s s  
. 6 9 7  0 . 6 8 8  0 . 6 8 4  0
. 6 7 1  0 . 6 8  0 . 6 8 4  1
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It is clear from the validation that the technique would need to be optimised to improve the false 

positive rate which at 33%  is at a very high cost o f  prediction o f survival.

IV -  Boosting

Instances in the training set that w ere previously wrongly classified were given priority by the 

boosting algorithm  in model building. ‘A daboosf as previously introduced, is one way in which 

boosting can be perform ed as shown in code 5.16. All ten decision trees produced from applying 

Adaboost to the NPI classifiers in the J48 decision tree format are also shown in code 5.16 using 

the ‘full’ com m and and presented decreasing in model weight.

2 4 9



A d a B o o s t M l :  B a s e  c l a s s i f i e r s  a n d  t h e i r  w e i g h t s :

J 4 8  p r u n e d  t r e e

n o d e s p o s  <  = 1
! s i z e  <= 2 0 :  0 ( 2 8 9 7 . 0 / 7 9 2 . 0 )
1 s i z e  > 20
!  1 n o d e s p o s  < = 0
1 ! 1 g r a d e = 1:  0 ( 4 6 . 0 / 1 3 . 0 )
i  1 !  g r a d e = 2
! 1 1 1 s i z e  <= 3 7 :  0 ( 3 0 8 . 0 / 1 3 7 . 0 )
! i  1 i s i z e  > 3 7 :  1 ( 8 6 . 0 / 3 3 . 0 )
i  1 1 g r a d e -  3:  1 ( 6 1 8 . 0 / 2 9 6 . 0 )
t  1 1 g r a d e = 4 : 1  ( 7 4 . 0 / 3 4 . 0 )
! !  n o d e s p o s  > 0 :  1 ( 4 2 3 . 0 / 1 4 7 . 0 )
n o d e s p o s  > 1

;  n o d e s p o s  < =  4
1 ! s i z e  < = 20
1 ! 1 g r a d e = 1:  0 ( 2 8 . 0 / 1 0 . 0 )
I 1 1 g r a d e = 2
i 1 I 1 n o d e s p o s  <= 3:  0 ( 1 3 4 . 0 / 5 4 . 0 )
i l l !  n o d e s p o s  > 3
1 1 1 1 1 s i z e  < = 1 1 :  0 ( 3 . 0 )
I 1 1 1 1 s i z e  > 1 1 :  1 ( 2 4 . 0 / 9 . 0 )
1 1 1 g r a d e = 3:  1 ( 1 6 8 . 0 / 6 3 . 0 )
! 1 ! g r a d e = 4 : 0  ( 2 1 . 0 / 8 . 0 )
1 1 s i z e  > 2 0 : 1 ( 6 3 7 . 0 / 1 6 7 . 0 )
i n o d e s p o s  > 4: 1 ( 1 2 8 6 . 0 / 2 0 5 . 0 )

Numbe r  o f  L e a v e s : 15

S i z e  o f  t h e  t r e e  : 25

W e i g h t :  0 . 8 9

J 4 8  p r u n e d  t r e e

n o d e s p o s  < = 4
1 s i z e  <= 10
! I g r a d e  = 1
I |  | n o d e s p o s  <= 0:  0 ( 1 6 9 . 8 9 / 3 0 . 8 8 )
I | I  n o d e s p o s  > 0
I  I I I  n o d e s p o s  < = 1 :  0 ( 6 . 6 6 / 1 . 7 2 )
I  |  |  |  n o d e s p o s  > 1 : 1  ( 7 . 2 6 / 2 . 1 2 )
I |  g r a d e  = 2
|  |  |  n o d e s p o s  <  =  0:  0 ( 3 5 8 . 9 9 / 1 0 6 . 3 7 )
I |  |  n o d e s p o s  > 0
i l l !  n o d e s p o s  <= 2
1 1 1 1 1 s i z e  <= 9
1 1 1 1 1 I n o d e s p o s  <= 1
1 1 1 1 1 I |  s i z e  <= 5 :  1 ( 4 . 8 4 / 1 . 4 1 )
1 1 1 1 1 I | s i z e  > 5 :  0 ( 1 0 . 5 8 )
1 1 1 1 1 I n o d e s p o s  > 1
Code 5 . 1 6  c o n t i n u e d  overleaf . . .
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..code 5 . 1 6  c o n t i n u e d  from p r e v i o u s  p a g e

i I I I I I I s i  z e  <= 7 :  0 ( 2 . 1 2 )
I I ! I I I I s i z e  > 7 : 1  ( 8 . 6 8 / 3 . 5 3 )
I I I I I s i z e  > 9:  1 ( 3 1 . 1 7 / 1 0 . 5 8 )
I I I !  n o d e s p o s  > 2 :  0 ( 4 . 9 4 )
I I g r a d e  = 3
I I I s i z e  <= 3:  1 ( 2 5 . 6 2 / 7 . 0 6 )
I ! i s i z e  > 3
t i l !  n o d e s p o s  <= 1
I I I I I n o d e s p o s  < = 0 :  0 ( 1 6 9 . 4 4 / 7 2 . 0 6 )
I ! I I I n o d e s p o s  > 0 :  1 ( 3 6 . 0 2 / 1 2 . 0 )
i I I I n o d e s p o s  > 1 : 0  ( 3 1 . 4 8 / 9 . 1 7 )

I g r a d e  = 4 : 1  ( 4 1 . 6 6 / 1 7 . 6 4 )
i  s i z e  > 10  
t I s i z e  < = 20
! I I g r a d e  = 1 : 0  ( 2 0 5 . 5 2 / 6 8 . 6 3 )
I I I g r a d e  = 2
I I 1 I n o d e s p o s  <= 0
I I I I I s i z e  <= 1 4 :  0 ( 2 0 5 . 2 2 / 6 6 . 9 1 )
! I I I I s i z e  > 1 4 :  1 ( 5 0 7 . 1 5 / 2 4  9 . 8 )
t i l l  n o d e s p o s  > 0
I I I I I n o d e s p o s  <= 3:  1 ( 2 7 7 . 2 2 / 9 8 . 7  9)
I I I I I n o d e s p o s  > 3:  0 ( 2 7 . 4 4 / 1 0 . 5 8 )
I I i g r a d e  = 3
! I I I n o d e s p o s  <= 1:  1 ( 8 5 7 . 0 6 / 3 3 3 . 7 7 )
I I ! I n o d e s p o s  > 1 : 0  ( 14 9 . 2 9 / 6 3 . 5 1 )
I I I g r a d e  = 4 : 1  ( 1 1 8 . 1 3 / 4 0 . 9 3 )
I I s i z e  > 20
I I I n o d e s p o s  <= 1
f i l l  g r a d e  = 1 : 0  ( 5 8 . 1 / 2 7 . 9 5 )
t i l l  g r a d e  = 2
I I i I I n o d e s p o s  <= 0
I I I ! I | s i z e  <= 3 6 :  1 ( 3 5 5 . 0 1 / 1 1 9 . 9 6 )
I I I I I I s i z e  > 3 6 :  0 ( 9 4 . 7 2 / 3 7 . 4 )
I I I I I n o d e s p o s  > 0
I I I I I I s i z e  <= 4 1 :  0 ( 1 2 7 . 7 2 / 4 0 . 2 2 )
I I I I I I s i z e  > 4 1 : 1  ( 1 4 . 0 2 / 3 . 4 3 )
I I I I g r a d e  = 3:  0 ( 9 9 9 . 2 4 / 3 5 0 . 7 )
I I I I g r a d e  = 4 : 0  ( 1 1 5 . 1 / 4 3 . 0 4 )
I I | n o d e s p o s  > 1
I I I I g r a d e  = 1 : 0  ( 2 8 . 3 5 / 7 . 7 6 )
I | | | g r a d e  = 2
I I I I I s i z e  <= 4 7 :  0 ( 1 5 8 . 2 7 / 6 5 . 6 2 )
1 I I I I s i z e  > 4 7 :  1 ( 3 3 . 2 8 / 8 . 5 8 )
I I I I g r a d e  = 3:  1 ( 3 4 1 . 8 9 / 1 3 7 . 2 6 )
I I I I g r a d e  = 4 : 1  ( 5 6 . 3 8 / 2 7 . 4 5 )
n o d e s p o s  > 4 
I g r a d e  = 1
I | s i z e  <= 3 6 :  0 ( 2 5 . 9 3 / 7 . 0 6 )
I | s i  z e  > 3 6 :  1 ( 3 . 5 3 )
I g r a d e  = 2 
I | s i z e  <= 32
I | | n o d e s p o s  <= 5:  0 ( 4 1 . 1 6 / 1 2 . 0 )
I | | n o d e s p o s  > 5:  1 ( 17  0 . 5 5 / 7 0 . 3 4 )
code  5 . 1 6  c o n t i n u e d  overleaf . . .
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...code 5 . 1 6  c o n t i n u e d  from p r e v i o u s  p a g e

! 1 s i z e  > 3 2 : 1 ( 1 1 6 . 0 6 / 2 5 . 7 4 )
1 g r a d e  = 3:  1 ( 6 7 6 . 7 3 / 1 8 7 . 0 1 )
1 g r a d e  = 4 : 1  ( 8 0 . 5 7 / 2 0 . 5 9 )

Numbe r  o f  L e a v e s : 42

S i z e  o f  t h e  t r e e 7 3

W e i g h t :  0 . 6

J 4 8  p r u n e d  t r e e

n o d e s p o s  <= 0
i s i z e  <= 2 5
1 1 g r a d e  = 1
t  1 1 s i z e  <= 1 2 :  0 ( 1 7 6 . 6 7 / 4 5 . 8 7 )
! 1 I s i z e  > 1 2 :  1 ( 1 5 5 . 2 / 7 5 . 5 3 )
! I g r a d e  = 2 0 ( 1 2 8 8 . 9 1 / 5 3 3 . 9 3 )
I  I g r a d e  = 3
i 1 1 s i z e  <= 1 0 :  1 ( 1 9 4 . 1 8 / 8 3 . 4 7 )
i 1 1 s i z e  > 1 0 :  0 ( 9 9 3 . 7 4 / 4  3 5 . 2 )
1 I g r a d e  = 4 0 ( 1 4 8 . 9 9 / 6 9 . 4 5 )
t s i z e  > 2 5
I I g r a d e  = 1
! 1 I s i z e  <= 6 5 :  1 ( 2 9 . 3 9 / 7 . 6 6 )
I I ! s i z e  > 6 5 :  0 ( 2 . 1 9 )
! 1 g r a d e  = 2 1 ( 2 5 7 . 4 2 / 1 1 2 . 9 7 )
1 I g r a d e  = 3 0 ( 4 3 0 . 1 1 / 2 0 2 . 5 6 )
1 I g r a d e  = 4 0 ( 5 0 . 1 1 / 2 4 . 8 2 )
n o d e s p o s  > 0
! s i z e  <= 34
1 I g r a d e  = 1 0 ( 1 0 6 . 0 2 / 5 1 . 4 )
1 | g r a d e  = 2 0 ( 8 0 2 . 7 8 / 3 8 5 . 7 8 )
1 | g r a d e  = 3 1 ( 1 0 9 9 . 6 8 / 5 0 8 . 7 5 )
1 | g r a d e  = 4 1 ( 1 4 1 . 5 / 6 7 . 8 7 )
I s i  z e  > 34 : 1 ( 8 7 6 . 1 3 / 3 5 9 . 0 5 )

Numbe r  o f  L e a v e s : 16

S i z e  o f  t h e  t r e e 25

W e i g h t :  0 . 2 5

J 4 8  p r u n e d  t r e e
n o d e s p o s  <= 7
I g r a d e  = 1
I | n o d e s p o s  <= 0:  0 ( 3 5 5 . 8 9 / 1 4 2 . 6 1 )
I | n o d e s p o s  > 0:  1 ( 1 1 1 . 4 8 / 4 7 . 2 9 )
I g r a d e  = 2
I | n o d e s p o s  <= 0:  0 ( 1 5 3 8 . 4 2 / 7 3 6 . 9 )
I | n o d e s p o s  > 0
code  5 . 1 6  c o n t i n u e d  overleaf . . .
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. . .code 5 . 1 6  c o n t i n u e d  f r o m  p r e v i o u s  p a g e

g r a d e  = 3
n o d e s p o s  <=  1 
n o d e s p o s  > 1 :  

g r a d e  =  4
n o d e s p o s  <=  1 
n o d e s p o s  > 1

n o d e s p o s  <=  5 :  
n o d e s p o s  > 5 
I s i z e  <=  7 5

1 ( 5 2 6 . 5 7 / 2 5 1 . 8 2 )

: 0 ( 2 5 . 2 / 8 . 6 9 )
1 ( 2 0 8 . 2 1 / 7 3 . 4 6 )

- n o d e s p o s  <=  5
n o d e s p o s  <= 2 :  
n o d e s p o s  > 2 
I s i z e  <=  14
I s i z e  > 1 4 :

n o d e s p o s  > 5
n o d e s p o s  <= 6 
I s i z e  <= 19  
I | s i z e  <=  14
I I I s i z e  <=  1 3 :  1 ( 3 . 1 2 )
I I I s i z e  > 1 3 :  0 ( 2 . 1 5 )
I | s i z e  > 1 4 :  1 ( 4 . 3 6 )
I s i z e  > 1 9 :  0 ( 4 0 . 3 4 / 1 3 . 6 9 )  

n o d e s p o s  > 6 
I s i z e  <=  57
I s i z e  > 5 7 :

0 ( 2 7 . 2 6 / 1 0 . 4 1 )  
1 ( 2 . 9 3 )

1 ( 2 1 0 8 . 0 4 / 1 0 2 9 . 6 4 )
0 ( 7 9 0 . 6 6 / 3 4 8 . 6 8 )

1 ( 2 5 4 . 6 8 / 1 1 6 . 8 5 )

0 ( 1 0 6 . 0 1 / 3 6 . 3 1 )

n o d e s p o s  > 7 
s i z e  <= 60  

g r a d e  = 
I

I s i z e  <=  2 0 :  0 ( 4 . 2 1 / 1 . 4 6 )
I s i z e  > 2 0 :  1 ( 7 . 3 2 )
s i z e  > 7 5 :  0 ( 2 . 7 5 )

1 ( 2 . 2 6 )
0 ( 3 . 5 / 1 . 1 3 )

( 3 2 . 3 6 / 4 . 3 )

0 ( 7 8 . 2 2 / 3 3 . 0 4 )  
1 ( 3 4 . 6 8 / 1 1 . 0 )

s i z e  < =  18: 0 (3.56)
I s i z e  > 18
I | n o d e s p o s  <= 9
I | n o d e s p o s  > 9:
g r a d e  = 2
I s i z e  <= 10: 0 (20.67/5.61)
I s i z e  > 10
I | s i z e  <=  2 0 :  1
I | s i z e  > 2 0
I | | s i z e  <= 32
| | | s i z e  > 32:
g r a d e  = 3 
I s i z e  < =  2 1
I | n o d e s p o s  <= 10: 1 (30.51/11.0)
I | n o d e s p o s  >10: 0 (92.69/32.19)
I s i z e  > 21: 1 (222.93/90.75)
g r a d e  = 4
| s i z e  < =  19: 1 (5.37)
I s i z e  > 19
I | n o d e s p o s  <= 21
| | | n o d e s p o s  <=
| | | n o d e s p o s  > (

c o d e  5 . 1 6  c o n t i n u e d  ov e r le a f . . .

1 ( 2 . 9 3 )
0 ( 2 2 . 0 4 / 8 . 2 9 )
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...code 5 . 1 6  c o n t i n u e d  from p r e v i o u s  p a g e

I s i z e  > 60  
1 I s i z e  <= 80
I I I n o d e s p o s  < = 4 0 :  1 ( 3 3 . 6 5 )
i I I n o d e s p o s  > 4 0 :  0 ( 3 . 2 4 / 0 . 4 9 !
I I s i z e  > 8 0 : 1  ( 3 9 . 9 1 / 1 6 . 5 )

Numbe r  o f  L e a v e s  : 36

S i z e  o f  t h e  t r e e  : 67

W e i g h t :  0 . 2  

J 4 8  p r u n e d  t r e e

g r a d e  = 1
i s i z e  <= 1 2 :  0 ( 1 9 0 . 4 8 / 6 9 . 3 5 )
I s i z e  > 1 2 :  1 ( 2 8 1 . 9 2 / 1 3 0 . 4 6 )  
g r a d e  = 2 :  1 ( 2 5 6 3 . 9 / 1 2 2 3 . 8 2 )  
g r a d e  = 3
I n o d e s p o s  <= 4 :  0 ( 2 6 7 1 . 5 5 / 1 2 3 8 . 6 8
I n o d e s p o s  > 4 : 1  ( 6 3 2 . 2 / 2 9 4 . 6 7 )  
g r a d e  = 4
i n o d e s p o s  <= 5:  0 ( 3 5 8 . 8 8 / 1 6 5 . 5 1 )
I n o d e s p o s  > 5 :  1 ( 5 4 . 0 7 / 2 0 . 5 3 )

Numbe r  o f  L e a v e s  : 7

S i z e  o f  t h e  t r e e  : 11

W e i g h t :  0 . 1 4

J 4 8  p r u n e d  t r e e

: 0 ( 6 7 5 3 . 0 / 3 3 2 5 . 1 4 )

Numbe r  o f  L e a v e s  : 1

S i z e  o f  t h e  t r e e  : 1

W e i g h t :  0 . 0 3

J 4 8  p r u n e d  t r e e

g r a d e  = 1 : 0  (4 6 9 . 1 5 / 2 1 9 . 5 1 )  
g r a d e  = 2 :  0 ( 2 5 6 7 . 8 / 1 2 7 2 . 7 7 )  
g r a d e  = 3:  1 ( 3 3 0 3 . 7 6 / 1 6 3 1 . 9 4 )  
g r a d e  = 4 : 1  ( 4 1 2 . 2 8 / 1 9 9 . 8 8 )
Numbe r  o f  L e a v e s  : 4
S i z e  o f  t h e  t r e e  : 5
W e i g h t :  0 . 0 3
Code 5 . 1 6  c o n t i n u e d  over leaf . . .

254



...code 5 . 1 6  c o n t i n u e d  from p r e v i o u s  p a g e  
J 4 8  p r u n e d  t r e e

: 0 ( 6 7 5 3 . 0 / 3 3 7 1 . 2 3 )

Numbe r  o f  L e a v e s  : 1

S i z e  o f  t h e  t r e e  : 1

W e i g h t :  0 . 0  

J 4 8  p r u n e d  t r e e

1 : 0 ( 4 6 8  . 7 6 / 2 2 3 . 31 )
2 : 1 ( 2 5 6 8 . 1 1 / 1 2 7 3 . 2 5 )
3: 0 ( 3 3 0 3 . 9 3 / 1 6 4 8 . 8 5 )
4 : 1 ( 4 1 2 . 2 / 2 0 2 . 7 2)

g r a d e
g r a d e
g r a d e
g r a d e

Numbe r  o f  L e a v e s  : 4

S i z e  o f  t h e  t r e e  : 5

W e i g h t :  0 . 0 2  

J 4 8  p r u n e d  t r e e  

: 1 ( 6 7 5 3 . 0 / 3 3 7 3 . 1 7 )

Numbe r  o f  L e a v e s  : 1

S i z e  o f  t h e  t r e e  : 1

W e i g h t :  0 . 0

Numbe r  o f  p e r f o r m e d  I t e r a t i o n s :  10

Code 5.16 J48 tree shown in its entirety as an example.

As before, predictive accuracy were estimated, and 10 fold-cross validation performed to validate 

the models, as shown in code 5.17. This revealed predictive accuracy o f  70% as shown when the 

model was further validated against an additional small (200) test breast cancer set can be seen in 

code 5.17.
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> b o o s t . f u l l . e v a l < - e v a l u a t e _ W e k a _ c l a s s i f i e r ( b o o s t . f u l l ,  n u n \ F o l d s = 1 0 , t r a i n . f u l l ,  
c l a s s = T )
> b o o s t . f u l l . e v a l
=== 10 F o l d  C r o s s  V a l i d a t i o n  ===

=== Summar y  ===

C o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  4 7 2 4  6 9 . 9 5 4 1  %
I n c o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  2 0 2 9  3 0 . 0 4 5 9  %
Ka p pa  s t a t i s t i c  0 . 3 9 9 1
Mean a b s o l u t e  e r r o r  0 . 3 8 3 1
R o o t  me a n  s q u a r e d  e r r o r  0 . 4 4 3 2
R e l a t i v e  a b s o l u t e  e r r o r  7 6 . 6 2 9  %
R o o t  r e l a t i v e  s q u a r e d  e r r o r  8 8 . 6 3 3 7  %
T o t a l  Numbe r  o f  I n s t a n c e s  6 7 5 3

D e t a i l e d  A c c u r a c y  By C l a s s  ===

TP R a t e  FP R a t e  P r e c i s i o n  R e c a l l  F - M e a s u r e  ROC A r e a  C l a s s  
0 . 7 0 4  0 . 3 0 5  0 . 6 9 8  0 . 7 0 4  0 . 7 0 1  0 . 7 6 7  0
0 . 6 9 5  0 . 2 9 6  0 . 7 0 1  0 . 6 9 5  0 . 6 9 8  0 . 7 6 7  1

=== C o n f u s i o n  M a t r i x  ===

a b < - -  c l a s s i f i e d  a s
2 3 7 9  9 9 8  I a = 0
1 0 3 1  2 3 4 5  I b = 1

Code 5.17: 10 fold cross evaluation of results.

The results show, in code 5.18, that boosting the test set has improved the accuracy o f  error rate 

in comparison to the decision tree without applying boosting.

2 5 6



> b o o s t . 2 0 0 . e v a l c - e v a l u a t e  Weka c l a s s i f i e r ( b o o s t . f u l l ,  n u m F o l d s = 1 0 , t e s t . 2 0 0 ,
c l a s s = T )
> b o o s t . 2 0 0 . e v a l
=== 10 F o l d  C r o s s  V a l i d a t i o n  ===
=== Summar y  ===

C o r r e c t l y  C l a s s i f i e d  I n s t a n c e s 1 3 9 6 9 . 5 %
I n c o r r e c t l y  C l a s s i f i e d  I n s t a n c e s 61 3 0 . 5 a

0

Kappa s t a t i s t i c 0 . 3 9
Mean a b s o l u t e  e r r o r 0 . 3 6 6 2
R o o t  me a n  s q u a r e d  e r r o r 0 . 4 4 9 4
R e l a t i v e  a b s o l u t e  e r r o r 7 3 . 2 4 1 9  %
R o o t  r e l a t i v e  s q u a r e d  e r r o r 8 9 . 8 7 0 2  %
T o t a l  Numbe r  o f  I n s t a n c e s 2 0 0

- = =  D e t a i l e d  A c c u r a c y  By C l a s s  = = =

TP R a t e  FP R a t e  P r e c i s i o n R e c a l l F - M e a s u r e ROC A r e a C l a s s
0 . 7 7  0 . 3 8  0 . 6 7 0 . 7 7 0 . 7 1 6 0 . 7 6 2 0
0 . 6 2  0 . 2 3  0 . 7 2 9 0 . 6 2 0 .  67 0 . 7 6 2 1

=== C o n f u s i o n  M a t r i x  ===
a b < - -  c l a s s i f i e d  a s

77 2 3  1 a = 0
38 62 I b = 1

Code 5.18 showing the results of applying cross validation to the boosted classifier.

V -  Bagging

Bagging, as previously introduced, is an alternative ‘m eta’ classifier to boosting. Here, J48 

decision trees were once again produced; however only the first two trees are displayed in this 

instance as seen in code 5.19.
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> b a g . f u l l < - B a g g i n g ( a l i v e s t a t u s  ~ s i z e  + n o d e s p o s  + g r a d e , d a t a  = t r a i n . f u l l ,  
c o n t r o l  = W e k a _ c o n t r o l ( W  = " J 4 8 " ) )
> b a g . f u l 1
A l l  t h e  b a s e  c l a s s i f i e r s :

J 4 8  p r u n e d  t r e e

0 ( 2 8 9 1 . 0 / 7 8 3 . 0 )

49 0 ( 1 0 0 3 . 0 / 4 6 3 . 0 )  
1 ( 1 5 0 . 0 / 5 0 . 0 )

n o d e s p o s  <= 1 
! s i z e  <= 20
I s i z e  > 20

n o d e s p o s  <= 0 
I s i z e  <=
I s i z e  > 49  
n o d e s p o s  > 0 
I g r a d e  = 1 
I I s i z e  <= 35
! I I s i z e  <= 2 5 :  1 ( 6 . 0 / 1 . 0 )
I I I s i z e  > 2 5 : 0  ( 3 . 0 )
I I s i z e  > 3 5 :  1 ( 4 . 0 )
I g r a d e  = 2 
I I s i z e  <= 41
I I | s i z e  <= 3 8 :  1 ( 8 1 . 0 / 3 4 . 0 )
I I I s i z e  > 3 8 :  0 ( 1 1 . 0 / 1 . 0 )
I I s i z e  > 4 1 :  1 ( 1 4 . 0 / 2 . 0 )

( 2 5 1 . 0 / 7 9 . 0 )I g r a d e  =
I g r a d e  =

n o d e s p o s  > 1 
I n o d e s p o s  <= 4 

s i z e  <= 24

( 1 9 . 0 / 6 . 0 )

0 ( 3 4 . 0 / 1 4 . 0 )

0 ( 9 3 . 0 / 3 3 . 0 )

0 ( 8 . 0 )

1 ( 7 9 . 0 / 3 1 . 0 )

g r a d e  = 1 
g r a d e  = 2 
I n o d e s p o s  <= 2:
I n o d e s p o s  > 2
I I s i z e  <= 11
I I s i z e  > 1 1 :
g r a d e  = 3 
I n o d e s p o s  <= 2
I | s i z e  <= 11
I | | s i z e  <= 9
I I I I s i z e  <= 8 :  0 ( 4 . 0 / 1 . 0 )
I | | | s i  z e  > 8 :  1 ( 4 . 0 )
I | | s i z e  > 9:  0 ( 1 4 . 0 / 3 . 0 )
I | s i z e  > 1 1 :  1 ( 8 3 . 0 / 2 9 . 0 )
I n o d e s p o s  > 2 : 1  ( 1 3 0 . 0 / 4 3 . 0 )  
g r a d e  = 4
I s i z e  <= 1 9 :  0 ( 1 6 . 0 / 2 . 0 )
I s i z e  > 1 9 :  1 ( 1 0 . 0 / 3 . 0 )

s i z e  > 2 4 :  1 ( 5 8 6 . 0 / 1 4 3 . 0 )  
n o d e s p o s  > 4 : 1  ( 1 2 5 9 . 0 / 1 8 8 . 0 )

Numbe r  o f  L e a v e s  
S i z e  o f  t h e  t r e e

24
43

Code 5 . 1 9  c o n t i n u e d  over leaf . . .
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...code 5 . 1 9  c o n t i n u e d  from p r e v i o u s  p a g e

J 4 8  p r u n e d  t r e e

n o d e s p o s  <= 1
I s i z e  <= 2 0 :  0 ( 2 8 7 1 . 0 / 7 8 8 . 0 )
1 s i z e  > 20
i 1 n o d e s p o s  <= 0
I 1 1 s i z e  <= 3 7 :  0 ( 8 7 0 . 0 / 3 9 5 . 0 )
1 1 1 s i z e  > 3 7 :  1 ( 2 5 2 . 0 / 9 3 . 0 )
! 1 n o d e s p o s  > 0 :  1 ( 4 2 8 . 0 / 1 5 5 . 0 )
n o d e s p o s  > 1
i n o d e s p o s  <= 5
i 1 s i z e  < = 19

1 1 g r a d e  = 1 : 0  ( 2 7 . 0 / 5 . 0 )
1 i I g r a d e  = 2 :  0 ( 1 2 5 . 0 / 5 0 . 0 )
! 1 I g r a d e  = 3:  1 ( 1 3 1 . 0 / 5 2 . 0 )
i i 1 g r a d e  = 4
i i  ! 1 s i z e  <= 15
! 1 1 1 1 n o d e s p o s  <= 4
! 1 1 1 1 1 n o d e s p o s  < = 2 :  0 ( 1 0 . 0 / 4 . 0 )

i ! ! 1 1 n o d e s p o s  > 2
! 1 I I |  I |  s i z e  <= 1 4 :  0 ( 2 . 0 )
i !  1 1 1 1 1 s i z e  > 1 4 :  1 ( 2 . 0 )
i l l ! !  n o d e s p o s  > 4 :  1 ( 2 . 0 )
1 1 I I s i z e  > 1 5 :  0 ( 7 . 0 )
! I s i z e  > 1 9 :  1 ( 9 1 4 . 0 / 2 2 6 . 0 )
1 n o d e s p o s  > 5:  1 ( 1 1 1 2 . 0 / 1 6 4 . 0 )

Numbe r  o f  L e a v e s  : 14

S i z e  o f  t h e  t r e e  : 25

Code 5.19: The effect of bagging on the J48 tree.

Once again 10 fold cross validation is performed to evaluate the classifier as seen in code 5.20.
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> b a g . f u l 1 . e v a l < - e v a l u a t e _ W e k a _ c l a s s i f i e r ( b a g . f u l l , n u m F o l d s = 1 0 , t r a i n . f u l l ,  
c l a s s = T )
> b a g . f u l l . e v a l
= :=:= 10 F o l d  C r o s s  V a l i d a t i o n  ===

=== Summar y  ===

C o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  4 7 3 0  7 0 . 0 4 2 9  %
I n c o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  2 0 2 3  2 9 . 9 5 7 1  %
Kappa s t a t i s t i c  0 . 4 0 0 9
Mean a b s o l u t e  e r r o r  0 . 3 9 6 5
R o o t  me a n  s q u a r e d  e r r o r  0 . 4 4 5 5
R e l a t i v e  a b s o l u t e  e r r o r  7 9 . 2 9 3 5  %
R o o t  r e l a t i v e  s q u a r e d  e r r o r  8 9 . 0 9 8 7  %
T o t a l  Number  o f  I n s t a n c e s  6 7 5 3

— = D e t a i l e d  A c c u r a c y  By C l a s s  ===

TP R a t e  FP R a t e  P r e c i s i o n  R e c a l l  F - M e a s u r e  ROC A r e a  C l a s s  
0 . 7 3 8  0 . 3 3 7  0 . 6 8 7  0 . 7 3 8  0 . 7 1 1  0 . 7 5 9  0
0 . 6 6 3  0 . 2 6 2  0 . 7 1 7  0 . 6 6 3  0 . 6 8 9  0 . 7 5 9  1

=== C o n f u s i o n  M a t r i x  ===

a b < - -  c l a s s i f i e d  a s
2 4 9 2  8 8 5  i a = 0
1 1 3 8  2 2 3 8  I b = 1

Code 5.20: The effect of bagging and 10 fold cross validation upon the results.

The model produced by bagging was tested once again against the 200 breast cancer training set 

as seen in code 5.21:
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> b a g . 2 0 0 . e v a l < - e v a l u a t e  Weka c l a s s i f i e r ( b a g . f u l l , n u m F o l d s = 1 0 , t e s t . 2 0 0 ,  c l a s s = T )
> b a g . 2 0 0 . e v a l
=== 10 F o l d  C r o s s  V a l i d a t i o n  ===
=== Summary ===

C o r r e c t l y  C l a s s i f i e d  I n s t a n c e s 1 3 5 6 7 . 5 %
I n c o r r e c t l y  C l a s s i f i e d  I n s t a n c e s 65 3 2 . 5 %
Kappa  s t a t i s t i c 0 . 3 5
Mean a b s o l u t e  e r r o r 0 . 3 8 8 2
R o o t  me a n  s q u a r e d  e r r o r 0 . 4 5 6 3
R e l a t i v e  a b s o l u t e  e r r o r 7 7 . 6 3 1 1  %
R o o t  r e l a t i v e  s q u a r e d  e r r o r 9 1 . 2 6 6 3  %
T o t a l  Numbe r  o f  I n s t a n c e s 2 0 0

-  = = D e t a i l e d  A c c u r a c y  By C l a s s  ===
TP R a t e  FP R a t e  P r e c i s i o n  R e c a l l F - M e a s u r e ROC A r e a C l a s s

0 . 7 2  0 . 3 7  0 . 6 6 1  0 . 7 2 0 .  6 8 9 0 . 7 3 8 0
0 . 6 3  0 . 2 8  0 . 6 9 2  0 . 6 3 0 .  66 0 . 7 3 8 1

=== C o n f u s i o n  M a t r i x  ===
a b < - -  c l a s s i f i e d  a s

72 28  I a = 0
37 63  I b  = 1

Code 5.21: Evaluation of the bagged model on a 200 patient training set

Again an improvement is seen with the test set using this alternative method o f  optimising the 

tree results as shown in code 5.21, however improvements in accuracy over the J48 method were 

not observed.

VI -  Creating new classifiers from Weka analysis strategies to use within ‘R’

There are many analysis strategies to reveal classifiers available in the Java application Weka. 

Only selected classifiers are precompiled for use instantly in ‘R ’, however using the 

‘m a k e w e k a c la s s if ie r ’ function within the R Weka package, Weka classifiers can be imported 

for use into ‘R ’. The Random Forest approach was chosen to be added to the RW eka portfolio o f  

analysis approaches to determine classifiers. The T  parameters (e.g: 1=1000) in the 

* W e k a c o n tro f  specifies however many trees to produce from the 3 covariates. 1000 trees were 

chosen which took an extended time to process, as seen in code 5.22.
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> r f  < -  m a k e _ W e k a _ c l a s s i f i e r ( " w e k a / c l a s s i f i e r s / t r e e s / R a n d o m F o r e s t ")

> r a n d f . f u l l  < -  r f ( a l i v e s t a t u s  ~ s i z e  + n o d e s p o s  + g r a d e ,  d a t a  = t r a i n . f u l l ,  
c o n t r o l  = W e k a _ c o n t r o l ( I = 1 0 0 0 ) )

> r a n d f . f u l l

Random f o r e s t  o f  1 0 0 0  t r e e s ,  e a c h  c o n s t r u c t e d  w h i l e  c o n s i d e r i n g  3 ra n d o m  
f e a t u r e s .
Out  o f  b a g  e r r o r :  0 . 3 3 3 6

Code 5.22: Creating a new classifier through Weka imported in *R’.

The ‘out o f  bag erro r’ is calculated by Random Forest as a result for the given dataset. This value 

is useful as cross validation is not required subsequently. It is created as part o f  the Random 

Forest process after this splits the data into two thirds training and one third testing sets. Due to 

the large num ber o f  trees examined in the procedure these are not shown individually as per 

previous classifier methods; however, a summary can be produced. Again this can take an 

extended tim e to process on slower computers, where the summary process is seen in code 5.23:

    -------------------------------------------------------------------------------------------------------------------------------------
> s u m m a r y ( r a n d f . f u l l )

=== Summar y  ===

C o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  
I n c o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  
Kappa  s t a t i s t i c  
Mean a b s o l u t e  e r r o r  
R o o t  me a n  s q u a r e d  e r r o r  
R e l a t i v e  a b s o l u t e  e r r o r  
R o o t  r e l a t i v e  s q u a r e d  e r r o r  
T o t a l  Numbe r  o f  I n s t a n c e s

=== C o n f u s i o n  M a t r i x  ===

a b < —  c l a s s i f i e d  a s
2 7 1 1  6 6 6  I a = 0
1 0 1 9  2 3 5 7  | b = 1

Code 5.23: Summary of random forest classifier results.

In this instance, it appears correctly classified instances are superior at 75%.

5 0 6 8  7 5 . 0 4 8 1  %
1 6 8 5  2 4 . 9 5 1 9  %

0 . 5 0 1  
0 . 3 2 6 9  
0 . 4 0 0 1  

6 5 . 3 8 9 9  %
8 0 . 0 2 1 8  %

6 7 5 3
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5.6.3 Summary -  cross comparison of machine learning performance to predict survival or 

death

It is im portant not to forget the purpose o f  fitting a particular model to a dataset: to be able to 

accurately predict a particular outcom e according to a given covariate profile. Here, it was to 

predict survival based on the NPI covariate formula yet analyse how altering the interactions 

between the covariates nodes positive, grade and tum our size im pacted survival. Early 

exploration o f  the data revealed hurdles such as class imbalance which needed to be addressed, 

resulting in further model optimisation by considering different modelling processes (including 

machine learning algorithm s) in this thesis. This in itself resulted in a false sense of security form 

an accuracy point o f  view  as subsequent methods appeared to perform m ore poorly. Table 5.5 

sum m arises the results o f  each process, showing the effect on accuracy o f  prediction given by

each m odelling technique.

Classifier 
process/Machme 

learning algorithm

Life Death Overall accuracy

Logistic regression 11313 correctly 
predicted as surviving 

2702 incorrectly 
predicted as surviving

774 correctly predicted 
as dying 

405 incorrectly 
predicted as dying

79.5%

Splitting data to 
address class imbalance 

on test set

789 correctly predicted 
as surviving 

360 incorrectly 
predicted as surviving

645 correctly predicted 
as dying 

292 incorrectly 
predicted as dead

71.0%

Further testing and re
training

87 correctly predicted as 
surviving 

41 incorrectly predicted 
as surviving

59 correctly predicted as 
dying

13 incorrectly predicted 
as dead

69.7%

J48 tree 4719 correctly predicted 2034 incorrectly 
predicted

69.9%

Adaboost 4724 correctly predicted 2029 incorrectly 
predicted

69.9%

Ada boost on test set 139 correctly predicted 61 incorrectly predicted 69.5%
Bagging 4730 correctly predicted 2023 incorrectly 

predicted
70.0%

Bagging on test set 135 correctly predicted 65 incorrectly predicted 67.5%
Random Forest 5068 correctly predicted 1685 incorrectly 

predicted
75.0%

Table 5.5: Comparison ol 
SEER dataset

the different classifiers to predict survival in breast cancer using the
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VII -  Probability of death or survival using NBTree -  a naive Bayes classification method

Previous modelling stages o f  boosting and decision tree analysis show the ability to predict 

outcom e in an all or nothing fashion. The patient will either die or survive over the 10 year 

period. However in reality this is not as very informative as the models themselves are not 100% 

accurate and vary as previously dem onstrated.

However for an oncologist, it is more meaningful to make a prognosis and determine the chances 

o f  death or survival in a given tim e frame chosen by themselves. In this regard, Bayes 

classification can be used applied. This is a method o f  calculating conditional probabilities and 

can be com pared with decision tree methods. Such a method is available to be imported from 

within W eka for use in ‘R ’ called NBTree. To apply NBTree to the dataset, any continuous 

variables need to be initially factorised in ‘R \  and so size is allocated over a range o f  one through 

five, and nodes positive from zero through five as seen in code 5.24. Grade is already factorised 

on a scale o f  1-3.

> n b t r e e  < -  m a k e _ W e k a _ c l a s s i f i e r ( " w e k a / c l a s s i f i e r s / t r e e s / N B T r e e " )
> t r a i n . f u l l . f a c t o r < - t r a i n . f u l l
> f o r ( i  i n  1 : l e n g t h ( t r a i n . f u l 1 . f a c t o r $ n o d e s p o s ) )
i f ( t r a i n . f u l l . f a c t o r $ n o d e s p o s [ i ] > 5 ) { t r a i n . f u l l . f a c t o r $ n o d e s p o s [ i ] < - 5 }
> f o r ( i  i n  1 : l e n g t h ( t r a i n . f u l l . f a c t o r $ s i z e ) )
i f ( t r a i n . f u l l . f a c t o r $ s i z e [ i ] > 5 ) { t r a i n . f u l l . f a c t o r $ s i z e [ i ] < - 5 }

Code 5.24: Im porting the NBTree classifier into ‘R ’ from Weka.

The “Train.full.factor” variables are then parsed into the script for creating decision trees in a 

com parable m anner to other methods shown before as seen in code 5.25.
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> n b t r e e . f u l l  < -  n b t r e e ( a l i v e s t a t u s  ~ s i z e  + n o d e s p o s  + g r a d e ,  d a t a  = 

t r a i n . f u l l . f a c t o r )

> n b t r e e . f u l l  

N B T r e e

n o d e s p o s  <= 1 . 5i  . 5 

<= 0 . 5  

<= 4 . 5

g r a d e  = 1: NB 4

g r a d e  = 2: NB 5

g r a d e  = 3: NB 6

g r a d e  = 4 : NB 7

> 4 . 5

g r a d e  = 1: NB 9

g r a d e  = 2: NB 10

g r a d e  = 3: NB 11

g r a d e  = 4 : NB 12

; > 0 . 5 : NB 13

n o d e s p o s  > 1 . 5 :  NB 14

L e a f  n u m b e r :  4 N a i v e  B a y e s  C l a s s i f i e r  

C l a s s  0 :  P r i o r  p r o b a b i l i t y  = 0 . 8 3

s i z e :  D i s c r e t e  E s t i m a t o r .  C o u n t s  = 24 ( T o t a l  = 2 4 )
n o d e s p o s :  D i s c r e t e  E s t i m a t o r .  C o u n t s  = 24 ( T o t a l  = 24 )
g r a d e :  D i s c r e t e  E s t i m a t o r .  C o u n t s  = 24 1 1 1 ( T o t a l  = 27

C l a s s  1:  P r i o r  p r o b a b i l i t y  = 0 . 1 7

s i z e :  D i s c r e t e  E s t i m a t o r .  C o u n t s  = 5 ( T o t a l  = 5)
n o d e s p o s :  D i s c r e t e  E s t i m a t o r .  C o u n t s  = 5 ( T o t a l  = 5)
g r a d e :  D i s c r e t e  E s t i m a t o r .  C o u n t s  = 5 1 1 1  ( T o t a l  = 8)

/ /  R e s u l t s  t r u n c a t e d  -  s h o w i n g  o n l y  f i r s t  t w o  / /

Numbe r  o f  L e a v e s  : 10

S i z e  o f  t h e  t r e e  : 15

Code 5.25: Applying the NaYve Bayes classifier to the full patient training set
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The resultant tree is sim ilar to that o f  the J48 tree shown earlier in section 5.8. However the 

leaves are numbered which corresponds to the Bayes classifiers which follow the tree. For 

exam ple as above following leaf num ber four gives a probability o f  survival o f  0.83.

The results can then be cross validated using 10 fold cross validation as shown earlier as seen in 

code 5.26.

> n b t r e e . f u l l . e v a l < - e v a l u a t e  Weka c l a s s i f i e r ( n b t r e e . f u l l ,  n u m F o l d s = 1 0 , t r a i n . f u l l ,  
c l a s s = T )
> n b t r e e . f u l 1 . e v a l
=== 10 F o l d  C r o s s  V a l i d a t i o n  ===

=== Summar y  ===

C o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  
I n c o r r e c t l y  C l a s s i f i e d  I n s t a n c e s  
Ka p pa  s t a t i s t i c  
Mean a b s o l u t e  e r r o r  
R o o t  m e a n  s q u a r e d  e r r o r  
R e l a t i v e  a b s o l u t e  e r r o r  
R o o t  r e l a t i v e  s q u a r e d  e r r o r  
T o t a l  Numbe r  o f  I n s t a n c e s

4 7 3 2
2 0 2 1

0 . 4 0 1 5  
0 . 3 5 6 8  
0 . 4 4 4 1  

7 1 . 3 5 6 6  % 
8 8 . 8 2 1 9  % 

6 7 5 3

7 0 . 0 7 2 6  % 
2 9 . 9 2 7 4  %

=== D e t a i l e d  A c c u r a c y  By C l a s s  ===

TP R a t e  FP R a t e  P r e c i s i o n  R e c a l l  
0 . 7  0 . 2 9 9  0 . 7 0 1  0 . 7  
0 . 7 0 1  0 . 3  0 . 7  0 . 7 0 1

F - M e a s u r e  ROC 
0 . 7 0 1  0 
0 . 7 0 1  0

A r e a  C l a s s  
. 7 7 3  0 
. 7 7 3  1

=== C o n f u s i o n  M a t r i x

a b < - -  c l a s s i f i e d  a s  
2 3 6 4  1 0 1 3  1 a = 0 
1 0 0 8  2 3 6 8  I b = 1

Code 5.26: 10 fold cross validation of the NaYve Bayes classifier.

As can be seen from above, a reasonable accuracy o f  70% is obtained. The next step was to 

com pare against the 200 training set as shown in code 5.27.
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> nbtree . 200.eval<-evaluate_Weka_classifier (nbtree.full, numFolds=10,test.200, 
class=T)
> nbtree.200.eval
=== 10 Fold Cross Validation ===

=== Summary ===

Correctly Classified Instances 132 66 %
Incorrectly Classified Instances 68 34 %
Kappa statistic 0.32
Mean absolute error 0.4144
Root mean squared error 0.4701
Relative absolute error 82.8846 %
Root relative squared error 94.0295 %
Total Number of Instances 200

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class 
0.71 0.39 0.645 0.71 0.676 0.711 0
0.61 0.29 0.678 0.61 0.642 0.711 1

=== Confusion Matrix ===

a b <-- classified as 
71 29 I a = 0
39 61 | b = 1

Code 5.27: Application of the classifier determined by the Naive Bayes against the 200 patient 
training set

Again, the correctly classified instances are slightly higher in the training set giving whole 

number of 70% as opposed to 66% in the test set.

However it is important to remember that the Bayes classification gives a probability within a 

given time frame and not an ultimate alive or dead classification.

Classifier process Life Death Overall accuracy
Bayes (NBTree) 4732 correctly 

predicted
2021 incorrectly 

predicted
70%

Bayes (NBTree) on 
test set

132 correctly 
predicted

68 incorrectly 
predicted

66%

Table 5.6 Summary of the results of NaTve Bayes classification to assess probability of death or 
survival.
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5.7 Discussion

5.7.1 Nottingham prognostic index applied to the SEER breast cancer dataset

The comparison of the NPI against the SEER dataset produced an interesting comparison which 

has not been performed before to the best of my knowledge. It is an interesting hypothesis to 

compare a model based on breast cancer patients from the early 1980’s to that of patients twenty 

years later given the advances in breast cancer research. The increased use of targeted therapies, 

such as anti-//£/?2-selective antibodies and hormonal therapy, should result in improved survival 

in hormone receptor positive as well as HER2 positive patients (Modlich et al, 2006) [12]. 

Consequently, regular updates of models may have been required as new data continually 

becomes available. Yet it was clear from the results that the SEER dataset performed better than a 

UK based dataset upon which the NPI was based which could be a reflection of improved 

treatment regimes.

Comparing models with data sets from international sources can only be beneficial in the long 

term to help reveal all facets of in vivo breast cancer. The combining of patient data could also 

provide more accurate explanations for rare subgroups, such as anomalies shown with race as 

highlighted in Chapter 4. This should be possible where measurement of prognostic indices 

common across international borders is possible. Blarney et al. in a recent publication speculate 

that improved survival over time must come from improved patient management, since the 

distribution of patients into the NPI subgroups has remained essentially the same since the 1980s 

(Blarney et al, 2007) [111]. The better results yielded by the application of the NPI criteria 

against the SEER dataset may also be explained by a more accurate lymph node staging in 

combination with more patients being detected within mammography screening. This was 

certainly observed in patients classified as node negative in the 1980s, but actually being node 

positive, may have ‘stage migrated’ to a higher NPI category in the 1990s (Blarney et al, 2007) 

[ 1 1 1 ].

268



5.7.2 Modelling survival

As a result of the NPI grouping a US dataset with similar success to that of a UK dataset, the 

SEER dataset was used to refine the covariate combinations outlined in the NPI. Potential 

combinations of existing covariates -  namely nodes positive status, tumour grade and tumour size 

were analysed using different machine learning and classification statistical techniques. After 

overcoming problems which bias the data such as class imbalance as discussed earlier, 

performance for predicting life or death varied greatly. Throughout this final chapter, it should 

also be clear that once again that ‘R’ has proven a valuable data analysis tool. The ability to 

interface with Weka through small amounts of coding allows access to powerful machine 

learning techniques.

During testing, some machine learning algorithms took far longer to perform than other machine 

learning algorithms. Support Vector Machine (SVM) took an extended duration for processing. It 

would be useful in future to recreate results using parallel computing architecture and the 

associated speed advantages. This would be particularly useful for optimisation where multiple 

cycles of the algorithm will be required.

In assessing the value of one algorithm over another, difficulties in such a comparison have been 

widely reported. For example, assessing accuracy scores without considering statistical 

significance tests that take into account the specific data sampling strategy and correct for 

multiple testing is unsatisfactory. Robustness in predicting survival is important if any of the 

classifiers described are to be used routinely. However it was also important to start the analysis 

of the different methods with logistic regression, particularly after class imbalance was 

addressed. It is important not to overlook simpler models in favour of more complex algorithms 

in the hope they would perform better.

Evaluation of each method was performed by 10 fold cross validation in most instances. Where a 

tree based method was employed, training of the classifier at each node was needed in separate 

succession. The process continued until reaching a leaf where no further classification occurred.
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An ultimate value o f accuracy for each method was reported in a confusion matrix which 

reported the number of patients correctly and incorrectly classified.

The random forest algorithm performed better in accuracy and also performed quicker in ‘R’ than 

most of the other methods outlined. Random forest inherently does not appear to be susceptible to 

‘overfiRing’ which some of the models such as SVM can exhibit. It is highly likely that repeated 

optimisation of the SVM technique could improve upon accuracy of that of even the random 

forest method which scored the highest accuracy in testing.

Literature suggests that the standard procedure when fitting data models such as logistic 

regression to a dataset is to delete variables to improve accuracy. However a model such as 

random forest performs better with more variables.

However, decision tree learners consider only one attribute at a time, such than relevance 

distributed among several attributes cannot be detected. They provide explicit rules and ordering 

of the decision tree by means of their depth within the tree. Yet, decision trees are sensitive with 

respect to disturbed data, which lead to instable solutions, i.e. different resulting tree structures. 

One future possible solution is to combine tree generating systems with robust classification 

schemes like neural networks. One approach based on prototype based classifiers is BB-trees 

which can be used for decision system generation (Moguerza et al, 2006) [120].

For all classification methods the underlying metric plays a crucial role: the metric can be chosen 

in agreement with the classification task or may be contradictious in the worst case. Therefore, 

adaptive, non-standard metrics are required for optimum classification (Yang et al, 2007) [121]. 

Whereas some machine learning techniques inherently weight the data streams during learning, 

classifiers such as SVMs can be extended to deal with metric adaptation and non-standard 

metrics as demonstrated in gene expression analysis (Moguerza et al, 2006) [120]. The same is 

true when applied to the patient dataset as outlined.

The Bayes classifier which uses all the prognostic variables of the dataset to predict survival 

probability I would imagine would be of more usefulness than a decision tree to a clinical as it
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takes into account all the input patient variables. Although decision tree methods such as random 

forest performed well, only a selection of variables will be used when following a particular path.

It would be of value to compare the different machine learning techniques against different 

cancer datasets, such as the colorectal dataset also available as used in Chapter 4 with Superstes. 

This way a more overall picture of accuracy of each technique could be judged.

Using alternative patient variables could also potentially improve classification results. Collection 

of patient variables using pre-operative techniques can only cover certain pieces of information 

which allow a diagnosis to be performed. Information collected post-operative will be more 

informative due to the nature of information collected due to the invasive procedures which 

would have been followed. It would be interesting therefore to repeat the classification methods 

with a pre and post operative dataset to see if the post operative variables are able to classify 

survival more accurately.

The benefits for a more individual patient tailored and quantitative prediction of outcome is 

appealing and without doubt important in making treatment decisions. It can also be seen as part 

of a more general trend within medicine which strives for personalised, absolute risk assessment.
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Chapter 6 — Discussion

The power of biomarkers and genetic probes in understanding cancer biology has been clearly 

demonstrated in both in vitro and in vivo throughout this project. Many studies have tried to 

discover and yet improve upon genetic signatures to predict the onset of cancer or prevent 

resistance to life saving therapies. Computer technology and advanced mathematical analysis 

through pattern discovery and classification allow such genetic signatures to be revealed.

Development of the data analysis platforms throughout this study have been made possible only 

due to open source initiatives. The ‘R’ project, R-(D)-COM, OpenGL and Visual Basic.net have 

all played fundamental roles in creating I-10 and Superstes (Bioconductor Core, 2002) [73], 

Shreiner et al, 2005) [104]. The knowledge discovery tools created will facilitate cancer 

researchers to analyse different types of biomedical data more rapidly than they may have using 

past tools. This is in part due to careful user interface design coupled with powerful and versatile 

statistical methodologies such as ‘R’ provides.

Throughout the project, technologies employed in biomedical data analysis, while primarily 

focusing on Affymetrix array data, also introduced the value of clinical dataset analysis. This was 

facilitated by development of a new arsenal of tools for future gene discovery making existing 

technologies more accessible to the end user as well as introducing new, perhaps unfamiliar 

approaches. However these tools could become quickly dated if they are not designed to be 

flexible for future improvement. Incorporation of ‘R’ technology and its associated algorithm 

libraries facilitates the potential for future expansion and development of both ‘Informatics 

Tenovus’ and ‘Superstes’ applications beyond the scope of this thesis.

6.1 Aim 1 - Development of a user friendly Affymetrix Microarray suite

Detailed analysis of in vitro models explored using Affymetrix HGU-133A arrays, using a 

purpose built system, marked a new chapter of array research for the Tenovus centre for cancer 

research. Although the commercial data analysis platform, Genesifter, had been used extensively 

to explore individual probe sets revealed by established statistical techniques, I-10 was a more
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adventurous step for Tenovus. I-10 facilitates exploration of visualisation methodologies on an 

unprecedented level in both two and three dimensions, yet utilises well developed resources of 

the acclaimed statistical programming environment ‘R’ (Dessau et al, 2008) [73]. Through 

careful design, I-10 allows easy access to data analysis techniques for microarray data which 

otherwise might have not been explored using ‘R’ directly. It has facilitated biologists wishing to 

fully embrace microarray analysis to harness the benefits of ‘R’ without any in-depth coding 

knowledge using the command line.

The benefits of combining Microsoft Excel with ‘R’ and 3D graphical abilities were also 

demonstrated in I-10. A review of existing analysis technologies -  particularly those including an 

interface with kR’ -  showed extensive use of Excel. The usage of Excel internationally is well 

documented and has remained the leading spreadsheet application in many disciplines throughout 

the world. Consequently, due to widespread familiarity of Excel especially by Tenovus 

researchers who use I-10, it made an obvious choice for reviewing loaded datasets and analysis 

results.

Before the inception of this project, no storage procedure existed through which data generated 

from microarrays was stored securely within Tenovus. Although most arrays were stored online 

for analysis with Genesifter there was no independent storage within Tenovus to enable fast 

retrieval of array information. Files which contain the microarray scan information, which form 

the basis of analysis, were stored on CD-ROM. Furthermore, the file naming convention which 

was adopted by the Affymetrix scanning facility was not amenable to clear combining of arrays 

into projects for analysis. Consequently, the Microsoft Access database produced -  viewable on 

all computers with Microsoft Access throughout Tenovus -  has allowed easier and more robust 

accessibility to their valuable microarray resources. This allowed microarray model system 

projects to be produced more rapidly and allowed I-10 to ultimately have a data analysis 

management system for storage of results.

The major advantage of 1-10 is in its ability to be continually upgraded and expanded. The power 

that adding new ‘R’ libraries by members of the ‘R’ developer community brings to I-10, should 

not be underestimated. I-10 will always serve as a user friendly mechanism through which
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powerful new libraries can be accessed by those not wishing to learn scripting of ‘R’ via the 

console.

The availability of OpenGL to be commanded in Visual Basic through the freely available API 

added a new dimension to data analysis graphical abilities (Shreiner et al, 2005) [104]. Although 

‘R’ has some inbuilt 3D functionality, the added flexibility of how scatter plots generated using 

OpenGL could be labelled, rotated and enlarged was novel in I-10. The 3D user interface is able 

to visualise results from the clustering techniques PAM, PCA, K-means and Fuzzy clustering 

(Hartigan et al, 1979) [44], (Du et al, 2008) [45], (Bozinov et al, 2002) [46]. Although user 

feedback was largely positive, some users found the 3D view on data confusing, especially with 

large plots. However, during user workshops with Tenovus researchers who use the software, all 

users were clear that it provided an interesting, quick insight into potentially interesting groups 

within data for any given analysis question.

Contributions from the ‘R’ Bioconductor community -  namely through the library (simpleaffy) -  

proved valuable in the addition of array quality control functionality (Bioconductor Core, 2002) 

[72]. Detailed quality analysis had not been performed by Tenovus in previous analysis via the 

MVA plot system. Addition of this functionality quickly proved useful when testing the system 

to address a particular biological question where one control MCF7 microarray model was lower 

in overall similarity to its corresponding replicates. The array was ultimately reproduced and 

shown to be an improved match on the original array, using IQR measurement assessment. This 

ultimately improved results when a detailed analysis was performed using I-10, allowing more 

significant probes to be revealed due to greater similarity between control replicates.

Examining commercial applications also proved valuable in judging what functionality was 

lacking in terms of recent analysis methodologies in relation to what was possible in development 

of a new system. Any developed system is only successful if it addresses the requirements of the 

user. For example, one function of Genesifter, which was required in I-10 was a profile viewer. 

This facilitates fast viewing of individual probe sets in a given analysis question to see true 

differential expression based on normalised probe intensity values. When used in context,
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induced and suppressed events of individual probes in comparison to a control microarray can be 

individually visualised. This has also proven useful for exploration of individual clusters.

When I-10 development was complete, changes to the Microsoft XP operation caused slight 

problems upon installation during initial (beta) testing. It was discovered that computers other 

than the development computer of which I-10 was produced lacked key files which were required 

by I-10. The Microsoft XP windows update tool examines each computer individually. It 

analyses what applications are installed and what updates are therefore required -  it will vary 

from one computer to another. Few computers will be identical. During the many months of 

development, the development machine was updated with Windows update recognising the 

presence of Visual Basic installed on the computer. Applications developed in this way on 

Windows require certain system files. However due to shortcomings in security found over time 

on Windows XP machines, only those computers with Visual Basic applications received the 

updated files. Therefore when I-10 was finished and installed on other machines in Tenovus, 

these computers lacked the updated files which caused problems when trying to run 1-10. These 

computers which required I-10 had to be manually updated to receive the update patches after 

which I-10 ran successfully.

This scenario raised an interesting issue of development of applications with Visual Basic on 

operating systems far newer than when the programming language was developed. This is one 

factor advocating all future application development in a web based manner only. However it is 

also possible to take the cynical point of that it is a form of Microsoft discouraging the use of 

older applications on their newer operating systems by making it harder to run older software. Of 

course, an activity always marketed from the point of view of ‘security’. I-10 has not been tested 

with Windows Vista.

Due to experience gained through production of Superstes as outlined in Chapter 4, I would 

recommend that future developments of I-10 migrate to a web based platform. Since the 

inception of the project, there have been improvements with 3D visualisation for online 

applications using applications such as Adobe Flex and the open source equivalent -  OpenLaszlo 

(Openlaszlo, 2008) [126]. Both allow creation of 3D graphs as produced in I-10 without any
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particular hardware requirements. Created applications are viewed through Adobe Flash Player 

which all current Internet browsers support. The visualisation technology used in both Flex and 

OpenLaszlo originated in animation development. Recently, technical changes in the open source 

equivalent, OpenLaszlo, such as syntax expression alterations have changed from initial releases. 

This has had an impact on web based applications developed with the beta release requiring 

radical changes to be compatible with current and future versions of the OpenLaszlo application. 

The commercial Adobe product ‘Flex’ has not been plagued by such syntax alterations (Adobe, 

2008) [127]. This raises an interesting point that although open source technologies enable very 

powerful applications to be developed, there is a risk that future developments could impact 

previously developed applications as users control development. This tends not to happen in such 

a radical way with commercial applications due to previous commitments and responsibilities in 

software license agreements. However, if I-10 had been created in OpenLaszlo to harness the 3D 

modelling capabilities, this could have had a drastic impact on future upgrades of I-10.

Experience with Microsoft SQL server and also alternative database solutions which ‘R’ can 

interact with, such as mySQL, could prove a worthwhile upgrade to I-10. When I-10 was 

developed, a key aspect to consider was to avoid expensive overheads requiring new equipment. 

Only later in the project was access to a Windows Server possible. Although any desktop 

computer can be configured to act as a ‘web server’ which displays locally stored web based files 

and applications, operating system versions of Microsoft XP often called ‘images’ remove the 

capability of acting as a server for security reasons. Consequently this was another reason option 

a local application version of I-10 was chosen. However as University policy ever changes in 

relation to Information Technology, this could be an option which could be rediscovered.

It is hoped the Informatics 10 application will prove valuable for future gene discovery applied to 

new Affymetrix arrays and other types of bio medical data for years to come. A future step could 

be to include I-10 as part of the network distributed applications so it could be used by an even 

wider audience. The ability of 1-10 to be expandable if and when new ‘R’ libraries are introduced 

is a very powerful ability. In fact as users within Tenovus feedback their ongoing experience with 

the application, changes and improvements will inevitably made in future releases. Many 

commercial analysis products may offer some functional similarity aspects due to the nature of
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some of the statistical methodologies; however, very few will offer the versatility, speed and ease 

of use that I-10 provides.

6.2 Aim 2 - Demonstrate the capability o f the developed 1-10 software to identify 
differential gene expression in order to assist further understanding of resistance to 
Tamoxifen or Faslodex

Several microarray studies have previously been described in the context of deciphering response 

and resistance to endocrine agents in breast cancer, where these have been applied to in vitro 

models and in vivo breast cancer material.

For example, some research groups have compared the transcriptional impact of oestrogen and 

various antioestrogens including the selective estrogen receptor modulators (SERMS) tamoxifen 

and raloxifene as well as the pure antioestrogen faslodex (ICI182780), on ER+ breast cancer cell 

lines during the responsive phase. These studies, such as that described by Frasor et al Frasor et 

al, 2004) [128] which used Affymetrix HGU-133A microarrays, have been able to discern 

fundamental differences among these agents. A model to define oestradiol-like (pro-survival) and 

antioestrogen-like (pro-apoptotic) activities of SERMs on the basis of their various gene 

expression profiles has been described using the more limited Atlas cDNA array platform 

(Levenson et al, 2002) [129]. Another in vitro study utilised an alternative array platform -  high- 

density cDNA microarrays- to again assess differences in different antioestrogen impact, but 

where the gene signatures of the study could subsequently be exploited to screen novel hormonal 

antagonists that could prove more effective against breast cancer (Scafoglio et al, 2006) [130].

Some of these various in vitro oestrogen and antioestrogen studies have revealed tamoxifen- 

regulated genes that have further potential since they correlated with adverse clinical outcome 

(Scafoglio et al, 2006) [130], while Hayashi and Yamaguchi (Hayashi et al, 2005) [131] and also 

Oh et al. (Oh et al, 2006) [132] studied oestrogen-regulated genes in cell lines to reveal novel 

response predictive factors and to develop a gene expression-based survival predictor for ER+ 

and/or PgR+ breast cancer patients respectively. The latter study determined that poor prognosis 

patients showed increased expression of proliferation/survival genes, while those with good 

prognosis showed increased oestrogen-regulated gene expression in their breast cancer (Oh et al,
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2006) [132]. Finally, using the Affymetrix HGU-133A chip, a better understanding of oestrogen 

deprivation treatment, using various aromatase inhibitors, again versus antioestrogens, has also 

been achieved in vitro at the molecular level (Itoh et al, 2005) [133], while custom cDNA 

microarrays are also being used to explore non-classical ERa (ERE-independent) target genes, 

giving much broader insight into ER interplay with further novel pathways that may contribute to 

breast tumor response to SERM therapy (Glidewell-Kenney et al, 2005) [134].

In total, such microarray studies of cell lines during responses to hormones and antihormones are 

not only aiding our understanding of antihormone mechanism at a transcriptional level, but also 

revealing possible new avenues to potentially maximize anti-tumour response as well as potential 

predictive gene signatures. Microarray expression studies, such as those ongoing in the Tenovus 

Centre, are also being used to study in vitro cell line and mouse models that have acquired 

resistance to the antioestrogens tamoxifen or faslodex, in order to reveal potential signatures (and 

possibly therapeutic targets, where genes are growth signalling-pathway related) that may be 

directly associated with various endocrine resistant states (Scott et al, 2007) [135], (Fan et al, 

2006) [136], (Hilsenbeck et al, 1999) [137], (Huber et al, 2004) [138], (Sommer et al, 2003) 

[139], (Gu et al, 2002) [140]. However, to date, such studies have generally focused on signatures 

of individual forms of resistance, rather than also defining “shared” differential gene expression 

in the context of resistance to different endocrine agents, where the latter approach may prove 

particularly powerful in the context of seeking generic biomarkers/signalling targets for multiple 

forms of resistance. This latter area is of particular interest to this thesis and researchers in the 

Tenovus Centre.

In vivo material can be a furthermore extremely valuable resource to reveal, explore and 

subsequently screen predictive gene signatures for endocrine response or failure (Chanrion et al, 

2008) [141], (Tozlu-Kara et al, 2007) [142]. For example, identification of a molecular signature 

predicting the relapse of tamoxifen-treated primary breast cancers using yet another platform -  in 

this instance based on a 70-mer oligonucleotide microarrays, has been described by Chanrion et 

al. to identify a 36 gene molecular signature specifying a subgroup of breast cancer patients who 

do not gain benefits from tamoxifen treatment. Such a cohort of patients would therefore be 

eligible for alternative endocrine therapies and/or chemotherapy which would help the therapeutic
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management of their estrogen receptor-positive cancers (Chanrion et al, 2008) [141]. A further 

study screened genes of interest by using a pan genomic 44K oligonucleotide microarray in a 

series of ten ER+ tumors comprising five tamoxifen-treated postmenopausal patients who 

relapsed (distant metastasis) and five who did not relapse, matched with respect to age, tumour 

grade, lymph node status, and macroscopic tumor size. The study revealed the genes HRPAP20 

and TIMELESS as promising markers of tamoxifen resistance in women with ER alpha-positive 

breast tumors [142]. In some instances such gene signatures are now being examined in larger 

clinical studies in relation to recurrence during tamoxifen therapy (although to our knowledge not 

as yet in relation to faslodex failure in the clinic), for example the Oncotype DX and Rotterdam 

signatures as previously outlined in Chapter 1.

Clearly, microarray approaches are proving extremely popular in the context of understanding 

endocrine response and resistance, with some significant findings in this regard, in some 

instances already under test as predictive signatures in the clinic in relation to tamoxifen 

outcome. However, there are no standard approaches for microarray analysis, although initial 

experimental protocol now must be described according to MIAME recommendations. This 

means there is an inherent risk that gene signatures and targets discovered will be difficult to

replicate in other studies. Moreover, few applications are freely available to the biological

researcher that include database storage, multiple visualization, basic and advanced analysis 

techniques (e.g. statistical and multiple unsupervised/supervised clustering), with appropriate 

links to ontological analysis, presented in a comprehensive package. Such a plethora of 

capabilities are highly-desirable for microarray studies if the differential genes revealed are to 

ultimately be robust, reproducible and biologically-relevant.

A key aim of this project was thus to develop a platform with such capabilities, to improve and 

streamline the process whereby a researcher can reveal potential new genetic targets from array 

portfolios in the context of deciphering endocrine response and failure, in this instance

exemplified by the Tenovus MCF7-derived cell line HG-U133A dataset. I-10 was also required

to be a user-friendly platform, a critical aspect since the laboratory researcher rarely has the 

advanced bioinformatic or coding skills required to harness all the analysis techniques and apply 

them to large datasets. Such advanced analysis capabilities are particularly desirable in the
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Tenovus studies that aim to find both “unique” and “shared” differential genes often across 

multiple replicates and resistance/treatment groups in their in vitro datasets. 1-10 also 

incorporates beneficial 2D/3D graphical features not only to enhance its user-friendly format but 

to permit further advanced data exploration. Importantly, I-10 also allows the researcher to access 

algorithms capable of assisting choice of the most appropriate clustering method and to prioritize 

large lists of differential genes, again presenting this analysis to the researcher in a user-friendly 

manner. This again is highly beneficial, since large gene lists and defining their associated 

ontology can be daunting in the absence of a systematic prioritization strategy. I-10 should be 

applicable to multiple types of array data and is also able to be continually upgraded -  a feature 

many commercial applications lack- such that state-of the art advanced analysis methods can be 

easily and rapidly encompassed for the user. Finally, I-10 is non-commercial, based upon open- 

source technologies, an important factor where analysis cost needs to be considered.

To demonstrate some of the key abilities of I-10 in the context of endocrine resistance (in this 

first instance to the SERM tamoxifen and the pure antioestrogen Faslodex), therefore, differential 

gene expression has been determined and further explored through multiple clustering procedures 

as applied to the Tenovus TAMR and FASR cell lines in relation to their endocrine responsive 

counterpart MCF-7. Using advanced data analysis techniques through ‘R’, thousands of potential 

genes were examined, prioritised and ultimately reduced to a highly significant, biologically 

relevant cohort. The application of I-10 has proved to be very useful in discriminating the breadth 

and patterns of transcriptional impact of resistance and in selecting dominant differentially 

expressed candidate genes across these multiple experimental groups and their associated 

replicate samples.

Breast cancer is believed to encompass multiple disease sub-types that have been defined 

according to transcriptional signature from clinical material using microarray class discovery 

approaches (Harris et al, 2007) [15] and emerging parallel immunocytochemical landmarks 

(notably ER, HER2 and cytokeratin patterns (He et al, 2006) [10]. While some heterogeneity 

between classes is apparent, ER+ cancers can broadly be characterised by a “luminal” signature, 

while ER- disease includes the “//£/?2” (i.e. HER2 amplified), “basal” and “normal” sub-types.
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These sub-types appear to have different clinical behaviour, where the luminal group is again 

broadly associated with superior prognosis versus the “HER2” and “basal” sub-types, although 

within the luminal signature there are not only “A” but also “B” (and possibly “C”) classes, 

where the latter has a somewhat poorer outlook (Sotiriou et al, 2003) [80]. However, it remains 

largely unexplored how these sub-type signatures are related to antihormonal response, although 

as stated above further gene signatures such as the Rotterdam tamoxifen response profile, the 21- 

gene set Oncotype DX (Recurrence Score), and a reported HOXB13-IL17BR ratio are promising 

in the context of predicting tamoxifen outcome, while high genomic grade (measurement of 

proliferation-related genes) also discriminates luminal breast cancers who will fail on tamoxifen 

(Sommer et al, 2003) [139]. Equally it remains unknown if breast cancer sub-type is influenced 

by antihormonal exposure in ER+ patients or whether a shift in sub-type occurs on acquisition of 

endocrine resistance.

Using the capabilities of I-10, therefore, the phenotype of the acquired resistant TAMR and 

FASR models in relation to MCF-7 cells was examined before detailed differential gene 

expression analysis began, based on the luminal, HER2, basal and normal genomic signatures 

using the classifiers produced by Sorlie et al (Sorlie et al, 2003) [79] . This was carried out to 

assess any phenotypic shifts in sub-type which may have occurred during emergence of 

resistance to both Tamoxifen and Faslodex. Appendix 2 shows a summary of the presence or 

absence of the genes and corresponding Affymetrix probes applied to the various MCF7 derived 

models. In summary, the results generated showed that the MCF7 cell line is a luminal cell line 

(in agreement with literature Ross and Perou 2001; Lacroix and Leclerq, 2004), where 

interestingly this phenotype was not lost in resistance, despite gains in proliferative and 

aggressive cellular behaviour of the resistant models. It will be interesting in the future to explore 

if further signatures linked to tamoxifen failure clinically equally equate with those of the 

acquired antioestrogen resistant phenotypes in vitro, since several of these incorporate 

proliferation-related genes in the signature including the 21-gene set Oncotypedx (Recurrence 

Score) and also “genomic grade” (Sommer et al, 2003) [139].

Thus, there was no transcriptional signature shift to the amplified HER2 class (although the 

TAMR model does utilize modestly increased HER2 signalling as part of its growth mechanism
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Knowlden et al, 2005) [143]. Moreover, it was interesting to note that the models were not 

shifting to a basal phenotype in resistance (since key probes associated with a basal phenotype 

were absent in all the models), particularly in the context of the FASR cell line. In contrast to the 

ER+ / HER2- parental MCF-7 cell line and the acquired TAMR model, it has recently emerged 

from studies in the Tenovus Centre that the FASR model has lost its ER positivity such that it has 

acquired an aggressive, ER-/PR-/HER2- (i.e.“triple negative”) phenotype (Nicholson et al, 2005) 

[21]. While a substantial proportion of triple negative breast cancers clinically have a basal sub- 

type, a recent study has indicated that a triple negative, non-basal phenotype may be more 

common than originally appreciated (Bertucci et al, 2008) [144]. The studies in this thesis 

indicate a triple negative, non-basal phenotype may also be acquired during Faslodex treatment. 

Importantly, no targeted therapies are yet available for aggressive triple negative disease, and 

hence the I-10 approach to study genetic signature of Faslodex resistance in this thesis and its 

findings described to date may prove particularly rewarding in the context of treating the triple 

negative state, whether it is present de novo or develops during treatment.

A Significant Analysis of Microarray (SAM) differential expression filter was then performed 

accepting a false discovery rate of 10%. 1070 significant genes were revealed. This number 

encompasses both decreases and increases in gene expression in resistance. This relatively large 

number of transcriptional changes is likely to underpin the elevated growth and invasion 

associated with the resistant models. Interestingly, the results showed an apparent enrichment of 

significant differential expression of genes on chromosomes 7 and 10 in resistance (with less 

deregulation of genes shown on chromosome 19) than would have been expected from the gene 

set. Clearly, it is possible that resistance may in part be driven by genetic gains or losses focused 

to particular chromosomes that occur during treatment. Individual gene amplification or loss have 

been (controversially) linked with tamoxifen resistance, including amplification of key growth 

signalling molecules such as HER2 (Dowsett et al, 2001) [145] and loss/mutation of key tumour 

suppressor genes including p53 (Bems et al, 2000) [146], while amplification of several genes at 

chromosome 1 I q l3 has also recently been linked to Tamoxifen resistance (Bostner et al, 2007) 

[147].
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Among the chromosomal changes described in a further endocrine resistant model from 

Achuthan et al. (Achuthan et al, 2001) [148], there were several alterations occurring at 

chromosome 7. Further I-10 analysis of the chromosome changes in the Tenovus FASR and 

TAMR cells revealed that most of the expression changes associated with chromosome 7 was 

increases in resistance (particularly in the FASR model). However for chromosome 10, while 

78% of the changes were again expression increases in FASR cells, 63% of the changes in 

TAMR cells were expression decreases. Interestingly, gains in chromosome 7 copy (the location 

of the invasion signalling gene Met receptor), and allelic loss in chromosome 10, have both been 

associated with tumour progression (Bose et al, 1998) [149], (Hirata et al, 1998) [150], Moreover, 

a lengthened homogeneous staining region (HSR: a cytogenetic indicator of gene amplification) 

on chromosome 7 has been described in MCF-7 cells resistant to methotrexate, where 

chromosomal rearrangements and numerical changes have been linked to adaptation of MCF-7- 

derived cell lines (Whang-Peng et al, 1983) [151].

An aspect of advanced functionality of I-10 was demonstrated early into analysis by performing 

principal components analysis upon the 1070 revealed genes. Rotation of the plot through 360 

degrees showed a bias towards the FASR arm in general i.e. that there were more significant gene 

changes in this form of resistance. This is perhaps not surprising since this cell model exhibits 

more extreme increases in its proliferative and invasive capacity (Perou et al, 2000) [11] than the 

TAMR model (where both are elevated versus endocrine responsive MCF-7 cells; (Perou et al, 

2000) [11] ), presumably underpinned by unique or perhaps more extreme transcriptional 

changes. For example, we have previously noted unique up regulation in expression of the 

tyrosine kinase gene Met (the target receptor for //GF/scatter factor) associated with the FASR 

model which can contribute to its invasive behaviour. Generation of a hierarchical clustering heat 

map through I-10 subsequently showed that the Control MCF7 and TAMR models clustered with 

greater association than the FASR model. This is in keeping with the TAMR, like the MCF-7 

model, retaining ER, where this receptor in TAMR cells remains growth-contributory (albeit 

through its coupling to a different cross-talk mechanism with EGFRJHER2 (Britton et al, 2006) 

[152]). In contrast, the FASR model has lost its ER expression, and thereby any oestrogen- 

regulated signalling and growth, presumably in turn gaining ^-independent signalling pathways
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(perhaps evident at the gene expression level) that could perhaps promote a different/more 

extreme transcriptional readout underpinning growth and progression.

Later in the development of I-10, its versatility was demonstrated by ease of integration of a new 

clustering analysis library -  CIValid - which proved a powerful addition to advanced analysis 

allowing an optimal choice of clustering method and cluster number to be made. This was 

incorporated in order to remove uncertainty by reinforcing clustering results with statistical 

values. Through 3 measurements of cluster validation (i.e. internal, stability and also biological 

validation of clusters vs. Go ontology), CIValid allows the user to choose from different 

clustering techniques and compare one against the other, testing up to the user-defined number of 

clusters. Graphs and statistics can be produced at each cluster number with a summary generated 

showing optimal cluster number. Five different clustering techniques -  hierarchical clustering, K- 

Mean, PAM, Self-organising maps and fuzzy analysis - were chosen which were all integrated 

into I-10 through ‘R \ It was clear that some compromise was required between feasibility of 

testing cluster number and computing power when using the package. A maximum cluster 

number o f 20 clusters were possible when evaluating the various clustering techniques; however 

only three different types of clustering could be performed in each analysis cycle, with this 

number o f clusters again due to computational limitations. Consequently, the five clustering 

techniques were divided into two runs, with hierarchical clustering being performed in each 

cycle.

Ultimately two and twelve clusters were revealed as optimal across the different clustering 

techniques -  the two clusters revealed were simply the two dominant “up” and “down regulated” 

clusters, whereas the 12 clusters were of potentially more interest since they focused upon the 

underlying key patterns of gene expression between the three cell model arms of the analysis. 

Hierarchical clustering performed consistently throughout the clustering techniques particularly 

with the biological validation testing, although methods such as PAM and SOM also performed 

well. To subsequently further explore hierarchical clustering membership, each of the 12 clusters 

revealed through CIValid were overlayed alongside the heat map. An average profile for each 

cluster was generated with the profile viewer in I-10 which showed that overall there were seven 

distinct profiles according to up and down regulation across the two resistant groups in relation to
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the MCF-7 cells, with the remaining five being variations on each of the other profiles. Taking 

fold change of 1 as a cut off in either direction, the dominant profiles were: significantly 

increased in both TAMR and FASR cells (1 profile); increased in TAMR cells only (2 profiles) 

or FASR cells only (2 profiles); increased in FASR but decreased in TAMR cells (1 profile); 

decreased in both TAMR and FASR cells (3 profiles), decreased in TAMR cells only (1 profile) 

or FASR cells only (2 profiles). No genes fell into the significantly decreased in FASR and 

increased in TAMR only category. There are thus more possible expression profile variations that 

are unique to a resistant state (8 profiles) versus those where expression changes are shared in 

both forms of resistance (4 profiles) that may be particularly relevant in a quest to identify 

generic targets in the resistant states.

Potentially the overlapping clusters could thus be combined, but as there were sufficient number 

of probes in each of the 12 individual clusters for separate analysis these were ultimately all 

analyzed. However, some analysis priority was immediately placed on clusters 12 and 9 as these 

were the most significant “shared” induced or “shared” suppressed profiles respectively across 

the resistant states and were thus clearly of substantial potential relevance in the context of 

defining generic markers or targets for anti-oestrogen resistance. Function of the pvClust module 

of ‘R’ in I-10 was then demonstrated, potentially prioritizing those genes within each cluster for 

study by identifying those that were ultimately the most significant at both a 0.05 and 0.005 p 

value level, in this instance initially focusing on the obvious shared clusters 9 and 12 in the 

context of generic suppressed or induced transcriptional events associated with resistance. 

Subsequent use of the 3D plotting tool through I-10 revealed an extremely reproducible gene 

profile in the significant genes comprising clusters 9 and clusters 12, implying transcriptional 

coregulation of expression.

As stated above, Cluster 9 was indicative of genes in FASR and TAMR ceils whose expression 

was suppressed in both models. This cluster contained some suppressed genes that have been 

shown in a further project in Tenovus to be depleted in TAMR cells but which had not previously 

been explored in the context of faslodex resistance. These included the carbonic anhydrase 12 

gene, where higher levels have previously been associated with better prognosis breast cancer in 

keeping with the observation here of its expression loss in the aggressive resistant models. Of
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novel interest, however, was the shared suppressed Probe 205440 s at that persisted in analysis 

through many levels of GO ontology focusing on receptors (obtained by accessing FATIGO 

multi-level analysis through I-10). This was subsequently taken forward into DAVID, a further 

ontological resource linked to I-10, to determine more ontological information.

The probe 205440_s at, known as the NPY Y(l) receptor (NPY1R) which is the neuropeptide Y 

receptor Y l, is a receptor targeted by ligands previously implicated in neuroendocrine regulation 

in the nervous system and GI tract. This signalling gene encodes a membrane protein that belongs 

to the G-protein coupled receptor 1 (rhodposin-like receptor) family and its signaling is reported 

to induce the expression of CRE containing target genes through the CaM kinase-CREB pathway, 

and inhibits CRE containing genes when cellular cAMP levels are elevated. Recently, a role of 

neuropeptide Y (NPY) in tumor biology was implied based on the high density of NPY receptors 

noted in breast and ovarian cancers. These NPY receptors are also a potential new molecular 

target for the therapy of some tumour types. In the models used in this project, however, NPY( \ )  

receptor decreases in resistance suggesting a possible role in driving endocrine responsive breast 

cancer cells that is subsequently lost in the aggressive, proliferative resistant state during 

prolonged antihormone exposure. Interestingly, therefore, NPY1R has previously been shown to 

be oestrogen-regulated in MCF-7 cells but to be lost in a aggressive ER- breast cancer cell line, 

MDAMB231 . Oncomine clinical transcriptome analysis outlined in chapter 3, available as a link 

within I-10, revealed that the NPY receptor is at a higher expression level in luminal, ER+, PgR+ 

and HER2- clinical breast cancers at the transcriptional level, equating with its enrichment in the 

MCF-7 cell model. Cumulatively, these findings support a relationship between NPY1R and an 

indolent, potentially endocrine responsive phenotype. Moreover, the findings indicate that the 

receptor would be worthy of further exploration both as a biomarker for response (i.e. where in 

turn loss could associate with anti-oestrogen failure in the context of both tamoxifen and 

faslodex). With regards to its therapeutic targeting, it may also be valuable to pursue this in the 

context of the responsive state, or possibly to explore impact of re-inducing its expression in 

resistant cells to see if antihormone response can be restored.

The second cluster examined in detail, cluster 12, comprised TAMR and FASR induced genes. A 

gene of potential interest was 202412_s_at -  ubiquitin thiolesterase (USP1) which is reported to
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play a role in DNA repair. Protein ubiquitination and deubiquitination are dynamic processes 

implicated in the regulation of numerous cellular pathways. Monoubiquitination of the Fanconi 

anemia (FA) protein FANCD2 appears to be critical in the repair of DNA damage because many 

of the proteins that are mutated in FA are required for FANCD2 ubiquitination. USP1 is believed 

to deubiquitinate FANCD2 when cells exit S phase or recommence cycling after a DNA damage 

insult and may thus play a critical role in the FA DNA repair pathway by recycling FANCD2. An 

Oncomine search in this thesis showed its presence in high grade ER- breast cancer, and it is 

certainly feasible that increases in enzymes that regulate DNA repair could be of substantial 

benefit in permitting endocrine resistant progression. This could consequently be characterized as 

a biomarker of resistance, and reveals endocrine resistant breast cancer could comprise a 

potential target for therapies impacting on DNA repair mechanisms.

FATIGO analysis also revealed Cluster 12 contained a number of significant genes whose 

encoded proteins are regulated by transition metal binding -  namely zinc previously shown to 

play a role in breast cancer. Zinc is now known to be important in enhancing activation of several 

mitogenic tyrosine kinases (including erbB receptor family members, IGF1R and c-Src) and is 

implicated in endocrine resistant growth and invasion, where the findings in this thesis further 

confirm our belief that Zinc is a critical player in regulating the resistant phenotype and its 

progression.

Further interesting observations were made when ontological analysis was performed by 

implementing FATIGO (and complementing through DAVID ontology searches) through I-10, 

as applied to all of the 12 clusters individually but subsequently focusing on genes that persisted 

in analysis through many levels of GO ontology (up to FATIGO level 9). With regards to the 

clusters where genes were significantly induced only in the Faslodex resistant model (i.e. clusters

1,3 and 8), FATIGO highlighted “hepatocyte growth factor receptor activity” associated with the 

gene probe for the tyrosine kinase Met (203510 at) and “fibroblast growth factor receptor 

activity” associated with the receptor tyrosine kinases fibroblast growth factor receptor 2 

(203638_s at) and 4 (211237_s at). As stated above, we have previously verified Met up 

regulation at the mRNA level and protein level in the FASR model (Hiscox et al, 2006) [153] and 

showed relevance of Met receptor to promotion of invasion of these cells, particularly under
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conditions where there is paracrine exposure to fibroblasts producing the Met ligand //GF/scatter 

factor. Such data highlight the potential for Met in the biomarker/therapeutic target context in the 

faslodex resistant state, and interestingly Met antibodies and small molecules inhibitors are 

emerging in cancer that would be worthy o f subsequent testing in this particular breast cancer 

context (Dussault et al, 2008) [154],

The ability of the MO analysis process (and implementation of FATIGO) to also highlight the 

Met probe reassures that it may comprise an equally effective analysis platform to determine 

previously unknown targets/biomarkers of significant functional relevance to

invasion/proliferation in resistance. The FGFR up regulation identified by FATIGO is thus also 

of some interest, where RT-PCR studies performed in the Tenovus laboratories in parallel to this 

thesis have been able to very recently confirm induction of both FGFR2 and FGFR4 in the 

context of FASR cells. Again, this is of interest since FGFR inhibitors are emerging and there is 

also increasing clinical evidence of a role for FGFR4 in endocrine resistant states (Dussault et al, 

2008) [154], while the FGFR2 gene has been shown to be amplified in 10% of breast cancer 

patients. This thesis indicates a priority area for testing of FGFR inhibitors may be following 

faslodex relapse and that these receptors could prove to be new markers for this state.

Examination of the clusters where genes were significantly induced only in the tamoxifen 

resistant model (i.e. clusters 2, 11) revealed these were enriched for genes responsible for ATPase 

activity and sodium ion binding, and also included “pancreatic ribonuclease activity” referring to 

the angiogenin gene {205141 at) and “zinc ion binding” referring to the peroxisome proliferator- 

activated receptor gamma gene {208510_s at). Again, the discrimination of PPARy by the I-10 

analysis strategy is encouraging since this gene has also been recently verified in the Tenovus 

laboratories at the RT-PCR level, where manipulation of this receptor has been of some interest 

in the literature in the context of breast cancer treatment/prevention (Meijer et al, 2008) [155]. 

The novel identification of angiogenin in the thesis is also of some interest. The encoded protein 

has been implicated in angiogenesis and further aspects of cancer progression and has been 

correlated with clinical breast cancer behaviour (Eppenberger et al, 1998) [156], while there is 

furthermore increasing data supporting a relationship between markers of angiogenesis/hypoxia 

and endocrine resistant states (Qu et al, 2008) [157]. Future deciphering of the importance of
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angiogenin in the TAMR cells and evaluation of angiogenic capacity of the Tenovus resistance 

models may highlight further biomarker/therapeutic avenues for this state.

The remaining clusters comprised either further clusters suppressed in both forms of resistance 

(as in cluster 9, i.e. clusters 7 and 10) or in one form of resistance only (either suppressed in 

FASR cells for clusters 5, 6 or suppressed in TAMR cells for cluster 4). Examining the further 

clusters bearing genes whose expression was decreased in both forms of resistance versus MCF-7 

revealed that cluster 10 included “insulin-like growth factor receptor activity” referring to the 

IGF1 receptor gene (203627_at). Endocrine responsive cells like the MCF-7 line are known to 

express high levels of the IGF1R where such signalling interacts closely with ER to promote cell 

growth. The Tenovus group have previously confirmed a lower level of IGF1R expression in the 

TAMR cells (Knowlden et al, 2005) [143], further reassuring that the I-10 procedure is effective 

in identifying robust mRNA changes, although interestingly activity of this receptor still remains 

substantial and growth-relevant in the TAMR cells, re-enforcing the importance of subsequently 

monitoring protein expression, activation and cellular function when deciphering signalling 

elements revealed by microarray mRNA studies.

Interestingly, “MAP kinase tyrosine/serine/threonine phosphatase activity”, referring to the dual 

specificity phosphatases 4 and 6 (DUSP 4 [204015_s at; also known as MKP2] and DUSP6 

[208892 s at, also known as MKP3 or PYST1]), was highlighted as decreased at the expression 

level in clusters 5 and 6 with Faslodex resistance only. As potential phosphatase inactivators of 

MAP kinases and possible tumour suppressors, loss of such DUSPSs could enable increased 

Erkl/2 MAP kinase signalling and thereby Faslodex resistant growth (Keyse et al, 2008) [158]. 

Several MAP kinase activity cascades, including Erkl/2, are thought to transmit and amplify 

signals involved in cell proliferation and cell survival. Such signal transduction pathways can be 

induced by various growth factor, steroid hormone and G protein receptor-mediated ligands as 

well as being environmental stress-activated. MAP kinase pathways can also exert cross-talk 

effects in £/?+ cells at the level of £/?-induced transcription as well as at the level of the cell 

cycle. Recent studies have shown that some tamoxifen resistant breast cancer cells contain 

increased activation of MAP kinase family members, notably including p38  (Gutierrez et al,

2005) [159], (Knowlden et al, 2003)[160] and the Erkl/2 MAP kinases including in endocrine
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resistant breast cancer models such as TAMR cells (Knowlden et al, 2003) [160]. A further study 

revealed that while DUSP6/MKP3 expression level was increased in response to tamoxifen as a 

potential counterbalance to the increasing Erkl/2 MAP kinase activity, in tamoxifen resistant 

cells the activity of MKP3 was markedly decreased, allowing MAPK hyperactivation (Cui et al,

2006) [161]. Coupled with our observations here of a MKP3 expression decline in FASR cells, 

such data suggest multiple regulation of MKP3 at both the expression and activity level 

contributing to various endocrine resistant states. The observations made for the DUSPs indicate 

further deciphering of MAPK pathways is needed and may lead to novel biomarkers and 

targeting strategies for endocrine resistant cells.

Finally, FATIGO+ was used to further compare the broad anthologies of the two gene lists for 

cluster 9 and 12, by comparing each list against the other according to GO ontology class as 

shown previously for individual clusters. Results showed no ontological information present at 

levels 1 and 2, and only non-significant trends at level 3, where cluster 9 had more genes 

associated with “cell developmental processes” in its suppressed cluster, as opposed to more 

genes for “cellular metabolism” in the shared induced cluster 12. In this instance, the gene 

expression data revealed through I-10 no doubt reflect increased metabolic needs associated with 

highly proliferate, invasive resistant states. A further significance was recorded at level 7 in this 

FATIGO+ ontology analysis, where “programmed cell death” was highlighted as a more 

prominent ontology for some genes within the suppressed cluster 9. Again, this would be in 

keeping with a shift towards increased proliferation and cell survival in resistance relative to the 

more indolent behaviour of endocrine responsive cells such as MCF-7.

6.3 Aim 3 - • Development of a cancer patient covariate exploration analysis tool to 
investigate the impact of multiple prognostic factors on survival using breast and colorectal 
cancer patient data from a published dataset.

To better understand what factors affect survival for a cancer patient and optimise or even decide 

the treatment they obtain is the goal of any oncologist. This motivation gave rise to the 

development of the Nottingham prognostic index where many patients shared similar 

characteristics which resulted in a ranked survival outcome (Galea et al, 1992) [7].
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The SEER dataset, which contains cancer patient data from 1972 through to 2002, was utilised to 

providing a high quality data set representing patients who have had different types of cancer — 

particularly breast and colorectal cancer (Ries et al, 2005) [100]. The coding system used to 

describe each patient attribute was transformed so it could be queried in a high throughput 

manner in an automated system. The modified patient dataset was stored in a Microsoft SQL 

database.

To explore the dataset, a cancer survival query tool -  Superstes -  was developed. Although 

Superstes was built on the experience gained using Visual Basic, development switched to 

producing a web based tool as opposed to locally installed Windows application such as I-10. 

The tool also used updated Visual Basic technology -  Visual Basic.net which the installation 

issues observed that I-10 faced when installing on new computers. Usage of web service 

technology within Superstes provides a framework to allow the transformed SEER dataset to be 

shared with other research groups. Very few studies have transformed the SEER patient dataset to 

harness the power and information the wealth of over 20 patient attributes used in Superstes 

provides. Hopefully it will provide an example to other research groups as to how such analysis 

platforms can be built and used to explore cancer patient datasets.

One key aspect is the ability of Superstes to directly compare two patient cohorts directly. The 

technical frame work under which Superstes was developed, allows not only other cancer types to 

be queried -  as in the case of colorectal cancer in addition to breast caner -  however also to 

potentially include datasets from different international sources. However due to the protective 

mechanisms in place and health policy differences in terms of usage of data between the United 

Kingdom and the USA, the UK is behind the USA in regard to data sharing. However initiatives 

such as the Health Information Research Unit for Wales (HIRU) are aiming to set a precedent in 

collecting information from many different medical sources ranging from GP surgeries to NHS 

trusts to address the shortfall of available patient information [HIRU, 2008) [162].

Many different patient attribute combinations can be searched using Superstes. Four different 

examples were outlined in Chapter 4 to demonstrate how results were returned from single and 

two cohort patient groups. Logistic regression analysis has also shown to be informative in
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ascertaining the significance a particular patient attribute has on survival. When a two cohort 

colon cancer search was performed, number of nodes positive of a tumour was shown to have a 

highly significant role in influencing survival having a p-value of 0.02. In future, altering the 

patient search query perhaps directed by an oncologist’s knowledge or by literature would 

discover what combination of covariates are optimal in contribution to patient survival. A 

particular set of covariates could then analysed further using more advanced modelling 

techniques to fully explore their impact on survival.

The SEER dataset is widely acknowledged for its data quality (Ries et al, 2005) [100]. However 

the nature of Superstes could potentially show particular bias in some patient covariates. For 

example, minority ethnic groups are of particular interest to the SEER programme and are 

therefore somewhat over represented in the database. Therefore confirmation or further insight 

might be revealed when studying histograms of race from the dataset or using race in assessing 

modelling results using Superstes. A previous study by Li et al in 2003 examined the affect of 

race on breast cancer survival using the SEER breast cancer dataset. The study highlighted 

disparities in breast cancer diagnosis, treatment, and survival among American women from a 

wide-range of racial and ethnic backgrounds. The study highlighted that 50% of women from 

Puerto Rico were more likely to receive substandard, inappropriate treatment for breast cancer. 

Japanese and Chinese women had better survival rates after breast cancer while Hawaiian and 

Mexican women had 30% poorer survival rates when compared to non-Hispanic whites. African 

American, Native American, and Hispanic white women faced a 10% to 70% greater risk of 

dying after a breast cancer diagnosis as compared to non-Hispanic whites. Consequently, 

Superstes will allow greater understanding of this phenomenon with the added benefit of 

examining other patient attributes simultaneously. Due to Superstes enabling query of many 

different patient attributes from the SEER dataset, it will prove to offer terrific insight into patient 

survival for clinicians wishing to explore many different hypotheses, not just race alone.

Superstes demonstrates how modelling of survival -  such as using the Cox proportional hazards 

model -  is able to show how much of a significant contribution a particular patient attribute had 

on survival based on previous patient histories, outlined in the SEER dataset. When different 

machine learning techniques were evaluated in terms of predicting survival outcome in Chapter
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5, the random forest method performed the best overall in the evaluation of different machine 

learning techniques. Consequently it is plausible to conclude that it would be the most reliable 

technique in measuring the resulting prognostic impact. It would be very important for an 

oncologist, on the basis of patient history data, to assure a particular patient has relatively benign 

condition and that their treatment could be easily managed possibly without treatment and 

therefore have a good overall survival prognosis. This fundamentally has a crucial importance to 

a patient’s standard of living as the potential of developing side effects as a result of engaging a 

patient onto a particular treatment regime, may outweigh the benefits of such treatment, 

particularly if their condition is not as critical as that of others.

6.5 Aim 4 -  Usage o f advanced computational methodologies in predicting patient survival 
and determination of which method offers the most robust classification using the same 
patient attributes as used to predict prognosis using the NPI

Multivariate analysis has been long established using high throughput approaches such as 

microarray analysis in vitro models representative of different cancer types. Historically, 

clinicians have researched pathological factors and their affect on patient survival has been based 

more upon their own experience and search of the literature. More recently however, multivariate 

analysis studies have shown that different methodologies can be used to analyse the multitude of 

patient attribute information simultaneously and to learn tends in population, thus expanding the 

"localised" knowledge to a more "global" knowledge, which can then be accessed by other 

clinicians.

Chapter 5 demonstrated that many different machine learning methodologies could be applied to 

a cohort of breast cancer patients to model survival based on patient attributes of nodes positive 

status, tumour size and tumour grade. These covariates were the same as that used to predict 

prognosis using the NPI. An assumption was made that these three attributes could be used to 

predict survival outcome in the training data set for the machine learning methods to learn 

successfully; otherwise the performance of such techniques would be low.
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The versatility o f ‘R’ was further demonstrated in the way that it can interface with external 

specialised applications such as machine learning applications. The Java programming language 

application ‘Weka’ is a typical example o f such an application. Using six different machine 

learning methodologies, a comparison o f the accuracy o f a classifier produced using each method 

was achieved. The better the model emulates what processes are occurring in the patient which 

result in a particular outcome based on certain patient attributes, the greater the accuracy the 

classifier will produce.

The fact o f defining a ‘typical’ representative cancer patient cohort is difficult, if it even exists. 

The SEER dataset comprises o f population-based cancer registries from a state wide, 

metropolitan area or rural county grouping via the National Cancer Institute (NCI) for inclusion 

in the SEER database. The cancer patient data is collected from health providers which range 

from hospitals to physician offices as well as from autopsy reports and death certificates. The 

SEER Program data is considered the international standard for cancer registry data quality. 

Consequently the patient data set which the modelling techniques utilises can be used with 

confidence.

Most o f the benefits observed with boosting appeared to be caused by over-fitting the training 

data set. Although boosting is thought to generally increase accuracy, it is well documented that it 

leads to deterioration o f classifier results with some datasets.

More understanding o f attribute interactions occurring within each classifier is required in 

addition to being able to accurately predict an outcome. Information regarding the relationship 

between the attributes and their outcome when applied to a dataset is required -  this can be 

thought o f as looking inside the ‘black box’. Data modellers have criticized the machine learning 

efforts on the grounds that the accurate predictors constructed are so complex that it is nearly 

impossible to use them to get insights into the underlying structure o f the data. They are often 

thought o f as large bulky incoherent single purpose methodologies. The contrary is true using 

decision tree analyses such as random forests. More reliable information about the inside o f  the 

‘black box' is obtained than using that revealed using the other machine learning techniques.
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However the disadvantage is that it is not in the form of a simple equation, which makes routine 

usage more prohibitive for clinicians, for example.

The machine learning techniques show how detailed analysis of patient covariates can be 

assessed. Ten fold cross validation has shown which classifier performs the best using the SEER 

breast cancer patient cohort and using patient covariates known to have a connection with 

survival -  namely the NPI index. It is therefore plausible that in conjunction with a tool such as 

Superstes, patient covariates revealed from patient searches in Superstes could be applied to the 

SEER dataset to determine if an altered selection o f covariates improves upon the patient 

covariates o f tumour size, grade and nodes positive status. Consequently this would encourage a 

clinician to generate new hypotheses and thus aim to improve the standard o f current diagnostic 

and prognostic processes.

Ten-fold cross validation, apart from providing an overall accuracy measure, produces a Kappa 

statistic value for each methodology evaluated. As introduced in Chapter 5, this enables a 

measure o f success classification o f a technique. A value o f 1 indicates perfect classification, and 

a value o f 0 indicates classification at the chance rate i.e: the null hypothesis -  the closer to 0 the 

poorer the classifier has performed. Using this value as a measure, none o f the machine learning 

techniques performed exceptionally well. In keeping with the objectives o f the study, determining 

which classifier performed best with when applied to the breast cancer cohort, multiple sources of 

information from ten fold cross validation analysis indicates that the random forest classifier 

performs the best of all the methods. It had the highest accuracy and also the highest kappa value 

of 0.501, for example. Bagging performed the worst when applied to a test set o f 200 patients 

resulting in a score of 0.350. This performance was mirrored in the overall accuracy scores which 

ten fold validation summarised. However it is very easy to forget when using advanced modelling 

techniques exactly what the rationale for applying such systems in the first place. This is 

particularly important when predicting survival on a routine basis as ultimately the cost of 

misclassifying patients as having a good prognosis when in fact they are of a high risk of death is 

the ultimate mistake to make.
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As models varied in performance, optimisation was needed — particularly in the case o f support 

vector machines — and therefore their routine use for predicting survival outcome should be 

viewed very sceptically for day to day prognosis. As previously described in Chapter 1 for 

microarray classifiers, it is very easy to make bold statements regarding performance o f a 

particular classifier; however it can be difficult to recreate similar success with a different data 

source. Currently, more in depth study into optimising patient covariate combinations in terms of 

predicting survival is required.

However when presented with new ‘fashionable’ machine learning techniques, it is very easy to 

undervalue more traditional statistical techniques such as logistic regression. Logistic regression 

performed well against the SEER dataset especially considering its relative simplicity to more 

advanced machine learning methods. Furthermore it has the advantage that the same result is 

produced each time based on a particular result. However this differs to the machine learning 

methods as because of the way in which they use random methods for sampling as part o f their 

‘learning’ processes against the dataset, the result will be slightly different each time. Oncologists 

are busy people and therefore they might not have the time or value the extra effort in building 

the machine learning models as a result o f the lack o f consistency in the results produced. 

Furthermore as the results produced were not overwhelmingly accurate, their value would have to 

be carefully considered.

It would be interesting to compare the different methodologies against different cancer datasets to 

determine if performance by any particular method is better against certain datasets or similar in 

performance overall. This could be achieved by potentially comparing the accuracy percentages 

obtained during ten fold cross validation against each classifier performance in turn. Until this is 

performed, it is difficult to categorically say one machine learning approach is universally better 

than another.

Many of the machine learning techniques -  particularly Support Vector Machine (SVM) - take an 

extended time to process. In fact, SVM took over an hour to perform just one cycle o f the 

algorithm. Due to the optimisation required for the SVM algorithm, results will take many hours 

-  perhaps even days to return meaningful results with no guarantee o f success. Such techniques 

are best suited to a super computing environment. In fact the very nature of the way classifiers
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are built using some o f the machine learning techniques borrows itself very well to parallel 

processing. Parallel processing involves a particular task -  e.g: iterations of an algorithm -  to be 

distributed among different individual computers connected together so each has an individual 

task to process. This greatly speeds up the running of many of the machine learning algorithms as 

multiple computers are working in ‘parallel’ with each other. Once complete, each machine 

returns a result and the output combined. These results in far higher throughput and analysis of 

datasets -  a task which ‘R’ is not optimised to perform. In fact studies were conducted to re

compile ‘R’ for it to perform tasks in a super computing environment however the task ultimately 

was beyond the scope of this project. It would be interesting to see this achieved in a future study.

6.6 Conclusion

Freely-available programming languages and design tools have enabled the new tools outlined in 

this project to be created. Their usefulness has subsequently been successfully demonstrated in 

the context o f two specific areas o f current interest in breast cancer: to better understand adverse 

endocrine resistant states (revealing some new potential biomarkers/possible therapeutic 

avenues), and to be able to interrogate clinical data sets in order to derive improved classifiers for 

patient survival. It is acknowledged that freely available tools, particularly data analysis tools, are 

often difficult for some users not familiar with computer programming environments to apply. 

Consequently development o f automated, user-friendly tools such as I-10 and Superstes will 

hopefully introduce many more researchers to the power of freely available technologies such as 

the ‘R’ project to achieve their bioinformatics needs.

However it is also acknowledged that development of an automated system -  for example, a user 

interface similar to Superstes -  is highly unlikely for machine learning methodologies. Due to 

their highly-specialised nature that requires optimisation, and potentially differing performance of 

machine learning methodologies between datasets, this would prove difficult to perform 

automatically whilst still remaining informative and user friendly, especially to a user unfamiliar 

with machine learning.
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It is hoped that the analysis approaches and tools developed in this study will ultimately help 

many researchers gain a broader understanding of cancer biology in both model systems and the 

clinical setting. There is much hope that usage of the strategies and tools outlined in this project 

should expedite better understanding of results derived from high throughput technologies and 

large datasets which will ultimately drive cancer research forward.
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Appendix 1 -  Preparation of MCF7 cell line for Affymetrix microarray 
analysis

The human oestrogen-dependant, breast carcinoma cell lines MCF-7 were cultured in RPMI 
1640 with L-glutamine medium supplemented with 5% o f  foetal bovine serum (FBS) as 
standard tissue culture conditions. RPMI and FBS were from GIBCO BRL Life Technologies 
(Paisley, UK).

RNA for microarray analysis was isolated using the RNAeasy mini system (Qiagen) RNA 
samples were processed for Affymetrix GeneChip® hybridization using the MessageAmpTM 
aRNA Kit (Ambion).

For each sample, 5ug o f total RNA was used to generate double stranded cDNA and was 
purified according to the MessageAmpTM aRNA Kit (Ambion) protocol.

In vitro transcription (IVT) reactions to produce antisense RNA were carried out in 20ul 
reactions consisting of:
1.5 pi cDNA
2 pi T7 lOxReaction Buffer
3.75 pi lOm M biotin-ll-CTP (Perkin-Elmer)
3.75 pi lOmM biotin- 16-UTP (Perkin-Elmer)
2 pi 75mM ATP
2 pi 75mM GTP
1.5 pi 75mM CTP
1.5 pi 75mM UTP
2 pi T7 enzyme mix

The reaction was incubated for 371°C for 6 h.

The IVT reactions were DNase I treated and purified according to the manufacturer’s 
protocol.

Sample fragmentation, hybridization and GeneChip® array washing and staining were carried 
out according to the GeneChip® Expression Analysis Technical Manual (Affymetrix).

The stained arrays were scanned using a GeneChip® Scanner 3000 (Affymetrix).
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Appendix 2 -  Phenotype status of the MCF7 models - control, TAMR and 
FASR Affymetrix microarrays

P = Present 
M = Marginal 
A = Absent

The description o f the arrayed models has been shortened. For example:
C l = Control model replicate 1
T1 = Tamoxifen resistant model replicate 1
FI = Faslodex resistant model replicate 1
with numbering indicating each respective replicate.

Sorlie erb2

AffylD Description C1 C2 C3 T1 T2 T3 F1 F2 F3
210930_s_at erbB2 P P P P P P A P P
216836_s_at erbB2 P P P P P P P P P
203497_at PPAR binding protein P A A A P A P P P
203496_s_at PPAR binding protein A A A A A A A A A
213043_s_at Thyroid hormone P P P P P P P P P

receptor associated
protein4

202991_at STARD3 P M M P P P M P P
210761_s_at GRB-7 growth factor P P P P P P P P P

receptor bound-7
202039_at TIAF1 Tgfbl-induced P P A P P A P P P

antiapoptosis factor
211899_s__at TRAF4 TNF receptor P P P P P P P P P

associated factor 4
202871_at TRAF4 TNF receptor P P P P P P P P P

associated factor 4
201350_at flotillin 2 P P P P P P P P P
211299_s_at flotillin 2 P P P P P P P P P
218464_s_at FLJ 10700 P A A P M A A A A
211988_at SMARCE1 P P P P P P P P P
211989_at SMARCE1 P M P P P A P P P
202606_s_at TLK1(mod) P P P P P P P P P
211077_s_at TLK1(mod) A A A A M A A P A
210379_s_at TLK1(mod) A A A A A A A A A

Sorlie Basal

AffylD Description C1 C2 C3 T1 T2 T3 F1 F2 F3
202935_s_at SRY sex determining region Y- A M A P P A A A A

box
202936_s_at SRY sex determining region Y-box A A A A P A A A A
203398_s_at U DP-n-acety l-alpha-D- A A A A A A A A A

galactosamine
203397_s_at U DP-n-acety l-alpha-D- P A P P P P P P P

gaiactosamine
203256 at P-cadherin 3 P P P A P A P P P
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207517_at laminin gamma 2 A A A A A A A A A
202267_at laminin gamma 2 A A A A A A A A A
202504_at ATDC A A A A A A A A A
211002_s_at ATDC A A A A A A A A A
211001_at ATDC A A A A A A A A A
205157_s_at keratin 17 A A A A A A A A A
212236_x_at keratin 17 A A A A A A A A A
201820_at keratin 5 A A A A A A A A A
206393_at troponin A A A A A A A A A
213060_s_at chitinase 3 like-2 A A A A A A A A A
203021_at secretory protease inhibitor antlock 

proteinase
A A A P P P A A A

209290_s_at nuclear factor l/B P A P A P A P P P
211467_s_at nuclear factor l/B A A A A A A A A A
211466_at nuclear factor l/B A A A A A A A A A
206538_at mRAS est A A A A A A A A A
209908_s_at TGFbeta 2 P A A A A A A A A
220407_s_at TGFbeta 2 P A A A A A A A A
209909_s_at TGFbeta 2 P P P A A A A A A
202966_at calpain-like protease A A A A A A A A A
202965_s_at calpain-like protease A A A A A A A A A
217387_at calpain-like protease A A A A A A A A A
208086_s_at dystrophin muscular dystrophy A A A A A A A A A
203881_s_at dystrophin muscular dystrophy A A A A A A A A A
207660_at dystrophin muscular dystrophy A A A A A A A A A
205029_s_at fatty acid binding protein 7 A A A A A A A A A
205030_at fatty acid binding protein 7 A A A A A P A A A
216192_at fatty acid binding protein 7 A A A A A A A A A
204470_at GRO oncogene alpha A A A A A P A A A
203074_at ANXA8 P P P P P P P P P
210605_s_at MFGE8 A A A P A A A A A
823_at CX3CL1 A A A A A A P A P
203706_s_at FZD7 P P P P P P A A A
203705_s_at FZD7 P P P P P P P A A
203687_at CX3CL1

Sorlie Normal

A A A A A A A A A

AffylD Descrip C1 C2 C3 T1 T2 T3 F1 F2 F3
206488_s_at CD36 collagen 1 receptor A A A A A A P P P
209555_s_at CD36 collagen 1 receptor A A A A A A A P P
209554_at CD36 collagen 1 receptor A A A A A A A A A
214091_s_at glutathione peroxidase 3 P P P P P P P P P
201348_at glutathione peroxidase 3 P P P P P P P P P
213706_at glycerol-3-phosphate 

dehydrogenase 1
A A A A A A A A A

204997_at glycerol-3-phosphate 
dehydrogenase 1

A A A A A A A A A

203549_s_at lipoprotein lipase A A A A A A A A A
203548_s_at lipoprotein lipase A A A A A A A A A
214505_s_at four and a half LIM domains A A A A A A A A A
210299_s_at four and a half LIM domains A A A A A A A A A
201539 s at four and a half LIM domains M P P P P A A A P
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210298_x_at four and a half LIM domains A A A A A A A A A
201540_at four and a half LIM domains P P P P P P A P A
219140_s_at retinol-binding protein 4 A A A A A A A A A
204894_s_at vascular-adhesion protein 1 A A A A A A A A A
209663_s_at integrin alpha 7 A A A A A A A A A
216331_at integrin alpha 7 A A A A A A A A A
209613_s_at alcohol dehydrogenase-2 class 1 

beta
A A A A A A A A A

209612_s_at alcohol dehydrogenase-2 class 1 
beta

A A A A A A A A A

209614_at alcohol dehydrogenase-2 class 1 
beta

A A A A A A A A A

202595_s_at leptin receptor overlappin P P P P P P P P P
202594_at leptin receptor overlappin P P P P P P P P P
206955ja t aquaporin A A A A A A A A A
219398_at CICE 30KDa protein P A P P P P P P P
204151_x_at AKR1C1 P P P P P P P P P
216594_x_at AKR1C1 P P P P P P P P P
201963_at FACL2 P A P P P P P P P
207275_s_at FACL2 A A A P P P A P P

Sorlie Luminal

AffylD Description C1 C2 C3 T1 T2 T3 F1 F2 F3
205355_at acyl-coenzyme A dehydrogenase A A A A A A A M P
205225_at estrogen receptor P P P P P P P P P
215552_s_at estrogen receptor P A A A A A A A A
211233_x_at estrogen receptor A A A A A A A A A
211235_s_at estrogen receptor A A A A A A A A A
211234_x_at estrogen receptor A A A A A A A A A
211627_x_at estrogen receptor A A A A A A A A A
217190_x_at estrogen receptor A A A A A A A A A
207672_at estrogen receptor A A A A A A A A A
204623_at trefoil factor 3 intestinal P P P P P P A P A
209604_s_at GATA binding protein 3 P P P P P P P P P
209602_s_at GATA binding protein 3 P P P P P P P P P
209603_at GATA binding protein 3 P P P A A A P P P
200670_at x-box binding protein P P P P P P P P P
204667_at FOX A1 - hepatocyte nuclear factor

O
P P P P P P P P P

202088_at
o
LIV-1 P P P P P P P P P

202089_s_at LIV-1 P P P P P P P P P
210085_s_at Annexin A9 P P P P P P P P P
211712_s_at Annexin A9 P P P P P P P P P
214440_at n-acetyl transferase 1 P P P P P P P P P
210480_s_at Myosin VI A A A A A A A A A
203215_s_at Myosin VI A A A A A A A A A
203216_s_at Myosin VI P P P M P P P P P
212692_s_at LRBA P P P P P P P P P
214109_at LRBA P P P P P P P P P
208615_s_at PTP4A2 P P P P P P P P P
208617_s_at PTP4A2 P A P P P P P P P
216988_s_at PTP4A2 P P P P P P P P P
219197 s at SCUBT2 P P P A A A A A A
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Appendix 3 — SEER cancer patient dataset coding alterations for database 
storage and data analysis

Table A3.1 outlines the original coding o f different breast cancer patient variables and the 
new coding nomenclature adopted where a change was required. Table A3.2 shows the coding 
and changes adopted for the colorectal cancer dataset.

Breast cancer 
patient variables

Original coding New coding

Race 1, 2, 3 or 4 No change
Year e.g: 1976 No change
Histology 8010, 8050, 8070,8140, 8201, 

8211,8480, 8500, 8501,8503, 
8510, 8520, 8521,8522, 8530, 

8541

No change

Tumour site 500, 501,502, 503, 504, 505, 
506, 508, 509

No change

Tumour grade I, II, III or IV 1,2,3 or 4
Cause o f death Textual -  varies according to 

type
Changed to alive or dead over a ten 

year period 1 or 0
Nodes examined 0 to 75 No change
Positive nodes 0 to 75 No change
Tumour extent 10, 20, 30, 40, 50, 70 No change
Tumour size 0 to 50 No change
Age e.g: 45 No change
Surgery received 0, 1,2, 10, 20, 30 ,40 ,48 , 50, 

58, 60, 80, 90
No change

Radiation received 0, 1 and 3 No change
Radiation sequence 
surgery

1,2,3,4,5,6,7 No change

Martial status 1,2,3,4 or 5 No change
Number of 
primaries

1,2,3 or 4 No change

PgR status 1,2 or 3 No change
Er status 1,2 or 3 No change
Survival time in 
months

e.g: 32 No change

Patient ID e.g: 98493 No change
Table A3.1: Summary of the existing and modified SEER breast cancer patient dataset coding.
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Colorectal cancer 
patient variables

Original coding New coding

Race 1,2 , 3 or 4 No change
Sex 1 or 2 No change
Year e.g 1954 No change
Histology 8010, 8050, 8070,8140, 8201, 

8211,8480, 8500, 8501,8503, 
8510, 8520, 8521,8522, 8530, 

8541

No change

Tumour site 1,2,3,4,5,6,7,8,9,10,11 or 12 No change
Tumour grade I, II, III or IV 1,2,3 or 4
Cause o f death Textual -  varies according to 

type
Changed to alive or dead over a 

ten year period 1 or 0
Nodes examined 0 to 75 No change
Positive nodes 0 to 75 No change
Tumour extent 00, 10, 11, 12, 20, 30, 40, 60, 

65,70
No change

Tumour size 0 and 50 No change
Age e.g: 76 No change
Surgery received 1,2,3,4,5,6,7,8 or 9 No change
Radiation received 1,2,3,4,5,6,7,8 or 9 No change
Martial status 1,2,3,4 or 5 No change
Number o f Primaries 1,2,3 or 4 No change
Radiation sequence 
surgery

1,2,3,4,5,6 or 7 No change

Survival time in months e.g: 45 No change
Patient ID e.g:56433 No change
Table A3.2: Summary of the existing and modified SEER colorectal cancer patient dataset
coding.
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Appendix 4 -  Transforming the SEER breast cancer dataset to calculate a 
Nottingham prognostic index value for each patient

The ‘R ’ statistical programming environment was used to compare the NPI prognostic index 
categories against the SEER breast cancer dataset as outlined in Chapter 5.

A data frame to hold the survival data and NPI scores was initially created:

> data.npi<-data.all
> npi<-c(rep(0,nrow(data.npi)))
> data.npi<-cbind(data.npi, npi)

The scoring system for grade to be altered as grade in the UK it ranges between 1 and 3 
whereas the SEER dataset had values up to 4 which needed to be included in those cases 
classified with a grade o f 3.

The same procedure was performed for the number o f nodes positive.

>data. npi$grade<-if else (data. npi$grade=4,3, data. npi$grade)
>data. npi$nodespos<-if else (data. npi$nodespos<l, 1, 
ifelse(data.np±$nodespos<4, 2, 3))

The NPI scores were then calculated using the NPI formula changing the tumour size from 
millimetres as used in the SEER dataset to cm as used in the NPI.

>data.npi$npi<-as. numeric (da ta.npi$nodespos) + as. numeric (data, npi $grade) + 
(data.npi$size/10)*0.2

NPI scores according to the prognostic categories were assigned to the results. This was 
performed in separate stages first calculating the number who survive and then the percentage 
and overlay according to the NPI prognostic grouping. For example: EPG = Excellent 
prognosis group.

> d a t a . n p i $ n p i < - i f e l s e ( d a t a . n p i $ n p i < = 2 . 4 ,  1 , i f e l s e ( d a t a . n p i $ n p i  < = 3 . 4 ,  2 ,  
i f e l s e ( d a t a . n p i $ n p i < = 4 . 4 ,  3, i f e l s e ( d a t a . n p i $ n p i < = 5 . 4 ,  4 ,  
i f e l s e ( d a t a . n p i $ n p i < = 6 . 4 ,  5 ,  6 ) ) ) ) )
> d a t a . n p i $ n p i < - a s . f a c t o r ( d a t a . n p i$ n p i )
> g r o u p s < - c ( r e p ( 0 , 6 ) )
> n p i . t a b l e < - t a b l e ( d a t a . n p i $ n p i ,  d a t a . n p i $ a l i v e s t a t u s )
p e r c e n t . s u r v i v i n g < - 1 0 0 * ( n p i . t a b l e  [ , l ] / (  n p i . t a b l e  [ , 1 ] +  n p i . t a b l e  [ , 2 ] ) )
> g r o u p s < - a s . d a t a . f r a m e ( p e r c e n t . s u r v i v i n g , ro w . n a m e s = c ( "EPG" , "GPG", "MPGl",  
"MPG2 " , "PPG11, "VPG"))

The results and discussion are shown in Chapter 5, table 5.3 and table 5.4
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